
DB2
for Linux, UNIX, and Windows

Database Administration Concepts and Configuration Reference
Updated July, 2012

Version 9 Release 7

SC27-2442-03

���

DB2
for Linux, UNIX, and Windows

Database Administration Concepts and Configuration Reference
Updated July, 2012

Version 9 Release 7

SC27-2442-03

���

Note
Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on
page 725.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1993, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book xi

Part 1. Data servers 1

Chapter 1. DB2 data servers 3
Management of data server capacity 3
Enabling large page support (AIX) 4
Pinning DB2 database shared memory (AIX) . . . 5

Chapter 2. Multiple DB2 copies overview 7
Default IBM database client interface copy 8
Setting the DAS when running multiple DB2 copies 11
Setting the default instance when using multiple
DB2 copies (Windows). 12
Multiple instances of the database manager . . . 13
Multiple instances (Windows) 14
Updating DB2 copies (Linux and UNIX). 14
Updating DB2 copies (Windows) 16
Running multiple instances concurrently (Windows) 17
Working with instances on the same or different
DB2 copies 18

Chapter 3. Autonomic computing
overview 19
Automatic features 21
Automatic maintenance 23

Maintenance windows. 23
Self-tuning memory 24
Self-tuning memory 25

Self-tuning memory overview 26
Memory allocation 27
Memory parameter interaction and limitations. . 29
Enabling self-tuning memory 31
Disabling self-tuning memory 32
Determining which memory consumers are
enabled for self tuning. 32
Self-tuning memory in partitioned database
environments 33
Using self-tuning memory in partitioned
database environments 35

Configuring memory and memory heaps 37
Agent and process model configuration 39
Agent, process model, and memory configuration
overview 39

Automatic storage 44
Data compression 44
Automatic statistics collection 45

Enabling automatic statistics collection 49
Configuration Advisor. 49

Tuning configuration parameters using the
Configuration Advisor. 49
Generating database configuration
recommendations 50

Example: Requesting configuration
recommendations using the Configuration
Advisor 51

Utility throttling 53
Asynchronous index cleanup 53
Asynchronous index cleanup for MDC tables . . 55

Chapter 4. Instances 57
Designing instances. 58

Default instance 59
Instance directory 60
Multiple instances (Linux, UNIX) 60
Multiple instances (Windows) 61

Creating instances 62
Modifying instances 63

Updating the instance configuration (Linux,
UNIX) 63
Updating the instance configuration (Windows) 65

Working with instances 65
Auto-starting instances 65
Starting instances (Linux, UNIX) 66
Starting instances (Windows) 66
Attaching to and detaching from instances . . . 67
Working with instances on the same or different
DB2 copies 67
Stopping instances (Linux, UNIX) 68
Stopping instances (Windows) 69

Dropping instances 70

Part 2. Databases 71

Chapter 5. Databases 73
Designing databases 73

Recommended file systems 74
Database directories and files 75
Space requirements for database objects 82
Space requirements for log files. 83
Lightweight Directory Access Protocol (LDAP)
directory service 84

Creating databases 85
Automatic storage databases. 86
Cataloging databases 94
Binding utilities to the database 95
Creating database aliases 96

Connecting to distributed relational databases . . . 97
Remote unit of work for distributed relational
databases 98
Application-directed distributed unit of work 100
Application process connection states 102
Connection states 103
Customizing an application environment using
the connect procedure 104
Options that govern unit of work semantics . . 108
Data representation considerations 108

Viewing the local or system database directory files 109

© Copyright IBM Corp. 1993, 2012 iii

Dropping databases 109
Dropping aliases 109

Chapter 6. Database partitions 111

Chapter 7. Buffer pools 113
Designing buffer pools 113
Buffer pool memory protection (AIX running on
POWER6) 115
Creating buffer pools 116
Modifying buffer pools 117
Dropping buffer pools 118

Chapter 8. Table spaces 119
Table spaces for system, user and temporary data 121

Table spaces in a partitioned database
environment. 122
Table spaces and storage management 123
Temporary table spaces 151
Considerations when choosing table spaces for
your tables 154
Table spaces without file system caching . . . 155
Extent sizes in table spaces 161
Page, table and table space size 162
Disk I/O efficiency and table space design . . 162

Creating table spaces 164
Creating temporary table spaces 168
Defining initial table spaces on database
creation 168

Altering table spaces 172
Calculating table space usage 173
Altering SMS table spaces 174
Altering DMS table spaces 174
Altering automatic storage table spaces. . . . 189
Renaming a table space 199

Table space states 199
Switching table spaces from offline to online . . . 208
Optimizing table space performance when data is
on RAID devices 208
Dropping table spaces 209

Chapter 9. Schemas 213
Designing schemas 214

Grouping objects by schema 216
Schema name restrictions and recommendations 217

Creating schemas 218
Copying schemas 218

Example of schema copy using the
ADMIN_COPY_SCHEMA procedure 220
Examples of schema copy using the db2move
utility 220

Restarting a failed copy schema operation 222
Dropping schemas. 224

Part 3. Database objects 225

Chapter 10. Concepts common to
most database objects 227
Aliases 227

Soft invalidation of database objects 227
Automatic revalidation of database objects . . . 228
Creating and maintaining database objects . . . 229

Chapter 11. Tables 233
Types of tables 233
Designing tables 234

Table design concepts 235
Space requirements for tables 242
Table compression 248
Optimistic locking overview 259

Table partitioning and data organization schemes 269
Creating tables 269

Declaring temporary tables 269
Creating and connecting to created temporary
tables 270
Creating tables like existing tables 272
Creating tables for staging data 273
Distinctions between DB2 base tables and
temporary tables 274

Modifying tables 276
Altering tables 276
Altering materialized query table properties . . 278
Refreshing the data in a materialized query
table 278
Changing column properties 279

Renaming tables and columns 282
Recovering inoperative summary tables 282
Viewing table definitions 283
Dropping tables 283

Dropping materialized query or staging tables 284
Scenarios and examples of tables 284

Scenarios: Optimistic locking and time-based
detection 284

Chapter 12. Constraints 289
Types of constraints 289

NOT NULL constraints 290
Unique constraints 290
Primary key constraints 291
(Table) Check constraints 291
Foreign key (referential) constraints 291
Informational constraints 296

Designing constraints. 296
Designing unique constraints 296
Designing primary key constraints 297
Designing check constraints 297
Designing foreign key (referential) constraints 299
Designing informational constraints 304

Creating and modifying constraints 306
Reuse of indexes with unique or primary key
constraints 308
Viewing constraint definitions for a table 308
Dropping constraints 308

Chapter 13. Indexes. 311
Types of indexes 312
Indexes on partitioned tables 314

Nonpartitioned indexes on partitioned tables 315
Partitioned indexes on partitioned tables . . . 317

iv Database Administration Concepts and Configuration Reference

Designing indexes 321
Tools for designing indexes. 324
Space requirements for indexes 324
Index compression 328

Creating indexes 331
Creating nonpartitioned indexes on partitioned
tables 331
Creating partitioned indexes 332

Modifying indexes 334
Renaming indexes 334
Rebuilding indexes 335

Dropping indexes 336

Chapter 14. Triggers 337
Types of triggers 338

BEFORE triggers 339
AFTER triggers 339
INSTEAD OF triggers 340

Designing triggers 341
Specifying what makes a trigger fire (triggering
statement or event) 343
Specifying when a trigger fires (BEFORE,
AFTER, and INSTEAD OF clauses) 344
Defining conditions for when trigger-action will
fire (WHEN clause) 347
Supported SQL PL statements in triggers . . . 348
Accessing old and new column values in
triggers using transition variables 349
Referencing old and new table result sets using
transition tables 350

Creating triggers 351
Modifying and dropping triggers. 353
Examples of triggers and trigger use 354

Examples of interaction between triggers and
referential constraints. 354
Examples of defining actions using triggers . . 356
Example of defining business rules using
triggers 356
Example of preventing operations on tables
using triggers 357

Chapter 15. Sequences 359
Designing sequences 359

Managing sequence behavior 360
Application performance and sequences . . . 361
Sequences compared to identity columns . . . 362

Creating sequences 363
Generating sequential values 364
Determining when to use identity columns or
sequences 364

Modifying sequences 365
Viewing sequence definitions 366
Dropping sequences 367
Examples of how to code sequences 367
Sequence reference 368

Chapter 16. Views 373
Designing views 374

System catalog views 374
Views with the check option 375

Deletable views 377
Insertable views 378
Updatable views 378
Read-only views 379

Creating views 379
Creating views that use user-defined functions
(UDFs) 380

Modifying typed views 381
Recovering inoperative views 381
Dropping views 382

Part 4. Reference 383

Chapter 17. Conforming to naming
rules 385
General naming rules. 385
DB2 object naming rules. 386
Delimited identifiers and object names 388
User, user ID and group naming rules 388
Naming rules in an NLS environment 389
Naming rules in a Unicode environment 390

Chapter 18. Lightweight Directory
Access Protocol (LDAP). 391
Security considerations in an LDAP environment 391
LDAP object classes and attributes used by DB2 392
Extending the LDAP directory schema with DB2
object classes and attributes 402
Supported LDAP client and server configurations 402

LDAP support and DB2 Connect 403
Extending the directory schema for IBM Tivoli
Directory Server 404
Netscape LDAP directory support and attribute
definitions 405
Extending the directory schema for Sun One
Directory Server 407
Windows Active Directory 408
Enabling LDAP support after installation is
complete 411

Registering LDAP entries 412
Registration of DB2 servers after installation . . 412
Catalog a node alias for ATTACH 413
Registration of databases in the LDAP directory 414

Deregistering LDAP entries. 414
Deregistering the DB2 server 414
Deregistering the database from the LDAP
directory 415

Configuring LDAP users 415
Creating an LDAP user 415
Configuring the LDAP user for DB2
applications 416
Setting DB2 registry variables at the user level
in the LDAP environment 416

Disabling LDAP support 416
Updating the protocol information for the DB2
server 416
Rerouting LDAP clients to another server 417
Attaching to a remote server in the LDAP
environment. 418

Contents v

Refreshing LDAP entries in local database and
node directories 418
Searching the LDAP servers 419

Chapter 19. SQL and XML limits . . . 421

Chapter 20. Registry and environment
variables 433
Environment variables and the profile registries 433
Profile registry locations and authorization
requirements 434
Setting registry and environment variables . . . 434

Setting environment variables outside the
profile registries on Windows 436
Setting environment variables outside the
profile registries on Linux and UNIX operating
systems 437
Identifying the current instance 438
Setting variables at the instance level in a
partitioned database environment 438

Aggregate registry variables 439
DB2 registry and environment variables 440

General registry variables 443
System environment variables 452
Communications variables 462
Command-line variables. 465
Partitioned database environment variables . . 467
Query compiler variables 469
Performance variables 474
Miscellaneous variables 493

Chapter 21. Configuration parameters 515
Configuring the DB2 database manager with
configuration parameters 516
Configuration parameters summary 519
Configuration parameters that affect the number of
agents 531
Configuration parameters that affect query
optimization. 531
Recompiling a query after configuration changes 533
Restrictions and behavior when configuring
max_coordagents and max_connections 534
Database Manager configuration parameters . . . 536

agent_stack_sz - Agent stack size 536
agentpri - Priority of agents 537
alt_diagpath - Alternate diagnostic data
directory path 539
alternate_auth_enc - Alternate encryption
algorithm for incoming connections at server
configuration parameter 540
aslheapsz - Application support layer heap size 541
audit_buf_sz - Audit buffer size 543
authentication - Authentication type 543
catalog_noauth - Cataloging allowed without
authority 545
clnt_krb_plugin - Client Kerberos plug-in . . . 545
clnt_pw_plugin - Client userid-password
plug-in 546
cluster_mgr - Cluster manager name 546
comm_bandwidth - Communications bandwidth 547

conn_elapse - Connection elapse time 547
cpuspeed - CPU speed 548
date_compat - Date compatibility database
configuration parameter 548
dft_account_str - Default charge-back account 549
dft_monswitches - Default database system
monitor switches 549
dftdbpath - Default database path 551
diaglevel - Diagnostic error capture level . . . 551
diagpath - Diagnostic data directory path . . . 552
diagsize - Rotating diagnostic and
administration notification logs configuration
parameter 556
dir_cache - Directory cache support 558
discover - Discovery mode 559
discover_inst - Discover server instance . . . 560
fcm_num_buffers - Number of FCM buffers . . 560
fcm_num_channels - Number of FCM channels 561
fed_noauth - Bypass federated authentication 562
federated - Federated database system support 563
federated_async - Maximum asynchronous TQs
per query configuration parameter 563
fenced_pool - Maximum number of fenced
processes 564
group_plugin - Group plug-in 565
health_mon - Health monitoring 565
indexrec - Index re-creation time 566
instance_memory - Instance memory 568
intra_parallel - Enable intra-partition parallelism 570
java_heap_sz - Maximum Java interpreter heap
size. 571
jdk_path - Software Developer's Kit for Java
installation path 572
keepfenced - Keep fenced process 572
local_gssplugin - GSS API plug-in used for local
instance level authorization. 573
max_connections - Maximum number of client
connections 573
max_connretries - Node connection retries. . . 574
max_coordagents - Maximum number of
coordinating agents 575
max_querydegree - Maximum query degree of
parallelism 575
max_time_diff - Maximum time difference
among nodes 576
maxagents - Maximum number of agents . . . 577
maxcagents - Maximum number of concurrent
agents 578
mon_heap_sz - Database system monitor heap
size. 579
nodetype - Machine node type 580
notifylevel - Notify level. 580
num_initagents - Initial number of agents in
pool 581
num_initfenced - Initial number of fenced
processes 582
num_poolagents - Agent pool size 582
numdb - Maximum number of concurrently
active databases including host and System i
databases. 583
query_heap_sz - Query heap size. 584

vi Database Administration Concepts and Configuration Reference

release - Configuration file release level . . . 585
resync_interval - Transaction resync interval . . 585
rqrioblk - Client I/O block size 586
sheapthres - Sort heap threshold 587
spm_log_file_sz - Sync point manager log file
size. 589
spm_log_path - Sync point manager log file
path 589
spm_max_resync - Sync point manager resync
agent limit 590
spm_name - Sync point manager name. . . . 590
srvcon_auth - Authentication type for incoming
connections at the server 590
srvcon_gssplugin_list - List of GSS API plug-ins
for incoming connections at the server 591
srvcon_pw_plugin - Userid-password plug-in
for incoming connections at the server 591
srv_plugin_mode - Server plug-in mode . . . 592
ssl_cipherspecs - Supported cipher specifications
at the server configuration parameter 592
ssl_clnt_keydb - SSL key file path for outbound
SSL connections at the client configuration
parameter 593
ssl_clnt_stash - SSL stash file path for outbound
SSL connections at the client configuration
parameter 593
ssl_svr_keydb - SSL key file path for incoming
SSL connections at the server configuration
parameter 594
ssl_svr_label - Label in the key file for incoming
SSL connections at the server configuration
parameter 594
ssl_svr_stash - SSL stash file path for incoming
SSL connections at the server configuration
parameter 595
start_stop_time - Start and stop timeout . . . 595
ssl_svcename - SSL service name configuration
parameter 596
ssl_versions - Supported SSL versions at the
server configuration parameter 597
svcename - TCP/IP service name. 597
sysadm_group - System administration
authority group name 598
sysctrl_group - System control authority group
name 599
sysmaint_group - System maintenance authority
group name 599
sysmon_group - System monitor authority
group name 600
tm_database - Transaction manager database
name 600
tp_mon_name - Transaction processor monitor
name 601
trust_allclnts - Trust all clients 602
trust_clntauth - Trusted clients authentication 603
util_impact_lim - Instance impact policy . . . 604

Database configuration parameters 605
alt_collate - Alternate collating sequence . . . 605
app_ctl_heap_sz - Application control heap size 605
appgroup_mem_sz - Maximum size of
application group memory set 606

appl_memory - Application Memory
configuration parameter 607
applheapsz - Application heap size 608
archretrydelay - Archive retry delay on error 609
auto_del_rec_obj - Automated deletion of
recovery objects configuration parameter . . . 609
auto_maint - Automatic maintenance 610
auto_reval - Automatic revalidation and
invalidation configuration parameter 612
autorestart - Auto restart enable 613
avg_appls - Average number of active
applications 613
backup_pending - Backup pending indicator 614
blk_log_dsk_ful - Block on log disk full . . . 614
blocknonlogged - Block creation of tables that
allow non-logged activity 615
catalogcache_sz - Catalog cache size 615
chngpgs_thresh - Changed pages threshold . . 617
codepage - Code page for the database 618
codeset - Codeset for the database 618
collate_info - Collating information 618
connect_proc - Connect procedure name
database configuration parameter 619
country/region - Database territory code . . . 620
cur_commit - Currently committed
configuration parameter 620
database_consistent - Database is consistent . . 621
database_level - Database release level 621
database_memory - Database shared memory
size. 621
dbheap - Database heap 623
db_mem_thresh - Database memory threshold 625
date_compat - Date compatibility database
configuration parameter 625
dec_to_char_fmt - Decimal to character function
configuration parameter 626
decflt_rounding - Decimal floating point
rounding configuration parameter 627
dft_degree - Default degree. 628
dft_extent_sz - Default extent size of table
spaces 629
dft_loadrec_ses - Default number of load
recovery sessions 629
dft_mttb_types - Default maintained table types
for optimization 630
dft_prefetch_sz - Default prefetch size 630
dft_queryopt - Default query optimization class 631
dft_refresh_age - Default refresh age. 632
dft_sqlmathwarn - Continue upon arithmetic
exceptions 632
discover_db - Discover database 634
dlchktime - Time interval for checking deadlock 634
dyn_query_mgmt - Dynamic SQL and XQuery
query management 635
enable_xmlchar - Enable conversion to XML
configuration parameter 635
failarchpath - Failover log archive path 636
groupheap_ratio - Percent of memory for
application group heap 636
hadr_db_role - HADR database role 637
hadr_local_host - HADR local host name . . . 637

Contents vii

hadr_local_svc - HADR local service name . . 638
hadr_peer_window - HADR peer window
configuration parameter 638
hadr_remote_host - HADR remote host name 639
hadr_remote_inst - HADR instance name of the
remote server 639
hadr_remote_svc - HADR remote service name 639
hadr_syncmode - HADR synchronization mode
for log write in peer state 640
hadr_timeout - HADR timeout value 641
indexrec - Index re-creation time 642
jdk_64_path - 64-Bit Software Developer's Kit
for Java installation path DAS 644
locklist - Maximum storage for lock list . . . 644
locktimeout - Lock timeout 647
log_retain_status - Log retain status indicator 648
logarchmeth1 - Primary log archive method . . 648
logarchmeth2 - Secondary log archive method 649
logarchopt1 - Primary log archive options . . . 650
logarchopt2 - Secondary log archive options . . 651
logbufsz - Log buffer size 651
logfilsiz - Size of log files 652
loghead - First active log file 653
logindexbuild - Log index pages created . . . 653
logpath - Location of log files 654
logprimary - Number of primary log files . . . 654
logretain - Log retain enable 655
logsecond - Number of secondary log files . . 656
max_log - Maximum log per transaction . . . 657
maxappls - Maximum number of active
applications 658
maxfilop - Maximum database files open per
database 659
maxlocks - Maximum percent of lock list before
escalation. 660
min_dec_div_3 - Decimal division scale to 3 . . 662
mincommit - Number of commits to group . . 663
mirrorlogpath - Mirror log path 664
mon_act_metrics - Monitoring activity metrics
configuration parameter 665
mon_deadlock - Monitoring deadlock
configuration parameter 666
mon_locktimeout - Monitoring lock timeout
configuration parameter 667
mon_lockwait - Monitoring lock wait
configuration parameter 668
mon_lw_thresh - Monitoring lock wait threshold
configuration parameter 668
mon_lck_msg_lvl - Monitoring lock event
notification messages configuration parameter . 669
mon_obj_metrics - Monitoring object metrics
configuration parameter 669
mon_pkglist_sz - Monitoring package list size
configuration parameter 670
mon_req_metrics - Monitoring request metrics
configuration parameter 670
mon_uow_data - Monitoring unit of work
events configuration parameter 671
multipage_alloc - Multipage file allocation
enabled 672
newlogpath - Change the database log path . . 672

num_db_backups - Number of database
backups 674
num_freqvalues - Number of frequent values
retained 674
num_iocleaners - Number of asynchronous page
cleaners 675
num_ioservers - Number of I/O servers . . . 677
num_log_span - Number log span 678
num_quantiles - Number of quantiles for
columns 678
numarchretry - Number of retries on error . . 680
numsegs - Default number of SMS containers 680
number_compat - Number compatibility
database configuration parameter 680
overflowlogpath - Overflow log path 681
pagesize - Database default page size 682
pckcachesz - Package cache size 682
priv_mem_thresh - Private memory threshold 684
rec_his_retentn - Recovery history retention
period 684
restore_pending - Restore pending 685
restrict_access - Database has restricted access
configuration parameter 685
rollfwd_pending - Roll forward pending
indicator 686
section_actuals - Section actuals configuration
parameter 686
self_tuning_mem- Self-tuning memory 687
seqdetect - Sequential detection flag 688
sheapthres_shr - Sort heap threshold for shared
sorts 689
smtp_server - SMTP server 690
softmax - Recovery range and soft checkpoint
interval 690
sortheap - Sort heap size 692
sql_ccflags - Conditional compilation flags . . 693
stat_heap_sz - Statistics heap size. 694
stmt_conc - Statement concentrator
configuration parameter 694
stmtheap - Statement heap size 695
territory - Database territory 697
trackmod - Track modified pages enable . . . 697
tsm_mgmtclass - Tivoli Storage Manager
management class 697
tsm_nodename - Tivoli Storage Manager node
name 698
tsm_owner - Tivoli Storage Manager owner
name 698
tsm_password - Tivoli Storage Manager
password. 699
user_exit_status - User exit status indicator . . 699
userexit - User exit enable 699
util_heap_sz - Utility heap size 700
varchar2_compat - varchar2 compatibility
database configuration parameter 701
vendoropt - Vendor options 701
wlm_collect_int - Workload management
collection interval configuration parameter . . 701

DB2 Administration Server (DAS) configuration
parameters 702

authentication - Authentication type DAS . . . 702

viii Database Administration Concepts and Configuration Reference

contact_host - Location of contact list 703
das_codepage - DAS code page 703
das_territory - DAS territory 704
dasadm_group - DAS administration authority
group name 704
db2system - Name of the DB2 server system 705
diaglevel - Diagnostic error capture level
configuration parameter 705
discover - DAS discovery mode 706
exec_exp_task - Execute expired tasks 707
jdk_path - Software Developer's Kit for Java
installation path DAS. 707
sched_enable - Scheduler mode 708
sched_userid - Scheduler user ID 708
smtp_server - SMTP server 708
toolscat_db - Tools catalog database 709
toolscat_inst - Tools catalog database instance 709
toolscat_schema - Tools catalog database schema 709

Part 5. Appendixes 711

Appendix A. Overview of the DB2
technical information 713

DB2 technical library in hardcopy or PDF format 713
Ordering printed DB2 books 716
Displaying SQL state help from the command line
processor 717
Accessing different versions of the DB2
Information Center 717
Displaying topics in your preferred language in the
DB2 Information Center 718
Updating the DB2 Information Center installed on
your computer or intranet server 718
Manually updating the DB2 Information Center
installed on your computer or intranet server . . 720
DB2 tutorials 721
DB2 troubleshooting information 722
Terms and Conditions 722

Appendix B. Notices 725

Index 729

Contents ix

x Database Administration Concepts and Configuration Reference

About this book

The Database Administration Concepts and Configuration Reference provides
information about database planning and design, and implementation and
management of database objects. This book also contains reference information for
database configuration and tuning.

Who should use this book

This book is intended primarily for database and system administrators who need
to design, implement and maintain a database to be accessed by local or remote
clients. It can also be used by programmers and other users who require an
understanding of the administration and operation of the DB2® relational database
management system.

How this book is structured

This book is structured in four parts. Parts 1 through 3 provide a conceptual
overview of the DB2 product, starting with general concepts about data servers,
and working progressively toward explanations of the objects that commonly
comprise DB2 databases. Part 4 contains reference information.

Part 1. Data Servers
This section briefly describes DB2 data servers, including management of
their capacity and large page support in 64-bit environments on AIX®. In
addition, it also provides information on running multiple DB2 copies on a
single computer, information on the automatic features that assist you in
managing your database system, information on designing, creating, and
working with instances, and optional information on configuring
Lightweight Directory Access Protocol (LDAP) servers.

Part 2. Databases
This section describes the design, creation, and maintenance of databases,
buffer pools, table spaces, and schemas. Detailed information about
database partitions is found in the Partitioning and Clustering Guide.

Part 3. Database objects
This section describes the design, creation, and maintenance of the
following database objects: tables, constraints, indexes, triggers, sequences
and views.

Part 4. Reference
This section contains reference information for configuring and tuning your
database system with environment and registry variables, and
configuration parameters. It also lists the various naming rules and SQL
and XML limits.

© Copyright IBM Corp. 1993, 2012 xi

xii Database Administration Concepts and Configuration Reference

Part 1. Data servers

© Copyright IBM Corp. 1993, 2012 1

2 Database Administration Concepts and Configuration Reference

Chapter 1. DB2 data servers

Data servers provide software services for the secure and efficient management of
structured information. DB2 is a hybrid relational and XML data server.

A data server refers to a computer where the DB2 database engine is installed. The
DB2 engine is a full-function, robust database management system that includes
optimized SQL support based on actual database usage and tools to help manage
the data.

IBM offers a number data server products, including data server clients that can
access all the various data servers. For a complete list of DB2 data server products,
features available, and detailed descriptions and specifications, see:
http://www.ibm.com/software/data/db2/9/.

Management of data server capacity
If data server capacity does not meet your present or future needs, you can expand
its capacity by adding disk space and creating additional containers, or by adding
memory. If these simple strategies do not add the capacity you need, also consider
adding processors or physical partitions. When you scale your system by changing
the environment, you should be aware of the impact that such a change can have
on your database procedures such as loading data, or backing up and restoring
databases.

Adding processors

If a single-partition database configuration with a single processor is used
to its maximum capacity, you might either add processors or add logical
partitions. The advantage of adding processors is greater processing power.
In an SMP system, processors share memory and storage system resources.
All of the processors are in one system, so there are no additional overhead
considerations such as communication between systems and coordination
of tasks between systems. Utilities such as load, backup, and restore can
take advantage of the additional processors.

Note: Some operating systems, such as the Solaris operating system, can
dynamically turn processors on- and off-line.

If you add processors, review and modify some database configuration
parameters that determine the number of processors used. The following
database configuration parameters determine the number of processors
used and might need to be updated:
v Default degree (dft_degree)
v Maximum degree of parallelism (max_querydegree)
v Enable intra-partition parallelism (intra_parallel)

You should also evaluate parameters that determine how applications
perform parallel processing.

In an environment where TCP/IP is used for communication, review the
value for the DB2TCPCONNMGRS registry variable.

Adding additional computers

© Copyright IBM Corp. 1993, 2012 3

If you have an existing partitioned database environment, you can increase
processing power and data-storage capacity by adding additional
computers (either single-processor or multiple-processor) and storage
resource to the environment. The memory and storage resources are not
shared among computers. This choice provides the advantage of balancing
data and user access across storage and computers.

After adding the new computers and storage, you would use the START
DATABASE MANAGER command to add new database partition servers
to the new computers. A new database partition will be created and
configured for each database in the instance on each new database
partition server that you add. In most situations, you do not need to restart
the instance after adding the new database partition servers.

Enabling large page support (AIX)
To enable large page support in DB2 database systems on AIX operating systems,
you must configure some operating system parameters and then set the
DB2_LARGE_PAGE_MEM registry variable.

Before you begin

You must have root authority to work with the AIX operating system commands.

About this task

In addition to the traditional page size of 4 KB, the POWER4 processors (and
higher) on System z® also support a 16 MB page size. Applications such as IBM®

DB2 Version 9.7 for AIX, that require intensive memory access and that use large
amounts of virtual memory can gain performance improvements by using large
pages.

Note:

1. Setting the DB2_LARGE_PAGE_MEM registry variable also implies that the memory
is pinned.

2. You should be extremely cautious when configuring your system for pinning
memory and supporting large pages. Pinning too much memory results in
heavy paging activities for the memory pages that are not pinned. Allocating
too much physical memory to large pages will degrade system performance if
there is insufficient memory to support the 4 KB pages.

Restrictions

Enabling large pages prevents the self-tuning memory manager from automatically
tuning overall database memory consumption, so it should only be considered for
well-defined workloads that have relatively static database memory requirements.

Procedure

To enable large page support in DB2 database systems on AIX operating systems:
1. Configure your AIX server for large page support by issuing the vmo command

with the following flags:
vmo -r -o lgpg_size=LargePageSize -o lgpg_regions=LargePages

4 Database Administration Concepts and Configuration Reference

where LargePageSize specifies the size in bytes of the hardware-supported large
pages, and LargePages specifies the number of large pages to reserve. For
example, if you need to allocate 25 GB for large page support, run the
command as follows:
vmo -r -o lgpg_size=16777216 -o lgpg_regions=1600

For detailed instructions on how to run the vmo command, refer to your AIX
manuals.

2. Run the bosboot command so that the vmo command that you previously run
will take effect following the next system boot.

3. After the server comes up, enable it for pinned memory. Issue the vmo
command with the following flags:
vmo -o v_pinshm=1

4. Use the db2set command to set the DB2_LARGE_PAGE_MEM registry variable to DB,
then start the DB2 database manager. For example:
db2set DB2_LARGE_PAGE_MEM=DB
db2start

Results

When these steps are complete, the DB2 database system directs the operating
system to use large page memory for the database shared memory region.

Pinning DB2 database shared memory (AIX)
To pin DB2 database shared memory on AIX operating systems, you must
configure some operating system parameters and then set the DB2_PINNED_BP
registry variable.

Before you begin

You must have root authority to perform the AIX operating system commands.

About this task

The advantage of having portions of memory pinned is that when you access a
page that is pinned, you can retrieve the page without going through the page
replacement algorithm. A disadvantage is that you must take care to ensure that
the system is not overcommitted, as the operating system will have reduced
flexibility in managing memory. Pinning too much memory results in heavy
paging activities for the memory pages that are not pinned.

Restrictions

If you set the DB2_PINNED_BP registry variable to YES, self tuning for database
shared memory cannot be enabled.

Procedure

To pin DB2 database shared memory on AIX operating systems:
1. Configure the AIX operating system to enable pinned memory. Issue the vmo

command with the following flags:
vmo -o v_pinshm=1

For detailed instructions on how to run the vmo command, refer to your AIX
manuals.

Chapter 1. DB2 data servers 5

2. (Optional) If you are using medium sized pages (which is the default behavior),
ensure that the DB2 instance owner has the CAP_BYPASS_RAC_VMM and
CAP_PROPAGATE capabilities. For example:
chuser capabilities=CAP_BYPASS_RAC_VMM,CAP_PROPAGATE db2inst1

where db2inst1 is the DB2 instance owner user ID.
3. Run the bosboot command so that the vmo command will take effect following

the next system boot.
4. After the server comes up, enable the DB2 database system for pinned memory.

a. Issue the db2set command to set the DB2_PINNED_BP registry variable to YES.
b. Start the DB2 database manager.

For example:
db2set DB2_PINNED_BP=YES
db2start

Results

When these steps are complete, the DB2 database system directs the operating
system to pin the DB2 database shared memory.

6 Database Administration Concepts and Configuration Reference

Chapter 2. Multiple DB2 copies overview

With Version 9 and later, you can install and run multiple DB2 copies on the same
computer. A DB2 copy refers to one or more installations of DB2 database products
in a particular location on the same computer. Each DB2 Version 9 copy can be at
the same or different code levels.

The benefits of doing this include:
v The ability to run applications that require different DB2 versions on the same

computer at the same time
v The ability to run independent copies of DB2 products for different functions
v The ability to test on the same computer before moving the production database

to the latter version of the DB2 product
v For independent software vendors, the ability to embed a DB2 server product

into your product and hide the DB2 database from your users. For COM+
applications, use and distribute the IBM Data Server Driver for ODBC and CLI
with your application instead of the Data Server Runtime Client as only one Data
Server Runtime Client can be used for COM+ applications at a time. The IBM
Data Server Driver for ODBC and CLI does not have this restriction.

Table 1 lists the relevant topics in each category.

Table 1. Overview to multiple DB2 copies information

Category Related topics

General information
and restrictions

v “Default IBM database client interface copy” on page 8

v “Multiple DB2 copies on the same computer (Linux and UNIX)”
in Installing DB2 Servers

v “Multiple DB2 copies on the same computer (Windows)” in
Installing DB2 Servers

Upgrade v “Upgrading from a DB2 server with multiple DB2 copies” in
Upgrading to DB2 Version 9.7

v “Upgrading a DB2 server (Windows)” in Upgrading to DB2
Version 9.7

v “Upgrading DB2 32-bit servers to 64-bit systems (Windows)” in
Upgrading to DB2 Version 9.7

Installation v “Installing DB2 servers (Linux and UNIX)” in Installing DB2
Servers

v “Installing DB2 servers (Windows)” in Installing DB2 Servers

Configuration v “Setting the DAS when running multiple DB2 copies” on page 11

v “Setting the default instance when using multiple DB2 copies
(Windows)” on page 12

v “Changing the default DB2 and default IBM database client
interface copy after installation (Windows)” in Installing DB2
Servers

v “IBM data server client connectivity using multiple copies” in
Installing DB2 Servers

v “Selecting a different DB2 copy for your Windows CLI
application” in Call Level Interface Guide and Reference, Volume 1

v “dasupdt - Update DAS command” in Command Reference

© Copyright IBM Corp. 1993, 2012 7

Table 1. Overview to multiple DB2 copies information (continued)

Category Related topics

Administration v “Updating DB2 copies (Windows)” on page 16

v “Updating DB2 copies (Linux and UNIX)” on page 14

v “Working with existing DB2 copies” in Installing DB2 Servers

v “Listing DB2 products installed on your system (Linux and
UNIX)” in Installing DB2 Servers

v “DB2 services running on your system (Windows)” in Installing
DB2 Servers

v “Creating links for DB2 files” in Installing DB2 Servers

v “db2iupdt - Update instances command” in Command Reference

v “db2swtch - Switch default DB2 copy command” in Command
Reference

v “db2SelectDB2Copy API - Select the DB2 copy to be used by your
application” in Administrative API Reference

Uninstallation v “Removing DB2 copies (Linux, UNIX, and Windows)” in
Installing DB2 Servers

v “Removing DB2 products using the db2_deinstall or
doce_deinstall command (Linux and UNIX)” in Installing DB2
Servers

Default IBM database client interface copy
You can have multiple DB2 copies on a single computer, as well as a default IBM
database client interface copy, which is the means by which a client application has
the ODBC driver, CLI driver, and .NET data provider code needed to interface
with the database by default.

In Version 9.1 (and later), the code for the IBM database client interface copy is
included with the DB2 copy. With Version 9.5 (and later) there is a new product
you can choose to install that has the needed code to allow a client application to
interface with a database. This product is IBM Data Server Driver Package
(DSDRIVER). With Version 9.5 (and later) you can install DSDRIVER on an IBM
data server driver copy separate from the installation of a DB2 copy.

Following Version 9.1, you can have multiple DB2 copies installed on your
computer; following Version 9.5, you can have multiple IBM database client
interface copies and multiple DB2 copies installed on your computer. During the
time of installation of a new DB2 copy or new IBM data server driver copy you
would have had the opportunity to change the default DB2 copy and the default
IBM database client interface copy.

The following diagram shows multiple DB2 copies installed on a DB2 server,
which can be any combination of the DB2 database products:

8 Database Administration Concepts and Configuration Reference

Production
environment

Test
environment

Database Database

instanceDB2 instanceDB201

Database

instanceDB202

DB2 Copy 1 ()dir1 DB2 Copy 2 ()dir2

DB2 server

Version 8 and Version 9 (or later) copies can coexist on the same computer,
however Version 8 must be the default DB2 and IBM database client interface copy.
You cannot change from the Version 8 copy to the Version 9 (or later) copy as the
default DB2 copy or default IBM database client interface copy during installation,
nor can you later run the switch default copy command, db2swtch, unless you first
upgrade to Version 9 (or later) or uninstall Version 8 copy. If you run the db2swtch
command when Version 8 exists on the system, you will receive an error message
indicating that you cannot change the default copy because Version 8 is found on
the system.

Sometime after installing multiple DB2 copies or multiple IBM data server driver
copies, you might want to change either the default DB2 copy or the default IBM
database client interface copy. If you have Version 8 installed, you must uninstall
the product or upgrade it to Version 9 (or later) before you can change the default
DB2 copy, or change the default IBM database client interface copy.

Client applications can always choose to go directly to a data server driver location
which is the directory where the DSDRIVER is installed.

When you uninstall either the DB2 copy or the IBM data server driver copy that
had been the default IBM database client interface copy, the defaults are managed
for you. Chosen default copies are removed and new defaults are selected for you.
When you uninstall the default DB2 copy which is not the last DB2 copy on the
system, you will be asked to switch the default to another DB2 copy first.

Chapter 2. Multiple DB2 copies (overview) 9

Choosing a default when installing a new IBM database client
interface copy

Following Version 9.5, consider the scenario where you have installed two DB2
copies (DB2COPY1 and DB2COPY2). DB2COPY2 is the default DB2 copy and the
default IBM database client interface copy.

Legend

Default DB2 copy

Default IBM database
client interface copy

Install DSDRIVER as a new
(IBMDBCL1)DS driver copy

DS driver copy = IBM Data Server
driver copy

= IBM Data Server
Driver Package

DSDRIVER

System environment

DB2COPY1

-ESE
-
-...
CLIENT

DB2COPY2

-ESE
-WSE
-...

IBMDBCL1

DSDRIVER

No
Make IBMDBCL1

the default IBM database
client interface copy?

Install IBM Data Server Driver Package (DSDRIVER) on a new IBM data server
driver copy.

During the install of the new IBM data server driver copy (IBMDBCL1) you are
asked if you want to make the new IBM data server driver copy the default IBM
database client interface copy.

If you respond “No”, then DB2COPY2 remains the default IBM database client
interface copy. (And it continues to be the default DB2 copy.)

However, consider the same scenario but you respond “Yes” when asked if you
want to make the new IBM data server driver copy the default IBM database client
interface copy.

10 Database Administration Concepts and Configuration Reference

Legend

Default DB2 copy

Default IBM database
client interface copy

Install DSDRIVER as a new
(IBMDBCL1)DS driver copy

DS driver copy = IBM Data Server
driver copy

= IBM Data Server
Driver Package

DSDRIVER

System environment

DB2COPY1

-ESE
-
-...
CLIENT

DB2COPY2

-ESE
-WSE
-...

IBMDBCL1

DSDRIVER

Make IBMDBCL1
the default IBM database

client interface copy?

Yes

In this case, IBMDBCL1 becomes the default IBM database client interface copy.
(DB2COPY2 remains the default DB2 copy.)

Setting the DAS when running multiple DB2 copies
Starting with Version 9.1, you can have multiple DB2 copies running on the same
computer. This affects how the DB2 Administration Server (DAS) operates. The
DAS is a unique component within the database manager that is limited to having
only one version active, despite how many DB2 copies are installed on the same
computer. For this reason the following restrictions and functional requirements
apply.

About this task

On the server, there can be only one DAS version and it administers instances as
follows:
v If the DAS runs on Version 9.1 or Version 9.5, then it can administer Version 8,

Version 9.1, or Version 9.5 instances.
v If the DAS runs on Version 8, then it can administer only Version 8 instances.

You can upgrade your Version 8 DAS, or drop it and create a new Version 9.5
DAS to administer the Version 8 or later instances. This is required only if you
want to use the Control Center to administer the instances.

Chapter 2. Multiple DB2 copies (overview) 11

Only one DAS can be created on a given computer at any given time despite the
number of DB2 copies that are installed on the same computer. This DAS will be
used by all the DB2 copies that are on the same computer. In Version 9.1 or later,
the DAS can belong to any DB2 copy that is currently installed.

If the DAS is running in a Version 9.5 copy and you want it to run in another
Version 9.5 copy, use the dasupdt command. If the DAS is running in a Version 8,
Version 9.1, or Version 9.5 copy and you want it to run in a Version 9.7 copy, you
cannot use dasupdt, use the dasmigr command to upgrade the DAS from to
Version 9.7.

On Windows operating systems, you can also use the dasupdt command when you
need to run the DAS in a new Default DB2 copy of the same version.

Procedure

To setup the DAS in one of the DB2 copies:

Choose one of the following actions:
v If the DAS is not created, then create a DAS in one of the DB2 copies.
v Use the dasupdt command only to update the DAS so that it runs in another

DB2 copy of the same release.
v Use the dasmigr command to upgrade from Version 8, Version 9.1, or Version 9.5

to Version 9.7 DAS.

Setting the default instance when using multiple DB2 copies
(Windows)

Starting with Version 9.1, the DB2INSTANCE environment is set according to the
DB2 copy that your environment is currently set up to use. If you do not set it
explicitly to an instance in the current copy, it defaults to the default instance that
is specified with the DB2INSTDEF profile registry variable.

About this task

DB2INSTDEF is the default instance variable that is specific to the current DB2
copy in use. Every DB2 copy has its own DB2INSTDEF profile registry variable.
Instance names must be unique on the system; when an instance is created, the
database manager scans through existing copies to ensure its uniqueness.

Use the following guidelines to set the default instance when using multiple DB2
copies:
v If DB2INSTANCE is not set for a particular DB2 copy, then the value of

DB2INSTDEF is used for that DB2 copy. This means:
– If DB2INSTANCE=ABC and DB2INSTDEF=XYZ, ABC is the value that is

used
– If DB2INSTANCE is not set and DB2INSTDEF=XYZ, XYZ is used
– If DB2INSTANCE is not set and DB2INSTDEF is not set, then any application

or command that depends on a valid DB2INSTANCE will not work.
v You can use either the db2envar.bat command or the db2SelectDB2Copy API to

switch DB2 copies. Setting all the environment variables appropriately (for
example, PATH,INCLUDE,LIB and DB2INSTANCE) will also work, but you
must ensure that they are set properly.

12 Database Administration Concepts and Configuration Reference

Note: Using the db2envar.bat command is not quite the same as setting the
environment variables. The db2envar.bat command determines which DB2 copy
it belongs to, and then adds the path of this DB2 copy to the front of the PATH
environment variable.

When there are multiple DB2 copies on the same computer, the PATH
environment variable can only point to one of them: the DEFAULT COPY. For
example, if DB2COPY1 is under c:\sqllib\bin and is the default copy; and
DB2COPY2 is under d:\sqllib\bin. If you want to use DB2COPY2 in a regular
command window, you would run d:\sqllib\bin\db2envar.bat in that command
window. This adjusts the PATH (and some other environment variables) for this
command window so that it will pick up binaries from d:\sqllib\bin.

v DB2INSTANCE is only valid for instances under the DB2 copy that you are
using. However, if you switch copies by running the db2envar.bat command,
DB2INSTANCE will be updated to the value of DB2INSTDEF for the DB2 copy
that you switched to initially.

v DB2INSTANCE is the current DB2 instance that will be used by applications that
are executing in that DB2 copy. When you switch between copies, by default,
DB2INSTANCE is changed to the value of DB2INSTDEF for that copy.
DB2INSTDEF is less meaningful on a one copy system because all the instances
are in the current copy; however, it is still applicable as being the default
instance, if another instance is not set.

v All global profile registry variables are specific to a DB2 copy, unless you specify
them using SET VARIABLE=<variable_name>.

Multiple instances of the database manager
Multiple instances of the database manager might be created on a single server.
This means that you can create several instances of the same product on a physical
computer, and have them running concurrently. This provides flexibility in setting
up environments.

Note: The same instance name cannot be used in two different DB2 copies.

You might want to have multiple instances to create the following environments:
v Separate your development environment from your production environment.
v Separately tune each environment for the specific applications it will service.
v Protect sensitive information from administrators. For example, you might want

to have your payroll database protected on its own instance so that owners of
other instances will not be able to see payroll data.

Note:

v (On UNIX operating systems only:) To prevent environmental conflicts between
two or more instances, you should ensure that each instance home directory is
on a local file system.

v (On Windows platforms only:) Instances are cataloged as either local or remote
in the node directory. Your default instance is defined by the DB2INSTANCE
environment variable. You can ATTACH to other instances to perform
maintenance and utility tasks that can only be done at an instance level, such as
creating a database, forcing off applications, monitoring a database, or updating
the database manager configuration. When you attempt to attach to an instance
that is not in your default instance, the node directory is used to determine how
to communicate with that instance.

Chapter 2. Multiple DB2 copies (overview) 13

v (On any platform:) DB2 database program files are physically stored at one
location and each instance points back to the copy to which that instance
belongs so that the program files are not duplicated for each instance that is
created. Several related databases can be located within a single instance.

Multiple instances (Windows)
It is possible to run multiple instances of the DB2 database manager on the same
computer. Each instance of the database manager maintains its own databases and
has its own database manager configuration parameters.

Note: The instances can also belong to different DB2 copies on a computer that
can be at different levels of the database manager. If you are running a 64-bit
Windows system, you can install 32-bit DB2, or 64-bit DB2 but they cannot co-exist
on the same machine.

An instance of the database manager consists of the following:
v A Windows service that represents the instance. The name of the service is same

as the instance name. The display name of the service (from the Services panel)
is the instance name, prefixed with the “DB2 - ” string. For example, for an
instance named “DB2”, there exists a Windows service called “DB2” with a
display name of “DB2 - DB2 Copy Name - DB2”.

Note: A Windows service is not created for client instances.
v An instance directory. This directory contains the database manager

configuration files, the system database directory, the node directory, the
Database Connection Services (DCS) directory, all the diagnostic log and dump
files that are associated with the instance. The instance directory varies from
edition to edition of the Windows family of operating systems; to verify the
default directory on Windows, check the setting of the DB2INSTPROF environment
variable using the command db2set DB2INSTPROF. You can also change the
default instance directory by changing the DB2INSTPROF environment
variable. For example, to set it to c:\DB2PROFS:
– Set DB2INSTPROF to c:\DB2PROFS using the db2set.exe -g command
– Run DB2ICRT.exe command to create the instance.

v When you create an instance on Windows operating systems, the default
locations for user data files, such as instance directories, are the following
directories:
– On the Windows XP and Windows 2003 operating systems: Documents and

Settings\All Users\Application Data\IBM\DB2\Copy Name

– On the Windows 2008 and Windows Vista (and later) operating system:
Program Data\IBM\DB2\Copy Name

where Copy Name represents the DB2 copy name.

Note: The location of the db2cli.ini file might change based on the platform,
type of client or driver being installed, and whether the registry variable
DB2CLIINIPATH is set. For more information, see the “db2cli.ini initialization file”
in the Call Level Interface Guide and Reference, Volume 1.

Updating DB2 copies (Linux and UNIX)
You can update an existing DB2 copy and all instances running on that copy to a
new fix pack level. You can also choose to install a new DB2 copy and selectively
update instances to run on this new copy after installation.

14 Database Administration Concepts and Configuration Reference

Before you begin
v Ensure that you have root user authority.
v Download and uncompress a fix pack. The fix pack and the DB2 copy that you

want to update must be of the same release. Refer to “Prior to installing a fix
pack” in Installing DB2 Servers for details.

About this task

Follow these instructions to update your DB2 copies from one fix pack level to
another (within the same version level) or to install additional functionality.

If you have DB2 Version 8, Version 9.1, or Version 9.5 copies, you cannot update
these copies from previous releases to DB2 Version 9.7, you need to upgrade them.
Refer to “Upgrading a DB2 server (Linux and UNIX)” in Upgrading to DB2 Version
9.7.

Restrictions

If you have non-root install copies, refer to “Applying fix packs to a non-root
installation” in Installing DB2 Servers for details about how to update non-root
install copies.
v You will not be able to update more than one DB2 copy at the same time. In

order to update other DB2 copies that might be installed on the same computer,
you must rerun the installation.

To update your DB2 copies:

Procedure
1. Log on with root user authority.
2. Stop all DB2 processes. Refer to “Stopping all DB2 processes (Linux and

UNIX)” in Installing DB2 Servers for details.
3. Update each DB2 copy using one of the following choices:

v To update an existing DB2 copy and update all the instances running on this
DB2 copy, issue the installFixPack command. You cannot install additional
functionality with this command. Refer to “Installing a fix pack to update
existing DB2 database products (Linux and UNIX)” in Installing DB2 Servers
for details about post-installation tasks.

v To install a new DB2 copy and selectively update the instances running on
an existing DB2 copy to the new copy after installation, issue the db2setup
command and select Install New in the Install a Product panel. To install a
new copy, you can also perform a response file installation or issue the
db2_install command specifying a new location as installation path. Any of
these options allow you to also install additional functionality.

v To add functionality to an existing DB2 copy, select Work with Existing in
the Install a Product panel. Then select the DB2 copy that you want to
update with the Add new function action. This action is only available when
the DB2 copy is at the same release level as the install image. To add
functionality, you can also perform a response file installation or issue the
db2_install command.

4. If you installed a new DB2 copy, use the db2iupdt command to update any
instances that are running in a different DB2 copy of the same release that you
want them to run under the new copy. The following table shows several
examples of updating instances:

Chapter 2. Multiple DB2 copies (overview) 15

Instance DB2 copy Example to update to another copy

db2inst1 /opt/IBM/db2/V9.1/ cd /opt/IBM/db2/V9.1_FP3/instance
./db2iupdt db2inst1

db2inst2 /opt/IBM/db2/V9.5FP2/ cd /home/db2/myV9.5_FP1/instance
./db2iupdt -D db2inst2a

db2inst3 /opt/IBM/db2/V9.7/ cd /home/db2/myV9.7/instance
./db2iupdt -k db2inst3b

Note:

a. Use the -D parameter to update an instance from a higher release level copy
to a lower release level copy.

b. Use the -k parameter to keep the current instance type during the update to
a DB2 copy that has a higher level of instance type. If you updated from
WSE to ESE, when you update the instance without this parameter the
instance type wse is converted to ese.

Results

Once you have installed or updated a DB2 copy, you can always update instances
that run in other DB2 copies of the same release, to run on this new DB2 copy by
issuing the db2iupdt command.

Updating DB2 copies (Windows)
You can update an existing DB2 copy and all instances running on that copy to a
new fix pack level. You can also choose to install a new DB2 copy and selectively
update instances to run on this new copy after installation.

Before you begin
v Ensure that you have Local Administrator authority.
v Download and uncompress a fix pack. The fix pack and the DB2 copy that you

want to update must be of the same release.

About this task

Follow these instructions to update your DB2 copies from one fix pack level to
another (within the same version level) or to add new functionality.

Restrictions

v You can only update an instance of the same release from a lower release level
copy to a higher release level copy. You cannot update an instance from a higher
release level copy to a lower release level copy.

v You will not be able to update more than one DB2 copy at the same time. In
order to update other DB2 copies that might be installed on the same computer,
you must rerun the installation.

v Coexistence of a 32-bit DB2 data server and a 64-bit DB2 data server on the
same Windows x64 computer is not supported. It is not possible to upgrade
directly from a 32-bit x64 DB2 installation at Version 8 to a 64-bit installation at
Version 9.7. Refer to “Upgrading DB2 32-bit servers to 64-bit systems (Windows)
in Upgrading to DB2 Version 9.7” for details.

To update your DB2 copies:

16 Database Administration Concepts and Configuration Reference

Procedure
1. Log on as a user with Local Administrator authority.
2. Stop all DB2 instances, services and applications.
3. Run setup.exe to launch the DB2 wizard to install a DB2 copy. You have the

following choices:
v To update an existing DB2 copy and update all the instances running on this

DB2 copy, select Work with Existing in the Install a Product panel. Then
select the DB2 copy that you want to update with the update action. You
cannot install additional functionality with this action.

v To install a new DB2 copy and selectively update the instances running on
an existing DB2 copy to the new copy after installation, select Install New in
the Install a Product panel. This option allows you to also install additional
functionality.

v To add functionality to an existing DB2 copy, select Work with Existing in
the Install a Product panel. Then select the DB2 copy that you want to
update with the Add new function action. This action is only available when
the DB2 copy is at the same release level as the install image.

4. If you installed a new DB2 copy, use the db2iupdt command to update any
instances that are running in a different DB2 copy of the same release that you
want them to run under the new copy. The following table shows several
examples of updating instances:

Instance DB2 copy Example to update to another copy

db2inst1 C:\Program
Files\IBM\SQLLIB_91\BIN

cd D:\Program Files\IBM\SQLLIB_91_FP5\BIN
db2iupdt db2inst1 /u: user-name,password

db2inst2 C:\Program
Files\IBM\SQLLIB_97\BIN

cd D:\Program Files\IBM\SQLLIB_97\BIN
db2iupdt db2inst2 /u: user-name,password

Results

Once you have installed or updated a DB2 copy, you can always update instances
that run in other DB2 copies of the same release, to run on this new DB2 copy by
issuing the db2iupdt command.

Running multiple instances concurrently (Windows)
You can run multiple instances concurrently in the same DB2 copy, or in different
DB2 copies.

About this task

To run multiple instances concurrently in the same DB2 copy, using the command
line:
1. Set the DB2INSTANCE variable to the name of the other instance that you

want to start by entering:
set db2instance=<another_instName>

2. Start the instance by entering the db2start command.

To run multiple instances concurrently in different DB2 copies, use either of the
following methods:

Chapter 2. Multiple DB2 copies (overview) 17

v Using the DB2 Command window from the Start → Programs → IBM DB2 → <DB2
Copy Name> → Command Line Tools → DB2 Command Window: the Command
window is already set up with the correct environment variables for the
particular DB2 copy chosen.

v Using db2envar.bat from a Command window:
1. Open a Command window.
2. Run the db2envar.bat file using the fully qualified path for the DB2 copy

that you want the application to use:
<DB2 Copy install dir>\bin\db2envar.bat

After you switch to a particular DB2 copy, use the method specified in the section
above, "To run multiple instances concurrently in the same DB2 copy", to start the
instances.

Working with instances on the same or different DB2 copies
You can run multiple instances concurrently, in the same DB2 copy or in different
DB2 copies.

About this task

To work with instances in the same DB2 copy, you must:
1. Create or upgrade all instances to the same DB2 copy.
2. Set the DB2INSTANCE environment variable to the name of the instance you

are working with before issuing commands against that instance.

To prevent one instance from accessing the database of another instance, the
database files for an instance are created under a directory that has the same name
as the instance name. For example, when creating a database on drive C: for
instance “DB2”, the database files are created inside a directory called C:\DB2.
Similarly, when creating a database on drive C: for instance TEST, the database
files are created inside a directory called C:\TEST. By default, its value is the drive
letter where DB2 product is installed. For more information, see the dftdbpath
database manager configuration parameter.

To work with an instance in a system with multiple DB2 copies, use either of the
following methods:

Procedure
v Using the Command window from the Start → Programs → IBM DB2 → <DB2

Copy Name> → Command Line Tools → Command Window: the Command
window is already set up with the correct environment variables for the
particular DB2 copy chosen.

v Using db2envar.bat from a Command window:
1. Open a Command window.
2. Run the db2envar.bat file using the fully qualified path for the DB2 copy

that you want the application to use:
<DB2 Copy install dir>\bin\db2envar.bat

18 Database Administration Concepts and Configuration Reference

Chapter 3. Autonomic computing overview

The DB2 autonomic computing environment is self-configuring, self-healing,
self-optimizing, and self-protecting. By sensing and responding to situations that
occur, autonomic computing shifts the burden of managing a computing
environment from database administrators to technology.

“Automatic features” on page 21 provides a high-level summary of the capabilities
that comprise the DB2 autonomic computing environment; the following table
provides a more detailed, categorized overview of the product's autonomic
capabilities:

Table 2. Overview of autonomic computing information

Category Related topics

Self-tuning memory v “Memory usage” in Troubleshooting and Tuning Database
Performance

v “Self-tuning memory” in Troubleshooting and Tuning Database
Performance

v “Self-tuning memory overview” in Troubleshooting and Tuning
Database Performance

v “auto_maint - Automatic maintenance” on page 610

v “db_storage_path - Automatic storage path monitor element” in
Database Monitoring Guide and Reference

v “num_db_storage_paths - Number of automatic storage paths
monitor element” in Database Monitoring Guide and Reference

v “tablespace_using_auto_storage - Using automatic storage
monitor element” in Database Monitoring Guide and Reference

v “Configuring memory and memory heaps” on page 37

v “Agent, process model, and memory configuration overview” on
page 39

v “Shared file handle table” on page 43

v “Running vendor library functions in fenced-mode processes” on
page 44

v “admin_get_dbp_mem_usage - Get total memory consumption
table function” in Administrative Routines and Views

v “Agent and process model configuration” on page 39

v “Configuring databases across multiple partitions” on page 42

Automatic storage v “Automatic storage databases” on page 86

v “Automatic storage table spaces” on page 136

v “Automatic re-sizing of DMS table spaces” on page 132

Data compression v “Data compression” on page 44
– “Table compression” on page 248
– “Index compression” on page 328
– “Backup compression” in Data Recovery and High Availability

Guide and Reference

v “Compression dictionary creation” on page 255

v “Compression dictionary creation during load operations” in Data
Movement Utilities Guide and Reference

© Copyright IBM Corp. 1993, 2012 19

Table 2. Overview of autonomic computing information (continued)

Category Related topics

Automatic database
backup

v “Automatic database backup” in Data Recovery and High
Availability Guide and Reference

v “Enabling automatic backup” in Data Recovery and High
Availability Guide and Reference

v “Developing a backup and recovery strategy” in Data Recovery
and High Availability Guide and Reference

Automatic
reorganization

“Automatic reorganization” in Troubleshooting and Tuning Database
Performance

Automatic statistics
collection

v “Automatic statistics collection” in Troubleshooting and Tuning
Database Performance

v “Using automatic statistics collection” in Troubleshooting and
Tuning Database Performance

v “Storage used by automatic statistics collection and profiling” in
Troubleshooting and Tuning Database Performance

v “Automatic statistics collection activity logging” in Troubleshooting
and Tuning Database Performance

Configuration Advisor v “Generating database configuration recommendations” on page
50

– “Tuning configuration parameters using the Configuration
Advisor” on page 49

– “Example: Requesting configuration recommendations using
the Configuration Advisor” on page 51

– “AUTOCONFIGURE command” in Command Reference

– “AUTOCONFIGURE command using the ADMIN_CMD
procedure” in Administrative Routines and Views

– “db2AutoConfig API - Access the Configuration Advisor” in
Administrative API Reference

v “Quick-start tips for performance tuning” in Troubleshooting and
Tuning Database Performance

Health monitor v “Health monitor” in Database Monitoring Guide and Reference

v “Health indicator process cycle” in Database Monitoring Guide and
Reference

– “Enabling health alert notification” in Database Monitoring
Guide and Reference

– “Configuring health indicators using a client application” in
Database Monitoring Guide and Reference

v “Health indicators summary” in Database Monitoring Guide and
Reference

20 Database Administration Concepts and Configuration Reference

Table 2. Overview of autonomic computing information (continued)

Category Related topics

Utility throttling v “Utility throttling” on page 53

v “Asynchronous index cleanup” in Troubleshooting and Tuning
Database Performance

v “Asynchronous index cleanup for MDC tables” in Troubleshooting
and Tuning Database Performance

– “LIST UTILITIES command” in Command Reference

– “SET UTIL_IMPACT_PRIORITY command” in Command
Reference

– “util_impact_lim - Instance impact policy” on page 604

– “utility_priority - Utility Priority monitor element” in Database
Monitoring Guide and Reference

Upgrade v “Adopting new DB2 Version 9.7 functionality in upgraded
databases” in Upgrading to DB2 Version 9.7

Automatic features
Automatic features assist you in managing your database system. They allow your
system to perform self-diagnosis and to anticipate problems before they happen by
analyzing real-time data against historical problem data. You can configure some of
the automatic tools to make changes to your system without intervention to avoid
service disruptions.

When you create a database, some of the following automatic features are enabled
by default, but others you must enable manually:

Self-tuning memory (single-partition databases only)
The self-tuning memory feature simplifies the task of memory
configuration. This feature responds to significant changes in workload by
automatically and iteratively adjusting the values of several memory
configuration parameters and the sizes of the buffer pools, thus optimizing
performance. The memory tuner dynamically distributes available memory
resources among several memory consumers, including the sort function,
the package cache, the lock list, and buffer pools. You can disable
self-tuning memory after creating a database by setting the database
configuration parameter self_tuning_mem to OFF.

Automatic storage
The automatic storage feature simplifies storage management for table
spaces. When you create a database, you specify the storage paths where
the database manager will place your table space data. Then, the database
manager manages the container and space allocation for the table spaces as
you create and populate them.

Data compression
Both tables and indexes can be compressed to save storage. Compression is
fully automatic; once you specify that a table or index should be
compressed using the COMPRESS YES clause of the CREATE TABLE,
ALTER TABLE, CREATE INDEX or ALTER INDEX statements, there is
nothing more you must do to manage compression. (Converting an
existing uncompressed table or index to be compressed does require a

Chapter 3. Autonomic computing overview 21

REORG to compress existing data). Temporary tables are compressed
automatically; indexes for compressed tables are also compressed
automatically, by default.

Automatic database backups
A database can become unusable due to a wide variety of hardware or
software failures. Ensuring that you have a recent, full backup of your
database is an integral part of planning and implementing a disaster
recovery strategy for your system. Use automatic database backups as part
of your disaster recovery strategy to enable the database manager to back
up your database both properly and regularly.

Automatic reorganization
After many changes to table data, the table and its indexes can become
fragmented. Logically sequential data might reside on nonsequential pages,
forcing the database manager to perform additional read operations to
access data. The automatic reorganization process periodically evaluates
tables and indexes that have had their statistics updated to see if
reorganization is required, and schedules such operations whenever they
are necessary.

Automatic statistics collection
Automatic statistics collection helps improve database performance by
ensuring that you have up-to-date table statistics. The database manager
determines which statistics are required by your workload and which
statistics must be updated. Statistics can be collected either asynchronously
(in the background) or synchronously, by gathering runtime statistics when
SQL statements are compiled. The DB2 optimizer can then choose an
access plan based on accurate statistics. You can disable automatic statistics
collection after creating a database by setting the database configuration
parameter auto_runstats to OFF. Real-time statistics gathering can be
enabled only when automatic statistics collection is enabled. Real-time
statistics gathering is controlled by the auto_stmt_stats configuration
parameter.

Configuration Advisor
When you create a database, this tool is automatically run to determine
and set the database configuration parameters and the size of the default
buffer pool (IBMDEFAULTBP). The values are selected based on system
resources and the intended use of the system. This initial automatic tuning
means that your database performs better than an equivalent database that
you could create with the default values. It also means that you will spend
less time tuning your system after creating the database. You can run the
Configuration Advisor at any time (even after your databases are
populated) to have the tool recommend and optionally apply a set of
configuration parameters to optimize performance based on the current
system characteristics.

Health monitor
The health monitor is a server-side tool that proactively monitors situations
or changes in your database environment that could result in a
performance degradation or a potential outage. A range of health
information is presented without any form of active monitoring on your
part. If a health risk is encountered, the database manager informs you and
advises you on how to proceed. The health monitor gathers information
about the system by using the snapshot monitor and does not impose a
performance penalty. Further, it does not turn on any snapshot monitor
switches to gather information.

22 Database Administration Concepts and Configuration Reference

Utility throttling
This feature regulates the performance impact of maintenance utilities so
that they can run concurrently during production periods. Although the
impact policy for throttled utilities is defined by default, you must set the
impact priority if you want to run a throttled utility. The throttling system
ensures that the throttled utilities run as frequently as possible without
violating the impact policy. Currently, you can throttle statistics collection,
backup operations, rebalancing operations, and asynchronous index
cleanup.

Automatic maintenance
The database manager provides automatic maintenance capabilities for performing
database backups, keeping statistics current, and reorganizing tables and indexes
as necessary. Performing maintenance activities on your databases is essential in
ensuring that they are optimized for performance and recoverability.

Maintenance of your database includes some or all of the following activities:
v Backups. When you back up a database, the database manager takes a copy of

the data in the database and stores it on a different medium in case of failure or
damage to the original. Automatic database backups help to ensure that your
database is backed up properly and regularly so that you don't have to worry
about when to back up or know the syntax of the BACKUP command.

v Data defragmentation (table or index reorganization). This maintenance activity
can increase the efficiency with which the database manager accesses your
tables. Automatic reorganization manages an offline table and index
reorganization so that you don't need to worry about when and how to
reorganize your data.

v Data access optimization (statistics collection). The database manager updates
the system catalog statistics on the data in a table, the data in indexes, or the
data in both a table and its indexes. The optimizer uses these statistics to
determine which path to use to access the data. Automatic statistics collection
attempts to improve the performance of the database by maintaining up-to-date
table statistics. The goal is to allow the optimizer to choose an access plan based
on accurate statistics.

v Statistics profiling. Automatic statistics profiling advises when and how to
collect table statistics by detecting outdated, missing, or incorrect statistics, and
by generating statistical profiles based on query feedback.

It can be time-consuming to determine whether and when to run maintenance
activities, but automatic maintenance removes the burden from you. You can
manage the enablement of the automatic maintenance features simply and flexibly
by using the automatic maintenance database configuration parameters. Using the
Configure Automatic Maintenance wizard, you can specify your maintenance
objectives The database manager uses these objectives to determine whether the
maintenance activities need to be done and runs only the required ones during the
next available maintenance window (a time period that you define).

Maintenance windows
A maintenance window is a time period that you define for the running of
automatic maintenance activities, which are backups, statistics collection, statistics
profiling, and reorganizations. An offline window might be the time period when
access to a database is unavailable. An online window might be the time period
when users are permitted to connect to a database.

Chapter 3. Autonomic computing overview 23

A maintenance window is different from a task schedule. During a maintenance
window, each automatic maintenance activity is not necessarily run. Instead, the
database manager evaluates the system to determine the need for each
maintenance activity to be run. If the maintenance requirements are not met, the
maintenance activity is run. If the database is already well maintained, the
maintenance activity is not run.

Think about when you want the automatic maintenance activities to be run.
Automatic maintenance activities consume resources on your system and might
affect the performance of your database when the activities are run. Some of these
activities also restrict access to tables, indexes, and databases. Therefore, you must
provide appropriate windows when the database manager can run maintenance
activities. You specify these periods as offline and online maintenance time
windows using the Automatic Maintenance wizard from the Control Center or
Health Center.

Offline maintenance activities
Offline maintenance activities (offline database backups and table and
index reorganizations) are maintenance activities that can occur only in the
offline maintenance window. The extent to which user access is affected
depends on which maintenance activity is running:
v During an offline backup, no applications can connect to the database.

Any currently connected applications are forced off.
v During an offline table or index reorganization (data defragmentation),

applications can access but not update the data in tables.

Offline maintenance activities run to completion even if they go beyond
the window specified. Over time, the internal scheduling mechanism learns
how to best estimate job completion times. If the offline maintenance
window is too small for a particular database backup or reorganization
activity, the scheduler will not start the job the next time and relies on the
health monitor to provide notification of the need to increase the offline
maintenance window.

Online maintenance activities
Online maintenance activities (automatic statistics collection and profiling,
online index reorganizations, and online database backups) are
maintenance activities that can occur only in the online maintenance
window. When online maintenance activities run, any currently connected
applications are allowed to remain connected, and new connections can be
established. To minimize the impact on the system, online database
backups and automatic statistics collection and profiling are throttled by
the adaptive utility throttling mechanism.

Online maintenance activities run to completion even if they go beyond the
window specified.

Self-tuning memory
Starting in DB2 Version 9, a memory-tuning feature simplifies the task of memory
configuration by automatically setting values for several memory configuration
parameters. When enabled, the memory tuner dynamically distributes available
memory resources among the following memory consumers: buffer pools, locking
memory, package cache, and sort memory.

The tuner works within the memory limits that are defined by the
database_memory configuration parameter. The value of this parameter can be

24 Database Administration Concepts and Configuration Reference

automatically tuned as well. When self-tuning is enabled (when the value of
database_memory has been set to AUTOMATIC), the tuner determines the overall
memory requirements for the database and increases or decreases the amount of
memory allocated for database shared memory, depending on current database
requirements. For example, if current database requirements are high and there is
sufficient free memory on the system, more memory is allocated for database
shared memory. If the database memory requirements decrease, or if the amount of
free memory on the system becomes too low, some database shared memory is
released.

If the database_memory configuration parameter is not set to AUTOMATIC, the
database uses the amount of memory that has been specified for this parameter,
distributing it across the memory consumers as required. You can specify the
amount of memory in one of two ways: by setting database_memory to some
numeric value or by setting it to COMPUTED. In the latter case, the total amount
of memory is based on the sum of the initial values of the database memory heaps
at database startup time.

You can also enable the memory consumers for self tuning as follows:
v For buffer pools, use the ALTER BUFFERPOOL or the CREATE BUFFERPOOL

statement (specifying the AUTOMATIC keyword)
v For locking memory, use the locklist or the maxlocks database configuration

parameter (specifying a value of AUTOMATIC)
v For the package cache, use the pckcachesz database configuration parameter

(specifying a value of AUTOMATIC)
v For sort memory, use the sheapthres_shr or the sortheap database configuration

parameter (specifying a value of AUTOMATIC)

Changes resulting from self-tuning operations are recorded in memory tuning log
files that are located in the stmmlog subdirectory. These log files contain summaries
of the resource demands from each memory consumer during specific tuning
intervals, which are determined by timestamps in the log entries.

If little memory is available, the performance benefits of self tuning will be limited.
Because tuning decisions are based on database workload, workloads with rapidly
changing memory requirements limit the effectiveness of the self-tuning memory
manager (STMM). If the memory characteristics of your workload are constantly
changing, the STMM will tune less frequently and under shifting target conditions.
In this scenario, the STMM will not achieve absolute convergence, but will try
instead to maintain a memory configuration that is tuned to the current workload.

Self-tuning memory
Starting in DB2 Version 9, a memory-tuning feature simplifies the task of memory
configuration by automatically setting values for several memory configuration
parameters. When enabled, the memory tuner dynamically distributes available
memory resources among the following memory consumers: buffer pools, locking
memory, package cache, and sort memory.

The tuner works within the memory limits that are defined by the
database_memory configuration parameter. The value of this parameter can be
automatically tuned as well. When self-tuning is enabled (when the value of
database_memory has been set to AUTOMATIC), the tuner determines the overall
memory requirements for the database and increases or decreases the amount of
memory allocated for database shared memory, depending on current database

Chapter 3. Autonomic computing overview 25

requirements. For example, if current database requirements are high and there is
sufficient free memory on the system, more memory is allocated for database
shared memory. If the database memory requirements decrease, or if the amount of
free memory on the system becomes too low, some database shared memory is
released.

If the database_memory configuration parameter is not set to AUTOMATIC, the
database uses the amount of memory that has been specified for this parameter,
distributing it across the memory consumers as required. You can specify the
amount of memory in one of two ways: by setting database_memory to some
numeric value or by setting it to COMPUTED. In the latter case, the total amount
of memory is based on the sum of the initial values of the database memory heaps
at database startup time.

You can also enable the memory consumers for self tuning as follows:
v For buffer pools, use the ALTER BUFFERPOOL or the CREATE BUFFERPOOL

statement (specifying the AUTOMATIC keyword)
v For locking memory, use the locklist or the maxlocks database configuration

parameter (specifying a value of AUTOMATIC)
v For the package cache, use the pckcachesz database configuration parameter

(specifying a value of AUTOMATIC)
v For sort memory, use the sheapthres_shr or the sortheap database configuration

parameter (specifying a value of AUTOMATIC)

Changes resulting from self-tuning operations are recorded in memory tuning log
files that are located in the stmmlog subdirectory. These log files contain summaries
of the resource demands from each memory consumer during specific tuning
intervals, which are determined by timestamps in the log entries.

If little memory is available, the performance benefits of self tuning will be limited.
Because tuning decisions are based on database workload, workloads with rapidly
changing memory requirements limit the effectiveness of the self-tuning memory
manager (STMM). If the memory characteristics of your workload are constantly
changing, the STMM will tune less frequently and under shifting target conditions.
In this scenario, the STMM will not achieve absolute convergence, but will try
instead to maintain a memory configuration that is tuned to the current workload.

Self-tuning memory overview
Self-tuning memory simplifies the task of memory configuration by automatically
setting values for memory configuration parameters and sizing buffer pools. When
enabled, the memory tuner dynamically distributes available memory resources
among the following memory consumers: buffer pools, locking memory, package
cache, and sort memory.

Self-tuning memory is enabled through the self_tuning_mem database
configuration parameter.

The following memory-related database configuration parameters can be
automatically tuned:
v database_memory - Database shared memory size
v locklist - Maximum storage for lock list
v maxlocks - Maximum percent of lock list before escalation
v pckcachesz - Package cache size

26 Database Administration Concepts and Configuration Reference

v sheapthres_shr - Sort heap threshold for shared sorts
v sortheap - Sort heap size

Memory allocation
Memory allocation and deallocation occurs at various times. Memory might be
allocated to a particular memory area when a specific event occurs (for example,
when an application connects), or it might be reallocated in response to a
configuration change.

Figure 1 shows the different memory areas that the database manager allocates for
various uses and the configuration parameters that enable you to control the size
of these memory areas. Note that in a partitioned database environment, each
database partition has its own database manager shared memory set.

Memory is allocated by the database manager whenever one of the following
events occurs:

When the database manager starts (db2start)
Database manager shared memory (also known as instance shared memory)
remains allocated until the database manager stops (db2stop). This area
contains information that the database manager uses to manage activity
across all database connections. DB2 automatically controls the size of the
database manager shared memory.

When a database is activated or connected to for the first time
Database global memory is used across all applications that connect to the
database. The size of the database global memory is specified by the
database_memory database configuration parameter. By default, this
parameter is set to automatic, allowing DB2 to calculate the initial amount

Database Manager
Shared Memory

(1)

Application Global Memory

Application
Heap

Application
Heap

(1) (numdb)

(max_connections)

Database Global Memory

Application
Global Memory

Database
Global Memory

Figure 1. Types of memory allocated by the database manager

Chapter 3. Autonomic computing overview 27

of memory allocated for the database and to automatically configure the
database memory size during run time based on the needs of the database.

The following memory areas can be dynamically adjusted:
v Buffer pools (using the ALTER BUFFERPOOL statement)
v Database heap (including log buffers)
v Utility heap
v Package cache
v Catalog cache
v Lock list

The sortheap, sheapthres_shr, and sheapthres configuration parameters
are also dynamically updatable. The only restriction is that sheapthres
cannot be dynamically changed from 0 to a value that is greater than zero,
or vice versa.

Shared sort operations are performed by default, and the amount of
database shared memory that can be used by sort memory consumers at
any one time is determined by the value of the sheapthres_shr database
configuration parameter. Private sort operations are performed only if
intra-partition parallelism, database partitioning, and the connection
concentrator are all disabled, and the sheapthres database manager
configuration parameter is set to a non-zero value.

When an application connects to a database
Each application has its own application heap, part of the application global
memory. You can limit the amount of memory that any one application can
allocate by using the applheapsz database configuration parameter, or limit
overall application memory consumption by using the appl_memory
database configuration parameter.

When an agent is created
Agent private memory is allocated for an agent when that agent is assigned
as the result of a connect request or a new SQL request in a partitioned
database environment. Agent private memory contains memory that is
used only by this specific agent. If private sort operations have been
enabled, the private sort heap is allocated from agent private memory.

The following configuration parameters limit the amount of memory that is
allocated for each type of memory area. Note that in a partitioned database
environment, this memory is allocated on each database partition.

numdb This database manager configuration parameter specifies the maximum
number of concurrent active databases that different applications can use.
Because each database has its own global memory area, the amount of
memory that can be allocated increases if you increase the value of this
parameter.

maxappls
This database configuration parameter specifies the maximum number of
applications that can simultaneously connect to a specific database. The
value of this parameter affects the amount of memory that can be allocated
for both agent private memory and application global memory for that
database.

28 Database Administration Concepts and Configuration Reference

max_connections
This database manager configuration parameter limits the number of
database connections or instance attachments that can access the data
server at any one time.

max_coordagents
This database manager configuration parameter limits the number of
database manager coordinating agents that can exist simultaneously across
all active databases in an instance (and per database partition in a
partitioned database environment). Together with maxappls and
max_connections, this parameter limits the amount of memory that is
allocated for agent private memory and application global memory.

The memory tracker, invoked by the db2mtrk command, enables you to view the
current allocation of memory within the instance. You can also use the
ADMIN_GET_DBP_MEM_USAGE table function to determine the total memory
consumption for the entire instance or for just a single database partition. The GET
SNAPSHOT command enables you to examine current memory usage at the instance,
database, or application level.

On Unix and Linux, although the ipcs command can be used to list all the shared
memory segments, it does not accurately reflect the amount of resources
consumed. You can use the db2mtrk command as an alternative to ipcs.

Memory parameter interaction and limitations
Although you can enable self-tuning memory and use the default AUTOMATIC setting
for most memory-related configuration parameters, it might be useful to know the
limitations of the different memory parameters and the interactions between them,
in order to have more control over their settings and to understand why
out-of-memory errors are still possible under certain conditions.

Memory types

Basically, the DB2 database manager uses two types of memory:

Performance memory
This is memory used to improve database performance. Performance
memory is controlled and distributed to the various performance heaps by
the self-tuning memory manager (STMM). You can set the database_memory
configuration parameter to a maximum amount of performance memory or
set database_memory to AUTOMATIC to let STMM manage the overall amount
of performance memory.

Functional memory
This is used by application programs. You can use the appl_memory
configuration parameter to control the maximum amount of functional
memory, or application memory, that is allocated by DB2 database agents
to service application requests. By default, this parameter is set to
AUTOMATIC, meaning that functional memory requests are allowed as long
as there are system resources available. If you are using DB2 database
products with memory usage restrictions or if you set instance_memory to
a specific value, an instance_memory limit is enforced and functional
memory requests are allowed if the total amount of memory allocated by
the database partition is within the instance_memory limit.

Before the AUTOMATIC setting was available, various operating system and DB2 tools
were available that allowed you to see the amount of space used by different types

Chapter 3. Autonomic computing overview 29

memory, such as shared memory, private memory, buffer pool memory, locklists,
sort memory (heaps), and so forth, but it was almost impossible to see the total
amount of memory used by the DB2 database manager. If one of the heaps reached
the memory limit, a statement in an application would fail with an out-of-memory
error message. If you increased the memory for that heap and reran the
application, you might then have received an out-of-memory error on another
statement for another heap. Now, you can remove hard upper limits on individual
functional memory heaps by using the default AUTOMATIC configuration parameter
setting.

If required (for instance, to avoid scenarios where a poorly behaving database
application requires extremely large amounts of memory), you can apply a limit on
overall application memory at the database level by using the appl_memory
configuration parameter. You can also apply a limit for an individual heap by
changing the appropriate database configuration parameter for that heap from the
AUTOMATIC setting to a fixed value. If all of the configuration parameters for all of
the functional memory heaps are set to AUTOMATIC and an instance_memory limit is
enforced, the only limit on application memory consumption is the
instance_memory limit . If you also set instance_memory to AUTOMATIC and you are
using a DB2 database product with memory usage restrictions, the DB2 database
manager automatically determines an upper limit on memory consumption.

You can easily see the total amount of instance memory consumed and the current
instance_memory consumption by using the db2pd -dbptnmemcommand or the
ADMIN_GET_DBP_MEM_USAGE table function.

Interactions between memory configuration parameters

When self-tuning memory manager (STMM) is active and self-tuning of database
memory is enabled (database_memory is set to AUTOMATIC), STMM checks the free
memory available on the system and automatically determines how much memory
to dedicate to performance heaps for optimal performance. All the performance
heaps contribute to the overall database_memory size. In addition to the
performance memory requirements, some memory is required to ensure the
operation and integrity of the DB2 database manager. The difference between the
space used by instance_memory and the space required by these two memory
consumers is available for application memory (appl_memory) use. Functional
memory for application programs is then allocated as needed. If an
instance_memory limit is not enforced, there are no additional restrictions on how
much memory a single application can allocate.

Depending on the configuration, STMM also periodically queries how much free
system memory is remaining and how much free instance_memory space is
remaining if there is an instance_memory limit. To prevent application failures,
STMM prioritizes application requirements ahead of performance criteria. If
required, it degrades performance by decreasing the amount of space available for
performance heaps, thus providing enough free system memory and
instance_memory space to meet application memory requests. As applications are
completed, the used memory is freed, ready to be reused by other applications or
to be reclaimed for database_memory use by STMM. If performance of the database
system becomes unacceptable during periods of heavy application activity, it might
be useful either to apply controls on how many applications the database manager
is allowed to run (for instance, by using either the connection concentrator or the
new Workload Management feature of DB2 Version 9.5) or to add memory
resources to the system.

30 Database Administration Concepts and Configuration Reference

Enabling self-tuning memory
Self-tuning memory simplifies the task of memory configuration by automatically
setting values for memory configuration parameters and sizing buffer pools.

About this task

When enabled, the memory tuner dynamically distributes available memory
resources between several memory consumers, including buffer pools, locking
memory, package cache, and sort memory.

Procedure
1. Enable self-tuning memory for the database by setting the self_tuning_mem

database configuration parameter to ON using the UPDATE DATABASE
CONFIGURATION command or the db2CfgSet API.

2. To enable the self tuning of memory areas that are controlled by memory
configuration parameters, set the relevant configuration parameters to
AUTOMATIC using the UPDATE DATABASE CONFIGURATION command or the
db2CfgSet API.

3. To enable the self tuning of a buffer pool, set the buffer pool size to AUTOMATIC
using the CREATE BUFFERPOOL statement or the ALTER BUFFERPOOL
statement. In a partitioned database environment, that buffer pool should not
have any entries in SYSCAT.BUFFERPOOLDBPARTITIONS.

Results

Note:

1. Because self-tuned memory is distributed between different memory
consumers, at least two memory areas must be concurrently enabled for self
tuning at any given time; for example, locking memory and database shared
memory. The memory tuner actively tunes memory on the system (the value of
the self_tuning_mem database configuration parameter is ON) when one of the
following conditions is true:
v One configuration parameter or buffer pool size is set to AUTOMATIC, and the

database_memory database configuration parameter is set to either a numeric
value or to AUTOMATIC

v Any two of locklist, sheapthres_shr, pckcachesz, or buffer pool size is set
to AUTOMATIC

v The sortheap database configuration parameter is set to AUTOMATIC

2. The value of the locklist database configuration parameter is tuned together
with the maxlocks database configuration parameter. Disabling self tuning of
the locklist parameter automatically disables self tuning of the maxlocks
parameter, and enabling self tuning of the locklist parameter automatically
enables self tuning of the maxlocks parameter.

3. Automatic tuning of sortheap or the sheapthres_shr database configuration
parameter is allowed only when the database manager configuration parameter
sheapthres is set to 0.

4. The value of sortheap is tuned together with sheapthres_shr. Disabling self
tuning of the sortheap parameter automatically disables self tuning of the
sheapthres_shr parameter, and enabling self tuning of the sheapthres_shr
parameter automatically enables self tuning of the sortheap parameter.

5. Self-tuning memory runs only on the high availability disaster recovery
(HADR) primary server. When self-tuning memory is activated on an HADR
system, it will never run on the secondary server, and it runs on the primary

Chapter 3. Autonomic computing overview 31

server only if the configuration is set properly. If the HADR database roles are
switched, self-tuning memory operations will also switch so that they run on
the new primary server. After the primary database starts, or the standby
database converts to a primary database through takeover, the self-tuning
memory manager (STMM) engine dispatchable unit (EDU) might not start until
the first client connects.

Disabling self-tuning memory
Self-tuning memory can be disabled for the entire database or for one or more
configuration parameters or buffer pools.

About this task

If self-tuning memory is disabled for the entire database, the memory
configuration parameters and buffer pools that are set to AUTOMATIC remain
enabled for automatic tuning; however, the memory areas remain at their current
size.

Procedure
1. Disable self-tuning memory for the database by setting the self_tuning_mem

database configuration parameter to OFF using the UPDATE DATABASE
CONFIGURATION command or the db2CfgSet API.

2. To disable the self tuning of memory areas that are controlled by memory
configuration parameters, set the relevant configuration parameters to
MANUAL or specify numeric parameter values using the UPDATE DATABASE
CONFIGURATION command or the db2CfgSet API.

3. To disable the self tuning of a buffer pool, set the buffer pool size to a specific
value using the ALTER BUFFERPOOL statement.

Results

Note:

v In some cases, a memory configuration parameter can be enabled for self tuning
only if another related memory configuration parameter is also enabled. This
means that, for example, disabling self-tuning memory for the locklist or the
sortheap database configuration parameter disables self-tuning memory for the
maxlocks or the sheapthres_shr database configuration parameter, respectively.

Determining which memory consumers are enabled for self
tuning

You can view the self-tuning memory settings that are controlled by configuration
parameters or that apply to buffer pools.

About this task
v To view the settings for configuration parameters from the command line, use

the GET DATABASE CONFIGURATION command, specifying the SHOW DETAIL
option. The memory consumers that can be enabled for self tuning are grouped
together in the output as follows:
Description Parameter Current Value Delayed Value
--
Self tuning memory (SELF_TUNING_MEM) = ON (Active) ON
Size of database shared memory (4KB) (DATABASE_MEMORY) = AUTOMATIC(37200) AUTOMATIC(37200)
Max storage for lock list (4KB) (LOCKLIST) = AUTOMATIC(7456) AUTOMATIC(7456)
Percent. of lock lists per application (MAXLOCKS) = AUTOMATIC(98) AUTOMATIC(98)

32 Database Administration Concepts and Configuration Reference

Package cache size (4KB) (PCKCACHESZ) = AUTOMATIC(5600) AUTOMATIC(5600)
Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = AUTOMATIC(5000) AUTOMATIC(5000)
Sort list heap (4KB) (SORTHEAP) = AUTOMATIC(256) AUTOMATIC(256)

v You can also use the db2CfgGet API to determine whether or not tuning is
enabled. The following values are returned:
SQLF_OFF 0
SQLF_ON_ACTIVE 2
SQLF_ON_INACTIVE 3

SQLF_ON_ACTIVE indicates that self tuning is both enabled and active, whereas
SQLF_ON_INACTIVE indicates that self tuning is enabled but currently inactive.

To view the self-tuning settings for buffer pools, use one of the following methods.
v To retrieve a list of the buffer pools that are enabled for self tuning from the

command line, use the following query:
SELECT BPNAME, NPAGES FROM SYSCAT.BUFFERPOOLS

When self tuning is enabled for a buffer pool, the NPAGES field in the
SYSCAT.BUFFERPOOLS view for that particular buffer pool is set to -2. When
self tuning is disabled, the NPAGES field is set to the current size of the buffer
pool.

v To determine the current size of buffer pools that are enabled for self tuning, use
the GET SNAPSHOT command and examine the current size of the buffer pools (the
value of the bp_cur_buffsz monitor element):
GET SNAPSHOT FOR BUFFERPOOLS ON database-alias

An ALTER BUFFERPOOL statement that specifies the size of a buffer pool on a
particular database partition will create an exception entry (or update an existing
entry) for that buffer pool in the SYSCAT.BUFFERPOOLDBPARTITIONS catalog
view. If an exception entry for a buffer pool exists, that buffer pool will not
participate in self-tuning operations when the default buffer pool size is set to
AUTOMATIC.

It is important to note that responsiveness of the memory tuner is limited by the
time required to resize a memory consumer. For example, reducing the size of a
buffer pool can be a lengthy process, and the performance benefits of trading
buffer pool memory for sort memory might not be immediately realized.

Self-tuning memory in partitioned database environments
When using the self-tuning memory feature in partitioned database environments,
there are a few factors that determine whether the feature will tune the system
appropriately.

When self-tuning memory is enabled for partitioned databases, a single database
partition is designated as the tuning partition, and all memory tuning decisions are
based on the memory and workload characteristics of that database partition. After
tuning decisions on that partition are made, the memory adjustments are
distributed to the other database partitions to ensure that all database partitions
maintain similar configurations.

The single tuning partition model assumes that the feature will be used only when
all of the database partitions have similar memory requirements. Use the following
guidelines when determining whether to enable self-tuning memory on your
partitioned database.

Chapter 3. Autonomic computing overview 33

Cases where self-tuning memory for partitioned databases is
recommended

When all database partitions have similar memory requirements and are running
on similar hardware, self-tuning memory can be enabled without any
modifications. These types of environments share the following characteristics:
v All database partitions are on identical hardware, and there is an even

distribution of multiple logical database partitions to multiple physical database
partitions

v There is a perfect or near-perfect distribution of data
v Workloads are distributed evenly across database partitions, meaning that no

database partition has higher memory requirements for one or more heaps than
any of the others

In such an environment, if all database partitions are configured equally,
self-tuning memory will properly configure the system.

Cases where self-tuning memory for partitioned databases is
recommended with qualification

In cases where most of the database partitions in an environment have similar
memory requirements and are running on similar hardware, it is possible to use
self-tuning memory as long as some care is taken with the initial configuration.
These systems might have one set of database partitions for data, and a much
smaller set of coordinator partitions and catalog partitions. In such environments,
it can be beneficial to configure the coordinator partitions and catalog partitions
differently than the database partitions that contain data.

Self-tuning memory should be enabled on all of the database partitions that
contain data, and one of these database partitions should be designated as the
tuning partition. And because the coordinator and catalog partitions might be
configured differently, self-tuning memory should be disabled on those partitions.
To disable self-tuning memory on the coordinator and catalog partitions, set the
self_tuning_mem database configuration parameter on these partitions to OFF.

Cases where self-tuning memory for partitioned databases is not
recommended

If the memory requirements of each database partition are different, or if different
database partitions are running on significantly different hardware, it is good
practice to disable the self-tuning memory feature. You can disable the feature by
setting the self_tuning_mem database configuration parameter to OFF on all
partitions.

Comparing the memory requirements of different database
partitions

The best way to determine whether the memory requirements of different database
partitions are sufficiently similar is to consult the snapshot monitor. If the
following snapshot elements are similar on all database partitions (differing by no
more than 20%), the memory requirements of the database partitions can be
considered sufficiently similar.

Collect the following data by issuing the command: get snapshot for database on
<dbname>

34 Database Administration Concepts and Configuration Reference

Locks held currently = 0
Lock waits = 0
Time database waited on locks (ms) = 0
Lock list memory in use (Bytes) = 4968
Lock escalations = 0
Exclusive lock escalations = 0

Total Shared Sort heap allocated = 0
Shared Sort heap high water mark = 0
Post threshold sorts (shared memory) = 0
Sort overflows = 0

Package cache lookups = 13
Package cache inserts = 1
Package cache overflows = 0
Package cache high water mark (Bytes) = 655360

Number of hash joins = 0
Number of hash loops = 0
Number of hash join overflows = 0
Number of small hash join overflows = 0
Post threshold hash joins (shared memory) = 0

Number of OLAP functions = 0
Number of OLAP function overflows = 0
Active OLAP functions = 0

Collect the following data by issuing the command: get snapshot for bufferpools
on <dbname>

Buffer pool data logical reads = 0
Buffer pool data physical reads = 0
Buffer pool index logical reads = 0
Buffer pool index physical reads = 0
Total buffer pool read time (milliseconds) = 0
Total buffer pool write time (milliseconds)= 0

Using self-tuning memory in partitioned database
environments

When self-tuning memory is enabled in partitioned database environments, there is
a single database partition (known as the tuning partition) that monitors the
memory configuration and propagates any configuration changes to all other
database partitions to maintain a consistent configuration across all the
participating database partitions.

The tuning partition is selected on the basis of several characteristics, such as the
number of database partitions in the partition group and the number of buffer
pools.
v To determine which database partition is currently specified as the tuning

partition, call the ADMIN_CMD procedure as follows:
CALL SYSPROC.ADMIN_CMD(’get stmm tuning dbpartitionnum’)

v To change the tuning partition, call the ADMIN_CMD procedure as follows:
CALL SYSPROC.ADMIN_CMD(’update stmm tuning dbpartitionnum <partitionnum>’)

The tuning partition is updated asynchronously or at the next database startup.
To have the memory tuner automatically select the tuning partition, enter -1 for
the partitionnum value.

Chapter 3. Autonomic computing overview 35

Starting the memory tuner in partitioned database environments

In a partitioned database environment, the memory tuner will start only if the
database is activated by an explicit ACTIVATE DATABASE command, because
self-tuning memory requires that all partitions be active.

Disabling self-tuning memory for a specific database partition
v To disable self-tuning memory for a subset of database partitions, set the

self_tuning_mem database configuration parameter to OFF for those database
partitions.

v To disable self-tuning memory for a subset of the memory consumers that are
controlled by configuration parameters on a specific database partition, set the
value of the relevant configuration parameter or the buffer pool size to
MANUAL or to some specific value on that database partition. It is
recommended that self-tuning memory configuration parameter values be
consistent across all running partitions.

v To disable self-tuning memory for a particular buffer pool on a specific database
partition, issue the ALTER BUFFERPOOL statement, specifying a size value and
the partition on which self-tuning memory is to be disabled.
An ALTER BUFFERPOOL statement that specifies the size of a buffer pool on a
particular database partition will create an exception entry (or update an existing
entry) for that buffer pool in the SYSCAT.BUFFERPOOLDBPARTITIONS catalog
view. If an exception entry for a buffer pool exists, that buffer pool will not
participate in self-tuning operations when the default buffer pool size is set to
AUTOMATIC. To remove an exception entry so that a buffer pool can be
enabled for self tuning:
1. Disable self tuning for this buffer pool by issuing an ALTER BUFFERPOOL

statement, setting the buffer pool size to a specific value.
2. Issue another ALTER BUFFERPOOL statement to set the size of the buffer

pool on this database partition to the default.
3. Enable self tuning for this buffer pool by issuing another ALTER

BUFFERPOOL statement, setting the buffer pool size to AUTOMATIC.

Enabling self-tuning memory in nonuniform environments

Ideally, data should be distributed evenly across all database partitions, and the
workload that is run on each partition should have similar memory requirements.
If the data distribution is skewed, so that one or more of your database partitions
contain significantly more or less data than other database partitions, these
anomalous database partitions should not be enabled for self tuning. The same is
true if the memory requirements are skewed across the database partitions, which
can happen, for example, if resource-intensive sorts are only performed on one
partition, or if some database partitions are associated with different hardware and
more available memory than others. Self tuning memory can still be enabled on
some database partitions in this type of environment. To take advantage of
self-tuning memory in environments with skew, identify a set of database
partitions that have similar data and memory requirements and enable them for
self tuning. Memory in the remaining partitions should be configured manually.

36 Database Administration Concepts and Configuration Reference

Configuring memory and memory heaps
With the simplified memory configuration feature, you can configure memory and
memory heaps required by the DB2 data server by using the default AUTOMATIC
setting for most memory-related configuration parameters, thereby, requiring much
less tuning.

The simplified memory configuration feature provides the following benefits:
v You can use a single parameter, instance_memory, to specify all of the memory

that the database manager is allowed to allocate from its private and shared
memory heaps. Also, you can use the appl_memory configuration parameter to
control the maximum amount of application memory that is allocated by DB2
database agents to service application requests.

v You are not required to manually tune parameters used solely for functional
memory.

v You can query how much total memory is currently being consumed by the
private and shared memory heaps of the database manager by using the
Memory Visualizer. You can also use the db2mtrk command to monitor heap
usage and the ADMIN_GET_DBP_MEM_USAGE() table function to query
overall memory consumption.

v The default DB2 configuration requires much less tuning, a benefit for new
instances that you create.

The following table lists the memory configuration parameters whose values
default to the AUTOMATIC setting. These parameters can also be configured
dynamically, if necessary. Note that the meaning of the AUTOMATIC setting differs
with each parameter, as described in the rightmost column.

Table 3. Memory configuration parameters whose values default to AUTOMATIC

Configuration
parameter name Description Meaning of the AUTOMATIC setting

appl_memory Controls the maximum amount of application
memory that is allocated by DB2 database
agents to service application requests.

If an instance_memory limit is enforced, the
AUTOMATIC setting allows all application
memory requests as long as the total amount
of memory allocated by the database
partition is within the instance_memory limit.
Otherwise, it allows request as long as there
are system resources available.

applheapsz Prior to Version 9.5, referred to the amount of
application memory that each database agent
working for an application could consume. In
Version 9.5, this parameter refers to the total
amount of application memory that can be
consumed by the entire application. For
partitioned database environments,
Concentrator, or SMP configurations, this
means that you might need to increase the
applheapsz value used in previous releases
unless you use the AUTOMATIC setting.

The AUTOMATIC setting allows the application
heap size to increase. as needed. A limit
might be enforced if there is an appl_memory
limit or an instance_memory limit.

Chapter 3. Autonomic computing overview 37

Table 3. Memory configuration parameters whose values default to AUTOMATIC (continued)

Configuration
parameter name Description Meaning of the AUTOMATIC setting

database_memory (Prior
to Version 9.5, the
default setting of
AUTOMATIC applied
only to Windows and
AIX platforms. As of
Version 9.5,
AUTOMATIC is the
default setting for all
DB2 server products.)

Specifies the amount of shared memory that
is reserved for the database shared memory
region.

When enabled, the memory tuner determines
the overall memory requirements for the
database and increases or decreases the
amount of memory allocated for database
shared memory depending on the current
database requirements.

dbheap Determines the maximum memory used by
the database heap.

The AUTOMATIC setting allows the database
heap to increase as needed. A limit might be
enforced if there is a database_memory limit or
an instance_memory limit.

instance_memory If you are using a DB2 database products
with memory usage restrictions or if you set
this parameter to a specific value, this
parameter specifies the maximum amount of
memory that can be allocated for a database
partition.

The AUTOMATIC setting allows the overall
memory consumed by the entire database
manager instance to grow as needed, and
STMM ensures that sufficient system memory
is available to prevent memory
overcommitment. For DB2 database products
with memory usage restrictions, the
AUTOMATIC setting enforces a limit based on
the lower of a computed value (75-95% of
RAM) and the allowable memory usage
under the license. See instance_memory for
details on when it is enforced as a limit.

mon_heap_sz Determines the amount of the memory, in
pages, to allocate for database system
monitor data.

The AUTOMATIC setting allows the monitor
heap to increase as needed. A limit might be
enforced if there is an instance_memory limit.

stat_heap_sz Indicates the maximum size of the heap used
in collecting statistics using the RUNSTATS
command.

The AUTOMATIC setting allows the statistics
heap size to increase as needed. A limit might
be enforced if there is an appl_memory limit or
an instance_memory limit.

stmtheap Specifies the size of the statement heap which
is used as a work space for the SQL or
XQuery compiler to compile an SQL or
XQuery statement.

The AUTOMATIC setting allows the statement
heap to increase as needed. A limit might be
enforced if there is an appl_memory limit or an
instance_memory limit.

Note: The DBMCFG and DBCFG administrative views retrieve database manager
configuration parameter information for the currently connected database for all
database partitions. For the mon_heap_sz, stmtheap, and stat_heap_sz configuration
parameters, the DEFERRED_VALUE column on this view does not persist across
database activations. That is, when you issue the get dbm cfg show detail or get
db cfg show detail command, the output from the query shows updated (in
memory) values.

The following table shows whether configuration parameters are set to the default
AUTOMATIC value during instance upgrade or creation and during database upgrade
or creation.

38 Database Administration Concepts and Configuration Reference

Table 4. Configuration parameters set to AUTOMATIC during instance and database upgrade
and creation

Configuration
parameters

Set to AUTOMATIC
upon instance
upgrade or creation

Set to AUTOMATIC
upon database
upgrade

Set to AUTOMATIC
upon database
creation

applheapsz1 X X

dbheap X X

instance_memory X

mon_heap_sz1 X

stat_heap_sz1 X X

stmtheap1 X

As part of the move to simplified memory configuration, the following elements
have been deprecated:
v Configuration parameters appgroup_mem_sz, groupheap_ratio, and

app_ctl_heap_sz. These configuration parameters are replaced with the new
appl_memory configuration parameter.

v The -p parameter of the db2mtrk memory tracker command. This option, which
lists private agent memory heaps, is replaced with the -a parameter, which lists
all application memory consumption.

The Memory Visualizer displays the maximum application memory consumption
by a database using the new appl_memory configuration parameter, and the
maximum memory consumption by an instance using the updated
instance_memory configuration parameter. The Memory Visualizer also displays the
values for all of the configuration parameters that allow the AUTOMATIC setting.
Values for the deprecated configuration parameters are not displayed in the
Memory Visualizer for Version 9.5 databases, but they are displayed for earlier
versions of the databases.

Agent and process model configuration
Starting with Version 9.5, DB2 databases feature a less complex and more flexible
mechanism for configuring process model–related parameters. This simplified
configuration eliminates the need for regular adjustments to these parameters and
reduces the time and effort required to configure them. It also eliminates the need
to shut down and restart DB2 instances to have the new values take effect.

To allow for dynamic and automatic agent and memory configuration, slightly
more memory resources are required when an instance is activated.

Agent, process model, and memory configuration overview
DB2 data servers exploit multithreaded architecture on both 32-bit and 64-bit
platforms to provide you with a number of benefits, such as enhanced usability,
better sharing of resources, memory footprint reduction, and consistent threading
architecture across all operating systems.

The following table lists the agent, process, and memory configuration topics by
category:

Chapter 3. Autonomic computing overview 39

Table 5. Overview of agent, process, and memory configuration information

Category Related topics

General information,
restrictions, and
incompatibilities

v “Configuring memory and memory heaps” on page 37

v “Agent and process model configuration” on page 39

v “The DB2 Process Model” in Troubleshooting and Tuning Database
Performance

v “Configuring databases across multiple partitions” on page 42

Installation and
upgrade

v “Connection concentrator” in DB2 Connect User's Guide

v “DB2 Connect™ tuning” in DB2 Connect User's Guide

v “Considerations for OS/390® and zSeries® SYSPLEX exploitation”
in DB2 Connect User's Guide

v “Disk and memory requirements” in Installing DB2 Servers

v “Modifying kernel parameters (Linux)” in Installing DB2 Servers

v “DB2 server behavior changes” in Upgrading to DB2 Version 9.7

Performance v “Connection-concentrator improvements for client connections” in
Troubleshooting and Tuning Database Performance

v “Database agents” in Troubleshooting and Tuning Database
Performance

v “Database agent management” in Troubleshooting and Tuning
Database Performance

v “Database manager shared memory” in Troubleshooting and Tuning
Database Performance

v “Memory allocation in DB2” in Troubleshooting and Tuning
Database Performance

v “Tuning memory allocation parameters” in Troubleshooting and
Tuning Database Performance

40 Database Administration Concepts and Configuration Reference

Table 5. Overview of agent, process, and memory configuration information (continued)

Category Related topics

Commands, APIs,
registry variables,
functions, and
routines

v “db2pd - Monitor and troubleshoot DB2 database command” in
Command Reference

v “GET DATABASE MANAGER CONFIGURATION command” in
Command Reference

v “RESET DATABASE MANAGER CONFIGURATION command ”
in Command Reference

v “UPDATE DATABASE MANAGER CONFIGURATION
command” in Command Reference

v “db2mtrk - Memory tracker command” in Command Reference

v “sqlfupd data structure” in Administrative API Reference

v

v “Shared file handle table” on page 43

v “Running vendor library functions in fenced-mode processes” on
page 44

v “ADMIN_GET_DBP_MEM_USAGE - Get total memory
consumption table function” in Administrative Routines and Views

v “SQL and XML limits” in SQL Reference, Volume 1

v “SYSCAT.PACKAGES catalog view” in SQL Reference, Volume 1

v “DBMCFG administrative view - Retrieve database manager
configuration parameter information” in Administrative Routines
and Views

v “ADMIN_CMD procedure–Run administrative commands” in
Administrative Routines and Views

v “Memory Visualizer overview” in Database Monitoring Guide and
Reference

v “Working with the Memory Visualizer” in Database Monitoring
Guide and Reference

Configuration
parameters

v “Configuration parameters summary” on page 519

v “appl_memory - Application Memory configuration parameter”
on page 607

v “applheapsz - Application heap size” on page 608

v “database_memory - Database shared memory size” on page 621

v “dbheap - Database heap” on page 623

v “instance_memory - Instance memory” on page 568

v “locklist - Maximum storage for lock list” on page 644

v “max_connections - Maximum number of client connections” on
page 573

v “max_coordagents - Maximum number of coordinating agents”
on page 575

v “maxappls - Maximum number of active applications” on page
658

v “mon_heap_sz - Database system monitor heap size” on page 579

v “num_poolagents - Agent pool size” on page 582

v “stat_heap_sz - Statistics heap size” on page 694

v “stmtheap - Statement heap size” on page 695

Chapter 3. Autonomic computing overview 41

Table 5. Overview of agent, process, and memory configuration information (continued)

Category Related topics

Monitor elements v “Agents and connections” in Database Monitoring Guide and
Reference

v “agents_from_pool - Agents Assigned From Pool” in Database
Monitoring Guide and Reference

v “agents_registered - Agents Registered” in Database Monitoring
Guide and Reference

v “agents_registered_top - Maximum Number of Agents
Registered” in Database Monitoring Guide and Reference

v “agents_stolen - Stolen Agents” in Database Monitoring Guide and
Reference

v “appls_in_db2 - Applications Executing in the Database
Currently” in Database Monitoring Guide and Reference

v “associated_agents_top - Maximum Number of Associated
Agents” in Database Monitoring Guide and Reference

v “coord_agents_top - Maximum Number of Coordinating Agents”
in Database Monitoring Guide and Reference

v “local_cons - Local Connections” in Database Monitoring Guide and
Reference

v “local_cons_in_exec - Local Connections Executing in the
Database Manager” in Database Monitoring Guide and Reference

v “num_gw_conn_switches - Maximum Agent Overflows” in
Database Monitoring Guide and Reference

v “rem_cons_in - Remote Connections To Database Manager” in
Database Monitoring Guide and Reference

v “rem_cons_in_exec - Remote Connections Executing in the
Database Manager” in Database Monitoring Guide and Reference

Configuring databases across multiple partitions
The database manager provides a single view of all database configuration
elements across multiple partitions. This means that you can update or reset a
database configuration across all database partitions without invoking the db2_all
command against each database partition.

You can update a database configuration across partitions by issuing only one SQL
statement or only one administration command from any partition on which the
database resides. By default, the method of updating or resetting a database
configuration is on all database partitions.

For backward compatibility of command scripts and applications, you have three
options:
v Use the db2set command to set the DB2_UPDDBCFG_SINGLE_DBPARTITION registry

variable to TRUE, as follows:
DB2_UPDDBCFG_SINGLE_DBPARTITION=TRUE

Note: Setting the registry variable does not apply to UPDATE DATABASE
CONFIGURATION or RESET DATABASE CONFIGURATION requests that you make using
the ADMIN_CMD procedure.

v Use the DBPARTITIONNUM parameter with either the UPDATE DATABASE
CONFIGURATION or the RESET DATABASE CONFIGURATION command or with the
ADMIN_CMD procedure. For example, to update the database configurations on
all database partitions, call the ADMIN_CMD procedure as follows:

42 Database Administration Concepts and Configuration Reference

CALL SYSPROC.ADMIN_CMD
(’UPDATE DB CFG USING sortheap 1000’)

To update a single database partition, call the ADMIN_CMD procedure as
follows:

CALL SYSPROC.ADMIN_CMD
(’UPDATE DB CFG DBPARTITIONNUM 10 USING sortheap 1000’)

v Use the DBPARTITIONNUM parameter with the db2CfgSet API. The flags in the
db2Cfg structure indicate whether the value for the database configuration is to
be applied to a single database partition. If you set a flag, you must also provide
the DBPARTITIONNUM value, for example:

#define db2CfgSingleDbpartition 256

If you do not set the db2CfgSingleDbpartition value, the value for the database
configuration applies to all database partitions unless you set the
DB2_UPDDBCFG_SINGLE_DBPARTITION registry variable to TRUE or you set
versionNumber to anything that is less than the version number for Version 9.5,
for the db2CfgSet API that sets the database manager or database configuration
parameters.

When upgrading your databases to Version 9.7, existing database configuration
parameters, as a general rule, retain their values after database upgrade. However,
new parameters are added using their default values and some existing parameters
are set to their new Version 9.7 default values. Refer to the "DB2 server behavior
changes" topic in Upgrading to DB2 Version 9.7 for details about the changes to
existing database configuration parameters. Any subsequent update or reset
database configuration requests for the upgraded databases will apply to all
database partitions by default.

For existing update or reset command scripts, the same rules mentioned previously
apply to all database partitions. You can modify your scripts to include the
DBPARTITIONNUM option of the UPDATE DATABASE CONFIGURATION or RESET DATABASE
CONFIGURATION command, or you can set the DB2_UPDDBCFG_SINGLE_DBPARTITION
registry variable.

For existing applications that call the db2CfgSet API, you must use the instructions
for Version 9.5 or later. If you want the pre-Version 9.5 behavior, you can set the
DB2_UPDDBCFG_SINGLE_DBPARTITION registry variable or modify your applications to
call the API with the Version 9.5 or later version number, including the new
db2CfgSingleDbpartition flag and the new dbpartitionnum field to update or reset
database configurations for a specific database partition.

Note: If you find that database configuration values are inconsistent, you can
update or reset each database partition individually.

Shared file handle table
The threaded database manager maintains a single shared file handle table for each
database and all agents working on each database so that I/O requests made on
the same file do not require the file to be reopened and closed.

Prior to Version 9.5, the file handle table was maintained separately by each DB2
agent, and the size of the per-agent file handle table was controlled by the
maxfilop configuration parameter. Starting in Version 9.5, the database manager
maintains a single shared file handle table for the entire database, such that the
same file handle can be shared among all agents working on the same database
file. As a result, the maxfilop configuration parameter is used to control the size of
the shared file handle table.

Chapter 3. Autonomic computing overview 43

Because of this change, the maxfilop configuration parameter has a different
default value and new minimum and maximum values starting in Version 9.5.
During database upgrade, the maxfilop configuration parameter is automatically
set to this default value if you are upgrading from a release prior to Version 9.5.

Running vendor library functions in fenced-mode processes
The database manager supports vendor library functions in fenced-mode processes
that perform such tasks as data compression, TSM backups, and log data
archiving.

About this task

Prior to Version 9.5, vendor library functions, vendor utilities, or routines were run
inside agent processes. Since Version 9.5, because the DB2 database manager itself
is a multithreaded application, vendor library functions that are no longer
threadsafe and cause memory or stack corruption or, worse, data corruption in
DB2 databases. For these reasons, a new fenced-mode process is created for each
invocation of a vendor utility, and vendor library functions or routines run inside
this fenced-mode process. This does not result in significant performance
degradation.

Note: The fenced-mode feature is not available for Windows platforms.

Automatic storage
Automatic storage simplifies storage management for table spaces. When you
create an automatic storage database, you specify the storage paths where the
database manager will place your data. Then, the database manager will manage
the container and space allocation for the table spaces as you create and populate
them.

Data compression
You can reduce storage needed for your data by using the compression capabilities
built into DB2 for Linux, UNIX, and Windows to reduce the size of tables, indexes
and even your backup images.

Tables and indexes often contain repeated information. This repetition can range
from individual or combined column values, to common prefixes for column
values, or to repeating patterns in XML data. There are a number of compression
capabilities that you can use to reduce the amount of space required to store your
tables and indexes, along with features you can employ to determine the savings
compression can offer.

You can also use backup compression to reduce the size of your backups. 1

Compression capabilities included with most editions of DB2 V9.7 include:
v Value compression
v Backup compression.

The following additional compression capabilities are available with the a license
for the DB2 Storage Optimization Feature:
v Row compression, including compression for XML storage objects.

1. See “Backup compression” in Data Recovery and High Availability Guide and Reference for more information.

44 Database Administration Concepts and Configuration Reference

v Temporary table compression
v Index compression.

Automatic statistics collection
The DB2 optimizer uses catalog statistics to determine the most efficient access
plan for a query. Out-of-date or incomplete table or index statistics might lead the
optimizer to select a suboptimal plan, thereby slowing down query execution.
However, deciding which statistics to collect for a given workload is complex, and
keeping these statistics up-to-date is time-consuming.

With automatic statistics collection, part of the DB2 automated table maintenance
feature, you can let the database manager determine whether statistics need to be
updated. Automatic statistics collection can occur synchronously at statement
compilation time using the real-time statistics (RTS) feature, or the runstats utility
can be enabled to simply run in the background for asynchronous collection.
Although background statistics collection can be enabled while real-time statistics
collection is disabled, background statistics collection must be enabled for real-time
statistics collection to occur. Automatic background statistics collection
auto_runstats and automatic real-time statistics collection auto_stmt_stats are
enabled by default when you create a new database.

Understanding asynchronous and real-time statistics collection

When real-time statistics collection is enabled, statistics can be fabricated using
certain meta-data. Fabrication means deriving or creating statistics, rather than
collecting them as part of normal runstats activity. For example, the number of
rows in a table can be derived from knowing the number of pages in the table, the
page size, and the average row width. In some cases, statistics are not actually
derived, but are maintained by the index and data manager and can be stored
directly in the catalog. For example, the index manager maintains a count of the
number of leaf pages and levels in each index.

The query optimizer determines how statistics should be collected, based on the
needs of the query and the amount of table update activity (the number of update,
insert, or delete operations).

Real-time statistics collection provides more timely and more accurate statistics.
Accurate statistics can result in better query execution plans and improved
performance. When real-time statistics collection is not enabled, asynchronous
statistics collection occurs at two-hour intervals. This might not be frequent enough
to provide accurate statistics for some applications.

When real-time statistics collection is enabled, asynchronous statistics collection
checking still occurs at two-hour intervals. Real-time statistics collection also
initiates asynchronous collection requests when:
v Table activity is not high enough to require synchronous collection, but is high

enough to require asynchronous collection
v Synchronous statistics collection used sampling because the table was large
v Synchronous statistics were fabricated
v Synchronous statistics collection failed because the collection time was exceeded

Chapter 3. Autonomic computing overview 45

At most, two asynchronous requests can be processed at the same time, but only
for different tables. One request must have been initiated by real-time statistics
collection, and the other must have been initiated by asynchronous statistics
collection checking.

The performance impact of automatic statistics collection is minimized in several
ways:
v Asynchronous statistics collection is performed using a throttled runstats utility.

Throttling controls the amount of resource that is consumed by the runstats
utility, based on current database activity: as database activity increases, the
utility runs more slowly, reducing its resource demands.

v Synchronous statistics collection is limited to five seconds per query. This value
can be controlled by the RTS optimization guideline. If synchronous collection
exceeds the time limit, an asynchronous collection request is submitted.

v Synchronous statistics collection does not store the statistics in the system
catalog. Instead, the statistics are stored in a statistics cache and are later stored
in the system catalog by an asynchronous operation. This avoids the overhead
and possible lock contention involved when updating the system catalog.
Statistics in the statistics cache are available for subsequent SQL compilation
requests.

v Only one synchronous statistics collection operation will occur per table. Other
agents requiring synchronous statistics collection will fabricate statistics, if
possible, and continue with statement compilation. This behavior is also
enforced in a partitioned database environment, where agents on different
database partitions might require synchronous statistics.

v You can customize the type of statistics that are collected by enabling statistics
profiling, which uses information about previous database activity to determine
which statistics are required by the database workload, or by creating your own
statistics profile for a particular table.

v Only tables with missing statistics or high levels of activity (as measured by the
number of update, insert, or delete operations) are considered for statistics
collection. Even if a table meets the statistics collection criteria, synchronous
statistics are not collected unless query optimization requires them. In some
cases, the query optimizer can choose an access plan without statistics.

v For asynchronous statistics collection checking, large tables (those with more
than 4000 pages) are sampled to determine whether high table activity has
changed the statistics. Statistics for such large tables are collected only if
warranted.

v For asynchronous statistics collection, the runstats utility is automatically
scheduled to run during the online maintenance window that is specified in
your maintenance policy. This policy also specifies the set of tables that are
within the scope of automatic statistics collection, further minimizing
unnecessary resource consumption.

v Synchronous statistics collection and fabrication do not follow the online
maintenance window that is specified in your maintenance policy, because
synchronous requests must occur immediately and have limited collection time.
Synchronous statistics collection and fabrication follow the policy that specifies
the set of tables that are within the scope of automatic statistics collection.

v While automatic statistics collection is being performed, the affected tables are
still available for regular database activity (update, insert, or delete operations).

v Real-time statistics (synchronous or fabricated) are not collected for nicknames.
To refresh nickname statistics in the system catalog automatically (for
asynchronous statistics collection), call the SYSPROC.NNSTAT procedure.

46 Database Administration Concepts and Configuration Reference

Real-time synchronous statistics collection is performed for regular tables,
materialized query tables (MQTs), and global temporary tables. Asynchronous
statistics are not collected for global temporary tables.

Automatic statistics collection (synchronous or asynchronous) does not occur for:
v Statistical views
v Tables that are marked VOLATILE (tables that have the VOLATILE field set in

the SYSCAT.TABLES catalog view)
v Tables that have had their statistics manually updated, by issuing UPDATE

statements directly against SYSSTAT catalog views
When you modify table statistics manually, the database manager assumes that
you are now responsible for maintaining their statistics. To induce the database
manager to maintain statistics for a table that has had its statistics manually
updated, collect statistics using the RUNSTATS command or specify statistics
collection when using the LOAD command. Tables created prior to Version 9.5
that had their statistics updated manually prior to upgrading are not affected,
and their statistics are automatically maintained by the database manager until
they are manually updated.

Statistics fabrication does not occur for:
v Statistical views
v Tables that have had their statistics manually updated, by issuing UPDATE

statements directly against SYSSTAT catalog views. Note that if real-time
statistics collection is not enabled, some statistics fabrication will still occur for
tables that have had their statistics manually updated.

In a partitioned database environment, statistics are collected on a single database
partition and then extrapolated. The database manager always collects statistics
(both synchronous and asynchronous) on the first database partition of the
database partition group.

No real-time statistics collection activity will occur until at least five minutes after
database activation.

Real-time statistics processing occurs for both static and dynamic SQL.

A table that has been truncated using the IMPORT command is automatically
recognized as having stale statistics.

Automatic statistics collection, both synchronous and asynchronous, invalidates
cached dynamic statements that reference tables for which statistics have been
collected. This is done so that cached dynamic statements can be re-optimized with
the latest statistics.

Asynchronous automatic statistics collection operations might be interrupted when
the database is deactivated. If the database was not explicitly activated using the
ACTIVATE DATABASE command or API, then the database will be deactivated when
the last user disconnects from the database. If operations are interrupted, then
error messages might be recorded in the DB2 diagnostic log file. To avoid
interrupting asynchronous automatic statistics collection operations, explicitly
activate the database.

Chapter 3. Autonomic computing overview 47

Real-time statistics and explain processing

There is no real-time processing for a query that is only explained (not executed)
using the explain facility. The following table summarizes the behavior under
different values of the CURRENT EXPLAIN MODE special register.

Table 6. Real-time statistics collection as a function of the value of the CURRENT EXPLAIN
MODE special register

CURRENT EXPLAIN MODE value Real-time statistics collection considered

YES Yes

EXPLAIN No

NO Yes

REOPT Yes

RECOMMEND INDEXES No

EVALUATE INDEXES No

Automatic statistics collection and the statistics cache

A statistics cache was introduced in DB2 Version 9.5 to make synchronously-
collected statistics available to all queries. This cache is part of the catalog cache. In
a partitioned database environment, this cache resides only on the catalog database
partition. The catalog cache can store multiple entries for the same SYSTABLES
object, which increases the size of the catalog cache on all database partitions.
Consider increasing the value of the catalogcache_sz database configuration
parameter when real-time statistics collection is enabled.

Starting with DB2 Version 9, you can use the Configuration Advisor to determine
the initial configuration for new databases. The Configuration Advisor
recommends that the auto_stmt_stats database configuration parameter be set to
ON.

Automatic statistics collection and statistical profiles

Synchronous and asynchronous statistics are collected according to a statistical
profile that is in effect for a table, with the following exceptions:
v To minimize the overhead of synchronous statistics collection, the database

manager might collect statistics using sampling. In this case, the sampling rate
and method might be different than those that are specified in the statistical
profile.

v Synchronous statistics collection might choose to fabricate statistics, but it might
not be possible to fabricate all statistics that are specified in the statistical profile.
For example, column statistics such as COLCARD, HIGH2KEY, and LOW2KEY
cannot be fabricated unless the column is leading in some index.

If synchronous statistics collection cannot collect all statistics that are specified in
the statistical profile, an asynchronous collection request is submitted.

Although real-time statistics collection is designed to minimize statistics collection
overhead, try it in a test environment first to ensure that there is no negative
performance impact. This might be the case in some online transaction processing
(OLTP) scenarios, especially if there is an upper boundary for how long a query
can run.

48 Database Administration Concepts and Configuration Reference

Enabling automatic statistics collection
Having accurate and complete database statistics is critical to efficient data access
and optimal workload performance. Use the automatic statistics collection feature
of the automated table maintenance functionality to update and maintain relevant
database statistics.

About this task

You can enhance this functionality in environments where a single database
partition operates on a single processor by collecting query data and generating
statistics profiles that help the DB2 server to automatically collect the exact set of
statistics that is required by your workload. This option is not available in
partitioned database environments, certain federated database environments, or
environments in which intra-partition parallelism is enabled.

To enable automatic statistics collection, you must first configure your database by
setting the auto_maint and the auto_tbl_maint database configuration parameters
to ON. You then have the following options.

Procedure
1. To enable background statistics collection, set the auto_runstats database

configuration parameter to ON.
2. To enable real-time statistics collection, set both auto_stmt_stats and

auto_runstats database configuration parameters to ON.
3. To enable automatic statistics profile generation, set both auto_stats_prof and

auto_prof_upd database configuration parameters to ON. If the auto_runstats
database configuration parameter is also set to ON, statistics are collected
automatically using the generated profiles. Note that auto_stats_prof cannot
be enabled if the section_actuals database configuration parameter is enabled
(SQLCODE -5153).

Configuration Advisor
You can use the Configuration Advisor to obtain recommendations for the initial
values of the buffer pool size, database configuration parameters, and database
manager configuration parameters.

To use the Configuration Advisor, specify the AUTOCONFIGURE command for an
existing database, or specify AUTOCONFIGURE as an option of the CREATE DATABASE
command. To configure your database, you must have SYSADM, SYSCTRL, or
SYSMAINT authority.

You can display the recommended values or apply them by using the APPLY
option of the CREATE DATABASE command. The recommendations are based on input
that you provide and system information that the advisor gathers.

The values suggested by the Configuration Advisor are relevant for only one
database per instance. If you want to use this advisor on more than one database,
each database must belong to a separate instance.

Tuning configuration parameters using the Configuration
Advisor

The Configuration Advisor helps you to tune performance and to balance memory
requirements for a single database per instance by suggesting which configuration

Chapter 3. Autonomic computing overview 49

parameters to modify and suggesting values for them. The Configuration Advisor
is automatically run when you create a database.

About this task

To disable this feature or to explicitly enable it, use the db2set command before
creating a database, as follows:

db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO
db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=YES

To define values for several of the configuration parameters and to determine the
scope of the application of those parameters, use the AUTOCONFIGURE command,
specifying one of the following options:
v NONE, meaning that none of the values are applied
v DB ONLY, meaning that only database configuration and buffer pool values are

applied
v DB AND DBM, meaning that all parameters and their values are applied

Note: Even if you automatically enabled the Configuration Advisor when you ran
the CREATE DATABASE command, you can still specify AUTOCONFIGURE command
options. If you did not enable the Configuration Advisor when you ran the CREATE
DATABASE command, you can run the Configuration Advisor manually afterwards.

Generating database configuration recommendations
The Configuration Advisor is automatically run when you create a database. You
can also run the Configuration Advisor by specifying the AUTOCONFIGURE command
in the command line processor (CLP) or by calling the db2AutoConfig API.

Before you begin

About this task

To request configuration recommendations using the CLP, enter the following
command:

AUTOCONFIGURE
USING input_keyword param_value
APPLY value

Following is an example of an AUTOCONFIGURE command that requests configuration
recommendations based on input about how the database is used but specifies that
the recommendations not be applied:

DB2 AUTOCONFIGURE USING
MEM_PERCENT 60
WORKLOAD_TYPE MIXED
NUM_STMTS 500
ADMIN_PRIORITY BOTH
IS_POPULATED YES
NUM_LOCAL_APPS 0
NUM_REMOTE_APPS 20
ISOLATION RR
BP_RESIZEABLE YES

APPLY NONE

50 Database Administration Concepts and Configuration Reference

Example: Requesting configuration recommendations using
the Configuration Advisor

This scenario demonstrates to run the Configuration Advisor from the command
line to generate recommendations and shows the output that the Configuration
Advisor produces.

To run the Configuration Advisor:
1. Connect to the PERSONL database by specifying the following command from

the command line:
DB2 CONNECT TO PERSONL

2. Issue the AUTOCONFIGURE command from the CLP, specifying how the database
is used. As shown in the following example, set a value of NONE for the APPLY
option to indicate that you want to view the configuration recommendations
but not apply them:

DB2 AUTOCONFIGURE USING
MEM_PERCENT 60
WORKLOAD_TYPE MIXED
NUM_STMTS 500
ADMIN_PRIORITY BOTH
IS_POPULATED YES
NUM_LOCAL_APPS 0
NUM_REMOTE_APPS 20
ISOLATION RR
BP_RESIZEABLE YES

APPLY NONE

If you are unsure about the value of a parameter for the command, you can
omit it, and the default will be used. You can pass up to 10 parameters without
values: MEM_PERCENT, WORKLOAD_TYPE, and so on, as shown in the previous
example.

The recommendations generated by the AUTOCONFIGURE command are displayed on
the screen in table format, as shown in Figure 2 on page 52

Chapter 3. Autonomic computing overview 51

If you agree with all of the recommendations, either reissue the AUTOCONFIGURE
command but specify that you want the recommended values to be applied by
using the APPLY option, or update individual configuration parameters using the
UPDATE DATABASE MANAGER CONFIGURATION command and the UPDATE DATABASE
CONFIGURATION command.

Former and Applied Values for Database Manager Configuration
Description Parameter Current Value Recommended Value

Application support layer heap size (4KB) (ASLHEAPSZ) = 15 15
No. of int. communication buffers(4KB)(FCM_NUM_BUFFERS) = AUTOMATIC AUTOMATIC
Enable intra-partition parallelism (INTRA_PARALLEL) = NO NO
Maximum query degree of parallelism (MAX_QUERYDEGREE) = ANY 1
Agent pool size (NUM_POOLAGENTS) = 100(calculated) 200
Initial number of agents in pool (NUM_INITAGENTS) = 0 0
Max requester I/O block size (bytes) (RQRIOBLK) = 32767 32767
Sort heap threshold (4KB) (SHEAPTHRES) = 0 0

Former and Applied Values for Database Configuration
Description Parameter Current Value Recommended Value

Default application heap (4KB) (APPLHEAPSZ) = 256 256
Catalog cache size (4KB) (CATALOGCACHE_SZ) = (MAXAPPLS*4) 260
Changed pages threshold (CHNGPGS_THRESH) = 60 80
Database heap (4KB) (DBHEAP) = 1200 2791
Degree of parallelism (DFT_DEGREE) = 1 1
Default tablespace extentsize (pages) (DFT_EXTENT_SZ) = 32 32
Default prefetch size (pages) (DFT_PREFETCH_SZ) = AUTOMATIC AUTOMATIC
Default query optimization class (DFT_QUERYOPT) = 5 5
Max storage for lock list (4KB) (LOCKLIST) = 100 AUTOMATIC
Log buffer size (4KB) (LOGBUFSZ) = 8 99
Log file size (4KB) (LOGFILSIZ) = 1000 1024
Number of primary log files (LOGPRIMARY) = 3 8
Number of secondary log files (LOGSECOND) = 2 3
Max number of active applications (MAXAPPLS) = AUTOMATIC AUTOMATIC
Percent. of lock lists per application (MAXLOCKS) = 10 AUTOMATIC
Group commit count (MINCOMMIT) = 1 1
Number of asynchronous page cleaners (NUM_IOCLEANERS) = 1 1
Number of I/O servers (NUM_IOSERVERS) = 3 4
Package cache size (4KB) (PCKCACHESZ) = (MAXAPPLS*8) 1533
Percent log file reclaimed before soft chckpt (SOFTMAX) = 100 320
Sort list heap (4KB) (SORTHEAP) = 256 AUTOMATIC
statement heap (4KB) (STMTHEAP) = 4096 4096
Statistics heap size (4KB) (STAT_HEAP_SZ) = 4384 4384
Utilities heap size (4KB) (UTIL_HEAP_SZ) = 5000 113661
Self tuning memory (SELF_TUNING_MEM) = ON ON

Automatic runstats (AUTO_RUNSTATS) = ON ON
Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = 5000 AUTOMATIC

Former and Applied Values for Bufferpool(s)
Description Parameter Current Value Recommended Value

IBMDEFAULTBP Bufferpool size = -2 340985

DB210203I AUTOCONFIGURE completed successfully. Database manager or database
configuration values may have been changed. The instance must be restarted before
any changes come into effect. You may also want to rebind your packages after the
new configuration parameters take effect so that the new values will be used.

Figure 2. Configuration Advisor sample output

52 Database Administration Concepts and Configuration Reference

Utility throttling
Utility throttling regulates the performance impact of maintenance utilities so that
they can run concurrently during production periods. Although the impact policy,
a setting that allows utilities to run in throttled mode, is defined by default, you
must set the impact priority, a setting that each cleaner has indicating its throttling
priority, when you run a utility if you want to throttle it.

The throttling system ensures that the throttled utilities are run as frequently as
possible without violating the impact policy. You can throttle statistics collection,
backup operations, rebalancing operations, and asynchronous index cleanups.

You define the impact policy by setting the util_impact_lim configuration
parameter.

Cleaners are integrated with the utility throttling facility. By default, each (index)
cleaner has a utility impact priority of 50 (acceptable values are between 1 and 100,
with 0 indicating no throttling). You can change the priority by using the SET
UTIL_IMPACT_PRIORITY command or the db2UtilityControl API.

Asynchronous index cleanup
Asynchronous index cleanup (AIC) is the deferred cleanup of indexes following
operations that invalidate index entries. Depending on the type of index, the
entries can be record identifiers (RIDs) or block identifiers (BIDs). Invalid index
entries are removed by index cleaners, which operate asynchronously in the
background.

AIC accelerates the process of detaching a data partition from a partitioned table,
and is initiated if the partitioned table contains one or more nonpartitioned
indexes. In this case, AIC removes all nonpartitioned index entries that refer to the
detached data partition, and any pseudo-deleted entries. After all of the indexes
have been cleaned, the identifier that is associated with the detached data partition
is removed from the system catalog. In DB2 Version 9.7 Fix Pack 1 and later
releases, AIC is initiated by an asynchronous partition detach task.

Prior to DB2 Version 9.7 Fix Pack 1, if the partitioned table has dependent
materialized query tables (MQTs), AIC is not initiated until after a SET INTEGRITY
statement is executed.

Normal table access is maintained while AIC is in progress. Queries accessing the
indexes ignore any invalid entries that have not yet been cleaned.

In most cases, one cleaner is started for each nonpartitioned index that is
associated with the partitioned table. An internal task distribution daemon is
responsible for distributing the AIC tasks to the appropriate table partitions and
assigning database agents. The distribution daemon and cleaner agents are internal
system applications that appear in LIST APPLICATIONS command output with the
application names db2taskd and db2aic, respectively. To prevent accidental
disruption, system applications cannot be forced. The distribution daemon remains
online as long as the database is active. The cleaners remain active until cleaning
has been completed. If the database is deactivated while cleaning is in progress,
AIC resumes when you reactivate the database.

Chapter 3. Autonomic computing overview 53

AIC impact on performance

AIC incurs minimal performance impact.

An instantaneous row lock test is required to determine whether a pseudo-deleted
entry has been committed. However, because the lock is never acquired,
concurrency is unaffected.

Each cleaner acquires a minimal table space lock (IX) and a table lock (IS). These
locks are released if a cleaner determines that other applications are waiting for
locks. If this occurs, the cleaner suspends processing for 5 minutes.

Cleaners are integrated with the utility throttling facility. By default, each cleaner
has a utility impact priority of 50. You can change the priority by using the SET
UTIL_IMPACT_PRIORITY command or the db2UtilityControl API.

Monitoring AIC

You can monitor AIC with the LIST UTILITIES command. Each index cleaner
appears as a separate utility in the output. The following is an example of output
from the LIST UTILITIES SHOW DETAIL command:
ID = 2
Type = ASYNCHRONOUS INDEX CLEANUP
Database Name = WSDB
Partition Number = 0
Description = Table: USER1.SALES, Index: USER1.I2
Start Time = 12/15/2005 11:15:01.967939
State = Executing
Invocation Type = Automatic
Throttling:

Priority = 50
Progress Monitoring:

Total Work = 5 pages
Completed Work = 0 pages
Start Time = 12/15/2005 11:15:01.979033

ID = 1
Type = ASYNCHRONOUS INDEX CLEANUP
Database Name = WSDB
Partition Number = 0
Description = Table: USER1.SALES, Index: USER1.I1
Start Time = 12/15/2005 11:15:01.978554
State = Executing
Invocation Type = Automatic
Throttling:

Priority = 50
Progress Monitoring:

Total Work = 5 pages
Completed Work = 0 pages
Start Time = 12/15/2005 11:15:01.980524

In this case, there are two cleaners operating on the USERS1.SALES table. One
cleaner is processing index I1, and the other is processing index I2. The progress
monitoring section shows the estimated total number of index pages that need
cleaning and the current number of clean index pages.

The State field indicates the current state of a cleaner. The normal state is
Executing, but the cleaner might be in Waiting state if it is waiting to be assigned
to an available database agent or if the cleaner is temporarily suspended because
of lock contention.

54 Database Administration Concepts and Configuration Reference

Note that different tasks on different database partitions can have the same utility
ID, because each database partition assigns IDs to tasks that are running on that
database partition only.

Asynchronous index cleanup for MDC tables
You can enhance the performance of a rollout deletion—an efficient method for
deleting qualifying blocks of data from multidimensional clustering (MDC)
tables—by using asynchronous index cleanup (AIC). AIC is the deferred cleanup of
indexes following operations that invalidate index entries.

Indexes are cleaned up synchronously during a standard rollout deletion. When a
table contains many record ID (RID) indexes, a significant amount of time is spent
removing the index keys that reference the table rows that are being deleted. You
can speed up the rollout by specifying that these indexes are to be cleaned up after
the deletion operation commits.

To take advantage of AIC for MDC tables, you must explicitly enable the deferred
index cleanup rollout mechanism. There are two methods of specifying a deferred
rollout: setting the DB2_MDC_ROLLOUT registry variable to DEFER or issuing the SET
CURRENT MDC ROLLOUT MODE statement. During a deferred index cleanup
rollout operation, blocks are marked as rolled out without an update to the RID
indexes until after the transaction commits. Block identifier (BID) indexes are
cleaned up during the delete operation because they do not require row-level
processing.

AIC rollout is invoked when a rollout deletion commits or, if the database was
shut down, when the table is first accessed following database restart. While AIC is
in progress, queries against the indexes are successful, including those that access
the index that is being cleaned up.

There is one coordinating cleaner per MDC table. Index cleanup for multiple
rollouts is consolidated within the cleaner, which spawns a cleanup agent for each
RID index. Cleanup agents update the RID indexes in parallel. Cleaners are also
integrated with the utility throttling facility. By default, each cleaner has a utility
impact priority of 50 (acceptable values are between 1 and 100, with 0 indicating
no throttling). You can change this priority by using the SET UTIL_IMPACT_PRIORITY
command or the db2UtilityControl API.

Note: In DB2 Version 9.7 and later releases, deferred cleanup rollout is not
supported on a data partitioned MDC table with partitioned RID indexes. Only the
NONE and IMMEDIATE modes are supported. The cleanup rollout type will be
IMMEDIATE if the DB2_MDC_ROLLOUT registry variable is set to DEFER, or if the
CURRENT MDC ROLLOUT MODE special register is set to DEFERRED to
override the DB2_MDC_ROLLOUT setting.

If only nonpartitioned RID indexes exist on the MDC table, deferred index cleanup
rollout is supported. The MDC block indexes can be partitioned or nonpartitioned.

Monitoring the progress of deferred index cleanup rollout
operation

Because the rolled-out blocks on an MDC table are not reusable until after the
cleanup is complete, it is useful to monitor the progress of a deferred index
cleanup rollout operation. Use the LIST UTILITIES command to display a utility
monitor entry for each index being cleaned up. You can also retrieve the total

Chapter 3. Autonomic computing overview 55

number of MDC table blocks in the database that are pending asynchronous
cleanup following a rollout deletion (BLOCKS_PENDING_CLEANUP) by using the
SYSPROC.ADMIN_GET_TAB_INFO_V95 table function or the GET SNAPSHOT
command.

In the following sample output for the LIST UTILITIES SHOW DETAIL command,
progress is indicated by the number of pages in each index that have been cleaned
up. Each phase represents one RID index.
ID = 2
Type = MDC ROLLOUT INDEX CLEANUP
Database Name = WSDB
Partition Number = 0
Description = TABLE.<schema_name>.<table_name>
Start Time = 06/12/2006 08:56:33.390158
State = Executing
Invocation Type = Automatic
Throttling:

Priority = 50
Progress Monitoring:

Estimated Percentage Complete = 83
Phase Number = 1

Description = <schema_name>.<index_name>
Total Work = 13 pages
Completed Work = 13 pages
Start Time = 06/12/2006 08:56:33.391566

Phase Number = 2
Description = <schema_name>.<index_name>
Total Work = 13 pages
Completed Work = 13 pages
Start Time = 06/12/2006 08:56:33.391577

Phase Number = 3
Description = <schema_name>.<index_name>
Total Work = 9 pages
Completed Work = 3 pages
Start Time = 06/12/2006 08:56:33.391587

56 Database Administration Concepts and Configuration Reference

Chapter 4. Instances

An instance is a logical database manager environment where you catalog
databases and set configuration parameters. Depending on your needs, you can
create more than one instance on the same physical server providing a unique
database server environment for each instance.

Note: For non-root installations on Linux and UNIX operating systems, a single
instance is created during the installation of your DB2 product. Additional
instances cannot be created.

You can use multiple instances to do the following:
v Use one instance for a development environment and another instance for a

production environment.
v Tune an instance for a particular environment.
v Restrict access to sensitive information.
v Control the assignment of SYSADM, SYSCTRL, and SYSMAINT authority for

each instance.
v Optimize the database manager configuration for each instance.
v Limit the impact of an instance failure. In the event of an instance failure, only

one instance is affected. Other instances can continue to function normally.

Multiple instances will require:
v Additional system resources (virtual memory and disk space) for each instance.
v More administration because of the additional instances to manage.

The instance directory stores all information that pertains to a database instance.
You cannot change the location of the instance directory once it is created. The
directory contains:
v The database manager configuration file
v The system database directory
v The node directory
v The node configuration file (db2nodes.cfg)
v Any other files that contain debugging information, such as the exception or

register dump or the call stack for the DB2 database processes.

Terminology:

Bit-width
The number of bits used to address virtual memory: 32-bit and 64-bit are
the most common. This term might be used to refer to the bit-width of an
instance, application code, external routine code. 32-bit application means
the same things as 32-bit width application.

32-bit DB2 instance
A DB2 instance that contains all 32-bit binaries including 32-bit shared
libraries and executables.

64-bit DB2 instance
A DB2 instance that contains 64-bit shared libraries and executables, and

© Copyright IBM Corp. 1993, 2012 57

also all 32-bit client application libraries (included for both client and
server), and 32-bit external routine support (included only on a server
instance).

Designing instances
DB2 databases are created within DB2 instances on the database server. The
creation of multiple instances on the same physical server provides a unique
database server environment for each instance.

For example, you can maintain a test environment and a production environment
on the same computer, or you can create an instance for each application and then
fine-tune each instance specifically for the application it will service, or, to protect
sensitive data, you can have your payroll database stored in its own instance so
that owners of other instances (on the same server) cannot see payroll data.

The installation process creates a default DB2 instance, which is defined by the
DB2INSTANCE environment variable. This is the instance that is used for most
operations. However, instances can be created (or dropped) after installation.

When determining and designing the instances for your environment, note that
each instance controls access to one or more databases. Every database within an
instance is assigned a unique name, has its own set of system catalog tables (which
are used to keep track of objects that are created within the database), and has its
own configuration file. Each database also has its own set of grantable authorities
and privileges that govern how users interact with the data and database objects
stored in it. Figure 3 shows the hierarchical relationship among systems, instances,
and databases.

Data server (DB_SERVER)

Database 2
(RECEIVABLE)

Instance 1 (DB2_DEV)

Database manager
Configuration file 1

Database 1
(PAYABLE)

Database 2
(RECEIVABLE)

Instance 2 (DB2_PROD)

Database manager
Configuration file 2

Database 1
(PAYABLE)

Database manager
program files

Figure 3. Hierarchical relationship among DB2 systems, instances, and databases

58 Database Administration Concepts and Configuration Reference

You also must be aware of another particular type of instance called the DB2
administration server (DAS). The DAS is a special DB2 administration control point
used to assist with the administration tasks only on other DB2 servers. A DAS
must be running if you want to use the Client Configuration Assistant to discover
the remote databases or the graphical tools that come with the DB2 product, for
example, the Control Center or the Task Center. There is only one DAS in a DB2
database server, even when there are multiple instances.

Once your instances are created, you can attach to any other instance available
(including instances on other systems). Once attached, you can perform
maintenance and utility tasks that can only be done at the instance level, for
example, create a database, force applications off a database, monitor database
activity, or change the contents of the database manager configuration file that is
associated with that particular instance.

Default instance
As part of your DB2 installation procedure, you create an initial instance of the
database manager called “DB2”, if there is no other instance called “DB2”. If you
have DB2 Version 8 installed, and you upgrade to Version 9.1 or Version 9.5, the
default instance is “DB2_01”.

On Linux and UNIX, the initial instance can be called anything you want within
the naming rules guidelines. The instance name is used to set up the directory
structure.

To support the immediate use of this instance, the following are set during
installation:
v The environment variable DB2INSTANCE is set to DB2.
v The registry variable DB2INSTDEF is set to DB2.

These settings establish “DB2” as the default instance. You can change the instance
that is used by default, but first you have to create an additional instance.

Before using the database manager, the database environment for each user must
be updated so that it can access an instance and run the DB2 database programs.
This applies to all users (including administrative users).

On Linux and UNIX operating systems, sample script files are provided to help
you set the database environment. The files are: db2profile for Bourne or Korn
shell, and db2cshrc for C shell. These scripts are located in the sqllib subdirectory
under the home directory of the instance owner. The instance owner or any user
belonging to the instance's SYSADM group can customize the script for all users of
an instance. Use sqllib/userprofile and sqllib/usercshrc to customize a script
for each user.

The blank files sqllib/userprofile and sqllib/usercshrc are created during
instance creation to allow you to add your own instance environment settings. The
db2profile and db2cshrc files are overwritten during an instance update in a DB2
fix pack installation. If you do not want the new environment settings in the
db2profile or db2cshrc scripts, you can override them using the corresponding
user script, which is called at the end of the db2profile or db2cshrc script. During
an instance upgrade (using the db2iupgrade command), the user scripts are copied
over so that your environment modifications will still be in use.

The sample script contains statements to:

Chapter 4. Instances 59

v Update a user's PATH by adding the following directories to the existing search
path: the bin, adm, and misc subdirectories under the sqllib subdirectory of the
instance owner's home directory.

v Set the DB2INSTANCE environment variable to the instance name.

Instance directory
The instance directory stores all information that pertains to a database instance.
The location of the instance directory cannot be changed once it is created.

The instance directory contains:
v The database manager configuration file
v The system database directory
v The node directory
v The node configuration file (db2nodes.cfg)
v Other files that contain debugging information, such as the exception or register

dump or the call stack for the DB2 processes.

On Linux and UNIX operating systems, the instance directory is located in the
INSTHOME/sqllib directory, where INSTHOME is the home directory of the instance
owner. The default instance can be called anything you want within the naming
rules guidelines.

On Windows operating systems, the instance directory is located under the
/sqllib directory where the DB2 database product was installed. The instance
name is the same as the name of the service, so it should not conflict. No instance
name should be the same as another service name. You must have the correct
authorization to create a service.

In a partitioned database environment, the instance directory is shared between all
database partition servers belonging to the instance. Therefore, the instance
directory must be created on a network share drive that all computers in the
instance can access.

db2nodes.cfg

The db2nodes.cfg file is used to define the database partition servers that
participate in a DB2 instance. The db2nodes.cfg file is also used to specify the IP
address or host name of a high-speed interconnect, if you want to use a high-speed
interconnect for database partition server communication.

Multiple instances (Linux, UNIX)
It is possible to have more than one instance on a Linux or UNIX operating system
if the DB2 product was installed with root privileges. Although each instance runs
simultaneously, each is independent. Therefore, you can only work within one
instance of the database manager at a time.

Note: To prevent environmental conflicts between two or more instances, you
should ensure that each instance has its own home directory. Errors will be
returned when the home directory is shared. Each home directory can be in the
same or a different file system.

The instance owner and the group that is the System Administration (SYSADM)
group are associated with every instance. The instance owner and the SYSADM

60 Database Administration Concepts and Configuration Reference

group are assigned during the process of creating the instance. One user ID or
username can be used for only one instance, and that user ID or username is also
referred to as the instance owner.

Each instance owner must have a unique home directory. All of the configuration
files necessary to run the instance are created in the home directory of the instance
owner's user ID or username. If it becomes necessary to remove the instance
owner's user ID or username from the system, you could potentially lose files
associated with the instance and lose access to data stored in this instance. For this
reason, you should dedicate an instance owner user ID or username to be used
exclusively to run the database manager.

The primary group of the instance owner is also important. This primary group
automatically becomes the system administration group for the instance and gains
SYSADM authority over the instance. Other user IDs or usernames that are
members of the primary group of the instance owner also gain this level of
authority. For this reason, you might want to assign the instance owner's user ID
or username to a primary group that is reserved for the administration of
instances. (Also, ensure that you assign a primary group to the instance owner
user ID or username; otherwise, the system-default primary group is used.)

If you already have a group that you want to make the system administration
group for the instance, you can assign this group as the primary group when you
create the instance owner user ID or username. To give other users administration
authority on the instance, add them to the group that is assigned as the system
administration group.

To separate SYSADM authority between instances, ensure that each instance owner
user ID or username uses a different primary group. However, if you choose to
have a common SYSADM authority over multiple instances, you can use the same
primary group for multiple instances.

Multiple instances (Windows)
It is possible to run multiple instances of the DB2 database manager on the same
computer. Each instance of the database manager maintains its own databases and
has its own database manager configuration parameters.

Note: The instances can also belong to different DB2 copies on a computer that
can be at different levels of the database manager. If you are running a 64-bit
Windows system, you can install 32-bit DB2, or 64-bit DB2 but they cannot co-exist
on the same machine.

An instance of the database manager consists of the following:
v A Windows service that represents the instance. The name of the service is same

as the instance name. The display name of the service (from the Services panel)
is the instance name, prefixed with the “DB2 - ” string. For example, for an
instance named “DB2”, there exists a Windows service called “DB2” with a
display name of “DB2 - DB2 Copy Name - DB2”.

Note: A Windows service is not created for client instances.
v An instance directory. This directory contains the database manager

configuration files, the system database directory, the node directory, the
Database Connection Services (DCS) directory, all the diagnostic log and dump
files that are associated with the instance. The instance directory varies from
edition to edition of the Windows family of operating systems; to verify the

Chapter 4. Instances 61

default directory on Windows, check the setting of the DB2INSTPROF environment
variable using the command db2set DB2INSTPROF. You can also change the
default instance directory by changing the DB2INSTPROF environment
variable. For example, to set it to c:\DB2PROFS:
– Set DB2INSTPROF to c:\DB2PROFS using the db2set.exe -g command
– Run DB2ICRT.exe command to create the instance.

v When you create an instance on Windows operating systems, the default
locations for user data files, such as instance directories, are the following
directories:
– On the Windows XP and Windows 2003 operating systems: Documents and

Settings\All Users\Application Data\IBM\DB2\Copy Name

– On the Windows 2008 and Windows Vista (and later) operating system:
Program Data\IBM\DB2\Copy Name

where Copy Name represents the DB2 copy name.

Note: The location of the db2cli.ini file might change based on the platform,
type of client or driver being installed, and whether the registry variable
DB2CLIINIPATH is set. For more information, see the “db2cli.ini initialization file”
in the Call Level Interface Guide and Reference, Volume 1.

Creating instances
Although an instance is created as part of the installation of the database manager,
your business needs might require you to create additional instances.

Before you begin

If you belong to the Administrative group on Windows, or you have root user
authority on Linux or UNIX operating systems, you can add additional instances.
The computer where you add the instance becomes the instance-owning computer
(node zero). Ensure that you add instances on a computer where a DB2
administration server resides. Instance IDs should not be root or have password
expired.

About this task

Restrictions

v On Linux and UNIX operating systems, additional instances cannot be created
for non-root installations.

v If existing user IDs are used to create DB2 instances, make sure that the user
IDs:
– Are not locked
– Do not have expired passwords

Procedure

To add an instance using the command line:

Enter the command: db2icrt instance_name.
When creating instance on an AIX server, you must provide the fenced user id, for
example:

DB2DIR/instance/db2icrt -u db2fenc1 db2inst1

62 Database Administration Concepts and Configuration Reference

When using the db2icrt command to add another DB2 instance, you should
provide the login name of the instance owner and optionally specify the
authentication type of the instance. The authentication type applies to all databases
created under that instance. The authentication type is a statement of where the
authenticating of users will take place.
You can change the location of the instance directory from DB2PATH using the
DB2INSTPROF environment variable. You require write-access for the instance
directory. If you want the directories created in a path other than DB2PATH, you
have to set DB2INSTPROF before entering the db2icrt command.
For DB2 Enterprise Server Edition (ESE), you also must declare that you are
adding a new instance that is a partitioned database system. In addition, when
working with a ESE instance having more than one database partition, and
working with Fast Communication Manager (FCM), you can have multiple
connections between database partitions by defining more TCP/IP ports when
creating the instance.
For example, for Windows operating systems, use the db2icrt command with the
-r port_range parameter. The port range is shown as follows, where the base_port is
the first port that can be used by FCM, and the end_port is the last port in a range
of port numbers that can be used by FCM:
-r:base_port,end_port

Modifying instances
Instances are designed to be as independent as possible from the effects of
subsequent installation and removal of products. On Linux and UNIX, you can
update instances after the installation or removal of executables or components. On
Windows, you run the db2iupdt command.

In most cases, existing instances automatically inherit or lose access to the function
of the product being installed or removed. However, if certain executables or
components are installed or removed, existing instances do not automatically
inherit the new system configuration parameters or gain access to all the additional
function. The instance must be updated.

If the database manager is updated by installing a Program Temporary Fix (PTF)
or a patch, all the existing database instances should be updated using the
db2iupdt command (root installations) or the db2nrupdt command (non-root
installations).

You should ensure you understand the instances and database partition servers
you have in an instance before attempting to change or delete an instance.

Updating the instance configuration (Linux, UNIX)
To update the configuration for root instances on Linux or UNIX operating
systems, use the db2iupdt command. To update non-root instances, run the
db2nrupdt command.

About this task

This topic applies to root instances only.

Running the db2iupdt command updates the specified instance by performing the
following:
v Replaces the files in the sqllib subdirectory under the instance owner's home

directory.

Chapter 4. Instances 63

v If the node type has changed, then a new database manager configuration file is
created. This is done by merging relevant values from the existing database
manager configuration file with the default database manager configuration file
for the new node type. If a new database manager configuration file is created,
the old file is backed up to the backup subdirectory of the sqllib subdirectory
under the instance owner's home directory.

The db2iupdt command is located in the DB2DIR/instance directory, where DB2DIR
is the location where the current version of the DB2 database product is installed.

To update an instance using the command line, enter:
db2iupdt InstName

The InstName is the login name of the instance owner.

There are other optional parameters associated with this command:

-h or -?
Displays a help menu for this command.

-d Sets the debug mode for use during problem determination.

-a AuthType
Specifies the authentication type for the instance. Valid authentication
types are SERVER, SERVER_ENCRYPT, or CLIENT. If not specified, the default is
SERVER, if a DB2 server is installed. Otherwise, it is set to CLIENT. The
authentication type of the instance applies to all databases owned by the
instance.

-e Allows you to update each instance that exists. Use db2ilist to list the
existing instances.

-u Fenced ID
Names the user under which the fenced user-defined functions (UDFs) and
stored procedures will execute. This is not required if you install the Data
Server Client or the DB2 Software Developer's Kit. For other DB2 products,
this is a required parameter. Note: Fenced ID might not be "root" or "bin".

-k This parameter preserves the current instance type. If you do not specify
this parameter, the current instance is upgraded to the highest instance
type available in the following order:
v Partitioned database server with local and remote clients
v Database Server with local and remote clients
v Client

Examples:
v If you installed DB2 Workgroup Server Edition or DB2 Enterprise Server

Edition after the instance was created, enter the following command to update
that instance:

db2iupdt -u db2fenc1 db2inst1

v If you installed the DB2 Connect Enterprise Edition after creating the instance,
you can use the instance name as the Fenced ID also:

db2iupdt -u db2inst1 db2inst1

v To update client instances, invoke the following command:
db2iupdt db2inst1

64 Database Administration Concepts and Configuration Reference

Updating the instance configuration (Windows)
To update the instance configuration on Windows, use the db2iupdt command.

About this task

Running the db2iupdt command updates the specified instance by performing the
following:
v Replaces the files in the sqllib subdirectory under the instance owner's home

directory.
v If the node type is changed, then a new database manager configuration file is

created. This is done by merging relevant values from the existing database
manager configuration file with the default database manager configuration file
for the new node type. If a new database manager configuration file is created,
the old file is backed up to the backup subdirectory of the sqllib subdirectory
under the instance owner's home directory.

The db2iupdt command is found in \sqllib\bin directory.

The command is used as shown:
db2iupdt InstName

The InstName is the login name of the instance owner.

There are other optional parameters associated with this command:

/h: hostname
Overrides the default TCP/IP host name if there are one or more TCP/IP
host names for the current computer.

/p: instance profile path
Specifies the new instance profile path for the updated instance.

/r: baseport,endport
Specifies the range of TCP/IP ports used by the partitioned database
instance when running with multiple database partitions.

/u: username,password
Specifies the account name and password for the DB2 service.

Working with instances
When working with instances, you can start or stop instances, and attach to or
detach from instances.

About this task

Each instance is managed by users who belong to the SYSADM_GROUP defined in
the instance configuration file, also known as the database manager configuration file.
Creating user IDs and user groups is different for each operating environment.

Auto-starting instances
On Windows operating systems, the database instance that is created during install
is set as auto-started by default. An instance created using db2icrt is set as a
manual start. To change the start type, you must go to the Services panel and
change the property of the DB2 service there.

Chapter 4. Instances 65

About this task

On UNIX operating systems, to enable an instance to auto-start after each system
restart, enter the following command:
db2iauto -on <instance name>

where <instance name> is the login name of the instance.On UNIX operating
systems, to prevent an instance from auto-starting after each system restart, enter
the following command:
db2iauto -off <instance name>

where <instance name> is the login name of the instance.

Starting instances (Linux, UNIX)
You might need to start or stop a DB2 database during normal business operations,
for example, you must start an instance before you can perform some of the
following tasks: connect to a database on the instance, precompile an application,
bind a package to a database, or access host databases.

Before you begin

Before you start an instance on your Linux or UNIX system:
1. Log in with a user ID or name that has SYSADM, SYSCTRL, or SYSMAINT

authority on the instance; or log in as the instance owner.
2. Run the startup script as follows, where INSTHOME is the home directory of the

instance you want to use:
. INSTHOME/sqllib/db2profile (for Bourne or Korn shell)
source INSTHOME/sqllib/db2cshrc (for C shell)

About this task

To start the instance using the command line, enter:
db2start

Note: When you run commands to start or stop an instance's database manager,
the DB2 database manager applies the command to the current instance.

Starting instances (Windows)
You might need to start or stop a DB2 instance during normal business operations,
for example, you must start an instance before you can perform some of the
following tasks: connect to a database on the instance, precompile an application,
bind a package to a database, or access a host database.

Before you begin

In order to successfully launch the DB2 database instance as a service from
db2start, the user account must have the correct privilege as defined by the
Windows operating system to start a Windows service. The user account can be a
member of the Administrators, Server Operators, or Power Users group. When
extended security is enabled, only members of the DB2ADMNS and
Administrators groups can start the database by default.

66 Database Administration Concepts and Configuration Reference

About this task

To start an instance using the command line, enter:
db2start

Note: When you run commands to start or stop an instance's database manager,
the DB2 database manager applies the command to the current instance.

The db2start command will launch the DB2 database instance as a Windows
service. The DB2 database instance on Windows can still be run as a process by
specifying the "/D" switch when invoking db2start. The DB2 database instance can
also be started as a service using the Control Panel or the NET START command.

When running in a partitioned database environment, each database partition
server is started as a Windows service. You can not use the "/D" switch to start a
DB2 instance as a process in a partitioned database environment.

Attaching to and detaching from instances
On all platforms, to attach to another instance of the database manager, which
might be remote, use the ATTACH command. To detach from an instance, use the
DETACH command.

Before you begin

More than one instance must already exist.

About this task

To attach to an instance using the command line, enter:
db2 attach to <instance name>

For example, to attach to an instance called testdb2 that was previously cataloged
in the node directory:

db2 attach to testdb2

After performing maintenance activities for the testdb2 instance, for example, to
detach from an instance using the command line, enter:

db2 detach

Attaching to and detaching from client applications:

v To attach to an instance from a client application, call the sqleatin API,
v To detach from an instance from a client application, call the sqledtin

API.

Working with instances on the same or different DB2 copies
You can run multiple instances concurrently, in the same DB2 copy or in different
DB2 copies.

About this task

To work with instances in the same DB2 copy, you must:
1. Create or upgrade all instances to the same DB2 copy.
2. Set the DB2INSTANCE environment variable to the name of the instance you

are working with before issuing commands against that instance.

Chapter 4. Instances 67

To prevent one instance from accessing the database of another instance, the
database files for an instance are created under a directory that has the same name
as the instance name. For example, when creating a database on drive C: for
instance “DB2”, the database files are created inside a directory called C:\DB2.
Similarly, when creating a database on drive C: for instance TEST, the database
files are created inside a directory called C:\TEST. By default, its value is the drive
letter where DB2 product is installed. For more information, see the dftdbpath
database manager configuration parameter.

To work with an instance in a system with multiple DB2 copies, use either of the
following methods:

Procedure
v Using the Command window from the Start → Programs → IBM DB2 → <DB2

Copy Name> → Command Line Tools → Command Window: the Command
window is already set up with the correct environment variables for the
particular DB2 copy chosen.

v Using db2envar.bat from a Command window:
1. Open a Command window.
2. Run the db2envar.bat file using the fully qualified path for the DB2 copy

that you want the application to use:
<DB2 Copy install dir>\bin\db2envar.bat

Stopping instances (Linux, UNIX)
You might need to stop the current instance of the database manager.

Before you begin

To stop an instance on your Linux or UNIX system, you must do the following:
1. Log in or attach to an instance with a user ID or name that has SYSADM,

SYSCTRL, or SYSMAINT authority on the instance; or, log in as the instance
owner.

2. Display all applications and users that are connected to the specific database
that you want to stop. To ensure that no vital or critical applications are
running, list applications. You need SYSADM, SYSCTRL, or SYSMAINT
authority for this.

3. Force all applications and users off the database. You require SYSADM or
SYSCTRL authority to force users.

About this task

The db2stop command can only be run at the server. No database connections are
allowed when running this command; however, if there are any instance
attachments, they are forced off before the instance is stopped.

Note: If command line processor sessions are attached to an instance, you must
run the terminate command to end each session before running the db2stop
command. The db2stop command stops the instance defined by the
DB2INSTANCE environment variable.

To stop the instance using the command line, enter:
db2stop

68 Database Administration Concepts and Configuration Reference

You can use the db2stop command to stop, or drop, individual database partitions
within a partitioned database environment. When working in a partitioned
database environment and you are attempting to drop a logical partition using

db2stop drop nodenum <0>

You must ensure that no users are attempting to access the database. If they are,
you will receive an error message SQL6030N.

Note: When you run commands to start or stop an instance's database manager,
the DB2 database manager applies the command to the current instance. For more
information, see “Identifying the current instance” on page 438.

Stopping instances (Windows)
You might need to stop the current instance of the database manager.

Before you begin

To stop an instance on your system, you must do the following:
1. The user account stopping the DB2 database service must have the correct

privilege as defined by the Windows operating system. The user account can be
a member of the Administrators, Server Operators, or Power Users group.

2. Display all applications and users that are connected to the specific database
that you want to stop. To ensure that no vital or critical applications are
running, list applications. You need SYSADM, SYSCTRL, or SYSMAINT
authority for this.

3. Force all applications and users off the database. You require SYSADM or
SYSCTRL authority to force users.

About this task

The db2stop command can only be run at the server. No database connections are
allowed when running this command; however, if there are any instance
attachments, they are forced off before the DB2 database service is stopped.

Note: If command line processor sessions are attached to an instance, you must
run the terminate command to end each session before running the db2stop
command. The db2stop command stops the instance defined by the
DB2INSTANCE environment variable.

To stop an instance on your system, use one of the following methods:
v Stop using the db2stop command.
v Stop using the NET STOP command.
v Stop the instance from within an application.

Recall that when you are using the database manager in a partitioned database
environment, each database partition server is started as a service. Each service
must be stopped.

Note: When you run commands to start or stop an instance's database manager,
the database manager applies the command to the current instance. For more
information, see “Identifying the current instance” on page 438.

Chapter 4. Instances 69

Dropping instances
To drop a root instance, issue the db2idrop command. To drop non-root instances,
you must uninstall your DB2 database product.

Procedure

To remove a root instance using the command line:
1. Stop all applications that are currently using the instance.
2. Stop the Command Line Processor by running terminate commands in each

Command window.
3. Stop the instance by running the db2stop command.
4. Back up the instance directory indicated by the DB2INSTPROF registry variable.

On Linux and UNIX operating systems, consider backing up the files in the
INSTHOME/sqllib directory (where INSTHOME is the home directory of the
instance owner). For example, you might want to save the database manager
configuration file, db2systm, the db2nodes.cfg file, user-defined functions
(UDFs), or fenced stored procedure applications.

5. For Linux and UNIX operating systems only, log off as the instance owner and
log in as a user with root user authority.

6. Issue the db2idrop command. For example:
db2idrop InstName

where InstName is the name of the instance being dropped.
The db2idrop command removes the instance entry from the list of instances
and removes the sqllib subdirectory under the instance owner's home
directory.

Note: On Linux and UNIX operating systems, if you issue the db2idrop
command and receive a message stating that the INSTHOME/sqllib subdirectory
cannot be removed, one reason could be that the INSTHOME/adm subdirectory
contains files with the .nfs extension. The adm subdirectory is an NFS-mounted
system and the files are controlled on the server. You must delete the *.nfs
files from the file server from where the directory is being mounted. Then you
can remove the INSTHOME/sqllib subdirectory.

7. For Windows operating systems, if the instance that you dropped was the
default instance, set a new default instance by issuing the db2set command:
db2set db2instdef=instance_name -g

where instance_name is the name of an existing instance.
8. For Linux and UNIX operating systems, remove the instance owner's user ID

and group (if used only for that instance). Do not remove these if you are
planning to recreate the instance.
This step is optional since the instance owner and the instance owner group
might be used for other purposes.

70 Database Administration Concepts and Configuration Reference

Part 2. Databases

© Copyright IBM Corp. 1993, 2012 71

72 Database Administration Concepts and Configuration Reference

Chapter 5. Databases

A DB2 database is a relational database. The database stores all data in tables that are
related to one another. Relationships are established between tables such that data
is shared and duplication is minimized.

A relational database is a database that is treated as a set of tables and manipulated
in accordance with the relational model of data. It contains a set of objects used to
store, manage, and access data. Examples of such objects are tables, views, indexes,
functions, triggers, and packages. Objects can be either defined by the system
(system-defined objects) or defined by the user (user-defined objects).

A distributed relational database consists of a set of tables and other objects that are
spread across different but interconnected computer systems. Each computer
system has a relational database manager to manage the tables in its environment.
The database managers communicate and cooperate with each other in a way that
allows a given database manager to execute SQL statements on another computer
system.

A partitioned relational database is a relational database whose data is managed
across multiple database partitions. This separation of data across database
partitions is transparent to most SQL statements. However, some data definition
language (DDL) statements take database partition information into consideration
(for example, CREATE DATABASE PARTITION GROUP). DDL is the subset of SQL
statements used to describe data relationships in a database.

A federated database is a relational database whose data is stored in multiple data
sources (such as separate relational databases). The data appears as if it were all in
a single large database and can be accessed through traditional SQL queries.
Changes to the data can be explicitly directed to the appropriate data source.

Designing databases
When designing a database, you are modeling a real business system that contains
a set of entities and their characteristics, or attributes, and the rules or relationships
between those entities.

The first step is to describe the system that you want to represent. For example, if
you were creating a database for publishing system, the system would contain
several types of entities, such as books, authors, editors, and publishers. For each
of these entities, there are certain pieces of information, or attributes, that you must
record:
v Books: titles, ISBN, date published, location, publisher,
v Authors: name, address, phone and fax numbers, e-mail address,
v Editors: name, address, phone and fax numbers, e-mail address,
v Publishers: name, address, phone and fax numbers, e-mail address,

You will need the database to represent not only these types of entities and their
attributes, but you also need a way to relate these entities to each other. For
example, you need to represent the relationship between books and their authors,
the relationship between books/authors and editors, and the relationship between
books/authors and publishers.

© Copyright IBM Corp. 1993, 2012 73

There are three types of relationships between the entities in a database:

One-to-one relationships
In this type of relationship, each instance of an entity relates to only one
instance of another entity. Currently, no one-to-one relationships exist in
the scenario described above.

One-to-many relationships
In this type of relationship, each instance of an entity relates to one or
more instances of another entity. For example, an author could have
written multiple books, but certain books have only one author. This is the
most common type of relationship modeled in relational databases.

Many-to-many relationships
In this type of relationship, many instances of a given entity relate to one
or more instances of another entity. For example, co-authors could write a
number of books.

Because databases consist of tables, you must construct a set of tables that will best
hold this data, with each cell in the table holding a single view. There are many
possible ways to perform this task. As the database designer, your job is to come
up with the best set of tables possible.

For example, you could create a single table, with many rows and columns, to
hold all of the information. However, using this method, some information would
be repeated. Secondly, data entry and data maintenance would be time-consuming
and error prone. In contrast to this single-table design, a relational database allows
you to have multiple simple tables, reducing redundancy and avoiding the
difficulties posed by a large and unmanageable table. In a relational database,
tables should contain information about a single type of entity.

Also, the integrity of the data in a relational database must be maintained as
multiple users access and change the data. Whenever data is shared, there is a
need to ensure the accuracy of the values within database tables.

You can:
v Use isolation levels to determines how data is locked or isolated from other

processes while the data is being accessed.
v Protect data and define relationships between data by defining constraints to

enforce business rules.
v Create triggers that can do complex, cross-table data validation.
v Implement a recovery strategy to protect data so that it can be restore to a

consistent state.

Database design is a much more complex task than is indicated here, and there are
many items that must be considered, such as space requirements, keys, indexes,
constraints, security and authorization, and so forth. You can find some of this
information in the DB2 Information Center, and in the many DB2 retail books that
are available on this subject.

Recommended file systems
DB2 databases run on many of the file systems supported by the platforms the
DB2 product runs on.

IBM recommends the file systems shown in Table 7 on page 75 for DB2 for Linux,
UNIX, and Windows.

74 Database Administration Concepts and Configuration Reference

Table 7. File systems recommended for DB2 for Linux, UNIX, and Windows

Platform File systems recommended

Linux

Red Hat Enterprise Linux
(RHEL)

v IBM General Parallel File System1

(GPFS™)
v ext3
v Network File System2 (NFS) with IBM

N-series
v Network File System2 (NFS) with

Network Appliance filters

SUSE Linux Enterprise Server
(SLES)

v GPFS
v ext3
v VERITAS File System (VxFS)
v NFS2 with IBM N-series
v NFS2 with Network Appliance filters

UNIX

AIX

v GPFS
v Enhanced Journaled File System (JFS2)
v NFS2 with IBM N-series
v NFS2 with Network Appliance filters
v VxFS

HP-UX HP JFS3 (VxFS)

Solaris
v UNIX File System (UFS)

v ZFS

v VxFS

Windows All Windows products NTFS

Notes:
1 See http://www-03.ibm.com/systems/clusters/software/gpfs/index.html for
additional information about GPFS.
2 See http://www-01.ibm.com/support/docview.wss?uid=swg21169938 for details on
which NFS versions are validated for use on various operating systems.
3 HP JFS on HP-UX is an OEM version of VxFS.

Database directories and files
When you create a database, information about the database including default
information is stored in a directory hierarchy.

The hierarchical directory structure is created for you at a location that is
determined by the information you provide in the CREATE DATABASE command. If
you do not specify the location of the directory path or drive when you create the
database, the default location is used.

In the directory you specify as the database path in the CREATE DATABASE
command, a subdirectory that uses the name of the instance is created. This
subdirectory ensures that databases created in different instances under the same
directory do not use the same path. Below the instance-name subdirectory, a
subdirectory named NODE0000 is created. This subdirectory differentiates database
partitions in a logically partitioned database environment. Below the node-name
directory, a subdirectory named SQL00001 is created. This name of this subdirectory
uses the database token and represents the database being created. SQL00001
contains objects associated with the first database created, and subsequent
databases are given higher numbers: SQL00002, and so on. These subdirectories
differentiate databases created in this instance on the directory that you specified
in the CREATE DATABASE command.

Chapter 5. Databases 75

http://www-03.ibm.com/systems/clusters/software/gpfs/index.html
http://www-01.ibm.com/support/docview.wss?uid=swg21169938

The directory structure appears as follows: your_database_path/your_instance/
NODE0000/SQL00001/

The database directory contains the following files that are created as part of the
CREATE DATABASE command.
v The files SQLBP.1 and SQLBP.2 contain buffer pool information. These files are

duplicates of each other for backup purposes.
v The files SQLSPCS.1 and SQLSPCS.2 contain table space information. These files

are duplicates of each other for backup purposes.
v The files SQLSGF.1 and SQLSGF.2 contain storage path information associated

with the automatic storage feature of a database. These files are duplicates of
each other for maintenance and backup purposes. The files are created for
databases when automatic storage is enabled following a CREATE DATABASE
dbname AUTOMATIC STORAGE YES command or ALTER DATABASE dbname ADD
STORAGE ON statement.

v The SQLDBCONF file contains database configuration information. Do not edit this
file.

Note: The SQLDBCON file was used in previous releases and contains similar
information that can be used if SQLDBCONF is corrupted.
To change configuration parameters, use the UPDATE DATABASE CONFIGURATION
and RESET DATABASE CONFIGURATION commands.

v The DB2RHIST.ASC history file and its backup DB2RHIST.BAK contain history
information about backups, restores, loading of tables, reorganization of tables,
altering of a table space, and other changes to a database.
The DB2TSCHG.HIS file contains a history of table space changes at a log-file level.
For each log file, DB2TSCHG.HIS contains information that helps to identify which
table spaces are affected by the log file. Table space recovery uses information
from this file to determine which log files to process during table space recovery.
You can examine the contents of both history files in a text editor.

v The log control files, SQLOGCTL.LFH.1, its mirror copy SQLOGCTL.LFH.2, and
SQLOGMIR.LFH, contain information about the active logs.
Recovery processing uses information from these files to determine how far back
in the logs to begin recovery. The SQLOGDIR subdirectory contains the actual log
files.

Note: You should ensure the log subdirectory is mapped to different disks than
those used for your data. A disk problem could then be restricted to your data
or the logs but not both. This can provide a substantial performance benefit
because the log files and database containers do not compete for movement of
the same disk heads. To change the location of the log subdirectory, change the
newlogpath database configuration parameter.

v The SQLINSLK file helps to ensure that a database is used by only one instance of
the database manager.

At the same time a database is created, a detailed deadlocks event monitor is also
created. The detailed deadlocks event monitor files are stored in the database
directory of the catalog node. When the event monitor reaches its maximum
number of files to output, it will deactivate and a message is written to the
notification log. This prevents the event monitor from consuming too much disk
space. Removing output files that are no longer needed will allow the event
monitor to activate again on the next database activation.

76 Database Administration Concepts and Configuration Reference

Additional information for SMS database directories in
non-automatic storage databases

In non-automatic storage databases, the SQLT* subdirectories contain the default
System Managed Space (SMS) table spaces required for an operational database.
Three default table spaces are created:
v SQLT0000.0 subdirectory contains the catalog table space with the system catalog

tables.
v SQLT0001.0 subdirectory contains the default temporary table space.
v SQLT0002.0 subdirectory contains the default user data table space.

Each subdirectory or container has a file created in it called SQLTAG.NAM. This file
marks the subdirectory as being in use so that subsequent table space creation does
not attempt to use these subdirectories.

In addition, a file called SQL*.DAT stores information about each table that the
subdirectory or container contains. The asterisk (*) is replaced by a unique set of
digits that identifies each table. For each SQL*.DAT file there might be one or more
of the following files, depending on the table type, the reorganization status of the
table, or whether indexes, LOB, or LONG fields exist for the table:
v SQL*.BKM (contains block allocation information if it is an MDC table)
v SQL*.LF (contains LONG VARCHAR or LONG VARGRAPHIC data)
v SQL*.LB (contains BLOB, CLOB, or DBCLOB data)
v SQL*.XDA (contains XML data)
v SQL*.LBA (contains allocation and free space information about SQL*.LB files)
v SQL*.INX (contains index table data)
v SQL*.IN1 (contains index table data)
v SQL*.DTR (contains temporary data for a reorganization of an SQL*.DAT file)
v SQL*.LFR (contains temporary data for a reorganization of an SQL*.LF file)
v SQL*.RLB (contains temporary data for a reorganization of an SQL*.LB file)
v SQL*.RBA (contains temporary data for a reorganization of an SQL*.LBA file)

Database configuration file
A database configuration file is created for each database. This file is called
SQLDBCON prior to Version 8.2, and SQLDBCONF in Version 8.2 and later. The
creation of this file is done for you.

This file contains values for various configuration parameters that affect the use of
the database, such as:
v Parameters specified or used when creating the database (for example, database

code page, collating sequence, DB2 database release level)
v Parameters indicating the current state of the database (for example, backup

pending flag, database consistency flag, roll-forward pending flag)
v Parameters defining the amount of system resources that the operation of the

database might use (for example, buffer pool size, database logging, sort
memory size).

Note: If you edit the db2system, SQLDBCON (prior to Version 8.2), or
SQLDBCONF (Version 8.2 and later) file using a method other than those provided
by the DB2 database manager, you might make the database unusable. Therefore,
do not change these files using methods other than those documented and
supported by the database manager.

Chapter 5. Databases 77

Performance Tip: Many of the configuration parameters come with default values,
but might need to be updated to achieve optimal performance for your database.
By default, the Configuration Advisor is invoked as part of the CREATE DATABASE
command so that the initial values for some parameters are already configured for
your environment.

For multi-partition databases: When you have a database that is distributed across
more than one database partition, the configuration file should be the same on all
database partitions. Consistency is required since the query compiler compiles
distributed SQL statements based on information in the local node configuration
file and creates an access plan to satisfy the needs of the SQL statement.
Maintaining different configuration files on database partitions could lead to
different access plans, depending on which database partition the statement is
prepared.

Node directory
The database manager creates the node directory when the first database partition is
cataloged.

To catalog a database partition, use the CATALOG NODE command. To list the
contents of the local node directory, use the LIST NODE DIRECTORY command.

The node directory is created and maintained on each database client. The
directory contains an entry for each remote workstation having one or more
databases that the client can access. The DB2 client uses the communication end
point information in the node directory whenever a database connection or
instance attachment is requested.

The entries in the directory also contain information on the type of communication
protocol to be used to communicate from the client to the remote database
partition. Cataloging a local database partition creates an alias for an instance that
resides on the same computer.

Local database directory
A local database directory file exists in each path (or “drive” for Windows operating
systems) in which a database has been defined. This directory contains one entry
for each database accessible from that location.

Each entry contains:
v The database name provided with the CREATE DATABASE command
v The database alias name (which is the same as the database name, if an alias

name is not specified)
v A comment describing the database, as provided with the CREATE DATABASE

command
v The name of the root directory for the database
v Other system information.

System database directory
A system database directory file exists for each instance of the database manager, and
contains one entry for each database that has been cataloged for this instance.

Databases are implicitly cataloged when the CREATE DATABASE command is issued
and can also be explicitly cataloged with the CATALOG DATABASE command.

78 Database Administration Concepts and Configuration Reference

For each database created, an entry is added to the directory containing the
following information:
v The database name provided with the CREATE DATABASE command
v The database alias name (which is the same as the database name, if an alias

name is not specified)
v The database comment provided with the CREATE DATABASE command
v The location of the local database directory

v An indicator that the database is indirect, which means that it resides on the
current database manager instance

v Other system information.

On UNIX platforms and in a partitioned database environment, you must ensure
that all database partitions always access the same system database directory file,
sqldbdir, in the sqldbdir subdirectory of the home directory for the instance.
Unpredictable errors can occur if either the system database directory or the
system intention file sqldbins in the same sqldbdir subdirectory are symbolic links
to another file that is on a shared file system.

Creating node configuration files
If your database is to operate in a partitioned database environment, you must
create a node configuration file called db2nodes.cfg.

About this task

To enable database partitioning, the db2nodes.cfg file must be located in the
sqllib subdirectory of the home directory for the instance before you start the
database manager. This file contains configuration information for all database
partitions in an instance, and is shared by all database partitions for that instance.

Windows considerations

If you are using DB2 Enterprise Server Edition on Windows, the node
configuration file is created for you when you create the instance. You should not
attempt to create or modify the node configuration file manually. You can use the
db2ncrt command to add a database partition server to an instance. You can use
the db2ndrop command to drop a database partition server from an instance. You
can use the db2nchg command to modify a database partition server configuration
including moving the database partition server from one computer to another;
changing the TCP/IP host name; or, selecting a different logical port or network
name.

Note: You should not create files or directories under the sqllib subdirectory
other than those created by the database manager to prevent the loss of data if an
instance is deleted. There are two exceptions. If your system supports stored
procedures, put the stored procedure applications in the function subdirectory
under the sqllib subdirectory. The other exception is when user-defined functions
(UDFs) have been created. UDF executables are allowed in the same directory.

The file contains one line for each database partition that belongs to an instance.
Each line has the following format:
dbpartitionnum hostname [logical-port [netname]]

Tokens are delimited by blanks. The variables are:

Chapter 5. Databases 79

dbpartitionnum
The database partition number, which can be from 0 to 999, uniquely
defines a database partition. Database partition numbers must be in
ascending sequence. You can have gaps in the sequence.

Once a database partition number is assigned, it cannot be changed.
(Otherwise the information in the distribution map, which specifies how
data is distributed, would be compromised.)

If you drop a database partition, its database partition number can be used
again for any new database partition that you add.

The database partition number is used to generate a database partition
name in the database directory. It has the format:
NODE nnnn

The nnnn is the database partition number, which is left-padded with
zeros. This database partition number is also used by the CREATE DATABASE
and DROP DATABASE commands.

hostname
The hostname of the IP address for inter-partition communications. Use the
fully-qualified name for the hostname. The /etc/hosts file also should use
the fully-qualified name. If the fully-qualified name is not used in the
db2nodes.cfg file and in the /etc/hosts file, you might receive error
message SQL30082N RC=3.

(There is an exception when netname is specified. In this situation,
netname is used for most communications, with hostname only being used
for db2start, db2stop, and db2_all.)

logical-port
This parameter is optional, and specifies the logical port number for the
database partition. This number is used with the database manager
instance name to identify a TCP/IP service name entry in the etc/services
file.

The combination of the IP address and the logical port is used as a
well-known address, and must be unique among all applications to
support communications connections between database partitions.

For each hostname, one logical-port must be either 0 (zero) or blank (which
defaults to 0). The database partition associated with this logical-port is the
default node on the host to which clients connect. You can override this
with the DB2NODE environment variable in db2profile script, or with the
sqlesetc() API.

netname
This parameter is optional, and is used to support a host that has more
than one active TCP/IP interface, each with its own hostname.

The following example shows a possible node configuration file for a system on
which SP2EN1 has multiple TCP/IP interfaces, two logical partitions, and uses
SP2SW1 as the DB2 database interface. It also shows the database partition
numbers starting at 1 (rather than at 0), and a gap in the dbpartitionnum sequence:

Table 8. Database partition number example table.

dbpartitionnum hostname logical-port netname

1 SP2EN1.mach1.xxx.com 0 SP2SW1

80 Database Administration Concepts and Configuration Reference

Table 8. Database partition number example table. (continued)

dbpartitionnum hostname logical-port netname

2 SP2EN1.mach1.xxx.com 1 SP2SW1

4 SP2EN2.mach1.xxx.com 0

5 SP2EN3.mach1.xxx.com

You can update the db2nodes.cfg file using an editor of your choice. (The
exception is: an editor should not be used on Windows.) You must be careful,
however, to protect the integrity of the information in the file, as database
partitioning requires that the node configuration file is locked when you issue
START DBM and unlocked after STOP DBM ends the database manager. The
START DBM command can update the file, if necessary, when the file is locked.
For example, you can issue START DBM with the RESTART option or the ADD
DBPARTITIONNUM option.

Note: If the STOP DBM command is not successful and does not unlock the node
configuration file, issue STOP DBM FORCE to unlock it.

Changing node and database configuration files
To update the database configuration file, run the AUTOCONFIGURE command with
the appropriate options.

About this task

The Configuration Advisor helps you to tune performance and to balance memory
requirements for a single database per instance by suggesting which configuration
parameters to modify and providing suggested values for them.

If you plan to change any database partition groups (adding or deleting database
partitions, or moving existing database partitions), the node configuration file must
be updated. If you plan to change the database, you should review the values for
the configuration parameters. You can adjust some values periodically as part of
the ongoing changes made to the database that are based on how it is used.

Note: If you modify any parameters, the values are not updated until:
v For database parameters, the first new connection to the database after all

applications are disconnected
v For database manager parameters, the next time that you stop and start the

instance

In most cases, the values recommended by the Configuration Advisor provide
better performance than the default values because they are based on information
about your workload and your own particular server. However, the values are
designed to improve the performance of, though not necessarily optimize, your
database system. Think of the values as a starting point on which you can make
further adjustments to obtain optimized performance.

In Version 9.1, the Configuration Advisor is automatically invoked when you
create a database. To disable this feature, or to explicitly enable it, use the db2set
command before creating the database. Examples:

db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO
db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=YES

Chapter 5. Databases 81

See “Automatic features” on page 21 for other features that are enabled by default.

Procedure
v To use the Configuration Advisor from the command line, use the AUTOCONFIGURE

command.
v To update database manager and database configuration parameters from the

command line, use the UPDATE DATABASE MANAGER CONFIGURATION and UPDATE
DATABASE CONFIGURATION commands.
To update individual parameters in the database manager configuration, enter:

UPDATE DBM CFG USING config_keyword value

To update individual parameters in the database configuration, enter:
UPDATE DB CFG FOR database_alias
USING config_keyword value

You can update one or more config_keyword value combinations in a single
command. Most changes to the database manager configuration file become
effective only after they are loaded into memory. For a server configuration
parameter, this occurs during the running of the START DATABASE MANAGER
command. For a client configuration parameter, this occurs when the application
is restarted.

v To view or print the current database manager configuration parameters, use the
GET DATABASE MANAGER CONFIGURATION command.

v To access the Configuration Advisor from a client application, call the
db2AutoConfig API.

v To update individual parameters in the database manager configuration or
database configuration file from a client application, call the db2CfgSet API.

Database recovery log
A database recovery log keeps a record of all changes made to a database, including
the addition of new tables or updates to existing ones.

This log is made up of a number of log extents, each contained in a separate file
called a log file.

The database recovery log can be used to ensure that a failure (for example, a
system power outage or application error) does not leave the database in an
inconsistent state. In case of a failure, the changes already made but not committed
are rolled back, and all committed transactions, which might not have been
physically written to disk, are redone. These actions ensure the integrity of the
database.

Space requirements for database objects
Estimating the size of database objects is an imprecise undertaking. Overhead
caused by disk fragmentation, free space, and the use of variable length columns
makes size estimation difficult, because there is such a wide range of possibilities
for column types and row lengths.

After initially estimating your database size, create a test database and populate it
with representative data. Then use the db2look utility to generate data definition
statements for the database.

When estimating the size of a database, the contribution of the following must be
considered:
v System catalog tables

82 Database Administration Concepts and Configuration Reference

v User table data
v Long field (LF) data
v Large object (LOB) data
v XML data
v Index space
v Log file space
v Temporary work space

Also consider the overhead and space requirements for the following:
v The local database directory file
v The system database directory file
v The file management overhead required by the operating system, including:

– File block size
– Directory control space

Space requirements for log files
Space requirements for log files varies depending on your needs and on
configuration parameter settings.

You will require 56 KB of space for log control files. You will also need at least
enough space for your active log configuration, which you can calculate as

(logprimary + logsecond) × (logfilsiz + 2) × 4096

where:
v logprimary is the number of primary log files, defined in the database

configuration file
v logsecond is the number of secondary log files, defined in the database

configuration file; in this calculation, logsecond cannot be set to -1. (When
logsecond is set to -1, you are requesting an infinite active log space.)

v logfilsiz is the number of pages in each log file, defined in the database
configuration file

v 2 is the number of header pages required for each log file
v 4096 is the number of bytes in one page.

Roll-forward recovery
If the database is enabled for roll-forward recovery, special log space
requirements should be taken into consideration:
v With the logarchmeth1 configuration parameter set to LOGRETAIN, the log

files will be archived in the log path directory. The online disk space
will eventually fill up, unless you move the log files to a different
location.

v With the logarchmeth1 configuration parameter set to USEREXIT, DISK, or
VENDOR, a user exit program moves the archived log files to a different
location. Extra log space is still required to allow for:
– Online archived logs that are waiting to be moved by the user exit

program
– New log files being formatted for future use

Circular logging
If the database is enabled for circular logging, the result of this formula is

Chapter 5. Databases 83

all the space that will be allocated for logging; that is, more space will not
be allocated, and you will not receive insufficient disk space errors for any
of your log files.

Infinite logging
If the database is enabled for infinite logging (that is, you set the logsecond
configuration parameter to -1), the logarchmeth1 configuration parameter
must be set to a value other than OFF or logretain to enable archive
logging. The database manager will keep at least the number of active log
files specified by the logprimary configuration parameter in the log path,
therefore, you should not use the value of -1 for the logsecond
configuration parameter in the above formula. Ensure that you provide
extra disk space to allow for the delay caused by archiving log files.

Mirroring log paths
If you are mirroring the log path, you will need to double the estimated
log file space requirements.

Currently committed
If queries return the currently committed value of the data, more log space
is required for logging the first update of a data row during a transaction
when the cur_commit configuration parameter is not set to DISABLED.
Depending on the size of the workload, the total log space used can vary
significantly. This affects the log I/O required for a given workload, the
amount of active log space required, and the amount of log archive space
required.

Note: Setting the cur_commit configuration parameter to DISABLED,
maintains the same behavior as in previous releases, and results in no
changes to the log space required.

Lightweight Directory Access Protocol (LDAP) directory
service

A directory service is a repository of resource information about multiple systems
and services within a distributed environment; and it provides client and server
access to these resources.

Clients and servers would use the directory service to find out how to access other
resources. Information about these other resources in the distributed environment
must be entered into the directory service repository.

Lightweight Directory Access Protocol (LDAP) is an industry standard access method
to directory services. Each database server instance will publish its existence to an
LDAP server and provide database information to the LDAP directory when the
databases are created. When a client connects to a database, the catalog
information for the server can be retrieved from the LDAP directory. Each client is
no longer required to store catalog information locally on each computer. Client
applications search the LDAP directory for information required to connect to the
database.

Note: Publishing of the database server instance to the LDAP server is not an
automatic process, but must be done manually by the administrator.

As an administrator of a DB2 system, you can establish and maintain a directory
service. The Configuration Assistant can assist in the maintenance of this directory
service. The directory service is made available to the DB2 database manager
through Lightweight Directory Access Protocol (LDAP) directory services. To use

84 Database Administration Concepts and Configuration Reference

LDAP directory services, there must first exist an LDAP server that is supported
by the DB2 database manager so that directory information can be stored there.

Note: When running in a Windows domain environment, an LDAP server is
already available because it is integrated with the Windows Active Directory. As a
result, every computer running Windows can use LDAP.

An LDAP directory is helpful in an enterprise environment where it is difficult to
update local directory catalogs on each client computer because of the large
number of clients. In this situation, you should consider storing your directory
entries in an LDAP server so that maintaining catalog entries is done in one place:
on the LDAP server.

Creating databases
You create a database using the CREATE DATABASE command. To create a database
from a client application, call the sqlecrea API.

Before you begin

It is important to plan your database, keeping in mind the contents, layout,
potential growth, and how it will be used before you create it. Once it has been
created and populated with data, changes can be made. However depending on
how you set up the database initially, it will likely require more effort and make
your data unavailable for use while the changes are being made.

The following database privileges are automatically granted to PUBLIC:
CREATETAB, BINDADD, CONNECT, IMPLICIT_SCHEMA, and SELECT on the
system catalog views. However, if the RESTRICTIVE option is present, no privileges
are automatically granted to PUBLIC. For more information on the RESTRICTIVE
option, see the CREATE DATABASE command.

About this task

When you create a database, each of the following tasks are done for you:
v Setting up of all the system catalog tables that are needed by the database
v Allocation of the database recovery log
v Creation of the database configuration file and the default values are set
v Binding of the database utilities to the database

Procedure
v To create a database from a client application, call the sqlecrea API.
v To create a database using the command line processor, issue the CREATE

DATABASE command.
For example, the following command creates a database called PERSON1, in the
default location, with the associated comment "Personnel DB for BSchiefer Co".
CREATE DATABASE personl

WITH "Personnel DB for BSchiefer Co"

What to do next

Configuration Advisor
The Configuration Advisor helps you to tune performance and to balance
memory requirements for a single database per instance by suggesting

Chapter 5. Databases 85

which configuration parameters to modify and providing suggested values
for them. The Configuration Advisor is automatically invoked by default
when you create a database.

You can override this default so that the configuration advisor is not
automatically invoked by using one of the following methods:
v Issue the CREATE DATABASE command with the AUTOCONFIGURE APPLY NONE

parameter.
v Set the DB2_ENABLE_AUTOCONFIG_DEFAULT registry variable to NO:

db2set DB2_ENABLE_AUTOCONFIG_DEFAULT=NO

However, if you specify the AUTOCONFIGURE parameter with the CREATE
DATABASE command, the setting of this registry variable is ignored.

See “Automatic features” on page 21 for other features that are enabled by
default when you create a database.

Event Monitor
At the same time a database is created, a detailed deadlocks event monitor
is also created. As with any monitor, there is some overhead associated
with this event monitor. If you do not want the detailed deadlocks event
monitor, then the event monitor can be dropped using the command:
DROP EVENT MONITOR db2detaildeadlock

To limit the amount of disk space that this event monitor consumes, the
event monitor deactivates, and a message is written to the administration
notification log, once it has reached its maximum number of output files.
Removing output files that are no longer needed allows the event monitor
to activate again on the next database activation.

Remote databases

You have the ability to create a database in a different, possibly remote,
instance. To create a database at another (remote) database partition server,
you must first attach to that server. A database connection is temporarily
established by the following command during processing:
CREATE DATABASE database_name AT DBPARTITIONNUM options

In this type of environment you can perform instance-level administration
against an instance other than your default instance, including remote
instances. For instructions on how to do this, see the db2iupdt (update
instance) command.

Database code pages

By default, databases are created in the UTF-8 (Unicode) code set.

To override the default code page for the database, it is necessary to
specify the desired code set and territory when creating the database. See
the CREATE DATABASE command or the sqlecrea API for information on
setting the code set and territory.

Automatic storage databases
Automatic storage is intended to make storage management easier. Rather than
managing storage at the table space level using explicit container definitions,
storage is managed at the database level and the responsibility of creating,
extending and adding containers is taken over by the database manager.

86 Database Administration Concepts and Configuration Reference

All databases are created with automatic storage unless you specify otherwise.
When you create a database with automatic storage, you establish one or more
initial storage paths for it. By contrast, when you create a database without
automatic storage, you do not associate storage paths to database as a whole;
instead, storage is associated with the individual system- or database-managed
(SMS or DMS) table spaces that you create. As an automatic storage database
grows, the database manager creates containers across those storage paths, and
extends them or creates new ones as needed. automatically.

You can modify an existing database - even one that was not created with
automatic storage - to use automatic storage with the ADD STORAGE ON clause
of the ALTER DATABASE statement. This statement has the effect of both adding a
new storage path to the database, as well as causing all new table spaces that are
added to the database to be automatic storage table spaces unless you specify
otherwise.

Important:

v Adding storage paths will not convert existing non-automatic storage table
spaces to use automatic storage. You can convert database managed (DMS) table
spaces to use automatic storage. System managed (SMS) table spaces cannot be
converted to automatic storage. See “Converting table spaces to use automatic
storage” on page 140 for more information.

v Once a database has been enabled for automatic storage, you cannot disable it.

If you do not want to use automatic storage for a database, you must explicitly
specify the AUTOMATIC STORAGE NO clause on the CREATE DATABASE
command. For example:

CREATE DATABASE ASNODB1 AUTOMATIC STORAGE NO

The list of storage paths can be displayed as part of a database snapshot (along
with file system information if the BUFFERPOOL monitor switch is turned on).

Creating automatic storage databases
All databases are created as automatic storage databases unless you specify
otherwise. When you create a database with automatic storage, you establish one
or more initial storage paths for it. As the database grows, the database manager
creates, extends and adds containers across those storage paths.

Before you begin

The DB2 database must be running. Use the db2start to start the database
manager.

About this task

When you create an automatic storage database, you associate one or more storage
paths with the database that are used by automatic storage table spaces. Compared
to other types of table spaces, automatic storage table spaces reduce the
maintenance tasks you must perform.

Restrictions

v Storage paths cannot be specified using relative path names; you must use
absolute path names. The storage path can be 175 characters long.

v On Windows operating systems, the database path must be a drive letter only,
unless the DB2_CREATE_DB_ON_PATH registry variable is set to YES.

Chapter 5. Databases 87

v If you do not specify a database path using the DBPATH ON clause of the CREATE
DATABASE command, the database manager uses the first storage path specified
for the ON clause for the database path. (On Windows operating systems, if this
clause is specified as a path, and if the DB2_CREATE_DB_ON_PATH registry variable
is not set to YES, you receive a SQL1052N error message.) If no ON clause is
specified, the database is created on the default database path that is specified in
the database manager configuration file (dftdbpath parameter). This will also be
used as the location for the single storage path associated with the database.

v For partitioned databases, you must use the same set of storage paths on each
database partition (unless you use database partition expressions).

v Database partition expressions are not valid in database paths, whether you
specify them explicitly by using the DBPATH ON clause of the CREATE DATABASE
command, or implicitly by using a database partition expression in the first
storage path.

v You cannot disable automatic storage for a database if it has been created with
automatic storage.

v An automatic storage database must have at least one storage path associated
with it.

Procedure

To create a database with automatic storage:
1. Formulate a CREATE DATABASE command. By default, new databases are

created as automatic storage databases unless you specify otherwise. You can
also include the AUTOMATIC STORAGE YES clause on the create database
command. For example:
CREATE DATABASE DATAB1
CREATE DATABASE DATAB1 AUTOMATIC STORAGE YES

are equivalent to one another.
2. Run the CREATE DATABASE command.

Example

Example 1: Creating an automatic storage database on a UNIX or Linux operating system:

To create a database named TESTDB1 on path /DPATH1 using /DATA1 and /DATA2 as
the storage paths, use the following command:

CREATE DATABASE TESTDB1 ON ’/DATA1’,’/DATA2’ DBPATH ON ’/DPATH1’

Example 2: Creating an automatic storage database on a Windows operating system,
specifying both storage and database paths:

To create a database named TESTDB2 on drive D:, with storage on E:\DATA, use the
following command:

CREATE DATABASE TESTDB2 ON ’E:\DATA’ DBPATH ON ’D:’

Example 3: Creating an automatic storage database on a Windows operating system,
specifying only a storage path:

To create a database names TESTDB3 with storage on drive F:, use the following
command:

CREATE DATABASE TESTDB3 AUTOMATIC STORAGE YES ON ’F:’

88 Database Administration Concepts and Configuration Reference

In this example, F: is used as both the storage path and the database path.

If you specify a directory name such as F:\DATA for the storage path, the command
fails, because:
1. When DBPATH is not specified, the storage path – in this case, F:\DATA – is

used as the database path
2. On Windows, the database path can only be a drive letter (unless you change

the default for the DB2_CREATE_DB_ON_PATH registry variable from NO to YES).

If you want to specify a directory as the storage path on Windows operating
systems, you must also include the DBPATH ON drive clause, as shown in
Example 2.

Example 4: Creating an automatic storage database on a UNIX or Linux operating system
without specifying a database path:

To create a database names TESTDB4 with storage on /DATA1 and /DATA2, use the
following command:

CREATE DATABASE TESTDB4 ON ’/DATA1’,’/DATA2’

In this example, /DATA1 and /DATA2 are used as the storage paths and /DATA1 is the
database path.

What to do next

Once you have created an automatic storage database you can create automatic
storage table spaces in which to store tables, indexes and other database objects
using the CREATE TABLESPACE command.

Converting a nonautomatic storage database to use automatic
storage
You can convert an existing nonautomatic storage database to use automatic
storage using the ALTER DATABASE statement to add new storage paths to the
database.

Before you begin

You must have a storage location that you can identify with a path (for Windows
operating systems, a path or a drive letter) available to use as a storage path for
your automatic storage table spaces.

About this task

Databases that do not use automatic storage do not have storage paths associated
with them. Instead, storage is associated with the table spaces for the database.
When you add new storage paths to a database for which automatic storage was
not previously enabled, the database becomes an automatic storage database.
However, adding new storage paths to a database will only enable the database for
automatic storage; by default, future table spaces that you create will use
automatic storage, but existing table spaces are not automatically converted. You
must use the ALTER TABLESPACE statement to convert existing table spaces to
use automatic storage.

Note: Only DMS table spaces can be converted to use automatic storage.

Restrictions

Chapter 5. Databases 89

You cannot disable automatic storage for a database if it has been created with or
converted to use automatic storage.

Procedure

To convert an existing database to an automatic storage database, use the ALTER
DATABASE statement to add storage paths to it:
1. Formulate an ALTER DATABASE statement with an ADD STORAGE ON

clause. For example, to convert the database DATABASE1 to use automatic
storage, use the following statement:
ALTER DATABASE DATABASE1 ADD STORAGE ON storagePath

where storagePath is the path you want to use for automatic storage table
spaces.

2. Run the statement.

Example

Example 1: Converting a database on UNIX or Linux operating systems

Assume the database EMPLOYEE is a nonautomatic storage database, and that
/data1/as and /data2/as are the paths you want to use for automatic storage table
spaces. To convert EMPLOYEE to an automatic storage database, use the following
statement:

ALTER DATABASE EMPLOYEE ADD STORAGE ON ’/data1/as’, ’/data2/as’

Example 2: Converting a database on Windows operating systems

Assume the database SALES is a nonautomatic storage database, and that
F:\DB2DATA and G: are the paths you want to use for automatic storage table
spaces. To convert SALES to an automatic storage database, use the following
statement:

ALTER DATABASE EMPLOYEE ADD STORAGE ON ’F:\DB2DATA’, ’G:’

What to do next

If you have existing DMS table spaces that you want to convert to use automatic
storage, use the ALTER TABLESPACE statement with the MANAGED BY
AUTOMATIC STORAGE clause to change them.

Adding storage paths to a database enabled for automatic
storage
You can add a storage path to an automatic storage database using the ALTER
DATABASE statement, . If the database is not currently an automatic storage
database, adding a storage path to the database will convert it to one.

About this task

When you add a storage path for a multi-partition database environment, the
storage path must exist on each database partition. If the specified path does not
exist on every database partition, the statement is rolled back.

To add a storage path to an existing database, issue the following ALTER
DATABASE statement:

ALTER DATABASE database-name ADD STORAGE ON storage-path

90 Database Administration Concepts and Configuration Reference

What to do next

After adding one or more storage paths to the database, you can optionally use the
ALTER TABLESPACE statement to rebalance table spaces in the database so that
they start to use the new storage paths immediately. Otherwise, the new storage
paths will not be used until there is no room to grow within the containers on the
existing storage paths.

Dropping storage paths from a database enabled for automatic
storage
You can remove one or more storage paths from an automatic storage database or
you can move data off the storage paths and rebalance them.

Before you begin

Use the snapshot monitor to display current information about the storage paths,
including the status of database partitions. A storage path can be in one of three
states:

Not In Use
The storage path has been added to the database but is not in use by any
table space.

In Use One or more table spaces have containers on the storage path.

Drop Pending
An ALTER DATABASE database-name DROP STORAGE ON request has
been made to drop the path, but table spaces are still using the storage
path. The path will be removed from the database when there are no
longer any table spaces using it.

You can also use the administrative views to obtain information about which
storage paths or table space partitions have been updated. Use the
SNAPSTORAGE_PATHS administrative view to obtain information about storage
paths, and the SNAPTBSP_PART administrative view, to obtain information about
table spaces on specific database partitions.

About this task

If you intend to drop a storage path, you must rebalance all permanent table
spaces that use the storage path by using ALTER TABLESPACE tablespace-name
REBALANCE, which moves data off the path to be dropped. In this situation, the
rebalance operation moves data from the storage path that you intend to drop to
the remaining storage paths and keeps the data striped consistently across those
storage paths, maximizing I/O parallelism.
1. Alter the database to remove storage paths from the database using the ALTER

DATABASE statement (as shown in the Example that follows).
2. Rebalance the containers off the storage paths being dropped by using the

ALTER TABLESPACE tablespace-name REBALANCE statement (as shown in the
Example that follows).

3. Drop and re-create temporary table spaces. A table space in drop pending
mode will not be dropped if there is a temporary table space on it.

Chapter 5. Databases 91

Example

This example shows how to drop the storage paths /db2/filesystem1 and
/db2/filesystem2 from the currently connected database and rebalance the table
spaces.

First, issue the ALTER statement to drop the storage paths from the database:
ALTER DATABASE DROP STORAGE ON ’/db2/filesystem1’, ’/db2/filesystem2’

Next, issue an ALTER TABLESPACE tablespace-name REBALANCE statement for
every table space that is using these storage paths to remove their containers from
these storage paths:
ALTER TABLESPACE tablespace-name_1 REBALANCE
ALTER TABLESPACE tablespace-name_2 REBALANCE
ALTER TABLESPACE tablespace-name_n REBALANCE

After the last rebalance operation has completed, /db2/filesystem1 and
/db2/filesystem2 are removed from the database.

What to do next

Take a database snapshot (or query the corresponding administrative view) to
verify that the storage path that was dropped is no longer listed. If it is, then one
or more table spaces are still using it.

Monitoring storage paths
A database snapshot includes the list of storage paths associated with the database.

If the number of automatic storage paths is 0, automatic storage is not enabled for
the database:

Number of automatic storage paths = ##
Automatic storage path = <1st path>
Automatic storage path = <2nd path>
...

If the buffer pool monitor switch is on, the following elements are also set:
File system ID = 12345
File system free space (bytes) = 20000000000
File system used space (bytes) = 40000000000000
File system total space (bytes) = 40020000000000

This data is set on a per path basis: on a single database partition system per path,
and per each database partition on a multi-database partitioned environment.

In addition, the following information is set within a table space snapshot. The
information indicates whether or not the table space was created as an automatic
storage table space:

Using automatic storage = Yes or No

Implications for restoring databases
The RESTORE DATABASE command is used to restore a database from a backup
image.

During a restore operation it is possible to choose the location of the database path,
and it's also possible to redefine the storage paths that are associated with the
database. The database path and the storage paths are set by using a combination
of TO, ON, and DBPATH ON with the RESTORE DATABASE command.

92 Database Administration Concepts and Configuration Reference

For example, here are some valid RESTORE commands for databases enabled for
automatic storage:

RESTORE DATABASE TEST1
RESTORE DATABASE TEST2 TO X:
RESTORE DATABASE TEST3 DBPATH ON D:
RESTORE DATABASE TEST3 ON /path1, /path2, /path3
RESTORE DATABASE TEST4 ON E:\newpath1, F:\newpath2 DBPATH ON D:

As it does in the case of the CREATE DATABASE command, the database manager
extracts the following two pieces of information that pertain to storage locations:
v The database path (which is where the database manager stores various control

files for the database)
– If TO or DBPATH ON is specified, this indicates the database path.
– If ON is used but DBPATH ON is not specified with it, the first path listed

with ON is used as the database path (in addition to it being a storage path).
– If none of TO, ON, or DBPATH ON is specified, the dftdbpath database

manager configuration parameter determines the database path.

Note: If a database with the same name exists on disk, the database path is
ignored, and the database is placed into the same location as the existing
database.

v The storage paths (where the database manager creates automatic storage table
space containers)
– If ON is specified, all of the paths listed are considered storage paths, and

these paths are used instead of the ones stored within the backup image.
– If ON is not specified, no change is made to the storage paths (the storage

paths stored within the backup image are maintained).

To make this concept clearer, the same five RESTORE command examples presented
above are shown in the following table with their corresponding storage paths:

Table 9. Restore implications regarding database and storage paths

RESTORE DATABASE command

No database with the same name exists on
disk Database with the same name exists on disk

Database path Storage paths Database path Storage paths

RESTORE DATABASE TEST1 <dftdbpath> Uses storage paths
defined in the backup
image

Uses database path of
existing database

Uses storage paths
defined in the backup
image

RESTORE DATABASE TEST2 TO X: X: Uses storage paths
defined in the backup
image

Uses database path of
existing database

Uses storage paths
defined in the backup
image

RESTORE DATABASE TEST3
DBPATH ON /db2/databases

/db2/databases Uses storage paths
defined in the backup
image

Uses database path of
existing database

Uses storage paths
defined in the backup
image

RESTORE DATABASE TEST4
ON /path1, /path2, /path3

/path1 /path1, /path2, /path3 Uses database path of
existing database

/path1, /path2, /path3

RESTORE DATABASE TEST5
ON E:\newpath1, F:\newpath2
DBPATH ON D:

D: E:\newpath1,
F:\newpath2

Uses database path of
existing database

E:\newpath1,
F:\newpath2

For those cases where storage paths have been redefined as part of the restore
operation, the table spaces that are defined to use automatic storage are
automatically redirected to the new paths. However, you cannot explicitly redirect
containers associated with automatic storage table spaces using the SET TABLESPACE
CONTAINERS command; this action is not permitted.

Chapter 5. Databases 93

Use the -s option of the db2ckbkp command to show whether or not automatic
storage is enabled for a database within a backup image. The storage paths
associated with the database are displayed if automatic storage is enabled.

For multi-partition automatic storage enabled databases, the RESTORE DATABASE
command has a few extra implications:
1. The database must use the same set of storage paths on all database partitions.
2. Issuing a RESTORE command with new storage paths can only be done on the

catalog database partition, which will set the state of the database to
RESTORE_PENDING on all non-catalog database partitions.

Table 10. Restore implications for multi-partition databases

RESTORE DATABASE
command

Issued on
database

partition #

No database with the same name exists
on disk

Database with the same name exists on
disk (includes skeleton databases)

Result on other
database partitions Storage paths

Result on other
database partitions Storage paths

RESTORE DATABASE
TEST1

Catalog database
partition

A skeleton database
is created using the
storage paths from
the backup image on
the catalog database
partition. All other
database partitions
are placed in a
RESTORE_
PENDING state.

Uses storage paths
defined in the
backup image

Nothing. Storage
paths have not
changed so nothing
happens to other
database partitions

Uses storage paths
defined in the
backup image

Non-catalog
database
partition

SQL2542N or
SQL2551N is
returned. If no
database exists, the
catalog database
partition must be
restored first.

N/A Nothing. Storage
paths have not
changed so nothing
happens to other
database partitions

Uses storage paths
defined in the
backup image

RESTORE DATABASE
TEST2 ON /path1,
/path2, /path3

Catalog database
partition

A skeleton database
is created using the
storage paths
specified in the
RESTORE command.
All other database
partitions are place in
a RESTORE_
PENDING state.

/path1, /path2,
/path3

/path1, /path2,
/path3

Non-catalog
database
partition

SQL1174N is
returned. If no
database exists, the
catalog database
partition must be
restored first. Storage
paths cannot be
specified on the
RESTORE of a
non-catalog database
partition.

N/A SQL1172N is
returned. New
storage paths cannot
be specified on the
RESTORE of a
non-catalog database
partition.

N/A

Cataloging databases
When you create a new database, it is automatically cataloged in the system
database directory file. You might also use the CATALOG DATABASE command to
explicitly catalog a database in the system database directory file.

94 Database Administration Concepts and Configuration Reference

About this task

The CATALOG DATABASE command allows you to catalog a database with a different
alias name, or to catalog a database entry that was previously deleted using the
UNCATALOG DATABASE command.

Although databases are cataloged automatically when a database is created, you
still might have a need to catalog the database. When you do so, the database
must exist.

By default directory files, including the database directory, are cached in memory
using the Directory Cache Support (dir_cache) configuration parameter. When
directory caching is enabled, a change made to a directory (for example, using a
CATALOG DATABASE or UNCATALOG DATABASE command) by another application might
not become effective until your application is restarted. To refresh the directory
cache used by a command line processor session, issue the TERMINATE command.

In a partitioned database, a cache for directory files is created on each database
partition.

In addition to the application level cache, a database manager level cache is also
used for internal, database manager look-up. To refresh this “shared” cache, issue
the db2stop and db2start commands.

To catalog a database with a different alias name using the command line
processor, use the CATALOG DATABASE command. For example, the following
command line processor command catalogs the PERSON1 database as
HUMANRES:

CATALOG DATABASE personl AS humanres
WITH "Human Resources Database"

Here, the system database directory entry will have HUMANRES as the database
alias, which is different from the database name (PERSON1).

To catalog a database in the system database directory from a client application,
call the sqlecadb API.

To catalog a database on an instance other than the default using the command
line processor, use the CATALOG DATABASE command. In the following example,
connections to database B are to INSTNC_C. The instance instnc_c must already be
cataloged as a local node before attempting this command.

CATALOG DATABASE b as b_on_ic AT NODE instnc_c

Note: The CATALOG DATABASE command is also used on client nodes to catalog
databases that reside on database server computers.

Binding utilities to the database
When a database is created, the database manager attempts to bind the utilities in
db2ubind.lst and in db2cli.lst to the database. These files are stored in the bnd
subdirectory of your sqllib directory.

Chapter 5. Databases 95

About this task

Binding a utility creates a package, which is an object that includes all the
information needed to process specific SQL and XQuery statements from a single
source file.

Note: If you want to use these utilities from a client, you must bind them
explicitly. You must be in the directory where these files reside to create the
packages in the sample database. The bind files are found in the bnd subdirectory
of the sqllib directory. You must also bind the db2schema.bnd file when you create
or upgrade the database from a client. Refer to "DB2 CLI bind files and package
names" for details.

To bind or rebind the utilities to a database, from the command line, invoke the
following commands, where sample is the name of the database:

connect to sample
bind @db2ubind.lst

Creating database aliases
An alias is an indirect method of referencing a table, nickname, or view, so that an
SQL or XQuery statement can be independent of the qualified name of that table
or view.

About this task

Only the alias definition must be changed if the table or view name changes. An
alias can be created on another alias. An alias can be used in a view or trigger
definition and in any SQL or XQuery statement, except for table check-constraint
definitions, in which an existing table or view name can be referenced.

An alias can be defined for a table, view, or alias that does not exist at the time of
definition. However, it must exist when the SQL or XQuery statement containing
the alias is compiled.

An alias name can be used wherever an existing table name can be used, and can
refer to another alias if no circular or repetitive references are made along the
chain of aliases.

The alias name cannot be the same as an existing table, view, or alias, and can only
refer to a table within the same database. The name of a table or view used in a
CREATE TABLE or CREATE VIEW statement cannot be the same as an alias name
in the same schema.

You do not require special authority to create an alias, unless the alias is in a
schema other than the one owned by your current authorization ID, in which case
DBADM authority is required.

When an alias, or the object to which an alias refers, is dropped, all packages
dependent on the alias are marked as being not valid and all views and triggers
dependent on the alias are marked inoperative.

To create an alias using the command line, enter:
CREATE ALIAS <alias_name> FOR <table_name>

96 Database Administration Concepts and Configuration Reference

The alias is replaced at statement compilation time by the table or view name. If
the alias or alias chain cannot be resolved to a table or view name, an error results.
For example, if WORKERS is an alias for EMPLOYEE, then at compilation time:

SELECT * FROM WORKERS

becomes in effect
SELECT * FROM EMPLOYEE

The following SQL statement creates an alias WORKERS for the EMPLOYEE table:
CREATE ALIAS WORKERS FOR EMPLOYEE

Note: DB2 for OS/390 or z/Series employs two distinct concepts of aliases: ALIAS
and SYNONYM. These two concepts differ from DB2 database as follows:
v ALIASes in DB2 for OS/390 or z/Series:

– Require their creator to have special authority or privilege
– Cannot reference other aliases

v SYNONYMs in DB2 for OS/390 or z/Series:
– Can only be used by their creator
– Are always unqualified
– Are dropped when a referenced table is dropped
– Do not share namespace with tables or views

Connecting to distributed relational databases
Distributed relational databases are built on formal requester-server protocols and
functions.

An application requester supports the application end of a connection. It transforms
a database request from the application into communication protocols suitable for
use in the distributed database network. These requests are received and processed
by a database server at the other end of the connection. Working together, the
application requester and the database server handle communication and location
considerations, so that the application can operate as if it were accessing a local
database.

An application process must connect to a database manager's application server
before SQL statements that reference tables or views can be executed. The
CONNECT statement establishes a connection between an application process and
its server.

There are two types of CONNECT statements:
v CONNECT (Type 1) supports the single database per unit of work (Remote Unit

of Work) semantics.
v CONNECT (Type 2) supports the multiple databases per unit of work

(Application-Directed Distributed Unit of Work) semantics.

The DB2 call level interface (CLI) and embedded SQL support a connection mode
called concurrent transactions, which allows multiple connections, each of which is
an independent transaction. An application can have multiple concurrent
connections to the same database.

The application server can be local to or remote from the environment in which the
process is initiated. An application server is present, even if the environment is not

Chapter 5. Databases 97

using distributed relational databases. This environment includes a local directory
that describes the application servers that can be identified in a CONNECT
statement.

The application server runs the bound form of a static SQL statement that
references tables or views. The bound statement is taken from a package that the
database manager has previously created through a bind operation.

For the most part, an application connected to an application server can use
statements and clauses that are supported by the application server's database
manager. This is true even if an application is running through the application
requester of a database manager that does not support some of those statements
and clauses.

Remote unit of work for distributed relational databases
The remote unit of work facility provides for the remote preparation and execution of
SQL statements.

An application process at computer system “A” can connect to an application
server at computer system “B” and, within one or more units of work, execute any
number of static or dynamic SQL statements that reference objects at “B”. After
ending a unit of work at B, the application process can connect to an application
server at computer system C, and so on.

Most SQL statements can be remotely prepared and executed, with the following
restrictions:
v All objects referenced in a single SQL statement must be managed by the same

application server.
v All of the SQL statements in a unit of work must be executed by the same

application server.

At any given time, an application process is in one of four possible connection
states:
v Connectable and connected

An application process is connected to an application server, and CONNECT
statements can be executed.
If implicit connect is available:
– The application process enters this state when a CONNECT TO statement or

a CONNECT without operands statement is successfully executed from the
connectable and unconnected state.

– The application process might enter this state from the implicitly connectable
state if any SQL statement other than CONNECT RESET, DISCONNECT, SET
CONNECTION, or RELEASE is issued.

Whether or not implicit connect is available, this state is entered when:
– A CONNECT TO statement is successfully executed from the connectable and

unconnected state.
– A COMMIT or ROLLBACK statement is successfully issued, or a forced

rollback occurs from the unconnectable and connected state.
v Unconnectable and connected

An application process is connected to an application server, but a CONNECT
TO statement cannot be successfully executed to change application servers. The
application process enters this state from the connectable and connected state

98 Database Administration Concepts and Configuration Reference

when it executes any SQL statement other than the following: CONNECT TO,
CONNECT with no operand, CONNECT RESET, DISCONNECT, SET
CONNECTION, RELEASE, COMMIT, or ROLLBACK.

v Connectable and unconnected
An application process is not connected to an application server. CONNECT TO
is the only SQL statement that can be executed; otherwise, an error (SQLSTATE
08003) is raised.
Whether or not implicit connect is available, the application process enters this
state if an error occurs when a CONNECT TO statement is issued, or an error
occurs within a unit of work, causing the loss of a connection and a rollback. An
error that occurs because the application process is not in the connectable state,
or because the server name is not listed in the local directory, does not cause a
transition to this state.
If implicit connect is not available:
– The application process is initially in this state
– The CONNECT RESET and DISCONNECT statements cause a transition to

this state.
v Implicitly connectable (if implicit connect is available).

If implicit connect is available, this is the initial state of an application process.
The CONNECT RESET statement causes a transition to this state. Issuing a
COMMIT or ROLLBACK statement in the unconnectable and connected state,
followed by a DISCONNECT statement in the connectable and connected state,
also results in this state.

Availability of implicit connect is determined by installation options, environment
variables, and authentication settings.

It is not an error to execute consecutive CONNECT statements, because
CONNECT itself does not remove the application process from the connectable
state. It is, however, an error to execute consecutive CONNECT RESET statements.
It is also an error to execute any SQL statement other than CONNECT TO,
CONNECT RESET, CONNECT with no operand, SET CONNECTION, RELEASE,
COMMIT, or ROLLBACK, and then to execute a CONNECT TO statement. To
avoid this error, a CONNECT RESET, DISCONNECT (preceded by a COMMIT or
ROLLBACK statement), COMMIT, or ROLLBACK statement should be executed
before the CONNECT TO statement.

Chapter 5. Databases 99

Application-directed distributed unit of work
The application-directed distributed unit of work facility provides for the remote
preparation and execution of SQL statements.

Implicitly
Connectable

Connectable
and

Connected

Connectable
and

Unconnected

Unconnectable
and

Connected

Begin process

CONNECT
RESET

CONNECT
RESET

CONNECT TO,
COMMIT,

or ROLLBACK

Failure of
implicit connect

System failure
with rollback

ROLLBACK,
successful COMMIT,

or deadlock

CONNECT TO,
COMMIT, or
ROLLBACK

SQL statement other
than CONNECT RESET,
COMMIT or ROLLBACK

SQL statement other than
CONNECT TO, CONNECT RESET,

COMMIT or ROLLBACK

CONNECT TO with system failure

Successful C
ONNECT TO

Figure 4. Connection State Transitions If Implicit Connect Is Available

Connectable
and

Unconnected

Unconnectable
and

Connected

Connectable
and

Connected

Begin process
CONNECT RESET

CONNECT
RESET

CONNECT
RESET

System failure
with rollback

CONNECT TO,
COMMIT or
ROLLBACK

Successful CONNECT TO

CONNECT TO
with system failure

SQL statement other
than CONNECT RESET,
COMMIT or ROLLBACK

SQL statement other than
CONNECT TO, CONNECT RESET,

COMMIT or ROLLBACK

ROLLBACK,
successful COMMIT,

or deadlock

Figure 5. Connection State Transitions If Implicit Connect Is Not Available

100 Database Administration Concepts and Configuration Reference

An application process at computer system “A” can connect to an application
server at computer system “B” by issuing a CONNECT or a SET CONNECTION
statement. The application process can then execute any number of static and
dynamic SQL statements that reference objects at “B” before ending the unit of
work. All objects referenced in a single SQL statement must be managed by the
same application server. However, unlike the remote unit of work facility, any
number of application servers can participate in the same unit of work. A commit
or a rollback operation ends the unit of work.

An application-directed distributed unit of work uses a type 2 connection. A type 2
connection connects an application process to the identified application server, and
establishes the rules for application-directed distributed units of work.

A type 2 application process:
v Is always connectable
v Is either in the connected state or in the unconnected state
v Has zero or more connections.

Each connection of an application process is uniquely identified by the database
alias of the application server for the connection.

An individual connection always has one of the following connection states:
v current and held
v current and release-pending
v dormant and held
v dormant and release-pending

A type 2 application process is initially in the unconnected state, and does not
have any connections. A connection is initially in the current and held state.

Chapter 5. Databases 101

Application process connection states
There are certain rules that apply to the execution of a CONNECT statement.

The following rules apply to the execution of a CONNECT statement:
v A context cannot have more than one connection to the same application server

at the same time.
v When an application process executes a SET CONNECTION statement, the

specified location name must be an existing connection in the set of connections
for the application process.

v When an application process executes a CONNECT statement, and the
SQLRULES(STD) option is in effect, the specified server name must not be an
existing connection in the set of connections for the application process. For a
description of the SQLRULES option, see “Options that govern unit of work
semantics” on page 108.

If an application process has a current connection, the application process is in
the connected state. The CURRENT SERVER special register contains the name of
the application server for the current connection. The application process can
execute SQL statements that refer to objects managed by that application server.

Current

Current

Dormant

Dormant

Held
Release-
pending

States of a Connection

States of a Connection

RELEASE

Successful CONNECT or
SET CONNECTION

specifying an
existing dormant connection

Successful CONNECT or
SET CONNECTION

specifying another connection

The current connection is intentionally ended,
or a failure occurs causing the loss

of the connection

Successful CONNECT or
SET CONNECTION

Begin
process

Figure 6. Application-Directed Distributed Unit of Work Connection State Transitions

102 Database Administration Concepts and Configuration Reference

An application process that is in the unconnected state enters the connected state
when it successfully executes a CONNECT or a SET CONNECTION statement. If
there is no connection, but SQL statements are issued, an implicit connect is made,
provided the DB2DBDFT environment variable has been set with the name of a
default database.

If an application process does not have a current connection, the application
process is in the unconnected state. The only SQL statements that can be executed
are CONNECT, DISCONNECT ALL, DISCONNECT (specifying a database), SET
CONNECTION, RELEASE, COMMIT, ROLLBACK, and local SET statements.

An application process in the connected state enters the unconnected state when its
current connection intentionally ends, or when an SQL statement fails, causing a
rollback operation at the application server and loss of the connection. Connections
end intentionally following the successful execution of a DISCONNECT statement,
or a COMMIT statement when the connection is in release-pending state. (If the
DISCONNECT precompiler option is set to AUTOMATIC, all connections end. If it
is set to CONDITIONAL, all connections that do not have open WITH HOLD
cursors end.)

Connection states
There are two types of connection states: “held and release-pending states” and
“current and dormant states”.

If an application process executes a CONNECT statement, and the server name is
known to the application requester but is not in the set of existing connections for
the application process: (i) the current connection is placed into the dormant
connection state, the server name is added to the set of connections, and the new
connection is placed into both the current connection state and the held connection
state.

If the server name is already in the set of existing connections for the application
process, and the application is precompiled with the SQLRULES(STD) option, an
error (SQLSTATE 08002) is raised.

Held and release-pending states. The RELEASE statement controls whether a
connection is in the held or the release-pending state. The release-pending state
means that a disconnect is to occur at the next successful commit operation. (A
rollback has no effect on connections.) The held state means that a disconnect is not
to occur at the next commit operation.

All connections are initially in the held state and can be moved to the
release-pending state using the RELEASE statement. Once in the release-pending
state, a connection cannot be moved back to the held state. A connection remains
in release-pending state across unit of work boundaries if a ROLLBACK statement
is issued, or if an unsuccessful commit operation results in a rollback operation.

Even if a connection is not explicitly marked for release, it might still be
disconnected by a commit operation if the commit operation satisfies the
conditions of the DISCONNECT precompiler option.

Current and dormant states. Regardless of whether a connection is in the held
state or the release-pending state, it can also be in the current state or the dormant

Chapter 5. Databases 103

state. A connection in the current state is the connection being used to execute SQL
statements while in this state. A connection in the dormant state is a connection that
is not current.

The only SQL statements that can flow on a dormant connection are COMMIT,
ROLLBACK, DISCONNECT, or RELEASE. The SET CONNECTION and
CONNECT statements change the connection state of the specified server to
current, and any existing connections are placed or remain in dormant state. At
any point in time, only one connection can be in current state. If a dormant
connection becomes current in the same unit of work, the state of all locks, cursors,
and prepared statements is the same as the state they were in the last time that the
connection was current.

When a connection ends

When a connection ends, all resources that were acquired by the application
process through the connection, and all resources that were used to create and
maintain the connection are de-allocated. For example, if the application process
executes a RELEASE statement, any open cursors are closed when the connection
ends during the next commit operation.

A connection can also end because of a communications failure. If this connection
is in current state, the application process is placed in unconnected state.

All connections for an application process end when the process ends.

Customizing an application environment using the connect
procedure

The connect procedure provides you a way to allow applications in your
environment to implicitly execute a specific procedure upon connection. This
procedure can allow you to customize an application environment to a database
from a central point of control. For example, in the connect procedure you can set
special registers such as CURRENT_PATH to non-default values by invoking the
SET CURRENT PATH statement. This new CURRENT_PATH value will now be
the effective default CURRENT_PATH for all applications.

Any procedure created in the database that conforms to the naming and parameter
restrictions can be used as the connect procedure for that database. The
customization logic is provided by you in the form of a procedure created in the
same database and is allowed to do any of the usual actions of a procedure such
as issue SQL statements.

The CONNECT_PROC database configuration parameter specifies the connect
procedure to be used for all connections to the database. Update the CONNECT_PROC
parameter to set the name of the connect procedure and enable it. A database
connection is required to update a non-zero length value of the CONNECT_PROC
parameter. After the CONNECT_PROC parameter is set, the session authorization ID of
any new connection must have EXECUTE privilege on the specified connect
procedure either directly or indirectly through one of its associated groups, roles,
or PUBLIC.

The connect procedure is implicitly executed on the server at the end of successful
connection processing and before processing any subsequent requests on the same
connection. After the connect procedure runs successfully, the database manager

104 Database Administration Concepts and Configuration Reference

commits any changes made by the connect procedure. If the connect procedure
fails, any changes made by the connect procedure are rolled back and the
connection attempt fails with an error.

Note: Any changes made to a special register in the connect procedure are
reflected in the resulting session even after the procedure finishes.

Important: Any error returned by the connection procedure will fail an attempted
connection. The error returned by execution of the connect procedure is returned to
the application. If you want to modify the connect procedure and fix the error, you
must unset the CONNECT_PROC parameter to allow connections to succeed until the
problem is fixed.

Recommendations for connect procedure

To avoid problems with your connect procedure, ensure that your connect
procedure complies with the following recommendations:
v Keep the connect procedure logic simple.

Using a connect procedure affects the performance of CONNECT commands for
every connection by introducing additional processing. The performance impact
can be significant if the procedure is inefficient or experiences delays such as
lock contention.
Ensure the procedure is well tested before establishing it as a connect procedure.

v Avoid accessing objects in the connect procedure that will be dropped or altered.
If a dependent object in the connect procedure is dropped or privileges to access
dependent objects are revoked, the connect procedure may fail. An error
returned from the procedure can block new connections to the database from
being established based on the logic of your procedure.

v Avoid calling another procedure from the connect procedure.
Procedures called by the connect procedure can be dropped or altered, unlike
the connect procedure itself. If procedures called by the connect procedure are
invalidated or dropped, the connect procedure may fail. An error returned from
the connect procedure can block new connections to the database from being
established based on the logic of your procedure. Also, note that special registers
changed in procedures that are called from the connect procedure do not change
the special registers of the calling environment (as opposed to special registers
changed in the connect procedure itself which do take effect in the application).

v Avoid specifying the COMMIT ON RETURN clause in the connect procedure.
An internal commit is processed after the implicit call of connect procedure. If
the clause COMMIT ON RETURN YES is specified, the database manager
processes multiple commit calls that can affect performance. Specifying
COMMIT ON RETURN NO has no effect on connect procedure processing.

v Free all resources and close all cursors before exiting the connect procedure.
Applications cannot access any resources left open (such as WITH HOLD
cursors) by the connect procedure. The resources held by the connect procedure
after the commit is processed can be freed only when the application finishes.

v Grant EXECUTE privilege to PUBLIC for the connect procedure.
A connect procedure is not intended to control database access. Access control is
done by granting database authorities to users.

v Avoid using different values for the CONNECT_PROC parameter for different
database partitions.

Chapter 5. Databases 105

Using different connect procedures for various database partitions can produce
inconsistent application behavior depending on the database partition to which
users are connected to. It also makes the database environment more complex
and difficult to manage.

Usage notes for connect procedure

Connect procedure has the following restrictions and limitations:
v You cannot create a procedure with the same name as a connect procedure while

the CONNECT_PROC parameter is set.
v Only a procedure with exactly zero parameters can be used as a connect

procedure. No other procedure sharing the same two-part name can exist in the
database as long as the CONNECT_PROC parameter is set.

v The connect procedure name (both schema and procedure name) can only
contain the following characters:
– A-Z
– a-z
– _ (underscore)
– 0-9
In addition, the schema and procedure name need to follow the rules of an
ordinary identifier.

v You cannot drop or alter the connect procedure while the CONNECT_PROC
parameter is set.
To alter or drop the connect procedure, change the CONNECT_PROC parameter to
null or the name of a different procedure.

v A connect procedure cannot use client information fields set by the sqleseti API
or the SQLSetConnectAttr CLI functions.
The special register for these fields contains their default server value before the
connect procedure runs. The client information fields or SQL special register set
by calling the sqleseti API, SQLSetConnectAttr CLI function, or
SQLSetEnvAttrCLI function (for example, CLIENT USERID, CLIENT ACCTNG,
CLIENT APPLNAME, and CLIENT WRKSTNNAME) are not yet updated when
the connect procedure runs.

v The client information fields or SQL special register set by calling the sqleseti
API, the SQLSetConnectAttr CLI function, or the SQLSetEnvAttrCLI function,
IBM Data Server Driver for JDBC and SQLJ method set
ClientAccountingInformation take precedence and override the special register
values set in the connect procedure.

v Only special registers that are set directly by the connect procedure will remain
set after returning from the connect procedure. The nested routine calls within
the connect procedure do not change the settings of the special registers in the
calling environment.

Examples of implementing connect procedure

The following examples show you some samples of connect procedure and how
the connect procedure is enabled in the database:

Example 1

1. Define an SQL procedure NEWTON.CONNECTPROC to DB2 to set
special register based on SESSION_USER.

106 Database Administration Concepts and Configuration Reference

CREATE PROCEDURE NEWTON.CONNECTPROC ()
READS SQL DATA
LANGUAGE SQL

BEGIN

--set the special register based on session user id
CASE SESSION_USER

WHEN ’USERA’ THEN
SET CURRENT LOCALE LC_TIME ’fr_FR’;

WHEN ’USERB’ THEN
SET CURRENT LOCALE LC_TIME ’de_DE’;

ELSE
SET CURRENT LOCALE LC_TIME ’au_AU’;

END CASE;

END %

This procedure establishes a setting for the CURRENT LOCALE
LC_TIME special register with special case values for users USERA and
USERB.

2. Grant EXECUTE privilege on the connect procedure to the group
PUBLIC:
GRANT EXECUTE ON PROCEDURE NEWTON.CONNECTPROC TO PUBLIC

.
3. Update the CONENCT_PROC parameter to indicate that this new procedure

is to be invoked for any new connection:
db2 update db cfg using CONNECT_PROC "NEWTON.CONNECTPROC"

The NEWTON.CONNECTPROC connect procedure is now
automatically invoked for any subsequent CONNECT request for a
new connection. The special register CURRENT LOCALE LC_TIME is
set based on SESSION USER.

Example 2

1. Set up and invoke a procedure for new connections in order to
customize their initial special register values.

CREATE PROCEDURE MYSCHEMA.CONNECTPROC
()
EXTERNAL NAME 'parts!connectproc’
DBINFO
READS SQL DATA
LANGUAGE C
PARAMETER STYLE SQL

This procedure reads from a database table,
MYSCHEMA.CONNECTDEFAULTS, to determine what values to set in
the CURRENT SCHEMA, CURRENT PATH, and CURRENT QUERY
OPTIMIZATION special registers based on the groups associated with
the authorization ID of the new connection. It also sets the value of the
global variable, MYSCHEMA.SECURITY_SETTING, based on
information in the same table.

2. Grant EXECUTE privilege on the connect procedure to the group
PUBLIC:
GRANT EXECUTE ON PROCEDURE MYSCHEMA.CONNECTPROC TO PUBLIC

.
3. Update the CONENCT_PROC parameter to indicate that this new procedure

is to be invoked for any new connection:

Chapter 5. Databases 107

db2 update db cfg using CONNECT_PROC "MYSCHEMA.CONNECTPROC"

The MYSCHEMA.CONNECTPROC connect procedure is now
automatically invoked for any subsequent CONNECT request for a
new connection.

Options that govern unit of work semantics
The semantics of type 2 connection management are determined by a set of
precompiler options. These options are summarized below with default values
indicated by bold and underlined text.
v CONNECT (1 | 2). Specifies whether CONNECT statements are to be processed

as type 1 or type 2.
v SQLRULES (DB2 | STD). Specifies whether type 2 CONNECTs are to be

processed according to the DB2 rules, which allow CONNECT to switch to a
dormant connection, or the SQL92 Standard rules, which do not allow this.

v DISCONNECT (EXPLICIT | CONDITIONAL | AUTOMATIC). Specifies what
database connections are to be disconnected when a commit operation occurs:
– Those that have been explicitly marked for release by the SQL RELEASE

statement (EXPLICIT)
– Those that have no open WITH HOLD cursors, and those that are marked for

release (CONDITIONAL)
– All connections (AUTOMATIC).

v SYNCPOINT (ONEPHASE | TWOPHASE | NONE). Specifies how COMMITs
or ROLLBACKs are to be coordinated among multiple database connections.
This option is ignored, and is included for backwards compatibility only.
– Updates can only occur against one database in the unit of work, and all

other databases are read-only (ONEPHASE). Any update attempts to other
databases raise an error (SQLSTATE 25000).

– A transaction manager (TM) is used at run time to coordinate two-phase
COMMITs among those databases that support this protocol (TWOPHASE).

– Does not use a TM to perform two-phase COMMITs, and does not enforce
single updater, multiple reader (NONE). When a COMMIT or a ROLLBACK
statement is executed, individual COMMITs or ROLLBACKs are posted to all
databases. If one or more ROLLBACKs fail, an error (SQLSTATE 58005) is
raised. If one or more COMMITs fail, another error (SQLSTATE 40003) is
raised.

To override any of the above options at run time, use the SET CLIENT command or
the sqlesetc application programming interface (API). Their current settings can be
obtained using the QUERY CLIENT command or the sqleqryc API. Note that these are
not SQL statements; they are APIs defined in the various host languages and in the
command line processor (CLP).

Data representation considerations
Different systems represent data in different ways. When data is moved from one
system to another, data conversion must sometimes be performed.

Products supporting DRDA® automatically perform any necessary conversions at
the receiving system.

To perform conversions of numeric data, the system needs to know the data type
and how it is represented by the sending system. Additional information is needed
to convert character strings. String conversion depends on both the code page of

108 Database Administration Concepts and Configuration Reference

the data and the operation that is to be performed on that data. Character
conversions are performed in accordance with the IBM Character Data
Representation Architecture (CDRA). For more information about character
conversion, see the Character Data Representation Architecture: Reference & Registry
(SC09-2190-00) manual.

Viewing the local or system database directory files
Use the LIST DATABASE DIRECTORY command to view the information associated
with the databases that you have on your system.

Before you begin

Before viewing either the local or system database directory files, you must have
previously created an instance and a database.

About this task

To see the contents of the local database directory file, issue the following
command, where <location> specifies the location of the database:

LIST DATABASE DIRECTORY ON <location>

To see the contents of the system database directory file, issue the LIST DATABASE
DIRECTORY command without specifying the location of the database directory file.

Dropping databases
Dropping a database can have far-reaching effects, because this action deletes all its
objects, containers, and associated files. The dropped database is removed
(uncataloged) from the database directories.

About this task

To drop a database using the command line, enter:
DROP DATABASE <name>

The following command deletes the database SAMPLE:
DROP DATABASE SAMPLE

Note: If you drop the SAMPLE database and find that you need it again, you can
re-create it.

To drop a database from a client application, call the sqledrpd API. To drop a
database at a specified database partition server, call the sqledpan API.

Dropping aliases
When you drop an alias, its description is deleted from the catalog, any packages
and cached dynamic queries that reference the alias are invalidated, and all views
and triggers dependent on the alias are marked inoperative.

About this task

To drop aliases, from the command line, issue the DROP statement:
DROP ALIAS EMPLOYEE-ALIAS

Chapter 5. Databases 109

110 Database Administration Concepts and Configuration Reference

Chapter 6. Database partitions

A database partition is a part of a database that consists of its own data, indexes,
configuration files, and transaction logs. A database partition is sometimes called a
node or a database node. A partitioned database environment is a database
installation that supports the distribution of data across database partitions.

For complete details about database partitions, see the Partitioning and Clustering
Guide.

© Copyright IBM Corp. 1993, 2012 111

112 Database Administration Concepts and Configuration Reference

Chapter 7. Buffer pools

A buffer pool is an area of main memory that has been allocated by the database
manager for the purpose of caching table and index data as it is read from disk.
Every DB2 database must have a buffer pool.

Each new database has a default buffer pool defined, called IBMDEFAULTBP.
Additional buffer pools can be created, dropped, and modified, using the CREATE
BUFFERPOOL, DROP BUFFERPOOL, and ALTER BUFFERPOOL statements. The
SYSCAT.BUFFERPOOLS catalog view accesses the information for the buffer pools
defined in the database.

How buffer pools are used

When a row of data in a table is first accessed, the database manager places the
page that contains that data into a buffer pool. Pages stay in the buffer pool until
the database is shut down or until the space occupied by the page is required by
another page.

Pages in the buffer pool can be either in-use or not, and they can be dirty or clean:
v In-use pages are currently being read or updated. To maintain data consistency,

the database manager only allows one agent to be updating a given page in a
buffer pool at one time. If a page is being updated, it is being accessed
exclusively by one agent. If it is being read, it might be read by multiple agents
simultaneously.

v "Dirty" pages contain data that has been changed but has not yet been written to
disk.

v After a changed page is written to disk, it is clean and might remain in the
buffer pool.

A large part of tuning a database involves setting the configuration parameters that
control the movement of data into the buffer pool and the writing of data from the
buffer out to disk. If not needed by a recent agent, the page space can be used for
new page requests from new applications. Database manager performance is
degraded by extra disk I/O.

You can use the snapshot monitor to calculate the buffer pool hit ratio, which can
help you tune your buffer pools.

Designing buffer pools
The sizes of all buffer pools can have a major impact on the performance of your
database.

Before you create a new buffer pool, resolve the following items:
v What buffer pool name do you want to use?
v Whether the buffer pool is to be created immediately or following the next time

that the database is deactivated and reactivated?
v Whether the buffer pool should exist for all database partitions, or for a subset

of the database partitions?

© Copyright IBM Corp. 1993, 2012 113

v What page size you want for the buffer pool? See “Buffer pool page sizes”.
v Whether the buffer pool will be a fixed size, or whether the database manager

will automatically adjust the size of the buffer pool in response to your
workload? It is suggested that you allow the database manager to tune your
buffer pool automatically by leaving the SIZE parameter unspecified during
buffer pool creation. For details, see the SIZE parameter of the “CREATE
BUFFERPOOL statement” and “Buffer pool memory considerations.”

v Whether you want to reserve a portion of the buffer pool for block based I/O?
For details, see: “Block-based buffer pools for improved sequential prefetching”.

Relationship between table spaces and buffer pools

When designing buffer pools, you must understand the relationship between table
spaces and buffer pools. Each table space is associated with a specific buffer pool.
IBMDEFAULTBP is the default buffer pool. The database manager also allocates
these system buffer pools: IBMSYSTEMBP4K, IBMSYSTEMBP8K,
IBMSYSTEMBP16K, and IBMSYSTEMBP32K (formerly known as the “hidden
buffer pools”). To associate another buffer pool with a table space, the buffer pool
must exist and the two must have the same page size. The association is defined
when the table space is created (using the CREATE TABLESPACE statement), but it
can be changed at a later time (using the ALTER TABLESPACE statement).

Having more than one buffer pool allows you to configure the memory used by
the database to improve overall performance. For example, if you have a table
space with one or more large (larger than available memory) tables that are
accessed randomly by users, the size of the buffer pool can be limited, because
caching the data pages might not be beneficial. The table space for an online
transaction application might be associated with a larger buffer pool, so that the
data pages used by the application can be cached longer, resulting in faster
response times. Care must be taken in configuring new buffer pools.

Buffer pool page sizes

The page size for the default buffer pool is set when you use the CREATE DATABASE
command. This default represents the default page size for all future CREATE
BUFFERPOOL and CREATE TABLESPACE statements. If you do not specify the
page size when creating the database, the default page size is 4 KB.

Note: If you have determined that a page size of 8 KB, 16 KB, or 32 KB is required
by your database, you must have at least one buffer pool of the matching page size
defined and associated with table space in your database.

However, you might need a buffer pool that has different characteristics than the
system buffer pool. You can create new buffer pools for the database manager to
use. You might have to restart the database for table space and buffer pool changes
to take effect. The page sizes that you specify for your table spaces should
determine the page sizes that you choose for your buffer pools. The choice of page
size used for a buffer pool is important because you cannot alter the page size
after you create a buffer pool.

Buffer pool memory considerations

Memory requirements
When designing buffer pools, you should also consider the memory
requirements based on the amount of installed memory on your computer
and the memory required by other applications running concurrently with

114 Database Administration Concepts and Configuration Reference

the database manager on the same computer. Operating system data
swapping occurs when there is insufficient memory to hold all the data
being accessed. This occurs when some data is written or swapped to
temporary disk storage to make room for other data. When the data on
temporary disk storage is needed, it is swapped back into main memory.

Buffer pool memory protection

With Version 9.5, data pages in buffer pool memory are protected using
storage keys, which are available only if explicitly enabled by the
DB2_MEMORY_PROTECT registry variable, and only on AIX (5.3 TL06
5.4), running on POWER6®.

Buffer pool memory protection works on a per-agent level; any particular
agent will only have access to buffer pool pages when that agent needs
access. Memory protection works by identifying at which times the DB2
engine threads should have access to the buffer pool memory and at which
times they should not have access. For details, see: “Buffer pool memory
protection (AIX running on POWER6).”

Address Windowing Extensions (AWE) and Extended Storage (ESTORE)

Note: AWE and ESTORE features have been discontinued, including the
ESTORE-related keywords, monitor elements, and data structures. To
allocate more memory, you must upgrade to a 64-bit hardware operating
system, and associated DB2 products. You should also modify applications
and scripts to remove references to this discontinued functionality.

Buffer pool memory protection (AIX running on POWER6)
The database manager uses the buffer pool to apply additions, modifications and
deletions to much of the database data. On AIX 5.3 TL06+ running on POWER6,
you can use storage keys to protect the buffer pool memory.

Storage keys is a new feature in IBM Power6 processors and the AIX operating
system that allows the protection of ranges of memory using hardware keys at a
kernel thread level. Storage key protection reduces buffer pool memory corruption
problems and limits errors that might halt the database. Attempts to illegally access
the buffer pool by programming means cause an error condition that the database
manager can detect and deal with.

Note: Buffer pool memory protection works on a per-agent level; any particular
agent will only have access to buffer pool pages when that agent needs access.

The database manager protects buffer pools by restricting access to buffer pool
memory. When an agent requires access to the buffer pools to perform it's work, it
will temporarily be granted access to the buffer pool memory. When the agent no
longer requires access to the buffer pools, access will be revoked. This ensures that
agents are only allowed to modify buffer pool contents when absolutely needed,
reducing the likelihood of buffer pool corruptions. Any illegal access to buffer pool
memory will result in a segmentation error. Tools to diagnose these errors are
provided, such as the db2diag, db2fodc, db2pdcfg, and db2support commands.

To enable the buffer pool memory protection feature, in order to increase the
resilience of the database engine, enable the DB2_MEMORY_PROTECT registry
variable:

Chapter 7. Buffer pools 115

DB2_MEMORY_PROTECT registry variable
This registry variable enables and disables the buffer pool memory
protection feature. When DB2_MEMORY_PROTECT is enabled (set to
YES), and a DB2 engine thread tries to illegally access buffer pool memory,
that engine thread traps. The default is NO.

Note: The buffer pool memory protection feature depends on the implementation
of AIX Storage Protect Keys and it might not work with the pinned shared
memory. If DB2_MEMORY_PROTECT is specified with DB2_PINNED_BP
or DB2_LARGE_PAGE_MEM setting, AIX Storage Protect Keys may not be
enabled. For more information about AIX Storage Protect Keys, refer to the
following link: http://publib.boulder.ibm.com/infocenter/systems/scope/
aix/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/
storage_protect_keys.htm

You will not be able to use the memory protection if DB2_LGPAGE_BP is
set to YES. Even if DB2_MEMORY_PROTECT is set to YES, DB2 database
manager will fail to protect the buffer pool memory and disable the
feature.

Creating buffer pools
Use the CREATE BUFFERPOOL statement to define a new buffer pool to be used
by the database manager.

About this task

Example of a basic CREATE BUFFERPOOL statement is:
CREATE BUFFERPOOL <buffer pool name>

PAGESIZE 4096

The buffer pool can be come active immediately if there is sufficient memory
available. By default new buffer pools are created using the IMMEDIATE keyword,
and on most platforms, the database manager will be able to acquire more
memory. The expected return is successful memory allocation. Only in cases where
the database manager is unable to allocate the extra memory will it return a
warning condition stating that the buffer pool could not be started, and this is
done on the subsequent database startup. For immediate requests, you do not need
to restart the database. When this statement is committed, the buffer pool is
reflected in the system catalog tables, but the buffer pool does not become active
until the next time the database is started. For more information about this
statement, including other options, see the “CREATE BUFFERPOOL statement”.

If you issue a CREATE BUFFERPOOL DEFERRED, the buffer pool is not
immediately activated; instead, it is created at the next database startup. Until the
database is restarted, any new table spaces will use an existing buffer pool, even if
that table space is created to explicitly use the deferred buffer pool.

There needs to be enough real memory on the computer for the total of all the
buffer pools that you have created. The operating system also needs some memory
to operate.

To create a buffer pool using the command line, do the following:
1. Get the list of buffer pool names that already exist in the database by issuing

the following SQL statement:
SELECT BPNAME FROM SYSCAT.BUFFERPOOLS

116 Database Administration Concepts and Configuration Reference

http://publib.boulder.ibm.com/infocenter/systems/scope/aix/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/storage_protect_keys.htm
http://publib.boulder.ibm.com/infocenter/systems/scope/aix/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/storage_protect_keys.htm
http://publib.boulder.ibm.com/infocenter/systems/scope/aix/index.jsp?topic=/com.ibm.aix.genprogc/doc/genprogc/storage_protect_keys.htm

2. Choose a buffer pool name that is not currently found in the result list.
3. Determine the characteristics of the buffer pool you are going to create.
4. Ensure that you have the correct authorization ID to run the CREATE

BUFFERPOOL statement.
5. Issue the CREATE BUFFERPOOL statement.

On partitioned databases, you can also define the buffer pool to be created
differently, including different sizes, on each database partition. The default ALL
DBPARTITIONNUMS clause indicates that this buffer pool will be created on all
database partitions in the database.

In the following example, the optional DATABASE PARTITION GROUP clause
identifies the database partition group or groups to which the buffer pool
definition applies:

CREATE BUFFERPOOL <buffer pool name>
PAGESIZE 4096
DATABASE PARTITION GROUP <db partition group name>

If this parameter is specified, the buffer pool will only be created on database
partitions in these database partition groups. Each database partition group must
currently exist in the database. If the DATABASE PARTITION GROUP clause is not
specified, this buffer pool will be created on all database partitions (and on any
database partitions that are subsequently added to the database).

For more information, see the “CREATE BUFFERPOOL statement”.

Modifying buffer pools
There are a number of reasons why you might want to modify a buffer pool, for
example, to enable self-tuning memory. To do this, you use the ALTER
BUFFERPOOL statement.

Before you begin

The authorization ID of the statement must have SYSCTRL or SYSADM authority.

About this task

When working with buffer pools, you might need to do one of the following tasks:
v Enable self tuning for a buffer pool, allowing the database manager to adjust the

size of the buffer pool in response to your workload.
v Modify the block area of the buffer pool for block-based I/O.
v Add this buffer pool definition to a new database partition group.
v Modify the size of the buffer pool on some or all database partitions.

To alter a buffer pool using the command line, do the following:
1. To get the list of the buffer pool names that already exist in the database, issue

the following statement:
SELECT BPNAME FROM SYSCAT.BUFFERPOOLS

2. Choose the buffer pool name from the result list.
3. Determine what changes must be made.
4. Ensure that you have the correct authorization ID to run the ALTER

BUFFERPOOL statement.

Chapter 7. Buffer pools 117

Note: Two key parameters are IMMEDIATE and DEFERRED. With IMMEDIATE, the
buffer pool size is changed without having to wait until the next database
activation for it to take effect. If there is insufficient database shared memory to
allocate new space, the statement is run as DEFERRED.

With DEFERRED, the changes to the buffer pool will not be applied until the
database is reactivated. Reserved memory space is not needed; the database
manager allocates the required memory from the system at activation time.

5. Use the ALTER BUFFERPOOL statement to alter a single attribute of the buffer
pool object. For example:

ALTER BUFFERPOOL buffer pool name SIZE number of pages

v The buffer pool name is a one-part name that identifies a buffer pool described in
the system catalogs.

v The number of pages is the new number of pages to be allocated to this specific
buffer pool. You can also use a value of -1, which indicates that the size of the
buffer pool should be the value found in the buffpage database configuration
parameter.

The statement can also have the DBPARTITIONNUM <db partition number>
clause that specifies the database partition on which the size of the buffer pool is
modified. If this clause is not specified, the size of the buffer pool is modified on
all database partitions except those that have an exception entry in
SYSCAT.BUFFERPOOLDBPARTITIONS. For details on using this clause for
database partitions, see the ALTER BUFFERPOOL statement.

Changes to the buffer pool as a result of this statement are reflected in the system
catalog tables when the statement is committed. However, no changes to the actual
buffer pool take effect until the next time the database is started, except for
successful ALTER BUFFERPOOL requests specified with the default IMMEDIATE
keyword.

There must be enough real memory on the computer for the total of all the buffer
pools that you have created. There also needs to be sufficient real memory for the
rest of the database manager and for your applications.

Dropping buffer pools
When dropping buffer pools, ensure that no table spaces have been assigned to
those buffer pools. You cannot drop the IBMDEFAULTBP buffer pool.

About this task

Disk storage may not be released until the next connection to the database. Storage
memory is not actually released from a dropped buffer pool until the database is
stopped. Buffer pool memory is released immediately, to be used by the database
manager.

You can use the DROP BUFFERPOOL statement to drop buffer pools, as follows:
DROP BUFFERPOOL <buffer pool name>

118 Database Administration Concepts and Configuration Reference

Chapter 8. Table spaces

A table space is a storage structure containing tables, indexes, large objects, and long
data. They are used to organize data in a database into logical storage groupings
that relate to where data is stored on a system. Table spaces are stored in database
partition groups.

Using table spaces to organize storage offers a number of benefits:

Recoverability
Putting objects that must be backed up or restored together into the same
table space makes backup and restore operations more convenient, since
you can backup or restore all the objects in table spaces with a single
command. If you have partitioned tables and indexes that are distributed
across table spaces, you can backup or restore only the data and index
partitions that reside in a given table space.

More tables
There are limits to the number of tables that can be stored in any one table
space; if you have a need for more tables than can be contained in a table
space, you need only to create additional table spaces for them.

Storage flexibility
With DMS and SMS table spaces, you can specify which storage devices
are used to store data. You could choose, for example, choose to store
current, operational data in table spaces that reside on faster devices, and
historical data in table spaces that reside on slower (and less expensive)
devices.

Ability to isolate data in buffer pools for improved performance or memory
utilization

If you have a set of objects (for example, tables, indexes) that are queried
frequently, you can assign the table space in which they reside a buffer
pool with a single CREATE or ALTER TABLESPACE statement. You can
assign temporary table spaces to their own buffer pool to increase the
performance of activities such as sorts or joins. In some cases, it might
make sense to define smaller buffer pools for seldom-accessed data, or for
applications that require very random access into a very large table; in
such cases, data need not be kept in the buffer pool for longer than a
single query

Table spaces consist of one or more containers. A container can be a directory name,
a device name, or a file name. A single table space can have several containers. It
is possible for multiple containers (from one or more table spaces) to be created on
the same physical storage device (although you will get the best performance if
each container you create uses a different storage device). If you are using
automatic storage table spaces, the creation and management of containers is
handled automatically by the database manager. If you are not using automatic
storage table spaces, you must define and manage containers yourself.

Figure 7 on page 120 illustrates the relationship between tables and table spaces
within a database, and the containers associated with that database.

© Copyright IBM Corp. 1993, 2012 119

The EMPLOYEE and DEPARTMENT tables are in the HUMANRES table space,
which spans containers 0, 1, 2 and 3. The PROJECT table is in the SCHED table
space in container 4. This example shows each container existing on a separate
disk.

The database manager attempts to balance the data load across containers. As a
result, all containers are used to store data. The number of pages that the database
manager writes to a container before using a different container is called the extent
size. The database manager does not always start storing table data in the first
container.

Figure 8 on page 121 shows the HUMANRES table space with an extent size of
two 4 KB pages, and four containers, each with a small number of allocated
extents. The DEPARTMENT and EMPLOYEE tables both have seven pages, and
span all four containers.

Database partition group

Database

SCHED
table space

HUMANRES
table space

DEPARTMENT
table

PROJECT
table

EMPLOYEE
table

Container
4

Container
0

Container
1

Container
2

Container
3

Figure 7. Table spaces and tables in a database

120 Database Administration Concepts and Configuration Reference

Table spaces for system, user and temporary data
Each database must have a minimal set of table spaces that are used for storing
system, user and temporary data.

A database must contain at least three table spaces:
v A catalog table space

v One or more user table spaces

v One or more temporary table spaces.

Catalog table spaces

A catalog table space contains all of the system catalog tables for the database. This
table space is called SYSCATSPACE, and it cannot be dropped.

User table spaces

A user table space contains user-defined tables. By default, one user table space,
USERSPACE1, is created.

If you do not specify a table space for a table at the time you create it, the database
manager will choose one for you. Refer to the documentation for the IN
tablespace-name clause of the CREATE TABLE statement for more information.

The page size of a table space determines the maximum row length or number of
columns that you can have in a table. The documentation for the CREATE TABLE
statement shows the relationship between page size, and the maximum row size
and column count. Before Version 9.1, the default page size was 4 KB. In Version
9.1 and following, the default page size can be one of the other supported values.
The default page size is declared when creating a new database. Once the default
page size has been declared, you are still free to create a table space with one page
size for the table, and a different table space with a different page size for long or
LOB data. If the number of columns or the row size exceeds the limits for a table

HUMANRES table space

DEPARTMENT DEPARTMENT

EMPLOYEE EMPLOYEEEMPLOYEE

Container 0 Container 1 Container 2 Container 3

Extent size

EMPLOYEE

DEPARTMENT

4 KB page

DEPARTMENT

Figure 8. Containers and extents in a table space

Chapter 8. Table spaces 121

space's page size, an error is returned (SQLSTATE 42997).

Temporary table spaces

A temporary table space contains temporary tables. Temporary table spaces can be
system temporary table spaces or user temporary table spaces.

System temporary table spaces hold temporary data required by the database
manager while performing operations such as sorts or joins. These types of
operations require extra space to process the results set. A database must have at
least one system temporary table space; by default, one system temporary table
space called TEMPSPACE1 is created at database creation.

When processing queries, the database manager might need access to a system
temporary table space with a page size large enough to manipulate data related to
your query. For example, if your query returns data with rows that are 8KB long,
and there are no system temporary table spaces with page sizes of at least 8KB, the
query might fail. You might need to create a system temporary table space with a
larger page size. Defining a temporary table space with a page size equal to that of
the largest page size of your user table spaces will help you avoid these kinds of
problems.

User temporary table spaces hold temporary data from tables created with a
DECLARE GLOBAL TEMPORARY TABLE or CREATE GLOBAL TEMPORARY
TABLE statement. They are not created by default at the time of database creation.
They also hold instantiated versions of created temporary tables. To allow the
definition of declared or created temporary tables, at least one user temporary
table space should be created with the appropriate USE privileges. USE privileges
are granted using the GRANT statement.

If a database uses more than one temporary table space and a new temporary
object is needed, the optimizer will choose an appropriate page size for this object.
That object will then be allocated to the temporary table space with the
corresponding page size. If there is more than one temporary table space with that
page size, then the table space will be chosen in a round-robin fashion, starting
with one table space with that page size, and then proceeding to the next for the
next object to be allocated, and so, returning to the first table space after all
suitable table spaces have been used. In most circumstances, though, it is not
recommended to have more than one temporary table space with the same page
size.

Table spaces in a partitioned database environment
In a partitioned database environment, each table space is associated with a
specific database partition group. This allows the characteristics of the table space
to be applied to each database partition in the database partition group.

When allocating a table space to a database partition group, the database partition
group must already exist. The association between the table space and the database
partition group is defined when you create the table space using the CREATE
TABLESPACE statement.

You cannot change the association between a table space and a database partition
group. You can only change the table space specification for individual database
partitions within the database partition group using the ALTER TABLESPACE
statement.

122 Database Administration Concepts and Configuration Reference

In a single-partition environment, each table space is associated with a default
database partition group as follows:
v The catalog table spaces SYSCATSPACE is associated with IBMCATGROUP
v User table spaces are associated with IBMDEFAULTGROUP
v Temporary table spaces are associated with IBMTEMPGROUP.

In a partitioned database environment, the IBMCATGROUP partition will contain
all three default table spaces, and the other database partitions will each contain
only TEMPSPACE1 and USERSPACE1.

Table spaces and storage management
Table spaces can be set up in different ways, depending on how you want them to
use available storage. You can have the operating system manage allocations of
space, or you can have the database manager allocate space for your data, based
on parameters you specify. Or you can create table spaces that allocate storage
automatically.

The three types of table spaces are known as:
v System managed space (SMS), in which the operating system's file manager

controls the storage space once you have defined the location for storing
database files

v Database managed space (DMS), in which the database manager controls the
usage of storage space one you have allocated storage containers.

v Automatic storage table spaces, in which the database manager controls the
creation of containers as needed.

Each can be used together in any combination within a database

System managed space
In an SMS (System Managed Space) table space, the operating system's file system
manager allocates and manages the space where the table is stored. Unlike
database managed (DMS) table spaces, storage space is not pre-allocated when the
table space is created; it is allocated on demand.

The SMS storage model consists of files representing database objects; for example,
each table has at least one physical file associated with it. When you set up the
table space, you decide the location of the files by creating containers. Each
container in an SMS table space is associated with an absolute or relative directory
name. Each of these directories can be located on a different physical storage
device or file system. The database manager controls the names of files created for
objects in each container, and the file system is responsible for managing them. By
controlling the amount of data written to each file, the database manager
distributes the data evenly across the table space containers.

How space is allocated

In an SMS table space, space for tables is allocated on demand. The amount of
space that is allocated is dependent on the setting of the multipage_alloc database
configuration parameter. If this configuration parameter is set to YES (the default),
then a full extent (typically made up of two or more pages) will be allocated when
space is required. Otherwise, space will be allocated one page at a time.

Multi-page file allocation only affects the data and index portions of a table. This
means that the files used for long data (LONG VARCHAR, LONG VAR
GRAPHIC), large objects (LOBs) are not extended one extent at a time.

Chapter 8. Table spaces 123

Note: Multipage file allocation is not applicable to temporary table spaces that use
system managed space.

When all space in a single container in an SMS table space has been consumed, the
table space is considered full, even if space remains in other containers. Unlike
DMS table spaces, containers cannot be added to an SMS table space after it has
been created. Add more space to the underlying file system to provide more space
to the SMS container.

Planning SMS table spaces

When considering the use of SMS table spaces, you must consider two factors:
v The number of containers the table space will need. When you create an SMS

table space, you must specify the number of containers that you want your table
space to use. It is very important to identify all the containers you want to use,
because you cannot add or delete containers after an SMS table space is created.
The one exception to this is in a partitioned database environment; when a new
database partition is added to the database partition group for an SMS table
space, the ALTER TABLESPACE statement can be used to add containers to the
new database partition.
The maximum size of the table space can be estimated by the formula:

n × maxFileSystemSize

where n is the number of containers and maxFileSystemSize represents the
maximum file system size supported by the operating system.
This formula assumes that each container is mapped to a distinct file system,
and that each file system has the maximum amount of space available, and that
each file system is of the same size. In practice, this might not be the case, and
the maximum table space size might be much smaller. There are also SQL limits
on the size of database objects, which might affect the maximum size of a table
space.
Attention: The path you specify for the SMS table space must not contain any
other files or directories.

v The extent size for the table space. The extent size is the number of pages that
the database manager writes to a container before using a different container.
The extent size can only be specified when the table space is created. Because it
cannot be changed later, it is important to select an appropriate value for the
extent size.
If you do not specify the extent size when creating a table space, the database
manager will create the table space using the default extent size, defined by the
dft_extent_sz database configuration parameter. This configuration parameter is
initially set based on information provided when the database is created. If the
value for DFT_EXTENT_SZ is not specified for the CREATE DATABASE command,
the default extent size will be set to 32.

Containers and extent size

To choose appropriate number of containers and the extent size for the table space,
you must understand:
v The limitation that your operating system imposes on the size of a logical file

system. For example, some operating systems have a 2 GB limit. Therefore, if
you want a 64 GB table object, you will need at least 32 containers on this type

124 Database Administration Concepts and Configuration Reference

of system. When you create the table space, you can specify containers that
reside on different file systems and, as a result, increase the amount of data that
can be stored in the database.

v How the database manager manages the data files and containers associated
with a table space. The first table data file (by convention, SQL00002.DAT) is
created in one of the table space containers. The database manager determines
which one, based on an algorithm that takes into account the total number of
containers together with the table identifier. This file is allowed to grow to the
extent size. After it reaches this size, the database manager writes data to
SQL00002.DAT in the next container. This process continues until all of the
containers contain SQL00002.DAT files, at which time the database manager
returns to the starting container. This process, known as striping, continues
through the container directories until a container becomes full (SQL0289N), or
no more space can be allocated from the operating system (disk full error).
Striping applies to the block map files (SQLnnnnn.BKM), to index objects, as
well as other objects used to store table data. If you choose to implement disk
striping along with the striping provided by the database manager, the extent
size of the table space and the strip size of the disk should be identical.

Note: The SMS table space is deemed to be full as soon as any one of its
containers is full. Thus, it is important to have the same amount of space
available to each container.
SMS table spaces are defined using the MANAGED BY SYSTEM option on the CREATE
DATABASE command, or on the CREATE TABLESPACE statement.

Database managed space
In a DMS (database managed space) table space, the database manager controls the
storage space. Unlike SMS table spaces, storage space is pre-allocated on the file
system based on container definitions that you specify when you create the DMS
table space.

The DMS storage model consists of a limited number of files or devices where
space is managed by the database manager. You decide which files and devices to
use when creating containers, and you manage the space for those files and
devices.

A DMS table space containing user defined tables and data can be defined as a
large (the default) or regular table space that stores any table data or index data.
The maximum size of a regular table space is 512 GB for 32 KB pages. The
maximum size of a large table space is 64 TB. See “SQL and XML limits” in the
SQL Reference for the maximum size of regular table spaces for other page sizes.

There are two options for containers when working with DMS table spaces: files
and raw devices. When working with file containers, the database manager
allocates the entire container at table space creation time. A result of this initial
allocation of the entire table space is that the physical allocation is typically, but
not guaranteed to be, contiguous even though the file system is doing the
allocation. When working with raw device containers, the database manager takes
control of the entire device and always ensures the pages in an extent are
contiguous. (An extent is defined as the number of pages that the database
manager writes to a container before using a different container.)

Planning DMS table spaces

When designing your DMS table spaces and containers, you should consider the
following:

Chapter 8. Table spaces 125

v The database manager uses striping to ensure an even distribution of data across
all containers. This writes the data evenly across all containers in the table space,
placing the extents for tables in round-robin fashion across all containers. DB2
striping is recommended when writing data into multiple containers. If you
choose to implement disk striping along with DB2 striping, the extent size of the
table space and the strip size of the disk should be identical.

v Unlike SMS table spaces, the containers that make up a DMS table space are not
required to be the same size; however, this is not normally recommended,
because it results in uneven striping across the containers, and sub-optimal
performance. If any container is full, DMS table spaces use available free space
from other containers.

v Because space is pre-allocated, it must be available before the table space can be
created. When using device containers, the device must also exist with enough
space for the definition of the container. Each device can have only one
container defined on it. To avoid wasted space, the size of the device and the
size of the container should be equivalent. For example, if the device is has a
storage capacity equivalent to 5000 pages, and the device container is defined to
be 3000 pages, 2000 pages on the device will not be usable.

v By default, one extent in every container is reserved for overhead. Only full
extents are used, so for optimal space management, you can use the following
formula to determine an appropriate size to use when allocating a container:

extent_size * (n + 1)

where extent_size is the size of each extent in the table space, and n is the
number of extents that you want to store in the container.

v The minimum size of a DMS table space is five extents.
– Three extents in the table space are reserved for overhead:
– At least two extents are required to store any user table data. (These extents

are required for the regular data for one table, and not for any index, long
field or large object data, which require their own extents.)

Attempting to create a table space smaller than five extents will result in an
error (SQL1422N).

v Device containers must use logical volumes with a “character special interface,”
not physical volumes.

v You can use files instead of devices with DMS table spaces. The default table
space attribute - NO FILE SYSTEM CACHING in Version 9.5 allows files to
perform close to devices with the advantage of not requiring to set up devices.
For more information, see “Table spaces without file system caching” on page
155.

v If your workload involves LOBs or LONG VARCHAR data, you might derive
performance benefits from file system caching.

Note: LOBs and LONG VARCHARs are not buffered by the database manager's
buffer pool.

v Some operating systems allow you to have physical devices greater than 2 GB in
size. You should consider dividing the physical device into multiple logical
devices, so that no container is larger than the size allowed by the operating
system.

When working with DMS table spaces, you should consider associating each
container with a different disk. This allows for a larger table space capacity and the
ability to take advantage of parallel I/O operations.

126 Database Administration Concepts and Configuration Reference

The CREATE TABLESPACE statement creates a new table space within a database,
assigns containers to the table space, and records the table space definition and
attributes in the catalog. When you create a table space, the extent size is defined
as a number of contiguous pages. Only one table or object, such as an index, can
use the pages in any single extent. All objects created in the table space are
allocated extents in a logical table space address map. Extent allocation is managed
through space map pages.

The first extent in the logical table space address map is a header for the table
space containing internal control information. The second extent is the first extent
of space map pages (SMP) for the table space. SMP extents are spread at regular
intervals throughout the table space. Each SMP extent is a bit map of the extents
from the current SMP extent to the next SMP extent. The bit map is used to track
which of the intermediate extents are in use.

The next extent following the SMP is the object table for the table space. The object
table is an internal table that tracks which user objects exist in the table space and
where their first extent map page (EMP) extent is located. Each object has its own
EMPs which provide a map to each page of the object that is stored in the logical
table space address map. Figure 9 shows how extents are allocated in a logical
table space address map.

Table space maps for database-managed table spaces:

Figure 9. Logical table space address map

Chapter 8. Table spaces 127

A table space map is the database manager's internal representation of a DMS table
space that describes the logical to physical conversion of page locations in a table
space. This topic describes why a table space map is useful, and where the
information in a table space map comes from.

In a partitioned database, pages in a DMS table space are logically numbered from
0 to (N-1), where N is the number of usable pages in the table space.

The pages in a DMS table space are grouped into extents, based on the extent size,
and from a table space management perspective, all object allocation is done on an
extent basis. That is, a table might use only half of the pages in an extent but the
whole extent is considered to be in use and owned by that object. By default, one
extent is used to hold the container tag, and the pages in this extent cannot be
used to hold data. However, if the DB2_USE_PAGE_CONTAINER_TAG registry
variable is turned on, only one page is used for the container tag.

Figure 10 on page 129 shows the logical address map for a DMS table space.

128 Database Administration Concepts and Configuration Reference

Within the table space address map there are two types of map pages: extent map
pages (EMP) and space map pages.

The object table is an internal relational table that maps an object identifier to the
location of the first EMP extent in the table. This EMP extent, directly or indirectly,
maps out all extents in the object. Each EMP contains an array of entries. Each
entry maps an object-relative extent number to a table space-relative page number
where the object extent is located. Direct EMP entries directly map object-relative
addresses to table space-relative addresses. The last EMP page in the first EMP
extent contains indirect entries. Indirect EMP entries map to EMP pages which
then map to object pages. The last 16 entries in the last EMP page in the first EMP
extent contain double-indirect entries.

The extents from the logical table-space address map are striped in round-robin
order across the containers associated with the table space.

Object
Table EMP

Header Reserved

First Extent of SMPs

First Extent of Object Table

Extent Map for T1

First Extent of T1 Data Pages

Second Extent of T1 Data Pages

Extent Map for T2

First Extent of T2 Data Pages

Third Extent of T1 Data Pages

Second Extent of SMPs

. . .

. . .

. . .

. . .

. . .

. . .

1

2

3

4

5

6

7

8

0

31968

Table space (logical) address map

16
20
32

Maps object-relative
extent number within T1
to table space-relative
page number

Maps object-relative
extent number within T2
to table space-relative
page number

Indirect Entries

Double Indirect Entries

Object ID for the table

First EMP

T1 12

T2 24

Figure 10. DMS table spaces

Chapter 8. Table spaces 129

Because space in containers is allocated by extent, pages that do not make up a full
extent will not be used. For example, if you have a 205-page container with an
extent size of 10, one extent will be used for the tag, 19 extents will be available for
data, and the five remaining pages are wasted.

If a DMS table space contains a single container, the conversion from logical page
number to physical location on disk is a straightforward process where pages 0, 1,
2, are located in that same order on disk.

It is also a fairly straightforward process when there is more than one container
and each of the containers is the same size. The first extent in the table space,
containing pages 0 to (extent size - 1), is located in the first container, the second
extent will be located in the second container, and so on. After the last container,
the process repeats starting back at the first container. This cyclical process keeps
the data balanced.

For table spaces containing containers of different sizes, a simple approach that
proceeds through each container in turn cannot be used as it will not take
advantage of the extra space in the larger containers. This is where the table space
map comes in – it dictates how extents are positioned within the table space,
ensuring that all of the extents in the physical containers are available for use.

Note: In the following examples, the container sizes do not take the size of the
container tag into account. The container sizes are very small, and are just used for
the purpose of illustration, they are not recommended container sizes. The
examples show containers of different sizes within a table space, but you are
advised to use containers of the same size.

Example 1:

There are 3 containers in a table space, each container contains 80 usable pages,
and the extent size for the table space is 20. Each container therefore has 4 extents
(80 / 20) for a total of 12 extents. These extents are located on disk as shown in
Figure 11.

To see a table space map, take a table space snapshot using the snapshot monitor.
In Example 1, where the three containers are of equal size, the table space map
looks like this:

Container 0

Extent 0

Extent 3

Extent 6

Extent 9

Container 1

Extent 1

Extent 4

Extent 7

Extent 10

Container 2

Extent 2

Extent 5

Extent 8

Extent 11

Table space

Figure 11. Table space with three containers and 12 extents

130 Database Administration Concepts and Configuration Reference

Range Stripe Stripe Max Max Start End Adj. Containers
Number Set Offset Extent Page Stripe Stripe

[0] [0] 0 11 239 0 3 0 3 (0, 1, 2)

A range is the piece of the map in which a contiguous range of stripes all contain
the same set of containers. In Example 1, all of the stripes (0 to 3) contain the same
set of 3 containers (0, 1, and 2) and therefore this is considered a single range.

The headings in the table space map are Range Number, Stripe Set, Stripe Offset,
Maximum extent number addressed by the range, Maximum page number
addressed by the range, Start Stripe, End Stripe, Range adjustment, and Container
list. These will be explained in more detail for Example 2.

This table space can also be diagrammed as shown in Figure 12, in which each
vertical line corresponds to a container, each horizontal line is called a stripe, and
each cell number corresponds to an extent.

Example 2:

There are two containers in the table space: the first is 100 pages in size, the
second is 50 pages in size, and the extent size is 25. This means that the first
container has four extents and the second container has two extents. The table
space can be diagrammed as shown in Figure 13 on page 132.

0

0 1 2

1

2

3

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 11

Extent 4

Extent 7

Extent 10

Extent 3

Extent 6

Extent 9

Containers

Stripes

Figure 12. Table space with three containers and 12 extents, with stripes highlighted

Chapter 8. Table spaces 131

Stripes 0 and 1 contain both of the containers (0 and 1) but stripes 2 and 3 only
contain the first container (0). Each of these sets of stripes is a range. The table
space map, as shown in a table space snapshot, looks like this:

Range Stripe Stripe Max Max Start End Adj. Containers
Number Set Offset Extent Page Stripe Stripe

[0] [0] 0 3 99 0 1 0 2 (0, 1)
[1] [0] 0 5 149 2 3 0 1 (0)

There are four extents in the first range, and therefore the maximum extent
number addressed in this range (Max Extent) is 3. Each extent has 25 pages and
therefore there are 100 pages in the first range. Since page numbering also starts at
0, the maximum page number addressed in this range (Max Page) is 99. The first
stripe (Start Stripe) in this range is 0 and the last stripe (End Stripe) in the range is
stripe 1. There are two containers in this range and those are 0 and 1. The stripe
offset is the first stripe in the stripe set, which in this case is 0 because there is only
one stripe set. The range adjustment (Adj.) is an offset used when data is being
rebalanced in a table space. (A rebalance might occur when space is added or
dropped from a table space.) When a rebalance is not taking place, this is always 0.

There are two extents in the second range and because the maximum extent
number addressed in the previous range is 3, the maximum extent number
addressed in this range is 5. There are 50 pages (2 extents * 25 pages) in the second
range and because the maximum page number addressed in the previous range is
99, the maximum page number addressed in this range is 149. This range starts at
stripe 2 and ends at stripe 3.

Automatic re-sizing of DMS table spaces:

Enabling database-managed (DMS) table spaces that use file containers for
automatic resizing allows the database manager to handle the full table space
condition automatically by extending existing containers for you.

DMS table spaces are made up of file containers or raw device containers, and
their sizes are set when the containers are assigned to the table space. The table
space is considered to be full when all of the space within the containers has been
used. However, unlike for SMS table spaces, you can add or extend containers
manually, using the ALTER TABLESPACE statement, allowing more storage space
to be given to the table space. DMS table spaces also have a feature called

0

0 1

1

2

3

Extent 0 Extent 1

Extent 3Extent 2

Extent 4

Extent 5

Containers

Stripes

Range 0

Range 1

Figure 13. Table space with two containers, with ranges highlighted

132 Database Administration Concepts and Configuration Reference

auto-resize: as space is consumed in a DMS table space that can be automatically
re-sized, the database manager increases the size of the table space by extending
one or more file containers.

The auto-resize capability for DMS table spaces is related to, but different from
capabilities of automatic storage table spaces. For more information see
“Comparison of SMS, DMS and automatic storage table spaces” on page 148.

Enabling and disabling the auto-resize feature

By default, the auto-resize feature is not enabled for a DMS table space. The
following statement creates a DMS table space without enabling auto-resize:

CREATE TABLESPACE DMS1 MANAGED BY DATABASE
USING (FILE ’/db2files/DMS1’ 10 M)

To enable the auto-resize feature, specify the AUTORESIZE YES clause for the
CREATE TABLESPACE statement:

CREATE TABLESPACE DMS1 MANAGED BY DATABASE
USING (FILE ’/db2files/DMS1’ 10 M) AUTORESIZE YES

You can also enable or disable the auto-resize feature after creating a DMS table
space by using ALTER TABLESPACE statement with the AUTORESIZE clause:

ALTER TABLESPACE DMS1 AUTORESIZE YES
ALTER TABLESPACE DMS1 AUTORESIZE NO

Two other attributes, MAXSIZE and INCREASESIZE, are associated with
auto-resize table spaces:

Maximum size (MAXSIZE)

The MAXSIZE clause of the CREATE TABLESPACE statement defines the
maximum size for the table space. For example, the following statement creates a
table space that can grow to 100 megabytes (per database partition if the database
has multiple database partitions):

CREATE TABLESPACE DMS1 MANAGED BY DATABASE
USING (FILE ’/db2files/DMS1’ 10 M)
AUTORESIZE YES MAXSIZE 100 M

The MAXSIZE NONE clause specifies that there is no maximum limit for the table
space. The table space can grow until a file system limit or table space limit is
reached (see “SQL and XML limits” in the SQL Reference). If you do not specify the
MAXSIZE clause, there is no maximum limit when the auto-resize feature is
enabled.

Use the ALTER TABLESPACE statement to change the value of MAXSIZE for a
table space that has auto-resize already enabled, as shown in the following
examples:

ALTER TABLESPACE DMS1 MAXSIZE 1 G
ALTER TABLESPACE DMS1 MAXSIZE NONE

If you specify a maximum size, the actual value that the database manager
enforces might be slightly smaller than the value specified because the database
manager attempts to keep container growth consistent.

Increase size (INCREASESIZE)

Chapter 8. Table spaces 133

The INCREASESIZE clause of the CREATE TABLESPACE statement defines the
amount of space used to increase the table space when there are no free extents
within the table space but a request for one or more extents was made. You can
specify the value as an explicit size or as a percentage, as shown in the following
examples:

CREATE TABLESPACE DMS1 MANAGED BY DATABASE
USING (FILE ’/db2files/DMS1’ 10 M)
AUTORESIZE YES INCREASESIZE 5 M

CREATE TABLESPACE DMS1 MANAGED BY DATABASE
USING (FILE ’/db2files/DMS1’ 10 M)
AUTORESIZE YES INCREASESIZE 50 PERCENT

A percentage value means that the amount by which to increase is calculated every
time that the table space needs to grow; that is, growth is based on a percentage of
the table space size at that point in time. For example, if the table space is 20 MB
in size and the INCREASESIZE value is 50% , the table space grows by 10 MB the
first time (to a size of 30 MB) and by 15 MB the next time.

If you do not specify the INCREASESIZE clause when you enable the auto-resize
feature, the database manager determines an appropriate value to use, which
might change over the life of the table space. As with AUTORESIZE and
MAXSIZE, you can change the value of INCREASESIZE using the ALTER
TABLESPACE statement.

If you specify a size increase, the actual value that the database manager will use
might be slightly different than the value that you provide. This adjustment in the
value used is done to keep growth consistent across the containers in the table
space.

Restrictions for using AUTORESIZE with DMS table spaces

v You cannot use this feature for table spaces that use raw device containers, and
you cannot add raw device containers to a table space that can be automatically
resized. Attempting these operations results in errors (SQL0109N). If you need to
add raw device containers, you must disable the auto-resize feature first.

v If you disable the auto-resize feature, the values that are associated with
INCREASESIZE and MAXSIZE are not retained if you subsequently enable this
feature.

v A redirected restore operation cannot change the container definitions to include
a raw device container. Attempting this kind of operation results in an error
(SQL0109N).

v In addition to limiting how the database manager automatically increases a table
space, the maximum size also limits the extent to which you can manually
increase a table space. If you perform an operation that adds space to a table
space, the resulting size must be less than or equal to the maximum size. You
can add space by using the ADD, EXTEND, RESIZE, or BEGIN NEW STRIPE
SET clause of the ALTER TABLESPACE statement.

How table spaces are extended

When AUTORESIZE is enabled, the database manager attempts to increase the size
of the table space when all of the existing space has been used and a request for
more space is made. The database manager determines which of the containers can
be extended in the table space so that a rebalancing of the data in the table space
does not occur. The database manager extends only those containers that exist
within the last range of the table space map (the map describes the storage layout

134 Database Administration Concepts and Configuration Reference

for the table space - see “Table space maps for database-managed table spaces” on
page 127 for more information) and extends them by an equal amount.

For example, consider the following statement:
CREATE TABLESPACE TS1 MANAGED BY DATABASE

USING (FILE ’C:\TS1CONT’ 1000, FILE ’D:\TS1CONT’ 1000,
FILE ’E:\TS1CONT’ 2000, FILE ’F:\TS1CONT’ 2000)

EXTENTSIZE 4
AUTORESIZE YES

Keeping in mind that the database manager uses a small portion (one extent) of
each container for metadata, following is the table space map that is created for the
table space based on the CREATE TABLESPACE statement. (The table space map is
part of the output from a table space snapshot.)

Table space map:

Range Stripe Stripe Max Max Start End Adj. Containers
Number Set Offset Extent Page Stripe Stripe
[0] [0] 0 995 3983 0 248 0 4 (0,1,2,3)
[1] [0] 0 1495 5983 249 498 0 2 (2,3)

The table space map shows that the containers with an identifier of 2 or 3
(E:\TS1CONT and F:\TS1CONT) are the only containers in the last range of the map.
Therefore, when the database manager automatically extends the containers in this
table space, it extends only those two containers.

Note: If you create a table space with all of the containers having the same size,
there is only one range in the map. In such a case, the database manager extends
each of the containers. To prevent restricting extensions to only a subset of the
containers, create a table space with containers of equal size.

As discussed previously, you can specify a limit on the maximum size of the table
space, or you can specify a value of NONE, which does not limit growth. If you
specify NONE or no limit, the upper limit is defined by the file system limit or by
the table space limit; the database manager does not attempt to increase the table
space size past the upper limit. However, before that limit is reached, an attempt to
increase a container might fail due to a full file system. In this case, the database
manager does not increase the table space size any further and returns an
out-of-space condition to the application. There are two ways to resolve this
situation:
v Increase the amount of space available on the file system that is full.
v Perform container operations on the table space such that the container in

question is no longer in the last range of the table space map. The easiest way to
do this is to add a new stripe set to the table space with a new set of containers,
and the best practice is to ensure that the containers are all the same size. You
can add new stripe sets by using the ALTER TABLESPACE statement with the
BEGIN NEW STRIPE SET clause. By adding a new stripe set, a new range is
added to the table space map. With a new range, the containers that the
database manager automatically attempts to extend are within this new stripe
set, and the older containers remain unchanged.

Note: When a user-initiated container operation is pending or a subsequent
rebalance is in progress, the auto-resize feature is disabled until the operation is
committed or the rebalance is complete.

For example, for DMS table spaces, suppose that a table space has three containers
that are the same size and that each resides on its own file system. As work is

Chapter 8. Table spaces 135

done on the table space, the database manager automatically extends these three
containers. Eventually, one of the file systems becomes full, and the corresponding
container can no longer grow. If more free space cannot be made available on the
file system, you must perform container operations on the table space such that the
container in question is no longer in the last range of the table space map. In this
case, you could add a new stripe set specifying two containers (one on each of the
file systems that still has space), or you could specify more containers (again,
making sure that each container being added is the same size and that there is
sufficient room for growth on each of the file systems being used). When the
database manager attempts to increase the size of the table space, it now attempts
to extend the containers in this new stripe set instead of attempting to extend the
older containers.

Monitoring

Information about automatic resizing for DMS table spaces is displayed as part of
the table space monitor snapshot output. The increase size and maximum size
values are included in the output, as shown in the following sample:

Auto-resize enabled = Yes or No
Current tablespace size (bytes) = ###
Maximum tablespace size (bytes) = ### or NONE
Increase size (bytes) = ###
Increase size (percent) = ###
Time of last successful resize = DD/MM/YYYY HH:MM:SS.SSSSSS
Last resize attempt failed = Yes or No

Automatic storage table spaces
With automatic storage table spaces, storage is managed automatically. The
database manager creates and extends containers as needed up the limits imposed
by the storage paths associated with the database.

If a database is enabled for automatic storage, any table spaces that you create will
also be managed as automatic storage table spaces unless you specify otherwise.
With automatic storage table spaces, you are not required to provide container
definitions; the database manager looks after creating and extending containers to
make use of the storage allocated to the database. If you add storage to the
database, new containers will be created automatically when the existing
containers reach their maximum capacity. If you want to make use of the
newly-added storage immediately, you can rebalance the table space, reallocating
the data across the new, expanded set of containers and stripe sets. Or, if you are
less concerned about I/O parallelism, and just want to add capacity to your table
space, you can forego rebalancing; in this case, as new storage is required, new
stripe sets will be created.

Automatic storage table spaces can be created in an automatic storage database
using the CREATE TABLESPACE command. By default, new tables spaces in a
database where automatic storage is enabled are automatic storage table spaces, so
the MANAGED BY AUTOMATIC STORAGE clause is optional. You can also
specify options when creating the automatic storage table space, such as its initial
size, the amount that the table space will be increased when the table space is full,
and the maximum size that the table space can grow to. Following are some
examples of statements that create automatic storage table spaces:
CREATE TABLESPACE TS1
CREATE TABLESPACE TS2 MANAGED BY AUTOMATIC STORAGE
CREATE TEMPORARY TABLESPACE TEMPTS

136 Database Administration Concepts and Configuration Reference

CREATE USER TEMPORARY TABLESPACE USRTMP MANAGED BY AUTOMATIC STORAGE
CREATE LARGE TABLESPACE LONGTS
CREATE TABLESPACE TS3 INITIALSIZE 8K INCREASESIZE 20 PERCENT MANAGED BY AUTOMATIC STORAGE
CREATE TABLESPACE TS4 MAXSIZE 2G

Each of these examples assumes that the database for which these table spaces are
being created is an automatic storage database. When you create a table space in a
database that is not enabled for automatic storage, you cannot use the MANAGED
BY AUTOMATIC STORAGE clause; you must either:
v Specify the MANAGED BY SYSTEM or MANAGED BY DATABASE clause of

the CREATE TABLESPACE statement. Using these clauses results in the creation
of a system-managed space (SMS) table space or database-managed space (DMS)
table space, respectively. You must provide an explicit list of containers in both
cases

v Convert the database to an automatic storage database, then try again to create
your automatic storage table space.

How automatic storage table spaces manage storage expansion:

If you are using automatic storage table spaces, the database manager creates and
extends containers as needed. If you add storage to the database, new containers
are created automatically. How the new storage space gets used, however, depends
on whether you REBALANCE the table space or not.

When an automatic storage table space is created, the database manager creates a
container on each of the storage paths of the automatic storage database (where
space permits). Once all of the space in a table space is consumed, the database
manager automatically grows the size of the table space by extending existing
containers or by adding a new stripe set of containers.

Storage for automatic table spaces is managed at the database level; that is, you
add storage to the database, rather than to table spaces as you do with DMS table
spaces. When you add storage to a database, the automatic storage feature will
create new containers as needed to accommodate data. However, table spaces that
already exist will not start consuming storage on the new paths immediately.
When a table space needs to grow, the database manager will first attempt to
extend those containers in the last range of the table space. A range is all the
containers across a given stripe set. If this is successful, applications will start
using that new space. However, if the attempt to extend the containers fails, as
might happen when one or more of the file systems are full, for example, the
database manager will attempt to create a new stripe set of containers. Only at this
point does the database manager consider using the newly added storage paths for
the table space. Figure 14 on page 138 illustrates this process.

Chapter 8. Table spaces 137

In the preceding diagram:
1. The table space starts out with two containers that have not yet reached their

maximum capacity. A new storage path is added to the database using the
ALTER DATABASE statement with the ADD STORAGE clause. However, the
new storage path is not yet being used.

2. The two original containers reach their maximum capacity.
3. A new stripe set of containers is added, and they start to fill up with data.
4. The containers in the new stripe set reaching their maximum capacity.
5. A new stripe set is added because there is no room for the containers to grow.

If you want to have the automatic storage table space start using the newly added
storage path immediately, you can perform a rebalance, using the REBALANCE
clause of the ALTER TABLESPACE command. If you rebalance your table space,
the data will be reallocated across the containers and stripe sets in the
newly-added storage. This is illustrated in Figure 15 on page 139.

/path1 /path2 /path3

/path1 /path1 /path1/path2 /path2 /path3 /path2 /path3

1 2

3

/path1 /path2 /path3 /path1 /path2 /path3

4 5

Figure 14. How automatic storage adds containers as needed

138 Database Administration Concepts and Configuration Reference

In this example, rather than a new stripe set being created, the rebalance expands
the existing stripe sets into the new storage path, creating containers as needed,
and then reallocates the data across all of the containers.

Container names in automatic storage table spaces:

Although container names for automatic storage table spaces are assigned by the
database manager, they are visible if you run commands such as LIST TABLESPACE
CONTAINERS, or GET SNAPSHOT FOR TABLESPACES commands. This topic describes the
conventions used for container names so that you can recognize them when they
appear.

The names assigned to containers in automatic storage table spaces are structured
as follows:
storage path/instance name/NODE####/database name/T#######/C#######.EXT

where:

storage path
Is a storage path associated with the database

instance name
Is the instance under which the database was created

database name
Is the name of the database

NODE####
Is the database partition number (for example, NODE0000)

T#######
Is the table space ID (for example, T0000003)

C#######
Is the container ID (for example, C0000012)

EXT Is an extension based on the type of data being stored:

/path1 /path2 /path3

Second
stripe set

First
stripe set

Path being
addedExisting

paths

/path1 /path2 /path3

Figure 15. Results of adding new storage and rebalancing the table space

Chapter 8. Table spaces 139

CAT System catalog table space

TMP System temporary table space

UTM User temporary table space

USR User or regular table space

LRG Large table space

Example

For example, assume an automatic storage table space TBSAUTO has been created
in the database SAMPLE. When the LIST TABLESPACES command is run, it is
shown as having a table space ID of 10:
Tablespace ID = 10
Name = TBSAUTO
Type = Database managed space
Contents = All permanent data. Large table space.
State = 0x0000

Detailed explanation:
Normal

If you now run the LIST TABLESPACE CONTAINERS command for the table space with
the ID of 10, you can see the names assigned to the containers for this table space:
LIST TABLESPACE CONTAINERS FOR 10 SHOW DETAIL

Tablespace Containers for Tablespace 10

Container ID = 0
Name = D:\DB2\NODE0000\SAMPLE\T0000010\C0000000.LRG
Type = File
Total pages = 4096
Useable pages = 4064
Accessible = Yes

In this example, you can see the name of the one container with (container ID 0,
above) for this table space is
D:\DB2\NODE0000\SAMPLE\T0000010\C0000000.LRG

Converting table spaces to use automatic storage:

You can convert some or all of your database-managed space (DMS) table spaces
in a database to use automatic storage. Using automatic storage simplifies your
storage management tasks.

Before you begin

Ensure that the database is enabled for automatic storage and has one or more
storage paths defined for use with automatic storage. To do so, use the ALTER
DATABASE statement.

Procedure

To convert a DMS table space to use automatic storage, use one of the following
methods:
v Alter a single table space. This method keeps the table space online but involves

a rebalance operation that takes time to move data from the non-automatic
storage containers to the new automatic storage containers.

140 Database Administration Concepts and Configuration Reference

1. Issue the ALTER TABLESPACE statement, specifying the MANAGED BY
AUTOMATIC STORAGE clause for the table space that you want to convert.

2. Issue the ALTER TABLESPACE statement again, this time specifying the
REBALANCE option. This option removes the user-defined containers so
that all table space containers are managed by automatic storage.
If you do not specify the REBALANCE option now and issue the ALTER
TABLESPACE statement later with the REDUCE option, your automatic
storage containers will be removed. To recover from this problem, issue the
ALTER TABLESPACE statement, specifying the REBALANCE option.

v Use a redirected restore operation. When the redirected restore operation is in
progress, you cannot access the table spaces being converted. For a full database
redirected restore, all table spaces are inaccessible until the recovery is
completed.
1. Run the RESTORE DATABASE command, specifying the REDIRECT parameter. If

you want to convert a single table space, also specify the TABLESPACE
parameter:
RESTORE DATABASE database_name TABLESPACE table_space_name REDIRECT

2. Run the SET TABLESPACE CONTAINERS command, specifying the USING
AUTOMATIC STORAGE parameter, for each table space that you want to
convert:
SET TABLESPACE CONTAINERS FOR tablespace_id USING AUTOMATIC STORAGE

3. Run the RESTORE DATABASE command again, this time specifying the CONTINUE
parameter:
RESTORE DATABASE database_name CONTINUE

4. Run the ROLLFORWARD DATABASE command, specifying the TO END OF LOGS and
AND STOP parameters:
ROLLFORWARD DATABASE database_name TO END OF LOGS AND STOP

The table space high water mark
The high water mark refers to the page number of the first page in the extent
following the last allocated extent.

For example, if a table space has 1000 pages and an extent size of 10, there are 100
extents. If the 42nd extent is the highest allocated extent in the table space that
means that the high-water mark is 420.

Tip: Extents are indexed from 0. So the high water mark is the last page of the
highest allocated extent + 1.
Practically speaking, it's virtually impossible to determine the high water mark
yourself; there are administrative views and table functions that you can use to
determine where the current high water mark is, though it can change from
moment to moment as row operations occur.

Note that the high water mark is not an indicator of the number of used pages
because some of the extents below the high-water mark might have been freed as a
result of deleting data. In this case, even through there might be free pages below
it, the high water mark remains as highest allocated page in the table space.

You can lower the high water mark of a table space by consolidating extents
through a table space size reduction operation.

Chapter 8. Table spaces 141

Example

Figure 16 shows a series of allocated extents in a table space.

When an object is dropped, space is freed in the table space. However, until any
kind of storage consolidation operation is performed, the high water mark remains
at the previous level. It might even move higher, depending how new extents to
the container are added.

Reclaimable storage
Reclaimable storage is a feature of nontemporary automatic storage and DMS table
spaces in DB2 V9.7. You can use it to consolidate in-use extents below the high
water mark and return unused extents in your table space to the system for reuse.

Extent 0

Object 1

Object 2

Pages
within extent

Extent 1

Extent 2

Extent n

Extent n+1
High

water
mark

Free
space

Object 2

Drop Object 1

High
water
mark

Figure 16. High water mark

142 Database Administration Concepts and Configuration Reference

With table spaces created before DB2 V9.7, the only way to release storage to the
system was to drop containers, or reduce the size of containers by eliminating
unused extents above the high water mark. There was no direct mechanism for
lowering the high water mark. It could be lowered by unloading and reloading
data into an empty table space, or through indirect operations, like performing
table and index reorganizations. With this last approach, it might have been that
the high water mark could still not be lowered, even though there were free
extents below it.

During the extent consolidation process, extents that contain data are moved to
unused extents below the high water mark. After extents are moved, if free extents
still exist below the high water mark, they are released as free storage. Next, the
high water mark is moved to the page in the table space just after the last in-use
extent. In table spaces where reclaimable storage is available, you use the ALTER
TABLESPACE statement to reclaim unused extents. Figure 17 shows a high-level
view of how reclaimable storage works.

All nontemporary automatic storage and DMS table spaces created in DB2 Version
9.7 and later provide the capability for consolidating extents below the high water
mark. For table spaces created in an earlier version, you must first replace the table

Extent 0

Object 1

Object 2

Pages
within extent

Extent 1

Extent 2

Extent n

Extent n+1
High

water
mark

Free
space

Object 2 Object 2

Object 2
Free

space

Drop Object 1 Extents moved Free space
is reclaimed

High
water
mark

High
water
mark

High
water
mark

...
...

Figure 17. How reclaimable storage works. When reclaimable storage is enabled for a table
space, the in-use extents can be moved to occupy unused extents lower in the table space.

Chapter 8. Table spaces 143

space with a new one created using DB2 V9.7. You can either unload and reload
the data or move the data with an online table move operation using the
SYSPROC.ADMIN_MOVE_TABLE procedure. Such a migration is not required,
however. Table spaces for which reclaimable storage is enabled can coexist in the
same database as table spaces without reclaimable storage.

Reducing the size of table spaces through extent movement is an online operation.
In other words, data manipulation language (DML) and data definition language
(DDL) can continue to be run while the reduce operation is taking place. Some
operations, such as a backup or restore cannot run concurrently with extent
movement operations. In these cases, the process requiring access to the extents
being moved (for example, backup) waits until a number of extents have been
moved (this number is non-user-configurable), at which point the backup process
obtains a lock on the extents in question, and continues from there.

You can monitor the progress of extent movement using the
MON_GET_EXTENT_MOVEMENT_STATUS table function.

Tip: To maximize the amount of space that the ALTER TABLESPACE statement
reclaims, first perform a REORG operation on the tables and indexes in the table
space.

Automatic storage table spaces

You can reduce automatic storage table spaces in a number of ways:

Container reduction only
With this option, no extents are moved. The database manager attempts to
reduce the size of the containers by first freeing extents for which deletes
are pending. (It is possible that some “pending delete” extents cannot be
freed for recoverability reasons, so some of these extents may remain.) If
the high water mark was among those extents freed, then the high water
mark is lowered, otherwise no change to the high water mark takes place.
Next, the containers are re-sized such that total amount of space in the
table space is equal to or slightly greater than the high water mark. This
operation is performed using the ALTER TABLESPACE with the REDUCE
clause by itself.

Lower high water mark only
With this option, the maximum number of extents are moved to lower the
high water mark, however, no container resizing operations are performed.
This operation is performed using the ALTER TABLESPACE with the
LOWER HIGH WATER MARK clause by itself.

Lower high water mark and reduce containers by a specific amount
With this option, you can specify an absolute amount in kilo-, mega-, or
gigabytes by which to reduce the table space. Or you can specify a relative
amount to reduce by entering a percentage. Either way, the database
manager first attempts to reduce space by the requested amount without
moving extents. That is, it attempts to reduce the table space by reducing
the container size only, as described in Container reduction only, by freeing
delete pending extents, and attempting to lower the high water mark. If
this approach does not yield a sufficient reduction, the database manager
then begins moving used extents lower in the table space to lower the high
water mark. After extent movement has completed, the containers are
resized such that total amount of space in the table space is equal to or
slightly greater than the high water mark. If the table space cannot be

144 Database Administration Concepts and Configuration Reference

reduced by the requested amount because there are not enough extents
that can be moved, the high water mark is lowered as much as possible.
This operation is performed using the ALTER TABLESPACE with a
REDUCE clause that includes a specified amount by which to reduce the
size the table space.

Lower high water mark and reduce containers the maximum amount possible
In this case, the database manager moves as many extents as possible to
reduce the size of the table space and its containers. This operation is
performed using the ALTER TABLESPACE with the REDUCE MAX clause.

Once the extent movement process has started, you can stop it using the ALTER
TABLESPACE statement with the REDUCE STOP clause. Any extents that have
been moved are committed, the high water mark lowered as much as possible, and
containers are re-sized to the new, lowered high water mark.

DMS table spaces

DMS table spaces can be reduced in two ways:

Container reduction only
With this option, no extents are moved. The database manager attempts to
reduce the size of the containers by first freeing extents for which deletes
are pending. (It is possible that some “"pending delete"” extents cannot be
deleted for recoverability reasons, so some of these extents might remain.)
If the high water mark was among those extents freed, then the high water
mark is lowered. Otherwise no change to the high water mark takes place.
Next, the containers are resized such that total amount of space in the table
space is equal to or slightly greater than the high water mark. This
operation is performed using the ALTER TABLESPACE with the REDUCE
database-container clause by itself.

Lower high water mark only
With this option, the maximum number of extents are moved to lower the
high water mark, however, no container resizing operations are performed.
This operation is performed using the ALTER TABLESPACE with the
LOWER HIGH WATER MARK clause by itself.

Lowering the high water mark and reducing container size is a combined,
automatic operation with automatic storage table spaces. By contrast, with DMS
table spaces, to achieve both a lowered high water mark and smaller container
sizes, you must perform two operations:
1. First, you must lower the high water mark for the table space using the ALTER

TABLESPACE statement with the LOWER HIGH WATER MARK clause.
2. Next you must use the ALTER TABLESPACE statement with the REDUCE

database-container clause by itself to perform the container resizing operations.

Once the extent movement process has started, you can stop it using the ALTER
TABLESPACE statement with the LOWER HIGH WATER MARK STOP clause. Any
extents that have been moved are committed, the high water mark are reduced to
its new value.

Examples

Example 1: Reducing the size of an automatic storage table space by the maximum amount.

Chapter 8. Table spaces 145

Assume that we have a database with one automatic storage table space TS and
three tables t1, t2, and t3. Next, we drop tables T1 and t3:

DROP TABLE T1
DROP TABLE T3

Now, assuming that the extents are now free, the following statement causes the
extents formerly occupied by T1 and T3 to be reclaimed, and the high water mark
of the table space reduced:

ALTER TABLESPACE TS REDUCE MAX

Example 2: Reducing the size of an automatic storage table space by a specific amount.

Assume that we have a database with one automatic storage table space TS and
two tables t1, and t2. Next, we drop table T1:

DROP TABLE T1

Now, to reduce the size of the table space by 1 MB, use the following statement:
ALTER TABLESPACE TS REDUCE SIZE 1M

Alternatively, you could reduce the table space by a percentage of its existing size
with a statement such as this:

ALTER TABLESPACE TS REDUCE SIZE 5 PERCENT

Example 3: Reducing the size of an automatic storage table space when there is free space
below the high water mark.

Like Example 1, assume that we have a database with one automatic storage table
space TS and three tables t1, t2, and t3. This time, when we drop T2 and t3, there
is a set of five free extents just below the high water mark. Now, assuming that
each extent in this case was made up of two 4K pages, there is actually 40 KB of
free space just below the high water mark. If you issue a statement such as this
one:

ALTER TABLESPACE TS REDUCE SIZE 32K

the database manager can lower the high water mark and reduce the container size
without the need to perform any extent movement. This scenario is illustrated in
Figure 18 on page 147

146 Database Administration Concepts and Configuration Reference

Example 4: Reducing the size of a DMS table space.

Assume that we have a database with one DMS table space TS and three tables t1,
t2, and t3. Next, we drop tables T1 and t3:

DROP TABLE T1
DROP TABLE T3

To lower the high water mark and reduce the container size with DMS table space
is a two-step operation. First, lower the high water mark through extent movement
with the following statement:

ALTER TABLESPACE TS LOWER HIGH WATER MARK

Next, you would reduce the size of the containers with a statement such as this
one:

ALTER TABLESPACE TS REDUCE (ALL CONTAINERS 5 M)

Extent 0

t1

Pages
within extent

Extent 1

Extent 2

Extent n

Extent n+1
High

water
mark

Delete t2, t3 Reduce table space
operation

High
water
mark

High
water
mark

t2

t3

Free
Space

t1 t1

Figure 18. Lowering the high water mark without needing to move extents.

Chapter 8. Table spaces 147

Comparison of SMS, DMS and automatic storage table spaces
SMS, DMS and automatic storage table spaces offer different capabilities that can
be advantageous in different circumstances.

Table 11. Comparison of SMS, DMS and automatic storage table spaces

SMS table spaces DMS table spaces
Automatic storage table
spaces

How they are
created

Created using the MANAGED
BY SYSTEM clause of the
CREATE TABLESPACE
statement

Created using the MANAGED
BY DATABASE clause of the
CREATE TABLESPACE
statement

Created using the MANAGED
BY AUTOMATIC STORAGE
clause of the CREATE
TABLESPACE statement, or by
omitting the MANAGED BY
clause entirely. If the
automatic storage was enabled
when the database was
created, the default for any
table space you create is to
create it as an automatic
storage table space unless you
specify otherwise.

Initial container
definition and
location

Requires that containers be
defined as a directory name.

v Requires that containers be
defined as files or devices.

v Must specify the initial size
for each container.

You do not provide a list of
containers when creating an
automatic storage table space.
Instead, the database manager
automatically creates
containers on all of the storage
paths associated with the
database. Data is striped
evenly across all containers so
that the storage paths are used
equally.

Initial allocation of
space

Done as needed. Because the
file system controls the
allocation of storage, there is
less likelihood that pages will
be contiguous, which could
have an impact on the
performance of some types of
queries.

Done when table space
created.

v Extents are more likely to
be contiguous than they
would be with SMS table
spaces.

v Pages within extents are
always contiguous for
device containers.

v For nontemporary
automatic storage table
spaces:

– Space is allocated when
the table space is created

– You can specify the initial
size for table space

v For temporary automatic
storage table spaces, space
is allocated as needed.

Changes to table
space containers

No changes once created,
other than to add containers
for new data partitions as they
are added.

v Containers can be extended
or added. A rebalance of the
table space data will occur
if the new space is added
below the high water mark
for the table space.

v Containers can be reduced
or dropped. A rebalance
will occur if there is data in
the space being dropped

v Containers can dropped or
reduced if the table space
size is reduced.

v Table space can be
rebalanced to distribute data
evenly across containers
when new storage is added
to or dropped from the
database.

148 Database Administration Concepts and Configuration Reference

Table 11. Comparison of SMS, DMS and automatic storage table spaces (continued)

SMS table spaces DMS table spaces
Automatic storage table
spaces

Handling of
demands for
increased storage

Containers will grow until
they reach the capacity
imposed by the file system.
The table space is considered
to be full when any one
container reaches it's
maximum capacity.

Containers can be extended
beyond the initially-allocated
size manually or automatically
(if auto-resize is enabled) up
to constraints imposed by file
system.

v Containers are extended
automatically up to
constraints imposed by file
system.

v If storage paths are added
to the database, containers
are extended or created
automatically.

Ability to place
different types of
objects in different
table spaces

For partitioned tables only,
indexes and index partitions
can reside in a table space
separate from the one
containing table data.

Tables, storage for related
large objects (LOBs) and
indexes can each reside in
separate table spaces.

Tables, storage for related
large objects (LOBs) and
indexes can each reside in
separate table spaces.

Ongoing
maintenance
requirements

None v Adding or extending
containers

v Dropping or reducing
containers

v Lowering high water mark

v Rebalancing

v Reducing size of table space

v Lowering high water mark

v Rebalancing

Use of restore to
redefine containers

You can use a redirected
restore operation to redefine
the containers associated with
the table space

You can use a redirected
restore operation to redefine
the containers associated with
the table space

You cannot use a redirected
restore operation to redefine
the containers associated with
the table space because the
database manager manages
space.

Performance Generally slower than DMS
and automatic storage,
especially for larger tables.

Generally superior to SMS Similar to DMS

Of the three types of table spaces, automatic storage table spaces are the easiest to
set up and maintain, and are recommended for most applications. They are
particularly beneficial when:
v You have larger tables or tables that are likely to grow quickly
v You do not want to have to make regular decisions about how to manage

container growth.
v You want to be able to store different types of related objects (for example,

tables, LOBs, indexes) in different table spaces to enhance performance.

DMS table spaces are useful when:
v You have larger tables or tables that are likely to grow quickly
v You want to exercise greater control over where data is physically stored
v You want to be able to do make adjustments to or control how storage is used

(for example, adding containers)
v You want to be able to store different types of related objects (for example,

tables, LOBs, indexes) in different table spaces to enhance performance.

SMS table spaces are useful when:
v You have smaller tables that are not likely to grow quickly

Chapter 8. Table spaces 149

v You want to exercise greater control over where data is physically stored
v You want to do little in the way of container maintenance
v You are not required to store different types of related objects (for example,

tables, LOBs, indexes) in different table spaces. (For partitioned tables only,
indexes can be stored in table spaces separately from table data).

SMS and DMS workload considerations:

The primary type of workload being managed by the database manager in your
environment can affect your choice of what table space type to use, and what page
size to specify.

An online transaction processing (OLTP) workload is characterized by transactions
that need random access to data, often involve frequent insert or update activity
and queries which usually return small sets of data. Given that the access is
random, and involves one or a few pages, prefetching is less likely to occur.

DMS table spaces using device containers perform best in this situation. DMS table
spaces with file containers, or SMS table spaces, are also reasonable choices for
OLTP workloads if maximum performance is not required. Note that using DMS
table spaces with file containers, where FILE SYSTEM CACHING is turned off, can
perform at a level comparable to DMS raw table space containers. With little or no
sequential I/O expected, the settings for the EXTENTSIZE and the PREFETCHSIZE
parameters on the CREATE TABLESPACE statement are not important for I/O
efficiency. However, setting a sufficient number of page cleaners, using the
chngpgs_thresh configuration parameter, is important.

A query workload is characterized by transactions that need sequential or partially
sequential access to data, which usually return large sets of data. A DMS table
space using multiple device containers (where each container is on a separate disk)
offers the greatest potential for efficient parallel prefetching. The value of the
PREFETCHSIZE parameter on the CREATE TABLESPACE statement should be set
to the value of the EXTENTSIZE parameter, multiplied by the number of device
containers. Alternatively, you can specify a prefetch size of -1 and the database
manager automatically chooses an appropriate prefetch size. This allows the
database manager to prefetch from all containers in parallel. If the number of
containers changes, or there is a need to make prefetching more or less aggressive,
the PREFETCHSIZE value can be changed accordingly by using the ALTER
TABLESPACE statement.

A reasonable alternative for a query workload is to use files, if the file system has
its own prefetching. The files can be either of DMS type using file containers, or of
SMS type. Note that if you use SMS, you must have the directory containers map
to separate physical disks to achieve I/O parallelism.

Your goal for a mixed workload is to make single I/O requests as efficient as
possible for OLTP workloads, and to maximize the efficiency of parallel I/O for
query workloads.

The considerations for determining the page size for a table space are as follows:
v For OLTP applications that perform random row read and write operations, a

smaller page size is usually preferable because it does not waste buffer pool
space with unwanted rows.

150 Database Administration Concepts and Configuration Reference

v For decision-support system (DSS) applications that access large numbers of
consecutive rows at a time, a larger page size is usually better because it reduces
the number of I/O requests that are required to read a specific number of rows.

v Larger page sizes might allow you to reduce the number of levels in the index.
v Larger pages support rows of greater length.
v On default 4 KB pages, tables are restricted to 500 columns, whereas the larger

page sizes (8 KB, 16 KB, and 32 KB) support 1012 columns.
v The maximum size of the table space is proportional to the page size of the table

space.

SMS and DMS device considerations:

There are a few options to consider when choosing to use file system files versus
devices for table space containers: the buffering of data and whether to use LOB or
LOG data.
v Buffering of data

Table data read from disk is usually available in the database buffer pool. In
some cases, a data page might be freed from the buffer pool before the
application has actually used the page, particularly if the buffer pool space is
required for other data pages. For table spaces that use system managed space
(SMS) or database managed space (DMS) file containers, file system caching
above can eliminate I/O that would otherwise have been required.
Table spaces using database managed space (DMS) device containers do not use
the file system or its cache. As a result, you might increase the size of the
database buffer pool and reduce the size of the file system cache to offset the
fact DMS table spaces that use device containers do not use double buffering.
If system-level monitoring tools show that I/O is higher for a DMS table space
using device containers compared to the equivalent SMS table space, this
difference might be because of double buffering.

v Using LOB or LONG data

When an application retrieves either LOB or LONG data, the database manager
does not cache the data in its buffers, Each time an application needs one of
these pages, the database manager must retrieve it from disk. However, if LOB
or LONG data is stored in SMS or DMS file containers, file system caching
might provide buffering and, as a result, better performance.
Because system catalogs contain some LOB columns, you should keep them in
DMS-file table spaces or in SMS table spaces.

Temporary table spaces
Temporary table spaces hold temporary data required by the database manager
when performing operations such as sorts or joins, since these activities require
extra space to process the results set.

A database must have at least one system temporary table space with the same
page size as the catalog table space. By default, one system temporary table space
called TEMPSPACE1 is created at database creation time. IBMTEMPGROUP is the
default database partition group for this table space. The page size for
TEMPSPACE1 is whatever was specified when the database itself was created (by
default, 4 kilobytes).

User temporary table spaces hold temporary data from tables created with a
DECLARE GLOBAL TEMPORARY TABLE or CREATE GLOBAL TEMPORARY

Chapter 8. Table spaces 151

TABLE statement. User temporary table spaces are not created by default at the
time of database creation. They also hold instantiated versions of created
temporary tables.

It is recommended that you define a single temporary table space with a page size
equal to the page size used in the majority of your user table spaces. This should
be suitable for typical environments and workloads. However, it can be
advantageous to experiment with different temporary table space configurations
and workloads. The following points should be considered:
v Temporary tables are in most cases accessed in batches and sequentially. That is,

a batch of rows are inserted, or a batch of sequential rows are fetched. Therefore,
a larger page size typically results in better performance, because fewer logical
and physical page requests are required to read a given amount of data.

v When reorganizing a table using a temporary table space, the page size of the
temporary table space must match that of the table. For this reason, you should
ensure that there are temporary table spaces defined for each different page size
used by existing tables that you might reorganize using a temporary table space.
You can also reorganize without a temporary table space by reorganizing the
table directly in the same table space. This type of reorganization requires that
there be extra space in the table space(s) of the table for the reorganization
process.

v When using SMS system temporary table spaces, you might want to consider
using the registry variable DB2_SMS_TRUNC_TMPTABLE_THRESH. When
dropped, files created for the system temporary tables are truncated to a size of
0. The DB2_SMS_TRUNC_TMPTABLE_THRESH can be used to avoid visiting
the file systems and potentially leave the files at a non-zero size to avoid the
performance cost of repeated extensions and truncations of the files.

v In general, when temporary table spaces of different page sizes exist, the
optimizer will choose the temporary table space whose buffer pool can hold the
most number of rows (in most cases that means the largest buffer pool). In such
cases, it is often wise to assign an ample buffer pool to one of the temporary
table spaces, and leave any others with a smaller buffer pool. Such a buffer pool
assignment will help ensure efficient utilization of main memory. For example, if
your catalog table space uses 4 KB pages, and the remaining table spaces use 8
KB pages, the best temporary table space configuration might be a single 8 KB
temporary table space with a large buffer pool, and a single 4 KB table space
with a small buffer pool.

v There is generally no advantage to defining more than one temporary table
space of any single page size.

Ensuring system temporary table spaces page sizes meet
requirements
The use of larger record identifiers (RID) increases the row size in your result sets
from queries or positioned updates. If the row size in your result sets is close to
the maximum row length limit for your existing system temporary table spaces,
you might have to create a system temporary table space with a larger page size.

Before you begin

Ensure that you have SYSCTRL or SYSADM authority to create a system
temporary table space if required.

152 Database Administration Concepts and Configuration Reference

Procedure

To ensure that the maximum page size of your system temporary table space is
large enough for your queries or positioned updates:
1. Determine the maximum row size in your result sets from queries or positioned

updates. Monitor your queries or calculate the maximum row size using the
DDL statement that you used to create your tables.

2. Determine the page size for each of your system temporary table spaces and
the page size of the table spaces where the tables referenced in the queries or
updates were created by issuing the following query:
db2 "SELECT CHAR(TBSP_NAME,20) TBSP_NAME, TBSP_CONTENT_TYPE, TBSP_PAGE_SIZE

FROM SYSIBMADM.SNAPTBSP"

TBSP_NAME TBSP_CONTENT_TYPE TBSP_PAGE_SIZE
-------------------- ----------------- --------------------
SYSCATSPACE ANY 8192
TEMPSPACE1 SYSTEMP 8192
USERSPACE1 LARGE 8192
IBMDB2SAMPLEREL LARGE 8192
SYSTOOLSPACE LARGE 8192
SYSTOOLSTMPSPACE USRTEMP 8192

6 record(s) selected.

You can identify the system temporary table spaces in the output by looking
for table spaces that have the TBSP_CONTENT_TYPE column with a value of
SYSTEMP.
If you are upgrading from Version 8.1, use the following command:
db2 LIST TABLESPACES SHOW DETAIL

3. Check whether the largest row size in your result sets fits into your system
temporary table space page size:

maximum_row_size > maximum_row_length - 8 bytes (structure overhead in
single partition)

maximum_row_size > maximum_row_length - 16 bytes (structure overhead in DPF)

where maximum_row_size is the maximum row size for your result sets, and
maximum_row_length is the maximum length allowed based on the largest
page size of all of your system temporary table spaces. Review the "SQL and
XML limits" in SQL Reference, Volume 1 to determine the maximum row length
per table space page size.
If the maximum row size is less than the calculated value then your queries
will run in the same manner that they did in DB2 UDB Version 8, and you do
not have to continue with this task.

4. Create a system temporary table space that is at least one page size larger than
the table space page size where the tables were created if you do not already
have a system temporary table with that page size. For example, on the
Windows operating systems, if you created your table in a table space with 8
KB page size , create the additional system temporary table space using an 16
KB page size:

db2 CREATE SYSTEM TEMPORARY TABLESPACE tmp_tbsp
PAGESIZE 16K
MANAGED BY SYSTEM
USING (’d:\tmp_tbsp’,’e:\tmp_tbsp’)

If your table space page size is 32 KB, you can reduce the information that you
are selecting in your queries or split the queries to fit in the system temporary
table space page. For example, if you select all columns from a table, you can

Chapter 8. Table spaces 153

instead select only the columns that you really required or a substring of
certain columns to avoid exceeding the page size limitation.

Considerations when choosing table spaces for your tables
When determining how to map tables to tables spaces, you should consider the
distribution of your tables, the amount and type of data in the table, and
administrative issues.

The distribution of your tables

At a minimum, you should ensure that the table space you choose is in a
database partition group with the distribution you want.

The amount of data in the table

If you plan to store many small tables in a table space, consider using SMS
for that table space. The DMS advantages with I/O and space management
efficiency are not as important with small tables. The SMS advantages, and
only when needed, are more attractive with smaller tables. If one of your
tables is larger, or you need faster access to the data in the tables, a DMS
table space with a small extent size should be considered.

You might wish to use a separate table space for each very large table, and
group all small tables together in a single table space. This separation also
allows you to select an appropriate extent size based on the table space
usage.

The type of data in the table

You might, for example, have tables containing historical data that is used
infrequently; the end-user might be willing to accept a longer response
time for queries executed against this data. In this situation, you could use
a different table space for the historical tables, and assign this table space
to less expensive physical devices that have slower access rates.

Alternatively, you might be able to identify some essential tables for which
the data has to be readily available and for which you require fast response
time. You might want to put these tables into a table space assigned to a
fast physical device that can help support these important data
requirements.

Using DMS table spaces, you can also distribute your table data across
four different table spaces: one for index data; one for large object (LOB)
and long field (LF) data; one for regular table data, and one for XML data.
This allows you to choose the table space characteristics and the physical
devices supporting those table spaces to best suit the data. For example,
you could put your index data on the fastest devices you have available,
and as a result, obtain significant performance improvements. If you split a
table across DMS table spaces, you should consider backing up and
restoring those table spaces together if roll-forward recovery is enabled.
SMS table spaces do not support this type of data distribution across table
spaces.

Administrative issues

Some administrative functions can be performed at the table space level
instead of the database or table level. For example, taking a backup of a
table space instead of a database can help you make better use of your
time and resources. It allows you to frequently back up table spaces with
large volumes of changes, while only occasionally backing up tables spaces
with very low volumes of changes.

154 Database Administration Concepts and Configuration Reference

You can restore a database or a table space. If unrelated tables do not share
table spaces, you have the option to restore a smaller portion of your
database and reduce costs.

A good approach is to group related tables in a set of table spaces. These
tables could be related through referential constraints, or through other
defined business constraints.

If you need to drop and redefine a particular table often, you might want
to define the table in its own table space, because it is more efficient to
drop a DMS table space than it is to drop a table.

Table spaces without file system caching
The recommended method of enabling or disabling non-buffered I/O on UNIX,
Linux, and Windows is at the table space level.

This allows you to enable or disable non-buffered I/O on specific table spaces
while avoiding any dependency on the physical layout of the database. It also
allows the database manager to determine which I/O is best suited for each file,
buffered or non-buffered.

The NO FILE SYSTEM CACHING clause is used to enable non-buffered I/O, thus
disabling file caching for a particular table space. Once enabled, based on platform,
the database manager automatically determines which of the Direct I/O (DIO) or
Concurrent I/O (CIO) is to be used. Given the performance improvement in CIO,
the database manager uses it whenever it is supported; there is no user interface to
specify which one is to be used.

In order to obtain the maximum benefits of non-buffered I/O, it might be
necessary to increase the size of buffer pools. However, if the self-tuning memory
manager is enabled and the buffer pool size is set to AUTOMATIC, the database
manager will self-tune the buffer pool size for optimal performance. Note that this
feature is not available prior to Version 9.

To disable or enable file system caching, specify the NO FILE SYSTEM CACHING
or the FILE SYSTEM CACHING clause in the CREATE TABLESPACE or ALTER
TABLESPACE statement, respectively. The default setting is used if neither clause
is specified. In the case of ALTER TABLESPACE, existing connections to the
database must be terminated before the new caching policy takes effect.

Note: If an attribute is altered from the default to either FILE SYSTEM CACHING
or NO FILE SYSTEM CACHING, there is no mechanism to change it back to the
default.

This method of enabling and disabling file system caching provides control of the
I/O mode, buffered or non-buffered, at the table space level.

To determine whether file system caching is enabled, query the value of the
FS_CACHING monitor element for the table space in the MON_GET_TABLESPACE table.

Alternate methods to enable/disable non-buffered I/O on UNIX, Linux, and
Windows

Some UNIX platforms support the disabling of file system caching at a file
system level by using the MOUNT option. Consult your operating system
documentation for more information. However, it is important to
understand the difference between disabling file system caching at the
table space level and at the file system level. At the table space level, the

Chapter 8. Table spaces 155

database manager controls which files are to be opened with and without
file system caching. At the file system level, every file residing on that
particular file system will be opened without file system caching. Some
platforms such as AIX have certain requirements before you can use this
feature, such as serialization of read and write access. although the
database manager adheres to these requirements, if the target file system
contains non-DB2 files, before enabling this feature, consult your operating
system documentation for any requirements.

Note: The now-deprecated registry variable DB2_DIRECT_IO, introduced
in Version 8.1 FixPak 4, enables no file system caching for all SMS
containers except for long field data, large object data, and temporary table
spaces on AIX JFS2. Setting this registry variable in Version 9.1 or later is
equivalent to altering all table spaces, SMS and DMS, with the NO FILE
SYSTEM CACHING clause. However, using DB2_DIRECT_IO is not
recommended, and this variable will be removed in a later release. Instead,
you should enable NO FILE SYSTEM CACHING at the table space level.

Alternate methods to enable/disable non-buffered I/O on Windows
In previous releases, the performance registry variable DB2NTNOCACHE
could be used to disable file system caching for all DB2 files in order to
make more memory available to the database so that the buffer pool or
sortheap can be increased. The difference between DB2NTNOCACHE and
using the NO FILE SYSTEM CACHING clause is the ability to disable
caching for selective table spaces. Starting in Version 9.5, since the NO
FILE SYSTEM CACHING is used as the default, unless FILE SYSTEM
CACHING is specified explicitly, there is no need to set this registry
variable to disable file system caching across the entire instance if the
instance includes only newly created table spaces.

Performance considerations
Non-buffered I/O is essentially used for performance improvements. In
some cases, however, performance degradation might be due to, but is not
limited to, a combination of a small buffer pool size and a small file system
cache. Suggestions for improving performance include:
v If self-tuning memory manager is not enabled, enable it and set the

buffer pool size to automatic using ALTER BUFFERPOOL <name> SIZE
AUTOMATIC. This allows the database manager to self-tune the buffer pool
size.

v If self-tuning memory manager is not to be enabled, increase the buffer
pool size in increments of 10 or 20 percent until performance is
improved.

v If self-tuning memory manager is not to be enabled, alter the table space
to use “FILE SYSTEM CACHING”. This essentially disables the
non-buffered I/O and reverts back to buffered I/O for container access.

Performance tuning should be tested in a controlled environment before
implementing it on the production system.

When choosing to use file system files versus devices for table space containers,
you should consider file system caching, which is performed as follows:
v For DMS file containers (and all SMS containers), the operating system might

cache pages in the file system cache (unless the table space is defined with NO
FILESYSTEM CACHING).

v For DMS device container table spaces, the operating system does not cache
pages in the file system cache.

156 Database Administration Concepts and Configuration Reference

New table space containers use concurrent I/O or direct I/O by
default
The default I/O mechanism for newly created table space containers on most AIX,
Linux, Solaris, and Windows platforms is CIO/DIO (concurrent I/O or direct I/O).
This default provides an increase of throughput over buffered I/O on heavy
transaction processing workloads and rollbacks.

The FILE SYSTEM CACHING or NO FILE SYSTEM CACHING attribute specifies
whether I/O operations are to be cached at the file system level:
v FILE SYSTEM CACHING specifies that all I/O operations in the target table

space are to be cached at the file system level.
v NO FILE SYSTEM CACHING specifies that all I/O operations are to bypass the

file system-level cache.

If large object (LOB) data is inlined, then it is accessed as regular data and uses the
I/O method (buffered or non-buffered) specified for the table space FILE SYSTEM
CACHING attribute.

If large object (LOB) data is not inlined, then the following statements apply:
v For SMS table spaces, non-buffered I/O access is not requested for long field

(LF) data and large object (LOB) data even when the NO FILE SYSTEM
CACHING table space attribute is set. Buffering occurs in the file system cache,
subject to operating system configuration and behavior, and potentially improves
performance.

v For DMS table spaces, DB2 does not distinguish between different data types
when performing I/O. Buffering of LF or LOB data does not occur unless the
table space is configured with FILE SYSTEM CACHING enabled. If buffering of
LF or LOB data in DMS tables spaces is wanted for performance reasons, then
you can place this data in a separate DMS table space and explicitly enable FILE
SYSTEM CACHING.

The following interfaces contain the FILE SYSTEM CACHING attribute:
v CREATE TABLESPACE statement
v CREATE DATABASE command
v sqlecrea() API (using the sqlfscaching field of the SQLETSDESC structure)

When this attribute is not specified on the CREATE TABLESPACE statement, or on
the CREATE DATABASE command, the database manager processes the request using
the default behavior based on the platform and file system type. See “File system
caching configurations” on page 158 for the exact behavior. For the sqlecrea()
API, a value of 0x2 for the field sqlfscaching field, instructs the database manager to
use the default setting.

The following tools currently interpret the value for FILE SYSTEM CACHING
attribute:
v GET SNAPSHOT FOR TABLESPACES command
v db2pd –tablespaces command
v db2look –d <dbname> –l command

For db2look, if the FILE SYSTEM CACHING attribute is not specified, the output
does not contain this attribute.

Chapter 8. Table spaces 157

Example

Suppose that the database and all related table space containers exist on an AIX
JFS file system and the following statement was issued:

DB2 CREATE TABLESPACE JFS2

If the attribute was not specified, the database manager uses NO FILE SYSTEM
CACHING.

File system caching configurations
The operating system, by default, caches file data that is read from and written to
disk.

A typical read operation involves physical disk access to read the data from disk
into the file system cache, and then to copy the data from the cache to the
application buffer. Similarly, a write operation involves physical disk access to copy
the data from the application buffer into the file system cache, and then to copy it
from the cache to the physical disk. This behavior of caching data at the file system
level is reflected in the FILE SYSTEM CACHING clause of the CREATE
TABLESPACE statement. Since the database manager manages its own data
caching using buffer pools, the caching at the file system level is not needed if the
size of the buffer pool is tuned appropriately.

Note: The database manager already prevents caching of most DB2 data, except
temporary data and LOBs on AIX, by invalidating the pages from the cache.

In some cases, caching at the file system level and in the buffer pools causes
performance degradation because of the extra CPU cycles required for the double
caching. To avoid this double caching, most file systems have a feature that
disables caching at the file system level. This is generically referred to as
non-buffered I/O. On UNIX, this feature is commonly known as Direct I/O (or DIO).
On Windows, this is equivalent to opening the file with the
FILE_FLAG_NO_BUFFERING flag. In addition, some file systems such as IBM
JFS2 or Symantec VERITAS VxFS also support enhanced Direct I/O, that is, the
higher-performing Concurrent I/O (CIO) feature. The database manager supports
this feature with the NO FILE SYSTEM CACHING table space clause. When this is
set, the database manager automatically takes advantage of CIO on file systems
where this feature exists. This feature might help to reduce the memory
requirements of the file system cache, thus making more memory available for
other uses.

Prior to Version 9.5, the keyword FILE SYSTEM CACHING was implied if neither
NO FILE SYSTEM CACHING nor FILE SYSTEM CACHING was specified. With
Version 9.5, if neither keyword is specified, the default, NO FILE SYSTEM
CACHING, is used. This change affects only newly created table spaces. Existing
table spaces created prior to Version 9.5 are not affected. This change applies to
AIX, Linux, Solaris, and Windows with the following exceptions, where the default
behavior remains to be FILE SYSTEM CACHING:
v AIX JFS
v Solaris non-VxFS
v Linux for System z
v All SMS temporary table space files
v Long Field (LF) and Large object (LOB) data files in SMS permanent table space

files.

158 Database Administration Concepts and Configuration Reference

To override the default setting, specify FILE SYSTEM CACHING or NO FILE
SYSTEM CACHING.

Supported configurations

Table 12 shows the supported configuration for using table spaces without file
system caching. It also indicates: (a) whether DIO or enhanced DIO will be used in
each case, and (b) the default behavior when neither NO FILE SYSTEM CACHING
nor FILE SYSTEM CACHING is specified for a table space based on the platform
and file system type.

Table 12. Supported configurations for table spaces without file system caching

Platforms File system type and
minimum level required

DIO or CIO requests
submitted by the database
manager when NO FILE
SYSTEM CACHING is
specified

Default behavior when
neither NO FILE SYSTEM
CACHING nor FILE
SYSTEM CACHING is
specified

AIX 5.3 and higher Journal File System (JFS) DIO FILE SYSTEM CACHING
(See Note 1.)

AIX 5.3 and higher General Parallel File System
(GPFS)

DIO NO FILE SYSTEM
CACHING

AIX 5.3 and higher Concurrent Journal File
System (JFS2)

CIO NO FILE SYSTEM
CACHING

AIX 5.3 and higher VERITAS Storage
Foundation for DB2 4.1
(VxFS)

VERITAS Storage
Foundation for DB2 5.0
(VxFS)

CIO NO FILE SYSTEM
CACHING

HP-UX Version 11i v2,
11iv3 (Itanium)

VERITAS Storage
Foundation 4.1 (VxFS)

VERITAS Storage
Foundation 5.0 (VxFS) (See
Note 6.)

CIO FILE SYSTEM CACHING

Solaris 9 UNIX File System (UFS) DIO FILE SYSTEM CACHING
(See Note 2.)

Solaris 10 UNIX File System (UFS) CIO FILE SYSTEM CACHING
(See Note 2.)

Solaris 9, 10 VERITAS Storage
Foundation for DB2 4.1
(VxFS)

VERITAS Storage
Foundation for DB2 5.0
(VxFS)

CIO NO FILE SYSTEM
CACHING

Linux distributions SLES 10
SP2 or higher, and RHEL
5.2 or higher

(on these architectures: x86,
x64, POWER®)

ext2, ext3, reiserfs DIO NO FILE SYSTEM
CACHING

Chapter 8. Table spaces 159

Table 12. Supported configurations for table spaces without file system caching (continued)

Platforms File system type and
minimum level required

DIO or CIO requests
submitted by the database
manager when NO FILE
SYSTEM CACHING is
specified

Default behavior when
neither NO FILE SYSTEM
CACHING nor FILE
SYSTEM CACHING is
specified

Linux distributions SLES 10
SP2 or higher, and RHEL
5.2 or higher

(on these architectures: x86,
x64, POWER)

VERITAS Storage
Foundation for DB2 4.1
(VxFS)

VERITAS Storage
Foundation for DB2 5.0
(VxFS)

CIO NO FILE SYSTEM
CACHING

Linux distributions SLES 10
SP2 or higher, and RHEL
5.2 or higher

(on this architecture:
zSeries)

ext2, ext3 or reiserfs on a
Small Computer System
Interface (SCSI) disks using
Fibre Channel Protocol
(FCP)

DIO FILE SYSTEM CACHING

Windows No specific requirement,
works on all DB2
supported file systems

DIO NO FILE SYSTEM
CACHING

Note:

1. On AIX JFS, FILE SYSTEM CACHING is the default.
2. On Solaris UFS, NO FILE SYSTEM CACHING is the default.
3. The VERITAS Storage Foundation for the database manager might have

different operating system prerequisites. The platforms listed above are the
supported platforms for the current release. Consult the VERITAS Storage
Foundation for DB2 support for prerequisite information.

4. If SFDB2 5.0 is used, the 5.0 MP3 RP2 release (or higher) must be used. This
release includes fixes that are specific to the 5.0 version.

5. VERITAS Storage Foundation 5.0 MP3 and 5.1 now include CIO support in the
base product, and no longer require the DB edition version of the product.

6. On HP, CIO is enabled with 5.0.1 OnlineJFS and does not require an additional
VERITAS license.

7. If you do not want the database manager to choose NO FILE SYSTEM
CACHING for the default setting, specify FILE SYSTEM CACHING in the
relevant SQL, commands, or APIs.

Examples

Example 1: By default, this new table space will be created using non-buffered
I/O; the NO FILE SYSTEM CACHING clause is implied:

CREATE TABLESPACE table space name ...

Example 2: On the following statement, the NO FILE SYSTEM CACHING clause
indicates that file system level caching will be OFF for this particular table space:

CREATE TABLESPACE table space name ... NO FILE SYSTEM CACHING

Example 3: The following statement disables file system level caching for an
existing table space:

ALTER TABLESPACE table space name ... NO FILE SYSTEM CACHING

160 Database Administration Concepts and Configuration Reference

Example 4: The following statement enables file system level caching for an
existing table space:

ALTER TABLESPACE table space name ... FILE SYSTEM CACHING

Extent sizes in table spaces
An extent is a block of storage within a table space container. It represents the
number of pages of data that will be written to a container before writing to the
next container. When you create a table space, you can choose the extent size based
on your requirements for performance and storage management.

When selecting an extent size, you should consider:
v The size and type of tables in the table space.

Space in DMS table spaces is allocated to a table one extent at a time. As the
table is populated and an extent becomes full, a new extent is allocated. DMS
table space container storage is pre-reserved which means that new extents are
allocated until the container is completely used.
Space in SMS table spaces is allocated to a table either one extent at a time or
one page at a time. As the table is populated and an extent or page becomes
full, a new extent or page is allocated until all of the extents or pages in the file
system are used. When using SMS table spaces, multipage file allocation is
allowed. Multipage file allocation allows extents to be allocated instead of a
page at a time.
Multipage file allocation is enabled by default. The value of the multipage_alloc
database configuration parameter will indicate if multipage file allocation is
enabled.

Note: Multipage file allocation is not applicable to temporary table spaces.
A table is made up of the following separate table objects:
– A data object. This is where the regular column data is stored.
– An index object. This is where all indexes defined on the table are stored.
– A long field (LF) data object. This is where long field data, if your table has

one or more LONG columns, is stored.
– Two large object (LOB) data objects. If your table has one or more LOB

columns, they are stored in these two table objects:
- One table object for the LOB data
- A second table object for metadata describing the LOB data.

– A block map object for multidimensional clustering (MDC) tables.
– An extra XDA object, which stores XML documents.
Each table object is stored separately, and each object allocates new extents as
needed. Each DMS table object is also paired with a metadata object called an
extent map, which describes all of the extents in the table space that belong to
the table object. Space for extent maps is also allocated one extent at a time.
Therefore, the initial allocation of space for an object in a DMS table space is two
extents. (The initial allocation of space for an object in an SMS table space is one
page.)
If you have many small tables in a DMS table space, you might have a relatively
large amount of space allocated to store a relatively small amount of data. In
such a case, you should specify a small extent size. On the other hand, if you
have a very large table that has a high growth rate, and you are using a DMS
table space with a small extent size, you could have unnecessary overhead
related to the frequent allocation of additional extents.

Chapter 8. Table spaces 161

v The type of access to the tables.
If access to the tables includes many queries or transactions that process large
quantities of data, prefetching data from the tables might provide significant
performance benefits.

v The minimum number of extents required.
If there is not enough space in the containers for five extents of the table space,
the table space will not be created.

Page, table and table space size
For DMS, temporary DMS and nontemporary automatic storage table spaces, the
page size you choose for your database determines the upper limit for the table
space size. For tables in SMS and temporary automatic storage table spaces, page
size constrains the size of the tables themselves.

You can use a 4K, 8K, 16K or 32K page size limit. Each of these page sizes also has
maximums for each of the table space types that you must adhere to.

Table 13 shows the table space size limits for DMS and nontemporary automatic
storage table spaces, by page size:

Table 13. Size limits for DMS and nontemporary automatic storage table spaces. DMS and
nontemporary automatic storage table spaces are constrained by page size.

Table space type
4K page
size limit

8K page
size limit

16K page
size limit

32K page
size limit

DMS and nontemporary automatic storage
table spaces (regular)

64G 128G 256G 512G

DMS, temporary DMS and nontemporary
automatic storage table spaces (large)

8192G 16 384G 32 768G 65 536G

Table 14 shows the table size limits tables in SMS and temporary automatic storage
table spaces, by page size:

Table 14. Size limits for tables in SMS and temporary automatic storage table spaces. With
tables in SMS and temporary automatic storage table spaces, it is the table objects
themselves, not the table spaces that are constrained by page size.

Table space type
4K page
size limit

8K page
size limit

16K page
size limit

32K page
size limit

SMS 64G 128G 256G 512G

Temporary SMS, temporary automatic
storage

8192G 16 384G 32 768G 65 536G

For database and index page size limits for the different types of table spaces, see
the database manager page size-specific limits in “SQL and XML limits” in the SQL
Reference.

To ensure that the maximum page size of your system temporary table space is
large enough for your queries or positioned updates, see “Ensuring system
temporary table space page sizes meet requirements” in Upgrading to DB2 Version
9.7.

Disk I/O efficiency and table space design
The type and design of your table space determines the efficiency of the I/O
performed against that table space.

162 Database Administration Concepts and Configuration Reference

You should understand the following concepts before considering other issues
concerning table space design and use:

Big-block reads
A read where several pages (usually an extent) are retrieved in a single
request. Reading several pages at once is more efficient than reading each
page separately.

Prefetching
The reading of pages in advance of those pages being referenced by a
query. The overall objective is to reduce response time. This can be
achieved if the prefetching of pages can occur asynchronously to the
execution of the query. The best response time is achieved when either the
CPU or the I/O subsystem is operating at maximum capacity.

Page cleaning
As pages are read and modified, they accumulate in the database buffer
pool. When a page is read in, it is read into a buffer pool page. If the
buffer pool is full of modified pages, one of these modified pages must be
written out to the disk before the new page can be read in. To prevent the
buffer pool from becoming full, page cleaner agents write out modified
pages to guarantee the availability of buffer pool pages for future read
requests.

Whenever it is advantageous to do so, the database manager performs big-block
reads. This typically occurs when retrieving data that is sequential or partially
sequential in nature. The amount of data read in one read operation depends on
the extent size — the bigger the extent size, the more pages can be read at one
time.

Sequential prefetching performance can be further enhanced if pages can be read
from disk into contiguous pages within a buffer pool. Since buffer pools are
page-based by default, there is no guarantee of finding a set of contiguous pages
when reading in contiguous pages from disk. Block-based buffer pools can be used
for this purpose because they not only contain a page area, they also contain a
block area for sets of contiguous pages. Each set of contiguous pages is named a
block and each block contains a number of pages referred to as blocksize. The size
of the page and block area, as well as the number of pages in each block is
configurable.

How the extent is stored on disk affects I/O efficiency. In a DMS table space using
device containers, the data tends to be contiguous on disk, and can be read with a
minimum of seek time and disk latency. If files are being used, a large file that has
been pre-allocated for use by a DMS table space also tends to be contiguous on
disk, especially if the file was allocated in a clean file space. However, the data
might have been broken up by the file system and stored in more than one
location on disk. This occurs most often when using SMS table spaces, where files
are extended one page at a time, making fragmentation more likely.

You can control the degree of prefetching by changing the PREFETCHSIZE option
on the CREATE TABLESPACE or ALTER TABLESPACE statements, or you can set
the prefetch size to AUTOMATIC to have the database manager automatically
choose the best size to use. (The default value for all table spaces in the database is
set by the dft_prefetch_sz database configuration parameter.) The PREFETCHSIZE
parameter tells the database manager how many pages to read whenever a
prefetch is triggered. By setting PREFETCHSIZE to be a multiple of the
EXTENTSIZE parameter on the CREATE TABLESPACE statement, you can cause

Chapter 8. Table spaces 163

multiple extents to be read in parallel. (The default value for all table spaces in the
database is set by the dft_extent_sz database configuration parameter.) The
EXTENTSIZE parameter specifies the number of 4 KB pages that will be written to
a container before skipping to the next container.

For example, suppose you had a table space that used three devices. If you set the
PREFETCHSIZE to be three times the EXTENTSIZE, the database manager can do
a big-block read from each device in parallel, thereby significantly increasing I/O
throughput. This assumes that each device is a separate physical device, and that
the controller has sufficient bandwidth to handle the data stream from each device.
Note that the database manager might have to dynamically adjust the prefetch
parameters at run time based on query speed, buffer pool utilization, and other
factors.

Some file systems use their own prefetching method (such as the Journaled File
System on AIX). In some cases, file system prefetching is set to be more aggressive
than the database manager prefetching. This might cause prefetching for SMS and
DMS table spaces with file containers to seem to outperform prefetching for DMS
table spaces with devices. This is misleading, because it is likely the result of the
additional level of prefetching that is occurring in the file system. DMS table
spaces should be able to outperform any equivalent configuration.

For prefetching (or even reading) to be efficient, a sufficient number of clean buffer
pool pages must exist. For example, there could be a parallel prefetch request that
reads three extents from a table space, and for each page being read, one modified
page is written out from the buffer pool. The prefetch request might be slowed
down to the point where it cannot keep up with the query. Page cleaners should
be configured in sufficient numbers to satisfy the prefetch request.

Creating table spaces
Creating a table space within a database assigns containers to the table space and
records its definitions and attributes in the database system catalog.

About this task

For automatic storage table spaces, the database manager assigns containers to the
table space based on the storage paths associated with the database.

For non-automatic storage table spaces, you must know the path, device or file
names for the containers that you will use when creating your table spaces. In
addition, for each device or file container you create for DMS table spaces, you
must know the how much storage space you can allocate to each container.

Procedure
v To create an SMS table space using the command line, enter:

CREATE TABLESPACE name
MANAGED BY SYSTEM
USING (’path’)

v To create a DMS table space using the command line, enter:
CREATE TABLESPACE name

MANAGED BY DATABASE
USING (FILE ’path’ size)

Note that by default, DMS table spaces are created as large table spaces

164 Database Administration Concepts and Configuration Reference

v To create an automatic storage table space using the command line, enter either
of the following statements:
CREATE TABLESPACE name

or
CREATE TABLESPACE name

MANAGED BY AUTOMATIC STORAGE

Assuming the table space is created in an automatic storage database, each of
the two statements above is equivalent; table spaces created in such a database
will, by default, be automatic storage table spaces unless you specify otherwise.

Example

Example 1: Creating an SMS table space on Windows. The following SQL statement
creates an SMS table space called RESOURCE with containers in three directories
on three separate drives:
CREATE TABLESPACE RESOURCE

MANAGED BY SYSTEM
USING (’d:\acc_tbsp’, ’e:\acc_tbsp’, ’f:\acc_tbsp’)

Example 2: Creating a DMS table space on Windows. The following SQL statement
creates a DMS table space with two file containers, each with 5 000 pages:
CREATE TABLESPACE RESOURCE

MANAGED BY DATABASE
USING (FILE’d:\db2data\acc_tbsp’ 5000,

FILE’e:\db2data\acc_tbsp’ 5000)

In the previous two examples, explicit names are provided for the containers.
However, if you specify relative container names, the container is created in the
subdirectory created for the database.

When creating table space containers, the database manager creates any directory
levels that do not exist. For example, if a container is specified as
/project/user_data/container1, and the directory /project does not exist, then
the database manager creates the directories /project and /project/user_data.

Any directories created by the database manager are created with PERMISSION
711. Permission 711 is required for fenced process access. This means that the
instance owner has read, write, and execute access, and others have execute access.
Any user with execute access also has the authority to traverse through tablespace
container directories. Because only the instance owner has read and write access,
the following scenario might occur when multiple instances are being created:
v Using the same directory structure as described above, suppose that directory

levels /project/user_data do not exist.
v user1 creates an instance, named user1 by default, then creates a database, and

then creates a table space with /project/user_data/container1 as one of its
containers.

v user2 creates an instance, named user2 by default, then creates a database, and
then attempts to create a table space with /project/user_data/container2 as
one of its containers.

Because the database manager created directory levels /project/user_data with
PERMISSION 700 from the first request, user2 does not have access to these
directory levels and cannot create container2 in those directories. In this case, the
CREATE TABLESPACE operation fails.

Chapter 8. Table spaces 165

There are two methods to resolve this conflict:
1. Create the directory /project/user_data before creating the table spaces and

set the permission to whatever access is needed for both user1 and user2 to
create the table spaces. If all levels of table space directory exist, the database
manager does not modify the access.

2. After user1 creates /project/user_data/container1, set the permission of
/project/user_data to whatever access is needed for user2 to create the table
space.

If a subdirectory is created by the database manager, it might also be deleted by
the database manager when the table space is dropped.

The assumption in this scenario is that the table spaces are not associated with a
specific database partition group. The default database partition group
IBMDEFAULTGROUP is used when the following parameter is not specified in the
statement:
IN database_partition_group_name

Example 3: Creating DMS table spaces on AIX. The following SQL statement creates a
DMS table space on an AIX system using three logical volumes of 10 000 pages
each, and specifies their I/O characteristics:
CREATE TABLESPACE RESOURCE

MANAGED BY DATABASE
USING (DEVICE ’/dev/rdblv6’ 10000,

DEVICE ’/dev/rdblv7’ 10000,
DEVICE ’/dev/rdblv8’ 10000)

OVERHEAD 7.5
TRANSFERRATE 0.06

The UNIX devices mentioned in this SQL statement must already exist, and the
instance owner and the SYSADM group must be able to write to them.

Example 4: Creating a DMS table space on a UNIX system. The following example
creates a DMS table space on a database partition group called ODDGROUP in a
UNIX multi-partition database. ODDGROUP must be previously created with a
CREATE DATABASE PARTITION GROUP statement. In this case, the ODDGROUP
database partition group is assumed to be made up of database partitions
numbered 1, 3, and 5. On all database partitions, use the device /dev/hdisk0 for
10 000 4 KB pages. In addition, declare a device for each database partition of
40 000 4 KB pages.
CREATE TABLESPACE PLANS IN ODDGROUP

MANAGED BY DATABASE
USING (DEVICE ’/dev/HDISK0’ 10000, DEVICE ’/dev/n1hd01’ 40000)

ON DBPARTITIONNUM 1
(DEVICE ’/dev/HDISK0’ 10000, DEVICE ’/dev/n3hd03’ 40000)
ON DBPARTITIONNUM 3
(DEVICE ’/dev/HDISK0’ 10000, DEVICE ’/dev/n5hd05’ 40000)
ON DBPARTITIONNUM 5

The database manager can greatly improve the performance of sequential I/O
using the sequential prefetch facility, which uses parallel I/O.

Example 5: Creating an SMS table space with a page size larger than the default. You can
also create a table space that uses a page size larger than the default 4 KB size. The
following SQL statement creates an SMS table space on a Linux and UNIX system
with an 8 KB page size.

166 Database Administration Concepts and Configuration Reference

CREATE TABLESPACE SMS8K
PAGESIZE 8192
MANAGED BY SYSTEM
USING (’FSMS_8K_1’)
BUFFERPOOL BUFFPOOL8K

Notice that the associated buffer pool must also have the same 8 KB page size.

The created table space cannot be used until the buffer pool it references is
activated.

You can use the ALTER TABLESPACE statement to add, drop, or resize containers
to a DMS table space and modify the PREFETCHSIZE, OVERHEAD, and
TRANSFERRATE settings for a table space. You should commit the transaction
issuing the table space statement as soon as possible following the ALTER
TABLESPACE SQL statement to prevent system catalog contention.

Note: The PREFETCHSIZE value should be a multiple of the EXTENTSIZE value.
For example if the EXTENTSIZE is 10, the PREFETCHSIZE should be 20 or 30. You
should also consider letting the database manager automatically determine the
prefetch size, by setting PREFETCHSIZE to AUTOMATIC.

Direct I/O (DIO) improves memory performance because it bypasses caching at
the file system level. This process reduces CPU overhead and makes more memory
available to the database instance.

Concurrent I/O (CIO) includes the advantages of DIO and also relieves the
serialization of write accesses.

DIO and CIO are supported on AIX; DIO is supported on HP-UX, Solaris, Linux,
and Windows operating systems.

The keywords NO FILE SYSTEM CACHING and FILE SYSTEM CACHING are
part of the CREATE and ALTER TABLESPACE SQL statements to allow you to
specify whether DIO or CIO is to be used with each table space. When NO FILE
SYSTEM CACHING is in effect, the database manager attempts to use Concurrent
I/O (CIO) wherever possible. In cases where CIO is not supported (for example, if
JFS is used), DIO is used instead.

When you issue the CREATE TABLESPACE statement, the dropped table recovery
feature is turned on by default. This feature lets you recover dropped table data
using table space-level restore and rollforward operations. This is useful because it
is faster than database-level recovery, and your database can remain available to
users.

However, the dropped table recovery feature can have some performance impact
on forward recovery when there are many drop table operations to recover or
when the history file is very large.

You might want to disable this feature if you plan to run numerous drop table
operations, and you either use circular logging or you do not think you will want
to recover any of the dropped tables. To disable this feature, you can explicitly set
the DROPPED TABLE RECOVERY option to OFF when you issue the CREATE
TABLESPACE statement. Alternatively, you can turn off the dropped table recovery
feature for an existing table space using the ALTER TABLESPACE statement.

Chapter 8. Table spaces 167

Creating temporary table spaces
Temporary table spaces hold temporary data required by the database manager
when performing operations such as sorts or joins, since these activities require
extra space to process the results set. You create temporary table spaces using a
variation of the CREATE TABLESPACE command.

About this task

A system temporary table space is used to store system temporary tables. A database
must always have at least one system temporary table space since system
temporary tables can only be stored in such a table space. When a database is
created, one of the three default table spaces defined is a system temporary table
space called "TEMPSPACE1". You should have at least one system temporary table
space of each page size for the user table spaces that exist in your database,
otherwise some queries might fail. See “Table spaces for system, user and
temporary data” on page 121 for more information.

User temporary table spaces are not created by default when a database is created. If
your application programs need to use temporary tables, you must create a user
temporary table space where the temporary tables will reside. Like regular table
spaces, user temporary table spaces can be created in any database partition group
other than IBMTEMPGROUP. IBMDEFAULTGROUP is the default database
partition group that is used when creating a user temporary table.

Restrictions

For system temporary table spaces in a partitioned environment, the only database
partition group that can be specified when creating a system temporary table space
is IBMTEMPGROUP.

Procedure
v To create a system temporary table space in addition to the default

TEMPSPACE1, use a CREATE TABLESPACE statement that includes the
keywords SYSTEM TEMPORARY. For example:

CREATE SYSTEM TEMPORARY TABLESPACE tmp_tbsp
MANAGED BY SYSTEM
USING (’d:\tmp_tbsp’,’e:\tmp_tbsp’)

v To create a user temporary table space, use the CREATE TABLESPACE statement
with the keywords USER TEMPORARY. For example:

CREATE USER TEMPORARY TABLESPACE usr_tbsp
MANAGED BY DATABASE
USING (FILE ’d:\db2data\user_tbsp’ 5000,
FILE ’e:\db2data\user_tbsp’ 5000)

Defining initial table spaces on database creation
When a database is created, three table spaces are defined: (1) SYSCATSPACE for
the system catalog tables, (2) TEMPSPACE1 for system temporary tables created
during database processing, and (3) USERSPACE1 for user-defined tables and
indexes. You can also create additional user table spaces at the same time.

About this task

Note: When you first create a database no user temporary table space is created.

168 Database Administration Concepts and Configuration Reference

Unless otherwise specified, the three default table spaces are managed by
automatic storage.

Using the CREATE DATABASE command, you can specify the page size for the default
buffer pool and the initial table spaces. This default also represents the default
page size for all future CREATE BUFFERPOOL and CREATE TABLESPACE
statements. If you do not specify the page size when creating the database, the
default page size is 4 KB.

To define initial table spaces using the command line, enter:
CREATE DATABASE name

PAGESIZE page size
CATALOG TABLESPACE

MANAGED BY SYSTEM USING (’path’)
EXTENTSIZE value PREFETCHSIZE value

USER TABLESPACE
MANAGED BY DATABASE USING (FILE ’path’ 5000,

FILE ’path’ 5000)
EXTENTSIZE value PREFETCHSIZE value

TEMPORARY TABLESPACE
MANAGED BY SYSTEM USING (’path’)

WITH "comment"

If you do not want to use the default definition for these table spaces, you might
specify their characteristics on the CREATE DATABASE command. For example, the
following command could be used to create your database on Windows:

CREATE DATABASE PERSONL
PAGESIZE 16384
CATALOG TABLESPACE

MANAGED BY SYSTEM USING (’d:\pcatalog’,’e:\pcatalog’)
EXTENTSIZE 16 PREFETCHSIZE 32

USER TABLESPACE
MANAGED BY DATABASE USING (FILE’d:\db2data\personl’ 5000,

FILE’d:\db2data\personl’ 5000)
EXTENTSIZE 32 PREFETCHSIZE 64

TEMPORARY TABLESPACE
MANAGED BY SYSTEM USING (’f:\db2temp\personl’)

WITH "Personnel DB for BSchiefer Co"

In this example, the default page size is set to 16 384 bytes, and the definition for
each of the initial table spaces is explicitly provided. You only need to specify the
table space definitions for those table spaces for which you do not want to use the
default definition.

Note: When working in a partitioned database environment, you cannot create or
assign containers to specific database partitions. First, you must create the database
with default user and temporary table spaces. Then you should use the CREATE
TABLESPACE statement to create the required table spaces. Finally, you can drop
the default table spaces.

The coding of the MANAGED BY phrase on the CREATE DATABASE command
follows the same format as the MANAGED BY phrase on the CREATE
TABLESPACE statement.

You can add additional user and temporary table spaces if you want. You cannot
drop the catalog table space SYSCATSPACE, or create another one; and there must
always be at least one system temporary table space with a page size of 4 KB. You
can create other system temporary table spaces. You also cannot change the page
size or the extent size of a table space after it has been created.

Chapter 8. Table spaces 169

Attaching DMS direct disk access devices
When working with containers to store data, the database manager supports direct
disk access (raw I/O).

About this task

This type of support allows you to attach a direct disk access (raw) device to any
DB2 database system.

You must know the device or file names of the containers you are going to
reference when creating your table spaces. You must know the amount of space
associated with each device or file name that is to be allocated to the table space.
You will need the correct permissions to read and write to the container.

The physical and logical methods for identifying direct disk access differs based on
operating system:
v On the Windows operating systems:

To specify a physical hard drive, use the following syntax:
\\.\PhysicalDriveN

where N represents one of the physical drives in the system. In this case, N
could be replaced by 0, 1, 2, or any other positive integer:

\\.\PhysicalDrive5

To specify a logical drive, that is, an unformatted database partition, use the
following syntax:

\\.\N:

where N: represents a logical drive letter in the system. For example, N: could
be replaced by E: or any other drive letter. To overcome the limitation imposed
by using a letter to identify the drive, you can use a globally unique identifier
(GUID) with the logical drive.
For Windows, there is a new method for specifying DMS raw table space
containers. Volumes (that is, basic disk database partitions or dynamic volumes)
are assigned a globally unique identifier (GUID) when they are created. The
GUID can be used as a device identifier when specifying the containers in a
table space definition. The GUIDs are unique across systems which means that
in a multi-partition database, GUIDs are different for each database partition
even if the disk partition definitions are the same.
A tool called db2listvolumes.exe is available (only on Windows operating systems)
to make it easy to display the GUIDs for all the disk volumes defined on a
Windows system. This tool creates two files in the current directory where the
tool is run. One file, called volumes.xml, contains information about each disk
volume encoded in XML for easy viewing on any XML-enabled browser. The
second file, called tablespace.ddl, contains the required syntax for specifying
table space containers. This file must be updated to fill in the remaining
information needed for a table space definition. The db2listvolumes command
does not require any command line arguments.

v On Linux and UNIX platforms, a logical volume can appear to users and
applications as a single, contiguous, and extensible disk volume. Although it
appears this way, it can reside on noncontiguous physical database partitions or
even on more than one physical volume. The logical volume must also be
contained within a single volume group. There is a limit of 256 logical volumes
per volume group. There is a limit of 32 physical volumes per volume group.
You can create additional logical volumes using the mklv command. This

170 Database Administration Concepts and Configuration Reference

command allows you to specify the name of the logical volume and to define its
characteristics, including the number and location of logical partitions to allocate
for it.
After you create a logical volume, you can change its name and characteristics
with the chlv command, and you can increase the number of logical partitions
allocated to it with the extendlv command. The default maximum size for a
logical volume at creation is 512 logical partitions, unless specified to be larger.
The chlv command is used to override this limitation.
Within AIX, the set of operating system commands, library subroutines, and
other tools that allow you to establish and control logical volume storage is
called the Logical Volume Manager (LVM). The LVM controls disk resources by
mapping data between a simpler and flexible logical view of storage space and
the actual physical disks.
For more information on the mklv and other logical volume commands, and the
LVM, refer to AIX 5L Version 5.2 System Management Concepts: Operating System
and Devices.

Configuring and setting up DMS direct disk access (Linux)
When working with containers to store data, the database manager supports direct
disk (raw) access using the block device interface (that is, raw I/O).

Before you begin

Before setting up raw I/O on Linux, one or more free IDE or SCSI disk database
partitions are required. In order to reference the disk partition when creating the
table space, you must know the name of the disk partition and the amount of
space associated with the disk partition that is to be allocated to the table space.

About this task

The following information should be used when working in a Linux environment.
On Linux/390, the database manager does not support direct disk access devices.

To configure or raw I/O on Linux:

In this example, the raw database partition to be used is /dev/sda5. It should not
contain any valuable data.
1. Calculate the number of 4 096-byte pages in this database partition, rounding

down if necessary. For example:
fdisk /dev/sda
Command (m for help): p

Disk /dev/sda: 255 heads, 63 sectors, 1106 cylinders
Units = cylinders of 16065 * 512 bytes

Table 15. Linux raw I/O calculations.

Device boot Start End Blocks Id System

/dev/sda1 1 523 4200997 83 Linux

/dev/sda2 524 1106 4682947+ 5 Extended

/dev/sda5 524 1106 4682947 83 Linux

Command (m for help): q
#

The number of pages in /dev/sda5 is:

Chapter 8. Table spaces 171

num_pages = floor((4682947 * 1024)/4096)
num_pages = 1170736

2. Create the table space by specifying the disk partition name. For example:
CREATE TABLESPACE dms1
MANAGED BY DATABASE
USING (DEVICE ’/dev/sda5’ 1170736)

3. To specify logical partitions by using junction points (or volume mount points),
mount the RAW partition to another NTFS-formatted volume as a junction
point, then specify the path to the junction point on the NTFS volume as the
container path. For example:
CREATE TABLESPACE TS4

MANAGED BY DATABASE USING (DEVICE ’C:\JUNCTION\DISK_1’ 10000,
DEVICE ’C:\JUNCTION\DISK_2’ 10000)

The database manager first queries the partition to see whether there is a file
system R on it; if yes, the partition is not treated as a RAW device, and
performs normal file system I/O operations on the partition.

Table spaces on raw devices are also supported for all other page sizes supported
by the database manager.

Prior to Version 9, direct disk access using a raw controller utility on Linux was
used. This method is now deprecated, and its use is discouraged. The database
manager will still allow you to use this method if the Linux operating system still
supports it, however, there will be a message in the db2diag log files that will
indicate that its use is deprecated.

The prior method would have required you to "bind" a disk partition to a raw
controller, then specify that raw controller to the database manager using the
CREATE TABLESPACE command:

CREATE TABLESPACE dms1
MANAGED BY DATABASE
USING (DEVICE ’/dev/raw/raw1’ 1170736)

Altering table spaces
To alter a table space using the command line, use the ALTER TABLESPACE
statement.

About this task

Depending on the type of table space, you can do things such as:
v Increasing the size of the table space by adding additional containers
v Resizing existing containers
v Dropping containers
v Rebalance the table space to start making use of new containers, or to move data

out of dropped containers
v Lower the high water mark for the table space
v Reduce the overall size of the table space.

You can also rename a table space, and switch it from offline to online mode.

172 Database Administration Concepts and Configuration Reference

Calculating table space usage
You can determine how much of your table space is currently in use with the
MON_GET_TABLESPACE table function. The information this function returns can
help you determine whether you should attempt to reclaim free storage.

About this task

This task will provide you with information that you can use to determine the
extent to which you have unused space below the high water mark for your table
space. Based on this, you can make a determination as to whether reclaiming free
storage would be beneficial.

Restrictions

Although you can determine various usage attributes about all your table spaces,
only table spaces created with DB2 Version 9.7 or later have the reclaimable storage
capability. If you want to be able to reclaim storage in table spaces created with
earlier versions of the DB2 product, you either must unload then reload the data
into a table space created with DB2 Version 9.7, or move the data with an online
move.

Procedure

To determine how much free space exists below the high water mark:
1. Formulate a SELECT statement that incorporates the MON_GET_TABLESPACE

table function to report on the state of your table spaces. For example, the
following statement will display the total pages, free pages, used pages, for all
table spaces, across all database partitions:
SELECT varchar(tbsp_name, 30) as tbsp_name,

reclaimable_space_enabled,
tbsp_free_pages,
tbsp_page_top,
tbsp_usable_pages

FROM TABLE(MON_GET_TABLESPACE(’’,-2)) AS t
ORDER BY tbsp_free_pages ASC

2. Run the statement. You will see output that resembles this:
TBSP_NAME RECLAIMABLE_SPACE_ENABLED TBSP_FREE_PAGES TBSP_PAGE_TOP TBSP_USABLE_PAGES
------------------------------ ------------------------- -------------------- -------------------- --------------------
TEMPSPACE1 0 0 0 1
SYSTOOLSTMPSPACE 0 0 0 1
TBSP1 1 0 1632 1632
SMSDEMO 0 0 0 1
SYSCATSPACE 1 2012 10272 12284
USERSPACE1 1 2496 1696 4064
IBMDB2SAMPLEREL 1 3328 736 4064
TS1 1 3584 480 4064
TS2 1 3968 96 4064
TBSP2 1 3968 96 4064
TBSAUTO 1 3968 96 4064
SYSTOOLSPACE 1 3976 116 4092

12 record(s) selected.

3. Use the following formula to determine the number of free pages below the
high water mark:
freeSpaceBelowHWM = tbsp_free_pages - (tbsp_usable_pages - tbsp_page_top)

Results

Using the information from the report in step 2, the free space below the high
water mark for USERSPACE1 would be 2496 - (4064 - 1696) = 128 pages. This

Chapter 8. Table spaces 173

represents just slightly over 5% of the total free pages available in the table space.

What to do next

In this case, it might not be worth trying to reclaim this space. However, if you did
want to reclaim those 128 pages, you could run an ALTER TABLESPACE
USERSPACE1 REDUCE MAX statement. If you were to do so, and then run the
MON_GET_TABLESPACE table function again, you would see the following:

TBSP_NAME RECLAIMABLE_SPACE_ENABLED TBSP_FREE_PAGES TBSP_PAGE_TOP TBSP_USABLE_PAGES
------------------------------ ------------------------- -------------------- -------------------- --------------------
TEMPSPACE1 0 0 0 1
USERSPACE1 1 0 1568 1568
SYSTOOLSTMPSPACE 0 0 0 1
TBSP1 1 0 1632 1632
SMSDEMO 0 0 0 1
SYSCATSPACE 1 2012 10272 12284
IBMDB2SAMPLEREL 1 3328 736 4064
TS1 1 3584 480 4064
TS2 1 3968 96 4064
TBSP2 1 3968 96 4064
TBSAUTO 1 3968 96 4064
SYSTOOLSPACE 1 3976 116 4092

12 record(s) selected.

Altering SMS table spaces
You cannot add containers to or change the size of containers for SMS table spaces
once they have been created, with one exception; when you add new data
partitions, you can add new containers to an SMS table space for those partitions.

Altering DMS table spaces
For DMS table spaces, you can add, extend, rebalance, resize, drop, or reduce
containers.

Adding DMS containers
You can increase the size of a DMS table space (that is, one created with the
MANAGED BY DATABASE clause) by adding one or more containers to the table
space.

About this task

No rebalancing occurs if you are adding new containers and creating a new stripe
set. A new stripe set is created using the BEGIN NEW STRIPE SET clause on the
ALTER TABLESPACE statement. You can also add containers to existing stripe sets
using the ADD TO STRIPE SET clause on the ALTER TABLESPACE statement.

The addition or modification of DMS containers (both file and raw device
containers) is performed in parallel through prefetchers. To achieve an increase in
parallelism of these create or resize container operations, you can increase the
number of prefetchers running in the system. The only process which is not done
in parallel is the logging of these actions and, in the case of creating containers, the
tagging of the containers.

Note: To maximize the parallelism of the CREATE TABLESPACE or ALTER
TABLESPACE statements (with respect to adding new containers to an existing
table space) ensure the number of prefetchers is greater than or equal to the
number of containers being added. The number of prefetchers is controlled by the
num_ioservers database configuration parameter. The database has to be stopped for

174 Database Administration Concepts and Configuration Reference

the new parameter value to take effect. In other words, all applications and users
must disconnect from the database for the change to take affect.

Example

The following example illustrates how to add two new device containers (each
with 10 000 pages) to a table space on a Linux and UNIX system:

ALTER TABLESPACE RESOURCE
ADD (DEVICE ’/dev/rhd9’ 10000,

DEVICE ’/dev/rhd10’ 10000)

Note that the ALTER TABLESPACE statement allows you to change other
properties of the table space that can affect performance.

Dropping DMS containers
With a DMS table space, you can drop a container from the table space using the
ALTER TABLESPACE statement.

About this task

Dropping a container will only be allowed if the number of extents being dropped
by the operation is less than or equal to the number of free extents above the
high-water mark in the table space. This is necessary because page numbers cannot
be changed by the operation and therefore all extents up to and including the
high-water mark must sit in the same logical position within the table space.
Therefore, the resulting table space must have enough space to hold all of the data
up to and including the high-water mark. In the situation where there is not
enough free space, you will receive an error immediately upon execution of the
statement.

When containers are dropped, the remaining containers are renumbered such that
their container IDs start at 0 and increase by 1. If all of the containers in a stripe
set are dropped, the stripe set will be removed from the map and all stripe sets
following it in the map will be shifted down and renumbered such that there are
no gaps in the stripe set numbers.

To drop a container, use the DROP option on the ALTER TABLESPACE statement.

Resizing DMS containers
Containers in a database managed (DMS) table space can be resized as storage
needs change. If you use the auto-resize capabilities for DMS containers, the
database manager handles this for you. If you did not enable the auto-resize
option, you can also make adjustments manually.

About this task

To increase the size of one or more containers in a DMS table space by a specified
amount, use the EXTEND option of the ALTER TABLESPACE command; To reduce
the size of existing containers, use the REDUCE option. When you use EXTEND
or REDUCE, you specify the amount by which you want to the size to increase or
decrease from whatever it is currently. In other words, the size is adjusted relative
to the current size.

You can also use the RESIZE option on the ALTER TABLESPACE statement. When
you use RESIZE, the specify a new size for the affected containers. In other words,
the size is interpreted as an absolute size for the specified containers. When using

Chapter 8. Table spaces 175

the RESIZE option, all of the containers listed as part of the statement must either
be increased in size, or decreased in size. You cannot increase some containers and
decrease other containers in the same statement.

The addition or modification of DMS containers (both file and raw device
containers) is performed in parallel through prefetchers. To achieve an increase in
parallelism of these create or resize container operations, you can increase the
number of prefetchers running in the system. The only process which is not done
in parallel is the logging of these actions and, in the case of creating containers, the
tagging of the containers.

Note: To maximize the parallelism of the CREATE TABLESPACE or ALTER
TABLESPACE statements (with respect to adding new containers to an existing
table space) ensure the number of prefetchers is greater than or equal to the
number of containers being added. The number of prefetchers is controlled by the
num_ioservers database configuration parameter. The database has to be stopped for
the new parameter value to take effect. In other words, all applications and users
must disconnect from the database for the change to take affect.

Restrictions

v Each raw device can only be used as one container.
v The raw device size is fixed after its creation.
v When you are considering to use the RESIZE or EXTEND options to increase a

raw device container, you should check the raw device size first to ensure that
you do not attempt to increase the device container size larger than the raw
device size.

v In DMS table spaces, a container must be at least two times the extent size pages
in length. The maximum size of a container is operating system dependent.

Example

Example 1: Increasing the size of file containers. The following example illustrates how
to increase file containers (each already existing with 1 000 pages) in a table space
on a Windows-based system:

ALTER TABLESPACE PERSNEL
EXTEND (FILE ’e:\wrkhist1’ 200

FILE ’f:\wrkhist2’ 200)

Following this action, the two files have increased from 1 000 pages in size to
1 200 pages. The contents of the table space might be rebalanced across the
containers. Access to the table space is not restricted during the re-balancing.

Example 2: Increasing the size of device containers. The following example illustrates
how to increase two device containers (each already existing with 1 000 pages) in a
table space on a Linux and UNIX system:

ALTER TABLESPACE HISTORY
RESIZE (DEVICE ’/dev/rhd7’ 2000,

DEVICE ’/dev/rhd8’ 2000)

Following this action, the two devices have increased from 1 000 pages in size to
2 000 pages. The contents of the table space might be rebalanced across the
containers. Access to the table space is not restricted during the rebalancing.

176 Database Administration Concepts and Configuration Reference

Example 3: Reducing container size using the REDUCE option. The following example
illustrates how to reduce a file container (which already exists with 1 000 pages) in
a table space on a Windows-based system:

ALTER TABLESPACE PAYROLL
REDUCE (FILE ’d:\hldr\finance’ 200)

Following this action, the file is decreased from 1 000 pages in size to 800 pages.

Rebalancing DMS containers
The process of rebalancing involves moving table space extents from one location
to another, and it is done in an attempt to keep data striped within the table space.
You typically rebalance a table space when adding storage paths to or dropping
storage paths from a database.

Effect of adding or dropping containers on rebalancing

When a table space is created, its table space map is created and all of the initial
containers are lined up such that they all start in stripe 0. This means that data is
striped evenly across all of the table space containers until the individual
containers fill up. (See Example 1 (“Before”).)

Adding a container that is smaller than existing containers results in a uneven
distribution of data. This can cause parallel I/O operations, such as prefetching
data, to be performed less efficiently than they could on containers of equal size.

When new containers are added to a table space or existing containers are
extended, a rebalance of the table space data will occur if the new space is added
below the high water mark for the table space. If new space as added above the
high water mark or if you are creating a new stripe set, a rebalance does not
automatically occur. Rebalancing that is done to take advantage of added storage is
known as a forward rebalance; in this case, the extent movement begins at extent 0
(the first extent in the table space) and proceeds upwards to the extent
immediately below the high water mark.

Adding a container will almost always add space below the high-water mark,
which is why a rebalance is often necessary when you add a container. You can
force new containers to be added above the high-water mark, which allows you to
choose not to rebalance the contents of the table space. An advantage of this
method is that the new container will be available for immediate use. Adding
containers to a table space without rebalancing is done by adding a new stripe set.
A stripe set is a set of containers in a table space that has data striped across it
separately from the other containers that belong to that table space. The existing
containers in the existing stripe sets remain untouched, and the containers you add
become part of a new stripe set. To add containers without rebalancing, use the
BEGIN NEW STRIPE SET clause on the ALTER TABLESPACE statement.

When containers are dropped from a table space, a rebalance automatically occurs
if data resides in the space being dropped. In this case, the rebalance is known as a
reverse rebalance; the extent movement begins at the high water mark and proceeds
downwards to the first extent in the table space.

Before the rebalance starts, a new table space map is built based on the container
changes made. The rebalancer will move extents from their location determined by
the current map into the location determined by the new map.

Chapter 8. Table spaces 177

Forward rebalancing

The rebalancer starts at extent 0, moving one extent at a time until the extent
holding the high-water mark has been moved. As each extent is moved, the
current map is altered, one piece at a time, to look like the new map. When the
rebalance is complete, the current map and new map should look identical up to
the stripe holding the high-water mark. The current map is then made to look
completely like the new map and the rebalancing process is complete. If the
location of an extent in the current map is the same as its location in the new map,
then the extent is not moved and no I/O takes place.

When adding a new container, the placement of that container within the new map
depends on its size and the size of the other containers in its stripe set. If the
container is large enough such that it can start at the first stripe in the stripe set
and end at (or beyond) the last stripe in the stripe set, then it will be placed that
way (see Example 1 (“After”)). If the container is not large enough to do this, it
will be positioned in the map such that it ends in the last stripe of the stripe set
(see Example 3.) This is done to minimize the amount of data that needs to be
rebalanced.

Access to the table space is not restricted during rebalancing; objects can be
dropped, created, populated, and queried as usual. However, the rebalancing
operation can have a significant impact on performance. If you need to add more
than one container, and you plan to rebalance the containers, you should add them
at the same time within a single ALTER TABLESPACE statement to prevent the
database manager from having to rebalance the data more than once.

Note: In the following examples, the container sizes do not take the size of the
container tag into account. The container sizes are very small, and are just used for
the purpose of illustration, they are not recommended container sizes. The
examples show containers of different sizes within a table space, but you are
advised to use containers of the same size.

Reverse rebalancing

The rebalancer starts with the extent that contains the high-water mark, moving
one extent at a time until extent 0 has been moved. As each extent is moved, the
current map is altered one piece at a time to look like the new map. If the location
of an extent in the current map is the same as its location in the new map, then the
extent is not moved and no I/O takes place.

Examples

Example 1 (before): Table space layout before containers added

If you create a table space with three containers and an extent size of 10, and the
containers are 60, 40, and 80 pages respectively (6, 4, and 8 extents), the table space
is created with a map that can be diagrammed as shown in Figure 19 on page 179.

178 Database Administration Concepts and Configuration Reference

The corresponding table space map, as shown in a table space snapshot, looks like
this:

Range Stripe Stripe Max Max Start End Adj. Containers
Number Set Offset Extent Page Stripe Stripe

[0] [0] 0 11 119 0 3 0 3 (0, 1, 2)
[1] [0] 0 15 159 4 5 0 2 (0, 2)
[2] [0] 0 17 179 6 7 0 1 (2)

The headings in the table space map are Range Number, Stripe Set, Stripe Offset,
Maximum extent number addressed by the range, Maximum page number
addressed by the range, Start Stripe, End Stripe, Range adjustment, and Container
list.

Example 1 (after): Adding a container that results in a forward rebalance being performed

If an 80-page container is added to the table space in Example 1, the container is
large enough to start in the first stripe (stripe 0) and end in the last stripe (stripe
7). It is positioned such that it starts in the first stripe. The resulting table space can
be diagrammed as shown in Figure 20 on page 180.

0

0 1 2

1

2

3

4

5

6

7

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 11

Extent 13

Extent 15

Extent 16

Extent 17

Extent 4

Extent 7

Extent 10

Extent 3

Extent 6

Extent 9

Extent 12

Extent 14

Containers

Stripes

Figure 19. Table space with three containers and 18 extents

Chapter 8. Table spaces 179

The corresponding table space map, as shown in a table space snapshot, will look
like this:

Range Stripe Stripe Max Max Start End Adj. Containers
Number Set Offset Extent Page Stripe Stripe

[0] [0] 0 15 159 0 3 0 4 (0, 1, 2, 3)
[1] [0] 0 21 219 4 5 0 3 (0, 2, 3)
[2] [0] 0 25 259 6 7 0 2 (2, 3)

If the high-water mark is within extent 14, the rebalancer starts at extent 0 and
moves all of the extents up to and including 14. The location of extent 0 within
both of the maps is the same so this extent is not required to move. The same is
true for extents 1 and 2. Extent 3 does need to move so the extent is read from the
old location (second extent within container 0) and is written to the new location
(first extent within container 3). Every extent after this up to and including extent
14 is moved. Once extent 14 is moved, the current map looks like the new map
and the rebalancer terminates.

If the map is altered such that all of the newly added space comes after the
high-water mark, then a rebalance is not necessary and all of the space is available
immediately for use. If the map is altered such that some of the space comes after
the high-water mark, then the space in the stripes above the high-water mark is
available for use. The rest is not available until the rebalance is complete.

If you decide to extend a container, the function of the rebalancer is similar. If a
container is extended such that it extends beyond the last stripe in its stripe set,
the stripe set will expand to fit this and the following stripe sets will be shifted out
accordingly. The result is that the container will not extend into any stripe sets
following it.

0

0 1 2 3

1

2

3

4

5

6

7

Extent 0 Extent 1 Extent 2

Extent 6

Extent 10

Extent 14 Extent 15

Extent 11

Extent 7

Extent 3

Extent 18

Extent 21

Extent 23

Extent 25

Extent 17

Extent 20

Extent 22

Extent 24

Extent 5

Extent 9

Extent 13

Extent 4

Extent 8

Extent 12

Extent 16

Extent 19

Containers

Stripes

Figure 20. Table space with four containers and 26 extents

180 Database Administration Concepts and Configuration Reference

Example 2: Extending a container

Consider the table space from Example 1. If you extend container 1 from 40 pages
to 80 pages, the new table space looks like Figure 21.

The corresponding table space map, as shown in a table space snapshot, looks like
this:

Range Stripe Stripe Max Max Start End Adj. Containers
Number Set Offset Extent Page Stripe Stripe

[0] [0] 0 17 179 0 5 0 3 (0, 1, 2)
[1] [0] 0 21 219 6 7 0 2 (1, 2)

Example 3: Adding a container not large enough to both start in the first stripe and end in
the last

Consider the table space from Example 1. If a 50-page (5-extent) container is added
to it, the container will be added to the new map in the following way. The
container is not large enough to start in the first stripe (stripe 0) and end at or
beyond the last stripe (stripe 7), so it is positioned such that it ends in the last
stripe. (See Figure 22 on page 182.)

0

0 1 2

1

2

3

4

5

6

7

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 11

Extent 13

Extent 17

Extent 14

Extent 19

Extent 21

Extent 4

Extent 7

Extent 10

Extent 3

Extent 6

Extent 9

Extent 12

Extent 15 Extent 16

Extent 18

Extent 20

Containers

Stripes

Figure 21. Table space with three containers and 22 extents

Chapter 8. Table spaces 181

The corresponding table space map, as shown in a table space snapshot, will look
like this:

Range Stripe Stripe Max Max Start End Adj. Containers
Number Set Offset Extent Page Stripe Stripe

[0] [0] 0 8 89 0 2 0 3 (0, 1, 2)
[1] [0] 0 12 129 3 3 0 4 (0, 1, 2, 3)
[2] [0] 0 18 189 4 5 0 3 (0, 2, 3)
[3] [0] 0 22 229 6 7 0 2 (2, 3)

To extend a container, use the EXTEND or RESIZE clause on the ALTER
TABLESPACE statement. To add containers and rebalance the data, use the ADD
clause on the ALTER TABLESPACE statement. If you are adding a container to a
table space that already has more than one stripe set, you can specify which stripe
set you want to add to. To do this, you use the ADD TO STRIPE SET clause on the
ALTER TABLESPACE statement. If you do not specify a stripe set, the default
behavior will be to add the container to the current stripe set. The current stripe
set is the most recently created stripe set, not the one that last had space added to
it.

Any change to a stripe set might cause a rebalance to occur to that stripe set and
any others following it.

You can monitor the progress of a rebalance by using table space snapshots. A
table space snapshot can provide information about a rebalance such as the start
time of the rebalance, how many extents have been moved, and how many extents
must move.

Example 4: Dropping a container that results in a reverse rebalance being performed

0

0 1 2 3

1

2

3

4

5

6

7

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 11 Extent 12

Extent 15

Extent 18

Extent 20

Extent 22

Extent 14

Extent 17

Extent 19

Extent 21

Extent 4

Extent 7

Extent 10

Extent 3

Extent 6

Extent 9

Extent 13

Extent 16

Containers

Stripes

Figure 22. Table space with four containers and 23 extents

182 Database Administration Concepts and Configuration Reference

Note: In the following examples, the container sizes do not take the size of the
container tag into account. The container sizes are very small, and are just used for
the purpose of illustration, they are not recommended container sizes. The
examples show containers of different sizes within a table space, but this is just for
the purpose of illustration; you are advised to use containers of the same size.

For example, consider a table space with three containers and an extent size of 10.
The containers are 20, 50, and 50 pages respectively (2, 5, and 5 extents). The table
space diagram is shown in Figure 23.

An X indicates that there is an extent but there is no data in it.

If you want to drop container 0, which has two extents, there must be at least two
free extents above the high-water mark. The high-water mark is in extent 7,
leaving four free extents, therefore you can drop container 0.

The corresponding table space map, as shown in a table space snapshot, will look
like this:

Range Stripe Stripe Max Max Start End Adj. Containers
Number Set Offset Extent Page Stripe Stripe

[0] [0] 0 5 59 0 1 0 3 (0, 1, 2)
[1] [0] 0 11 119 2 4 0 2 (1, 2)

After the drop, the table space will have just Container 0 and Container 1. The
new table space diagram is shown in Figure 24 on page 184.

0

0 1 2

1

2

3

4

Extent 0 Extent 1 Extent 2

Extent 5

Extent 7

Extent 4

Extent 6

x

x

x

x

Extent 3

Containers

Stripes

Figure 23. Table space with 12 extents, including four extents with no data

Chapter 8. Table spaces 183

The corresponding table space map, as shown in a table space snapshot, will look
like this:

Range Stripe Stripe Max Max Start End Adj. Containers
Number Set Offset Extent Page Stripe Stripe

[0] [0] 0 9 99 0 4 0 2 (0, 1)

Example 5: Adding a new stripe set

If you have a table space with three containers and an extent size of 10, and the
containers are 30, 40, and 40 pages (3, 4, and 4 extents respectively), the table space
can be diagrammed as shown in Figure 25.

The corresponding table space map, as shown in a table space snapshot, will look
like this:

Range Stripe Stripe Max Max Start End Adj. Containers
Number Set Offset Extent Page Stripe Stripe

[0] [0] 0 8 89 0 2 0 3 (0, 1, 2)
[1] [0] 0 10 109 3 3 0 2 (1, 2)

0

0 1

1

2

3

4

Extent 0 Extent 1

Extent 3

Extent 5

Extent 7

x x

Extent 2

Extent 4

Extent 6

Containers

Stripes

Figure 24. Table space after a container is dropped

0

0 1 2

1

2

3

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 10

Extent 4

Extent 7

Extent 9

Extent 3

Extent 6

Containers

Stripes

Figure 25. Table space with three containers and 11 extents

184 Database Administration Concepts and Configuration Reference

When you add two new containers that are 30 pages and 40 pages (3 and 4 extents
respectively) with the BEGIN NEW STRIPE SET clause, the existing ranges are not
affected; instead, a new set of ranges is created. This new set of ranges is a stripe
set and the most recently created one is called the current stripe set. After the two
new containers is added, the table space looks like Figure 26.

The corresponding table space map, as shown in a table space snapshot, looks like
this:

Range Stripe Stripe Max Max Start End Adj. Containers
Number Set Offset Extent Page Stripe Stripe

[0] [0] 0 8 89 0 2 0 3 (0, 1, 2)
[1] [0] 0 10 109 3 3 0 2 (1, 2)
[2] [1] 4 16 169 4 6 0 2 (3, 4)
[3] [1] 4 17 179 7 7 0 1 (4)

If you add new containers to a table space, and you do not use the TO STRIPE SET
clause with the ADD clause, the containers are added to the current stripe set (the
highest stripe set). You can use the ADD TO STRIPE SET clause to add containers
to any stripe set in the table space. You must specify a valid stripe set.

The database manager tracks the stripe sets using the table space map, and adding
new containers without rebalancing generally causes the map to grow faster than
when containers are rebalanced. When the table space map becomes too large, you
will receive error SQL0259N when you try to add more containers.

Reclaiming unused storage in DMS table spaces
You can reclaim unused storage in a DMS table space by telling the database
manager to consolidate in-use extents lower in the table space. This also has the
effect of lowering the high water mark. To reduce the container sizes in a DMS
table space requires a separate REDUCE operation must also be performed.

0

0 1 2 3 4

1

2

3

4

5

6

7

Extent 0 Extent 1 Extent 2

Extent 5

Extent 8

Extent 10

Extent 12

Extent 14

Extent 16

Extent 17

Extent 11

Extent 13

Extent 15

Extent 4

Extent 7

Extent 9

Extent 3

Extent 6

Containers

Stripes

Stripe
set #0

Stripe
set #1

Figure 26. Table space with two stripe sets

Chapter 8. Table spaces 185

Before you begin

You must have a DMS table space that was created with DB2 Version 9.7 or later.
Reclaimable storage is not available in table spaces created with earlier versions of
the DB2 product. You can see which table spaces in a database support reclaimable
storage using the MON_GET_TABLESPACE table function.

About this task

To reclaim the unused storage in a DMS table space, you first must initiate an
operation to cause extents in the table to be rearranged so as to make use of the
free extents lower in the table space. This is done using the LOWER HIGH WATER
MARK clause of the ALTER TABLESPACE statement. Next, you can reduce the
size of the containers in the table space by a specified amount.

When you reduce the size of containers in a DMS table space, you must specify the
names of the containers to reduce, or use the ALL CONTAINERS clause.

Restrictions

v You can reclaim storage only in table spaces created with DB2 Version 9.7 and
later.

v When you specify either the REDUCE or the LOWER HIGH WATER MARK
clause on the ALTER TABLESPACE statement, you cannot specify other
parameters.

v If the extent holding the page currently designated as the high water mark is in
“pending delete” state, the attempt to lower the high water mark through extent
movement might fail, and message ADM6008I will be logged. Extents in
“pending delete” state cannot always be moved, for recoverability reasons.
These extents are eventually freed through normal database maintenance
processes, at which point they can be moved.

Procedure
1. Use the ALTER TABLESPACE statement with the LOWER HIGH WATER

MARK clause to reduce the high water mark as much as possible through the
rearrangement of extents within the table space container.

2. Use the ALTER TABLESPACES statement with a REDUCE clause to reduce the
size of some or all containers by a specified amount.

Example

Example 1: Lowering the high water mark, and reducing all containers by 5 megabytes.
The following example lowers the high water mark for table space ts, and reduces
the size of all containers in the table space by 5 megabytes.

ALTER TABLESPACE ts LOWER HIGH WATER MARK
ALTER TABLESPACE ts REDUCE (ALL CONTAINERS 5 M)

Example 2: Lowering the high water mark, and reducing container “Container1” by 2 000
pages. The following example lowers the high water mark for table space ts, and
reduces the size of “Container1” by 2000 pages..

ALTER TABLESPACE ts LOWER HIGH WATER MARK
ALTER TABLESPACE ts REDUCE (FILE "Container1" 2000)

Prefetch size adjustment when adding or dropping containers
The default size for all prefetches from disk is set automatically for any table
spaces created using DB2 versions 8.2 and later. This means that the database

186 Database Administration Concepts and Configuration Reference

manager calculates a suitable prefetch size based on several factors, including the
extent size, the number of containers in your table space, and the properties of
your storage devices.

The degree to which prefetches of data can take place in parallel is a function of,
among other things, the number of containers in a table space. For example, if you
have two or more containers in your table space, then prefetches from each
container can happen in parallel, which can improve overall database performance.
If you change the number of containers in a table space by adding or dropping
containers, the amount of data that you can efficiently prefetch might change. For
example, if you add a container, but the number of extents prefetched remains
unchanged, then you might not be taking advantage of the opportunity to fetch
additional data from the new container in parallel with that from the other
containers. As containers are added or dropped, adjusting the prefetch size
accordingly can maintain or improve performance by making I/O happen more
efficiently.

You can set the prefetch size for table spaces manually, but once you do so, you
must ensure that you update it as you change the containers in your table space if
you want to maintain optimal prefetch performance. You can eliminate the need to
update the prefetch size manually by setting PREFETCHSIZE for the table space to
AUTOMATIC when using the CREATE TABLESPACE or ALTER TABLESPACE
statements. AUTOMATIC is the default value for PREFETCHSIZE, unless you have
modified the default value for the dft_prefetch_sz configuration parameter.

If you want to manually specify the prefetch size, you can do so in three ways:
v Create the table space with a specific prefetch size. If you manually choose a

value for the prefetch size, you need to remember to adjust the prefetch size
whenever there is an adjustment in the number of containers associated with the
table space.

v When the dft_prefetch_sz database configuration parameter set to a value other
than the default value of AUTOMATIC, omit the prefetch size when creating the
table space. The database manager checks this parameter when there is no
explicit mention of the prefetch size when creating the table space. If a value
other than AUTOMATIC is found, then that value is what is used as the default
prefetch size. You need to remember to adjust, if necessary, the prefetch size
whenever there is an adjustment in the number of containers associated with the
table space.

v Alter the prefetch size manually by using the ALTER TABLESPACE statement.

When manually adjusting the prefetch size, specify a size that corresponds to a
disk stripe for optimal I/O parallelism. To calculate the prefetch size manually, use
the formula:

number_of_containers × number_of_disks_per_container × extent_size

For example, assume the extent size for a database is 8 pages, and that there are 4
containers, each of which exists on a single physical disk. Setting the prefetch size
to: 4 × 1 × 8 = 32 results in a prefetch size of 32 pages in total. These 32 pages will
be read from each of the 4 containers in parallel.

If you have more than one physical disk per container, as you might if each
container is made up of a RAID array, then to optimize I/O parallelism, ensure
that the DB2_PARALLEL_IO registry variable is set correctly. (See “Parallel I/O for
table space containers that use multiple physical disks” on page 188.) As you add

Chapter 8. Table spaces 187

or drop containers, if the prefetch size has been set manually, remember to update
it to reflect an appropriate prefetch size. For example, assume each of 4 containers
resides on a RAID 4+1 array, and the DB2_PARALLEL_IO registry variable has been
set to allow for parallel prefetches from each physical disk. Assume also an extent
size of 8 pages. To read in one extent per container, you would set the prefetch size
to 4 × 4 × 8 = 128 pages.

Parallel I/O for table space containers that use multiple physical disks

Before the prefetch requests are submitted to the prefetch queues, they are broken
down into a number of smaller, parallel prefetch requests, based on the number of
containers in a table space. The DB2_PARALLEL_IO registry variable is used to
manually override the parallelism of prefetch requests. (This is sometimes referred
to as the parallelism of the table space). When DB2_PARALLEL_IO is set to NULL, which
is the default, the parallelism of a table space is equal to the number of containers
in the table space. If this registry variable is turned on, it defines the number of
physical disks per container; the parallelism of a table space is equal to the number
of containers multiplied by the value given in the DB2_PARALLEL_IO registry
variable. For example, if you have one container in your table space that is made
up of a RAID 5 array of disks, you set this parameter such that the single prefetch
request that the database manager would otherwise perform becomes 5 parallel
prefetch requests. If you had two containers, each sitting on RAID 10 arrays, you
could set this parameter to turn the two prefetch requests to each container to 20
prefetches, 1 for each of the 10 disks associated with each container.

What follows are several other examples of how the DB2_PARALLEL_IO registry
variable influences the parallelism of prefetches. Assume that table spaces have
been defined with an AUTOMATIC prefetch size.
v DB2_PARALLEL_IO=NULL

– Prefetching from table space containers is done in parallel, based on a
combination of the following:
- The number of containers in each table space
- The size that was specified for prefetches on the CREATE or ALTER

TABLESPACE statements, and in the dft_prefetch_sz configuration
parameter.

– Prefetches are not broken down into smaller, per-disk requests. If there are
multiple physical disks associated with a container, prefetches from the disks
for a single container will not take place in parallel.

–
v DB2_PARALLEL_IO=*

– All table spaces use the default number of spindles (6) for each container. The
prefetch size is 6 times larger with parallel I/O on.

– All table spaces have parallel I/O on. The prefetch request is broken down to
several smaller requests, each equal to the prefetch size divided by the extent
size (or equal to the number of containers times the number of spindles).

v DB2_PARALLEL_IO=*:3
– All table spaces use 3 as the number of spindles per container.
– All table spaces have parallel I/O on.

v DB2_PARALLEL_IO=*:3,1:1
– All table spaces use 3 as the number of spindles per container except for table

space 1, which uses 1.
– All table spaces have parallel I/O on.

188 Database Administration Concepts and Configuration Reference

Converting table spaces to use automatic storage
You can convert some or all of your database-managed space (DMS) table spaces
in a database to use automatic storage. Using automatic storage simplifies your
storage management tasks.

Before you begin

Ensure that the database is enabled for automatic storage and has one or more
storage paths defined for use with automatic storage. To do so, use the ALTER
DATABASE statement.

Procedure

To convert a DMS table space to use automatic storage, use one of the following
methods:
v Alter a single table space. This method keeps the table space online but involves

a rebalance operation that takes time to move data from the non-automatic
storage containers to the new automatic storage containers.
1. Issue the ALTER TABLESPACE statement, specifying the MANAGED BY

AUTOMATIC STORAGE clause for the table space that you want to convert.
2. Issue the ALTER TABLESPACE statement again, this time specifying the

REBALANCE option. This option removes the user-defined containers so
that all table space containers are managed by automatic storage.
If you do not specify the REBALANCE option now and issue the ALTER
TABLESPACE statement later with the REDUCE option, your automatic
storage containers will be removed. To recover from this problem, issue the
ALTER TABLESPACE statement, specifying the REBALANCE option.

v Use a redirected restore operation. When the redirected restore operation is in
progress, you cannot access the table spaces being converted. For a full database
redirected restore, all table spaces are inaccessible until the recovery is
completed.
1. Run the RESTORE DATABASE command, specifying the REDIRECT parameter. If

you want to convert a single table space, also specify the TABLESPACE
parameter:
RESTORE DATABASE database_name TABLESPACE table_space_name REDIRECT

2. Run the SET TABLESPACE CONTAINERS command, specifying the USING
AUTOMATIC STORAGE parameter, for each table space that you want to
convert:
SET TABLESPACE CONTAINERS FOR tablespace_id USING AUTOMATIC STORAGE

3. Run the RESTORE DATABASE command again, this time specifying the CONTINUE
parameter:
RESTORE DATABASE database_name CONTINUE

4. Run the ROLLFORWARD DATABASE command, specifying the TO END OF LOGS and
AND STOP parameters:
ROLLFORWARD DATABASE database_name TO END OF LOGS AND STOP

Altering automatic storage table spaces
Much of the maintenance of automatic storage table spaces is handled
automatically. The changes that you can make to automatic storage table spaces are
limited to rebalancing, and reducing the size of the overall table space.

Chapter 8. Table spaces 189

Automatic storage table spaces manage the allocation of storage for you, creating
and extending containers as needed up to the limits imposed by storage paths. The
only maintenance operations that you can perform on automatic storage spaces
are:
v Rebalancing
v Reclaiming unused storage by lowering the high water mark
v Reducing the size of the overall table space.

You can rebalance an automatic storage table space when you add storage to the
database. This will cause the table space to start using the new storage
immediately. Similarly, when you drop storage from a database, rebalancing will
move data out of the containers on the storage paths you are dropping and
allocate it across the remaining containers.

Adding new storage paths, or dropping paths is handled at the database level. To
add storage to an automatic storage database, you use the ADD STORAGE clause
of the ALTER DATABASE statement. You can rebalance or not, as you prefer,
though if you do not rebalance, the new storage will not be used until the
containers that existed previously are filled to capacity. If you rebalance, any
newly-added storage paths become available for immediate use.

To drop storage, use the DROP STORAGE clause of the ALTER DATABASE
statement. This action will put the storage paths into a “drop pending” state.
Growth of containers on the storage path you specify will cease. However, before
the path can be fully removed from the database, you must rebalance all of the
table spaces using the storage path using the REBALANCE clause on the ALTER
TABLESPACE command. If a temporary table space has containers on a storage
path in a drop pending state, you can either drop and recreate the table space, or
restart the database to remove it from the storage path.

Restriction: You cannot rebalance temporary automatic storage table spaces;
rebalancing is supported only for regular and large automatic storage table spaces.

You can reclaim the storage below the high water mark of a table space using the
LOWER HIGH WATER MARK clause of the ALTER TABLESPACE statement. This
has the effect of moving as many extents as possible to unused extents lower in the
table space. The high water mark for the table space is lowered in the process,
however containers remain the size they were before the operation was performed.

Automatic storage table spaces can be reduced in size using the REDUCE option of
the ALTER TABLESPACE statement. When you reduce the size of an automatic
storage table space, the database manager attempts to lower the high water mark
for the table space and reduce the size of the table space containers. In attempting
to lower the high water mark, the database manager might drop empty containers
and might move used extents to free space nearer the beginning of the table space.
Next, containers are re-sized such that total amount of space in the table space is
equal to or slightly greater than the high water mark.

Reclaiming unused storage in automatic storage table spaces
When you reduce the size of an automatic storage table space, the database
manager attempts to lower the high water mark for the table space and reduce the
size of the table space containers. In attempting to lower the high water mark, the
database manager might drop empty containers and might move used extents to

190 Database Administration Concepts and Configuration Reference

free space nearer the beginning of the table space. Next, containers are re-sized
such that total amount of space in the table space is equal to or slightly greater
than the high water mark.

Before you begin

You must have an automatic storage table space that was created with DB2 Version
9.7 or later. Reclaimable storage is not available in table spaces created with earlier
versions of the DB2 product. You can see which table spaces in a database support
reclaimable storage using the MON_GET_TABLESPACE table function.

About this task

You can reduce the size of an automatic storage space for which reclaimable
storage is enabled in a number of ways. You can specify that the database manager
reduce the table space by:
v The maximum amount possible
v An amount that you specify in kilobytes, megabytes or gigabytes, or pages
v A percentage of the current size of the table space.

In each case, the database manager attempts to reduce the size by moving extents
to the beginning of the table space, which, if sufficient free space is available, will
reduce the high water mark of the table space. Once the movement of extents has
completed, the table space size is reduced to the new high water mark.

You use the REDUCE clause of the ALTER TABLESPACE statement to reduce the
table space size for an automatic storage table space. You can specify an amount to
reduce the table space by, as noted above.

Note:

v If you do not specify an amount by which to reduce the table space, the table
space size is reduced as much as possible without moving extents. The database
manager attempts to reduce the size of the containers by first freeing extents for
which deletes are pending. (It is possible that some “pending delete” extents
cannot be freed for recoverability reasons, so some of these extents may remain.)
If the high water mark was among those extents freed, then the high water mark
is lowered, otherwise no change to the high water mark takes place. Next, the
containers are re-sized such that total amount of space in the table space is equal
to or slightly greater than the high water mark. This operation is performed
using the ALTER TABLESPACE with the REDUCE clause by itself.

v If you only want to lower the high water mark, consolidating in-use extents
lower in the table space without performing any container operations, you can
use the ALTER TABLESPACE statement with the LOWER HIGH WATER MARK
clause.

v Once a REDUCE or LOWER HIGH WATER MARK operation is under way, you
can stop it by using the REDUCE STOP or LOWER HIGH WATER MARK STOP
clause of the ALTER TABLESPACE statement. Any extents that have been
moved will be committed, the high water mark will be reduced to it's new value
and containers will be re-sized to the new high water mark.

Restrictions

v You can reclaim storage only in table spaces created with DB2 Version 9.7 and
later.

Chapter 8. Table spaces 191

v When you specify either the REDUCE or the LOWER HIGH WATER MARK
clause on the ALTER TABLESPACE statement, you cannot specify other
parameters.

v If the extent holding the page currently designated as the high water mark is in
“pending delete” state, the attempt to lower the high water mark through extent
movement might fail, and message ADM6008I will be logged. Extents in
“pending delete” state cannot always be moved, for recoverability reasons.
These extents are eventually freed through normal database maintenance
processes, at which point they can be moved.

Procedure

To reduce the size of an automatic storage table space:
1. Formulate an ALTER TABLESPACE statement that includes a REDUCE clause.

ALTER TABLESPACE table-space-name REDUCE reduction-clause

2. Run the ALTER TABLESPACE statement.

Example

Example 1: Reducing an automatic storage table space by the maximum amount possible.
ALTER TABLESPACE TS1 REDUCE MAX

In this case, the keyword MAX is specified as part of the REDUCE clause,
indicating that the database manager should attempt to move the maximum
number of extents to the beginning of the table space.

Example 2: Reducing an automatic storage table space by a percentage of the current table
space size.

ALTER TABLESPACE TS1 REDUCE 25 PERCENT

This attempts to reduce the size of the table space TS1 to 75% of it's original size, if
possible.

Scenarios: Adding and removing storage with automatic storage
table spaces
The three scenarios in this section illustrate the impact of adding and removing
storage paths on automatic storage table spaces.

Once storage paths have been added or removed on automatic storage table
spaces, you can use a rebalance operation to create one or more containers on the
new storage paths. The following should be considered when rebalancing table
spaces:
v If for whatever reason the database manager decides that no containers need to

be added or dropped, or if containers could not be added due to “out of space”
conditions, then you will receive a warning.

v The REBALANCE clause must be specified on its own.
v You cannot rebalance temporary automatic storage table spaces; only regular and

large automatic storage table spaces can be rebalanced.
v The invocation of a rebalance is a logged operation that is replayed during a

rollforward (although the storage layout might be different)
v In partitioned database environments, a rebalance is initiated on every database

partition in which the table space resides.

192 Database Administration Concepts and Configuration Reference

v When storage paths are added or dropped, you are not forced to rebalance. In
fact, subsequent storage path operations can be performed over time before ever
doing a rebalance operation. If a storage path is dropped and is in the “Not In
Use” state, then it is dropped immediately as part of the ALTER DATABASE
operation. If the storage path is in the “In Use” state and dropped but table
spaces not rebalanced, the storage path (now in the “Drop Pending” state), is not
used to store additional containers or data.

Scenario: Adding a storage path and rebalancing automatic storage table spaces:

This scenario shows how storage paths are added to an automatic storage database
and how a REBALANCE operation creates one or more containers on the new
storage paths.

The assumption in this scenario is to add a new storage path to a database and
have an existing table space be striped across that new path. I/O parallelism is
improved by adding a new container into each of the table space's stripe sets.

You would use the ADD STORAGE clause on the ALTER DATABASE statement to
add the new storage path to the database. Then, use the REBALANCE clause on
the ALTER TABLESPACE statement to allocate containers on the new storage path
and to rebalance the data from the existing containers into the new containers. The
number and size of the containers to be created depend on both the definition of
the current stripe sets for the table space and on the amount of free space on the
new storage paths.

Figure 27 illustrates a storage path being added, with the "before" and "after"
layout of a rebalanced table space:

Note: The diagrams that are displayed in this topic are for illustrative purposes
only. They are not intended to suggest a specific approach or best practice for

/path1 /path2 /path3

Second
stripe set

First
stripe set

Path being
addedExisting

paths

/path1 /path2 /path3

Figure 27. Adding a storage path and rebalancing an automatic storage table space

Chapter 8. Table spaces 193

storage layout. Also, the diagrams illustrate a single table space only; in actual
practice you would likely have several automatic storage table spaces that share
the same storage path.

A similar situation could occur when an existing table space has multiple stripe
sets with differing numbers of containers in them, which could have happened due
to disk full conditions on one or more of the storage paths during the life of the
table space. In this case, it would be advantageous for the database manager to
add containers to those existing storage paths to fill in the “holes” in the stripe sets
(assuming of course that there is now free space to do so). The REBALANCE
operation can be used to do this as well.

Figure 28 is an example where a “hole” exists in the stripe sets of a table space
(possibly caused by deleting table rows, for example) being rebalanced, with the
“before” and “after” layout of the storage paths.

Example

You created a database with two storage paths:
CREATE DATABASE TESTDB1 ON /databaseDataPath1, /databaseDataPath2

DBPATH ON /databasePath

After creating the database, automatic storage table spaces were subsequently
created.

You decide to add another storage path to the database (/databaseDataPath3) and
you want all of the automatic storage table spaces to use the new storage path.
1. The first step is to add the storage path to the database:

ALTER DATABASE ADD STORAGE ON ’/databaseDataPath3’

2. The next step is to determine all of the affected permanent table spaces. This
can be done by manually scanning table space snapshot output or via SQL. The
following SQL statement will generate a list of all the regular and large
automatic storage table spaces in the database:

/path1 /path2

Second
stripe set

First
stripe set

/path1 /path2

A "hole"
exists in this

stripe set

Figure 28. Rebalancing an automatic storage table space to fill gaps

194 Database Administration Concepts and Configuration Reference

SELECT TBSP_NAME
FROM SYSIBMADM.SNAPTBSP
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’ANY’,’LARGE’)
ORDER BY TBSP_ID

3. Once the table spaces have been identified, the next step is to perform the
following statement for each of the table spaces listed. Provided that there is
sufficient space on the remaining storage paths, it generally shouldn't matter
what order the rebalances are performed in (and they can be run in parallel).
ALTER TABLESPACE tablespace_name REBALANCE

After this, you must determine how you want to handle temporary table spaces.
One option is to stop (deactivate) and start (activate) the database. This results in
the containers being redefined. Alternatively, you can drop and recreate the
temporary table spaces, or create a new temporary table space first, then drop the
old one–this way you do not attempt to drop the last temporary table space in the
database, which is not allowed. To determine the list of affected table spaces, you
can manually scan table space snapshot output or you can execute an SQL
statement. The following SQL statement generates a list of all the system
temporary and user temporary automatic storage table spaces in the database:
SELECT TBSP_NAME

FROM SYSIBMADM.SNAPTBSP
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’USRTEMP’,’SYSTEMP’)
ORDER BY TBSP_ID

Scenario: Dropping a storage path and rebalancing automatic storage table
spaces:

This scenario shows how storage paths are dropped and how the REBALANCE
operation drops containers from table spaces that are using the paths.

Before the operation of dropping a storage path can be completed, any table space
containers on that path must be removed. If an entire table space is no longer
needed, you can drop it before dropping the storage path from the database. In
this situation, no rebalance is required. If, however, you want to keep the table
space, a REBALANCE operation is required. In this case, when there are storage
paths in the “drop pending” state, the database manager performs a reverse
rebalance, where movement of extents starts from the high water mark extent (the
last possible extent containing data in the table space), and ends with extent 0.

When the REBALANCE operation is run:
v A reverse rebalance is performed. Data in any containers in the “drop pending”

state is moved into the remaining containers.
v The containers in the “drop pending” state are dropped.
v If the current table space is the last table space using the storage path, then the

storage path is dropped as well.

If the containers on the remaining storage paths are not large enough to hold all
the data being moved, the database manager might have to first create or extend
containers on the remaining storage paths before performing the rebalance.

Figure 29 on page 196 is an example of a storage path being dropped, with the
“before” and “after” layout of the storage paths after the table space is rebalanced:

Chapter 8. Table spaces 195

Example

You created a database with three storage paths:
CREATE DATABASE TESTDB2 ON D:\DBDATA, E:\DBDATA, F:\DBDATA DBPATH ON C:
{Automatic storage tablespaces were subsequently created}

You want to put the F:\DBDATA storage path into the "Drop Pending" state by
dropping it from the database, then rebalance all table spaces that use this storage
path so that it is dropped.
1. The first step is to initiate the drop of the storage path from the database:

ALTER DATABASE DROP STORAGE ON ’F:\DBDATA’

2. The next step is to determine all the affected non-temporary table spaces. This
can be done by manually scanning table space snapshot output or using SQL.
The following SQL statement generates a list of all the regular and large
automatic storage table spaces in the database that have containers residing on
a “Drop Pending” path:
SELECT DISTINCT A.TBSP_NAME

FROM SYSIBMADM.SNAPTBSP A, SYSIBMADM.SNAPTBSP_PART B
WHERE A.TBSP_ID = B.TBSP_ID

AND A.TBSP_CONTENT_TYPE IN (’ANY’,’LARGE’)
AND B.TBSP_PATHS_DROPPED = 1

3. Once the table spaces have been identified, the next step is to perform the
following statement for each of the table spaces listed:
ALTER TABLESPACE <tablespace_name> REBALANCE

a. If you have dropped multiple storage paths from the database and want to
free up storage on a specific path, you can query the list of containers in the
database to find the ones that exist on the storage path in question. For
example, consider a path called /db2/path1. The following query provides a
list of table spaces that have containers that reside on path /db2/path1:
SELECT TBSP_NAME FROM SYSIBMADM.SNAPCONTAINER

WHERE CONTAINER_NAME LIKE ’/db2/path1/%%’
GROUP BY TBSP_NAME;

/path1 /path2 /path3

Path being
dropped

/path1 /path2

Database manager
may need to extend
existing containers or
add new stripe set.

Figure 29. Dropping a storage path and rebalancing an automatic storage table space

196 Database Administration Concepts and Configuration Reference

b. You can then issue a REBALANCE statement for each table space in the
result set.

4. After this, you must determine how you want to handle temporary table
spaces. One option is to stop (deactivate) and start (activate) the database. This
results in the containers being redefined. Alternatively, you can drop and
recreate them (or create new versions first, then dropping the old ones). To
determine the list of affected table spaces, you can manually scan table space
snapshot output or you can execute an SQL statement. The following SQL
statement generates a list of all the system temporary and user temporary
automatic storage table spaces in the database that have containers residing on
a “Drop Pending” path:
SELECT DISTINCT A.TBSP_NAME

FROM SYSIBMADM.SNAPTBSP A, SYSIBMADM.SNAPTBSP_PART B
WHERE A.TBSP_ID = B.TBSP_ID

AND A.TBSP_CONTENT_TYPE IN (’USRTEMP’,’SYSTEMP’)
AND B.TBSP_PATHS_DROPPED = 1

Scenario: Adding and removing storage paths and rebalancing automatic storage
table spaces:

This scenario shows how storage paths can be both added and removed, and how
the REBALANCE operation rebalances all of the automatic storage table spaces.

It is possible for storage to be added and dropped from the database at the same
time. This can be done through a single ALTER DATABASE statement or through
multiple ALTER DATABASE statements separated by some period of time (where
the table spaces have not been rebalanced in between).

As described in “Scenario: Adding a storage path and rebalancing automatic
storage table spaces” on page 193, a situation could occur in which the database
manager fills in “holes” in stripe sets when dropping storage paths. In this case the
database manager will create containers and drop containers as part of the process.
In all of these scenarios, the database manager recognizes that some containers
should be added (where free space allows) and that some should be removed. In
these scenarios, the database manager might need to perform a two-pass rebalance
operation (the phase and status of which will be described in the snapshot monitor
output):
1. First, new containers are allocated on the new paths (or on existing paths if

filling in “holes”).
2. A forward rebalance is performed.
3. A reverse rebalance is performed, moving data off of the containers on the

paths being dropped.
4. The containers are physically dropped.

Figure 30 on page 198 is an example of storage paths being added and dropped,
with the "before" and "after" layout of a rebalanced table space:

Chapter 8. Table spaces 197

Example

A database was created with two storage paths:
CREATE DATABASE TESTDB3 ON /fs/data, /anotherfs DBPATH ON /fs/homePath
{Automatic storage tablespaces were subsequently created}

Assume that you want to add another storage path to the database (/fs/data2)
and remove one of the existing paths (/anotherfs), and you also want all of your
automatic storage table spaces to be rebalanced. The first step is to add the new
storage path /fs/data2 to the database and to initiate the removal of /anotherfs:
ALTER DATABASE ADD STORAGE ON ’/fs/data2’ DROP STORAGE ON ’/anotherfs’

The next step is to determine all of the affected table spaces. This can be done by
manually scanning table space snapshot output or using SQL statements. The
following SQL statement generates a list of all the regular and large automatic
storage table spaces in the database:
SELECT DISTINCT TBSP_ID, TBSP_NAME

FROM SYSIBMADM.SNAPTBSP
WHERE TBSP_USING_AUTO_STORAGE = 1

AND TBSP_CONTENT_TYPE IN (’ANY’,’LARGE’)
ORDER BY TBSP_ID

Once the table spaces have been identified, the next step is to perform the
following statement for each of the table spaces listed:
ALTER TABLESPACE <tablespace_name> REBALANCE

where <tablespace_name> is the name of the table spaces identified in the previous
step.

/path1 /path2 /path3 /path4 /path1 /path3 /path4

Existing
paths

Paths being
added

First
stripe set

Path being
dropped

Figure 30. Adding and dropping storage paths, and then rebalancing an automatic storage
table space

198 Database Administration Concepts and Configuration Reference

Note: You cannot rebalance temporary tables spaces managed by automatic
storage. If you want to stop using the storage that had been allocated to temporary
table spaces, one option is to drop the temporary table spaces and then recreate
them.

Renaming a table space
Use the RENAME TABLESPACE statement to rename a table space.

About this task

You cannot rename the SYSCATSPACE table space. You cannot rename a table
space that is in a rollforward pending or rollforward-in-progress state.

When restoring a table space that has been renamed since it was backed up, you
must use the new table space name in the RESTORE DATABASE command. If you use
the previous table space name, it will not be found. Similarly, if you are rolling
forward the table space with the ROLLFORWARD DATABASE command, ensure that you
use the new name. If the previous table space name is used, it will not be found.

You can give an existing table space a new name without being concerned with the
individual objects within the table space. When renaming a table space, all the
catalog records referencing that table space are changed.

Table space states
This topic provides information about the supported table space states.

There are currently at least 25 table or table space states supported by the IBM DB2
database product. These states are used to control access to data under certain
circumstances, or to elicit specific user actions, when required, to protect the
integrity of the database. Most of them result from events related to the operation
of one of the DB2 database utilities, such as the load utility, or the backup and
restore utilities. The following table describes each of the supported table space
states. The table also provides you with working examples that show you exactly
how to interpret and respond to states that you might encounter while
administering your database. The examples are taken from command scripts that
were run on AIX; you can copy, paste and run them yourself. If you are running
the DB2 database product on a system that is not UNIX, ensure that any path
names are in the correct format for your system. Most of the examples are based
on tables in the SAMPLE database that comes with the DB2 database product. A
few examples require scenarios that are not part of the SAMPLE database, but you
can use a connection to the SAMPLE database as a starting point.

Chapter 8. Table spaces 199

Table 16. Supported table space states

State
Hexadecimal

state value Description Examples

Backup
Pending

0x20 A table space is in this
state after a point-in-time
table space rollforward
operation, or after a load
operation (against a
recoverable database) that
specifies the COPY NO
option. The table space (or,
alternatively, the entire
database) must be backed
up before the table space
can be used. If the table
space is not backed up,
tables within that table
space can be queried, but
not updated.
Note: A database must
also be backed up
immediately after it is
enabled for rollforward
recovery. A database is
recoverable if the
logretain database
configuration parameter is
set to RECOVERY, or the
userexit database
configuration parameter is
set to YES. You cannot
activate or connect to such
a database until it has been
backed up, at which time
the value of the
backup_pending
informational database
configuration parameter is
set to NO.

1. Given load input file staff_data.del with content:

11,"Melnyk",20,"Sales",10,70000,15000:

update db cfg for sample using logretain recovery;
backup db sample;
connect to sample;
load from staff_data.del of del messages load.msg
insert into staff copy no;

update staff set salary = 69000 where id = 11;

2.

update db cfg for sample using logretain recovery;
connect to sample;

Backup in
Progress

0x800 This is a transient state
that is only in effect during
a backup operation.

Issue an online BACKUP DATABASE command:

backup db sample online;

While the backup operation is running, execute the
following script from another session:

connect to sample;

1.

list tablespaces show detail;

or

2.

get snapshot for tablespaces on sample;
connect reset;

Information returned for USERSPACE1 shows that this
table space is in Backup in Progress state.

200 Database Administration Concepts and Configuration Reference

Table 16. Supported table space states (continued)

State
Hexadecimal

state value Description Examples

DMS
Rebalance
in Progress

0x10000000 This is a transient state
that is only in effect during
a data rebalancing
operation. When new
containers are added to a
table space that is defined
as database managed space
(DMS), or existing
containers are extended, a
rebalancing of the table
space data might occur.
Rebalancing is the process
of moving table space
extents from one location
to another in an attempt to
keep the data striped. An
extent is a unit of container
space (measured in pages),
and a stripe is a layer of
extents across the set of
containers for a table space.

Given load input file staffdata.del with a substantial
amount of data (for example, 20000 or more records):

connect to sample;
create tablespace ts1 managed by database using
(file ’/home/melnyk/melnyk/NODE0000/SQL00001

/ts1c1’ 1024);
create table newstaff like staff in ts1;
load from staffdata.del of del insert into newstaff
nonrecoverable;

alter tablespace ts1 add (file ’/home/melnyk/melnyk
/NODE0000/SQL00001/ts1c2’ 1024);
list tablespaces;
connect reset;

Information returned for TS1 shows that this table space is
in DMS Rebalance in Progress state.

Disable
Pending

0x200 A table space may be in
this state during a
database rollforward
operation and should no
longer be in this state by
the end of the rollforward
operation. The state is
triggered by conditions
that result from a table
space going offline and
compensation log records
for a transaction not being
written. The appearance
and subsequent
disappearance of this table
space state is transparent
to users.

An example illustrating this table space state is beyond the
scope of this document.

Drop
Pending

0x8000 A table space is in this
state if one or more of its
containers is found to have
a problem during a
database restart operation.
(A database must be
restarted if the previous
session with this database
terminated abnormally,
such as during a power
failure, for example.) If a
table space is in Drop
Pending state, it will not
be available, and can only
be dropped.

An example illustrating this table space state is beyond the
scope of this document.

Chapter 8. Table spaces 201

Table 16. Supported table space states (continued)

State
Hexadecimal

state value Description Examples

Load in
Progress

0x20000 This is a transient state
that is only in effect during
a load operation (against a
recoverable database) that
specifies the COPY NO
option. See also Load in
Progress table state.

Given load input file staffdata.del with a substantial
amount of data (for example, 20000 or more records):

update db cfg for sample using logretain recovery;
backup db sample;
connect to sample;
create table newstaff like staff;
load from staffdata.del of del insert into newstaff
copy no;

connect reset;

While the load operation is running, execute the following
script from another session:

connect to sample;
list tablespaces;
connect reset;

Information returned for USERSPACE1 shows that this
table space is in Load in Progress (and Backup Pending)
state.

Normal 0x0 A table space is in Normal
state if it is not in any of
the other (abnormal) table
space states. Normal state
is the initial state of a table
space after it is created.

connect to sample;
create tablespace ts1 managed by database using
(file ’/home/melnyk/melnyk/NODE0000/SQL00001

/tsc1’ 1024);
list tablespaces show detail;

Offline and
Not
Accessible

0x4000 A table space is in this
state if there is a problem
with one or more of its
containers. A container
might be inadvertently
renamed, moved, or
damaged. After the
problem has been rectified,
and the containers that are
associated with the table
space are accessible again,
this abnormal state can be
removed by disconnecting
all applications from the
database and then
reconnecting to the
database. Alternatively,
you can issue an ALTER
TABLESPACE statement,
specifying the SWITCH
ONLINE clause, to remove
the Offline and Not
Accessible state from the
table space without
disconnecting other
applications from the
database.

connect to sample;
create tablespace ts1 managed by database using
(file ’/home/melnyk/melnyk/NODE0000/SQL00001

/tsc1’ 1024);
alter tablespace ts1 add (file ’/home/melnyk/melnyk
/NODE0000/SQL00001/tsc2’ 1024);
export to st_data.del of del select * from staff;
create table stafftemp like staff in ts1;
import from st_data.del of del insert into stafftemp;
connect reset;

Rename table space container tsc1 to tsc3 and then try to
query the STAFFTEMP table:

connect to sample;
select * from stafftemp;

The query returns SQL0290N (table space access is not
allowed), and the LIST TABLESPACES command returns a
state value of 0x4000 (Offline and Not Accessible) for TS1.
Rename table space container tsc3 back to tsc1. This time
the query runs successfully.

202 Database Administration Concepts and Configuration Reference

Table 16. Supported table space states (continued)

State
Hexadecimal

state value Description Examples

Quiesced
Exclusive

0x4 A table space is in this
state when the application
that invokes the table
space quiesce function has
exclusive (read or write)
access to the table space.
You can put a table space
in Quiesced Exclusive state
explicitly by issuing the
QUIESCE TABLESPACES FOR
TABLE command.

Ensure that the table space state is Normal before setting it
to Quiesced Exclusive.

connect to sample;
quiesce tablespaces for table staff reset;
quiesce tablespaces for table staff exclusive;
connect reset;

Execute the following script from another session:

connect to sample;
select * from staff where id=60;
update staff set salary=50000 where id=60;
list tablespaces;
connect reset;

Information returned for USERSPACE1 shows that this
table space is in Quiesced Exclusive state.

Quiesced
Share

0x1 A table space is in this
state when both the
application that invokes
the table space quiesce
function and concurrent
applications have read (but
not write) access to the
table space. You can put a
table space in Quiesced
Share state explicitly by
issuing the QUIESCE
TABLESPACES FOR TABLE
command.

Ensure that the table space state is Normal before setting it
to Quiesced Share.

connect to sample;
quiesce tablespaces for table staff reset;
quiesce tablespaces for table staff share;
connect reset;

Execute the following script from another session:

connect to sample;
select * from staff where id=40;
update staff set salary=50000 where id=40;
list tablespaces;
connect reset;

Information returned for USERSPACE1 shows that this
table space is in Quiesced Share state.

Quiesced
Update

0x2 A table space is in this
state when the application
that invokes the table
space quiesce function has
exclusive write access to
the table space. You can
put a table space in
Quiesced Update state
explicitly by issuing the
QUIESCE TABLESPACES FOR
TABLE command.

Ensure that the table space state is Normal before setting it
to Quiesced Update.

connect to sample;
quiesce tablespaces for table staff reset;
quiesce tablespaces for table staff intent to update;
connect reset;

Execute the following script from another session:

connect to sample;
select * from staff where id=50;
update staff set salary=50000 where id=50;
list tablespaces;
connect reset;

Information returned for USERSPACE1 shows that this
table space is in Quiesced Update state.

Chapter 8. Table spaces 203

Table 16. Supported table space states (continued)

State
Hexadecimal

state value Description Examples

Reorg in
Progress

0x400 This is a transient state
that is only in effect during
a reorg operation.

Issue a REORG TABLE command:

connect to sample;
reorg table staff;
connect reset;

While the reorg operation is running, execute the following
script from another session:

connect to sample;

1.

list tablespaces show detail;

or

2.

get snapshot for tablespaces on sample;
connect reset;

Information returned for USERSPACE1 shows that this
table space is in Reorg in Progress state.
Note: Table reorganization operations involving the
SAMPLE database are likely to complete in a short period
of time and, as a result, it may be difficult to observe the
Reorg in Progress state using this approach.

Restore
Pending

0x100 Table spaces for a database
are in this state after the
first part of a redirected
restore operation (that is,
before the SET TABLESPACE
CONTAINERS command is
issued). The table space (or
the entire database) must
be restored before the table
space can be used. You
cannot connect to the
database until the restore
operation has been
successfully completed, at
which time the value of
the restore_pending
informational database
configuration parameter is
set to NO.

When the first part of the redirected restore operation in
Storage May be Defined completes, all of the table spaces
are in Restore Pending state.

204 Database Administration Concepts and Configuration Reference

Table 16. Supported table space states (continued)

State
Hexadecimal

state value Description Examples

Restore in
Progress

0x2000 This is a transient state
that is only in effect during
a restore operation.

update db cfg for sample using logretain recovery;
backup db sample;
backup db sample tablespace (userspace1);

The timestamp for this backup image is:

20040611174124

restore db sample tablespace (userspace1) online
taken at 20040611174124;

While the restore operation is running, execute the
following script from another session:

connect to sample;

1.

list tablespaces show detail;

or

2.

get snapshot for tablespaces on sample;
connect reset;

Information returned for USERSPACE1 shows that this
table space is in Restore in Progress state.

Roll
Forward
Pending

0x80 A table space is in this
state after a restore
operation against a
recoverable database. The
table space (or the entire
database) must be rolled
forward before the table
space can be used. A
database is recoverable if
the logretain database
configuration parameter is
set to RECOVERY, or the
userexit database
configuration parameter is
set to YES. You cannot
activate or connect to the
database until a
rollforward operation has
been successfully
completed, at which time
the value of the
rollfwd_pending
informational database
configuration parameter is
set to NO.

When the online table space restore operation in Restore in
Progress completes, the table space USERSPACE1 is in Roll
Forward Pending state.

Chapter 8. Table spaces 205

Table 16. Supported table space states (continued)

State
Hexadecimal

state value Description Examples

Roll
Forward in
Progress

0x40 This is a transient state
that is only in effect during
a rollforward operation.

Given load input file staffdata.del with a substantial
amount of data (for example, 20000 or more records):

update db cfg for sample using logretain recovery;
backup db sample;
connect to sample;
create tablespace ts1 managed by database using
(file ’/home/melnyk/melnyk/NODE0000/SQL00001

/ts1c1’ 1024);
create table newstaff like staff in ts1;
connect reset;
backup db sample tablespace (ts1) online;

The timestamp for this backup image is:

20040630000715

connect to sample;
load from staffdata.del of del insert into newstaff
copy yes to /home/melnyk/backups;

connect reset;
restore db sample tablespace (ts1) online taken at
20040630000715;

rollforward db sample to end of logs and stop
tablespace (ts1) online;

While the rollforward operation is running, execute the
following script from another session:

connect to sample;

1.

list tablespaces show detail;

or

2.

get snapshot for tablespaces on sample;
connect reset;

Information returned for TS1 shows that this table space is
in Roll Forward in Progress state.

Storage
May be
Defined

0x2000000 Table spaces for a database
are in this state after the
first part of a redirected
restore operation (that is,
before the SET TABLESPACE
CONTAINERS command is
issued). This allows you to
redefine the containers, if
you wish.

backup db sample;

Assuming that the timestamp for this backup image is
20040613204955:

restore db sample taken at 20040613204955 redirect;
list tablespaces;

Information returned by the LIST TABLESPACES command
shows that all of the table spaces are in Storage May be
Defined and Restore Pending state.

206 Database Administration Concepts and Configuration Reference

Table 16. Supported table space states (continued)

State
Hexadecimal

state value Description Examples

Storage
Must be
Defined

0x1000 Table spaces for a database
are in this state during a
redirected restore operation
to a new database if the set
table space containers
phase is omitted or if,
during the set table space
containers phase, the
specified containers cannot
be acquired. The latter can
occur if, for example, an
invalid path name has
been specified, or there is
insufficient disk space.

backup db sample;

Assuming that the timestamp for this backup image is
20040613204955:

restore db sample taken at 20040613204955 into
mydb redirect;

set tablespace containers for 2 using
(path ’ts2c1’);

list tablespaces;

Information returned by the LIST TABLESPACES command
shows that table space SYSCATSPACE and table space
TEMPSPACE1 are in Storage Must be Defined, Storage
May be Defined, and Restore Pending state. Storage Must
be Defined state takes precedence over Storage May be
Defined state.

Suspend
Write

0x10000 A table space is in this
state after a write
operation has been
suspended.

An example illustrating this table space state is beyond the
scope of this document.

Table Space
Creation in
Progress

0x40000000 This is a transient state
that is only in effect during
a create table space
operation.

connect to sample;
create tablespace ts1 managed by database using
(file ’/home/melnyk/melnyk/NODE0000/SQL00001

/tsc1’ 1024);
create tablespace ts2 managed by database using
(file ’/home/melnyk/melnyk/NODE0000/SQL00001

/tsc2’ 1024);
create tablespace ts3 managed by database using
(file ’/home/melnyk/melnyk/NODE0000/SQL00001

/tsc3’ 1024);

While the create table space operations are running,
execute the following script from another session:

connect to sample;

1.

list tablespaces show detail;

or

2.

get snapshot for tablespaces on sample;
connect reset;

Information returned for TS1, TS2, and TS3 shows that
these table spaces are in Table Space Creation in Progress
state.

Chapter 8. Table spaces 207

Table 16. Supported table space states (continued)

State
Hexadecimal

state value Description Examples

Table Space
Deletion in
Progress

0x20000000 This is a transient state
that is only in effect during
a delete table space
operation.

connect to sample;
create tablespace ts1 managed by database using
(file ’/home/melnyk/melnyk/NODE0000/SQL00001

/tsc1’ 1024);
create tablespace ts2 managed by database using
(file ’/home/melnyk/melnyk/NODE0000/SQL00001

/tsc2’ 1024);
create tablespace ts3 managed by database using
(file ’/home/melnyk/melnyk/NODE0000/SQL00001

/tsc3’ 1024);
drop tablespace ts1;
drop tablespace ts2;
drop tablespace ts3;

While the drop table space operations are running, execute
the following script from another session:

connect to sample;

1.

list tablespaces show detail;

or

2.

get snapshot for tablespaces on sample;
connect reset;

Information returned for TS1, TS2, and TS3 shows that
these table spaces are in Table Space Deletion in Progress
state.

Switching table spaces from offline to online
The SWITCH ONLINE clause of the ALTER TABLESPACE statement can be used
to remove the OFFLINE state from a table space if the containers associated with
that table space have become accessible.

About this task

The table space has the OFFLINE state removed while the rest of the database is
still up and being used.

An alternative to the use of this clause is to disconnect all applications from the
database and then to have the applications connect to the database again. This
removes the OFFLINE state from the table space.

To remove the OFFLINE state from a table space using the command line, enter:
db2 ALTER TABLESPACE <name>

SWITCH ONLINE

Optimizing table space performance when data is on RAID devices
Follow these guidelines to optimize performance when data is stored on
Redundant Array of Independent Disks (RAID) devices.

208 Database Administration Concepts and Configuration Reference

About this task
1. When creating a table space on a set of RAID devices, create the containers for

a given table space (SMS or DMS) on separate devices.
Consider an example where you have fifteen 146 GB disks configured as three
RAID-5 arrays with five disks in each array. After formatting, each disk can
hold approximately 136 GB of data. Each array can therefore store
approximately 544 GB (4 active disks x 136 GB). If you have a table space that
requires 300 GB of storage, create three containers, and put each container on a
separate device. Each container uses 100 GB (300 GB/3) on a device, and there
are 444 GB (544 GB - 100 GB) left on each device for additional table spaces.

2. Select an appropriate extent size for the table spaces. The extent size for a table
space is the amount of data that the database manager writes to a container
before writing to the next container. Ideally, the extent size should be a multiple
of the underlying segment size of the disks, where the segment size is the
amount of data that the disk controller writes to one physical disk before
writing to the next physical disk. Choosing an extent size that is a multiple of
the segment size ensures that extent-based operations, such as parallel
sequential read in prefetching, do not compete for the same physical disks.
Also, choose an extent size that is a multiple of the page size.
In the example, if the segment size is 64 KB and the page size is 16 KB, an
appropriate extent size might be 256 KB.

3. Use the DB2_PARALLEL_IO registry variable to enable parallel I/O for all
table spaces and to specify the number of physical disks per container.
For the situation in the example, set DB2_PARALLEL_IO = *:4.
If you set the prefetch size of a table space to AUTOMATIC, the database
manager uses the number of physical disks value that you specified for
DB2_PARALLEL_IO to determine the prefetch size value. If the prefetch size is
not set to AUTOMATIC, you can set it manually, taking into account the RAID
stripe size, which is the value of the segment size multiplied by the number of
active disks. Choose a prefetch size value that meets the following conditions:
v It is equal to the RAID stripe size multiplied by the number of RAID parallel

devices (or a whole number representation of this product).
v It is a whole number representation of the extent size.
In the example, you might set the prefetch size to 768 KB. This value is equal
to the RAID stripe size (256 KB) multiplied by the number of RAID parallel
devices (3). It is also a multiple of the extent size (256 KB). Choosing this
prefetch size means that a single prefetch will engage all the disks in all the
arrays. If you want the prefetchers to work more aggressively because your
workload involves mainly sequential scans, you can instead use a multiple of
this value, such as 1536 KB (768 KB x 2).

4. Do not set the DB2_USE_PAGE_CONTAINER_TAG registry variable. As
described earlier, you should create a table space with an extent size that is
equal to, or a multiple of, the RAID stripe size. However, when you set
DB2_USE_PAGE_CONTAINER_TAG to ON, a one-page container tag is used,
and the extents do not line up with the RAID stripes. As a result, it might be
necessary during an I/O request to access more physical disks than would be
optimal.

Dropping table spaces
When you drop a table space, you delete all the data in that table space, free the
containers, remove the catalog entries, and cause all objects defined in the table
space to be either dropped or marked as invalid.

Chapter 8. Table spaces 209

About this task

You can reuse the containers in an empty table space by dropping the table space,
but you must commit the DROP TABLESPACE statement before attempting to
reuse the containers.

Note: You cannot drop a table space without dropping all table spaces that are
associated with it. Example, if you have a table in one table space and its index
created in another table space, you must drop both index and data table spaces in
one DROP TABLESPACE command.

Dropping user table spaces

You can drop a user table space that contains all of the table data including
index and LOB data within that single user table space. You can also drop
a user table space that might have tables spanned across several table
spaces. That is, you might have table data in one table space, indexes in
another, and any LOBs in a third table space. You must drop all three table
spaces at the same time in a single statement. All of the table spaces that
contain tables that are spanned must be part of this single statement or the
drop request will fail.

To drop a user table space using the command line, enter:
DROP TABLESPACE <name>

The following SQL statement drops the table space ACCOUNTING:
DROP TABLESPACE ACCOUNTING

Dropping user temporary table spaces
You can only drop a user temporary table space if there are no declared or
created temporary tables currently defined in that table space. When you
drop the table space, no attempt is made to drop all of the declared or
created temporary tables in the table space.

Note: A declared or created temporary table is implicitly dropped when
the application that declared it disconnects from the database.

Dropping system temporary table spaces
You cannot drop a system temporary table space that has a page size of 4
KB without first creating another system temporary table space. The new
system temporary table space must have a page size of 4 KB because the
database must always have at least one system temporary table space that
has a page size of 4 KB. For example, if you have a single system
temporary table space with a page size of 4 KB, and you want to add a
container to it, and it is an SMS table space, you must first add a new 4 KB
page size system temporary table space with the proper number of
containers, and then drop the old system temporary table space. (If you
were using DMS, you could add a container without having to drop and
recreate the table space.)

The default table space page size is the page size that the database was
created with (which is 4 KB by default, but could also be 8 KB, 16 KB, or
32 KB).

This is the statement to create a system temporary table space:
CREATE SYSTEM TEMPORARY TABLESPACE <name>

MANAGED BY SYSTEM USING (’<directories>’)

Then, to drop a system table space using the command line, enter:
DROP TABLESPACE <name>

210 Database Administration Concepts and Configuration Reference

The following SQL statement creates a new system temporary table space
called TEMPSPACE2:

CREATE SYSTEM TEMPORARY TABLESPACE TEMPSPACE2
MANAGED BY SYSTEM USING (’d:\systemp2’)

Once TEMPSPACE2 is created, you can then drop the original system
temporary table space TEMPSPACE1 with the command:

DROP TABLESPACE TEMPSPACE1

Chapter 8. Table spaces 211

212 Database Administration Concepts and Configuration Reference

Chapter 9. Schemas

A schema is a collection of named objects; it provides a way to group those objects
logically. A schema is also a name qualifier; it provides a way to use the same
natural name for several objects, and to prevent ambiguous references to those
objects.

For example, the schema names 'INTERNAL' and 'EXTERNAL' make it easy to
distinguish two different SALES tables (INTERNAL.SALES, EXTERNAL.SALES).

Schemas also enable multiple applications to store data in a single database
without encountering namespace collisions.

A schema is distinct from, and should not be confused with, an XML schema,
which is a standard that describes the structure and validates the content of XML
documents.

A schema can contain tables, views, nicknames, triggers, functions, packages, and
other objects. A schema is itself a database object. It is explicitly created using the
CREATE SCHEMA statement, with the current user or a specified authorization ID
recorded as the schema owner. It can also be implicitly created when another
object is created, if the user has IMPLICIT_SCHEMA authority.

A schema name is used as the high order part of a two-part object name. If the
object is specifically qualified with a schema name when created, the object is
assigned to that schema. If no schema name is specified when the object is created,
the default schema name is used (specified in the CURRENT SCHEMA special
register).

For example, a user with DBADM authority creates a schema called C for user A:
CREATE SCHEMA C AUTHORIZATION A

User A can then issue the following statement to create a table called X in schema
C (provided that user A has the CREATETAB database authority):

CREATE TABLE C.X (COL1 INT)

Some schema names are reserved. For example, built-in functions belong to the
SYSIBM schema, and the pre-installed user-defined functions belong to the
SYSFUN schema.

When a database is created, if it is not created with the RESTRICTIVE option, all
users have IMPLICIT_SCHEMA authority. With this authority, users implicitly
create a schema whenever they create an object with a schema name that does not
already exist. When schemas are implicitly created, CREATEIN privileges are
granted which allows any user to create other objects in this schema. The ability to
create objects such as aliases, distinct types, functions, and triggers is extended to
implicitly created schemas. The default privileges on an implicitly created schema
provide backward compatibility with previous versions.

If IMPLICIT_SCHEMA authority is revoked from PUBLIC, schemas can be
explicitly created using the CREATE SCHEMA statement, or implicitly created by
users (such as those with DBADM authority) who have been granted
IMPLICIT_SCHEMA authority. Although revoking IMPLICIT_SCHEMA authority

© Copyright IBM Corp. 1993, 2012 213

from PUBLIC increases control over the use of schema names, it can result in
authorization errors when existing applications attempt to create objects.

Schemas also have privileges, allowing the schema owner to control which users
have the privilege to create, alter, copy, and drop objects in the schema. This
provides a way to control the manipulation of a subset of objects in the database.
A schema owner is initially given all of these privileges on the schema, with the
ability to grant the privileges to others. An implicitly created schema is owned by
the system, and all users are initially given the privilege to create objects in such a
schema. A user with ACCESSCTRL or SECADM authority can change the
privileges that are held by users on any schema. Therefore, access to create, alter,
copy, and drop objects in any schema (even one that was implicitly created) can be
controlled.

Designing schemas
when organizing your data into tables, it might be beneficial to group the tables
and other related objects together. This is done by defining a schema through the
use of the CREATE SCHEMA statement.

Information about the schema is kept in the system catalog tables of the database
to which you are connected. As other objects are created, they can be placed within
the schemas you create, however, note that an object can exist in only one schema.

Schemas can be compared to directories, with the current schema being the current
directory. Using this analogy, SET SCHEMA is equivalent to the change directory
command.

Important: It is important to understand that there is no relation between
authorization IDs and schemas except for the default CURRENT SCHEMA setting
(described below).

when designing your databases and tables, you should also consider the schemas
in your system, including their names and the objects that will be associated with
each of them.

Most objects in a database are assigned a unique name that consists of two parts.
The first (leftmost) part is called the qualifier or schema, and the second
(rightmost) part is called the simple (or unqualified) name. Syntactically, these two
parts are concatenated as a single string of characters separated by a period. When
any object that can be qualified by a schema name (such as a table, index, view,
user-defined data type, user-defined function, nickname, package, or trigger) is
first created, it is assigned to a particular schema based on the qualifier in its
name.

For example, the following diagram illustrates how a table is assigned to a
particular schema during the table creation process:

214 Database Administration Concepts and Configuration Reference

Index

Table

Payroll (Schema)

Table

Index

Sales (Schema)

Staff

'CREATE TABLE 'PAYROLL.STAFF

Table Name

Schema Name

You should also be familiar with how schema access is granted, in order to give
your users the correct authority and instructions:

Schema names
When creating a new schema, the name must not identify a schema name
already described in the catalog and the name cannot begin with "SYS".
For other restrictions and recommendations, see “Schema name restrictions
and recommendations” on page 217.

Access to schemas

Unqualified access to objects within a schema is not allowed since the
schema is used to enforce uniqueness in the database. This becomes clear
when considering the possibility that two users could create two tables (or
other objects) with the same name. Without a schema to enforce
uniqueness, ambiguity would exist if a third user attempted to query the
table. It is not possible to determine which table to use without some
further qualification.

The definer of any objects created as part of the CREATE SCHEMA
statement is the schema owner. This owner can GRANT and REVOKE
schema privileges to other users.

If a user has DBADM authority, then that user can create a schema with
any valid name. When a database is created, IMPLICIT_SCHEMA
authority is granted to PUBLIC (that is, to all users).

If users do not have IMPLICIT_SCHEMA or DBADM authority, the only
schema they can create is one that has the same name as their own
authorization ID.

Default schema

If a schema or qualifier is not specified as part of the name of the object to
be created, that object is assigned to the default schema as indicated in the
CURRENT SCHEMA special register. The default value of this special
register is the value of the session authorization ID.

Chapter 9. Schemas 215

A default schema is needed by unqualified object references in dynamic
statements. You can set a default schema for a specific DB2 connection by
setting the CURRENT SCHEMA special register to the schema that you
want as the default. No designated authorization is required to set this
special register, so any user can set the CURRENT SCHEMA.

The syntax of the SET SCHEMA statement is:
SET SCHEMA = <schema-name>

You can issue this statement interactively or from within an application.
The initial value of the CURRENT SCHEMA special register is equal to the
authorization ID of the current session user. For more information, see the
SET SCHEMA statement.

Note:

v There are other ways to set the default schema upon connection. For
example, by using the cli.ini file for CLI/ODBC applications, or by
using the connection properties for the JDBC application programming
interface.

v The default schema record is not created in the system catalogs, but it
exists only as a value that the database manager can obtain (from the
CURRENT SCHEMA special register) whenever a schema or qualifier is
not specified as part of the name of the object to be created.

Implicit creation

You can implicitly create schemas if you have IMPLICIT_SCHEMA
authority. With this authority, you can implicitly create a schema whenever
you create an object with a schema name that does not already exist. Often
schemas are implicitly created the first time a data object in the schema is
created, provided the user creating the object holds the
IMPLICIT_SCHEMA authority.

Explicit creation

Schemas can also be explicitly created and dropped by executing the
CREATE SCHEMA and DROP SCHEMA statements from the command
line or from an application program. For more information, see the
CREATE SCHEMA and DROP SCHEMA statements.

Table and view aliases by schema

To allow another user to access a table or view without entering the
schema name as part of the qualification on the table or view name
requires that a an alias be established for that user. The definition of the
alias would define the fully-qualified table or view name including the
user's schema; then the user queries using the alias name. The alias would
be fully-qualified by the user's schema as part of the alias definition.

Grouping objects by schema
Database object names might be made up of a single identifier or they might be
schema-qualified objects made up of two identifiers. The schema, or high-order part,
of a schema-qualified object provides a means to classify or group objects in the
database. When an object such as a table, view, alias, distinct type, function, index,
package or trigger is created, it is assigned to a schema. This assignment is done
either explicitly or implicitly.

216 Database Administration Concepts and Configuration Reference

Explicit use of the schema occurs when you use the high-order part of a two-part
object name when referring to that object in a statement. For example, USER A
issues a CREATE TABLE statement in schema C as follows:

CREATE TABLE C.X (COL1 INT)

Implicit use of the schema occurs when you do not use the high-order part of a
two-part object name. When this happens, the CURRENT SCHEMA special register
is used to identify the schema name used to complete the high-order part of the
object name. The initial value of CURRENT SCHEMA is the authorization ID of
the current session user. If you want to change this during the current session, you
can use the SET SCHEMA statement to set the special register to another schema
name.

Some objects are created within certain schemas and stored in the system catalog
tables when the database is created.

You do not have to explicitly specify in which schema an object is to be created; if
not specified, the authorization ID of the statement is used. For example, for the
following CREATE TABLE statement, the schema name defaults to the
authorization ID that is currently logged on (that is, the CURRENT SCHEMA
special register value):

CREATE TABLE X (COL1 INT)

Dynamic SQL and XQuery statements typically use the CURRENT SCHEMA
special register value to implicitly qualify any unqualified object name references.

Before creating your own objects, you must consider whether you want to create
them in your own schema or by using a different schema that logically groups the
objects. If you are creating objects that will be shared, using a different schema
name can be very beneficial.

Schema name restrictions and recommendations
There are some restrictions and recommendations that you must be aware of when
naming schemas.
v User-defined types (UDTs) cannot have schema names longer than the schema

length listed in “SQL and XML limits” in the SQL Reference.
v The following schema names are reserved words and must not be used:

SYSCAT, SYSFUN, SYSIBM, SYSSTAT, SYSPROC.
v To avoid potential problems upgrading databases in the future, do not use

schema names that begin with SYS. The database manager will not allow you to
create modules, procedures, triggers, user-defined types or user-defined
functions using a schema name beginning with SYS.

v It is recommended that you not use SESSION as a schema name. Declared
temporary tables must be qualified by SESSION. It is therefore possible to have
an application declare a temporary table with a name identical to that of a
persistent table, in which case the application logic can become overly
complicated. Avoid the use of the schema SESSION, except when dealing with
declared temporary tables.

Chapter 9. Schemas 217

Creating schemas
You can use schemas to group objects as you create those objects. An object can
belong to only one schema. Use the CREATE SCHEMA statement to create
schemas. Information about the schemas is kept in the system catalog tables of the
database to which you are connected.

Before you begin

To create a schema and optionally make another user the owner of the schema,
you need DBADM authority. If you do not hold DBADM authority, you can still
create a schema using your own authorization ID. The definer of any objects
created as part of the CREATE SCHEMA statement is the schema owner. This
owner can GRANT and REVOKE schema privileges to other users.

About this task

To create a schema from the command line, enter the following statement:
CREATE SCHEMA <schema-name> [AUTHORIZATION <schema-owner-name>]

Where <schema-name> is the name of the schema. This name must be unique within
the schemas already recorded in the catalog, and the name cannot begin with SYS.
If the optional AUTHORIZATION clause is specified, the <schema-owner-name>
becomes the owner of the schema. If this clause is not specified, the authorization
ID that issued this statement becomes the owner of the schema.

For more information, see the CREATE SCHEMA statement. See also “Schema
name restrictions and recommendations” on page 217.

Copying schemas
The db2move utility and the ADMIN_COPY_SCHEMA procedure allow you to
quickly make copies of a database schema. Once a model schema is established,
you can use it as a template for creating new versions.

About this task

Use the ADMIN_COPY_SCHEMA procedure to copy a single schema within the same
database or the db2move utility with the -co COPY action to copy a single schema or
multiple schemas from a source database to a target database. Most database
objects from the source schema are copied to the target database under the new
schema.

Troubleshooting tips

Both the ADMIN_COPY_SCHEMA procedure and the db2move utility invoke the LOAD
command. While the load is processing, the table spaces wherein the database
target objects reside are put into backup pending state.

ADMIN_COPY_SCHEMA procedure
Using this procedure with the COPYNO option places the table spaces
wherein the target object resides into backup pending state, as described in
the note above. To get the table space out of the set integrity pending state,
this procedure issues a SET INTEGRITY statement. In situations where a
target table object has referential constraints defined, the target table is also
placed in the set integrity pending state. Because the table spaces are

218 Database Administration Concepts and Configuration Reference

already in backup pending state, the ADMIN_COPY_SCHEMA procedure's
attempt to issue a SET INTEGRITY statement will fail.

To resolve this situation, issue a BACKUP DATABASE command to get the
affected table spaces out of backup pending state. Next, look at the
Statement_text column of the error table generated by this procedure to
find a list of tables in the set integrity pending state. Then issue the SET
INTEGRITY statement for each of the tables listed to take each table out of
the set integrity pending state.

db2move utility
This utility attempts to copy all allowable schema objects with the
exception of the following types:
v table hierarchy
v staging tables (not supported by the load utility in multiple partition

database environments)
v jars (Java routine archives)
v nicknames
v packages
v view hierarchies
v object privileges (All new objects are created with default authorizations)
v statistics (New objects do not contain statistics information)
v index extensions (user-defined structured type related)
v user-defined structured types and their transform functions

Unsupported type errors
If an object of one of the unsupported types is detected in the source
schema, an entry is logged to an error file, indicating that an unsupported
object type is detected. The COPY operation will still succeed–the logged
entry is meant to inform you of objects not copied by this operation.

Objects not coupled with schemas
Objects that are not coupled with a schema, such as table spaces and event
monitors, are not operated on during a copy schema operation. You should
create them on the target database before the copy schema operation is
invoked.

Replicated tables
When copying a replicated table, the new copy of the table is not enabled
for replication. The table is recreated as a regular table.

Different instances
The source database must be cataloged if it does not reside in the same
instance as the target database.

SCHEMA_MAP option
When using the SCHEMA_MAP option to specify a different schema name
on the target database, the copy schema operation will perform only
minimal parsing of the object definition statements to replace the original
schema name with the new schema name. For example, any instances of
the original schema that appear inside the contents of an SQL procedure
are not replaced with the new schema name. Thus the copy schema
operation might fail to recreate these objects. Other examples may include
staging table, result table, materialized query table. You can use the DDL in
the error file to manually recreate these failed objects after the copy
operation completes.

Chapter 9. Schemas 219

Interdependencies between objects
The copy schema operation attempts to recreate objects in an order that
satisfies the interdependencies between these objects. For example, if a
table T1 contains a column that references a user-defined function U1, then
it will recreate U1 before recreating T1. However, dependency information
for procedures is not readily available in the catalogs, so when recreating
procedures, the copy schema operation will first attempt to recreate all
procedures, then retry to recreate those that failed (on the assumption that
if they depended on a procedure that was successfully created during the
previous attempt, then during a subsequent attempt they will be recreated
successfully). The operation will continually try to recreate these failed
procedures as long as it is able to successfully recreate one or more during
a subsequent attempt. During every attempt at recreating a procedure, an
error (and DDL) is logged into the error file. You might see many entries in
the error file for the same procedures, but these procedures might have
even been successfully recreated during a subsequent attempt. You should
query the SYSCAT.PROCEDURES table upon completion of the copy
schema operation to determine if these procedures listed in the error file
were successfully recreated.

For more information, see the ADMIN_COPY_SCHEMA procedure and the db2move
utility.

Example of schema copy using the ADMIN_COPY_SCHEMA
procedure

Use the ADMIN_COPY SCHEMA procedure as shown below to copy a single
schema within the same database.

DB2 "SELECT SUBSTR(OBJECT_SCHEMA,1, 8)
AS OBJECT_SCHEMA, SUBSTR(OBJECT_NAME,1, 15)
AS OBJECT_NAME, SQLCODE, SQLSTATE, ERROR_TIMESTAMP, SUBSTR(DIAGTEXT,1, 80)
AS DIAGTEXT, SUBSTR(STATEMENT,1, 80)
AS STATEMENT FROM COPYERRSCH.COPYERRTAB"

CALL SYSPROC.ADMIN_COPY_SCHEMA(’SOURCE_SCHEMA’, ’TARGET_SCHEMA’,
’COPY’, NULL, ’SOURCETS1 , SOURCETS2’, ’TARGETTS1, TARGETTS2,
SYS_ANY’, ’ERRORSCHEMA’, ’ERRORNAME’)

The output from this SELECT statement is shown below:
OBJECT_SCHEMA OBJECT_NAME SQLCODE SQLSTATE ERROR_TIMESTAMP
------------- --------------- ----------- -------- --------------------------
SALES EXPLAIN_STREAM -290 55039 2006-03-18-03.22.34.810346

DIAGTEXT
--
[IBM][CLI Driver][DB2/LINUXX8664] SQL0290N Table space access is not allowed.

STATEMENT
--
set integrity for "SALES "."ADVISE_INDEX" , "SALES"."ADVISE_MQT" , "SALES"."

1 record(s) selected.

Examples of schema copy using the db2move utility
Use the db2move utility with the -co COPY action to copy one or more schemas
from a source database to a target database. Once a model schema is established,
you can use it as a template for creating new versions.

220 Database Administration Concepts and Configuration Reference

Example 1: Using the -c COPY options
The following example of the db2move -co COPY options copies the schema
BAR and renames it FOO from the sample database to the target database:

db2move sample COPY -sn BAR -co target_db target schema_map
"((BAR,FOO))" -u userid -p password

The new (target) schema objects are created using the same object names as
the objects in the source schema, but with the target schema qualifier. It is
possible to create copies of tables with or without the data from the source
table. The source and target databases can be on different systems.

Example 2: Specifying table space name mappings during the COPY operation
The following example shows how to specify specific table space name
mappings to be used instead of the table spaces from the source system
during a db2move COPY operation. You can specify the SYS_ANY keyword
to indicate that the target table space should be chosen using the default
table space selection algorithm. In this case, the db2move utility chooses any
available table space to be used as the target:

db2move sample COPY -sn BAR -co target_db target schema_map
"((BAR,FOO))" tablespace_map "(SYS_ANY)" -u userid -p password

The SYS_ANY keyword can be used for all table spaces, or you can specify
specific mappings for some table spaces, and the default table space
selection algorithm for the remaining:

db2move sample COPY -sn BAR -co target_db target schema_map "
((BAR,FOO))" tablespace_map "((TS1, TS2),(TS3, TS4), SYS_ANY)"
-u userid -p password

This indicates that table space TS1 is mapped to TS2, TS3 is mapped to
TS4, but the remaining table spaces use a default table space selection
algorithm.

Example 3: Changing the object owners after the COPY operation
You can change the owner of each new object created in the target schema
after a successful COPY. The default owner of the target objects is the
connect user. If this option is specified, ownership is transferred to a new
owner as demonstrated:

db2move sample COPY -sn BAR -co target_db target schema_map
"((BAR,FOO))" tablespace_map "(SYS_ANY)" owner jrichards
-u userid -p password

The new owner of the target objects is jrichards.

The db2move utility must be invoked on the target system if source and
target schemas reside on different systems. For copying schemas from one
database to another, this action requires a list of schema names to be
copied from a source database, separated by commas, and a target
database name.

To copy a schema, issue db2move from an OS command prompt as follows:
db2move <dbname> COPY -co <COPY- options>
-u <userid> -p <password>

Chapter 9. Schemas 221

Restarting a failed copy schema operation
Errors occurring during a db2move COPY operation can be handled in various ways
depending on the type of object being copied, or the phase during which the
COPY operation failed (that is, either the recreation of objects phase, or the loading
of data phase).

About this task

The db2move utility reports errors and messages to the user using message and
error files. Copy schema operations use the COPYSCHEMA_<timestamp>.MSG message
file, and the COPYSCHEMA_<timestamp>.err error file. These files are created in the
current working directory. The current time is appended to the filename to ensure
uniqueness of the files. It is up to the user to delete these message and error files
when they are no longer required.

Note: It is possible to have multiple db2move instances running simultaneously. The
COPY option does not return any SQLCODES. This is consistent with db2move
behavior.

Object types

The type of object being copied can be categorized as one of two types : physical
objects and business objects.

A physical object refers to an object that physically resides in a container, such as
tables, indexes and user-defined structured types. A business object refers to
cataloged objects that do not reside in containers, such as views, user-defined
structured types (UDTs), and aliases.

Errors occurring during the recreation of a physical object cause the utility to
rollback, whereas, errors during the recreation of a logical object do not.

Restarting the copy schema operation

After addressing the issues causing the load operations to fail (described in the
error file), you can reissue the db2move -COPY command using the -tf option to
specify which tables to copy and to populate with data (passing in the
LOADTABLE.err filename) as shown in the following syntax:

db2move sourcedb COPY -tf LOADTABLE.err -co TARGET_DB mytarget_db
-mode load_only

You can also input the table names manually using the -tn option, as shown in the
following syntax:

db2move sourcedb COPY -tn "FOO"."TABLE1","FOO 1"."TAB 444",
-co TARGET_DB mytarget_db -mode load_only

Note: The load_only mode requires inputting at least one table using the -tn or
-tf option.

Examples

Errors occurring during a db2move COPY schema operation can be handled in
various ways depending on the type of object being copy copied, or the phase of
the COPY operation failure.

222 Database Administration Concepts and Configuration Reference

The db2move utility reports schema copy errors and messages in the following
message and error files:
v COPYSCHEMA <timestamp>.MSG message file
v COPYSCHEMA_<timestamp>.err error file

These files are created in the current working directory. The current time is
appended to the filename to ensure uniqueness of the files. These message and
error files should be deleted when they are no longer required.

Note: It is possible to have multiple db2move instances running simultaneously. The
COPY option does not return any SQLCODES. This is consistent with db2move
behavior.

Example 1: Schema copy errors related to physical objects
Failures which occur during the recreation of physical objects on the target
database, are logged in the error file COPYSCHEMA_<timestamp>.err. For each
failing object, the error file contains information such as object name, object
type, DDL text, time stamp, and a string formatted sqlca (sqlca field
names, followed by their data values).

Sample output for the COPYSCHEMA_<timestamp>.err error file:
1. schema: FOO.T1
Type: TABLE
Error Msg: SQL0104N An unexpected token ’FOO.T1’...
Timestamp: 2005-05-18-14.08.35.65
DDL: create view FOO.v1

2. schema: FOO.T3
Type: TABLE
Error Msg: SQL0204N FOO.V1 is an undefined name.
Timestamp: 2005-05-18-14.08.35.68
DDL: create table FOO.T3

If any errors creating physical objects are logged at the end of the
recreation phase and before attempting the load phase, the db2move utility
fails and an error is returned. All object creation on the target database is
rolled back, and all internally created tables are cleaned up on the source
database. The rollback occurs at the end of the recreation phase after
attempting to recreate each object, rather than after the first failure, in
order to gather all possible errors into the error file. This allows you the
opportunity to fix any problems before restarting the db2move operation. If
there are no failures, the error file is deleted.

Example 2: Schema copy errors related to business objects
Failures that occur during the recreation of business objects on the target
database, do not cause the db2move utility to fail. Instead, these failures are
logged in the COPYSCHEMA_<timestamp>.err error file. Upon completion of
the db2move utility, you can examine the failures, address any issues, and
manually recreate each failed object (the DDL is provided in the error file
for convenience).

If an error occurs when db2move is attempting to repopulate table data
using the load utility, the db2move utility will not fail. Rather, generic
failure information is logged to the COPYSCHEMA_<timestamp>.err file (object
name, object type, DDL text, time stamp, sqlca, and so on), and the fully
qualified name of the table is logged into another file,
LOADTABLE_<timestamp>.err. Each table is listed per line to satisfy the
db2move -tf option format, similar to the following:

Chapter 9. Schemas 223

"FOO"."TABLE1"
"FOO 1"."TAB 444"

Example 3: Other types of db2move failures
Internal operations such as memory errors, or file system errors can cause
the db2move utility to fail.

Should the internal operation failure occur during the ddl recreation phase,
all successfully created objects are rolled back from the target schema, and
all internally created tables such as the DMT table and the db2look table,
are cleaned up on the source database.

Should the internal operation failure occur during the load phase, all
successfully created objects remain on the target schema. All tables that
experience a failure during a load operation, and all tables, which have not
yet been loaded are logged in the LOADTABLE.err error file. You can then
issue the db2move COPY command using the LOADTABLE.err as discussed in
Example 2. If the db2move utility abends (for example a system crash, the
utility traps, the utility is killed, and so on), then the information regarding
which tables still must be loaded is lost. In this case, you can drop the
target schema using the ADMIN_DROP_SCHEMA procedure and reissue
the db2move COPY command.

Regardless of what error you might encounter during an attempted copy
schema operation, you always have the option of dropping the target
schema using the ADMIN_DROP_SCHEMA procedure and reissuing the
db2move COPY command.

Dropping schemas
Before dropping a schema, all objects that were in that schema must be dropped or
moved to another schema. The schema name must be in the catalog when
attempting the DROP statement; otherwise an error is returned.

About this task

To drop a schema using the command line, enter:
DROP SCHEMA <name> RESTRICT

In the following example, the schema "joeschma" is dropped:
DROP SCHEMA joeschma RESTRICT

The RESTRICT keyword enforces the rule that no objects can be defined in the
specified schema for the schema to be deleted from the database, and it must be
specified.

224 Database Administration Concepts and Configuration Reference

Part 3. Database objects

Logical database design consists of defining database objects.

The following database objects can be created within a DB2 database:
v Tables
v Constraints
v Indexes
v Triggers
v Sequences
v Views

These database objects can be created using graphical user interfaces or by
explicitly executing statements. The statements used to create these database
objects are called Data Definition Language (DDL) statements and are generally
prefixed by the keywords CREATE or ALTER.

Understanding the features and functionality that each of these database objects
provides is important to implement a good database design that meets your
current business's data storage needs while remaining flexible enough to
accommodate expansion and growth over time.

© Copyright IBM Corp. 1993, 2012 225

226 Database Administration Concepts and Configuration Reference

Chapter 10. Concepts common to most database objects

Aliases
An alias is an alternative name for an object such as a module, table or another
alias. It can be used to reference an object wherever that object can be referenced
directly.

An alias cannot be used in all contexts; for example, it cannot be used in the check
condition of a check constraint. An alias cannot reference a declared temporary
table but it can reference a created temporary table.

Like other objects, an alias can be created, dropped, and have comments associated
with it. Aliases can refer to other aliases in a process called chaining as long as
there are no circular references. Aliases do not require any special authority or
privilege to use them. Access to the object referred to by an alias, however, does
require the authorization associated with that object.

If an alias is defined as a public alias, it can be referenced by its unqualified name
without any impact from the current default schema name. It can also be
referenced using the qualifier SYSPUBLIC.

Synonym is an alternative name for alias.

For more information, refer to "Aliases in identifiers" in the SQL Reference, Volume
1.

Soft invalidation of database objects
When soft invalidation is active, an object can be dropped even if other running
transactions are using it. Transactions that were using the dropped object are
permitted to continue, but any new transaction will be denied access to the
dropped object.

All cached statements and packages that directly or indirectly refer to the object
being dropped or altered are marked as not valid (and are said to be invalidated).
Soft invalidation allows DDL affecting the referenced objects to avoid waits that
otherwise would result from statements being run holding locks on objects to
which they refer, and allows any active access to continue using a cached version
of the object, eliminating the possibility of lock timeouts.

By contrast, when hard invalidation is used, exclusive locking is used when
referencing an object. This guarantees that all processes are using the same
versions of objects and that there are no accesses to an object once it has been
dropped.

Soft invalidation is enabled through the DB2_DDL_SOFT_INVAL registry variable; by
default, this registry variable is set to ON.

The following list shows the data definition language (DDL) statements for which
soft invalidation is supported:
v ALTER TABLE...DETACH PARTITION

© Copyright IBM Corp. 1993, 2012 227

v CREATE OR REPLACE ALIAS
v CREATE OR REPLACE FUNCTION
v CREATE OR REPLACE TRIGGER
v CREATE OR REPLACE VIEW
v DROP ALIAS
v DROP FUNCTION
v DROP TRIGGER
v DROP VIEW

Note: In DB2 Version 9.7 Fix Pack 1 and later releases, ALTER TABLE...DETACH
PARTITION performs soft invalidation at all isolation levels on cached statements
that directly or indirectly refer to the partitioned table. A subsequent asynchronous
partition detach task performs hard invalidation on previously soft invalidated
cached statements before converting the detached partition into a stand-alone table.

The DB2_DDL_SOFT_INVAL registry variable does not affect the invalidation done by
ALTER TABLE...DETACH PARTITION.

Soft invalidation support applies only to dynamic SQL and to scans done under
the cursor stability (CS) and uncommitted read (UR) isolation levels. For the
ALTER TABLE...DETACH PARTITION statement, the soft invalidation applies to
scans under all isolation levels.

Example

Assume a view called VIEW1 exists. You open a cursor, and run the statement
SELECT * from VIEW1. Shortly afterward, the database administrator issues the
command DROP VIEW VIEW1 to drop VIEW1 from the database. With hard
invalidation, the DROP VIEW statement will be forced to wait for an exclusive lock
on VIEW1 until the SELECT transaction has finished. With soft invalidation, the
DROP VIEW statement is not given an exclusive lock on the view. The view is
dropped, however, the SELECT statement will continue to run using the most
recent definition of the view. Once the SELECT statement has completed, any
subsequent attempts to use to VIEW1 (even by the same user or process that just
used it) will result in an error (SQL0204N).

Automatic revalidation of database objects
Automatic revalidation is a mechanism whereby database objects that a have been
invalidated (for example, after a DROP statement) undergo revalidation
automatically.

In general, the database manager attempts to revalidate invalid objects the next
time that those objects are used. Automatic revalidation is enabled through the
auto_reval configuration parameter. By default, this registry variable is set to
DEFERRED, except for databases upgraded from Version 9.5 or earlier, in which
case auto_reval is set to DISABLED.

For information about the dependent objects that are impacted when an object is
dropped, and when those dependent objects are revalidated, see “DROP
statement” in the SQL Reference, Volume 1.

The following list shows the data definition language (DDL) statements for which
automatic revalidation is currently supported:

228 Database Administration Concepts and Configuration Reference

v ALTER MODULE DROP FUNCTION
v ALTER MODULE DROP PROCEDURE
v ALTER MODULE DROP TYPE
v ALTER MODULE DROP VARIABLE
v ALTER NICKNAME (altering the local name or the local type)
v ALTER TABLE ALTER COLUMN
v ALTER TABLE DROP COLUMN
v ALTER TABLE RENAME COLUMN
v CREATE OR REPLACE ALIAS
v CREATE OR REPLACE FUNCTION
v CREATE OR REPLACE NICKNAME
v CREATE OR REPLACE PROCEDURE
v CREATE OR REPLACE SEQUENCE
v CREATE OR REPLACE TRIGGER
v CREATE OR REPLACE VARIABLE
v CREATE OR REPLACE VIEW
v DROP FUNCTION
v DROP NICKNAME
v DROP PROCEDURE
v DROP SEQUENCE
v DROP TABLE
v DROP TRIGGER
v DROP TYPE
v DROP VARIABLE
v DROP VIEW
v RENAME TABLE

You can use the ADMIN_REVALIDATE_DB_OBJECTS procedure to revalidate
existing objects that have been marked invalid.

Creating and maintaining database objects
When creating some types of database objects, you should be aware of the
CREATE with errors support, as well as the REPLACE option.

CREATE with errors support for certain database objects

Some types of objects can be created even if errors occur during their compilation;
for example, creating a view when the table to which it refers does not exist.

Such objects remain invalid until they are accessed. CREATE with errors support
currently extends to views and inline SQL functions (not compiled functions). This
feature is enabled if the auto_reval database configuration parameter is set to
IMMEDIATE or DEFERRED.

The errors that are tolerated during object creation are limited to the following
types:

Chapter 10. Concepts common to most database objects 229

v Any name resolution error, such as: a referenced table does not exist (SQLSTATE
42704, SQL0204N), a referenced column does not exist (SQLSTATE 42703,
SQL0206N), or a referenced function cannot be found (SQLSTATE 42884,
SQL0440N)

v Any nested revalidation failure. An object being created can reference objects
that are not valid , and revalidation will be invoked for those invalid objects. If
revalidation of any referenced invalid object fails, the CREATE statement
succeeds, and the created object will remain invalid until it is next accessed.

v Any authorization error (SQLSTATE 42501, SQL0551N)

An object can be created successfully even if there are multiple errors in its body.
The warning message that is returned contains the name of the first undefined,
invalid, or unauthorized object that was encountered during compilation. The
SYSCAT.INVALIDOBJECTS catalog view contains information on invalid objects.

You can use the ADMIN_REVALIDATE_DB_OBJECTS procedure to revalidate
existing objects that have been marked invalid.

Example
create view v2 as select * from v1

If v1 does not exist, the CREATE VIEW statement completes successfully, but v2
remains invalid.

REPLACE option on several CREATE statements

The OR REPLACE clause on the CREATE statement for several objects, including
aliases, functions, modules, nicknames, procedures (including federated
procedures), sequences, triggers, variables, and views allows the object to be
replaced if it already exists; otherwise, it is created. This significantly reduces the
effort required to change a database schema.

Privileges that were previously granted on an object are preserved when that object
is replaced. In other respects, CREATE OR REPLACE is semantically similar to
DROP followed by CREATE. In the case of functions, procedures, and triggers,
support applies to both inline objects and compiled objects.

In the case of functions and procedures, support applies to both SQL and external
functions and procedures. If a module is replaced, all the objects within the
module are dropped; the new version of the module contains no objects.

Objects that depend (either directly or indirectly) on an object that is being
replaced are invalidated. Revalidation of all dependent objects following a replace
operation is always done immediately after the invalidation, even if the auto_reval
database configuration parameter is set to DISABLED.

Example

Replace v1, a view that has dependent objects.
create table t1 (c1 int, c2 int);
create table t2 (c1 int, c2 int);

create view v1 as select * from t1;
create view v2 as select * from v1;

create function foo1()

230 Database Administration Concepts and Configuration Reference

language sql
returns int
return select c1 from v2;

create or replace v1 as select * from t2;

select * from v2;

values foo1();

The replaced version of v1 references t2 instead of t1. Both v2 and foo1 are
invalidated by the CREATE OR REPLACE statement. Under revalidation deferred
semantics, select * from v2 successfully revalidates v2, but not foo1, which is
revalidated by values foo1(). Under revalidation immediate semantics, both v2 and
foo1 are successfully revalidated by the CREATE OR REPLACE statement.

Chapter 10. Concepts common to most database objects 231

232 Database Administration Concepts and Configuration Reference

Chapter 11. Tables

Tables are logical structures maintained by the database manager. Tables are made
up of columns and rows.

At the intersection of every column and row is a specific data item called a value.
A column is a set of values of the same type or one of its subtypes. A row is a
sequence of values arranged so that the nth value is a value of the nth column of
the table.

An application program can determine the order in which the rows are populated
into the table, but the actual order of rows is determined by the database manager,
and typically cannot be controlled. Multidimensional clustering (MDC) provides
some sense of clustering, but not actual ordering between the rows.

Types of tables
DB2 databases store data in tables. In addition to tables used to store persistent
data, there are also tables that are used for presenting results, summary tables and
temporary tables; multidimensional clustering tables offer specific advantages in a
warehouse environment, whereas partitioned tables let you spread data across
more than one database partition.

Base tables
These types of tables hold persistent data. There are different kinds of base
tables, including

Regular tables
Regular tables with indexes are the "general purpose" table choice.

Multidimensional clustering (MDC) tables
These types of tables are implemented as tables that are physically
clustered on more than one key, or dimension, at the same time.
MDC tables are used in data warehousing and large database
environments. Clustering indexes on regular tables support
single-dimensional clustering of data. MDC tables provide the
benefits of data clustering across more than one dimension. MDC
tables provide guaranteed clustering within the composite
dimensions. By contrast, although you can have a clustered index
with regular tables, clustering in this case is attempted by the
database manager, but not guaranteed and it typically degrades
over time. MDC tables can coexist with partitioned tables and can
themselves be partitioned tables.

Range-clustered tables (RCT)
These types of tables are implemented as sequential clusters of
data that provide fast, direct access. Each record in the table has a
predetermined record ID (RID) which is an internal identifier used
to locate a record in a table. RCT tables are used where the data is
tightly clustered across one or more columns in the table. The
largest and smallest values in the columns define the range of
possible values. You use these columns to access records in the
table; this is the most optimal method of utilizing the
predetermined record identifier (RID) aspect of RCT tables.

© Copyright IBM Corp. 1993, 2012 233

Temporary tables
These types of tables are used as temporary work tables for a variety of
database operations. Declared temporary tables (DGTTs) do not appear in the
system catalog, which makes them not persistent for use by, and not able
to be shared with other applications. When the application using this table
terminates or disconnects from the database, any data in the table is
deleted and the table is dropped. By contrast, created temporary tables
(CGTTs) do appear in the system catalog and are not required to be
defined in every session where they are used. As a result, they are
persistent and able to be shared with other applications across different
connections.

Neither type of temporary table supports
v User-defined reference or user-defined structured type columns
v LONG VARCHAR columns

In addition XML columns cannot be used in created temporary tables.

Materialized query tables
These types of tables are defined by a query that is also used to determine
the data in the table. Materialized query tables can be used to improve the
performance of queries. If the database manager determines that a portion
of a query can be resolved using a summary table, the database manager
can rewrite the query to use the summary table. This decision is based on
database configuration settings, such as the CURRENT REFRESH AGE and
the CURRENT QUERY OPTIMIZATION special registers. A summary table
is a specialized type of materialized query table.

You can create all of the preceding types of tables using the CREATE TABLE
statement.

Depending on what your data is going to look like, you might find one table type
offers specific capabilities that can optimize storage and query performance. For
example, if you have data records that will be loosely clustered (not monotonically
increasing), consider using a regular table and indexes. If you have data records
that will have duplicate (but not unique) values in the key, you should not use a
range-clustered table. Also, if you cannot afford to preallocate a fixed amount of
storage on disk for the range-clustered tables you might want, you should not use
this type of table. If you have data that has the potential for being clustered along
multiple dimensions, such as a table tracking retail sales by geographic region,
division and supplier, a multidimensional clustering table might suit your
purposes.

In addition to the various table types described above, you also have options for
such characteristics as partitioning, which can improve performance for tasks such
as rolling in table data. Partitioned tables can also hold much more information
than a regular, nonpartitioned table. You can also exploit capabilities such as
compression, which can help you significantly reduce your data storage costs.

Designing tables
When designing tables, you must be familiar with certain concepts, determine the
space requirements for tables and user data, and determine whether you will take
advantage of certain features, such as compression and optimistic locking.

When designing partitioned tables, you must be familiar with the partitioning
concepts, such as:

234 Database Administration Concepts and Configuration Reference

v Data organization schemes
v table-partitioning keys
v Keys used for distributing data across data partitions
v Keys used for MDC dimensions

For these and other partitioning concepts, see “Table partitioning and data
organization schemes” on page 269.

Table design concepts
When designing tables, you must be familiar with some related concepts.

Data types and table columns
When you create your table, you must indicate what type of data each column will
store. By thinking carefully about the nature of the data you are going to be
managing, you can set your tables up in a way that will give you optimal query
performance, minimize physical storage requirements, and provide you with
specialized capabilities for manipulating different kinds of data, such as arithmetic
operations for numerical data, or comparing date or time values to one another.

Figure 31 on page 236 shows the data types that are supported by DB2 databases.

Chapter 11. Tables 235

When you declare your database columns all of these data tyoes are available for
you to choose from. In addition to the built-in types, you can also create your own
user-defined data types that are based on the built-in types. For example, if you
might choose to represent an employee with name, job title, job level, hire date and
salary attributes with a user-defined structured type that incorporates VARCHAR
(name, job title), SMALLINT (job level), DATE (hire date) and DECIMAL (salary)
data.

VARCHAR

SMALLINT INTEGER BIGINT DECIMAL

CLOB VARGRAPHIC DBCLOB

stringdatetime

character graphic floating pointbinary

varying length

boolean

BOOLEAN

fixed
length

varying
length

fixed
length

varying
length

timestamptime date

DATE DECFLOAT

BLOB

TIME

CHAR

single
precision

double
precision

binary integer decimal

64 bit32 bit16 bit packed

REAL DOUBLEGRAPHIC

TIMESTAMP

decimal
floating pointexact approximate

XML

signed
numeric

extensible
markup language

built-in data types

Figure 31. Built-in data types

236 Database Administration Concepts and Configuration Reference

Generated columns
A generated column is defined in a table where the stored value is computed using
an expression, rather than being specified through an insert or update operation.

When creating a table where it is known that certain expressions or predicates will
be used all the time, you can add one or more generated columns to that table. By
using a generated column there is opportunity for performance improvements
when querying the table data.

For example, there are two ways in which the evaluation of expressions can be
costly when performance is important:
1. The evaluation of the expression must be done many times during a query.
2. The computation is complex.

To improve the performance of the query, you can define an additional column
that would contain the results of the expression. Then, when issuing a query that
includes the same expression, the generated column can be used directly; or, the
query rewrite component of the optimizer can replace the expression with the
generated column.

Where queries involve the joining of data from two or more tables, the addition of
a generated column can allow the optimizer a choice of possibly better join
strategies.

Generated columns will be used to improve performance of queries. As a result,
generated columns will likely be added after the table has been created and
populated.

Examples

The following is an example of defining a generated column on the CREATE
TABLE statement:

CREATE TABLE t1 (c1 INT,
c2 DOUBLE,
c3 DOUBLE GENERATED ALWAYS AS (c1 + c2)
c4 GENERATED ALWAYS AS

(CASE WHEN c1 > c2 THEN 1 ELSE NULL END))

After creating this table, indexes can be created using the generated columns. For
example,
CREATE INDEX i1 ON t1(c4)

Queries can take advantage of the generated columns. For example,
SELECT COUNT(*) FROM t1 WHERE c1 > c2

can be written as:
SELECT COUNT(*) FROM t1 WHERE c4 IS NOT NULL

Another example:
SELECT c1 + c2 FROM t1 WHERE (c1 + c2) * c1 > 100

can be written as:
SELECT c3 FROM t1 WHERE c3 * c1 > 100

Chapter 11. Tables 237

Auto numbering and identifier columns
An identity column provides a way for DB2 to automatically generate a unique
numeric value for each row that is added to the table.

When creating a table in which you must uniquely identify each row that will be
added to the table, you can add an identity column to the table. To guarantee a
unique numeric value for each row that is added to a table, you should define a
unique index on the identity column or declare it a primary key.

Other uses of an identity column are an order number, an employee number, a
stock number, or an incident number. The values for an identity column can be
generated by the DB2 database manager: ALWAYS or BY DEFAULT.

An identity column defined as GENERATED ALWAYS is given values that are
always generated by the DB2 database manager. Applications are not allowed to
provide an explicit value. An identity column defined as GENERATED BY
DEFAULT gives applications a way to explicitly provide a value for the identity
column. If the application does not provide a value, then DB2 will generate one.
Since the application controls the value, DB2 cannot guarantee the uniqueness of
the value. The GENERATED BY DEFAULT clause is meant for use for data
propagation where the intent is to copy the contents of an existing table; or, for the
unload and reloading of a table.

Once created, you first have to add the column with the DEFAULT option to get
the existing default value. Then you can ALTER the default to become an identity
column.

If rows are inserted into a table with explicit identity column values specified, the
next internally generated value is not updated, and might conflict with existing
values in the table. Duplicate values will generate an error message if the
uniqueness of the values in the identity column is being enforced by a primary-key
or a unique index that has been defined on the identity column.

To define an identity column on a new table, use the AS IDENTITY clause on the
CREATE TABLE statement.

Example

The following is an example of defining an identity column on the CREATE
TABLE statement:

CREATE TABLE table (col1 INT,
col2 DOUBLE,
col3 INT NOT NULL GENERATED ALWAYS AS IDENTITY

(START WITH 100, INCREMENT BY 5))

In this example the third column is the identity column. You can also specify the
value used in the column to uniquely identify each row when added. Here the first
row entered has the value of “100” placed in the column; every subsequent row
added to the table has the associated value increased by five.

Constraining column data with constraints, defaults, and null
settings
Data often must adhere to certain restrictions or rules. Such restrictions might
apply to single pieces of information, such as the format and sequence numbers, or
they might apply to several pieces of information.

238 Database Administration Concepts and Configuration Reference

About this task

Nullability of column data values
Null values represent unknown states. By default, all of the built-in data
types support the presence of null values. However, some business rules
might dictate that a value must always be provided for some columns, for
example, emergency information. For this condition, you can use the NOT
NULL constraint to ensure that a given column of a table is never assigned
the null value. Once a NOT NULL constraint has been defined for a
particular column, any insert or update operation that attempts to place a
null value in that column will fail.

Default column data values
Just as some business rules dictate that a value must always be provided,
other business rules can dictate what that value should be, for example, the
gender of an employee must be either M or F. The column default
constraint is used to ensure that a given column of a table is always
assigned a predefined value whenever a row that does not have a specific
value for that column is added to the table. The default value provided for
a column can be null, a constraint value that is compatible with the data
type of the column, or a value that is provided by the database manager.
For more information, see: “Default column and data type definitions.”

Keys A key is a single column or a set of columns in a table or index that can be
used to identify or access a specific row of data. Any column can be part
of a key and the same column can be part of more than one key. A key
that consists of a single column is called an atomic key; a key that is
composed of more than one column is called a composite key. In addition
to having atomic or composite attributes, keys are classified according to
how they are used to implement constraints:
v A unique key is used to implement unique constraints.
v A primary key is used to implement entity integrity constraints. (A

primary key is a special type of unique key that does not support null
values.)

v A foreign key is used to implement referential integrity constraints.
(Foreign keys must reference primary keys or unique keys; foreign keys
do not have corresponding indexes.)

Keys are normally specified during the declaration of a table, an index, or
a referential constraint definition.

Constraints
Constraints are rules that limit the values that can be inserted, deleted, or
updated in a table. There are check constraints, primary key constraints,
referential constraints, unique constraints, unique key constraints, foreign
key constraints, and informational constraints. For details about each of
these types of constraints, see: Chapter 12, “Constraints,” on page 289 or
“Types of constraints” on page 289.

Default column and data type definitions:

Certain columns and data types have predefined or assigned default values.

For example, default column values for the various data types are as follows:
v NULL

v 0 Used for small integer, integer, decimal, single-precision floating point,
double-precision floating point, and decimal floating point data type.

Chapter 11. Tables 239

v Blank: Used for fixed-length and fixed-length double-byte character strings.
v Zero-length string: Used for varying-length character strings, binary large objects,

character large objects, and double-byte character large objects.
v Date: This the system date at the time the row is inserted (obtained from the

CURRENT_DATE special register). When a date column is added to an existing
table, existing rows are assigned the date January, 01, 0001.

v Time or Timestamp: This is the system time or system date/time of the at the time
the statement is inserted (obtained from the CURRENT_TIME special register).
When a time column is added to an existing table, existing rows are assigned
the time 00:00:00 or a timestamp that contains the date January, 01, 0001 and the
time 00:00:00.

Note: All the rows get the same default time/timestamp value for a given
statement.

v Distinct user-defined data type: This is the system-defined default value for the
base data type of the distinct user-defined data type (cast to the distinct
user-defined data type.

Ordering columns to minimize update logging:

When you define columns using the CREATE TABLE statement, consider the order
of the columns, particularly for update-intensive workloads. Columns which are
updated frequently should be grouped together, and defined towards or at the end
of the table definition. This results in better performance, fewer bytes logged, and
fewer log pages written, as well as a smaller active log space requirement for
transactions performing a large number of updates.

The database manager does not automatically assume that columns specified in the
SET clause of an UPDATE statement are changing in value. In order to limit index
maintenance and the amount of the row which needs to be logged, the database
compares the new column value against the old column value to determine if the
column is changing. Only the columns that are changing in value are treated as
being updated. Exceptions to this UPDATE behavior occur for columns where the
data is stored outside of the data row (long, LOB, ADT, and XML column types),
or for fixed-length columns when the registry variable DB2ASSUMEUPDATE is
enabled. For these exceptions, the column value is assumed to be changing so no
comparison will be made between the new and old column value.

There are four different types of UPDATE log records.
v Full before and after row image logging. The entire before and after image of the

row is logged. This is the only type of logging performed on tables enabled with
DATA CAPTURE CHANGES, and results in the most number of bytes being
logged for an update to a row.

v Full before row image, changed bytes, and for size increasing updates the new
data appended to end of the row. This is logged for databases supporting
Currently Committed when DATA CAPTURE CHANGES is not in effect for the
table, when update is the first action against this row for a transaction. This logs
the before image required for Currently Committed and the minimum required
on top of that for redo/undo. Ordering frequently updated columns at the end
minimizes the logging for the changed portion of the row.

v Full XOR logging. The XOR differences between the before and after row
images, from the first byte that is changing until the end of the smaller row, then
any residual bytes in the longer row. This results in less logged bytes than the

240 Database Administration Concepts and Configuration Reference

full before and after image logging, with the number of bytes of data beyond the
log record header information being the size of the largest row image.

v Partial XOR logging. The XOR differences between the before and after row
images, from the first byte that is changing until the last byte that is changing.
Byte positions can be first or last bytes of a column. This results in the least
number of bytes being logged and the most efficient type of log record for an
update to a row.

For the first two types of UPDATE log records listed above, when DATA
CAPTURE CHANGES is not enabled on the table, the amount of data that is
logged for an update depends on:
v The proximity of the updated columns (COLNO)
v Whether the updated columns are fixed in length or variable length
v Whether row compression (COMPRESS YES) is enabled

When the total length of the row is not changing, even when row compression is
enabled, the database manager computes and writes the optimal partial XOR log
record.

When the total length of the row is changing, which is common when
variable-length columns are updated and row compression is enabled, the database
manager determines which byte is first to be changed and write a full XOR log
record.

Primary key, referential integrity, check, and unique constraints
Constraints are rules that limit the values that can be inserted, deleted, or updated
in a table.

Primary key constraints
A primary key constraint is a column or combination of columns that has
the same properties as a unique constraint. You can use a primary key and
foreign key constraints to define relationships between tables.

Referential integrity (or foreign key) constraints
A foreign key constraint (also referred to as a referential constraint or a
referential integrity constraint) is a logical rule about values in one or more
columns in one or more tables. For example, a set of tables shares
information about a corporation's suppliers. Occasionally, a supplier's name
changes. You can define a referential constraint stating that the ID of the
supplier in a table must match a supplier ID in the supplier information.
This constraint prevents insert, update, or delete operations that would
otherwise result in missing supplier information.

Check constraints
A (table) check constraint sets restrictions on data added to a specific table.

Unique constraints
A unique constraint (also referred to as a unique key constraint) is a rule
that forbids duplicate values in one or more columns within a table.
Unique and primary keys are the supported unique constraints.

Unicode table and data considerations
The Unicode character encoding standard is a fixed-length, character encoding
scheme that includes characters from almost all of the living languages of the
world.

For more information on Unicode table and data considerations, see:

Chapter 11. Tables 241

v “Unicode character encoding” in Globalization Guide

v “Character comparisons based on collating sequences” in Globalization Guide

v “Date and time formats by territory code” in Globalization Guide

v “Conversion table files for euro-enabled code pages” in Globalization Guide

Additional information on Unicode can be found in the latest edition of The
Unicode Standard , and from the Unicode Consortium web site at www.unicode.org.

Space requirements for tables
When designing tables, you need to take into account the space requirements for
the data the tables will contain. In particular, you must pay attention to columns
with larger data types, such as LOB or XML.

Large object (LOB) data

Large object (LOB) data is stored in two separate table objects that are structured
differently than the storage space for other data types. To estimate the space
required by LOB data, you must consider the two table objects used to store data
defined with these data types:
v LOB Data Objects: Data is stored in 64 MB areas that are broken up into

segments whose sizes are "powers of two" times 1024 bytes. (Hence these
segments can be 1024 bytes, 2048 bytes, 4096 bytes, and so on, up to 64 MB.)
To reduce the amount of disk space used by LOB data, you can specify the
COMPACT option on the lob-options clause of the CREATE TABLE and the
ALTER TABLE statements. The COMPACT option minimizes the amount of disk
space required by allowing the LOB data to be split into smaller segments. This
process does not involve data compression, but simply uses the minimum
amount of space, to the nearest 1 KB boundary. Using the COMPACT option can
result in reduced performance when appending to LOB values.
The amount of free space contained in LOB data objects is influenced by the
amount of update and delete activity, as well as the size of the LOB values being
inserted.

v LOB Allocation Objects: Allocation and free space information is stored in
allocation pages that are separated from the actual data. The number of these
pages is dependent on the amount of data, including unused space, allocated for
the large object data. The overhead is calculated as follows:

Table 17. Allocation page overhead based on the page size

Page size Allocation pages

4 KB One page for every 4 MB, plus one page for every 1 GB

8 KB One page for every 8 MB, plus one page for every 2 GB

16 KB One page for every 16 MB, plus one page for every 4 GB

32 KB One page for every 32 MB, plus one page for every 8 GB

If character data is less than the page size, and it fits into the record along with
the rest of the data, the CHAR, GRAPHIC, VARCHAR, or VARGRAPHIC data
types should be used instead of BLOB, CLOB, or DBCLOB.

Note: Some LOB data can be placed into the base table row through the use of the
INLINE LENGTH option of the CREATE and ALTER TABLE statements.

242 Database Administration Concepts and Configuration Reference

http://www.unicode.org

Long field (LF) data

Long field (LF) data is stored in a separate table object that is structured differently
than the storage space for other data types. Data is stored in 32-KB areas that are
broken up into segments whose sizes are "powers of two" times 512 bytes. (Hence
these segments can be 512 bytes, 1024 bytes, 2048 bytes, and so on, up to 32 768
bytes.)

Long field data types (LONG VARCHAR or LONG VARGRAPHIC) are stored in a
way that enables free space to be reclaimed easily. Allocation and free space
information is stored in 4 KB allocation pages, which appear infrequently
throughout the object.

The amount of unused space in the object depends on the size of the long field
data, and whether this size is relatively constant across all occurrences of the data.
For data entries larger than 255 bytes, this unused space can be up to 50 percent of
the size of the long field data.

If character data is less than the page size, and it fits into the record along with the
rest of the data, the CHAR, GRAPHIC, VARCHAR, or VARGRAPHIC data types
should be used instead of LONG VARCHAR or LONG VARGRAPHIC.

System catalog tables

System catalog tables are created when a database is created. The system tables
grow as database objects and privileges are added to the database. Initially, they
use approximately 3.5 MB of disk space.

The amount of space allocated for the catalog tables depends on the type of table
space, and the extent size of the table space containing the catalog tables. For
example, if a DMS table space with an extent size of 32 is used, the catalog table
space is initially allocated 20 MB of space. Note: For databases with multiple
partitions, the catalog tables reside only on the database partition from which the
CREATE DATABASE command was issued. Disk space for the catalog tables is only
required for that database partition.

Temporary tables

Some statements require temporary tables for processing (such as a work file for
sorting operations that cannot be done in memory). These temporary tables require
disk space; the amount of space required is dependent upon the size, number, and
nature of the queries, and the size of returned tables.

Your work environment is unique which makes the determination of your space
requirements for temporary tables difficult to estimate. For example, more space
can appear to be allocated for system temporary table spaces than is actually in
use due to the longer life of various system temporary tables. This could occur
when DB2_SMS_TRUNC_TMPTABLE_THRESH registry variable is used.

You can use the database system monitor and the table space query APIs to track
the amount of work space being used during the normal course of operations.

You can use the DB2_OPT_MAX_TEMP_SIZE registry variable to limit the amount
of temporary table space used by queries.

Chapter 11. Tables 243

XML data

XML documents you insert into columns of type XML can reside either in the
default storage object, or directly in the base table row. Base table row storage is
under your control and is available only for small documents; larger documents
are always stored in the default storage object. For more information, see “XML
storage” in the pureXML Guide.

Table page sizes
Rows of table data are organized into blocks called pages. Pages can be four sizes:
4, 8, 16, and 32 kilobytes. Table data pages do not contain the data for columns
defined with LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DCLOB, or
XML data types, unless the LOB or XML document is inlined through the use of
INLINE LENGTH option of the column. The rows in a table data page do,
however, contain a descriptor of these columns.

Note: Some LOB and XML data can be placed into the base table row through the
use of the INLINE LENGTH option of the CREATE and ALTER TABLE statements.

You can create buffer pools or table spaces that have page sizes of 4 KB, 8 KB, 16
KB, or 32 KB. All tables created within a table space of a particular size have a
matching page size. A single table or index object can be as large as 64 TB,
assuming a 32 KB page size.

You can have a maximum of 1012 columns when you are using an 8 KB, 16 KB, or
32 KB page size. You can have a maximum of 500 columns for a 4 KB page size.
The maximum of rows you can have per page is 255, regardless of the page size.
When large record identifiers (RIDs) are enabled (on DMS table spaces only), you
can have more than 255 rows per page. For SMS table spaces, large RIDs cannot be
used, restricting the tables to 255 rows.

Maximum row lengths vary, depending on page size used:
v When the page size is 4 KB, the row length can be up to 4 005 bytes.
v When the page size is 8 KB, the row length can be up to 8 101 bytes.
v When the page size is 16 KB, the row length can be up to 16 293 bytes.
v When the page size is 32 KB, the row length can be up to 32 677 bytes.

To determine the page size for a table space you must consider the following:
v For OLTP applications that perform random row read and write operations, a

smaller page size is usually preferable, because it consumes less buffer pool
space with unwanted rows.

v For DSS applications that access large numbers of consecutive rows at a time, a
larger page size is usually better, because it reduces the number of I/O requests
that are required to read a specific number of rows. There is, however, an
exception to this. If your row size is smaller than pagesize / maximum rows,
there will be consumed space on each page. In this situation, a smaller page size
might be more appropriate.

Larger page sizes might allow you to reduce the number of levels in the index.
Larger pages support rows of greater length. Using the default of 4 KB pages,
tables are restricted to 500 columns. Larger page sizes (8 KB, 16 KB, and 32 KB)
support 1012 columns. The maximum size of the table space is proportional to the
page size of the table space.

244 Database Administration Concepts and Configuration Reference

Space requirements for user table data
By default, table data is stored based on the table space page size in which the
table is in. Each page (regardless of page size) contains 68 bytes of overhead for
the database manager. A row will not span multiple pages. You can have a
maximum of 500 columns when using a 4-KB page size.

Table data pages do not contain the data for columns defined with LONG
VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, DBCLOB, or XML data types.
The rows in a table data page do, however, contain a descriptor for these columns.

Note: Some LOB data can be placed into the base table row through the use of the
INLINE LENGTH option of the CREATE and ALTER TABLE statements.

Rows are usually inserted into a regular table in first-fit order. The file is searched
(using a free space map) for the first available space that is large enough to hold
the new row. When a row is updated, it is updated in place, unless there is
insufficient space left on the page to contain it. If this is the case, a record is
created in the original row location that points to the new location in the table file
of the updated row.

If the ALTER TABLE statement is issued with the APPEND ON option, data is always
appended, and information about any free space on the data pages is not kept.

If the table has a clustering index defined on it, the database manager will attempt
to physically cluster the data according to the key order of that clustering index.
When a row is inserted into the table, the database manager will first look up its
key value in the clustering index. If the key value is found, the database manager
attempts to insert the record on the data page pointed to by that key; if the key
value is not found, the next higher key value is used, so that the record is inserted
on the page containing records having the next higher key value. If there is
insufficient space on the target page in the table, the free space map is used to
search neighboring pages for space. Over time, as space on the data pages is
completely used up, records are placed further and further from the target page in
the table. The table data would then be considered unclustered, and a table
reorganization can be used to restore clustered order.

If the table is a multidimensional clustering (MDC) table, the database manager
will guarantee that records are always physically clustered along one or more
defined dimensions, or clustering indexes. When an MDC table is defined with
certain dimensions, a block index is created for each of the dimensions, and a
composite block index is created which maps cells (unique combinations of
dimension values) to blocks. This composite block index is used to determine to
which cell a particular record belongs, and exactly which blocks or extents in the
table contains records belonging to that cell. As a result, when inserting records,
the database manager searches the composite block index for the list of blocks
containing records having the same dimension values, and limits the search for
space to those blocks only. If the cell does not yet exist, or if there is insufficient
space in the cell's existing blocks, then another block is assigned to the cell and the
record is inserted into it. A free space map is still used within blocks to quickly
find available space in the blocks.

The number of 4-KB pages for each user table in the database can be estimated by
calculating:

ROUND DOWN(4028/(average row size + 10)) = records_per_page

and then inserting the result into:

Chapter 11. Tables 245

(number_of_records/records_per_page) * 1.1 = number_of_pages

where the average row size is the sum of the average column sizes, and the factor
of "1.1" is for overhead.

Note: This formula provides only an estimate. The estimate's accuracy is reduced
if the record length varies because of fragmentation and overflow records.

You also have the option to create buffer pools or table spaces that have an 8 KB,
16 KB, or 32 KB page size. All tables created within a table space of a particular
size have a matching page size. A single table or index object can be as large as 64
TB, assuming a 32 KB page size. You can have a maximum of 1012 columns when
using an 8 KB, 16 KB, or 32 KB page size. The maximum number of columns is
500 for a 4-KB page size. Maximum row lengths also vary, depending on page size:
v When the page size is 4-KB, the row length can be up to 4005 bytes.
v When the page size is 8 KB, the row length can be up to 8101 bytes.
v When the page size is 16 KB, the row length can be up to 16 293 bytes.
v When the page size is 32 KB, the row length can be up to 32 677 bytes.

A larger page size facilitates a reduction in the number of levels in any index. If
you are working with OLTP (online transaction processing) applications, that
perform random row reads and writes, a smaller page size is better, because it
consumes less buffer space with undesired rows. If you are working with DSS
(decision support system) applications, which access large numbers of consecutive
rows at a time, a larger page size is better because it reduces the number of I/O
requests required to read a specific number of rows.

You cannot restore a backup image to a different page size.

You cannot import IXF data files that represent more than 755 columns.

Declared or created temporary tables can be declared or created only in their own
user temporary table space type. There is no default user temporary table space.
The temporary tables are dropped implicitly when an application disconnects from
the database, and estimates of the space requirements for these tables should take
this into account.

Storing LOBs inline in table rows
Large objects (LOBs) are generally stored in a location separate from the table row
that references them. However, you can choose to include a LOB to 32 673 bytes
long inline in a base table row to simplify access to it.

It can be impractical (and depending on the data, impossible) to include large data
objects in base table rows. Figure 32 on page 247 shows an example of an attempt
to include LOBs within a row, and why doing so can be a problem. In this
example, the row is defined as having two LOB columns, 500 and 145 kilobytes in
length respectively. However, the maximum row size for a DB2 table is 32
kilobytes; so such a row definition could never, in fact, be implemented.

246 Database Administration Concepts and Configuration Reference

To reduce the difficulties associated with working with LOBs, they are treated
differently from other data types. Figure 33, shows that only a LOB descriptor is
placed in the base table row, rather than the LOB itself. Each of the LOBs
themselves are stored in a separate LOBs location controlled by the database
manager. In this arrangement, the movement of rows between the buffer pool and
disk storage will take less time for rows with LOB descriptors than they would if
they included the complete LOBs.

However, manipulation of the LOB data then becomes more difficult because the
actual LOB is stored in a location separate from the base table rows.

To simplify the manipulation of smaller LOBs, you can choose to have LOB data
that falls below a size threshold that you specify included inline within the base
table rows. These LOB data types can then be manipulated as part of the base table

Legend

Name Address Phone number

LOB = Large Objects

E-mailLOB
- Graphic file
500 KB

LOB
- Text file
145 KB

Figure 32. The problem of including LOB data within base table rows

Legend

LOB = Large Objects

Graphic file 500 KB Text file 245 KB

Text file 120 KB Graphic file 850 KB

LOBs location

Name Address Phone number E-mailLOB descriptor LOB descriptor

Figure 33. LOB descriptors within the base table row refer to the LOBs within the separate
LOBs location

Chapter 11. Tables 247

row, which makes operations such as movement to and from the buffer pool
simpler. In addition, the inline LOBs would qualify for row compression if row
compression was enabled.

The INLINE LENGTH option of the CREATE and ALTER TABLE statements
allows LOB data smaller than a length restriction that you specify to be included in
the base table row. By default, even if you don't specify an explicit value for
INLINE LENGTH, LOBs smaller than the maximum size LOB descriptor for the
column are always included in the base table row.

With inline LOBs then, you can have base table rows as shown in Figure 34.

When you are considering the threshold to choose for including LOBs inline, take
into account the current pagesize for your database, and whether inline LOBs will
cause the row size to exceed the current page size. The maximum size for a row in
a table is 32 677 bytes. However, each inline LOB has 4 bytes of storage overhead.
So each LOB you store inline reduces the available storage in the row by 4 bytes.
Thus the maximum size for an inline LOB is 32 673 bytes.

Note: In the same way that LOBs can be stored inline, it's also possible to store
XML data inline as well.

Table compression
It is possible for tables to occupy less space when stored on disk by taking
advantage of the table compression capabilities available in the DB2 product.
Compression saves disk storage space by using fewer database pages to store data.

Also, since more logical data can be stored per page, fewer pages will need to be
read in order to access the same amount of logical data. This means that
compression can also result in disk I/O savings, as more data can be brought into
memory or written to disk with each I/O request.

Compression can be used with both new and existing tables. It can also be used
with temporary tables. To implement data compression in DB2 tables, there are
two methods you can employ:
v Row compression (available with a license for the DB2 Storage Optimization

Feature)
v Value compression.

Legend

LOB = Large Object

LOBName Address Phone number E-mail LOB

= Graphic file less than the
INLINE LENGTH value

= Text file less than the
INLINE LENGTH value

Figure 34. Small LOBs included within base table rows

248 Database Administration Concepts and Configuration Reference

Row compression
Row compression, sometimes referred to as deep compression, compresses data rows
by replacing patterns of values that repeat across rows with shorter symbol strings.
Of the various data compression techniques available in DB2 Version 9.7, row
compression offers the most dramatic possibilities for storage savings.

The main benefit of using row compression is that you can store data in less space,
which can yield significant savings in storage costs. Also, because you use storage
at a slower rate, future expenditures for additional storage can be delayed.

In addition to the cost savings, compression can improve performance. Many
queries against compressed data can be performed with fewer I/O operations
because each read from disk brings in more data. Similarly, more data can be
cached in the buffer pool, increasing buffer pool hit ratios. (However, there is a
trade-off in the form of extra CPU cycles needed to compress and decompress
data.) The storage savings and performance impact of data row compression are
tied to the characteristics of the data within the database, the layout and tuning of
the database, and application workload. The query optimizer includes
decompression cost in its cost model.

Finally, because row compression can reduce the size of a database, backup and
restore operations use less space and run faster.

The remainder of this topic discusses the following points:
v “How compression works”
v “What data gets compressed?”
v “Turning row compression on or off” on page 250
v “Effects of UPDATE activity on logs and compressed tables” on page 250
v “Row compression for temporary tables” on page 250
v “Reclaiming space freed by compression” on page 251.

How compression works

Row compression uses a static dictionary-based compression algorithm to
compress data by row. The dictionary is used to map repeated byte patterns from
table rows to much smaller symbols; these symbols then replace the longer byte
patterns in the table rows. The compression dictionary is stored along with the
table data rows in the data object portions of the table.

What data gets compressed?

Data stored in base table rows and log records is eligible for row compression. In
addition, the data in XML storage objects is eligible for compression. LOB data that
you place inline in a table row can be compressed; however storage objects for
long data objects are not compressed.

Restriction: Data in XML columns that you created with DB2 Version 9.5 or DB2
Version 9.1 cannot be compressed. However, XML columns that you add using
DB2 Version 9.7 to a table without XML columns that you created with an earlier
release of the product can be compressed. If a table that you created in an earlier
release already has one or more XML columns, and you want to add a compressed
XML column using DB2 Version 9.7, you must use the ADMIN_MOVE_TABLE
stored procedure to migrate the table before you can use compression.

Chapter 11. Tables 249

Turning row compression on or off

To use row compression, you must have a license for the DB2 Storage
Optimization Feature. You compress table data by setting the COMPRESS attribute
of the table to YES. You can set this attribute when you create the table by
including the COMPRESS YES option on the CREATE TABLE statement; you can also
alter an existing table to use compression using the same option on the ALTER
TABLE statement. After you enable compression, operations that add data to the
table, such as an INSERT, LOAD INSERT, or IMPORT INSERT operation can use
row compression. In addition, index compression is enabled for the table; indexes
for the table are created as compressed indexes unless you specify otherwise and if
they are the types of indexes that can be compressed.

Important: When you enable row compression for a table, you enable it for the
entire table, even if a table comprises more than one table partition.

To disable compression for a table, use the ALTER TABLE statement with the
COMPRESS NO option; rows that you subsequently add are not compressed. To
decompress the entire table, you must perform a table reorganization with the
REORG TABLE command.

If you enable theDB2 Storage Optimization Feature, compression for temporary
tables is enabled automatically . You cannot enable or disable compression for
temporary tables.

Effects of UPDATE activity on logs and compressed tables

Depending upon UPDATE activity and the positioning of update changes within a
data row, log usage might increase. For information about update logging and
column ordering, see ““Ordering columns to minimize update logging” on page
240”.

If a row increases in size, the new version of the row might not fit on the current
data page. Rather, the new image of the row is stored on an overflow page. To
minimize the creation of pointer-overflow records, increase the percentage of each
page that is to be left as free space after a reorganization using the PCTFREE option
on the ALTER TABLE statement. For example, if PCTFREE was set to 5% before
you enabled compression, you might change it to 10% when you enable
compression. This recommendation is especially important for data that is heavily
updated.

Row compression for temporary tables

Compression for temporary table is enabled automatically with the DB2 Storage
Optimization Feature. When executing queries, the DB2 optimizer considers the
storage savings and the impact to query performance that compression of
temporary tables offers to determine whether it is worthwhile to use compression.
If it is worthwhile, compression is used automatically. The minimum size that a
table must be before compression is used is larger for temporary tables than for
regular tables.

You can use the explain facility or the db2pd tool to see whether the optimizer
chose to use compression for temporary tables.

250 Database Administration Concepts and Configuration Reference

Reclaiming space freed by compression

You can reclaim space that has been freed by compressing data. For more
information, see “Reclaimable storage” on page 142.

Estimating storage savings offered by row compression:

You can view an estimate of the storage savings row compression can provide for
a table by using the ADMINTABCOMPRESSINFO administrative view or
ADMIN_GET_TAB_COMPRESS_INFO_V97 table function.

Before you begin

The estimated savings that row compression offers depend on the statistics
generated by running the RUNSTATS command. To get the most accurate estimate of
the savings that can be achieved, run the RUNSTATS command before you follow the
steps below.

Procedure

To estimate the storage savings row compression can offer using the
ADMIN_GET_TAB_COMPRESS_INFO_V97 table function:
1. Formulate a SELECT statement that uses the

ADMIN_GET_TAB_COMPRESS_INFO_V97 table function with the ESTIMATE
option.
a.

For example, for a table named VPS.CUSTOMER, enter:
SELECT * FROM TABLE (SYSPROC.ADMIN_GET_TAB_COMPRESS_INFO_V97(’VPS’, ’CUSTOMER’, ’ESTIMATE’))

2. Execute the SELECT statement. Executing the statement shown in Step 1 might
yield a report like the following:

TABNAME COMPRESS_ATTR ROWS_SAMPLED PAGES_SAVED_PERCENT BYTES_SAVED_PERCENT AVG_COMPRESS_REC_LENGTH OBJECT_TYPE
... ----------- ... ------------- ... ------------ ------------------- ------------------- ----------------------- -----------

CUSTOMER N 53761 62 62 50 DATA
�1� �2� �3�

1 record(s) selected.

Note: Ellipses (...) represent report columns not shown.
In this example, the report shows that:

�1� The compress attribute for the table is currently set to "No"
�2� 53,731 table rows were sampled
�3� Based on the data present, that a 62% savings (pages and bytes saved)
could be achieved by employing row compression.

Creating a table that uses compression:

When you create a new table, you can use the COMPRESS attribute for the
CREATE TABLE command to enable compression.

About this task

You must decide whether you want to use row compression only, value
compression only, or both types of compression. Row compression will almost
always yield benefits in terms of storage savings, as it attempts to replace data
patterns that span multiple columns within a row with shorter symbol strings.
Value compression can offer savings when you have a many rows with columns

Chapter 11. Tables 251

that contain the same value, or when you have columns that contain the default
value for the data type of the column. When value compression is enabled, you
can also specify that columns that assume the system default value for their data
types can be further compressed with the COMPRESS SYSTEM DEFAULT option.

Any indexes created for compressed tables will, by default, also be compressed.

Restrictions

If you attempt to apply compression to columns that contain system default values
using the COMPRESS SYSTEM DEFAULT clause, you must also specify VALUE
COMPRESSION. Otherwise, a warning is returned, and system default values are
not stored using minimal space.

If you are planning to enable value compression, be aware that the row size can, in
some cases, grow as result of the overhead imposed by the database manager in
dealing with certain data types. You can determine the impact that value
compression has on row size using the information provided about this option in
the documentation for the CREATE TABLE statement.

Procedure

1. Formulate a CREATE TABLE statement.
v If you want to use row compression, include the COMPRESS YES clause.
v If you want to use value compression, include the VALUE COMPRESSION

clause. If you want to compress system default values, include the
COMPRESS SYSTEM DEFAULT clause.

2. Run the CREATE table statement.

Results

After the table has been created, all data subsequently added to the table will be
compressed. Any indexes associated with the table will also be compressed, unless
you explicitly specify that they not be.

Example

Example 1: Creating a table for customer information with row compression
enabled.

CREATE TABLE CUSTOMER
(CUSTOMERNUM INTEGER,
CUSTOMERNAME VARCHAR(80),
ADDRESS VARCHAR(200),
CITY VARCHAR(50),
COUNTRY VARCHAR(50),
CODE VARCHAR(15),
CUSTOMERNUMDIM INTEGER)
COMPRESS YES;

Example 2: Creating a table for employee salaries where a default of 0 is assumed
for the salary field with row and system default compression enabled for the
SALARY field.

CREATE TABLE EMPLOYEE_SALARY
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
EMPNO CHAR(6) NOT NULL,
SALARY DECIMAL(9,2) NOT NULL WITH DEFAULT COMPRESS SYSTEM DEFAULT)
COMPRESS YES;

252 Database Administration Concepts and Configuration Reference

Note, however, that the VALUE COMPRESSION clause has been omitted from this
command. This command will create a table called EMPLOYEE_SALARY, however,
a warning message is returned:
SQL20140W COMPRESS column attribute ignored because VALUE COMPRESSION is
deactivated for the table. SQLSTATE=01648

In this case, COMPRESS SYSTEM DEFAULT will not actually be applied to the SALARY
column.

Example 3: Creating a table for employee salaries where a default of 0 is assumed
for the salary field with row and system default compression enabled for the
SALARY field..

CREATE TABLE EMPLOYEE_SALARY
(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(36) NOT NULL,
EMPNO CHAR(6) NOT NULL,
SALARY DECIMAL(9,2) NOT NULL WITH DEFAULT COMPRESS SYSTEM DEFAULT)
VALUE COMPRESSION COMPRESS YES;

In this example, VALUE COMPRESSION is included in the statement, which will allow
the default value for the SALARY field to be compressed.

Enabling compression in an existing table:

You can modify an existing table to take advantage of the storage-saving benefits
of compression using the ALTER TABLE command.

Before you begin

This task assumes that you have a table that currently does not employ row or
value compression, and that you want to activate one or both of these
storage-saving features.

About this task

You must decide whether you want to use row compression only, value
compression only, or both types of compression. Row compression will almost
always yield benefits in terms of storage savings, as it attempts to replace data
patterns that span multiple columns within a row with shorter symbol strings.
Value compression can offer savings when you have a many rows with columns
that contain the same value, or when you have columns that contain the default
value for the data type of the column. When value compression is enabled, you
can also specify that columns that assume the system default value for their data
types can be further compressed with the COMPRESS SYSTEM DEFAULT option.

Restrictions

If you attempt to apply compression to columns that contain system default values
using the COMPRESS SYSTEM DEFAULT clause, you must also specify VALUE
COMPRESSION. Otherwise, a warning is returned, and system default values are
not stored using minimal space.

If you are planning to enable value compression, be aware that the row size can, in
some cases, grow as result of the overhead imposed by the database manager in
dealing with certain data types. You can determine the impact that value
compression has on row size using the information provided about this option in
the documentation for the CREATE TABLE statement.

Chapter 11. Tables 253

Procedure

1. Formulate an ALTER TABLE statement.
v If you want to use row compression, include the COMPRESS YES clause.
v If you want to use value compression, include the ACTIVATE VALUE

COMPRESSION clause. If you want to compress system default values,
include the COMPRESS SYSTEM DEFAULT clause.

2. Run the ALTER TABLE statement At this point, all subsequent rows appended,
inserted, loaded or updated will use the new, compressed format. However,
existing uncompressed rows will remain uncompressed.

3. Optional: If you want compression applied to the existing rows of the table,
perform a table reorganization using the REORG command. Alternatively, you
can wait until the uncompressed rows are next updated; at that point any rows
changed will be stored in the new compressed format.

Results

If you altered the table, but did not perform a REORG, the format of the existing
rows or columns of the table are not modified in any way, although any
subsequent rows appended, updated, inserted or loaded will take advantage of
whatever compression you have enabled. If you did perform a REORG, then
whatever type of compression you enabled with the ALTER TABLE statement will
apply to all rows of the table.

Example

Example 1: Applying row compression to an existing table CUSTOMER.
ALTER TABLE CUSTOMER COMPRESS YES

Example 2: Applying row, value and system default compression to the SALARY
column of an existing table EMPLOYEE_SALARY.
ALTER TABLE EMPLOYEE_SALARY
ALTER SALARY COMPRESS SYSTEM DEFAULT
COMPRESS YES ACTIVATE VALUE COMPRESSION;

REORG TABLE EMPLOYEE_SALARY

Decompressing a compressed table:

To decompress a table that has either value or row compression enabled, use one
or more of the various compression-related attributes of the ALTER TABLE
command.

About this task

v If you deactivate value compression:
– for a table that has columns with COMPRESS SYSTEM DEFAULT enabled,

compression will no longer be enabled for these columns.
– uncompressed columns might cause the row size to exceed the maximum

allowed by the current page size of the current table space. If this occurs, the
error messasge SQL0670N will be returned.

v If you deactivate row compression, index compression is not affected. If you
want to uncompress an index, you must use the ALTER INDEX command.

v If you deactivate either row or value compression, you must perform a table
reorganization for the compressed data to be uncompressed.

254 Database Administration Concepts and Configuration Reference

Procedure

1. Formulate an ALTER TABLE statement.
v If you want to deactivate row compression, include the COMPRESS NO

clause.
v If you want to deactivate value compression, include the DEACTIVATE

VALUE COMPRESSION clause.
v If you want to deactivate the compression of system default values, include

the COMPRESS OFF option for the ALTER column name clause.
2. Run the ALTER TABLE statement.
3. Perform an offline table reorganization.

Example

Example 1: Turning off row compression in an existing table CUSTOMER.
ALTER TABLE CUSTOMER COMPRESS NO

REORG TABLE CUSTOMER

Compression dictionaries:

The database manager creates a compression dictionary for each table that is
enabled for row compression. This dictionary is used to map repeated byte
patterns from table rows to much smaller symbols; these symbols then replace the
longer byte patterns in the table rows.

The row compression logic scans a table for repetitive and duplicate data. Entire
rows are examined, not just certain fields or parts of rows for repeating entries or
patterns. After collecting the repetitive entries, the DB2 database builds a
compression dictionary, assigning short, numeric keys to those entries. Tables that
contains text data can have recurring strings, data with repetitive characters, and
leading or trailing blank spaces. These tables can be compressed by the database
manager more effectively than a table that contains numeric data.

The dictionary for both compression and decompression lookup is stored in hidden
objects in the database and is cached in memory for quick access. The dictionary
does not occupy much space. Even for extremely large tables, the compression
dictionary is typically occupies only about 100 KB.

Compression dictionary creation:

Compression dictionaries for tables enabled for row compression can be built
automatically or manually.

Automatic dictionary creation

Starting with DB2 Version 9.5, a compression dictionary is created automatically if
each of the following conditions is met:
v You set the COMPRESS attribute for the table to YES. You can set this attribute

to YES when you create the table, using the COMPRESS YES option of the CREATE
TABLE statement; you can also alter an existing table to use compression using
the same option on the ALTER TABLE statement

v A compression dictionary does not already exist for that table
v The table reaches a size such that there is sufficient data to use for constructing

a dictionary of repeated data.

Chapter 11. Tables 255

Data that you subsequently move into the table is compressed using the
compression dictionary if compression remains enabled.

The following diagram shows the process by which the compression dictionary is
automatically created:

1 2 33 4

6 75

EMPTY TABLE
Uncompressed
Row Data

Uncompressed
Row Data

Uncompressed
Row Data

INSERT INSERT INSERT

LOAD LOAD LOAD

Synchronous
Dictionary
Build

Uncompressed
Row Data

Dictionary

Compressed
Row Data

1. A compression dictionary is not created because the table is empty.
2. Data is inserted into the table using insert or load operations and remains

uncompressed.
3. As more data is inserted or loaded into the table, it remains uncompressed.
4. After a threshold is reached, dictionary creation is triggered automatically if the

COMPRESS attribute is set to YES.
5. The dictionary is created.
6. The dictionary is appended to the table.
7. From this point forward, the data is compressed.

Important: Only rows inserted into the table subsequent to the creation of the
dictionary are compressed. The rows that existed before the dictionary was created
remain uncompressed unless they are changed, or the dictionary is manually
rebuilt.

If you create a table with DB2 Version 9.7 and the table contains at least one
column of type XML, a second compression dictionary is used to compress the
XML data stored in the default XML storage object that is associated with the table.
Compression dictionary creation occurs automatically if you set the COMPRESS
attribute on the table to YES, if a compression dictionary does not already exist
within that XML storage object, and if the there is sufficient data in the XML
storage object.

256 Database Administration Concepts and Configuration Reference

Restriction: Data in XML columns that you created with DB2 Version 9.5 or DB2
Version 9.1 cannot be compressed. However, XML columns that you add using
DB2 Version 9.7 to a table without XML columns that you created with an earlier
release of the product can be compressed. If a table that you created in an earlier
release already has one or more XML columns, and you want to add a compressed
XML column using DB2 Version 9.7, you must use the ADMIN_MOVE_TABLE
stored procedure to migrate the table before you can use compression.

Compression dictionaries for temporary tables are also created automatically, using
a similar mechanism. However, the database manager determines whether to use
row compression for temporary tables, based on factors such as query complexity,
and the size of the result set.

Manual dictionary creation

Although dictionaries are created automatically when compression-enabled tables
grow to a sufficient size, you can also force a compression dictionary to be created
if none exists, or reset an existing compression dictionary by using the REORG TABLE
command with the RESETDICTIONARY option. This command forces the creation of a
compression dictionary if there is at least one row of data in the table. Table
reorganization is an offline operation; one benefit of using automatic dictionary
creation is that the table remains online as the dictionary is built.

Instead of using the REORG TABLE command to force the creation of a new
dictionary, you can use the INSPECT command with the ROWCOMPESTIMATE option.
This command creates a new compression dictionary if the table does not already
have one. The advantage of this approach is that the table remains online. Rows
that you add subsequently are subject to compression, however, rows that existed
before you ran the INSPECT command remain uncompressed until you perform a
table reorganization.

Resetting compression dictionaries

Whether a compression dictionary is created automatically or manually, the
dictionary is static; after it is built, it does not change. As you add or update rows,
they are compressed based on the data that exists in the current compression
dictionary. For many situations, this behavior is appropriate. Consider, for example,
a table in a database used for maintaining customer accounts for a city water
utility. Such a table might have columns such as STREET_ADDRESS, CITY,
PROVINCE, TELEPHONE_NUM, POSTAL_CODE, and ACCOUNT_TYPE. If a
compression dictionary is built with data from a such table, even if it is only a
modestly sized table, it is likely that there would be sufficient repetitive
information for row compression to yield significant space savings. This is because
much of the data could be common from customer to customer, for example, CITY,
POSTAL_CODE, PROVINCE or portions of the STREET_ADDRSS or
TELEPHONE_NUM column.

However, other tables might change significantly over time. Consider a
range-partitioned table used for retail sales data as follows:
v Each partition stores data for a specific month of the year,
v A partition with sales data for a given month is rolled into the table using the

ATTACH PARTITION clause of the ALTER TABLE statement at month end.

In this case, a compression dictionary created in, say, April might not reflect
repeating data from sales in later parts of the year. In situations where data in a
table changes significantly over time, you might want to reset your compression

Chapter 11. Tables 257

dictionaries using the REORG TABLE command with the RESETDICTIONARY option.

Reorganization impact on compression dictionaries:

When you reorganize a table that you enabled for row compression, you can retain
the compression dictionary or force the database manager to create a new one.

From DB2 Version 9.5 onward, a compression dictionary is automatically created
for a table that you enable for row compression by using the COMPRESS YES option
on the CREATE or ALTER TABLE statements. For a new table, the database
manager waits until the table grows to a minimal size before creating the
dictionary. For an existing table, if no compression dictionary exists, the
compression dictionary is created when the table grows to a sufficient size to allow
pattern repetition to become apparent. However, compression is applied only to
rows that you insert or update after enabling compression.

If you reorganize a table and a compression dictionary exists, the KEEPDICTIONARY
option of the REORG TABLE command is applied implicitly, which has the effect of
retaining the existing dictionary. When you perform the reorganization, all of the
rows processed are subject to compression using the existing dictionary. If a
compression dictionary does not exist, and if the table is large enough, a
compression dictionary is created, and the rows are subject to compression using
that dictionary.

You can force a new dictionary to be built by performing a table reorganization
that uses the RESETDICTIONARY option of the REORG TABLE command. When you
specify the RESETDICTIONARY option, a new compression dictionary is built if there
is at least one row in the table, replacing any existing dictionary.

Multiple compression dictionaries (for replication source tables):

The COMPRESS YES and DATA CAPTURE CHANGES options on CREATE
TABLE and ALTER TABLE statements enable row compression on tables that are
source tables for replication. With these options, either through REORG or through
LOAD REPLACE operations, a source table can have two dictionaries: an active
data compression dictionary and a historical compression dictionary.

The historical compression dictionary is the previous version of the data
compression dictionary. It is required whenever a log reader is delayed behind
current activity due to a potential REORG or truncate operation. This allows the
db2ReadLog API to decompress the row contents in log records, which were
written prior to the most recent REORG or if a new(er) dictionary was created as a
result of a RESETDICTIONARY on a REORG or LOAD.

Note: To have log readers return the data within log records in an uncompressed
format, instead of a raw compressed format, you must set the iFilterOption
parameter of the db2ReadLog API to DB2READLOG_FILTER_ON.

A table's historical compression dictionary is removed during REORG TABLE and
during table truncate operations (LOAD REPLACE, IMPORT REPLACE, or
TRUNCATE TABLE), but only if the DATA CAPTURE NONE option is specified
for the table.

To get the total dictionary size, in bytes, use the ADMIN_GET_TAB_INFO_V97
table function or the REPORT option of the ADMIN_GET_TAB_COMPRESS_INFO
table function. Refer to these table functions for details.

258 Database Administration Concepts and Configuration Reference

Value compression
Value compression optimizes space usage for the representation of data, and the
storage structures used internally by the database management system to store
data. Value compression involves removing duplicate entries for a value, and only
storing one copy. The stored copy keeps track of the location of any references to
the stored value.

When creating a table, you can use the optional VALUE COMPRESSION clause of
the CREATE TABLE statement to specify that the table is to use value compression.
You can enable value compression in an existing table with the ACTIVATE VALUE
COMPRESSION clause of the ALTER TABLE statement. To disable value
compression in a table, you use the DEACTIVATE VALUE COMPRESSION clause
of the ALTER TABLE statement.

When VALUE COMPRESSION is used, NULLs and zero-length data that has been
assigned to defined variable-length data types (VARCHAR, VARGRAPHICS,
LONG VARCHAR, LONG VARGRAPHIC, BLOB, CLOB, and DBCLOB) will not be
stored on disk. Only overhead values associated with these data types will take up
disk space.

If VALUE COMPRESSION is used then the optional COMPRESS SYSTEM
DEFAULT option can also be used to further reduce disk space usage. Minimal
disk space is used if the inserted or updated value is equal to the system default
value for the data type of the column, as the default value will not be stored on
disk. Data types that support COMPRESS SYSTEM DEFAULT include all
numerical type columns, fixed-length character, and fixed-length graphic string
data types. This means that zeros and blanks can be compressed.

When using value compression, the byte count of a compressed column in a row
might be larger than that of the uncompressed version of the same column. If your
row size approaches the maximum allowed for your page size, you must ensure
that sum of the byte counts for compressed and uncompressed columns does not
exceed allowable row length of the table in the table space. For example, in a table
space with 4 KB page size, the allowable row length is 4005 bytes. If the allowable
row length is exceeded, the error message SQL0670N is returned. The formula
used to determine the byte counts for compressed and uncompressed columns is
documented as part of the CREATE TABLE statement.

If you deactivate value compression:
v COMPRESS SYSTEM DEFAULTS will also be deactivated implicitly, if it had

previously been enabled
v The uncompressed columns might cause the row size to exceed the maximum

allowed by the current page size of the current table space. If this occurs, the
error messasge SQL0670N will be returned.

v Existing compressed data will remain compressed until the row is updated or
you perform a table reorganization with the REORG command.

Optimistic locking overview
Enhanced optimistic locking support provides a technique for SQL database
applications that does not hold row locks between selecting, and updating or
deleting rows.

Chapter 11. Tables 259

Applications can be written to optimistically assume that unlocked rows are
unlikely to change before the update or delete. If the rows do change, the updates
or deletes will fail and the application's logic can handle such failures, for example,
by retrying the select.

The advantage of this enhanced optimistic locking is improved concurrency, since
other applications can read and write those same rows. In three-tier environments
where business transactions have no correlation to database transactions, this
optimistic locking technique is used, since locks cannot be maintained across
business transactions.

Table 18 lists the relevant topics in each category.

Table 18. Overview to optimistic locking information

Category Related topics

General information
and restrictions

v “Optimistic locking”

v “Granularity of row change tokens and false negatives” on page
263

v “Optimistic locking restrictions and considerations” on page 262

Time-based updates v “Time-based update detection” on page 264

v “Time values generated for ROW CHANGE TIMESTAMPs” on
page 265

Enabling v “Planning the enablement of optimistic locking” on page 267

v “Enabling optimistic locking in applications” on page 268

Usage scenarios v “Scenarios: Optimistic locking and time-based detection” on page
284

– “Scenario: Using optimistic locking in an application program”
on page 285

– “Scenario: Time-based update detection” on page 287

– “Scenarios: Optimistic locking using implicitly hidden
columns” on page 286

Reference information v “RID_BIT() and RID() built-in function” on page 265

v ALTER TABLE statement in SQL Reference, Volume 1

v CREATE TABLE statement in SQL Reference, Volume 2

v DELETE statement in SQL Reference, Volume 2

v SELECT statement in SQL Reference, Volume 2

v UPDATE statement in SQL Reference, Volume 2

Note: Throughout the optimistic locking topics, whenever a row is referred to as
being inserted or updated, this refers to all forms of SQL statements that could
cause a row to be inserted into a table or updated in any way. For instance,
INSERT, UPDATE, MERGE, or even the DELETE statement (with referential
constraints) can all cause the timestamp column to be either created or updated.

Optimistic locking
Optimistic locking is a technique for SQL database applications that does not hold
row locks between selecting and updating or deleting a row.

The application is written to optimistically assume that unlocked rows are unlikely
to change before the update or delete operation. If the row does change, the
update or delete will fail and the application logic handles such failures by, for

260 Database Administration Concepts and Configuration Reference

example, retrying the select. One advantage of optimistic locking is improved
concurrency, because other applications can read and write that row. In a three tier
environment where business transactions have no correlation to database
transaction, the optimistic locking technique is used, because locks cannot be
maintained across the business transaction.

However, optimistic locking by values has some disadvantages:
v Can result in false positives without additional data server support, a condition

when using optimistic locking whereby a row that is changed since it was
selected cannot be updated without first being selected again. (This can be
contrasted with false negatives, the condition whereby a row that is unchanged
since it was selected cannot be updated without first being selected again.)

v Requires more retry logic in applications
v It is complicated for applications to build the UPDATE search conditions
v It is inefficient for the DB2 server to search for the target row based on values
v Data type mismatches between some client types and database types, for

example, timestamps, prevent all columns from being used in the searched
update

The support for easier and faster optimistic locking with no false positives has the
following new SQL functions, expressions, and features:
v Row Identifier (RID_BIT or RID) built-in function
v ROW CHANGE TOKEN expression
v Time-based update detection
v Implicitly hidden columns

DB2 applications can enable optimistic locking by values by building a searched
UPDATE statement that finds the row with the exact same values that were
selected. The searched UPDATE fails if the row's column values have changed.

Applications using this programming model will benefit from the enhanced
optimistic locking feature. Note that applications that do not use this programming
model are not considered optimistic locking applications, and they will continue to
work as before.

Row Identifier (RID_BIT or RID) built-in function
This built-in function can be used in the SELECT list or predicates
statement. In a predicate, for example, WHERE RID_BIT(tab)=?, the
RID_BIT equals predicate is implemented as a new direct access method in
order to to efficiently locate the row. Previously, so called values optimistic
locking with values was done by adding all the selected column values to
the predicates and relying on some unique column combinations to qualify
only a single row, with a less efficient access method.

ROW CHANGE TOKEN expression
This new expression returns a token as BIGINT. The token represents a
relative point in the modification sequence of a row. An application can
compare the current ROW CHANGE TOKEN value of a row with the
ROW CHANGE TOKEN value that was stored when the row was last
fetched to determine whether the row has changed.

Time-based update detection:
This feature is added to SQL using the RID_BIT() and ROW CHANGE
TOKEN. To support this feature, the table needs to have a new generated
column defined to store the timestamp values. This can be added to

Chapter 11. Tables 261

existing tables using the ALTER TABLE statement, or the column can be
defined when creating a new table. The column's existence, also affects the
behavior of optimistic locking in that the column if it is used to improve
the granularity of the ROW CHANGE TOKEN from page level to row
level, which could greatly benefit optimistic locking applications. This
feature has also been added to DB2 for z/OS®.

Implicitly hidden columns:
For compatibility, this feature eases the adoption of the RID_BIT and ROW
CHANGE TOKEN columns to existing tables and applications. Implicitly
hidden columns are not externalized when implicit column lists are used.
For example:
v A SELECT * against the table does not return a implicitly hidden

columns in the result table
v An INSERT statement without a column list does not expect a value for

implicitly hidden columns, but the column should be defined to allow
nulls or have another default value.

Note: Refer to the DB2 Glossary for the definition of optimistic locking terms, such
as optimistic concurrency control, pessimistic locking, ROWID, and update detection.

Optimistic locking restrictions and considerations
This topic lists optimistic locking restrictions that you must be aware of.
v ROW CHANGE TIMESTAMP columns are not supported in the following keys,

columns, and names (sqlstate 429BV is returned if used):
– Primary keys
– Foreign keys
– Multidimensional clustered (MDC) columns
– Range partition columns
– Database hashed partitioning keys
– DETERMINED BY constraint columns
– Nicknames

v The RID() function is not supported in partitioned database configurations.
v Online or offline table reorg performed between the fetch and update operations

in an optimistic locking scenario can cause the update to fail, but this should be
handled by normal application retry logic.

v The IMPLICITLY HIDDEN attribute is restricted to only ROW CHANGE
TIMESTAMP columns for optimistic locking.

v Inplace reorg is restricted for tables where a ROW CHANGE TIMESTAMP
column was added to an existing table until all rows are guaranteed to have
been materialized (SQL2219, reason code 13, is returned for this error). This can
be accomplished with a LOAD REPLACE command or with a classic table reorg.
This will prevent false positives. Tables created with the ROW CHANGE
TIMESTAMP column have no restrictions.

Considerations for implicitly hidden columns

A column defined as IMPLICITLY HIDDEN is not part of the result table of a
query that specifies * in a SELECT list. However, an implicitly hidden column can
be explicitly referenced in a query.

262 Database Administration Concepts and Configuration Reference

If a column list is not specified on the insert, then the VALUES clause or the
SELECT LIST for the insert should not include this column (in general, it must be
a generated, defaultable, or nullable column).

For example, an implicitly hidden column can be referenced in the SELECT list, or
in a predicate in a query. Additionally, an implicitly hidden column can be
explicitly referenced in a CREATE INDEX statement, ALTER TABLE statement,
INSERT statement, MERGE statement, or UPDATE statement. An implicitly hidden
column can be referenced in a referential constraint. A REFERENCES clause that
does not contain a column list refers implicitly to the primary key of the parent
table. It is possible that the primary key of the parent table includes a column
defined as implicitly hidden. Such a referential constraint is allowed.
v If the SELECT list of the fullselect of the materialized query definition explicitly

refers to an implicitly hidden column, that column will be part of the
materialized query table. Otherwise, an implicitly hidden column is not part of a
materialized query table that refers to a table containing an implicitly hidden
column.

v If the SELECT list of the fullselect of a view definition (CREATE VIEW
statement) explicitly refers to an implicitly hidden column, that column will be
part of the view, (however the view column is not considered to be hidden).
Otherwise, an implicitly hidden column is not part of a view that refers to a
table containing an implicitly hidden column.

Considerations for Label Based Access Control (LBAC)

When a column is protected under LBAC, access by a user to that column is
determined by the LBAC policies and the security label of the user. This protection,
if applied to a row change timestamp column, extends to the reference to that
column via both the ROW CHANGE TIMESTAMP and ROW CHANGE TOKEN
expressions which are derived from that column.

Therefore when determining the security policies for a table, ensure that the access
to the row change timestamp column is available for all users which need to use
optimistic locking or time based update detection as appropriate. Note that if there
is no row change timestamp column then the ROW CHANGE TOKEN expression
cannot be blocked by LBAC. However, if the table is altered to add a row change
timestamp column then any LBAC considerations will then apply.

Granularity of row change tokens and false negatives
The RID_BIT() built-in function and the row change token are the only
requirements for optimistic locking. However, the schema of the table also affects
the behavior of optimistic locking.

For example, a row change timestamp column, defined using either of the
following statement clauses shown below, causes the DB2 server to store the time
when a row is last changed (or initially inserted). This provides a way to capture
the timestamp of the most recent change to a row. This is a timestamp column and
it is maintained by the database manager, unless the GENERATED BY DEFAULT
clause is used to accept a user-provided input value.

GENERATED ALWAYS FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

GENERATED BY DEFAULT FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP

Therefore, when an application uses the new ROW CHANGE TOKEN expression
on a table, there are two possibilities to consider:

Chapter 11. Tables 263

v The table does not have a row change timestamp column: A ROW CHANGE TOKEN
expression returns a derived BIGINT value that is shared by all rows located on
the same page. If one row on a page is updated, the ROW CHANGE TOKEN is
changed for all the rows on the same page. This means an update can fail when
changes are made to other rows, a property referred to as a false negative.

Note: Use this mode only if the application can tolerate false negatives and does
not want to add additional storage to each row for a ROW CHANGE
TIMESTAMP column.

v The table has a row change timestamp column: A ROW CHANGE TOKEN
expression returns a BIGINT value derived from the timestamp value in the
column. In this case, false negatives can occur but are more infrequent: If the table
is reorganized or redistributed, false negatives can occur if the row is moved and
an application uses the prior RID_BIT() value.

Time-based update detection
Some applications need to know database updates for certain time ranges, which
might be used for replication of data, auditing scenarios, and so forth. The ROW
CHANGE TIMESTAMP expression provides this information.

ROW CHANGE TIMESTAMP FOR <table designator>

returns a timestamp representing the time when a row was last changed, expressed
in local time similar to CURRENT TIMESTAMP. For a row that has been updated,
this reflects the most recent update to the row. Otherwise, the value corresponds to
the original insert of the row.

The value of the ROW CHANGE TIMESTAMP is different from the CURRENT
TIMESTAMP in that it is guaranteed unique when assigned by the database per
row per database partition. It is a local timestamp approximation of the
modification time of each individual row inserted or updated. Since the value is
always growing from earlier to later, it can become out of sync with the system
clock if:
v The system clock is changed
v The row change timestamp column is GENERATED BY DEFAULT (intended for

data propagation only) and a row is provided with an out of sync value.

The prerequisite for using the ROW CHANGE TIMESTAMP expression is that the
table must have a row change timestamp column defined using the default
precision for the timestamp data type, TIMESTAMP(6) (or TIMESTAMP - the
default precision is 6). Every row returns the timestamp of when it was inserted or
last updated. There are two methods in which the row change timestamp column
can be part of the table:
v The table was created using the FOR EACH ROW ON UPDATE AS ROW

CHANGE TIMESTAMP clause of the CREATE TABLE command. A ROW
CHANGE TIMESTAMP expression returns the value of the column. For this
category, the timestamp is precise. The row change timestamp in general when
generated by the database is limited by speed of inserts and possible clock
manipulations including DST adjustment.

v The table was not created with a row change timestamp column, but one was
later added using the FOR EACH ROW ON UPDATE AS ROW CHANGE
TIMESTAMP clause of the an ALTER TABLE statement. A ROW CHANGE
TIMESTAMP expression returns the value of the column. For this category, the
old (pre-alter) rows do not contain the actual timestamp until they are first
updated or an offline table reorganization is performed.

264 Database Administration Concepts and Configuration Reference

Note: The timestamp is an approximate time that the actual update occurred in
the database, as of the system clock at the time and taking into account the
limitation that no timestamps can be repeated within a database/table partition.
In practice this is normally a very accurate representation of the time of the
update. The row change timestamp, in general, when generated by the database,
is limited by speed of inserts and possible clock manipulations including DST
adjustments.
Rows that have not been updated since the ALTER TABLE statement will return
the type default value for the column, which is midnight Jan 01, year 1. Only
rows that have been updated will have a unique timestamp. Rows which have
the timestamp materialized via an offline table reorganization will return a
unique timestamp generated during the reorganization of the table. Reorg using
the INPLACE option is not sufficient as it does not materialize schema changes.

In either case, the timestamp of a row may also be updated if a redistribute is
performed. If the row is moved from one database partition to another during a
redistribute then a new timestamp must be generated which is guaranteed to be
unique at the target.

Time values generated for ROW CHANGE TIMESTAMPs
There are some boundary conditions on the exact values generated for the row
change timestamp columns due to the enforcement of unique values per partition.

Whenever the system clock is adjusted into the past for clock correction or for a
daylight saving time policy on the DB2 server, it is possible that timestamps will
appear to be in the future relative to the current value of the system clock, or the
value of the CURRENT TIMESTAMP special register. This occurs when a
timestamp was generated prior to the system clock adjustment, that is, later than
the adjusted time, as the timestamps are always generated in an ascending fashion
to maintain uniqueness.

When timestamps are generated for columns which were added to the table by a
REORG operation or as part of a LOAD operation, the timestamps will be
sequentially generated at some point in the processing of the utility starting from
an initial timestamp value. If the utility is able to process rows faster than the
timestamp granularity (that is, more than 1 million rows per second), then the
values generated for some of the rows can also appear to be in the future relative
to the system clock or the CURRENT TIMESTAMP special register.

In each case, once the system clock catches up to the row change timestamp
values, there will be a close approximation of the time that the row was inserted.
Until such time, timestamps will be generated in ascending sequence by the finest
granularity allowed by the timestamp(6) data type.

RID_BIT() and RID() built-in function
The RID_BIT() and ROW CHANCE TOKEN can be selected for every row in a
table. The SELECT can occur at any isolation level that the application requires.

The application can modify the same (unchanged) row with optimistic locking by
searching on both:
v The RID_BIT() to directly access (not scan) the target row
v The ROW CHANGE TOKEN to ensure this is the same unchanged row

This update (or delete) can occur at any point after the select, within the same unit
of work, or even across connection boundaries; the only requirement is having
obtained the two values above for a given row at some point in time.

Chapter 11. Tables 265

Optimistic locking is used in the “WebSphere-Oriented Programming Model”. For
example, Microsoft .NET uses this model to process SELECT statements followed
by UPDATE or DELETE statements as follows:
v Connect to the database server and SELECT the desired rows from a table
v Disconnect from the database, or release the row locks so that other applications

can read, update, delete, and insert data without any concurrency conflicts due
to locks and resources held by the application (isolation “Uncommited Read”
allows higher concurrency AND assuming other applications COMMIT their
update and delete transactions, then this optimistic locking application will read
the updated values and the optimistic searched update/delete will succeed)

v Perform some local calculations on the SELECTed row data
v Reconnect to the database server, and search for UPDATE or DELETE on one or

more particular targeted rows (and, if the target row has changed, handle failed
UPDATE or DELETE statements)

Applications using this programming model will benefit from the enhanced
optimistic locking feature. Note that applications that do not use this programming
model are not considered optimistic locking applications, and they will continue to
work as before.

RID_BIT() and RID() built-in function features

Following are the new features that will be implemented for enhanced optimistic
locking and for update detection:

RID_BIT(<table designator>)
A new built-in function that returns the Record identifier (RID) of a row as
VARCHAR(16) FOR BIT DATA.

Note: DB2 for z/OS implements a built-in function RID with a return type
of BIGINT, but that is not large enough for Linux, UNIX, and Windows
RIDs. For compatibility, this RID() built-in function returns BIGINT, in
addition to RID_BIT().

This RID() built-in function does not work in partitioned database
environments, and does not include table version information. Otherwise,
it works the same as RID_BIT. You should use it only when coding
applications that will be ported to z/OS servers. Except where necessary,
this topic refers only to RID_BIT.

RID_BIT() built-in function
This built-in function can be used in the SELECT list or predicates
statement. In a predicate, for example, WHERE RID_BIT(tab)=?, the RID_BIT
equals predicate is implemented as a new direct access method in order to
to efficiently locate the row. Previously, so called values optimistic locking
with values was done by adding all the selected column values to the
predicates and relying on some unique column combinations to qualify
only a single row, with a less efficient access method.

ROW CHANGE TOKEN FOR <table designator>
A new expression that returns a token as BIGINT. The token represents a
relative point in the modification sequence of a row. An application can
compare the current ROW CHANGE TOKEN value of a row with the
ROW CHANGE TOKEN value that was stored when the row was last
fetched to determine whether the row has changed.

266 Database Administration Concepts and Configuration Reference

ROW CHANGE TIMESTAMP column
A GENERATED column with default type of TIMESTAMP which can be
defined as either:

GENERATED ALWAYS FOR EACH ROW ON UPDATE
AS ROW CHANGE TIMESTAMP

or (suggested only for data propagation or unload and reload operations):
GENERATED BY DEFAULT FOR EACH ROW ON UPDATE
AS ROW CHANGE TIMESTAMP

The data in this column changes every time the row is changed. When this
column is defined, the ROW CHANGE TOKEN value will be derived from
it. Note that when GENERATED ALWAYS is used, the database manager
ensures that this value is unique within a database partition or within table
partition to ensure that no false positives are possible.

To use the first two elements, RID_BIT and ROW CHANGE TOKEN, no other
changes are need to the database schema. Note, however, that without the ROW
CHANGE TIMESTAMP column, the ROW CHANGE TOKEN is shared by every
row on the same page. Updates to any row on the page can cause false negatives for
other rows stored on the same page. With this column, the ROW CHANGE
TOKEN is derived from the timestamp and is not shared with any other rows in
the table or database partition. See “Granularity of row change tokens and false
negatives” on page 263.

Time-based update detection and RID_BIT(), RID() functions

The ROW CHANGE TIMESTAMP expression returns a timestamp value that
represents the time when the row in the table identified by the table designator
was last changed. Despite the inter-relation of the RID_BIT() and RID() built-in
function and the time-based update detection feature, it is important to note that
the usage of ROW CHANGE TOKEN and ROW CHANGE TIMESTAMP
expressions are not interchangeable; specifically, that ROW CHANGE TIMESTAMP
expression is not part of the optimistic locking usage.

Planning the enablement of optimistic locking
Since the new SQL expressions and attributes for optimistic locking can be used
with no DDL changes to the tables involved, you can easily try optimistic locking
in your test applications.

Note that without DDL changes, optimistic locking applications might get more
false negatives than with DDL changes. An application that does get false negatives
might not scale well in a production environment because the false negatives
might cause too many retries. Therefore, to avoid false negatives, optimistic locking
target table(s) should be either:
v Created with a ROW CHANGE TIMESTAMP column
v Altered to contain the ROW CHANGE TIMESTAMP column

If the recommended DDL changes are done, false negatives will be a rare
occurrence. The only false negatives will occur due to table level operations such
as reorg, not concurrent applications operating on different rows.

In general, the database manager allows false negatives (online or offline reorg, for
example) and the presence of a row change timestamp column is sufficient to

Chapter 11. Tables 267

determine whether page or row level granularity is being used. You can also query
the SYSCAT.COLUMNS for a table that has rows with a YES in the
ROWCHANGETIMESTAMP column.

A thorough analysis of the application and database might indicate that this DDL
is not required, for example, if there is one row per page, or if the update and
delete operations are very infrequent and rarely, or never, on the same data page.
Such analysis is the exception.

For the update timestamp detection usage, you must make changes to the DDL for
the table, and possibly reorganize the table to materialize the values. If there is
concern that these changes could have a negative impact on the production
database, you should first prototype the changes in a test environment. For
instance, the extra columns can affect the row size limitations and plan selection.

Conditions to be aware of
v You should be aware of conditions relating to the system clock and the

granularity of the timestamp values. If a table has a ROW CHANGE
TIMESTAMP column, after an insert or update, the new row will have a unique
ROW CHANGE TIMESTAMP value in that table on that database partition.

v To ensure uniqueness, the generated timestamp of a row will always increase,
regardless if the system clock is adjusted backwards or if the update or insertion
of data is happening faster than timestamp granularity. Therefore, the ROW
CHANGE TIMESTAMP may be in the future compared with the system time
and DB2's CURRENT TIMESTAMP special register. Unless the system clock is
gets completely out of sync, or the database manager is inserting or updating at
more than one million rows per second, then this should normally be very close
to the actual time. In contrast to the CURRENT TIMESTAMP, this value is also
generated per row at the time of the update, therefore, it is normally much
closer than the CURRENT TIMESTAMP, which is generated once for an entire
statement that could take a very long time to complete, depending on the
complexity and number of rows affected.

Enabling optimistic locking in applications
There are a number of steps that you must perform in order to enable optimistic
locking support in your applications.

Procedure
1. In the initial query, SELECT the row identifier (using the “RID_BIT() and RID()

built-in function” on page 265) and ROW CHANGE TOKEN for each row that
you need to process.

2. Release the row locks so that other applications can SELECT, INSERT, UPDATE
and DELETE from the table.

3. Perform a searched UPDATE or DELETE on the target rows, using the row
identifier and ROW CHANGE TOKEN in the search condition, optimistically
assuming that the unlocked row has not changed since the original SELECT
statement

4. If the row has changed, the UPDATE operation will fail and the application
logic must handle the failure. For instance, the application retries the SELECT
and UPDATE operations.

What to do next

After running the above steps:

268 Database Administration Concepts and Configuration Reference

v If the number of retries performed by your application seems higher than
expected or is desired, then adding a row change timestamp column to your
table to ensure that only changes to the row identified by the RID_BIT function
will invalidate only the ROW CHANGE TOKEN, and not other activity on the
same data page.

v To see rows which have been inserted or updated in a given time range, create
or alter the table to contain a row change timestamp column. This column will
be maintained by the database manager automatically and can be queried using
either the column name or the ROW CHANGE TIMESTAMP expression.

v For row change timestamp columns only, if the column is defined with the
IMPLICITLY HIDDEN attribute, then it is not externalized when there is an
implicit reference to the columns of the table. However, an implicitly hidden
column can always be referenced explicitly in SQL statements. This can be useful
when adding a column to a table can cause existing applications using implicit
column lists to fail.

Table partitioning and data organization schemes
Table partitioning is a data organization scheme in which table data is divided
across multiple data partitions according to values in one or more partitioning
columns of the table. Data from a given table is partitioned into multiple storage
objects, which can be in different table spaces.

For complete details about table partitioning and data organization schemes, see
the Partitioning and Clustering Guide.

Creating tables
The database manager controls changes and access to the data stored in the tables.
You can create tables using the CREATE TABLE statement. Complex statements
can be used to define all the attributes and qualities of tables. However, if all the
defaults are used, the statement to create a table is quite simple.

Example
CREATE TABLE <table name> (<column name> <data type> <column options>,

(<column name> <data type> <column options>, ...)

The <table name> may or may not include a qualifier. The name must be unique
when compared to all table, view, and alias names in the system catalog. The name
must also not be SYSIBM, SYSCAT, SYSFUN, or SYSSTAT.

The <column name> names the columns in the table. This name cannot be qualified
and must be unique within the other columns of the table.

Any <column options> that exist for a column further define the attributes of the
column. The options include NOT NULL in order to prevent the column from
containing null values, specific options for LOB data types, and the SCOPE of the
reference type columns, any constraints on the columns, and any defaults for the
columns. For more information, see the CREATE TABLE statement.

Declaring temporary tables
To define temporary tables from within your applications, use the DECLARE
GLOBAL TEMPORARY TABLE statement.

Chapter 11. Tables 269

About this task

Temporary tables, also referred to as user-defined temporary tables, are used by
applications that work with data in the database. Results from manipulation of the
data need to be stored temporarily in a table. A user temporary table space must
exist before declaring temporary tables.

Note: The description of temporary tables does not appear in the system catalog
thus making it not persistent for, and not able to be shared with, other
applications. When the application using this table terminates or disconnects from
the database, any data in the table is deleted and the table is implicitly dropped.
Temporary tables do not support:
v User-defined type columns
v LONG VARCHAR columns
v XML columns for created global temporary tables

Example
DECLARE GLOBAL TEMPORARY TABLE temptbl

LIKE empltabl
ON COMMIT DELETE ROWS
NOT LOGGED
IN usr_tbsp

This statement defines a temporary table called temptbl. This table is defined with
columns that have exactly the same name and description as the columns of the
empltabl. The implicit definition only includes the column name, data type,
nullability characteristic, and column default value attributes. All other column
attributes including unique constraints, foreign key constraints, triggers, and
indexes are not defined. With ON COMMIT DELETE ROWS (any DELETE ROWS
option), the database manager always deletes rows whether there's a cursor with a
HOLD open on the table or not. The database manager optimizes a NOT LOGGED
delete by implementing an internal TRUNCATE, if no WITH HOLD cursors are
open, otherwise, the database manager deletes the rows one at a time.

The table is dropped implicitly when the application disconnects from the
database. For more information, see the DECLARE GLOBAL TEMPORARY TABLE
statement.

Creating and connecting to created temporary tables
Created temporary tables are created using the CREATE GLOBAL TEMPORARY
TABLE statement. The first time an application refers to a created temporary table
using a connection, a private version of the created temporary table is instantiated
for use by the application using the connection.

About this task

Similar to declared temporary tables, created temporary tables are used by
applications that work with data in the database, where the results from
manipulation of the data need to be stored temporarily in a table. Whereas
declared temporary table information is not saved in the system catalog tables, and
must be defined in every session where it is used, created temporary table
information is saved in the system catalog and is not required to be defined in
every session where it is used, thus making it persistent and able to be shared with
other applications, across different connections. A user temporary table space must
exist before created temporary tables can be created.

270 Database Administration Concepts and Configuration Reference

Note: The first implicit or explicit reference to the created temporary table that is
executed by any program using the connection creates an empty instance of the
given created temporary table. Each connection that references this created
temporary table has its own unique instance of the created temporary table, and
the instance is not persistent beyond the life of the connection.

References to the created temporary table name in multiple connections refer to the
same, single, persistent created temporary table definition, and to a distinct
instance of the created temporary table for each connection at the current server. If
the created temporary table name that is being referenced is not qualified, it is
implicitly qualified using the standard qualification rules that apply to SQL
statements.

The owner implicitly has all table privileges on the created temporary table,
including the authority to drop it. The owner's table privileges can be granted and
revoked, either individually or with the ALL clause. Another authorization ID can
access the created temporary table only if it has been granted appropriate
privileges.

Indexes and SQL statements that modify data (such as INSERT, UPDATE, and
DELETE) are supported. Indexes can only be created in the same table space as the
created temporary table.

For the CREATE GLOBAL TEMPORARY TABLE statement: locking and recovery
do not apply; logging applies only when the LOGGED clause is specified. For
more options, see the CREATE GLOBAL TEMPORARY statement.

Created temporary tables cannot be associated with security policies, they cannot
be partitioned using range partition, multidimensional clustering (MDC), or
range-clustered (RCT), and they cannot be distributed by replication.

Materialized query tables (MQTs) cannot be created on created temporary tables.

Created temporary tables do not support the following column types, object types,
and table or index operations:
v XML columns
v Structured types
v Referenced types
v Constraints
v Index extensions
v LOAD
v LOAD TABLE
v ALTER TABLE
v RENAME TABLE
v RENAME INDEX
v REORG TABLE
v REORG INDEX
v LOCK TABLE

For more information, see the CREATE GLOBAL TEMPORARY TABLE statement.

Chapter 11. Tables 271

Example
CREATE GLOBAL TEMPORARY TABLE temptbl

LIKE empltabl
ON COMMIT DELETE ROWS
NOT LOGGED
IN usr_tbsp

This statement creates a temporary table called temptbl. This table is defined with
columns that have exactly the same name and description as the columns of the
empltabl. The implicit definition only includes the column name, data type,
nullability characteristic, and column default value attributes of the columns in
empltab1. All other column attributes including unique constraints, foreign key
constraints, triggers, and indexes are not implicitly defined.

A COMMIT always deletes the rows from the table. If there are any HOLD cursors
open on the table, they can be deleted using TRUNCATE statement, which is
faster, but will “normally” have to be deleted row by row. Changes made to the
temporary table are not logged. The temporary table is placed in the specified user
temporary table space, usr tbsp. This table space must exist or the creation of this
table will fail.

When an application that instantiated a created temporary table disconnects from
the database, the application's instance of the created temporary table is dropped.

Creating tables like existing tables
Creating a new source table might be necessary when the characteristics of the
target table do not sufficiently match the characteristics of the source when issuing
the ALTER TABLE statement with the ATTACH PARTITION clause. Before creating
a new source table, you can attempt to correct the mismatch between the existing
source table and the target table.

Before you begin

To create a table, the privileges held by the authorization ID of the statement must
include at least one of the following authorities and privileges:
v CREATETAB authority on the database and USE privilege on the table space, as

well as one of:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
– CREATEIN privilege on the schema, if the schema name of the table refers to

an existing schema
v DBADM authority

About this task

If attempts to correct the mismatch fail, error SQL20408N or SQL20307N is
returned.

To create a new source table:
1. Use the db2look command to produce the CREATE TABLE statement to create

a table identical to the target table:

db2look -d <source database name> -t <source table name> -e

272 Database Administration Concepts and Configuration Reference

2. Remove the partitioning clause from the db2look output and change the name
of the table created to a new name (in this example, referred to here as
sourceC).

3. Next, load all of the data from the original source table to the newly created
source table, sourceC using a LOAD FROM CURSOR command:

DECLARE mycurs CURSOR FOR SELECT * FROM source

LOAD FROM mycurs OF CURSOR REPLACE INTO sourceC

If this command fails because the original data is incompatible with the
definition of table sourceC, you must transform the data in the original table as
it is being transferred to sourceC.

4. After the data has been successfully copied to sourceC, submit the ALTER
TABLE target ...ATTACH sourceC statement.

Creating tables for staging data
A staging table allows incremental maintenance support for deferred materialized
query table. The staging table collects changes that must be applied to the
materialized query table to synchronize it with the contents of underlying tables.
The use of staging tables eliminates the high lock contention caused by immediate
maintenance content when an immediate refresh of the materialized query table is
requested. Also, the materialized query tables no longer must be entirely
regenerated whenever a REFRESH TABLE is performed.

About this task

Materialized query tables are a powerful way to improve response time for
complex queries, especially queries that might require some of the following
operations:
v Aggregated data over one or more dimensions
v Joins and aggregates data over a group of tables
v Data from a commonly accessed subset of data
v Repartitioned data from a table, or part of a table, in a partitioned database

environment

Here are some of the key restrictions regarding staging tables:
1. The query used to define the materialized query table, for which the staging

table is created, must be incrementally maintainable; that is, it must adhere to
the same rules as a materialized query table with an immediate refresh option.

2. Only a deferred refresh can have a supporting staging table. The query also
defines the materialized query table associated with the staging table. The
materialized query table must be defined with REFRESH DEFERRED.

3. When refreshing using the staging tables, only a refresh to the current point in
time is supported.

4. Partitioned hierarchy tables and partitioned typed tables are not supported.
(Partitioned tables are tables where data is partitioned into multiple storage
objects based on the specifications provided in the PARTITION BY clause of the
CREATE TABLE statement.)

An inconsistent, incomplete, or pending state staging table cannot be used to
incrementally refresh the associated materialized query table unless some other
operations occur. These operations will make the content of the staging table
consistent with its associated materialized query table and its underlying tables,
and to bring the staging table out of pending. Following a refresh of a materialized

Chapter 11. Tables 273

query table, the content of its staging table is cleared and the staging table is set to
a normal state. A staging table might also be pruned intentionally by using the SET
INTEGRITY statement with the appropriate options. Pruning will change the
staging table to an inconsistent state. For example, the following statement forces
the pruning of a staging table called STAGTAB1:

SET INTEGRITY FOR STAGTAB1 PRUNE;

When a staging table is created, it is put in a pending state and has an indicator
that shows that the table is inconsistent or incomplete with regard to the content of
underlying tables and the associated materialized query table. The staging table
needs to be brought out of the pending and inconsistent state in order to start
collecting the changes from its underlying tables. While in a pending state, any
attempts to make modifications to any of the staging table's underlying tables will
fail, as will any attempts to refresh the associated materialized query table.

There are several ways a staging table might be brought out of a pending state; for
example:
v SET INTEGRITY FOR <staging table name> STAGING IMMEDIATE

UNCHECKED
v SET INTEGRITY FOR <staging table name> IMMEDIATE CHECKED

Distinctions between DB2 base tables and temporary tables
DB2 base tables and the two types of temporary tables have several distinctions.

The following table summarizes important distinctions between base tables, created
temporary tables, and declared temporary tables.

Table 19. Important distinctions between DB2 base tables and DB2 temporary tables

Area of distinction Distinction

Creation, persistence, and
ability to share table
descriptions

Base tables: The CREATE TABLE statement puts a description of the table in the
catalog view SYSCAT.TABLES. The table description is persistent and is shareable
across different connections. The name of the table in the CREATE TABLE statement
can be qualified. If the table name is not qualified, it is implicitly qualified using the
standard qualification rules applied to SQL statements.

Created temporary tables: The CREATE GLOBAL TEMPORARY TABLE statement
puts a description of the table in the catalog view SYSCAT.TABLES. The table
description is persistent and is shareable across different connections. The name of the
table in the CREATE GLOBAL TEMPORARY TABLE statement can be qualified. If the
table name is not qualified, it is implicitly qualified using the standard qualification
rules applied to SQL statements.

Declared temporary tables: The DECLARE GLOBAL TEMPORARY TABLE statement
does not put a description of the table in the catalog. The table description is not
persistent beyond the life of the connection that issued the DECLARE GLOBAL
TEMPORARY TABLE statement and the description is known only to that connection.

Thus, each connection could have its own possibly unique description of the same
declared temporary table. The name of the table in the DECLARE GLOBAL
TEMPORARY TABLE statement can be qualified. If the table name is qualified,
SESSION must be used as the schema qualifier. If the table name is not qualified,
SESSION is implicitly used as the qualifier.

274 Database Administration Concepts and Configuration Reference

Table 19. Important distinctions between DB2 base tables and DB2 temporary tables (continued)

Area of distinction Distinction

Table instantiation and
ability to share data

Base tables: The CREATE TABLE statement creates one empty instance of the table,
and all connections use that one instance of the table. The table and data are
persistent.

Created temporary tables: The CREATE GLOBAL TEMPORARY TABLE statement
does not create an instance of the table. The first implicit or explicit reference to the
table in an open, select, insert, update, or delete operation that is executed by any
program using the connection creates an empty instance of the given table. Each
connection that references the table has its own unique instance of the table, and the
instance is not persistent beyond the life of the connection.

Declared temporary tables: The DECLARE GLOBAL TEMPORARY TABLE statement
creates an empty instance of the table for the connection. Each connection that declares
the table has its own unique instance of the table, and the instance is not persistent
beyond the life of the connection.

References to the table
during the connection

Base tables: References to the table name in multiple connections refer to the same
single persistent table description and to the same instance at the current server. If the
table name that is being referenced is not qualified, it is implicitly qualified using the
standard qualification rules that apply to SQL statements.

Created temporary tables: References to the table name in multiple connections refer
to the same single persistent table description but to a distinct instance of the table for
each connection at the current server. If the table name that is being referenced is not
qualified, it is implicitly qualified using the standard qualification rules that apply to
SQL statements.

Declared temporary tables: References to the table name in multiple connections refer
to a distinct description and instance of the table for each connection at the current
server. References to the table name in an SQL statement (other than the DECLARE
GLOBAL TEMPORARY TABLE statement) must include SESSION as the schema
qualifier. If the table name is not qualified with SESSION, the reference is assumed to
be to a base table.

Table privileges and
authorization

Base tables: The owner implicitly has all table privileges on the table and the
authority to drop the table. The owner's table privileges can be granted and revoked,
either individually or with the ALL clause.

Another authorization ID can access the table only if it has been granted appropriate
privileges for the table.

Created temporary tables: The owner implicitly has all table privileges on the table
and the authority to drop the table. The owner's table privileges can be granted and
revoked, either individually or with the ALL clause.

Another authorization ID can access the table only if it has been granted appropriate
privileges for the table.

Declared temporary tables: PUBLIC implicitly has all table privileges on the table
without GRANT authority and also has the authority to drop the table. These table
privileges cannot be granted or revoked.

Any authorization ID can access the table without requiring a grant of any privileges
for the table.

Chapter 11. Tables 275

Table 19. Important distinctions between DB2 base tables and DB2 temporary tables (continued)

Area of distinction Distinction

Indexes and other SQL
statement support

Base tables: Indexes and SQL statements that modify data (INSERT, UPDATE,
DELETE, and so on) are supported. Indexes can be in different table spaces.

Created temporary tables: Indexes and SQL statements that modify data (INSERT,
UPDATE, DELETE, and so on) are supported. Indexes can only be in the same table
space as the table.

Declared temporary tables: Indexes and SQL statements that modify data (INSERT,
UPDATE, DELETE, and so on) are supported. Indexes can only be in the same table
space as the table.

Locking, logging, and
recovery

Base tables: Locking, logging, and recovery do apply.

Created temporary tables: Locking and recovery do not apply, however logging does
apply when LOGGED is explicitly specified. Undo recovery (rolling back changes to a
savepoint or the most recent commit point) is supported when only when LOGGED is
explicitly specified.

Declared temporary tables: Locking and recovery do not apply, however logging only
applies when LOGGED is explicitly or implicitly specified. Undo recovery (rolling
back changes to a savepoint or the most recent commit point) is supported when
LOGGED is explicitly or implicitly specified.

Modifying tables
This section provides topics on how you can modify tables.

Altering tables
When altering tables, there are some useful options to be aware of, such as the
ALTER COLUMN SET DATA TYPE option and the unlimited REORG-
recommended operations that can be performed within a single transaction.

Alter table SET DATA TYPE support

The ALTER COLUMN SET DATA TYPE option on the ALTER TABLE statement
supports all compatible types.

Altering the column data type can cause data loss. Some of this loss is consistent
with casting rules; for example, blanks can be truncated from strings without
returning an error, and converting a DECIMAL to an INTEGER results in
truncation. To prevent unexpected errors, such as overflow errors, truncation
errors, or any other kind of error returned by casting, existing column data is
scanned, and messages about conflicting rows are written to the notification log.
Column default values are also checked to ensure that they conform to the new
data type.

If a data scan does not report any errors, the column type is set to the new data
type, and the existing column data is cast to the new data type. If an error is
reported, the ALTER TABLE statement fails.

Altering a VARCHAR, VARGRAPHIC, or LOB column to a data type that is
sooner in the data type precedence list (see the Promotion of data types topic) is not
supported.

276 Database Administration Concepts and Configuration Reference

Example

Change the data type of the SALES column in the SALES table from INTEGER to
SMALLINT.
alter table sales alter column sales set data type smallint
DB20000I The SQL command completed successfully.

Change the data type of the REGION column in the SALES table from
VARCHAR(15) to VARCHAR(14).
alter table sales alter column region set data type varchar(14)
...
SQL0190N ALTER TABLE "ADMINISTRATOR.SALES" specified attributes for column
"REGION" that are not compatible with the existing column. SQLSTATE=42837

Change a column type in a base table. There are views and functions that are
directly or indirectly dependent on the base table.
create table t1 (c1 int, c2 int);

create view v1 as select c1, c2 from t1;
create view v2 as select c1, c2 from v1;

create function foo1 ()
language sql
returns int
return select c2 from t1;

create view v3 as select c2 from v2
where c2 = foo1();

create function foo2 ()
language sql
returns int
return select c2 from v3;

alter table t1
alter column c1
set data type smallint;

select * from v2;

The ALTER TABLE statement, which down casts the column type from INTEGER
to SMALLINT, invalidates v1, v2, v3, and foo2. Under revalidation deferred
semantics, select * from v2 successfully revalidates v1 and v2, and the c1
columns in both v1 and v2 are changed to SMALLINT. But v3 and foo2 are not
revalidated, because they are not referenced after being invalidated, and they are
above v2 in the dependency hierarchy chain. Under revalidation immediate
semantics, the ALTER TABLE statement revalidates all the dependent objects
successfully.

Multiple ALTER TABLE operations within a single unit of work

Certain ALTER TABLE operations, like dropping a column, altering a column type,
or altering the nullability property of a column may put the table into a reorg
pending state. In this state, many types of queries cannot be run; you must
perform a table reorganization before the table becomes available for some types of
queries. However, even with the table in a reorg pending state, you can still
perform multiple ALTER TABLE operations before doing a reorg.

Beginning with DB2 Version 9.7, you can perform an unlimited number of ALTER
TABLE statements within a single unit of work. However, after three units of work

Chapter 11. Tables 277

have been performed that include such operations, a REORG TABLE command
must be run.

Altering materialized query table properties
With some restrictions, you can change a materialized query table to a regular
table or a regular table to a materialized query table. You cannot change other
table types; only regular and materialized query tables can be changed. For
example, you cannot change a replicated materialized query table to a regular
table, nor the reverse.

About this task

Once a regular table has been altered to a materialized query table, the table is
placed in a set integrity pending state. When altering in this way, the fullselect
in the materialized query table definition must match the original table definition,
that is:
v The number of columns must be the same.
v The column names and positions must match.
v The data types must be identical.

If the materialized query table is defined on an original table, then the original
table cannot itself be altered into a materialized query table. If the original table
has triggers, check constraints, referential constraints, or a defined unique index,
then it cannot be altered into a materialized query table. If altering the table
properties to define a materialized query table, you are not allowed to alter the
table in any other way in the same ALTER TABLE statement.

When altering a regular table into a materialized query table, the fullselect of the
materialized query table definition cannot reference the original table directly or
indirectly through views, aliases, or materialized query tables.

To change a materialized query table to a regular table, use the following:
ALTER TABLE sumtable

SET SUMMARY AS DEFINITION ONLY

To change a regular table to a materialized query table, use the following:
ALTER TABLE regtable

SET SUMMARY AS <fullselect>

The restrictions on the fullselect when altering the regular table to a materialized
query table are very much like the restrictions when creating a summary table
using the CREATE SUMMARY TABLE statement.

Refreshing the data in a materialized query table
You can refresh the data in one or more materialized query tables by using the
REFRESH TABLE statement. The statement can be embedded in an application
program, or issued dynamically. To use this statement, you must have
DATAACCESS authority, or CONTROL privilege on the table to be refreshed.

About this task

The following example shows how to refresh the data in a materialized query
table:

REFRESH TABLE SUMTAB1

278 Database Administration Concepts and Configuration Reference

Changing column properties
Use the ALTER TABLE statement to change column properties, such as nullability,
LOB options, scope, constraints and compression attributes, data types and so
forth. For complete details, see the ALTER TABLE statement.

Before you begin

To alter a table, you must have at least one of the following privileges on the table
to be altered:
v ALTER privilege
v CONTROL privilege
v DBADM authority
v ALTERIN privilege on the schema of the table

To change the definition of a existing column, to edit and test SQL when changing
table columns, or to validate related objects when changing table columns, you
must have DBADM authority.

About this task

For example, from the command line, enter:
ALTER TABLE EMPLOYEE

ALTER COLUMN WORKDEPT
SET DEFAULT ’123’

Adding and dropping columns
To add columns to existing tables, or to drop columns from existing tables, use the
ALTER TABLE statement with the ADD COLUMN, or DROP COLUMN, clause,
respectively. The table must not be a typed table.

About this task

For all existing rows in the table, the value of the new column is set to its default
value. The new column is the last column of the table; that is, if initially there are
n columns, the added column is column n+1. Adding the new column must not
make the total byte count of all columns exceed the row size limit.

To add a column, issue the following statement:
ALTER TABLE SALES

ADD COLUMN SOLD_QTY
SMALLINT NOT NULL DEFAULT 0

To delete or drop a column, issue the following statement:
ALTER TABLE SALES

DROP COLUMN SOLD_QTY

Modifying DEFAULT clause column definitions
The DEFAULT clause provides a default value for a column in the event that a
value is not supplied on INSERT or is specified as DEFAULT on INSERT or
UPDATE. If a specific default value is not specified following the DEFAULT
keyword, the default value depends on the data type. If a column is defined as an
XML or structured type, then a DEFAULT clause cannot be specified.

Chapter 11. Tables 279

About this task

Omission of DEFAULT from a column-definition results in the use of the null
value as the default for the column, as described in: “Default column and data
type definitions” on page 239.

Specific types of values that can be specified with the DEFAULT keyword, see the
ALTER TABLE statement.

Modifying the generated or identity property of a column
You can add and drop the generated or identity property of a column in a table
using the ALTER COLUMN clause in the ALTER TABLE statement.

You can do one of the following actions:
v When working with an existing non-generated column, you can add a generated

expression attribute. The modified column then becomes a generated column.
v When working with an existing generated column, you can drop a generated

expression attribute. The modified column then becomes a normal,
non-generated column.

v When working with an existing non-identity column, you can add a identity
attribute. The modified column then becomes an identity column.

v When working with an existing identity column, you can drop the identity
attribute. The modified column then becomes a normal, non-generated,
non-identity column.

v When working with an existing identity column, you can alter the column from
being GENERATED ALWAYS to GENERATED BY DEFAULT. The reverse is also
true; that is, you can alter the column from being GENERATED BY DEFAULT to
GENERATED ALWAYS. This is only possible when working with an identity
column.

v You can drop the default attribute from the user-defined default column. When
you do this, the new default value is null.

v You can drop the default, identity, or generation attribute and then set a new
default, identity, or generation attribute in the same ALTER COLUMN
statement.

v For both the CREATE TABLE and ALTER TABLE statements, the “ALWAYS”
keyword is optional in the generated column clause. This means that
GENERATED ALWAYS is equivalent to GENERATED.

Modifying column definitions
Use the ALTER TABLE statement to drop columns, or change their types and
attributes. For example, you can increase the length of an existing VARCHAR or
VARGRAPHIC column. The number of characters might increase up to a value
dependent on the page size used.

About this task

To modify the default value associated with a column, once you have defined the
new default value, the new value is used for the column in any subsequent SQL
operations where the use of the default is indicated. The new value must follow
the rules for assignment and have the same restrictions as documented under the
CREATE TABLE statement.

Note: Generate columns cannot have their default value altered by this statement.

280 Database Administration Concepts and Configuration Reference

When changing these table attributes using SQL, it is no longer necessary to drop
the table and then recreate it, a time consuming process that can be complex when
object dependencies exist.

To modify the length and type of a column of an existing table using the command
line, enter:

ALTER TABLE <table_name>
ALTER COLUMN <column_name>
<modification_type>

For example, to increase a column up to 4000 characters, use something similar to
the following:

ALTER TABLE t1
ALTER COLUMN colnam1
SET DATA TYPE VARCHAR(4000)

In another example, to allow a column to have a new VARGRAPHIC value, use an
statement similar to the following:

ALTER TABLE t1
ALTER COLUMN colnam2
SET DATA TYPE VARGRAPHIC(2000)

You cannot alter the column of a typed table. However, you can add a scope to an
existing reference type column that does not already have a scope defined. For
example:

ALTER TABLE t1
ALTER COLUMN colnamt1
ADD SCOPE typtab1

To modify a column to allow for LOBs to be included inline, enter:
ALTER TABLE <table_name>

ALTER COLUMN <column_name>
SET INLINE LENGTH <new_LOB_length>

For example, if you have decided you'd like LOBs of 1000 bytes or less to be
included in a base table row, you'd use a statement similar to the following:

ALTER TABLE t1
ALTER COLUMN colnam1
SET INLINE LENGTH 1004

In this case, the length is set to 1004, rather than 1000. This is because inline LOBs
require an additional 4 bytes of storage over and above the size of the LOB itself.

To modify the default value of a column of an existing table using the command
line, enter:

ALTER TABLE <table_name>
ALTER COLUMN <column_name>
SET DEFAULT ’new_default_value’

For example, to change the default value for a column, use something similar to
the following:

ALTER TABLE t1
ALTER COLUMN colnam1
SET DEFAULT ’123’

Chapter 11. Tables 281

Renaming tables and columns
You can use the RENAME statement to rename an existing table. To rename
columns, use the ALTER TABLE statement.

About this task

When renaming tables, the source table must not be referenced in any existing
definitions (view or materialized query table), triggers, SQL functions, or
constraints. It must also not have any generated columns (other than identity
columns), or be a parent or dependent table. Catalog entries are updated to reflect
the new table name. For more information and examples, see the RENAME
statement.

The RENAME COLUMN clause is an option on the ALTER TABLE statement. You
can rename an existing column in a base table to a new name without losing
stored data or affecting any privileges or label-based access control (LBAC) policies
that are associated with the table.

Only the renaming of base table columns is supported. Renaming columns in
views, materialized query tables (MQTs), declared and created temporary tables,
and other table-like objects is not supported.

Invalidation and revalidation semantics for the rename column operation are
similar to those for the drop column operation; that is, all dependent objects are
invalidated. Revalidation of all dependent objects following a rename column
operation is always done immediately after the invalidation, even if the auto_reval
database configuration parameter is set to DISABLED.

The following example shows the renaming of a column using the ALTER TABLE
statement:

ALTER TABLE org RENAME COLUMN deptnumb TO deptnum

To change the definition of existing columns, see the "Changing column properties"
topic or the ALTER TABLE statement.

Recovering inoperative summary tables
Summary tables can become inoperative as a result of a revoked SELECT privilege
on an underlying table.

About this task

The following steps can help you recover an inoperative summary table:
v Determine the statement that was initially used to create the summary table. You

can obtain this information from the TEXT column of the SYSCAT.VIEW catalog
view.

v Re-create the summary table by using the CREATE SUMMARY TABLE
statement with the same summary table name and same definition.

v Use the GRANT statement to re-grant all privileges that were previously granted
on the summary table. (Note that all privileges granted on the inoperative
summary table are revoked.)

282 Database Administration Concepts and Configuration Reference

If you do not want to recover an inoperative summary table, you can explicitly
drop it with the DROP TABLE statement, or you can create a new summary table
with the same name but a different definition.

An inoperative summary table only has entries in the SYSCAT.TABLES and
SYSCAT.VIEWS catalog views; all entries in the SYSCAT.TABDEP,
SYSCAT.TABAUTH, SYSCAT.COLUMNS and SYSCAT.COLAUTH catalog views
are removed.

Viewing table definitions
You can use the SYSCAT.TABLES and SYSCAT.COLUMNS catalog views to view
table definitions. For SYSCAT.COLUMNS, each row represents a column defined
for a table, view, or nickname. To see the data in the columns, use the SELECT
statement.

About this task

You can also use the following views and table functions to view table definitions:
v ADMINTEMPCOLUMNS administrative view
v ADMINTEMPTABLES administrative view
v ADMIN_GET_TEMP_COLUMNS table function - Retrieve column information

for temporary tables
v ADMIN_GET_TEMP_TABLES table function - Retrieve information for

temporary tables

Dropping tables
A table can be dropped with a DROP TABLE statement. When a table is dropped,
the row in the SYSCAT.TABLES system catalog view that contains information
about that table is dropped, and any other objects that depend on the table are
affected.

About this task

For example:
v All column names are dropped.
v Indexes created on any columns of the table are dropped.
v All views based on the table are marked inoperative.
v All privileges on the dropped table and dependent views are implicitly revoked.
v All referential constraints in which the table is a parent or dependent are

dropped.
v All packages and cached dynamic SQL and XQuery statements dependent on

the dropped table are marked invalid, and remain so until the dependent objects
are re-created. This includes packages dependent on any supertable above the
subtable in the hierarchy that is being dropped.

v Any reference columns for which the dropped table is defined as the scope of
the reference become “unscoped”.

v An alias definition on the table is not affected, because an alias can be undefined
v All triggers dependent on the dropped table are marked inoperative.

To drop a table using the command line, enter:

Chapter 11. Tables 283

DROP TABLE <table_name>

The following statement drops the table called DEPARTMENT:
DROP TABLE DEPARTMENT

An individual table cannot be dropped if it has a subtable. However, all the tables
in a table hierarchy can be dropped by a single DROP TABLE HIERARCHY
statement, as in the following example:

DROP TABLE HIERARCHY person

The DROP TABLE HIERARCHY statement must name the root table of the
hierarchy to be dropped.

There are differences when dropping a table hierarchy compared to dropping a
specific table:
v DROP TABLE HIERARCHY does not activate deletion-triggers that would be

activated by individual DROP table statements. For example, dropping an
individual subtable would activate deletion-triggers on its supertables.

v DROP TABLE HIERARCHY does not make log entries for the individual rows of
the dropped tables. Instead, the dropping of the hierarchy is logged as a single
event.

Dropping materialized query or staging tables
You cannot alter a materialized query or staging table, but you can drop it. All
indexes, primary keys, foreign keys, and check constraints referencing the table are
dropped. All views and triggers that reference the table are made inoperative. All
packages depending on any object dropped or marked inoperative will be
invalidated.

About this task

To drop a materialized query or staging table using the command line, enter:
DROP TABLE <table_name>

The following statement drops the materialized query table XT:
DROP TABLE XT

A materialized query table might be explicitly dropped with the DROP TABLE
statement, or it might be dropped implicitly if any of the underlying tables are
dropped.

A staging table might be explicitly dropped with the DROP TABLE statement, or it
might be dropped implicitly when its associated materialized query table is
dropped.

Scenarios and examples of tables
This section provides scenarios and examples of tables.

Scenarios: Optimistic locking and time-based detection
Three scenarios are provided that show you how to enable and implement
optimistic locking in your applications, with and without time-based detection, and
with and without implicitly hidden columns.

284 Database Administration Concepts and Configuration Reference

Scenario: Using optimistic locking in an application program
This scenario demonstrates how optimistic locking is implemented in an
application program, covering six different scenarios.

Consider the following sequence of events in an application designed and enabled
for optimistic locking:

SELECT QUANTITY, row change token FOR STOCK, RID_BIT(STOCK)
INTO :h_quantity, :h_rct, :h_rid
FROM STOCK WHERE PARTNUM = 3500

In this scenario, the application logic reads each row. Since this application is
enabled for optimistic locking as described in “Enabling optimistic locking in
applications” on page 268, the select list includes the RID_BIT() value saved in the
:h_rid host variable and the row change token value saved in the :h_rct host
variable.

With optimistic locking enabled, the application optimistically assumes any rows
targeted for update or delete will remain unchanged, even if they are unprotected
by locks. To improve database concurrency, the application removes the row lock(s)
using one of the following methods:
v Committing the unit of work, in which case the row locks are removed
v Closing the cursor using the WITH RELEASE clause, in which case the row

locks are removed
v Using a lower isolation level:

– CURSOR STABILITY (CS) in which case the row is not locked after the
cursor fetches to the next row, or to the end of the result table.

– UNCOMMITED READ (UR) in which case any uncommitted data has a new
(uncommitted) row change token value. If the uncommitted data is rolled
back, then the old committed row change token will be a different value.

Note: Assuming updates are not normally rolled back, using UR allows the
most concurrency.

v Disconnecting from the database, thus releasing all DB2 server resources for the
application. (.NET applications often use this mode).

The application processes the rows and decides it wants to optimistically update
one of them:
UPDATE STOCK SET QUANTITY = QUANTITY – 1
WHERE row change token FOR STOCK = :h_rct AND
RID_BIT(STOCK) = :h_rid

The UPDATE statement updates the row identified in the SELECT statement
shown above.

The searched UPDATE predicate is planned as a direct fetch to the table:
RID_BIT(STOCK) = :h_rid

Direct fetch is a very efficient access plan, that is simple for the DB2 optimizer to
cost. If the RID_BIT() predicate does not find a row, the row was deleted and the
update fails with row not found.

Chapter 11. Tables 285

Assuming that the RID_BIT() predicate finds a row, the predicate row change
token FOR STOCK = :h_rct will find the row if the row change token has not
changed. If the row change token has changed since the SELECT, the searched
UPDATE fails with row not found.

Table 20 lists the possible scenarios that could occur when optimistic locking is
enabled.

Table 20. Scenarios that could occur when optimistic locking is enabled

Scenario ID Action Result

Scenario 1 There is a row change timestamp column
defined on the table and no other application
has changed the row.

The update succeeds as the row change token
predicate succeeds for the row identified by
:h_rid.

Scenario 2 There is a ROW CHANGE TIMESTAMP
defined on the table. Another application
updates the row after the select and before the
update (and commits), updating the row change
timestamp column.

The row change token predicate fails comparing
the token generated from the timestamp in the
row at the time of the select and the token value
of the timestamp currently in the row. So the
UPDATE statement fails to find a row.

Scenario 3 There is a ROW CHANGE TIMESTAMP
defined on the table. Another application
updates the row and so the row has a new row
change token. This application selects the row
at isolation UR and gets the new uncommitted
row change token.

This application runs the UPDATE, which will
lock wait until the other application releases its
row lock. The row change token predicate will
succeed if the other application commits the
change with the new token, so the UPDATE
succeeds. The row change token predicate will
fail if the other application rolls back to the old
token, so the UPDATE fails to find a row.

Scenario 4 There is no row change timestamp column
defined on the table. Another row is updated,
deleted or inserted on the same page, after the
select and before the update.

The row change token predicate fails comparing
the token because the row change token value for
all rows on the page has changed, so the
UPDATE statement fails to find a row even
though our row has not actually changed.

This false negative scenario would not result in
an UPDATE failure if a row change timestamp
column was added.

Scenario 5 The table has been altered to contain a row
change timestamp column, and the row
returned in the select has not been modified
since the time of the alter. Another application
updates the row, adding the row change
timestamp column to that row in the process
with the current timestamp.

The row change token predicate fails comparing
the token generated from before with the token
value created from the row change timestamp
column so the UPDATE statement fails to find a
row. Since the row of interest has actually been
changed this is not a false negative scenario.

Scenario 6 The table is reorganized after the select and
before the update. The row ID identified by
:h_rid does not find a row, or contains a row
with a different token so the update fails. This
is the form of false negative that cannot be
avoided even with the existence of a row
change timestamp column in the row.

The row itself is not updated by the
reorganization but the RID_BIT portion of the
predicate cannot identify the original row after
the reorganization.

Scenarios: Optimistic locking using implicitly hidden columns
The following scenarios demonstrate how optimistic locking is implemented in an
application program using implicitly hidden columns, that is, a column defined
with the IMPLICITLY HIDDEN attribute.

286 Database Administration Concepts and Configuration Reference

For these scenarios, assume that table SALARY_INFO is defined with three
columns, and the first column is an implicitly hidden ROW CHANGE
TIMESTAMP column whose values are always generated.

Scenario 1:
In the following statement, the implicitly hidden column is explicitly
referenced in the column list and a value is provided for it in the VALUES
clause:

INSERT INTO SALARY_INFO (UPDATE_TIME, LEVEL, SALARY)
VALUES (DEFAULT, 2, 30000)

Scenario 2:
The following INSERT statement uses an implicit column list. An implicit
column list does not include implicitly hidden columns, therefore, the
VALUES clause only contains values for the other two columns:

INSERT INTO SALARY_INFO
VALUES (2, 30000)

In this case, column UPDATE_TIME must be defined to have a default
value, and that default value is used for the row that is inserted.

Scenario 3:
In the following statement, the implicitly hidden column is explicitly
referenced in the select list and a value for it appears in the result set:

SELECT UPDATE_TIME, LEVEL, SALARY FROM SALARY_INFO
WHERE LEVEL = 2

UPDATE_TIME LEVEL SALARY
-------------------------- ----------- -----------
2006-11-28-10.43.27.560841 2 30000

Scenario 4:
In the following statement the column list is generated implicitly through
use of the * notation, and the implicitly hidden column does not appear in
the result set:

SELECT * FROM SALARY_INFO
WHERE LEVEL = 2

LEVEL SALARY
----------- -----------

2 30000

Scenario 5:
In the following statement, the column list is generated implicitly through
use of the * notation, and the implicitly hidden column value also appears
by using the ROW CHANGE TIMESTAMP FOR expression:

SELECT ROW CHANGE TIMESTAMP FOR SALARY_INFO
AS ROW_CHANGE_STAMP, SALARY_INFO.*
FROM SALARY_INFO WHERE LEVEL = 2

The result table will be similar to scenario 3 (column UPDATE_TIME will
be ROW_CHANGE_STAMP).

Scenario: Time-based update detection
This scenario demonstrates how optimistic locking is implemented in an
application program using update detection by timestamp, covering three different
scenarios.

In this scenario, the application selects all rows that have changed in the last 30
days.

Chapter 11. Tables 287

SELECT * FROM TAB WHERE
ROW CHANGE TIMESTAMP FOR TAB <=
CURRENT TIMESTAMP AND
ROW CHANGE TIMESTAMP FOR TAB >=
CURRENT TIMESTAMP - 30 days;

Scenario 1:
No row change timestamp column is defined on the table. Statement fails
with SQL20431N. This SQL expression is only supported for tables with a
row change timestamp column defined.

Note: This scenario will work on z/OS.

Scenario 2:
A row change timestamp column was defined when the table was created:

CREATE TABLE TAB (..., RCT TIMESTAMP NOT NULL
GENERATED ALWAYS
FOR EACH ROW ON UPDATE AS
ROW CHANGE TIMESTAMP)

This statement returns all rows inserted or updated in the last 30 days.

Scenario 3:
A row change timestamp column was added to the table using the ALTER
TABLE statement at some point in the last 30 days:

ALTER TABLE TAB ADD COLUMN RCT TIMESTAMP NOT NULL
GENERATED ALWAYS
FOR EACH ROW ON UPDATE AS
ROW CHANGE TIMESTAMP

This statement returns all the rows in the table. Any rows that have not
been modified since the ALTER TABLE statement will use the default
value of the timestamp of the ALTER TABLE statement itself, and all other
rows that have been modified since then will have a unique timestamp.

288 Database Administration Concepts and Configuration Reference

Chapter 12. Constraints

Within any business, data must often adhere to certain restrictions or rules. For
example, an employee number must be unique. The database manager provides
constraints as a way to enforce such rules.

The following types of constraints are available:
v NOT NULL constraints
v Unique (or unique key) constraints
v Primary key constraints
v Foreign key (or referential integrity) constraints
v (Table) Check constraints
v Informational constraints

Constraints are only associated with tables and are either defined as part of the
table creation process (using the CREATE TABLE statement) or are added to a
table's definition after the table has been created (using the ALTER TABLE
statement). You can use the ALTER TABLE statement to modify constraints. In
most cases, existing constraints can be dropped at any time; this action does not
affect the table's structure or the data stored in it.

Note: Unique and primary constraints are only associated with table objects, they
are often enforced through the use of one or more unique or primary key indexes.

Types of constraints
A constraint is a rule that is used for optimization purposes.

There are five types of constraints:
v A NOT NULL constraint is a rule that prevents null values from being entered

into one or more columns within a table.
v A unique constraint (also referred to as a unique key constraint) is a rule that

forbids duplicate values in one or more columns within a table. Unique and
primary keys are the supported unique constraints. For example, a unique
constraint can be defined on the supplier identifier in the supplier table to
ensure that the same supplier identifier is not given to two suppliers.

v A primary key constraint is a column or combination of columns that has the
same properties as a unique constraint. You can use a primary key and foreign
key constraints to define relationships between tables.

v A foreign key constraint (also referred to as a referential constraint or a referential
integrity constraint) is a logical rule about values in one or more columns in one
or more tables. For example, a set of tables shares information about a
corporation's suppliers. Occasionally, a supplier's name changes. You can define
a referential constraint stating that the ID of the supplier in a table must match a
supplier ID in the supplier information. This constraint prevents insert, update,
or delete operations that would otherwise result in missing supplier information.

v A (table) check constraint (also called a check constraint) sets restrictions on data
added to a specific table. For example, a table check constraint can ensure that
the salary level for an employee is at least $20 000 whenever salary data is
added or updated in a table containing personnel information.

© Copyright IBM Corp. 1993, 2012 289

An informational constraint is an attribute of a certain type of constraint, but one
that is not enforced by the database manager.

NOT NULL constraints
NOT NULL constraints prevent null values from being entered into a column.

The null value is used in databases to represent an unknown state. By default, all
of the built-in data types provided with the database manager support the
presence of null values. However, some business rules might dictate that a value
must always be provided (for example, every employee is required to provide
emergency contact information). The NOT NULL constraint is used to ensure that
a given column of a table is never assigned the null value. Once a NOT NULL
constraint has been defined for a particular column, any insert or update operation
that attempts to place a null value in that column will fail.

Because constraints only apply to a particular table, they are usually defined along
with a table's attributes, during the table creation process. The following CREATE
TABLE statement shows how the NOT NULL constraint would be defined for a
particular column:

CREATE TABLE EMPLOYEES (. . .
EMERGENCY_PHONE CHAR(14) NOT NULL,
. . .
);

Unique constraints
Unique constraints ensure that the values in a set of columns are unique and not
null for all rows in the table. The columns specified in a unique constraint must be
defined as NOT NULL. The database manager uses a unique index to enforce the
uniqueness of the key during changes to the columns of the unique constraint.

Unique constraints can be defined in the CREATE TABLE or ALTER TABLE
statement using the UNIQUE clause. For example, a typical unique constraint in a
DEPARTMENT table might be that the department number is unique and not null.

Figure 35 shows that a duplicate record is prevented from being added to a table
when a unique constraint exists for the table:

The database manager enforces the constraint during insert and update operations,
ensuring data integrity.

Department
number

001

003

002

003

004

005

Invalid record

Figure 35. Unique constraints prevent duplicate data

290 Database Administration Concepts and Configuration Reference

A table can have an arbitrary number of unique constraints, with at most one
unique constraint defined as the primary key. A table cannot have more than one
unique constraint on the same set of columns.

A unique constraint that is referenced by the foreign key of a referential constraint
is called the parent key.
v When a unique constraint is defined in a CREATE TABLE statement, a unique

index is automatically created by the database manager and designated as a
primary or unique system-required index.

v When a unique constraint is defined in an ALTER TABLE statement and an
index exists on the same columns, that index is designated as unique and
system-required. If such an index does not exist, the unique index is
automatically created by the database manager and designated as a primary or
unique system-required index.

Note: There is a distinction between defining a unique constraint and creating a
unique index. Although both enforce uniqueness, a unique index allows nullable
columns and generally cannot be used as a parent key.

Primary key constraints
You can use primary key and foreign key constraints to define relationships
between tables.

A primary key is a column or combination of columns that has the same properties
as a unique constraint. Because the primary key is used to identify a row in a
table, it must be unique, and must have the NOT NULL attribute. A table cannot
have more than one primary key, but it can have multiple unique keys. Primary
keys are optional, and can be defined when a table is created or altered. They are
also beneficial, because they order the data when data is exported or reorganized.

(Table) Check constraints
A check constraint (also referred to as a table check constraint) is a database rule that
specifies the values allowed in one or more columns of every row of a table.
Specifying check constraints is done through a restricted form of a search
condition.

Foreign key (referential) constraints
Foreign key constraints (also known as referential constraints or referential integrity
constraints) enable you to define required relationships between and within tables.

For example, a typical foreign key constraint might state that every employee in
the EMPLOYEE table must be a member of an existing department, as defined in
the DEPARTMENT table.

Referential integrity is the state of a database in which all values of all foreign keys
are valid. A foreign key is a column or a set of columns in a table whose values are
required to match at least one primary key or unique key value of a row in its
parent table. A referential constraint is the rule that the values of the foreign key are
valid only if one of the following conditions is true:
v They appear as values of a parent key.
v Some component of the foreign key is null.

Chapter 12. Constraints 291

To establish this relationship, you would define the department number in the
EMPLOYEE table as the foreign key, and the department number in the
DEPARTMENT table as the primary key.

Figure 36 shows how a record with an invalid key is prevented from being added
to a table when a foreign key constraint exists between two tables:

The table containing the parent key is called the parent table of the referential
constraint, and the table containing the foreign key is said to be a dependent of that
table.

Referential constraints can be defined in the CREATE TABLE statement or the
ALTER TABLE statement. Referential constraints are enforced by the database
manager during the execution of INSERT, UPDATE, DELETE, ALTER TABLE,
MERGE, ADD CONSTRAINT, and SET INTEGRITY statements.

Referential integrity rules involve the following terms:

Employee table

Department table

Department
number

001

002

003

Invalid
record

Employee
name

John Doe

Barb Smith

Fred Vickers

Jane Doe

Department
number

Department
name

001 Sales

002 Training

003

015

Communications

...

Program
development

Foreign
key

Primary
key

...

027

Figure 36. Foreign and primary key constraints

292 Database Administration Concepts and Configuration Reference

Table 21. Referential integrity terms

Concept Terms

Parent key A primary key or a unique key of a referential constraint.

Parent row A row that has at least one dependent row.

Parent table A table that contains the parent key of a referential constraint. A table can
be a parent in an arbitrary number of referential constraints. A table that
is the parent in a referential constraint can also be the dependent in a
referential constraint.

Dependent table A table that contains at least one referential constraint in its definition. A
table can be a dependent in an arbitrary number of referential constraints.
A table that is the dependent in a referential constraint can also be the
parent in a referential constraint.

Descendent
table

A table is a descendent of table T if it is a dependent of T or a descendent
of a dependent of T.

Dependent row A row that has at least one parent row.

Descendent row A row is a descendent of row r if it is a dependent of r or a descendent of
a dependent of r.

Referential cycle A set of referential constraints such that each table in the set is a
descendent of itself.

Self-referencing
table

A table that is a parent and a dependent in the same referential constraint.
The constraint is called a self-referencing constraint.

Self-referencing
row

A row that is a parent of itself.

The purpose of a referential constraint is to guarantee that table relationships are
maintained and that data entry rules are followed. This means that as long as a
referential constraint is in effect, the database manager guarantees that for each
row in a child table that has a non-null value in its foreign key columns, a row
exists in a corresponding parent table that has a matching value in its parent key.

When an SQL operation attempts to change data in such a way that referential
integrity will be compromised, a foreign key (or referential) constraint could be
violated. The database manager handles these types of situations by enforcing a set
of rules that are associated with each referential constraint. This set of rules consist
of:
v An insert rule
v An update rule
v A delete rule

When an SQL operation attempts to change data in such a way that referential
integrity will be compromised, a referential constraint could be violated. For
example,
v An insert operation could attempt to add a row of data to a child table that has

a value in its foreign key columns that does not match a value in the
corresponding parent table's parent key.

v An update operation could attempt to change the value in a child table's foreign
key columns to a value that has no matching value in the corresponding parent
table's parent key.

v An update operation could attempt to change the value in a parent table's
parent key to a value that does not have a matching value in a child table's
foreign key columns.

Chapter 12. Constraints 293

v A delete operation could attempt to remove a record from a parent table that has
a matching value in a child table's foreign key columns.

The database manager handles these types of situations by enforcing a set of rules
that are associated with each referential constraint. This set of rules consists of:
v An insert rule
v An update rule
v A delete rule

Insert rule

The insert rule of a referential constraint is that a non-null insert value of the
foreign key must match some value of the parent key of the parent table. The
value of a composite foreign key is null if any component of the value is null. This
rule is implicit when a foreign key is specified.

Update rule

The update rule of a referential constraint is specified when the referential
constraint is defined. The choices are NO ACTION and RESTRICT. The update rule
applies when a row of the parent or a row of the dependent table is updated.

In the case of a parent row, when a value in a column of the parent key is
updated, the following rules apply:
v If any row in the dependent table matches the original value of the key, the

update is rejected when the update rule is RESTRICT.
v If any row in the dependent table does not have a corresponding parent key

when the update statement is completed (excluding AFTER triggers), the update
is rejected when the update rule is NO ACTION.

The value of the parent unique keys cannot be changed if the update rule is
RESTRICT and there are one or more dependent rows. However, if the update rule
is NO ACTION, parent unique keys can be updated as long as every child has a
parent key by the time the update statement completes. A non-null update value of
a foreign key must be equal to a value of the primary key of the parent table of the
relationship.

Also, the use of NO ACTION or RESTRICT as update rules for referential
constraints determines when the constraint is enforced. An update rule of
RESTRICT is enforced before all other constraints, including those referential
constraints with modifying rules such as CASCADE or SET NULL. An update rule
of NO ACTION is enforced after other referential constraints. Note that the
SQLSTATE returned is different depending on whether the update rule is
RESTRICT or NO ACTION.

In the case of a dependent row, the NO ACTION update rule is implicit when a
foreign key is specified. NO ACTION means that a non-null update value of a
foreign key must match some value of the parent key of the parent table when the
update statement is completed.

The value of a composite foreign key is null if any component of the value is null.

294 Database Administration Concepts and Configuration Reference

Delete rule

The delete rule of a referential constraint is specified when the referential
constraint is defined. The choices are NO ACTION, RESTRICT, CASCADE, or SET
NULL. SET NULL can be specified only if some column of the foreign key allows
null values.

If the identified table or the base table of the identified view is a parent, the rows
selected for delete must not have any dependents in a relationship with a delete
rule of RESTRICT, and the DELETE must not cascade to descendent rows that
have dependents in a relationship with a delete rule of RESTRICT.

If the delete operation is not prevented by a RESTRICT delete rule, the selected
rows are deleted. Any rows that are dependents of the selected rows are also
affected:
v The nullable columns of the foreign keys of any rows that are their dependents

in a relationship with a delete rule of SET NULL are set to the null value.
v Any rows that are their dependents in a relationship with a delete rule of

CASCADE are also deleted, and the above rules apply, in turn, to those rows.

The delete rule of NO ACTION is checked to enforce that any non-null foreign key
refers to an existing parent row after the other referential constraints have been
enforced.

The delete rule of a referential constraint applies only when a row of the parent
table is deleted. More precisely, the rule applies only when a row of the parent
table is the object of a delete or propagated delete operation (defined below), and
that row has dependents in the dependent table of the referential constraint.
Consider an example where P is the parent table, D is the dependent table, and p
is a parent row that is the object of a delete or propagated delete operation. The
delete rule works as follows:
v With RESTRICT or NO ACTION, an error occurs and no rows are deleted.
v With CASCADE, the delete operation is propagated to the dependents of p in

table D.
v With SET NULL, each nullable column of the foreign key of each dependent of p

in table D is set to null.

Any table that can be involved in a delete operation on P is said to be
delete-connected to P. Thus, a table is delete-connected to table P if it is a dependent
of P, or a dependent of a table to which delete operations from P cascade.

The following restrictions apply to delete-connected relationships:
v When a table is delete-connected to itself in a referential cycle of more than one

table, the cycle must not contain a delete rule of either RESTRICT or SET NULL.
v A table must not both be a dependent table in a CASCADE relationship

(self-referencing or referencing another table) and have a self-referencing
relationship with a delete rule of either RESTRICT or SET NULL.

v When a table is delete-connected to another table through multiple relationships
where such relationships have overlapping foreign keys, these relationships must
have the same delete rule and none of these can be SET NULL.

v When a table is delete-connected to another table through multiple relationships
where one of the relationships is specified with delete rule SET NULL, the
foreign key definition of this relationship must not contain any distribution key
or MDC key column, a table-partitioning key column, or RCT key column.

Chapter 12. Constraints 295

v When two tables are delete-connected to the same table through CASCADE
relationships, the two tables must not be delete-connected to each other where
the delete connected paths end with delete rule RESTRICT or SET NULL.

Informational constraints
An informational constraint is a constraint attribute that can be used by the SQL
compiler to improve the access to data. Informational constraints are not enforced
by the database manager, and are not used for additional verification of data;
rather, they are used to improve query performance.

Informational constraints are defined using the CREATE TABLE or ALTER TABLE
statements. You first add referential integrity or check constraints and then
associate constraint attributes to them specifying whether the database manager is
to enforce the constraint or not; and, whether the constraint is to be used for query
optimization or not.

Designing constraints
When designing and creating constraints, it is a good idea to use a naming
convention that properly identifies the different types constraints. This is
particularly important for diagnosing errors that might occur.

About this task

You can design the following types of constraints:
v NOT NULL constraints
v Unique constraints
v Primary key constraints
v (Table) Check constraints
v Foreign key (referential) constraints
v Information constraints

Designing unique constraints
Unique constraints ensure that every value in the specified key is unique. A table
can have any number of unique constraints, with one unique constraint defined as
a primary key.

Before you begin

Restrictions

v A unique constraint might not be defined on a subtable.
v There can be only one primary key per table.

About this task

You define a unique constraint with the UNIQUE clause in the CREATE TABLE or
ALTER TABLE statements. The unique key can consist of more than one column.
More than one unique constraint is allowed on a table.

Once established, the unique constraint is enforced automatically by the database
manager when an INSERT or UPDATE statement modifies the data in the table.
The unique constraint is enforced through a unique index.

296 Database Administration Concepts and Configuration Reference

When a unique constraint is defined in an ALTER TABLE statement and an index
exists on the same set of columns of that unique key, that index becomes the
unique index and is used by the constraint.

You can take any one unique constraint and use it as the primary key. The primary
key can be used as the parent key in a referential constraint (along with other
unique constraints). You define a primary key with the PRIMARY KEY clause in
the CREATE TABLE or ALTER TABLE statement. The primary key can consist of
more than one column.

A primary index forces the value of the primary key to be unique. When a table is
created with a primary key, the database manager creates a primary index on that
key.

Some performance tips for indexes used as unique constraints include:

When performing an initial load of an empty table with indexes, LOAD gives
better performance than IMPORT. This is true no matter whether you are using the
INSERT or REPLACE modes of LOAD. When appending a substantial amount of
data to an existing table with indexes (using IMPORT INSERT, or LOAD INSERT),
LOAD gives slightly better performance than IMPORT. If you are using the IMPORT
command for an initial large load of data, create the unique key after the data has
been imported or loaded. This avoids the overhead of maintaining the index when
the table is being loaded. It also results in the index using the least amount of
storage. If you are using the load utility in REPLACE mode, create the unique key
before loading the data. In this case, creation of the index during the load is more
efficient than using the CREATE INDEX statement after the load.

Designing primary key constraints
Each table can have one primary key. A primary key is a column or combination of
columns that has the same properties as a unique constraint. You can use a
primary key and foreign key constraints to define relationships between tables.

About this task

Because the primary key is used to identify a row in a table, it should be unique
and have very few additions or deletions. A table cannot have more than one
primary key, but it can have multiple unique keys. Primary keys are optional, and
can be defined when a table is created or altered, using the PRIMARY KEY clause.
They are also beneficial, because they order the data when data is exported or
reorganized.

Primary key constraints are designed like unique constraints, as described in
“Designing unique constraints” on page 296. The only difference is that you can
have only one primary key constraint per table, whereas, you can have many
unique constraints.

Note: You can have primary key constraints based on composite primary keys.

Designing check constraints
When creating check constraints, one of two things can happen: (i) all the rows
meet the check constraint, or (ii) some or all the rows do not meet the check
constraint.

Chapter 12. Constraints 297

About this task

All the rows meet the check constraint
When all the rows meet the check constraint, the check constraint will be
created successfully. Future attempts to insert or update data that does not
meet the constraint business rule will be rejected.

Some or all the rows do not meet the check constraint
When there are some rows that do not meet the check constraint, the check
constraint will not be created (that is, the ALTER TABLE statement will
fail). The ALTER TABLE statement, which adds a new constraint to the
EMPLOYEE table, is shown below. The check constraint is named
CHECK_JOB. The database manager will use this name to inform you
about which constraint was violated if an INSERT or UPDATE statement
fails. The CHECK clause is used to define a table-check constraint.

ALTER TABLE EMPLOYEE
ADD CONSTRAINT check_job
CHECK (JOB IN (’Engineer’, ’Sales’, ’Manager’));

An ALTER TABLE statement was used because the table had already been
defined. If there are values in the EMPLOYEE table that conflict with the
constraint being defined, the ALTER STATEMENT will not be completed
successfully.

As check constraints and other types of constraints are used to implement business
rules, you might need to change them from time to time. This could happen when
the business rules change in your organization. Whenever a check constraint needs
to be changed, you must drop it and recreate a new one. Check constraints can be
dropped at any time, and this action will not affect your table or the data within it.
When you drop a check constraint, you must be aware that data validation
performed by the constraint will no longer be in effect.

Comparison of check constraints and BEFORE triggers
You must consider the difference between check constraints when considering
whether to use triggers or check constraints to preserve the integrity of your data.

The integrity of the data in a relational database must be maintained as multiple
users access and change the data. Whenever data is shared, there is a need to
ensure the accuracy of the values within databases.

Check constraints
A (table) check constraint sets restrictions on data added to a specific table.
You can use a table check constraint to define restrictions, beyond those of
the data type, on the values that are allowed for a column in the table.
Table check constraints take the form of range checks or checks against
other values in the same row of the same table.

If the rule applies for all applications that use the data, use a table check
constraint to enforce your restriction on the data allowed in the table. Table
check constraints make the restriction generally applicable and easier to
maintain.

The enforcement of check constraints is important for maintaining data
integrity, but it also carries a certain amount of overhead that can impact
performance whenever large volumes of data are modified.

BEFORE triggers
By using triggers that run before an update or insert, values that are being
updated or inserted can be modified before the database is actually

298 Database Administration Concepts and Configuration Reference

modified. These can be used to transform input from the application (user
view of the data) to an internal database format where desired. BEFORE
triggers can also be used to cause other non-database operations to be
activated through user-defined functions.

In addition to modification, a common use of the BEFORE triggers is for
data verification using the SIGNAL clause.

There are two differences between BEFORE triggers and check constraints
when used for data verification:
1. BEFORE triggers, unlike check constraints, are not restricted to access

other values in the same row of the same table.
2. During a SET INTEGRITY operation on a table after a LOAD operation,

triggers (including BEFORE triggers) are not executed. Check
constraints, however, are verified.

Designing foreign key (referential) constraints
Referential integrity is imposed by adding foreign key (or referential) constraints to
table and column definitions, and to create an index on all the foreign key
columns. Once the index and foreign key constraints are defined, changes to the
data within the tables and columns is checked against the defined constraint.
Completion of the requested action depends on the result of the constraint
checking.

About this task

Referential constraints are established with the FOREIGN KEY clause, and the
REFERENCES clause in the CREATE TABLE or ALTER TABLE statements. There
are effects from a referential constraint on a typed table or to a parent table that is
a typed table that you should consider before creating a referential constraint.

The identification of foreign keys enforces constraints on the values within the
rows of a table or between the rows of two tables. The database manager checks
the constraints specified in a table definition and maintains the relationships
accordingly. The goal is to maintain integrity whenever one database object
references another, without performance degradation.

For example, primary and foreign keys each have a department number column.
For the EMPLOYEE table, the column name is WORKDEPT, and for the
DEPARTMENT table, the name is DEPTNO. The relationship between these two
tables is defined by the following constraints:
v There is only one department number for each employee in the EMPLOYEE

table, and that number exists in the DEPARTMENT table.
v Each row in the EMPLOYEE table is related to no more than one row in the

DEPARTMENT table. There is a unique relationship between the tables.
v Each row in the EMPLOYEE table that has a non-null value for WORKDEPT is

related to a row in the DEPTNO column of the DEPARTMENT table.
v The DEPARTMENT table is the parent table, and the EMPLOYEE table is the

dependent table.

The statement defining the parent table, DEPARTMENT, is:
CREATE TABLE DEPARTMENT

(DEPTNO CHAR(3) NOT NULL,
DEPTNAME VARCHAR(29) NOT NULL,
MGRNO CHAR(6),

Chapter 12. Constraints 299

ADMRDEPT CHAR(3) NOT NULL,
LOCATION CHAR(16),

PRIMARY KEY (DEPTNO))
IN RESOURCE

The statement defining the dependent table, EMPLOYEE, is:
CREATE TABLE EMPLOYEE

(EMPNO CHAR(6) NOT NULL PRIMARY KEY,
FIRSTNME VARCHAR(12) NOT NULL,
LASTNAME VARCHAR(15) NOT NULL,
WORKDEPT CHAR(3),
PHONENO CHAR(4),
PHOTO BLOB(10m) NOT NULL,

FOREIGN KEY DEPT (WORKDEPT)
REFERENCES DEPARTMENT ON DELETE NO ACTION)

IN RESOURCE

By specifying the DEPTNO column as the primary key of the DEPARTMENT table
and WORKDEPT as the foreign key of the EMPLOYEE table, you are defining a
referential constraint on the WORKDEPT values. This constraint enforces
referential integrity between the values of the two tables. In this case, any
employees that are added to the EMPLOYEE table must have a department
number that can be found in the DEPARTMENT table.

The delete rule for the referential constraint in the employee table is NO ACTION,
which means that a department cannot be deleted from the DEPARTMENT table if
there are any employees in that department.

Although the previous examples use the CREATE TABLE statement to add a
referential constraint, the ALTER TABLE statement can also be used.

Another example: The same table definitions are used as those in the previous
example. Also, the DEPARTMENT table is created before the EMPLOYEE table.
Each department has a manager, and that manager is listed in the EMPLOYEE
table. MGRNO of the DEPARTMENT table is actually a foreign key of the
EMPLOYEE table. Because of this referential cycle, this constraint poses a slight
problem. You could add a foreign key later. You could also use the CREATE
SCHEMA statement to create both the EMPLOYEE and DEPARTMENT tables at
the same time.

See also, “Foreign keys in referential constraints” on page 302.

Examples of interaction between triggers and referential
constraints
Update operations can cause the interaction of triggers with referential constraints
and check constraints.

Figure 37 on page 301 and the associated description are representative of the
processing that is performed for an statement that updates data in the database.

300 Database Administration Concepts and Configuration Reference

Figure 37 shows the general order of processing for an statement that updates a
table. It assumes a situation where the table includes BEFORE triggers, referential
constraints, check constraints and AFTER triggers that cascade. The following is a
description of the boxes and other items found in Figure 37.
v statement S1

This is the DELETE, INSERT, or UPDATE statement that begins the process. The
statement S1 identifies a table (or an updatable view over some table) referred to
as the subject table throughout this description.

v Determine set of affected rows
This step is the starting point for a process that repeats for referential constraint
delete rules of CASCADE and SET NULL and for cascaded statements from
AFTER triggers.
The purpose of this step is to determine the set of affected rows for the statement.
The set of rows included is based on the statement:
– for DELETE, all rows that satisfy the search condition of the statement (or the

current row for a positioned DELETE)
– for INSERT, the rows identified by the VALUES clause or the fullselect
– for UPDATE, all rows that satisfy the search condition (or the current row for

a positioned UPDATE).
If the set of affected rows is empty, there will be no BEFORE triggers, changes to
apply to the subject table, or constraints to process for the statement.

v Process BEFORE triggers
All BEFORE triggers are processed in ascending order of creation. Each BEFORE
trigger will process the triggered action once for each row in the set of affected
rows.
An error can occur during the processing of a triggered action in which case all
changes made as a result of the original statement S1 (so far) are rolled back.
If there are no BEFORE triggers or the set of affected is empty, this step is
skipped.

v Apply the set of affected rows to the subject table
The actual delete, insert, or update is applied using the set of affected rows to
the subject table in the database.

SQL statement S1 Determine set of
affected rows (SAR)

Process
BEFORE triggers

Apply SAR to
the target table

Apply
Constraints

Process
AFTER triggers

error

error

violation

error

cascaded SQL statement

= rollback changes to before S1

R

R

R

R

R

Figure 37. Processing an statement with associated triggers and constraints

Chapter 12. Constraints 301

An error can occur when applying the set of affected rows (such as attempting
to insert a row with a duplicate key where a unique index exists) in which case
all changes made as a result of the original statement S1 (so far) are rolled back.

v Apply Constraints
The constraints associated with the subject table are applied if set of affected
rows is not empty. This includes unique constraints, unique indexes, referential
constraints, check constraints and checks related to the WITH CHECK OPTION
on views. Referential constraints with delete rules of cascade or set null might
cause additional triggers to be activated.
A violation of any constraint or WITH CHECK OPTION results in an error and
all changes made as a result of S1 (so far) are rolled back.

v Process AFTER triggers
All AFTER triggers activated by S1 are processed in ascending order of creation.
FOR EACH STATEMENT triggers will process the triggered action exactly once,
even if the set of affected rows is empty. FOR EACH ROW triggers will process
the triggered action once for each row in the set of affected rows.
An error can occur during the processing of a triggered action in which case all
changes made as a result of the original S1 (so far) are rolled back.
The triggered action of a trigger can include triggered statements that are
DELETE, INSERT or UPDATE statements. For the purposes of this description,
each such statement is considered a cascaded statement.
A cascaded statement is a DELETE, INSERT, or UPDATE statement that is
processed as part of the triggered action of an AFTER trigger. This statement
starts a cascaded level of trigger processing. This can be thought of as assigning
the triggered statement as a new S1 and performing all of the steps described
here recursively.
Once all triggered statements from all AFTER triggers activated by each S1 have
been processed to completion, the processing of the original S1 is completed.

v R = roll back changes to before S1

Any error (including constraint violations) that occurs during processing results
in a roll back of all the changes made directly or indirectly as a result of the
original statement S1. The database is therefore back in the same state as
immediately prior to the execution of the original statement S1

Foreign keys in referential constraints
A foreign key references a primary key or a unique key in the same or another
table. A foreign key assignment indicates that referential integrity is to be
maintained according to the specified referential constraints.

You define a foreign key with the FOREIGN KEY clause in the CREATE TABLE or
ALTER TABLE statement. A foreign key makes its table dependent on another
table called a parent table. The values in the column or set of columns that make
up the foreign key in one table must match the unique key or primary key values
of the parent table.

The number of columns in the foreign key must be equal to the number of
columns in the corresponding primary or unique constraint (called a parent key) of
the parent table. In addition, corresponding parts of the key column definitions
must have the same data types and lengths. The foreign key can be assigned a
constraint name. If you do not assign a name, one is automatically assigned. For
ease of use, it is recommended that you assign a constraint name and do not use the
system-generated name.

302 Database Administration Concepts and Configuration Reference

The value of a composite foreign key matches the value of a parent key if the
value of each column of the foreign key is equal to the value of the corresponding
column of the parent key. A foreign key containing null values cannot match the
values of a parent key, since a parent key by definition can have no null values.
However, a null foreign key value is always valid, regardless of the value of any of
its non-null parts.

The following rules apply to foreign key definitions:
v A table can have many foreign keys
v A foreign key is nullable if any part is nullable
v A foreign key value is null if any part is null.

When working with foreign keys you can do the following:
v Create a table with zero or more foreign keys.
v Define foreign keys when a table is created or altered.
v Drop foreign keys when a table is altered.

Table constraint implications for utility operations
If the table being loaded into has referential integrity constraints, the load utility
places the table into the set integrity pending state to inform you that the SET
INTEGRITY statement is required to be run on the table, in order to verify the
referential integrity of the loaded rows. After the load utility has completed, you
will need to issue the SET INTEGRITY statement to carry out the referential
integrity checking on the loaded rows and to bring the table out of the set integrity
pending state.

For example, if the DEPARTMENT and EMPLOYEE tables are the only tables that
have been placed in set integrity pending state, you can execute the following
statement:

SET INTEGRITY FOR DEPARTMENT ALLOW WRITE ACCESS,
EMPLOYEE ALLOW WRITE ACCESS,
IMMEDIATE CHECKED FOR EXCEPTION IN DEPARTMENT,
USE DEPARTMENT_EX,
IN EMPLOYEE USE EMPLOYEE_EX

The import utility is affected by referential constraints in the following ways:
v The REPLACE and REPLACE CREATE functions are not allowed if the object

table has any dependents other than itself.
To use these functions, first drop all foreign keys in which the table is a parent.
When the import is complete, re-create the foreign keys with the ALTER TABLE
statement.

v The success of importing into a table with self-referencing constraints depends
on the order in which the rows are imported.

Statement dependencies when changing objects
Statement dependencies include package and cached dynamic SQL and XQuery
statements. A package is a database object that contains the information needed by
the database manager to access data in the most efficient way for a particular
application program. Binding is the process that creates the package the database
manager needs in order to access the database when the application is executed.

Packages and cached dynamic SQL and XQuery statements can be dependent on
many types of objects.

Chapter 12. Constraints 303

These objects could be explicitly referenced, for example, a table or user-defined
function that is involved in an SQL SELECT statement. The objects could also be
implicitly referenced, for example, a dependent table that needs to be checked to
ensure that referential constraints are not violated when a row in a parent table is
deleted. Packages are also dependent on the privileges which have been granted to
the package creator.

If a package or cached dynamic query statement depends on an object and that
object is dropped, the package or cached dynamic query statement is placed in an
“invalid” state. If a package depends on a user-defined function and that function
is dropped, the package is placed in an “inoperative” state, with the following
conditions:
v A cached dynamic SQL or XQuery statement that is in an invalid state is

automatically re-optimized on its next use. If an object required by the statement
has been dropped, execution of the dynamic SQL or XQuery statement might
fail with an error message.

v A package that is in an invalid state is implicitly rebound on its next use. Such a
package can also be explicitly rebound. If a package was marked as being not
valid because a trigger was dropped, the rebound package no longer invokes the
trigger.

v A package that is in an inoperative state must be explicitly rebound before it can
be used.

Federated database objects have similar dependencies. For example, dropping a
server or altering a server definition invalidates any packages or cached dynamic
SQL referencing nicknames associated with that server.

In some cases, it is not possible to rebind the package. For example, if a table has
been dropped and not re-created, the package cannot be rebound. In this case, you
must either re-create the object or change the application so it does not use the
dropped object.

In many other cases, for example if one of the constraints was dropped, it is
possible to rebind the package.

The following system catalog views help you to determine the state of a package
and the package's dependencies:
v SYSCAT.PACKAGEAUTH
v SYSCAT.PACKAGEDEP
v SYSCAT.PACKAGES

Designing informational constraints
Constraints that are enforced by the database manager when records are inserted
or updated can lead to high amounts of system overhead, especially when loading
large quantities of records that have referential integrity constraints. If an
application has already verified information before inserting a record into the table,
it might be more efficient to use informational constraints, rather than normal
constraints.

Informational constraints tell the database manager what rules the data conforms
to, but the rules are not enforced by the database manager. However, this
information can be used by the DB2 optimizer and could result in better
performance of SQL queries.

304 Database Administration Concepts and Configuration Reference

The following example illustrates the use of information constraints and how they
work. This simple table contains information on applicants' age and gender:

CREATE TABLE APPLICANTS
(
AP_NO INT NOT NULL,

GENDER CHAR(1) NOT NULL,
CONSTRAINT GENDEROK

CHECK (GENDER IN (’M’, ’F’))
NOT ENFORCED
ENABLE QUERY OPTIMIZATION,

AGE INT NOT NULL,
CONSTRAINT AGEOK

CHECK (AGE BETWEEN 1 AND 80)
NOT ENFORCED
ENABLE QUERY OPTIMIZATION,

);

This example contains two clauses that change the behavior of the column
constraints. The first option is NOT ENFORCED, which instructs the database
manager not to enforce the checking of this column when data is inserted or
updated.

The second option is ENABLE QUERY OPTIMIZATION which is used by the
database manager when SELECT statements are run against this table. When this
value is specified, the database manager will use the information in the constraint
when optimizing the SQL.

If the table contains the NOT ENFORCED option, the behavior of insert statements
might appear odd. The following SQL will not result in any errors when run
against the APPLICANTS table:

INSERT INTO APPLICANTS VALUES
(1, ’M’, 54),
(2, ’F’, 38),
(3, ’M’, 21),
(4, ’F’, 89),
(5, ’C’, 10),
(6, ’S’,100),

Applicant number five has a gender (C), for child, and applicant number six has
both an unusual gender and exceeds the age limits of the AGE column. In both
cases the database manager will allow the insert to occur since the constraints are
NOT ENFORCED. The result of a select statement against the table is shown
below:

SELECT * FROM APPLICANTS
WHERE GENDER = ’C’;

APPLICANT GENDER AGE
--------- ------ ---

0 record(s) selected.

The database manager returned the incorrect answer to the query, even though the
value 'C' is found within the table, but the constraint on this column tells the
database manager that the only valid values are either 'M' or 'F'. The ENABLE
QUERY OPTIMIZATION keyword also allowed the database manager to use this
constraint information when optimizing the statement. If this is not the behavior
that you want, then the constraint needs to be changed through the use of the
ALTER TABLE statement, as shown below:

ALTER TABLE APPLICANTS
ALTER CHECK AGEOK DISABLE QUERY OPTIMIZATION

Chapter 12. Constraints 305

If the query is reissued, the database manager will return the following correct
results:

SELECT * FROM APPLICANTS
WHERE SEC = ’C’;

APPLICANT GENDER AGE
--------- ------ ---

5 C 10

1 record(s) selected.

The best scenario for using informational constraints occurs when you can
guarantee that the application program is the only application inserting and
updating the data. If the application already checks all of the information
beforehand (such as gender and age) then using informational constraints can
result in faster performance and no duplication of effort. Another possible use of
informational constraints is in the design of data warehouses.

Creating and modifying constraints
Constraints can be added to existing tables with the ALTER TABLE statement.

About this task

The constraint name cannot be the same as any other constraint specified within an
ALTER TABLE statement, and must be unique within the table (this includes the
names of any referential integrity constraints that are defined). Existing data is
checked against the new condition before the statement succeeds.

Creating and modifying unique constraints
Unique constraints can be added to an existing table. The constraint name
cannot be the same as any other constraint specified within the ALTER
TABLE statement, and must be unique within the table (this includes the
names of any referential integrity constraints that are defined). Existing
data is checked against the new condition before the statement succeeds.

To define unique constraints using the command line, use the ADD
CONSTRAINT option of the ALTER TABLE statement. For example, the
following statement adds a unique constraint to the EMPLOYEE table that
represents a new way to uniquely identify employees in the table:

ALTER TABLE EMPLOYEE
ADD CONSTRAINT NEWID UNIQUE(EMPNO,HIREDATE)

To modify this constraint, you would have to drop it, and then recreate it.

Creating and modifying primary key constraints
A primary key constraint can be added to an existing table. The constraint
name must be unique within the table (this includes the names of any
referential integrity constraints that are defined). Existing data is checked
against the new condition before the statement succeeds.

To add primary keys using the command line, enter:
ALTER TABLE <name>

ADD CONSTRAINT <column_name>
PRIMARY KEY <column_name>

An existing constraint cannot be modified. To define another column, or
set of columns, as the primary key, the existing primary key definition
must first be dropped, and then recreated.

306 Database Administration Concepts and Configuration Reference

Creating and modifying check constraints
When a table check constraint is added, packages and cached dynamic
SQL that insert or update the table might be marked as invalid.

To add a table check constraint using the command line, enter:
ALTER TABLE EMPLOYEE

ADD CONSTRAINT REVENUE CHECK (SALARY + COMM > 25000)

To modify this constraint, you would have to drop it, and then recreate it.

Creating and modifying foreign key (referential) constraints
A foreign key is a reference to the data values in another table. There are
different types of foreign key constraints.

When a foreign key is added to a table, packages and cached dynamic SQL
containing the following statements might be marked as invalid:
v Statements that insert or update the table containing the foreign key
v Statements that update or delete the parent table.

To add foreign keys using the command line, enter:
ALTER TABLE <name>

ADD CONSTRAINT <column_name>
FOREIGN KEY <column_name>
ON DELETE <action_type>
ON UPDATE <action_type>

The following examples show the ALTER TABLE statement to add primary
keys and foreign keys to a table:

ALTER TABLE PROJECT
ADD CONSTRAINT PROJECT_KEY

PRIMARY KEY (PROJNO)
ALTER TABLE EMP_ACT

ADD CONSTRAINT ACTIVITY_KEY
PRIMARY KEY (EMPNO, PROJNO, ACTNO)

ADD CONSTRAINT ACT_EMP_REF
FOREIGN KEY (EMPNO)
REFERENCES EMPLOYEE
ON DELETE RESTRICT

ADD CONSTRAINT ACT_PROJ_REF
FOREIGN KEY (PROJNO)
REFERENCES PROJECT
ON DELETE CASCADE

To modify this constraint, you would have to drop it and then recreate it.

Creating and modifying informational constraints
To improve the performance of queries, you can add informational
constraints to your tables. You add informational constraints using the
CREATE TABLE or ALTER TABLE statement when you specify the NOT
ENFORCED option on the DDL.

Restriction: After you define informational constraints on a table, you can
only alter the column names for that table after you remove the
informational constraints.

To specify informational constraints on a table using the command line,
enter the following command for a new table:

ALTER TABLE <name> <constraint attributes> NOT ENFORCED

ENFORCED or NOT ENFORCED: Specifies whether the constraint is
enforced by the database manager during normal operations such as insert,
update, or delete.

Chapter 12. Constraints 307

v ENFORCED cannot be specified for a functional dependency (SQLSTATE
42621).

v NOT ENFORCED should only be specified if the table data is
independently known to conform to the constraint. Query results might
be unpredictable if the data does not actually conform to the constraint.

To modify this constraint, you would have to drop it and then recreate it.

Reuse of indexes with unique or primary key constraints
If you use the ALTER TABLE command to add a unique or primary key constraint
to a partitioned table with a partitioned index, depending on the indexes that
already exist, one might be altered to enforce the new constraint, or a new one
might be created.

When you run the ALTER TABLE statement to add or change a unique or primary
key for a table, a check is performed to determine whether any existing index
matches the unique or primary key being defined (INCLUDE columns are
ignored). An index definition matches if it identifies the same set of columns,
regardless of the order or the direction (for example ASC/DESC) of the columns.

In the case of partitioned tables that have partitioned, non-unique indexes, if the
index columns of the table being altered are not included among the columns that
form the partition key, the index will not be considered a matching index.

If the table does have a matching index definition, it will changed to be a UNIQUE
index if it wasn't one already, and will marked as required by the system. If the
table has more than one existing index that matches, then an existing unique index
is selected. If there is more than one matching unique index, or if there are more
than one matching non-unique indexes and no matching unique indexes, then a
partitioned index is favoured. Otherwise the selection of an index is arbitrary.

If no matching index is found, then a unique bidirectional index is automatically
created for the columns.

Viewing constraint definitions for a table
Constraint definitions on a table can be found in the SYSCAT.INDEXES and
SYSCAT.REFERENCES catalog views.

About this task

The UNIQUERULE column of the SYSCAT.INDEXES view indicates the
characteristic of the index. If the value of this column is P, the index is a primary
key, and if it is U, the index is a unique index (but not a primary key).

The SYSCAT.REFERENCES catalog view contains referential integrity (foreign key)
constraint information.

Dropping constraints
You can explicitly drop a table check constraint using the ALTER TABLE statement,
or implicitly drop it as the result of a DROP TABLE statement.

308 Database Administration Concepts and Configuration Reference

About this task

To drop constraints, use the ALTER TABLE statement with the DROP or DROP
CONSTRAINT clauses. This allows allow you to BIND and continue accessing the
tables that contain the affected columns. The name of all unique constraints on a
table can be found in the SYSCAT.INDEXES system catalog view.

Dropping unique constraints
You can explicitly drop a unique constraint using the ALTER TABLE
statement.

The DROP UNIQUE clause of the ALTER TABLE statement drops the
definition of the unique constraint constraint-name and all referential
constraints that are dependent upon this unique constraint. The
constraint-name must identify an existing unique constraint.

ALTER TABLE <table-name>
DROP UNIQUE <constraint-name>

Dropping this unique constraint invalidates any packages or cached
dynamic SQL that used the constraint.

Dropping primary key constraints
Use the DROP PRIMARY KEY clause of the ALTER TABLE statement to
drop primary key constraints.

The DROP PRIMARY KEY clause of the ALTER TABLE statement drops
the definition of the primary key and all referential constraints that are
dependent upon this primary key. The table must have a primary key. To
drop a primary key using the command line, enter:

ALTER TABLE <table-name>
DROP PRIMARY KEY

Dropping (table) check constraints
When you drop a check constraint, all packages and cached dynamic
statements with INSERT or UPDATE dependencies on the table are
invalidated. The name of all check constraints on a table can be found in
the SYSCAT.CHECKS catalog view. Before attempting to drop a table check
constraint having a system-generated name, look for the name in the
SYSCAT.CHECKS catalog view.

The following statement drops the check constraint constraint-name. The
constraint-name must identify an existing check constraint defined on the
table. To drop a table check constraint using the command line:

ALTER TABLE <table_name>
DROP CHECK <check_constraint_name>

Alternatively, you could use the ALTER TABLE statement with the DROP
CONSTRAINT option.

Dropping foreign key (referential) constraints
Use the DROP CONSTRAINT clause of the ALTER TABLE statement to
drop foreign key constraints.

The DROP CONSTRAINT clause of the ALTER TABLE statement drops the
constraint constraint-name. The constraint-name must identify an existing
foreign key constraint, primary key, or unique constraint defined on the
table. To drop foreign keys using the command line, enter:

ALTER TABLE <table-name>
DROP FOREIGN KEY <foreign_key_name>

Chapter 12. Constraints 309

The following examples use the DROP PRIMARY KEY and DROP
FOREIGN KEY clauses in the ALTER TABLE statement to drop primary
keys and foreign keys on a table:

ALTER TABLE EMP_ACT
DROP PRIMARY KEY
DROP FOREIGN KEY ACT_EMP_REF
DROP FOREIGN KEY ACT_PROJ_REF

ALTER TABLE PROJECT
DROP PRIMARY KEY

When a foreign key constraint is dropped, packages or cached dynamic
statements containing the following might be marked as invalid:
v Statements that insert or update the table containing the foreign key
v Statements that update or delete the parent table.

310 Database Administration Concepts and Configuration Reference

Chapter 13. Indexes

An index is a set of pointers that are logically ordered by the values of one or more
keys. The pointers can refer to rows in a table, blocks in an MDC table, XML data
in an XML storage object, and so on.

Indexes are used to:
v Improve performance. In most cases, access to data is faster with an index.

Although an index cannot be created for a view, an index created for the table
on which a view is based can sometimes improve the performance of operations
on that view.

v Ensure uniqueness. A table with a unique index cannot have rows with identical
keys.

As data is added to a table, it is appended to the bottom (unless other actions have
been carried out on the table or the data being added). There is no inherent order
to the data. When searching for a particular row of data, each row of the table
from first to last must be checked. Indexes are used as a means to access the data
within the table in an order that might otherwise not be available.

Typically, when you search for data in a table, you are looking for rows with
columns that have specific values. A column value in a row of data can be used to
identify the entire row. For example, an employee number would probably
uniquely define a specific individual employee. Or, more than one column might
be needed to identify the row. For example, a combination of customer name and
telephone number. Columns in an index used to identify data rows are known as
keys. A column can be used in more than one key.

An index is ordered by the values within a key. Keys can be unique or non-unique.
Each table should have at least one unique key; but can also have other,
non-unique keys. Each index has exactly one key. For example, you might use the
employee ID number (unique) as the key for one index and the department
number (non-unique) as the key for a different index.

Not all indexes point to rows in a table. MDC block indexes point to extents (or
blocks) of the data. XML indexes for XML data use particular XML pattern
expressions to index paths and values in XML documents stored within a single
column. The data type of that column must be XML. Both MDC block indexes and
XML indexes are system generated indexes.

Example

Table A in Figure 38 on page 312 has an index based on the employee numbers in
the table. This key value provides a pointer to the rows in the table. For example,
employee number 19 points to employee KMP. An index allows efficient access to
rows in a table by creating a path to the data through pointers.

Unique indexes can be created to ensure uniqueness of the index key. An index key
is a column or an ordered collection of columns on which an index is defined.
Using a unique index will ensure that the value of each index key in the indexed
column or columns is unique.

© Copyright IBM Corp. 1993, 2012 311

Figure 38 shows the relationship between an index and a table.

Figure 39 illustrates the relationships among some database objects. It also shows
that tables, indexes, and long data are stored in table spaces.

Types of indexes
There are different types of indexes that can be created for different purposes. For
example, unique indexes enforce the constraint of uniqueness in your index keys;
bidirectional indexes allow for scans in both the forward and reverse directions;
clustered indexes can help improve the performance of queries that traverse the
table in key order.

Unique and non-unique indexes

Unique indexes are indexes that help maintain data integrity by ensuring that no
two rows of data in a table have identical key values.

17

19

19

47

81 81

85

87 87

93

93

47

17

85

ABC

QRS

FCP

MLI

CJP

DJS

KMP

Column

Row

Table AIndex A

Database

Figure 38. Relationship between an index and a table

Instance

System

Database

Database partition group

Table spaces
• Tables
• Indexes
• Long data

Figure 39. Relationships among selected database objects

312 Database Administration Concepts and Configuration Reference

When attempting to create a unique index for a table that already contains data,
values in the column or columns that comprise the index are checked for
uniqueness; if the table contains rows with duplicate key values, the index creation
process fails. Once a unique index has been defined for a table, uniqueness is
enforced whenever keys are added or changed within the index. (This includes
insert, update, load, import, and set integrity, to name a few.) In addition to
enforcing the uniqueness of data values, a unique index can also be used to
improve data retrieval performance during query processing.

Non-unique indexes, on the other hand, are not used to enforce constraints on the
tables with which they are associated. Instead, non-unique indexes are used solely
to improve query performance by maintaining a sorted order of data values that
are used frequently.

Clustered and non-clustered indexes

Index architectures are classified as clustered or non-clustered. Clustered indexes
are indexes whose order of the rows in the data pages correspond to the order of
the rows in the index. This is why only one clustered index can exist in a given
table, whereas, many non-clustered indexes can exist in the table. In some
relational database management systems, the leaf node of the clustered index
corresponds to the actual data, not a pointer to data that resides elsewhere.

Both clustered and non-clustered indexes contain only keys and record IDs in the
index structure. The record IDs always point to rows in the data pages. The only
difference between clustered and non-clustered indexes is that the database
manager attempts to keep the data in the data pages in the same order as the
corresponding keys appear in the index pages. Thus the database manager will
attempt to insert rows with similar keys onto the same pages. If the table is
reorganized, it will be inserted into the data pages in the order of the index keys.

Reorganizing a table with respect to a chosen index re-clusters the data. A
clustered index is most useful for columns that have range predicates because it
allows better sequential access of data in the table. This results in fewer page
fetches, since like values are on the same data page.

In general, only one of the indexes in a table can have a high degree of clustering.

Clustering indexes can improve the performance of most query operations because
they provide a more linear access path to data, which has been stored in pages. In
addition, because rows with similar index key values are stored together,
prefetching is usually more efficient when clustering indexes are used.

However, clustering indexes cannot be specified as part of the table definition used
with the CREATE TABLE statement. Instead, clustering indexes are only created by
executing the CREATE INDEX statement with the CLUSTER option specified. Then
the ALTER TABLE statement should be used to add a primary key that
corresponds to the clustering index created to the table. This clustering index will
then be used as the table's primary key index.

Note: Setting PCTFREE in the table to an appropriate value using the ALTER
TABLE statement can help the table remain clustered by leaving adequate free
space to insert rows in the pages with similar values. For more information, see
“ALTER TABLE statement” in the SQL Reference and “Reducing the need to
reorganize tables and indexes” in Troubleshooting and Tuning Database Performance.

Chapter 13. Indexes 313

Improving performance with clustering indexes

Generally, clustering is more effectively maintained if the clustering index is
unique.

Differences between primary key or unique key constraints and
unique indexes

It is important to understand that there is no significant difference between a
primary unique key constraint and a unique index. The database manager uses a
combination of a unique index and the NOT NULL constraint to implement the
relational database concept of primary and unique key constraints. Therefore,
unique indexes do not enforce primary key constraints by themselves because they
allow null values. (Although null values represent unknown values, when it comes
to indexing, a null value is treated as being equal to other null values.)

Therefore, if a unique index consists of a single column, only one null value is
allowed–more than one null value would violate the unique constraint. Similarly, if
a unique index consists of multiple columns, a specific combination of values and
nulls can be used only once.

Bidirectional indexes

By default, bidirectional indexes allow scans in both the forward and reverse
directions. The ALLOW REVERSE SCANS clause of the CREATE INDEX statement
enables both forward and reverse index scans, that is, in the order defined at index
creation time and in the opposite (or reverse) order. This option allows you to:
v Facilitate MIN and MAX functions
v Fetch previous keys
v Eliminate the need for the database manager to create a temporary table for the

reverse scan
v Eliminate redundant reverse order indexes

If DISALLOW REVERSE SCANS is specified then the index cannot be scanned in
reverse order. (But physically it will be exactly the same as an ALLOW REVERSE
SCANS index.)

Partitioned and nonpartitioned indexes

Partitioned data can have indexes that are nonpartitioned, existing in a single table
space within a database partition, indexes that are themselves partitioned across
one or more table spaces within a database partition, or a combination of the two.
Partitioned indexes are particularly beneficial when performing roll-in operations
with partitioned tables (in other words, attaching a data partition to another table
using the ATTACH PARTITION clause on the ALTER table statement.)

Indexes on partitioned tables
Partitioned tables can have indexes that are nonpartitioned (existing in a single
table space within a database partition), indexes that are themselves partitioned
across one or more table spaces within a database partition, or a combination of
the two.

Partitioned indexes offer benefits when performing roll-in operations with
partitioned tables (in other words, attaching a data partition to another table using

314 Database Administration Concepts and Configuration Reference

the ATTACH PARTITION clause on the ALTER table statement.) With a partitioned
index, you can avoid the index maintenance that you would otherwise have to
perform with nonpartitioned indexes. When a partitioned table uses a
nonpartitioned index. you must use SET INTEGRITY statement to perform index
maintenance on the newly combined data partitions. Not only is this time
consuming, it also can require a large amount of log space, depending on the
number of rows being rolled in.

There are some types of indexes that cannot be partitioned:
v Indexes over nonpartitioned data
v Indexes over spatial data
v XML column path indexes (system generated)

You must always create these indexes as nonpartitioned. In addition, the index key
for partitioned unique indexes must include all columns from the table-partitioning
key, whether they are user- or system-generated. The latter would be the case for
indexes created by the system for enforcing unique or primary constraints on data.

Starting in DB2 Version 9.7 Fix Pack 1, you can create an index over XML data on
a partitioned table as either partitioned or nonpartitioned. The default is a
partitioned index. Unique indexes over XML data are always nonpartitioned.

Nonpartitioned indexes on partitioned tables
A nonpartitioned index is a single index object that refers to all rows in a partitioned
table. Nonpartitioned indexes are always created as independent index objects in a
single table space, even if the table data partitions span multiple table spaces.

When you create an index for a partitioned table, by default, the index is a
partitioned index unless you create one of the following types of indexes:
v A unique index where the index key does not include all of the

table-partitioning columns
v A spatial index

In these cases, the index that you create is nonpartitioned. There are times,
however, when it is useful or necessary to create a nonpartitioned index even
though your data is partitioned. In these cases, use the NOT PARTITIONED clause
of the CREATE INDEX statement to create a nonpartitioned index on a partitioned
table. When you create a nonpartitioned index, by default, it is stored in the same
table space as the first visible or attached data partition. Figure 40 on page 316
shows an example of a single index, X1 that references all of the partitions in a
table. The index was created in the same table space as the first visible partition for
the table.

Chapter 13. Indexes 315

Figure 41 shows an example of two nonpartitioned indexes. In this case, each index
partition is in a table space separate from that of the data partitions. Note again
how each index references all of the partitions in the table.

You can override the location for a nonpartitioned index at the following times:
v When you create the table, by using the INDEX IN clause of the CREATE

TABLE statement
v When you create the index, by using the IN clause of the CREATE INDEX

statement.

The second approach always takes precedence over the first.

Table space (ts2)Table space (ts1)

Index (x1)

TableA

Figure 40. Nonpartitioned index on a partitioned table

Figure 41. Nonpartitioned indexes on a partitioned table, with indexes in their own table
spaces

316 Database Administration Concepts and Configuration Reference

If you roll data in to a partitioned table by using the ATTACH PARTITION clause
of the ALTER TABLE statement, you must run the SET INTEGRITY statement to
bring the table data online for queries. If the indexes are nonpartitioned, bringing
the table online can be a time-consuming operation that uses considerable amounts
of log space, because SET INTEGRITY must insert data from the newly attached
partition into the nonpartitioned indexes.

SET INTEGRITY is not required to be run after detaching a partition.

Partitioned indexes on partitioned tables
A partitioned index is made up of a set of index partitions, each of which contains the
index entries for a single data partition. Each index partition contains references
only to data in its corresponding data partition. Both system- and user-generated
indexes can be partitioned.

A partitioned index becomes particularly beneficial if:
v You are rolling data in or out of partitioned tables using the ATTACH

PARTITION or DETACH PARTITION clauses of the ALTER TABLE statement.
With a nonpartitioned index, the SET INTEGRITY statement that you must run
before the data in the newly-attached partition is available can be
time-consuming and require large amounts of log space. When you attach a
table partition that uses a partitioned index, you still must issue a SET
INTEGRITY statement to perform tasks such as range validation and constraint
checking. However, if the indexes for the source table the index partitions for the
target table, SET INTEGRITY processing does not incur the performance and
logging overhead associated with index maintenance; the newly rolled-in data is
accessible more quickly than it would be using nonpartitioned indexes. See
“Conditions for matching a source table index with a target table partitioned
index during ATTACH PARTITION” in Partitioning and Clustering Guide for more
information on index matching.

v You are performing maintenance on data in a specific partition that necessitates
an index reorganization. For example, consider a table with 12 partitions, each
corresponding to a specific month of the year. You might have a need to update
or delete many rows that are specific to one month of the year. This could result
in the index becoming fragmented, which might require that you perform an
index reorganization. With a partitioned index, you can reorganize just the index
partition that corresponds to the data partition where the changes were made,
which could save a significant amount of time compared to reorganizing an
entire, nonpartitioned index.

There are some types of indexes that cannot be partitioned:
v Indexes over nonpartitioned data
v Indexes over spatial data
v XML column path indexes (system generated)

You must always create these indexes as nonpartitioned. In addition, the index key
for partitioned unique indexes must include all columns from the table-partitioning
key, whether they are user- or system-generated. The latter would be the case for
indexes created by the system for enforcing unique or primary constraints on data.

Figure 42 on page 318 shows an example of partitioned indexes.

Chapter 13. Indexes 317

In this example, all of the data partitions for table A and all of the index partitions
for table A are in a single table space. The index partitions reference only the rows
in the data partition with which they are associated. (Contrast a partitioned index
with a nonpartitioned index, where the index references all rows across all data
partitions). Also, index partitions for a given data partition are in the same index
object. This particular arrangement of indexes and index partitions would have
been established with statements like the following:
CREATE TABLE A (columns) in ts1

PARTITION BY RANGE (column expression)
(PARTITION PART0 STARTING FROM constant ENDING constant,
PARTITION PART1 STARTING FROM constant ENDING constant,
PARTITION PART2 STARTING FROM constant ENDING constant,

CREATE INDEX x1 ON A (...) PARTITIONED;
CREATE INDEX x2 ON A (...) PARTITIONED;

Figure 43 on page 319 shows another example of a partitioned index.

TableA

Table space (ts1)

Index(x2)

Index(x2)

Index(x2)

Index (x1)

Index (x1)

Index (x1)

Part0

Part1

Part2

Figure 42. Partitioned indexes that share a table space with data partitions of a table

318 Database Administration Concepts and Configuration Reference

In this example, the data partitions for table A are distributed across two table
spaces, TS1, and TS3. The index partitions are also in different table spaces. The
index partitions reference only the rows in the data partition with which they are
associated. This particular arrangement of indexes and index partitions would have
been established with statements like the following:
CREATE TABLE A (columns)

PARTITION BY RANGE (column expression)
(PARTITION PART0 STARTING FROM constant ENDING constant IN ts1 INDEX IN ts2,
PARTITION PART1 STARTING FROM constant ENDING constant IN ts3 INDEX IN ts4,
PARTITION PART2 STARTING FROM constant ENDING constant IN ts3,INDEX IN ts5)

CREATE INDEX x1 ON A (...);
CREATE INDEX x2 ON A (...);

Note that in this case, the PARTITIONED clause has been omitted from the
CREATE INDEX statement; the indexes will still be created as partitioned indexes,
as this is the default for partitioned tables.

Figure 44 on page 320 shows an example of a partitioned table with both
nonpartitioned and partitioned indexes.

Table space (ts4)

Table space (ts2)

TableA

Table space (ts1)

Table space (ts3)

Table space (ts5)

Part0

Part1

Part2

Index (x2)

Index (x1)

Index (x2)

Index (x1)

Index (x2)

Index (x1)

Figure 43. Partitioned indexes with data partitions and index partitions in different table
spaces.

Chapter 13. Indexes 319

In this diagram, index X1 is a nonpartitioned index that references all of the
partitions of table T1. Indexes X2 and X3 are partitioned indexes that reside in
various table spaces. This particular arrangement of indexes and index partitions
would have been established with statements like the following:

CREATE TABLE t1 (columns) in ts1 INDEX IN ts2 �1�
PARTITION BY RANGE (column expression)
(PARTITION PART0 STARTING FROM constant ENDING constant IN ts3, �2�
PARTITION PART1 STARTING FROM constant ENDING constant INDEX IN ts5,
PARTITION PART2 STARTING FROM constant ENDING constant INDEX IN ts4,
PARTITION PART3 STARTING FROM constant ENDING constant INDEX IN ts4,
PARTITION PART4 STARTING FROM constant ENDING constant)

CREATE INDEX x1 ON t1 (...) NOT PARTITIONED;
CREATE INDEX x2 ON t1 (...) PARTITIONED;
CREATE INDEX x3 ON t1 (...) PARTITIONED;

Note that:

Part0

Table space (ts3)

Table space (ts4)

Table space (ts5)

Part1 Index (x3)

Index (x2)

Part2 Index (x3)

Index (x2)

Part3 Index (x3)

Index (x2)

Part4 Index (x3)

Index (x2)

Table space (ts2)

Index (x1)

Index (x3)

Index (x2)

t1

Table space (ts1)

Figure 44. Combination of nonpartitioned and partitioned indexes for a partitioned table.

320 Database Administration Concepts and Configuration Reference

v The nonpartitioned index X1 is stored in table space TS2, because this is the
default specified (see �1�) for nonpartitioned indexes for table T1.

v The index partition for data partition 0 (Part0) is stored in table space TS3,
because the default location for an index partition is the same as the data
partition it references (see �2�).

v Part4 is stored in TS1, which is the default table space for data partitions in table
T1 (see �1�); the index partitions for this data partition also reside in TS1, again
because the default location for an index partition is the same as the data
partition it references.

Important: Unlike nonpartitioned indexes, with partitioned indexes you cannot
use the INDEX IN clause of the CREATE INDEX statement to specify the table
space in which to store index partitions. The only way to override the default
storage location for index partitions is to specify the location at the time you create
the table, using the partition-level INDEX IN clause of the CREATE TABLE
statement. The table-level INDEX IN clause has no effect on index partition
placement.

You create partitioned indexes for a partitioned table by including the
PARTITIONED option in a CREATE INDEX statement. For example, for a table
named SALES partitioned with sales_date as the table-partitioning key, to create a
partitioned index, you could use a statement like this:

CREATE INDEX partIDbydate on SALES (sales_date, partID) PARTITIONED

If you are creating a partitioned unique index, then the table partitioning columns
must be included in the index key columns. So, using the previous example, if you
tried to create a partitioned index with the following statement:

CREATE UNIQUE INDEX uPartID on SALES (partID) PARTITIONED

the statement would fail because the column sales_date, which forms the
table-partitioning key is not included in the index key.

If you omit the PARTITIONED keyword when you create an index on a
partitioned table, the database manager will create a partitioned index by default
unless:
v You are creating a unique index, and the index key does not include all of the

table-partitioning keys
v You are creating one of the types of indexes that are described at the beginning

of this topic as not able to be created as partitioned indexes.

In either of these cases, the index will be created as a nonpartitioned index.

Whereas creating a nonpartitioned index with a definition that matches that of an
existing nonpartitioned index will result in the SQL0605W error, a partitioned
index can coexist with a nonpartitioned index with a similar definition. This is
intended to allow for easier adoption of partitioned indexes.

Designing indexes
Indexes are typically used to speed up access to a table. However, they can also
serve a logical data design purpose.

Chapter 13. Indexes 321

For example, a unique index does not allow entry of duplicate values in the
columns, thereby guaranteeing that no two rows of a table are the same. Indexes
can also be created to order the values in a column in ascending or descending
sequence.

Note: When creating indexes, keep in mind that although they can improve read
performance, they will negatively impact write performance. This is because for
every row that the database manager writes to a table, it must also update any
affected indexes. Therefore, you should create indexes only when there is a clear
overall performance advantage.

When creating indexes, you must also take into account the structure of the tables
and the type of queries that are most frequently performed on them. For example,
columns appearing in the WHERE clause of a frequently issued query are good
candidates for indexes. In less frequently run queries, however, the cost that an
index incurs for performance in INSERT and UPDATE statements might outweigh
the benefits.

Similarly, columns that figure in a GROUP BY clause of a frequent query might
benefit from the creation of an index, particularly if the number of values used to
group the rows is small relative to the number of rows being grouped.

When creating indexes, keep in mind that they can be also be compressed. You can
modify the indexes later, by enabling or disabling compression, using the ALTER
INDEX statement.

To remove or delete indexes, you can use the DROP INDEX command. Dropping
indexes has the reverse requirements of inserting indexes; that is, to remove (or
mark as deleted) the index entries.

Guidelines and considerations when designing indexes
v Although the order of the columns making up an index key does not make a

difference to index key creation, it might make a difference to the optimizer
when it is deciding whether or not to use an index. For example, if a query has
an ORDER BY col1,col2 clause, an index created on (col1,col2) could be used,
but an index created on (col2,col1) will be of no help. Similarly, if the query
specified a condition such as where col1 >= 50 and col1 <= 100 or where
col1=74, then an index on (col1) or on (col1,col2) could be helpful, but an
index on (col2,col1) is far less helpful.

Note: Whenever possible, order the columns in an index key from the most
distinct to the least distinct. This provides the best performance.

v Any number of indexes can be defined on a particular table, to a maximum of
32 767, and they can have a beneficial effect on the performance of queries. The
index manager must maintain the indexes during update, delete and insert
operations. Creating a large number of indexes for a table that receives many
updates can slow down processing of requests. Similarly, large index keys can
also slow down processing of requests. Therefore, use indexes only where a clear
advantage for frequent access exists.

v Column data which is not part of the unique index key but which is to be stored
or maintained in the index is called an include column. Include columns can be
specified for unique indexes only. When creating an index with include columns,
only the unique key columns are sorted and considered for uniqueness. The use
of include columns can enable index only access for data retrieval, thus
improving performance.

322 Database Administration Concepts and Configuration Reference

v If the table being indexed is empty, an index is still created, but no index entries
are made until the table is loaded or rows are inserted. If the table is not empty,
the database manager creates the index entries while processing the CREATE
INDEX statement.

v For a clustering index, the database manager attempts to place new rows for the
table physically close to existing rows with similar key values (as defined by the
index).

v If you want a primary key index to be a clustering index, a primary key should
not be specified on the CREATE TABLE statement. Once a primary key is
created, the associated index cannot be modified. Instead, issue a CREATE
TABLE without a primary key clause. Then issue a CREATE INDEX statement,
specifying clustering attributes. Finally, use the ALTER TABLE statement to add
a primary key that corresponds to the index just created. This index will be used
as the primary key index.

v If you have a partitioned table, by default, any index that you create is a
partitioned index unless you create a unique index that does not include the
partitioning key. You can also create the index as a nonpartitioned index.
Starting in DB2 Version 9.7 Fix Pack 1, you can create an index over XML data
on a partitioned table as either partitioned or nonpartitioned. The default is a
partitioned index.
Partitioned indexes offer benefits when performing roll-in operations with
partitioned tables (in other words, attaching a data partition to another table
using the ATTACH PARTITION clause on the ALTER table statement.) With a
partitioned index, you can avoid the index maintenance that you would
otherwise have to perform with nonpartitioned indexes. When a partitioned
table uses a nonpartitioned index. you must use SET INTEGRITY statement to
perform index maintenance on the newly combined data partitions. Not only is
this time consuming, it also can require a large amount of log space, depending
on the number of rows being rolled in.

v Indexes consume disk space. The amount of disk space varies depending on the
length of the key columns and the number of rows being indexed. The size of
the index increases as more data is inserted into the table. Therefore, consider
the amount of data being indexed when planning the size of the database. Some
of the indexing sizing considerations include:
– Primary and unique key constraints will always create a system-generated

unique index.
– The creation of an MDC table will also create system-generated block indexes.
– XML columns will always cause system-generated indexes, including column

path indexes and region indexes, to be created.
– It is usually beneficial to create indexes on foreign key constraint columns.
– Whether the index will be compressed or not (using the COMPRESS option).

Note: The maximum number of columns in an index is 64. However, if you are
indexing a typed table, the maximum number of columns in an index is 63. The
maximum length of an index key, including all overhead, is IndexPageSize ÷ 4.
The maximum indexes allowed on a table is 32 767. The maximum length of an
index key must not be greater than the index key length limit for the page size.
For column stored lengths, see the “CREATE TABLE statement”. For the key
length limits, see the “SQL and XQuery limits” topic.

v During database upgrade, existing indexes will not be compressed. If a table is
enabled for data row compression, new indexes created after the upgrade might
be compressed, unless the COMPRESS NO option is specified on the CREATE
INDEX statement.

Chapter 13. Indexes 323

Tools for designing indexes
Once you have created your tables, you need to consider how rapidly the database
manager will be able to retrieve data from them. You can use the Design Advisor
or the db2advis command to help you design your indexes.

Important: The Design Advisor GUI in the Control Center has been deprecated in
Version 9.7 and might be removed in a future release. Start using IBM Data Studio
and IBM Optim™ tools. For a mapping between these recommended tools and
Control Center tools, see “Table of recommended tools versus Control Center
tools” in the What's New for DB2 Version 9.7 book.

Creating useful indexes on your tables can significantly improve query
performance. Like indexes of a book, indexes on tables allow specific information
to be located rapidly, with minimal searching. Using an index to retrieve particular
rows from a table can reduce the number of expensive input/output operations
that the database manager needs to perform. This is because an index allows the
database manager to locate a row by reading in a relatively small number of data
pages, rather than by performing an exhaustive search of all data pages until all
matches are found.

The DB2 Design Advisor is a tool that can help you significantly improve your
workload performance. The task of selecting which indexes, MQTs, clustering
dimensions, or database partitions to create for a complex workload can be quite
daunting. The Design Advisor identifies all of the objects needed to improve the
performance of your workload. Given a set of SQL statements in a workload, the
Design Advisor will generate recommendations for:
v New indexes
v New materialized query tables (MQTs)
v Conversion to multidimensional clustering (MDC) tables
v Redistribution of tables
v Deletion of indexes and MQTs unused by the specified workload (through the

GUI tool)

You can have the Design Advisor implement some or all of these recommendations
immediately or schedule them for a later time.

Using either the Design Advisor GUI or the command-line tool, the Design
Advisor can help simplify the following tasks:
v Planning for or setting up a new database
v Workload performance tuning

Space requirements for indexes
When designing indexes, you must be aware of their space requirements. For
compressed indexes, the estimates you derive from the formulas in this topic can
be used as an upper bound, however, it will likely be much smaller.

Space requirements for uncompressed indexes

For each uncompressed index, the space needed can be estimated as:
(average index key size + index key overhead) × number of rows × 2

where:

324 Database Administration Concepts and Configuration Reference

v The average index key size is the byte count of each column in the index key.
When estimating the average column size for VARCHAR and VARGRAPHIC
columns, use an average of the current data size, plus two bytes.

v The index key overhead depends on the type of table on which the index is
created:

Table 22. Index key overhead for different tables

Type of table
space Table type Index type Index key overhead

Any Any XML paths or regions 11 bytes

Regular Nonpartitioned Any 9 bytes

Partitioned Partitioned 9

Nonpartitioned 11

Large Partitioned Partitioned 11

Nonpartitioned 13

v The number of rows is the number of rows in a table or the number of rows in a
given data partition. Using the number of rows in the entire table in this
calculation will give you an estimate the size for the index (for a nonpartitioned
index) or for all index partitions combined (for a partitioned index). Using the
number of rows in a data partition will give you an estimate of the size for the
index partition.

v The factor of “2” is for overhead, such as non-leaf pages and free space.

Note:

1. For every column that allows null values, add one extra byte for the null
indicator.

2. For block indexes created internally for multidimensional clustering (MDC)
tables, the “number of rows” would be replaced by the “number of blocks”.

Space requirements for XML indexes

For each index on an XML column, the space needed can be estimated as:
(average index key + index key overhead) × number of indexed nodes × 2

where:
v The average index key is the sum of the key parts that make up the index. The

XML index is made up of several XML key parts plus a value (sql-data-type):
14 + variable overhead + byte count of sql-data-type

where:
– 14 represents the number of bytes of fixed overhead
– The variable overhead is the average depth of the indexed node plus 4 bytes.
– The byte count of sql-data-type follows the same rules as SQL.

v The number of indexed nodes is the number of documents to be inserted
multiplied by the number of nodes in a sample document that satisfy the XML
pattern expression (XMLPATTERN) in the index definition. The number of indexed
nodes could be the number of nodes in a partition or the entire table.

Chapter 13. Indexes 325

Temporary space requirements for index creation

Temporary space is required when creating the index. The maximum amount of
temporary space required during index creation can be estimated as:

(average index key size + index key overhead) × number of rows × 3.2

For those indexes for which there could be more than one index key per row, such
as spatial indexes, indexes on XML columns and internal XML regions indexes, the
temporary space required can be estimated as:

(average index key size + index key overhead) × number of indexed nodes × 3.2

where the factor of “3.2” is for index overhead, and space required for sorting
during index creation. The number of rows or the number of indexed nodes is the
number in an entire table or in a given data partition.

Note: In the case of non-unique indexes, only one copy of a given duplicate key
entry is stored on any given leaf node. For indexes on tables in LARGE table
spaces the size for duplicate keys is 9 for nonpartitioned indexes, 7 for partitioned
indexes and indexes on nonpartitioned tables. For indexes on tables in REGULAR
table spaces these values are 7 for nonpartitioned indexes, 5 for partitioned indexes
and indexes on nonpartitioned tables. The only exception to these rules are XML
paths and XML regions indexes where the size of duplicate keys is always 7.The
estimate shown above assumes no duplicates. The space required to store an index
might be over-estimated by the formula shown above.

Temporary space is required when inserting if the number of index nodes exceeds
64 KB of data. The amount of temporary space can be estimated as:

average index key size × number of indexed nodes × 1.2

Estimating the number of keys per leaf page

The following two formulas can be used to estimate the number of keys per index
leaf page (the second provides a more accurate estimate). The accuracy of these
estimates depends largely on how well the averages reflect the actual data.

Note: For SMS table spaces, the minimum required space for leaf pages is three
times the page size. For DMS table spaces, the minimum is an extent.
1. A rough estimate of the average number of keys per leaf page is:

((.9 * (U - (M×2))) × (D + 1)) ÷ (K + 7 + (Ds × D))

where:
v U, the usable space on a page, is approximately equal to the page size minus

100. For example, with a page size of 4096, U would be 3996.
v M = U ÷ (9 + minimumKeySize)
v Ds = duplicateKeySize (See the note under “Temporary space requirements for

index creation”.)
v D = average number of duplicates per key value
v K = averageKeySize

Remember that minimumKeySize and averageKeysize must include an extra byte
for each nullable key part, and an extra two bytes for the length of each
variable length key part.
If there are include columns, they should be accounted for in minimumKeySize
and averageKeySize.
The minimum key size is the sum of the key parts that make up the index:

326 Database Administration Concepts and Configuration Reference

fixed overhead + variable overhead + byte count of sql-data-type

where:
v The fixed overhead is 13 bytes.
v The variable overhead is the minimum depth of the indexed node plus 4 bytes.
v The byte count of sql-data-type value follows the same rules as SQL.
The .9 can be replaced by any (100 - pctfree)/100 value, if a percent free value
other than the default value of ten percent is specified during index creation.

2. A more accurate estimate of the average number of keys per leaf page is:
number of leaf pages = x / (avg number of keys on leaf page)

where x is the total number of rows in the table or partition.
For the index on an XML column, x is the total number of indexed nodes in the
column.
You can estimate the original size of an index as:

(L + 2L/(average number of keys on leaf page)) × pagesize

For DMS table spaces, add the sizes of all indexes on a table and round up to a
multiple of the extent size for the table space on which the index resides.
You should provide additional space for index growth due to
INSERT/UPDATE activity, from which page splits might result.
Use the following calculation to obtain a more accurate estimate of the original
index size, as well as an estimate of the number of levels in the index. (This
might be of particular interest if include columns are being used in the index
definition.) The average number of keys per non-leaf page is roughly:

((.9 × (U - (M × 2))) × (D + 1))÷(K + 13 + (9 * D))

where:
v U, the usable space on a page, is approximately equal to the page size minus

100. For a page size of 4096, U is 3996.
v D is the average number of duplicates per key value on non-leaf pages (this

will be much smaller than on leaf pages, and you might want to simplify the
calculation by setting the value to 0).

v M = U ÷ (9 + minimumKeySize for non-leaf pages)
v K = averageKeySize for non-leaf pages
The minimumKeySize and the averageKeySize for non-leaf pages will be the same
as for leaf pages, except when there are include columns. Include columns are
not stored on non-leaf pages.
You should not replace .9 with (100 - pctfree)÷100, unless this value is greater
than .9, because a maximum of 10 percent free space will be left on non-leaf
pages during index creation.
The number of non-leaf pages can be estimated as follows:

if L > 1 then {P++; Z++}
While (Y > 1)
{

P = P + Y
Y = Y / N

Z++
}

where:
v P is the number of pages (0 initially).
v L is the number of leaf pages.
v N is the number of keys for each non-leaf page.

Chapter 13. Indexes 327

v Y = L ÷ N

v Z is the number of levels in the index tree (1 initially).

Note: The calculation above applies to a single, nonpartitioned indexes, or to a
single index partition for partitioned indexes.
Total number of pages is:

T = (L + P + 2) × 1.0002

The additional 0.02% (1.0002) is for overhead, including space map pages.
The amount of space required to create the index is estimated as:

T × page size

Index compression
Indexes, including indexes on declared or created temporary tables, can be
compressed in order to reduce storage costs. This is especially useful for large
OLTP and data warehouse environments.

By default, index compression is enabled for compressed tables, and disabled for
uncompressed tables. You can override this default behavior by using the COMPRESS
YES option of the CREATE INDEX statement. When working with existing indexes,
use the ALTER INDEX statement to enable or disable index compression; you must
then perform an index reorganization to rebuild the index.

Restriction: Index compression is not supported for the following types of indexes:
v MDC block indexes
v XML path indexes.

In addition:
v Index specifications cannot be compressed
v Compression attributes for indexes on temporary tables cannot be altered with

the ALTER INDEX command.

When index compression is enabled, the on-disk and memory format of index
pages are modified based on the compression algorithms chosen by the database
manager so as to minimize storage space. The degree of compression achieved will
vary based on the type of index you are creating, as well as the data the index
contains. For example, the database manager can compress an index with a large
number of duplicate keys by storing an abbreviated format of the record identifier
(RID) for the duplicate keys. In an index where there is a high degree of
commonality in the prefixes of the index keys, the database manager can apply
compression based on the similarities in prefixes of index keys.

There can be limitations and trade-offs associated with compression. If the indexes
do not share common index column values or partial common prefixes, the
benefits of index compression in terms of reduced storage might be negligible. And
although a unique index on a timestamp column might have very high
compression capabilities due to common values for year, month, day, hour, minute,
or even seconds on the same leaf page, the overhead of examining if common
prefixes exist could cause performance to degrade.

If you believe that compression is not offering a benefit in your particular
situation, you can either recreate the indexes without compression or alter the
indexes and then perform an index reorganization to disable index compression.

328 Database Administration Concepts and Configuration Reference

There are a few things you should keep in mind when you are considering using
index compression:
v If you enable row compression using the COMPRESS YES option on the CREATE

TABLE or ALTER TABLE command, then by default, compression is enabled for
all indexes for which compression is supported that are created after that point
for that table, unless explicitly disabled by the CREATE INDEX or ALTER
INDEX commands. Similarly, if you disable row compression with the CREATE
TABLE or ALTER TABLE command, index compression is disabled for all
indexes created after that point for that table unless explicitly enabled by the
CREATE INDEX or ALTER INDEX commands.

v If you enable index compression using the ALTER INDEX command,
compression will not take place until an index reorganization is performed.
Similarly, if you disable compression, the index will remain compressed until
you perform an index reorganization.

v During database migration, compression is not enabled for any indexes that
might have been migrated. If you want compression to be used, you must use
the ALTER INDEX command and then perform an index reorganization.

v CPU usage might increase slightly as a result of the processing required for
index compression or decompression. If this is not acceptable, you can disable
index compression for new or existing indexes.

Examples

Example 1: Checking whether an index is compressed.

The two statements that follow create a new table T1 that is enabled for row
compression, and create an index I1 on T1.

CREATE TABLE T1 (C1 INT, C2 INT, C3 INT) COMPRESS YES
CREATE INDEX I1 ON T1(C1)

By default, indexes for T1 are compressed. The compression attribute for index T1,
which shows whether compression is enabled, can be checked by using the catalog
table or the admin table function:
SELECT COMPRESSION FROM SYSCAT.INDEXES WHERE TABNAME=’T1’

COMPRESSION

Y

1 record(s) selected.

Example 2: Determining whether compressed indexes require reorganization.

To see if compressed indexes require reorganization, use the REORGCHK command.
Table 23 on page 330 shows the command being run on a table called T1:

Chapter 13. Indexes 329

Table 23. Output of REORGCHK command

RE
OR
GC
HK

ON
TA
BL
E
SC
HE
MA
1.
T1

Do
in
g
RU
NS
TA
TS

..
..

Ta
bl
e
st
at
is
ti
cs
:

F1
:
10
0
*
OV
ER
FL
OW

/
CA
RD

<
5

F2
:
10
0
*
(E
ff
ec
ti
ve

Sp
ac
e
Ut
il
iz
at
io
n
of

Da
ta

Pa
ge
s)

>
70

F3
:
10
0
*
(R
eq
ui
re
d
Pa
ge
s
/
To
ta
l
Pa
ge
s)

>
80

SC
HE
MA
.N
AM
E

CA
RD

OV
NP

FP
AC
TB
LK

TS
IZ
E

F1
F2

F3
RE
OR
G

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

Ta
bl
e:

SC
HE
MA
1.
T1

87
9

0
14

14
-

51
86
1

0
10
0
10
0
--
-

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--

In
de
x
st
at
is
ti
cs
:

F4
:
CL
US
TE
RR
AT
IO

or
no
rm
al
iz
ed

CL
US
TE
RF
AC
TO
R
>
80

F5
:
10
0
*
(S
pa
ce

us
ed

on
le
af

pa
ge
s
/
Sp
ac
e
av
ai
la
bl
e
on

no
n-
em
pt
y
le
af

pa
ge
s)

>
MI
N(
50
,
(1
00

-
PC
TF
RE
E)
)

F6
:
(1
00

-
PC
TF
RE
E)

*
(A
mo
un
t
of

sp
ac
e
av
ai
la
bl
e
in

an
in
de
x
wi
th

on
e
le
ss

le
ve
l
/
Am
ou
nt

of
sp
ac
e
re
qu
ir
ed

fo
r
al
l
ke
ys
)
<
10
0

F7
:
10
0
*
(N
um
be
r
of

ps
eu
do
-d
el
et
ed

RI
Ds

/
To
ta
l
nu
mb
er

of
RI
Ds
)
<
20

F8
:
10
0
*
(N
um
be
r
of

ps
eu
do
-e
mp
ty

le
af

pa
ge
s
/
To
ta
l
nu
mb
er

of
le
af

pa
ge
s)

<
20

SC
HE
MA
.N
AM
E

IN
DC
AR
D

LE
AF

EL
EA
F
LV
LS

ND
EL

KE
YS

LE
AF
_R
EC
SI
ZE

NL
EA
F_
RE
CS
IZ
E
LE
AF
_P
AG
E_
OV
ER
HE
AD

NL
EA
F_
PA
GE
_O
VE
RH
EA
D

PC
T_
PA
GE
S_
SA
VE
D

F4
F5

F6
F7

F8
RE
OR
G

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

Ta
bl
e:

SC
HE
MA
1.
T1

In
de
x:

SC
HE
MA
1.
I1

87
9

15
0

2
0

68
2

20
20

59
6

59
6

28
56

31
-

0
0
--
--
-

--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
--
-

Example 3: Determining the potential space savings of index compression.

For an example of how you can calculate potential index compression savings,
refer to the documentation for the ADMIN_GET_INDEX_COMPRESS_INFO table
function.

330 Database Administration Concepts and Configuration Reference

Creating indexes
You can create indexes to allow queries to run more efficiently, to order the rows of
a table in ascending or descending sequence according to the values in a column,
or to enforce constraints such as uniqueness on index keys. You can use the
CREATE INDEX statement, the DB2 Design Advisor, or the db2advis Design
Advisor command to create the indexes.

About this task

This task assumes that you are creating an index on a nonpartitioned table.

To create an index using the CREATE INDEX statement from the command line,
enter:

CREATE UNIQUE INDEX EMP_IX
ON EMPLOYEE(EMPNO)
INCLUDE(FIRSTNAME, JOB)

The INCLUDE clause, applicable only on unique indexes, specifies additional
columns to be appended to the set of index key columns. Any columns included
with this clause are not used to enforce uniqueness. These included columns can
improve the performance of some queries through index only access. This option
might:
v Eliminate the need to access data pages for more queries
v Eliminate redundant indexes

If SELECT EMPNO, FIRSTNAME, JOB FROM EMPLOYEE is issued to the table on
which this index resides, all of the required data can be retrieved from the index
without reading data pages. This improves performance.

Note: When a row is deleted or updated, the index keys are marked as deleted
and are not physically removed from a page until clean up is done some time after
the deletion or update is committed. These keys are referred to as pseudo-deleted
keys. Such a clean up might be done by a subsequent transaction which is
changing the page where the key is marked deleted. Clean up of pseudo-deleted
keys can be explicitly triggered using the CLEANUP ONLY ALL option of the
REORG INDEXES utility.

Note: On Solaris platforms, patch 122300-11 on Solaris 9 or 125100-07 on Solaris
10 is required to create indexes with RAW devices. Without this patch, the
CREATE INDEX statement will hang if a RAW device is used.

Creating nonpartitioned indexes on partitioned tables
When you create a nonpartitioned index on a partitioned table, you create a single
index object that refers to all rows in the table. Nonpartitioned indexes are always
created in a single table space, even if the table data partitions span multiple table
spaces.

Before you begin

This task assumes that your partitioned table has already been created.

Chapter 13. Indexes 331

About this task

Procedure
1. Formulate a CREATE INDEX statement for your table, using the NOT

PARTITIONED clause. For example:
CREATE INDEX indexName ON tableName(column) NOT PARTITIONED

2. Execute the CREATE INDEX statement from a supported DB2 interface.

Example

Example 1: Creating a nonpartitioned index in the same table space as the data
partition.

Assume the SALES table is defined as follows:
CREATE TABLE sales(store_num INT, sales_date DATE, total_sales DECIMAL (6,2)) IN ts1

PARTITION BY RANGE(store_num)
(STARTING FROM (1) ENDING AT (100),
STARTING FROM (101) ENDING AT (150),
STARTING FROM (151) ENDING AT (200))

The three partitions of the SALES table are stored in table space TS1. By default,
any indexes created for this table will also be stored in TS1, because that was the
table space specified for this table. To create a nonpartitioned index STORENUM
on the STORE_NUM column, use the following statement:

CREATE INDEX StoreNum ON sales(store_num) NOT PARTITIONED

Note that the NOT PARTITIONED clause is required, otherwise the index would
have been created as a partitioned index, the default for partitioned tables.

Example 2: Creating a nonpartitioned index in a table space other than the default

Assume a table called PARTS has been defined as follows:
CREATE TABLE parts(part_number INT, manufacturer CHAR, description CLOB,

price DECIMAL (4,2)) IN ts1 INDEX in ts2
PARTITION BY RANGE (part_number)
(STARTING FROM (1) ENDING AT (10) IN ts3,
STARTING FROM (11) ENDING AT (20) INDEX IN ts1,
STARTING FROM (21) ENDING AT (30) IN ts2 INDEX IN ts4);

The PARTS table consists of three partitions: the first is in table space TS3, the
second is in TS2 and the 3rd in TS3. If you issue the following statement a
nonpartitioned index that orders the rows in descending order of manufacturer
name is created:

CREATE INDEX manufct on parts(manufacturer DESC) NOT PARTITIONED IN TS3;

This index is created in table space TS3; the INDEX IN clause of the CREATE
TABLE statement is overridden by the IN tablespace clause of the CREATE INDEX
statement. Because the table PARTS is partitioned, you must include the NOT
PARTITIONED clause in the CREATE INDEX statement to create a nonpartitioned
index.

Creating partitioned indexes
When you create a partitioned index for a partitioned table, each data partition is
indexed in its own index partition. By default, the index partition is stored in same
table space as the data partition it indexes. Data in the indexes is distributed based
on the distribution key of the table.

332 Database Administration Concepts and Configuration Reference

Before you begin

This task assumes that your partitioned table has already been created.

About this task

Restrictions

There are some types of indexes that cannot be partitioned:
v Indexes over nonpartitioned data
v Indexes over spatial data
v XML column path indexes (system generated)

You must always create these indexes as nonpartitioned. In addition, the index key
for partitioned unique indexes must include all columns from the table-partitioning
key, whether they are user- or system-generated. The latter would be the case for
indexes created by the system for enforcing unique or primary constraints on data.

Also, The IN clause of the CREATE INDEX statement is not supported for creating
partitioned indexes. By default, index partitions are created in the same table space
as the data partitions they index. To specify an alternative table space in which to
store the index partition, you must use the partition-level INDEX IN clause of the
CREATE TABLE statement to specify a table space for indexes on a
partition-by-partition basis. If you omit this clause, the index partitions will reside
in the same table space as the data partitions they index.

Procedure
1. Formulate a CREATE INDEX statement for your table, using the

PARTITIONED clause.
2. Execute the CREATE INDEX statement from a supported DB2 interface.

Example

Note: These examples are for illustrative purposes only, and do not reflect best
practices for creating partitioned tables or indexes.
Example 1: Creating a partitioned index in the same table spaces as the data
partition.

In this example, assume the SALES table is has been defined as follows:
CREATE TABLE sales(store_num INT, sales_date DATE, total_sales DECIMAL (6,2))
IN ts1
PARTITION BY RANGE(store_num)
(STARTING FROM (1) ENDING AT (100),
STARTING FROM (101) ENDING AT (150),
STARTING FROM (151) ENDING AT (200))

In this case, the three partitions of the table SALES are stored in table space ts1.
Any partitioned indexes created for this table will also be stored in ts1, because
that is the table space in which each partition for this table will be stored. To create
a partitioned index on the store number, use the following statement:

CREATE INDEX StoreNum ON sales(store_num) PARTITIONED

Example 2: Choosing an alternative location for all index partitions.

In this example, assume the EMPLOYEE table is has been defined as follows:

Chapter 13. Indexes 333

CREATE TABLE employee(employee_number INT, employee_name CHAR,
job_code INT, city CHAR, salary DECIMAL (6,2))
IN ts1 INDEX IN ts2

PARTITION BY RANGE (job_code)
(STARTING FROM (1) ENDING AT (10) INDEX IN ts2,
STARTING FROM (11) ENDING AT (20) INDEX IN ts2,
STARTING FROM (21) ENDING AT (30) INDEX IN ts2)

To create a partitioned index on the job codes, use the following statement:
CREATE INDEX JobCode ON employee(job_code) PARTITIONED

In this example, the partitions of the EMPLOYEE table are stored in table space
ts1, however, all index partitions will be stored in ts2.

Example 3: Indexes created in several partitions.

Assume a table called PARTS has been defined as follows:
CREATE TABLE parts(part_number INT, manufacturer CHAR,

description CLOB, price DECIMAL (4,2)) IN ts1 INDEX in ts2
PARTITION BY RANGE (part_number)
(STARTING FROM (1) ENDING AT (10) IN ts3,
STARTING FROM (11) ENDING AT (20) INDEX IN ts1,
STARTING FROM (21) ENDING AT (30) IN ts2 INDEX IN ts4);

In this case, the PARTS table consists of three partitions: the first is in table space
ts3, the second in ts1 and the 3rd in ts2. If the following statements are issued:

CREATE INDEX partNoasc ON parts(part_number ASC) PARTITIONED
CREATE INDEX manufct on parts(manufacturer DESC) NOT PARTITIONED IN TS3;

then two indexes are created. The first is a partitioned index to order the rows in
ascending order of part number. The first index partition is created in table space
ts3, the second in ts1 and the third in ts4. The second index is a nonpartitioned
index which orders the rows in descending order of the manufacturer's name. This
index is created in ts3. Note that the IN clause is allowed in CREATE INDEX
statements for nonpartitioned indexes. Also, in this case, because the table PARTS
is partitioned, to create a nonpartitioned index, the clause NOT PARTITIONED
must be included in the CREATE INDEX statement.

Modifying indexes
If you want to modify your index, other than using the ALTER INDEX statement
to enable or disable index compression, you have to drop the index first and then
create the index again.

About this task

For example, you cannot add a column to the list of key columns without
dropping the previous definition and creating a new index. You can, however, add
a comment to describe the purpose of the index using the COMMENT statement.

Renaming indexes
You can use the RENAME statement to rename an existing index.

About this task

To rename an existing index, issue the following statement from the command line:
RENAME INDEX <source index name> TO <target index name>

334 Database Administration Concepts and Configuration Reference

v <source index name> is the name of the existing index that is to be renamed.
The name, including the schema name, must identify an index that already
exists in the database. It must not be the name of an index on a declared
temporary table or on a created temporary table. The schema name must not be
SYSIBM, SYSCAT, SYSFUN, or SYSSTAT.

v <target index name> specifies the new name for the index without a schema
name. The schema name of the source object is used to qualify the new name for
the object. The qualified name must not identify an index that already exists in
the database.

When renaming an index, the source index must not be a system-generated index.
If the statement is successful, the system catalog tables are updated to reflect the
new index name.

Rebuilding indexes
Certain database operations, such as a rollforward through a create index that was
not fully logged, can cause an index object to become invalid because the index is
not created during the rollforward operation. The index object can be recovered by
recreating the indexes in it.

About this task

When the database manager detects that an index is no longer valid, it
automatically attempts to rebuild it. When the rebuild takes place, it is controlled
by the indexrec parameter of the database or database manager configuration file.
There are five possible settings for this:
v SYSTEM
v RESTART
v RESTART_NO_REDO
v ACCESS
v ACCESS_NO_REDO

RESTART_NO_REDO and ACCESS_NO_REDO are similar to RESTART and
ACCESS.

The NO_REDO options mean that even if the index was fully logged during the
original operation, such as CREATE INDEX, the index will not be recreated during
rollforward, but will instead be created either at restart time or first access. See the
indexrec parameter for more information.

If database restart time is not a concern, it is better for invalid indexes to be rebuilt
as part of the process of returning a database to a consistent state. When this
approach is used, the time needed to restart a database will be longer due to the
index recreation process; however, normal processing will not be impacted once
the database has been returned to a consistent state.

On the other hand, when indexes are rebuilt as they are accessed, the time taken to
restart a database is faster, but an unexpected degradation in response time can
occur as a result of an index being recreated; for example, users accessing a table
that has an invalid index would have to wait for the index to be rebuilt. In
addition, unexpected locks can be acquired and held long after an invalid index
has been recreated, especially if the transaction that caused the index recreation to
occur never terminates (that is, commits or rolls back the changes made).

Chapter 13. Indexes 335

Dropping indexes
Other than changing the COMPRESSION attribute of an index, you cannot change
any clause of an index definition; you must drop the index and create it again.
(Dropping an index does not cause any other objects to be dropped but might
cause some packages to be invalidated.) Use the DROP statement to drop indexes.

About this task

A primary key or unique key index cannot be explicitly dropped. You must use
one of the following methods to drop it:
v If the primary index or unique constraint was created automatically for the

primary key or unique key, dropping the primary key or unique key will cause
the index to be dropped. Dropping is done through the ALTER TABLE
statement.

v If the primary index or the unique constraint was user-defined, the primary key
or unique key must be dropped first, through the ALTER TABLE statement.
After the primary key or unique key is dropped, the index is no longer
considered the primary index or unique index, and it can be explicitly dropped.

To drop an index using the command line, enter:
DROP INDEX <index_name>

The following statement drops the index called PH:
DROP INDEX PH

Any packages and cached dynamic SQL and XQuery statements that depend on
the dropped indexes are marked invalid. The application program is not affected
by changes resulting from adding or dropping indexes.

336 Database Administration Concepts and Configuration Reference

Chapter 14. Triggers

A trigger defines a set of actions that are performed in response to an insert,
update, or delete operation on a specified table. When such an SQL operation is
executed, the trigger is said to have been activated. Triggers are optional and are
defined using the CREATE TRIGGER statement.

Triggers can be used, along with referential constraints and check constraints, to
enforce data integrity rules. Triggers can also be used to cause updates to other
tables, automatically generate or transform values for inserted or updated rows, or
invoke functions to perform tasks such as issuing alerts.

Triggers are a useful mechanism for defining and enforcing transitional business
rules, which are rules that involve different states of the data (for example, a salary
that cannot be increased by more than 10 percent).

Using triggers places the logic that enforces business rules inside the database. This
means that applications are not responsible for enforcing these rules. Centralized
logic that is enforced on all of the tables means easier maintenance, because
changes to application programs are not required when the logic changes.

The following are specified when creating a trigger:
v The subject table specifies the table for which the trigger is defined.
v The trigger event defines a specific SQL operation that modifies the subject table.

The event can be an insert, update, or delete operation.
v The trigger activation time specifies whether the trigger should be activated before

or after the trigger event occurs.

The statement that causes a trigger to be activated includes a set of affected rows.
These are the rows of the subject table that are being inserted, updated, or deleted.
The trigger granularity specifies whether the actions of the trigger are performed
once for the statement or once for each of the affected rows.

The triggered action consists of an optional search condition and a set of SQL
statements that are executed whenever the trigger is activated. The SQL statements
are only executed if the search condition evaluates to true. If the trigger activation
time is before the trigger event, triggered actions can include statements that select,
set transition variables, or signal SQL states. If the trigger activation time is after
the trigger event, triggered actions can include statements that select, insert,
update, delete, or signal SQL states.

The triggered action can refer to the values in the set of affected rows using
transition variables. Transition variables use the names of the columns in the subject
table, qualified by a specified name that identifies whether the reference is to the
old value (before the update) or the new value (after the update). The new value
can also be changed using the SET Variable statement in before, insert, or update
triggers.

Another means of referring to the values in the set of affected rows is to use
transition tables. Transition tables also use the names of the columns in the subject
table, but specify a name to allow the complete set of affected rows to be treated as

© Copyright IBM Corp. 1993, 2012 337

a table. Transition tables can only be used in AFTER triggers (that is, not with
BEFORE and INSTEAD OF triggers), and separate transition tables can be defined
for old and new values.

Multiple triggers can be specified for a combination of table, event (INSERT,
UPDATE, DELETE), or activation time (BEFORE, AFTER, INSTEAD OF). When
more than one trigger exists for a particular table, event, and activation time, the
order in which the triggers are activated is the same as the order in which they
were created. Thus, the most recently created trigger is the last trigger to be
activated.

The activation of a trigger might cause trigger cascading, which is the result of the
activation of one trigger that executes SQL statements that cause the activation of
other triggers or even the same trigger again. The triggered actions might also
cause updates resulting from the application of referential integrity rules for
deletions that can, in turn, result in the activation of additional triggers. With
trigger cascading, a chain of triggers and referential integrity delete rules can be
activated, causing significant change to the database as a result of a single INSERT,
UPDATE, or DELETE statement.

When multiple triggers have insert, update, or delete actions against the same
object, conflict resolution mechanism, like temporary tables, are used to resolve
access conflicts, and this can have a noticeable impact on performance, particularly
in partitioned database environments.

Types of triggers
A trigger defines a set of actions that are performed in response to an insert,
update, or delete operation on a specified table. When such an SQL operation is
executed, the trigger is said to have been activated. Triggers are optional and are
defined using the CREATE TRIGGER statement.

Triggers can be used, along with referential constraints and check constraints, to
enforce data integrity rules. Triggers can also be used to cause updates to other
tables, automatically generate or transform values for inserted or updated rows, or
invoke functions to perform tasks such as issuing alerts.

The following types of triggers are supported:

BEFORE triggers
Run before an update, or insert. Values that are being updated or inserted
can be modified before the database is actually modified. You can use
triggers that run before an update or insert in several ways:
v To check or modify values before they are actually updated or inserted

in the database. This is useful if you must transform data from the way
the user sees it to some internal database format.

v To run other non-database operations coded in user-defined functions.

BEFORE DELETE triggers
Run before a delete. Checks values (a raises an error, if necessary).

AFTER triggers
Run after an update, insert, or delete. You can use triggers that run after an
update or insert in several ways:
v To update data in other tables. This capability is useful for maintaining

relationships between data or in keeping audit trail information.

338 Database Administration Concepts and Configuration Reference

v To check against other data in the table or in other tables. This capability
is useful to ensure data integrity when referential integrity constraints
aren't appropriate, or when table check constraints limit checking to the
current table only.

v To run non-database operations coded in user-defined functions. This
capability is useful when issuing alerts or to update information outside
the database.

INSTEAD OF triggers
Describe how to perform insert, update, and delete operations against
views that are too complex to support these operations natively. They
allow applications to use a view as the sole interface for all SQL operations
(insert, delete, update and select).

BEFORE triggers
By using triggers that run before an update or insert, values that are being
updated or inserted can be modified before the database is actually modified.
These can be used to transform input from the application (user view of the data)
to an internal database format where desired.

These BEFORE triggers can also be used to cause other non-database operations to
be activated through user-defined functions.

BEFORE DELETE triggers run before a delete operation. They check the values and
raise an error, if necessary.

Examples

The following example defines a DELETE TRIGGER with a complex default:
CREATE TRIGGER trigger1

BEFORE UPDATE ON table1
REFERENCING NEW AS N
WHEN (N.expected_delivery_date IS NULL)
SET N.expected_delivery_date = N.order_date + 5 days;

The following example defines a DELETE TRIGGER with a cross table constraint
that is not a referential integrity constraint:

CREATE TRIGGER trigger2
BEFORE UPDATE ON table2
REFERENCING NEW AS N
WHEN (n.salary > (SELECT maxsalary FROM salaryguide WHERE rank = n.position))
SIGNAL SQLSTATE ’78000’ SET MESSAGE_TEXT = ’Salary out of range’);

AFTER triggers
Triggers that run after an update, insert, or delete can be used in several ways.
v Triggers can update, insert, or delete data in the same or other tables. This is

useful to maintain relationships between data or to keep audit trail information.
v Triggers can check data against values of data in the rest of the table or in other

tables. This is useful when you cannot use referential integrity constraints or
check constraints because of references to data from other rows from this or
other tables.

v Triggers can use user-defined functions to activate non-database operations. This
is useful, for example, for issuing alerts or updating information outside the
database.

Chapter 14. Triggers 339

Example

The following example presents an AFTER trigger that increases the number of
employees when a new employee is hired.

CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMPLOYEE
FOR EACH ROW
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

INSTEAD OF triggers
INSTEAD OF triggers describe how to perform insert, update, and delete
operations against complex views. INSTEAD OF triggers allow applications to use
a view as the sole interface for all SQL operations (insert, delete, update and
select).

Usually, INSTEAD OF triggers contain the inverse of the logic applied in a view
body. For example, consider a view that decrypts columns from its source table.
The INSTEAD OF trigger for this view encrypts data and then inserts it into the
source table, thus performing the symmetrical operation.

Using an INSTEAD OF trigger, the requested modify operation against the view
gets replaced by the trigger logic, which performs the operation on behalf of the
view. From the perspective of the application this happens transparently, as it
perceives that all operations are performed against the view. Only one INSTEAD
OF trigger is allowed for each kind of operation on a given subject view.

The view itself must be an untyped view or an alias that resolves to an untyped
view. Also, it cannot be a view that is defined using WITH CHECK OPTION (a
symmetric view) or a view on which a symmetric view has been defined directly
or indirectly.

Example

The following example presents three INSTEAD OF triggers that provide logic for
INSERTs, UPDATEs, and DELETEs to the defined view (EMPV). The view EMPV
contains a join in its from clause and therefore cannot natively support any modify
operation.

CREATE VIEW EMPV(EMPNO, FIRSTNME, MIDINIT, LASTNAME, PHONENO,
HIREDATE, DEPTNAME)

AS SELECT EMPNO, FIRSTNME, MIDINIT, LASTNAME, PHONENO,
HIREDATE, DEPTNAME
FROM EMPLOYEE, DEPARTMENT WHERE

EMPLOYEE.WORKDEPT = DEPARTMENT.DEPTNO

CREATE TRIGGER EMPV_INSERT INSTEAD OF INSERT ON EMPV
REFERENCING NEW AS NEWEMP FOR EACH ROW
INSERT INTO EMPLOYEE (EMPNO, FIRSTNME, MIDINIT, LASTNAME,

WORKDEPT, PHONENO, HIREDATE)
VALUES(EMPNO, FIRSTNME, MIDINIT, LASTNAME,

COALESCE((SELECT DEPTNO FROM DEPARTMENT AS D
WHERE D.DEPTNAME = NEWEMP.DEPTNAME),

RAISE_ERROR(’70001’, ’Unknown dept name’)),
PHONENO, HIREDATE)

CREATE TRIGGER EMPV_UPDATE INSTEAD OF UPDATE ON EMPV
REFERENCING NEW AS NEWEMP OLD AS OLDEMP

FOR EACH ROW
BEGIN ATOMIC
VALUES(CASE WHEN NEWEMP.EMPNO = OLDEMP.EMPNO THEN 0

340 Database Administration Concepts and Configuration Reference

ELSE RAISE_ERROR(’70002’, ’Must not change EMPNO’) END);
UPDATE EMPLOYEE AS E

SET (FIRSTNME, MIDINIT, LASTNAME, WORKDEPT, PHONENO, HIREDATE)
= (NEWEMP.FIRSTNME, NEWEMP.MIDINIT, NEWEMP.LASTNAME,

COALESCE((SELECT DEPTNO FROM DEPARTMENT AS D
WHERE D.DEPTNAME = NEWEMP.DEPTNAME),

RAISE_ERROR (’70001’, ’Unknown dept name’)),
NEWEMP.PHONENO, NEWEMP.HIREDATE)

WHERE NEWEMP.EMPNO = E.EMPNO;
END

CREATE TRIGGER EMPV_DELETE INSTEAD OF DELETE ON EMPV
REFERENCING OLD AS OLDEMP FOR EACH ROW
DELETE FROM EMPLOYEE AS E WHERE E.EMPNO = OLDEMP.EMPNO

Designing triggers
When creating a trigger, you must associate it with a table; when creating an
INSTEAD OF trigger, you must associate it with a view. This table or view is
called the target table of the trigger. The term modify operation refers to any change
in the state of the target table.

About this task

A modify operation is initiated by:
v an INSERT statement
v an UPDATE statement, or a referential constraint which performs an UPDATE
v a DELETE statement, or a referential constraint which performs a DELETE
v a MERGE statement

You must associate each trigger with one of these three types of modify operations.
The association is called the trigger event for that particular trigger.

You must also define the action, called the triggered action, that the trigger performs
when its trigger event occurs. The triggered action consists of one or more
statements which can execute either before or after the database manager performs
the trigger event. Once a trigger event occurs, the database manager determines
the set of rows in the subject table that the modify operation affects and executes
the trigger.

Guidelines when creating triggers:
When creating a trigger, you must declare the following attributes and
behavior:
v The name of the trigger.
v The name of the subject table.
v The trigger activation time (BEFORE or AFTER the modify operation

executes).
v The trigger event (INSERT, DELETE, or UPDATE).
v The old transition variable value, if any.
v The new transition variable value, if any.
v The old transition table value, if any.
v The new transition table value, if any.
v The granularity (FOR EACH STATEMENT or FOR EACH ROW).
v The triggered action of the trigger (including a triggered action condition

and triggered statement(s)).

Chapter 14. Triggers 341

v If the trigger event is UPDATE a trigger-column list if the trigger should
only fire when specific columns are specified in the update statement.

Designing multiple triggers:
When triggers are defined using the CREATE TRIGGER statement, their
creation time is registered in the database in form of a timestamp. The
value of this timestamp is subsequently used to order the activation of
triggers when there is more than one trigger that should be run at the
same time. For example, the timestamp is used when there is more than
one trigger on the same subject table with the same event and the same
activation time. The timestamp is also used when there are one or more
AFTER or INSTEAD OF triggers that are activated by the trigger event and
referential constraint actions caused directly or indirectly (that is,
recursively by other referential constraints) by the triggered action.

Consider the following two triggers:
CREATE TRIGGER NEW_HIRED

AFTER INSERT ON EMPLOYEE
FOR EACH ROW
BEGIN ATOMIC

UPDATE COMPANY_STATS
SET NBEMP = NBEMP + 1;

END

CREATE TRIGGER NEW_HIRED_DEPT
AFTER INSERT ON EMPLOYEE
REFERENCING NEW AS EMP
FOR EACH ROW

BEGIN ATOMIC
UPDATE DEPTS
SET NBEMP = NBEMP + 1
WHERE DEPT_ID = EMP.DEPT_ID;

END

The above triggers are activated when you run an INSERT operation on
the employee table. In this case, the timestamp of their creation defines
which of the above two triggers is activated first.

The activation of the triggers is conducted in ascending order of the
timestamp value. Thus, a trigger that is newly added to a database runs
after all the other triggers that are previously defined.

Old triggers are activated before new triggers to ensure that new triggers
can be used as incremental additions to the changes that affect the database.
For example, if a triggered statement of trigger T1 inserts a new row into a
table T, a triggered statement of trigger T2 that is run after T1 can be used
to update the same row in T with specific values. Because the activation
order of triggers is predictable, you can have multiple triggers on a table
and still know that the newer ones will be acting on a table that has
already been modified by the older ones.

Trigger interactions with referential constraints:
A trigger event can occur as a result of changes due to referential
constraint enforcement. For example, given two tables DEPT and EMP, if
deleting or updating DEPT causes propagated deletes or updates to EMP
by means of referential integrity constraints, then delete or update triggers
defined on EMP become activated as a result of the referential constraint
defined on DEPT. The triggers on EMP are run either BEFORE or AFTER
the deletion (in the case of ON DELETE CASCADE) or update of rows in
EMP (in the case of ON DELETE SET NULL), depending on their
activation time.

342 Database Administration Concepts and Configuration Reference

Specifying what makes a trigger fire (triggering statement or
event)

Every trigger is associated with an event. Triggers are activated when their
corresponding event occurs in the database. This trigger event occurs when the
specified action, either an UPDATE, INSERT, or DELETE statement (including
those caused by actions of referential constraints), is performed on the target table.

About this task

For example:
CREATE TRIGGER NEW_HIRE

AFTER INSERT ON EMPLOYEE
FOR EACH ROW
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

The above statement defines the trigger new_hire, which activates when you
perform an insert operation on table employee.

You associate every trigger event, and consequently every trigger, with exactly one
target table and exactly one modify operation. The modify operations are:

Insert operation
An insert operation can only be caused by an INSERT statement or the
insert operation of a MERGE statement. Therefore, triggers are not
activated when data is loaded using utilities that do not use INSERT, such
as the LOAD command.

Delete operation
A delete operation can be caused by a DELETE statement, or the delete
operation of a MERGE statement, or as a result of a referential constraint
rule of ON DELETE CASCADE.

Update operation
An update operation can be caused by an UPDATE statement, or the
update operation of a MERGE statement, or as a result of a referential
constraint rule of ON DELETE SET NULL.

If the trigger event is an update operation, the event can be associated with
specific columns of the target table. In this case, the trigger is only activated if the
update operation attempts to update any of the specified columns. This provides a
further refinement of the event that activates the trigger.

For example, the following trigger, REORDER, activates only if you perform an
update operation on the columns ON_HAND or MAX_STOCKED, of the table
PARTS:

CREATE TRIGGER REORDER
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS N_ROW
FOR EACH ROW
WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED)
BEGIN ATOMIC
VALUES(ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED -

N_ROW.ON_HAND,
N_ROW.PARTNO));

END

When a trigger is activated, it runs according to its level of granularity as follows:

Chapter 14. Triggers 343

FOR EACH ROW
It runs as many times as the number of rows in the set of affected rows. If
you need to refer to the specific rows affected by the triggered action, use
FOR EACH ROW granularity. An example of this is the comparison of the
new and old values of an updated row in an AFTER UPDATE trigger.

FOR EACH STATEMENT
It runs once for the entire trigger event.

If the set of affected rows is empty (that is, in the case of a searched UPDATE or
DELETE in which the WHERE clause did not qualify any rows), a FOR EACH
ROW trigger does not run. But a FOR EACH STATEMENT trigger still runs once.

For example, keeping a count of number of employees can be done using FOR
EACH ROW.

CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
FOR EACH ROW
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

You can achieve the same affect with one update by using a granularity of FOR
EACH STATEMENT.

CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
REFERENCING NEW_TABLE AS NEWEMPS
FOR EACH STATEMENT
UPDATE COMPANY_STATS
SET NBEMP = NBEMP + (SELECT COUNT(*) FROM NEWEMPS)

Note:

v A granularity of FOR EACH STATEMENT is not supported for BEFORE
triggers.

v The maximum nesting level for triggers is 16. That is, the maximum number of
cascading trigger activations is 16. A trigger activation refers to the activation of
a trigger upon a triggering event, such as insert, update, or delete of data in a
column of a table, or generally to a table.

Specifying when a trigger fires (BEFORE, AFTER, and
INSTEAD OF clauses)

The trigger activation time specifies when the trigger should be activated, relative to
the trigger event.

About this task

There are three activation times that you can specify: BEFORE, AFTER, or
INSTEAD OF:
v If the activation time is BEFORE, the triggered actions are activated for each row

in the set of affected rows before the trigger event executes. Hence, the subject
table will only be modified after the BEFORE trigger has completed execution
for each row. Note that BEFORE triggers must have a granularity of FOR EACH
ROW.

v If the activation time is AFTER, the triggered actions are activated for each row
in the set of affected rows or for the statement, depending on the trigger
granularity. This occurs after the trigger event has been completed, and after the
database manager checks all constraints that the trigger event might affect,

344 Database Administration Concepts and Configuration Reference

including actions of referential constraints. Note that AFTER triggers can have a
granularity of either FOR EACH ROW or FOR EACH STATEMENT.
For example, the activation time of the following trigger is AFTER the INSERT
operation on employee:

CREATE TRIGGER NEW_HIRE
AFTER INSERT ON EMPLOYEE
FOR EACH ROW
UPDATE COMPANY_STATS SET NBEMP = NBEMP + 1

v If the activation time is INSTEAD OF, the triggered actions are activated for each
row in the set of affected rows instead of executing the trigger event. INSTEAD
OF triggers must have a granularity of FOR EACH ROW, and the subject table
must be a view. No other triggers are able to use a view as the subject table.

Example

The following diagram illustrates the execution model of BEFORE and AFTER
triggers:

Chapter 14. Triggers 345

For a given table with both before and AFTER triggers, and a modifying event that
is associated with these triggers, all the BEFORE triggers are activated first. The
first activated BEFORE trigger for a given event operates on the set of rows
targeted by the operation and makes any update modifications to the set that its
logic prescribes. The output of this BEFORE trigger is accepted as input by the
next before-trigger. When all of the BEFORE triggers that are activated by the
event have been fired, the intermediate result set, the result of the BEFORE trigger
modifications to the rows targeted by the trigger event operation, is applied to the
table. Then each AFTER trigger associated with the event is fired. The AFTER
triggers might modify the same table, another table, or perform an action external
to the database.

The different activation times of triggers reflect different purposes of triggers.
Basically, BEFORE triggers are an extension to the constraint subsystem of the
database management system. Therefore, you generally use them to:
v Perform validation of input data
v Automatically generate values for newly inserted rows

E-mail

A set-oriented
insert modification

Database tables

Base
table C

Base
table B

Base
table A

. . .

Before insert trigger-1
on table A

Set of rows specified
for the insert modification
on base table A

Before insert trigger-2
on table A

Before insert trigger-3
on table A

Intermediate
result set

Intermediate
result set

After insert trigger-1
on table A

After insert trigger-2
on table A

After insert trigger-3
on table A

Trigger
activated

Trigger
activated

Trigger
activated

Trigger modifies
table A

Trigger modifies
table B

Trigger modifies
table C

Trigger invokes a function
(UDF) that contains complex
logic, modifies table C,
and sends an e-mail.

The intermediate
result set rows are
inserted into table A.

Intermediate
result set

Figure 45. Trigger execution model

346 Database Administration Concepts and Configuration Reference

v Read from other tables for cross-referencing purposes

BEFORE triggers are not used for further modifying the database because they are
activated before the trigger event is applied to the database. Consequently, they are
activated before integrity constraints are checked.

Conversely, you can view AFTER triggers as a module of application logic that
runs in the database every time a specific event occurs. As a part of an application,
AFTER triggers always see the database in a consistent state. Note that they are
run after the integrity constraint validations. Consequently, you can use them
mostly to perform operations that an application can also perform. For example:
v Perform follow on modify operations in the database.
v Perform actions outside the database, for example, to support alerts. Note that

actions performed outside the database are not rolled back if the trigger is rolled
back.

In contrast, you can view an INSTEAD OF trigger as a description of the inverse
operation of the view it is defined on. For example, if the select list in the view
contains an expression over a table, the INSERT statement in the body of its
INSTEAD OF INSERT trigger will contain the reverse expression.

Because of the different nature of BEFORE, AFTER, and INSTEAD OF triggers, a
different set of SQL operations can be used to define the triggered actions of
BEFORE and AFTER, INSTEAD OF triggers. For example, update operations are
not allowed in BEFORE triggers because there is no guarantee that integrity
constraints will not be violated by the triggered action. Similarly, different trigger
granularities are supported in BEFORE, AFTER, and INSTEAD OF triggers.

The triggered SQL statement of all triggers can be a dynamic compound statement.
However, BEFORE triggers face some restrictions; they cannot contain the
following SQL statements:
v UPDATE
v DELETE
v INSERT
v MERGE

Defining conditions for when trigger-action will fire (WHEN
clause)

The activation of a trigger results in the running of its associated triggered action.
Every trigger has exactly one triggered action which, in turn, has two components:
an optional triggered action condition or WHEN clause, and a set of triggered
statement(s).

About this task

The triggered action condition is an optional clause of the triggered action which
specifies a search condition that must evaluate to true to run statements within the
triggered action. If the WHEN clause is omitted, then the statements within the
triggered action are always executed.

The triggered action condition is evaluated once for each row if the trigger is a
FOR EACH ROW trigger, and once for the statement if the trigger is a FOR EACH
STATEMENT trigger.

Chapter 14. Triggers 347

This clause provides further control that you can use to fine tune the actions
activated on behalf of a trigger. An example of the usefulness of the WHEN clause
is to enforce a data dependent rule in which a triggered action is activated only if
the incoming value falls inside or outside of a certain range.

The activation of a trigger results in the running of its associated triggered action.
Every trigger has exactly one triggered action which, in turn, has two components:

The triggered action condition defines whether or not the set of triggered
statements are performed for the row or for the statement for which the triggered
action is executing. The set of triggered statements define the set of actions
performed by the trigger in the database as a consequence of its event having
occurred.

Example

For example, the following trigger action specifies that the set of triggered
statements should only be activated for rows in which the value of the on_hand
column is less than ten per cent of the value of the max_stocked column. In this
case, the set of triggered statements is the invocation of the issue_ship_request
function.

CREATE TRIGGER REORDER
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS N_ROW
FOR EACH ROW

WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED)
BEGIN ATOMIC

VALUES(ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED -
N_ROW.ON_HAND,
N_ROW.PARTNO));

END

The set of triggered statements carries out the real actions caused by activating a
trigger. Not every SQL operation is meaningful in every trigger. Depending on
whether the trigger activation time is BEFORE or AFTER, different kinds of
operations might be appropriate as a triggered statement.

In most cases, if any triggered statement returns a negative return code, the
triggering statement together with all trigger and referential constraint actions are
rolled back. The trigger name, SQLCODE, SQLSTATE and many of the tokens from
the failing triggered statement are returned in the error message.

Supported SQL PL statements in triggers
The triggered SQL statement of all triggers can be a dynamic compound statement.

That is, triggered SQL statements can contain one or more of the following
elements:
v CALL statement
v DECLARE variable statement
v SET variable statement
v WHILE loop
v FOR loop
v IF statement
v SIGNAL statement

348 Database Administration Concepts and Configuration Reference

v ITERATE statement
v LEAVE statement
v GET DIGNOSTIC statement
v fullselect

However, only AFTER and INSTEAD OF triggers can contain one or more of the
following SQL statements:
v UPDATE statement
v DELETE statement
v INSERT statement
v MERGE statement

Accessing old and new column values in triggers using
transition variables

When you implement a FOR EACH ROW trigger, it might be necessary to refer to
the value of columns of the row in the set of affected rows, for which the trigger is
currently executing. Note that to refer to columns in tables in the database
(including the subject table), you can use regular SELECT statements.

About this task

A FOR EACH ROW trigger can refer to the columns of the row for which it is
currently executing by using two transition variables that you can specify in the
REFERENCING clause of a CREATE TRIGGER statement. There are two kinds of
transition variables, which are specified as OLD and NEW, together with a
correlation-name. They have the following semantics:

OLD AS correlation-name
Specifies a correlation name which captures the original state of the row,
that is, before the triggered action is applied to the database.

NEW AS correlation-name
Specifies a correlation name which captures the value that is, or was, used
to update the row in the database when the triggered action is applied to
the database.

Example

Consider the following example:
CREATE TRIGGER REORDER

AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW AS N_ROW
FOR EACH ROW
WHEN (N_ROW.ON_HAND < 0.10 * N_ROW.MAX_STOCKED
AND N_ROW.ORDER_PENDING = ’N’)
BEGIN ATOMIC

VALUES(ISSUE_SHIP_REQUEST(N_ROW.MAX_STOCKED -
N_ROW.ON_HAND,
N_ROW.PARTNO));

UPDATE PARTS SET PARTS.ORDER_PENDING = ’Y’
WHERE PARTS.PARTNO = N_ROW.PARTNO;

END

Chapter 14. Triggers 349

What to do next

Based on the definition of the OLD and NEW transition variables given above, it is
clear that not every transition variable can be defined for every trigger. Transition
variables can be defined depending on the kind of trigger event:

UPDATE
An UPDATE trigger can refer to both OLD and NEW transition variables.

INSERT
An INSERT trigger can only refer to a NEW transition variable because
before the activation of the INSERT operation, the affected row does not
exist in the database. That is, there is no original state of the row that
would define old values before the triggered action is applied to the
database.

DELETE
A DELETE trigger can only refer to an OLD transition variable because
there are no new values specified in the delete operation.

Note: Transition variables can only be specified for FOR EACH ROW triggers. In a
FOR EACH STATEMENT trigger, a reference to a transition variable is not
sufficient to specify to which of the several rows in the set of affected rows the
transition variable is referring. Instead, refer to the set of new and old rows by
using the OLD TABLE and NEW TABLE clauses of the CREATE TRIGGER
statement. For more information on these clauses, see the CREATE TRIGGER
statement.

Referencing old and new table result sets using transition
tables

In both FOR EACH ROW and FOR EACH STATEMENT triggers, it might be
necessary to refer to the whole set of affected rows. This is necessary, for example,
if the trigger body needs to apply aggregations over the set of affected rows (for
example, MAX, MIN, or AVG of some column values).

About this task

A trigger can refer to the set of affected rows by using two transition tables that
can be specified in the REFERENCING clause of a CREATE TRIGGER statement.
Just like the transition variables, there are two kinds of transition tables, which are
specified as OLD_TABLE and NEW_TABLE together with a table-name, with the
following semantics:

OLD_TABLE AS table-name
Specifies the name of the table which captures the original state of the set
of affected rows (that is, before the triggering SQL operation is applied to
the database).

NEW_TABLE AS table-name
Specifies the name of the table which captures the value that is used to
update the rows in the database when the triggered action is applied to the
database.

Example

For example:

350 Database Administration Concepts and Configuration Reference

CREATE TRIGGER REORDER
AFTER UPDATE OF ON_HAND, MAX_STOCKED ON PARTS
REFERENCING NEW_TABLE AS N_TABLE
NEW AS N_ROW
FOR EACH ROW
WHEN ((SELECT AVG (ON_HAND) FROM N_TABLE) > 35)
BEGIN ATOMIC

VALUES(INFORM_SUPERVISOR(N_ROW.PARTNO,
N_ROW.MAX_STOCKED,
N_ROW.ON_HAND));

END

Note that NEW_TABLE always has the full set of updated rows, even on a FOR
EACH ROW trigger. When a trigger acts on the table on which the trigger is
defined, NEW_TABLE contains the changed rows from the statement that activated
the trigger. However, NEW_TABLE does not contain the changed rows that were
caused by statements within the trigger, as that would cause a separate activation
of the trigger.

What to do next

The transition tables are read-only. The same rules that define the kinds of
transition variables that can be defined for which trigger event, apply for transition
tables:

UPDATE
An UPDATE trigger can refer to both OLD_TABLE and NEW_TABLE
transition tables.

INSERT
An INSERT trigger can only refer to a NEW_TABLE transition table
because before the activation of the INSERT operation the affected rows do
not exist in the database. That is, there is no original state of the rows that
defines old values before the triggered action is applied to the database.

DELETE
A DELETE trigger can only refer to an OLD_TABLE transition table
because there are no new values specified in the delete operation.

Note: It is important to observe that transition tables can be specified for both
granularities of AFTER triggers: FOR EACH ROW and FOR EACH STATEMENT.

The scope of the OLD_TABLE and NEW_TABLE table-name is the trigger body. In this
scope, this name takes precedence over the name of any other table with the same
unqualified table-name that might exist in the schema. Therefore, if the OLD_TABLE or
NEW_TABLE table-name is for example, X, a reference to X (that is, an unqualified X)
in the FROM clause of a SELECT statement will always refer to the transition table
even if there is a table named X in the in the schema of the trigger creator. In this
case, the user has to make use of the fully qualified name in order to refer to the
table X in the schema.

Creating triggers
A trigger defines a set of actions that are executed in conjunction with, or triggered
by, an INSERT, UPDATE, or DELETE clause on a specified table or a typed table.

Chapter 14. Triggers 351

About this task

Use triggers to:
v Validate input data
v Generate a value for a newly-inserted row
v Read from other tables for cross-referencing purposes
v Write to other tables for audit-trail purposes

You can use triggers to support general forms of integrity or business rules. For
example, a trigger can check a customer's credit limit before an order is accepted
or update a summary data table.

Benefits:

v Faster application development: Because a trigger is stored in the
database, you do not have to code the actions that it performs in every
application.

v Easier maintenance: Once a trigger is defined, it is automatically invoked
when the table that it is created on is accessed.

v Global enforcement of business rules: If a business policy changes, you
only need to change the trigger and not each application program.

Restrictions:

v You cannot use triggers with nicknames.
v If the trigger is a BEFORE trigger, the column name specified by the

triggered action must not be a generated column other than an identity
column. That is, the generated identity value is visible to BEFORE
triggers.

When creating an atomic trigger, care must be taken with the end-of-statement
character. The command line processor, by default, considers a “;” the
end-of-statement marker. You should manually edit the end-of-statement character
in your script to create the atomic trigger so that you are using a character other
than “;”. For example, the “;” could be replaced by another special character like
“#”. You can also precede the CREATE TRIGGER DDL with:

--#SET TERMINATOR @

To change the terminator in the CLP on the fly, the following syntax will set it
back:

--#SET TERMINATOR

To create a trigger from the command line, enter:
db2 -td <delimiter> -vf <script>

where the <delimiter> is the alternative end-of-statement character and the
<script> is the modified script with the new <delimiter> in it.

To create a trigger from the command line, enter:
CREATE TRIGGER <name>

<action> ON <table_name>
<operation>
<triggered_action>

352 Database Administration Concepts and Configuration Reference

The following statement creates a trigger that increases the number of employees
each time a new person is hired, by adding 1 to the number of employees
(NBEMP) column in the COMPANY_STATS table each time a row is added to the
EMPLOYEE table.

CREATE TRIGGER NEW_HIRED
AFTER INSERT ON EMPLOYEE
FOR EACH ROW
UPDATE COMPANY_STATS SET NBEMP = NBEMP+1;

A trigger body can include one or more of the following statements: INSERT,
searched UPDATE, searched DELETE, fullselect, SET Variable, and SIGNAL
SQLSTATE. The trigger can be activated before or after the INSERT, UPDATE, or
DELETE statement to which it refers.

Modifying and dropping triggers
Triggers cannot be modified. They must be dropped and then created again
according to the new definitions you require.

Before you begin

Trigger dependencies

v All dependencies of a trigger on some other object are recorded in the
SYSCAT.TRIGDEP system catalog view. A trigger can depend on many
objects.

v If an object that a trigger is dependent on is dropped, the trigger
becomes inoperative but its definition is retained in the system catalog
view. To re-validate this trigger, you must retrieve its definition from the
system catalog view and submit a new CREATE TRIGGER statement.

v If a trigger is dropped, its description is deleted from the
SYSCAT.TRIGGERS system catalog view and all of its dependencies are
deleted from the SYSCAT.TRIGDEP system catalog view. All packages
having UPDATE, INSERT, or DELETE dependencies on the trigger are
invalidated.

v If the view is dependent on the trigger and it is made inoperative, the
trigger is also marked inoperative. Any packages dependent on triggers
that have been marked inoperative are invalidated.

About this task

A trigger object can be dropped using the DROP TRIGGER statement, but this
procedure will cause dependent packages to be marked invalid, as follows:
v If an update trigger without an explicit column list is dropped, then packages

with an update usage on the target table are invalidated.
v If an update trigger with a column list is dropped, then packages with update

usage on the target table are only invalidated if the package also had an update
usage on at least one column in the column-name list of the CREATE TRIGGER
statement.

v If an insert trigger is dropped, packages that have an insert usage on the target
table are invalidated.

v If a delete trigger is dropped, packages that have a delete usage on the target
table are invalidated.

A package remains invalid until the application program is explicitly bound or
rebound, or it is run and the database manager automatically rebinds it.

Chapter 14. Triggers 353

Examples of triggers and trigger use

Examples of interaction between triggers and referential
constraints

Update operations can cause the interaction of triggers with referential constraints
and check constraints.

Figure 37 on page 301 and the associated description are representative of the
processing that is performed for an statement that updates data in the database.

Figure 37 on page 301 shows the general order of processing for an statement that
updates a table. It assumes a situation where the table includes BEFORE triggers,
referential constraints, check constraints and AFTER triggers that cascade. The
following is a description of the boxes and other items found in Figure 37 on page
301.
v statement S1

This is the DELETE, INSERT, or UPDATE statement that begins the process. The
statement S1 identifies a table (or an updatable view over some table) referred to
as the subject table throughout this description.

v Determine set of affected rows
This step is the starting point for a process that repeats for referential constraint
delete rules of CASCADE and SET NULL and for cascaded statements from
AFTER triggers.
The purpose of this step is to determine the set of affected rows for the statement.
The set of rows included is based on the statement:
– for DELETE, all rows that satisfy the search condition of the statement (or the

current row for a positioned DELETE)
– for INSERT, the rows identified by the VALUES clause or the fullselect
– for UPDATE, all rows that satisfy the search condition (or the current row for

a positioned UPDATE).

SQL statement S1 Determine set of
affected rows (SAR)

Process
BEFORE triggers

Apply SAR to
the target table

Apply
Constraints

Process
AFTER triggers

error

error

violation

error

cascaded SQL statement

= rollback changes to before S1

R

R

R

R

R

Figure 46. Processing an statement with associated triggers and constraints

354 Database Administration Concepts and Configuration Reference

If the set of affected rows is empty, there will be no BEFORE triggers, changes to
apply to the subject table, or constraints to process for the statement.

v Process BEFORE triggers
All BEFORE triggers are processed in ascending order of creation. Each BEFORE
trigger will process the triggered action once for each row in the set of affected
rows.
An error can occur during the processing of a triggered action in which case all
changes made as a result of the original statement S1 (so far) are rolled back.
If there are no BEFORE triggers or the set of affected is empty, this step is
skipped.

v Apply the set of affected rows to the subject table
The actual delete, insert, or update is applied using the set of affected rows to
the subject table in the database.
An error can occur when applying the set of affected rows (such as attempting
to insert a row with a duplicate key where a unique index exists) in which case
all changes made as a result of the original statement S1 (so far) are rolled back.

v Apply Constraints
The constraints associated with the subject table are applied if set of affected
rows is not empty. This includes unique constraints, unique indexes, referential
constraints, check constraints and checks related to the WITH CHECK OPTION
on views. Referential constraints with delete rules of cascade or set null might
cause additional triggers to be activated.
A violation of any constraint or WITH CHECK OPTION results in an error and
all changes made as a result of S1 (so far) are rolled back.

v Process AFTER triggers
All AFTER triggers activated by S1 are processed in ascending order of creation.
FOR EACH STATEMENT triggers will process the triggered action exactly once,
even if the set of affected rows is empty. FOR EACH ROW triggers will process
the triggered action once for each row in the set of affected rows.
An error can occur during the processing of a triggered action in which case all
changes made as a result of the original S1 (so far) are rolled back.
The triggered action of a trigger can include triggered statements that are
DELETE, INSERT or UPDATE statements. For the purposes of this description,
each such statement is considered a cascaded statement.
A cascaded statement is a DELETE, INSERT, or UPDATE statement that is
processed as part of the triggered action of an AFTER trigger. This statement
starts a cascaded level of trigger processing. This can be thought of as assigning
the triggered statement as a new S1 and performing all of the steps described
here recursively.
Once all triggered statements from all AFTER triggers activated by each S1 have
been processed to completion, the processing of the original S1 is completed.

v R = roll back changes to before S1

Any error (including constraint violations) that occurs during processing results
in a roll back of all the changes made directly or indirectly as a result of the
original statement S1. The database is therefore back in the same state as
immediately prior to the execution of the original statement S1

Chapter 14. Triggers 355

Examples of defining actions using triggers
Assume that your general manager wants to keep the names of customers who
have sent three or more complaints in the last 72 hours in a separate table. The
general manager also wants to be informed whenever a customer name is inserted
in this table more than once.

To define such actions, you define:
v An UNHAPPY_CUSTOMERS table:

CREATE TABLE UNHAPPY_CUSTOMERS (
NAME VARCHAR (30),
EMAIL_ADDRESS VARCHAR (200),
INSERTION_DATE DATE)

v A trigger to automatically insert a row in UNHAPPY_CUSTOMERS if 3 or more
messages were received in the last 3 days (assumes the existence of a
CUSTOMERS table that includes a NAME column and an E_MAIL_ADDRESS
column):

CREATE TRIGGER STORE_UNHAPPY_CUST
AFTER INSERT ON ELECTRONIC_MAIL
REFERENCING NEW AS N
FOR EACH ROW
WHEN (3 <= (SELECT COUNT(*)

FROM ELECTRONIC_MAIL
WHERE SENDER = N.SENDER

AND SENDING_DATE(MESSAGE) > CURRENT DATE - 3 DAYS)
)

BEGIN ATOMIC
INSERT INTO UNHAPPY_CUSTOMERS
VALUES ((SELECT NAME
FROM CUSTOMERS
WHERE EMAIL_ADDRESS = N.SENDER), N.SENDER, CURRENT DATE);

END

v A trigger to send a note to the general manager if the same customer is inserted
in UNHAPPY_CUSTOMERS more than once (assumes the existence of a
SEND_NOTE function that takes 2 character strings as input):

CREATE TRIGGER INFORM_GEN_MGR
AFTER INSERT ON UNHAPPY_CUSTOMERS
REFERENCING NEW AS N
FOR EACH ROW
WHEN (1 <(SELECT COUNT(*)

FROM UNHAPPY_CUSTOMERS
WHERE EMAIL_ADDRESS = N.EMAIL_ADDRESS)

)
BEGIN ATOMIC

VALUES(SEND_NOTE(’Check customer:’ CONCAT N.NAME,
’bigboss@vnet.ibm.com’));

END

Example of defining business rules using triggers
Suppose your company has the policy that all e-mail dealing with customer
complaints must have Mr. Nelson, the marketing manager, in the carbon copy (CC)
list.

Because this is a rule, you might want to express it as a constraint such as one of
the following (assuming the existence of a CC_LIST UDF to check it):

ALTER TABLE ELECTRONIC_MAIL ADD
CHECK (SUBJECT <> ’Customer complaint’ OR

CONTAINS (CC_LIST(MESSAGE), ’nelson@vnet.ibm.com’) = 1)

356 Database Administration Concepts and Configuration Reference

However, such a constraint prevents the insertion of e-mail dealing with customer
complaints that do not have the marketing manager in the cc list. This is certainly
not the intent of your company’s business rule. The intent is to forward to the
marketing manager any e-mail dealing with customer complaints that were not
copied to the marketing manager. Such a business rule can only be expressed with
a trigger because it requires taking actions that cannot be expressed with
declarative constraints. The trigger assumes the existence of a SEND_NOTE
function with parameters of type E_MAIL and character string.

CREATE TRIGGER INFORM_MANAGER
AFTER INSERT ON ELECTRONIC_MAIL
REFERENCING NEW AS N
FOR EACH ROW
WHEN (N.SUBJECT = ’Customer complaint’ AND

CONTAINS (CC_LIST(MESSAGE), ’nelson@vnet.ibm.com’) = 0)
BEGIN ATOMIC

VALUES(SEND_NOTE(N.MESSAGE, ’nelson@vnet.ibm.com’));
END

Example of preventing operations on tables using triggers
Suppose you want to prevent undeliverable e-mail from being stored in a table
named ELECTRONIC_MAIL. To do so, you must prevent the execution of certain
SQL INSERT statements.

There are two ways to do this:
v Define a BEFORE trigger that returns an error whenever the subject of an e-mail

is undelivered mail:
CREATE TRIGGER BLOCK_INSERT

NO CASCADE BEFORE INSERT ON ELECTRONIC_MAIL
REFERENCING NEW AS N
FOR EACH ROW
WHEN (SUBJECT(N.MESSAGE) = ’undelivered mail’)
BEGIN ATOMIC

SIGNAL SQLSTATE ’85101’
SET MESSAGE_TEXT = (’Attempt to insert undelivered mail’);
END

v Define a check constraint forcing values of the new column SUBJECT to be
different from undelivered mail:

ALTER TABLE ELECTRONIC_MAIL
ADD CONSTRAINT NO_UNDELIVERED
CHECK (SUBJECT <> ’undelivered mail’)

Chapter 14. Triggers 357

358 Database Administration Concepts and Configuration Reference

Chapter 15. Sequences

A sequence is a database object that allows the automatic generation of values, such
as cheque numbers. Sequences are ideally suited to the task of generating unique
key values. Applications can use sequences to avoid possible concurrency and
performance problems resulting from column values used to track numbers. The
advantage that sequences have over numbers created outside the database is that
the database server keeps track of the numbers generated. A crash and restart will
not cause duplicate numbers from being generated.

The sequence numbers generated have the following properties:
v Values can be any exact numeric data type with a scale of zero. Such data types

include: SMALLINT, BIGINT, INTEGER, and DECIMAL.
v Consecutive values can differ by any specified integer increment. The default

increment value is 1.
v Counter value is recoverable. The counter value is reconstructed from logs when

recovery is required.
v Values can be cached to improve performance. Pre-allocating and storing values

in the cache reduces synchronous I/O to the log when values are generated for
the sequence. In the event of a system failure, all cached values that have not
been used are considered lost. The value specified for CACHE is the maximum
number of sequence values that could be lost.

There are two expressions that can used with sequences:
v NEXT VALUE expression: returns the next value for the specified sequence. A

new sequence number is generated when a NEXT VALUE expression specifies
the name of the sequence. However, if there are multiple instances of a NEXT
VALUE expression specifying the same sequence name within a query, the
counter for the sequence is incremented only once for each row of the result,
and all instances of NEXT VALUE return the same value for each row of the
result.

v PREVIOUS VALUE expression: returns the most recently generated value for
the specified sequence for a previous statement within the current application
process. That is, for any given connection, the PREVIOUS VALUE remains
constant even if another connection invokes NEXT VALUE.

For complete details and examples of these expressions, see “Sequence reference”
in SQL Reference, Volume 1.

Designing sequences
When designing sequences you must consider the differences between identity
columns and sequences, and which is more appropriate for your environment. If
you decide to use sequences, you must be familiar with the available options and
parameters.

About this task

Before designing sequences, see “Sequences compared to identity columns” on
page 362.

© Copyright IBM Corp. 1993, 2012 359

In addition to being simple to set up and create, the sequence has a variety of
additional options that allows you more flexibility in generating the values:
v Choose from a variety of data types (SMALLINT, INTEGER, BIGINT,

DECIMAL)
v Change starting values (START WITH)
v Change the sequence increment, including specifying increasing or decreasing

values (INCREMENT BY)
v Set minimum and maximum values where the sequence numbering starts and

stops (MINVALUE/MAXVALUE)
v Allow wrapping of values so that sequences can start over again, or disallow

cycling (CYCLE/NO CYCLE)
v Allow caching of sequence values to improve performance, or disallow

caching(CACHE/NO CACHE)

Even after the sequence has been generated, many of these values can be altered.
For instance, you might want to set a different starting value depending on the
day of the week. Another practical example of using sequences is for the
generation and processing of bank checks. The sequence of bank check numbers is
extremely important, and there are serious consequences if a batch of sequence
numbers is lost or corrupted.

For improved performance, you should also be aware of and make use of the
CACHE option. This option tells the database manager how many sequence values
should be generated by the system before going back to the catalog to generate
another set of sequences. The default CACHE value is 20, if not specified. Using
the default as an example, the database manager automatically generates 20
sequential values in memory (1, 2,, 20) when the first sequence value is
requested. Whenever a new sequence number is required, this memory cache of
values is used to return the next value. Once this cache of values is used up, the
database manager will generate the next twenty values (21, 22,, 40).

By implementing caching of sequence numbers, the database manager does not
have to continually go to the catalog tables to get the next value. This reduces the
overhead associated with retrieving sequence numbers, but it also leads to possible
gaps in the sequences if a system failure occurs, or if the system is shut down. For
instance, if you decide to set the sequence cache to 100, the database manager will
cache 100 values of these numbers and also set the system catalog to show that the
next sequence of values should begin at 201. In the event that the database is shut
down, the next set of sequence numbers will begin at 201. The numbers that were
generated from 101 to 200 will be lost from the set of sequences if they were not
used. If gaps in generated values cannot be tolerated in your application, you must
set the caching value to NO CACHE despite the higher system overhead this will
cause.

For more information on all available options and associated values, see the
CREATE SEQUENCE statement.

Managing sequence behavior
You can tailor the behavior of sequences to meet the needs of your application.
You change the attributes of a sequence when you issue the CREATE SEQUENCE
statement to create a new sequence, and when you issue the ALTER SEQUENCE
statement for an existing sequence.

Following are some of the attributes of a sequence that you can specify:

360 Database Administration Concepts and Configuration Reference

Data type
The AS clause of the CREATE SEQUENCE statement specifies the numeric
data type of the sequence. The data type determines the possible minimum
and maximum values of the sequence. The minimum and maximum
values for a data type are listed in the SQL Reference. You cannot change
the data type of a sequence; instead, you must drop the sequence by
issuing the DROP SEQUENCE statement and issue a CREATE SEQUENCE
statement with the new data type.

Start value
The START WITH clause of the CREATE SEQUENCE statement sets the
initial value of the sequence. The RESTART WITH clause of the ALTER
SEQUENCE statement resets the value of the sequence to a specified value.

Minimum value
The MINVALUE clause sets the minimum value of the sequence.

Maximum value
The MAXVALUE clause sets the maximum value of the sequence.

Increment value
The INCREMENT BY clause sets the value that each NEXT VALUE
expression adds to the current value of the sequence. To decrement the
value of the sequence, specify a negative value.

Sequence cycling
The CYCLE clause causes the value of a sequence that reaches its
maximum or minimum value to generate its respective minimum value or
maximum value on the following NEXT VALUE expression.

Note: CYCLE should only be used if unique numbers are not required or
if it can be guaranteed that older sequence values are not in use anymore
once the sequence cycles.

For example, to create a sequence called id_values that starts with a minimum
value of 0, has a maximum value of 1000, increments by 2 with each NEXT
VALUE expression, and returns to its minimum value when the maximum value is
reached, issue the following statement:
CREATE SEQUENCE id_values

START WITH 0
INCREMENT BY 2
MAXVALUE 1000
CYCLE

Application performance and sequences
Like identity columns, using sequences to generate values generally improves the
performance of your applications in comparison to alternative approaches. The
alternative to sequences is to create a single-column table that stores the current
value and to increment that value with either a trigger or under the control of the
application. However, in a distributed environment where applications
concurrently access the single-column table, the locking required to force serialized
access to the table can seriously affect performance.

Sequences avoid the locking issues that are associated with the single-column table
approach and can cache sequence values in memory to improve response time. To
maximize the performance of applications that use sequences, ensure that your
sequence caches an appropriate amount of sequence values. The CACHE clause of

Chapter 15. Sequences 361

the CREATE SEQUENCE and ALTER SEQUENCE statements specifies the
maximum number of sequence values that the database manager generates and
stores in memory.

If your sequence must generate values in order, without introducing gaps in that
order because of a system failure or database deactivation, use the ORDER and
NO CACHE clauses in the CREATE SEQUENCE statement. The NO CACHE
clause guarantees that no gaps appear in the generated values at the cost of some
of your application's performance because it forces your sequence to write to the
database log every time it generates a new value. Note that gaps can still appear
due to transactions that rollback and do not actually use that sequence value that
they requested.

Sequences compared to identity columns
Although sequences and identity columns seem to serve similar purposes for DB2
applications, there is an important difference. An identity column automatically
generates values for a column in a single table using the LOAD utility. A sequence
generates sequential values upon request that can be used in any SQL statement
using the CREATE SEQUENCE statement.

Identity columns
Allow the database manager to automatically generate a unique numeric
value for each row that is added to the table. If you are creating a table
and you know you will need to uniquely identify each row that is added
to that table, then you can add an identity column to the table definition as
part of the CREATE TABLE statement:

CREATE TABLE <table name>
(<column name 1> INT,
<column name 2>, DOUBLE,
<column name 3> INT NOT NULL GENERATED ALWAYS AS IDENTITY

(START WITH <value 1>, INCREMENT BY <value 2>))

In this example, the third column identifies the identity column. One of the
attributes that you can define is the value used in the column to uniquely
define each row when a row is added. The value following the
INCREMENT BY clause shows by how much subsequent values of the
identity column contents will be increased for every row added to the
table.

Once created, the identity properties can be changed or removed using the
ALTER TABLE statement. You can also use the ALTER TABLE statement to
add identity properties on other columns.

Sequences
Allow the automatic generation of values. Sequences are ideally suited to
the task of generating unique key values. Applications can use sequences
to avoid possible concurrency and performance problems resulting from
the generation of a unique counter through other means. Unlike an identity
column, a sequence is not tied to a particular table column, nor is it bound
to a unique table column and only accessible through that table column.

A sequence can be created, and later altered, so that it generates values by
incrementing or decrementing values either without a limit; or to a
user-defined limit, and then stopping; or to a user-defined limit, then
cycling back to the beginning and starting again.

The following example shows how to create a sequence called orderseq:

362 Database Administration Concepts and Configuration Reference

CREATE SEQUENCE orderseq
START WITH 1
INCREMENT BY 1
NOMAXVALUE
NOCYCLE
CACHE 50

In this example, the sequence starts at 1 and increases by 1 with no upper
limit. There is no reason to cycle back to the beginning and restart from 1
because there is no assigned upper limit. The CACHE parameter specifies
the maximum number of sequence values that the database manager
preallocates and keeps in memory.

Creating sequences
To create sequences, use the CREATE SEQUENCE statement. Unlike an identity
column attribute, a sequence is not tied to a particular table column nor is it bound
to a unique table column and only accessible through that table column.

About this task

There are several restrictions on where NEXT VALUE or PREVIOUS VALUE
expressions can be used. A sequence can be created, or altered, so that it generates
values in one of these ways:
v Increment or decrement monotonically (changing by a constant amount) without

bound
v Increment or decrement monotonically to a user-defined limit and stop
v Increment or decrement monotonically to a user-defined limit and cycle back to

the beginning and start again

Note: Use caution when recovering databases that use sequences: For sequence
values that are used outside the database, for example sequence numbers used for
bank checkes, if the database is recovered to a point in time before the database
failure, then this could cause the generation of duplicate values for some
sequences. To avoid possible duplicate values, databases that use sequence values
outside the database should not be recovered to a prior point in time.

To create a sequence called order_seq using defaults for all the options, issue the
following statement in an application program or through the use of dynamic SQL
statements:

CREATE SEQUENCE order_seq

This sequence starts at 1 and increases by 1 with no upper limit.

This example could represent processing for a batch of bank checks starting from
101 to 200. The first order would have been from 1 to 100. The sequence starts at
101 and increase by 1 with an upper limit of 200. NOCYCLE is specified so that
duplicate cheque numbers are not produced. The number associated with the
CACHE parameter specifies the maximum number of sequence values that the
database manager preallocates and keeps in memory.

CREATE SEQUENCE order_seq
START WITH 101
INCREMENT BY 1
MAXVALUE 200
NOCYCLE
CACHE 25

Chapter 15. Sequences 363

For more information about these and other options, and authorization
requirements, see the CREATE SEQUENCE statement.

Generating sequential values
Generating sequential values is a common database application development
problem. The best solution to that problem is to use sequences and sequence
expressions in SQL. Each sequence is a uniquely named database object that can be
accessed only by sequence expressions.

There are two sequence expressions: the PREVIOUS VALUE expression and the
NEXT VALUE expression. The PREVIOUS VALUE expression returns the value
most recently generated in the application process for the specified sequence. Any
NEXT VALUE expressions occurring in the same statement as the PREVIOUS
VALUE expression have no effect on the value generated by the PREVIOUS
VALUE expression in that statement. The NEXT VALUE sequence expression
increments the value of the sequence and returns the new value of the sequence.

To create a sequence, issue the CREATE SEQUENCE statement. For example, to
create a sequence called id_values using the default attributes, issue the following
statement:

CREATE SEQUENCE id_values

To generate the first value in the application session for the sequence, issue a
VALUES statement using the NEXT VALUE expression:
VALUES NEXT VALUE FOR id_values

1

1

1 record(s) selected.

To update the value of a column with the next value of the sequence, include the
NEXT VALUE expression in the UPDATE statement, as follows:
UPDATE staff

SET id = NEXT VALUE FOR id_values
WHERE id = 350

To insert a new row into a table using the next value of the sequence, include the
NEXT VALUE expression in the INSERT statement, as follows:
INSERT INTO staff (id, name, dept, job)

VALUES (NEXT VALUE FOR id_values, 'Kandil', 51, 'Mgr')

Determining when to use identity columns or sequences
Although there are similarities between identity columns and sequences, there are
also differences. The characteristics of each can be used when designing your
database and applications.

Depending on your database design and the applications using the database, the
following characteristics will assist you in determining when to use identity
columns and when to use sequences.

Identity column characteristics

v An identity column automatically generates values for a single table.

364 Database Administration Concepts and Configuration Reference

v When an identity column is defined as GENERATED ALWAYS, the
values used are always generated by the database manager. Applications
are not allowed to provide their own values during the modification of
the contents of the table.

v After inserting a row, the generated identity value can be retrieved either
by using the IDENTITY_VAL_LOCAL() function or by selecting the
identity column back from the insert by using the SELECT FROM
INSERT statement.

v The LOAD utility can generate IDENTITY values.

Sequence characteristics

v Sequences are not tied to any one table.
v Sequences generate sequential values that can be used in any SQL or

XQuery statement.
Since sequences can be used by any application, there are two
expressions used to control the retrieval of the next value in the
specified sequence and the value generated previous to the statement
being executed. The PREVIOUS VALUE expression returns the most
recently generated value for the specified sequence for a previous
statement within the current session. The NEXT VALUE expression
returns the next value for the specified sequence. The use of these
expressions allows the same value to be used across several SQL and
XQuery statements within several tables.

Modifying sequences
Modify the attributes of an existing sequence with the ALTER SEQUENCE
statement.

About this task

The attributes of the sequence that can be modified include:
v Changing the increment between future values
v Establishing new minimum or maximum values
v Changing the number of cached sequence numbers
v Changing whether the sequence will cycle or not
v Changing whether sequence numbers must be generated in order of request
v Restarting the sequence

There are two tasks that are not found as part of the creation of the sequence. They
are:
v RESTART: Resets the sequence to the value specified implicitly or explicitly as

the starting value when the sequence was created.
v RESTART WITH <numeric-constant>: Resets the sequence to the exact numeric

constant value. The numeric constant can be any positive or negative value with
no non-zero digits to the right of any decimal point.

What to do next

After restarting a sequence or changing to CYCLE, it is possible to generate
duplicate sequence numbers. Only future sequence numbers are affected by the
ALTER SEQUENCE statement.

Chapter 15. Sequences 365

The data type of a sequence cannot be changed. Instead, you must drop the
current sequence and then create a new sequence specifying the new data type.

All cached sequence values not used by the database manager are lost when a
sequence is altered.

Viewing sequence definitions
Use the VALUES statement using the PREVIOUS VALUE option to view the
reference information associated with a sequence or to view the sequence itself.

About this task

To display the current value of the sequence, issue a VALUES statement using the
PREVIOUS VALUE expression:
VALUES PREVIOUS VALUE FOR id_values

1

1

1 record(s) selected.

You can repeatedly retrieve the current value of the sequence, and the value that
the sequence returns does not change until you issue a NEXT VALUE expression.
In the following example, the PREVIOUS VALUE expression returns a value of 1,
until the NEXT VALUE expression in the current connection increments the value
of the sequence:
VALUES PREVIOUS VALUE FOR id_values

1

1

1 record(s) selected.

VALUES PREVIOUS VALUE FOR id_values

1

1

1 record(s) selected.

VALUES NEXT VALUE FOR id_values

1

2

1 record(s) selected.

VALUES PREVIOUS VALUE FOR id_values

1

2

1 record(s) selected.

This is even true if another connection consumes sequence values at the same time.

366 Database Administration Concepts and Configuration Reference

Dropping sequences
To delete a sequence, use the DROP statement.

Before you begin

When dropping sequences, the authorization ID of the statement must hold
DBADM authority.

About this task

A specific sequence can be dropped by using:
DROP SEQUENCE <sequence_name>

where the <sequence_name> is the name of the sequence to be dropped and
includes the implicit or explicit schema name to exactly identify an existing
sequence.

Sequences that are system-created for IDENTITY columns cannot be dropped using
the DROP SEQUENCE statement.

Once a sequence is dropped, all privileges on the sequence are also dropped.

Examples of how to code sequences
Many applications that are written require the use of sequence number to track
invoice numbers, customer numbers, and other objects which get incremented by
one whenever a new item is required. The database manager can auto-increment
values in a table through the use of identity columns. Although this technique
works well for individual tables, it might not be the most convenient way of
generating unique values that must be used across multiple tables.

The sequence object lets you create a value that gets incremented under
programmer control and can be used across many tables. The following example
shows a sequence number being created for customer numbers using a data type
of integer:

CREATE SEQUENCE customer_no AS INTEGER

By default the sequence number starts at one and increments by one at a time and
is of an INTEGER data type. The application needs to get the next value in the
sequence by using the NEXT VALUE function. This function generates the next
value for the sequence which can then be used for subsequent SQL statements:

VALUES NEXT VALUE FOR customer_no

Instead of generating the next number with the VALUES function, the programmer
could have used this function within an INSERT statement. For instance, if the first
column of the customer table contained the customer number, an INSERT
statement could be written as follows:

INSERT INTO customers VALUES
(NEXT VALUE FOR customer_no, ’comment’, ...)

If the sequence number needs to be used for inserts into other tables, the
PREVIOUS VALUE function can be used to retrieve the previously generated

Chapter 15. Sequences 367

value. For instance, if the customer number just created needs to be used for a
subsequent invoice record, the SQL would include the PREVIOUS VALUE
function:

INSERT INTO invoices
(34,PREVIOUS VALUE FOR customer_no, 234.44, ...)

The PREVIOUS VALUE function can be used multiple times within the application
and it will only return the last value generated by that application. It might be
possible that subsequent transactions have already incremented the sequence to
another value, but you will always see the last number that is generated.

Sequence reference

sequence-reference:

nextval-expression
prevval-expression

nextval-expression:

NEXT VALUE FOR sequence-name

prevval-expression:

PREVIOUS VALUE FOR sequence-name

NEXT VALUE FOR sequence-name
A NEXT VALUE expression generates and returns the next value for the
sequence specified by sequence-name.

PREVIOUS VALUE FOR sequence-name
A PREVIOUS VALUE expression returns the most recently generated value for
the specified sequence for a previous statement within the current application
process. This value can be referenced repeatedly by using PREVIOUS VALUE
expressions that specify the name of the sequence. There may be multiple
instances of PREVIOUS VALUE expressions specifying the same sequence
name within a single statement; they all return the same value. In a partitioned
database environment, a PREVIOUS VALUE expression may not return the
most recently generated value.

A PREVIOUS VALUE expression can only be used if a NEXT VALUE
expression specifying the same sequence name has already been referenced in
the current application process, in either the current or a previous transaction
(SQLSTATE 51035).

Notes
v A new value is generated for a sequence when a NEXT VALUE expression

specifies the name of that sequence. However, if there are multiple instances of a
NEXT VALUE expression specifying the same sequence name within a query,
the counter for the sequence is incremented only once for each row of the result,
and all instances of NEXT VALUE return the same value for a row of the result.

v The same sequence number can be used as a unique key value in two separate
tables by referencing the sequence number with a NEXT VALUE expression for
the first row (this generates the sequence value), and a PREVIOUS VALUE

368 Database Administration Concepts and Configuration Reference

expression for the other rows (the instance of PREVIOUS VALUE refers to the
sequence value most recently generated in the current session), as shown below:

INSERT INTO order(orderno, cutno)
VALUES (NEXT VALUE FOR order_seq, 123456);

INSERT INTO line_item (orderno, partno, quantity)
VALUES (PREVIOUS VALUE FOR order_seq, 987654, 1);

v NEXT VALUE and PREVIOUS VALUE expressions can be specified in the
following places:
– select-statement or SELECT INTO statement (within the select-clause,

provided that the statement does not contain a DISTINCT keyword, a
GROUP BY clause, an ORDER BY clause, a UNION keyword, an INTERSECT
keyword, or EXCEPT keyword)

– INSERT statement (within a VALUES clause)
– INSERT statement (within the select-clause of the fullselect)
– UPDATE statement (within the SET clause (either a searched or a positioned

UPDATE statement), except that NEXT VALUE cannot be specified in the
select-clause of the fullselect of an expression in the SET clause)

– SET Variable statement (except within the select-clause of the fullselect of an
expression; a NEXT VALUE expression can be specified in a trigger, but a
PREVIOUS VALUE expression cannot)

– VALUES INTO statement (within the select-clause of the fullselect of an
expression)

– CREATE PROCEDURE statement (within the routine-body of an SQL
procedure)

– CREATE TRIGGER statement within the triggered-action (a NEXT VALUE
expression may be specified, but a PREVIOUS VALUE expression cannot)

v NEXT VALUE and PREVIOUS VALUE expressions cannot be specified
(SQLSTATE 428F9) in the following places:
– Join condition of a full outer join
– DEFAULT value for a column in a CREATE or ALTER TABLE statement
– Generated column definition in a CREATE OR ALTER TABLE statement
– Summary table definition in a CREATE TABLE or ALTER TABLE statement
– Condition of a CHECK constraint
– CREATE TRIGGER statement (a NEXT VALUE expression may be specified,

but a PREVIOUS VALUE expression cannot)
– CREATE VIEW statement
– CREATE METHOD statement
– CREATE FUNCTION statement
– An argument list of an XMLQUERY, XMLEXISTS, or XMLTABLE expression

v In addition, a NEXT VALUE expression cannot be specified (SQLSTATE 428F9)
in the following places:
– CASE expression
– Parameter list of an aggregate function
– Subquery in a context other than those explicitly allowed above
– SELECT statement for which the outer SELECT contains a DISTINCT

operator
– Join condition of a join
– SELECT statement for which the outer SELECT contains a GROUP BY clause

Chapter 15. Sequences 369

– SELECT statement for which the outer SELECT is combined with another
SELECT statement using the UNION, INTERSECT, or EXCEPT set operator

– Nested table expression
– Parameter list of a table function
– WHERE clause of the outer-most SELECT statement, or a DELETE or

UPDATE statement
– ORDER BY clause of the outer-most SELECT statement
– select-clause of the fullselect of an expression, in the SET clause of an

UPDATE statement
– IF, WHILE, DO ... UNTIL, or CASE statement in an SQL routine

v When a value is generated for a sequence, that value is consumed, and the next
time that a value is requested, a new value will be generated. This is true even
when the statement containing the NEXT VALUE expression fails or is rolled
back.
If an INSERT statement includes a NEXT VALUE expression in the VALUES list
for the column, and if an error occurs at some point during the execution of the
INSERT (it could be a problem in generating the next sequence value, or a
problem with the value for another column), then an insertion failure occurs
(SQLSTATE 23505), and the value generated for the sequence is considered to be
consumed. In some cases, reissuing the same INSERT statement might lead to
success.
For example, consider an error that is the result of the existence of a unique
index for the column for which NEXT VALUE was used and the sequence value
generated already exists in the index. It is possible that the next value generated
for the sequence is a value that does not exist in the index and so the
subsequent INSERT would succeed.

v Scope of PREVIOUS VALUE: The value of PREVIOUS VALUE persists until the
next value is generated for the sequence in the current session, the sequence is
dropped or altered, or the application session ends. The value is unaffected by
COMMIT or ROLLBACK statements. The value of PREVIOUS VALUE cannot be
directly set and is a result of executing the NEXT VALUE expression for the
sequence.
A technique commonly used, especially for performance, is for an application or
product to manage a set of connections and route transactions to an arbitrary
connection. In these situations, the availability of the PREVIOUS VALUE for a
sequence should be relied on only until the end of the transaction. Examples of
where this type of situation can occur include applications that use XA
protocols, use connection pooling, use the connection concentrator, and use
HADR to achieve failover.

v If in generating a value for a sequence, the maximum value for the sequence is
exceeded (or the minimum value for a descending sequence) and cycles are not
permitted, then an error occurs (SQLSTATE 23522). In this case, the user could
ALTER the sequence to extend the range of acceptable values, or enable cycles
for the sequence, or DROP and CREATE a new sequence with a different data
type that has a larger range of values.
For example, a sequence may have been defined with a data type of SMALLINT,
and eventually the sequence runs out of assignable values. DROP and re-create
the sequence with the new definition to redefine the sequence as INTEGER.

v A reference to a NEXT VALUE expression in the select statement of a cursor
refers to a value that is generated for a row of the result table. A sequence value
is generated for a NEXT VALUE expression for each row that is fetched from the
database. If blocking is done at the client, the values may have been generated

370 Database Administration Concepts and Configuration Reference

at the server prior to the processing of the FETCH statement. This can occur
when there is blocking of the rows of the result table. If the client application
does not explicitly FETCH all the rows that the database has materialized, then
the application will not see the results of all the generated sequence values (for
the materialized rows that were not returned).

v A reference to a PREVIOUS VALUE expression in the select statement of a
cursor refers to a value that was generated for the specified sequence prior to
the opening of the cursor. However, closing the cursor can affect the values
returned by PREVIOUS VALUE for the specified sequence in subsequent
statements, or even for the same statement in the event that the cursor is
reopened. This would be the case when the select statement of the cursor
included a reference to NEXT VALUE for the same sequence name.

v Syntax alternatives: The following are supported for compatibility with previous
versions of DB2 and with other database products. These alternatives are
non-standard and should not be used.
– NEXTVAL and PREVVAL can be specified in place of NEXT VALUE and

PREVIOUS VALUE
– sequence-name.NEXTVAL can be specified in place of NEXT VALUE FOR

sequence-name

– sequence-name.CURRVAL can be specified in place of PREVIOUS VALUE FOR
sequence-name

Examples

Assume that there is a table called "order", and that a sequence called "order_seq"
is created as follows:

CREATE SEQUENCE order_seq
START WITH 1
INCREMENT BY 1
NO MAXVALUE
NO CYCLE
CACHE 24

Following are some examples of how to generate an "order_seq" sequence number
with a NEXT VALUE expression:

INSERT INTO order(orderno, custno)
VALUES (NEXT VALUE FOR order_seq, 123456);

or
UPDATE order

SET orderno = NEXT VALUE FOR order_seq
WHERE custno = 123456;

or
VALUES NEXT VALUE FOR order_seq INTO :hv_seq;

Chapter 15. Sequences 371

372 Database Administration Concepts and Configuration Reference

Chapter 16. Views

A view is an efficient way of representing data without the need to maintain it. A
view is not an actual table and requires no permanent storage. A “virtual table” is
created and used.

A view provides a different way of looking at the data in one or more tables; it is a
named specification of a result table. The specification is a SELECT statement that
is run whenever the view is referenced in an SQL statement. A view has columns
and rows just like a table. All views can be used just like tables for data retrieval.
Whether a view can be used in an insert, update, or delete operation depends on
its definition.

A view can include all or some of the columns or rows contained in the tables on
which it is based. For example, you can join a department table and an employee
table in a view, so that you can list all employees in a particular department.

Figure 47 shows the relationship between tables and views.

You can use views to control access to sensitive data, because views allow multiple
users to see different presentations of the same data. For example, several users
might be accessing a table of data about employees. A manager sees data about his
or her employees but not employees in another department. A recruitment officer
sees the hire dates of all employees, but not their salaries; a financial officer sees
the salaries, but not the hire dates. Each of these users works with a view derived
from the table. Each view appears to be a table and has its own name.

When the column of a view is directly derived from the column of a base table,
that view column inherits any constraints that apply to the table column. For

Column

Row

Database

Table B

19

81

87

93

47

17

85

ABS

QRS

FCP

MLI

CJP

DJS

KMP

Table A

View AB

CREATE VIEW_AB
AS SELECT. . .

FROM TABLE_A, TABLE_B
WHERE. . .

View A

CREATE VIEW_A
AS SELECT. . .

FROM TABLE_A
WHERE. . .

Figure 47. Relationship between tables and views

© Copyright IBM Corp. 1993, 2012 373

example, if a view includes a foreign key of its table, insert and update operations
using that view are subject to the same referential constraints as is the table. Also,
if the table of a view is a parent table, delete and update operations using that
view are subject to the same rules as are delete and update operations on the table.

A view can derive the data type of each column from the result table, or base the
types on the attributes of a user-defined structured type. This is called a typed view.
Similar to a typed table, a typed view can be part of a view hierarchy. A subview
inherits columns from its superview. The term subview applies to a typed view and
to all typed views that are below it in the view hierarchy. A proper subview of a
view V is a view below V in the typed view hierarchy.

A view can become inoperative (for example, if the table is dropped); if this occurs,
the view is no longer available for SQL operations.

Designing views
A view provides a different way of looking at the data in one or more tables; it is a
named specification of a result table.

The specification is a SELECT statement that is run whenever the view is
referenced in an SQL statement. A view has columns and rows just like a base
table. All views can be used just like tables for data retrieval. Whether a view can
be used in an insert, update, or delete operation depends on its definition.

Views are classified by the operations they allow. They can be:
v Deletable
v Updatable
v Insertable
v Read-only

The view type is established according to its update capabilities. The classification
indicates the kind of SQL operation that is allowed against the view.

Referential and check constraints are treated independently. They do not affect the
view classification.

For example, you might not be able to insert a row into a table due to a referential
constraint. If you create a view using that table, you also cannot insert that row
using the view. However, if the view satisfies all the rules for an insertable view, it
will still be considered an insertable view. This is because the insert restriction is
on the table, not on the view definition.

For more information, see the CREATE VIEW statement.

System catalog views
The database manager maintains a set of tables and views that contain information
about the data under its control. These tables and views are collectively known as
the system catalog.

The system catalog contains information about the logical and physical structure of
database objects such as tables, views, indexes, packages, and functions. It also
contains statistical information. The database manager ensures that the descriptions
in the system catalog are always accurate.

374 Database Administration Concepts and Configuration Reference

The system catalog views are like any other database view. SQL statements can be
used to query the data in the system catalog views. A set of updatable system
catalog views can be used to modify certain values in the system catalog.

Views with the check option
A view that is defined WITH CHECK OPTION enforces any rows that are
modified or inserted against the SELECT statement for that view. Views with the
check option are also called symmetric views. For example, a symmetric view that
only returns only employees in department 10 will not allow insertion of
employees in other departments. This option, therefore, ensures the integrity of the
data being modified in the database, returning an error if the condition is violated
during an INSERT or UPDATE operation.

If your application cannot define the desired rules as table check constraints, or the
rules do not apply to all uses of the data, there is another alternative to placing the
rules in the application logic. You can consider creating a view of the table with
the conditions on the data as part of the WHERE clause and the WITH CHECK
OPTION clause specified. This view definition restricts the retrieval of data to the
set that is valid for your application. Additionally, if you can update the view, the
WITH CHECK OPTION clause restricts updates, inserts, and deletes to the rows
applicable to your application.

The WITH CHECK OPTION must not be specified for the following views:
v Views defined with the read-only option (a read-only view)
v View that reference the NODENUMBER or PARTITION function, a

nondeterministic function (for example, RAND), or a function with external
action

v Typed views

Example 1

Following is an example of a view definition using the WITH CHECK OPTION.
This option is required to ensure that the condition is always checked. The view
ensures that the DEPT is always 10. This will restrict the input values for the DEPT
column. When a view is used to insert a new value, the WITH CHECK OPTION is
always enforced:

CREATE VIEW EMP_VIEW2
(EMPNO, EMPNAME, DEPTNO, JOBTITLE, HIREDATE)

AS SELECT ID, NAME, DEPT, JOB, HIREDATE FROM EMPLOYEE
WHERE DEPT=10

WITH CHECK OPTION;

If this view is used in an INSERT statement, the row will be rejected if the
DEPTNO column is not the value 10. It is important to remember that there is no
data validation during modification if the WITH CHECK OPTION is not specified.

If this view is used in a SELECT statement, the conditional (WHERE clause) would
be invoked and the resulting table would only contain the matching rows of data.
In other words, the WITH CHECK OPTION does not affect the result of a SELECT
statement.

Chapter 16. Views 375

Example 2

With a view, you can make a subset of table data available to an application
program and validate data that is to be inserted or updated. A view can have
column names that are different from the names of corresponding columns in the
original tables. For example:

CREATE VIEW <name> (<column>, <column>, <column>)
SELECT <column_name> FROM <table_name>
WITH CHECK OPTION

Example 3

The use of views provides flexibility in the way your programs and end-user
queries can look at the table data.

The following SQL statement creates a view on the EMPLOYEE table that lists all
employees in Department A00 with their employee and telephone numbers:

CREATE VIEW EMP_VIEW (DA00NAME, DA00NUM, PHONENO)
AS SELECT LASTNAME, EMPNO, PHONENO FROM EMPLOYEE
WHERE WORKDEPT = ’A00’
WITH CHECK OPTION

The first line of this statement names the view and defines its columns. The name
EMP_VIEW must be unique within its schema in SYSCAT.TABLES. The view name
appears as a table name although it contains no data. The view will have three
columns called DA00NAME, DA00NUM, and PHONENO, which correspond to
the columns LASTNAME, EMPNO, and PHONENO from the EMPLOYEE table.
The column names listed apply one-to-one to the select list of the SELECT
statement. If column names are not specified, the view uses the same names as the
columns of the result table of the SELECT statement.

The second line is a SELECT statement that describes which values are to be
selected from the database. It might include the clauses ALL, DISTINCT, FROM,
WHERE, GROUP BY, and HAVING. The name or names of the data objects from
which to select columns for the view must follow the FROM clause.

Example 4

The WITH CHECK OPTION clause indicates that any updated or inserted row to
the view must be checked against the view definition, and rejected if it does not
conform. This enhances data integrity but requires additional processing. If this
clause is omitted, inserts and updates are not checked against the view definition.

The following SQL statement creates the same view on the EMPLOYEE table using
the SELECT AS clause:

CREATE VIEW EMP_VIEW
SELECT LASTNAME AS DA00NAME,

EMPNO AS DA00NUM,
PHONENO

FROM EMPLOYEE
WHERE WORKDEPT = ’A00’
WITH CHECK OPTION

For this example, the EMPLOYEE table might have salary information in it, which
should not be made available to everyone. The employee's phone number,
however, should be generally accessible. In this case, a view could be created from
the LASTNAME and PHONENO columns only. Access to the view could be

376 Database Administration Concepts and Configuration Reference

granted to PUBLIC, while access to the entire EMPLOYEE table could be restricted
to those who have the authorization to see salary information.

Nested view definitions
If a view is based on another view, the number of predicates that must be
evaluated is based on the WITH CHECK OPTION specification.

If a view is defined without WITH CHECK OPTION, the definition of the view is
not used in the data validity checking of any insert or update operations. However,
if the view directly or indirectly depends on another view defined with the WITH
CHECK OPTION, the definition of that super view is used in the checking of any
insert or update operation.

If a view is defined with the WITH CASCADED CHECK OPTION or just the
WITH CHECK OPTION (CASCADED is the default value of the WITH CHECK
OPTION), the definition of the view is used in the checking of any insert or update
operations. In addition, the view inherits the search conditions from any updatable
views on which the view depends. These conditions are inherited even if those
views do not include the WITH CHECK OPTION. Then the inherited conditions
are multiplied together to conform to a constraint that is applied for any insert or
update operations for the view or any views depending on the view.

As an example, if a view V2 is based on a view V1, and the check option for V2 is
defined with the WITH CASCADED CHECK OPTION, the predicates for both
views are evaluated when INSERT and UPDATE statements are performed against
the view V2:

CREATE VIEW EMP_VIEW2 AS
SELECT EMPNO, EMPNAME, DEPTNO FROM EMP

WHERE DEPTNO = 10
WITH CHECK OPTION;

The following example shows a CREATE VIEW statement using the WITH
CASCADED CHECK OPTION. The view EMP_VIEW3 is created based on a view
EMP_VIEW2, which has been created with the WITH CHECK OPTION. If you
want to insert or update a record to EMP_VIEW3, the record should have the
values DEPTNO=10 and EMPNO=20.

CREATE VIEW EMP_VIEW3 AS
SELECT EMPNO, EMPNAME, DEPTNO FROM EMP_VIEW2

WHERE EMPNO > 20
WITH CASCADED CHECK OPTION;

Note: The condition DEPTNO=10 is enforced for inserting or updating operations
to EMP_VIEW3 even if EMP_VIEW2 does not include the WITH CHECK OPTION.

The WITH LOCAL CHECK OPTION can also be specified when creating a view. If
a view is defined with the LOCAL CHECK OPTION, the definition of the view is
used in the checking of any insert or update operations. However, the view does
not inherit the search conditions from any updatable views on which it depends.

Deletable views
Depending on how a view is defined, the view can be deletable. A deletable view
is a view against which you can successfully issue a DELETE statement.

There are a few rules that must be followed for a view to be considered deletable:

Chapter 16. Views 377

v Each FROM clause of the outer fullselect identifies only one table (with no
OUTER clause), deletable view (with no OUTER clause), deletable nested table
expression, or deletable common table expression.

v The database manager needs to be able to derive the rows to be deleted in the
table using the view definition. Certain operations make this impossible
– A grouping of multiple rows into one using a GROUP BY clause or column

functions result in a loss of the original row and make the view non deletable.
– Similarly when th rows are derived from a VALUES there is no table to delete

from. Again the view is not deletable.
v The outer fullselect doesn't use the GROUP BY or HAVING clauses.
v The outer fullselect doesn't include column functions in its select list.
v The outer fullselect doesn't use set operations (UNION, EXCEPT, or

INTERSECT) with the exception of UNION ALL
v The tables in the operands of a UNION ALL must not be the same table, and

each operand must be deletable.
v The select list of the outer fullselect does not include DISTINCT.

A view must meet all the rules listed above to be considered a deletable view. For
example, the following view is deletable. It follows all the rules for a deletable
view.

CREATE VIEW deletable_view
(number, date, start, end)

AS
SELECT number, date, start, end
FROM employee.summary
WHERE date=’01012007’

Insertable views
Insertable views allow you to insert rows using the view definition. A view is
insertable if an INSTEAD OF trigger for the insert operation has been defined for
the view, or at least one column of the view is updatable (independent of an
INSTEAD OF trigger for update), and the fullselect of the view does not include
UNION ALL. A given row can be inserted into a view (including a UNION ALL)
if, and only if, it fulfills the check constraints of exactly one of the underlying
tables. To insert into a view that includes non-updatable columns, those columns
must be omitted from the column list.

The view shown below is an insertable view. However, in this example, an attempt
to insert the view will fail. This is because there are columns in the table that do
not accept null values. Some of these columns are not present in the view
definition. When you try to insert a value using the view, the database manager
will try to insert a null value into a NOT NULL column. This action is not
permitted.

CREATE VIEW insertable_view
(number, name, quantity)

AS
SELECT number, name, quantify FROM ace.supplies

Note: The constraints defined on the table are independent of the operations that
can be performed using a view based on that table.

Updatable views
An updatable view is a special case of a deletable view. A deletable view becomes
an updatable view when at least one of its columns is updatable.

378 Database Administration Concepts and Configuration Reference

A column of a view is updatable when all of the following rules are true:
v The view is deletable.
v The column resolves to a column of a table (not using a dereference operation)

and the READ ONLY option is not specified.
v All the corresponding columns of the operands of a UNION ALL have exactly

matching data types (including length or precision and scale) and matching
default values if the fullselect of the view includes a UNION ALL.

The following example uses constant values that cannot be updated. However, the
view is a deletable view and at least one of its columns is updatable. Therefore, it
is an updatable view.

CREATE VIEW updatable_view
(number, current_date, current_time, temperature)

AS
SELECT number, CURRENT DATE, CURRENT TIME, temperature)

FROM weather.forecast
WHERE number = 300

Read-only views
A view is read-only if it is not deletable, updatable, or insertable. A view can be
read-only if it is a view that does not comply with at least one of the rules for
deletable views.

The READONLY column in the SYSCAT.VIEWS catalog view indicates a view is
read-only (R).

The example shown below is not a deletable view as it uses the DISTINCT clause
and the SQL statement involves more than one table:

CREATE VIEW read_only_view
(name, phone, address)

AS
SELECT DISTINCT viewname, viewphone, viewaddress
FROM employee.history adam, employer.dept sales
WHERE adam.id = sales.id

Creating views
Views are derived from one or more tables, nicknames, or views, and can be used
interchangeably with tables when retrieving data. When changes are made to the
data shown in a view, the data is changed in the table itself. The table, nickname,
or view on which the view is to be based must already exist before the view can
be created.

About this task

A view can be created to limit access to sensitive data, while allowing more
general access to other data.

When inserting into a view where the select list of the view definition directly or
indirectly includes the name of an identity column of a table, the same rules apply
as if the INSERT statement directly referenced the identity column of the table.

In addition to using views as described above, a view can also be used to:
v Alter a table without affecting application programs. This can happen by

creating a view based on an underlying table. Applications that use the
underlying table are not affected by the creation of the new view. New

Chapter 16. Views 379

applications can use the created view for different purposes than those
applications that use the underlying table.

v Sum the values in a column, select the maximum values, or average the values.
v Provide access to information in one or more data sources. You can reference

nicknames within the CREATE VIEW statement and create multi-location/global
views (the view could join information in multiple data sources located on
different systems).
When you create a view that references nicknames using standard CREATE
VIEW syntax, you will see a warning alerting you to the fact that the
authentication ID of view users will be used to access the underlying object or
objects at data sources instead of the view creator authentication ID. Use the
FEDERATED keyword to suppress this warning.

A typed view is based on a predefined structured type. You can create a typed
view using the CREATE VIEW statement.

An alternative to creating a view is to use a nested or common table expression to
reduce catalog lookup and improve performance.

A sample CREATE VIEW statement is shown below. The underlying table,
EMPLOYEE, has columns named SALARY and COMM. For security reasons this
view is created from the ID, NAME, DEPT, JOB, and HIREDATE columns. In
addition, access on the DEPT column is restricted. This definition will only show
the information of employees who belong to the department whose DEPTNO is 10.

CREATE VIEW EMP_VIEW1
(EMPID, EMPNAME, DEPTNO, JOBTITLE, HIREDATE)
AS SELECT ID, NAME, DEPT, JOB, HIREDATE FROM EMPLOYEE

WHERE DEPT=10;

After the view has been defined, the access privileges can be specified. This
provides data security since a restricted view of the table is accessible. As shown
above, a view can contain a WHERE clause to restrict access to certain rows or can
contain a subset of the columns to restrict access to certain columns of data.

The column names in the view do not have to match the column names of the
base table. The table name has an associated schema as does the view name.

Once the view has been defined, it can be used in statements such as SELECT,
INSERT, UPDATE, and DELETE (with restrictions). The DBA can decide to provide
a group of users with a higher level privilege on the view than the table.

Creating views that use user-defined functions (UDFs)
Once you create a view that uses a UDF, the view will always use this same UDF
as long as the view exists even if you create other UDFs with the same names later.
If you want to pick up a new UDF you must recreate the view.

About this task

The following SQL statement creates a view with a function in its definition:
CREATE VIEW EMPLOYEE_PENSION (NAME, PENSION)

AS SELECT NAME, PENSION(HIREDATE,BIRTHDATE,SALARY,BONUS)
FROM EMPLOYEE

380 Database Administration Concepts and Configuration Reference

The UDF function PENSION calculates the current pension an employee is eligible
to receive, based on a formula involving their HIREDATE, BIRTHDATE, SALARY,
and BONUS.

Modifying typed views
Certain properties of a typed view can be changed without requiring the view to
be dropped and recreated. One such property is the adding of a scope to a
reference column of a typed view.

About this task

The ALTER VIEW statement modifies an existing typed view definition by altering
a reference type column to add a scope. The DROP statement deletes a typed view.
You can also:
v Modify the contents of a typed view through INSTEAD OF triggers
v Alter a typed view to enable statistics collection

Changes you make to the underlying content of a typed view require that you use
triggers. Other changes to a typed view require that you drop and then re-create
the typed view.

The data type of the column-name in the ALTER VIEW statement must be REF
(type of the typed table name or typed view name).

Other database objects such as tables and indexes are not affected although
packages and cached dynamic statements are marked invalid.

Example

To alter a typed view using the command line, enter:
ALTER VIEW <view_name> ALTER <column_name>

ADD SCOPE <typed table or view name>

Recovering inoperative views
An inoperative view is a view that is no longer available for SQL statements.

About this task

Views can become inoperative:
v As a result of a revoked privilege on an underlying table
v If a table, alias, or function is dropped.
v If the superview becomes inoperative. (A superview is a typed view upon which

another typed view, a subview, is based.)
v When the views they are dependent on are dropped.

The following steps can help you recover an inoperative view:
1. Determine the SQL statement that was initially used to create the view. You can

obtain this information from the TEXT column of the SYSCAT.VIEW catalog
view.

2. Set the current schema to the content of the QUALIFIER column.
3. Set the function path to the content of the FUNC_PATH column.

Chapter 16. Views 381

4. Re-create the view by using the CREATE VIEW statement with the same view
name and same definition.

5. Use the GRANT statement to re-grant all privileges that were previously
granted on the view. (Note that all privileges granted on the inoperative view
are revoked.)

If you do not want to recover an inoperative view, you can explicitly drop it with
the DROP VIEW statement, or you can create a new view with the same name but
a different definition.

An inoperative view only has entries in the SYSCAT.TABLES and SYSCAT.VIEWS
catalog views; all entries in the SYSCAT.TABDEP, SYSCAT.TABAUTH,
SYSCAT.COLUMNS and SYSCAT.COLAUTH catalog views are removed.

Dropping views
Use the DROP VIEW statement to drop views. Any views that are dependent on
the view being dropped will be made inoperative.

About this task

To drop a view using the command line, enter:
DROP VIEW <view_name>

Example

The following example shows how to drop a view named EMP_VIEW:
DROP VIEW EMP_VIEW

What to do next

As in the case of a table hierarchy, it is possible to drop an entire view hierarchy in
one statement by naming the root view of the hierarchy, as in the following
example:

DROP VIEW HIERARCHY VPerson

382 Database Administration Concepts and Configuration Reference

Part 4. Reference

© Copyright IBM Corp. 1993, 2012 383

384 Database Administration Concepts and Configuration Reference

Chapter 17. Conforming to naming rules

General naming rules
Rules exist for the naming of all database objects, user names, passwords, groups,
files, and paths. Some of these rules are specific to the platform you are working
on.

For example, regarding the use of upper and lowercase letters in the names of
objects that are visible in the file system (databases, instances, and so on):
v On UNIX platforms, names are case-sensitive. For example, /data1 is not the

same directory as /DATA1 or /Data1

v On Windows platforms, names are not case-sensitive. For example, \data1 is the
same as \DATA1 and \Data1.

Unless otherwise specified, all names can include the following characters:
v The letters A through Z, and a through z, as defined in the basic (7-bit) ASCII

character set. When used in identifiers for objects created with SQL statements,
lowercase characters “a” through “z” are converted to uppercase unless they are
delimited with quotes (“)

v 0 through 9.
v ! % () { } . - ^ ~ _ (underscore) @, #, $, and space.
v \ (backslash).

Restrictions

v Do not begin names with a number or with the underscore character.
v Do not use SQL reserved words to name tables, views, columns, indexes, or

authorization IDs.
v Use only the letters defined in the basic ASCII character set for directory and file

names. While your computer's operating system might support different code
pages, non-ASCII characters might not work reliably. Using non-ASCII
characters can be a particular problem in distributed environment, where
different computers might be using different code pages.

v There are other special characters that might work separately depending on your
operating system and where you are working with the DB2 database. However,
while they might work, there is no guarantee that they will work. It is not
recommended that you use these other special characters when naming objects
in your database.

v User and group names also must follow the rules imposed by specific operating
systems. For example, on Linux and UNIX platforms, characters for user names
and group names must be lowercase a through z, 0 through 9, and _
(underscore) for names not starting with 0 through 9.

v Lengths must be less than or equal to the lengths listed in “SQL and XML
limits” in the SQL Reference.

v Restrictions on the AUTHID identifier: In DB2 Version 9.5 and later, you can
have a 128-byte authorization ID. However, when the authorization ID is
interpreted as an operating system user ID or group name, the operating system
naming restrictions apply. For example, the Linux and UNIX operating systems
can contain up to 8 characters and the Windows operating systems can contain
up to 30 characters for user IDs and group names. Therefore, while you can

© Copyright IBM Corp. 1993, 2012 385

grant a 128-byte authorization ID, you cannot connect as a user that has that
authorization ID. If you write your own security plug-in, you can use the
extended sizes for the authorization ID. For example, you can give your security
plug-in a 30-byte user ID and it returns a 128-byte authorization ID during
authentication that you can connect to.

You also must consider object naming rules, naming rules in an NLS environment,
and naming rules in a Unicode environment.

DB2 object naming rules
All objects follow the general gaming rules. In addition, some objects have
additional restrictions shown in the accompanying tables.

Table 24. Database, database alias and instance naming rules

Objects Guidelines

v Databases

v Database aliases

v Instances

v Database names must be unique within the location in which they
are cataloged. On Linux and UNIX implementations, this location
is a directory path, whereas on Windows implementations, it is a
logical disk.

v Database alias names must be unique within the system database
directory. When a new database is created, the alias defaults to
the database name. As a result, you cannot create a database
using a name that exists as a database alias, even if there is no
database with that name.

v Database, database alias and instance name lengths must be less
than or equal to 8 bytes.

v On Windows, no instance can have the same name as a service
name.

Note: To avoid potential problems, do not use the special characters
@, #, and $ in a database name if you intend to use the database in
a communications environment. Also, because these characters are
not common to all keyboards, do not use them if you plan to use
the database in another language.

386 Database Administration Concepts and Configuration Reference

Table 25. Database object naming rules

Objects Guidelines

v Aliases

v Audit policies

v Buffer pools

v Columns

v Event monitors

v Indexes

v Methods

v Nodegroups

v Packages

v Package versions

v Roles

v Schemas

v Stored procedures

v Tables

v Table spaces

v Triggers

v Trusted contexts

v UDFs

v UDTs

v Views

v Lengths for identifiers for these objects must be less than or equal
to the lengths listed in “SQL and XML limits” in the SQL
Reference. Object names can also include:

– Valid accented characters (such as ö)

– Multibyte characters, except multibyte spaces (for multibyte
environments)

v Package names and package versions can also include periods (.),
hyphens (-), and colons (:).

For more information, see “Identifiers” in the SQL Reference.

Table 26. Federated database object naming rules

Objects Guidelines

v Function
mappings

v Index
specifications

v Nicknames

v Servers

v Type mappings

v User mappings

v Wrappers

Lengths for these objects must be less than or equal to the lengths
listed in “SQL and XML limits” in the SQL Reference. Names for
federated database objects can also include:

v Valid accented letters (such as ö)

v Multibyte characters, except multibyte spaces (for multibyte
environments)

Delimited identifiers and object names

Keywords can be used. If a keyword is used in a context where it could also be
interpreted as an SQL keyword, it must be specified as a delimited identifier.

Using delimited identifiers, it is possible to create an object that violates these
naming rules; however, subsequent use of the object could result in errors. For
example, if you create a column with a + or - sign included in the name and you
subsequently use that column in an index, you will experience problems when you
attempt to reorganize the table.

Additional schema names information

Chapter 17. Conforming to naming rules 387

v User-defined types (UDTs) cannot have schema names longer than the lengths
listed in “SQL and XML limits” in the SQL Reference.

v The following schema names are reserved words and must not be used:
SYSCAT, SYSFUN, SYSIBM, SYSSTAT, SYSPUBLIC.

v To avoid potential problems upgrading databases in the future, do not use
schema names that begin with SYS. The database manager will not allow you to
create triggers, user-defined types or user-defined functions using a schema
name beginning with SYS.

v It is recommended that you not use SESSION as a schema name. Declared
temporary tables must be qualified by SESSION. It is therefore possible to have
an application declare a temporary table with a name identical to that of a
persistent table, in which case the application logic can become overly
complicated. Avoid the use of the schema SESSION, except when dealing with
declared temporary tables.

Delimited identifiers and object names
Keywords can be used. If a keyword is used in a context where it could also be
interpreted as an SQL keyword, it must be specified as a delimited identifier.

Using delimited identifiers, it is possible to create an object that violates these
naming rules; however, subsequent use of the object could result in errors. For
example, if you create a column with a + or - sign included in the name and you
subsequently use that column in an index, you will experience problems when you
attempt to reorganize the table.

User, user ID and group naming rules
User, user ID and group names must follow naming guidelines.

Table 27. User, user ID and group naming rules

Objects Guidelines

v Group names

v User names

v User IDs

v Group names must be less than or equal to the group name length
listed in “SQL and XML limits” in the SQL Reference.

v User IDs on Linux and UNIX operating systems can contain up to
8 characters.

v User names on Windows can contain up to 30 characters.

v When not using Client authentication, non-Windows 32-bit clients
connecting to Windows with user names longer than the user
name length listed in “SQL and XML limits” in the SQL Reference
are supported when the user name and password are specified
explicitly.

v User names, group names, and authorization or user IDs cannot:

– Be USERS, ADMINS, GUESTS, PUBLIC, LOCAL or any SQL
reserved word

– Begin with IBM, SQL or SYS.

Note:

1. Some operating systems allow case sensitive user IDs and passwords. You
should check your operating system documentation to see if this is the case.

2. The authorization ID returned from a successful CONNECT or ATTACH is
truncated to the authorization name length listed in “SQL and XML limits” in

388 Database Administration Concepts and Configuration Reference

the SQL Reference. An ellipsis (...) is appended to the authorization ID and the
SQLWARN fields contain warnings to indicate truncation.

3. Trailing blanks from user IDs and passwords are removed.
4. Restrictions on the AUTHID identifier: In DB2 Version 9.5 and later, you can

have a 128-byte authorization ID. However, when the authorization ID is
interpreted as an operating system user ID or group name, the operating
system naming restrictions apply. For example, the Linux and UNIX operating
systems can contain up to 8 characters and the Windows operating systems can
contain up to 30 characters for user IDs and group names. Therefore, while you
can grant a 128-byte authorization ID, you cannot connect as a user that has
that authorization ID. If you write your own security plug-in, you can use the
extended sizes for the authorization ID. For example, you can give your
security plug-in a 30-byte user ID and it returns a 128-byte authorization ID
during authentication that you can connect to.

Naming rules in an NLS environment
The basic character set that can be used in database names consists of the
single-byte uppercase and lowercase Latin letters (A...Z, a...z), the Arabic numerals
(0...9) and the underscore character (_).

This list is augmented with three special characters (#, @, and $) to provide
compatibility with host database products. Use special characters #, @, and $ with
care in an NLS environment because they are not included in the NLS host
(EBCDIC) invariant character set. Characters from the extended character set can
also be used, depending on the code page that is being used. If you are using the
database in a multiple code page environment, you must ensure that all code
pages support any elements from the extended character set you plan to use.

When naming database objects (such as tables and views), program labels, host
variables, cursors, and elements from the extended character set (for example,
letters with diacritical marks) can also be used. Precisely which characters are
available depends on the code page in use.

Extended Character Set Definition for DBCS Identifiers: In DBCS environments,
the extended character set consists of all the characters in the basic character set,
plus the following:
v All double-byte characters in each DBCS code page, except the double-byte

space, are valid letters.
v The double-byte space is a special character.
v The single-byte characters available in each mixed code page are assigned to

various categories as follows:

Category Valid Code Points within each Mixed Code Page

Digits x30-39

Letters x23-24, x40-5A, x61-7A, xA6-DF (A6-DF for code pages 932 and 942 only)

Special
Characters

All other valid single-byte character code points

Chapter 17. Conforming to naming rules 389

Naming rules in a Unicode environment
In a Unicode database, all identifiers are in multibyte UTF-8. Therefore, it is
possible to use any UCS-2 character in identifiers where the use of a character in
the extended character set (for example, an accented character, or a multibyte
character) is allowed by the DB2 database system.

Clients can enter any character that is supported by their environment, and all the
characters in the identifiers will be converted to UTF-8 by the database manager.
Two points must be taken into account when specifying national language
characters in identifiers for a Unicode database:
v Each non-ASCII character requires two to four bytes. Therefore, an n-byte

identifier can only hold somewhere between n/4 and n characters, depending on
the ratio of ASCII to non-ASCII characters. If you have only one or two
non-ASCII (for example, accented) characters, the limit is closer to n characters,
whereas for an identifier that is completely non-ASCII (for example, in
Japanese), only n/4 to n/3 characters can be used.

v If identifiers are to be entered from different client environments, they should be
defined using the common subset of characters available to those clients. For
example, if a Unicode database is to be accessed from Latin-1, Arabic, and
Japanese environments, all identifiers should realistically be limited to ASCII.

390 Database Administration Concepts and Configuration Reference

Chapter 18. Lightweight Directory Access Protocol (LDAP)

Lightweight Directory Access Protocol (LDAP) is an industry standard access
method to directory services. A directory service is a repository of resource
information about multiple systems and services within a distributed environment;
and it provides client and server access to these resources.

Each database server instance publishes its existence to an LDAP server and
provides database information to the LDAP directory when the databases are
created. When a client connects to a database, the catalog information for the
server can be retrieved from the LDAP directory. Each client is no longer required
to store catalog information locally on each machine. Client applications search the
LDAP directory for information required to connect to the database.

A caching mechanism exists so that the client only needs to search the LDAP
directory server once. After the information is retrieved from the LDAP directory
server, it is stored or cached on the local computer based on the values of the
dir_cache database manager configuration parameter and the DB2LDAPCACHE
registry variable. The dir_cache database manager configuration parameter is used
to store database, node, and DCS directory files in a memory cache. The directory
cache is used by an application until the application closes. The DB2LDAPCACHE
registry variable is used to store database, node, and DCS directory files in a local
disk cache.
v If DB2LDAPCACHE=NO and dir_cache=NO, then always read the information from

LDAP.
v If DB2LDAPCACHE=NO and dir_cache=YES, then read the information from LDAP

once and insert it into the DB2 cache.
v If DB2LDAPCACHE=YES or is not set, then read the information from LDAP once

and cache it into the local database, node, and DCS directories.

Note: The DB2LDAPCACHE registry variable is only applicable to the database and
node directories.

Security considerations in an LDAP environment
Before accessing information in the LDAP directory, an application or user is
authenticated by the LDAP server. The authentication process is called binding to
the LDAP server. It is important to apply access control on the information stored
in the LDAP directory to prevent anonymous users from adding, deleting, or
modifying the information.

Access control is inherited by default and can be applied at the container level.
When a new object is created, it inherits the same security attribute as the parent
object. An administration tool available for the LDAP server can be used to define
access control for the container object.

By default, access control is defined as follows:
v For database and node entries in LDAP, everyone (or any anonymous user) has

read access. Only the Directory Administrator and the owner or creator of the
object has read/write access.

© Copyright IBM Corp. 1993, 2012 391

v For user profiles, the profile owner and the Directory Administrator have
read/write access. One user cannot access the profile of another user if that user
does not have Directory Administrator authority.

Note: The authorization check is always performed by the LDAP server and not
by DB2. The LDAP authorization check is not related to DB2 authorization. An
account or authorization ID that has SYSADM authority might not have access to
the LDAP directory.

When running the LDAP commands or APIs, if the bind Distinguished Name
(bindDN) and password are not specified, DB2 binds to the LDAP server using the
default credentials which might not have sufficient authority to perform the
requested commands and an error will be returned.

You can explicitly specify the user's bindDN and password using the USER and
PASSWORD clauses for the DB2 commands or APIs.

LDAP object classes and attributes used by DB2
The following tables describe the object classes that are used by the DB2 database
manager:

Table 28. cimManagedElement

Class cimManagedElement

Active Directory LDAP Display Name Not applicable

Active Directory Common Name (cn) Not applicable

Description Provides a base class of many of the system management
object classes in the IBM Schema

SubClassOf top

Required Attribute(s)

Optional Attribute(s) description

Type abstract

OID (Object Identifier) 1.3.18.0.2.6.132

GUID (Global Unique Identifier) b3afd63f-5c5b-11d3-b818-002035559151

Table 29. cimSetting

Class cimSetting

Active Directory LDAP Display Name Not applicable

Active Directory Common Name (cn) Not applicable

Description Provides a base class for configuration and settings in the
IBM Schema

SubClassOf cimManagedElement

Required Attribute(s)

Optional Attribute(s) settingID

Type abstract

OID (object identifier) 1.3.18.0.2.6.131

GUID (Global Unique Identifier) b3afd64d-5c5b-11d3-b818-002035559151

392 Database Administration Concepts and Configuration Reference

Table 30. eProperty

Class eProperty

Active Directory LDAP Display Name ibm-eProperty

Active Directory Common Name (cn) ibm-eProperty

Description Used to specify any application specific settings for user
preference properties

SubClassOf cimSetting

Required Attribute(s)

Optional Attribute(s) propertyType

cisPropertyType

cisProperty

cesPropertyType

cesProperty

binPropertyType

binProperty

Type structural

OID (object identifier) 1.3.18.0.2.6.90

GUID (Global Unique Identifier) b3afd69c-5c5b-11d3-b818-002035559151

Table 31. DB2Node

Class DB2Node

Active Directory LDAP Display Name ibm-db2Node

Active Directory Common Name (cn) ibm-db2Node

Description Represents a DB2 Server

SubClassOf eSap / ServiceConnectionPoint

Required Attribute(s) db2nodeName

Optional Attribute(s) db2nodeAlias

db2instanceName

db2Type

host / dNSHostName (see Note 2)

protocolInformation/ServiceBindingInformation

Type structural

OID (object identifier) 1.3.18.0.2.6.116

GUID (Global Unique Identifier) b3afd65a-5c5b-11d3-b818-002035559151

Chapter 18. Lightweight Directory Access Protocol (LDAP) 393

Table 31. DB2Node (continued)

Class DB2Node

Special Notes®
1. The DB2Node class is derived from eSap object class

under IBM Tivoli® Directory Server and from
ServiceConnectionPoint object class under Microsoft
Active Directory.

2. The host is used under the IBM Tivoli Directory
Server environment. The dNSHostName attribute is
used under Microsoft Active Directory.

3. The protocolInformation is only used under the IBM
Tivoli Directory Server environment. For Microsoft
Active Directory, the attribute
ServiceBindingInformation, inherited from the
ServiceConnectionPoint class, is used to contain the
protocol information.

The protocolInformation (in IBM Tivoli Directory Server) or ServiceBindingInformation
(in Microsoft Active Directory) attribute in the DB2Node object contains the
communication protocol information to bind the DB2 database server. It consists of
tokens that describe the network protocol supported. Each token is separated by a
semicolon. There is no space between the tokens. An asterisk (*) can be used to
specify an optional parameter.

The tokens for TCP/IP are:
v “TCPIP”
v Server hostname or IP address
v Service name (svcename) or port number (e.g. 50000)
v (Optional) security (“NONE” or “SOCKS”)

The tokens for Named Pipe are:
v “NPIPE”
v Computer name of the server
v Instance name of the server

Table 32. DB2Database

Class DB2Database

Active Directory LDAP Display Name ibm-db2Database

Active Directory Common Name (cn) ibm-db2Database

Description Represents a DB2 database

SubClassOf top

Required Attribute(s) db2databaseName

db2nodePtr

394 Database Administration Concepts and Configuration Reference

Table 32. DB2Database (continued)

Class DB2Database

Optional Attribute(s) db2databaseAlias

db2additionalParameter

db2ARLibrary

db2authenticationLocation

db2gwPtr

db2databaseRelease

DCEPrincipalName

db2altgwPtr

db2altnodePtr

Type structural

OID (object identifier) 1.3.18.0.2.6.117

GUID (Global Unique Identifier) b3afd659-5c5b-11d3-b818-002035559151

Table 33. db2additionalParameters

Attribute db2additionalParameters

Active Directory LDAP Display Name ibm-db2AdditionalParameters

Active Directory Common Name (cn) ibm-db2AdditionalParameters

Description Contains any additional parameters used when
connecting to the host database server

Syntax Case Ignore String

Maximum Length 1024

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.426

GUID (Global Unique Identifier) b3afd315-5c5b-11d3-b818-002035559151

Table 34. db2authenticationLocation

Attribute db2authenticationLocation

Active Directory LDAP Display Name ibm-db2AuthenticationLocation

Active Directory Common Name (cn) ibm-db2AuthenticationLocation

Description Specifies where authentication takes place

Syntax Case Ignore String

Maximum Length 64

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.425

GUID (Global Unique Identifier) b3afd317-5c5b-11d3-b818-002035559151

Notes Valid values are: CLIENT, SERVER, DCS, DCE,
KERBEROS, SVRENCRYPT, or DCSENCRYPT

Chapter 18. Lightweight Directory Access Protocol (LDAP) 395

Table 35. db2ARLibrary

Attribute db2ARLibrary

Active Directory LDAP Display Name ibm-db2ARLibrary

Active Directory Common Name (cn) ibm-db2ARLibrary

Description Name of the Application Requestor library

Syntax Case Ignore String

Maximum Length 256

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.427

GUID (Global Unique Identifier) b3afd316-5c5b-11d3-b818-002035559151

Table 36. db2databaseAlias

Attribute db2databaseAlias

Active Directory LDAP Display Name ibm-db2DatabaseAlias

Active Directory Common Name (cn) ibm-db2DatabaseAlias

Description Database alias name(s)

Syntax Case Ignore String

Maximum Length 1024

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.422

GUID (Global Unique Identifier) b3afd318-5c5b-11d3-b818-002035559151

Table 37. db2databaseName

Attribute db2databaseName

Active Directory LDAP Display Name ibm-db2DatabaseName

Active Directory Common Name (cn) ibm-db2DatabaseName

Description Database name

Syntax Case Ignore String

Maximum Length 1024

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.421

GUID (Global Unique Identifier) b3afd319-5c5b-11d3-b818-002035559151

Table 38. db2databaseRelease

Attribute db2databaseRelease

Active Directory LDAP Display Name ibm-db2DatabaseRelease

Active Directory Common Name (cn) ibm-db2DatabaseRelease

Description Database release number

Syntax Case Ignore String

Maximum Length 64

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.429

396 Database Administration Concepts and Configuration Reference

Table 38. db2databaseRelease (continued)

Attribute db2databaseRelease

GUID (Global Unique Identifier) b3afd31a-5c5b-11d3-b818-002035559151

Table 39. db2nodeAlias

Attribute db2nodeAlias

Active Directory LDAP Display Name ibm-db2NodeAlias

Active Directory Common Name (cn) ibm-db2NodeAlias

Description Node alias name(s)

Syntax Case Ignore String

Maximum Length 1024

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.420

GUID (Global Unique Identifier) b3afd31d-5c5b-11d3-b818-002035559151

Table 40. db2nodeName

Attribute db2nodeName

Active Directory LDAP Display Name ibm-db2NodeName

Active Directory Common Name (cn) ibm-db2NodeName

Description Node name

Syntax Case Ignore String

Maximum Length 64

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.419

GUID (Global Unique Identifier) b3afd31e-5c5b-11d3-b818-002035559151

Table 41. db2nodePtr

Attribute db2nodePtr

Active Directory LDAP Display Name ibm-db2NodePtr

Active Directory Common Name (cn) ibm-db2NodePtr

Description Pointer to the Node (DB2Node) object that represents the
database server which owns the database

Syntax Distinguished Name

Maximum Length 1000

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.423

GUID (Global Unique Identifier) b3afd31f-5c5b-11d3-b818-002035559151

Special Notes This relationship allows the client to retrieve protocol
communication information to connect to the database

Table 42. db2altnodePtr

Attribute db2altnodePtr

Active Directory LDAP Display Name ibm-db2AltNodePtr

Chapter 18. Lightweight Directory Access Protocol (LDAP) 397

Table 42. db2altnodePtr (continued)

Attribute db2altnodePtr

Active Directory Common Name (cn) ibm-db2AltNodePtr

Description Pointer to the Node (DB2Node) object that represents the
alternate database server

Syntax Distinguished Name

Maximum Length 1000

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.3093

GUID (Global Unique Identifier) 5694e266-2059-4e32-971e-0778909e0e72

Table 43. db2gwPtr

Attribute db2gwPtr

Active Directory LDAP Display Name ibm-db2GwPtr

Active Directory Common Name (cn) ibm-db2GwPtr

Description Pointer to the Node object that represents the gateway
server and from which the database can be accessed

Syntax Distinguished Name

Maximum Length 1000

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.424

GUID (Global Unique Identifier) b3afd31b-5c5b-11d3-b818-002035559151

Table 44. db2altgwPtr

Attribute db2altgwPtr

Active Directory LDAP Display Name ibm-db2AltGwPtr

Active Directory Common Name (cn) ibm-db2AltGwPtr

Description Pointer to the Node object that represents the alternate
gateway server

Syntax Distinguished Name

Maximum Length 1000

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.3092

GUID (Global Unique Identifier) 70ab425d-65cc-4d7f-91d8-084888b3a6db

Table 45. db2instanceName

Attribute db2instanceName

Active Directory LDAP Display Name ibm-db2InstanceName

Active Directory Common Name (cn) ibm-db2InstanceName

Description The name of the database server instance

Syntax Case Ignore String

Maximum Length 256

Multi-Valued Single-valued

398 Database Administration Concepts and Configuration Reference

Table 45. db2instanceName (continued)

Attribute db2instanceName

OID (object identifier) 1.3.18.0.2.4.428

GUID (Global Unique Identifier) b3afd31c-5c5b-11d3-b818-002035559151

Table 46. db2Type

Attribute db2Type

Active Directory LDAP Display Name ibm-db2Type

Active Directory Common Name (cn) ibm-db2Type

Description Type of the database server

Syntax Case Ignore String

Maximum Length 64

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.418

GUID (Global Unique Identifier) b3afd320-5c5b-11d3-b818-002035559151

Notes Valid types for database server are: SERVER, MPP, and
DCS

Table 47. DCEPrincipalName

Attribute DCEPrincipalName

Active Directory LDAP Display Name ibm-DCEPrincipalName

Active Directory Common Name (cn) ibm-DCEPrincipalName

Description DCE principal name

Syntax Case Ignore String

Maximum Length 2048

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.443

GUID (Global Unique Identifier) b3afd32d-5c5b-11d3-b818-002035559151

Table 48. cesProperty

Attribute cesProperty

Active Directory LDAP Display Name ibm-cesProperty

Active Directory Common Name (cn) ibm-cesProperty

Description Values of this attribute can be used to provide
application-specific preference configuration parameters.
For example, a value can contain XML-formatted data.
All values of this attribute must be homogeneous in the
cesPropertyType attribute value.

Syntax Case Exact String

Maximum Length 32700

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.307

GUID (Global Unique Identifier) b3afd2d5-5c5b-11d3-b818-002035559151

Chapter 18. Lightweight Directory Access Protocol (LDAP) 399

Table 49. cesPropertyType

Attribute cesPropertyType

Active Directory LDAP Display Name ibm-cesPropertyType

Active Directory Common Name (cn) ibm-cesPropertyType

Description Values of this attribute can be used to describe the
syntax, semantics, or other characteristics of all of the
values of the cesProperty attribute. For example, a value
of “XML” might be used to indicate that all the values of
the cesProperty attribute are encoded as XML syntax.

Syntax Case Ignore String

Maximum Length 128

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.308

GUID (Global Unique Identifier) b3afd2d6-5c5b-11d3-b818-002035559151

Table 50. cisProperty

Attribute cisProperty

Active Directory LDAP Display Name ibm-cisProperty

Active Directory Common Name (cn) ibm-cisProperty

Description Values of this attribute can be used to provide
application-specific preference configuration parameters.
For example, a value can contain an INI file. All values
of this attribute must be homogeneous in their
cisPropertyType attribute value.

Syntax Case Ignore String

Maximum Length 32700

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.309

GUID (Global Unique Identifier) b3afd2e0-5c5b-11d3-b818-002035559151

Table 51. cisPropertyType

Attribute cisPropertyType

Active Directory LDAP Display Name ibm-cisPropertyType

Active Directory Common Name (cn) ibm-cisPropertyType

Description Values of this attribute can be used to describe the
syntax, semantics, or other characteristics of all of the
values of the cisProperty attribute. For example, a value
of “INI File” might be used to indicate that all the values
of the cisProperty attribute are INI files.

Syntax Case Ignore String

Maximum Length 128

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.310

GUID (Global Unique Identifier) b3afd2e1-5c5b-11d3-b818-002035559151

400 Database Administration Concepts and Configuration Reference

Table 52. binProperty

Attribute binProperty

Active Directory LDAP Display Name ibm-binProperty

Active Directory Common Name (cn) ibm-binProperty

Description Values of this attribute can be used to provide
application-specific preference configuration parameters.
For example, a value can contain a set of binary-encoded
Lotus® 123 properties. All values of this attribute must be
homogeneous in their binPropertyType attribute values.

Syntax binary

Maximum Length 250000

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.305

GUID (Global Unique Identifier) b3afd2ba-5c5b-11d3-b818-002035559151

Table 53. binPropertyType

Attribute binPropertyType

Active Directory LDAP Display Name ibm-binPropertyType

Active Directory Common Name (cn) ibm-binPropertyType

Description Values of this attribute can be used to describe the
syntax, semantics, or other characteristics of all of the
values of the binProperty attribute. For example, a value
of “Lotus 123” might be used to indicate that all the
values of the binProperty attribute are binary-encoded
Lotus 123 properties.

Syntax Case Ignore String

Maximum Length 128

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.306

GUID (Global Unique Identifier) b3afd2bb-5c5b-11d3-b818-002035559151

Table 54. PropertyType

Attribute PropertyType

Active Directory LDAP Display Name ibm-propertyType

Active Directory Common Name (cn) ibm-propertyType

Description Values of this attribute describe the semantic
characteristics of the eProperty object

Syntax Case Ignore String

Maximum Length 128

Multi-Valued Multi-valued

OID (object identifier) 1.3.18.0.2.4.320

GUID (Global Unique Identifier) b3afd4ed-5c5b-11d3-b818-002035559151

Chapter 18. Lightweight Directory Access Protocol (LDAP) 401

Table 55. settingID

Attribute settingID

Active Directory LDAP Display Name Not applicable

Active Directory Common Name (cn) Not applicable

Description A naming attribute that can be used to identify the
cimSetting derived object entries such as eProperty

Syntax Case Ignore String

Maximum Length 256

Multi-Valued Single-valued

OID (object identifier) 1.3.18.0.2.4.325

GUID (Global Unique Identifier) b3afd596-5c5b-11d3-b818-002035559151

Extending the LDAP directory schema with DB2 object classes and
attributes

The LDAP Directory Schema defines object classes and attributes for the
information stored in the LDAP directory entries. An object class consists of a set
of mandatory and optional attributes. Every entry in the LDAP directory has an
object class associated with it.

Before the DB2 database manager can store information in LDAP, the Directory
Schema for the LDAP server must include the object classes and attributes that the
DB2 database system uses. The process of adding new object classes and attributes
to the base schema is called schema extension.

Supported LDAP client and server configurations
The following table summarizes the supported LDAP client and server
configurations.

IBM Tivoli Directory Server is an LDAP Version 6.2 server and is available for
Windows, AIX, Solaris, Linux, and HP-UX and is shipped as part of the base
operating system on AIX and System i®, and with OS/390 Security Server.

The DB2 database supports IBM LDAP client on AIX, Solaris, HP-UX 11.11,
Windows, and Linux.

Microsoft Active Directory server is an LDAP Version 3 server and is available as
part of the Windows 2000 Server and Windows Server 2003 family of operating
systems.

The Microsoft LDAP Client is included with the Windows operating system.

Table 56. Supported LDAP client and server configurations

Supported LDAP
Client and Server
Configurations

IBM Tivoli Directory
server

Microsoft Active
Directory server

Sun One LDAP
server

IBM LDAP Client Supported Supported Supported

Microsoft
LDAP/ADSI Client

Supported Supported Supported

402 Database Administration Concepts and Configuration Reference

Note: When running on Windows operating systems, the DB2 database manager
supports using either the IBM LDAP client or the Microsoft LDAP client. To
explicitly select the IBM LDAP client, use the db2set command to set the
DB2LDAP_CLIENT_PROVIDER registry variable to “IBM”. The Microsoft LDAP
Client is included with the Windows operating system.

LDAP support and DB2 Connect
If LDAP support is available at the DB2 Connect gateway, and the database is not
found at the gateway database directory, then the DB2 database manager will look
up the database location in LDAP and will attempt to keep the found information.

Registering host databases in LDAP
When you register host databases in LDAP, there are two possible configurations:
direct connection to the host databases or, connection to the host database though a
gateway.

About this task

For direct connection to the host databases, you register the host server in LDAP,
then catalog the host database in LDAP specifying the node name of the host
server. For connection to the host database though a gateway, you register the
gateway server in LDAP, then catalog the host database in LDAP specifying the
node name of the gateway server.

If LDAP support is available at the DB2 Connect gateway, and the database is not
found at the gateway database directory, the DB2 database system looks up LDAP
and attempts to keep the found information.

The following example shows both cases, consider the following: Suppose there is
a host database called NIAGARA_FALLS. It can accept incoming connections using
TCP/IP. If the client cannot connect directly to the host because it does not have
DB2 Connect, then it connects using a gateway called goto@niagara.

The following steps must be done:
1. Register the host database server in LDAP for TCP/IP connectivity. The

TCP/IP hostname of the server is "myhost" and the port number is "446". The
NODETYPE clause is set to DCS to indicate that this is a host database server.

db2 register ldap as nftcpip tcpip hostname myhost svcename 446
remote mvssys instance mvsinst nodetype dcs

2. Register a DB2 Connect gateway server in LDAP for TCP/IP connectivity. The
TCP/IP hostname for the gateway server is "niagara" and the port number is
"50000".

db2 register ldap as whasf tcpip hostname niagara svcename 50000
remote niagara instance goto nodetype server

3. Catalog the host database in LDAP using TCP/IP connectivity. The host
database name is "NIAGARA_FALLS", the database alias name is "nftcpip". The
GWNODE clause is used to specify the nodename of the DB2 Connect gateway
server.

db2 catalog ldap database NIAGARA_FALLS as nftcpip at node nftcpip
gwnode whasf authentication server

After completing the registration and cataloging shown above, if you want to
connect to the host using TCPIP, you connect to nftcpip. If you do not have DB2
Connect on your client workstation, the connection goes through the gateway
using TCPIP. From the gateway, it connects to the host using TCP/IP.

Chapter 18. Lightweight Directory Access Protocol (LDAP) 403

In general, you can manually configure host database information in LDAP so that
each client is not required to manually catalog the database and node locally on
each computer. The process follows:
1. Register the host database server in LDAP. You must specify the remote

computer name, instance name, and the node type for the host database server
in the REGISTER command using the REMOTE, INSTANCE, and NODETYPE clauses
respectively. The REMOTE clause can be set to either the host name or the LU
name of the host server machine. The INSTANCE clause can be set to any
character string that has eight characters or less. (For example, the instance
name can be set to "DB2".) The NODETYPE clause must be set to DCS to indicate
that this is a host database server.

2. Register the host database in LDAP using the CATALOG LDAP DATABASE
command. Any additional DRDA parameters can be specified by using the
PARMS clause. The database authentication type should be set to SERVER.

Extending the directory schema for IBM Tivoli Directory
Server

If you are using IBM Tivoli Directory Server, all the object classes and attributes
that are required by the DB2 database before Version 8.2 are included in the base
schema.

Run the following command to extend the base schema with new DB2 database
attributes introduced in Version 8.2, and later:
ldapmodify -c -h machine_name:389 -D dn -w password -f altgwnode.ldif

The following is the content of the altgwnode.ldif file:
dn: cn=schema
changetype: modify
add: attributetypes
attributetypes: (
1.3.18.0.2.4.3092
NAME ’db2altgwPtr’
DESC ’DN pointer to DB2 alternate gateway (node) object’
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)
-
add: ibmattributetypes
ibmattributetypes: (
1.3.18.0.2.4.3092
DBNAME (’db2altgwPtr’ ’db2altgwPtr’)
ACCESS-CLASS NORMAL
LENGTH 1000)

dn: cn=schema
changetype: modify
add: attributetypes
attributetypes: (
1.3.18.0.2.4.3093
NAME ’db2altnodePtr’
DESC ’DN pointer to DB2 alternate node object’
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12)
-
add: ibmattributetypes
ibmattributetypes: (
1.3.18.0.2.4.3093
DBNAME (’db2altnodePtr’ ’db2altnodePtr’)
ACCESS-CLASS NORMAL
LENGTH 1000)

404 Database Administration Concepts and Configuration Reference

dn: cn=schema
changetype: modify
replace: objectclasses
objectclasses: (
1.3.18.0.2.6.117
NAME ’DB2Database’
DESC ’DB2 database’
SUP cimSetting
MUST (db2databaseName $ db2nodePtr)
MAY (db2additionalParameters $ db2altgwPtr $ db2altnodePtr

$ db2ARLibrary $ db2authenticationLocation $ db2databaseAlias
$ db2databaseRelease $ db2gwPtr $ DCEPrincipalName))

The altgwnode.ldif and altgwnode.readme files can be found at URL:
ftp://ftp.software.ibm.com/ps/products/db2/tools/ldap

After adding the DB2 schema definition, the Directory Server must be restarted for
all changes to be active.

Netscape LDAP directory support and attribute definitions
The supported level for Netscape LDAP Server is Version 4.12, or later.

Within Netscape LDAP Server Version 4.12, or later, the Netscape Directory Server
allows applications to extend the schema by adding attribute and object class
definitions to the following two files, slapd.user_oc.conf and slapd.user_at.conf.
These two files are located in the <Netscape_install path>\slapd-<machine_name>\
config directory.

Note: If you are using Sun One Directory Server 5.0, refer to the topic about
extending the directory schema for the Sun One Directory Server.

The DB2 attributes must be added to the slapd.user_at.conf as follows:
##
#
IBM DB2 Database
Attribute Definitions
#
bin —> binary
ces —> case exact string
cis —> case insensitive string
dn —> distinguished name
#
##

attribute binProperty 1.3.18.0.2.4.305 bin
attribute binPropertyType 1.3.18.0.2.4.306 cis
attribute cesProperty 1.3.18.0.2.4.307 ces
attribute cesPropertyType 1.3.18.0.2.4.308 cis
attribute cisProperty 1.3.18.0.2.4.309 cis
attribute cisPropertyType 1.3.18.0.2.4.310 cis
attribute propertyType 1.3.18.0.2.4.320 cis
attribute systemName 1.3.18.0.2.4.329 cis
attribute db2nodeName 1.3.18.0.2.4.419 cis
attribute db2nodeAlias 1.3.18.0.2.4.420 cis
attribute db2instanceName 1.3.18.0.2.4.428 cis
attribute db2Type 1.3.18.0.2.4.418 cis
attribute db2databaseName 1.3.18.0.2.4.421 cis
attribute db2databaseAlias 1.3.18.0.2.4.422 cis
attribute db2nodePtr 1.3.18.0.2.4.423 dn
attribute db2gwPtr 1.3.18.0.2.4.424 dn
attribute db2additionalParameters 1.3.18.0.2.4.426 cis
attribute db2ARLibrary 1.3.18.0.2.4.427 cis

Chapter 18. Lightweight Directory Access Protocol (LDAP) 405

ftp://ftp.software.ibm.com/ps/products/db2/tools/ldap

attribute db2authenticationLocation 1.3.18.0.2.4.425 cis
attribute db2databaseRelease 1.3.18.0.2.4.429 cis
attribute DCEPrincipalName 1.3.18.0.2.4.443 cis

The DB2 object classes must be added to the slapd.user_oc.conf file as follows:
##
#
IBM DB2 Database
Object Class Definitions
#
##

objectclass eProperty
oid 1.3.18.0.2.6.90
requires

objectClass
allows

cn,
propertyType,
binProperty,
binPropertyType,
cesProperty,
cesPropertyType,
cisProperty,
cisPropertyType

objectclass eApplicationSystem
oid 1.3.18.0.2.6.84
requires

objectClass,
systemName

objectclass DB2Node
oid 1.3.18.0.2.6.116
requires

objectClass,
db2nodeName

allows
db2nodeAlias,
host,
db2instanceName,
db2Type,
description,
protocolInformation

objectclass DB2Database
oid 1.3.18.0.2.6.117
requires

objectClass,
db2databaseName,
db2nodePtr

allows
db2databaseAlias,
description,
db2gwPtr,
db2additionalParameters,
db2authenticationLocation,
DCEPrincipalName,
db2databaseRelease,
db2ARLibrary

After adding the DB2 schema definition, the Directory Server must be restarted for
all changes to be active.

406 Database Administration Concepts and Configuration Reference

Extending the directory schema for Sun One Directory Server
The Sun One Directory Server is also known as the Netscape or iPlanet directory
server.

To have the Sun One Directory Server work in your environment, add the
60ibmdb2.ldif file to the following directory:

On Windows, if you have iPlanet installed in C:\iPlanet\Servers, add the above
file to .\sldap-<machine_name>\config\schema.

On UNIX, if you have iPlanet installed in /usr/iplanet/servers, add the above
file to ./slapd-<machine_name>/config/schema.

The following is the contents of the file:
##
IBM DB2 Database
##
dn: cn=schema
##
Attribute Definitions (Before V8.2)
##
attributetypes: (1.3.18.0.2.4.305 NAME ’binProperty’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.5 X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.306 NAME ’binPropertyType’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.307 NAME ’cesProperty’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.308 NAME ’cesPropertyType’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.309 NAME ’cisProperty’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.310 NAME ’cisPropertyType’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.320 NAME ’propertyType’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.329 NAME ’systemName’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.419 NAME ’db2nodeName’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.420 NAME ’db2nodeAlias’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.428 NAME ’db2instanceName’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.418 NAME ’db2Type’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.421 NAME ’db2databaseName’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.422 NAME ’db2databaseAlias’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.426 NAME ’db2additionalParameters’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.427 NAME ’db2ARLibrary’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.425 NAME ’db2authenticationLocation’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.429 NAME ’db2databaseRelease’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.443 NAME ’DCEPrincipalName’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.423 NAME ’db2nodePtr’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.424 NAME ’db2gwPtr’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE X-ORIGIN ’IBM DB2’)

Chapter 18. Lightweight Directory Access Protocol (LDAP) 407

##
Attribute Definitions (V8.2 and later)
##
attributetypes: (1.3.18.0.2.4.3092 NAME ’db2altgwPtr’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 X-ORIGIN ’IBM DB2’)
attributetypes: (1.3.18.0.2.4.3093 NAME ’db2altnodePtr’

SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 X-ORIGIN ’IBM DB2’)
##
Object Class Definitions
DB2Database for V8.2 has the above two new optional attributes.
##
objectClasses: (1.3.18.0.2.6.90 NAME ’eProperty’

SUP top STRUCTURAL MAY (cn $ propertyType $ binProperty
$ binPropertyType $ cesProperty $ cesPropertyType $ cisProperty
$ cisPropertyType) X-ORIGIN ’IBM DB2’)

objectClasses: (1.3.18.0.2.6.84 NAME ’eApplicationSystem’
SUP top STRUCTURAL MUST systemName
X-ORIGIN ’IBM DB2’)

objectClasses: (1.3.18.0.2.6.116 NAME ’DB2Node’
SUP top STRUCTURAL MUST db2nodeName MAY (db2instanceName $ db2nodeAlias
$ db2Type $ description $ host $ protocolInformation)
X-ORIGIN ’IBM DB2’)

objectClasses: (1.3.18.0.2.6.117 NAME ’DB2Database’
SUP top STRUCTURAL MUST (db2databaseName $ db2nodePtr) MAY
(db2additionalParameters $ db2altgwPtr $ db2altnodePtr $ db2ARLibrary
$ db2authenticationLocation $ db2databaseAlias $ db2databaseRelease
$ db2gwPtr $ DCEPrincipalName $ description)
X-ORIGIN ’IBM DB2’)

The 60ibmdb2.ldif and 60ibmdb2.readmefiles can be found at URL:
ftp://ftp.software.ibm.com/ps/products/db2/tools/ldap

After adding the DB2 schema definition, the Directory Server must be restarted for
all changes to be active.

Windows Active Directory
The DB2 database servers are published in the Active Directory as the
ibm_db2Node objects. The ibm_db2Node object class is a subclass of the
ServiceConnectionPoint (SCP) object class.

Each ibm_db2Node object contains protocol configuration information to allow
client applications to connect to the DB2 database server. When a new database is
created, the database is published in the Active Directory as the ibm_db2Database
object under the ibm_db2Node object.

When connecting to a remote database, a DB2 client queries the Active Directory,
through the LDAP interface, for the ibm_db2Database object. The protocol
communication to connect to the database server (binding information) is obtained
from the ibm_db2Node object, which the ibm_db2Database object is created under.

Property pages for the ibm_db2Node and ibm_db2Database objects can be viewed
or modified using the Active Directory Users and Computer Management Console
(MMC) at a domain controller. To set up the property page, run the regsrv32
command to register the property pages for the DB2 objects as follows:

regsvr32 %DB2PATH%\bin\db2ads.dll

You can view the objects by using the Active Directory Users and Computer
Management Console (MMC) at a domain controller. To get to this administration
tool, follow Start—> Program—> Administration Tools—> Active Directory Users
and Computer.

408 Database Administration Concepts and Configuration Reference

Note: You must select Users, Groups, and Computers as containers from the View
menu to display the DB2 database objects under the computer objects.

Note: If the DB2 database system is not installed on the domain controller, you can
still view the property pages of DB2 database objects by copying the db2ads.dll file
from %DB2PATH%\bin and the resource DLL db2adsr.dll from
%DB2PATH%\msg\locale-name to a local directory on the domain controller. (The
directory where you place these two copied files must be one of those found in the
PATH environment variable.) Then, you run the regsvr32 command from the local
directory to register the DLL.

Configuring the DB2 database manager to use Active Directory
In order to access Microsoft Active Directory, some prerequisites need to be met.

About this task
1. The machine that runs DB2 database must belong to a Windows 2000 or

Windows Server 2003 domain.
2. The Microsoft LDAP client is installed. The Microsoft LDAP client is part of the

Windows 2000, Windows XP, and Windows Server 2003 operating systems.
3. Enable LDAP support.
4. Log on to a domain user account when running the DB2 database system to

read information from the Active Directory.

Security considerations for Active Directory
The DB2 database and node objects are created under the computer object of the
machine where the DB2 server is installed in the Active Directory. To register a
database server or to catalog a database in the Active Directory, you must have
sufficient access to create or update the objects under the computer object.

By default, objects under the computer object are readable by any authenticated
users and can be updated by administrators (users that belong to the
Administrators, Domain Administrators, and Enterprise Administrators groups). To
grant access for a specific user or a group, use the Active Directory Users and
Computer Management Console (MMC) as follows:
1. Start the Active Directory Users and Computer administration tool

(Start—> Program—> Administration Tools—> Active Directory Users and
Computer)

2. Under View, select Advanced Features

3. Select the Computers container
4. Right click on the computer object that represents the server machine where

DB2 is installed and select Properties

5. Select the Security tab, then add the required access to the specified user or
group

The DB2 registry variables and CLI settings at the user level are maintained in the
DB2 property object under the user object. To set the DB2 registry variables or CLI
settings at the user level, a user needs to have sufficient access to create objects
under the User object.

By default, only administrators have access to create objects under the User object.
To grant access to a user to set the DB2 registry variables or CLI settings at the
user level, use the Active Directory Users and Computer Management Console
(MMC) as follows:

Chapter 18. Lightweight Directory Access Protocol (LDAP) 409

1. Start the Active Directory Users and Computer administration tool
(Start—> Program—> Administration Tools—> Active Directory Users and
Computer)

2. Select the user object under the Users container
3. Right click on the user object and select Properties

4. Select the Security tab
5. Add the user name to the list by using the Add button
6. Grant “Write”, and “Create All Child Objects” access
7. Using the Advanced setting, set permissions to apply onto “This object and all

child objects”
8. Select the check box “Allow inheritable permissions from parent to propagate

to this object”

DB2 objects in the Active Directory
The DB2 database manager creates objects in the Active Directory at two locations:
1. The DB2 database and node objects are created under the computer object of

the machine where the DB2 server is installed. For the DB2 server that does not
belong to the Windows domain, the DB2 database and node objects are created
under the “System” container.

2. The DB2 registry variables and CLI settings at the user level are stored in the
DB2 property objects under the User object. These objects contain information
that is specific to that user.

Extending the directory schema for Active Directory
Before the DB2 database manager can store information in the Active Directory, the
directory schema needs to be extended to include the new DB2 database object
classes and attributes. The process of adding new object classes and attributes to
the directory schema is called schema extension.

About this task

You must extend the schema for Active Directory by running the DB2 Schema
Installation program, db2schex. You should run this command before installing
DB2 products and creating databases, otherwise you have to manually register the
node and catalog the databases.

The db2schex program is included on the product CD-ROM in the following
location: x:\db2\windows\utilities\ where x: is the DVD drive letter.

To update the schema, you must be a member of the Schema Administrators group
or have been delegated the rights to update the schema. Run the following
command on any machine that is part of the Windows domain:

runas /user:MyDomain\Administrator x:\db2\Windows\utilities\db2schex.exe

where x: represents the DVD drive letter.

If you have run the db2schex command in an earlier version of the DB2 database
management system, when you run this same command again on DB2 UDB
Version 8.2, or later, the following two optional attributes are added to the
ibm-db2Database class:

ibm-db2AltGwPtr
ibm-db2NodePtr

410 Database Administration Concepts and Configuration Reference

If you have not run the db2schex command on an earlier version of the DB2
database management system on Windows, when you run this same command on
DB2 Version 9.7, or later, all the classes and attributes for DB2 database system
LDAP support are added.

There are other optional clauses associated with this command. For more
information, refer to the “db2schex - Active Directory schema extension command”
topic.

Examples:
v To install the DB2 database schema:

db2schex

v To install the DB2 database schema and specify a bind DN and password:
db2schex -b "cn=A Name,dc=toronto1,dc=ibm,dc=com"

-w password

Or,
db2schex -b Administrator -w password

v To uninstall the DB2 database schema:
db2schex -u

v To uninstall the DB2 database schema and ignore errors:
db2schex -u -k

Enabling LDAP support after installation is complete
Before you can use LDAP, you must enable it after the DB2 database product
installation is complete.

Procedure

To enable LDAP support:
1. On any machine that is part of a Windows domain, perform the following

steps:
a. If you did not do so before installing the DB2 database product, you must

extend the directory schema if you want to use Microsoft Active Directory.
For more information, see the “Extending the directory schema for Active
Directory” topic.

b. Install the LDAP support binary files by running the DB2 Setup program
and selecting the LDAP Directory Exploitation support from Custom install.
The Setup program sets automatically the DB2 registry variable
DB2_ENABLE_LDAP to YES which is a required setting to enable LDAP support.

c. Optional: To use the IBM LDAP client instead of the Microsoft LDAP client,
set the DB2LDAP_CLIENT_PROVIDER registry variable to IBM.

2. On each LDAP client, perform the following steps:
a. Specify the TCP/IP host name and optionally the port number of the LDAP

server by running the following command: db2set
DB2LDAPHOST=base_domain_name[:port_number] where base_domain_name is
the TCP/IP host name, and [:port_number] is the port number. If you do not
specify a port number, the default LDAP port number 389 is used. For an
SSL enabled LDAP server, run the following command: db2set
DB2LDAPHOST=base_domain_name:SSL:636 where base_domain_name is the
TCP/IP host name.

Chapter 18. Lightweight Directory Access Protocol (LDAP) 411

DB2 objects are located in the LDAP base distinguished name (baseDN).
You can configure the baseDN on each machine by running the following
command:

db2set DB2LDAP_BASEDN=baseDN

where baseDN is the name of the LDAP suffix that is defined at the LDAP
server.

b. Optional: To use LDAP to store DB2 user-specific information, enter the
distinguished name (DN) and password of the LDAP user.

3. If you extended the directory schema after installing the DB2 database product,
perform the following steps:
a. Register the current instance of the DB2 server in LDAP by running the

following command:
db2 register ldap as node-name protocol tcpip

b. Register specific databases in LDAP by running the following command:
db2 catalog ldap database dbname as alias_dbname

What to do next

You can now register the LDAP entries.

Note: Setting DB2LDAPHOST to an SSL enabled LDAP server only allows retrieving
catalog information from an LDAP server using SSL. To ensure data exchanged
between the client and server are encrypted with SSL, see “Configuring Secure
Sockets Layer (SSL) support in the DB2 client” for more information.

Registering LDAP entries

Registration of DB2 servers after installation
Each DB2 server instance must be registered in LDAP to publish the protocol
configuration information that is used by the client applications to connect to the
DB2 server instance.

About this task

When registering an instance of the database server, you must specify a node name.
The node name is used by client applications when they connect or attach to the
server. You can catalog another alias name for the LDAP node by using the
CATALOG LDAP NODE command.

Note: If you are working in a Windows domain environment, then during
installation the DB2 server instance is automatically registered in the Active
Directory with the following information:

nodename: TCP/IP hostname
protocol type: TCP/IP

If the TCP/IP hostname is longer than 8 characters, it will be truncated to 8
characters.

The REGISTER command appears as follows:
db2 register db2 server in ldap

as <ldap_node_name>
protocol tcpip

412 Database Administration Concepts and Configuration Reference

The protocol clause specifies the communication protocol to use when connecting
to this database server.

When creating an instance for DB2 Enterprise Server Edition that includes multiple
physical machines, the REGISTER command must be invoked once for each
computer. Use the rah command to issue the REGISTER command on all computers.

Note: The same ldap_node_name cannot be used for each computer since the
name must be unique in LDAP. You will want to substitute the hostname of each
computer for the ldap_node_name in the REGISTER command. For example:

rah ">DB2 REGISTER DB2 SERVER IN LDAP AS <> PROTOCOL TCPIP"

The "<>" is substituted by the hostname on each computer where the rah
command is run. In the rare occurrence where there are multiple DB2 Enterprise
Server Edition instances, the combination of the instance and host index can be
used as the node name in the rah command.

The REGISTER command can be issued for a remote DB2 server. To do so, you must
specify the remote computer name, instance name, and the protocol configuration
parameters when registering a remote server. The command can be used as
follows:

db2 register db2 server in ldap
as <ldap_node_name>
protocol tcpip
hostname <host_name>
svcename <tcpip_service_name>
remote <remote_computer_name>
instance <instance_name>

The following convention is used for the computer name:
v If TCP/IP is configured, the computer name must be the same as the TCP/IP

hostname.

When running in a high availability or failover environment, and using TCP/IP as
the communication protocol, the cluster IP address must be used. Using the cluster
IP address allows the client to connect to the server on either computer without
having to catalog a separate TCP/IP node for each computer. The cluster IP
address is specified using the hostname clause, shown as follows:

db2 register db2 server in ldap
as <ldap_node_name>
protocol tcpip
hostname n.nn.nn.nn

where n.nn.nn.nn is the cluster IP address.

To register the DB2 server in LDAP from a client application, call the
db2LdapRegister API.

Catalog a node alias for ATTACH
A node name for the DB2 server must be specified when registering the server in
LDAP. Applications use the node name to attach to the database server.

Chapter 18. Lightweight Directory Access Protocol (LDAP) 413

About this task

If you require a different node name, such as when the node name is hard-coded
in an application, use the CATALOG LDAP NODE command to make the change, for
example:

db2 catalog ldap node <ldap_node_name>
as <new_alias_name>

To uncatalog a LDAP node, use the UNCATALOG LDAP NODE command, for example:
db2 uncatalog ldap node <ldap_node_name>

Registration of databases in the LDAP directory
During the creation of a database within an instance, the database is automatically
registered in LDAP. Registration allows remote client connection to the database
without having to catalog the database and node on the client computer. When a
client attempts to connect to a database, if the database does not exist in the
database directory on the local computer then the LDAP directory is searched.

About this task

If the name already exists in the LDAP directory, the database is still created on the
local computer but a warning message is returned stating the naming conflict in
the LDAP directory. For this reason you can manually catalog a database in the
LDAP directory. The user can register databases on a remote server in LDAP by
using the CATALOG LDAP DATABASE command. When registering a remote database,
you specify the name of the LDAP node that represents the remote database server.
You must register the remote database server in LDAP using the REGISTER DB2
SERVER IN LDAP command before registering the database. To register a database
manually in LDAP, use the CATALOG LDAP DATABASE command:

db2 catalog ldap database <dbname>
at node <node_name>
with "My LDAP database"

To register a database in LDAP from a client application, call the
db2LdapCatalogDatabase API.

Deregistering LDAP entries

Deregistering the DB2 server
Deregistration of an instance from LDAP also removes all the node, or alias, objects
and the database objects referring to the instance.

About this task

Deregistration of the DB2 server on either a local or a remote computer requires
the LDAP node name be specified for the server:

db2 deregister db2 server in ldap
node <node_name>

To deregister the DB2 server from LDAP from a client application, call the
db2LdapDeregister API.

When the DB2 server is deregistered, any LDAP node entry and LDAP database
entries referring to the same instance of the DB2 server are also uncataloged.

414 Database Administration Concepts and Configuration Reference

Deregistering the database from the LDAP directory
The database is automatically deregistered from LDAP when the database is
dropped, or the owning instance is deregistered from LDAP.

About this task

You can manually deregister the database from LDAP using the following
command:

db2 uncatalog ldap database <dbname>

To deregister a database from LDAP from a client application, call the
db2LdapUncatalogDatabase API.

Configuring LDAP users

Creating an LDAP user
When using the IBM Tivoli directory, you must define an LDAP user before you
can store user-level information in LDAP. You can create an LDAP user by creating
an LDIF file to contain all attributes for the user object, then run the LDIF import
utility to import the object into the LDAP directory.

About this task

The DB2 database system supports setting DB2 registry variables and CLI
configuration at the user level. (This is not available on the Linux and UNIX
platforms.) User level support provides user-specific settings in a multi-user
environment. An example is Windows Terminal Server where each logged on user
can customize his or her own environment without interfering with the system
environment or another user's environment.

The LDIF utility for the IBM Tivoli Directory Server is LDIF2DB.

LDIF file containing the attributes for a person object appears similar to the
following:

File name: newuser.ldif

dn: cn=Mary Burnnet, ou=DB2 Development, ou=Toronto, o=ibm, c=ca
objectclass: ePerson
cn: Mary Burnnet
sn: Burnnet
uid: mburnnet
userPassword: password
telephonenumber: 1-416-123-4567
facsimiletelephonenumber: 1-416-123-4568
title: Software Developer

Following is an example of the LDIF command to import an LDIF file using the
IBM LDIF import utility:

LDIF2DB -i newuser.ldif

Note:

1. You must run the LDIF2DB command from the LDAP server.
2. You must grant the required access (ACL) to the LDAP user object so that the

LDAP user can add, delete, read, and write to his own object. To grant ACL for
the user object, use the LDAP Directory Server Web Administration tool.

Chapter 18. Lightweight Directory Access Protocol (LDAP) 415

Configuring the LDAP user for DB2 applications
When you use the Microsoft LDAP client, the LDAP user is the same as the
operating system user account. However, when you use the IBM LDAP client,
before you use the DB2 database manager, you must configure the LDAP user
distinguished name (DN) and password for the current logged on user.

About this task

To configure the LDAP user distinguished name (DN) and password, use the
db2ldcfg utility:

db2ldcfg -u <userDN> -w <password> --> set the user’s DN and password
-r --> clear the user’s DN and password

For example:
db2ldcfg -u "cn=Mary Burnnet,ou=DB2 Development,ou=Toronto,o=ibm,c=ca"

-w password

Setting DB2 registry variables at the user level in the LDAP
environment

Under the LDAP environment, the DB2 profile registry variables can be set at the
user level which allows a user to customize their own DB2 environment.

About this task

To set the DB2 profile registry variables at the user level, use the -ul option:
db2set -ul <variable>=<value>

Note: This is not supported on AIX or Solaris operating systems.

DB2 has a caching mechanism. The DB2 profile registry variables at the user level
are cached on the local computer. If the -ul parameter is specified, DB2 always
reads from the cache for the DB2 registry variables. The cache is refreshed when:
v You update or reset a DB2 registry variable at the user level.
v The command to refresh the LDAP profile variables at the user level is:

db2set -ur

Disabling LDAP support
To disable LDAP support, use the following procedure:

About this task
1. For each instance of the DB2 server, deregister the DB2 server from LDAP:

db2 deregister db2 server in ldap node <nodename>

2. Set the DB2 profile registry variable DB2_ENABLE_LDAP to "NO".

Updating the protocol information for the DB2 server
The DB2 server information in LDAP must be kept current. For example, changes
to the protocol configuration parameters or the server network address require an
update to LDAP.

416 Database Administration Concepts and Configuration Reference

About this task

To update the DB2 server in LDAP on the local computer, use the following
command:

db2 update ldap ...

Examples of protocol configuration parameters that can be updated include a
TCP/IP hostname and service name or port number parameters.

To update a remote DB2 server protocol configuration parameters use the UPDATE
LDAP command with a node clause:

db2 update ldap
node <node_name>
hostname <host_name>
svcename <tcpip_service_name>

Rerouting LDAP clients to another server
Just as with the ability to reroute clients on a system failure, the same ability is
also available to you when working with LDAP.

Before you begin

The DB2_ENABLE_LDAP registry variable must be set to “Yes”.

About this task

Within an LDAP environment, all database and node directory information is
maintained at an LDAP server. The client retrieves information from the LDAP
directory. This information is updated in its local database and node directories if
the DB2LDAPCACHE registry variable is set to “Yes”.

Use the UPDATE ALTERNATE SERVER FOR LDAP DATABASE command to define the
alternate server for a database that represents the DB2 database in LDAP.
Alternatively, you can call the db2LdapUpdateAlternateServerForDB API from a
client application to update the alternate server for the database in LDAP.

Once established, this alternate server information is returned to the client upon
connection.

Note: It is strongly recommended to keep the alternate server information stored
in the LDAP server synchronized with the alternate server information stored at
the database server instance. Issuing the UPDATE ALTERNATE SERVER FOR DATABASE
command (notice that it is not "FOR LDAP DATABASE") at the database server
instance will help ensure synchronization between the database server instance and
the LDAP server.

When you enter UPDATE ALTERNATE SERVER FOR DATABASE command at the server
instance, and if LDAP support is enabled (DB2_ENABLE_LDAP=Yes) on the
server, and if the LDAP user ID and password is cached (db2ldcfg was previously
run), then the alternate server for the database is automatically, or implicitly,
updated on the LDAP server. This works as if you entered UPDATE ALTERNATE
SERVER FOR LDAP DATABASE explicitly.

If the UPDATE ALTERNATE SERVER FOR LDAP DATABASE command is issued from an
instance other than the database server instance, ensure the alternate server

Chapter 18. Lightweight Directory Access Protocol (LDAP) 417

information is also identically configured at the database server instance using the
UPDATE ALTERNATE SERVER FOR DATABASE command. After the client initially
connects to the database server instance, the alternate server information returned
from the database server instance will take precedence over what is configured in
the LDAP server. If the database server instance has no alternate server
information configured, client reroute will be considered disabled after the initial
connect.

Attaching to a remote server in the LDAP environment
In the LDAP environment, you can attach to a remote database server using the
LDAP node name on the ATTACH command: db2 attach to <ldap_node_name>.

About this task

When a client application attaches to a node or connects to a database for the first
time, since the node is not in the local node directory, the database manager
searches the LDAP directory for the target node entry. If the entry is found in the
LDAP directory, the protocol information of the remote server is retrieved. If you
connect to the database and if the entry is found in the LDAP directory, then the
database information is also retrieved. Using this information, the database
manager automatically catalogs a database entry and a node entry on the local
computer. The next time the client application attaches to the same node or
database, the information in the local database directory is used without having to
search the LDAP directory.

In more detail: A caching mechanism exists so that the client only searches the
LDAP server once. After the information is retrieved, it is stored or cached on the
local computer based on the values of the dir_cache database manager
configuration parameter and the DB2LDAPCACHE registry variable.
v If DB2LDAPCACHE=NO and dir_cache=NO, then always read the information

from LDAP.
v If DB2LDAPCACHE=NO and dir_cache=YES, then read the information from

LDAP once and insert it into the DB2(R) cache.
v If DB2LDAPCACHE=YES or is not set, then read the information from LDAP

server once and cache it into the local database, node, and DCS directories.

Note: The caching of LDAP information is not applicable to user-level CLI or DB2
profile registry variables.

Refreshing LDAP entries in local database and node directories
The DB2 database system provides a caching mechanism to reduce the number of
times a client searches the LDAP server.

About this task

After the information is retrieved, it is stored or cached on the local computer
based on the values of the dir_cache database manager configuration parameter
and the DB2LDAPCACHE registry variable.
v If DB2LDAPCACHE=NO and dir_cache=NO, then always read the information

from LDAP.
v If DB2LDAPCACHE=NO and dir_cache=YES, then read the information from

LDAP once and insert it into the DB2 cache.

418 Database Administration Concepts and Configuration Reference

v If DB2LDAPCACHE=YES or is not set, then read the information from LDAP
server once and cache it into the local database, node, and DCS directories.

Note: The caching of LDAP information is not applicable to user-level CLI or DB2
profile registry variables. Since information in LDAP is subject to change, it might
be necessary to refresh the LDAP entries cached in the local database and node
directories. There are a few ways to do this.

To refresh all the local database and node entries that were retrieved from LDAP,
use the following command:

db2 refresh ldap immediate

Similarly, the following command can be used to both refresh existing local
database and node entries and add new entries from LDAP:

db2 refresh ldap immediate all

Specifying the IMMEDIATE ALL option will add all the NODE and DB entries
contained with the LDAP server into the local directories.

Alternatively, to force DB2 to refresh the database entries that refer to LDAP
resources on the next database connection or instance attachment, use the
following command:

db2 refresh ldap database directory

Likewise, to force the DB2 database manager to refresh the nodes entries that refer
to LDAP resources on the next database connection or instance attachment, use the
following command:

db2 refresh ldap node directory

As part of the refresh, all the LDAP entries that are saved in the local database and
node directories are removed. The next time that the application accesses the
database or node, it will read the information directly from LDAP and generate a
new entry in the local database or node directory.

To ensure the refresh is done in a timely way, you might want to:
v Schedule a refresh that is run periodically.
v Run the REFRESH command during system bootup.
v Use an available administration package to invoke the REFRESH command on all

client computers.
v Set DB2LDAPCACHE="NO" to avoid LDAP information being cached in the

database, node, and DCS directories.

Searching the LDAP servers
The DB2 database system searches the current LDAP server but in an environment
where there are multiple LDAP servers, you can define the scope of the search.

About this task

For example, if the information is not found in the current LDAP server, you can
specify automatic search of all other LDAP servers, or, alternatively, you can
restrict the search scope to only the current LDAP server, or to the local DB2
database catalog.

Chapter 18. Lightweight Directory Access Protocol (LDAP) 419

When you set the search scope, this sets the default search scope for the entire
enterprise. The search scope is controlled through the DB2 database profile registry
variable, DB2LDAP_SEARCH_SCOPE. To set the search scope value, use the -gl
option, which means global in LDAP, on the db2set command:

db2set -gl db2ldap_search_scope=<value>

Possible values include: local, domain, or global. If it is not set, the default value is
domain which limits the search scope to the directory on the current LDAP server.

For example, you might want to initially set the search scope to “global” after a
new database is created. This allows any DB2 client configured to use LDAP to
search all the LDAP servers to find the database. Once the entry has been recorded
on each computer after the first connect or attach for each client, if you have
caching enabled, the search scope can be changed to “local”. Once changed to
“local”, each client will not scan any LDAP servers.

Note: The DB2 database profile registry variables
DB2LDAP_KEEP_CONNECTION and DB2LDAP_SEARCH_SCOPE are the only
registry variables that can be set at the global level in LDAP.

420 Database Administration Concepts and Configuration Reference

Chapter 19. SQL and XML limits

The following tables describe certain SQL and XML limits. Adhering to the most
restrictive case can help you to design application programs that are easily
portable.

Table 57 lists limits in bytes. These limits are enforced after conversion from the
application code page to the database code page when creating identifiers. The
limits are also enforced after conversion from the database code page to the
application code page when retrieving identifiers from the database. If, during
either of these processes, the identifier length limit is exceeded, truncation occurs
or an error is returned.

Character limits vary depending on the code page of the database and the code
page of the application. For example, because the width of a UTF-8 character can
range from 1 to 4 bytes, the character limit for an identifier in a Unicode table
whose limit is 128 bytes will range from 32 to 128 characters, depending on which
characters are used. If an attempt is made to create an identifier whose name is
longer than the limit for this table after conversion to the database code page, an
error is returned.

Applications that store identifier names must be able to handle the potentially
increased size of identifiers after code page conversion has occurred. When
identifiers are retrieved from the catalog, they are converted to the application
code page. Conversion from the database code page to the application code page
can result in an identifier becoming longer than the byte limit for the table. If a
host variable declared by the application cannot store the entire identifier after
code page conversion, it is truncated. If that is unacceptable, the host variable can
be increased in size to be able to accept the entire identifier name.

The same rules apply to DB2 utilities retrieving data and converting it to a
user-specified code page. If a DB2 utility, such as export, is retrieving the data and
forcing conversion to a user-specified code page (using the export CODEPAGE
modifier or the DB2CODEPAGE registry variable), and the identifier expands beyond
the limit that is documented in this table because of code page conversion, an error
might be returned or the identifier might be truncated.

Table 57. Identifier Length Limits

Description Maximum in Bytes

Alias name 128

Attribute name 128

Audit policy name 128

Authorization name (can only be single-byte characters) 128

Buffer pool name 18

Column name2 128

Constraint name 128

Correlation name 128

Cursor name 128

Data partition name 128

© Copyright IBM Corp. 1993, 2012 421

Table 57. Identifier Length Limits (continued)

Description Maximum in Bytes

Data source column name 255

Data source index name 128

Data source name 128

Data source table name (remote-table-name) 128

Database partition group name 128

Database partition name 128

Event monitor name 128

External program name 128

Function mapping name 128

Group name 128

Host identifier1 255

Identifier for a data source user (remote-authorization-name) 128

Identifier in an SQL procedure (condition name, for loop
identifier, label, result set locator, statement name, variable
name)

128

Index name 128

Index extension name 18

Index specification name 128

Label name 128

Namespace uniform resource identifier (URI) 1000

Nickname 128

Package name 128

Package version ID 64

Parameter name 128

Password to access a data source 32

Procedure name 128

Role name 128

Savepoint name 128

Schema name2 128

Security label component name 128

Security label name 128

Security policy name 128

Sequence name 128

Server (database alias) name 8

Specific name 128

SQL condition name 128

SQL variable name 128

Statement name 128

Table name 128

Table space name 18

422 Database Administration Concepts and Configuration Reference

Table 57. Identifier Length Limits (continued)

Description Maximum in Bytes

Transform group name 18

Trigger name 128

Trusted context name 128

Type mapping name 18

User-defined function name 128

User-defined method name 128

User-defined type name2 128

View name 128

Wrapper name 128

XML element name, attribute name, or prefix name 1000

XML schema location uniform resource identifier (URI) 1000

Note:

1. Individual host language compilers might have a more restrictive limit on variable
names.

2. The SQLDA structure is limited to storing 30-byte column names, 18-byte user-defined
type names, and 8-byte schema names for user-defined types. Because the SQLDA is
used in the DESCRIBE statement, embedded SQL applications that use the DESCRIBE
statement to retrieve column or user-defined type name information must conform to
these limits.

Table 58. Numeric Limits

Description Limit

Smallest SMALLINT value -32 768

Largest SMALLINT value +32 767

Smallest INTEGER value -2 147 483 648

Largest INTEGER value +2 147 483 647

Smallest BIGINT value -9 223 372 036 854 775 808

Largest BIGINT value +9 223 372 036 854 775 807

Largest decimal precision 31

Maximum exponent (Emax) for
REAL values

38

Smallest REAL value -3.402E+38

Largest REAL value +3.402E+38

Minimum exponent (Emin) for
REAL values

-37

Smallest positive REAL value +1.175E-37

Largest negative REAL value -1.175E-37

Maximum exponent (Emax) for
DOUBLE values

308

Smallest DOUBLE value -1.79769E+308

Largest DOUBLE value +1.79769E+308

Minimum exponent (Emin) for
DOUBLE values

-307

Chapter 19. SQL and XML limits 423

Table 58. Numeric Limits (continued)

Description Limit

Smallest positive DOUBLE
value

+2.225E-307

Largest negative DOUBLE
value

-2.225E-307

Maximum exponent (Emax) for
DECFLOAT(16) values

384

Smallest DECFLOAT(16)
value1

-9.999999999999999E+384

Largest DECFLOAT(16) value 9.999999999999999E+384

Minimum exponent (Emin) for
DECFLOAT(16) values

-383

Smallest positive
DECFLOAT(16) value

1.000000000000000E-383

Largest negative
DECFLOAT(16) value

-1.000000000000000E-383

Maximum exponent (Emax) for
DECFLOAT(34) values

6144

Smallest DECFLOAT(34)
value1

-9.999999999999999999999999999999999E+6144

Largest DECFLOAT(34) value 9.999999999999999999999999999999999E+6144

Minimum exponent (Emin) for
DECFLOAT(34) values

-6143

Smallest positive
DECFLOAT(34) value

1.000000000000000000000000000000000E-6143

Largest negative
DECFLOAT(34) value

-1.000000000000000000000000000000000E-6143

Note:

1. These are the limits of normal decimal floating-point numbers. Valid decimal
floating-point values include the special values NAN, -NAN, SNAN, -SNAN, INFINITY
and -INFINITY. In addition, valid values include subnormal numbers.

Subnormal numbers are nonzero numbers whose adjusted exponents are less than Emin.
For a subnormal number, the minimum value of the exponent is Emin - (precision-1),
called Etiny, where precision is the working precision (16 or 34). That is, subnormal
numbers extend the range of numbers close to zero by 15 or 33 orders of magnitude for
DECFLOAT(16) or DECFLOAT(34), respectively. Subnormal numbers are different from
normal numbers because the maximum number of digits for a subnormal number is
less than the working precision (16 or 34). Decimal floating-point cannot represent the
subnormal numbers with the same accuracy as it can represent normal numbers. The
smallest positive subnormal number for DECFLOAT(34) is 1x10-6176, which contains only
one digit, whereas the smallest positive normal number for DECFLOAT(34) is
1.000000000000000000000000000000000x10-6143, which contains 34 digits. The smallest
positive subnormal number for DECFLOAT(16) is 1x10-398.

Table 59. String Limits

Description Limit

Maximum length of CHAR (in bytes) 254

Maximum length of VARCHAR (in bytes) 32 672

Maximum length of LONG VARCHAR (in bytes)1 32 700

424 Database Administration Concepts and Configuration Reference

Table 59. String Limits (continued)

Description Limit

Maximum length of CLOB (in bytes) 2 147 483 647

Maximum length of serialized XML (in bytes) 2 147 483 647

Maximum length of GRAPHIC (in double-byte characters) 127

Maximum length of VARGRAPHIC (in double-byte
characters)

16 336

Maximum length of LONG VARGRAPHIC (in double-byte
characters)1

16 350

Maximum length of DBCLOB (in double-byte characters) 1 073 741 823

Maximum length of BLOB (in bytes) 2 147 483 647

Maximum length of character constant 32 672

Maximum length of graphic constant 16 336

Maximum length of concatenated character string 2 147 483 647

Maximum length of concatenated graphic string 1 073 741 823

Maximum length of concatenated binary string 2 147 483 647

Maximum number of hexadecimal constant digits 32 672

Largest instance of a structured type column object at run
time (in gigabytes)

1

Maximum size of a catalog comment (in bytes) 254

Note:

1. The LONG VARCHAR and LONG VARGRAPHIC data types are deprecated and might
be removed in a future release.

Table 60. XML Limits

Description Limit

Maximum depth of an XML document (in levels) 125

Maximum size of an XML schema document (in bytes) 31 457 280

Table 61. Datetime Limits

Description Limit

Smallest DATE value 0001-01-01

Largest DATE value 9999-12-31

Smallest TIME value 00:00:00

Largest TIME value 24:00:00

Smallest TIMESTAMP value 0001-01-01-
00.00.00.000000000000

Largest TIMESTAMP value 9999-12-31-
24.00.00.000000000000

Smallest timestamp precision 0

Largest timestamp precision 12

Chapter 19. SQL and XML limits 425

Table 62. Database Manager Limits

Description Limit

Applications

Maximum number of host variable declarations in a
precompiled program3

storage

Maximum length of a host variable value (in bytes) 2 147 483 647

Maximum number of declared cursors in a program storage

Maximum number of rows changed in a unit of work storage

Maximum number of cursors opened at one time storage

Maximum number of connections per process within a DB2
client

512

Maximum number of simultaneously opened LOB locators
in a transaction

4 194 304

Maximum size of an SQLDA (in bytes) storage

Maximum number of prepared statements storage

Buffer Pools

Maximum NPAGES in a buffer pool for 32-bit releases 1 048 576

Maximum NPAGES in a buffer pool for 64-bit releases 2 147 483 647

Maximum total size of all buffer pool slots (4K) 2 147 483 646

Concurrency

Maximum number of concurrent users of a server4 64 000

Maximum number of concurrent users per instance 64 000

Maximum number of concurrent applications per database 60 000

Maximum number of databases per instance concurrently
in use

256

Constraints

Maximum number of constraints on a table storage

Maximum number of columns in a UNIQUE constraint
(supported through a UNIQUE index)

64

Maximum combined length of columns in a UNIQUE
constraint (supported through a UNIQUE index, in bytes)9

8192

Maximum number of referencing columns in a foreign key 64

Maximum combined length of referencing columns in a
foreign key (in bytes)9

8192

Maximum length of a check constraint specification (in
bytes)

65 535

Databases

Maximum database partition number 999

Indexes

Maximum number of indexes on a table 32 767 or storage

Maximum number of columns in an index key 64

Maximum length of an index key including all overhead7 9 indexpagesize/4

Maximum length of a variable index key part (in bytes)8 1022 or storage

Maximum size of an index per database partition in an
SMS table space (in terabytes)7

64

426 Database Administration Concepts and Configuration Reference

Table 62. Database Manager Limits (continued)

Description Limit

Maximum size of an index per database partition in a
regular DMS table space (in gigabytes)7

512

Maximum size of an index per database partition in a large
DMS table space (in terabytes)7

64

Maximum length of a variable index key part for an index
over XML data (in bytes)7

pagesize/4 - 207

Log records

Maximum Log Sequence Number 0xFFFF FFFE FFFF FFEF

Monitoring

Maximum number of simultaneously active event monitors 128

With DB2 Database Partitioning Feature (DPF), maximum
number of simultaneously active GLOBAL event monitors

32

Routines

Maximum number of parameters in a procedure with
LANGUAGE SQL

32 767

Maximum number of parameters in an external procedure
with PROGRAM TYPE MAIN

32 767

Maximum number of parameters in an external procedure
with PROGRAM TYPE SUB

90

Maximum number of parameters in a cursor value
constructor

32 767

Maximum number of parameters in a user-defined function 90

Maximum number of nested levels for routines 64

Maximum number of schemas in the SQL path 64

Maximum length of the SQL path (in bytes) 2048

Security

Maximum number of elements in a security label
component of type set or tree

64

Maximum number of elements in a security label
component of type array

65 535

Maximum number of security label components in a
security policy

16

SQL

Maximum total length of an SQL statement (in bytes) 2 097 152

Maximum number of tables referenced in an SQL statement
or a view

storage

Maximum number of host variable references in an SQL
statement

32 767

Maximum number of constants in a statement storage

Maximum number of elements in a select list7 1012

Maximum number of predicates in a WHERE or HAVING
clause

storage

Maximum number of columns in a GROUP BY clause7 1012

Chapter 19. SQL and XML limits 427

Table 62. Database Manager Limits (continued)

Description Limit

Maximum total length of columns in a GROUP BY clause
(in bytes)7

32 677

Maximum number of columns in an ORDER BY clause7 1012

Maximum total length of columns in an ORDER BY clause
(in bytes)7

32 677

Maximum level of subquery nesting storage

Maximum number of subqueries in a single statement storage

Maximum number of values in an insert operation7 1012

Maximum number of SET clauses in a single update
operation7

1012

Tables and Views

Maximum number of columns in a table 7 1012

Maximum number of columns in a view1 5000

Maximum number of columns in a data source table or
view that is referenced by a nickname

5000

Maximum number of columns in a distribution key5 500

Maximum length of a row including all overhead2 7 32 677

Maximum number of rows in a non-partitioned table, per
database partition

128 x 1010

Maximum number of rows in a data partition, per database
partition

128 x 1010

Maximum size of a table per database partition in a regular
table space (in gigabytes)3 7

512

Maximum size of a table per database partition in a large
DMS table space (in terabytes)7

64

Maximum number of data partitions for a single table 32 767

Maximum number of table partitioning columns 16

Maximum number of fields in a user-defined row type 1012

Table Spaces

Maximum size of a LOB object per table or per table
partition (in terabytes)

4

Maximum size of a LF object per table or per table partition
(in terabytes)

2

Maximum number of table spaces in a database 32 768

Maximum number of tables in an SMS table space 65 532

Maximum size of a regular DMS table space (in gigabytes) 3

7
512

Maximum size of a large DMS table space (in terabytes) 3 7 64

Maximum size of a temporary DMS table space (in
terabytes) 3 7

64

Maximum number of table objects in a DMS table space6 See Table 63 on page 429

Maximum number of storage paths in an automatic storage
database

128

428 Database Administration Concepts and Configuration Reference

Table 62. Database Manager Limits (continued)

Description Limit

Maximum length of a storage path that is associated with
an automatic storage database (in bytes)

175

Triggers

Maximum run-time depth of cascading triggers 16

User-defined Types

Maximum number of attributes in a structured type 4082

Note:

1. This maximum can be achieved using a join in the CREATE VIEW statement. Selecting
from such a view is subject to the limit of most elements in a select list.

2. The actual data for BLOB, CLOB, LONG VARCHAR, DBCLOB, and LONG
VARGRAPHIC columns is not included in this count. However, information about the
location of that data does take up some space in the row.

3. The numbers shown are architectural limits and approximations. The practical limits
may be less.

4. The actual value is controlled by the max_connections and max_coordagents database
manager configuration parameters.

5. This is an architectural limit. The limit on the most columns in an index key should be
used as the practical limit.

6. See footnote 1 in Table 63.

7. For page size-specific values, see Table 63.

8. This is limited only by the longest index key, including all overhead (in bytes). As the
number of index key parts increases, the maximum length of each key part decreases.

9. The maximum can be less, depending on index options.

Table 63. Database Manager Page Size-specific Limits

Description
4K page size

limit
8K page size

limit
16K page size

limit
32K page size

limit

Maximum number of table
objects in a DMS table
space1

51 9712

53 2123
53 299 53 747 54 264

Maximum number of
columns in a table

500 1012 1012 1012

Maximum length of a row
including all overhead

4005 8101 16 293 32 677

Maximum size of a table
per database partition in a
regular table space (in
gigabytes)

64 128 256 512

Maximum size of a table
per database partition in a
large DMS table space (in
terabytes)

8 16 32 64

Maximum length of an
index key including all
overhead (in bytes)

1024 2048 4096 8192

Maximum size of an index
per database partition in an
SMS table space (in
terabytes)

8 16 32 64

Chapter 19. SQL and XML limits 429

Table 63. Database Manager Page Size-specific Limits (continued)

Description
4K page size

limit
8K page size

limit
16K page size

limit
32K page size

limit

Maximum size of an index
per database partition in a
regular DMS table space (in
gigabytes)

64 128 256 512

Maximum size of an index
per database partition in a
large DMS table space (in
terabytes)

8 16 32 64

Maximum size of a regular
DMS table space (in
gigabytes)

64 128 256 512

Maximum size of a large
DMS table space (in
terabytes)

8 16 32 64

Maximum size of a
temporary DMS table space
(in terabytes)

8 16 32 64

Maximum number of
elements in a select list

5004 1012 1012 1012

Maximum number of
columns in a GROUP BY
clause

500 1012 1012 1012

Maximum total length of
columns in a GROUP BY
clause (in bytes)

4005 8101 16 293 32 677

Maximum number of
columns in an ORDER BY
clause

500 1012 1012 1012

Maximum total length of
columns in an ORDER BY
clause (in bytes)

4005 8101 16 293 32 677

Maximum number of values
in an insert operation

500 1012 1012 1012

Maximum number of SET
clauses in a single update
operation

500 1012 1012 1012

Maximum records per page
for a regular table space

251 253 254 253

Maximum records per page
for a large table space

287 580 1165 2335

430 Database Administration Concepts and Configuration Reference

Table 63. Database Manager Page Size-specific Limits (continued)

Description
4K page size

limit
8K page size

limit
16K page size

limit
32K page size

limit

Note:

1. Table objects include table data, indexes, LONG VARCHAR columns, LONG
VARGRAPHIC columns, and LOB columns. Table objects that are in the same table
space as the table data do not count extra toward the limit. However, each table object
that is in a different table space than the table data does contribute one toward the limit
for each table object type per table in the table space in which the table object resides.

2. When extent size is 2 pages.

3. When extent size is any size other than 2 pages.

4. In cases where the only system temporary table space is 4KB and the data overflows to
the sort buffer, an error is generated. If the result set can fit into memory, there is no
error.

Chapter 19. SQL and XML limits 431

432 Database Administration Concepts and Configuration Reference

Chapter 20. Registry and environment variables

Environment variables and the profile registries
Environment and registry variables control your DB2 database environment. Use
the DB2 profile registries to view and update information about variables and
instances.

Before the DB2 database profile registries were introduced, setting environment
variables required you to specify a value for an environment variable and restart
your computer. You can now use the DB2 profile registries to control most
variables that affect your DB2 database environment.

Use the profile registries to control the environment variables from one computer.
Different levels of support are provided through the different profiles. You can
administer the environment variables remotely by using the DB2 administration
server.

A DB2 database is affected by the following profile registries:
v The DB2 instance-level profile registry contains registry variables for an instance.

Values that are defined in this registry override their settings in the global
registry.

v The DB2 global-level profile registry contains settings that are used if a registry
variable is not set for an instance. All instances that pertain to a particular copy
of DB2 Enterprise Server Edition can access this registry.

v The DB2 instance node-level profile registry contains variable settings that are
specific to a database partition in a partitioned database environment. Values
that are defined in this registry override their settings at the instance and global
levels.

v The DB2 user-level profile registry contains settings that are specific to each user.
Values that are defined in this registry override their settings in the other
registries.

The DB2 database system configures the operating environment by checking for
registry values and environment variables and resolving them in the following
order:
1. Environment variables that are set outside the profile registries.
2. Registry variables that are set with the user-level profile.
3. Registry variables that are set with the instance node-level profile.
4. Registry variables that are set with the instance-level profile.
5. Registry variables that are set with the global-level profile.

The DB2 instance profile registry contains a list of all instances that are associated
with the current copy. A list exists for each DB2 copy. You can see the complete list
of all the instances that are available on the system by running the db2ilist
command. This profile registry does not contain variable settings.

© Copyright IBM Corp. 1993, 2012 433

Profile registry locations and authorization requirements
The DB2 profile registries have different locations and authorization requirements
on each operating system. Authorization is required to update the values of
variables in each profile registry.

Table 64. Profile registry locations and authorization requirements

Profile registry Location on Windows
Location on Linux and
UNIX

Linux and UNIX
authorization
requirements

Windows authorization
requirements

Instance-level profile
registry

\HKEY_LOCAL_computer
\SOFTWARE\IBM\DB2
\PROFILES\
instance_name

instance_home/sqllib/
profile.env

where instance_home is
the home path of the
instance owner.

-rw-rw-r--
instance_owner

instance_owner_group
profile.env

You must be a member
of the DB2
administrators group
(DB2ADMNS).

Global-level profile
registry

\HKEY_LOCAL_computer
\SOFTWARE\IBM\DB2
\GLOBAL_PROFILE

For root
installations:/var/db2/
global.reg

For non-root
installations:
home_directory/sqllib
/global.reg

To modify a global
registry variable in root
installations, you must
be logged on with root
authority.

You must be a member
of the DB2
administrators group
(DB2ADMNS).

Instance node-level
profile registry

...\SOFTWARE\IBM\DB2\
PROFILES
\instance_name\NODES\
node_number

instance_home/sqllib/
nodes
/node_number.env

where instance_home is
the home path of the
instance owner.

For the directory that
contains the file:

drwxrwsr-w
instance_owner
instance_owner_group
nodes

For the file:

-rw-rw-r--
instance_owner
instance_owner_group
node_number.env

You must be a member
of the DB2
administrators group
(DB2ADMNS).

User-level profile
registry

The Lightweight
Directory Access
Protocol (LDAP)
directory.

Does not apply. Does not apply. You must be a member
of the DB2
administrators group
(DB2ADMNS).

Instance profile registry \HKEY_LOCAL_computer
\SOFTWARE\IBM\DB2\
PROFILES
\instance_name

For root
installations:/var/db2/
global.reg

For non-root
installations:
home_directory/sqllib
/global.reg

None required. None required.

Setting registry and environment variables
Most environment variables are set in the DB2 database profile registries by using
the db2set command. The few variables that are set outside the profile registries
require different commands depending on your operating system.

Before you begin

Ensure that you have the privileges that are required to set registry variables.

On Linux and UNIX operating systems, you must have the following privileges:
v SYSADM authority to set variables in the instance-level registry

434 Database Administration Concepts and Configuration Reference

v root authority to set variables in the global-level registry

On Windows operating systems, you must have one of the following privileges:
v local Administrator authority
v SYSADM authority with the following conditions:

– If extended security is enabled, SYSADM users must belong to the
DB2ADMNS group.

– If extended security is not enabled, SYSADM users can make updates if the
appropriate permissions are granted to them in the Windows registry.

About this task

When you use the db2set command to set variables in the profile registries, you do
not need to restart your computer for variable values to take effect. However,
changes do not affect DB2 applications that are currently running or users that are
active. The DB2 registry applies the updated information to DB2 server instances
and DB2 applications that are started after the changes are made.

If DB2 variables are set outside the registry, you cannot administer those variables
remotely. Also, you must restart the computer for the variable values to take effect.

The DB2INSTANCE and DB2NODE DB2 environment variables are not stored in the DB2
profile registries. See the topics about setting environment variables outside the
profile registries for information about setting these variables.

On Linux and UNIX operating systems, the instance-level profile registry is stored
in the profile.env text file. If two or more users set a registry variable with the
db2set command at almost the same time, the size of this file is reduced to zero.
Also, the output from the db2set -all command displays inconsistent values.

You can also use the configuration assistant db2ca command to configure most
registry variables and configuration parameters. However, the configuration
assistant has been deprecated and might be removed in a future release.

Procedure

To set a registry variable:

Issue the db2set command with the relevant parameters.
The following table shows some of the ways that you can set registry variables
with the db2set command. See the db2set command reference topic for more
information about the parameters and usage of this command.

Table 65. Common commands for setting registry variables

Desired Action Command

Set a registry variable for the current or
default instance.

db2set registry_variable_name=new_value

Set a registry variable for all databases in an
instance.

db2set registry_variable_name=new_value
-i instance_name

Set a registry variable for a particular
database partition in an instance.

db2set registry_variable_name=new_value
-i instance_name
database_partition_number

Chapter 20. Registry and environment variables 435

Table 65. Common commands for setting registry variables (continued)

Desired Action Command

Set a registry variable for all instances that
pertain to a DB2 Enterprise Server Edition
installation.

db2set registry_variable_name=new_value
-g

Set a registry variable at the user level in a
Lightweight Directory Access Protocol
(LDAP) environment.

db2set registry_variable_name=new_value
-ul

Set a registry variable at the global level in
an LDAP environment.
DB2LDAP_KEEP_CONNECTION and
DB2LDAP_SEARCH_SCOPE are the only two
registry variables that can be set at the
LDAP global level.

db2set registry_variable_name=new_value
-gl

Tip: If a registry variable requires Boolean values as arguments, the values YES, 1,
TRUE, and ON are all equivalent and the values NO, 0, FALSE, and OFF are also
equivalent. For any variable, you can specify any of the appropriate equivalent
values.

Setting environment variables outside the profile registries on
Windows

On Windows operating systems, the DB2INSTANCE, DB2NODE, and DB2PATH
environment variables can be set only outside the profile registries. You are
required to set only the DB2PATH variable.

About this task

On Windows operating systems, the following environment variables are set
outside the profile registries:
v The DB2INSTANCE environment variable specifies the instance that is active by

default. If this variable is not set, the DB2 database manager uses the value of
the DB2INSTDEF variable as the current instance.

v The DB2NODE environment variable specifies the target logical node of a database
partition server to which requests are routed.

v The DB2PATH environment variable specifies the directory where the DB2
database product is installed on Windows 32-bit operating systems.

If you want to set any other variables, those variables must be set in one or more
of the profile registries.

You can determine the value of an environment variable by using the echo
command. For example, to check the value of the DB2NODE environment variable,
issue the following command:
echo %db2path%

Procedure

To set an environment variable outside the profile registries:

Set an environment variable by using one of the following options.

436 Database Administration Concepts and Configuration Reference

Option Description

Set the environment variable at the instance level. 1. Follow the appropriate procedure for your Windows
operating system.

2. Restart your computer.

Set the environment variable for the current session. Issue the following command:

set environment_variable_name=new_value
db2start

Set the environment variable for the current session for
a C shell.

Issue the following command:

setenv environment_variable_name new_value

Setting environment variables outside the profile registries on
Linux and UNIX operating systems

On Linux and UNIX operating systems, you must set the DB2INSTANCE system
environment variable outside the profile registries. If you want to set any other
variables, those variables must be set in one or more of the profile registries.

About this task

You can use the scripts db2profile (for Bourne or Korn shell) and db2cshrc (for C
shell) to set the DB2INSTANCE variable to an instance name that you specify. The
scripts are in the instance_home/sqllib directory, where instance_home is the home
directory of the instance owner.

Instance owners and users with SYSADM privileges can customize these scripts for
all users of an instance. Alternatively, users can copy and customize a script, then
invoke a script directly or add it to their .profile or .login files.

To set variables that are not supported by the DB2 database manager, define them
in the userprofile and usercshrc script files. These files are also in the
instance_home/sqllib directory.

Procedure

To set an environment variable outside the profile registries:

Set an environment variable by using one of the following methods.

Option Description

Set the environment variable at the instance level for a
Bourne or Korn shell.

Run the db2profile script.

Set the environment variable at the instance level for a
C shell.

Run the db2cshrc script.

Set the environment variable for the current session for
a Bourne shell.

Issue the following command:

export environment_variable_name=new_value

Set the environment variable for the current session for
a C shell.

Issue the following command:

setenv environment_variable_name new_value

Set the environment variable for the current session for
a Korn shell.

Issue the following command:

environment_variable_name=new_value
export environment_variable_name

Chapter 20. Registry and environment variables 437

Identifying the current instance
Most commands that you issue or configuration changes that you make apply by
default to the current instance. You can identify the current instance by checking
the values of certain environment variables.

About this task

When you run commands to start or stop the database manager for an instance,
the database manager applies the command to the current instance. To determine
the current instance, the database manager checks the values of certain
environment variables in the following order:
1. The value of the DB2INSTANCE environment variable for the current session.
2. The value of the DB2INSTANCE system environment variable.
3. On Windows operating systems, the value of the DB2INSTDEF registry variable.

Procedure

To identify the current instance:

Check the value of the relevant environment variable.

Option Description

View the value of the DB2INSTANCE
environment variable for the current
session.

Issue the following command:

db2 get instance

View the value of the DB2INSTANCE system
environment variable.

v On Windows operating systems, issue the
following command:

echo %DB2INSTANCE%

v On Linux and UNIX operating systems,
issue the following command:

echo $DB2INSTANCE

View the value of the DB2INSTDEF registry
variable.

Issue the following command:

db2set DB2INSTDEF

Setting variables at the instance level in a partitioned
database environment

In a partitioned database environment, the way that you set registry variables in
the instance-level profile registry depends on your operating system.

About this task

On Linux and UNIX operating systems, the instance-level profile registry is stored
in a text file in the sqllib directory. Because the sqllib directory is on a file
system that is shared by all physical database partitions, you can set a registry
variable from any database partition.

On Windows operating systems, the DB2 database manager stores the
instance-level profile registry in the Windows registry. As a result, data is not
shared across physical database partitions. To set a variable for all database
partitions, you must use the rah command to ensure that the command that you

438 Database Administration Concepts and Configuration Reference

use to set the variable is run on all computers. If you set a registry variable from a
database partition and do not use the rah command, the variable is set only for
that database partition in the current instance.

You can also use the DB2REMOTEPREG registry variable to configure a computer that
is not the instance owner to use the values of registry variables on the
instance-owning computer.

Procedure

To set a registry variable for all database partitions of the current instance:

Issue the command for your operating system from any database partition.
v On Linux and UNIX operating systems, issue the following command:

db2set registry_variable_name=new_value

v On Windows operating systems, issue the following command:
rah db2set registry_variable_name=new_value

Aggregate registry variables
Use an aggregate registry variable to group several registry variables as a
configuration that is identified by another registry variable name. Each registry
variable that is part of the group has a predefined setting. The aggregate registry
variable is given a value that is interpreted as declaring several registry variables.

The intention of an aggregate registry variable is to ease registry configuration for
broad operational objectives.

The only valid aggregate registry variable is DB2_WORKLOAD.

Any registry variable that is implicitly configured through an aggregate registry
variable might also be explicitly defined. Explicitly setting a registry variable that
was previously given a value through the use of an aggregate registry variable is
useful when doing performance or diagnostic testing. Explicitly setting a variable
that is configured implicitly by an aggregate is referred to as overriding the
variable.

If you attempt to modify an explicitly set registry variable by using an aggregate
registry variable, a warning is issued and the explicitly set value is kept. This
warning tells you that the explicit value is maintained. If the aggregate registry
variable is used first and then you specify an explicit registry variable, a warning
is not given.

When you query the aggregate registry variable, only the value assigned to that
variable is shown. Most users should not care about the values for each individual
variable.

The following example shows the interaction between using the aggregate registry
variable and explicitly setting a registry variable. To control your database
environment, you might set the DB2_WORKLOAD aggregate registry variable to SAP
and override the DB2_SKIPDELETED registry variable to NO. By running the db2set
command, you receive the following results:

DB2_WORKLOAD=SAP
DB2_SKIPDELETED=NO

Chapter 20. Registry and environment variables 439

In another situation, you might set DB2ENVLIST, set the DB2_WORKLOAD aggregate
registry variable to SAP, and override the DB2_SKIPDELETED registry variable to NO.
When you issue the db2set command, the registry variables that were configured
automatically by setting the aggregate registry variable show the name of the
aggregate displayed in square brackets, next to its value. The DB2_SKIPDELETED
registry variable shows a NO value, with [O] displayed next to its value.

When you no longer require the configuration that is associated with
DB2_WORKLOAD, delete the implicit values of each registry variable in the group by
deleting the value of the aggregate registry variable. Use the following command
to delete the value of the DB2_WORKLOAD variable:
db2set DB2_WORKLOAD=

After deleting the DB2_WORKLOAD aggregate registry variable value, restart the
database. After the database is restarted, the registry variables that were implicitly
configured by the aggregate registry variable are no longer in effect.

Deleting the value of an aggregate registry variable does not delete the value for a
registry variable that was set explicitly. It does not matter that the registry variable
is a member of the group definition that was deleted. The explicit setting for the
registry variable is maintained.

You might need to see the values for each registry variable that is a member of the
DB2_WORKLOAD aggregate registry variable. For instance, you might want to see the
values that would be used if you configured DB2_WORKLOAD to SAP. To find the
values that would be used if DB2_WORKLOAD=SAP, run db2set -gd
DB2_WORKLOAD=SAP.

DB2 registry and environment variables
DB2 database products provide a number of registry variables and environment
variables that you might need to know about to get up and running.

To view a list of all supported registry variables, execute the following command:
db2set -lr

You must set values for registry variables that you want to update before you
execute the db2start command.

The following table lists all registry variables by category.

Table 66. Registry and environment variables summary

Variable
category Registry or environment variable name

General DB2ACCOUNT
DB2BIDI
DB2_CAPTURE_LOCKTIMEOUT
DB2CODEPAGE
DB2_COLLECT_TS_REC_INFO
DB2_CONNRETRIES_INTERVAL
DB2CONSOLECP
DB2COUNTRY
DB2DBDFT
DB2DISCOVERYTIME
DB2FFDC
DB2FODC

DB2_FORCE_APP_ON_MAX_LOG
DB2GRAPHICUNICODESERVER
DB2INCLUDE
DB2INSTDEF
DB2INSTOWNER
DB2_LIC_STAT_SIZE
DB2LOCALE
DB2_MAX_CLIENT_CONNRETRIES
DB2_OBJECT_TABLE_ENTRIES
DB2_SYSTEM_MONITOR_SETTINGS
DB2TERRITORY
DB2_VIEW_REOPT_VALUES

440 Database Administration Concepts and Configuration Reference

Table 66. Registry and environment variables summary (continued)

Variable
category Registry or environment variable name

System
environment

DB2_ALTERNATE_GROUP_LOOKUP
DB2CONNECT_ENABLE_EURO_CODEPAGE
DB2CONNECT_IN_APP_PROCESS
DB2_COPY_NAME
DB2DBMSADDR
DB2_DIAGPATH
DB2DOMAINLIST
DB2ENVLIST
DB2INSTANCE
DB2INSTPROF
DB2LDAPSecurityConfig
DB2LIBPATH
DB2LOGINRESTRICTIONS

DB2NODE
DB2OPTIONS
DB2_PARALLEL_IO
DB2PATH
DB2_PMAP_COMPATIBILITY
DB2PROCESSORS
DB2RCMD_LEGACY_MODE
DB2RESILIENCE
DB2_RESTORE_GRANT_ADMIN_AUTHORITIES
DB2SYSTEM
DB2_UPDDBCFG_SINGLE_DBPARTITION
DB2_USE_PAGE_CONTAINER_TAG
DB2_WORKLOAD

CommunicationsDB2CHECKCLIENTINTERVAL
DB2COMM
DB2FCMCOMM
DB2_FORCE_NLS_CACHE
DB2_PMODEL_SETTINGS
DB2RSHCMD
DB2RSHTIMEOUT

DB2SORCVBUF
DB2SOSNDBUF
DB2TCP_CLIENT_CONTIMEOUT
DB2TCP_CLIENT_KEEPALIVE_TIMEOUT
DB2TCP_CLIENT_RCVTIMEOUT
DB2TCPCONNMGRS

Command-
line

DB2BQTIME
DB2BQTRY
DB2_CLP_EDITOR
DB2_CLP_HISTSIZE

DB2_CLPPROMPT
DB2IQTIME
DB2RQTIME

Partitioned
database
environment

DB2CHGPWD_EEE
DB2_FCM_SETTINGS
DB2_FORCE_OFFLINE_ADD_PARTITION

DB2_NUM_FAILOVER_NODES
DB2_PARTITIONEDLOAD_DEFAULT
DB2PORTRANGE

Query
compiler

DB2_ANTIJOIN
DB2_DEFERRED_PREPARE_SEMANTICS
DB2_INLIST_TO_NLJN
DB2_LIKE_VARCHAR
DB2_MINIMIZE_LISTPREFETCH

DB2_NEW_CORR_SQ_FF
DB2_OPT_MAX_TEMP_SIZE
DB2_REDUCED_OPTIMIZATION
DB2_SELECTIVITY
DB2_SQLROUTINE_PREPOPTS

Chapter 20. Registry and environment variables 441

Table 66. Registry and environment variables summary (continued)

Variable
category Registry or environment variable name

Performance DB2_ALLOCATION_SIZE
DB2_APM_PERFORMANCE
DB2ASSUMEUPDATE
DB2_ASYNC_IO_MAXFILOP
DB2_AVOID_PREFETCH
DB2_BACKUP_USE_DIO
DB2BPVARS
DB2CHKPTR
DB2CHKSQLDA
DB2_EVALUNCOMMITTED
DB2_EXTENDED_IO_FEATURES
DB2_EXTENDED_OPTIMIZATION
DB2_HASH_JOIN
DB2_IO_PRIORITY_SETTING
DB2_KEEP_AS_AND_DMS_CONTAINERS_OPEN
DB2_KEEPTABLELOCK
DB2_LARGE_PAGE_MEM
DB2_LOGGER_NON_BUFFERED_IO
DB2MAXFSCRSEARCH
DB2_MAX_INACT_STMTS
DB2_MAX_NON_TABLE_LOCKS
DB2_MDC_ROLLOUT
DB2MEMDISCLAIM
DB2MEMMAXFREE

DB2_MEM_TUNING_RANGE
DB2_MMAP_READ
DB2_MMAP_WRITE
DB2_NO_FORK_CHECK
DB2NTMEMSIZE
DB2NTNOCACHE
DB2NTPRICLASS
DB2NTWORKSET
DB2_OVERRIDE_BPF
DB2_PINNED_BP
DB2PRIORITIES
DB2_RCT_FEATURES
DB2_RESOURCE_POLICY
DB2_SET_MAX_CONTAINER_SIZE
DB2_SKIPDELETED
DB2_SKIPINSERTED
DB2_SMS_TRUNC_TMPTABLE_THRESH
DB2_SORT_AFTER_TQ
DB2_SQLWORKSPACE_CACHE
DB2_SELUDI_COMM_BUFFER
DB2_TRUSTED_BINDIN
DB2_USE_ALTERNATE_PAGE_CLEANING
DB2_USE_FAST_PREALLOCATION
DB2_USE_IOCP

442 Database Administration Concepts and Configuration Reference

Table 66. Registry and environment variables summary (continued)

Variable
category Registry or environment variable name

Miscellaneous DB2ADMINSERVER
DB2_ATS_ENABLE
DB2AUTH
DB2CLIINIPATH
DB2_COMMIT_ON_EXIT
DB2_COMMON_APP_DATA_PATH
DB2_COMPATIBILITY_VECTOR
DB2_CREATE_DB_ON_PATH
DB2_DDL_SOFT_INVAL
DB2DEFPREP
DB2_DISABLE_FLUSH_LOG
DB2_DISPATCHER_PEEKTIMEOUT
DB2_DJ_INI
DB2DMNBCKCTLR
DB2_DOCHOST
DB2_DOCPORT
DB2DSDRIVER_CFG_PATH
DB2_ENABLE_AUTOCONFIG_DEFAULT
DB2_ENABLE_LDAP
DB2_EVMON_EVENT_LIST_SIZE
DB2_EVMON_STMT_FILTER
DB2_EXTSECURITY
DB2_FALLBACK
DB2_FMP_COMM_HEAPSZ
DB2_GRP_LOOKUP
DB2_HADR_BUF_SIZE
DB2_HADR_NO_IP_CHECK
DB2_HADR_PEER_WAIT_LIMIT
DB2_HADR_ROS
DB2_HADR_SORCVBUF
DB2_HADR_SOSNDBUF
DB2_HISTORY_FILTER
DB2LDAP_BASEDN

DB2LDAPCACHE
DB2LDAP_CLIENT_PROVIDER
DB2LDAPHOST
DB2LDAP_KEEP_CONNECTION
DB2LDAP_SEARCH_SCOPE
DB2_LOAD_COPY_NO_OVERRIDE
DB2_LIMIT_FENCED_GROUP
DB2LOADREC
DB2LOCK_TO_RB
DB2_MAP_XML_AS_CLOB_FOR_DLC
DB2_MAX_LOB_BLOCK_SIZE
DB2_MEMORY_PROTECT
DB2_MIN_IDLE_RESOURCES
DB2NOEXITLIST
DB2_NCHAR_SUPPORT
DB2_NUM_CKPW_DAEMONS
DB2_OPTSTATS_LOG
DB2REMOTEPREG
DB2_RESOLVE_CALL_CONFLICT
DB2ROUTINE_DEBUG
DB2_SAS_SETTINGS
DB2SATELLITEID
DB2_SERVER_CONTIMEOUT
DB2_SERVER_ENCALG
DB2SORT
DB2_STANDBY_ISO
DB2STMM
DB2_TRUNCATE_REUSESTORAGE
DB2_USE_DB2JCCT2_JROUTINE
DB2_UTIL_MSGPATH
DB2_VENDOR_INI
DB2_XBSA_LIBRARY

General registry variables
DB2ACCOUNT

v Operating system: All
v Default: NULL
v This variable defines the accounting string that is sent to the remote

host. Refer to the DB2 Connect User's Guide for details.

DB2BIDI

v Operating system: All
v Default: NO, Values: YES or NO

v This variable enables bidirectional support and the DB2CODEPAGE variable
is used to declare the code page to be used.

DB2_CAPTURE_LOCKTIMEOUT

v Operating system: All
v Default: NULL, Values: ON or NULL

v This variable specifies to log descriptive information about lock
timeouts at the time that they occur. The logged information identifies:

Chapter 20. Registry and environment variables 443

the key applications involved in the lock contention that resulted in the
lock timeout, the details about what these applications were running at
the time of the lock timeout, and the details about the lock causing the
contention. Information is captured for both the lock requestor (the
application that received the lock timeout error) and the current lock
owner. A text report is written and stored in a file for each lock timeout.
The files are created using the following naming convention:
db2locktimeout.par.AGENTID.yyyy-mm-dd-hh-mm-ss, where par is the
database partition number; AGENTID is the Agent ID;
yyyy-mm-dd-hh-mm-ss is the timestamp consisting of the year, month,
day, hour, minute and second. In non-partitioned database
environments, par is set to 0.
The location of the file is based on the value set in the diagpath
database configuration parameter. If diagpath is not set, then the file is
located in one of the following directories:
– In Windows environments:

- If you do not set the DB2INSTPROF environment variable,
information is written to x:\SQLLIB\DB2INSTANCE, where x is the
drive reference, SQLLIB is the directory that you specified for the
DB2PATH registry variable, and DB2INSTANCE is the name of the
instance owner.

- If you set the DB2INSTPROF environment variable, information is
written to x:\DB2INSTPROF\DB2INSTANCE, where x is the drive
reference, DB2INSTPROF is the name of the instance profile
directory, and DB2INSTANCE is the name of the instance owner.

- If you set the DB2INSTPROF environment variable to a new location,
you must ensure that it contains the appropriate files and folders to
run the instance. This may require you to copy all of the files and
folders from the previous location to the new location.

– In Linux and UNIX environments: information is written to
INSTHOME/sqllib/db2dump, where INSTHOME is the home directory of
the instance.

Delete lock timeout report files when you no longer need them. Because
the report files are in the same location as other diagnostics logs, the
DB2 system could shutdown if the directory is allowed to get full. If you
need to keep some lock timeout report files, move them to a directory or
folder different than where the DB2 logs are stored.

Important: This variable is deprecated and might be removed in a future
release because there are new methods to collect lock timeout events using
the CREATE EVENT MONITOR FOR LOCKING statement.

DB2CODEPAGE

v Operating system: All
v Default: derived from the language ID, as specified by the operating

system.
v This variable specifies the code page of the data presented to DB2 for

database client application. The user should not set DB2CODEPAGE unless
explicitly stated in DB2 documents, or asked to do so by DB2 service.
Setting DB2CODEPAGE to a value not supported by the operating system
can produce unexpected results. Normally, you do not need to set
DB2CODEPAGE because DB2 automatically derives the code page
information from the operating system.

444 Database Administration Concepts and Configuration Reference

Note: Because Windows does not report a Unicode code page (in the
Windows regional settings) instead of the ANSII code page, a Windows
application will not behave as a Unicode client. To override this
behavior, set the DB2CODEPAGE registry variable to 1208 (for the Unicode
code page) to cause the application to behave as a Unicode application.

DB2_COLLECT_TS_REC_INFO

v Operating system: All
v Default: ON, Values: ON or OFF

v This variable specifies whether DB2 will process all log files when
rolling forward a table space, regardless of whether the log files contain
log records that affect the table space. To skip the log files known not to
contain any log records affecting the table space, set this variable to ON.
DB2_COLLECT_TS_REC_INFO must be set before the log files are created and
used so that the information required for skipping log files is collected.

DB2_CONNRETRIES_INTERVAL

v Operating system: All
v Default: Not set, Values: an integer number of seconds
v This variable specifies the sleep time between consecutive connection

retries, in seconds, for the automatic client reroute feature. You can use
this variable in conjunction with DB2_MAX_CLIENT CONNRETRIES to
configure the retry behavior for automatic client reroute.
If DB2_MAX_CLIENT_CONNRETRIES is set, but DB2_CONNRETRIES_INTERVAL is
not, DB2_CONNRETRIES_INTERVAL defaults to 30. If
DB2_MAX_CLIENT_CONNRETRIES is not set, but DB2_CONNRETRIES_INTERVAL is
set, DB2_MAX_CLIENT_CONNRETRIES defaults to 10. If neither
DB2_MAX_CLIENT_CONNRETRIES nor DB2_CONNRETRIES_INTERVAL is set, the
automatic client reroute feature reverts to its default behavior of retrying
the connection to a database repeatedly for up to 10 minutes.

DB2CONSOLECP

v Operating system: Windows
v Default: NULL, Values: all valid code page values
v Specifies the code page for displaying DB2 message text. When

specified, this value overrides the operating system code page setting.

DB2COUNTRY

v Operating system: Windows
v Default: NULL, Values: all valid numeric country, territory, or region codes
v This variable specifies the country, territory, or region code of the client

application. When specified, this value overrides the operating system
setting.

Note: DB2COUNTRY is deprecated and might be removed in a future release.
Instead, use DB2TERRITORY, which accepts the same values as DB2COUNTRY

DB2DBDFT

v Operating system: All
v Default: NULL
v This variable specifies the database alias name of the database to be

used for implicit connects. If an application has no database connection

Chapter 20. Registry and environment variables 445

but SQL or XQuery statements are issued, an implicit connect will be
made if the DB2DBDFT environment variable has been defined with a
default database.

DB2DISCOVERYTIME

v Operating system: Windows
v Default: 40 seconds, Minimum: 20 seconds
v This variable specifies the amount of time that SEARCH discovery will

search for DB2 systems.

DB2_EXPRESSION_RULES

v Operating system: All
v Default: Empty, Values: RAISE_ERROR_PERMIT_SKIP or

RAISE_ERROR_PERMIT_DROP

v The settings for the DB2_EXPRESSION_RULES registry variable control how
the DB2 Optimizer determines the access plan for queries which involve
a RAISE_ERROR function. The default behaviour of the RAISE_ERROR
function is that no filtering may be pushed beyond the expression
containing this function. This can result in no predicates being applied
during the table accesses which can lead to excessive computation of
expressions, excessive locking and poor query performance.
In certain cases this behaviour is too strict, depending on the particular
business requirements of the application, it may not matter if predicates
and joins are applied before the application of RAISE_ERROR. For
example in the context of a row level security implementation, there is
typically an expression of the form:
CASE WHEN <conditions for validatin access to this row>

THEN NULL
ELSE RAISE_ERROR(...)

END

The application may only be concerned with validating access to the
rows which are selected by the query and not in validating access to
every row in the table. Thus predicates could be applied in the base
table access and the expression containing the RAISE_ERROR only needs
to executed after all the filtering is performed. In this case a value of
DB2_EXPRESSION_RULES=RAISE_ERROR_PERMIT_SKIP may be appropriate.
Another alternative is in the context of COLUMN LEVEL security. In
this case there are typically expressions of the form:
CASE WHEN <conditions for validating access to this row and column>

THEN <table.column>
ELSE RAISE_ERROR(...)

END

In this case the application may only want errors to be raised if the user
attempts to receive the data for a particular row and column contains a
value that the user is not allowed to retrieve. In this case a setting of
DB2_EXPRESSION_RULES=RAISE_ERROR_PERMIT_DROP will only cause the
expression containing the RAISE_ERROR function to be evaluated if the
particular column is used by a predicate or a column function, or if it is
returned as output from the query.

DB2FFDC

v Operating system: All
v Default: ON, Values: ON, CORE:OFF

446 Database Administration Concepts and Configuration Reference

v This variable provides the ability to deactivate core file generation. By
default, this registry variable is set to ON. If this registry variable is not
set, or is set to a value other than CORE:OFF, core files may be generated
if the DB2 server abends.
Core files, which are used for problem determination and are created in
the diagpath directory, contain the entire process image of the
terminating DB2 process. Consideration should be given to the available
file system space because core files can be quite large. The size is
dependent on the DB2 configuration and the state of the process at the
time the problem occurs.
On Linux operating systems, the default core file size limit is set to 0
(that is, ulimit -c). With this setting, core files are not generated. To
allow core files to be created on Linux operating systems, set the value
to unlimited.

Note: DB2FFDC is being deprecated in version 9.5, and will be removed in a
later release. The new registry variable DB2FODC incorporates DB2FFDC's
functionality.

DB2FODC

v Operating system: All
v Default: The concatenation of all FODC parameters (see below)

– for Linux and UNIX: "CORELIMIT=val DUMPCORE=ON
DUMPDIR=diagpath"

– for Windows: "DUMPDIR=diagpath"

Note that the parameters are separated by spaces.
v This registry variable controls a set of troubleshooting-related parameters

used in First Occurrence Data Collection (FODC). Use DB2FODC to control
different aspects of data collection in outage situations.
This registry variable is read once, during the DB2 instance startup. To
perform updates to the FODC parameters online, use db2pdcfg tool. Use
the DB2FODC registry variable to sustain the configuration across reboots.
You do not need to specify all of the parameters, nor do you need to
specify them in a particular order. The default value is assigned to any
parameter that is not specified. For example, if you don't want the core
files dumped, but you do want the other parameters' default behaviors,
you would issue the command:
db2set DB2FODC="DUMPCORE=OFF"

Parameters:

CORELIMIT

– Operating system: Linux and UNIX
– Default: Current ulimit setting, Values: 0 to unlimited

– This option specifies the maximum size, in bytes, of core files
created. This value overrides the current core file size limit
setting. Consideration should be given to the available file
system space because core files can be quite large. The size is
dependent on the DB2 configuration and the state of the
process at the time the problem occurs.
If CORELIMIT is set, DB2 will use this value override current
user core limit (ulimit) setting to generate the core file.

Chapter 20. Registry and environment variables 447

If CORELIMIT is not set, DB2 will set the core file size to the
value equal to the current ulimit setting.

Note: Any changes to the user core limit or CORELIMIT are not
effective until the next recycling of the DB2 instance.

DUMPCORE

– Operating system: Linux, Solaris, AIX
– Default: AUTO, Values: AUTO, ON, or OFF

– This option specifies if core file generation is to take place.
Core files, which are used for problem determination and are
created in the diagpath directory, contain the entire process
image of the terminating DB2 process. However, whether or
not an actual core file dump occurs depends on the current
ulimit setting and value of the CORELIMIT parameter. Some
operating systems also have configuration settings for core
dumps, which may dictate the behavior of application core
dumping. The AUTO setting causes a core file to be generated if
a trap cannot be sustained when the DB2RESILIENCE registry
variable is set to ON. The DUMPCORE=ON setting always generates
a core file by overriding the DB2RESILIENCE registry variable
setting.
The recommended method for disabling core file dumps is to
set DUMPCORE to OFF.

DUMPDIR

– Operating system: All
– Default: diagpath directory, or the default diagnostic directory

if diagpath is not defined, Values: path to directory

– This option specifies the absolute path name of the directory
for core file creation.

FODCPATH

– Operating system: All
– Default: path defined by the DIAGPATH database manager

configuration parameter, Values: fodc_path_name

– This option specifies the absolute path name of where the
FODC package is to be directed. The fodc_path_name must be
an existing directory and must be writable by the member or
members for which it is set for and by the fmp processes
running on those members.

COS

– Operating system: All
– Default: ON, Values: ON or OFF

– This option specifies if the db2cos script is enabled or not.
You can use the following parameters with this parameter:

COS_SLEEP

- Default: 3, Values: 0 to unlimited
- This option specifies the amount of time to sleep in

seconds between checking the size of the output file
generated.

COS_TIMEOUT

448 Database Administration Concepts and Configuration Reference

- Default: 30, Values: 0 to unlimited
- This option specifies the amount of time to wait in

seconds before the script is finished.

COS_COUNT

- Default: 255, Values: 0 to 255

- This option specifies the number of times to
execute db2cos during a database manager trap.

COS_SQLO_SIG_DUMP

- Default: ON, Values: ON or OFF

- This option specifies if db2cos is enabled when the
SQLO_SIG_DUMP signal is received.

DB2_FORCE_APP_ON_MAX_LOG

v Operating system: All
v Default: TRUE, Values: TRUE or FALSE

v Specifies what happens when the max_log configuration parameter value
is exceeded. If set to TRUE, the application is forced off the database and
the unit of work is rolled back.
If FALSE, the current statement fails. The application can still commit the
work completed by previous statements in the unit of work, or it can
roll back the work completed to undo the unit of work.

Note: This DB2 registry variable affects the ability of the import utility
to recover from log full situations. If DB2_FORCE_APP_ON_MAX_LOG is set to
TRUE and you issue an IMPORT command with the COMMITCOUNT command
option, the import utility will not be able to perform a commit in order
to avoid running out of active log space. When the import utility
encounters an SQL0964C (Transaction Log Full), it will be forced off the
database and the current unit of work will be rolled back.

DB2GRAPHICUNICODESERVER

v Operating system: All
v Default: OFF, Values: ON or OFF

v This registry variable is used to accommodate existing applications
written to insert graphic data into a Unicode database. Its use is only
needed for applications that specifically send sqldbchar (graphic) data in
Unicode instead of the code page of the client. (sqldbchar is a supported
SQL data type in C and C++ that can hold a single double-byte
character.) When set to ON, you are telling the database that graphic data
is coming in Unicode, and the application expects to receive graphic
data in Unicode.

DB2INCLUDE

v Operating system: All
v Default: Current directory
v Specifies a path to be used during the processing of the SQL INCLUDE

text-file statement during DB2 PREP processing. It provides a list of
directories where the INCLUDE file might be found. Refer to
Developing Embedded SQL Applications for descriptions of how
DB2INCLUDE is used in the different precompiled languages.

DB2INSTDEF

v Operating system: Windows

Chapter 20. Registry and environment variables 449

v Default: DB2
v This variable sets the value to be used if DB2INSTANCE is not defined.

DB2INSTOWNER

v Operating system: Windows
v Default: NULL
v The registry variable created in the DB2 profile registry when the

instance is first created. This variable is set to the name of the
instance-owning machine.

DB2_LIC_STAT_SIZE

v Operating system: All
v Default: NULL, Range: 0 to 32767

v This variable determines the maximum size (in MBs) of the file
containing the license statistics for the system. A value of zero turns the
license statistic gathering off. If the variable is not recognized or not
defined, the variable defaults to unlimited. The statistics are displayed
using the License Center.

DB2LOCALE

v Operating system: All
v Default: NO, Values: YES or NO

v This variable specifies whether the default "C" locale of a process is
restored to the default "C" locale after calling DB2 and whether to
restore the process locale back to the original 'C' after calling a DB2
function. If the original locale was not 'C', then this registry variable is
ignored.

DB2_MAX_CLIENT_CONNRETRIES

v Operating system: All
v Default: Not set, Values: an integer number of maximum times to retry

the connection
v This variable specifies the maximum number of connection retries that

the automatic client reroute feature will attempt. You can use this
variable in conjunction with DB2_CONNRETRIES_INTERVAL to configure the
retry behavior for automatic client reroute.
If DB2_MAX_CLIENT_CONNRETRIES is set, but DB2_CONNRETRIES_INTERVAL is
not, DB2_CONNRETRIES_INTERVAL defaults to 30. If
DB2_MAX_CLIENT_CONNRETRIESis not set, but DB2_CONNRETRIES_INTERVAL is
set, DB2_MAX_CLIENT_CONNRETRIES defaults to 10. If neither
DB2_MAX_CLIENT_CONNRETRIES nor DB2_CONNRETRIES_INTERVAL is set, the
automatic client reroute feature reverts to its default behavior of retrying
the connection to a database repeatedly for up to 10 minutes.

DB2_OBJECT_TABLE_ENTRIES

v Operating system: All
v Default: 0, Values: 0–65532

The actual maximum value possible on your system depends on the
page size and extent size, but it cannot exceed 65532.

v This variable specifies the expected number of objects in a table space. If
you know that a large number of objects (for example, 1000 or more)
will be created in a DMS table space, you should set this registry
variable to the approximate number before creating the table space. This
will reserve contiguous storage for object metadata during table space

450 Database Administration Concepts and Configuration Reference

creation. Reserving contiguous storage reduces the chance that an online
backup will block operations which update entries in the metadata (for
example, CREATE INDEX, IMPORT REPLACE). It will also make resizing
the table space easier because the metadata will be stored at the start of
the table space.
If the initial size of the table space is not large enough to reserve the
contiguous storage, the table space creation will continue without the
additional space reserved.

DB2_SYSTEM_MONITOR_SETTINGS

v Operating system: All
v The registry variable controls a set of parameters which allow you to

modify the behavior of various aspects of DB2 monitoring. Separate each
parameter by a semicolon, as in the following example:
db2set DB2_SYSTEM_MONITOR_SETTINGS=OLD_CPU_USAGE:TRUE;
DISABLE_CPU_USAGE:TRUE

Every time you set DB2_SYSTEM_MONITOR_SETTINGS, each parameter must
be set explicitly. Any parameter that you do not specify when setting
this variable reverts back to its default value. So in the following
example:
db2set DB2_SYSTEM_MONITOR_SETTINGS=DISABLE_CPU_USAGE:TRUE

OLD_CPU_USAGE will be restored to its default setting.

Note: Currently, this registry variable only has settings for Linux;
additional settings for other operating systems will be added in future
releases.

v Parameters:

OLD_CPU_USAGE

– Operating system: Linux
– Values: TRUE/ON, FALSE/OFF
– Default value on RHEL4 and SLES9: TRUE (Note: a setting of

FALSE for OLD_CPU_USAGE will be ignored–only the old
behavior will be used.)

– Default value on RHEL5, SLES10, and others: FALSE
– This parameter controls how the instance obtains CPU usage

times on Linux platforms. If set to TRUE, the older method of
getting CPU usage time is used. This method returns both
system and user CPU usage times, but consumes more CPU
in doing so (that is, it has a higher overhead). If set to FALSE,
the newer method of getting CPU usage is used. This method
returns only the user CPU usage value, but is faster because it
has less overhead.

DISABLE_CPU_USAGE

– Operating system: Linux
– Values: TRUE/ON, FALSE/OFF
– Default value on RHEL4 and SLES9: TRUE
– Default value on RHEL5, SLES10, and others: FALSE
– This parameter allows you to determine whether CPU usage

is read or not. When DISABLE_CPU_USAGE is enabled (set to

Chapter 20. Registry and environment variables 451

TRUE), CPU usage is not read, allowing you to avoid the
overhead that can sometimes occur during the retrieval of
CPU usage.

DB2TERRITORY

v Operating system: All
v Default: derived from the language ID, as specified by the operating

system.
v This variable specifies the region, or territory code of the client

application, which influences date and time formats.

DB2_VIEW_REOPT_VALUES

v Operating system: All
v Default: NO, Values: YES, NO
v This variable enables all users to store the cached values of a

reoptimized SQL or XQuery statement in the EXPLAIN_PREDICATE
table when the statement is explained. When this variable is set to NO,
only DBADM is allowed to save these values in the
EXPLAIN_PREDICATE table.

System environment variables
DB2_ALTERNATE_GROUP_LOOKUP

v Operating system: AIX, Linux
v Default: NULL, Values: NULL, GETGRSET on AIX, GETGROUPLIST on Linux
v This variable allows DB2 database systems to obtain group information

from an alternative source provided by the operating system. On AIX,
the function getgrset is used. This provides the ability to obtain groups
from somewhere other than local files via Loadable Authentication
Modules.

DB2_CLP_EDITOR
See DB2_CLP_EDITOR in “Command-line variables” for details.

DB2_CLP_HISTSIZE
See DB2_CLP_HISTSIZE in “Command-line variables” for details.

DB2CONNECT_ENABLE_EURO_CODEPAGE

v Operating system: All
v Default:NO, Values: YES or NO

v Set this variable to YES on all DB2 Connect clients and servers that
connect to a DB2 for z/OS server or a DB2 for i server where euro
support is required. If you set this variable to YES, the current
application code page is mapped to the equivalent coded character set
ID (CCSID) that explicitly indicates support for the euro sign. As a
result, DB2 Connect connects to the DB2 for z/OS server or DB2 for i
server by using a CCSID that is a superset of the CCSID of the current
application code and that also supports the euro sign. For example, if
the client is using code page that maps to CCSID 1252, the client
connects by using CCSID 5348.

DB2CONNECT_IN_APP_PROCESS

v Operating system: All
v Default:YES, Values: YES or NO

452 Database Administration Concepts and Configuration Reference

v When you set this variable to NO, local DB2 Connect clients on a DB2
Enterprise Server Edition machine are forced to run within an agent.
Some advantages of running within an agent are that local clients can be
monitored and that they can use SYSPLEX support.

DB2_COPY_NAME

v Operating system: Windows
v Default: The name of the default copy of DB2 installed on your machine.

Values: the name of a copy of DB2 installed on your machine. The name
can be up to 128 characters long.

v The DB2_COPY_NAME variable stores the name of the copy of DB2 currently
in use. If you have multiple DB2 copies installed on your machine, you
cannot use DB2_COPY_NAME to switch to a different copy of DB2, you must
run the command INSTALLPATH\bin\db2envar.bat to change the copy
currently in use, where INSTALLPATH is the location where the DB2
copy is installed.

DB2DBMSADDR

v Operating system: Linux on x86, Linux on zSeries (31-bit), Windows
32-bit

v Default: NULL on Linux operating systems, 0x20000000 on Windows
operating systems, Values: virtual addresses in the range 0x09000000 to
0xB0000000 in increments of 0x10000 on Linux operating systems,
0x20000000 to 0xB0000000 in increments of 0x10000 on Windows
operating systems

v The DB2DBMSADDR registry variable specifies the default database shared
memory address in hexadecimal format.

Note: An incorrect address can cause severe issues with the DB2
database system, ranging from an inability to start a DB2 instance, to an
inability to connect to the database. An incorrect address is one that
collides with an area in memory that is already in use, or is predestined
to be used for something else. To address this problem, reset the
DB2DBMSADDR registry variable to NULL by using the following command:
db2set DB2DBMSADDR=

This variable can be used to fine tune the address space layout of DB2
processes. This variable changes the location of the instance shared
memory from its current location at virtual address 0x10000000 to the
new value.

DB2_DIAGPATH

v Operating system: All
v Default: The default value is the instance db2dump directory on UNIX

and Linux operating systems, and the instance DB2 directory on
Windows operating systems.

v This parameter applies to ODBC and CLI applications only.
This parameter allows you to specify the fully qualified path for DB2
diagnostic information. This directory could possibly contain dump files,
trap files, an error log, a notification file, and an alert log file, depending
on your platform.
Setting this environment variable has the same effect for ODBC and CLI
applications in the scope of that environment as setting the DB2
database manager configuration parameter diagpath, and as setting the
CLI/ODBC configuration keyword DiagPath.

Chapter 20. Registry and environment variables 453

DB2DOMAINLIST

v Operating system: All
v Default: NULL, Values: A list of Windows domain names separated by

commas (“,”).
v This variable defines one or more Windows domains. The list, which is

maintained on the server, defines the domains that the requesting user
ID is authenticated against. Only users belonging to these domains have
their connection or attachment requests accepted.
This variable is effective only when CLIENT authentication is set in the
database manager configuration. It is needed if a single sign-on from a
Windows desktop is required in a Windows domain environment.
DB2 servers versions 7.1 or later support DB2DOMAINLIST, but only in a
pure Windows domain environment. Starting with Version 8 FixPak 15
and Version 9.1 Fix Pack 3, DB2DOMAINLIST is supported if either the
client or the server is running in a Windows environment.

DB2ENVLIST

v Operating system: UNIX
v Default: NULL
v This variable lists specific variable names for either stored procedures or

user-defined functions. By default, the db2start command filters out all
user environment variables except those prefixed with “DB2” or “db2”.
If specific environment variables must be passed to either stored
procedures or user-defined functions, you can list the variable names in
the DB2ENVLIST environment variable. Separate each variable name by
one or more spaces.

DB2INSTANCE

v Operating system: All
v Default: DB2INSTDEF on Windows 32-bit operating systems.
v This environment variable specifies the instance that is active by default.

On UNIX, users must specify a value for DB2INSTANCE.

Note: You cannot use the db2set command to update this registry
variable. For more information, see “Identifying the current instance” on
page 438 and “Setting environment variables outside the profile
registries on Windows” on page 436.

DB2INSTPROF

v Operating system: Windows
v Default: Documents and Settings\All Users\Application

Data\IBM\DB2\Copy Name (Windows XP, Windows 2003),
ProgramData\IBM\DB2\Copy Name (Windows Vista)

v This environment variable specifies the location of the instance directory
on Windows operating systems. Beginning with version 9.5, the instance
directory (and other user data files) cannot be under the sqllib
directory.

DB2LDAPSecurityConfig

v Operating system: All
v Default: NULL, Values: valid name and path to the IBM LDAP security

plug-in configuration file

454 Database Administration Concepts and Configuration Reference

v This variable is used to specify the location of the IBM LDAP security
plug-in configuration file. If the variable is not set, the IBM LDAP
security plug-in configuration file is named IBMLDAPSecurity.ini and is
in one of the following locations:
– On Linux and UNIX operating systems: INSTHOME/sqllib/cfg/
– On Windows operating systems: %DB2PATH%\cfg\
On Windows operating systems, this variable should be set in the global
system environment to ensure it is picked up by the DB2 service.

DB2LIBPATH

v Operating system: UNIX
v Default: NULL
v DB2 constructs its own shared library path. If you want to add a PATH

into the engine's library path (for example, on AIX, a user-defined
function requires a specific entry in LIBPATH), you must set DB2LIBPATH.
The actual value of DB2LIBPATH is appended to the end of the DB2
constructed shared library path.

DB2LOGINRESTRICTIONS

v Operating system: AIX
v Default: LOCAL, Values: LOCAL, REMOTE, SU, NONE
v This registry variable allows you to use an AIX operating system API

called loginrestrictions(). This API determines whether a user is allowed
to access the system. By calling this API, DB2 database security is able to
enforce the login restrictions that are specified by the operating system.
There are different values that can be submitted to this API when using
this registry variable. The values are:
– REMOTE

DB2 only enforces login restrictions to verify that the account can be
used for remote logins through the rlogind or telnetd programs.

– SU

DB2 Version 9.1 only enforces su restrictions to verify that the su
command is permitted, and that the current process has a group ID
that can invoke the su command to switch to the account.

– NONE

DB2 does not enforce any login restrictions.
– LOCAL (or the variable is not set)

DB2 only enforces login restrictions to verify that local logins are
permitted for this account. This is the normal behavior when logging
in.

No matter which one of these options you set, user accounts or IDs that
have the specified privileges are able to use DB2 successfully both
locally on the server and from remote clients. For a description of the
loginrestrictions() API, refer to AIX documentation.

DB2NODE

v Operating system: All
v Default: NULL, Values: 1 to 999

v Used to specify the target logical node of a database partition server that
you want to attach to or connect to. If this variable is not set, the target
logical node defaults to the logical node which is defined with port 0 on
the machine. In a partitioned database environment, the connection

Chapter 20. Registry and environment variables 455

settings could have an impact on acquiring trusted connections. For
example, if the DB2NODE variable is set to a node such that the
establishment of a connection on that node requires going through an
intermediate node (a hop node), it is the IP address of that intermediate
node and the communication protocol used to communicate between the
hop node and the connection node that are considered when evaluating
this connection in order to determine whether or not it can be marked as
a trusted connection. In other words, it is not the original node from
which the connection was initiated that is considered. Rather, it is the
hop node that is considered.

Note: You cannot use the db2set command to update this registry
variable. For more information, see “Setting environment variables
outside the profile registries on Windows” on page 436.

DB2OPTIONS

v Operating system: All
v Default: NULL
v Used to set the command line processor options.

DB2_PARALLEL_IO

v Operating system: All
v Default: NULL, Values: TablespaceID:[n],... – a comma-separated list of

defined table spaces (identified by their numeric table space ID). If the
prefetch size of a table space is AUTOMATIC, you can indicate to the
DB2 database manager the number of disks per container for that table
space by specifying the table space ID, followed by a colon, followed by
the number of disks per container, n. If n is not specified, the default is
6.
You can replace TablespaceID with an asterisk (*) to specify all table
spaces. For example, if DB2_PARALLEL_IO=*, all table spaces use six as the
number of disks per container. If you specify both an asterisk (*) and a
table space ID, the table space ID setting takes precedence. For example,
if DB2_PARALLEL_IO =*,1:3, all table spaces use six as the number of
disks per container, except for table space 1, which uses three.

v This registry variable is used to change the way DB2 calculates the I/O
parallelism of a table space. When I/O parallelism is enabled (either
implicitly, by the use of multiple containers, or explicitly, by setting
DB2_PARALLEL_IO), it is achieved by issuing the correct number of
prefetch requests. Each prefetch request is a request for an extent of
pages. For example, a table space has two containers and the prefetch
size is four times the extent size. If the registry variable is set, a prefetch
request for this table space will be broken into four requests (one extent
per request) with a possibility of four prefetchers servicing the requests
in parallel.
You might want to set the registry variable if the individual containers
in the table space are striped across multiple physical disks or if the
container in a table space is created on a single RAID device that is
composed of more than one physical disk.
If this registry variable is not set, the degree of parallelism of any table
space is the number of containers of the table space. For example, if
DB2_PARALLEL_IO is set to NULL and a table space has four containers,
four extent-sized prefetch requests are issued; or if a table space has two

456 Database Administration Concepts and Configuration Reference

containers and the prefetch size is four times the extent size, the prefetch
request for this table space will be broken into two requests (each
request will be for two extents).
If this registry variable is set, and the prefetch size of the table is not
AUTOMATIC, the degree of parallelism of the table space is the prefetch
size divided by the extent size. For example, if DB2_PARALLEL_IO is set
for a table space that has a prefetch size of 160 and an extent size of 32
pages, five extent-sized prefetch requests are issued.
If this registry variable is set, and the prefetch size of the table space is
AUTOMATIC, DB2 automatically calculates the prefetch size of a table
space. The following table summarizes the different options available
and how parallelism is calculated for each situation:

Table 67. How Parallelism is Calculated

Prefetch size of table space DB2_PARALLEL_IO Setting
Parallelism is equal
to:

AUTOMATIC Not set Number of containers

AUTOMATIC Table space ID Number of containers
* 6

AUTOMATIC Table space ID:n Number of containers
* n

Not AUTOMATIC Not set Number of containers

Not AUTOMATIC Table space ID Prefetch size/extent
size

Not AUTOMATIC Table space ID:n Prefetch size/extent
size

Disk contention might result using this variable in some scenarios. For
example, if a table space has two containers and each of the two
containers have each a single disk dedicated to it, setting the registry
variable might result in contention on those disks because the two
prefetchers will be accessing each of the two disks at once. However, if
each of the two containers was striped across multiple disks, setting the
registry variable would potentially allow access to four different disks at
once.
To activate changes to this registry variable, issue a db2stop command
and then enter a db2start command.

DB2PATH

v Operating system: Windows
v Default: Varies by operating system
v This environment variable is used to specify the directory where the

product is installed on Windows 32-bit operating systems.

DB2_PMAP_COMPATIBILITY

v Operating system: All
v Default: ON, Values: ON or OFF

v This variable allows users to continue using the sqlugtpi and sqlugrpn
APIs to return, respectively, the distribution information for a table and
the database partition number and database partition server number for
a row. The default setting, ON, indicates that the distribution map size
remains 4 096 entries (the pre-Version 9.7 behavior). When this variable
is set to OFF, the distribution map size for new or upgraded databases is

Chapter 20. Registry and environment variables 457

increased to 32 768 entries (the Version 9.7 behavior). If you use the 32K
distribution map, you need to use the new db2GetDistMap and
db2GetRowPartNum APIs.

DB2PROCESSORS

v Operating system: Windows
v Default: NULL, Values: 0–n-1 (where n= the number of processors)
v This variable sets the process affinity mask for a particular db2syscs

process. In environments running multiple logical nodes, this variable is
used to associate a logical node to a processor or set of processors.
When specified, DB2 issues the SetProcessAffinityMask() api. If
unspecified, the db2syscs process is associated with all processors on the
server.

DB2RCMD_LEGACY_MODE

v Operating system: Windows,
v Default: NULL, Values: YES, ON, TRUE, or 1, or NO, OFF, FALSE, or 0

v This variable allows users to enable or disable the DB2 Remote
Command Service's enhanced security. To run the DB2 Remote
Command Service in a secure manner, set DB2RCMD_LEGACY_MODE to NO,
OFF, FALSE, 0, or NULL. To run in legacy mode (without enhanced
security), set DB2RCMD_LEGACY_MODE to YES, ON, TRUE, or 1. The secure
mode is only available if your domain controller is running Windows
2000 or later.

Note: If DB2RCMD_LEGACY_MODE is set to YES, ON, TRUE, or 1, all requests
sent to the DB2 Remote Command Service are processed under the
context of the requestor. To facilitate this, you must allow either or both
the machine and service logon account to impersonate the client by
enabling the machine and service logon accounts at the domain
controller.

Note: If DB2RCMD_LEGACY_MODE is set to NO, OFF, FALSE, or 0, you must
have SYSADM authority in order to have the DB2 Remote Command
Service execute commands on your behalf.

DB2RESILIENCE

v Operating system: All
v Default: ON, Values: ON (TRUE or 1), or OFF (FALSE or 0)
v This registry variable can be used to control whether physical read

errors are tolerated, and activates extended trap recovery. The default
behavior is to tolerate read errors and activate extended trap recovery.
To revert to the behavior of previous releases and force the database
manager to shutdown the instance, set the registry variable to OFF. This
registry variable does not affect the existing storage key support.

DB2_RESTORE_GRANT_ADMIN_AUTHORITIES

v Operating system: All
v Default: OFF, Values: ON or OFF

v If DB2_RESTORE_GRANT_ADMIN_AUTHORITIES is set to ON, and you are
restoring to a new or existing database, then you will be granted
SECADM, DBADM, DATAACCESS, and ACCESSCTRL authorities.

v The following methods of restore are supported when
DB2_RESTORE_GRANT_ADMIN_AUTHORITIES is set to ON:

458 Database Administration Concepts and Configuration Reference

– Split mirror backups
– ACS Snapshot backups
– Online and offline database backups with the RESTORE DATABASE

command

Note: Note that this variable has no effect on table space restores; no
additional authorities will be granted to the user issuing the restore
operation.

v If DB2_WORKLOAD is set to SAP, DB2_RESTORE_GRANT_ADMIN_AUTHORITIES will
be set to ON.

DB2SYSTEM

v Operating system: Windows and UNIX
v Default: NULL
v Specifies the name that is used by your users and database

administrators to identify the DB2 database server system. If possible,
this name should be unique within your network.
This name is displayed in the system level of the Control Center's object
tree to aid administrators in the identification of server systems that can
be administered from the Control Center.
When using the Search the Network function of the Configuration
Assistant, DB2 discovery returns this name and it is displayed at the
system level in the resulting object tree. This name aids users in
identifying the system that contains the database they wish to access. A
value for DB2SYSTEM is set at installation time as follows:
– On Windows the setup program sets it equal to the computer name

specified for the Windows system.
– On UNIX systems, it is set equal to the UNIX system's TCP/IP

hostname.

DB2_UPDDBCFG_SINGLE_DBPARTITION

v Operating system: All
v Default: Not set, Values: 0/FALSE/NO, 1/TRUE/YES
v When set to 1, TRUE, or, YES, this registry variable allows you to specify

that any updates and resets to your database affect only a specific
partition. If the variable is not set, updates and requests follow the
version 9.5 behavior.

v Beginning with version 9.5, updates or changes to a database
configuration act across all database partitions, when you do not specify
a partition clause. DB2_UPDDBCFG_SINGLE_DBPARTITION enables you to
revert to the behavior of previous versions of DB2, in which updates to
a database configuration apply only to the local database partition or the
database partition that is set by the DB2NODE registry variable. This allows
for backward compatibility support for any existing command scripts or
applications that require this behavior.

Note: This variable does not apply to update or reset requests made by
calling ADMIN_CMD routines.

DB2_USE_PAGE_CONTAINER_TAG

v Operating system: All
v Default:NULL, Values: ON, NULL

Chapter 20. Registry and environment variables 459

v By default, DB2 stores a container tag in the first extent of each DMS
container, whether it is a file or a device. The container tag is the
metadata for the container. Before DB2 Version 8.1, the container tag was
stored in a single page, and it thus required less space in the container.
To continue to store the container tag in a single page, set
DB2_USE_PAGE_CONTAINER_TAG to ON.
However, if you set this registry variable to ON when you use RAID
devices for containers, I/O performance might degrade. Because for
RAID devices you create table spaces with an extent size equal to or a
multiple of the RAID stripe size, setting the DB2_USE_PAGE_CONTAINER_TAG
to ON causes the extents not to line up with the RAID stripes. As a result,
an I/O request might need to access more physical disks than would be
optimal. Users are strongly advised against enabling this registry
variable unless you have very tight space constraints, or you require
behavior consistent with pre-Version 8 databases.
To activate changes to this registry variable, issue a db2stop command
and then enter a db2start command.

DB2_WORKLOAD

v Operating system: All
v Default: Not set, Values: 1C, CM, COGNOS_CS, FILENET_CM, INFOR_ERP_LN,

MAXIMO, MDM, SAP, TPM, WAS, WC, or WP

v Each value for DB2_WORKLOAD represents a specific grouping of several
registry variables with predefined settings.

v These are the valid values:

1C Use this setting when you want to configure a set of registry
variables in your database for 1C applications.

CM Use this setting when you want to configure a set of registry
variables in your database for IBM Content Manager.

COGNOS_CS
Use this setting when you want to configure a set of registry
variables in your database for Cognos® Content Server.

FILENET_CM
Use this setting when you want to configure a set of registry
variables in your database for Filenet Content Manager.

INFOR_ERP_LN
Use this setting when you want to configure a set of registry
variables in your database for Infor ERP Baan.

MAXIMO
Use this setting when you want to configure a set of registry
variables in your database for Maximo®.

MDM Use this setting when you want to configure a set of registry
variables in your database for Master Data Management.

SAP Use this setting when want to configure a set of registry
variables in your database for the SAP environment.

When you have set DB2_WORKLOAD=SAP, the user table space
SYSTOOLSPACE and the user temporary table space
SYSTOOLSTMPSPACE are not automatically created. These table
spaces are used for tables created automatically by the following
wizards, utilities, or functions:

460 Database Administration Concepts and Configuration Reference

– Automatic maintenance
– Design Advisor
– Control Center database information panel
– SYSINSTALLOBJECTS stored procedure, if the table space

input parameter is not specified
– GET_DBSIZE_INFO stored procedure

Without the SYSTOOLSPACE and SYSTOOLSTMPSPACE table
spaces, you cannot use these wizards, utilities, or functions.

To be able to use these wizards, utilities, or functions, do either
of the following:
– Manually create the SYSTOOLSPACE table space to hold the

objects that the tools need (in a partitioned database
environment, create this table space on the catalog partition).
For example:
CREATE REGULAR TABLESPACE SYSTOOLSPACE
IN IBMCATGROUP
MANAGED BY SYSTEM
USING (’SYSTOOLSPACE’)

– Specifying a valid table space, call the SYSINSTALLOBJECTS
stored procedure to create the objects for the tools, and
specify the identifier for the particular tool.
SYSINSTALLOBJECTS will create a table space for you. If you
do not want to use SYSTOOLSSPACE for the objects, specify a
different user-defined table space.

After completing at least one of these choices, create the
SYSTOOLSTMPSPACE temporary table space (also on the
catalog partition, if you're working in a partitioned database
environment). For example:
CREATE USER TEMPORARY TABLESPACE SYSTOOLSTMPSPACE
IN IBMCATGROUP
MANAGED BY SYSTEM
USING (’SYSTOOLSTMPSPACE’)

Once the table space SYSTOOLSPACE and the temporary table
space SYSTOOLSTMPSPACE are created, you can use the
wizards, utilities, or functions mentioned earlier.

TPM Use this setting when you want to configure a set of registry
variables in your database for the IBM Tivoli Provisioning
Manager.

WAS Use this setting when you want to configure a set of registry
variables in your database for WebSphere® Application Server.
This value is available in DB2 Version 9.5 Fix Pack 5 and later.

WC Use this setting when you want to configure a set of registry
variables in your database for WebSphere Commerce. This value
is available in DB2 Version 9.5 Fix Pack 4 and later.

WP Use this setting when you want to configure a set of registry
variables in your database for WebSphere Portal. This value is
available in DB2 Version 9.5 Fix Pack 5 and later.

Chapter 20. Registry and environment variables 461

Communications variables
DB2CHECKCLIENTINTERVAL

v Operating system: All, server only
v Default=100, Values: A numeric value that is greater than or equal to

zero.
v This variable specifies the frequency of TCP/IP client connection

verifications during an active transaction. It permits early detection of
client termination, instead of waiting until after the completion of the
query. If this variable is set to 0, no verification is performed.
Lower values cause more frequent checks. As a guide, for low frequency,
use 100; for medium frequency, use 50; for high frequency use 10. The
value is measured in an internal DB2 metric. The values represent a
linear scale, that is, increasing the value from 50 to 100 doubles the
interval. Checking more frequently for client status while executing a
database request lengthens the time taken to complete queries. If the
DB2 workload is heavy (that is, it involves many internal requests),
setting DB2CHECKCLIENTINTERVAL to a low value has a greater impact on
performance than in a situation where the workload is light.

DB2COMM

v Operating system: All, server only
v Default=NULL, Values: NPIPE, TCPIP, SSL
v This variable specifies the communication managers that are started

when the database manager is started. If this variable is not set, no DB2
communications managers are started at the server.

DB2FCMCOMM

v Operating system: All supported DB2 Enterprise Server Edition
platforms

v Default=TCPIP4, Values: TCPIP4 or TCPIP6
v This variable specifies how the host names in the db2nodes.cfg file are

resolved. All host names are resolved as IPv4 or IPv6. If an IP address
instead of a host name is specified in db2nodes.cfg, the form of the IP
determines if IPv4 or IPv6 is used. If DB2FCMCOMM is not set, its default
setting of IPv4 means that only IPv4 hosts can be started.

Note: If the IP format resolved from the hostname specified in
db2nodes.cfg, or the IP format directly specified in db2nodes.cfg does
not match the setting of DB2FCMCOMM, db2start will fail.

DB2_FORCE_NLS_CACHE

v Operating system: AIX, HP_UX, Solaris
v Default=FALSE, Values: TRUE or FALSE
v This variable is used to eliminate the chance of lock contention in

multi-threaded applications. When this registry variable is TRUE, the code
page and territory code information is saved the first time a thread
accesses it. From that point, the cached information is used for any other
thread that requests this information. This eliminates lock contention and
results in a performance benefit in certain situations. This setting should
not be used if the application changes locale settings between
connections. It is probably not needed in such a situation because
multi-threaded applications typically do not change their locale settings
because it is not thread safe to do so.

462 Database Administration Concepts and Configuration Reference

DB2_PMODEL_SETTINGS

v Operating system: All
v This registry variable controls a set of parameters that allow you to

modify the behavior of various aspects of the DB2 internal
infrastructure. Separate parameters with a semicolon, as in the following
example:
db2set
DB2_PMODEL_SETTINGS=MLN_REMOTE_LISTENER:TRUE;ENHANCED_ROLLBACK:TRUE

v Parameters:

MLN_REMOTE_LISTENER

– Default: FALSE
– Values: TRUE, FALSE
– In Version 9.7 Fix Pack 3 and later, you can use the

MLN_REMOTE_LISTENER parameter to start a TCP/IP listener on
each logical database partition. If you set this option to TRUE,
applications can connect directly to each logical database
partition instead of routing requests through the database
partition server that is assigned to logical port 0.
If you set this option to TRUE, ensure that the additional
TCP/IP listeners do not use ports that are required by other
services.

ENHANCED_ROLLBACK

– Default: FALSE
– Values: TRUE, FALSE
– In Version 9.7 Fix Pack 3 and later, you can use the

ENHANCED_ROLLBACK parameter to improve rollback behavior
for units of work on a DB2 server that uses the Database
Partitioning Feature (DPF). If you set this option to TRUE,
rollback requests for units of work are sent only to logical
database partitions that participated in the transaction.

DB2RSHCMD

v Operating system: UNIX, Linux
v Default=rsh (remsh on HP-UX), Values are a full path name to rsh,

remsh, or ssh
v By default, DB2 database system uses rsh as the communication protocol

when starting remote database partitions and with the db2_all script to
run utilities and commands on all database partitions. For example,
setting this registry variable to the full path name for ssh causes DB2
database products to use ssh as the communication protocol for the
requested running of the utilities and commands. It may also be set to
the full path name of a script that invokes the remote command
program with appropriate default parameters. This variable is only
required for partitioned databases, or for single-partition environments
where the db2start command is run from a different server than where
the DB2 product was installed and for rsh or ssh dependant utilities that
have the capability of starting, stopping or monitoring a DB2 instance,
such as db2gcf. The instance owner must be able to use the specified
remote shell program to log in from each DB2 database node to each
other DB2 database node, without being prompted for any additional
verification or authentication (that is, passwords or password phrases).

Chapter 20. Registry and environment variables 463

For detailed instructions on setting the DB2RSHCMD registry variable to
use a ssh shell with DB2, see the white paper “Configure DB2 Universal
Database™ for UNIX to use OpenSSH."

DB2RSHTIMEOUT

v Operating system: UNIX, Linux
v Default=30 seconds, Values: 1 - 120
v This variable is only applicable if DB2RSHCMD is set to a non-null value.

This registry variable is used to control the timeout period that the DB2
database system will wait for any remote command. After this timeout
period, if no response is received, the assumption is made that the
remote database partition is not reachable and the operation has failed.

Note: The time value given is not the time required to run the remote
command, it is the time needed to authenticate the request.

DB2SORCVBUF

v Operating system: All
v Default=65 536
v Specifies the value of TCP/IP receive buffers.

DB2SOSNDBUF

v Operating system: All
v Default=65 536
v Specifies the value of TCP/IP send buffers.

DB2TCP_CLIENT_CONTIMEOUT

v Operating system: All, client only
v Default=0 (no timeout), Values: 0 - 32 767 seconds
v The DB2TCP_CLIENT_CONTIMEOUT registry variable specifies the number of

seconds a client waits for the completion on a TCP/IP connect operation.
If a connection is not established in the seconds specified, then the DB2
database manager returns the error -30081 selectForConnectTimeout.
There is no timeout if the registry variable is not set or is set to 0.

Note: Operating systems also have a connection timeout value that may
take effect prior to the timeout you set using DB2TCP_CLIENT_CONTIMEOUT.
For example, AIX has a default tcp_keepinit=150 (in half seconds) that
would terminate the connection after 75 seconds.

DB2TCP_CLIENT_KEEPALIVE_TIMEOUT

v Operating system: AIX, Linux, Windows (client only)
v Default=0 (not set) Values: 0 - 32 767 seconds
v The DB2TCP_CLIENT_KEEPALIVE_TIMEOUT registry variable specifies the

maximum time in seconds before an unresponsive connection is detected
as no longer alive. When this variable is not set, the system default
TCP/IP keep alive setting is used (typically two hours). Setting
DB2TCP_CLIENT_KEEPALIVE_TIMEOUT to a lower value than the system
default allows the database manager to detect connection failures sooner,
and avoids the need to reconfigure the system default which would
impact all TCP/IP traffic and not just connections established by DB2.

DB2TCP_CLIENT_RCVTIMEOUT

v Operating system: All, client only

464 Database Administration Concepts and Configuration Reference

http://www-128.ibm.com/developerworks/data/library/techarticle/dm-0506finnie/
http://www-128.ibm.com/developerworks/data/library/techarticle/dm-0506finnie/

v Default=0 (no timeout), Values: 0 - 32 767 seconds
v The DB2TCP_CLIENT_RCVTIMEOUT registry variable specifies the number of

seconds a client waits for data on a TCP/IP receive operation. If data
from the server is not received in the seconds specified, then the DB2
database manager returns the error -30081 selectForRecvTimeout.
There is no timeout if the registry variable is not set or is set to 0.

Note: The value of the DB2TCP_CLIENT_RCVTIMEOUT can be
overridden by the CLI, using the db2cli.ini keyword ReceiveTimeout or
the connection attribute SQL_ATTR_RECEIVE_TIMEOUT.

DB2TCPCONNMGRS

v Operating system: All
v Default=1 on serial machines; square root of the number of processors

rounded up to a maximum of sixteen connection managers on
symmetric multiprocessor machines. Values: 1 to 16

v The default number of connection managers is created if the registry
variable is not set. If the registry variable is set, the value assigned here
overrides the default value. The number of TCP/IP connection managers
specified up to a maximum of 16 is created. If less than 1 is specified
then DB2TCPCONNMGRS is set to a value of 1 and a warning is logged that
the value is out of range. If greater than 16 is specified then
DB2TCPCONNMGRS is set to a value of 16 and a warning is logged that the
value is out of range. Values between 1 and 16 are used as given. When
there is greater than one connection manager created, connection
throughput should improve when multiple client connections are
received simultaneously. There may be additional TCP/IP connection
manager processes (on UNIX) or threads (on Windows operating
systems) if the user is running on a SMP machine, or has modified the
DB2TCPCONNMGRS registry variable. Additional processes or threads require
additional storage.

Note: Having the number of connection managers set to 1 causes a drop
in performance on remote connections in systems with a lot of users,
frequent connects and disconnects, or both.

Command-line variables
DB2BQTIME

v Operating system: All
v Default=1 second, Minimum value: 1 second
v This variable specifies the amount of time the command-line processor

front end sleeps before it checks whether the back-end process is active
and establishes a connection to it.

DB2BQTRY

v Operating system: All
v Default=60 retries, Minimum value: 0 retries
v This variable specifies the number of times the command-line processor

front-end process tries to determine whether the back-end process is
already active. It works in conjunction with DB2BQTIME.

DB2_CLP_EDITOR

v Operating system: All

Chapter 20. Registry and environment variables 465

v Default: Notepad(Windows), vi (UNIX), Values: Any valid editor that is
located in the operating system path

Note: This registry variable is not set to the default value during
installation. Instead, the code that makes use of this variable uses a
default value if the registry variable is not set.

v This variable determines the editor to be used when executing the EDIT
command. From a CLP interactive session, the EDIT command launches
an editor preloaded with a user-specified command which can then be
edited and run.

DB2_CLP_HISTSIZE

v Operating system: All
v Default: 20, Values: 1–500 inclusive

Note: This registry variable is not set to the default value during
installation. Instead, the code that makes use of this variable uses a
default value of 20 if the registry variable is not set or if it is set to a
value outside of the valid range.

v This variable determines the number of commands stored in the
command history during CLP interactive sessions. Because the command
history is held in memory, a very high value for this variable might
result in a performance impact depending on the number and length of
commands run in a session.

DB2_CLPPROMPT

v Operating system: All
v Default=None (if it is not defined, “db2 => ” will be used as the default

CLP interactive prompt), Values: Any text string of length less than 100
that contains zero or more of the following tokens %i, %d, %ia, %da, or
%n. Users need not set this variable unless they explicitly wish to
change the default CLP interactive prompt (db2 =>).

v This registry variable allows a user to define the prompt to be used in
the Command Line Processor (CLP) interactive mode. The variable can
be set to any text string of length less than 100 characters containing
zero or more of the optional tokens %i, %d, %ia, %da, or %n. When
running in CLP interactive mode, the prompt to be used is constructed
by taking the text-string specified in the DB2_CLPPROMPT registry variable
and replacing all occurrences of the tokens %i, %d, %ia, %da, or %n by
the local alias of the current attached instance, the local alias of the
current database connection, the authorization ID of the current attached
instance, the authorization ID of the current database connection, and
newline (that is, a carriage-return) respectively.

Note:

1. If the DB2_CLPPROMPT registry variable is changed within CLP
interactive mode, the new value for DB2_CLPPROMPT will not take
effect until the CLP interactive mode has been closed and reopened.

2. If no instance attachment exists, %ia is replaced by the empty string
and %i is replaced by the value of the DB2INSTANCE registry variable.
On Windows platforms only, if the DB2INSTANCE variable is not set,
%i is replaced by the value of the DB2INSTDEF registry variable. If
neither of these variables are set, %i is replaced by the empty string.

466 Database Administration Concepts and Configuration Reference

3. If no database connection exists, %da is replaced by the empty string
and %d is replaced by the value of the DB2DBDFT registry variable. If
the DB2DBDFT variable is not set, %d is replaced by the empty string.

4. The interactive input prompt will always present the values for the
authorization IDs, database names, and instance names in upper
case.

DB2IQTIME

v Operating system: All
v Default=5 seconds, Minimum value: 1 second
v This variable specifies the amount of time the command line processor

back end process waits on the input queue for the front end process to
pass commands.

DB2RQTIME

v Operating system: All
v Default=5 seconds, Minimum value: 1 second
v This variable specifies the amount of time the command line processor

back end process waits for a request from the front end process.

Partitioned database environment variables
DB2CHGPWD_EEE

v Operating system: DB2 ESE on AIX, Linux, and Windows
v Default=NULL, Values: YES or NO
v This variable specifies whether you allow other users to change

passwords on AIX or Windows ESE systems. You must ensure that the
passwords for all database partitions or nodes are maintained centrally
using either a Windows domain controller on Windows, or LDAP on
AIX. If not maintained centrally, passwords may not be consistent across
all database partitions or nodes. This could result in a password being
changed only at the database partition to which the user connects to
make the change.

DB2_FCM_SETTINGS

v Operating system: Linux
v Default=YES, Values:

– FCM_MAXIMIZE_SET_SIZE:[YES|TRUE|NO|FALSE]. The default value for
FCM_MAXIMIZE_SET_SIZE is YES.

– FCM_CFG_BASE_AS_FLOOR:[YES|TRUE|NO|FALSE]. The default value for
FCM_CFG_BASE_AS_FLOOR is NO.

v You can set the DB2_FCM_SETTINGS registry variable with the
FCM_MAXIMIZE_SET_SIZE token to preallocate a default 4 GB of space for
the fast communication manager (FCM) buffer. The token must have a
value of either YES or TRUE to enable this feature.
In Version 9.7 Fix Pack 3 and later fix packs, you can set the
DB2_FCM_SETTINGS registry variable with the FCM_CFG_BASE_AS_FLOOR
option to set the base value as the floor for the fcm_num_buffers and
fcm_num_channels database manager configuration parameters. When the
FCM_CFG_BASE_AS_FLOOR option is set to YES or TRUE, and these
parameters are set to AUTOMATIC and have an initial or starting value, the
database manager will not tune them below this value.

DB2_FORCE_OFFLINE_ADD_PARTITION

Chapter 20. Registry and environment variables 467

v Operating system: All
v Default=FALSE, Values: FALSE or TRUE
v This variable allows you to specify that add database partition server

operations are to be performed offline. The default setting of FALSE
indicates that DB2 database partition servers can be added without
taking the database offline. However, if you want the operation to be
performed offline or if some limitation prevents you from adding
database partition servers when the database is online, set
DB2_FORCE_OFFLINE_ADD_PARTITION to TRUE. When this variable is set to
TRUE, new DB2 database partition servers are added according to the
Version 9.5 and earlier versions' behavior; that is, new database partition
servers are not visible to the instance until it has been shut down and
restarted.

DB2_NUM_FAILOVER_NODES

v Operating system: All
v Default=2, Values: 0 to the required number of database partitions
v Set DB2_NUM_FAILOVER_NODES to specify the number of additional

database partitions that might need to be started on a machine in the
event of failover.
In a DB2 database high availability solution, if a database server fails,
the database partitions on the failed machine can be restarted on another
machine. The fast communication manager (FCM) uses
DB2_NUM_FAILOVER_NODES to calculate how much memory to reserve on
each machine to facilitate this failover.
For example, consider the following configuration:
– Machine A has two database partitions: 1 and 2.
– Machine B has two database partitions: 3 and 4.
– DB2_NUM_FAILOVER_NODES is set to 2 on both A and B.

At START DBM, FCM will reserve enough memory on both A and B to
manage up to four database partitions so that if one machine fails, the
two database partitions on the failed machine can be restarted on the
other machine. If machine A fails, database partitions 1 and 2 can be
restarted on machine B. If machine B fails, database partitions 3 and 4
can be restarted on machine A.

DB2_PARTITIONEDLOAD_DEFAULT

v Operating system: All supported ESE platforms
v Default=YES, Values: YES or NO
v The DB2_PARTITIONEDLOAD_DEFAULT registry variable lets users change the

default behavior of the load utility in an ESE environment when no
ESE-specific load options are specified. The default value is YES, which
specifies that in an ESE environment if you do not specify ESE-specific
load options, loading is attempted on all database partitions on which
the target table is defined. When the value is NO, loading is attempted
only on the database partition to which the load utility is currently
connected.

Note: This variable is deprecated and may be removed in a later release.
The LOAD command has various options that can be used to achieve
the same behavior. You can achieve the same results as the NO setting for
this variable by specifying the following with the LOAD command:

468 Database Administration Concepts and Configuration Reference

PARTITIONED DB CONFIG MODE LOAD_ONLY OUTPUT_DBPARTNUMS x, where x
is the partition number of the partition into which you want to load
data.

DB2PORTRANGE

v Operating system: Windows
v Values: nnnn:nnnn
v This value is set to the TCP/IP port range used by FCM so that any

additional database partitions created on another machine will also have
the same port range.

Query compiler variables
DB2_ANTIJOIN

v Operating system: All
v Default=NO in a ESE environment, Default=YES in a non-ESE

environment, Values: YES, NO, or EXTEND
v For DB2 Enterprise Server Edition: when YES is specified, the optimizer

searches for opportunities to transform “NOT EXISTS” subqueries into
anti-joins which can be processed more efficiently by DB2. For non-ESE
environments: when NO is specified, the optimizer limits the
opportunities to transform “NOT EXISTS” subqueries into anti-joins.
In both ESE and NON-ESE environments, when EXTEND is specified, the
optimizer searches for opportunities to transform both "NOT IN" and
"NOT EXISTS" subqueries into anti-joins.

DB2_DEFERRED_PREPARE_SEMANTICS

v Operating system: All
v Default=NO, Values: YES or NO
v When set to YES, this registry variable enables deferred prepare

semantics such that all untyped parameter markers used in PREPARE
statements will derive their data types and length attributes based on
the input descriptor associated with the subsequent OPEN or EXECUTE
statements. This allows untyped parameter markers to be used in more
places than was supported previously.
The DB2_DEFERRED_PREPARE_SEMANTICS registry variable must be set prior
to issuing the db2start command.
This registry variable is only recommended for Unicode and SBCS
databases.

Note: Setting DB2_DEFERRED_PREPARE_SEMANTICS to YES may cause
unintended effects or results. In cases where the data type in the input
descriptor is different from the data type derived using the rules for
"Determining data types of untyped expressions," the following can
occur:
– The query performance is degraded because of the additional cast

operation.
– The query fails because a data type cannot be converted.
– The query can return different results.

For example, assume a table t1, with a column char_col which is defined
as VARCHAR(10) with values '1', '100', '200', 'xxx'. A user runs the
following query:
select * from t1 where char_col = ?

Chapter 20. Registry and environment variables 469

If the data type of the input parameter is INTEGER, and deferred
prepare is being used, the column char_col is cast to numeric. However,
the query fails because one of the rows in the table contains
non-numeric data ('xxx') which cannot be converted to a numeric value.

DB2_INLIST_TO_NLJN

v Operating system: All
v Default=NO, Values: YES or NO
v In some situations, the SQL and XQuery compiler can rewrite an IN list

predicate to a join. For example, the following query:
SELECT *
FROM EMPLOYEE
WHERE DEPTNO IN (’D11’, ’D21’, ’E21’)

could be written as:
SELECT *
FROM EMPLOYEE, (VALUES ’D11’, ’D21’, ’E21) AS V(DNO)
WHERE DEPTNO = V.DNO

This revision might provide better performance if there is an index on
DEPTNO. The list of values would be accessed first and joined to
EMPLOYEE with a nested loop join using the index to apply the join
predicate.
Sometimes the optimizer does not have accurate information to
determine the best join method for the rewritten version of the query.
This can occur if the IN list contains parameter markers or host variables
which prevent the optimizer from using catalog statistics to determine
the selectivity. This registry variable causes the optimizer to favor nested
loop joins to join the list of values, using the table that contributes the
IN list as the inner table in the join.

Note: When either or both of the DB2 query compiler variables
DB2_MINIMIZE_LISTPREFETCH and DB2_INLIST_TO_NLJN, are set to YES, they
remain active even if REOPT(ONCE) is specified.

DB2_LIKE_VARCHAR

v Operating system: All
v Default=Y,Y,
v Controls the use of sub-element statistics. These are statistics about the

content of data in columns when the data has a structure in the form of
a series of sub-fields or sub-elements delimited by blanks. Collection of
sub-element statistics is optional and controlled by options in the
RUNSTATS command or API.
This registry variable affects how the optimizer deals with a predicate of
the form:

COLUMN LIKE ’%xxxxxx%’

where the xxxxxx is any string of characters.
The syntax showing how this registry variable is used is:

db2set DB2_LIKE_VARCHAR=[Y|N|S|num1] [,Y|N|S|num2]

where
– The term preceding the comma, or the only term to the right of the

predicate, means the following but only if the second term is specified
as N or the column does not have positive sub-element statistics:

470 Database Administration Concepts and Configuration Reference

- S – The optimizer estimates the length of each element in a series
of elements concatenated together to form a column based on the
length of the string enclosed in the % characters.

- Y – The default. Use a default value of 1.9 for the algorithm
parameter. Use a variable-length sub-element algorithm with the
algorithm parameter.

- N – Use a fixed-length sub-element algorithm.
- num1 – Use the value of num1 as the algorithm parameter with the

variable length sub-element algorithm.
– The term following the comma means the following, but only for

columns that do have positive sub-element statistics:
- N – Do not use sub-element statistics. The first term takes effect
- Y – The default. Use a variable-length sub-element algorithm that

uses sub-element statistics together with the 1.9 default value for
the algorithm parameter in the case of columns with positive
sub-element statistics.

- num2 – Use a variable-length sub-element algorithm that uses
sub-element statistics together with the value of num2 as the
algorithm parameter in the case of columns with positive
sub-element statistics.

DB2_MINIMIZE_LISTPREFETCH

v Operating system: All
v Default=NO, Values: YES or NO
v List prefetch is a special table access method that involves retrieving the

qualifying RIDs from the index, sorting them by page number and then
prefetching the data pages. Sometimes the optimizer does not have
accurate information to determine if list prefetch is a good access
method. This might occur when predicate selectivities contain parameter
markers or host variables that prevent the optimizer from using catalog
statistics to determine the selectivity.
This registry variable prevents the optimizer from considering list
prefetch in such situations.

Note: When either or both of the DB2 query compiler variables
DB2_MINIMIZE_LISTPREFETCH and DB2_INLIST_TO_NLJN, are set to YES, they
remain active even if REOPT(ONCE) is specified.

DB2_NEW_CORR_SQ_FF

v Operating system: All
v Default=OFF, Values: ON or OFF
v Affects the selectivity value computed by the query optimizer for certain

subquery predicates when it is set to ON. It can be used to improve the
accuracy of the selectivity value of equality subquery predicates that use
the MIN or MAX aggregate function in the SELECT list of the subquery.
For example:
SELECT * FROM T WHERE
T.COL = (SELECT MIN(T.COL)
FROM T WHERE ...)

DB2_OPT_MAX_TEMP_SIZE

v Operating system: All
v Default=NULL, Values: amount of space in megabytes that can be used

by a query in all temporary table spaces

Chapter 20. Registry and environment variables 471

v Limits the amount of space that queries can use in the temporary table
spaces. Setting DB2_OPT_MAX_TEMP_SIZE can cause the optimizer to choose
a plan that is more expensive than would otherwise be chosen, but
which uses less space in the temporary table spaces. If you set
DB2_OPT_MAX_TEMP_SIZE, be sure to balance your need to limit use of
temporary table space against the efficiency of the plan your setting
causes to be chosen.
If DB2_WORKLOAD=SAP is set, DB2_OPT_MAX_TEMP_SIZE is automatically set to
10 240 (10 GB).
If you run a query that uses temporary table space in excess of the value
set for DB2_OPT_MAX_TEMP_SIZE, the query does not fail, but you receive a
warning that its performance may be suboptimal, as not all resources
may be available.
The operations considered by the optimizer that are affected by the limit
set by DB2_OPT_MAX_TEMP_SIZE are:
– Explicit sorts for operations such as ORDER BY, DISTINCT, GROUP

BY, merge scan joins, and nested loop joins.
– Explicit temporary tables
– Implicit temporary tables for hash joins and duplicate merge joins

DB2_REDUCED_OPTIMIZATION

v Operating system: All
v Default=NO, Values: NO, YES, any integer, DISABLE,

NO_SORT_NLJOIN, or NO_SORT_MGJOIN
v This registry variable lets you request either reduced optimization

features or rigid use of optimization features at the specified
optimization level. If you reduce the number of optimization techniques
used, you also reduce time and resource use during optimization.

Note: Although optimization time and resource use might be reduced,
the risk of producing a less than optimal data access plan is increased.
Use this registry variable only when advised by IBM or one of its
partners.
– If set to NO

The optimizer does not change its optimization techniques.
– If set to YES

If the optimization level is 5 (the default) or lower, the optimizer
disables some optimization techniques that might consume significant
prepare time and resources but do not usually produce a better access
plan.
If the optimization level is exactly 5, the optimizer scales back or
disables some additional techniques, which might further reduce
optimization time and resource use, but also further increase the risk
of a less than optimal access plan. For optimization levels lower than
5, some of these techniques might not be in effect in any case. If they
are, however, they remain in effect.

– If set to any integer
The effect is the same as YES, with the following additional behavior
for dynamically prepared queries optimized at level 5. If the total
number of joins in any query block exceeds the setting, then the
optimizer switches to greedy join enumeration instead of disabling
additional optimization techniques as described above for level 5

472 Database Administration Concepts and Configuration Reference

optimization levels. which implies that the query will be optimized at
a level similar to optimization level 2.

– If set to DISABLE
The behavior of the optimizer when unconstrained by this
DB2_REDUCED_OPTIMIZATION variable is sometimes to dynamically
reduce the optimization for dynamic queries at optimization level 5.
This setting disables this behavior and requires the optimizer to
perform full level 5 optimization.

– If set to NO_SORT_NLJOIN
The optimizer does not generate query plans that force sorts for
nested loop joins (NLJN). These types of sorts can be useful for
improving performance; therefore, be careful when using the
NO_SORT_NLJOIN option, as performance can be severely impacted.

– If set to NO_SORT_MGJOIN
The optimizer does not generate query plans that force sorts for
merge scan joins (MSJN). These types of sorts can be useful for
improving performance; therefore, be careful when using the
NO_SORT_MGJOIN option, as performance can be severely impacted.
Note that the dynamic optimization reduction at optimization level 5
takes precedence over the behavior described for optimization level of
exactly 5 when DB2_REDUCED_OPTIMIZATION is set to YES as well as the
behavior described for the integer setting.

DB2_SELECTIVITY

v Operating system: All
v Default=NO, Values: YES or NO
v This registry variable controls where the SELECTIVITY clause can be

used in search conditions in SQL statements.
When this registry variable is set to NO, the SELECTIVITY clause can
only be specified in a user-defined predicate.
When this registry variable is set to YES, the SELECTIVITY clause can be
specified for the following predicates:
– A user-defined predicate
– A basic predicate in which at least one expression contains host

variables or parameter markers

DB2_SQLROUTINE_PREPOPTS

v Operating system: All
v Default=Empty string, Values:

– APREUSE {YES | NO}
– BLOCKING {UNAMBIG | ALL | NO}
– CONCURRENTACCESSRESOLUTION { USE CURRENTLY

COMMITTED | WAIT FOR OUTCOME }
– DATETIME {DEF | USA | EUR | ISO | JIS | LOC}
– DEGREE {1 | degree-of-parallelism | ANY}
– DYNAMICRULES {BIND | INVOKEBIND | DEFINEBIND | RUN |

INVOKERUN | DEFINERUN}
– EXPLAIN {NO | YES | ALL}
– EXPLSNAP {NO | YES | ALL}
– FEDERATED {NO | YES}

Chapter 20. Registry and environment variables 473

– INSERT {DEF | BUF}
– ISOLATION {CS | RR | UR | RS | NC}
– OPTPROFILE {profile_name | schema_name.profile_name}
– QUERYOPT optimization-level

– REOPT {NONE | ONCE | ALWAYS}
– STATICREADONLY {YES|NO|INSENSITIVE}
– VALIDATE {RUN | BIND}

v The DB2_SQLROUTINE_PREPOPTS registry variable can be used to customize
the precompile and bind options for SQL and XQuery procedures and
functions. When setting this variable, separate each of the options with a
space, as follows:
db2set DB2_SQLROUTINE_PREPOPTS="BLOCKING ALL VALIDATE RUN"

For a complete description of each option and its settings, see "BIND
command."

If you want to achieve the same results as DB2_SQLROUTINE_PREPOPTS for
select individual procedures, but without restarting the instance, use the
SET_ROUTINE_OPTS procedure.

Performance variables
DB2_ALLOCATION_SIZE

v Operating system: All
v Default: 128 KB, Range: 64 KB - 256 MB
v Specifies the size of memory allocations for buffer pools.

The potential advantage of setting a higher value for this registry
variable is fewer allocations will be required to reach a desired amount
of memory for a buffer pool.
The potential cost of setting a higher value for this registry variable is
wasted memory if the buffer pool is altered by a non-multiple of the
allocation size. For example, if the value for DB2_ALLOCATION_SIZE is 8
MB and a buffer pool is reduced by 4 MB, this 4 MB will be wasted
because an entire 8 MB segment cannot be freed.

Note: DB2_ALLOCATION_SIZE is deprecated and might be removed in a later
release.

DB2_APM_PERFORMANCE

v Operating system: All
v Default: OFF, Values: ON or OFF

v Set this variable to ON to enable performance-related changes in the
access plan manager (APM) that affect the behavior of the query cache
(package cache). These settings are not usually recommended for
production systems. They introduce some limitations, such as the
possibility of out-of-package cache errors or increased memory use, or
both.
Setting DB2_APM_PERFORMANCE to ON also enables the NO PACKAGE LOCK
mode. This mode allows the global query cache to operate without the
use of package locks, which are internal system locks that protect cached
package entries from being removed. The NO PACKAGE LOCK mode might
result in minor performance improvements, but certain database

474 Database Administration Concepts and Configuration Reference

operations are not allowed. These prohibited operations might include:
operations that invalidate packages, operations that inoperate packages,
and PRECOMPILE, BIND, and REBIND.

DB2ASSUMEUPDATE

v Operating system: All
v Default: OFF, Values: ON or OFF

v When enabled, this variable allows the DB2 database system to assume
that all fixed-length columns provided in an UPDATE statement are
being changed. This eliminates the need for the DB2 database system to
compare the existing column values to the new values to determine if
the column is actually changing. Using this registry variable can cause
additional logging and index maintenance when columns are provided
for update (for example, in a SET clause) but are not actually being
modified.
The activation of the DB2ASSUMEUPDATE registry variable is effective on the
db2start command.

DB2_ASYNC_IO_MAXFILOP

v Operating system: All
v Default: The value of the maxfilop configuration parameter, Values: from

the value of maxfilop to the value of max_int
v DB2_ASYNC_IO_MAXFILOP is deprecated and might be removed in a later

release. This variable is obsolete because of the shared file handle table
maintained by the threaded database manager. For more information,
see “Shared file handle table” in Database Administration Concepts and
Configuration Reference.
DB2_ASYNC_IO_MAXFILOP can still be set in Version 9.7, but it will have no
effect. If you want to limit the number of file handles that can be open
for each database, see the maxfilop in Database Administration Concepts
and Configuration Reference configuration parameter.

DB2_AVOID_PREFETCH

v Operating system: All
v Default: OFF, Values: ON or OFF

v Specifies whether prefetch should be used during crash recovery. If
DB2_AVOID_PREFETCH =ON, prefetch is not used.

DB2_BACKUP_USE_DIO

v Operating system: All
v Default: OFF, Values: ON or OFF

v Specifies whether or not backup images are cached by the operating
system. The default behavior is to cache the image file. When
DB2_BACKUP_USE_DIO is set to ON, the backup image file is directly written
to disk, bypassing the file cache.
Setting this variable to ON might result in the operating system better
utilizing memory resources because there is no benefit to caching the
backup image file. This performance impact will have the largest benefit
for Linux platforms. However, there may be a slight slowdown of the
backup itself, so you should measure the change in backup performance
when DB2_BACKUP_USE_DIO is set to ON.

Chapter 20. Registry and environment variables 475

Note: Changing the value of this registry variable does not affect the
behavior of the backup that is already running. Changing the value will
take effect when the next backup is run, and it does not require an
instance restart.

DB2BPVARS

v Operating system: As specified for each parameter
v Default: Path
v Two sets of parameters are available to tune buffer pools. One set of

parameters, available only on Windows, specify that buffer pools should
use scatter read for specific types of containers. The other set of
parameters, available on all platforms, affect prefetching behavior.
Parameters are specified in an ASCII file, one parameter on each line, in
the form parameter=value. For example, a file named bpvars.vars might
contain the following lines:

NO_NT_SCATTER = 1
NUMPREFETCHQUEUES = 2

Assuming that bpvars.vars is stored in F:\vars\, to set these variables
issue the following command:

db2set DB2BPVARS=F:\vars\bpvars.vars

Scatter-read parameters

The scatter-read parameters are recommended for systems with a large
amount of sequential prefetching against the respective type of
containers and for which you have already set DB2NTNOCACHE to ON. These
parameters, available only on Windows platforms, are
NT_SCATTER_DMSFILE, NT_SCATTER_DMSDEVICE, and NT_SCATTER_SMS. Specify
the NO_NT_SCATTER parameter to explicitly disallow scatter read for any
container. Specific parameters are used to turn scatter read on for all
containers of the indicated type. For each of these parameters, the
default is zero (or OFF); and the possible values include: zero (or OFF)
and 1 (or ON).

Note: You can turn on scatter read only if DB2NTNOCACHE is set to ON to
turn Windows file caching off. If DB2NTNOCACHE is set to OFF or not set, a
warning message is written to the administration notification log if you
attempt to turn on scatter read for any container, and scatter read
remains disabled.
Prefetch-adjustment parameters

The prefetch-adjustment parameters are NUMPREFETCHQUEUES and
PREFETCHQUEUESIZE. These parameters are available on all platforms and
can be used to improve bufferpool data prefetching. For example,
consider sequential prefetching in which the desired PREFETCHSIZE is
divided into PREFETCHSIZE/EXTENTSIZE prefetch requests. In this case,
requests are placed on prefetch queues from which I/O servers are
dispatched to perform asynchronous I/O. By default, the DB2 database
manager maintains one queue of size max(200,2*NUM_IOSERVERS) for
each each database partition. In some environments, performance
improves with either more queues or queues of a different size, or both.
The number of prefetch queues should be at most one half of the
number of I/O servers. When you set these parameters, consider other
parameters such as PREFETCHSIZE, EXTENTSIZE, NUM_IOSERVERS, and buffer
pool size, and workload characteristics such as the number of current
users.

476 Database Administration Concepts and Configuration Reference

If you think the default values are too small for your environment, first
increase the values only slightly. For example, you might set
NUMPREFETCHQUEUES=4 and PREFETCHQUEUESIZE=200. Make changes to
these parameters in a controlled manner so that you can monitor and
evaluate the effects of the change.
For NUMPREFETCHQUEUES, the default is 1, and the range of values is 1 to
NUM_IOSERVERS. If you set NUMPREFETCHQUEUES to less than 1, it is adjusted
to 1. If you set it greater than NUM_IOSERVERS, it is adjusted to
NUM_IOSERVERS.
For PREFETCHQUEUESIZE, the default value is max(200,2*NUM_IOSERVERS).
The range of values is 1 to 32767. If you set PREFETCHQUEUESIZE to less
than 1, it is adjusted to the default. If set greater than 32 767, it is
adjusted to 32 767.

Note: DB2BPVARS is deprecated and might be removed in a later release.

DB2CHKPTR

v Operating system: All
v Default: OFF, Values: ON or OFF

v Specifies whether pointer checking for input is required.

DB2CHKSQLDA

v Operating system: All
v Default: ON, Values: ON or OFF

v Specifies whether SQLDA checking for input is required.

DB2_EVALUNCOMMITTED

v Operating system: All
v Default: NO, Values: YES, NO
v When enabled, this variable allows, where possible, scans to defer or

avoid row locking until the data is known to satisfy predicate
evaluation. With this variable enabled, predicate evaluation may occur
on uncommitted data.
DB2_EVALUNCOMMITTED is only applicable when currently committed
semantics will not help avoid lock contentions. When this variable is set
and currently committed is applicable to a scan, deleted rows will not be
skipped and predicate evaluate will not occur on uncommitted data; the
currently committed version of the rows and data will be processed
instead.
As well, DB2_EVALUNCOMMITTED is applicable only to statements using
either Cursor Stability or Read Stability isolation levels. Furthermore,
deleted rows are skipped unconditionally on table scan access while
deleted keys are not skipped unless the registry variable
DB2_SKIPDELETED is also set.
The activation of the DB2_EVALUNCOMMITTED registry variable is effective
on the db2start command. The decision as to whether deferred locking
is applicable is made at statement compile or bind time.

DB2_EXTENDED_IO_FEATURES

v Operating system: AIX
v Default: OFF, Values: ON, OFF
v Set this variable to ON to enable features that enhance I/O performance.

This enhancement includes improving the hit rate of memory caches and
reducing the latency on high priority I/O. These features are only

Chapter 20. Registry and environment variables 477

available on certain combinations of software and hardware
configuration; setting this variable to ON for other configurations will be
ignored by either the DB2 database management system or by the
operating system. The minimum configuration requirements are:
– Database version: DB2 V9.1
– RAW device must be used for database containers (container on file

systems is not supported)
– Operating system: AIX 5.3 TL4
– Storage subsystem: Shark DS8000® supports all the enhanced I/O

performance features. Refer to the Shark DS8000 documentation for
setup and prerequisite information.

The default I/O priority settings for HIGH is 3, MEDIUM is 8, and
LOW is 12; you can use the DB2_IO_PRIORITY_SETTING registry variable
to change these settings.

DB2_EXTENDED_OPTIMIZATION

v Operating system: All
v Default: OFF, Values: ON, OFF, ENHANCED_MULTIPLE_DISTINCT, IXOR, or SNHD

v This variable specifies whether or not the query optimizer uses
optimization extensions to improve query performance. The ON,
ENHANCED_MULTIPLE_DISTINCT, and SNHD values specify different
optimization extensions. Use a comma-separated list when you want to
use them in combination.
The ENHANCED_MULTIPLE_DISTINCT value might improve the performance
of queries where multiple distinct aggregate operations are involved in
one single select operation and where the ratio of processors to the
number of database partitions is low (for example, the ratio is less than
or equal to 1). This setting should be used in partitioned database
environments without symmetric multiprocessors (SMPs).
The IXOR option (available starting in the DB2 Version 9.7 Fix Pack 2
release) specifies that the optimizer is to use the index ORing data access
method.
If the SNHD value is specified, the optimizer determines a more efficient
single-partition hash-directed partitioning strategy based on cost. Under
this approach, operations that cannot be executed in a truly parallel
manner are more aggressively optimized to execute on a single database
partition other than the coordinator partition.
These optimization extensions might not improve query performance in
all environments. Testing should be done to determine individual query
performance improvements.

DB2_HASH_JOIN

v Operating system: All
v Default: YES, Values: YES or NO

v Specifies hash join as a possible join method when compiling an access
plan. DB2_HASH_JOIN must be tuned to get the best performance. Hash
join performance is best if you can avoid hash loops and overflow to
disk. To tune hash join performance, estimate the maximum amount of
memory available for the sheapthres configuration parameter, and then
tune the sortheap configuration parameter. Increase its value until you
avoid as many hash loops and disk overflows as possible, but do not
reach the limit specified by the sheapthres configuration parameter.

478 Database Administration Concepts and Configuration Reference

Note: DB2_HASH_JOIN is deprecated and might be removed in a future
release.

DB2_IO_PRIORITY_SETTING

v Operating system: AIX
v Values: HIGH:#, MEDIUM:#, LOW:#, where # can be 1 - 15
v This variable is used in combination with the DB2_EXTENDED_IO_FEATURES

registry variable. This registry variable provides a means to override the
default HIGH, MEDIUM, and LOW I/O priority settings for the DB2 database
system, which are 3, 8, and 12, respectively. This registry variable must
be set before the start of an instance; any modification requires an
instance restart.

Note: Setting this registry variable alone does not enable the enhanced
I/O features, DB2_EXTENDED_IO_FEATURES must be set to enable them. All
system requirements for DB2_EXTENDED_IO_FEATURES also apply to this
registry variable.

DB2_KEEP_AS_AND_DMS_CONTAINERS_OPEN

v Operating system: All
v Default: NO, Values: YES or NO

v When you set this variable to ON, each DMS table space container has a
file handle opened until the database is deactivated. Query performance
might improve because the processing required to open the containers is
eliminated. You should use this registry only in pure DMS
environments, otherwise performance of queries against SMS table
spaces might be affected negatively.

DB2_KEEPTABLELOCK

v Operating system: All
v Default: OFF, Values: ON, TRANSACTION, OFF, CONNECTION
v When this variable is set to ON or TRANSACTION, this variable allows the

DB2 database system to maintain the table lock when an Uncommitted
Read or Cursor Stability isolation level is closed. The table lock that is
kept is released at the end of the transaction, just as it would be released
for Read Stability and Repeatable Read scans.
When this variable is set to CONNECTION, a table lock is released for an
application until the application either rolls back the transaction or the
connection is reset. The table lock continues to be held across commits
and application requests to drop the table lock are ignored by the
database. The table lock remains allocated to the application. Thus, when
the application re-requests the table lock, the lock is already available.
For application workloads that can leverage this optimization,
performance should improve. However, the workloads of other
application running concurrently might be affected. Other applications
might get blocked from accessing a given table resulting in poor
concurrency. DB2 SQL catalog tables are not affected by this setting. The
CONNECTION setting also includes the behavior described with the ON or
TRANSACTION setting.
This registry variable is checked at statement compile or bind time.

DB2_LARGE_PAGE_MEM

v Operating system: AIX, Linux, Windows Server 2003

Chapter 20. Registry and environment variables 479

v Default: NULL, Values: Use * to denote all applicable memory regions
should use large page memory, or a comma-separated list of specific
memory regions that should use large page memory. Available regions
vary by operating system. On AIX, the following regions can be
specified: DB, DBMS, FCM, APPL, or PRIVATE. On Linux, the following region
can be specified: DB. On Windows Server 2003, the following region can
be specified: DB. Huge page memory is only available on AIX.

v The DB2_LARGE_PAGE_MEM registry variable is used to enable large page or
huge page support. Setting DB2_LARGE_PAGE_MEM=DB enables large page
memory for the database shared memory region, and if database_memory
is set to AUTOMATIC, disables automatic tuning of this shared memory
region by STMM. On AIX, setting DB2_LARGE_PAGE_MEM=DB:16GB enables
huge page memory for the database shared memory region.
Memory access-intensive applications that use large amounts of virtual
memory might obtain performance improvements by using large or
huge pages. To enable the DB2 database system to use them, you must
first you must first configure the operating system to use large or huge
pages.
To enable large pages for agent private memory on 64-bit DB2 for AIX
(the DB2_LARGE_PAGE_MEM=PRIVATE setting), you have to configure large
pages on the operating system and the instance owner must possess the
CAP_BYPASS_RAC_VMM and CAP_PROPAGATE capabilities.
On AIX 5L™, you can set this variable to FCM. FCM memory resides in its
own memory set, so you must add the FCM keyword to the value of the
DB2_LARGE_PAGE_MEM registry variable to enable large pages for FCM
memory.
On Linux, there is an additional requirement for the availability of the
libcap.so.1 library. This library must be installed for this option to
work. If this option is turned on and the library is not on the system, the
DB2 database disables the large kernel pages and continues to function
as it would without them.
On Linux, to verify that large kernel pages are available, issue the
following command:

cat /proc/meminfo

If large kernel pages are available, the following three lines should be
displayed (with different numbers depending on the amount of memory
configured on your server):

HugePages_Total: 200
HugePages_Free: 200
Hugepagesize: 16384 kB

If you do not see these lines, or if the HugePages_Total is 0, you must
configure the operating system or kernel.
On Windows, the amount of large page memory that is available on the
system is less than the total available memory. After the system has been
running for some time, memory can become fragmented, and the
amount of large page memory decreases. The DB2_ALLOCATION_SIZE
registry variable should be set to a high value, such as 256MB, in order to
achieve consistent performance allocating large memory pages on
Windows. (Note that DB2_ALLOCATION_SIZE requires you to stop and
restart the instance.)

DB2_LOGGER_NON_BUFFERED_IO

v Operating system: All
v Default: AUTOMATIC, Values: AUTOMATIC, ON, OFF

480 Database Administration Concepts and Configuration Reference

v This variable allows you to control whether direct I/O (DIO) will be
used on the log file system. When DB2_LOGGER_NON_BUFFERED_IO is set to
AUTOMATIC, active log windows (namely, the primary log files) will be
opened with DIO, and all other logger files will be buffered. When it is
set to ON, all log file handles will be opened with DIO. When it is set to
OFF, all log files handles will be buffered.

DB2MAXFSCRSEARCH

v Operating system: All
v Default: 5, Values: -1, 1 to 33554

v Specifies the amount of free space control record (FSCRs) to search when
adding a record to a table. The default is to search five FSCRs.
Modifying this value allows you to balance insert speed with space
reuse. Use large values to optimize for space reuse. Use small values to
optimize for insert speed. Setting the value to -1 forces the database
manager to search all FSCRs.

DB2_MAX_INACT_STMTS

v Operating system: All
v Default: Not set, Values: up to 4 000 000 000

v This variable overrides the default limit on the number of inactive
statements kept by any one application. You can choose a different value
in order to increase or reduce the amount of system monitor heap used
for inactive statement information. The default limit is 250.
The system monitor heap can become exhausted if an application
contains an unusually high number of statements in a unit of work, or if
there are many applications running concurrently.

DB2_MAX_NON_TABLE_LOCKS

v Operating system: All
v Default: YES, Values: See description
v This variable defines the maximum number of NON table locks a

transaction can have before it releases all of these locks. NON table locks
are table locks that are kept in the hash table and transaction chain even
when the transaction has finished using them. Because transactions often
access the same table more than once, retaining locks and changing their
state to NON can improve performance.
For best results, the recommended value for this variable is the
maximum number of tables expected to be accessed by any connection.
If no user-defined value is specified, the default value is as follows: If
the locklist size is greater than or equal to
SQLP_THRESHOLD_VAL_OF_LRG_LOCKLIST_SZ_FOR_MAX_NON_LOCKS

(currently 8000), the default value is
SQLP_DEFAULT_MAX_NON_TABLE_LOCKS_LARGE

(currently 150). Otherwise, the default value is
SQLP_DEFAULT_MAX_NON_TABLE_LOCKS_SMALL

(currently 0).

DB2_MDC_ROLLOUT

v Operating system: All
v Default: IMMEDIATE, Values: IMMEDIATE, OFF, or DEFER

Chapter 20. Registry and environment variables 481

v This variable enables a performance enhancement known as “rollout” for
deletions from MDC tables. Rollout is a faster way of deleting rows in
an MDC table, when entire cells (intersections of dimension values) are
deleted in a search DELETE statement. The benefits are reduced logging
and more efficient processing.
There are three possible outcomes of the variable setting:
– No rollout - if OFF is specified
– Immediate rollout - if IMMEDIATE is specified.
– Rollout with deferred index cleanup - if DEFER is specified
If the value is changed after startup, any new compilations of a
statement will respect the new registry value setting. For statements that
are in the package cache, no change in delete processing will be made
until the statement is recompiled. The SET CURRENT MDC ROLLOUT
MODE statement overrides the value of DB2_MDC_ROLLOUT at the
application connection level.
In DB2 Version 9.7 and later releases, the DEFER value is not supported
for data partitioned MDC table with partitioned RID indexes. Only the
OFF and IMMEDIATE values are supported. The cleanup rollout type
will be IMMEDIATE if the DB2_MDC_ROLLOUT registry variable is set to
DEFER, or if the CURRENT MDC ROLLOUT MODE special register is
set to DEFERRED to override the DB2_MDC_ROLLOUT setting. If only
nonpartitioned RID indexes exist on the MDC table, deferred index
cleanup rollout is supported.

DB2MEMDISCLAIM

v Operating system: ALL
v Default: YES, Values: YES or NO

v Memory used by DB2 database system processes might have some
associated paging space. This paging space might remain reserved even
when the associated memory has been freed. These conditions depend
on the operating system's (tunable) virtual memory management
allocation policy. The DB2MEMDISCLAIM registry variable controls whether
DB2 agents explicitly request that the operating system disassociate the
reserved paging space from the freed memory.
A DB2MEMDISCLAIM setting of YES results in smaller paging space
requirements, and possibly less disk activity from paging. A
DB2MEMDISCLAIM setting of NO results in larger paging space requirements,
and possibly more disk activity from paging. In some situations, such as
if paging space is plentiful and real memory is so plentiful that paging
never occurs, a setting of NO provides a minor performance
improvement.

DB2MEMMAXFREE

v Operating system: All
v Default: NULL, Values: 0 to 2³²-1 bytes
v Specifies the maximum number of bytes of unused private memory that

is retained by DB2 database system processes before unused memory is
returned to the operating system.
If DB2MEMMAXFREE is not set, DB2 database system processes retain up to
20% of unused private memory (based on the amount of private
memory currently consumed), before freeing memory back to the
operating system.

482 Database Administration Concepts and Configuration Reference

Note: DB2MEMMAXFREE is deprecated and will be removed in a future release.
This variable is no longer necessary because the database manager now
uses a threaded engine model. Do not set this variable. Doing so will likely
hurt performance and may lead to unexpected behavior.

DB2_MEM_TUNING_RANGE

v Operating system: All
v Default: NULL, Values: a sequence of percentages n, m where n=minfree

and m=maxfree

v The amount of physical memory that the DB2 instance leaves free is
important because it dictates how much memory other applications
running on the same machine are able to use. When self tuning of
database shared memory is enabled, the amount of physical memory left
free by a given instance depends on the need for memory by the
instance (and its active databases). When an instance is in urgent need of
additional memory, it will allocate memory until the free physical
memory on the system reaches the percentage specified by minfree.
When the instance is less in need of memory, it will maintain a larger
amount of free physical memory, specified as a percentage by maxfree. As
a result, it is a requirement that the value set for minfree must be less
than the value of maxfree.
If this variable is not set, the DB2 database manager will calculate values
for minfree and maxfree based on the amount of memory on the server.
The setting of this variable has no effect unless you are running the
self-tuning memory manager (STMM) and have database_memory set to
AUTOMATIC.

DB2_MMAP_READ

v Operating system: AIX
v Default: OFF, Values: ON or OFF

v This variable is used with DB2_MMAP_WRITE to allow the DB2 database
system to use mmap as an alternative method of I/O.
When these variables are set to ON, data that is read to and written from
the DB2 buffer pools bypasses the AIX memory cache and uses Memory
Mapped I/O. If you have a relatively small DB2 buffer pool, and you
cannot or choose not to increase the size of this buffer pool, you should
take advantage of AIX memory caching by setting DB2_MMAP_READ and
DB2_MMAP_WRITE to OFF.

DB2_MMAP_WRITE

v Operating system: AIX
v Default: OFF, Values: ON or OFF

v This variable is used with DB2_MMAP_READ to allow the DB2 database
system to use mmap as an alternative method of I/O.
When these variables are set to ON, data that is read to and written from
the DB2 buffer pools bypasses the AIX memory cache and uses Memory
Mapped I/O. If you have a relatively small DB2 buffer pool, and you
cannot or choose not to increase the size of this buffer pool, you should
take advantage of AIX memory caching by setting DB2_MMAP_READ and
DB2_MMAP_WRITE to OFF.

DB2_NO_FORK_CHECK

v Operating system: UNIX
v Default: OFF, Values: ON or OFF

Chapter 20. Registry and environment variables 483

v When this variable is enabled, the DB2 runtime client minimizes checks
to determine if the current process is a result of a fork call. This can
improve performance of DB2 applications that do not use the fork() API.

DB2NTMEMSIZE

v Operating system: Windows
v Default: (varies by memory segment)
v Windows requires that all shared memory segments be reserved at DLL

initialization time in order to guarantee matching addresses across
processes. DB2NTMEMSIZE permits the user to override the DB2 defaults on
Windows if necessary. In most situations, the default values should be
sufficient. The memory segments, default sizes, and override options are:
1. Parallel FCM Buffers: default size is 512 MB on 32-bit platforms, 4.5

GB on 64-bit platforms; override option is FCM:<number of bytes>
2. Fenced Mode Communication: default size is 80 MB on 32-bit

platforms, 512 MB on 64-bit platforms; override option is
APLD:<number of bytes>

More than one segment might be overridden by separating the override
options with a semicolon (;). For example, on a 32-bit version of DB2, to
limit the FCM buffers to 1 GB, and the fenced stored procedures limit to
256 MB, use:
db2set DB2NTMEMSIZE=FCM:1073741824;APLD:268435456

DB2NTNOCACHE

v Operating system: Windows
v Default: OFF, Values: ON or OFF

v The DB2NTNOCACHE registry variable specifies whether the DB2 database
system opens database files with a NOCACHE option. If DB2NTNOCACHE=ON,
file system caching is eliminated. If DB2NTNOCACHE=OFF, the operating
system caches DB2 files. This applies to all data except for files that
contain long fields or LOBs. Eliminating system caching allows more
memory to be available to the database so that the buffer pool or sort
heap can be increased.
In Windows, files are cached when they are opened, which is the default
behavior. One MB is reserved from a system pool for every 1 GB in the
file. Use this registry variable to override the undocumented 192 MB
limit for the cache. When the cache limit is reached, an out-of-resource
error is given.

Note: You can achieve the same benefit for table space containers by using
the CREATE TABLESPACE and ALTER TABLESPACE SQL statements.

DB2NTPRICLASS

v Operating system: Windows
v Default: NULL, Values: R, H, (any other value)

v Sets the priority class for the DB2 instance (program DB2SYSCS.EXE).
There are three priority classes:
– NORMAL_PRIORITY_CLASS (the default priority class)
– REALTIME_PRIORITY_CLASS (set by using R)
– HIGH_PRIORITY_CLASS (set by using H)
This variable is used with individual thread priorities (that you set using
DB2PRIORITIES) to determine the absolute priority of DB2 threads relative
to other threads in the system.

484 Database Administration Concepts and Configuration Reference

Note: DB2NTPRICLASS is deprecated and should only be used at the
recommendation of service. Use DB2 service classes to adjust agent
priority and prefetch priority. Care should be taken when using this
variable. Misuse could adversely affect overall system performance.
For more information, see the SetPriorityClass() API in the Win32
documentation.

DB2NTWORKSET

v Operating system: Windows
v Default: 1,1
v Used to modify the minimum and maximum working-set size available

to the DB2 database manager. By default, when Windows is not in a
paging situation, the working set of a process can grow as large as
needed. However, when paging occurs, the maximum working set that a
process can have is approximately 1 MB. DB2NTWORKSET allows you to
override this default behavior.
Specify DB2NTWORKSET using the syntax DB2NTWORKSET=min, max, where
min and max are expressed in megabytes.

DB2_OVERRIDE_BPF

v Operating system: All
v Default: Not set, Values: a positive numeric number of pages OR

<entry>[;<entry>...] where <entry>=<buffer pool ID>,<number of pages>
v This variable specifies the size of the buffer pool, in pages, to be created

at database activation, rollforward recovery, or crash recovery. It is
useful when memory constraints cause failures to occur during database
activation, rollforward recovery, or crash recovery. The memory
constraint could arise either in the rare case of a real memory shortage
or, because of the attempt by the database manager to allocate a large
buffer pool, in the case where there were inaccurately configured buffer
pools. For example, when even a minimal buffer pool of 16 pages is not
started by the database manager, try specifying a smaller number of
pages using this environment variable. The value given to this variable
overrides the current buffer pool size.
You can also use <entry>[;<entry>...] where <entry>=<buffer pool
ID>,<number of pages> to temporarily change the size of all or a subset
of the buffer pools so that they can start.

DB2_PINNED_BP

v Operating system: AIX, HP-UX, Linux
v Default: NO, Values: YES or NO

v Setting this variable to YES causes DB2 to request that the Operating
System pins DB2's Database Shared Memory. When configuring DB2 to
pin Database Shared Memory, care should be taken to ensure that the
system is not overcommitted, as the operating system will have reduced
flexibility in managing memory.
On Linux, in addition to modifying this registry variable, the library,
libcap.so.1 is also required.
Setting this variable to YES means that self tuning for database shared
memory (activated by setting the database_memory configuration
parameter to AUTOMATIC) cannot be enabled.
For AIX operating systems, to use database memory pinning with
medium page size support (which is a default behavior), ensure that the

Chapter 20. Registry and environment variables 485

instance owner has the CAP_BYPASS_RAC_VMM and
CAP_PROPAGATE capabilities by logging on as root authority and
issuing the following command:

chuser capabilities=CAP_BYPASS_RAC_VMM,CAP_PROPAGATE <instance_owner_user_id>

For HP-UX in a 64-bit environment, in addition to modifying this
registry variable, the DB2 instance group must be given the MLOCK
privilege. To do this, a user with root access rights performs the
following actions:
1. Adds the DB2 instance group to the /etc/privgroup file. For

example, if the DB2 instance group belongs to db2iadm1 group then
the following line must be added to the /etc/privgroup file:

db2iadm1 MLOCK

2. Issues the following command:
setprivgrp -f /etc/privgroup

DB2PRIORITIES

v Operating system: All
v Values setting is platform dependent
v Controls the priorities of DB2 processes and threads.

Note: DB2PRIORITIES is deprecated and should only be used at the
recommendation of service. Use DB2 service classes to adjust agent priority
and prefetch priority.

DB2_RCT_FEATURES

v Operating system: All
v Default: NULL. Values: GROUPUPDATE=[ON|OFF]. The default value for

GROUPUPDATE is OFF.
v This variable allows for optimized and reduced update processing for a

searched UPDATE statement which targets multiple rows in an range
clustered table when only equal predicates on the leading and subset of
key sequence columns are specified. Logging is also reduced due to a
single log record for all rows updated on a page, instead of a log record
for each row updated.
Usage :
db2set DB2_RCT_FEATURES=GROUPUPDATE=ON

Note: It will not be possible to reverse migrate to older fix packs once
this registry variable is enabled. In addition, group update will not be
performed when the target table of the UPDATE statement uses DATA
CAPTURE CHANGES, triggers, variable length columns, has any
secondary indexes, or the update modifies any primary or foreign key
columns.

DB2_RESOURCE_POLICY

v Operating system: AIX 5 or higher, all Linux except zSeries (32–bit),
Windows Server 2003 or higher

v Default: Not set, Values: valid path to configuration file
v Defines a resource policy which can be used to limit what operating

system resources are used by the DB2 database or it contains rules for
assigning specific operating system resources to specific DB2 database
objects. For example, on AIX, Linux, or Windows operating systems, this

486 Database Administration Concepts and Configuration Reference

registry variable can be used to limit the set of processors that the DB2
database system uses. The extent of resource control varies depending
on the operating system.
On AIX NUMA and Linux NUMA enabled machines, a policy can be
defined which specifies what resource sets the DB2 database system
uses. When resource set binding is used, each individual DB2 process is
bound to a particular resource set. This can be beneficial in some
performance tuning scenarios.
You can set the registry variable to indicate the path to a configuration
file which defines a policy for binding DB2 processes to operating
system resources. The resource policy allows you to specify a set of
operating system resources to restrict the DB2 database system. Each
DB2 process is bound to a single resource of the set. Resource
assignment occurs in a circular round robin fashion.
Sample configuration files:
Example 1: Bind all DB2 processes to either CPU 1 or 3.
<RESOURCE_POLICY>
<GLOBAL_RESOURCE_POLICY>
<METHOD>CPU</METHOD>
<RESOURCE_BINDING>
<RESOURCE>1</RESOURCE>
</RESOURCE_BINDING>
<RESOURCE_BINDING>
<RESOURCE>3</RESOURCE>
</RESOURCE_BINDING>
</GLOBAL_RESOURCE_POLICY>
</RESOURCE_POLICY>

Example 2: (AIX only) Bind DB2 processes to one of the following
resource sets: sys/node.03.00000, sys/node.03.00001, sys/node.03.00002,
sys/node.03.00003
<RESOURCE_POLICY>
<GLOBAL_RESOURCE_POLICY>
<METHOD>RSET</METHOD>
<RESOURCE_BINDING>
<RESOURCE>sys/node.03.00000</RESOURCE>
</RESOURCE_BINDING>
<RESOURCE_BINDING>
<RESOURCE>sys/node.03.00001</RESOURCE>
</RESOURCE_BINDING>
<RESOURCE_BINDING>
<RESOURCE>sys/node.03.00002</RESOURCE>
</RESOURCE_BINDING>
<RESOURCE_BINDING>
<RESOURCE>sys/node.03.00003</RESOURCE>
</RESOURCE_BINDING>
</GLOBAL_RESOURCE_POLICY>
</RESOURCE_POLICY>

Note: For AIX only, use of the RSET method requires
CAP_NUMA_ATTACH capability.
Example 3: (Linux only) Bind all memory from bufferpool IDs 2 and 3
which are associated with the SAMPLE database to NUMA node 3. Also
use 80 percent of the total database memory for the binding to NUMA
node 3 and leave 20 percent to be striped across all nodes for
non-bufferpool specific memory.
<RESOURCE_POLICY>
<DATABASE_RESOURCE_POLICY>
<DBNAME>sample</DBNAME>
<METHOD>NODEMASK</METHOD>

Chapter 20. Registry and environment variables 487

<RESOURCE_BINDING>
<RESOURCE>3</RESOURCE>
<DBMEM_PERCENTAGE>80</DBMEM_PERCENTAGE>
<BUFFERPOOL_BINDING>
<BUFFERPOOL_ID>2</BUFFERPOOL_ID>
<BUFFERPOOL_ID>3</BUFFERPOOL_ID>
</BUFFERPOOL_BINDING>
</RESOURCE_BINDING>
</DATABASE_RESOURCE_POLICY>
</RESOURCE_POLICY>

Example 4: (For Linux and Windows only) Define two distinct processor
sets specified by CPU masks 0x0F and 0xF0. Bind DB2 processes and
bufferpool ID 2 to processor set 0x0F and DB2 processes and bufferpool
ID 3 to processor set 0xF0. For each processor set, use 50 percent of the
total database memory for the binding.
This resource policy is useful when a mapping between processors and
NUMA nodes is desired. An example of such a scenario is a system with
8 processors and 2 NUMA nodes where processors 0 to 3 belong to
NUMA node 0 and processors 4 to 7 belong to NUMA node 1. This
resource policy allows for processor binding while implicitly maintaining
memory locality (a hybrid of CPU method and NODEMASK method).
<RESOURCE_POLICY>
<DATABASE_RESOURCE_POLICY>
<DBNAME>sample</DBNAME>
<METHOD>CPUMASK</METHOD>
<RESOURCE_BINDING>
<RESOURCE>0x0F</RESOURCE>
<DBMEM_PERCENTAGE>50</DBMEM_PERCENTAGE>
<BUFFERPOOL_BINDING>
<BUFFERPOOL_ID>2</BUFFERPOOL_ID>
</BUFFERPOOL_BINDING>
</RESOURCE_BINDING>
<RESOURCE_BINDING>
<RESOURCE>0xF0</RESOURCE>
<DBMEM_PERCENTAGE>50</DBMEM_PERCENTAGE>
<BUFFERPOOL_BINDING>
<BUFFERPOOL_ID>3</BUFFERPOOL_ID>
</BUFFERPOOL_BINDING>
</RESOURCE_BINDING>
</DATABASE_RESOURCE_POLICY>
</RESOURCE_POLICY>

Note: Use of the RSET method requires CAP_NUMA_ATTACH
capability and is not supported on Linux.
The configuration file specified by the DB2_RESOURCE_POLICY registry
variable accepts a SCHEDULING_POLICY element. You can use the
SCHEDULING_POLICY element on some platforms to select
– The operating system scheduling policy used by the DB2 server

You can set an operating system scheduling policy for DB2 on AIX,
and for DB2 on Windows using the DB2NTPRICLASS registry variable.

– The operating system priorities used by individual DB2 server agents
Alternatively, you can use the registry variables DB2PRIORITIES and
DB2NTPRICLASS to control the operating system scheduling policy and set
DB2 agent priorities. However, the specification of a
SCHEDULING_POLICY element in the resource policy configuration file
provides a single place to specify both the scheduling policy and the
associated agent priorities.
Example 1: Selection of the AIX SCHED_FIFO scheduling policy with a
priority boost for the DB2 log writer and reader processes.

488 Database Administration Concepts and Configuration Reference

<RESOURCE_POLICY>
<SCHEDULING_POLICY>
<POLICY_TYPE>SCHED_FIFO</POLICY_TYPE>
<PRIORITY_VALUE>60</PRIORITY_VALUE>

<EDU_PRIORITY>
<EDU_NAME>db2loggr</EDU_NAME>
<PRIORITY_VALUE>56</PRIORITY_VALUE>
</EDU_PRIORITY>

<EDU_PRIORITY>
<EDU_NAME>db2loggw</EDU_NAME>
<PRIORITY_VALUE>56</PRIORITY_VALUE>
</EDU_PRIORITY>
</SCHEDULING_POLICY>
</RESOURCE_POLICY>

Example 2: Replacement for DB2NTPRICLASS=H on Windows.
<RESOURCE_POLICY>
<SCHEDULING_POLICY>
<POLICY_TYPE>HIGH_PRIORITY_CLASS</POLICY_TYPE>
</SCHEDULING_POLICY>
</RESOURCE_POLICY>

DB2_SELUDI_COMM_BUFFER

v Operating system: All
v Default: OFF, Values: ON or OFF

v This variable is used during the processing of blocking cursors over
SELECT from UPDATE, INSERT, or DELETE (UDI) queries. When
enabled, this registry variable prevents the result of a query from being
stored in a temporary table. Instead, during the OPEN processing of a
blocking cursor for a SELECT from UDI query, the DB2 database system
attempts to buffer the entire result of the query directly into the
communications buffer memory area.
If the communications buffer space is not large enough to hold the entire
result of query, an SQLCODE -906 error is returned, and the transaction
is rolled back. See the aslheapsz and rqrioblk database manager
configuration parameters for information on adjusting the size of the
communication buffer memory area for local and remote applications,
respectively.
This registry variable is not supported when intrapartition parallelism is
enabled.

DB2_SET_MAX_CONTAINER_SIZE

v Operating system: All
v Default: Not set, Values: -1, any positive integer greater than 65 536

bytes
v This registry variable allows you to limit the size of individual

containers for automatic storage table spaces with the AutoResize feature
enabled.
If the value is set to -1, there will be no limit to the size of a container.

Note: Although you can specify DB2_SET_MAX_CONTAINER_SIZE in bytes,
kilobytes, or megabytes, db2set indicates its value in bytes.

DB2_SKIPDELETED

v Operating system: All
v Default: OFF, Values: ON or OFF

Chapter 20. Registry and environment variables 489

v When enabled, this variable allows statements using either Cursor
Stability or Read Stability isolation levels to unconditionally skip deleted
keys during index access and deleted rows during table access. With
DB2_EVALUNCOMMITTED enabled, deleted rows are automatically skipped,
but uncommitted pseudo-deleted keys in indexes are not skipped unless
DB2_SKIPDELETED is also enabled.
DB2_SKIPDELETED is only applicable when currently committed semantics
will not help avoid lock contentions. When this variable is set and
currently committed is applicable to a scan, deleted rows will not be
skipped; their currently committed version will be processed instead
This registry variable does not impact the behavior of cursors on the
DB2 catalog tables.
This registry variable is activated with the db2start command.

DB2_SKIPINSERTED

v Operating system: All
v Default: OFF, Values: ON or OFF

v When the DB2_SKIPINSERTED registry variable is enabled, it allows
statements using either Cursor Stability or Read Stability isolation levels
to skip uncommitted inserted rows as if they had not been inserted. This
registry variable does not impact the behavior of cursors on the DB2
catalog tables. This registry variable is activated at database startup,
while the decision to skip uncommitted inserted rows is made at
statement compile or bind time.
This registry variable has no effect if currently committed semantics are
being used. That is, even if DB2_SKIPINSERTED is set to OFF and currently
committed behavior is enabled, uncommitted inserted rows are still
skipped.

Note: Skip inserted behavior is not compatible with tables that have
pending rollout cleanup. As a result, scanners might wait for locks on a
RID only to discover that the RID is part of a rolled out block.

DB2_SMS_TRUNC_TMPTABLE_THRESH

v Operating system: All
v Default=-2, Values: -2, -1, or 0 to n, where n=the number of extents per

temporary table in the SMS table space container that are to be
maintained

v This variable specifies a minimum file size threshold at which the file
representing a temporary table is maintained in SMS table spaces.
Starting in DB2 V9.7 Fix Pack 2, the default setting for this variable is -2,
which means that there will not be any unnecessary file system access
for any spilled SMS temporary objects whose size is less than or equal to
1 extent * number of containers. Temporary objects that are larger than
this are truncated to 0 extent.
When this variable is set to 0, which was the default setting prior to DB2
V9.7 Fix Pack 2, no special threshold handling is done. Instead, once a
temporary table is no longer needed, that file is truncated to 0 extent.
When the value of this variable is greater than 0, a larger file is
maintained. Objects larger than the threshold will be truncated to the
threshold size. This reduces some of the system overhead involved in
dropping and recreating the file each time a temporary table is used.
If this variable is set to -1, the file is not truncated and the file is
allowed to grow indefinitely, restricted only by system resources.

490 Database Administration Concepts and Configuration Reference

DB2_SORT_AFTER_TQ

v Operating system: All
v Default: NO, Values: YES or NO

v Specifies how the optimizer works with directed table queues in a
partitioned database environment when the receiving end requires the
data to be sorted and the number of receiving nodes is equal to the
number of sending nodes.
When DB2_SORT_AFTER_TQ=NO, the optimizer tends to sort at the sending
end and merge the rows at the receiving end.
When DB2_SORT_AFTER_TQ=YES, the optimizer tends to transmit the rows
unsorted, not merge at the receiving end, and sort the rows at the
receiving end after receiving all the rows.

DB2_SQLWORKSPACE_CACHE

v Operating system: All
v Default: 30, Values: 10 - 2000
v This variable allows you to control the amount of caching of previously

used sections in the SQL Workspace.
The SQL Workspace contains allocations, in the form of sections, for the
execution of SQL. Each SQL statement (static or dynamic) that is being
executed on behalf of an application must maintain a unique copy of the
section in the SQL Workspace for the duration of execution of that
statement. Once the execution of the statement is complete, the section
becomes inactive and the memory allocations associated with an inactive
section can either be freed, or they can remain cached in the SQL
Workspace. When a new execution of the same SQL statement occurs
from any connection, it may find a cached copy of the section in the
SQL Workspace left from a previous execution, thus saving the costs
associated with allocating and initializing a new copy of the section. In
such a manner, the SQL Workspace contains both active
sections–corresponding to currently executing SQL–and cached sections
that are not currently executing.
The value for this registry variable specifies the percentage of memory
allocations that are allowed to remain cached in the SQL Workspace.
This caching is expressed as a percentage of the memory allocations for
active sections. Thus, for example, a value of 50 would mean that the
SQL workspace contains all of the active (currently executing) sections
and up to 50% more of previously executed cached sections that can be
reused. You would adjust the setting for DB2_SQLWORKSPACE_CACHE based
on how much of the SQL workspace you want to make available for
reuse. For example, increasing the size of this variable, can result in
some performance improvements for OLTP workloads. On the other
hand, a higher setting also means that there is an increase in the size of
the application shared heap. Note that if the appl_memory database
configuration parameter is not set to AUTOMATIC, the size of the SQL
Workspace may also be limited by the appl_memory and the SQL
Workspace may not provide as much caching as the
DB2_SQLWORKSPACE_CACHE setting might allow for; you might want to
consider increasing appl_memory (or setting it to AUTOMATIC) in such a
case. This registry variable is not dynamic

DB2_TRUSTED_BINDIN

v Operating system: All
v Default: OFF, Values: OFF, ON, or CHECK

Chapter 20. Registry and environment variables 491

v When DB2_TRUSTED_BINDIN is enabled, it speeds up the execution of
query statements containing host variables within an embedded
unfenced stored procedure.
When this variable is enabled, there is no conversion from the external
SQLDA format to an internal DB2 format during the binding of SQL and
XQuery statements contained within an embedded unfenced stored
procedure. This will speed up the processing of the embedded SQL and
XQuery statements.
The following data types are not supported in embedded unfenced
stored procedures when this variable is enabled:
– SQL_TYP_DATE
– SQL_TYP_TIME
– SQL_TYP_STAMP
– SQL_TYP_CGSTR
– SQL_TYP_BLOB
– SQL_TYP_CLOB
– SQL_TYP_DBCLOB
– SQL_TYP_CSTR
– SQL_TYP_LSTR
– SQL_TYP_BLOB_LOCATOR
– SQL_TYP_CLOB_LOCATOR
– SQL_TYP_DCLOB_LOCATOR
– SQL_TYP_BLOB_FILE
– SQL_TYP_CLOB_FILE
– SQL_TYP_DCLOB_FILE
– SQL_TYP_BLOB_FILE_OBSOLETE
– SQL_TYP_CLOB_FILE_OBSOLETE
– SQL_TYP_DCLOB_FILE_OBSOLETE
If these data types are encountered, an SQLCODE -804, SQLSTATE 07002
error is returned.

Note: The data type and length of the input host variable must match
the internal data type and length of the corresponding element exactly.
For host variables, this requirement will always be met. However, for
parameter markers, care must be taken to ensure that matching data
types are used. The CHECK option can be used to ensure that the data
types and lengths match for all input host variables, but this option
negates most of the performance improvements.

Note: DB2_TRUSTED_BINDIN is deprecated and will be removed in a later
release.

DB2_USE_ALTERNATE_PAGE_CLEANING

v Operating system: All
v Default: Not set, Values: ON or OFF

v This variable specifies whether a DB2 database uses the alternate
method of page cleaning algorithms or the default method of page
cleaning. When this variable is set to ON, the DB2 system writes changed
pages to disk, keeping ahead of LSN_GAP and proactively finding
victims. Doing this allows the page cleaners to better utilize available

492 Database Administration Concepts and Configuration Reference

disk I/O bandwidth. When this variable is set to ON, the chngpgs_thresh
database configuration parameter is no longer relevant because it does
not control page cleaner activity.

DB2_USE_FAST_PREALLOCATION

v Operating system: AIX, Linux and Solaris on VeritasVxFS, JFS2, XFS or
GPFS file systems

v Default: ON for Veritas VxFS, JFS2 and GPFS, OFF for XFS, Values: ON or
OFF

v Allows the fast preallocation file system feature to reserve table space,
and speed up the process of creating or altering large table spaces and
database restore operations. This speed improvement is implemented at
a small delta cost of performing actual space allocation during runtime
when rows are inserted.
To disable fast preallocation, set DB2_USE_FAST_PREALLOCATION to OFF.
This might improve runtime performance, at the cost of slower table
space creation and database restore times, on some operating systems,
especially AIX, when there is a large volume of inserts and selects on
same table space. Any change in this setting applies to new increases in
tablespace file size or new files only. If you want to disable fast
preallocation and avoid having leftover preallocated space from previous
increases or additions, you need to perform a restore of that tablespace.

DB2_USE_IOCP

v Operating system: AIX 5.3 TL9 SP2, AIX 6.1 TL2, or AIX 7.1 or later.
v Default: ON, Values: OFF or ON

v Configure IOCP before enabling this registry variable.
This variable enables the use of AIX I/O completion ports (IOCP) when
submitting and collecting asynchronous I/O (AIO) requests. This feature
is used to enhance performance in a non-uniform memory access
(NUMA) environment by avoiding remote memory access.

Miscellaneous variables
DB2ADMINSERVER

v Operating system: Windows and UNIX
v Default: NULL
v Specifies the DB2 Administration Server.

DB2_ATS_ENABLE

v Operating system: All
v Default: NULL, Values: YES/TRUE/ON/1 or NO/FALSE/OFF/0
v This variable controls whether the administrative task scheduler is

running. The administrative task scheduler is disabled by default. When
the scheduler is disabled, you can use the built-in procedures and views
to define and modify tasks but the scheduler will not execute the tasks.

DB2AUTH

v Operating system: All
v Default: Not set. Values: DISABLE_CHGPASS, OSAUTHDB,

SQLADM_NO_RUNSTATS_REORG, TRUSTEDCLIENT_SRVRENC,
TRUSTEDCLIENT_DATAENC

v This variable allows you to tune the behavior of user authentication.

Chapter 20. Registry and environment variables 493

– DISABLE_CHGPASS: This value disables the ability to change the
password from the client.

– OSAUTHDB: This value instructs the DB2 database manager to use the
authentication and group setting for a user on the AIX operating
system. Starting with Fix Pack 1, transparent LDAP support has also
been extended to the Linux, HP-UX and Solaris operating systems.
The LDAP server can be any one of the following:
- IBM Tivoli Directory Server (ITDS)
- Microsoft Active Directory (MSAD)
- Sun One Directory Server

– SQLADM_NO_RUNSTATS_REORG: This value, introduced in Fix Pack 5,
disables the ability of users with SQLADM authority to perform a
reorg or runstats operation.

– TRUSTEDCLIENT_SRVRENC: This value forces untrusted clients to use
SERVER_ENCRYPT. This value is not applicable to a DB2 Connect
gateway.

– TRUSTEDCLIENT_DATAENC: This value forces untrusted clients to use
DATA_ENCRYPT. This value is not applicable to a DB2 Connect gateway.

DB2CLIINIPATH

v Operating system: All
v Default: NULL
v Used to override the default path of the CLI/ODBC configuration file

(db2cli.ini) and specify a different location on the client. The value
specified must be a valid path on the client system.

DB2_COMMIT_ON_EXIT

v Operating system: UNIX
v Default: OFF, Values: OFF/NO/0 or ON/YES/1
v On UNIX operating systems, prior to DB2 UDB Version 8, DB2

committed any remaining in-flight transactions on successful application
exit. In DB2 UDB Version 8, the behavior was changed so that in-flight
transactions were rolled back on exit. This registry variable allows users
with embedded SQL applications which depend on the earlier behavior
to continue to enable it in DB2 Version 9. This registry variable does not
affect JDBC, CLI, and ODBC applications.
Note that this registry variable is deprecated, and the commit-on-exit
behavior will no longer be supported in future release. Users should
determine whether any of their applications developed prior to DB2
Version 9 continue to depend on this functionality, and add the
appropriate explicit COMMIT or ROLLBACK statements to the
application as required. If the registry variable is turned on, care should
be taken not to implement new applications which fail to explicitly
COMMIT before exit.
Most users should leave this registry variable at the default setting.

DB2_COMMON_APP_DATA_PATH

v Operating system: Windows
v Default: Windows' common application data path.

– For Windows XP and Windows 2003 operating systems: C:\Documents
and Settings\All Users\Application Data\

– For Windows Vista and later operating systems: C:\ProgramData\

494 Database Administration Concepts and Configuration Reference

v Points to user-defined location that holds the DB2 common application
data for the DB2 copy. This registry variable is populated if
DB2_COMMON_APP_DATA_TOP_PATH is specified during the response file
installation or if “DB2 Common Application Data Top Path” field is
populated during the custom installation step.
Starting in V9.7 Fix Pack 5, this registry variable is visible in db2set
command output but is not changeable. Any attempts to change given
registry value will result in DBI1301E Invalid value error.

DB2_COMPATIBILITY_VECTOR

v Operating system: All
v Default: NULL, Values: NULL or 00 to FFF

v The DB2_COMPATIBILITY_VECTOR registry variable is used to enable one or
more DB2 compatibility features introduced since DB2Version 9.5. These
features ease the task of migrating applications written for other
relational database vendors to DB2Version 9.5 or later.

v DB2_COMPATIBILITY_VECTOR is represented as a hexadecimal value, and
each bit in the variable enables one of the DB2 compatibility features as
outlined in the DB2_COMPATIBILITY_VECTOR values table. To enable
all of the supported compatibility features, set the registry variable to the
value ORA (which is equivalent to the hexadecimal value FFF). This is
the recommended setting.

DB2CONNECT_DISCONNECT_ON_INTERRUPT

v Operating system: All
v Default: NO, Values: YES/TRUE/1 or NO/FALSE/0
v When set to YES (TRUE or 1), this variable specifies that the connection to

a Version 8 (or higher) DB2 Universal Database z/OS server should be
broken immediately when an interrupt occurs. You can use this variable
in the following configurations:
– If you are running a DB2 client with a Version 8 (or higher) DB2 UDB

z/OS server, set DB2CONNECT_DISCONNECT_ON_INTERRUPT to YES on the
client.

– If you are running a DB2 client through a DB2 Connect gateway to a
Version 8 (or higher) DB2 UDB z/OS server, set
DB2CONNECT_DISCONNECT_ON_INTERRUPT to YES on the gateway.

DB2_CREATE_DB_ON_PATH

v Operating system: Windows
v Default: NULL, Values: YES or NO

v Set this registry variable to YES to enable support for the use of a path
(as well as a drive) as a database path. The setting of
DB2_CREATE_DB_ON_PATH is checked when a database is created, when the
database manager configuration parameter dftdbpath is set, and when a
database is restored. The fully qualified database path can be up to 215
characters in length.
If DB2_CREATE_DB_ON_PATH is not set (or is set to NO) and you specify a
path for the database path when creating or restoring a database, error
SQL1052N is returned.
If DB2_CREATE_DB_ON_PATH is not set (or is set to NO) and you update the
dftdbpath database manager configuration parameter, error SQL5136N is
returned.

Chapter 20. Registry and environment variables 495

CAUTION:
If path support is used to create new databases, applications written
prior to DB2 Version 9.1 using the db2DbDirGetNextEntry() API or an
older version of it, might not work correctly. Please refer to
http://www.ibm.com/software/data/db2/support/db2_9/ for details on
various scenarios and the proper course of action.

DB2_DDL_SOFT_INVAL

v Operating system: All
v Default: ON, Values: ON or OFF

v Enables soft invalidation of applicable database objects when they are
dropped or altered.
When DB2_DDL_SOFT_INVAL is set to ON, any DDL operation, such as drop,
alter, or detach, can start without waiting for transactions referencing the
same objects to finish. Current executions dependant on the objects will
continue with the original object definition, while new executions will
utilize the changed object. This allows for better concurrency when
issuing DDL statements.

Note: The new soft invalidation capabilities only apply to dynamic
packages. Any objects with static packages will still require a hard
invalidation.

DB2DEFPREP

v Operating system: All
v Default: NO, Values: ALL, YES, or NO

v Simulates the runtime behavior of the DEFERRED_PREPARE precompile
option for applications that were precompiled before this option was
available. For example, if a DB2 v2.1.1 or earlier application were run in
a DB2 v2.1.2 or later environment, DB2DEFPREP could be used to indicate
the desired “deferred prepare” behavior.

Note: DB2DEFPREP is deprecated and will be removed in a future release.
This variable is only needed by users using old versions of DB2 where the
DEFERRED_PREPARE precompile option is not available.

DB2_DISABLE_FLUSH_LOG

v Operating system: All
v Default: OFF, Values: ON or OFF

v Specifies whether to disable closing the active log file when the online
backup is completed.
When an online backup completes, the last active log file is truncated,
closed, and made available to be archived. This ensures that your online
backup has a complete set of archived logs available for recovery. You
might want to disable closing the last active log file if you are concerned
that you are wasting portions of the Log Sequence Number (LSN) space.
Each time an active log file is truncated, the LSN is incremented by an
amount proportional to the space truncated. If you perform a large
number of online backups each day, you might disable closing the last
active log file.
You might also want to disable closing the last active log file if you find
you are receiving log full messages a short time after the completion of
the online backup. When a log file is truncated, the reserved active log
space is incremented by the amount proportional to the size of the

496 Database Administration Concepts and Configuration Reference

http://www.ibm.com/software/data/db2/support/db2_9/

truncated log. The active log space is freed once the truncated log file is
reclaimed. The reclamation occurs a short time after the log file becomes
inactive. During the short interval between these two events, you may
receive log full messages.
During any backup which includes logs, this registry variable is ignored,
since the active log file must be truncated and closed in order for the
backup to include the logs.

DB2_DISPATCHER_PEEKTIMEOUT

v Operating system: All
v Default: 1, Values: 0 to 32767 seconds; 0 denotes that timeout is

immediate
v DB2_DISPATCHER_PEEKTIMEOUT allows you to adjust the time, in seconds,

that a dispatcher waits for a client's connection request before handing
the client off to an agent. In most cases, you should not need to adjust
this registry variable. This registry variable only affects instances that
have DB2 Connect connection concentrator enabled.
This registry variable and the DB2_SERVER_CONTIMEOUT registry variable
both configure the handling of a new client during connect time. If there
are many slow clients connecting to an instance, the dispatcher may be
held up for up to 1 second to timeout each client, causing the dispatcher
to become a bottle neck, if many clients are connecting simultaneously. If
an instance with multiple active databases is experiencing very slow
connection times, DB2_DISPATCHER_PEEKTIMEOUT may be lowered to 0.
Lowering DB2_DISPATCHER_PEEKTIMEOUT causes the dispatcher to only
look into the client's connect request if it is already there; the dispatcher
will not wait for the connect request to arrive. If an invalid value is set,
the default value is used. This registry variable is not dynamic.

DB2_DJ_INI

v Operating system: All
v Default:

– UNIX: db2_instance_directory/cfg/db2dj.ini
– Windows: db2_install_directory\cfg\db2dj.ini

v Specifies the absolute path name of the federation configuration file, for
example: db2set DB2_DJ_INI=$HOME/sqllib/cfg/my_db2dj.ini This file
contains the settings for data source environment variables. These
environment variables are used by the Informix® wrapper and by the
wrappers provided by InfoSphere® Federation Server.
Here is a sample federation configuration file:
INFORMIXDIR=/informix/client_sdk
INFORMIXSERVER=inf93
ORACLE_HOME=/usr/oracle9i
SYBASE=/sybase/V12
SYBASE_OCS=OCS-12_5

The following restrictions apply to the db2dj.ini file:
– Entries must follow the format evname=value where evname is the

name of the environment variable and value is its value.
– The environment variable name has a maximum length of 255 bytes.
– The environment variable value has a maximum length of 765 bytes.
This variable is ignored unless the database manager parameter
federated is set to YES.

Chapter 20. Registry and environment variables 497

DB2DMNBCKCTLR

v Operating system: Windows
v Default: NULL, Values: ? or a domain name
v If you know the name of the domain for which the DB2 server is the

backup domain controller, set DB2DMNBCKCTLR=DOMAIN_NAME. The
DOMAIN_NAME must be in upper case. To have DB2 determine the
domain for which the local machine is a backup domain controller, set
DB2DMNBCKCTLR=?. If the DB2DMNBCKCTLR profile variable is not set or is set
to blank, DB2 performs authentication at the primary domain controller.

Note: DB2 does not use an existing backup domain controller by default
because a backup domain controller can get out of synchronization with
the primary domain controller, causing a security exposure. Getting out
of synchronization can occur when the primary domain controller's
security database is updated but the changes are not propagated to a
backup domain controller. This could occur if there are network latencies
or if the computer browser service is not operational.

Note: DB2DMNBCKCTLR is deprecated and will be removed in a later release.
This variable is no longer necessary because there are no more backup
domain controllers in the Active Directory.

DB2_DOCHOST

v Operating system: All
v Default: Not set (but DB2 will still try to access the Information Center

from the IBM Web site at publib.boulder.ibm.com/infocenter/db2luw/
v9r7), Values: http://hostname where hostname= valid host name or IP
address

v Specifies the host name on which the DB2 Information Center is installed.
This variable can be automatically set during the installation of the DB2
Information Center if the automatic configuration option is selected in the
DB2 Setup wizard.

DB2_DOCPORT

v Operating system: All
v Default: NULL, Values: any valid port number
v Specifies the port number through which the DB2 help system serves the

DB2 documentation. This variable can be automatically set during the
installation of the DB2 Information Center if the automatic configuration
option is selected in the DB2 Setup wizard.

DB2DSDRIVER_CFG_PATH

v Operating system: All
v Default: NULL
v Used to override the default path of the db2dsdriver.cfg configuration

file. For more information, see the Related reference section.

DB2DSDRIVER_CLIENT_HOSTNAME

v Operating system: All
v Default: NULL
v Used to override the default client host name of the (db2dsdriver.cfg)

configuration file. This variable forces CLI to pick the client host name
entry from the automatic client reroute section of db2dsdriver.cfg file.

DB2_ENABLE_AUTOCONFIG_DEFAULT

498 Database Administration Concepts and Configuration Reference

v Operating system: All
v Default: NULL, Values: YES or NO

v This variable controls whether the Configuration Advisor is run
automatically at database creation. If DB2_ENABLE_AUTOCONFIG_DEFAULT is
not set (null), the effect is the same as if the variable was set to YES and
the Configuration Advisor is run at database creation. You do not need
to restart the instance after you set this variable. If you execute the
AUTOCONFIGURE command or run CREATE DB AUTOCONFIGURE, these
commands override the setting of DB2_ENABLE_AUTOCONFIG_DEFAULT.

DB2_ENABLE_LDAP

v Operating system: All
v Default: NO, Values: YES or NO

v Specifies whether or not the Lightweight Directory Access Protocol
(LDAP) is used. LDAP is an access method to directory services.

DB2_EVMON_EVENT_LIST_SIZE

v Operating system: All
v Default: 0 (no limit), Values: A value specified in KB/Kb/kb,

MB/Mb/mb, or GB/Gb/gb; While there is no fixed upper limit for this
variable, it is limited by the amount of available memory from the
monitor heap.

v This registry variable specifies the maximum number of bytes that can
be queued up waiting to be written to a particular event monitor. Once
this limit is reached, agents attempting to send event monitor records
will wait until the queue size drops below this threshold.

Note: If activity records cannot be allocated from the monitor heap, they
will be dropped. To prevent this from happening, set the mon_heap_sz
configuration parameter to AUTOMATIC. If you have mon_heap_sz set to a
specific value, ensure that DB2_EVMON_EVENT_LIST_SIZE is set to a smaller
value. These actions, however, cannot guarantee that activity records will
not be dropped, as the monitor heap is also used for tracking other
monitor elements.

DB2_EVMON_STMT_FILTER

v Operating system: All
v Default: Not set; Values:

– ALL: Indicates that the output for all statement event monitors is to be
filtered. This option is exclusive.

– 'nameA nameB nameC': Where each name in the string represents the
name of an event monitor for which records are to be filtered. If more
than one name is supplied, each name must be separated by a single
blank. All input names will be made uppercase by DB2. The
maximum number of event monitors you can specify is 32. Each
monitor name can be up to a maximum of 18 characters long.

– 'nameA:op1,op2 nameB:op1,op2 nameC:op1': Where each name in the
string represents the name of an event monitor for which records are
to be filtered. Each option (op1, op2, etc) represents an integer value
mapping to a specific SQL operation. Specifying integer values allows
users to determine which rules to apply to which event monitor.

Chapter 20. Registry and environment variables 499

v DB2_EVMON_STMT_FILTER can be used to reduce the number of records
written by a statement event monitor. When set, this registry variable
causes only the records for the following SQL operations to be written to
the specified event monitor:

Table 68. Values to use for DB2_EVMON_STMT_FILTER to restrict event monitor output to
specific SQL operations

SQL operation Integer value mapping

SELECT 15

EXECUTE 2

EXECUTE_IMMEDIATE 3

CLOSE 6

STATIC COMMIT 8

STATIC ROLLBACK 9

CALL 12

PRE_EXEC 17

All other operations will not appear in the output of the statement event
monitor. To customize the set of operations for which records are written
to the event monitor, use integer values.
Example 1:
db2set DB2_EVMON_STMT_FILTER= ’mon1 monitor3’

In this example, mon1 and monitor3 event monitors will receive a record
for a restricted list of application requests. For example, if an application
being monitored by the mon1 statement event monitor prepares a
dynamic SQL statement, opens a cursor based on that statement, fetches
10,000 rows from that cursor, and then issues a cursor close request, only
a record for a close request will appear in the mon1 event monitor
output.
Example 2:
db2set DB2_EVMON_STMT_FILTER=’evmon1:3,8 evmon2:9,15

In this example, evmon1 and evmon2 will receive a record for a
restricted list of application requests. For example, if an application
being monitored by the evmon1 statement event monitor issues a create
statement, only the execute immediate and static commit operations will
appear in the evmon1 event monitor output. If an application being
monitored by the evmon2 statement event monitor performs SQL
involving both a select and a static rollback only these two operations
will appear in the evmon2 event monitor output.

Note: Refer to the sqlmon.h header file for definitions of database system
monitor constants.

DB2_EXTSECURITY

v Operating system: Windows
v Default: YES, Values: YES or NO

v Prevents unauthorized access to DB2 by locking by locking DB2 objects
(system files, directories, and IPC objects). To avoid potential problems,

500 Database Administration Concepts and Configuration Reference

this registry variable should not be turned off. If DB2_EXTSECURITY is not
set, its value is interpreted as YES on DB2 database sever products and
NO on clients.

DB2_FALLBACK

v Operating system: Windows
v Default: OFF, Values: ON or OFF

v This variable allows you to force all database connections off during the
fallback processing. It is used in conjunction with the failover support in
the Windows environment with Microsoft Cluster Server (MSCS). If
DB2_FALLBACK is not set or is set to OFF, and a database connection exists
during the fall back, the DB2 resource cannot be brought offline. This
will mean the fallback processing will fail.

DB2_FMP_COMM_HEAPSZ

v Operating system: Windows, UNIX
v Default: 20 MB, or enough space to run 10 fenced routines (whichever is

larger). On AIX, the default is 256 MB
v This variable specifies, in 4 KB pages, the size of the pool used for

fenced routine invocations, such as stored procedure or user-defined
function calls. The space used by each fenced routine is twice the value
of the aslheapsz configuration parameter.
If you are running a large number of fenced routines on your system,
you may need to increase the value of this variable. If you are running a
very small number of fenced routines, you can reduce it.
Setting this value to 0 means that no set is created, and as a result no
fenced routines can be invoked. It also means that the health monitor
and the automatic database maintenance functionality (such as automatic
backups, statistics collection, and REORG) will be disabled since this
functionality relies on the fenced routine infrastructure.
If you are running SAS in-database analytics (enabled by setting the
DB2_SAS_SETTINGS registry variable), the memory for connections to the
SAS embedded process (EP) will also be allocated from the FMP heap.
Similar guidelines for fenced routines apply when adjusting the heap to
accommodate connections running queries that include in-database
analytics. As a general rule, you can expect the FMP heap memory
requirements to increase by 120 KB. If, however, you have specified a
COMM_BUFFER_SZ value by setting the DB2_SAS_SETTINGS registry
variable, the FMP heap memory requirements will increase by twice the
value of COMM_BUFFER_SZ multiplied by the number of concurrent
SAS queries that you want to support.

DB2_GRP_LOOKUP

v Operating system: Windows
v Default: NULL, Values: LOCAL, DOMAIN, TOKEN, TOKENLOCAL, TOKENDOMAIN
v This variable specifies which Windows security mechanism is used to

enumerate the groups to which a user belongs.

DB2_HADR_BUF_SIZE

v Operating system: All
v Default: 2*logbufsz
v This variable specifies the standby log receiving buffer size in unit of log

pages. If not set, DB2 will use two times the primary logbufsz
configuration parameter value for the standby receiving buffer size. The

Chapter 20. Registry and environment variables 501

maximum size that can be specified is 4 GB. This variable should be set
in the standby instance. It is ignored by the primary database.
If HADR synchronization mode (the hadr_syncmode database
configuration parameter) is set to ASYNC, during peer state, a slow
standby might cause the send operation on the primary to stall and
therefore block transaction processing on the primary. A larger than
default log-receiving buffer can be configured on a standby database to
allow it to hold more unprocessed log data. This may allow for brief
periods where the primary generates log data faster than the standby
can consume it, without blocking transaction processing at the primary.

Note: A larger log receiving buffer size can help absorb peak transaction
loads on the primary database, but the buffer will still fill up if the
average replay rate on the standby database is slower than the log rate
on the primary database.

DB2_HADR_NO_IP_CHECK

v Operating system: All
v Default: OFF, Values: ON |OFF
v Specifies whether to bypass IP check for HADR connections
v This variable is primarily used in Network Address Translation (NAT)

environments to bypass IP cross check for HADR connections. Use of
this variable is not recommended in other environments because it
weakens the sanity check of the HADR configuration. By default,
configuration consistency for the local and remote host parameters is
verified when an HADR connection is established. Hostnames are
mapped to IP addresses for the cross check. Two checks are performed:
– HADR_LOCAL_HOST parameter on primary = HADR_REMOTE_HOST

parameter on standby
– HADR_REMOTE_HOST parameter on primary = HADR_LOCAL_HOST

parameter on standby

The connection will be closed if the check fails.
When this parameter is turned on, no IP check occurs.

DB2_HADR_PEER_WAIT_LIMIT

v Operating system: All
v Default: 0 (meaning no limit) Values: 0 to max unsigned 32 bit integer,

inclusive
v When the DB2_HADR_PEER_WAIT_LIMIT registry variable is set, the HADR

primary database will break out of peer state if logging on the primary
database has been blocked for the specified number of seconds because
of log replication to the standby. When this limit is reached, the primary
database will break the connection to the standby database. If the peer
window is disabled, the primary database will enter disconnected state
and logging resumes. If the peer window is enabled, the primary
database will enter disconnected peer state, in which logging continues
to be blocked. The primary database leaves disconnected peer state upon
re-connection or peer window expiration. Logging resumes once the
primary leaves disconnected peer state. This parameter has no effect on
a standby database. It is recommended that the same value be used on
both primary and standby databases though. Invalid values (not a
number or negative numbers) will be interpreted as "0", meaning no
limit. This parameter is static. Database instance needs to be restarted to
make this parameter effective.

502 Database Administration Concepts and Configuration Reference

DB2_HADR_ROS

v Operating system: All
v Default: OFF Values: OFF or ON

v This variable enables the HADR reads on standby feature. When
DB2_HADR_ROS is enabled on the HADR standby database, the standby
accepts client connections and allows read-only queries to run on it.
DB2_HADR_ROS is a static registry variable, so it requires the DB2 instance
to be restarted for a changed setting to take effect.

DB2_HADR_SORCVBUF

v Operating system: All
v Default: Operating system TCP socket receive buffer size, Values: 1024 to

4294967295

v This variable specifies the operating system (OS) TCP socket receive
buffer size for the HADR connection, which allows users to customize
the HADR TCP/IP behavior distinctly from other connections. Some
operating systems will automatically round or silently cap the user
specified value. The actual buffer size used for the HADR connection is
logged in the db2diag log files. Consult your operating system network
tuning guide for the optimal setting for this parameter based on your
network traffic. This variable should be used in conjunction with
DB2_HADR_SOSNDBUF.

DB2_HADR_SOSNDBUF

v Operating system: All
v Default: Operating system TCP socket send buffer size, Values: 1024 to

4294967295

v This variable specifies the operating system (OS) TCP socket send buffer
size for the HADR connection, which allows users to customize the
HADR TCP/IP behavior distinctly from other connections. Some
operating systems will automatically round or silently cap the user
specified value. The actual buffer size used for the HADR connection is
logged in the db2diag log files. Consult your operating system network
tuning guide for the optimal setting for this parameter based on your
network traffic. This variable should be used in conjunction with
DB2_HADR_SORCVBUF.

DB2_HISTORY_FILTER

v Operating system: All
v Default: NULL, Values: NULL, G, L, Q, T, U
v This variable specifies operations that are not to modify the history file.

You can use the DB2_HISTORY_FILTER registry variable to reduce potential
contention on the history file by filtering out operations. Specify which
operations that cannot modify the history file using a comma-separated
list (no spaces between the values):
db2set DB2_HISTORY_FILTER=T,L

Possible values for DB2_HISTORY_FILTER are:
– G: Reorg operations
– L: Load operations
– Q: Quiesce operations
– T: Alter table space operations
– U: Unload operations

Chapter 20. Registry and environment variables 503

DB2LDAP_BASEDN

v Operating system: All
v Default: NULL, Values: Any valid base distinguished domain name.
v When this is set, the LDAP objects for DB2 will be stored in the LDAP

directory under
CN=System
CN=IBM
CN=DB2

under the base distinguished name specified.
When this is set for the Microsoft Active Directory Server, ensure that
CN=DB2, CN=IBM, and CN=System are defined under this
distinguished name.

DB2LDAPCACHE

v Operating system: All
v Default: YES, Values: YES or NO

v Specifies that the LDAP cache is to be enabled. This cache is used to
catalog the database, node, and DCS directories on the local machine.
To ensure that you have the latest entries in the cache, do the following:

REFRESH LDAP IMMEDIATE ALL

This command updates and removes incorrect entries from the database
directory and the node directory.

DB2LDAP_CLIENT_PROVIDER

v Operating system: Windows
v Default: NULL (Microsoft, if available, is used; otherwise IBM is used.)

Values: IBM or Microsoft

v When running in a Windows environment, DB2 supports using either
Microsoft LDAP clients or IBM LDAP clients to access the LDAP
directory. This registry variable is used to explicitly select the LDAP
client to be used by DB2.

Note: To display the current value of this registry variable, use the
db2set command:

db2set DB2LDAP_CLIENT_PROVIDER

DB2LDAPHOST

v Operating system: All
v Default:Null, Values: base_domain_name[:port_number], or

base_domain_name:SSL:636 when using an SSL enabled LDAP host
v Specifies the host name and optional port number of the location for the

LDAP directory where base_domain_name is the TCP/IP host name, and
[:port_number] is the port number.

DB2LDAP_KEEP_CONNECTION

v Operating system: All
v Default: YES, Values: YES or NO

v Specifies whether DB2 caches its internal LDAP connection handles.
When this variable is set to NO, DB2 will not cache its LDAP connection
handles to the directory server. This will likely result in a negative
performance impact, but it might be desirable to set

504 Database Administration Concepts and Configuration Reference

DB2LDAP_KEEP_CONNECTION to NO if the number of simultaneously active
LDAP client connections to the directory server needs to be minimized.
To maximize performance, this variable is set to YES by default.
The DB2LDAP_KEEP_CONNECTION registry variable is only implemented as a
global level profile registry variable in LDAP, so you must set it by
specifying the -gl option with the db2set command as follows:
db2set -gl DB2LDAP_KEEP_CONNECTION=NO

DB2LDAP_SEARCH_SCOPE

v Operating system: All
v Default: DOMAIN, Values: LOCAL, DOMAIN, or GLOBAL

v Specifies the search scope for information found in database partitions or
domains in the Lightweight Directory Access Protocol (LDAP). LOCAL
disables searching in the LDAP directory. DOMAIN only searches in LDAP
for the current directory partition. GLOBAL searches in LDAP in all
directory partitions until the object is found.

DB2_LIMIT_FENCED_GROUP

v Operating system: Windows
v Default: NULL, Values: ON or OFF

v If you have Extended Security enabled, you can restrict the operating
system's privileges of the fenced mode process (db2fmp) to the
privileges assigned to the DB2USERS group by setting this registry
variable to ON and by adding the DB2 service account (the user name
that runs the DB2 service) to the DB2USERS group.

Note: If LocalSystem is being used as the DB2 service account, setting
DB2_LIMIT_FENCED_GROUP will have no effect.
You can grant additional operating system privileges to the db2fmp
process by adding the DB2 service account to an operating system group
that holds those additional privileges.

DB2_LOAD_COPY_NO_OVERRIDE

v Operating system: All
v Default: NONRECOVERABLE, Values: COPY YES or NONRECOVERABLE

v This variable will convert any LOAD COPY NO to either LOAD COPY YES or
NONRECOVERABLE, depending on the value of the variable. This variable is
applicable to HADR primary databases as well as to standard
(non-HADR) databases; it is ignored on an HADR standby database. On
an HADR primary database, if this variable is not set, LOAD COPY NO is
converted to LOAD NONRECOVERABLE. The value of this variable either
specifies a nonrecoverable load or the copy destination, using the same
syntax as a COPY YES clause.

DB2LOADREC

v Operating system: All
v Default: NULL
v Used to override the location of the load copy during roll forward. If the

user has changed the physical location of the load copy, DB2LOADREC
must be set before issuing the roll forward.

DB2LOCK_TO_RB

v Operating system: All
v Default: NULL, Values: STATEMENT

Chapter 20. Registry and environment variables 505

v Specifies whether lock timeouts cause the entire transaction to be rolled
back, or only the current statement. If DB2LOCK_TO_RB is set to STATEMENT,
locked timeouts cause only the current statement to be rolled back. Any
other setting results in transaction rollback.

DB2_MAP_XML_AS_CLOB_FOR_DLC

v Operating system: All
v Default: NO, Values: YES or NO

v The DB2_MAP_XML_AS_CLOB_FOR_DLC registry variable provides the ability
to override the default DESCRIBE and FETCH behavior of XML values
for clients (or DRDA Application Requestors) that do not support XML
as a data type. The default value is NO, which specifies that for these
clients a DESCRIBE of XML values will return BLOB(2GB), and a
FETCH of XML values will result in an implicit XML serialization to
BLOB that includes an XML declaration indicating an encoding of
UTF-8.
When the value is YES, a DESCRIBE of XML values will return
CLOB(2GB), and a FETCH of XML values will result in an implicit XML
serialization to CLOB that does not contain an XML declaration.

Note: DB2_MAP_XML_AS_CLOB_FOR_DLC is deprecated and will be removed in
a future release. This variable is no longer necessary because most existing
DB2 applications that access XML values do so with an XML capable
client.

DB2_MAX_LOB_BLOCK_SIZE

v Operating system: All
v Default: 0 (no limit), Values: 0 to 21487483647

v Sets the maximum amount of LOB or XML data to be returned in a
block. This is not a hard maximum; if this maximum is reached on the
server during data retrieval, the server finishes writing out the current
row before generating a reply for the command, such as FETCH, to the
client.

DB2_MEMORY_PROTECT

v Operating system: AIX with storage key support
v Default: NO, Values: NO or YES

v This registry variable enables a memory protection feature that uses
storage keys to prevent data corruption in the buffer pool caused by
invalid memory access. Memory protection works by identifying at
which times the DB2 engine threads should have access to the buffer
pool memory and at which times they should not have access. When
DB2_MEMORY_PROTECT is set to YES, any time a DB2 engine thread tries to
illegally access buffer pool memory, that engine thread traps.

Note: You will not be able to use the memory protection if
DB2_LGPAGE_BP is set to YES. Even if DB2_MEMORY_PROTECT is set to YES,
DB2 will fail to protect the buffer pool memory and disable the feature.

DB2_MIN_IDLE_RESOURCES

v Operating system: Linux
v Default: OFF, Values: OFF or ON

v This variable specifies that an activated database is to use minimal
processing resources when it is idle. This might be useful in some virtual
Linux environments (for example, zVM) where the small resource

506 Database Administration Concepts and Configuration Reference

savings can help the host virtual machine monitor schedule its CPU and
memory resources across all its virtual machines more efficiently.

DB2_NCHAR_SUPPORT

v Operating system: All
v Default: ON, Values: ON or OFF

v When this variable is set to ON (the default), the NCHAR, NVARCHAR
and NCLOB spellings for the graphic data types are available for use in
Unicode databases. Various national character related functions such as
NCHAR() and TO_NCHAR() are also available.
This variable should only be set to OFF if an existing database has user
defined types named NCHAR, NVARCHAR, or NCLOB.

Note: The DB2_NCHAR_SUPPORT registry variable may be removed in a
future release, at which point you will not be able to have any user
defined types named NCHAR, NVARCHAR or NCLOB in the database.

DB2NOEXITLIST

v Operating system: All
v Default: OFF, Values: ON or OFF

v This variable indicates that DB2 should not load an exit list handler and
that it should not perform a commit when the application exits,
regardless of the setting of the DB2_COMMIT_ON_EXIT registry variable.
When DB2NOEXITLIST is turned off and DB2_COMMIT_ON_EXIT is turned on,
any in-flight transactions for embedded SQL applications are
automatically committed. It is recommended to explicitly add COMMIT
or ROLLBACK statements when an application exits.
Applications that dynamically load and unload the DB2 library before
the application terminates might crash when calling the DB2 exit
handler. This crash might happen because the application attempts to
call a function that does not exist in memory. To avoid this situation, set
the DB2NOEXITLIST registry variable.

DB2_NUM_CKPW_DAEMONS

v Operating system: UNIX
v Default: 3, Values: 1[:FORK] to 100[:FORK]

v You can use the DB2_NUM_CKPW_DAEMONS registry variable to start a
configurable number of check password daemons. The daemons are
created during db2start and handle check password requests when the
default IBMOSauthserver security plugin is in use. Increasing the setting
for DB2_NUM_CKPW_DAEMONS can decrease the time required to establish a
database connection, but this is only effective in scenarios where many
connections are being made simultaneously and where authentication is
expensive.
DB2_NUM_CKPW_DAEMONS can be set to a value between 1 and 100. The
database manager will create the number of daemons specified by
DB2_NUM_CKPW_DAEMONS. Each daemon can handle check password
requests directly.
An optional FORK parameter can be added to enable the check password
daemons to explicitly spawn an external check password program
(db2ckpw) to handle check password requests. This is similar to setting
DB2_NUM_CKPW_DAEMONS to zero in previous releases. In FORK mode, each

Chapter 20. Registry and environment variables 507

check password daemon will spawn the check password program for
each request to check a password. The daemons in FORK mode are
started as the instance owner.
If DB2_NUM_CKPW_DAEMONS is set to zero, the effective value is set to
3:FORK, where 3 check password daemons are started in FORK mode.

DB2_OPTSTATS_LOG

v Operating system: All
v Default: Not set (see details below), Values: OFF, ON {NUM | SIZE | NAME |

DIR}
v DB2_OPTSTATS_LOG specifies the attributes of the statistics event logging

files which are used to monitor and analyze statistics collection related
activities. When DB2_OPTSTATS_LOG is not set or set to ON, statistics event
logging is enabled, allowing you to monitor system performance and
keep a history for better problem determination. Log records are written
to the first log file until it is full. Subsequent records are written to the
next available log file. If the maximum number of files is reached, the
oldest log file will be overwritten with the new records. If system
resource consumption is of great concern to you, disable this registry
variable by setting it to OFF.

When statistics event logging is explicitly enabled (set to ON), there are a
number of options you can modify:
v NUM: the maximum number of rotating log files. Default: 5, Values 1 - 15
v SIZE: the maximum size of rotating log files. (The size of each rotating

file is SIZE/NUM.) Default: 100 Mb, Values 1 Mb – 4096 Mb
v NAME: the base name for rotating log files. Default:

db2optstats.number.log, for instance db2optstats.0.log,
db2optstats.1.log, etc.

v DIR: the base directory for rotating log files. Default: diagpath/events

You can specify a value for as many of these options as you want, just
ensure that ON is the first value when you want to enable statistics logging.
For instance, to enable statistics logging with maximum of 6 log files, a
maximum file size of 25 Mb, a base file name of mystatslog, and the
directory mystats, issue the following command:
db2set DB2_OPTSTATS_LOG=ON,NUM=6,SIZE=25,NAME=mystatslog,DIR=mystats

DB2REMOTEPREG

v Operating system: Windows
v Default: NULL, Values: Any valid Windows machine name
v Specifies the remote machine name that contains the Win32 registry list

of DB2 instance profiles and DB2 instances. The value for DB2REMOTEPREG
should only be set once after DB2 is installed, and should not be
modified. Use this variable with extreme caution.

DB2_RESOLVE_CALL_CONFLICT

v Operating system: AIX, HP-UX, Solaris, Linux, Windows
v Default: YES, Values: YES, NO
v Eliminates SQLCODE -746 errors in the context of triggers. When issuing

a CALL statement in a trigger, an SQLCODE SQL0746 may be issued at
runtime. The SQL0746 error prevents procedures called by a trigger from
accessing tables that have been previously modified within the context
of the invoking statement. With this variable set, the DB2 database

508 Database Administration Concepts and Configuration Reference

manager enforces that all modifications to tables are completed in
compliance with the SQL Standard rules for triggers before executing the
CALL statement.
You must stop the instance before you reset DB2_RESOLVE_CALL_CONFLICT
and then restart it. Then rebind any packages which cause invocation of
triggers. To rebind SQL Procedures use: CALL
SYSPROC.REBIND_ROUTINE_PACKAGE
('P','procedureschema.procedurename','CONSERVATIVE');
You need to be aware that DB2_RESOLVE_CALL_CONFLICT can have a
performance impact. Setting DB2_RESOLVE_CALL_CONFLICT to YES causes
the DB2 database manager to resolve all potential read and write
conflicts through the injection of temporary tables, as needed. Typically,
the impact is small because at most one temporary table is injected. This
has a small effect in an OLTP environment because only one (or a small
number of) rows are being modified by the triggering statement.
Typically, when following the general recommendation to use SMS
(system managed space) for temporary table spaces, the performance
impact from setting DB2_RESOLVE_CALL_CONFLICT is expected to be low.

DB2ROUTINE_DEBUG

v Operating system: AIX and Windows
v Default: OFF, Values: ON or OFF

v Specifies whether to enable the debug capability for Java stored
procedures. If you are not debugging Java stored procedures, use the
default, OFF. There is a performance impact to enable debugging.

Note: DB2ROUTINE_DEBUG is deprecated and will be removed in a future
release. This stored procedure debugger has been replaced by the Unified
Debugger.

DB2_SAS_SETTINGS

v Operating system: All
v Default: Not set. Values: ENABLE_SAS_EP, LIBRARY_PATH, COMM_BUFFER_SZ,

COMM_TIMEOUT, RESTART_RETRIES, DIAGPATH, DIAGLEVEL
v This variable is the primary point of configuration for in-database

analytics with the SAS embedded process (EP). All settings except for
ENABLE_SAS_EP are configurable online.
– ENABLE_SAS_EP (default: FALSE). If set to TRUE, the SAS EP starts

automatically at db2start time.
– LIBRARY_PATH. The fully qualified path from which to load the SAS

EP library the next time that the SAS EP process starts. If a path is
not specified, the DB2 database manager looks for the SAS EP library
under the sqllib/function/sas directory. For security reasons, the
SAS EP library should be installed in a location where unauthorized
users will not be able to modify or replace the file. Choose one of the
following options:
- Ensure that the library path and the SAS EP library file are

owned—and can be written to—only by the instance owner.
- Place the file in a directory (such as sqllib/function) that has the

sticky bit set.

Note that only a user with SYSADM authority can configure the
library path using db2set.

Chapter 20. Registry and environment variables 509

– COMM_BUFFER_SZ. An integer value specifying the amount of
shared memory buffer (in 4 KB pages) to use for communication
sessions between the DB2 data server and the SAS EP. The valid
range of values for this parameter is 1 to 32767. If a value is not
specified, the default is 15. Communications buffers are allocated
from the FMP communications heap. For more information, see
DB2_FMP_COMM_HEAPSZ.

– COMM_TIMEOUT (default: 300 seconds). A timeout value that the
DB2 database manager uses to determine whether the SAS EP should
be considered unresponsive when exchanging control messages. If
this value is reached, the database manager kills the SAS EP so that it
can be spawned again.

– RESTART_RETRIES (default: 10). An integer value specifying the
number of times that the DB2 database manager should attempt to
respawn the SAS EP after detecting that it has terminated abnormally.
The valid range of values for this parameter is 0 to 100. After the
retry count has been reached, the database manager waits for 15
minutes before attempting the operation again.

– DIAGPATH. A fully qualified path specifying the location of
diagnostic logs for the SAS EP. If a value is not specified, the default
is the value of the diagpath database manager configuration
parameter.

– DIAGLEVEL. An integer value specifying the minimum severity level
of messages that are captured in the SAS diagnostic logs. The valid
range of values for this parameter is 1 to 4 (severe, error, warning,
and informational). If a value is not specified, the default is the value
of the diaglevel database manager configuration parameter.

– MEMSIZE. An integer value specifying the maximum amount of
memory (in 4 KB pages) that the SAS EP can consume on a given
host. The valid range of values for this parameter is 1 to 4294967295.
If there are multiple logical partitions, the value that is applied to
each partition will be divided by the number of logical partitions on
the corresponding host. If a value is not specified, the default is 20%
of the value of the instance_memory database manager configuration
parameter. If the instance_memory parameter is set to a fixed value,
ensure that this value takes the additional memory requirements for
the SAS EP into account.

Example:
db2set DB2_SAS_SETTINGS="ENABLE_SAS_EP:TRUE;

LIBRARY_PATH:/home/instowner/sqllib/function/sas"

DB2SATELLITEID

v Operating system: All
v Default: NULL, Values: a valid satellite ID declared in the Satellite Control

Database
v Specifies the satellite ID that is passed to the satellite control server

when a satellite synchronizes. If a value is not specified for this variable,
the logon ID is used as the satellite ID.

DB2_SERVER_CONTIMEOUT

v Operating system: All
v Default: 180, Values: 0 to 32767 seconds
v This registry variable and the DB2_DISPATCHER_PEEKTIMEOUT registry

variable both configure the handling of a new client during connect

510 Database Administration Concepts and Configuration Reference

time. DB2_SERVER_CONTIMEOUT allows you to adjust the time, in seconds,
that an agent waits for a client's connection request before terminating
the connection. In most cases, you should not need to adjust this registry
variable, but if DB2 clients are constantly being timed out by the server
at connect time, you can set a higher value for DB2_SERVER_CONTIMEOUT to
extend the timeout period. If an invalid value is set, the default value is
used. This registry variable is not dynamic.

DB2_SERVER_ENCALG

v Operating system: All
v Default: NULL, Values: AES_CMP or AES_ONLY

v

Note: DB2_SERVER_ENCALG is deprecated in Version 9.7 and might be
removed in a future release.
If the DB2_SERVER_ENCALG registry variable is set when you upgrade your
instances to DB2 Version 9.7, the alternate_auth_enc configuration
parameter is set to AES_ONLY or AES_CMP according to the setting of
DB2_SERVER_ENCALG. Thereafter, to specify the encryption algorithm for
encrypting user IDs and passwords, update the alternate_auth_enc
configuration parameter. If the alternate_auth_enc configuration
parameter is set, its value takes precedence over the DB2_SERVER_ENCALG
registry variable value.

DB2SORT

v Operating system: All, server only
v Default: NULL
v This variable specifies the location of a library to be loaded at runtime

by the load utility. The library contains the entry point for functions
used in sorting indexing data. Use DB2SORT to exploit vendor-supplied
sorting products for use with the load utility in generating table indexes.
The path supplied must be relative to the database server.

DB2_STANDBY_ISO

v Operating system: All
v Default: NULL, Values: UR or OFF

v This variable coerces the isolation level requested by applications and
statements running on an active HADR standby database to
Uncommitted Read (UR). When DB2_STANDBY_ISO is set to UR, isolation
levels higher than UR are coerced to UR with no warning returned. If
the HADR standby takes over as the HADR primary, this variable will
have no effect.

DB2STMM

v Operating system: UNIX
v The registry variable, available starting Version 9.7 Fix Pack 5, controls a

set of parameters which allow you to modify certain characteristics of
the self tuning memory manager (STMM).

v Parameters:

GLOBAL_BENEFIT_SEGMENT_COMPATIBLE

– Default: Not set, Values: YES, NO
– The GLOBAL_BENEFIT_SEGMENT_COMPATIBLE parameter only has a

functional impact if the database_memory configuration parameter
is set to AUTOMATIC for a database.

Chapter 20. Registry and environment variables 511

This parameter influences the permission settings of the STMM
shared memory segment. It should only be set to YES on systems
with multiple instances, where some of the instances are
downlevel and have database_memory set to AUTOMATIC, in order to
mitigate downlevel compatibility issues that impact the tuning of
a database's overall database memory usage. A downlevel
instance would be an instance belonging to any of the following
DB2 releases and fix pack levels: DB2 V9.1 at all fix pack levels,
DB2 V9.5 fix pack 7 and earlier, and DB2 V9.7 fix pack 4 and
earlier.
For instances that are non-root DB2 installations, you should set
this variable only if you want all instances on the system make
use of the same STMM shared memory segment. Leaving this
variable unset or set to NO will cause a non-root instance to use its
own instance-specific STMM shared memory segment, which may
impact the tuning of overall database memory usage for any
databases with database_memory set to AUTOMATIC.
This registry variable is read once, during the DB2 instance
startup. Note that you need to set this parameter across all the
upgraded (that is, non-downlevel) instances and once set, you
need to restart all upgraded instances.

GLOBAL_BENEFIT_SEGMENT_UNIQUE

– Default: Not set, Values: YES, NO
– The GLOBAL_BENEFIT_SEGMENT_UNIQUE parameter only has a

functional impact if the database_memory configuration parameter
is set to AUTOMATIC for a database.
This parameter specifies that each upgraded (that is,
non-downlevel) instance is to make use of its own
instance-specific STMM shared memory segment. The means that
each instance tunes overall database memory usage for any of the
databases belonging to it, independent of the tuning of overall
database memory usage of databases belonging to the other
instances on the system.
You should only consider setting this parameter to YES if the
instance_memory configuration parameter is not set to AUTOMATIC
for all instances on a system.
This registry variable is read once, during the DB2 instance
startup. Note that this parameter needs to be set across all the
upgraded instances and, once set, it requires that you restart all
upgraded instances.

DB2_TRUNCATE_REUSESTORAGE

v Operating system: All
v Default: NULL (not set), Values: IMPORT, import
v You can use this variable to resolve lock contention between the IMPORT

with REPLACE command and the BACKUP ... ONLINE command. In some
situations, online backup and truncate operations are unable to execute
concurrently. When this occurs, you can set DB2_TRUNCATE_REUSESTORAGE
to IMPORT or import, and physical truncation of the object, including
data, indexes, long fields, large objects and block maps (for
multidimensional clustering tables), is skipped and only logical

512 Database Administration Concepts and Configuration Reference

truncation is performed. That is, the IMPORT with REPLACE command
empties the table, causing the object's logical size to decrease, but the
storage on disk remains allocated.
This registry variable is dynamic; you can set it or unset it without
having to stop and start instance. You can set
DB2_TRUNCATE_REUSESTORAGE before an online backup starts and then
unset it after online backup completes. For multi-partitioned
environments, the registry variable will only be active on the nodes on
which the variable is set. DB2_TRUNCATE_REUSESTORAGE is only effective on
DMS permanent objects.
In SAP environments, when DB2_WORKLOAD=SAP is set, the default value
of this registry variable is IMPORT.

DB2_USE_DB2JCCT2_JROUTINE

v Operating system: All
v Default: Not set, Values: ON/YES/1/TRUE or OFF/NO/0/FALSE
v The default driver for Java stored procedures and user-defined functions

is the IBM Data Server Driver for JDBC and SQLJ. If you want to use the
deprecated driver DB2 JDBC Type 2 Driver for Linux, UNIX, and
Windows to serve SQL requests for Java routines, set
DB2_USE_DB2JCCT2_JROUTINE to any of OFF, NO, 0, or FALSE.

Note: DB2_USE_DB2JCCT2_JROUTINE is being deprecated in V9.7 and may be
removed in a future release.

DB2_UTIL_MSGPATH

v Operating system: All
v Default: instanceName/tmp directory
v The DB2_UTIL_MSGPATH registry variable is used in conjunction with the

SYSPROC.ADMIN_CMD procedure, the
SYSPROC.ADMIN_REMOVE_MSGS procedure, and the
SYSPROC.ADMIN_GET_MSGS UDF. It applies on the instance level.
DB2_UTIL_MSGPATH can be set to indicate a directory path on the server
where the fenced user ID can read, write and delete files. This directory
must be accessible from all coordinator partitions, and must have
sufficient space to contain utility message files.
If this path is not set, the instanceName/tmp directory is used as the
default (note that instanceName/tmp is cleaned up when DB2 is
uninstalled).
If this path is not set when the ALTOBJ procedure is run, a temporary
message file is created in the ~sqllib/tmp directory.
If this path is changed, the files that existed in the directory pointed to
by the previous setting are not automatically moved or deleted. If you
want to retrieve the contents of the messages created under the old path,
you must manually move these messages (which are prefixed with the
utility name and suffixed with the user ID) to the new directory to
which DB2_UTIL_MSGPATH points. The next utility message file is created,
read, and cleaned up in the new location.
The files under the DB2_UTIL_MSGPATH directory are utility specific, not
transaction dependent. They are not part of the backup image. The files
under the DB2_UTIL_MSGPATH directory are user managed; that means a
user can delete the message files using the
SYSPROC.ADMIN_REMOVE_UTILMSG procedure. These files are not
cleaned up by uninstalling DB2.

Chapter 20. Registry and environment variables 513

DB2_VENDOR_INI

v Operating system: AIX, HP-UX, Solaris, and Windows
v Default: NULL, Values: Any valid path and file.
v Points to a file containing all vendor-specific environment settings. The

value is read when the database manager starts.

Note: DB2_VENDOR_INI is deprecated in Version 9.5 and might be removed
in a future release. You can put the environment variable settings that it
contains into the file specified by the DB2_DJ_INI variable instead.

DB2_XBSA_LIBRARY

v Operating system: AIX, HP-UX, Solaris, and Windows
v Default: NULL, Values: Any valid path and file.
v Points to the vendor-supplied XBSA library. On AIX, the setting must

include the shared object if it is not named shr.o. HP-UX, Solaris, and
Windows do not require the shared object name. For example, to use
Legato's NetWorker Business Suite Module for DB2, the registry variable
must be set as follows:

db2set DB2_XSBA_LIBRARY="/usr/lib/libxdb2.a(bsashr10.o)"

The XBSA interface can be invoked through the BACKUP DATABASE or the
RESTORE DATABASE commands. For example:

db2 backup db sample use XBSA
db2 restore db sample use XBSA

514 Database Administration Concepts and Configuration Reference

Chapter 21. Configuration parameters

When a DB2 database instance or a database is created, a corresponding
configuration file is created with default parameter values. You can modify these
parameter values to improve performance and other characteristics of the instance
or database.

The disk space and memory allocated by the database manager on the basis of
default values of the parameters might be sufficient to meet your needs. In some
situations, however, you might not be able to achieve maximum performance using
these default values.

Configuration files contain parameters that define values such as the resources
allocated to the DB2 database products and to individual databases, and the
diagnostic level. There are two types of configuration files:
v The database manager configuration file for each DB2 instance
v The database configuration file for each individual database.

The database manager configuration file is created when a DB2 instance is created.
The parameters it contains affect system resources at the instance level,
independent of any one database that is part of that instance. Values for many of
these parameters can be changed from the system default values to improve
performance or increase capacity, depending on your system's configuration.

There is one database manager configuration file for each client installation as well.
This file contains information about the client enabler for a specific workstation. A
subset of the parameters available for a server are applicable to the client.

Database manager configuration parameters are stored in a file named db2systm.
This file is created when the instance of the database manager is created. In Linux
and UNIX environments, this file can be found in the sqllib subdirectory for the
instance of the database manager. In Windows, the default location of this file
varies from edition to edition of the Windows family of operating systems; to
verify the default directory on Windows, check the setting of the DB2INSTPROF
registry variable using the command DB2SET DB2INSTPROF. You can also change
the default instance directory by changing the DB2INSTPROF registry variable. If
the DB2INSTPROF variable is set, the file is in the instance subdirectory of the
directory specified by the DB2INSTPROF variable.

Other profile-registry variables that specify where run-time data files should go
should query the value of DB2INSTPROF. This includes the following variables:
v DB2CLINIPATH
v DIAGPATH
v SPM_LOG_PATH

Database configuration parameters are stored in a file named SQLDBCON for
databases created before Version 8.2; all database configuration parameters are
stored in a file named SQLDBCONF for databases created in Version 8.2 and later.
These files cannot be directly edited, and can only be changed or viewed via a
supplied API or by a tool which calls that API.

© Copyright IBM Corp. 1993, 2012 515

In a partitioned database environment, this file resides on a shared file system so
that all database partition servers have access to the same file. The configuration of
the database manager is the same on all database partition servers.

Most of the parameters either affect the amount of system resources that will be
allocated to a single instance of the database manager, or they configure the setup
of the database manager and the different communications subsystems based on
environmental considerations. In addition, there are other parameters that serve
informative purposes only and cannot be changed. All of these parameters have
global applicability independent of any single database stored under that instance
of the database manager.

A database configuration file is created when a database is created, and resides where
that database resides. There is one configuration file per database. Its parameters
specify, among other things, the amount of resource to be allocated to that
database. Values for many of the parameters can be changed to improve
performance or increase capacity. Different changes may be required, depending on
the type of activity in a specific database.

Configuring the DB2 database manager with configuration parameters
The disk space and memory allocated by the database manager on the basis of
default values of the parameters might be sufficient to meet your needs. In some
situations, however, you might not be able to achieve maximum performance using
these default values.

About this task

Since the default values are oriented towards machines that have relatively small
memory resources and are dedicated as database servers, you might need to
modify these values if your environment has:
v Large databases
v Large numbers of connections
v High performance requirements for a specific application
v Unique query or transaction loads or types

Equivalent
physical object

Database

Database
configuration parameters

Database manager
configuration parameters

Operating system
configuration file

System

Instance

Database
object or concept

Figure 48. Relationship between database objects and configuration files

516 Database Administration Concepts and Configuration Reference

Each transaction processing environment is unique in one or more aspects. These
differences can have a profound impact on the performance of the database
manager when using the default configuration. For this reason, you are strongly
advised to tune your configuration for your environment.

A good starting point for tuning your configuration is to use the Configuration
Advisor or the AUTOCONFIGURE command which will generate values for parameters
based on your responses to questions about workload characteristics.

Some configuration parameters can be set to AUTOMATIC, allowing the database
manager to automatically manage these parameters to reflect the current resource
requirements. To turn off the AUTOMATIC setting of a configuration parameter while
maintaining the current internal setting, use the MANUAL keyword with the UPDATE
DATABASE CONFIGURATION command. If the database manager updates the value of
these parameters, the GET DB CFG SHOW DETAIL and GET DBM CFG SHOW DETAIL
commands will show the new value.

Parameters for an individual database are stored in a configuration file named
SQLDBCONF. This file is stored along with other control files for the database in the
SQLnnnnn directory, where nnnnn is a number assigned when the database was
created. Each database has its own configuration file, and most of the parameters
in the file specify the amount of resources allocated to that database. The file also
contains descriptive information, as well as flags that indicate the status of the
database.

Attention: If you edit db2systm, SQLDBCON, or SQLDBCONF using a method other than
those provided by the database manager, you might make the database unusable.
Do not change these files using methods other than those documented and
supported by the database manager.

In a partitioned database environment, a separate SQLDBCONF file exists for each
database partition. The values in the SQLDBCONF file may be the same or different at
each database partition, but the recommendation is that in a homogeneous
environment, the configuration parameter values should be the same on all
database partitions. Typically, there could be a catalog node needing different
database configuration parameters setting, while the other data partitions have
different values again, depending on their machine types, and other information.

Note: You can update configuration parameters or see their values using IBM Data
Studio. For more information, follow the Data Studio related link.

Procedure
1. Update configuration parameters.

v Using the command line processor:
Commands to change the settings can be entered as follows:
For database manager configuration parameters:
– GET DATABASE MANAGER CONFIGURATION (or GET DBM CFG)
– UPDATE DATABASE MANAGER CONFIGURATION (or UPDATE DBM CFG)
– RESET DATABASE MANAGER CONFIGURATION (or RESET DBM CFG) to reset all

database manager parameters to their default values
– AUTOCONFIGURE

For database configuration parameters:
– GET DATABASE CONFIGURATION (or GET DB CFG)

Chapter 21. Configuration parameters 517

– UPDATE DATABASE CONFIGURATION (or UPDATE DB CFG)
– RESET DATABASE CONFIGURATION (or RESET DB CFG) to reset all database

parameters to their default values
– AUTOCONFIGURE

v Using application programming interfaces (APIs):
The APIs can be called from an application or a host-language program. Call
the following DB2 APIs to view or update configuration parameters:
– db2AutoConfig - Access the Configuration Advisor
– db2CfgGet - Get the database manager or database configuration

parameters
– db2CfgSet - Set the database manager or database configuration

parameters
v Using common SQL application programming interface (API) procedures:

You can call the common SQL API procedures from an SQL-based
application, a DB2 command line, or a command script. Call the following
procedures to view or update configuration parameters:
– GET_CONFIG - Get the database manager or database configuration

parameters
– SET_CONFIG - Set the database manager or database configuration

parameters
v Using the Configuration Assistant

The Configuration Assistant can also be used to set the database manager
configuration parameters on a client. Other parameters can be changed
online; these are called configurable online configuration parameters.

2. View updated configuration values.
For some database manager configuration parameters, the database manager
must be stopped (db2stop) and then restarted (db2start) for the new parameter
values to take effect.
For some database parameters, changes will only take effect when the database
is reactivated, or switched from offline to online. In these cases, all applications
must first disconnect from the database. (If the database was activated, or
switched from offline to online, then it must be deactivated and reactivated.)
Then, at the first new connect to the database, the changes will take effect.
If you change the setting of a configurable online database manager
configuration parameter while you are attached to an instance, the default
behavior of the UPDATE DBM CFG command will be to apply the change
immediately. If you do not want the change applied immediately, use the
DEFERRED option on the UPDATE DBM CFG command.
To change a database manager configuration parameter online:
db2 attach to instance-name
db2 update dbm cfg using parameter-name value
db2 detach

For clients, changes to the database manager configuration parameters take
effect the next time the client connects to a server.
If you change a configurable online database configuration parameter while
connected, the default behavior is to apply the change online, wherever
possible. You should note that some parameter changes might take a noticeable
amount of time to take effect due to the overhead associated with allocating
space. To change configuration parameters online from the command line
processor, a connection to the database is required. To change a database
configuration parameter online:

518 Database Administration Concepts and Configuration Reference

db2 connect to dbname
db2 update db cfg using parameter-name parameter-value
db2 connect reset

Each configurable online configuration parameter has a propagation class
associated with it. The propagation class indicates when you can expect a
change to the configuration parameter to take effect. There are four propagation
classes:
v Immediate: Parameters that change immediately upon command or API

invocation. For example, diaglevel has a propagation class of immediate.
v Statement boundary: Parameters that change on statement and

statement-like boundaries. For example, if you change the value of sortheap,
all new requests will start using the new value.

v Transaction boundary: Parameters that change on transaction boundaries.
For example, a new value for dl_expint is updated after a COMMIT
statement.

v Connection: Parameters that change on new connection to the database. For
example, a new value for dft_degree takes effect for new applications
connecting to the database.

While new parameter values might not be immediately effective, viewing the
parameter settings (using the GET DATABASE MANAGER CONFIGURATION or GET
DATABASE CONFIGURATION command) will always show the latest updates.
Viewing the parameter settings using the SHOW DETAIL clause on these
commands will show both the latest updates and the values in memory.

3. Rebind applications after updating database configuration parameters.
Changing some database configuration parameters can influence the access
plan chosen by the SQL and XQuery optimizer. After changing any of these
parameters, you should consider rebinding your applications to ensure the best
access plan is being used for your SQL and XQuery statements. Any
parameters that were modified online (for example, by using the UPDATE
DATABASE CONFIGURATION IMMEDIATE command) will cause the SQL and XQuery
optimizer to choose new access plans for new query statements. However, the
query statement cache will not be purged of existing entries. To clear the
contents of the query cache, use the FLUSH PACKAGE CACHE statement.

Note: A number of configuration parameters (for example, userexit) are
described as having acceptable values of either Yes or No, or On or Off in the
help and other DB2 documentation. To clarify, Yes should be considered
equivalent to On and No should be considered equivalent to Off.

Configuration parameters summary
The following tables list the parameters in the database manager and database
configuration files for database servers. When changing the database manager and
database configuration parameters, consider the detailed information for each
parameter. Specific operating environment information including defaults is part of
each parameter description.

Database Manager Configuration Parameter Summary

For some database manager configuration parameters, the database manager must
be stopped (db2stop) and restarted (db2start) for the new parameter values to take
effect. Other parameters can be changed online; these are called configurable online
configuration parameters. If you change the setting of a configurable online database
manager configuration parameter while you are attached to an instance, the default

Chapter 21. Configuration parameters 519

behavior of the UPDATE DBM CFG command applies the change immediately. If you
do not want the change applied immediately, use the DEFERRED option on the
UPDATE DBM CFG command.

The column “Auto” in the following table indicates whether the parameter
supports the AUTOMATIC keyword on the UPDATE DBM CFG command.

When updating a parameter to automatic, it is also possible to specify a starting
value as well as the AUTOMATIC keyword. Note that the value can mean something
different for each parameter, and in some cases it is not applicable. Before
specifying a value, read the parameter's documentation to determine what it
represents. In the following example, num_poolagents will be updated to AUTOMATIC
and the database manager will use 20 as the minimum number of idle agents to
pool:
db2 update dbm cfg using num_poolagents 20 automatic

To unset the AUTOMATIC feature, the parameter can be updated to a value or the
MANUAL keyword can be used. When a parameter is updated to MANUAL, the
parameter is no longer automatic and is set to its current value (as displayed in the
Current Value column from the GET DBM CFG SHOW DETAIL and GET DB CFG SHOW
DETAIL commands).

If a database is created by either the CREATE DATABASE command, or the sqlecrea
API, then the Configuration Advisor runs by default to update the database
configuration parameters with automatically computed values. If a database is
created by either the CREATE DATABASE command with the AUTOCONFIGURE
APPLY NONE clause added, or the sqlecrea API specifies not to run the
Configuration Advisor, then the configuration parameters are set to the default
values.

The column “Perf. Impact” provides an indication of the relative importance of
each parameter as it relates to system performance. It is impossible for this column
to apply accurately to all environments; you should view this information as a
generalization.
v High — Indicates the parameter can have a significant impact on performance.

You should consciously decide the values of these parameters, which, in some
cases, means that you will accept the default values provided.

v Medium — Indicates that the parameter can have some impact on performance.
Your specific environment and needs will determine how much tuning effort
should be focused on these parameters.

v Low — Indicates that the parameter has a less general or less significant impact
on performance.

v None — Indicates that the parameter does not directly impact performance.
Although you do not have to tune these parameters for performance
enhancement, they can be very important for other aspects of your system
configuration, such as communication support, for example.

The columns “Token”, “Token Value”, and “Data Type” provide information that
you will need when calling the db2CfgGet or the db2CfgSet API. This information
includes configuration parameter identifiers, entries for the token element in the
db2CfgParam data structure, and data types for values that are passed to the
structure.

520 Database Administration Concepts and Configuration Reference

Table 69. Configurable Database Manager Configuration Parameters

Parameter Cfg. Online Auto. Perf. Impact Token
Token
Value Data Type Additional Information

agent_stack_sz No No Low SQLF_KTN_AGENT_STACK_
SZ

61 Uint16 “agent_stack_sz - Agent stack size”
on page 536

agentpri No No High SQLF_KTN_AGENTPRI 26 Sint16 “agentpri - Priority of agents” on
page 537

alt_diagpath Yes No None SQLF_KTN_ALT_DIAGPATH 941 char [] (String) “alt_diagpath - Alternate diagnostic
data directory path” on page 539

alternate_auth_enc 6 No No Low SQLF_KTN_ALTERNATE_AUTH_
ENC

938 Uint16 “alternate_auth_enc - Alternate
encryption algorithm for incoming
connections at server configuration
parameter” on page 540

aslheapsz No No High SQLF_KTN_ASLHEAPSZ 15 Uint32 “aslheapsz - Application support
layer heap size” on page 541

audit_buf_sz No No High SQLF_KTN_AUDIT_BUF_SZ 312 Sint32 “audit_buf_sz - Audit buffer size” on
page 543

authentication1 No No Low SQLF_KTN_
AUTHENTICATION

78 Uint16 “authentication - Authentication
type” on page 543

catalog_noauth Yes No None SQLF_KTN_CATALOG_
NOAUTH

314 Uint16 “catalog_noauth - Cataloging allowed
without authority” on page 545

clnt_krb_plugin No No None SQLF_KTN_CLNT_KRB_
PLUGIN

812 char(33) “clnt_krb_plugin - Client Kerberos
plug-in” on page 545

clnt_pw_plugin No No None SQLF_KTN_CLNT_PW_
PLUGIN

811 char(33) “clnt_pw_plugin - Client
userid-password plug-in” on page
546

cluster_mgr No No None SQLF_KTN_CLUSTER_MGR 920 char(262) “cluster_mgr - Cluster manager
name” on page 546

comm_bandwidth Yes No Medium SQLF_KTN_COMM_
BANDWIDTH

307 float “comm_bandwidth -
Communications bandwidth” on
page 547

conn_elapse Yes No Medium SQLF_KTN_CONN_ELAPSE 508 Uint16 “conn_elapse - Connection elapse
time” on page 547

cpuspeed Yes No High SQLF_KTN_CPUSPEED 42 float “cpuspeed - CPU speed” on page 548

dft_account_str Yes No None SQLF_KTN_DFT_
ACCOUNT_STR

28 char(25) “dft_account_str - Default
charge-back account” on page 549

dft_monswitches

v dft_mon_bufpool

v dft_mon_lock

v dft_mon_sort

v dft_mon_stmt

v dft_mon_table

v dft_mon_ timestamp

v dft_mon_uow

Yes No Medium SQLF_KTN_DFT_
MONSWITCHES2

v SQLF_KTN_DFT_MON_
BUFPOOL

v SQLF_KTN_DFT_MON_LOCK

v SQLF_KTN_DFT_MON_SORT

v SQLF_KTN_DFT_MON_STMT

v SQLF_KTN_DFT_MON_
TABLE

v SQLF_KTN_DFT_MON_
TIMESTAMP

v SQLF_KTN_DFT_MON_
UOW

29

v 33

v 34

v 35

v 31

v 32

v 36

v 30

Uint16

v Uint16

v Uint16

v Uint16

v Uint16

v Uint16

v Uint16

v Uint16

“dft_monswitches - Default database
system monitor switches” on page
549

dftdbpath Yes No None SQLF_KTN_DFTDBPATH 27 char(215) “dftdbpath - Default database path”
on page 551

diaglevel Yes No Low SQLF_KTN_DIAGLEVEL 64 Uint16 “diaglevel - Diagnostic error capture
level” on page 551

diagpath Yes No None SQLF_KTN_DIAGPATH 65 char(215) “diagpath - Diagnostic data directory
path” on page 552

dir_cache No No Medium SQLF_KTN_DIR_CACHE 40 Uint16 “dir_cache - Directory cache support”
on page 558

discover3 No No Medium SQLF_KTN_DISCOVER 304 Uint16 “discover - Discovery mode” on page
559

discover_inst Yes No Low SQLF_KTN_DISCOVER_INST 308 Uint16 “discover_inst - Discover server
instance” on page 560

fcm_num_buffers Yes Yes Medium SQLF_KTN_FCM_NUM_
BUFFERS

503 Uint32 “fcm_num_buffers - Number of FCM
buffers” on page 560

fcm_num_ channels Yes Yes Medium SQLF_KTN_FCM_NUM_
CHANNELS

902 Uint32 “fcm_num_channels - Number of
FCM channels” on page 561

fed_noauth Yes No None SQLF_KTN_FED_NOAUTH 806 Uint16 “fed_noauth - Bypass federated
authentication” on page 562

federated Yes No Medium SQLF_KTN_FEDERATED 604 Sint16 “federated - Federated database
system support” on page 563

federated_async Yes Yes Medium SQLF_KTN_FEDERATED_
ASYNC

849 Sint32 “federated_async - Maximum
asynchronous TQs per query
configuration parameter” on page 563

fenced_pool Yes Yes Medium SQLF_KTN_FENCED_POOL 80 Sint32 “fenced_pool - Maximum number of
fenced processes” on page 564

group_plugin No No None SQLF_KTN_GROUP_PLUGIN 810 char(33) “group_plugin - Group plug-in” on
page 565

health_mon Yes No Low SQLF_KTN_HEALTH_MON 804 Uint16 “health_mon - Health monitoring” on
page 565

indexrec4 Yes No Medium SQLF_KTN_INDEXREC 20 Uint16 “indexrec - Index re-creation time” on
page 566

instance_memory Yes Yes Medium SQLF_KTN_INSTANCE_
MEMORY

803 Uint64 “instance_memory - Instance
memory” on page 568

intra_parallel No No High SQLF_KTN_INTRA_PARALLEL 306 Sint16 “intra_parallel - Enable intra-partition
parallelism” on page 570

java_heap_sz No No High SQLF_KTN_JAVA_HEAP_SZ 310 Sint32 “java_heap_sz - Maximum Java
interpreter heap size” on page 571

Chapter 21. Configuration parameters 521

Table 69. Configurable Database Manager Configuration Parameters (continued)

Parameter Cfg. Online Auto. Perf. Impact Token
Token
Value Data Type Additional Information

jdk_path No No None SQLF_KTN_JDK_PATH 311 char(255) “jdk_path - Software Developer's Kit
for Java installation path” on page
572

keepfenced No No Medium SQLF_KTN_KEEPFENCED 81 Uint16 “keepfenced - Keep fenced process”
on page 572

local_gssplugin No No None SQLF_KTN_LOCAL_
GSSPLUGIN

816 char(33) “local_gssplugin - GSS API plug-in
used for local instance level
authorization” on page 573

max_connections Yes Yes Medium SQLF_KTN_MAX_
CONNECTIONS

802 Sint32 “max_connections - Maximum
number of client connections” on
page 573

max_connretries Yes No Medium SQLF_KTN_MAX_
CONNRETRIES

509 Uint16 “max_connretries - Node connection
retries” on page 574

max_coordagents Yes Yes Medium SQLF_KTN_MAX_
COORDAGENTS

501 Sint32 “max_coordagents - Maximum
number of coordinating agents” on
page 575

max_querydegree Yes No High SQLF_KTN_MAX_
QUERYDEGREE

303 Sint32 “max_querydegree - Maximum query
degree of parallelism” on page 575

max_time_diff No No Medium SQLF_KTN_MAX_TIME_DIFF 510 Uint16 “max_time_diff - Maximum time
difference among nodes” on page 576

mon_heap_sz Yes Yes Low SQLF_KTN_MON_HEAP_SZ 79 Uint16 “mon_heap_sz - Database system
monitor heap size” on page 579

notifylevel Yes No Low SQLF_KTN_NOTIFYLEVEL 605 Sint16 “notifylevel - Notify level” on page
580

num_initagents No No Medium SQLF_KTN_NUM_
INITAGENTS

500 Uint32 “num_initagents - Initial number of
agents in pool” on page 581

num_initfenced No No Medium SQLF_KTN_NUM_
INITFENCED

601 Sint32 “num_initfenced - Initial number of
fenced processes” on page 582

num_poolagents Yes Yes High SQLF_KTN_NUM_
POOLAGENTS

502 Sint32 “num_poolagents - Agent pool size”
on page 582

numdb No No Low SQLF_KTN_NUMDB 6 Uint16 “numdb - Maximum number of
concurrently active databases
including host and System i
databases” on page 583

query_heap_sz No No Medium SQLF_KTN_QUERY_HEAP_SZ 49 Sint32 “query_heap_sz - Query heap size”
on page 584

resync_interval No No None SQLF_KTN_RESYNC_
INTERVAL

68 Uint16 “resync_interval - Transaction resync
interval” on page 585

rqrioblk No No High SQLF_KTN_RQRIOBLK 1 Uint16 “rqrioblk - Client I/O block size” on
page 586

sheapthres No No High SQLF_KTN_SHEAPTHRES 21 Uint32 “sheapthres - Sort heap threshold” on
page 587

spm_log_file_sz No No Low SQLF_KTN_SPM_LOG_FILE_
SZ

90 Sint32 “spm_log_file_sz - Sync point
manager log file size” on page 589

spm_log_path No No Medium SQLF_KTN_SPM_LOG_PATH 313 char(226) “spm_log_path - Sync point manager
log file path” on page 589

spm_max_resync No No Low SQLF_KTN_SPM_MAX_
RESYNC

91 Sint32 “spm_max_resync - Sync point
manager resync agent limit” on page
590

spm_name No No None SQLF_KTN_SPM_NAME 92 char(8) “spm_name - Sync point manager
name” on page 590

srvcon_auth No No None SQLF_KTN_SRVCON_AUTH 815 Uint16 “srvcon_auth - Authentication type
for incoming connections at the
server” on page 590

srvcon_gssplugin_ list No No None SQLF_KTN_SRVCON_
GSSPLUGIN_ LIST

814 char(256) “srvcon_gssplugin_list - List of GSS
API plug-ins for incoming
connections at the server” on page
591

srv_plugin_mode No No None SQLF_KTN_SRV_PLUGIN_
MODE

809 Uint16 “srv_plugin_mode - Server plug-in
mode” on page 592

srvcon_pw_plugin No No None SQLF_KTN_SRVCON_PW_
PLUGIN

813 char(33) “srvcon_pw_plugin -
Userid-password plug-in for
incoming connections at the server”
on page 591

ssl_svr_keydb No No None SQLF_KTN_SSL_SVR_KEYDB 930 char(1023) “ssl_svr_keydb - SSL key file path for
incoming SSL connections at the
server configuration parameter” on
page 594

ssl_svr_stash No No None SQLF_KTN_SSL_SVR_STASH 931 char(1023) “ssl_svr_stash - SSL stash file path for
incoming SSL connections at the
server configuration parameter” on
page 595

ssl_svr_label No No None SQLF_KTN_SSL_SVR_LABEL 932 char(1023) “ssl_svr_label - Label in the key file
for incoming SSL connections at the
server configuration parameter” on
page 594

ssl_svcename No No None SQLF_KTN_SSL_SVCENAME 933 char(14) “ssl_svcename - SSL service name
configuration parameter” on page 596

ssl_cipherspecs No No None SQLF_KTN_SSL_CIPHERSPECS 934 char(255) “ssl_cipherspecs - Supported cipher
specifications at the server
configuration parameter” on page 592

ssl_versions No No None SQLF_KTN_SSL_VERSIONS 935 char(255) “ssl_versions - Supported SSL
versions at the server configuration
parameter” on page 597

ssl_clnt_keydb No No None SQLF_KTN_SSL_CLNT_KEYDB 936 char(1023) “ssl_clnt_keydb - SSL key file path
for outbound SSL connections at the
client configuration parameter” on
page 593

522 Database Administration Concepts and Configuration Reference

Table 69. Configurable Database Manager Configuration Parameters (continued)

Parameter Cfg. Online Auto. Perf. Impact Token
Token
Value Data Type Additional Information

ssl_clnt_stash No No None SQLF_KTN_SSL_CLNT_STASH 937 char(1023) “ssl_clnt_stash - SSL stash file path
for outbound SSL connections at the
client configuration parameter” on
page 593

start_stop_time Yes No Low SQLF_KTN_START_STOP_
TIME

511 Uint16 “start_stop_time - Start and stop
timeout” on page 595

svcename No No None SQLF_KTN_SVCENAME 24 char(14) “svcename - TCP/IP service name”
on page 597

sysadm_group No No None SQLF_KTN_SYSADM_
GROUP

39 char(128) “sysadm_group - System
administration authority group
name” on page 598

sysctrl_group No No None SQLF_KTN_SYSCTRL_
GROUP

63 char(128) “sysctrl_group - System control
authority group name” on page 599

sysmaint_group No No None SQLF_KTN_SYSMAINT_
GROUP

62 char(128) “sysmaint_group - System
maintenance authority group name”
on page 599

sysmon_group No No None SQLF_KTN_SYSMON
GROUP

808 char(128) “sysmon_group - System monitor
authority group name” on page 600

tm_database No No None SQLF_KTN_TM_DATABASE 67 char(8) “tm_database - Transaction manager
database name” on page 600

tp_mon_name No No None SQLF_KTN_TP_MON_NAME 66 char(19) “tp_mon_name - Transaction
processor monitor name” on page 601

trust_allclnts5 No No None SQLF_KTN_TRUST_ALLCLNTS 301 Uint16 “trust_allclnts - Trust all clients” on
page 602

trust_clntauth No No None SQLF_KTN_TRUST_
CLNTAUTH

302 Uint16 “trust_clntauth - Trusted clients
authentication” on page 603

util_impact_lim Yes No High SQLF_KTN_UTIL_IMPACT_
LIM

807 Uint32 “util_impact_lim - Instance impact
policy” on page 604

Note:

1. The valid values are defined in sqlenv.h.

2.

Bit 1 (xxxx xxx1): dft_mon_uow
Bit 2 (xxxx xx1x): dft_mon_stmt
Bit 3 (xxxx x1xx): dft_mon_table
Bit 4 (xxxx 1xxx): dft_mon_buffpool
Bit 5 (xxx1 xxxx): dft_mon_lock
Bit 6 (xx1x xxxx): dft_mon_sort
Bit 7 (x1xx xxxx): dft_mon_timestamp

3. Valid values (defined in sqlutil.h):

SQLF_DSCVR_KNOWN (1)
SQLF_DSCVR_SEARCH (2)

4. Valid values (defined in sqlutil.h):

SQLF_INX_REC_SYSTEM (0)
SQLF_INX_REC_REFERENCE (1)

5. Valid values (defined in sqlutil.h):

SQLF_TRUST_ALLCLNTS_NO (0)
SQLF_TRUST_ALLCLNTS_YES (1)
SQLF_TRUST_ALLCLNTS_DRDAONLY (2)

6. Valid values (defined in sqlenv.h):

SQL_ALTERNATE_AUTH_ENC_AES (0)
SQL_ALTERNATE_AUTH_ENC_AES_CMP (1)
SQL_ALTERNATE_AUTH_ENC_NOTSPEC (255)

Table 70. Informational Database Manager Configuration Parameters

Parameter Token
Token
Value Data Type Additional Information

nodetype1 SQLF_KTN_NODETYPE 100 Uint16 “nodetype - Machine node type” on page 580

release SQLF_KTN_RELEASE 101 Uint16 “release - Configuration file release level” on page 585

Note:

1. Valid values (defined in sqlutil.h):

SQLF_NT_STANDALONE (0)
SQLF_NT_SERVER (1)
SQLF_NT_REQUESTOR (2)
SQLF_NT_STAND_REQ (3)
SQLF_NT_MPP (4)
SQLF_NT_SATELLITE (5)

Database Configuration Parameter Summary

The following table lists the parameters in the database configuration file. When
changing the database configuration parameters, consider the detailed information
for the parameter.

Chapter 21. Configuration parameters 523

For some database configuration parameters, changes only take effect when the
database is reactivated. In these cases, all applications must first disconnect from
the database. (If the database was activated, then it must be deactivated and
reactivated.) The changes take effect at the next connection to the database. Other
parameters can be changed online; these are called configurable online configuration
parameters.

Refer to the Database Manager Configuration Parameter Summary section above
for a description of the “Auto.”, “Perf. Impact”, “Token”, “Token Value”, and
“Data Type” columns.

The AUTOMATIC keyword is also supported on the UPDATE DB CFG command. In the
following example, database_memory will be updated to AUTOMATIC and the
database manager will use 20000 as a starting value when making further changes
to this parameter:
db2 update db cfg using for sample using database_memory 20000 automatic

Starting with Version 9.5, you can update and reset database configuration
parameter values across some or all partitions without having to issue the db2_all
command, or without having to update or reset each partition individually.

If a database is created by either the CREATE DATABASE command, or the sqlecrea
API, then the Configuration Advisor runs by default to update the database
configuration parameters with automatically computed values. If a database is
created by either the CREATE DATABASE command with the AUTOCONFIGURE
APPLY NONE clause added, or the sqlecrea API specifies not to run the
Configuration Advisor, then the configuration parameters are set to the default
values.

Table 71. Configurable Database Configuration Parameters

Parameter
Cfg.
Online Auto.

Perf.
Impact Token

Token
Value Data Type Additional Information

alt_collate No No None SQLF_DBTN_ALT_COLLATE 809 Uint32 “alt_collate - Alternate collating
sequence” on page 605

applheapsz Yes Yes Medium SQLF_DBTN_APPLHEAPSZ 51 Uint16 “applheapsz - Application heap
size” on page 608

appl_memory Yes Yes Medium SQLF_DBTN_APPL_MEMORY 904 Uint64 “appl_memory - Application
Memory configuration parameter”
on page 607

archretrydelay Yes No None SQLF_DBTN_
ARCHRETRYDELAY

828 Uint16 “archretrydelay - Archive retry
delay on error” on page 609

v auto_maint

v auto_db_backup

v auto_tbl_maint

v auto_runstats

v auto_stats_prof

v auto_stmt_stats

v auto_prof_upd

v auto_reorg

Yes No Medium
v SQLF_DBTN_AUTO_MAINT

v SQLF_DBTN_AUTO_DB_
BACKUP

v SQLF_DBTN_AUTO_TBL_
MAINT

v SQLF_DBTN_AUTO_
RUNSTATS

v SQLF_DBTN_AUTO_STATS_
PROF

v SQLF_DBTN_AUTO_STMT_
STATS

v SQLF_DBTN_AUTO_PROF_
UPD

v SQLF_DBTN_AUTO_REORG

v 831

v 833

v 835

v 837

v 839

v 905

v 844

v 841

Uint16 “auto_maint - Automatic
maintenance” on page 610

auto_del_rec_obj Yes No Medium SQLF_DBTN_AUTO_DEL_
REC_OBJ

912 Uint16 “auto_del_rec_obj - Automated
deletion of recovery objects
configuration parameter” on page
609

autorestart Yes No Low SQLF_DBTN_AUTO_RESTART 25 Uint16 “autorestart - Auto restart enable”
on page 613

524 Database Administration Concepts and Configuration Reference

Table 71. Configurable Database Configuration Parameters (continued)

Parameter
Cfg.
Online Auto.

Perf.
Impact Token

Token
Value Data Type Additional Information

auto_reval Yes No Medium SQLF_DBTN_AUTO_REVAL 920 Uint16 “auto_reval - Automatic
revalidation and invalidation
configuration parameter” on page
612

avg_appls Yes Yes High SQLF_DBTN_AVG_APPLS 47 Uint16 “avg_appls - Average number of
active applications” on page 613

blk_log_dsk_ful Yes No None SQLF_DBTN_BLK_LOG_DSK_
FUL

804 Uint16 “blk_log_dsk_ful - Block on log
disk full” on page 614

blocknonlogged Yes No Low SQLF_DBTN_BLOCKNONLOGGED 940 Uint16 “blocknonlogged - Block creation of
tables that allow non-logged
activity” on page 615

catalogcache_sz Yes No Medium SQLF_DBTN_
CATALOGCACHE_SZ

56 Uint32 “catalogcache_sz - Catalog cache
size” on page 615

chngpgs_thresh No No High SQLF_DBTN_CHNGPGS_
THRESH

38 Uint16 “chngpgs_thresh - Changed pages
threshold” on page 617

connect_proc Yes No None SQLF_DBTN_CONNECT_PROC 954 char(257) “connect_proc - Connect procedure
name database configuration
parameter” on page 619

cur_commit No No Medium SQLF_DBTN_CUR_COMMIT 917 Uint32 “cur_commit - Currently committed
configuration parameter” on page
620

database_memory Yes Yes Medium SQLF_DBTN_DATABASE_
MEMORY

803 Uint64 “database_memory - Database
shared memory size” on page 621

dbheap Yes Yes Medium SQLF_DBTN_DB_HEAP 58 Uint64 “dbheap - Database heap” on page
623

db_mem_thresh Yes No Low SQLF_DBTN_DB_MEM_
THRESH

849 Uint16 “db_mem_thresh - Database
memory threshold” on page 625

decflt_rounding No No None SQLF_DBTN_DECFLT_
ROUNDING

913 Uint16 “decflt_rounding - Decimal floating
point rounding configuration
parameter” on page 627

dec_to_char_fmt Yes Yes Medium SQLF_DBTN_DEC_TO_CHAR_FMT
v 0 (v95)

v 1
(NEW)

Uint16 “dec_to_char_fmt - Decimal to
character function configuration
parameter” on page 626

dft_degree Yes No High SQLF_DBTN_DFT_DEGREE 301 Sint32 “dft_degree - Default degree” on
page 628

dft_extent_sz Yes No Medium SQLF_DBTN_DFT_EXTENT_SZ 54 Uint32 “dft_extent_sz - Default extent size
of table spaces” on page 629

dft_loadrec_ses Yes No Medium SQLF_DBTN_DFT_LOADREC_
SES

42 Sint16 “dft_loadrec_ses - Default number
of load recovery sessions” on page
629

dft_mttb_types No No None SQLF_DBTN_DFT_MTTB_
TYPES

843 Uint32 “dft_mttb_types - Default
maintained table types for
optimization” on page 630

dft_prefetch_sz Yes Yes Medium SQLF_DBTN_DFT_PREFETCH_
SZ

40 Sint16 “dft_prefetch_sz - Default prefetch
size” on page 630

dft_queryopt Yes No Medium SQLF_DBTN_DFT_QUERYOPT 57 Sint32 “dft_queryopt - Default query
optimization class” on page 631

dft_refresh_age No No Medium SQLF_DBTN_DFT_REFRESH_
AGE

702 char(22) “dft_refresh_age - Default refresh
age” on page 632

dft_sqlmathwarn No No None SQLF_DBTN_DFT_
SQLMATHWARN

309 Sint16 “dft_sqlmathwarn - Continue upon
arithmetic exceptions” on page 632

discover_db Yes No Medium SQLF_DBTN_DISCOVER 308 Uint16 “discover_db - Discover database”
on page 634

dlchktime Yes No Medium SQLF_DBTN_DLCHKTIME 9 Uint32 “dlchktime - Time interval for
checking deadlock” on page 634

dyn_query_mgmt No No Low SQLF_DBTN_DYN_QUERY_
MGMT

604 Uint16 “dyn_query_mgmt - Dynamic SQL
and XQuery query management”
on page 635

enable_xmlchar Yes No None SQLF_DBTN_ENABLE_
XMLCHAR

853 Uint32 “enable_xmlchar - Enable
conversion to XML configuration
parameter” on page 635

failarchpath Yes No None SQLF_DBTN_FAILARCHPATH 826 char(243) “failarchpath - Failover log archive
path” on page 636

hadr_local_host No No None SQLF_DBTN_HADR_LOCAL_
HOST

811 char(256) “hadr_local_host - HADR local host
name” on page 637

hadr_local_svc No No None SQLF_DBTN_HADR_LOCAL_
SVC

812 char(41) “hadr_local_svc - HADR local
service name” on page 638

hadr_peer_ window No No Low (see
Note 4)

SQLF_DBTN_HADR_PEER_
WINDOW

914 Uint32 “hadr_peer_window - HADR peer
window configuration parameter”
on page 638

Chapter 21. Configuration parameters 525

Table 71. Configurable Database Configuration Parameters (continued)

Parameter
Cfg.
Online Auto.

Perf.
Impact Token

Token
Value Data Type Additional Information

hadr_remote_host No No None SQLF_DBTN_HADR_REMOTE_
HOST

813 char(256) “hadr_remote_host - HADR remote
host name” on page 639

hadr_remote_inst No No None SQLF_DBTN_HADR_REMOTE_
INST

815 char(9) “hadr_remote_inst - HADR instance
name of the remote server” on page
639

hadr_remote_svc No No None SQLF_DBTN_HADR_REMOTE_
SVC

814 char(41) “hadr_remote_svc - HADR remote
service name” on page 639

hadr_syncmode No No None SQLF_DBTN_HADR_
SYNCMODE

817 Uint32 “hadr_syncmode - HADR
synchronization mode for log write
in peer state” on page 640

hadr_timeout No No None SQLF_DBTN_HADR_TIMEOUT 816 Uint32 “hadr_timeout - HADR timeout
value” on page 641

indexrec2 Yes No Medium SQLF_DBTN_INDEXREC 30 Uint16 “indexrec - Index re-creation time”
on page 566

locklist Yes Yes High
when it
affects
escala-
tion

SQLF_DBTN_LOCK_LIST 704 Uint64 “locklist - Maximum storage for
lock list” on page 644

locktimeout No No Medium SQLF_DBTN_LOCKTIMEOUT 34 Sint16 “locktimeout - Lock timeout” on
page 647

logarchmeth1 Yes No None SQLF_DBTN_
LOGARCHMETH1

822 char(252) “logarchmeth1 - Primary log
archive method” on page 648

logarchmeth2 Yes No None SQLF_DBTN_
LOGARCHMETH2

823 char(252) “logarchmeth2 - Secondary log
archive method” on page 649

logarchopt1 Yes No None SQLF_DBTN_LOGARCHOPT1 824 char(243) “logarchopt1 - Primary log archive
options” on page 650

logarchopt2 Yes No None SQLF_DBTN_LOGARCHOPT2 825 char(243) “logarchopt2 - Secondary log
archive options” on page 651

logbufsz No No High SQLF_DBTN_LOGBUFSZ 33 Uint16 “logbufsz - Log buffer size” on
page 651

logfilsiz No No Medium SQLF_DBTN_LOGFIL_SIZ 92 Uint32 “logfilsiz - Size of log files” on page
652

logindexbuild Yes No None SQLF_DBTN_
LOGINDEXBUILD

818 Uint32 “logindexbuild - Log index pages
created” on page 653

logprimary No No Medium SQLF_DBTN_LOGPRIMARY 16 Uint16 “logprimary - Number of primary
log files” on page 654

logretain3 No No Low SQLF_DBTN_LOG_RETAIN 23 Uint16 “logretain - Log retain enable” on
page 655

logsecond Yes No Medium SQLF_DBTN_LOGSECOND 17 Uint16 “logsecond - Number of secondary
log files” on page 656

max_log Yes Yes SQLF_DBTN_MAX_LOG 807 Uint16 “max_log - Maximum log per
transaction” on page 657

maxappls Yes Yes Medium SQLF_DBTN_MAXAPPLS 6 Uint16 “maxappls - Maximum number of
active applications” on page 658

maxfilop Yes No Medium SQLF_DBTN_MAXFILOP 3 Uint16 “maxfilop - Maximum database
files open per database” on page
659

maxlocks Yes Yes High
when it
affects
escala-
tion

SQLF_DBTN_MAXLOCKS 15 Uint16 “maxlocks - Maximum percent of
lock list before escalation” on page
660

min_dec_div_3 No No High SQLF_DBTN_MIN_DEC_DIV_3 605 Sint32 “min_dec_div_3 - Decimal division
scale to 3” on page 662

mincommit Yes No High SQLF_DBTN_MINCOMMIT 32 Uint16 “mincommit - Number of commits
to group” on page 663

mirrorlogpath No No Low SQLF_DBTN_
MIRRORLOGPATH

806 char(242) “mirrorlogpath - Mirror log path”
on page 664

mon_act_metrics Yes No Medium SQLF_DBTN_MON_ACT_METRICS 931 Uint16 “mon_act_metrics - Monitoring
activity metrics configuration
parameter” on page 665

mon_deadlock Yes No Medium SQLF_DBTN_MON_DEADLOCK 934 Uint16 “mon_deadlock - Monitoring
deadlock configuration parameter”
on page 666

mon_locktimeout Yes No Medium SQLF_DBTN_MON_LOCKTIMEOUT 933 Uint16 “mon_locktimeout - Monitoring
lock timeout configuration
parameter” on page 667

mon_lockwait Yes No Medium SQLF_DBTN_MON_LOCKWAIT 935 Uint16 “mon_lockwait - Monitoring lock
wait configuration parameter” on
page 668

526 Database Administration Concepts and Configuration Reference

Table 71. Configurable Database Configuration Parameters (continued)

Parameter
Cfg.
Online Auto.

Perf.
Impact Token

Token
Value Data Type Additional Information

mon_lw_thresh Yes No Medium SQLF_DBTN_MON_LW_THRESH 936 Uint32 “mon_lw_thresh - Monitoring lock
wait threshold configuration
parameter” on page 668

mon_lck_msg_lvl Yes No None SQLF_DBTN_MON_LCK_MSG_LVL 951 Uint16 “mon_lck_msg_lvl - Monitoring
lock event notification messages
configuration parameter” on page
669

mon_obj_metrics Yes No Medium SQLF_DBTN_MON_OBJ_METRICS 937 Uint16 “mon_obj_metrics - Monitoring
object metrics configuration
parameter” on page 669

mon_pkglist_sz Yes No Low SQLF_DBTN_MON_PKGLIST_SZ 950 Uint32 “mon_pkglist_sz - Monitoring
package list size configuration
parameter” on page 670

mon_req_metrics Yes No Medium SQLF_DBTN_MON_REQ_METRICS 930 Uint16 “mon_req_metrics - Monitoring
request metrics configuration
parameter” on page 670

mon_uow_data Yes No Medium SQLF_DBTN_MON_UOW_DATA 932 Uint16 “mon_uow_data - Monitoring unit
of work events configuration
parameter” on page 671

newlogpath No No Low SQLF_DBTN_NEWLOGPATH 20 char(242) “newlogpath - Change the database
log path” on page 672

num_db_backups Yes No None SQLF_DBTN_NUM_DB_
BACKUPS

601 Uint16 “num_db_backups - Number of
database backups” on page 674

num_freqvalues Yes No Low SQLF_DBTN_NUM_
FREQVALUES

36 Uint16 “num_freqvalues - Number of
frequent values retained” on page
674

num_iocleaners No Yes High SQLF_DBTN_NUM_
IOCLEANERS

37 Uint16 “num_iocleaners - Number of
asynchronous page cleaners” on
page 675

num_ioservers No Yes High SQLF_DBTN_NUM_
IOSERVERS

39 Uint16 “num_ioservers - Number of I/O
servers” on page 677

num_log_span Yes Yes SQLF_DBTN_NUM_LOG_
SPAN

808 Uint16 “num_log_span - Number log
span” on page 678

num_quantiles Yes No Low SQLF_DBTN_NUM_
QUANTILES

48 Uint16 “num_quantiles - Number of
quantiles for columns” on page 678

numarchretry Yes No None SQLF_DBTN_
NUMARCHRETRY

827 Uint16 “numarchretry - Number of retries
on error” on page 680

overflowlogpath No No Medium SQLF_DBTN_
OVERFLOWLOGPATH

805 char(242) “overflowlogpath - Overflow log
path” on page 681

pckcachesz Yes Yes High SQLF_DBTN_PCKCACHE_SZ 505 Sint32 “pckcachesz - Package cache size”
on page 682

rec_his_retentn No No None SQLF_DBTN_REC_HIS_
RETENTN

43 Sint16 “rec_his_retentn - Recovery history
retention period” on page 684

section_actuals Yes No High SQLF_DBTN_SECTION_ACTUALS 952 Uint64 “section_actuals - Section actuals
configuration parameter” on page
686

self_tuning_mem Yes No High SQLF_DBTN_SELF_TUNING_
MEM

848 Uint16 “self_tuning_mem- Self-tuning
memory” on page 687

seqdetect Yes No High SQLF_DBTN_SEQDETECT 41 Uint16 “seqdetect - Sequential detection
flag” on page 688

sheapthres_shr Yes Yes High SQLF_DBTN_SHEAPTHRES_
SHR

802 Uint32 “sheapthres_shr - Sort heap
threshold for shared sorts” on page
689

smtp_server Yes No None SQLF_DBTN_SMTP_SERVER 926 char []
(String)

“smtp_server - SMTP server” on
page 690

softmax No No Medium SQLF_DBTN_SOFTMAX 5 Uint16 “softmax - Recovery range and soft
checkpoint interval” on page 690

sortheap Yes Yes High SQLF_DBTN_SORT_HEAP 52 Uint32 “sortheap - Sort heap size” on page
692

sql_ccflags Yes No None SQLF_DBTN_SQL_CCFLAGS 927 char(1023) “sql_ccflags - Conditional
compilation flags” on page 693

stat_heap_sz Yes Yes Low SQLF_DBTN_STAT_HEAP_SZ 45 Uint32 “stat_heap_sz - Statistics heap size”
on page 694

stmt_conc Yes No Medium SQLF_DBTN_STMT_CONC 919 Uint32 “stmt_conc - Statement concentrator
configuration parameter” on page
694

stmtheap Yes Yes Medium SQLF_DBTN_STMT_HEAP 821 Uint32 “stmtheap - Statement heap size”
on page 695

trackmod No No Low SQLF_DBTN_TRACKMOD 703 Uint16 “trackmod - Track modified pages
enable” on page 697

Chapter 21. Configuration parameters 527

Table 71. Configurable Database Configuration Parameters (continued)

Parameter
Cfg.
Online Auto.

Perf.
Impact Token

Token
Value Data Type Additional Information

tsm_mgmtclass Yes No None SQLF_DBTN_TSM_
MGMTCLASS

307 char(30) “tsm_mgmtclass - Tivoli Storage
Manager management class” on
page 697

tsm_nodename Yes No None SQLF_DBTN_TSM_
NODENAME

306 char(64) “tsm_nodename - Tivoli Storage
Manager node name” on page 698

tsm_owner Yes No None SQLF_DBTN_TSM_OWNER 305 char(64) “tsm_owner - Tivoli Storage
Manager owner name” on page 698

tsm_password Yes No None SQLF_DBTN_TSM_PASSWORD 501 char(64) “tsm_password - Tivoli Storage
Manager password” on page 699

userexit No No Low SQLF_DBTN_USER_EXIT 24 Uint16 “userexit - User exit enable” on
page 699

util_heap_sz Yes No Low SQLF_DBTN_UTIL_HEAP_SZ 55 Uint32 “util_heap_sz - Utility heap size”
on page 700

vendoropt Yes No None SQLF_DBTN_VENDOROPT 829 char(242) “vendoropt - Vendor options” on
page 701<

wlm_collect_int Yes No Low SQLF_DBTN_WLM_COLLECT_
INT

907 Sint32 “wlm_collect_int - Workload
management collection interval
configuration parameter” on page
701

Note: The bits of SQLF_DBTN_AUTONOMIC_SWITCHES indicate the default settings for a number of auto-maintenance configuration parameters. The individual bits
making up this composite parameter are:

1.

Default => Bit 1 on (xxxx xxxx xxxx xxx1): auto_maint
Bit 2 off (xxxx xxxx xxxx xx0x): auto_db_backup
Bit 3 on (xxxx xxxx xxxx x1xx): auto_tbl_maint
Bit 4 on (xxxx xxxx xxxx 1xxx): auto_runstats
Bit 5 off (xxxx xxxx xxx0 xxxx): auto_stats_prof
Bit 6 off (xxxx xxxx xx0x xxxx): auto_prof_upd
Bit 7 off (xxxx xxxx x0xx xxxx): auto_reorg
Bit 8 off (xxxx xxxx 0xxx xxxx): auto_storage
Bit 9 off (xxxx xxx0 xxxx xxxx): auto_stmt_stats
0 0 0 D

Maximum => Bit 1 on (xxxx xxxx xxxx xxx1): auto_maint
Bit 2 off (xxxx xxxx xxxx xx1x): auto_db_backup
Bit 3 on (xxxx xxxx xxxx x1xx): auto_tbl_maint
Bit 4 on (xxxx xxxx xxxx 1xxx): auto_runstats
Bit 5 off (xxxx xxxx xxx1 xxxx): auto_stats_prof
Bit 6 off (xxxx xxxx xx1x xxxx): auto_prof_upd
Bit 7 off (xxxx xxxx x1xx xxxx): auto_reorg
Bit 8 off (xxxx xxxx 1xxx xxxx): auto_storage
Bit 9 off (xxxx xxx1 xxxx xxxx): auto_stmt_stats
0 1 F F

2. Valid values (defined in sqlutil.h):

SQLF_INX_REC_SYSTEM (0)
SQLF_INX_REC_REFERENCE (1)
SQLF_INX_REC_RESTART (2)

3. Valid values (defined in sqlutil.h):

SQLF_LOGRETAIN_NO (0)
SQLF_LOGRETAIN_RECOVERY (1)
SQLF_LOGRETAIN_CAPTURE (2)

4. If you set the hadr_peer_window parameter to a nonzero time value, then the primary database might seem to hang on transactions when it is in disconnected peer state,
because it is waiting for confirmation from the standby database even though it is not connected to the standby database.

Table 72. Informational Database Configuration Parameters

Parameter Token
Token
Value Data Type Additional Information

backup_pending SQLF_DBTN_BACKUP_PENDING 112 Uint16 “backup_pending - Backup
pending indicator” on page 614

codepage SQLF_DBTN_CODEPAGE 101 Uint16 “codepage - Code page for the
database” on page 618

codeset SQLF_DBTN_CODESET 120 char(9)1 “codeset - Codeset for the
database” on page 618

collate_info SQLF_DBTN_COLLATE_INFO 44 char(260) “collate_info - Collating
information” on page 618

country/region SQLF_DBTN_COUNTRY 100 Uint16 “country/region - Database
territory code” on page 620

database_consistent SQLF_DBTN_CONSISTENT 111 Uint16 “database_consistent - Database
is consistent” on page 621

database_level SQLF_DBTN_DATABASE_LEVEL 124 Uint16 “database_level - Database
release level” on page 621

528 Database Administration Concepts and Configuration Reference

Table 72. Informational Database Configuration Parameters (continued)

Parameter Token
Token
Value Data Type Additional Information

hadr_db_role SQLF_DBTN_HADR_DB_ROLE 810 Uint32 “hadr_db_role - HADR database
role” on page 637

log_retain_status SQLF_DBTN_LOG_RETAIN_STATUS 114 Uint16 “log_retain_status - Log retain
status indicator” on page 648

loghead SQLF_DBTN_LOGHEAD 105 char(12) “loghead - First active log file”
on page 653

logpath SQLF_DBTN_LOGPATH 103 char(242) “logpath - Location of log files”
on page 654

multipage_alloc SQLF_DBTN_MULTIPAGE_ALLOC 506 Uint16 “multipage_alloc - Multipage file
allocation enabled” on page 672

numsegs SQLF_DBTN_NUMSEGS 122 Uint16 “numsegs - Default number of
SMS containers” on page 680

pagesize SQLF_DBTN_PAGESIZE 846 Uint32 “pagesize - Database default
page size” on page 682

release SQLF_DBTN_RELEASE 102 Uint16 “release - Configuration file
release level” on page 585

restore_pending SQLF_DBTN_RESTORE_PENDING 503 Uint16 “restore_pending - Restore
pending” on page 685

restrict_access SQLF_DBTN_RESTRICT_ACCESS 852 Sint32 “restrict_access - Database has
restricted access configuration
parameter” on page 685

rollfwd_pending SQLF_DBTN_ROLLFWD_PENDING 113 Uint16 “rollfwd_pending - Roll forward
pending indicator” on page 686

territory SQLF_DBTN_TERRITORY 121 char(5)2 “territory - Database territory”
on page 697

user_exit_status SQLF_DBTN_USER_EXIT_STATUS 115 Uint16 “user_exit_status - User exit
status indicator” on page 699

Note:

1. char(17) on HP-UX, Linux and Solaris operating systems.

2. char(33) on HP-UX, Linux and Solaris operating systems.

DB2 Administration Server (DAS) Configuration Parameter
Summary

Table 73. DAS Configuration Parameters
Parameter Parameter Type Additional Information

authentication Configurable “authentication - Authentication type DAS” on page 702

contact_host Configurable Online “contact_host - Location of contact list” on page 703

das_codepage Configurable Online “das_codepage - DAS code page” on page 703

das_territory Configurable Online “das_territory - DAS territory” on page 704

dasadm_group Configurable “dasadm_group - DAS administration authority group name” on page 704

db2system Configurable Online “db2system - Name of the DB2 server system” on page 705

discover Configurable Online “discover - DAS discovery mode” on page 706

exec_exp_task Configurable “exec_exp_task - Execute expired tasks” on page 707

jdk_64_path Configurable Online “jdk_64_path - 64-Bit Software Developer's Kit for Java installation path DAS” on
page 644

jdk_path Configurable Online “jdk_path - Software Developer's Kit for Java installation path DAS” on page 707

sched_enable Configurable “sched_enable - Scheduler mode” on page 708

sched_userid Informational “sched_userid - Scheduler user ID” on page 708

smtp_server Configurable Online “smtp_server - SMTP server” on page 708

toolscat_db Configurable “toolscat_db - Tools catalog database” on page 709

toolscat_inst Configurable “toolscat_inst - Tools catalog database instance” on page 709

toolscat_schema Configurable “toolscat_schema - Tools catalog database schema” on page 709

Chapter 21. Configuration parameters 529

Configuration parameter section headings

Each of the configuration parameter descriptions contain some or all of the
following section headings, as applicable. In some cases they are mutually
exclusive, for example, valid values are not needed if the [range] is specified. In
most cases, these headings are self-explanatory.

Table 74. Description of the configuration parameter section headings
Section heading Description and possible values

Configuration type Possible values are:

v Database manager

v Database

v DB2 Administration Server

Applies to If applicable, lists the data server types that the configuration parameter applies to.
Possible values are:

v Client

v Database server with local and remote clients

v Database server with local clients

v DB2 Administration Server

v OLAP functions

v Partitioned database server with local and remote clients

v Partitioned database server with local and remote clients when federation is
enabled.

v Satellite database server with local clients

Parameter type Possible values are:

v Configurable (the database manager must be restarted to have the changes take
effect)

v Configurable online (can be dynamically updated online without having to restart
the database manager)

v Informational (values are for your information only and cannot be updated)

Default [range] If applicable, lists the default value and the possible ranges, including NULL values or
automatic settings. If the range differs by platform, then the values are listed by
platform or platform type, for example, 32-bit or 64-bit platforms. Note that in most
cases the default value is not listed as part of the range.

Unit of measure If applicable, lists the unit of measure. Possible values are:

v Bytes

v Counter

v Megabytes per second

v Milliseconds

v Minutes

v Pages (4 KB)

v Percentage

v Seconds

Valid values If applicable, lists the valid value. This heading is mutually exclusive with the default
[range] heading.

Examples If applicable, lists examples.

Propagation class If applicable, possible values are:

v Immediate

v Statement boundary

v Transaction boundary

v Connection

When allocated If applicable, indicates when the configuration parameter is allocated by the database
manager.

When freed If applicable, indicates when the configuration parameter is freed by the database
manager.

Restrictions If applicable, lists any restrictions that apply to the configuration parameter.

Limitations If applicable, lists any limitations that apply to the configuration parameter.

Recommendations If applicable, lists any recommendations that apply to the configuration parameter.

530 Database Administration Concepts and Configuration Reference

Table 74. Description of the configuration parameter section headings (continued)
Section heading Description and possible values

Usage notes If applicable, lists any usage notes that apply to the configuration parameter.

Configuration parameters that affect the number of agents
There are a number of database manager configuration parameters related to
database agents and how they are managed.

The following database manager configuration parameters determine how many
database agents are created and how they are managed:
v Agent Pool Size (num_poolagents): The total number of idle agents to pool that

are kept available in the system. The default value for this parameter is 100,
AUTOMATIC.

v Initial Number of Agents in Pool (num_initagents): When the database manager
is started, a pool of worker agents is created based on this value. This speeds up
performance for initial queries. The worker agents all begin as idle agents.

v Maximum Number of Connections (max_connections): specifies the maximum
number of connections allowed to the database manager system on each
database partition.

v Maximum Number of Coordinating Agents (max_coordagents): For partitioned
database environments and environments with intra-partition parallelism
enabled when Connection concentrator is enabled, this value limits the number
of coordinating agents.

Configuration parameters that affect query optimization
Several configuration parameters affect the access plan chosen by the SQL or
XQuery compiler. Many of these are appropriate to a single-partition database
environment and some are only appropriate to a partitioned database environment.
Assuming a homogeneous partitioned database environment, where the hardware
is the same, the values used for each parameter should be the same on all database
partitions.

Note: When you change a configuration parameter dynamically, the optimizer
might not read the changed parameter values immediately because of older access
plans in the package cache. To reset the package cache, execute the FLUSH
PACKAGE CACHE command.

In a federated system, if the majority of your queries access nicknames, evaluate
the types of queries that you send before you change your environment. For
example, in a federated database the buffer pool does not cache pages from data
sources, which are the DBMSs and data within the federated system. For this
reason, increasing the size of the buffer does not guarantee that the optimizer will
consider additional access-plan alternatives when it chooses an access plan for
queries that contain nicknames. However, the optimizer might decide that local
materialization of data source tables is the least-cost route or a necessary step for a
sort operation. In that case, increasing the resources available might improve
performance.

The following configuration parameters or factors affect the access plan chosen by
the SQL or XQuery compiler:
v The size of the buffer pools that you specified when you created or altered them.

Chapter 21. Configuration parameters 531

When the optimizer chooses the access plan, it considers the I/O cost of fetching
pages from disk to the buffer pool and estimates the number of I/Os required to
satisfy a query. The estimate includes a prediction of buffer-pool usage, because
additional physical I/Os are not required to read rows in a page that is already
in the buffer pool.
The optimizer considers the value of the npages column in the
SYSCAT.BUFFERPOOLS system catalog tables and, in partitioned database
environments, the SYSCAT.BUFFERPOOLDBPARTITIONS system catalog tables.
The I/O costs of reading the tables can have an impact on:
– How two tables are joined
– Whether an unclustered index will be used to read the data

v Default Degree (dft_degree)
The dft_degree configuration parameter specifies parallelism by providing a
default value for the CURRENT DEGREE special register and the DEGREE bind
option. A value of one (1) means no intra-partition parallelism. A value of minus
one (-1) means the optimizer determines the degree of intra-partition parallelism
based on the number of processors and the type of query.

Note: Intra-parallel processing does not occur unless you enable it by setting the
intra_parallel database manager configuration parameter.

v Default Query Optimization Class (dft_queryopt)
Although you can specify a query optimization class when you compile SQL or
XQuery queries, you can also set a default query optimization class.

v Average Number of Active Applications (avg_appls)
The optimizer uses the avg_appls parameter to help estimate how much of the
buffer pool might be available at run-time for the access plan chosen. Higher
values for this parameter can influence the optimizer to choose access plans that
are more conservative in buffer pool usage. If you specify a value of 1, the
optimizer considers that the entire buffer pool will be available to the
application.

v Sort Heap Size (sortheap)
If the rows to be sorted occupy more than the space available in the sort heap,
several sort passes are performed, where each pass sorts a subset of the entire
set of rows. Each sort pass is stored in a system temporary table in the buffer
pool, which might be written to disk. When all the sort passes are complete,
these sorted subsets are merged into a single sorted set of rows. A sort that does
not require a system temporary table to store the list of data always results in
better performance and is used if possible.
When choosing an access plan, the optimizer estimates the cost of the sort
operations, including evaluating whether a sort can be read in a single,
sequential access, by:
– Estimating the amount of data to be sorted
– Looking at the sortheap parameter to determine if there is enough space to

read a sort in a single, sequential access.
v Maximum Storage for Lock List (locklist) and Maximum Percent of Lock List

Before Escalation (maxlocks)
When the isolation level is repeatable read (RR), the optimizer considers the
values of the locklist and maxlocks parameters to determine whether row level
locks might be escalated to a table level lock. If the optimizer estimates that lock
escalation will occur for a table access, then it chooses a table level lock for the
access plan, instead of incurring the overhead of lock escalation during the
query execution.

532 Database Administration Concepts and Configuration Reference

v CPU Speed (cpuspeed)
The optimizer uses the CPU speed to estimate the cost of performing certain
operations. CPU cost estimates and various I/O cost estimates help select the
best access plan for a query.
The CPU speed of a machine can have a significant influence on the access plan
chosen. This configuration parameter is automatically set to an appropriate value
when the database is installed or upgraded. Do not adjust this parameter unless
you are modelling a production environment on a test system or assessing the
impact of a hardware change. Using this parameter to model a different
hardware environment allows you to find out the access plans that might be
chosen for that environment. To have the database manager recompute the value
of this automatic configuration parameter, set it to -1.

v Statement Heap Size (stmtheap)
Although the size of the statement heap does not influence the optimizer in
choosing different access paths, it can affect the amount of optimization
performed for complex SQL or XQuery statements.
If the stmtheap parameter is not set large enough, you might receive a warning
indicating that there is not enough memory available to process the statement.
For example, SQLCODE +437 (SQLSTATE 01602) might indicate that the amount
of optimization that has been used to compile a statement is less than the
amount that you requested.

v Communications Bandwidth (comm_bandwidth)
Communications bandwidth is used by the optimizer to determine access paths.
The optimizer uses the value in this parameter to estimate the cost of
performing certain operations between the database partition servers in a
partitioned database environment.

v Application Heap Size (applheapsz)
Large schemas require sufficient space in the application heap.

Recompiling a query after configuration changes
To observe the effect of configuration changes that affect query optimization, it
might be necessary to cause the query optimizer to recompile the statements that
are cached.

Procedure

You can cause the query optimizer to recompile a statement by performing any of
the following actions:
v Invalidating the cached dynamic statements for specific tables using the

RUNSTATS command:
RUNSTATS ON TABLE <tableschema>.<tablename>
WITH DISTRIBUTION AND SAMPLED DETAILED INDEXES ALL

Note: This will refresh the table statistics and subsequent query compilations
will use the new statistics as well as the new configuration settings.

v Removing all cached dynamic SQL statements currently in the package cache:
FLUSH PACKAGE CACHE DYNAMIC

Chapter 21. Configuration parameters 533

Restrictions and behavior when configuring max_coordagents and
max_connections

The Version 9.5 default for the max_coordagents and max_connections parameters
will be AUTOMATIC, with max_coordagents set to 200 and max_connections set to -1
(that is, set to the value of max_coordagents). These settings set Concentrator to
OFF.

While configuring max_coordagents or max_connections online, there will be some
restrictions and behavior to be aware of:
v If the value of max_coordagents is increased, the setting takes effect immediately

and new requests will be allowed to create new coordinating agents. If the value
is decreased, the number of coordinating agents will not be reduced
immediately. Rather, the number of coordinating agents will no longer increase,
and existing coordinating agents might terminate after finishing their current set
of work, in order to reduce the overall number of coordinating agents. New
requests for work that require a coordinating agent will not be serviced until the
total number of coordinating agents falls below the new value and a
coordinating agent becomes free.

v If the value for max_connections is increased, the setting takes effect immediately
and new connections previously blocked because of this parameter will be
allowed. If the value is decreased, the database manager will not actively
terminate existing connections; instead, new connections will not be allowed
until enough of the existing connections are terminated to bring the value down
below the new maximum.

v If max_connections is set to -1 (default), then the maximum number of
connections allowed is the same as max_coordagents, and when max_coordagents
is updated offline or online; the maximum number of connections allowed will
be updated as well.

While changing the value of max_coordagents or max_connections online, you
cannot change it such that connection Concentrator will be turned either ON, if it's
off, or OFF, if it's ON. For example, if at START DBM time max_coordagents is less
than max_connections (Concentrator is ON), then all updates done online to these
two parameters must maintain the relationship max_coordagents <
max_connections. Similarly, if at START DBM time, max_coordagents is greater than or
equal to max_connections (Concentrator is OFF), then all updates done online must
maintain this relationship.

When you perform this type of update online, the database manager does not fail
the operation, instead it defers the update. The warning SQL1362W message is
returned, similar to any case when updating the database manager configuration
parameters where IMMEDIATE is specified, but is not possible.

When setting max_coordagents or max_connections to AUTOMATIC, the following
behavior can be expected:
v Both of these parameters can be configured with a starting value and an

AUTOMATIC setting. For example, the following command associates a value of 200
and AUTOMATIC to the max_coordagents parameter:

UPDATE DBM CONFIG USING max_coordagents 200 AUTOMATIC

These parameters will always have a value associated with them, either the
value set as default, or some value that you specified. If only AUTOMATIC is
specified when updating either parameter, that is, no value is specified, and the

534 Database Administration Concepts and Configuration Reference

parameter previously had a value associated with it, that value would remain.
Only the AUTOMATIC setting would be affected.

Note: When Concentrator is ON, the values assigned to these two configuration
parameters are important even when the parameters are set to AUTOMATIC.

v If both parameters are set to AUTOMATIC, the database manager allows the
number of connections and coordinating agents to increase as needed to suit the
workload. However, the following caveats apply:
1. When Concentrator is OFF, the database manager maintains a one-to-one

ratio: for every connection there will be only one coordinating agent.
2. When Concentrator is ON, the database manager tries to maintain the ratio

of coordinating agents to connections set by the values in the parameters.

Note:

– The approach used to maintain the ratio is designed to be unintrusive and
does not guarantee the ratio will be maintained perfectly. New
connections are always allowed in this scenario, though they may have to
wait for an available coordinating agent. New coordinating agents will be
created as needed to maintain the ratio. As connections are terminated, the
database manager might also terminate coordinating agents to maintain
the ratio

– The database manager will not reduce the ratio that you set. The initial
values of max_coordagents and max_connections that you set are
considered a lower bound.

v The current and delayed values of both these parameters can be displayed
through various means, such as CLP or APIs. The values displayed will always
be the values set by the user. For example, if the following command were
issued, and then 30 concurrent connections performing work on the instance
were started, the displayed values for max_connections and max_coordagents
will still be 20, AUTOMATIC:

UPDATE DBM CFG USING max_connections 20 AUTOMATIC,
max_coordagents 20 AUTOMATIC

To determine the real number of connections and coordinating agents currently
running monitor elements, you can also use the Health Monitor.

v If max_connections is set to AUTOMATIC with a value greater than max_coordagents
(so that Concentrator is ON), and max_coordagents is not set to AUTOMATIC, then
the database manager allows an unlimited number of connections that will use
only a limited number of coordinating agents.

Note: Connections might have to wait for available coordinating agents.

The use of the AUTOMATIC option for the max_coordagents and max_connections
configuration parameters is only valid in the following two scenarios:
1. Both parameters are set to AUTOMATIC

2. Concentrator is enabled with max_connections set to AUTOMATIC, while
max_coordagents is not.

All other configurations using AUTOMATIC for these parameters will be blocked and
will return SQL6112N, with a reason code that explains the valid settings of
AUTOMATIC for these two parameters.

Chapter 21. Configuration parameters 535

Database Manager configuration parameters

agent_stack_sz - Agent stack size
This parameter determines the memory that is allocated by DB2 for each agent
thread stack.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]

Linux (32-bit)
256 [16 – 1024]

Linux (64-bit) and UNIX
1024 [256 – 32768]

Windows
16 [8 – 1000]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Pages (4 KB)

When allocated
UNIX: Stack space (process virtual memory) is allocated as needed or
reused in the main DB2 server process when a thread is created. Stack
memory is used/committed as necessary.

Windows: AGENT_STACK_SZ represents the initial committed stack
memory when a thread is created. Additional stack memory is
used/committed as necessary.

When freed
UNIX: Stack space (process virtual memory) is retained for reuse when
threads terminate and are freed when the DB2 server shuts down.

Windows: Stack space and memory is freed when a thread terminates.

On UNIX and Linux, agent_stack_sz will be rounded up to the next larger
power-of-2 based value.

In Windows environments, this parameter is used to set the initial committed stack
size for each agent. Regardless of the setting, each agent stack can grow up to the
minimum reserved stack size of 256 KB on 32-bit versions of DB2 or Windows, and
2 MB on 64-bit versions of DB2 or Windows. The agent stack may run out of space
and SQLCODE -973 will be returned.

Windows uses the concepts of a "reserved" stack - the maximum to which the stack
can grow, and the "committed" stack - the amount of memory committed to the

536 Database Administration Concepts and Configuration Reference

stack when it is created. On Windows, a guard page is added on to the specified
committed stack size in order to determine the minimum reserved stack space
necessary. For example, with agent_stack_sz (committed stack) of 16, 1 page will be
added, and the reserved stack size must be at least 17. The maximum/reserved
agent stack size can be increased by setting agent_stack_sz (committed stack) to a
value that will result in a minimum reserved stack size larger than the default
reserve stack size of 64 pages. Note that Windows sets reserved stack sizes above
256 KB to multiples of 1 MB. For example, on 32-bit Windows, setting the agent
stack size (committed stack) to a range of [64 - 255] 4-KB pages results in a
reserved/maximum stack of 1 MB. Setting the value for agent_stack_sz to a value
less than the default reserve stack size will have no effect on the maximum limit
because the stack still grows if necessary up to the default reserve stack size.

You can change the default reserve stack size by using the db2hdr utility to change
the header information for the db2syscs.exe file. The advantage of changing the
default reserved stack size using the db2hdr utility is that it provides a finer
granularity, therefore allowing the stack size to be set at the minimum required
stack size (useful to conserve virtual address space on 32-bit Windows). However,
you will have to stop and restart DB2 for a change to db2syscs.exe to take effect,
and this method must be repeated for any Fix Pack upgrade.

Recommendations:

If you will be working with large or complex XML data in a 32-bit
Windows environment, you should update agent_stack_sz to at least 64
4-KB pages. Very complex XML schemas might require agent_stack_sz to be
set much higher during schema registration or during XML document
validation.

This limit is sufficient for most database operations. On UNIX and Linux,
agent_stack_sz will be rounded up to the next larger power-of-2 based
value. The default setting for UNIX should be sufficient for most
workloads.

Notes
v If the stack size is insufficient for a given operation, SQLCODE -973 will be

returned.
v Agent stack memory does not count towards Instance Memory usage.
v While AGENT_STACK_SZ may be configured with a high stack space allocation

or maximum usage, on average, only a small amount of allocated stack space is
used by a thread. It is only this smaller amount which requires system RAM.

v On the HP platform only, thread stack space requires a swap reservation. The
approximate total swap requirement will be the peak number of threads *
(agent_stack_sz rounded up to next power of 2).

agentpri - Priority of agents
This parameter is deprecated in Version 9.5, but is still being used by pre-Version
9.5 data servers and clients. Any value specified for this configuration parameter
will continue to work exactly as it did in previous versions, and this parameter
will continue to be fully supported. If this parameter is used for workload
management (WLM), then the WLM service class agent priority will be ignored.

Note: The following information applies only to pre-Version 9.5 data servers and
clients.

Chapter 21. Configuration parameters 537

This parameter controls the priority given both to all agents, and to other database
manager instance processes and threads, by the operating system scheduler. This
priority determines how CPU time is given to the database manager processes,
agents, and threads relative to the other processes and threads running on the
machine.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]

AIX -1 (system) [41 - 125]

Other UNIX
-1 (system) [41 - 128]

Windows
-1 (system) [0 - 6]

Solaris
-1 (system) [0 - 59]

Linux -1 (system) [1 - 99]

HP-UX
-1 (system) [0 - 31]

When the parameter is set to -1 or system, no special action is taken and the
database manager is scheduled in the normal way that the operating system
schedules all processes and threads. When the parameter is set to a value other
than -1 or system, the database manager will create its processes and threads with
a static priority set to the value of the parameter. Therefore, this parameter allows
you to control the priority with which the database manager processes and threads
(in a partitioned database environment, this also includes coordinating and
subagents, the parallel system controllers, and the FCM daemons) will execute on
your machine.

You can use this parameter to increase database manager throughput. The values
for setting this parameter are dependent on the operating system on which the
database manager is running. For example, in a Linux or UNIX environment,
numerically low values yield high priorities. When the parameter is set to a value
between 41 and 125, the database manager creates its agents with a UNIX static
priority set to the value of the parameter. This is important in Linux and UNIX
environments because numerically low values yield high priorities for the database
manager, but other processes (including applications and users) might experience
delays because they cannot obtain enough CPU time. You should balance the
setting of this parameter with the other activity expected on the machine.

Restrictions:

v If you set this parameter to a non-default value on Linux and UNIX platforms,
you cannot use the governor to alter agent priorities.

538 Database Administration Concepts and Configuration Reference

v On the Solaris operating system, you should not change the default value (-1).
Changing the default value sets the priority of DB2 processes to real-time, which
can monopolize all available resources on the system.

Recommendation: The default value should be used initially. This value provides a
good compromise between response time to other users/applications and database
manager throughput.

If database performance is a concern, you can use benchmarking techniques to
determine the optimum setting for this parameter. You should take care when
increasing the priority of the database manager because performance of other user
processes can be severely degraded, especially when the CPU utilization is very
high. Increasing the priority of the database manager processes and threads can
have significant performance benefits.

alt_diagpath - Alternate diagnostic data directory path
This parameter allows you to specify the fully qualified alternate path for DB2
diagnostic information that is used when the primary diagnostic data path,
diagpath, is unavailable.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable online

Propagation class
Immediate

Default [range]
Null [any valid path name, , ’"pathname $h"’, ’"pathname
$h/trailing-dir"’, , ’"pathname $n"’, ’"pathname $n/trailing-dir"’, ,
’"pathname hn"’, or ’"pathname hn/trailing-dir"’]

Symbols

pathname
A directory path to use when the primary diagnostic data directory path is
unavailable

$h Resolves to HOST_hostname

$n Resolves to NODEnumber

/trailing-dir
A single directory, or a directory and sub-directory to trail $h or $n

The following values are available:
v ’"pathname $h"’

v ’"pathname $h/trailing-dir"’

v ’"pathname $n"’

v ’"pathname $n/trailing-dir"’

Chapter 21. Configuration parameters 539

v ’"pathname hn"’

v ’"pathname hn/trailing-dir"’

The alternate diagnostic data directory can contain the same diagnostic data as the
primary diagnostic data directory set with the diagpath parameter. When
alt_diagpath is set and the primary diagnostic data directory becomes unavailable,
diagnostic logging continues in the alternate diagnostic data directory path
specified, then resumes in its original location when the primary diagnostic path
becomes available again. If this parameter is null and the primary diagnostic data
directory specified by the diagpath parameter is unavailable, no further diagnostic
information is written until the primary diagnostic path becomes available again.
For improved resilience, set the alternate diagnostic data directory to point to a
different file system than the primary diagnostic data directory.

The alt_diagpath parameter supports splitting of the diagnostic data directory path
in the same way as the diagpath configuration parameter. For more information,
see "diagpath - Diagnostic data directory path configuration parameter".

Note:

v To avoid the operating system shell interpreting the $ sign on some Linux and
UNIX systems, a single quote must be placed outside of the double quote, as
shown in the syntax.

v In the CLP interactive mode, or if the command is read and executed from an
input file, the double quote is not required.

v $h and $n are case insensitive.
v The dynamic behaviour for alt_diagpath does not extend to all processes.
v The db2sysc DB2 server process can detect dynamic changes, for example, when

you issue the UPDATE DATABASE MANAGER CONFIGURATION command over an
instance attachment.

v When DB2 client and application processes start, they use the alt_diagpath
configuration parameter setting and do not detect any dynamic changes.

v On UNIX systems, if both diagpath and alt_diagpath are not available, the db2
diagnostic message is dumped to the syslog file.

v There is no default directory for alt_diagpath configuration parameter.
v The alt_diagpath and diagpath configuration parameters are exclusive to each

other. They cannot be set to same directory path.
v If alt_diagpath (or diagpath) is unavailable that means diagnostic data dumping

failed due to an error, such as: The directory was deleted, a disk error, disk is
lost, network problems, file permission error, or disk is full.

alternate_auth_enc - Alternate encryption algorithm for
incoming connections at server configuration parameter

This configuration parameter specifies the alternate encryption algorithm used to
encrypt the user IDs and passwords submitted to a DB2 database server for
authentication. Specifically, this parameter affects the encryption algorithm when
the authentication method negotiated between the DB2 client and the DB2
database server is SERVER_ENCRYPT.

Configuration type
Database manager

Applies to

v Database server with local and remote clients

540 Database Administration Concepts and Configuration Reference

v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
NOT_SPECIFIED [AES_CMP; AES_ONLY]

The user ID and password submitted for authentication on the DB2 database
server are encrypted when the authentication method negotiated between the DB2
client and the DB2 server is SERVER_ENCRYPT. The authentication method
negotiated depends on the authentication type setting on the server and the
authentication type requested by the client. The choice of the encryption algorithm
used to encrypt the user ID and password depends on the setting of the
alternate_auth_enc database manager configuration parameter. It can be either
DES or AES depending on this setting.

When the default (NOT_SPECIFIED) value is used, the database server accepts the
encryption algorithm that the client proposes.

When alternate_auth_enc is set to AES_ONLY, the database server will only accept
connections that use AES encryption. If the client does not support AES
encryption, then the connection is rejected.

When alternate_auth_enc is set to AES_CMP, the database server will accept user
IDs and passwords that are encrypted using either AES or DES, but it will
negotiate for AES if the client supports AES encryption.

aslheapsz - Application support layer heap size
The application support layer heap represents a communication buffer between the
local application and its associated agent. This buffer is allocated as shared
memory by each database manager agent that is started.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
15 [1 - 524 288]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Pages (4 KB)

When allocated
When the database manager agent process is started for the local
application

Chapter 21. Configuration parameters 541

When freed
When the database manager agent process is terminated

If the request to the database manager, or its associated reply, do not fit into the
buffer they will be split into two or more send-and-receive pairs. The size of this
buffer should be set to handle the majority of requests using a single
send-and-receive pair. The size of the request is based on the storage required to
hold:
v The input SQLDA
v All of the associated data in the SQLVARs
v The output SQLDA
v Other fields which do not generally exceed 250 bytes.

In addition to this communication buffer, this parameter is also used for two other
purposes:
v It is used to determine the I/O block size when a blocking cursor is opened.

This memory for blocked cursors is allocated out of the application's private
address space, so you should determine the optimal amount of private memory
to allocate for each application program. If the Data Server Runtime Client
cannot allocate space for a blocking cursor out of an application's private
memory, a non-blocking cursor will be opened.

v It is used to determine the communication size between agents and db2fmp
processes. (A db2fmp process can be a user-defined function or a fenced stored
procedure.) The number of bytes is allocated from shared memory for each
db2fmp process or thread that is active on the system.

The data sent from the local application is received by the database manager into a
set of contiguous memory allocated from the query heap. The aslheapsz parameter
is used to determine the initial size of the query heap (for both local and remote
clients). The maximum size of the query heap is defined by the query_heap_sz
parameter.

Recommendation: If your application's requests are generally small and the
application is running on a memory constrained system, you might want to reduce
the value of this parameter. If your queries are generally very large, requiring more
than one send and receive request, and your system is not constrained by memory,
you might want to increase the value of this parameter.

Use the following formula to calculate a minimum number of pages for aslheapsz:
aslheapsz >= (sizeof(input SQLDA)

+ sizeof(each input SQLVAR)
+ sizeof(output SQLDA)
+ 250) / 4096

where sizeof(x) is the size of x in bytes that calculates the number of pages of a
given input or output value.

You should also consider the effect of this parameter on the number and potential
size of blocking cursors. Large row blocks might yield better performance if the
number or size of rows being transferred is large (for example, if the amount of
data is greater than 4096 bytes). However, there is a trade-off in that larger record
blocks increase the size of the working set memory for each connection.

542 Database Administration Concepts and Configuration Reference

Larger record blocks might also cause more fetch requests than are actually
required by the application. You can control the number of fetch requests using the
OPTIMIZE FOR clause on the SELECT statement in your application.

audit_buf_sz - Audit buffer size
This parameter specifies the size of the buffer used when auditing the database.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
0 [0 - 65 000]

Unit of measure
Pages (4 KB)

When allocated
When DB2 is started

When freed
When DB2 is stopped

The default value for this parameter is zero (0). If the value is zero (0), the audit
buffer is not used. If the value is greater than zero (0), space is allocated for the
audit buffer where the audit records will be placed when they are generated by the
audit facility. The value times 4 KB pages is the amount of space allocated for the
audit buffer. At regular time intervals or when the audit buffer is full, the
db2auditd audit daemon process flushes the audit buffer to disk. The audit buffer
cannot be allocated dynamically; DB2 must be stopped and then restarted before
the new value for this parameter takes effect.

By changing this parameter from the default to some value larger than zero (0), the
audit facility writes records to disk asynchronously compared to the execution of
the statements generating the audit records. This improves DB2 performance over
leaving the parameter value at zero (0). The value of zero (0) means the audit
facility writes records to disk synchronously with (at the same time as) the
execution of the statements generating the audit records. The synchronous
operation during auditing decreases the performance of applications running in
DB2.

authentication - Authentication type
This parameter specifies and determines how and where authentication of a user
takes place.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client

Chapter 21. Configuration parameters 543

v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
SERVER [CLIENT; SERVER; SERVER_ENCRYPT; DATA_ENCRYPT;
DATA_ENCRYPT_CMP; KERBEROS; KRB_SERVER_ENCRYPT;
GSSPLUGIN; GSS_SERVER_ENCRYPT]

If authentication is SERVER, the user ID and password are sent from the client to
the server so that authentication can take place on the server. The value
SERVER_ENCRYPT provides the same behavior as SERVER, except that any user
IDs and passwords sent over the network are encrypted.

A value of DATA_ENCRYPT means the server accepts encrypted SERVER
authentication schemes and the encryption of user data. The authentication works
exactly the same way as SERVER_ENCRYPT.

The following user data are encrypted when using this authentication type:
v SQL statements
v SQL program variable data
v Output data from the server processing an SQL statement and including a

description of the data
v Some or all of the answer set data resulting from a query
v Large object (LOB) streaming
v SQLDA descriptors

A value of DATA_ENCRYPT_CMP means the server accepts encrypted SERVER
authentication schemes and the encryption of user data. In addition, this
authentication type allows compatibility with earlier products that do not support
DATA_ENCRYPT authentication type. These products are permitted to connect
with the SERVER_ENCRYPT authentication type and without encrypting user data.
Products supporting the new authentication type must use it. This authentication
type is only valid in the server's database manager configuration file and is not
valid when used on the CATALOG DATABASE command.

Note: For a standards compliance (defined in the “Standards compliance” topic)
configuration, SERVER is the only supported value.

A value of CLIENT indicates that all authentication takes place at the client. No
authentication needs to be performed at the server.

A value of KERBEROS means that authentication is performed at a Kerberos server
using the Kerberos security protocol for authentication. With an authentication
type of KRB_SERVER_ENCRYPT at the server and clients that support the
Kerberos security system, the effective system authentication type is KERBEROS. If
the clients do not support the Kerberos security system, the system authentication
type is effectively equivalent to SERVER_ENCRYPT.

A value of GSSPLUGIN means that authentication is performed using an external
GSSAPI-based security mechanism. With an authentication type of
GSS_SERVER_ENCRYPT at the server and clients that support the GSSPLUGIN
security mechanism, the effective system authentication type is GSSPLUGIN (that

544 Database Administration Concepts and Configuration Reference

is, if the clients support one of the server's plug-ins). If the clients do not support
the GSSPLUGIN security mechanism, the system authentication type is effectively
equivalent to SERVER_ENCRYPT.

Recommendation: Typically, the default value (SERVER) is adequate for local
clients. If remote clients are connecting to the database server then
SERVER_ENCRYPT is the suggested value to protect the user ID and password.

catalog_noauth - Cataloging allowed without authority
This parameter specifies whether users are able to catalog and uncatalog databases
and nodes, or DCS and ODBC directories, without SYSADM authority.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]

Database server with local and remote clients
NO [NO (0) — YES (1)]

Client; Database server with local clients
YES [NO (0) — YES (1)]

The default value (0) for this parameter indicates that SYSADM authority is
required. When this parameter is set to 1 (yes), SYSADM authority is not required.

clnt_krb_plugin - Client Kerberos plug-in
This parameter specifies the name of the default Kerberos plug-in library to be
used for client-side authentication and local authorization.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
Null or IBMkrb5 [any valid string]

Chapter 21. Configuration parameters 545

By default, the value is null on Linux and UNIX systems, and IBMkrb5 on
Windows operating systems. The plug-in is used when the client is authenticated
using KERBEROS authentication, or when local authorization is performed and the
authentication type in the DBM CFG is KERBEROS.

clnt_pw_plugin - Client userid-password plug-in
This parameter specifies the name of the userid-password plug-in library to be
used for client-side authentication and local authorization.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
Null [any valid string]

By default, the value is null and the DB2-supplied userid-password plug-in library
is used. The plug-in is used when the client is authenticated using CLIENT
authentication, or when local authorization is performed and the authentication
type in the DBM CFG is CLIENT, SERVER, SERVER_ENCRYPT or
DATA_ENCRYPT. For non-root installations, if the DB2 userid and password
plug-in library is used, the db2rfe command must be run before using your DB2
product.

cluster_mgr - Cluster manager name
This parameter enables the database manager to communicate incremental cluster
configuration changes to the specified cluster manager.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Multi-partitioned database server with local and remote clients

Parameter type
Informational

Default
No default

Valid values

v TSA

This parameter is set during high availability cluster configuration using the DB2
High Availability Instance Configuration Utility (db2haicu).

546 Database Administration Concepts and Configuration Reference

comm_bandwidth - Communications bandwidth
This parameter helps the query optimizer determine access paths by indicating the
bandwidth between database partition servers.

Configuration type
Database manager

Applies to
Partitioned database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Statement boundary

Default [range]
-1 [-1, 0.1 - 100000]

A value of -1 causes the parameter value to be reset to the default. The
default value is calculated based on the speed of the underlying
communications adapter. A value of 100 can be expected for systems using
Gigabit Ethernet.

Unit of measure
Megabytes per second

The value calculated for the communications bandwidth, in megabytes per second,
is used by the query optimizer to estimate the cost of performing certain
operations between the database partition servers of a partitioned database system.
The optimizer does not model the cost of communications between a client and a
server, so this parameter should reflect only the nominal bandwidth between the
database partition servers, if any.

You can explicitly set this value to model a production environment on your test
system or to assess the impact of upgrading hardware.

Recommendation: You should only adjust this parameter if you want to model a
different environment.

The communications bandwidth is used by the optimizer in determining access
paths. You should consider rebinding applications (using the REBIND PACKAGE
command) after changing this parameter.

conn_elapse - Connection elapse time
This parameter specifies the number of seconds within which a TCP/IP connection
is to be established between two database partition servers.

Configuration type
Database manager

Applies to
Partitioned database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Immediate

Chapter 21. Configuration parameters 547

Default [range]
10 [0–100]

Unit of measure
Seconds

If the attempt to connect succeeds within the time specified by this parameter,
communications are established. If it fails, another attempt is made to establish
communications. If the connection is attempted the number of times specified by
the max_connretries parameter and always times out, an error is issued.

cpuspeed - CPU speed
This parameter reflects the CPU speed of the machine(s) the database is installed
on.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable online

Propagation class
Statement boundary

Default [range]
-1 [1x10-10 — 1] A value of -1 will cause the parameter value to be reset
based on the running of the measurement program.

Unit of measure
Milliseconds

This program is executed if benchmark results are not available if the data for the
IBM RS/6000® model 530H is not found in the file, or if the data for your machine
is not found in the file.

You can explicitly set this value to model a production environment on your test
system or to assess the impact of upgrading hardware. By setting it to -1, cpuspeed
will be re-computed.

Recommendation: You should only adjust this parameter if you want to model a
different environment.

The CPU speed is used by the optimizer in determining access paths. You should
consider rebinding applications (using the REBIND PACKAGE command) after
changing this parameter.

date_compat - Date compatibility database configuration
parameter

This parameter indicates whether the DATE compatibility semantics associated
with the TIMESTAMP(0) data type are applied to the connected database.

Configuration type
Database

548 Database Administration Concepts and Configuration Reference

Parameter type
Informational

The value is determined at database creation time, and is based on the setting of
the DB2_COMPATIBILITY_VECTOR registry variable for DATE support. The value
cannot be changed.

dft_account_str - Default charge-back account
This parameter acts as the default suffix of accounting identifiers.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
Null [any valid string]

With each application connect request, an accounting identifier consisting of a DB2
Connect-generated prefix and the user supplied suffix is sent from the application
requester to a DRDA application server. This accounting information provides a
mechanism for system administrators to associate resource usage with each user
access.

Note: This parameter is only applicable to DB2 Connect.

The suffix is supplied by the application program calling the sqlesact() API or
the user setting the environment variable DB2ACCOUNT. If a suffix is not
supplied by either the API or environment variable, DB2 Connect uses the value of
this parameter as the default suffix value. This parameter is particularly useful for
earlier database clients (anything prior to version 2) that do not have the capability
to forward an accounting string to DB2 Connect.

Recommendation: Set this accounting string using the following:
v Alphabetics (A through Z)
v Numerics (0 through 9)
v Underscore (_).

dft_monswitches - Default database system monitor switches
This parameter allows you to set a number of switches which are each internally
represented by a bit of the parameter.

Configuration type
Database manager

Applies to

Chapter 21. Configuration parameters 549

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Immediate

Note: The change takes effect immediately if you explicitly ATTACH to the
instance before modifying the dft_mon_xxxx switch settings. Otherwise the
setting takes effect the next time the instance is restarted.

Default
All switches turned off, except dft_mon_timestamp, which is turned on by
default

The parameter is unique in that you can update each of these switches
independently by setting the following parameters:

dft_mon_uow
Default value of the snapshot monitor's unit of work (UOW) switch

dft_mon_stmt
Default value of the snapshot monitor's statement switch

dft_mon_table
Default value of the snapshot monitor's table switch

dft_mon_bufpool
Default value of the snapshot monitor's buffer pool switch

dft_mon_lock
Default value of the snapshot monitor's lock switch

dft_mon_sort
Default value of the snapshot monitor's sort switch

dft_mon_timestamp
Default value of the snapshot monitor's timestamp switch

Recommendation: Any switch (except dft_mon_timestamp) that is turned ON
instructs the database manager to collect monitor data related to that switch.
Collecting additional monitor data increases database manager overhead which can
impact system performance. Turning the dft_mon_timestamp switch OFF becomes
important as CPU utilization approaches 100%. When this occurs, the CPU time
required for issuing timestamps increases dramatically. Furthermore, if the
timestamp switch is turned OFF, the overall cost of other data under monitor
switch control is greatly reduced.

All monitoring applications inherit these default switch settings when the
application issues its first monitoring request (for example, setting a switch,
activating the event monitor, taking a snapshot). You should turn on a switch in
the configuration file only if you want to collect data starting from the moment the
database manager is started. (Otherwise, each monitoring application can set its
own switches and the data it collects becomes relative to the time its switches are
set.)

550 Database Administration Concepts and Configuration Reference

dftdbpath - Default database path
This parameter contains the default file path used to create databases under the
database manager. If no path is specified when a database is created, the database
is created under the path specified by the dftdbpath parameter.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]

UNIX Home directory of instance owner [any existing path]

Windows
Drive on which DB2 is installed [any existing path]

In a partitioned database environment, you should ensure that the path on which
the database is being created is not an NFS-mounted path (on Linix and UNIX
platforms), or a network drive (in a Windows environment). The specified path
must physically exist on each database partition server. To avoid confusion, it is
best to specify a path that is locally mounted on each database partition server.
The maximum length of the path is 205 characters. The system appends the
database partition name to the end of the path.

Given that databases can grow to a large size and that many users could be
creating databases (depending on your environment and intentions), it is often
convenient to be able to have all databases created and stored in a specified
location. It is also good to be able to isolate databases from other applications and
data both for integrity reasons and for ease of backup and recovery.

For Linux and UNIX environments, the length of the dftdbpath name cannot exceed
215 characters and must be a valid, absolute, path name. For Windows, the
dftdbpath can be a drive letter, optionally followed by a colon.

Recommendation: If possible, put high volume databases on a different disk than
other frequently accessed data, such as the operating system files and the database
logs.

diaglevel - Diagnostic error capture level
This parameter specifies the type of diagnostic errors that will be recorded in the
db2diag log file.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client

Chapter 21. Configuration parameters 551

v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
3 [0 — 4]

Valid values for this parameter are:
v 0 – No diagnostic data captured
v 1 – Severe errors only
v 2 – All errors
v 3 – All errors and warnings
v 4 – All errors, warnings and informational messages

The diagpath configuration parameter is used to specify the directory that will
contain the error file, alert log file, and any dump files that might be generated,
based on the value of the diaglevel parameter.

Usage notes

v The dynamic behaviour for diaglevel does not extend to all processes.
v The db2sysc DB2 server process can detect dynamic changes, for example, when

you issue the UPDATE DATABASE MANAGER CONFIGURATION command over an
instance attachment.

v When DB2 client and application processes start, they use the diaglevel
configuration parameter setting and do not detect any dynamic changes.

v To help resolve a problem, you can increase the value of this parameter to gather
additional problem determination data.

diagpath - Diagnostic data directory path
This parameter allows you to specify the fully qualified primary path for DB2
diagnostic information.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable online

Propagation class
Immediate

Default [range]
Null [any valid path name, ’"$h"’, ’"$h/trailing-dir"’, ’"pathname $h"’,
’"pathname $h/trailing-dir"’, ’"$n"’, ’"$n/trailing-dir"’, ’"pathname

552 Database Administration Concepts and Configuration Reference

$n"’, ’"pathname $n/trailing-dir"’,’"$h$n"’, ’"$h$n/trailing-dir"’,
’"pathname hn"’, or ’"pathname hn/trailing-dir"’]

Symbols

pathname
A directory path to use instead of the default diagnostic data directory

$h Resolves to HOST_hostname

$n Resolves to NODEnumber

/trailing-dir
A single directory, or a directory and sub-directory to trail $h or $n

The following values are available in DB2 Version 9.7 Fix Pack 2 and later
fix packs:
v ’"$h"’

v ’"$h/trailing-dir"’

v ’"pathname $h"’

v ’"pathname $h/trailing-dir"’

v ’"$n"’

v ’"$n/trailing-dir"’

v ’"pathname $n"’

v ’"pathname $n/trailing-dir"’

v ’"hn"’

v ’"hn/trailing-dir"’

v ’"pathname hn"’

v ’"pathname hn/trailing-dir"’

The primary diagnostic data directory path can contain dump files, trap files, an
error log, a notification file, an alert log file, and first occurrence data collection
(FODC) packages, depending on your platform.

If this parameter is null, the diagnostic information will be written to files in one
of the following directories or folders:
v In Windows environments:

– The default location of user data files, for example, files under instance
directories, varies from edition to edition of the Windows family of operating
systems. Use the DB2SET DB2INSTPROF command to get the location of the
instance directory. The file is in the instance subdirectory of the directory
specified by the DB2INSTPROF registry variable.

v In Linux and UNIX environments: Information is written to
INSTHOME/sqllib/db2dump, where INSTHOME is the home directory of the
instance.

To split the diagnostic data directory path to collect diagnostic information per
physical host, set the parameter to one of the following values:
v Split default diagnostic data directory path:

db2 update dbm cfg using diagpath ’"$h"’

which creates a subdirectory under the default diagnostic data directory with the
host name, as in the following:
Default_diagpath/HOST_hostname

Chapter 21. Configuration parameters 553

v Split default diagnostic data directory path with a trailing directory:
db2 update dbm cfg using diagpath ’"$h/trailing-dir"’

which creates a subdirectory under the default diagnostic data directory with the
host name and a trailing directory, as in the following:
Default_diagpath/HOST_hostname/trailing-dir

v Split your own specified diagnostic data directory path (there is a blank space
between pathname and $h):
db2 update dbm cfg using diagpath ’"pathname $h"’

which creates a subdirectory under your own specified diagnostic data directory
with the host name, as in the following:
pathname/HOST_hostname

v Split your own specified diagnostic data directory path (there is a blank space
between pathname and $h) and with a trailing directory:
db2 update dbm cfg using diagpath ’"pathname $h/trailing-dir"’

which creates a subdirectory under your own specified diagnostic data directory
with the host name and a trailing directory, as in the following:
pathname/HOST_hostname/trailing-dir

To split the diagnostic data directory path to collect diagnostic information per
database partition per physical host, set the parameter to one of the following
values:
v Split default diagnostic data directory path:

db2 update dbm cfg using diagpath ’"$n"’

which creates a subdirectory for each partition under the default diagnostic data
directory with the partition number, as in the following:
Default_diagpath/NODEnumber

v Split default diagnostic data directory path with a trailing directory:
db2 update dbm cfg using diagpath ’"$n/trailing-dir"’

which creates a subdirectory for each partition under the default diagnostic data
directory with the partition number and trailing directory, as in the following:
Default_diagpath/NODEnumber/trailing-dir

v Split your own specified diagnostic data directory path (there is a blank space
between pathname and $n):
db2 update dbm cfg using diagpath ’"pathname $n"’

which creates a subdirectory for each partition under your own specified
diagnostic data directory with the partition number, as in the following:
pathname/NODEnumber

v Split your own specified diagnostic data directory path (there is a blank space
between pathname and $n) and with a trailing directory:
db2 update dbm cfg using diagpath ’"pathname $n/trailing-dir"’

which creates a subdirectory for each partition under your own specified
diagnostic data directory with the partition number and trailing directory, as in
the following:
pathname/NODEnumber/trailing-dir

554 Database Administration Concepts and Configuration Reference

To split the diagnostic data directory path to collect diagnostic information per
physical host and per database partition per physical host, set the parameter to one
of the following values:
v Split default diagnostic data directory path:

db2 update dbm cfg using diagpath ’"hn"’

which creates a subdirectory for each logical partition on the host under the
default diagnostic data directory with the host name and the partition number,
as in the following:
Default_diagpath/HOST_hostname/NODEnumber

v Split default diagnostic data directory path with a trailing directory:
db2 update dbm cfg using diagpath ’"hn/trailing-dir"’

which creates a subdirectory for each logical partition on the host under the
default diagnostic data directory with the host name, the partition number, and
a trailing directory, as in the following:
Default_diagpath/HOST_hostname/NODEnumber/trailing-dir

v Split your own specified diagnostic data directory path (there is a blank space
between pathname and hn):
db2 update dbm cfg using diagpath ’"pathname hn"’

which creates a subdirectory for each logical partition on the host under your
own specified diagnostic data directory with the host name and the partition
number, as in the following:
pathname/HOST_hostname/NODEnumber

For example, an AIX host, named boson, has 3 database partitions with node
numbers 0, 1, and 2. An example of a list output for the directory is similar to
the following:
usr1@boson /home/user1/db2dump->ls -R *
HOST_boson:

HOST_boson:
NODE0000 NODE0001 NODE0002

HOST_boson/NODE0000:
db2diag.log db2eventlog.000 db2resync.log db2sampl_Import.msg events usr1.nfy

HOST_boson/NODE0000/events:
db2optstats.0.log

HOST_boson/NODE0001:
db2diag.log db2eventlog.001 db2resync.log usr1.nfy stmmlog

HOST_boson/NODE0001/stmmlog:
stmm.0.log

HOST_boson/NODE0002:
db2diag.log db2eventlog.002 db2resync.log usr1.nfy

v Split your own specified diagnostic data directory path (there is a blank space
between pathname and hn) and with a trailing directory:
db2 update dbm cfg using diagpath ’"pathname hn/trailing-dir"’

which creates a subdirectory for each logical partition on the host under your
own specified diagnostic data directory with the host name, the partition
number and a trailing directory, as in the following:
pathname/HOST_hostname/NODEnumber/trailing-dir

Chapter 21. Configuration parameters 555

Note:

v To avoid the operating system shell interpreting the $ sign on some Linux and
UNIX systems, a single quote must be placed outside of the double quote, as
shown in the syntax.

v In the CLP interactive mode, or if the command is read and executed from an
input file, the double quote is not required.

v $h and $n are case insensitive.
v To check that the setting of the diagnostic data directory path was successfully

split, execute the following command:
db2 get dbm cfg | grep DIAGPATH

A successfully split diagnostic data directory path returns the values $h, $n, or
hn with a preceding blank space. For example, the output returned is similar
to the following:
Diagnostic data directory path (DIAGPATH) = /home/usr1/db2dump/ hn

v The dynamic behaviour for diagpath does not extend to all processes.
v The db2sysc DB2 server process can detect dynamic changes, for example, when

you issue the UPDATE DATABASE MANAGER CONFIGURATION command over an
instance attachment.

v When DB2 client and application processes start, they use the diagpath
configuration parameter setting and do not detect any dynamic changes.

v To improve performance, you can use the default setting for the diagpath
configuration parameter in a non-partitioned database environment. In a
partitioned database environment, you can use local storage at the host for the
diagpath configuration parameter.

In Version 9.5 and later, the default value of DB2INSTPROF at the global level is
stored at the new location shown above. Other profile registry variables that
specify the location of the runtime data files should query the value of
DB2INSTPROF. The other variables include the following ones:
v DB2CLIINIPATH

v DIAGPATH

v SPM_LOG_PATH

Note: In DB2 Version 9.7 Fix Pack 4 and later fix packs, diagnostic logging can be
made more resilient by setting an alternate diagnostic path in conjunction with the
diagpath parameter. When alt_diagpath is set and the path specified by diagpath
becomes unavailable, diagnostic logging continues in the alternate diagnostic data
directory path specified, then resumes when the primary diagnostic path becomes
available again.

diagsize - Rotating diagnostic and administration notification
logs configuration parameter

This parameter helps control the maximum sizes of the diagnostic log and
administration notification log files.

Configuration type
Database manager

Parameter type
Not configurable online

Default
0

556 Database Administration Concepts and Configuration Reference

Minimum value for specifying the size of rotating logs:
2

Maximum value for specifying the size of rotating logs:
The amount of free space in the directory specified by diagpath

Unit of measure
Megabytes

If the value of this parameter is 0, the default, there is only one diagnostic log file,
called the db2diag.log file. There is also only one administration notification log
file, called the <instance>.nfy file, which is used only on Linux and UNIX
operating systems. The sizes of these files can increase indefinitely.

If you set the parameter to a non-zero value and restart the <instance>, a series of
rotating diagnostic log files and a series of rotating administration notification log
files are used. These files are called the db2diag.n.log and <instance>.n.nfy files,
where n is an integer; <instance>.n.nfy files apply only to Linux and UNIX
operating systems. The number of db2diag.n.log files and <instance>.n.nfy files
cannot exceed 10 each. When the size of 10th file is full, the oldest file is deleted,
and a new file is created.

For example, on Linux and UNIX operating systems the rotating log files under
diagpath might look like the following:
db2diag.14.log, db2diag.15.log, ... , db2diag.22.log, db2diag.23.log

<instance>.0.nfy, <instance>.1.nfy...,<instance>.8.nfy,<instance>.9.nfy

If db2diag.23.log is full, db2diag.14.log will be deleted, db2diag.24.log will be
created for db2diag logging

If <instance>.9.nfy is full, <instance>.0.nfy is deleted, <instance>.10.nfy will be
created for administration notification logging.

Note that the messages are always logged to rotating log file with the largest index
number db2diag.largest n.log, <instance>.largest n.nfy

The total size of the db2diag.n.log and <instance>.n.nfy files are determined by
the value of the diagsize configuration parameter. By default, except on Windows
operating systems, 90% of the value of diagsize is allocated to the db2diag.n.log
files, and 10% of the value of diagsize is allocated to the <instance>.n.nfy files.
For example, if you set diagsize to 1024 on a Linux or UNIX operating system, the
total size of the db2diag.n.log files cannot exceed 921.6 MB, and the total size of
the <instance>.n.nfy files cannot exceed 102.4 MB. On Windows operating
systems, the total value of diagsize is allocated to the db2diag.n.log files. The size
of each log file is determined by the total amount of space allocated to each type
of log file divided by 10. For example, if the total size of the db2diag.n.log files
cannot exceed 921.6 MB, the size of each db2diag.n.log file is 92.16 MB.

The maximum value that you specify for the diagsize configuration parameter
cannot exceed the amount of free space in the directory that you specify for the
diagpath configuration parameter. The diagnostic and administration notification
log files are stored in this directory. To avoid losing information too quickly
because of file rotation (the deletion of the oldest log file), set diagsize to a value
that is greater than 50 MB but not more than 80% of the free space in the directory
that you specify for diagpath.

For example,

Chapter 21. Configuration parameters 557

v To set the diagsize to 1024 MB, that will switch to rotate logging behavior when
DB2 gets restarted, use the following command:
db2 update dbm cfg using diagsize 1024

v To set the diagsize to 0 that will switch to default logging behavior when DB2
gets restarted, use the following command:
db2 update dbm cfg using diagsize 0

Note: Starting with DB2 Version 9.7 Fix Pack 1, if the diagsize configuration
parameter is set to a non-zero value and the diagpath configuration parameter is
set to split the diagnostic data into separate directories, then the non-zero value of
the diagsize configuration parameter specifies the total size of the combination of
all rotating administration notification log files and all rotating diagnostic log files
contained within a given split diagnostic data directory. For example, if a system
with 4 database partitions has diagsize set to 1 GB and diagpath set to "$n" (split
diagnostic data per database partition), the maximum total size of the combined
notification and diagnostic logs can reach 4 GB (4 x 1 GB).

dir_cache - Directory cache support
This parameter determines whether the database, node and DCS directory files will
be cached in memory.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
Yes [Yes; No]

When allocated

v When an application issues its first connect, the application directory
cache is allocated

v When a database manager instance is started (db2start), the server
directory cache is allocated.

When freed

v When an the application process terminates, the application directory
cache is freed

v When a database manager instance is stopped (db2stop), the server
directory cache is freed.

The use of the directory cache reduces connect costs by eliminating directory file
I/O and minimizing the directory searches required to retrieve directory
information. There are two types of directory caches:
v An application directory cache that is allocated and used for each application

process on the machine at which the application is running.
v A server directory cache that is allocated and used for some of the internal

database manager processes.

558 Database Administration Concepts and Configuration Reference

For application directory caches, when an application issues its first connect, each
directory file is read and the information is cached in private memory for this
application. The cache is used by the application process on subsequent connect
requests and is maintained for the life of the application process. If a database is
not found in the application directory cache, the directory files are searched for the
information, but the cache is not updated. If the application modifies a directory
entry, the next connect within that application will cause the cache for this
application to be refreshed. The application directory cache for other applications
will not be refreshed. When the application process terminates, the cache is freed.
(To refresh the directory cache used by a command line processor session, issue a
db2 terminate command.)

For server directory caches, when a database manager instance is started
(db2start), each directory file is read and the information is cached in the server
memory. This cache is maintained until the instance is stopped (db2stop). If a
directory entry is not found in this cache, the directory files are searched for the
information. Normally, this server directory cache is never refreshed during the
time the instance is running. However, an offline backup marks the server
directory cache as invalid and will refresh the cache even with the instance
running.

Recommendation: Use directory caching if your directory files do not change
frequently and performance is critical.

In addition, on remote clients, directory caching can be beneficial if your
applications issue several different connection requests. In this case, caching
reduces the number of times a single application must read the directory files.

Directory caching can also improve the performance of taking database system
monitor snapshots. In addition, you should explicitly reference the database name
on the snapshot call, instead of using database aliases.

Note: Errors might occur when performing snapshot calls if directory caching is
turned on and if databases are cataloged, uncataloged, created, or dropped after
the database manager is started.

discover - Discovery mode
This parameter determines what kind of discovery requests, if any, the client can
make.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
SEARCH [DISABLE, KNOWN, SEARCH]

From a client perspective, one of the following will occur:

Chapter 21. Configuration parameters 559

v If discover = SEARCH, the client can issue search discovery requests to find DB2
server systems on the network. Search discovery provides a superset of the
functionality provided by KNOWN discovery. If discover = SEARCH, both search
and known discovery requests can be issued by the client.

v If discover = KNOWN, only known discovery requests can be issued from the
client. By specifying some connection information for the administration server
on a particular system, all the instance and database information on the DB2
system is returned to the client.

v If discover = DISABLE, discovery is disabled at the client.

The default discovery mode is SEARCH.

discover_inst - Discover server instance
This parameter specifies whether this instance can be detected by DB2 discovery.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable online

Propagation class
Immediate

Default [range]
ENABLE [ENABLE, DISABLE]

The parameter's default, enable, specifies that the instance can be detected, while
disable prevents the instance from being discovered.

fcm_num_buffers - Number of FCM buffers
This parameter specifies the number of 4 KB buffers that are used for internal
communications (messages) both among and within database servers.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable online

Propagation class
Immediate

Default [range]

32-bit platforms
Automatic [895 - 65300]

560 Database Administration Concepts and Configuration Reference

64-bit platforms
Automatic [895 - 524288]

v Database server with local and remote clients: 1024
v Database server with local clients: 895
v Partitioned database server with local and remote clients: 4096

Fast communication manager (FCM) buffers are used for both
inter-member and intra-member communications by default.

Important: The default value of the fcm_num_buffers parameter is subject
to change by the DB2 Configuration Advisor after initial database creation.

You can set both an initial value and the AUTOMATIC value for the fcm_num_buffers
configuration parameter. When you set the parameter to AUTOMATIC, FCM monitors
resource usage and can increase or decrease resources if they are not used within
30 minutes. The amount that resources are increased or decreased depends on the
operating system. On Linux operating systems, the number of buffers can be
increased only 25% above the starting value. If the database manager attempts to
start an instance and cannot allocate the specified number of buffers, it decreases
the number until it can start the instance.

If you want to set the fcm_num_buffers parameter to both a specific value and
AUTOMATIC and you do not want the system controller thread to adjust resources
below the specified value, set the FCM_CFG_BASE_AS_FLOOR option of the
DB2_FCM_SETTINGS registry variable to YES or TRUE. The DB2_FCM_SETTINGS registry
variable value is adjusted dynamically.

If you are using multiple logical nodes, one pool of fcm_num_buffers buffers is
shared by all the logical nodes on the same machine. You can determine the size of
the pool by multiplying the value of the fcm_num_buffers parameter by the
number of logical nodes on the physical machine. Examine the value that you are
using; consider how many FCM buffers are allocated on a machine or machines
with multiple logical nodes. If you have multiple logical nodes on the same
machine, you might have to increase the value of the fcm_num_buffers parameter.
The number of users on the system, the number of database partition servers on
the system, or the complexity of the applications can cause a system to run out of
message buffers.

fcm_num_channels - Number of FCM channels
This parameter specifies the number of FCM channels for each database partition.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients
v Satellite database server with local clients

Parameter type
Configurable online

Propagation class
Immediate

Default [range]

Chapter 21. Configuration parameters 561

UNIX 32-bit platforms
Automatic, with a starting value of 256, 512, or 2048 [128 - 120000]

UNIX 64-bit platforms
Automatic, with a starting value of 256, 512, or 2048 [128 - 524288]

Windows 32-bit
Automatic, with a starting value of 10000 [128 - 120000]

Windows 64-bit
Automatic, with a starting value of 256, 512, or 2048 [128 - 524288]

The default starting values for different types of servers are as follows:
v Database server with local and remote clients: 512
v Database server with local clients: 256
v Partitioned database environment server with local and remote clients:

2048

Fast communication manager (FCM) buffers are used for both
inter-member and intra-member communications by default. To enable
non-clustered database systems to use the FCM subsystem and the
fcm_num_channels parameter, you had to set the intra_parallel parameter
to YES

An FCM channel represents a logical communication end point between EDUs
running in the DB2 engine. Both control flows (request and reply) and data flows
(table queue data) rely on channels to transfer data between partitions.

When set to AUTOMATIC, FCM monitors channel usage, incrementally allocating
and releasing resources as requirements change.

If you want to set the fcm_num_channels parameter to a specific value with the
AUTOMATIC attribute and you do not want the system controller thread to adjust
resources below the specified value, you need to configure the DB2_FCM_SETTINGS
registry variable. To enable this behavior, set the FCM_CFG_BASE_AS_FLOOR option of
the DB2_FCM_SETTINGS registry variable to YES (or TRUE). The DB2_FCM_SETTINGS
registry variable value is adjusted dynamically.

fed_noauth - Bypass federated authentication
This parameter determines whether federated authentication will be bypassed at
the instance.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable online

Propagation class
Immediate

Default [range]
No [Yes; No]

562 Database Administration Concepts and Configuration Reference

When fed_noauth is set to yes, authentication is set to server or server_encrypt, and
federated is set to yes, then authentication at the instance is bypassed. It is assumed
that authentication will happen at the data source. Exercise caution when
fed_noauth is set to yes. Authentication is done at neither the client nor at DB2. Any
user who knows the SYSADM authentication name can assume SYSADM authority
for the federated server.

federated - Federated database system support
This parameter enables or disables support for applications submitting distributed
requests for data managed by data sources (such as the DB2 Family and Oracle).

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
No [Yes; No]

federated_async - Maximum asynchronous TQs per query
configuration parameter

This parameter determines the maximum number of asynchrony table queues
(ATQs) in the access plan that the federated server supports.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients when

federation is enabled.

Parameter type
Configurable online

Default [range]
0 [0 to 32 767 inclusive, -1, ANY]

When ANY or -1 is specified, the optimizer determines the number of
ATQs for the access plan. The optimizer assigns an ATQ to all eligible
SHIP or remote pushdown operators in the plan. The value that is
specified for DB2_MAX_ASYNC_REQUESTS_PER_QUERY server option
limits the number of asynchronous requests.

Recommendation
The federated_async configuration parameter supplies the default or starting
value for the special register and the bind option. You can override the
value of this parameter by setting the value of the CURRENT FEDERATED
ASYNCHRONY special register, FEDERATED_ASYNCHRONY bind
option, or FEDERATED_ASYNCHRONY prepcompile option to a higher or
a lower number.

Chapter 21. Configuration parameters 563

If the special register or the bind option do not override the federated_async
configuration parameter, the value of the parameter determines the maximum
number of ATQs in the access plan that the federated server allows. If the special
register or the bind option overrides this parameter, the value of the special
register or the bind option determines the maximum number of ATQs in the plan.

Any changes to the federated_async configuration parameter affect dynamic
statements as soon as the current unit of work commits. Subsequent dynamic
statements recognize the new value automatically. A restart of the federated
database is not needed. Embedded SQL packages are not invalidated nor implicitly
rebound when the value of the federated_async configuration parameter changes.

If you want the new value of the federated_async configuration parameter to affect
static SQL statements, you need to rebind the package.

fenced_pool - Maximum number of fenced processes
This parameter represents the number of threads cached in each db2fmp process
for threaded db2fmp processes (processes serving threadsafe stored procedures and
UDFs). For nonthreaded db2fmp processes, this parameter represents the number
of processes cached.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable online

Default [range]
-1 (max_coordagents), Automatic [-1; 0–64 000]

Unit of measure
Counter

Restrictions:

v If this parameter is updated dynamically, and the value is decreased, the
database manager does not proactively terminate db2fmp threads or processes,
instead it stops caching them as they are used in order to reduce the number of
cached db2fmp's down to the new value.

v If this parameter is updated dynamically, and the value is increased, the
database manager caches more db2fmp threads and processes when they are
created.

v When this parameter is set to -1, the default, it assumes the value of the
max_coordagents configuration parameter. Note that only the value of
max_coordagents is assumed and not the automatic setting or behavior.

v When this parameter is set to AUTOMATIC, also the default:
– The database manager allows the number of db2fmp threads and processes

cached to increase based on the high water mark of coordinating agents.
Specifically, the automatic behavior of this parameter allows it to grow
depending on the maximum number of coordinating agents the database
manager has ever registered, at the same time, since it started.

564 Database Administration Concepts and Configuration Reference

– The value assigned to this parameter represents a lower bound for the
number of db2fmp threads and process to cache.

Recommendation: If your environment uses fenced stored procedures or user
defined functions, then this parameter can be used to ensure that an appropriate
number of db2fmp processes are available to process the maximum number of
concurrent stored procedures and UDFs that run on the instance, ensuring that no
new fenced mode processes need to be created as part of stored procedure and
UDF execution.

If you find that the default value is not appropriate for your environment because
an inappropriate amount of system resource is being given to db2fmp processes
and is affecting performance of the database manager, the following might be
useful in providing a starting point for tuning this parameter:

fenced_pool = # of applications allowed to make stored procedure and
UDF calls at one time

If keepfenced is set to YES, then each db2fmp process that is created in the cache
pool will continue to exist and will use system resources even after the fenced
routine call has been processed and returned to the agent.

If keepfenced is set to NO, then nonthreaded db2fmp processes will terminate when
they complete execution, and there is no cache pool. Multithreaded db2fmp
processes will continue to exist, but no threads will be pooled in these processes.
This means that even when keepfenced is set to NO, you can have one threaded C
db2fmp process and one threaded Java db2fmp process on your system.

In previous versions, this parameter was known as maxdari.

group_plugin - Group plug-in
This parameter specifies the name of the group plug-in library.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
Null [any valid string]

By default, this value is null, and DB2 uses the operating system group lookup.
The plug-in will be used for all group lookups. For non-root installations, if the
DB2 userid and password plug-in library is used, the db2rfe command must be
run before using your DB2 product.

health_mon - Health monitoring
This parameter allows you to specify whether you want to monitor an instance, its
associated databases, and database objects according to various health indicators.

Chapter 21. Configuration parameters 565

Configuration type
Database manager

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
On [On; Off]

Related Parameters

If health_mon is turned on (the default), an agent will collect information about the
health of the objects you have selected. If an object is considered to be in an
unhealthy position, based on thresholds that you have set, notifications can be
sent, and actions can be taken automatically. If health_mon is turned off, the health
of objects will not be monitored.

You can use the Health Center or the CLP to select the instance and database
objects that you want to monitor. You can also specify where notifications should
be sent, and what actions should be taken, based on the data collected by the
health monitor.

indexrec - Index re-creation time
This parameter indicates when the database manager will attempt to rebuild
invalid indexes, and whether or not any index build will be redone during DB2
rollforward or HADR log replay on the standby database.

Configuration type
Database and Database Manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]

UNIX Database Manager
restart [restart; restart_no_redo; access; access_no_redo]

Windows Database Manager
restart [restart; restart_no_redo; access; access_no_redo]

Database
Use system setting [system; restart; restart_no_redo; access;
access_no_redo]

There are five possible settings for this parameter:

SYSTEM
use system setting specified in the database manager configuration file to
decide when invalid indexes will be rebuilt, and whether any index build

566 Database Administration Concepts and Configuration Reference

log records are to be redone during DB2 rollforward or HADR log replay.
(Note: This setting is only valid for database configurations.)

ACCESS
Invalid indexes are rebuilt when the underlying table is first accessed. Any
fully logged index builds are redone during DB2 rollforward or HADR log
replay. When HADR is started and an HADR takeover occurs, any invalid
indexes are rebuilt after takeover when the underlying table is first
accessed.

ACCESS_NO_REDO
Invalid indexes will be rebuilt when the underlying table is first accessed.
Any fully logged index build will not be redone during DB2 rollforward or
HADR log replay and those indexes will be left invalid. When HADR is
started and an HADR takeover takes place, any invalid indexes will be
rebuilt after takeover when the underlying table is first accessed.

RESTART
The default value for indexrec. Invalid indexes will be rebuilt when a
RESTART DATABASE command is either explicitly or implicitly issued.
Any fully logged index build will be redone during DB2 rollforward or
HADR log replay. When HADR is started and an HADR takeover takes
place, any invalid indexes will be rebuilt at the end of takeover.

When a database terminates abnormally while applications are connected
to it, and the autorestart parameter is enabled, a RESTART DATABASE
command is implicitly issued when an application connects to a database.
If the command is not issued, the invalid indexes are rebuilt the next time
the underlying table is accessed.

RESTART_NO_REDO
Invalid indexes will be rebuilt when a RESTART DATABASE command is
either explicitly or implicitly issued. Any fully logged index build will not
be redone during DB2 rollforward or HADR log replay and instead those
indexes will be rebuilt when rollforward completes or when HADR
takeover takes place.

When a database terminates abnormally while applications are connected
to it, and the autorestart parameter is enabled, a RESTART DATABASE
command is implicitly issued when an application connects to a database.
If the command is not issued, the invalid indexes are rebuilt the next time
the underlying table is accessed.

Indexes can become invalid when fatal disk problems occur. If this happens to the
data itself, the data could be lost. However, if this happens to an index, the index
can be recovered by re-creating it. If an index is rebuilt while users are connected
to the database, two problems could occur:
v An unexpected degradation in response time might occur as the index file is

re-created. Users accessing the table and using this particular index would wait
while the index was being rebuilt.

v Unexpected locks might be held after index re-creation, especially if the user
transaction that caused the index to be re-created never performed a COMMIT
or ROLLBACK.

Recommendation: The best choice for this option on a high-user server and if
restart time is not a concern, would be to have the index rebuilt at DATABASE
RESTART time as part of the process of bringing the database back online after a
crash.

Chapter 21. Configuration parameters 567

Setting this parameter to “ACCESS” or to “ACCESS_NO_REDO” will result in a
degradation of the performance of the database manager while the index is being
re-created. Any user accessing that specific index or table would have to wait until
the index is recreated.

If this parameter is set to “RESTART”, the time taken to restart the database will be
longer due to index re-creation, but normal processing would not be impacted
once the database has been brought back online.

Note: At database recovery time, all SQL procedure executables on the file system
that belong to the database being recovered are removed. If indexrec is set to
RESTART, all SQL procedure executables are extracted from the database catalog
and put back on the file system at the next connection to the database. If indexrec is
not set to RESTART, an SQL executable is extracted to the file system only on first
execution of that SQL procedure.

The difference between the RESTART and the RESTART_NO_REDO values, or
between the ACCESS and the ACCESS_NO_REDO values, is only significant when
full logging is activated for index build operations, such as CREATE INDEX and
REORG INDEX operations, or for an index rebuild. You can activate logging by
enabling the logindexbuild database configuration parameter or by enabling LOG
INDEX BUILD when altering a table. By setting indexrec to either RESTART or
ACCESS, operations involving a logged index build can be rolled forward without
leaving the index object in an invalid state, which would require the index to be
rebuilt at a later time.

instance_memory - Instance memory
This parameter specifies the maximum amount of memory that can be allocated for
a database partition if you are using DB2 database products with memory usage
restrictions or if you set it to a specific value. Otherwise, the AUTOMATIC setting
allows instance memory to grow as needed.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable online

Default [range]

32-bit platforms
Automatic [0 - 1 000 000]

64-bit platforms
Automatic [0 - 68 719 476 736]

DB2 Express® Edition and DB2 Express-C
Automatic [0 - 1 048 576]

DB2 Workgroup Server Edition
Automatic [0 - 4 194 304]

Unit of measure
Pages (4 KB)

568 Database Administration Concepts and Configuration Reference

When allocated
Not applicable

When freed
Not applicable

The default value of instance_memory is AUTOMATIC.The AUTOMATIC setting results in
a value being computed at database partition activation. The computed value
ranges between 75 percent and 95 percent of the physical RAM on the system - the
larger the system, the higher the percentage. For DB2 database products with
memory usage restrictions, the computed value is also limited by the maximum
allowed by the product license. For database partition servers with multiple logical
database partitions, this computed value is divided by the number of logical
database partitions.

Starting with Version 9.7 Fix Pack 1 and Version 9.5 Fix Pack 5, the computed
value for the AUTOMATIC setting does not enforce a limit on memory allocated
across the instance for DB2 database products without memory usage restrictions.
For Version 9.7 and Version 9.5 Fix Pack 4 or earlier, the computed value for the
AUTOMATIC setting represents a limit for all DB2 database products.

Updating instance_memory dynamically

v Dynamic updates to instance_memory require an instance attachment.
See the ATTACH command for details.

v For DB2 database products with memory usage restrictions, dynamic
updates to instance_memory must indicate a value less than any license
limit or AUTOMATIC. Otherwise, the update fails and the SQL5130N
error message is returned.

v Dynamic updates to instance_memory must indicate a value less than the
amount of physical RAM or AUTOMATIC . Otherwise, the update is
deferred until the next db2start is issued and the SQL1362W warning
message is returned.

v Dynamic updates to instance_memory must indicate a value larger than
the current amount of in-use instance memory. Otherwise, the update is
deferred until the instance is restarted, and the SQL1362W warning
message is returned. The amount of in-use instance memory can be
determined by subtracting the Cached memory value from Current usage
value in the output of the db2pd -dbptnmem command. The minimum
value would be the highest in-use instance memory across all database
partitions.

v If instance_memory is set to a value greater than the amount of physical
RAM, the next db2start command that you issue will fail and return the
SQL1220N error message.

v If instance_memory is dynamically updated to AUTOMATIC, the value is
recalculated immediately.

Restriction for DPF instances
You should not use of a specific value for instance_memory in DPF
instances. Using a specific value for instance_memory is not recommended
in DPF instances because the instance_memory is a database manager
configuration parameter and it is not possible to specify different values
for different database partitions. This makes it difficult to establish a
setting suitable for all database partitions because they might have
different memory requirements.

Controlling DB2 Memory consumption:

Chapter 21. Configuration parameters 569

DB2 memory consumption varies depending on workload and
configuration. In addition to this, self-tuning of database_memory becomes a
factor if it is enabled. Self-tuning of database_memory is enabled when
database_memory is set to AUTOMATIC and the self-tuning memory
manager (STMM) is active.

If the instance is running on a DB2 database product without memory
usage restrictions and instance_memory is set to AUTOMATIC, an
instance_memory limit is not enforced. The database manager allocates
system memory as needed. If self-tuning of database_memory is enabled,
STMM updates the configuration to achieve optimal performance while
monitoring available system memory. This monitoring of available memory
ensures that system memory is not over-committed

If the instance is running on a DB2 database product with memory usage
restrictions or instance_memory is set to a specific value, an
instance_memory limit is enforced. The database manager allocates system
memory up to this limit, the application can receive memory allocation
errors when this limit is reached. Additional consideration are as follows:
v If self-tuning of database_memory is enabled and instance_memory is set

to a specific value, STMM updates the configuration to achieve optimal
performance while maintaining sufficient free instance memory. This
ensures that enough instance memory is available to satisfy volatile
memory requirements. System memory is not monitored.

v If self-tuning of database_memory is enabled and instance_memory is set
to AUTOMATIC, this is the case where an instance_memory limit is enforced
for DB2 database product with memory usage restrictions, STMM
updates the configuration to achieve optimal performance while
monitoring available system memory and maintaining sufficient free
instance memory.

Monitoring Instance Memory usage

Use the db2pd -dbptnmem command to show details on instance memory
usage.

Use the new ADMIN_GET_DBP_MEM_USAGE table function to get the
total instance memory consumption by a DB2 instance for a specific
database partition, or for all database partitions. This table function also
returns the current upper bound value.

When fast communication manager (FCM) shared memory is allocated,
each local database partition's share of the overall FCM shared memory
size for the system is accounted for in that database partition's
instance_memory usage.

intra_parallel - Enable intra-partition parallelism
This parameter specifies whether the database manager can use intra-partition
parallelism.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

570 Database Administration Concepts and Configuration Reference

Parameter type
Configurable

Default [range]
NO (0) [SYSTEM (-1), NO (0), YES (1)]

A value of -1 causes the parameter value to be set to “YES” or “NO” based
on the hardware on which the database manager is running.

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Note:

v Parallel index creation does not use this configuration parameter.
v If you change this parameter value, packages might be rebound to the database,

and some performance degradation might occur.

java_heap_sz - Maximum Java interpreter heap size
This parameter determines the maximum size of the heap that is used by the Java
interpreter started to service Java DB2 stored procedures and UDFs.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]

HP-UX
4096 [0 - 524 288]

All other operating systems
2048 [0 - 524 288]

Unit of measure
Pages (4 KB)

When allocated
When a Java stored procedure or UDF starts

When freed
When the db2fmp process (fenced) or the db2agent process (trusted)
terminates.

There is one heap for each DB2 process (one for each agent or subagent on Linux
and UNIX platforms, and one for each instance on other platforms). There is one
heap for each fenced UDF and fenced stored procedure process. There is one heap
per agent (not including sub-agents) for trusted routines. There is one heap per
db2fmp process running a Java stored procedure. For multithreaded db2fmp
processes, multiple applications using threadsafe fenced routines are serviced from
a single heap. In all situations, only the agents or processes that run Java UDFs or

Chapter 21. Configuration parameters 571

stored procedures ever allocate this memory. On partitioned database systems, the
same value is used at each database partition.

XML data is materialized when passed to stored procedures as IN, OUT, or INOUT
parameters. When you are using Java stored procedures, the heap size might need
to be increased based on the quantity and size of XML arguments, and the number
of external stored procedures that are being executed concurrently.

jdk_path - Software Developer's Kit for Java installation path
This parameter specifies the directory under which the Software Developer's Kit
(SDK) for Java, to be used for running Java stored procedures and user-defined
functions, is installed. The CLASSPATH and other environment variables used by
the Java interpreter are computed from the value of this parameter.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
Null [Valid path]

If the SDK for Java was installed with your DB2 product, this parameter is set
properly. However, if you reset the database manager (dbm cfg) parameter, you
need to specify where the SDK for Java is installed.

keepfenced - Keep fenced process
This parameter indicates whether or not a fenced mode process is kept after a
fenced mode routine call is complete. Fenced mode processes are created as
separate system entities in order to isolate user-written fenced mode code from the
database manager agent process. This parameter is only applicable on database
servers.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
Yes [Yes; No]

If keepfenced is set to no, and the routine being executed is not threadsafe, a new
fenced mode process is created and destroyed for each fenced mode invocation. If
keepfenced is set to no, and the routine being executed is threadsafe, the fenced
mode process persists, but the thread created for the call is terminated. If keepfenced

572 Database Administration Concepts and Configuration Reference

is set to yes, a fenced mode process or thread is reused for subsequent fenced
mode calls. When the database manager is stopped, all outstanding fenced mode
processes and threads will be terminated.

Setting this parameter to yes will result in additional system resources being
consumed by the database manager for each fenced mode process that is activated,
up to the value contained in the fenced_pool parameter. A new process is only
created when no existing fenced mode process is available to process a subsequent
fenced routine invocation. This parameter is ignored if fenced_pool is set to 0.

Recommendation: In an environment in which the number of fenced mode
requests is large relative to the number of non-fenced mode requests, and system
resources are not constrained, then this parameter can be set to yes. This will
improve the fenced mode process performance by avoiding the initial fenced mode
process creation overhead since an existing fenced mode process will be used to
process the call. In particular, for Java routines, this will save the cost of starting
the Java Virtual Machine (JVM), a very significant performance improvement.

For example, in an OLTP debit-credit banking transaction application, the code to
perform each transaction could be performed in a stored procedure which executes
in a fenced mode process. In this application, the main workload is performed out
of fenced mode processes. If this parameter is set to no, each transaction incurs the
overhead of creating a new fenced mode process, resulting in a significant
performance reduction. If, however, this parameter is set to yes, each transaction
would try to use an existing fenced mode process, which would avoid this
overhead.

In previous versions of DB2, this parameter was known as keepdari.

local_gssplugin - GSS API plug-in used for local instance level
authorization

This parameter specifies the name of the default GSS API plug-in library to be
used for instance level local authorization when the value of the authentication
database manager configuration parameter is set to GSSPLUGIN or
GSS_SERVER_ENCRYPT.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
Null [any valid string]

max_connections - Maximum number of client connections
This parameter indicates the maximum number of client connections allowed per
database partition.

Chapter 21. Configuration parameters 573

Configuration type
Database manager

Parameter type
Configurable online

Applies to

v Database server with local and remote clients
v Database server with local clients
v Database Server or Connect server with local and remote clients" (for

max_connections, max_coordagents, num_initagents, num_poolagents, and
also federated_async, if you are using a Federated environment)

Default [range]
-1 and AUTOMATIC (max_coordagents) [-1 and AUTOMATIC, 1 - 64000]

A setting of -1 means that the value associated with max_coordagents will be
used, not the automatic setting or behavior. AUTOMATIC means that the
database manager picks the value for this parameter using whatever
technique works best. AUTOMATIC is an ON/OFF switch in the
configuration file and is independent of the value, hence both -1 and
AUTOMATIC can be the default setting.

For details, see: “Restrictions and behavior when configuring
max_coordagents and max_connections” on page 534.

The Concentrator

The Concentrator is OFF when max_connections is equal to or less than
max_coordagents. The Concentrator is ON when max_connections is greater than
max_coordagents.

This parameter controls the maximum number of client applications that can be
connected to a database partition in the instance. Typically, each application is
assigned a coordinator agent. The agent facilitates the operations between the
application and the database. When the default value for this parameter is used,
the Concentrator feature is not activated. As a result, each agent operates within its
own private memory and shares database manager and database global resources,
such as the buffer pool, with other agents. When the parameter is set to a value
greater than the default, the Concentrator feature is activated.

max_connretries - Node connection retries
This parameter specifies the maximum number of times an attempt will be made
to establish a TCP/IP connection between two database partition servers.

Configuration type
Database manager

Applies to
Partitioned database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
5 [0–100]

574 Database Administration Concepts and Configuration Reference

If the attempt to establish communication between two database partition servers
fails (for example, the value specified by the conn_elapse parameter is reached),
max_connretries specifies the number of connection retries that can be made to a
database partition server. If the value specified for this parameter is exceeded, an
error is returned.

max_coordagents - Maximum number of coordinating agents
This parameter is used to limit the number of coordinating agents.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable online

Default [range]
200, Automatic [-1; 0–64 000]

A setting of -1 translates into a value of 200.

For details, see: “Restrictions and behavior when configuring
max_coordagents and max_connections” on page 534.

The Concentrator

When the Concentrator is OFF, that is, when max_connections is equal to or less
than max_coordagents, this parameter determines the maximum number of
coordinating agents that can exist at one time on a server node.

One coordinating agent is acquired for each local or remote application that
connects to a database or attaches to an instance. Requests that require an instance
attachment include CREATE DATABASE, DROP DATABASE, and Database System
Monitor commands.

When the Concentrator is ON, that is, when max_connections is greater than
max_coordagents, there might be more connections than coordinator agents to
service them. An application is in an active state only if there is a coordinator
agent servicing it. Otherwise, the application is in an inactive state. Requests from
an active application will be serviced by the database coordinator agent (and
subagents in SMP or MPP configurations). Requests from an inactive application
will be queued until a database coordinator agent is assigned to service the
application, when the application becomes active. As a result, this parameter might
be used to control the load on the system.

max_querydegree - Maximum query degree of parallelism
This parameter specifies the maximum degree of intra-partition parallelism that is
used for any SQL statement executing on this instance of the database manager. An
SQL statement will not use more than this number of parallel operations within a
database partition when the statement is executed.

Configuration type
Database manager

Chapter 21. Configuration parameters 575

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Statement boundary

Default [range]
-1 (ANY) [ANY, 1 - 32 767] (ANY means system-determined)

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

The intra_parallel configuration parameter must be set to YES to enable the
database partition to use intra-partition parallelism for SQL statements. The
intra_parallel parameter is no longer required for parallel index creation.

The default value for this configuration parameter is -1. This value means that the
system uses the degree of parallelism determined by the optimizer; otherwise, the
user-specified value is used.

Note: The degree of parallelism for an SQL statement can be specified at statement
compilation time using the CURRENT DEGREE special register or the DEGREE bind
option.

The maximum query degree of parallelism for an active application can be
modified using the SET RUNTIME DEGREE command. The actual runtime degree used
is the lower of:
v max_querydegree configuration parameter
v Application runtime degree
v SQL statement compilation degree

This configuration parameter applies to queries only.

max_time_diff - Maximum time difference among nodes
This parameter specifies the maximum time difference, in minutes, that is
permitted among the database partition servers listed in the node configuration
file.

Configuration type
Database manager

Applies to
Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
60 [1 - 1 440]

Unit of measure
Minutes

576 Database Administration Concepts and Configuration Reference

Each database partition server has its own system clock. If two or more database
partition servers are associated with a transaction, and the time difference between
their clocks is more than the amount specified by the MAX_TIME_DIFF parameter, the
transaction is rejected and an SQLCODE is returned. (The transaction is rejected
only if data modification is associated with it.)

A SQLCODE may also be returned in database partitioned environments where
DB2 compares the system clock to the virtual timestamp (VTS) saved to the
SQLOGCTL.LFH log control file. If the timestamp in the .LFH file is less than the
system time, the time in the database log is set to the VTS until the system clock
matches this time. The SQL1473N error message will also be returned, despite the
time difference between multiple nodes being smaller than MAX_TIME_DIFF
parameter value.

DB2 uses Coordinated Universal Time (UTC), so different time zones are not a
consideration when you set this parameter. The Coordinated Universal Time is the
same as Greenwich Mean Time.

maxagents - Maximum number of agents
This parameter has been deprecated since Version 9.5, but is still being used by
pre-Version 9.5 data servers and clients. Any value specified for this configuration
parameter will be ignored by the database manager in DB2 Version 9.5 or later
releases.

Note: The following information applies only to pre-Version 9.5 data servers and
clients.

This parameter indicates the maximum number of database manager agents,
whether coordinator agents or subagents, available at any given time to accept
application requests

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
200 [1 - 64 000]

400® [1 - 64 000] on partitioned database server with local and remote
clients

Unit of measure
Counter

If you want to limit the number of coordinating agents, use the max_coordagents
parameter.

This parameter can be useful in memory constrained environments to limit the
total memory usage of the database manager, because each additional agent
requires additional memory.

Chapter 21. Configuration parameters 577

Recommendation: The value of maxagents should be at least the sum of the values
for maxappls in each database allowed to be accessed concurrently. If the number of
databases is greater than the numdb parameter, then the safest course is to use the
product of numdb with the largest value for maxappls.

Each additional agent requires some resource overhead that is allocated at the time
the database manager is started.

If you are encountering memory errors when trying to connect to a database, try
making the following configuration adjustments:
v In a non-partitioned database environment with no intra-query parallelism

enabled, increase the value of the maxagents database configuration parameter.
v In a partitioned database environment or an environment where intra-query

parallelism is enabled, increase the larger of maxagents or max_coordagents.

maxcagents - Maximum number of concurrent agents
This parameter is deprecated in Version 9.5, but is still being used by pre-Version
9.5 data servers and clients. Any value specified for this configuration parameter
will be ignored by the DB2 Version 9.5 database manager.

Note: The following information applies only to pre-Version 9.5 data servers and
clients.

This parameter is used to control the load on the system during periods of high
simultaneous application activity by limiting the maximum number of database
manager agents that can be concurrently executing a database manager transaction

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
-1 (max_coordagents) [-1; 1 – max_coordagents]

Unit of measure
Counter

This parameter does not limit the number of applications that can have
connections to a database. It only limits the number of database manager agents
that can be processed concurrently by the database manager at any one time,
thereby limiting the usage of system resources during times of peak processing.
For example, you might have a system requiring a large number of connections
but with a limited amount of memory to serve those connections. Adjusting this
parameter can be useful in such an environment, where a period of high
simultaneous activity could cause excessive operating system paging.

A value of -1 indicates that the limit is max_coordagents.

578 Database Administration Concepts and Configuration Reference

Recommendation: In most cases the default value for this parameter will be
acceptable. In cases where the high concurrency of applications is causing
problems, you can use benchmark testing to tune this parameter to optimize the
performance of the database.

mon_heap_sz - Database system monitor heap size
This parameter determines the amount of the memory, in pages, to allocate for
database system monitor data. Memory is allocated from the monitor heap when
you perform database monitoring activities such as taking a snapshot, turning on a
monitor switch, resetting a monitor, or activating an event monitor.

With Version 9.5, this database configuration parameter has a default value of
AUTOMATIC, meaning that the monitor heap can increase as needed until the
instance_memory limit is reached.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable online

Default [range]
Automatic [0 - 60 000]

Unit of measure
Pages (4 KB)

When allocated
When the database manager is started with the db2start command

When freed
When the database manager is stopped with the db2stop command

A value of zero prevents the database manager from collecting database system
monitor data.

Recommendation: The amount of memory required for monitoring activity
depends on the number of monitoring applications (applications taking snapshots
or event monitors), which switches are set, and the level of database activity.

If set to AUTOMATIC, if the configured memory in this heap runs out and no
more unreserved memory is available in the instance shared memory region, one
of the following will occur:
v When the first application connects to the database for which this event monitor

is defined, an error message is written to the administration notification log.
v If an event monitor being started dynamically using the SET EVENT MONITOR

statement fails, an error code is returned to your application.
v If a monitor command or API subroutine fails, an error code is returned to your

application.

Chapter 21. Configuration parameters 579

If a numerical value (not AUTOMATIC) is set, no more than the configured
amount of memory is available for monitoring (regardless of free instance
memory).

nodetype - Machine node type
This parameter provides information about the DB2 products which you have
installed on your machine and, as a result, information about the type of database
manager configuration.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Informational

The following are the possible values returned by this parameter and the products
associated with that node type:
v Database server with local and remote clients – a DB2 server product,

supporting local and remote Data Server Runtime Clients, and capable of
accessing other remote database servers.

v Client – a Data Server Runtime Client capable of accessing remote database
servers.

v Database server with local clients – a DB2 relational database management
system, supporting local Data Server Runtime Clients and capable of accessing
other, remote database servers.

v Partitioned database server with local and remote clients – a DB2 server
product, supporting local and remote Data Server Runtime Clients, and capable
of accessing other remote database servers, and capable of parallelism.

notifylevel - Notify level
This parameter specifies the type of administration notification messages that are
written to the administration notification log.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
3 [0 — 4]

580 Database Administration Concepts and Configuration Reference

On Linux and UNIX platforms, the administration notification log is a text file
called instance.nfy. On Windows, all administration notification messages are
written to the Event Log. The errors can be written by DB2, the Health Monitor,
the Capture and Apply programs, and user applications.

Valid values for this parameter are:
v 0 — No administration notification messages captured. (This setting is not

recommended.)
v 1 — Fatal or unrecoverable errors. Only fatal and unrecoverable errors are

logged. To recover from some of these conditions, you might need assistance
from DB2 service.

v 2 — Immediate action required. Conditions are logged that require immediate
attention from the system administrator or the database administrator. If the
condition is not resolved, it could lead to a fatal error. Notification of very
significant, non-error activities (for example, recovery) might also be logged at
this level. This level will capture Health Monitor alarms. Informational messages
will be shown at this level.

v 3 — Important information, no immediate action required. Conditions are
logged that are non-threatening and do not require immediate action but might
indicate a non-optimal system. This level will capture Health Monitor alarms,
Health Monitor warnings, and Health Monitor attentions.

Usage Notes

v The administration notification log includes messages having values up to and
including the value of notifylevel. For example, setting notifylevel to 3 will cause
the administration notification log to include messages applicable to levels 1, 2,
and 3.

v For a user application to be able to write to the notification file or Windows
Event Log, it must call the db2AdminMsgWrite API.

v You might want to increase the value of this parameter to gather additional
problem determination data to help resolve a problem. Note that you must set
notifylevel to a value of 2 or higher for the Health Monitor to send any
notifications to the contacts defined in its configuration.

v In specific circumstances, to display high importance messages, DB2 will
override the notifylevel setting

num_initagents - Initial number of agents in pool
This parameter determines the initial number of idle agents that are created in the
agent pool at DB2START time.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable online

Default [range]
0 [0–64 000]

Chapter 21. Configuration parameters 581

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

The database manager always starts the num_initagents idle agents as part of the
db2start command, except if the value of this parameter is greater than
num_poolagents during start up and num_poolagents is not set to AUTOMATIC. In
this case, the database manager only starts the num_poolagents idle agents since
there is no reason to start more idle agents than can be pooled.

num_initfenced - Initial number of fenced processes
This parameter indicates the initial number of nonthreaded, idle db2fmp processes
that are created in the db2fmp pool at START DBM time.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable online

Default [range]
0 [0–64 000]

Setting this parameter will reduce the initial startup time for running
non-threadsafe C and Cobol routines. This parameter is ignored if keepfenced is not
specified.

It is much more important to set fenced_pool to an appropriate size for your system
than to start up a number of db2fmp processes at START DBM time.

In previous versions, this parameter was known as num_initdaris.

num_poolagents - Agent pool size
This parameter sets the maximum size of the idle agent pool.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable online

Default
100, AUTOMATIC [-1, 0 - 64000]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

582 Database Administration Concepts and Configuration Reference

This configuration parameter is set to AUTOMATIC with a value of 100 as the
default. A setting of -1 is still supported, and translates into a value of 100. When
this parameter is set to AUTOMATIC, the database manager automatically
manages the number of idle agents to pool. Typically, this means that once an
agent completes its work, it is not terminated, but becomes idle for a period of
time. Depending on the workload and type of agent, it might be terminated after a
certain amount of time.

When using AUTOMATIC, you can still specify a value for the num_poolagents
configuration parameter. Additional idle agents will always be pooled when the
current number of pooled idle agents is less than or equal to the value that you
specified.

Examples:

num_poolagents is set to 100 and AUTOMATIC
As an agent becomes free, it is added to the idle agent pool, where at some
point the database manager evaluates whether it should be terminated or
not. At the time when the database manager considers terminating the
agent, if the total number of idle agents pooled is greater than 100, this
agent will be terminated. If there are less than 100 idle agents, the idle
agent will remain awaiting work. Using the AUTOMATIC setting allows
additional idle agents beyond 100 to be pooled, which might be useful
during periods of heavier system activity when the frequency of work can
fluctuate on a larger scale. For cases where there are likely to be less than
100 idle agents at any given time, agents are guaranteed to be pooled.
Periods of light system activity can benefit from this by incurring a less
start up cost for new work.

num_poolagents is configured dynamically
If the parameter value is increased to a value greater than the number of
pooled agents, the effects are immediate. As new agents become idle, they
are pooled. If the parameter value is decreased, the database manager does
not immediately reduce the number of agents in the pool. Rather, the pool
size remains as it is, and agents are terminated as they are used and
become idle again–gradually reducing the number of agents in the pool to
the new limit.

Recommendation: For most environments the default of 100 and AUTOMATIC
will be sufficient. If you have a specific workload where you feel too many agents
are being created and terminated, you can consider increasing the value of
num_poolagents while leaving the parameter set to AUTOMATIC.

numdb - Maximum number of concurrently active databases
including host and System i databases

This parameter specifies the number of local databases that can be concurrently
active (that is, have applications connected to them), or the maximum number of
different database aliases that can be cataloged on a DB2 Connect server.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Chapter 21. Configuration parameters 583

Parameter type
Configurable

Default [range]

UNIX 8 [1 — 256]

Windows Database server with local and remote clients
8 [1 — 256]

Windows Database server with local clients
3 [1 — 256]

Unit of measure
Counter

Each database takes up storage, and an active database uses a new shared memory
segment.

Recommendation: It is generally best to set this value to the actual number of
databases that are already defined to the database manager, and to add about 10%
to this value to allow for growth.

Changing the numdb parameter can impact the total amount of memory allocated.
As a result, frequent updates to this parameter are not recommended. When
updating this parameter, you should consider the other configuration parameters
that can allocate memory for a database or an application connected to that
database.

query_heap_sz - Query heap size

Important: This parameter is deprecated in Version 9.5 and might be removed in a
future release. This parameter can still be used in pre-Version 9.5 data servers and
clients. In Version 9.5 and later releases, the value specified for this configuration
parameter is ignored.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
1 000 [2 - 524 288]

Unit of measure
Pages (4 KB)

When allocated
When an application (either local or remote) connects to the database

When freed
When the application disconnects from the database, or detaches from the
instance

584 Database Administration Concepts and Configuration Reference

This parameter specifies the maximum amount of memory that can be allocated
for the query heap, ensuring that an application does not consume unnecessarily
large amounts of virtual memory within an agent.

A query heap is used to store each query in the agent's private memory. The
information for each query consists of the input and output SQLDA, the statement
text, the SQLCA, the package name, creator, section number, and consistency
token.

The query heap is also used for the memory allocated for blocking cursors. This
memory consists of a cursor control block and a fully resolved output SQLDA.

The initial query heap allocated will be the same size as the application support
layer heap, as specified by the aslheapsz parameter. The query heap size must be
greater than or equal to two (2), and must be greater than or equal to the aslheapsz
parameter. If this query heap is not large enough to handle a given request, it will
be reallocated to the size required by the request (not exceeding query_heap_sz). If
this new query heap is more than 1.5 times larger than aslheapsz, the query heap
will be reallocated to the size of aslheapsz when the query ends.

Recommendation: In most cases the default value will be sufficient. As a
minimum, you should set query_heap_sz to a value at least five times larger than
aslheapsz. This will allow for queries larger than aslheapsz and provide additional
memory for three or four blocking cursors to be open at a given time.

If you have very large LOBs, you might need to increase the value of this
parameter so the query heap will be large enough to accommodate those LOBs.

release - Configuration file release level
This parameter specifies the release level of the configuration file.

Configuration type
Database manager, Database

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Informational

resync_interval - Transaction resync interval
This parameter specifies the time interval in seconds for which a transaction
manager (TM), resource manager (RM) or sync point manager (SPM) should retry
the recovery of any outstanding indoubt transactions found in the TM, the RM, or
the SPM. This parameter is applicable when you have transactions running in a
distributed unit of work (DUOW) environment. This parameter also applies to
recovery of federated database systems.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients

Chapter 21. Configuration parameters 585

v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
180 [1 - 60 000]

Unit of measure
Seconds

Recommendation: If, in your environment, indoubt transactions will not interfere
with other transactions against your database, you might want to increase the
value of this parameter. If you are using a DB2 Connect gateway to access DRDA2
application servers, you should consider the effect indoubt transactions might have
at the application servers even though there will be no interference with local data
access. If there are no indoubt transactions, the performance impact will be
minimal.

rqrioblk - Client I/O block size
This parameter specifies the size of the communication buffer between remote
applications and their database agents on the database server. It is also used to
determine the I/O block size at the Data Server Runtime Client when a blocking
cursor is opened.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
32 767 [4 096 - 65 535]

Unit of measure
Bytes

When allocated

v When a remote client application issues a connection request for a server
database

v When a blocking cursor is opened, additional blocks are opened at the
client

When freed

v When the remote application disconnects from the server database
v When the blocking cursor is closed

When a Data Server Runtime Client requests a connection to a remote database,
this communication buffer is allocated on the client. On the database server, a
communication buffer of 32 767 bytes is initially allocated, until a connection is

586 Database Administration Concepts and Configuration Reference

established and the server can determine the value of rqrioblk at the client. Once
the server knows this value, it will reallocate its communication buffer if the
client's buffer is not 32 767 bytes.

The memory for blocked cursors is allocated out of the application's private
address space, so you should determine the optimal amount of private memory to
allocate for each application program. If the Data Server Runtime Client cannot
allocate space for a blocking cursor out of an application's private memory, a
non-blocking cursor will be opened.

Recommendation: For non-blocking cursors, a reason for increasing the value of
this parameter would be if the data (for example, large object data) to be
transmitted by a single query statement is so large that the default value is
insufficient.

You should also consider the effect of this parameter on the number and potential
size of blocking cursors. Large row blocks might yield better performance if the
number or size of rows being transferred is large (for example, if the amount of
data is greater than 4 096 bytes). However, there is a trade-off in that larger record
blocks increase the size of the working set memory for each connection.

Larger record blocks might also cause more fetch requests than are actually
required by the application. You can control the number of fetch requests using the
OPTIMIZE FOR clause on the SELECT statement in your application.

sheapthres - Sort heap threshold
This parameter is an instance-wide soft limit on the total amount of memory that
can be consumed by private sorts at any given time. When the total private sort
memory consumption for an instance reaches this limit, the memory allocated for
additional incoming private sort requests is considerably reduced.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients
v OLAP functions

Parameter type
Configurable online

Propagation class
Immediate

Default [Range]

UNIX 32-bit platforms
0 [0, 250 - 2097152]

Windows 32-bit platforms
0 [0, 250 - 2097152]

64-bit platforms
0 [0, 250 - 2147483647]

Chapter 21. Configuration parameters 587

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Pages (4 KB)

Examples of operations that use the sort heap include: sorts, hash joins, dynamic
bitmaps (used for index ANDing and Star Joins), and table in-memory operations.

Explicit definition of the threshold prevents the database manager from using
excessive amounts of memory for large numbers of sorts.

There is no reason to increase the value of this parameter when moving from a
non-partitioned to a partitioned database environment. Once you have tuned the
database and database manager configuration parameters on a single database
partition environment, the same values will in most cases work well in a
partitioned database environment. The only way to set this parameter to different
values on different nodes or database partitions is to create more than one DB2
instance. This will require managing different DB2 databases over different
database partition groups. Such an arrangement defeats the purpose of many of
the advantages of a partitioned database environment.

When the instance-level sheapthres is set to 0, then the tracking of sort memory
consumption is done at the database level only and memory allocation for sorts is
constrained by the value of the database-level sheapthres_shr configuration
parameter.

Automatic tuning of sheapthres_shr is allowed only when the database manager
configuration parameter sheapthres is set to 0.

This parameter will not be dynamically updatable if any of the following are true:
v The starting value for sheapthres is 0 and the target value is a value different

from 0.
v The starting value for sheapthres is a value different from 0 and the target value

is 0.

Recommendation: Ideally, you should set this parameter to a reasonable multiple
of the largest sortheap parameter you have in your database manager instance. This
parameter should be at least two times the largest sortheap defined for any
database within the instance.

If you are doing private sorts and your system is not memory constrained, an ideal
value for this parameter can be calculated using the following steps:
1. Calculate the typical sort heap usage for each database:

(typical number of concurrent agents running against the database)
* (sortheap, as defined for that database)

2. Calculate the sum of the above results, which provides the total sort heap that
could be used under typical circumstances for all databases within the instance.

You should use benchmarking techniques to tune this parameter to find the proper
balance between sort performance and memory usage.

You can use the database system monitor to track the sort activity, using the post
threshold sorts (post_threshold_sorts) monitor element.

588 Database Administration Concepts and Configuration Reference

spm_log_file_sz - Sync point manager log file size
This parameter identifies the sync point manager (SPM) log file size in 4 KB pages.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
256 [4 - 1000]

Unit of measure
Pages (4 KB)

The log file is contained in the spmlog sub-directory under sqllib and is created
the first time SPM is started.

Recommendation: The sync point manager log file size should be large enough to
maintain performance, but small enough to prevent wasted space. The size
required depends on the number of transactions using protected conversations,
and how often COMMIT or ROLLBACK is issued.

To change the size of the SPM log file:
1. Determine that there are no indoubt transactions by using the LIST DRDA

INDOUBT TRANSACTIONS command.
2. If there are none, stop the database manager.
3. Update the database manager configuration with a new SPM log file size.
4. Go to the $HOME/sqllib directory and issue rm -fr spmlog to delete the current

SPM log. (Note: This shows the AIX command. Other systems might require a
different remove or delete command.)

5. Start the database manager. A new SPM log of the specified size is created
during the startup of the database manager.

spm_log_path - Sync point manager log file path
This parameter specifies the directory where the sync point manager (SPM) logs
are written.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
NULL [any valid path or device]

Chapter 21. Configuration parameters 589

If this parameter is null, by default, the logs are written to the sqllib/spmlog
directory, which, in a high-volume transaction environment, can cause an I/O
bottleneck. Use this parameter to have the SPM log files placed on a faster disk
than the current sqllib/spmlog directory. This allows for better concurrency among
the SPM agents.

Note: If SPM is enabled then the default directory will be created if it does not yet
exist. To enable SPM, the configuration parameter SPM_NAME must be set.

spm_max_resync - Sync point manager resync agent limit
This parameter identifies the number of agents that can simultaneously perform
resync operations.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
20 [10 — 256]

spm_name - Sync point manager name
This parameter identifies the name of the sync point manager (SPM) instance to
the database manager.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default
Derived from the TCP/IP hostname

srvcon_auth - Authentication type for incoming connections at
the server

This parameter specifies how and where user authentication is to take place when
handling incoming connections at the server; it is used to override the current
authentication type.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients

590 Database Administration Concepts and Configuration Reference

v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
NOT_SPECIFIED [NOT_SPECIFIED; CLIENT; SERVER;
SERVER_ENCRYPT; KERBEROS; KRB_SERVER_ENCRYPT; GSSPLUGIN;
GSS_SERVER_ENCRYPT]

If a value is not specified, DB2 uses the value of the authentication database
manager configuration parameter.

For a description of each authentication type, see “authentication - Authentication
type” on page 543.

srvcon_gssplugin_list - List of GSS API plug-ins for incoming
connections at the server

This parameter specifies the GSS API plug-in libraries that are supported by the
database server. It handles incoming connections at the server when the
srvcon_auth parameter is specified as KERBEROS, KRB_SERVER_ENCRYPT,
GSSPLUGIN or GSS_SERVER_ENCRYPT, or when srvcon_auth is not specified, and
authentication is specified as KERBEROS, KRB_SERVER_ENCRYPT, GSSPLUGIN
or GSS_SERVER_ENCRYPT.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
Null [any valid string]

By default, the value is null. If the authentication type is GSSPLUGIN and this
parameter is NULL, an error is returned. If the authentication type is KERBEROS
and this parameter is NULL, the DB2-supplied kerberos module or library is used.
This parameter is not used if another authentication type is used.

When the authentication type is KERBEROS and the value of this parameter is not
NULL, the list must contain exactly one Kerberos plug-in, and that plug-in is used
for authentication (all other GSS plug-ins in the list are ignored). If there is more
than one Kerberos plug-in, an error is returned.

Each GSS API plug-in name must be separated by a comma (,) with no space
either before or after the comma. Plug-in names should be listed in the order of
preference.

srvcon_pw_plugin - Userid-password plug-in for incoming
connections at the server

This parameter specifies the name of the default userid-password plug-in library to
be used for server-side authentication. It handles incoming connections at the

Chapter 21. Configuration parameters 591

server when the srvcon_auth parameter is specified as CLIENT, SERVER,
SERVER_ENCRYPT, or DATA_ENCRYPT or when srvcon_auth is not specified, and
authentication is specified as CLIENT, SERVER, SERVER_ENCRYPT, or
DATA_ENCRYPT.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
Null [any valid string]

By default, the value is null and the DB2-supplied userid-password plug-in library
is used. The plug-in will be used for all group lookups. For non-root installations,
if the DB2 userid and password plug-in library is used, the db2rfe command must
be run before using your DB2 product.

srv_plugin_mode - Server plug-in mode
This parameter specifies whether plug-ins are to run in fenced mode or unfenced
mode. Unfenced mode is the only supported mode.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
UNFENCED

ssl_cipherspecs - Supported cipher specifications at the
server configuration parameter

This configuration parameter specifies the cipher suites that the server allows for
incoming connection requests when using SSL protocol.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

592 Database Administration Concepts and Configuration Reference

Default [range]
Null [TLS_RSA_WITH_AES_256_CBC_SHA; TLS_RSA_WITH_AES_128_CBC_SHA;
TLS_RSA_WITH_3DES_EDE_CBC_SHA]

You can specify multiple cipher specifications, such as
TLS_RSA_WITH_AES_256_CBC_SHA or TLS_RSA_WITH_AES_128_CBC_SHA or
TLS_RSA_WITH_3DES_EDE_CBC_SHA they must be separated by a comma (,) with no
space either before or after the comma.

During SSL handshake, if null or multiple values are specified, the client and the
server negotiate and find the most secure cipher suites to use. If no compatible
cipher suites is found, the connection fails. You cannot prioritize the cipher suites
by specifying one before the another.

ssl_clnt_keydb - SSL key file path for outbound SSL
connections at the client configuration parameter

This configuration parameter specifies the fully qualified file path of the key file to
be used for SSL connection at the client-side.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
Null

The SSL key file has extension .kbd by default, and stores the signer certificate
from the servers personal certificate. For a self-signed server personal certificate,
the signer certificate is the public key. For a certificate authority signed server
personal certificate, the signer certificate is the root CA certificate. The key file is
accessed by the client to verify the servers personal certificate during the SSL
handshake.

By default, the value is null. Depending on your application type, you should
specify the client SSL key file path by the database manager configuration
parameter ssl_clnt_keydb, the connection string ssl_clnt_keydb, or the
db2cli.ini keyword ssl_clnt_keydb for a SSL connection request. If none of them
is specified, the SSL connection fails.

ssl_clnt_stash - SSL stash file path for outbound SSL
connections at the client configuration parameter

This configuration parameter specifies the fully qualified file path of the stash file
to be used for SSL connections at the client-side.

Configuration type
Database manager

Applies to

v Database server with local and remote clients

Chapter 21. Configuration parameters 593

v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
Null

The SSL stash file has extension .sth by default, and stores an encrypted version
of the key database password. The password held in the stash file is used to access
the SSL key file during an SSL connection request.

By default the value is null. Depending on your application type, you can specify
the client SSL stash file path by the database manager configuration parameter
ssl_clnt_stash, the connection string ssl_clnt_stash, or the db2cli.ini keyword
ssl_clnt_stash for a SSL connection request. If none of them is specified, the SSL
connection fails.

ssl_svr_keydb - SSL key file path for incoming SSL
connections at the server configuration parameter

This configuration parameter specifies a fully qualified file path of the key file to
be used for SSL setup at server-side.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
Null

The SSL key file has extension .kdb by default, and stores personal certificates,
personal certificate requests and signer certificates. This key file is accessed during
the instance startup and the servers personal certificate is sent to the client for
server authentication during SSL handshake.

By default, the value is null. During the instance start up, you must define if the
DB2COMM registry variable contains SSL. Otherwise, the instance starts up without
SSL protocol support.

ssl_svr_label - Label in the key file for incoming SSL
connections at the server configuration parameter

This configuration parameter specifies a label of the personal certificate of the
server in the key database.

Configuration type
Database manager

Applies to

v Database server with local and remote clients

594 Database Administration Concepts and Configuration Reference

v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
Null

By default, the value is null. When establishing a SSL connection, the server
certificate specified by this configuration parameter is sent to the client for server
authentication. If the value is null, the default certificate defined in the key file is
used. If the default does not exist, the connection fails.

ssl_svr_stash - SSL stash file path for incoming SSL
connections at the server configuration parameter

This configuration parameter specifies a fully qualified file path of the stash file to
be used for SSL setup at server-side.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
Null

The SSL stash file has extension .sth by default, and stores an encrypted version
of the key database password. The password held in the stash file is used to access
the SSL key file during the instance startup.

By default, the value is null. During the instance start up, you must define if the
DB2COMM registry variable contains SSL. Otherwise, the instance starts up without
SSL protocol support.

start_stop_time - Start and stop timeout
This parameter specifies the time, in minutes, within which all database partition
servers must respond to a START DBM or a STOP DBM command. It is also used
as the timeout value during an ADD DBPARTITIONNUM operation.

Configuration type
Database manager

Applies to
Database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Immediate

Chapter 21. Configuration parameters 595

Default [range]
10 [1 - 1 440]

Unit of measure
Minutes

Database partition servers that do not respond to a DB2START command within
the specified time send a message to the db2start error log in the log subdirectory
of the sqllib subdirectory of the home directory for the instance. You should issue
a DB2STOP on these nodes before restarting them.

Database partition servers that do not respond to a DB2STOP command within the
specified time send a message to the db2stop error log in the log subdirectory of
the sqllib subdirectory of the home directory for the instance. You can either issue
db2stop for each database partition server that does not respond, or for all of them.
(Those that are already stopped will return stating that they are stopped.)

If a db2start or db2stop operation in a multi-partition database is not completed
within the value specified by the start_stop_time database manager configuration
parameter, the database partitions that have timed out will be killed internally.
Environments with many database partitions with a low value for start_stop_time
might experience this behavior. To resolve this behavior, increase the value of
start_stop_time.

When adding a new database partition using one of the DB2START, START
DATABASE MANAGER, or ADD DBPARTITIONNUM commands, the add
database partition operation must determine whether or not each database in the
instance is enabled for automatic storage. This is done by communicating with the
catalog partition for each database. If automatic storage is enabled, the storage
path definitions are retrieved as part of that communication. Likewise, if system
temporary table spaces are to be created with the database partitions, the operation
might have to communicate with another database partition server to retrieve the
table space definitions for the database partitions that reside on that server. These
factors should be considered when determining the value of the start_stop_time
parameter.

ssl_svcename - SSL service name configuration parameter
This configuration parameter specifies the name of the port that a database server
uses to await communications from remote client nodes using SSL protocol.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
Null

This configuration parameter contains the port that a database server uses to await
communications from remote client nodes through SSL protocol. This service name

596 Database Administration Concepts and Configuration Reference

must be reserved for use by the database manager. During instance startup, you
must define if the DB2COMM registry variable contains SSL. Otherwise the instance
starts up without SSL protocol support.

If DB2COMM contains both TCP/IP and SSL, the port specified by ssl_svcename must
not be the same as the svcename. Otherwise, the instance starts up without either
SSL or TCP/IP protocol support.

On UNIX operating systems, the services file is located in: /etc/services

The database server SSL port (number n) and its service name needs to be defined
in the services file on the database client.

ssl_versions - Supported SSL versions at the server
configuration parameter

This configuration parameter specifies Secure Sockets Layer (SSL) and Transport
Layer Security (TLS) versions that the server supports for incoming connection
requests.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default
Null [TLSv1]

If you set the parameter to null or TLSv1, the parameter enables support for TLS
version 1.0 (RFC2246) and TLS version 1.1 (RFC4346).

During SSL handshake, the client and the server negotiate and find the most secure
version to use either TLS version 1.0 or TLS version 1.1. If there is no compatible
version between the client and the server, the connection fails. If the client
supports TLS version 1.0 and TLS version 1.1, but the server support TLS version
1.0 only, then TLS version 1.0 is used.

svcename - TCP/IP service name
This parameter contains the name of the TCP/IP port which a database server will
use to await communications from remote client nodes. This name must be the
reserved for use by the database manager.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Chapter 21. Configuration parameters 597

Default
Null

In order to accept connection requests from a Data Server Runtime Client using
TCP/IP, the database server must be listening on a port designated to that server.
The system administrator for the database server must reserve a port (number n)
and define its associated TCP/IP service name in the services file at the server.

The database server port (number n) and its TCP/IP service name need to be
defined in the services file on the database client.

On Linux and UNIX systems, the services file is located in: /etc/services

The svcename parameter should be set to the port number or the service name
associated with the main connection port so that when the database server is
started, it can determine on which port to listen for incoming connection requests.

sysadm_group - System administration authority group name
This parameter defines the group name with SYSADM authority for the database
manager instance.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default
NULL

The SYSADM authority level is the highest level of administrative authority at the
instance level. Users with SYSADM authority can run some utilities and issue
some database and database manager commands within the instance.

SYSADM authority is determined by the security facilities used in a specific
operating environment.
v For the Windows operating system, this parameter can be set to local or domain

group. Group names must adhere to the length limits specified in SQL and XML
limits. The following users have SYSADM authority if "NULL" is specified for
sysadm_group database manager configuration parameter:
– Members of the local Administrators group
– Members of the Administrators group at the Domain Controller if

DB2_GRP_LOOKUP is not set or set to DOMAIN
– Members of DB2ADMNS group if Extended Security feature is enabled. The

location of the DB2ADMNS group was decided during installation
– The LocalSystem account

v For Linux and UNIX systems, if “NULL” is specified as the value of this
parameter, the SYSADM group defaults to the primary group of the instance
owner.

598 Database Administration Concepts and Configuration Reference

If the value is not “NULL”, the SYSADM group can be any valid UNIX group
name.

To restore the parameter to its default (NULL) value, use UPDATE DBM CFG
USING SYSADM_GROUP NULL. You must specify the keyword “NULL” in
uppercase.

sysctrl_group - System control authority group name
This parameter defines the group name with system control (SYSCTRL) authority.
SYSCTRL has privileges allowing operations affecting system resources, but does
not allow direct access to data.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default
Null

Group names on all platforms are accepted as long as they adhere to the length
limits specified in SQL and XML limits.

sysmaint_group - System maintenance authority group name
This parameter defines the group name with system maintenance (SYSMAINT)
authority.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default
Null

SYSMAINT has privileges to perform maintenance operations on all databases
associated with an instance without having direct access to data.

Group names on all platforms are accepted as long as they adhere to the length
limits specified in SQL and XML limits.

Attention: This parameter must be NULL for Windows clients when system security
is used (that is, authentication is CLIENT, SERVER, or any other valid

Chapter 21. Configuration parameters 599

authentication). This is because the Windows operating systems do not store group
information, thereby providing no way of determining if a user is a member of a
designated SYSMAINT group. When a group name is specified, no user can be a
member of it.

To restore the parameter to its default (NULL) value, use UPDATE DBM CFG USING
SYSMAINT_GROUP NULL. You must specify the keyword NULL in uppercase.

sysmon_group - System monitor authority group name
This parameter defines the group name with system monitor (SYSMON) authority.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default
Null

Users having SYSMON authority at the instance level have the ability to take
database system monitor snapshots of a database manager instance or its
databases. SYSMON authority includes the ability to use the following commands:
v GET DATABASE MANAGER MONITOR SWITCHES

v GET MONITOR SWITCHES

v GET SNAPSHOT

v LIST ACTIVE DATABASES

v LIST APPLICATIONS

v LIST DCS APPLICATIONS

v RESET MONITOR

v UPDATE MONITOR SWITCHES

Users with SYSADM, SYSCTRL, or SYSMAINT authority automatically have the
ability to take database system monitor snapshots and to use these commands.

Group names on all platforms are accepted as long as they adhere to the length
limits specified in “SQL and XML limits” in the Database Administration Concepts
and Configuration Reference.

To restore the parameter to its default (NULL) value, use UPDATE DBM CFG USING
SYSMON_GROUP NULL. You must specify the keyword NULL in uppercase.

tm_database - Transaction manager database name
This parameter identifies the name of the transaction manager (TM) database for
each DB2 instance.

Configuration type
Database manager

600 Database Administration Concepts and Configuration Reference

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
1ST_CONN [any valid database name]

A TM database can be:
v A local DB2 database
v A remote DB2 database that does not reside on a host or AS/400 system
v A DB2 for OS/390 Version 5 database if accessed via TCP/IP and the sync point

manager (SPM) is not used.

The TM database is a database that is used as a logger and coordinator, and is
used to perform recovery for indoubt transactions.

You can set this parameter to 1ST_CONN, which will set the TM database to be
the first database to which a user connects.

Recommendation: For simplified administration and operation, you might want to
create a few databases over a number of instances and use these databases
exclusively as TM databases.

tp_mon_name - Transaction processor monitor name
This parameter identifies the name of the transaction processing (TP) monitor
product being used.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default
No default

Valid values

v CICS®

v MQ
v CB
v SF
v TUXEDO
v TOPEND

Chapter 21. Configuration parameters 601

v blank or some other value (for UNIX and Windows; no other possible
values for Solaris or SINIX)

v If applications are run in a WebSphere Enterprise Server Edition CICS
environment, this parameter should be set to “CICS”

v If applications are run in a WebSphere Enterprise Server Edition Component
Broker environment, this parameter should be set to “CB”

v If applications are run in an IBM MQSeries® environment, this parameter should
be set to “MQ”

v If applications are run in a BEA Tuxedo environment, this parameter should be
set to “TUXEDO”

v If applications are run in an IBM San Francisco environment, this parameter
should be set to “SF”.

IBM WebSphere EJB and Microsoft Transaction Server users do not need to
configure any value for this parameter.

If none of the above products are being used, this parameter should not be
configured but left blank.

In previous versions of IBM DB2 on Windows, this parameter contained the path
and name of the DLL which contained the XA Transaction Manager's functions
ax_reg and ax_unreg. This format is still supported. If the value of this parameter
does not match any of the above TP Monitor names, it will be assumed that the
value is a library name which contains the ax_reg and ax_unreg functions. This is
true for UNIX and Windows environments.

TXSeries CICS Users: In previous versions of this product on Windows it was
required to configure this parameter as “libEncServer:C” or “libEncServer:E”.
While this is still supported, it is no longer required. Configuring the parameter as
“CICS” is sufficient.

MQSeries Users: In previous versions of this product on Windows it was required
to configure this parameter as “mqmax”. While this is still supported, it is no
longer required. Configuring the parameter as “MQ” is sufficient.

Component Broker Users: In previous versions of this product on Windows it was
required to configure this parameter as “somtrx1i”. While this is still supported, it
is no longer required. Configuring the parameter as “CB” is sufficient.

San Francisco Users: In previous versions of this product on Windows it was
required to configure this parameter as “ibmsfDB2”. While this is still supported, it
is no longer required. Configuring the parameter as “SF” is sufficient.

The maximum length of the string that can be specified for this parameter is 19
characters.

It is also possible to configure this information in IBM DB2 Version 9.1's XA OPEN
string. If multiple Transaction Processing Monitors are using a single DB2 instance,
then it will be required to use this capability.

trust_allclnts - Trust all clients
This parameter and trust_clntauth are used to determine where users are validated
to the database environment.

602 Database Administration Concepts and Configuration Reference

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
YES [NO, YES, DRDAONLY]

This parameter is only active when the authentication parameter is set to CLIENT.

By accepting the default of “YES” for this parameter, all clients are treated as
trusted clients. This means that the server assumes that a level of security is
available at the client and the possibility that users can be validated at the client.

This parameter can only be changed to “NO” if the authentication parameter is set
to CLIENT. If this parameter is set to “NO”, the untrusted clients must provide a
userid and password combination when they connect to the server. Untrusted
clients are operating system platforms that do not have a security subsystem for
authenticating users.

Setting this parameter to “DRDAONLY” protects against all clients except clients
from DB2 for OS/390 and z/OS, DB2 for VM and VSE, and DB2 for OS/400®.
Only these clients can be trusted to perform client-side authentication. All other
clients must provide a user ID and password to be authenticated by the server.

When trust_allclnts is set to “DRDAONLY”, the trust_clntauth parameter is used to
determine where the clients are authenticated. If trust_clntauth is set to “CLIENT”,
authentication occurs at the client. If trust_clntauth is set to “SERVER”,
authentication occurs at the client if no password is provided, and at the server if a
password is provided.

trust_clntauth - Trusted clients authentication
This parameter specifies whether a trusted client is authenticated at the server or
the client when the client provides a userid and password combination for a
connection. This parameter (and trust_allclnts) is only active if the authentication
parameter is set to CLIENT. If a user ID and password are not provided, the client
is assumed to have validated the user, and no further validation is performed at
the server.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Chapter 21. Configuration parameters 603

Default [range]
CLIENT [CLIENT, SERVER]

If this parameter is set to CLIENT (the default), the trusted client can connect
without providing a user ID and password combination, and the assumption is
that the operating system has already authenticated the user. If it is set to SERVER,
the user ID and password will be validated at the server.

The numeric value for CLIENT is 0. The numeric value for SERVER is 1.

util_impact_lim - Instance impact policy
This parameter allows the database administrator (DBA) to limit the performance
degradation of a throttled utility on the workload.

Configuration type
Database manager

Applies to

v Database server with local clients
v Database server with local and remote clients
v Partitioned database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
10 [1 - 100]

Unit of measure
Percentage of allowable impact on workload

If the performance degradation is limited, the DBA can then run online utilities
during critical production periods, and be guaranteed that the performance impact
on production work will be within acceptable limits.

For example, a DBA specifying a util_impact_lim (impact policy) value of 10 can
expect that a throttled backup invocation will not impact the workload by more
than 10 percent.

If util_impact_lim is 100, no utility invocations will be throttled. In this case, the
utilities can have an arbitrary (and undesirable) impact on the workload. If
util_impact_lim is set to a value that is less than 100, it is possible to invoke utilities
in throttled mode. To run in throttled mode, a utility must also be invoked with a
non-zero priority.

Recommendation: Most users will benefit from setting util_impact_lim to a low
value (for example, between 1 and 10).

A throttled utility will usually take longer to complete than an unthrottled utility.
If you find that a utility is running for an excessively long time, increase the value
of util_impact_lim, or disable throttling altogether by setting util_impact_lim to 100.

604 Database Administration Concepts and Configuration Reference

Database configuration parameters

alt_collate - Alternate collating sequence
This parameter specifies the collating sequence that is to be used for Unicode
tables in a non-Unicode database.

Configuration type
Database

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
Null [IDENTITY_16BIT]

Until this parameter is set, Unicode tables and routines cannot be created in a
non-Unicode database. Once set, this parameter cannot be changed or reset.

This parameter cannot be set for Unicode databases.

app_ctl_heap_sz - Application control heap size
This parameter is deprecated in Version 9.5, but is still being used by pre-Version
9.5 data servers and clients. Any value specified for this configuration parameter
will be ignored by the DB2 Version 9.5 database manager. In Version 9.5, it has
been replaced by the appl_memory configuration parameter.

Note: The following information applies only to pre-Version 9.5 data servers and
clients.

For partitioned databases, and for non-partitioned databases with intra-parallelism
enabled (intra_parallel=ON), this parameter specifies the average size of the shared
memory area allocated for an application. For non-partitioned databases where
intra-parallelism is disabled (intra_parallel=OFF), this is the maximum private
memory that will be allocated for the heap. There is one application control heap
per connection per database partition.

Configuration type
Database

Parameter type
Configurable

Default [range]

Database server with local and remote clients

v 128 [1 - 64 000] when INTRA_PARALLEL is not enabled
v 512 [1 - 64 000] when INTRA_PARALLEL is enabled

Database server with local clients

v 64 [1 - 64 000] (for non-UNIX platforms) when
INTRA_PARALLEL is not enabled

Chapter 21. Configuration parameters 605

v 512 [1 - 64 000] (for non-UNIX platforms) when
INTRA_PARALLEL is enabled

v 128 [1 - 64 000] (for Linux and UNIX platforms) when
INTRA_PARALLEL is not enabled

v 512 [1 - 64 000] (for Linux and UNIX platforms) when
INTRA_PARALLEL is enabled

Partitioned database server with local and remote clients
512 [1 - 64 000]

Unit of measure
Pages (4 KB)

When allocated
When an application starts

When freed
When an application completes

The application control heap is required primarily for sharing information between
agents working on behalf of the same request. Usage of this heap is minimal for
non-partitioned databases when running queries with a degree of parallelism equal
to 1.

This heap is also used to store descriptor information for declared temporary
tables. The descriptor information for all declared temporary tables that have not
been explicitly dropped is kept in this heap's memory and cannot be dropped until
the declared temporary table is dropped.

Recommendation: Initially, start with the default value. You might have to set the
value higher if you are running complex applications, if you have a system that
contains a large number of database partitions, or if you use declared temporary
tables. The amount of memory needed increases with the number of concurrently
active declared temporary tables. A declared temporary table with many columns
has a larger table descriptor size than a table with few columns, so having a large
number of columns in an application's declared temporary tables also increases the
demand on the application control heap.

appgroup_mem_sz - Maximum size of application group
memory set

This parameter is deprecated in Version 9.5, but is still being used by pre-Version
9.5 data servers and clients. Any value specified for this configuration parameter
will be ignored by the DB2 Version 9.5 database manager. In Version 9.5, it has
been replaced by the appl_memory configuration parameter.

Note: The following information applies only to pre-Version 9.5 data servers and
clients.

This parameter determines the size of the application group shared memory
segment.

Configuration type
Database

Parameter type
Configurable

Default [range]

606 Database Administration Concepts and Configuration Reference

UNIX Database server with local clients (other than 32-bit HP-UX)
20 000 [1 - 1 000 000]

32-bit HP-UX

v Database server with local clients
v Database server with local and remote clients
v Partitioned database server with local and remote clients

10 000 [1 - 1 000 000]

Windows Database server with local clients
10 000 [1 - 1 000 000]

Database server with local and remote clients (other than 32-bit HP-UX)
30 000 [1 - 1 000 000]

Partitioned database server with local and remote clients (other than
32-bit HP-UX)

40 000 [1 - 1 000 000]

Unit of measure
Pages (4 KB)

Information that needs to be shared between agents working on the same
application is stored in the application group shared memory segment.

In a partitioned database, or in a non-partitioned database with intra-partition
parallelism enabled or concentrator enabled, multiple applications share one
application group. One application group shared memory segment is allocated for
the application group. Within the application group shared memory segment, each
application will have its own application control heap, and all applications will
share one application group shared heap.

The number of applications in one application group is calculated by:
appgroup_mem_sz / app_ctl_heap_sz

The application group shared heap size is calculated by:
appgroup_mem_sz * groupheap_ratio / 100

The size of each application control heap is calculated by:
app_ctl_heap_sz * (100 - groupheap_ratio) / 100

Recommendation: Retain the default value of this parameter unless you are
experiencing performance problems.

appl_memory - Application Memory configuration parameter
This parameter allows DBAs and ISVs to control the maximum amount of
application memory that is allocated by DB2 database agents to service application
requests. By default, its value is set to AUTOMATIC, meaning that all application
memory requests will be allowed as long as the total amount of memory allocated
by the database partition is within the instance_memory limits.

Configuration type
Database

Applies to

v Database server with local and remote clients
v Database server with local clients

Chapter 21. Configuration parameters 607

v Partitioned database server with local and remote clients

Parameter type
Configurable online

Default [range]
Automatic [128 - 4 294 967 295]

Unit of measure
Pages (4 KB)

When allocated
During database activation

When freed
During database deactivation

Note: When appl_memory is set to AUTOMATIC, the initial application memory
allocation at database activation time is minimal, and increases (or decreases) as
needed. The change is applied in memory and the value of appl_memory does not
change on disk as shown by db2 get db cfg show detail. On next activation, the
value will be recalculated. If appl_memory is set to a specific value, then the
requested amount of memory is allocated initially during database activation, and
the application memory size does not change. If the initial amount of application
memory cannot be allocated from the operating system, or exceeds the
instance_memory limit, database activation fails with an SQL1084C error (Shared
memory segments cannot be allocated).

applheapsz - Application heap size
In previous releases, the applheapsz database configuration parameter referred to
the amount of application memory each individual database agent working for
that application could consume. With Version 9.5, applheapsz refers to the total
amount of application memory that can be consumed by the entire application. For
DPF, Concentrator, or SMP configurations, this means that the applheapsz value
used in previous releases may need to be increased under similar workloads,
unless the AUTOMATIC setting is used.

With Version 9.5, this database configuration parameter has a default value of
AUTOMATIC, meaning that it increases as needed until either the appl_memory limit is
reached, or the instance_memory limit is reached.

Configuration type
Database

Parameter type
Configurable online

Default [range]
Automatic [16 - 60 000]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Pages (4 KB)

When allocated
When an application associates with, or connects to, a database.

When freed
When the application disassociates or disconnects from the database.

608 Database Administration Concepts and Configuration Reference

Note: This parameter defines the maximum size of the application heap. One
application heap is allocated per database application when the application first
connects with the database. The heap is shared by all database agents working for
that application. (In previous releases, each database agent allocated its own
application heap.) Memory is allocated from the application heap as needed to
process the application, up to the limit specified by this parameter. When set to
AUTOMATIC, the application heap is allowed to grow as needed up to either the
appl_memory limit for the database, or the instance_memory limit for the database
partition. The entire application heap is freed when the application disconnects
with the database.

The online changed value takes effect at an application connection boundary, that
is, after it is changed dynamically, currently connected applications still use the old
value, but all newly connected applications will use the new value.

archretrydelay - Archive retry delay on error
This parameter specifies the number of seconds to wait after a failed archive
attempt before trying to archive the log file again.

Configuration type
Database

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable Online

Default [range]
20 [0 - 65 535]

Subsequent retries will only take affect if the value of the numarchretry database
configuration parameter is at least 1.

auto_del_rec_obj - Automated deletion of recovery objects
configuration parameter

This parameter specifies whether database log files, backup images, and load copy
images should be deleted when their associated recovery history file entry is
pruned.

Configuration type
Database

Parameter type
Configurable online

Propagation class
Immediate

Default [range]
OFF [ON; OFF]

You can prune the entries in the recovery history file using the PRUNE HISTORY
command or the db2Prune API. You can also configure the IBM Data Server
database manager to automatically prune the recovery history file after each full

Chapter 21. Configuration parameters 609

database backup. If you set the auto_del_rec_obj database configuration parameter
to ON, then the database manager will also delete the corresponding physical log
files, backup images, and load copy images when it prunes the history file. The
database manager can only delete recovery objects such as database logs, backup
images, and load copy images when your storage media is disk, or if you are using
a storage manager, such as the Tivoli Storage Manager. If the logarchmeth1
parameter is set to LOGRETAIN and the ARCHIVE LOG command is issued, the log
files will not be deleted by the prune even if entries appear in the history file and
auto_del_rec_obj is set to ON.

auto_maint - Automatic maintenance
This parameter is the parent of all the other automatic maintenance database
configuration parameters (auto_db_backup, auto_tbl_maint, auto_runstats,
auto_stats_prof, auto_stmt_stats, auto_prof_upd, and auto_reorg).

Configuration type
Database

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
ON [ON; OFF]

When this parameter is disabled, all of its child parameters are also disabled, but
their settings, as recorded in the database configuration file, do not change. When
this parent parameter is enabled, recorded values for its child parameters take
effect. In this way, automatic maintenance can be enabled or disabled globally.

By default, this parameter is set to ON.

You can enable or disable individual automatic maintenance features
independently by setting the following parameters:

auto_db_backup
This automated maintenance parameter enables or disables automatic
backup operations for a database. A backup policy (a defined set of rules
or guidelines) can be used to specify the automated behavior. The objective
of the backup policy is to ensure that the database is being backed up
regularly. The backup policy for a database is created automatically when
the DB2 Health Monitor first runs. By default, this parameter is set to OFF.
To be enabled, this parameter must be set to ON, and its parent parameter
must also be enabled.

auto_tbl_maint
This parameter is the parent of all table maintenance parameters
(auto_runstats, auto_stats_prof, auto_prof_upd, and auto_reorg). When this
parameter is disabled, all of its child parameters are also disabled, but their
settings, as recorded in the database configuration file, do not change.

610 Database Administration Concepts and Configuration Reference

When this parent parameter is enabled, recorded values for its child
parameters take effect. In this way, table maintenance can be enabled or
disabled globally.

By default, this parameter is set to ON.

auto_runstats
This automated table maintenance parameter enables or disables automatic
table runstats operations for a database. A runstats policy (a defined set of
rules or guidelines) can be used to specify the automated behavior.
Statistics collected by the runstats utility are used by the optimizer to
determine the most efficient plan for accessing the physical data. To be
enabled, this parameter must be set to On, and its parent parameters must
also be enabled.

By default, this parameter is set to ON.

auto_stats_prof
When enabled, this automated table maintenance parameter turns on
statistical profile generation, designed to improve applications whose
workloads include complex queries, many predicates, joins, and grouping
operations over several tables. To be enabled, this parameter must be set to
ON, and its parent parameters must also be enabled.

By default, this parameter is set to OFF. This parameter cannot be enabled
if the section_actuals database configuration parameter is enabled
(SQLCODE -5153).

auto_stmt_stats

This parameter enables and disables the collection of real-time statistics. It
is a child of the auto_runstats configuration parameter. This feature is
enabled only if the parent, auto_runstats configuration parameter, is also
enabled. For example, to enable auto_stmt_stats, set auto_maint,
auto_tbl_maint, and auto_runstats to ON. To preserve the child value, the
auto_runstats configuration parameter can be ON while the auto_maint
configuration parameter is OFF. The corresponding Auto Runstats feature
will still be OFF.

Assuming that both Auto Runstats and Auto Reorg are enabled, the
settings are as follows:

Automatic maintenance (AUTO_MAINT) = ON
Automatic database backup (AUTO_DB_BACKUP) = OFF

Automatic table maintenance (AUTO_TBL_MAINT) = ON
Automatic runstats (AUTO_RUNSTATS) = ON

Automatic statement statistics (AUTO_STMT_STATS) = ON
Automatic statistics profiling (AUTO_STATS_PROF) = OFF

Automatic profile updates (AUTO_PROF_UPD) = OFF
Automatic reorganization (AUTO_REORG) = ON

You can disable both Auto Runstats and Auto Reorg features temporarily
by setting auto_tbl_maint to OFF. Both features can be enabled later by
setting auto_tbl_maint back to ON. You do not need to issue db2stop or
db2start commands to have the changes take effect.

By default, this parameter is set to ON.

auto_prof_upd
When enabled, this automated table maintenance parameter (a child of
auto_stats_prof) specifies that the runstats profile is to be updated with
recommendations. When this parameter is disabled, recommendations are
stored in the opt_feedback_ranking table, which you can inspect when

Chapter 21. Configuration parameters 611

manually updating the runstats profile. To be enabled, this parameter must
be set to ON, and its parent parameters must also be enabled.

By default, this parameter is set to OFF.

auto_reorg
This automated table maintenance parameter enables or disables automatic
table and index reorganization for a database. A reorganization policy (a
defined set of rules or guidelines) can be used to specify the automated
behavior. To be enabled, this parameter must be set to ON, and its parent
parameters must also be enabled.

By default, this parameter is set to OFF.

auto_reval - Automatic revalidation and invalidation
configuration parameter

This configuration parameter controls the revalidation and invalidation semantics.

Configuration type
Database

Parameter type
Configurable

Default [range]
DEFERRED [IMMEDIATE, DISABLED, DEFERRED, DEFERRED_FORCE]

If you create a new database, by default this configuration parameter is set to
DEFERRED.

If you upgrade a database from Version 9.5, or earlier, auto_reval is set to
DISABLED. The revalidation behavior is the same as in the previous releases.

If you set this parameter to IMMEDIATE it means that all dependent objects will be
revalidated immediately after objects are invalidated. This applies to some DDL
statements, such as ALTER TABLE, ALTER COLUMN, or CREATE OR REPLACE.
The successful revalidation of the dependent objects does not rely on any other
DDL changes; therefore, revalidation can be completed immediately.

If you set this parameter to DEFERRED, it means that all dependent objects are
revalidated the next time that they are accessed.

Note that if you set this parameter either to IMMEDIATE or DEFERRED, and if any
revalidation operation fails, the invalid dependent objects will remain invalid until
the next time that they are accessed.

If you set this parameter to DEFERRED_FORCE it behaves the same way as when it is
set to DEFERRED and an additional CREATE with error feature is enabled.

In some cases, the syntax that you explicitly specify might override the setting of
auto_reval. For example, if you use the DROP COLUMN clause of the ALTER
TABLE statement without specifying CASCADE or RESTRICT, the semantics are
controlled by auto_reval. However, if you specify CASCADE or RESTRICT, the
previous cascade or restrict semantics are used, overriding the new semantics
specified by auto_reval.

612 Database Administration Concepts and Configuration Reference

This configuration parameter is dynamic, meaning that a change in its value takes
effect immediately. You do not have to reconnect to the database for the change to
take effect.

autorestart - Auto restart enable
This parameter determines whether the database manager can, in the event of an
abnormal termination of the database, automatically call the restart database utility
when an application connects to a database.

Configuration type
Database

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
On [On; Off]

The restart database utility performs a Crash recovery if the database terminated
abnormally (because, for example, of a power failure or a system software failure)
while applications were connected to it. It applies any committed transactions that
were in the database buffer pool but were not written to disk at the time of the
failure. It also backs out any uncommitted transactions that might have been
written to disk.

If autorestart is not enabled, then an application that attempts to connect to a
database which needs to have crash recovery performed (needs to be restarted)
will receive a SQL1015N error. In this case, the application can call the restart
database utility, or you can restart the database by selecting the restart operation of
the recovery tool.

avg_appls - Average number of active applications
This parameter is used by the query optimizer to help estimate how much buffer
pool space will be available at run time for the access plan chosen.

Configuration type
Database

Parameter type
Configurable Online

Propagation class
Statement boundary

Default [range]
Automatic [1 – maxappls]

Unit of measure
Counter

Recommendation: When running the DB2 database product in a multi-user
environment, particularly with complex queries and a large buffer pool, you might
want the query optimizer to know that multiple query users are using your system
so that the optimizer should be more conservative in assumptions of buffer pool
availability.

Chapter 21. Configuration parameters 613

When this parameter is set to AUTOMATIC, the parameter is updated to an
appropriate value immediately, when the database configuration file is created, or
when the database configuration file is reset.

Setting this parameter might help the optimizer model buffer pool usage more
accurately. If you set this parameter manually, begin with a value of 2, regardless
of the average number of applications that you run. After you assess the behavior
of the optimizer and test the performance of your application at this setting, you
can increase the value of the parameter in small increments. Continue to assess the
behavior of the optimizer and test the performance of your application each time
you increase the value of the parameter. Setting this parameter to a value that is
too high might cause the optimizer to underestimate the amount of buffer pool
space that is available to the query.

After you change the value of this parameter, consider rebinding applications by
using the REBIND PACKAGE command.

backup_pending - Backup pending indicator
This parameter indicates whether you need to do a full backup of the database
before accessing it.

Configuration type
Database

Parameter type
Informational

This parameter is only on if the database configuration is changed so that the
database moves from being nonrecoverable to recoverable (that is, initially both the
logretain and userexit parameters were set to NO, then either one or both of these
parameters is set to YES, and the update to the database configuration is accepted).

blk_log_dsk_ful - Block on log disk full
This parameter can be set to prevent disk full errors from being generated when
DB2 cannot create a new log file in the active log path.

Configuration type
Database

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
No [Yes; No]

Instead of generating a disk full error, DB2 will attempt to create the log file every
five minutes until it succeeds. After each attempt, DB2 writes a message to the
Administration Notification log. The only way that you can confirm that your
application is hanging because of a log disk full condition is to monitor the
Administration Notification log. Until the log file is successfully created, any user
application that attempts to update table data will not be able to commit
transactions. Read-only queries might not be directly affected; however, if a query
needs to access data that is locked by an update request, or a data page that is
fixed in the buffer pool by the updating application, read-only queries will also
appear to hang.

614 Database Administration Concepts and Configuration Reference

Setting blk_log_dsk_ful to yes causes applications to hang when DB2 encounters a
log disk full error, thus allowing you to resolve the error and allowing the
transaction to complete. You can resolve a disk full situation by moving old log
files to another file system or by enlarging the file system, so that hanging
applications can complete.

If blk_log_dsk_ful is set to no, then a transaction that receives a log disk full error
will fail and will be rolled back. In some situations, the database will come down if
a transaction causes a log disk full error.

blocknonlogged - Block creation of tables that allow
non-logged activity

This parameter specifies whether the database manager will allow tables to have
the NOT LOGGED or NOT LOGGED INITIALLY attributes activated.

Configuration type
Database

Parameter type
Configurable Online

Default [range]
No [Yes, No]

By default, blocknonlogged is set to NO: non-logged operations are permitted and
you gain the performance benefits associated with reduced logging. There are
some potential drawbacks associated with this configuration, however, particularly
in high availability disaster recovery (HADR) database environments. DB2 HADR
database environments use database logs to replicate data from the primary
database to the standby database. Non-logged operations are allowed on the
primary database, but are not replicated to the standby database. If you want
non-logged operations to be reflected in the standby database, you must take extra
steps to cause this to happen. For example, you can use online split mirrors or
suspended I/O support to resynchronize the standby database after non-logged
operations.

Usage notes
v If blocknonlogged is set to YES, then the CREATE TABLE and ALTER TABLE

statements fail if any of the following situations exist:
– The NOT LOGGED INITIALLY parameter is specified.
– The NOT LOGGED parameter is specified for a LOB column.

v If blocknonlogged is set to YES, then the LOAD command fails if the following
situations exist:
– You specify the NONRECOVERABLE option.
– You specify the COPY NO option.

catalogcache_sz - Catalog cache size
This parameter specifies the maximum space in pages that the catalog cache can
use from the database heap.

Configuration type
Database

Parameter type
Configurable online

Chapter 21. Configuration parameters 615

Propagation class
Immediate

Default [range]
-1 [maxappls*5, 8 - 524 288]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Pages (4 KB)

When allocated
When the database is initialized

When freed
When the database is shut down

This parameter is allocated out of the database shared memory, and is used to
cache system catalog information. In a partitioned database system, there is one
catalog cache for each database partition.

Caching catalog information at individual database partitions allows the database
manager to reduce its internal overhead by eliminating the need to access the
system catalogs (or the catalog node in a partitioned database environment) to
obtain information that has previously been retrieved. The use of the catalog cache
can help improve the overall performance of:
v Binding packages and compiling SQL and XQuery statements
v Operations that involve checking database-level privileges, routine privileges,

global variable privileges and role authorizations
v Applications that are connected to non-catalog nodes in a partitioned database

environment

By taking the default (-1) in a server or partitioned database environment, the
value used to calculate the page allocation is five times the value specified for the
maxappls configuration parameter. The exception to this occurs if five times
maxappls is less than 8. In this situation, the default value of -1 will set
catalogcache_sz to 8.

Recommendation: Start with the default value and tune it by using the database
system monitor. When tuning this parameter, you should consider whether the
extra memory being reserved for the catalog cache might be more effective if it
was allocated for another purpose, such as the buffer pool or package cache.

Tuning this parameter is particularly important if a workload involves many SQL
or XQuery compilations for a brief period of time, with few or no compilations
thereafter. If the cache is too large, memory might be wasted holding copies of
information that will no longer be used.

In an partitioned database environment, consider if the catalogcache_sz at the
catalog node needs to be set larger since catalog information that is required at
non-catalog nodes will always first be cached at the catalog node.

The cat_cache_lookups (catalog cache lookups), cat_cache_inserts (catalog cache
inserts), cat_cache_overflows (catalog cache overflows), and cat_cache_size_top (catalog
cache high water mark) monitor elements can help you determine whether you
should adjust this configuration parameter.

616 Database Administration Concepts and Configuration Reference

Note: The catalog cache exists on all nodes in a partitioned database environment.
Since there is a local database configuration file for each node, each node's
catalogcache_sz value defines the size of the local catalog cache. In order to provide
efficient caching and avoid overflow scenarios, you need to explicitly set the
catalogcache_sz value at each node and consider the feasibility of possibly setting
the catalogcache_sz on non-catalog nodes to be smaller than that of the catalog
node; keep in mind that information that is required to be cached at non-catalog
nodes will be retrieved from the catalog node's cache. Hence, a catalog cache at a
non-catalog node is like a subset of the information in the catalog cache at the
catalog node.

In general, more cache space is required if a unit of work contains several dynamic
SQL or XQuery statements or if you are binding packages that contain a large
number of static SQL or XQuery statements.

chngpgs_thresh - Changed pages threshold
This parameter specifies the level (percentage) of changed pages at which the
asynchronous page cleaners will be started, if they are not currently active.

Configuration type
Database

Parameter type
Configurable

Default [range]
60 [5 – 99]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Percentage

Asynchronous page cleaners will write changed pages from the buffer pool (or the
buffer pools) to disk before the space in the buffer pool is required by a database
agent. As a result, database agents should not have to wait for changed pages to
be written out so that they might use the space in the buffer pool. This improves
overall performance of the database applications.

When the page cleaners are started, they will build a list of the pages to write to
disk. Once they have completed writing those pages to disk, they will become
inactive again and wait for the next trigger to start.

When the DB2_USE_ALTERNATE_PAGE_CLEANING registry variable is set (that
is, the alternate method of page cleaning is used), the chngpgs_thresh parameter has
no effect, and the database manager automatically determines how many dirty
pages to maintain in the buffer pool.

Recommendation: For databases with a heavy update transaction workload, you
can generally ensure that there are enough clean pages in the buffer pool by
setting the parameter value to be equal-to or less-than the default value. A
percentage larger than the default can help performance if your database has a
small number of very large tables.

Chapter 21. Configuration parameters 617

codepage - Code page for the database
This parameter shows the code page that was used to create the database. The
codepage parameter is derived based on the codeset parameter.

Configuration type
Database

Parameter type
Informational

codeset - Codeset for the database
This parameter shows the codeset that was used to create the database. Codeset is
used by the database manager to determine codepage parameter values.

Configuration type
Database

Parameter type
Informational

collate_info - Collating information
This parameter determines the database's collating sequence. For a language-aware
collation, the first 256 bytes contain the string representation of the collation name
(for example, "SYSTEM_819_US").

This parameter can only be displayed using the db2CfgGet API. It cannot be
displayed through the command line processor or the Control Center.

Configuration type
Database

Parameter type
Informational

This parameter provides 260 bytes of database collating information. The first 256
bytes specify the database collating sequence, where byte “n” contains the sort
weight of the code point whose underlying decimal representation is “n” in the
code page of the database.

The last 4 bytes contain internal information about the type of the collating
sequence. The last four bytes of the parameter is an integer. The integer is sensitive
to the endian order of the platform. The possible values are:
v 0 – The sequence contains non-unique weights
v 1 – The sequence contains all unique weights
v 2 – The sequence is the identity sequence, for which strings are compared byte

for byte.
v 3 – The sequence is NLSCHAR, used for sorting characters in a TIS620-1 (code

page 874) Thai database.
v 4 – The sequence is IDENTITY_16BIT, which implements the “CESU-8

Compatibility Encoding Scheme for UTF–16: 8–bit” algorithm as specified in the
Unicode Technical Report #26 available at the Unicode Technical Consortium
Web site at http://www.unicode.org

v X'8001' – The sequence is UCA400_NO, which implements the Unicode Collation
Algorithm (UCA) based on the Unicode Standard version 4.00, with
normalization implicitly set to ON.

618 Database Administration Concepts and Configuration Reference

v X'8002' – The sequence is UCA400_LTH, which implements the Unicode
Collation Algorithm (UCA) based on the Unicode Standard version 4.00, and
sorts all Thai characters as per the Royal Thai Dictonary order.

v X'8003' – The sequence is UCA400_LSK, which implements the Unicode
Collation Algorithm (UCA) based on the Unicode Standard version 4.00, and
sorts all Slovakian characters properly.

Note: For a language-aware collation, the first 256 bytes contain the string
representation of the collation name.

If you use this internal type information, you need to consider byte reversal when
retrieving information for a database on a different platform.

You can specify the collating sequence at database creation time.

connect_proc - Connect procedure name database
configuration parameter

This database configuration parameter allows you to input or update a two-part
connect procedure name that will be executed every time an application connects
to the database.

Configuration type
Database

Parameter type
Configurable Online

Default
NULL

The following connect procedure conventions must be followed, otherwise an error
is returned.
v The non-zero length string must specify a two-part procedure name (i.e. [schema

name].[procedure name])
v The connect procedure name (both schema and procedure name) can only

contain the following characters:
– A-Z
– a-z
– _ (underscore)
– 0-9

v In addition, the schema and procedure name need to follow the rules of an
ordinary identifier.

Once the CONNECT_PROC parameter is configured to a non-zero length value, the
server will implicitly execute the procedure specified on every new connection.

Usage Notes
v A connection to the database is required when updating this parameter.

However, unsetting the parameter does not require a connection if the database
is deactivated.

v The CONNECT_PROC parameter can only be set using the IMMEDIATE option of the
UPDATE DATABASE CONFIGURATION command. The DEFERRED option cannot be used
when setting the CONNECT_PROC parameter.

Chapter 21. Configuration parameters 619

v Only a procedure with exactly zero parameters can be used as a connect
procedure. No other procedure sharing the same two-part name can exist in the
database as long as the CONNECT_PROC parameter is set.

v The connect procedure must exist in the database before updating the
CONNECT_PROC parameter. The UPDATE DATABASE CONFIGURATION command will fail
with an error if the connect procedure with zero parameters does not exist in the
database or if there is more than one procedure with the same name.

v Use the same connect procedure on all partitions in a data-partitioned
environment.

country/region - Database territory code
This parameter shows the territory code used to create the database.

Configuration type
Database

Parameter type
Informational

cur_commit - Currently committed configuration parameter
This parameter controls the behavior of cursor stability (CS) scans.

Configuration type
Database

Parameter type
Configurable

Default [range]
ON [ON, AVAILABLE, DISABLED]

For new databases, the default is set to ON. When the default is set to ON your
query will return the currently committed value of the data at the time when your
query is submitted.

During database upgrade, the cur_commit configuration parameter is set to
DISABLED to maintain the same behavior as in previous releases. If you want to use
currently committed on cursor stability scans, you need to set the cur_commit
configuration parameter to ON after the upgrade.

You can explicitly set the cur_commit configuration parameter to AVAILABLE. Once
you set this parameter, you need to explicitly request for currently committed
behavior to see the results that are currently committed.

Note: Three registry variables DB2_EVALUNCOMMITTED, DB2_SKIPDELETED, and
DB2_SKIPINSERTED are affected by currently committed when cursor stability
isolation level is used. These registry variables are ignored when USE CURRENTLY
COMMITTED or WAIT FOR OUTCOME are specified explicitly on the BIND or at statement
prepare time.

Note: Performance considerations may be applicable in a database where there are
significant lock conflicts when using currently committed. The committed version
of the row is retrieved from the log, and will perform better and avoid log disk
activity when the log record is still in the log buffer. Therefore, to improve the
performance of retrieving previously committed data, you might consider an
increase to the value of the logbufsz parameter.

620 Database Administration Concepts and Configuration Reference

database_consistent - Database is consistent
This parameter indicates whether the database is in a consistent state.

Configuration type
Database

Parameter type
Informational

YES indicates that all transactions have been committed or rolled back so that the
data is consistent. If the system “crashes” while the database is consistent, you do
not need to take any special action to make the database usable.

NO indicates that a transaction is pending or some other task is pending on the
database and the data is not consistent at this point. If the system “crashes” while
the database is not consistent, you will need to restart the database using the
RESTART DATABASE command to make the database usable.

database_level - Database release level
This parameter indicates the release level of the database manager which can use
the database.

Configuration type
Database

Parameter type
Informational

In the case of an incomplete or failed database upgrade, this parameter will reflect
the release level of the database before the upgrade and might differ from the
release parameter (the release level of the database configuration file). Otherwise
the value of database_level will be identical to value of the release parameter.

database_memory - Database shared memory size
This parameter specifies the amount of memory that is reserved for the database
shared memory region. If this amount is less than the amount calculated from the
individual memory parameters (for example, locklist, utility heap, bufferpools, and
so on), the larger amount will be used.

Configuration type
Database

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable online

Default [range]
Automatic [Computed, 0 - 4 294 967 295]

Unit of measure
Pages (4 KB)

When allocated
When the database is activated

Chapter 21. Configuration parameters 621

When freed
When the database is deactivated

Setting this parameter to AUTOMATIC enables self-tuning. When enabled, the
memory tuner determines the overall memory requirements for the database and
increases or decreases the amount of memory allocated for database shared
memory depending on the current database requirements. For example, if the
current database requirements are high, and there is sufficient free memory on the
system, more memory will be consumed by database shared memory. Once the
database memory requirements drop, or the amount of free memory on the system
drops too low, some database shared memory is released.

The memory tuner will always leave a minimum amount of memory free based on
the calculated benefit to providing additional memory to the instance. If there is a
great benefit to providing an instance with more memory, then the memory tuner
will maintain a lower amount of free memory. If the benefit is lower, then more
free memory will be maintained. This allows databases to cooperate in the
distribution of system memory.

Because the memory tuner trades memory resources between different memory
consumers, there must be at least two memory consumers enabled for self-tuning
to be active.

Automatic tuning of this configuration parameter will only occur when self-tuning
memory is enabled for the database (the self_tuning_mem configuration parameter
is set to ON).

To simplify the management of this parameter, the COMPUTED setting instructs the
database manager to calculate the amount of memory needed, and to allocate it at
database activation time. The database manager will also allocate some additional
memory to satisfy peak memory requirements for any heap in the database shared
memory region whenever a heap exceeds its configured size. Other operations,
such as dynamic configuration updates, also have access to this additional
memory. The db2pd command, with the -memsets option, can be used to monitor
the amount of unused memory left in the database shared memory region.

Recommendation: This value will usually remain at AUTOMATIC. For environments
that do not support the AUTOMATIC setting, this should be set to COMPUTED. For
example, the additional memory can be used for creating new buffer pools, or for
increasing the size of existing buffer pools.

Note:

v In Version 9.7, when you set the database_memory configuration parameter to
AUTOMATIC, the initial database shared memory allocation is the configured size
of all heaps and buffer pools defined for the database, and the memory increases
as needed. If database_memory is set to a specific value, then that requested
amount of memory is allocated initially, during database activation. If the initial
amount of memory cannot be allocated from the operating system, or exceeds
the instance_memory limit, database activation fails with an SQL1084C error
(Shared memory segments cannot be allocated).

v If you set database_memory to AUTOMATIC in DB2 Version 9.7 on Solaris Operating
Environment, the database manager uses pageable memory for the database
shared memory. In Solaris operating systems on UltraSPARC, the database
manager attempts to use 64 KB memory pages if they are available. If 64 KB
memory pages are not available, the database manager will use 8 KB memory

622 Database Administration Concepts and Configuration Reference

pages. In Solaris operating systems on Sun x64 systems, the database manager
will use 4 KB memory pages. The use of smaller memory pages might result in
some performance degradation. There is also a greater requirement for swap
space (equal to the size of database shared memory) due to the use of pageable
shared memory.

v If you set database_memory to COMPUTED or a numeric value in DB2 Version 9.7 on
Solaris, the database manager uses intimate shared memory (ISM) and large
pages for the database shared memory.

Controlling DB2 Memory consumption:
When instance_memory is set to AUTOMATIC, a fixed upper bound on total
memory consumption for the instance is set at instance startup (db2start).
Actual memory consumption by the database manager varies depending
on the workload. When self-tuning memory manager is enabled to perform
database_memory tuning (by default for new databases), during runtime,
self-tuning memory manager dynamically updates the size of
performance-critical heaps within the database shared memory set
according to the free physical memory on the system, while ensuring that
there is sufficient free instance_memory available for functional memory
requirements. For more information, see the instance_memory configuration
parameter.

Limitation on some Linux1 kernels:
Due to operating system limitations on some Linux kernels, self-tuning
memory manager currently does not allow setting database_memory to
AUTOMATIC. However, this setting is now allowed on these kernels only
when instance_memory is set to a specific value, and not AUTOMATIC. If
database_memory is set to AUTOMATIC, and instance_memory is later set back
to AUTOMATIC, the database_memory configuration parameter is automatically
updated to COMPUTED during the next database activation. If some databases
are already active, self-tuning memory manager stops tuning the overall
database_memory sizes.

1 On Linux, this parameter supports the AUTOMATIC setting on RHEL5 and on SUSE
10 SP1 and newer, regardless of the setting of the instance_memory parameter. All
other validated Linux distributions will return to COMPUTED if the kernel does not
support this feature.

dbheap - Database heap
This parameter determines the maximum memory used by the database heap.

With Version 9.5, this database configuration parameter has a default value of
AUTOMATIC, meaning that the database heap can increase as needed until either the
database_memory limit is reached, or the instance_memory limit is reached.

Configuration type
Database

Parameter type
Configurable online

Propagation class
Immediate

Default [range]
Automatic [32 - 524 288]

Chapter 21. Configuration parameters 623

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Pages (4 KB)

When allocated
When the database is activated

When freed
When the database is deactivated

There is one database heap per database, and the database manager uses it on
behalf of all applications connected to the database. It contains control block
information for tables, indexes, table spaces, and buffer pools. It also contains
space for the log buffer (logbufsz) and temporary memory used by utilities.
Therefore, the size of the heap will be dependent on a large number of variables.
The control block information is kept in the heap until all applications disconnect
from the database.

The minimum amount the database manager needs to get started is allocated at
the first connection. The data area is expanded as needed until either the
configured upper limit is reached, or, if set to AUTOMATIC, until all database_memory
or instance_memory, or memory for both, is exhausted.

The following formula can be used as a rough guideline when deciding on a value
to assign to the dbheap configuration parameter:

10K per tablespace + 4K per table + (1K + 4*extents used),
per range clustered table (RCT)

The dbheap value that you configure represents only a portion of the database heap
that is allocated. The database heap is the main memory area used to satisfy global
database memory requirements. It is sized to include basic allocations needed for
the startup of a database in addition to the dbheap value. Tools which report
memory usage such as Memory Tracker, Snapshot Monitor, and db2pd report the
statistics of this larger database heap. There is no separate tracking of the
allocations that are represented by the dbheap configuration parameter. Therefore, it
is normal for the statistics on database heap memory usage reported from these
tools to exceed the configured value for the dbheap parameter.

You can use the database system monitor to track the highest amount of memory
that was used for the database heap, using the db_heap_top (maximum database
heap allocated) element.

Note:

v Workload Management (WLM) work class sets and work action sets are stored
in the database heap. However, a very small part of the memory is consumed
for this.

v Trusted contexts, Workload Management, and Audit policy information is cached
in memory for fast processing. This memory is allocated from the database heap.
Therefore, user-defined trusted contexts, workload management, and audit
policy objects would impose more memory requirements on the database heap.
In this case, it is suggested that you set your database heap configuration to
AUTOMATIC so that the database manager automatically manages the database
heap size.

624 Database Administration Concepts and Configuration Reference

db_mem_thresh - Database memory threshold
This parameter represents the maximum percentage of committed, but currently
unused, database shared memory that the database manager will allow before
starting to release committed pages of memory back to the operating system.

Configuration type
Database

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
10 [0–100]

Unit of measure
Percentage

This database configuration parameter relates to how the database manager
handles excess unused database shared memory. Typically, as pages of memory are
touched by a process, they are committed, meaning that a page of memory has
been allocated by the operating system and occupies space either in physical
memory or in a page file on disk. Depending on the database workload, there
might be peak database shared memory requirements at a certain times of day.
Once the operating system has enough committed memory to meet those peak
requirements, that memory remains committed, even after peak memory
requirements have subsided.

Acceptable values are whole numbers in the range of 0 (immediately release any
unused database shared memory) to 100 (never release any unused database
shared memory). The default is 10 (release unused memory only when more than
10% of database shared memory is currently unused), which should be suitable for
most workloads.

This configuration parameter can be updated dynamically. Care should be taken
when updating this parameter, as setting the value too low could cause excessive
memory thrashing on the box (memory pages constantly being committed and
then released), and setting the value too high might prevent the database manager
from returning any database shared memory back to the operating system for
other processes to use.

This configuration parameter will be ignored (meaning that unused database
shared memory pages will remain committed) if the database shared memory
region is pinned through the DB2_PINNED_BP registry variable, configured for
large pages through the DB2_LARGE_PAGE_MEM registry variable, or if releasing
of memory is explicitly disabled through the DB2MEMDISCLAIM registry variable.

Some versions of Linux do not support releasing subranges of a shared memory
segment back to the operating system. On such platforms, this parameter will be
ignored.

date_compat - Date compatibility database configuration
parameter

This parameter indicates whether the DATE compatibility semantics associated
with the TIMESTAMP(0) data type are applied to the connected database.

Chapter 21. Configuration parameters 625

Configuration type
Database

Parameter type
Informational

The value is determined at database creation time, and is based on the setting of
the DB2_COMPATIBILITY_VECTOR registry variable for DATE support. The value
cannot be changed.

dec_to_char_fmt - Decimal to character function configuration
parameter

This parameter is used to control the result of the CHAR scalar function and the
CAST specification for converting decimal to character values.

Configuration type
Database

Parameter type
Configurable

See Consequences of changing dec_to_char_fmt below.

Default [range]
NEW [NEW, V95]

The setting of the parameter determines whether leading zeros and a trailing
decimal characters are included in the result of the CHAR function. If you set the
parameter to NEW, leading zeros and a trailing decimal characters are not included;
if you set the parameter to V95, leading zeros and a trailing decimal characters are
included.

Leading zeroes and a trailing decimal characters are also included in the result of
the CHAR_OLD scalar function, which has the same syntax as the CHAR function.

When upgrading, for databases created before Version 9.7 and then upgraded to
Version 9.7 or higher, the parameter dec_to_char_fmt is set to V95 by default.

Effects of changing the value of dec_to_char_fmt
v Materialized query tables (MQTs) that you created prior to Version 9.7 might

contain results that differ from those MQTs that you created by using the NEW
setting. To ensure that previously created MQTs contain only data that adheres
to the new format, refresh these MQTs by using the REFRESH TABLE statement.

v The results of a trigger may be affected by the changed format. Setting the value
of the parameter to NEW to change the format has no effect on data that has
already been written.

v Constraints that allowed data to be inserted into a table might, if reevaluated,
reject that same data. Similarly, constraints that did not allow data to be inserted
into a table might, if reevaluated, accept that same data. Use the SET
INTEGRITY statement to check for and correct data in a table that might no
longer satisfy a constraint.

v After changing the value of dec_to_char_fmt, recompile all static SQL packages
that depend on the value of a generated column whose results are effected by
the change in the dec_to_char_fmt value. To find out which static SQL packages
are effected, you must compile, rebind all the packages using the db2rbind
command.

626 Database Administration Concepts and Configuration Reference

decflt_rounding - Decimal floating point rounding
configuration parameter

This parameter allows you to specify the rounding mode for decimal floating point
(DECFLOAT). The rounding mode affects decimal floating-point operations in the
server, and in LOAD.

Configuration type
Database

Parameter type
Configurable

See “Consequences of changing decflt_rounding” on page 628 below.

Default [range]
ROUND_HALF_EVEN [ROUND_CEILING, ROUND_FLOOR, ROUND_HALF_UP, ROUND_DOWN]

DB2 supports five IEEE-compliant decimal floating point rounding modes. The
rounding mode specifies how to round the result of a calculation when the result
exceeds the precision. The definitions for all the rounding modes are as follows:

ROUND_CEILING
Round towards +infinity. If all of the discarded digits are zero or if the
sign is negative the result is unchanged. Otherwise, the result coefficient
should be incremented by 1 (rounded up).

ROUND_FLOOR
Round towards -infinity. If all of the discarded digits are zero or if the sign
is positive the result is unchanged. Otherwise, the sign is negative and the
result coefficient should be incremented by 1.

ROUND_HALF_UP
Round to nearest; if equidistant, round up 1. If the discarded digits
represent greater than or equal to half (0.5) of the value of a 1 in the next
left position then the result coefficient should be incremented by 1
(rounded up). Otherwise, the discarded digits (0.5 or less) are ignored.

ROUND_HALF_EVEN
Round to nearest; if equidistant, round so that the final digit is even. If the
discarded digits represent greater than half (0.5) the value of a one in the
next left position, then the result coefficient should be increment by 1
(rounded up). If they represent less than half, then the result coefficient is
not adjusted, that is, the discarded digits are ignored. Otherwise, if they
represent exactly half, the result coefficient is unaltered if its rightmost
digit is even, or incremented by 1 (rounded up) if its rightmost digit is
odd, to make an even digit. This rounding mode is the default rounding
mode as per IEEE decimal floating point specification and is the default
rounding mode in DB2 products.

ROUND_DOWN
Round towards 0 (truncation). The discarded digits are ignored.

Table 75 shows the result of rounding of 12.341, 12.345, 12.349, 12.355, and -12.345,
each to 4 digits, under different rounding modes:

Table 75. Decimal floating point rounding modes

Rounding mode 12.341 12.345 12.349 12.355 -12.345

ROUND_DOWN 12.34 12.34 12.34 12.35 -12.34

ROUND_HALF_UP 12.34 12.35 12.35 12.36 -12.35

Chapter 21. Configuration parameters 627

Table 75. Decimal floating point rounding modes (continued)

Rounding mode 12.341 12.345 12.349 12.355 -12.345

ROUND_HALF_EVEN 12.34 12.34 12.35 12.36 -12.34

ROUND_FLOOR 12.34 12.34 12.34 12.35 -12.35

ROUND_CEILING 12.35 12.35 12.35 12.36 -12.34

Consequences of changing decflt_rounding
v Previously constructed materialized query tables (MQTs) could contain results

that differ from what would be produced with the new rounding mode. To
correct this problem, refresh potentially impacted MQTs.

v The results of a trigger may be affected by the new rounding mode. Changing it
has no effect on data that has already been written.

v Constraints that allowed data to be inserted into a table, if reevaluated, might
reject that same data. Similarly constraints that did not allow data to be inserted
into a table, if reevaluated, might accept that same data. Use the SET
INTEGRITY statement to check for and correct such problems. The value of a
generated column whose calculation is dependent on decflt_rounding could be
different for two identical rows except for the generated column value, if one
row was inserted before the change to decflt_rounding and the other was
inserted after.

v The rounding mode is not compiled into sections. Therefore, static SQL does not
need to be recompiled after changing decflt_rounding.

Note: The value of this configuration parameter is not changed dynamically but
will become effective only after all applications disconnect from the database. If the
database is activated, it must be deactivated.

dft_degree - Default degree
This parameter specifies the default value for the CURRENT DEGREE special
register and the DEGREE bind option.

Configuration type
Database

Parameter type
Configurable Online

Propagation class
Connection

Default [range]
1 [-1(ANY), 1 - 32 767]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

The default value is 1.

A value of 1 means no intra-partition parallelism. A value of -1 (or ANY) means
the optimizer determines the degree of intra-partition parallelism based on the
number of processors and the type of query.

The degree of intra-partition parallelism for an SQL statement is specified at
statement compilation time using the CURRENT DEGREE special register or the

628 Database Administration Concepts and Configuration Reference

DEGREE bind option. The maximum runtime degree of intra-partition parallelism
for an active application is specified using the SET RUNTIME DEGREE command.
The Maximum Query Degree of Parallelism (max_querydegree) configuration
parameter specifies the maximum query degree of intra-partition parallelism for all
SQL queries.

The actual runtime degree used is the lowest of:
v max_querydegree configuration parameter
v application runtime degree
v SQL statement compilation degree

dft_extent_sz - Default extent size of table spaces
This parameter sets the default extent size of table spaces.

Configuration type
Database

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
32 [2 – 256]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Pages

When a table space is created, EXTENTSIZE n can be optionally specified, where n is
the extent size. If you do not specify the extent size on the CREATE TABLESPACE
statement, the database manager uses the value given by this parameter.

Recommendation: In many cases, you will want to explicitly specify the extent size
when you create the table space. Before choosing a value for this parameter, you
should understand how you would explicitly choose an extent size for the
CREATE TABLESPACE statement.

dft_loadrec_ses - Default number of load recovery sessions
This parameter specifies the default number of sessions that will be used during
the recovery of a table load.

Configuration type
Database

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
1 [1 - 30 000]

Unit of measure
Counter

Chapter 21. Configuration parameters 629

The value of this parameter should be set to the number of I/O sessions that was
specified with the COPY YES option in the original LOAD command. The retrieval of a
load copy is an operation similar to restore. You can override this parameter
through entries in the copy location file specified by the environment variable
DB2LOADREC.

The default number of buffers used for load retrieval is two more than the value of
this parameter. You can also override the number of buffers in the copy location
file.

This parameter is applicable only if roll forward recovery is enabled.

dft_mttb_types - Default maintained table types for
optimization

This parameter specifies the default value for the CURRENT MAINTAINED
TABLE TYPES FOR OPTIMIZATION special register. The value of this register
determines what types of refresh deferred materialized query tables will be used
during query optimization.

Configuration type
Database

Parameter type
Configurable

Default [range]
SYSTEM [ALL, NONE, FEDERATED_TOOL, SYSTEM, USER, or a list of
values]

You can specify a list of values separated by commas; for example,
‘USER,FEDERATED_TOOL’. ALL or NONE cannot be listed with other values, and
you cannot specify the same value more than once. For use with the db2CfgSet and
db2CfgGet APIs, the acceptable parameter values are: 8 (ALL), 4 (NONE), 16
(FEDERATED_TOOL), 1 (SYSTEM) and 2 (USER). Multiple values can be specified
together using bitwise OR; for example, 18 would be the equivalent of
USER,FEDERATED_TOOL. As before, the values 4 and 8 cannot be used with
other values.

dft_prefetch_sz - Default prefetch size
This parameter sets the default prefetch size of table spaces.

Configuration type
Database

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
Automatic [0 - 32 767]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Pages

630 Database Administration Concepts and Configuration Reference

When a table space is created, PREFETCHSIZE can optionally be specified with a
value of AUTOMATIC or n, where n represents the number of pages the database
manager will read if prefetching is being performed. If you do not specify the
prefetch size on invocation of the CREATE TABLESPACE statement, the database
manager uses the current value of the dft_prefetch_sz parameter.

If a table space is created with the prefetch size set to AUTOMATIC, the DB2 database
manager will automatically calculate and update the prefetch size of the table
space.

This calculation is performed:
v When the database starts
v When a table space is first created with AUTOMATIC prefetch size
v When the number of containers for a table space changes through execution of

an ALTER TABLESPACE statement
v When the prefetch size for a table space is updated to be AUTOMATIC through

execution of an ALTER TABLESPACE statement

The AUTOMATIC state of the prefetch size can be turned on or off as soon as the
prefetch size is updated manually through invocation of the ALTER TABLESPACE
statement.

Recommendation: Using system monitoring tools, you can determine if your CPU
is idle while the system is waiting for I/O. Increasing the value of this parameter
can help if the table spaces being used do not have a prefetch size defined for
them.

This parameter provides the default for the entire database, and it might not be
suitable for all table spaces within the database. For example, a value of 32 might
be suitable for a table space with an extent size of 32 pages, but not suitable for a
table space with an extent size of 25 pages. Ideally, you should explicitly set the
prefetch size for each table space.

To help minimize I/O for table spaces defined with the default extent size
(dft_extent_sz), you should set this parameter as a factor or whole multiple of the
value of the dft_extent_sz parameter. For example, if the dft_extent_sz
parameter is 32, you could set dft_prefetch_sz to 16 (a fraction of 32) or to 64 (a
whole multiple of 32). If the prefetch size is a multiple of the extent size, the
database manager might perform I/O in parallel, if the following conditions are
true:
v The extents being prefetched are on different physical devices
v Multiple I/O servers are configured (num_ioservers).

dft_queryopt - Default query optimization class
The query optimization class is used to direct the optimizer to use different
degrees of optimization when compiling SQL and XQuery queries. This parameter
provides additional flexibility by setting the default query optimization class used
when neither the SET CURRENT QUERY OPTIMIZATION statement nor the
QUERYOPT option on the bind command are used.

Configuration type
Database

Parameter type
Configurable Online

Chapter 21. Configuration parameters 631

Propagation class
Connection

Default [range]
5 [0 — 9]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Query Optimization Class (see below)

The query optimization classes currently defined are:
v 0 - minimal query optimization.
v 1 - roughly comparable to DB2 Version 1.
v 2 - slight optimization.
v 3 - moderate query optimization.
v 5 - significant query optimization with heuristics to limit the effort expended on

selecting an access plan. This is the default.
v 7 - significant query optimization.
v 9 - maximal query optimization

dft_refresh_age - Default refresh age
This parameter represents the maximum time duration since a REFRESH TABLE
statement has been processed on a specific REFRESH DEFERRED materialized
query table. After this time limit is exceeded, the materialized query table is not
used to satisfy queries until the materialized query table is refreshed.

Configuration type
Database

Parameter type
Configurable

Default [range]
0 [0, 99999999999999 (ANY)]

Unit of measure
Seconds

This parameter has the default value used for the REFRESH AGE if the CURRENT
REFRESH AGE special register is not specified. This parameter specifies a time
stamp duration value with a data type of DECIMAL(20,6). If the CURRENT
REFRESH AGE has a value of 99999999999999 (ANY), and the QUERY
OPTIMIZATION class has a value of two, or five or more, REFRESH DEFERRED
materialized query tables are considered to optimize the processing of a dynamic
query.

dft_sqlmathwarn - Continue upon arithmetic exceptions
This parameter sets the default value that determines the handling of arithmetic
errors and retrieval conversion errors as errors or warnings during SQL statement
compilation.

Configuration type
Database

632 Database Administration Concepts and Configuration Reference

Parameter type
Configurable

Default [range]
No [No, Yes]

For static SQL statements, the value of this parameter is associated with the
package at bind time. For dynamic SQL DML statements, the value of this
parameter is used when the statement is prepared.

Attention: If you change the dft_sqlmathwarn value for a database, the behavior of
check constraints, triggers, and views that include arithmetic expressions might
change. This might, in turn, have an impact on the data integrity of the database.
You should only change the setting of dft_sqlmathwarn for a database after carefully
evaluating how the new arithmetic exception handling behavior might impact
check constraints, triggers, and views. Once changed, subsequent changes require
the same careful evaluation.

As an example, consider the following check constraint, which includes a division
arithmetic operation:
A/B > 0

When dft_sqlmathwarn is “No” and an INSERT with B=0 is attempted, the division
by zero is processed as an arithmetic error. The insert operation fails because DB2
cannot check the constraint. If dft_sqlmathwarn is changed to “Yes”, the division by
zero is processed as an arithmetic warning with a NULL result. The NULL result
causes the predicate to evaluate to UNKNOWN and the insert operation succeeds.
If dft_sqlmathwarn is changed back to “No”, an attempt to insert the same row will
fail, because the division by zero error prevents DB2 from evaluating the
constraint. The row inserted with B=0 when dft_sqlmathwarn was “Yes” remains in
the table and can be selected. Updates to the row that cause the constraint to be
evaluated will fail, while updates to the row that do not require constraint
re-evaluation will succeed.

Before changing dft_sqlmathwarn from “No” to “Yes”, you should consider
rewriting the constraint to explicitly handle nulls from arithmetic expressions. For
example:

(A/B > 0) AND (CASE
WHEN A IS NULL THEN 1
WHEN B IS NULL THEN 1
WHEN A/B IS NULL THEN 0
ELSE 1
END

= 1)

can be used if both A and B are nullable. And, if A or B is not-nullable, the
corresponding IS NULL WHEN-clause can be removed.

Before changing dft_sqlmathwarn from “Yes” to “No”, you should first check for
data that might become inconsistent by using, for example, predicates such as the
following:

WHERE A IS NOT NULL AND B IS NOT NULL AND A/B IS NULL

When inconsistent rows are isolated, you should take appropriate action to correct
the inconsistency before changing dft_sqlmathwarn. You can also manually re-check
constraints with arithmetic expressions after the change. To do this, first place the
affected tables in a check pending state (with the OFF clause of the SET

Chapter 21. Configuration parameters 633

CONSTRAINTS statement), then request that the tables be checked (with the
IMMEDIATE CHECKED clause of the SET CONSTRAINTS statement). Inconsistent
data will be indicated by an arithmetic error, which prevents the constraint from
being evaluated.

Recommendation: Use the default setting of no, unless you specifically require
queries to be processed that include arithmetic exceptions. Then specify the value
of yes. This situation can occur if you are processing SQL statements that, on other
database managers, provide results regardless of the arithmetic exceptions that
occur.

discover_db - Discover database
This parameter is used to prevent information about a database from being
returned to a client when a discovery request is received at the server.

Configuration type
Database

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
Enable [Disable, Enable]

The default for this parameter is that discovery is enabled for this database.

By changing this parameter value to “Disable”, it is possible to hide databases with
sensitive data from the discovery process. This can be done in addition to other
database security controls on the database.

dlchktime - Time interval for checking deadlock
This parameter defines the frequency at which the database manager checks for
deadlocks among all the applications connected to a database.

Configuration type
Database

Parameter type
Configurable online

Propagation class
Immediate

Default [range]
10 000 (10 seconds) [1 000 - 600 000]

Unit of measure
Milliseconds

A deadlock occurs when two or more applications connected to the same database
wait indefinitely for a resource. The waiting is never resolved because each
application is holding a resource that the other needs to continue.

Note:

1. In a partitioned database environment, this parameter applies to the catalog
node only.

634 Database Administration Concepts and Configuration Reference

2. In a partitioned database environment, a deadlock is not flagged until after the
second iteration.

Recommendation: Increasing this parameter decreases the frequency of checking
for deadlocks, thereby increasing the time that application programs must wait for
the deadlock to be resolved.

Decreasing this parameter increases the frequency of checking for deadlocks,
thereby decreasing the time that application programs must wait for the deadlock
to be resolved but increasing the time that the database manager takes to check for
deadlocks. If the deadlock interval is too small, it can decrease runtime
performance, because the database manager is frequently performing deadlock
detection. If this parameter is set lower to improve concurrency, you should ensure
that maxlocks and locklist are set appropriately to avoid unnecessary lock escalation,
which can result in more lock contention and as a result, more deadlock situations.

dyn_query_mgmt - Dynamic SQL and XQuery query
management

This parameter determines whether Query Patroller will capture information about
submitted queries.

Important: This parameter has been deprecated because it is associated with
Query Patroller functionality. With the new workload management features
introduced in DB2 Version 9.5, Query Patroller and its related components have
been deprecated in Version 9.7 and might be removed in a future release.

Configuration type
Database

Parameter type
Configurable Online

Default [range]
0 (DISABLE) [1(ENABLE), 0 (DISABLE)]

This parameter is relevant where DB2 Query Patroller is installed. If this parameter
is set to “ENABLE”, Query Patroller captures information about the query, such as
the submitter ID and the estimated cost of execution, as calculated by the
optimizer. These values are used to determine whether the query should be
managed by Query Patroller, based on user- and system-level thresholds.

If this parameter is set to “DISABLE”, Query Patroller does not capture any
information about submitted queries, and no query management takes place.

enable_xmlchar - Enable conversion to XML configuration
parameter

This parameter determines whether XMLPARSE operations can be performed on
non-BIT DATA CHAR (or CHAR-type) expressions in an SQL statement.

Configuration type
Database

Parameter type
Configurable

Default [range]
Yes [Yes; No]

Chapter 21. Configuration parameters 635

When pureXML® features are used in a non-Unicode database, the XMLPARSE
function can cause character substitutions to occur as SQL string data is converted
from the client code page into the database code page, and then into Unicode for
internal storage. Setting enable_xmlchar to NO blocks the usage of character data
types during XML parsing, and any attempts to insert character types into a
non-Unicode database will generate an error. The BLOB data type and FOR BIT
DATA data types are still allowed when enable_xmlchar is set to NO, as code page
conversion does not occur when these data types are used to pass XML data into a
database.

By default, enable_xmlchar is set to YES so that parsing of character data types is
allowed. In this case, you should ensure that any XML data to be inserted contains
only code points that are part of the database code page, in order to avoid
substitution characters being introduced during insertion of the XML data.

Note: The client needs to disconnect and reconnect to the agent for this change to
be reflected.

failarchpath - Failover log archive path
This parameter specifies a path to which DB2 will try to archive log files if the log
files cannot be archived to either the primary or the secondary (if set) archive
destinations because of a media problem affecting those destinations. This specified
path must reference a disk.

Configuration type
Database

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable Online

Default [range]
Null []

If there are log files in the path specified by the current value of failarchpath, any
updates to failarchpath will not take effect immediately. Instead, the update will
take effect when all applications disconnect.

groupheap_ratio - Percent of memory for application group
heap

This parameter is deprecated in Version 9.5, but is still being used by pre-Version
9.5 data servers and clients. Any value specified for this configuration parameter
will be ignored by the DB2 Version 9.5 database manager. In Version 9.5, it has
been replaced by the appl_memory configuration parameter..

Note: The following information applies only to pre-Version 9.5 data servers and
clients.

This parameter specifies the percentage of memory in the application control
shared memory set devoted to the application group shared heap.

636 Database Administration Concepts and Configuration Reference

Configuration type
Database

Parameter type
Configurable

Default [range]
70 [1 – 99]

Unit of measure
Percentage

This parameter does not have any effect on a non-partitioned database with
concentrator OFF and intra-partition parallelism disabled.

Recommendation: Retain the default value of this parameter unless you are
experiencing performance problems.

hadr_db_role - HADR database role
This parameter indicates the current role of a database, whether the database is
online or offline.

Configuration type
Database

Applies to

v Database server with local and remote clients
v Database server with local clients

Parameter type
Informational

Valid values are: STANDARD, PRIMARY, or STANDBY.

Note: When a database is active, the HADR role of the database can also be
determined using the GET SNAPSHOT FOR DATABASE command.

hadr_local_host - HADR local host name
This parameter specifies the local host for high availability disaster recovery
(HADR) TCP communication.

Configuration type
Database

Applies to

v Database server with local and remote clients
v Database server with local clients

Parameter type
Configurable

Default
Null

Either a host name or an IP address can be used. If a host name is specified and it
maps to multiple IP addresses, an error is returned, and HADR will not start up. If
the host name maps to multiple IP addresses (even if you specify the same host

Chapter 21. Configuration parameters 637

name on primary and standby), primary and standby can end up mapping this
host name to different IP addresses, because some DNS servers return IP address
lists in non-deterministic order.

A host name is in the form: myserver.ibm.com. An IP address is in the form:
"12.34.56.78".

hadr_local_svc - HADR local service name
This parameter specifies the TCP service name or port number for which the local
high availability disaster recovery (HADR) process accepts connections.

Configuration type
Database

Applies to

v Database server with local and remote clients
v Database server with local clients

Parameter type
Configurable

Default
Null

The value for hadr_local_svc on the Primary or Standby database systems cannot
be the same as the value of svcename or svcename +1 on their respective nodes.

If you are using SSL, do not set hadr_local_svc on the Primary or Standby
database system to the same value as you set for ssl_svcename.

hadr_peer_window - HADR peer window configuration
parameter

When you set hadr_peer_window to a non-zero time value, then a HADR
primary-standby database pair continues to behave as though still in peer state, for
the configured amount of time, if the primary database loses connection with the
standby database. This helps ensure data consistency.

Configuration type
Database

Parameter type
Configurable

Default [range]
0 [0 − 4 294 967 295]

Unit of measure
Seconds

Usage notes:

v The value will need to be the same on both primary and standby
databases.

v A recommended minimum value is 120 seconds.
v When the hadr_syncmode value is set to ASYNC or SUPERASYNC, the

hadr_peer_window value is ignored.
v To avoid impacting the availability of the primary database when the

standby database is intentionally shut down, for example, for

638 Database Administration Concepts and Configuration Reference

maintenance, the peer window is not invoked if the standby database is
explicitly deactivated while the HADR pair is in peer state.

v The TAKEOVER HADR command with the PEER WINDOW ONLY option will
launch a takeover operation only if the HADR standby is presently
inside the defined peer window.

v The takeover operation with the hadr_peer_window parameter may
behave incorrectly if the primary database clock and the standby
database clock are not synchronized to within 5 seconds of each other.
That is, the operation may succeed when it should fail, or fail when it
should succeed. You should use a time synchronization service (for
example, NTP) to keep the clocks synchronized to the same source.

v On the standby database, the peer window end time is a time specified
in the last heartbeat message that the standby received from the primary
database, and is not directly related to when the standby detects loss of
the connection.

hadr_remote_host - HADR remote host name
This parameter specifies the TCP/IP host name or IP address of the remote high
availability disaster recovery (HADR) database server.

Configuration type
Database

Applies to

v Database server with local and remote clients
v Database server with local clients

Parameter type
Configurable

Default
Null

Similar to hadr_local_host, this parameter must map to only one IP address.

hadr_remote_inst - HADR instance name of the remote server
This parameter specifies the instance name of the remote server. Administration
tools, such as the DB2 Control Center, use this parameter to contact the remote
server. High availability disaster recovery (HADR) also checks whether a remote
database requesting a connection belongs to the declared remote instance.

Configuration type
Database

Applies to

v Database server with local and remote clients
v Database server with local clients

Parameter type
Configurable

Default
Null

hadr_remote_svc - HADR remote service name
This parameter specifies the TCP service name or port number that will be used by
the remote high availability disaster recovery (HADR) database server.

Chapter 21. Configuration parameters 639

Configuration type
Database

Applies to

v Database server with local and remote clients
v Database server with local clients

Parameter type
Configurable

Default
Null

hadr_syncmode - HADR synchronization mode for log write in
peer state

This parameter specifies the synchronization mode, which determines how primary
log writes are synchronized with the standby when the systems are in peer state.

Configuration type
Database

Applies to

v Database server with local and remote clients
v Database server with local clients

Parameter type
Configurable

Default [range]
NEARSYNC [ASYNC, SUPERASYNC, SYNC]

Valid values for this parameter are:

SYNC This mode provides the greatest protection against transaction loss, but at a
higher cost of transaction response time.

In this mode, log writes are considered successful only when logs have
been written to log files on the primary database and when the primary
database has received acknowledgement from the standby database that
the logs have also been written to log files on the standby database. The
log data is guaranteed to be stored at both sites.

NEARSYNC
This mode provides somewhat less protection against transaction loss, in
exchange for a shorter transaction response time than that of SYNC mode.

In this mode, log writes are considered successful only when the log
records have been written to the log files on the primary database and
when the primary database has received acknowledgement from the
standby system that the logs have also been written to main memory on
the standby system. Loss of data occurs only if both sites fail
simultaneously and if the target site has not transferred to nonvolatile
storage all of the log data that it has received.

ASYNC
Compared with the SYNC and NEARSYNC modes, the ASYNC mode
results in shorter transaction response times but might cause greater
transaction losses if the primary database fails.

In this mode, log writes are considered successful only when the log
records have been written to the log files on the primary database and

640 Database Administration Concepts and Configuration Reference

have been delivered to the TCP layer of the primary system's host
machine. Because the primary system does not wait for acknowledgement
from the standby system, transactions might be considered committed
when they are still on their way to the standby.

SUPERASYNC
This mode has the shortest transaction response time but has also the
highest probability of transaction losses if the primary system fails. This
mode is useful when you do not want transactions to be blocked or
experience elongated response times due to network interruptions or
congestion.

In this mode, the HADR pair can never be in peer state or disconnected
peer state. The log writes are considered successful only when the log
records have been written to the log files on the primary database. Because
the primary system does not wait for acknowledgement from the standby
system, transactions might be considered committed when they are still on
their way to the standby.

Figure 49 shows when the logs for transactions are considered successful based on
the synchronization mode chosen:

hadr_timeout - HADR timeout value
This parameter specifies the time (in seconds) that the high availability disaster
recovery (HADR) process waits before considering a communication attempt to
have failed.

Configuration type
Database

Applies to

v Database server with local and remote clients
v Database server with local clients

Parameter type
Configurable

HADR
receive buffer

Standby database

Log file

HADR
send buffer

Primary database

Near synchronousAsynchronous

Super asynchronous

Commit request

Synchronous

Log shipping

log writer

Log file Applications

- Commit
succeeded

Figure 49. Synchronization modes for high availability and disaster recovery (HADR)

Chapter 21. Configuration parameters 641

Default [range]
120 [1 - 4 294 967 295]

indexrec - Index re-creation time
This parameter indicates when the database manager will attempt to rebuild
invalid indexes, and whether or not any index build will be redone during DB2
rollforward or HADR log replay on the standby database.

Configuration type
Database and Database Manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]

UNIX Database Manager
restart [restart; restart_no_redo; access; access_no_redo]

Windows Database Manager
restart [restart; restart_no_redo; access; access_no_redo]

Database
Use system setting [system; restart; restart_no_redo; access;
access_no_redo]

There are five possible settings for this parameter:

SYSTEM
use system setting specified in the database manager configuration file to
decide when invalid indexes will be rebuilt, and whether any index build
log records are to be redone during DB2 rollforward or HADR log replay.
(Note: This setting is only valid for database configurations.)

ACCESS
Invalid indexes are rebuilt when the underlying table is first accessed. Any
fully logged index builds are redone during DB2 rollforward or HADR log
replay. When HADR is started and an HADR takeover occurs, any invalid
indexes are rebuilt after takeover when the underlying table is first
accessed.

ACCESS_NO_REDO
Invalid indexes will be rebuilt when the underlying table is first accessed.
Any fully logged index build will not be redone during DB2 rollforward or
HADR log replay and those indexes will be left invalid. When HADR is
started and an HADR takeover takes place, any invalid indexes will be
rebuilt after takeover when the underlying table is first accessed.

RESTART
The default value for indexrec. Invalid indexes will be rebuilt when a
RESTART DATABASE command is either explicitly or implicitly issued.
Any fully logged index build will be redone during DB2 rollforward or

642 Database Administration Concepts and Configuration Reference

HADR log replay. When HADR is started and an HADR takeover takes
place, any invalid indexes will be rebuilt at the end of takeover.

When a database terminates abnormally while applications are connected
to it, and the autorestart parameter is enabled, a RESTART DATABASE
command is implicitly issued when an application connects to a database.
If the command is not issued, the invalid indexes are rebuilt the next time
the underlying table is accessed.

RESTART_NO_REDO
Invalid indexes will be rebuilt when a RESTART DATABASE command is
either explicitly or implicitly issued. Any fully logged index build will not
be redone during DB2 rollforward or HADR log replay and instead those
indexes will be rebuilt when rollforward completes or when HADR
takeover takes place.

When a database terminates abnormally while applications are connected
to it, and the autorestart parameter is enabled, a RESTART DATABASE
command is implicitly issued when an application connects to a database.
If the command is not issued, the invalid indexes are rebuilt the next time
the underlying table is accessed.

Indexes can become invalid when fatal disk problems occur. If this happens to the
data itself, the data could be lost. However, if this happens to an index, the index
can be recovered by re-creating it. If an index is rebuilt while users are connected
to the database, two problems could occur:
v An unexpected degradation in response time might occur as the index file is

re-created. Users accessing the table and using this particular index would wait
while the index was being rebuilt.

v Unexpected locks might be held after index re-creation, especially if the user
transaction that caused the index to be re-created never performed a COMMIT
or ROLLBACK.

Recommendation: The best choice for this option on a high-user server and if
restart time is not a concern, would be to have the index rebuilt at DATABASE
RESTART time as part of the process of bringing the database back online after a
crash.

Setting this parameter to “ACCESS” or to “ACCESS_NO_REDO” will result in a
degradation of the performance of the database manager while the index is being
re-created. Any user accessing that specific index or table would have to wait until
the index is recreated.

If this parameter is set to “RESTART”, the time taken to restart the database will be
longer due to index re-creation, but normal processing would not be impacted
once the database has been brought back online.

Note: At database recovery time, all SQL procedure executables on the file system
that belong to the database being recovered are removed. If indexrec is set to
RESTART, all SQL procedure executables are extracted from the database catalog
and put back on the file system at the next connection to the database. If indexrec is
not set to RESTART, an SQL executable is extracted to the file system only on first
execution of that SQL procedure.

The difference between the RESTART and the RESTART_NO_REDO values, or
between the ACCESS and the ACCESS_NO_REDO values, is only significant when
full logging is activated for index build operations, such as CREATE INDEX and

Chapter 21. Configuration parameters 643

REORG INDEX operations, or for an index rebuild. You can activate logging by
enabling the logindexbuild database configuration parameter or by enabling LOG
INDEX BUILD when altering a table. By setting indexrec to either RESTART or
ACCESS, operations involving a logged index build can be rolled forward without
leaving the index object in an invalid state, which would require the index to be
rebuilt at a later time.

jdk_64_path - 64-Bit Software Developer's Kit for Java
installation path DAS

This parameter specifies the directory under which the 64-Bit Software Developer's
Kit (SDK) for Java, to be used for running DB2 administration server functions, is
installed.

Configuration type
DB2 Administration Server

Applies to
DB2 Administration Server

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
Null [any valid path]

Note: This is different from the jdk_path configuration parameter, which specifies
a 32-bit SDK for Java.

Environment variables used by the Java interpreter are computed from the value of
this parameter. This parameter is only used on those platforms that support both
32- and 64-bit instances.

Those platforms are:
v 64-bit kernels of AIX, HP-UX, and Solaris operating systems
v 64-bit Windows on X64 and IPF
v 64-bit Linux kernel on AMD64 and Intel EM64T systems (x64), POWER, and

zSeries.

On all other platforms, only jdk_path is used.

Because there is no default value for this parameter, you should specify a value
when you install the SDK for Java.

This parameter can only be updated from a Version 8 command line processor
(CLP).

locklist - Maximum storage for lock list
This parameter indicates the amount of storage that is allocated to the lock list.
There is one lock list per database and it contains the locks held by all applications
concurrently connected to the database.

Configuration type
Database

644 Database Administration Concepts and Configuration Reference

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
Automatic [4 - 134217728]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Pages (4 KB)

When allocated
When the first application connects to the database

When freed
When last application disconnects from the database

Locking is the mechanism that the database manager uses to control concurrent
access to data in the database by multiple applications. Both rows and tables can
be locked. The database manager can also acquire locks for internal use.

When this parameter is set to AUTOMATIC, it is enabled for self tuning. This
allows the memory tuner to dynamically size the memory area controlled by this
parameter as the workload requirements change. Because the memory tuner trades
memory resources between different memory consumers, there must be at least
two memory consumers enabled for self tuning in order for self tuning to be active

The value of locklist is tuned together with the maxlocks parameter, therefore
disabling self tuning of the locklist parameter automatically disables self tuning of
the maxlocks parameter. Enabling self tuning of the locklist parameter automatically
enables self tuning of the maxlocks parameter.

Automatic tuning of this configuration parameter will only occur when self tuning
memory is enabled for the database (the self_tuning_mem configuration parameter
is set to "ON.")

On all platforms, each lock requires 128 or 256 bytes of the lock list, depending on
whether other locks are held on the object:
v 256 bytes are required to hold a lock on an object that has no other locks held on

it
v 128 bytes are required to record a lock on an object that has an existing lock held

on it.

When the percentage of the lock list used by one application reaches maxlocks, the
database manager will perform lock escalation, from row to table, for the locks
held by the application. This calculation is an approximation, assuming shared
locks only. The percentage of the lock list used is calculated by multiplying the
number of locks held by the application by the value required to hold a lock on an
object that has other locks held on it. Although the escalation process itself does
not take much time, locking entire tables (versus individual rows) decreases
concurrency, and overall database performance might decrease for subsequent
accesses against the affected tables. Suggestions of how to control the size of the
lock list are:
v Perform frequent COMMITs to release locks.

Chapter 21. Configuration parameters 645

v When performing many updates, lock the entire table before updating (using the
SQL LOCK TABLE statement). This will use only one lock, keeps others from
interfering with the updates, but does reduce concurrency of the data.
You can also use the LOCKSIZE option of the ALTER TABLE statement to
control how locking is done for a specific table.
Use of the Repeatable Read isolation level might result in an automatic table
lock.

v Use the Cursor Stability isolation level when possible to decrease the number of
share locks held. If application integrity requirements are not compromised use
Uncommitted Read instead of Cursor Stability to further decrease the amount of
locking.

v Set locklist to AUTOMATIC. The lock list will increase synchronously to avoid
lock escalation or a lock list full situation.

Once the lock list is full, performance can degrade since lock escalation will
generate more table locks and fewer row locks, thus reducing concurrency on
shared objects in the database. Additionally there might be more deadlocks
between applications (since they are all waiting on a limited number of table
locks), which will result in transactions being rolled back. Your application will
receive an SQLCODE of -912 when the maximum number of lock requests has
been reached for the database.

Recommendation: If lock escalations are causing performance concerns you might
need to increase the value of this parameter or the maxlocks parameter. You can use
the database system monitor to determine if lock escalations are occurring. Refer to
the lock_escals (lock escalations) monitor element.

The following steps might help in determining the number of pages required for
your lock list:
1. Calculate a lower bound for the size of your lock list, using one of the following

calculations, depending on your environment:
a.

(512 * 128 * maxappls) / 4096

b. with Concentrator enabled:
(512 * 128 * max_coordagents) / 4096

c. in a partitioned database with Concentrator enabled:
(512 * 128 * max_coordagents * number of database partitions) / 4096

where 512 is an estimate of the average number of locks per application and
128 is the number of bytes required for each lock against an object that has an
existing lock.

2. Calculate an upper bound for the size of your lock list:
(512 * 256 * maxappls) / 4096

where 256 is the number of bytes required for the first lock against an object.
3. Estimate the amount of concurrency you will have against your data and based

on your expectations, choose an initial value for locklist that falls between the
upper and lower bounds that you have calculated.

4. Using the database system monitor, as described below, tune the value of this
parameter.

If maxappls or max_coordagents are set to AUTOMATIC in your applicable scenario,
you should also set locklist to AUTOMATIC.

646 Database Administration Concepts and Configuration Reference

You can use the database system monitor to determine the maximum number of
locks held by a given transaction. Refer to the locks_held_top (maximum number of
locks held) monitor element.

This information can help you validate or adjust the estimated number of locks per
application. In order to perform this validation, you will have to sample several
applications, noting that the monitor information is provided at a transaction level,
not an application level.

You might also want to increase locklist if maxappls is increased, or if the
applications being run perform infrequent commits.

You should consider rebinding applications (using the REBIND command) after
changing this parameter.

locktimeout - Lock timeout
This parameter specifies the number of seconds that an application will wait to
obtain a lock, helping avoid global deadlocks for applications.

Configuration type
Database

Parameter type
Configurable

Default [range]
-1 [-1; 0 - 32 767]

Unit of measure
Seconds

If you set this parameter to 0, locks are not waited for. In this situation, if no lock
is available at the time of the request, the application immediately receives a -911.

If you set this parameter to -1, lock timeout detection is turned off. In this
situation a lock will be waited for (if one is not available at the time of the request)
until either of the following:
v The lock is granted
v A deadlock occurs.

Note: The value you specify for this configuration parameter is not used to control
lock timeouts for event monitor target tables. Event monitors use a separate,
non-configurable setting that will cause locks on event monitor tables to time out.

Recommendation: In a transaction processing (OLTP) environment, you can use an
initial starting value of 30 seconds. In a query-only environment you could start
with a higher value. In both cases, you should use benchmarking techniques to
tune this parameter.

The value should be set to quickly detect waits that are occurring because of an
abnormal situation, such as a transaction that is stalled (possibly as a result of a
user leaving their workstation). You should set it high enough so valid lock
requests do not time out because of peak workloads, during which time, there is
more waiting for locks.

Chapter 21. Configuration parameters 647

You can use the database system monitor to help you track the number of times an
application (connection) experienced a lock timeout or that a database detected a
timeout situation for all applications that were connected.

High values of the lock_timeout (number of lock timeouts) monitor element can be
caused by:
v Too low a value for this configuration parameter.
v An application (transaction) that is holding locks for an extended period. You

can use the database system monitor to further investigate these applications.
v A concurrency problem, that could be caused by lock escalations (from row-level

to a table-level lock).

log_retain_status - Log retain status indicator
If set (when the logretain parameter setting is equal to Recovery), this parameter
indicates that log files are being retained for use in roll-forward recovery.

Configuration type
Database

Parameter type
Informational

logarchmeth1 - Primary log archive method
This parameter specifies the media type of the primary destination for archived
logs.

Configuration type
Database

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable Online

Default [range]
OFF [LOGRETAIN, USEREXIT, DISK, TSM, VENDOR]

OFF Specifies that the log archiving method is not to be used. If both
logarchmeth1 and logarchmeth2 are set to OFF, the database is
considered to be using circular logging and will not be rollforward
recoverable. This is the default.

LOGRETAIN
If this value is set for logarchmeth1, it determines whether active
log files are retained and available for roll-forward recovery. If
logretain is set to Recovery or userexit is set to On, the active log
files will be retained and become online archive log files for use in
roll-forward recovery. This is called log retention logging.

USEREXIT
If this value is set for logarchmeth1, log retention logging is
performed. This parameter also indicates that a user exit program
should be used to archive and retrieve the log files. Log files are

648 Database Administration Concepts and Configuration Reference

archived when the log file is full. They are retrieved when the
ROLLFORWARD utility needs to use them to restore a database.

DISK This value must be followed by a colon(:) and then a fully
qualified existing path name where the log files will be archived.
For example, if you set logarchmeth1 to DISK:/u/dbuser/
archived_logs the archive log files will be placed in a directory
called /u/dbuser/archived_logs/<instance>/<dbname>/<nodename>/
<chainid>/.

Note: If you are archiving to tape, you can use the db2tapemgr
utility to store and retrieve log files.

TSM If specified without any additional configuration parameters, this
value indicates that log files should be archived on the local TSM
server using the default management class. If followed by a
colon(:) and a TSM management class, the log files will be archived
using the specified management class.

When archiving logs using TSM, before using the management
class specified by the database configuration parameter, TSM first
attempts to bind the object to the management class specified in
the INCLUDE-EXCLUDE list found in the TSM client options file.
If a match is not found, the default TSM management class
specified on the TSM server will be used. TSM will then rebind the
object to the management class specified by the database
configuration parameter.

Thus, the default management class, as well as the management
class specified by the database configuration parameter, must
contain an archive copy group, or the archive operation will fail.

VENDOR Specifies that a vendor library will be used to archive the log files.
This value must be followed by a colon(:) and the name of the
library. The APIs provided in the library must use the backup and
restore APIs for vendor products.

Note:

1. If either logarchmeth1 or logarchmeth2 is set to a value other
than OFF, the database is configured for rollforward recovery.

2. If you update the userexit or logretain configuration
parameters logarchmeth1 will automatically be updated and
vice versa. However, if you are using either userexit or
logretain, logarchmeth2 must be set to OFF.

logarchmeth2 - Secondary log archive method
This parameter specifies the media type of the secondary destination for archived
logs.

Configuration type
Database

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Chapter 21. Configuration parameters 649

Parameter type
Configurable Online

Default [range]
OFF [DISK, TSM, VENDOR]

OFF Specifies that the log archiving method is not to be used. If both
logarchmeth1 and logarchmeth2 are set to OFF, the database is
considered to be using circular logging and will not be rollforward
recoverable. This is the default.

DISK This value must be followed by a colon(:) and then a fully
qualified existing path name where the log files will be archived.
For example, if you set logarchmeth1 to DISK:/u/dbuser/
archived_logs the archive log files will be placed in a directory
called /u/dbuser/archived_logs/<instance>/<dbname>/<nodename>/
<chainid>/.

Note: If you are archiving to tape, you can use the db2tapemgr
utility to store and retrieve log files.

TSM If specified without any additional configuration parameters, this
value indicates that log files should be archived on the local TSM
server using the default management class. If followed by a
colon(:) and a TSM management class, the log files will be archived
using the specified management class.

VENDOR
Specifies that a vendor library will be used to archive the log files.
This value must be followed by a colon(:) and the name of the
library. The APIs provided in the library must use the backup and
restore APIs for vendor products.

Note:

1. If either logarchmeth1 or logarchmeth2 is set to a value other
than OFF, the database is configured for rollforward recovery.

2. If you update the userexit or logretain configuration
parameters logarchmeth1 will automatically be updated and
vice versa. However, if you are using either userexit or
logretain, logarchmeth2 must be set to OFF.

If this path is specified, log files will be archived to both this destination and the
destination specified by the logarchmeth1 database configuration parameter.

logarchopt1 - Primary log archive options
This parameter specifies the options field for the primary destination for archived
logs (if required).

Configuration type
Database

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

650 Database Administration Concepts and Configuration Reference

Parameter type
Configurable Online

Default [range]
Null [not applicable]

Restrictions
In TSM environments configured to support proxy nodes, the
“-fromnode=nodename” option and the “-fromowner=ownername” option are
not compatible with the “-asnodename=nodename” option and cannot be
used together. Use the -asnodename option for TSM configurations using
proxy nodes and the other two options for other types of TSM
configurations. For more information, see “Configuring a Tivoli Storage
Manager client”.

logarchopt2 - Secondary log archive options
This parameter specifies the options field for the secondary destination for
archived logs (if required).

Configuration type
Database

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable Online

Default [range]
Null [not applicable]

Restrictions
In TSM environments configured to support proxy nodes, the
“-fromnode=nodename” option and the “-fromowner=ownername” option are
not compatible with the “-asnodename=nodename” option and cannot be
used together. Use the -asnodename option for TSM configurations using
proxy nodes and the other two options for other types of TSM
configurations. For more information, see “Configuring a Tivoli Storage
Manager client”.

logbufsz - Log buffer size
This parameter allows you to specify the amount of the database heap (defined by
the dbheap parameter) to use as a buffer for log records before writing these records
to disk.

Configuration type
Database

Parameter type
Configurable

Default [range]

32-bit platforms
256 [4 - 4 096]

Chapter 21. Configuration parameters 651

64-bit platforms
256 [4 - 131 070]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Pages (4 KB)

Log records are written to disk when one of the following occurs:
v A transaction commits or a group of transactions commit, as defined by the

mincommit configuration parameter
v The log buffer is full
v As a result of some other internal database manager event.

This parameter must also be less than or equal to the dbheap parameter. Buffering
the log records will result in more efficient logging file I/O because the log records
will be written to disk less frequently and more log records will be written at each
time.

Recommendation: Increase the size of this buffer area if there is considerable read
activity on a dedicated log disk, or there is high disk utilization. When increasing
the value of this parameter, you should also consider the dbheap parameter since
the log buffer area uses space controlled by the dbheap parameter.

You can use the database system monitor to determine how much of the log buffer
space is used for a particular transaction (or unit of work). Refer to the
log_space_used (unit of work log space used) monitor element.

logfilsiz - Size of log files
This parameter defines the size of each primary and secondary log file. The size of
these log files limits the number of log records that can be written to them before
they become full and a new log file is required.

Configuration type
Database

Parameter type
Configurable

Default [range]

UNIX 1000 [4 - 1 048 572]

Windows
1000 [4 - 1 048 572]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Pages (4 KB)

The use of primary and secondary log files as well as the action taken when a log
file becomes full are dependent on the type of logging that is being performed:
v Circular logging

A primary log file can be reused when the changes recorded in it have been
committed. If the log file size is small and applications have processed a large

652 Database Administration Concepts and Configuration Reference

number of changes to the database without committing the changes, a primary
log file can quickly become full. If all primary log files become full, the database
manager will allocate secondary log files to hold the new log records.

v Log retention logging
When a primary log file is full, the log is archived and a new primary log file is
allocated.

Recommendation: You must balance the size of the log files with the number of
primary log files:
v The value of the logfilsiz should be increased if the database has a large number

of update, delete, or insert transactions running against it which will cause the
log file to become full very quickly.

Note: The upper limit of log file size, combined with the upper limit of the
number of log files (logprimary + logsecond), gives an upper limit of 1024 GB of
active log space.
A log file that is too small can affect system performance because of the
overhead of archiving old log files, allocating new log files, and waiting for a
usable log file.

v The value of the logfilsiz should be reduced if disk space is scarce, since primary
logs are preallocated at this size.
A log file that is too large can reduce your flexibility when managing archived
log files and copies of log files, since some media might not be able to hold an
entire log file.

If you are using log retention, the current active log file is closed and truncated
when the last application disconnects from a database. When the next connection
to the database occurs, the next log file is used. Therefore, if you understand the
logging requirements of your concurrent applications, you might be able to
determine a log file size that will not allocate excessive amounts of wasted space.

loghead - First active log file
This parameter contains the name of the log file that is currently active.

Configuration type
Database

Parameter type
Informational

logindexbuild - Log index pages created
This parameter specifies whether index creation, recreation, or reorganization
operations are to be logged so that indexes can be reconstructed during DB2
rollforward operations or high availability disaster recovery (HADR) log replay
procedures.

Configuration type
Database

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Chapter 21. Configuration parameters 653

Parameter type
Configurable Online

Default [range]
Off [On; Off]

logpath - Location of log files
This parameter contains the current path being used for logging purposes.

Configuration type
Database

Parameter type
Informational

You cannot change this parameter directly as it is set by the database manager
after a change to the newlogpath parameter becomes effective.

When a database is created, the recovery log file for it is created in a subdirectory
of the directory containing the database. The default is a subdirectory named
SQLOGDIR under the directory created for the database.

logprimary - Number of primary log files
This parameter allows you to specify the number of primary log files to be
preallocated. The primary log files establish a fixed amount of storage allocated to
the recovery log files.

Configuration type
Database

Parameter type
Configurable

Default [range]
3 [2 - 256]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Counter

When allocated

v The database is created
v A log is moved to a different location (which occurs when the logpath

parameter is updated)
v When the database is next started following an increase following an

increase in the value of this parameter (logprimary), provided that the
database is not started as an HADR standby database

v A log file has been archived and a new log file is allocated (the logretain
or userexit parameter must be enabled)

v If the logfilsiz parameter has been changed, the log files are re-sized
during the next database startup, provided that it is not started as an
HADR standby database

When freed
Not freed unless this parameter decreases. If decreased, unneeded log files
are deleted during the next connection to the database.

654 Database Administration Concepts and Configuration Reference

Under circular logging, the primary logs are used repeatedly in sequence. That is,
when a log is full, the next primary log in the sequence is used if it is available. A
log is considered available if all units of work with log records in it have been
committed or rolled-back. If the next primary log in sequence is not available, then
a secondary log is allocated and used. Additional secondary logs are allocated and
used until the next primary log in the sequence becomes available or the limit
imposed by the logsecond parameter is reached. These secondary log files are
dynamically deallocated as they are no longer needed by the database manager.

The number of primary and secondary log files must comply with the following:
v If logsecond has a value of -1, logprimary <= 256.
v If logsecond does not have a value of -1, (logprimary + logsecond) <= 256.

Recommendation: The value chosen for this parameter depends on a number of
factors, including the type of logging being used, the size of the log files, and the
type of processing environment (for example, length of transactions and frequency
of commits).

Increasing this value will increase the disk requirements for the logs because the
primary log files are preallocated during the very first connection to the database.

If you find that secondary log files are frequently being allocated, you might be
able to improve system performance by increasing the log file size (logfilsiz) or by
increasing the number of primary log files.

For databases that are not frequently accessed, in order to save disk storage, set the
parameter to 2. For databases enabled for roll-forward recovery, set the parameter
larger to avoid the overhead of allocating new logs almost immediately.

You can use the database system monitor to help you size the primary log files.
Observation of the following monitor values over a period of time will aid in
better tuning decisions, as average values might be more representative of your
ongoing requirements.
v sec_log_used_top (maximum secondary log space used)
v tot_log_used_top (maximum total log space used)
v sec_logs_allocated (secondary logs allocated currently)

logretain - Log retain enable
This parameter is deprecated in Version 9.5, but is still being used by pre-Version
9.5 data servers and clients. Any value specified for this configuration parameter
will be ignored by the DB2 Version 9.5 database manager. Starting in Version 9.5,
the logarchmeth1 configuration parameter is used to set the LOGRETAIN value.

Note: The following information applies only to pre-Version 9.5 data servers and
clients.

This parameter determines whether active log files are retained and available for
roll-forward recovery.

Configuration type
Database

Parameter type
Configurable

Chapter 21. Configuration parameters 655

Default [range]
Off [Recovery; Off]

The values are as follows:
v Off, to indicate that logs are not retained.
v Recovery, to indicate that the logs are retained, and can be used for forward

recovery.

If logretain is set to Recovery or userexit is set to Yes, the active log files will be
retained and become online archive log files for use in roll-forward recovery. This
is called log retention logging.

After logretain is set to Recovery or userexit is set to Yes (or both), you must
make a full backup of the database. This state is indicated by the backup_pending
flag parameter.

Note:

Both logarchmeth1 or logretain will enable rollforward recovery. However, only
one method should be enabled for a database at one time.

If using logarchmeth1, do not set the logretain and userexit configuration
parameters. If the logretain configuration parameter is set to recover, the value for
logarchmeth1 will automatically be set to logretain.

It is recommended that logarchmeth1 (and logarchmeth2) be used rather than
logretain and userexit to activate archive logging and rollforward recovery. The
logretain and userexit options have been kept to support users who have not yet
migrated to logarchmeth1.

logsecond - Number of secondary log files
This parameter specifies the number of secondary log files that are created and
used for recovery log files (only as needed).

Configuration type
Database

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
2 [-1; 0 – 254]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Counter

When allocated
As needed when logprimary is insufficient (see detail below)

When freed
Over time as the database manager determines they will no longer be
required.

656 Database Administration Concepts and Configuration Reference

When the primary log files become full, the secondary log files (of size logfilsiz) are
allocated one at a time as needed, up to a maximum number as controlled by this
parameter. If more secondary log files are required than are allowed by this
parameter, an error code will be returned to the application.

If you set logsecond to -1, the database is configured with infinite active log space.
There is no limit on the size or the number of in-flight transactions running on the
database. If you set logsecond to -1, you still use the logprimary and logfilsiz
configuration parameters to specify how many log files the database manager
should keep in the active log path. If the database manager needs to read log data
from a log file, but the file is not in the active log path, the database manager
retrieves the log file from the archive to the active log path. (The database manager
retrieves the files to the overflow log path, if you have configured one.) Once the
log file is retrieved, the database manager will cache this file in the active log path
so that other reads of log data from the same file will be fast. The database
manager will manage the retrieval, caching, and removal of these log files as
required.

If your log path is a raw device, you must configure the overflowlogpath
configuration parameter in order to set logsecond to -1.

By setting logsecond to -1, you will have no limit on the size of the unit of work or
the number of concurrent units of work. However, rollback (both at the savepoint
level and at the unit of work level) could be very slow due to the need to retrieve
log files from the archive. Crash recovery could also be very slow for the same
reason. The database manager writes a message to the administration notification
log to warn you that the current set of active units of work has exceeded the
primary log files. This is an indication that rollback or crash recovery could be
extremely slow.

To set logsecond to -1, the logarchmeth1 configuration parameter must be set to a
value other than OFF or LOGRETAIN.

Recommendation: Use secondary log files for databases that have periodic needs
for large amounts of log space. For example, an application that is run once a
month might require log space beyond that provided by the primary log files.
Since secondary log files do not require permanent file space they are
advantageous in this type of situation.

When infinite logging is enabled (logsecond to -1), the database manager does not
reserve active log space for transactions that may need to roll back and write log
records. During rollback processing, if both the active log path and archive target
are full (or if the archive target is inaccessible), then the blk_log_dsk_ful (block on
log disk full db configuration parameter) should also be ENABLED to avoid
database failures.

max_log - Maximum log per transaction
This parameter specifies if there is a limit to the percentage of log space that a
transaction can consume, and what that limit is.

Configuration type
Database

Parameter type
Configurable online

Chapter 21. Configuration parameters 657

Propagation class
Immediate

Default [range]
0 [0 - 100]

Unit of measure
Percentage

If the value is not 0, this parameter indicates the percentage of primary log space
that can be consumed by one transaction.

If the value is set to 0, there is no limit to the percentage of total primary log space
that a transaction can consume.

If an application violates the max_log configuration, the application is forced to
disconnect from the database and the transaction is rolled back.

You can override this behavior by setting the DB2_FORCE_APP_ON_MAX_LOG
registry variable to “FALSE”. This will cause transactions that violate the max_log
configuration to fail; however, the application can still commit the work completed
by previous statements in the unit or work, or it can roll the completed work back
to undo the unit of work.

This parameter, along with the num_log_span configuration parameter, can be
useful when enabling infinite active logspace. If infinite logging is on (that is, if
logsecond is set to -1) then transactions are not restricted to the upper limit of the
number of log files (logprimary + logsecond). When the value of logprimary is
reached, DB2 starts to archive the active logs, rather than failing the transaction.
This can cause problems if, for example, an application contains a long running
transaction that is left uncommitted. If this occurs, the active logspace continues to
grow, possibly leading to poor crash recovery performance. To prevent this, you
can specify values for one or both of the max_log or num_log_span configuration
parameters.

Note: The following DB2 commands are excluded from the limitation imposed by
the max_log configuration parameter: ARCHIVE LOG, BACKUP DATABASE,
LOAD, REORG, RESTORE DATABASE, and ROLLFORWARD DATABASE.

maxappls - Maximum number of active applications
This parameter specifies the maximum number of concurrent applications that can
be connected (both local and remote) to a database. Since each application that
attaches to a database causes some private memory to be allocated, allowing a
larger number of concurrent applications will potentially use more memory.

Configuration type
Database

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
Automatic [1 - 60 000]

658 Database Administration Concepts and Configuration Reference

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Counter

Setting maxappls to automatic has the effect of allowing any number of connected
applications. The database manager will dynamically allocate the resources it needs
to support new applications.

If you do not want to set this parameter to automatic, the value of this parameter
must be equal to or greater than the sum of the connected applications, plus the
number of these same applications that might be concurrently in the process of
completing a two-phase commit or rollback. Then add to this sum the anticipated
number of indoubt transactions that might exist at any one time.

When an application attempts to connect to a database, but maxappls has already
been reached, an error is returned to the application indicating that the maximum
number of applications have been connected to the database.

In a partitioned database environment, this is the maximum number of
applications that can be concurrently active against a database partition. This
parameter limits the number of active applications against the database partition
on a database partition server, regardless of whether the server is the coordinator
node for the application or not. The catalog node in a partitioned database
environment requires a higher value for maxappls than is the case for other types
of environments because, in the partitioned database environment, every
application requires a connection to the catalog node.

Recommendation: Increasing the value of this parameter without lowering the
maxlocks parameter or increasing the locklist parameter could cause you to reach
the database limit on locks (locklist) rather than the application limit and as a
result cause pervasive lock escalation problems.

To a certain extent, the maximum number of applications is also governed by
max_coordagents. An application can only connect to the database, if there is an
available connection (maxappls) as well as an available coordinating agent
(max_coordagents).

maxfilop - Maximum database files open per database
This parameter specifies the maximum number of file handles that can be open per
application.

Configuration type
Database

Parameter type
Configurable Online

Propagation class
Transaction boundary

Default [range]

AIX, Sun, HP, and Linux 64-bit
61 440 [64 - 61 440]

Linux 32-bit
30 720 [64 - 30 720]

Chapter 21. Configuration parameters 659

Windows 32-bit
32 768 [64 - 32 768]

Windows 64-bit
65 335 [64 - 65 335]

Unit of measure
Counter

If opening a file causes this value to be exceeded, some files in use by this
database are closed. If maxfilop is too small, the overhead of opening and closing
files will become excessive and might degrade performance.

Both SMS table spaces and DMS table space file containers are treated as files in
the database manager's interaction with the operating system, and file handles are
required. More files are generally used by SMS table spaces compared to the
number of containers used for a DMS file table space. Therefore, if you are using
SMS table spaces, you will need a larger value for this parameter compared to
what you would require for DMS file table spaces.

You can also use this parameter to ensure that the overall total of file handles used
by the database manager does not exceed the operating system limit by limiting
the number of handles per database to a specific number; the actual number will
vary depending on the number of databases running concurrently.

maxlocks - Maximum percent of lock list before escalation
This parameter defines a percentage of the lock list held by an application that
must be filled before the database manager performs lock escalation.

Configuration type
Database

Parameter type
Configurable online

Propagation class
Immediate

Default [range]
Automatic [1 - 100]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Percentage

Lock escalation is the process of replacing row locks with table locks, reducing the
number of locks in the list. When the number of locks held by any one application
reaches this percentage of the total lock list size, lock escalation will occur for the
locks held by that application. Lock escalation also occurs if the lock list runs out
of space.

The database manager determines which locks to escalate by looking through the
lock list for the application and finding the table with the most row locks. If after
replacing these with a single table lock, the maxlocks value is no longer exceeded,
lock escalation will stop. If not, it will continue until the percentage of the lock list
held is below the value of maxlocks. The maxlocks parameter multiplied by the
maxappls parameter cannot be less than 100.

660 Database Administration Concepts and Configuration Reference

When this parameter is set to AUTOMATIC, it is enabled for self tuning. This allows
the memory tuner to dynamically size the memory area controlled by this
parameter as the workload requirements change. Because the memory tuner trades
memory resources between different memory consumers, there must be at least
two memory consumers enabled for self tuning in order for self tuning to be
active.

The value of locklist is tuned together with the maxlocks parameter, therefore
disabling self tuning of the locklist parameter automatically disables self tuning
of the maxlocks parameter. Enabling self tuning of the locklist parameter
automatically enables self tuning of the maxlocks parameter.

Automatic tuning of this configuration parameter will only occur when self tuning
memory is enabled for the database (the self_tuning_mem configuration parameter
is set to ON).

On all platforms, each lock requires 128 or 256 bytes of the lock list, depending on
whether other locks are held on the object:
v 256 bytes are required to hold a lock on an object that has no other locks held on

it.
v 128 bytes are required to record a lock on an object that has an existing lock held

on it.

Recommendation: The following formula allows you to set maxlocks to allow an
application to hold twice the average number of locks:

maxlocks = 2 * 100 / maxappls

Where 2 is used to achieve twice the average and 100 represents the largest
percentage value allowed. If you have only a few applications that run
concurrently, you could use the following formula as an alternative to the first
formula:

maxlocks = 2 * 100 / (average number of applications running
concurrently)

One of the considerations when setting maxlocks is to use it in conjunction with
the size of the lock list (locklist). The actual limit of the number of locks held by
an application before lock escalation occurs is:
v maxlocks * locklist * 4096 /(100 * 48) on a 32-bit system
v maxlocks * locklist * 4096 /(100 * 80) on a 64-bit system HP-UX

environment
v maxlocks * locklist * 4096 /(100 * 64) on other 64-bit systems

Where 4096 is the number of bytes in a page, 100 is the largest percentage value
allowed for maxlocks, and 48 is the number of bytes per lock on a 32-bit system, 80
is the number of bytes per lock on a HP-UX 64-bit system, and 64 is the number of
bytes per lock on other 64-bit systems. If you know that one of your applications
requires 1000 locks, and you do not want lock escalation to occur, then you should
choose values for maxlocks and locklist in this formula so that the result is
greater than 1000. (Using 10 for maxlocks and 100 for locklist, this formula results
in greater than the 1000 locks needed.)

If maxlocks is set too low, lock escalation happens when there is still enough lock
space for other concurrent applications. If maxlocks is set too high, a few

Chapter 21. Configuration parameters 661

applications can consume most of the lock space, and other applications will have
to perform lock escalation. The need for lock escalation in this case results in poor
concurrency.

You can use the database system monitor to help you track and tune this
configuration parameter.

min_dec_div_3 - Decimal division scale to 3
This parameter is provided as a quick way to enable a change to computation of
the scale for decimal division in SQL.

Configuration type
Database

Parameter type
Configurable

Default [range]
No [Yes, No]

The min_dec_div_3 database configuration parameter changes the resulting scale of
a decimal arithmetic operation involving division. It can be set to "Yes" or "No".
The default value for min_dec_div_3 is "No". If the value is "No", the scale is
calculated as 31-p+s-s'. If set to "Yes", the scale is calculated as MAX(3, 31-p+s-s').
This causes the result of decimal division to always have a scale of at least 3.
Precision is always 31.

Changing this database configuration parameter might cause changes to
applications for existing databases. This can occur when the resulting scale for
decimal division would be impacted by changing this database configuration
parameter. Listed below are some possible scenarios that might impact
applications. These scenarios should be considered before changing the
min_dec_div_3 on a database server with existing databases.
v If the resulting scale of one of the view columns is changed, a view that is

defined in an environment with one setting could fail with SQLCODE -344 when
referenced after the database configuration parameter is changed. The message
SQL0344N refers to recursive common table expressions, however, if the object
name (first token) is a view, then you will need to drop the view and create it
again to avoid this error.

v A static package will not change behavior until the package is rebound, either
implicitly or explicitly. For example, after changing the value from NO to YES,
the additional scale digits might not be included in the results until rebind
occurs. For any changed static packages, an explicit REBIND command can be
used to force a rebind.

v A check constraint involving decimal division might restrict some values that
were previously accepted. Such rows now violate the constraint but will not be
detected until one of the columns involved in the check constraint row is
updated or the SET INTEGRITY statement with the IMMEDIATE CHECKED
option is processed. To force checking of such a constraint, perform an ALTER
TABLE statement in order to drop the check constraint and then perform an
ALTER TABLE statement to add the constraint again.

Note: min_dec_div_3 also has the following limitations:

662 Database Administration Concepts and Configuration Reference

1. The command GET DB CFG FOR DBNAME will not display the min_dec_div_3
setting. The best way to determine the current setting is to observe the
side-effect of a decimal division result. For example, consider the following
statement:
VALUES (DEC(1,31,0)/DEC(1,31,5))

If this statement returns sqlcode SQL0419N, the database does not have
min_dec_div_3 support, or it is set to "No". If the statement returns 1.000,
min_dec_div_3 is set to "Yes".

2. min_dec_div_3 does not appear in the list of configuration keywords when you
run the following command: ? UPDATE DB CFG

mincommit - Number of commits to group
This parameter allows you to delay the writing of log records to disk until a
minimum number of commits have been performed, helping reduce the database
manager overhead associated with writing log records.

Note: As of Version 9.7 Fix Pack 3, this configuration parameter is supported by
DB2 on the 64-bit version of the AIX operating system (AIX 5.2 and above). All
other supported operating systems use this parameter as normal.

Configuration type
Database

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
1 [1 – 25]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Counter

This delay will improve performance when you have multiple applications
running against a database and many commits are requested by the applications
within a very short time frame.

This grouping of commits will only occur when the value of this parameter is
greater than one and when the number of applications connected to the database is
greater than or equal to the value of this parameter. When commit grouping is
being performed, application commit requests could be held until either one
second has elapsed or the number of commit requests equals the value of this
parameter.

This parameter should be incremented by small amounts only; for example one (1).
You should also use multi-user tests to verify that increasing the value of this
parameter provides the expected results.

Changes to the value specified for this parameter take effect immediately; you do
not have to wait until all applications disconnect from the database.

Chapter 21. Configuration parameters 663

Recommendation: Increase this parameter from its default value if multiple
read/write applications typically request concurrent database commits. This will
result in more efficient logging file I/O as it will occur less frequently and write
more log records each time it does occur.

You could also sample the number of transactions per second and adjust this
parameter to accommodate the peak number of transactions per second (or some
large percentage of it). Accommodating peak activity would minimize the
overhead of writing log records during transaction intensive periods.

If you increase mincommit, you might also need to increase the logbufsz parameter
to avoid having a full log buffer force a write during these transaction intensive
periods. In this case, the logbufsz should be equal to:

mincommit * (log space used, on average, by a transaction)

You can use the database system monitor to help you tune this parameter in the
following ways:
v Calculating the peak number of transactions per second:

Taking monitor samples throughout a typical day, you can determine your
transaction intensive periods. You can calculate the total transactions by adding
the following monitor elements:
– commit_sql_stmts (commit statements attempted)

– rollback_sql_stmts (rollback statements attempted)

Using this information and the available timestamps, you can calculate the
number of transactions per second.

v Calculating the log space used per transaction:
Using sampling techniques over a period of time and a number of transactions,
you can calculate an average of the log space used with the following monitor
element:
– log_space_used (unit of work log space used)

mirrorlogpath - Mirror log path
This parameter allows you to specify a string of up to 242 bytes for the mirror log
path. The string must point to a path name, and it must be a fully qualified path
name, not a relative path name.

Configuration type
Database

Parameter type
Configurable

Default [range]
Null [any valid path or device]

Note: In a single or multi-partition DB2 ESE environment, the node number is
automatically appended to the path. This is done to maintain the uniqueness of the
path in multiple logical node configurations.

If mirrorlogpath is configured, DB2 will create active log files in both the log path
and the mirror log path. All log data will be written to both paths. The mirror log
path has a duplicated set of active log files, such that if there is a disk error or
human error that destroys active log files on one of the paths, the database can still
function.

664 Database Administration Concepts and Configuration Reference

If the mirror log path is changed, there might be log files in the old mirror log
path. These log files might not have been archived, so you might need to archive
these log files manually. Also, if you are running replication on this database,
replication might still need the log files from before the log path change. If the
database is configured with the User Exit Enable (userexit) database configuration
parameter set to Yes, and if all the log files have been archived either by DB2
automatically or by yourself manually, then DB2 will be able to retrieve the log
files to complete the replication process. Otherwise, you can copy the files from the
old mirror log path to the new mirror log path.

If logpath or newlogpath specifies a raw device as the location where the log files are
stored, mirror logging, as indicated by mirrorlogpath, is not allowed. If logpath or
newlogpath specifies a file path as the location where the log files are stored, mirror
logging is allowed and mirrorlogpath must also specify a file path.

Recommendation: Just like the log files, the mirror log files should be on a
physical disk that does not have high I/O.

It is strongly recommended that this path be on a separate device than the primary
log path.

You can use the database system monitor to track the number of I/Os related to
database logging.

The following data elements return the amount of I/O activity related to database
logging. You can use an operating system monitor tool to collect information about
other disk I/O activity, then compare the two types of I/O activity.
v log_reads (number of log pages read)
v log_writes (number of log pages written).

mon_act_metrics - Monitoring activity metrics configuration
parameter

This parameter controls the collection of activity metrics on the entire database and
affects activities submitted by connections associated with any DB2 workload
definitions.

Configuration type
Database

Parameter type
Configurable online

Default [range]
BASE [NONE, BASE, EXTENDED]

Upgrade Note
On databases created before V9.7 and then upgraded to V9.7 or higher, the
mon_act_metrics parameter is set to NONE by default.

If you set this configuration parameter to BASE, all metrics reported through the
following interfaces will be collected for all activities executed on the data server,
regardless of the DB2 workload the connection that submitted the activity is
associated with:
v MON_GET_ACTIVITY_DETAILS
v MON_GET_PKG_CACHE_STMT

Chapter 21. Configuration parameters 665

v Activity event monitor (DETAILS_XML monitor element in the event_activity
logical data groups)

If you set this configuration parameter to EXTENDED, the same metrics are collected
as under the BASE setting. In addition, the values reported for the following
monitor elements are determined with more granularity:
v total_section_time

v total_section_proc_time

v total_routine_user_code_time

v total_routine_user_code_proc_time

v total_routine_time

For information on how the EXTENDED setting affects these monitor elements,
refer to the detailed monitor element descriptions.

If you set this configuration parameter to NONE, the metrics reported through the
above interfaces are collected only for the subset of activities submitted by a
connection that is associated with a DB2 workload whose COLLECT ACTIVITY
METRICS clause has been set to BASE.

mon_deadlock - Monitoring deadlock configuration parameter
This parameter controls the generation of deadlock events at the database level for
the lock event monitor.

Configuration type
Database

Parameter type
Configurable online

Default [range]
WITHOUT_HIST [NONE,WITHOUT_HIST,HISTORY,HIST_AND_VALUES]

If you set the parameter to WITHOUT_HIST, the data about lock events are sent to
any active locking event monitor when the lock event occurs. The past activity
history and input values are not sent to the event monitor.

If you set the parameter to HISTORY, you can collect the past activity history in
the current unit of work for all of this type of lock events. The activity history
buffer wraps after the maximum size limit is used. Meaning that the default limit
on the number of past activities to be kept is 250. If the number of past activities is
greater than the limit, only the newest activities are reported.

If you set the parameter value to HIST_AND_VALUES, the input data values are
sent to any active locking event monitor for those activities that have them. These
data values will not include LOB data, Start of change LONG VARCHAR data,
LONG VARGRAPHIC data, End of change structured type data, or XML data.

This parameter controls the collection deadlock events at the database level for the
lock event monitor. The mon_deadlock parameter determines whether or not a
deadlock wait event will be collected by the lock event monitor when a deadlock
occurs.

The mon_deadlock parameter value represents a minimum level of collection that is
enabled for all DB2 applications. When individual DB2 workloads specify a higher
level of collection than the configuration parameter, the DB2 workload setting is

666 Database Administration Concepts and Configuration Reference

used instead of the configuration parameter value. You should note that system
applications do not run in a workload and so the mon_deadlock parameter is the
only way for system applications to collect deadlock data.

To capture the deadlocks with the lock event monitor, as lock waiters or lock
holders may span workloads, enable the deadlock collection at the database level.
The level of data collected by a deadlock can be controlled individually at the
workload level or can be set at the database level by this parameter.

mon_locktimeout - Monitoring lock timeout configuration
parameter

This parameter controls the generation of lock timeout events at the database level
for the lock event monitor and affects all DB2 workload definitions.

Configuration type
Database

Parameter type
Configurable online

Default [minimum level of collection that is enabled for all workloads or service
classes on the database]

NONE [NONE,WITHOUT_HIST,HISTORY,HIST_AND_VALUES]

If you set this parameter to NONE, no lock timeout events will be generated unless
lock timeout event collection is enabled on DB2 Workload objects using the
COLLECT LOCK TIMEOUT DATA clause.

If you set the parameter to WITHOUT_HIST, the data about lock events are sent to
any active locking event monitor when the lock event occurs. The past activity
history and input values are not sent to the event monitor.

If you set the parameter to HISTORY, you can collect the past activity history in
the current unit of work for all of this type of lock events. The activity history
buffer wraps after the maximum size limit is used. Meaning that the default limit
on the number of past activities to be kept is 250. If the number of past activities is
greater than the limit, only the newest activities are reported.

If you set the parameter value to HIST_AND_VALUES, the input data values are
sent to any active locking event monitor for those activities that have them. These
data values will not include LOB data, Start of change LONG VARCHAR data,
LONG VARGRAPHIC data, End of change structured type data, or XML data.

The mon_locktimeout parameter value represents a minimum level of collection
that is enabled for all DB2 applications. The collection of lock timeout events can
be enabled for a subset of DB2 applications using the COLLECT LOCK TIMEOUT
DATA clause on a DB2 Workload object instead of the mon_locktimeout parameter.
When individual DB2 workloads specify a higher level of collection than the
configuration parameter, the DB2 workload setting is used instead of the
configuration parameter value. You should note that system applications do not
run in a workload and so the mon_locktimeout parameter is the only way for
system applications to collect lock timeout data.

When you have two workloads, workload1 and workload2 and the database level
configuration parameter is set to WITHOUT_HIST you can collect data for
workload1 because the database level control specifies WITHOUT_HIST. If the

Chapter 21. Configuration parameters 667

parameter is set to NONE and HISTORY you can collect data for workload2
because the collect lock timeout data setting for workload2 is HISTORY.

mon_lockwait - Monitoring lock wait configuration parameter
This parameter controls the generation of lock wait events at the database level for
the lock event monitor.

Configuration type
Database

Parameter type
Configurable online

Default [range]
NONE [NONE,WITHOUT_HIST,HISTORY,HIST_AND_VALUES]

If you set this parameter to NONE, no lock wait events will be generated unless lock
wait event collection is enabled on DB2 Workload objects using the COLLECT
LOCK WAIT DATA clause.

If you set the parameter to WITHOUT_HIST, the data about lock events are sent to
any active locking event monitor when the lock event occurs. The past activity
history and input values are not sent to the event monitor.

If you set the parameter to HISTORY, you can collect the past activity history in
the current unit of work for all of this type of lock events. The activity history
buffer wraps after the maximum size limit is used. Meaning that the default limit
on the number of past activities to be kept is 250. If the number of past activities is
greater than the limit, only the newest activities are reported.

If you set the parameter value to HIST_AND_VALUES, the input data values are
sent to any active locking event monitor for those activities that have them. These
data values will not include LOB data, Start of change LONG VARCHAR data,
LONG VARGRAPHIC data, End of change structured type data, or XML data.

The mon_lockwait parameter value represents a minimum level of collection that is
enabled for all DB2 applications. The collection of lock wait events can be enabled
for a subset of DB2 applications using the COLLECT LOCK WAIT DATA clause on
a DB2 Workload object instead of the mon_lockwait parameter. When individual
DB2 workloads specify a higher level of collection than the configuration
parameter, the DB2 workload setting is used instead of the configuration parameter
value. You should note that system applications do not run in a workload and so
the mon_lockwait parameter is the only way for system applications to collect lock
wait data.

This parameter controls the collection of lock wait events at the database level for
the lock event monitor. The mon_lockwait configuration parameter is used in
conjunction with the mon_lw_thresh configuration parameter. The mon_lockwait
parameter determines whether or not a lock wait event will be collected by the
lock event monitor when an application waits longer than mon_lw_thresh
microseconds for a lock.

mon_lw_thresh - Monitoring lock wait threshold configuration
parameter

This parameter controls the amount of time spent in lock wait before an event for
mon_lockwait is generated.

668 Database Administration Concepts and Configuration Reference

Configuration type
Database

Parameter type
Configurable online

Default [range]
5000000 [1000 ... MAX_INT]

Upgrade Note
On databases created before V9.7 and then upgraded to V9.7 or higher, the
mon_lw_thresh parameter is set to 4294967295 by default.

Unit of measure
Microseconds

When this parameter is set both at the database level and at the workload level,
the shorter of the two configured times is considered for the given workload.

mon_lck_msg_lvl - Monitoring lock event notification
messages configuration parameter

This parameter controls the logging of messages to the administration notification
log when lock timeout, deadlock, and lock escalation events occur.

Configuration type
Database

Parameter type
Configurable online

Default [range]
1 [0 - 3]

With the occurrence of lock timeout, deadlock, and lock escalation events,
messages can be logged to the administration notification log by setting this
database configuration parameter to a value appropriate for the level of
notification that you want. The following is a list of the levels of notification that
can be set:

0 Level 0: No notification of lock escalations, deadlocks, and lock timeouts is
provided

1 Level 1: Notification of lock escalations

2 Level 2: Notification of lock escalations and deadlocks

3 Level 3: Notification of lock escalations, deadlocks, and lock timeouts

The default level of notification setting for this database configuration parameter is
1.

mon_obj_metrics - Monitoring object metrics configuration
parameter

This parameter controls the collection of data object metrics on the entire database.

Configuration type
Database

Parameter type
Configurable online

Chapter 21. Configuration parameters 669

Default [range]
BASE [NONE, BASE]

Upgrade Note
On databases created before V9.7 and then upgraded to V9.7 or higher, the
mon_obj_metrics parameter is set to NONE by default.

If you set this configuration parameter to BASE, all metrics reported through the
following interfaces will be collected:
v MON_GET_BUFFERPOOL
v MON_GET_TABLESPACE
v MON_GET_CONTAINER

If you set this configuration parameter to NONE, the metrics reported through the
above mentioned interfaces will not be updated.

mon_pkglist_sz - Monitoring package list size configuration
parameter

This parameter controls the maximum number of entries that can appear in the
package listing per unit of work as captured by the unit of work event monitor.

Configuration type
Database

Parameter type
Configurable online

Propagation clause
Next unit of work

Default [range]
32 [0 - 1024]

Unit of measure
Number of entries in the package list

The package list will have a maximum size as specified by the value for this
database configuration parameter. The size of the package list is determined at the
start of the unit of work. Changes to the package list size are not reflected until the
following unit of work. The default size for the package list is 32 entries.

mon_req_metrics - Monitoring request metrics configuration
parameter

This parameter controls the collection of request metrics on the entire database and
affects requests executing in any DB2 service classes.

Configuration type
Database

Parameter type
Configurable online

Default [range]
BASE [NONE, BASE, EXTENDED]

Upgrade Note
On databases created before V9.7 and then upgraded to V9.7 or higher, the
mon_req_metrics parameter is set to NONE by default.

670 Database Administration Concepts and Configuration Reference

If you set this configuration parameter to BASE, all metrics reported through the
following interfaces are collected for all requests executed on the data server,
irrespective of the DB2 service class the request runs in:
v MON_GET_UNIT_OF_WORK
v MON_GET_UNIT_OF_WORK_DETAILS
v MON_GET_CONNECTION
v MON_GET_CONNECTION_DETAILS
v MON_GET_SERVICE_SUBCLASS
v MON_GET_SERVICE_SUBCLASS_DETAILS
v MON_GET_WORKLOAD
v MON_GET_WORKLOAD_DETAILS
v Statistics event monitor (DETAILS_XML monitor element in the event_wlstats

and event_scstats logical data groups)
v Unit of work event monitor

If you set this configuration parameter to EXTENDED, the same metrics are collected
as under the BASE setting. In addition, the values reported for the following
monitor elements are determined with more granularity:
v total_section_time

v total_section_proc_time

v total_routine_user_code_time

v total_routine_user_code_proc_time

v total_routine_time

For information on how the EXTENDED setting affects these monitor elements,
refer to the detailed monitor element descriptions.

If you set this configuration parameter to NONE, the metrics reported through the
above interfaces are collected only for the subset of requests running in a DB2
service class whose service superclass has the COLLECT REQUEST METRICS
clause set to BASE.

mon_uow_data - Monitoring unit of work events configuration
parameter

This parameter controls the generation of unit of work events at the database level
for the unit of work event monitor and affects units of work on the data server.

Configuration type
Database

Parameter type
Configurable online

Default [range]
NONE [NONE, BASE, PKGLIST]

This parameter specifies if the information about a unit of work, also referred to as
a transaction, should be sent to the active unit of work event monitors when the
unit of work completes.

If the parameter is set to BASE, information about all units of work executed on the
data server will be sent to the active unit of work event monitors when the units
of work complete. If the parameter is set to NONE, information will only be sent to

Chapter 21. Configuration parameters 671

the unit of work event monitors for those units of work that are executed under a
DB2 workload whose COLLECT UNIT OF WORK DATA clause is set to BASE.

If the parameter is set to PKGLIST, information about all units of work executed on
the data server, including the package list, will be sent to the active unit of work
event monitors when the units of work complete. The size of the package list that
is collected is controlled by the value of the mon_pkglist_sz database configuration
parameter. If this value is 0, then a package list is not collected, even if this option
is specified. In a partitioned database environment, the package list is available for
only the coordinator member. The BASE level will be collected on remote
members.

If the parameter is set to BASE, and a particular workload has PKGLIST set for the
COLLECT UNIT OF WORK DATA clause for the ALTER or CREATE WORKLOAD
statements, then the package list will be collected for only that workload, and
BASE for all other workloads.

The default setting is NONE. Note that the information gathered at the end of a unit
of work includes the system level request metrics for that unit of work, for
example, amount of CPU used during the unit of work. The collection of these
request metrics is controlled independently from the collection of the unit of work
data using either the COLLECT REQUEST METRICS clause on a DB2 service
superclass or the mon_req_metrics database configuration parameter. If request
metrics collection is not enabled, the value of all the request metrics gathered as
part of the unit of work data is zero.

multipage_alloc - Multipage file allocation enabled
Multipage file allocation is used to improve insert performance. It applies to SMS
table spaces only. If enabled, all SMS table spaces are affected: there is no selection
possible for individual SMS table spaces.

Configuration type
Database

Parameter type
Informational

The default for the parameter is Yes: multipage file allocation is enabled.

Following database creation, this parameter cannot be set to No. Multipage file
allocation cannot be disabled once it has been enabled. The db2empfa tool can be
used to enable multipage file allocation for a database that currently has it
disabled.

newlogpath - Change the database log path
This parameter allows you to specify a string of up to 242 bytes to change the
location where the log files are stored.

Configuration type
Database

Parameter type
Configurable

Default [range]
Null [any valid path or device]

672 Database Administration Concepts and Configuration Reference

The string can point to either a path name or to a raw device. Note that as of DB2
Version 9, the use of raw devices for database logging is deprecated. As an
alternative to using raw logs, you can use either direct input/output (DIO) or
concurrent input/output (CIO).

If the string points to a path name, it must be a fully qualified path name, not a
relative path name.

In a single or multi-partition DB2 ESE environment, the node number is
automatically appended to the path. This is done to maintain the uniqueness of the
path in multiple logical node configurations.

If you want to use replication, and your log path is a raw device, the
overflowlogpath configuration parameter must be configured.

To specify a device, specify a string that the operating system identifies as a
device. For example:
v On Windows, \\.\d: or \\.\PhysicalDisk5

Note: You must have Windows Version 4.0 with Service Pack 3 or later installed
to be able to write logs to a device.

v On Linux and UNIX platforms, /dev/rdblog8

Note: You can only specify a device on AIX, Windows 2000, Windows, Solaris,
HP-UX, and Linux platforms.

The new setting does not become the value of logpath until both of the following
occur:
v The database is in a consistent state, as indicated by the database_consistent

parameter.
v All applications are disconnected from the database

When the first new connection is made to the database, the database manager will
move the logs to the new location specified by logpath.

There might be log files in the old log path. These log files might not have been
archived. You might need to archive these log files manually. Also, if you are
running replication on this database, replication might still need the log files from
before the log path change. If the database is configured with the User Exit Enable
(userexit) database configuration parameter set to Yes, and if all the log files have
been archived either by DB2 automatically or by yourself manually, then DB2 will
be able to retrieve the log files to complete the replication process. Otherwise, you
can copy the files from the old log path to the new log path.

If logpath or newlogpath specifies a raw device as the location where the log files are
stored, mirror logging, as indicated by mirrorlogpath, is not allowed. If logpath or
newlogpath specifies a file path as the location where the log files are stored, mirror
logging is allowed and mirrorlogpath must also specify a file path.

Recommendation: Ideally, the log files will be on a physical disk which does not
have high I/O. For instance, avoid putting the logs on the same disk as the
operating system or high volume databases. This will allow for efficient logging
activity with a minimum of overhead such as waiting for I/O.

Chapter 21. Configuration parameters 673

You can use the database system monitor to track the number of I/Os related to
database logging.

The monitor elements log_reads (number of log pages read) and log_writes (number
of log pages written) return the amount of I/O activity related to database logging.
You can use an operating system monitor tool to collect information about other
disk I/O activity, then compare the two types of I/O activity.

Do not use a network or local file system that is shared as the log path for both the
primary and standby databases in a DB2 High Availability Disaster Recovery
(HADR) database pair. The primary and standby databases each have copies of the
transaction logs – the primary database ships logs to the standby database. If the
log path for both the primary and standby databases points to the same physical
location, then the primary and standby database would use the same physical files
for their respective copies of the logs. The database manager returns an error if the
database manager detects a shared log path.

num_db_backups - Number of database backups
This parameter specifies the number of database backups to retain for a database.

Configuration type
Database

Parameter type
Configurable online

Propagation class
Transaction boundary

Default [range]
12 [1 - 32 767]

After the specified number of backups is reached, old backups are marked as
expired in the recovery history file. Recovery history file entries for the table space
backups and load copy backups that are related to the expired database backup are
also marked as expired. When a backup is marked as expired, the physical
backups can be removed from where they are stored (for example, disk, tape,
TSM). The next database backup will prune the expired entries from the recovery
history file.

The rec_his_retentn configuration parameter should be set to a value compatible
with the value of num_db_backups. For example, if num_db_backups is set to a large
value, the value for rec_his_retentn should be large enough to support the number
of backups set as num_db_backups.

num_freqvalues - Number of frequent values retained
This parameter allows you to specify the number of “most frequent values” that
will be collected when the WITH DISTRIBUTION option is specified on the
RUNSTATS command.

Configuration type
Database

Parameter type
Configurable Online

Propagation class
Immediate

674 Database Administration Concepts and Configuration Reference

Default [range]
10 [0 - 32 767]

Unit of measure
Counter

Increasing the value of this parameter increases the amount of statistics heap
(stat_heap_sz) used when collecting statistics.

The “most frequent value” statistics help the optimizer understand the distribution
of data values within a column. A higher value results in more information being
available to the query optimizer but requires additional catalog space. When 0 is
specified, no frequent-value statistics are retained, even if you request that
distribution statistics be collected.

You can also specify the number of frequent values retained as part of the
RUNSTATS command at the table or the column level. by using the
NUM_FREQVALUES option. If none is specified, the num_freqvalues configuration
parameter value is used. Changing the number of frequent values retained through
the RUNSTATS command is easier than making the change using the
num_freqvalues database configuration parameter.

Updating this parameter can help the optimizer obtain better selectivity estimates
for some predicates (=, <, >) over data that is non-uniformly distributed. More
accurate selectivity calculations might result in the choice of more efficient access
plans.

After changing the value of this parameter, you need to:
v Run the RUNSTATS command again to collect statistics with the changed

number of frequent values
v Rebind any packages containing static SQL or XQuery statements.

When using RUNSTATS, you have the ability to limit the number of frequent
values collected at both the table level and the column level. This allows you to
optimize on space occupied in the catalogs by reducing the distribution statistics
for columns where they could not be exploited and yet still using the information
for critical columns.

Recommendation: In order to update this parameter you should determine the
degree of non-uniformity in the most important columns (in the most important
tables) that typically have selection predicates. This can be done using an SQL
SELECT statement that provides an ordered ranking of the number of occurrences
of each value in a column. You should not consider uniformly distributed, unique,
long, or LOB columns. A reasonable practical value for this parameter lies in the
range of 10 to 100.

Note that the process of collecting frequent value statistics requires significant CPU
and memory (stat_heap_sz) resources.

num_iocleaners - Number of asynchronous page cleaners
This parameter allows you to specify the number of asynchronous page cleaners
for a database.

Configuration type
Database

Chapter 21. Configuration parameters 675

Parameter type
Configurable

Default [range]
Automatic [0 – 255]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Counter

These page cleaners write changed pages from the buffer pool to disk before the
space in the buffer pool is required by a database agent. As a result, database
agents should not have to wait for changed pages to be written out so that they
might use the space in the buffer pool. This improves overall performance of the
database applications.

If you set the parameter to zero (0), no page cleaners are started and as a result,
the database agents will perform all of the page writes from the buffer pool to
disk. This parameter can have a significant performance impact on a database
stored across many physical storage devices, since in this case there is a greater
chance that one of the devices will be idle. If no page cleaners are configured, your
applications might encounter periodic log full conditions.

If this parameter is set to AUTOMATIC, the number of page cleaners started will
be based on the number of CPUs configured on the current machine, as well as the
number of local logical database partitions in a partitioned database environment.
There will always be at least one page cleaner started when this parameter is set to
AUTOMATIC.

The number of page cleaners to start when this parameter is set to AUTOMATIC
will be calculated using the following formula:
number of page cleaners = max(ceil(# CPUs / # local logical DPs) – 1, 1)

This formula ensures that the number of page cleaners is distributed almost evenly
across your logical database partitions, and that there are no more page cleaners
than there are CPUs.

If the applications for a database primarily consist of transactions that update data,
an increase in the number of cleaners will speed up performance. Increasing the
page cleaners will also decrease recovery time from soft failures, such as power
outages, because the contents of the database on disk will be more up-to-date at
any given time.

Recommendation: Consider the following factors when setting the value for this
parameter:
v Application type

– If it is a query-only database that will not have updates, set this parameter to
a value which is greater than zero (0) but less than the value calculated in the
previous formula. The exception would be if the query work load results in
many TEMP tables being created (you can determine this by using the explain
utility).

– If transactions are run against the database, set this parameter to be between
one and the value calculated in the previous formula.

v Workload

676 Database Administration Concepts and Configuration Reference

Environments with high update transaction rates might require more page
cleaners to be configured.

v Buffer pool sizes
Environments with large buffer pools might also require more page cleaners to
be configured.

You can use the database system monitor to help you tune this configuration
parameter using information from the event monitor about write activity from a
buffer pool:
v The parameter can be reduced if both of the following conditions are true:

– pool_data_writes is approximately equal to pool_async_data_writes

– pool_index_writes is approximately equal to pool_async_index_writes.
v The parameter should be increased if either of the following conditions are true:

– pool_data_writes is much greater than pool_async_data_writes

– pool_index_writes is much greater than pool_async_index_writes.

num_ioservers - Number of I/O servers
This parameter specifies the number of I/O servers for a database. No more than
this number of I/Os for prefetching and utilities can be in progress for a database
at any time.

Configuration type
Database

Parameter type
Configurable

Default [range]
Automatic [1 – 255]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Counter

When allocated
When an application connects to a database

When freed
When an application disconnects from a database

I/O servers, also called prefetchers, are used on behalf of the database agents to
perform prefetch I/O and asynchronous I/O by utilities such as backup and
restore. An I/O server waits while an I/O operation that it initiated is in progress.
Non-prefetch I/Os are scheduled directly from the database agents and as a result
are not constrained by num_ioservers.

If this parameter is set to AUTOMATIC, the number of prefetchers started will be
based on the parallelism settings of the table spaces in the current database
partition.

When this parameter is set to AUTOMATIC, the number of prefetchers to start will
be calculated at database activation time based on the following formula:
number of prefetchers = max(max over all table spaces
(parallelism setting), 3)

Chapter 21. Configuration parameters 677

Where parallelism settings are controlled by the DB2_PARALLEL_IO system
environment variable.

Recommendation: In order to fully exploit all the I/O devices in the system, a
good value to use is generally one or two more than the number of physical
devices on which the database resides. It is better to configure additional I/O
servers, since there is minimal overhead associated with each I/O server and any
unused I/O servers will remain idle.

num_log_span - Number log span
This parameter specifies whether there is a limit to how many log files one
transaction can span, and what that limit is.

Configuration type
Database

Parameter type
Configurable online

Propagation class
Immediate

Default [range]
0 [0 - 65 535]

Unit of measure
Counter

If the value is not 0, this parameter indicates the number of active log files that one
active transaction is allowed to span.

If the value is set to 0, there is no limit to how many log files one single
transaction can span.

If an application violates the num_log_span configuration, the application is forced
to disconnect from the database and the transaction is rolled back.

This parameter, along with the max_log configuration parameter, can be useful
when enabling infinite active logspace. If infinite logging is on (that is, if logsecond
is set to -1) then transactions are not restricted to the upper limit of the number of
log files (logprimary + logsecond). When the value of logprimary is reached, DB2
starts to archive the active logs, rather than failing the transaction. This can cause
problems if, for example, an application contains a long running transaction that is
left uncommitted. If this occurs, the active logspace continues to grow, possibly
leading to poor crash recovery performance. To prevent this, you can specify
values for one or both of the max_log or num_log_span configuration parameters.

Note: The following DB2 commands are excluded from the limitation imposed by
the num_log_span configuration parameter: ARCHIVE LOG, BACKUP DATABASE,
LOAD, REORG, RESTORE DATABASE, and ROLLFORWARD DATABASE.

num_quantiles - Number of quantiles for columns
This parameter controls the number of quantiles that will be collected when the
WITH DISTRIBUTION option is specified on the RUNSTATS command.

Configuration type
Database

678 Database Administration Concepts and Configuration Reference

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
20 [0 - 32 767]

Unit of measure
Counter

Increasing the value of this parameter increases the amount of statistics heap
(stat_heap_sz) used when collecting statistics.

The “quantile” statistics help the optimizer understand the distribution of data
values within a column. A higher value results in more information being available
to the query optimizer but requires additional catalog space. When 0 or 1 is
specified, no quantile statistics are retained, even if you request that distribution
statistics be collected.

You can also specify the number of quantiles collected as part of the RUNSTATS
command at the table or the column level, by using the NUM_QUANTILES
option. If none is specified, the num_quantiles configuration parameter value is
used. Changing the number of quantiles that will be collected through the
RUNSTATS command is easier than making the change using the num_quantiles
database configuration parameter.

Updating this parameter can help obtain better selectivity estimates for range
predicates over data that is non-uniformly distributed. Among other optimizer
decisions, this information has a strong influence on whether an index scan or a
table scan will be chosen. (It is more efficient to use a table scan to access a range
of values that occur frequently and it is more efficient to use an index scan for a
range of values that occur infrequently.)

After changing the value of this parameter, you need to:
v Run the RUNSTATS command again to collect statistics with the changed

number of frequent values
v Rebind any packages containing static SQL or XQuery statements.

When using RUNSTATS, you have the ability to limit the number of quantiles
collected at both the table level and the column level. This allows you to optimize
on space occupied in the catalogs by reducing the distribution statistics for
columns where they could not be exploited and yet still using the information for
critical columns.

Recommendation: The default value for this parameter provides reasonably
accurate estimates in most cases. You can consider increasing the value if you
observe significant and consistent differences between:
v Selectivity estimates from the explain output; and
v Actual selectivity of range predicates over non-uniformly distributed column

data.

A reasonable practical value for this parameter lies in the range of 10 to 50.

Chapter 21. Configuration parameters 679

numarchretry - Number of retries on error
This parameter specifies the number of times that DB2 is to try archiving a log file
to the primary or the secondary archive directory before trying to archive log files
to the failover directory.

Configuration type
Database

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable Online

Default [range]
5 [0 - 65 535]

This parameter is only used if the failarchpath database configuration parameter is
set. If numarchretry is not set, DB2 will continuously retry archiving to the primary
or the secondary log path.

numsegs - Default number of SMS containers
This parameter is deprecated in Version 9.5, but is still being used by pre-Version
9.5 data servers and clients. Any value specified for this configuration parameter
will be ignored by the DB2 Version 9.5 database manager.

Note: The following information applies only to pre-Version 9.5 data servers and
clients.

Configuration type
Database

Parameter type
Informational

Unit of measure
Counter

This parameter indicates the number of containers that will be created within the
default table spaces. It also shows the information used when you created your
database, whether it was specified explicitly or implicitly on the CREATE
DATABASE command.

This parameter only applies to SMS table spaces; the CREATE TABLESPACE
statement does not use it in any way.

number_compat - Number compatibility database
configuration parameter

This parameter indicates whether the compatibility semantics associated with the
NUMBER data type are applied to the connected database.

Configuration type
Database

680 Database Administration Concepts and Configuration Reference

Parameter type
Informational

The value is determined at database creation time, and is based on the setting of
the DB2_COMPATIBILITY_VECTOR registry variable for NUMBER support. The
value cannot be changed.

overflowlogpath - Overflow log path
This parameter specifies a location for DB2 databases to find log files needed for a
rollforward operation, as well as where to store active log files retrieved from the
archive. It also gives a location for finding and storing log files needed for using
db2ReadLog API.

Configuration type
Database

Parameter type
Configurable online

Propagation class
Immediate

Default [range]
NULL [any valid path]

This parameter can be used for several functions, depending on your logging
requirements.
v This parameter allows you to specify a location for DB2 databases to find log

files that are needed for a rollforward operation. It is similar to the OVERFLOW LOG
PATH option on the ROLLFORWARD command. Instead of always specifying
OVERFLOW LOG PATH on every ROLLFORWARD command, you can set this
configuration parameter once. However, if both are used, the OVERFLOW LOG PATH
option will overwrite the overflowlogpath configuration parameter, for that
particular rollforward operation.

v If logsecond is set to -1, overflowlogpath allows you to specify a directory for
DB2 to store active log files retrieved from the archive. (Active log files have to
be retrieved for rollback operations if they are no longer in the active log path).
Without overflowlogpath, DB2 databases will retrieve the log files into the active
log path. Using overflowlogpath allows you to provide additional resource for
DB2 databases to store the retrieved log files. The benefit includes spreading the
I/O cost to different disks, and allowing more log files to be stored in the active
log path.

v If you need to use the db2ReadLog API (prior to DB2 Version 8, db2ReadLog
was called sqlurlog) for replication, for example, overflowlogpath allows you to
specify a location for DB2 databases to search for log files that are needed for
this API. If the log file is not found (in either the active log path or the overflow
log path) and the database is configured with userexit enabled, DB2 will
retrieve the log file. overflowlogpath also allows you to specify a directory for
DB2 databases to store the log files retrieved. The benefit comes from reducing
the I/O cost on the active log path and allowing more log files to be stored in
the active log path.

v If you have configured a raw device for the active log path, overflowlogpath
must be configured if you want to set logsecond to -1, or if you want to use the
db2ReadLog API.

v You can specify a location for DB2 databases to retrieve log files that are
required for a BACKUP DATABASE INCLUDE LOGS operation.

Chapter 21. Configuration parameters 681

To set overflowlogpath, specify a string of up to 242 bytes. The string must point
to a path name, and it must be a fully qualified path name, not a relative path
name. The path name must be a directory, not a raw device.

Note: In a partitioned database environment, the node number is automatically
appended to the path. This is done to maintain the uniqueness of the path in
multiple logical node configurations.

pagesize - Database default page size
This parameter contains the value that was used as the default page size when the
database was created. Possible values are: 4 096, 8 192, 16 384 and 32 768. When a
buffer pool or table space is created in that database, the same default page size
applies.

Configuration type
Database

Parameter type
Informational

pckcachesz - Package cache size
This parameter is allocated out of the database shared memory, and is used for
caching of sections for static and dynamic SQL and XQuery statements on a
database.

Configuration type
Database

Parameter type
Configurable online

Propagation class
Immediate

Default [range]

32-bit operating systems
Automatic [-1, 32 - 128 000]

64-bit operating systems
Automatic [-1, 32 - 2 147 483 646]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Pages (4 KB)

When allocated
When the database is initialized

When freed
When the database is shut down

In a partitioned database system, there is one package cache for each database
partition.

Caching packages allows the database manager to reduce its internal overhead by
eliminating the need to access the system catalogs when reloading a package; or, in

682 Database Administration Concepts and Configuration Reference

the case of dynamic SQL or XQuery statements, eliminating the need for
compilation. Sections are kept in the package cache until one of the following
occurs:
v The database is shut down
v The package or dynamic SQL or XQuery statement is invalidated
v The cache runs out of space.

This caching of the section for a static or dynamic SQL or XQuery statement can
improve performance, especially when the same statement is used multiple times
by applications connected to a database. This is particularly important in a
transaction processing environment.

When this parameter is set to AUTOMATIC, it is enabled for self tuning. When
self_tuning_mem is set to ON, the memory tuner will dynamically size the memory
area controlled by pckcachesz as the workload requirements change. Because the
memory tuner trades memory resources between different memory consumers,
there must be at least two memory consumers enabled for self tuning in order for
self tuning to be active.

Automatic tuning of this configuration parameter will only occur when self tuning
memory is enabled for the database (the self_tuning_mem configuration parameter
is set to "ON.")

When this parameter is set to -1, the value used to calculate the page allocation is
eight times the value specified for the maxappls configuration parameter. The
exception to this occurs if eight times maxappls is less than 32. In this situation, the
default value of -1 will set pckcachesz to 32.

Recommendation: When tuning this parameter, you should consider whether the
extra memory being reserved for the package cache might be more effective if it
was allocated for another purpose, such as the buffer pool or catalog cache. For
this reason, you should use benchmarking techniques when tuning this parameter.

Tuning this parameter is particularly important when several sections are used
initially and then only a few are run repeatedly. If the cache is too large, memory
is wasted holding copies of the initial sections.

The following monitor elements can help you determine whether you should
adjust this configuration parameter:
v pkg_cache_lookups (package cache lookups)
v pkg_cache_inserts (package cache inserts)
v pkg_cache_size_top (package cache high water mark)
v pkg_cache_num_overflows (package cache overflows)

Note: The package cache is a working cache, so you cannot set this parameter to
zero. There must be sufficient memory allocated in this cache to hold all sections of
the SQL or XQuery statements currently being executed. If there is more space
allocated than currently needed, then sections are cached. These sections can
simply be executed the next time they are needed without having to load or
compile them.

The limit specified by the pckcachesz parameter is a soft limit. This limit can be
exceeded, if required, if memory is still available in the database shared set. You
can use the pkg_cache_size_top monitor element to determine the largest that the

Chapter 21. Configuration parameters 683

package cache has grown, and the pkg_cache_num_overflows monitor element to
determine how many times the limit specified by the pckcachesz parameter has
been exceeded.

priv_mem_thresh - Private memory threshold
This parameter is deprecated in Version 9.5, but is still being used by pre-Version
9.5 data servers and clients. Any value specified for this configuration parameter
will be ignored by the DB2 Version 9.5 database manager.

Note: The following information applies only to pre-Version 9.5 data servers and
clients.

Configuration type
Database manager

Applies to

v Database server with local and remote clients
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable

Default [range]
20 000 [-1; 32 - 112 000]

Unit of measure
Pages (4 KB)

This parameter is used to determine the amount of unused agent private memory
that will be kept allocated, ready to be used by new agents that are started. It does
not apply to Linux and UNIX platforms.

A value of -1 will cause this parameter to use the value of the min_priv_mem
parameter.

Recommendation: When setting this parameter, you should consider the client
connection/disconnection patterns as well as the memory requirements of other
processes on the same machine.

If there is only a brief period during which many clients are concurrently
connected to the database, a high threshold will prevent unused memory from
being decommitted and made available to other processes. This case results in poor
memory management which can affect other processes which require memory.

If the number of concurrent clients is more uniform and there are frequent
fluctuations in this number, a high threshold will help to ensure memory is
available for the client processes and reduce the overhead to allocate and
deallocate memory.

rec_his_retentn - Recovery history retention period
This parameter specifies the number of days that historical information on backups
will be retained.

Configuration type
Database

684 Database Administration Concepts and Configuration Reference

Parameter type
Configurable

Default [range]
366 [-1; 0 - 30 000]

Unit of measure
Days

If the recovery history file is not needed to keep track of backups, restores, and
loads, this parameter can be set to a small number.

If rec_his_retentn is set to -1 and auto_del_rec_obj is set to OFF, the number of
entries indicating full database backups (and any table space backups that are
associated with the database backup) will correspond with the value specified by
the num_db_backups database configuration parameter. Other entries in the recovery
history file can only be pruned by explicitly using the available commands or
APIs. If rec_his_retentn is set to -1 and auto_del_rec_obj is set to ON, the history
file is not automatically pruned and no recovery objects are deleted.

If rec_his_retentn is set to 0 and auto_del_rec_obj is set to OFF, all entries in the
history file, except the last full backup, are pruned. If auto_del_rec_obj is set to
ON, automated history file pruning and recovery object deletion are carried out
based on the timestamp of the backup selected by the num_db_backups database
configuration parameter.

No matter how small the retention period, the most recent full database backup
plus its restore set will always be kept, unless you use the PRUNE utility with the
FORCE option.

restore_pending - Restore pending
This parameter states whether a RESTORE PENDING status exists in the database.

Configuration type
Database

Parameter type
Informational

restrict_access - Database has restricted access configuration
parameter

This parameter indicates whether the database was created using the restrictive set
of default actions. In other words, if it was created with the RESTRICTIVE clause
in the CREATE DATABASE command.

Configuration type
Database

Parameter type
Informational

YES The RESTRICTIVE clause was used in the CREATE DATABASE command
when this database was created.

NO The RESTRICTIVE clause was not used in the CREATE DATABASE command
when this database was created.

Chapter 21. Configuration parameters 685

rollfwd_pending - Roll forward pending indicator
This parameter informs you whether or not a roll-forward recovery is required,
and where it is required.

Configuration type
Database

Parameter type
Informational

This parameter can indicate one of the following states:
v DATABASE, meaning that a roll-forward recovery procedure is required for this

database
v TABLESPACE, meaning that one or more table spaces need to be rolled forward
v NO, meaning that the database is usable and no roll-forward recovery is

required.

The recovery (using ROLLFORWARD DATABASE) must complete before you can
access the database or table space.

section_actuals - Section actuals configuration parameter
This parameter enables measurement of section actuals (runtime statistics
measured during section execution).

Configuration type
Database

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable online

Propagation class
Unit of work boundary

Default [range]
NONE [NONE, BASE]

Valid values for this parameter are:

NONE All section actuals are disabled

BASE Basic operator cardinality counts are enabled

After section actuals are enabled, section actuals information can be captured using
an activity event monitor and viewed through a section explain performed with
the EXPLAIN_FROM_ACTIVITY procedure.

This parameter cannot be enabled if the auto_stats_prof database configuration
parameter is enabled (SQLCODE -5153).

686 Database Administration Concepts and Configuration Reference

self_tuning_mem- Self-tuning memory
This parameter determines whether the memory tuner will dynamically distribute
available memory resources as required between memory consumers that are
enabled for self-tuning.

Configuration type
Database

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]

Single-database partition environments
ON [ON; OFF]

Multi-database partition environments
OFF [ON; OFF]

In a database that is upgraded from an earlier version, self_tuning_mem will
be set to OFF.

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Because memory is being traded between memory consumers, there must be at
least two memory consumers enabled for self-tuning in order for the memory
tuner to be active. When self_tuning_mem is set to ON, but there are less than two
memory consumers enabled for self-tuning, the memory tuner is inactive. (The
exception to this is the sort heap memory area, which can be tuned regardless of
whether other memory consumers are enabled for self-tuning or not.)

This parameter is ON by default in single database partition environments. In
multi-database partition environments, it is OFF by default.

The memory consumers that can be enabled for self-tuning include:
v Buffer pools (controlled by the size parameter of the ALTER BUFFERPOOL and

CREATE BUFFERPOOL statements)
v Package cache (controlled by the pckcachesz configuration parameter)
v Lock List (controlled by the locklist and maxlocks configuration parameters)
v Sort heap (controlled by the sheapthres_shr and sortheap configuration parameters)
v Database shared memory (controlled by the database_memory configuration

parameter)

To view the current setting for this parameter, use the GET DATABASE
CONFIGURATION command specifying the SHOW DETAIL parameter. The
possible settings returned for this parameter are:
Self Tuning Memory (SELF_TUNING_MEM) = OFF
Self Tuning Memory (SELF_TUNING_MEM) = ON (Active)
Self Tuning Memory (SELF_TUNING_MEM) = ON (Inactive)
Self Tuning Memory (SELF_TUNING_MEM) = ON

The following values indicate:
v ON (Active) - the memory tuner is actively tuning the memory on the system

Chapter 21. Configuration parameters 687

v ON (Inactive) - that although the parameter is set ON, self-tuning is not
occurring because there are less than two memory consumers enabled for
self-tuning, or the database or instance is in quiesce mode

v ON without (Active) or (Inactive) - from a query without the SHOW DETAIL
option, or without a database connection.

In partitioned environments, the self_tuning_mem configuration parameter will only
show ON (Active) for the database partition on which the tuner is running. On all
other nodes self_tuning_mem will show ON (Inactive). As a result, to determine if
the memory tuner is active in a partitioned database, you must check the
self_tuning_mem parameter on all database partitions.

If you have upgraded to DB2 Version 9 from an earlier version of DB2 and you
plan to use the self-tuning memory feature, you should configure the following
health indicators to disable threshold or state checking:
v Shared Sort Memory Utilization - db.sort_shrmem_util
v Percentage of sorts that overflowed - db.spilled_sorts
v Long Term Shared Sort Memory Utilization - db.max_sort_shrmem_util
v Lock List Utilization - db.locklist_util
v Lock Escalation Rate - db.lock_escal_rate
v Package Cache Hit Ratio - db.pkgcache_hitratio

One of the objectives of the self-tuning memory feature is to avoid having memory
allocated to a memory consumer when it is not immediately required. Therefore,
utilization of the memory allocated to a memory consumer might approach 100%
before more memory is allocated. By disabling these health indicators, you will
avoid unnecessary alerts triggered by the high rate of memory utilization by a
memory consumer.

Instances created in DB2 Version 9 will have these health indicators disabled by
default.

seqdetect - Sequential detection flag
This parameter controls whether the database manager is allowed to detect
sequential page reading during I/O activity.

Configuration type
Database

Parameter type
Configurable online

Propagation class
Immediate

Default [range]
Yes [Yes; No]

The database manager can monitor I/O, and if sequential page reading is
occurring the database manager can activate I/O prefetching. This type of
sequential prefetch is known as sequential detection.

If this parameter is set to No, prefetching takes place only if the database manager
knows it will be useful, for example table sorts, table scans, or list prefetch.

688 Database Administration Concepts and Configuration Reference

Recommendation: In most cases, you should use the default value for this
parameter. Try turning sequential detection off, only if other tuning efforts were
unable to correct serious query performance problems.

sheapthres_shr - Sort heap threshold for shared sorts
This parameter represents a soft limit on the total amount of database shared
memory that can be used by sort memory consumers at any one time.

Configuration type
Database

Applies to
OLAP functions

Parameter type
Configurable online

Propagation class
Immediate

Default [range]

32-bit platforms
Automatic [250 - 524 288]

64-bit platforms
Automatic [250 - 2 147 483 647]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Pages (4 KB)

There are other sort memory consumers in addition to sort, like hash join, index
ANDing, block index ANDing, merge join, and in-memory tables. When the total
amount of shared memory for shared sort memory consumers approaches the
sheapthres_shr limit, a memory throttling mechanism is activated and the future
shared sort memory consumer requests might be granted less memory than
requested, but will always be granted more than the minimum they need for
finishing the task. Once the sheapthres_shr limit is exceeded, all requests of shared
sort memory from sort memory consumers will be granted the minimum amount
of memory required to finish the task. When the total amount of shared memory
for active shared sort memory consumers reaches this limit, subsequent sorts could
fail (SQL0955C).

When the value of the database manager configuration parameter sheapthres is 0,
all sort memory consumers for the database will use the database shared memory
with sheapthres_shr instead of private sort memory.

When sheapthres_shr is set to AUTOMATIC, it is enabled for self tuning. This
allows the memory tuner to dynamically size the memory area controlled by this
parameter as the workload requirements change. Because the memory tuner trades
memory resources between different memory consumers, there must be at least
two memory consumers enabled for self tuning in order for self tuning to be
active. Memory consumers include SHEAPTHRES_SHR, PCKCACHESZ, BUFFER
POOL (each buffer pool counts as one), LOCKLIST, and DATABASE_MEMORY.

Chapter 21. Configuration parameters 689

Automatic tuning of sheapthres_shr is allowed only when the database manager
configuration parameter sheapthres is set to 0.

The value of sortheap is tuned together with the sheapthres_shr parameter therefore
disabling self tuning of the sortheap parameter automatically disables self tuning of
the sheapthres_shr parameter. Enabling self tuning of the sheapthres_shr parameter
automatically enables self tuning of the sortheap parameter.

Automatic tuning of this configuration parameter will only occur when self tuning
memory is enabled for the database (the self_tuning_mem configuration parameter
is set to "ON.")

When the value of this parameter is updated online, only new requests of
shared-sort memory made after the update will use the new value. It is
recommended that you reduce the value of sortheap before reducing the value of
sheapthres_shr and to increase the value of sheapthres_shr before increasing the value
of sortheap.

When the database manager configuration parameter sheapthres is greater than 0,
sheapthres_shr is only meaningful in two cases:
v if the intra_parallel database manager configuration parameter is set to yes,

because when intra_parallel is set to no, there will be no shared sorts.
v if the Concentrator is on (that is, when max_connections is greater than

max_coordagents), because sorts that use a cursor declared with the WITH HOLD
option will be allocated from shared memory.

smtp_server - SMTP server
This parameter identifies a simple mail transfer protocol (SMTP) server. This SMTP
server transmits email sent by the UTL_MAIL system-defined module.

The parameter also accepts a comma-delimited list of SMTP servers. UTL_MAIL
attempts to send email through the first SMTP server in the list. If that SMTP
server is unavailable, the next server in the list is used. If all servers in the
comma-delimited list are unreachable, an error is returned.

Configuration type
Database

Applies to
Database server with local and remote clients

Database server with local clients

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
Null [comma-delimited list of valid SMTP server TCP/IP hostnames]

softmax - Recovery range and soft checkpoint interval
This parameter determines the frequency of soft checkpoints and the recovery
range, which help out in the crash recovery process.

Configuration Type
Database

690 Database Administration Concepts and Configuration Reference

Parameter Type
Configurable

Default [range]
100 [1 – 100 * logprimary]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of Measure
Percentage of the size of one primary log file

This parameter is used to:
v Influence the number of logs that need to be recovered following a crash (such

as a power failure). For example, if the default value is used, the database
manager will try to keep the number of logs that need to be recovered to 1. If
you specify 300 as the value of this parameter, the database manager will try to
keep the number of logs that need to be recovered to 3.
To influence the number of logs required for crash recovery, the database
manager uses this parameter to trigger the page cleaners to ensure that pages
older than the specified recovery window are already written to disk.

v Determine the frequency of soft checkpoints.

At the time of a database failure resulting from an event such as a power failure,
there might have been changes to the database which:
v Have not been committed, but updated the data in the buffer pool
v Have been committed, but have not been written from the buffer pool to the

disk
v Have been committed and written from the buffer pool to the disk.

When a database is restarted, the log files will be used to perform a crash recovery
of the database which ensures that the database is left in a consistent state (that is,
all committed transactions are applied to the database and all uncommitted
transactions are not applied to the database).

To determine which records from the log file need to be applied to the database,
the database manager uses information recorded in a log control file. (The database
manager actually maintains two copies of the log control file, SQLOGCTL.LFH.1
and SQLOGCTL.LFH.2, so that if one copy is damaged, the database manager can
still use the other copy.) These log control files are periodically written to disk,
and, depending on the frequency of this event, the database manager might be
applying log records of committed transactions or applying log records that
describe changes that have already been written from the buffer pool to disk.
These log records have no impact on the database, but applying them introduces
some overhead into the database restart process.

The log control files are always written to disk when a log file is full, and during
soft checkpoints. You can use this configuration parameter to trigger additional soft
checkpoints.

The timing of soft checkpoints is based on the difference between the “current
state” and the “recorded state”, given as a percentage of the logfilsiz. The “recorded
state” is determined by the oldest valid log record indicated in the log control files
on disk, while the “current state” is determined by the log control information in
memory. (The oldest valid log record is the first log record that the recovery

Chapter 21. Configuration parameters 691

process would read.) The soft checkpoint will be taken if the value calculated by
the following formula is greater than or equal to the value of this parameter:

((space between recorded and current states) / logfilsiz) * 100

Recommendation: You might want to increase or reduce the value of this
parameter, depending on whether your acceptable recovery window is greater than
or less than one log file. Lowering the value of this parameter will cause the
database manager both to trigger the page cleaners more often and to take more
frequent soft checkpoints. These actions can reduce both the number of log records
that need to be processed and the number of redundant log records that are
processed during crash recovery.

Note however, that more page cleaner triggers and more frequent soft checkpoints
increase the overhead associated with database logging, which can impact the
performance of the database manager. Also, more frequent soft checkpoints might
not reduce the time required to restart a database, if you have:
v Very long transactions with few commit points.
v A very large buffer pool and the pages containing the committed transactions

are not written back to disk very frequently. (Note that the use of asynchronous
page cleaners can help avoid this situation.)

In both of these cases, the log control information kept in memory does not change
frequently and there is no advantage in writing the log control information to disk,
unless it has changed.

sortheap - Sort heap size
This parameter defines the maximum number of private memory pages to be used
for private sorts, or the maximum number of shared memory pages to be used for
shared sorts.

Configuration type
Database

Applies to
OLAP functions

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]

32-bit platforms
Automatic [16 - 524 288]

64-bit platforms
Automatic [16 - 4 194 303]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Pages (4 KB)

When allocated
As needed to perform sorts

692 Database Administration Concepts and Configuration Reference

When freed
When sorting is complete

If the sort is a private sort, then this parameter affects agent private memory. If the
sort is a shared sort, then this parameter affects the database shared memory. Each
sort has a separate sort heap that is allocated as needed, by the database manager.
This sort heap is the area where data is sorted. If directed by the optimizer, a
smaller sort heap than the one specified by this parameter is allocated using
information provided by the optimizer.

When this parameter is set to AUTOMATIC, it is enabled for self tuning. This allows
the memory tuner to dynamically size the memory area controlled by this
parameter as the workload requirements change.

The value of sortheap is tuned together with the sheapthres_shr parameter,
therefore disabling self tuning of the sortheap parameter can not be done without
disabling self tuning of the sheapthres_shr parameter. Enabling self tuning of the
sheapthres_shr parameter automatically enables self tuning of the sortheap
parameter. The sortheap parameter can, however, be enabled for self tuning
without the sheapthres_shr parameter being AUTOMATIC.

Automatic tuning of sortheap is allowed only when the database manager
configuration parameter sheapthres is set to 0.

Automatic tuning of this configuration parameter will only occur when self tuning
memory is enabled for the database (the self_tuning_mem configuration parameter
is set to ON.)

Recommendation: When working with the sort heap, you should consider the
following:
v Appropriate indexes can minimize the use of the sort heap.
v Hash join buffers, block index ANDing, merge join, table in memory and

dynamic bitmaps (used for index ANDing and Star Joins) use sort heap memory.
Increase the size of this parameter when these techniques are used.

v Increase the size of this parameter when frequent large sorts are required.
v When increasing the value of this parameter, you should examine whether the

sheapthres and sheapthres_shr parameters in the database manager
configuration file also need to be adjusted.

v The sort heap size is used by the optimizer in determining access paths. You
should consider rebinding applications (using the REBIND command) after
changing this parameter.

When the sortheap value is updated, the database manager will immediately start
using this new value for any current or new sorts.

sql_ccflags - Conditional compilation flags
This parameter contains a list of conditional compilation values for use in
conditional compilation of selected SQL statements.

Configuration type
Database

Parameter type
Configurable Online

Chapter 21. Configuration parameters 693

The value of sql_ccflags must include one or more name and value pairs, where
the name is separated from the value by the colon character. Each name and value
pair must be separated from the previous pair by a comma. The name must be a
valid ordinary SQL identifier. The value must be an SQL BOOLEAN constant, an
SQL INTEGER constant, or the NULL keyword. The maximum length of the string
is 1023 bytes.

When the value of sql_ccflags is updated, the value is not immediately checked
to ensure that it is valid. Checking occurs the first time that the value is used to
initialize the CURRENT SQL_CCFLAGS special register; that is, when a connection
to the database first references CURRENT SQL_CCFLAGS, or when an inquiry
directive is encountered in an SQL statement. After updating the value of
sql_ccflags, connect to the database and query the special register by using the
following statement: VALUES CURRENT SQL_CCFLAGS.

stat_heap_sz - Statistics heap size
This parameter indicates the maximum size of the heap used in collecting statistics
using the RUNSTATS command.

The constraint set by this parameter applies to each RUNSTATS operation.

With Version 9.5, this database configuration parameter has a default value of
AUTOMATIC, meaning that it increases as needed until either the appl_memory limit is
reached, or the instance_memory limit is reached.

Configuration type
Database

Parameter type
Configurable online

Default [range]
Automatic [1 096 - 524 288]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Pages (4 KB)

When allocated
When the RUNSTATS utility is started

When freed
When the RUNSTATS utility is completed

Recommendation: The default setting of AUTOMATIC is recommended.

Recommendation: RUNSTATS memory requirements depend on several factors.
More memory is utilized with more statistic options, for example if LIKE statistics
or DETAILED index statistics are being collected. When column statistics are
collected, gathering statistics of a higher number of columns will utilize more
memory. When distribution statistics are being collected, gathering a higher
number of frequent and/or quantile values will utilize more memory. The default
setting of AUTOMATIC is recommended.

stmt_conc - Statement concentrator configuration parameter
This configuration parameter sets the default statement concentrator behavior.

694 Database Administration Concepts and Configuration Reference

Configuration type
Database

Parameter type
Configurable online

Propagation class
Statement boundary

Default [range]
OFF [OFF, LITERALS]

This configuration parameter enables statement concentration for dynamic
statements. The setting in the database configuration is used only when the client
does not explicitly enable or disable statement concentrator.

When enabled, statement concentrator modifies dynamic statements to allow
increased sharing of package cache entries.

Statement concentrator is disabled when the configuration parameter is set to OFF.
When the configuration parameter is set to LITERALS, statement concentrator is
enabled. When statement concentrator is enabled, SQL statement that are identical,
except for the values of literals in the statements, may share package cache entries.

For example, when STMT_CONC is set to LITERALS, the statements
SELECT FIRSTNME, LASTNAME FROM EMPLOYEE WHERE EMPNO=’000020’

and
SELECT FIRSTNME, LASTNAME FROM EMPLOYEE WHERE EMPNO=’000070’

will share the same entry in the package cache. Then entry in the package cache
will use the statement
SELECT FIRSTNME, LASTNAME FROM EMPLOYEE WHERE EMPNO=:L0

and DB2 will provide the value for
:L0(either ’000020’ or ’000070’)

based on the literal used in the original statements.

This parameter can have a significant impact on plan selection because it alters the
statement text. Statement concentrator must be used only when similar statements
in the package cache have similar plans. For example, if different literal values in a
statement result in significantly different plans, then statement concentrator must
not be set to LITERALS.

The stmt_conc configuration parameter may cause the length attributes for
VARCHAR and VARGRAPHIC string literals to be greater than the length of the
string literal.

stmtheap - Statement heap size
This parameter specifies the size of the statement heap, which is used as a work
space for the SQL or XQuery compiler during compilation of an SQL or XQuery
statement.

Configuration type
Database

Chapter 21. Configuration parameters 695

Parameter type
Configurable Online

Propagation class
Statement boundary

Default [range]

For 32-bit platforms
AUTOMATIC [128 - 524288]
v Database server with local and remote clients: the default value

is AUTOMATIC with an underlying value of 2048.
v This parameter can also be set to a fixed value only.

For 64-bit platforms
AUTOMATIC [128 - 524288]
v Database server with local and remote clients: the default value

is AUTOMATIC with an underlying value of 8192.
v This parameter can also be set to a fixed value only.

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Pages (4 KB)

When allocated
For each statement during precompiling or binding

When freed
When precompiling or binding of each statement is complete

This area does not stay permanently allocated, but is allocated and released for
every SQL or XQuery statement handled. Note that for dynamic SQL or XQuery
statements, this work area will be used during execution of your program;
whereas, for static SQL or XQuery statements, it is used during the bind process
but not during program execution.

The STMTHEAP parameter can be set to AUTOMATIC with an underlying value or a
fixed value. When it is set to AUTOMATIC, the underlying value enforces a limit on
the amount of memory allocated for a single compilation using dynamic join
enumeration. If a memory limit is encountered, the statement compilation restarts
using greedy join enumeration and an unlimited statement heap. It is only limited
by the amount of remaining application memory (APPL_MEMORY), instance memory
(INSTANCE_MEMORY), or system memory. If greedy join enumeration completes
successfully, an SQL0437W warning will be returned to the application. If greedy
join enumeration also encounters a memory limit, the statement preparation fails
with SQL0101N.

For example, db2 update db cfg for SAMPLE using STMTHEAP 8192 AUTOMATIC
results in a statement heap limit of 8192 * 4K (32MB) for dynamic join enumeration
and unlimited for greedy join enumeration.

When the STMTHEAP parameter is set to a fixed value, the limit applies to both
dynamic and greedy join enumeration. If dynamic join enumeration encounters a
memory limit, greedy join enumeration is attempted with the same fixed statement
heap limit. Similar warnings/errors apply as in the AUTOMATIC case.

696 Database Administration Concepts and Configuration Reference

For example, db2 update db cfg for SAMPLE using STMTHEAP 8192 results in a
statement heap limit of 8192 * 4K (32MB) for both dynamic and greedy join
enumeration.

If the runtime performance of your query is not sufficient, consider increasing the
stmtheap configuration parameter value (either the value underlying AUTOMATIC or
a fixed value) to ensure that dynamic programming join enumeration is successful.
If you update the stmtheap configuration parameter to improve the performance of
a query, cause the statement to be recompiled so that the query optimizer may
create a new access plan to take advantage of the changed amount of statement
heap.

Note: Dynamic programming join enumeration occurs only at optimization classes
3 and higher (5 is the default).

territory - Database territory
This parameter shows the territory used to create the database. territory is used by
the database manager when processing data that is territory sensitive.

Configuration type
Database

Parameter type
Informational

trackmod - Track modified pages enable
This parameter specifies whether the database manager will track database
modifications so that the backup utility can detect which subsets of the database
pages must be examined by an incremental backup and potentially included in the
backup image.

Configuration type
Database

Parameter type
Configurable

Default [range]
No [Yes, No]

After setting this parameter to "Yes", you must take a full database backup in order
to have a baseline against which incremental backups can be taken. Also, if this
parameter is enabled and if a table space is created, then a backup must be taken
which contains that table space. This backup could be either a database backup or
a table space backup. Following the backup, incremental backups will be permitted
to contain this table space.

tsm_mgmtclass - Tivoli Storage Manager management class
The Tivoli Storage Manager management class determines how the TSM server
should manage the backup versions of the objects being backed up.

Configuration type
Database

Parameter type
Configurable

Chapter 21. Configuration parameters 697

Default [range]
Null [any string]

The default is that there is no DB2-specified management class.

When performing any TSM backup, before using the management class specified
by the database configuration parameter, TSM first attempts to bind the backup
object to the management class specified in the INCLUDE-EXCLUDE list found in
the TSM client options file. If a match is not found, the default TSM management
class specified on the TSM server will be used. TSM will then rebind the backup
object to the management class specified by the database configuration parameter.

Thus, the default management class, as well as the management class specified by
the database configuration parameter, must contain a backup copy group, or the
backup operation will fail.

tsm_nodename - Tivoli Storage Manager node name
This parameter is used to override the default setting for the node name associated
with the Tivoli Storage Manager (TSM) product.

Configuration type
Database

Parameter type
Configurable online

Propagation class
Statement boundary

Default [range]
Null [any string]

The node name is needed to allow you to restore a database that was backed up to
TSM from another node.

The default is that you can only restore a database from TSM on the same node
from which you did the backup. It is possible for the tsm_nodename to be
overridden during a backup done through DB2 (for example, with the BACKUP
DATABASE command).

tsm_owner - Tivoli Storage Manager owner name
This parameter is used to override the default setting for the owner associated
with the Tivoli Storage Manager (TSM) product.

Configuration type
Database

Parameter type
Configurable online

Propagation class
Statement boundary

Default [range]
Null [any string]

698 Database Administration Concepts and Configuration Reference

The owner name is needed to allow you to restore a database that was backed up
to TSM from another node. It is possible for the tsm_owner to be overridden during
a backup done through DB2 (for example, with the BACKUP DATABASE
command).

Note: The owner name is case sensitive.

The default is that you can only restore a database from TSM on the same node
from which you did the backup.

tsm_password - Tivoli Storage Manager password
This parameter is used to override the default setting for the password associated
with the Tivoli Storage Manager (TSM) product.

Configuration type
Database

Parameter type
Configurable online

Propagation class
Statement boundary

Default [range]
Null [any string]

The password is needed to allow you to restore a database that was backed up to
TSM from another node.

Note: If the tsm_nodename is overridden during a backup done with DB2 (for
example, with the BACKUP DATABASE command), the tsm_password might also
have to be set.

The default is that you can only restore a database from TSM on the same node
from which you did the backup. It is possible for the tsm_nodename to be
overridden during a backup done with DB2.

user_exit_status - User exit status indicator
If set to On, this parameter indicates that the database manager is enabled for
roll-forward recovery and that the user exit program will be used to archive and
retrieve log files when called by the database manager.

Configuration type
Database

Parameter type
Informational

userexit - User exit enable
This parameter is deprecated in Version 9.5, but is still being used by pre-Version
9.5 data servers and clients. Any value specified for this configuration parameter
will be ignored by the DB2 Version 9.5 database manager. Starting in Version 9.5,
the logarchmeth1 configuration parameter is used to set the USEREXIT value.

Note: The following information applies only to pre-Version 9.5 data servers and
clients.

Chapter 21. Configuration parameters 699

If this parameter is enabled, log retention logging is performed regardless of how
the logretain parameter is set. This parameter also indicates that a user exit
program should be used to archive and retrieve the log files.

Configuration type
Database

Parameter type
Configurable

Default [range]
Off [On; Off]

Log files are archived when the log file is full. They are retrieved when the
ROLLFORWARD utility needs to use them to restore a database.

After logretain, or userexit, or both of these parameters are enabled, you must make
a full backup of the database. This state is indicated by the backup_pending flag
parameter.

If both of these parameters are de-selected, roll-forward recovery becomes
unavailable for the database because logs will no longer be retained. In this case,
the database manager deletes all log files in the logpath directory (including online
archive log files), allocates new active log files, and reverts to circular logging.

util_heap_sz - Utility heap size
This parameter indicates the maximum amount of memory that can be used
simultaneously by the BACKUP, RESTORE, and LOAD (including load recovery)
utilities.

Configuration type
Database

Parameter type
Configurable online

Propagation class
Immediate

Default [range]
5000 [16 - 524 288]

Note: The default value is subject to change by the DB2 Configuration
Advisor after initial database creation.

Unit of measure
Pages (4 KB)

When allocated
As required by the database manager utilities

When freed
When the utility no longer needs the memory

Recommendation: Use the default value unless your utilities run out of space, in
which case you should increase this value. If memory on your system is
constrained, you might want to lower the value of this parameter to limit the
memory used by the database utilities. If the parameter is set too low, you might
not be able to run utilities concurrently. You should update this parameter
dynamically as needed. For a small number of utilities, set this parameter to a

700 Database Administration Concepts and Configuration Reference

small value. For a large number of utilities, or for memory intensive utilities, you
should set this parameter to a larger value.

varchar2_compat - varchar2 compatibility database
configuration parameter

This parameter indicates whether the compatibility semantics associated with the
VARCHAR2 and NVARCHAR2 data types are applied to the connected database.

Configuration type
Database

Parameter type
Informational

The value is determined at database creation time, and is based on the setting of
the DB2_COMPATIBILITY_VECTOR registry variable for VARCHAR2 support. The
value cannot be changed.

vendoropt - Vendor options
This parameter specifies additional parameters that DB2 might need to use to
communicate with storage systems during backup, restore, or load copy
operations.

Configuration type
Database

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter type
Configurable Online

Default [range]
Null []

Restrictions
You cannot use the vendoropt configuration parameter to specify
vendor-specific options for snapshot backup or restore operations. You
must use the OPTIONS parameter of the backup or restore utilities instead.

In TSM environments configured to support proxy nodes, the
“-fromnode=nodename” option and the “-fromowner=ownername” option are
not compatible with the “-asnodename=nodename” option and cannot be
used together. Use the -asnodename option for TSM configurations using
proxy nodes and the other two options for other types of TSM
configurations. For more information, see “Configuring a Tivoli Storage
Manager client”.

wlm_collect_int - Workload management collection interval
configuration parameter

This parameter specifies a collect and reset interval, in minutes, for workload
management (WLM) statistics.

Chapter 21. Configuration parameters 701

Every x minutes, (where x is the value of the wlm_collect_int parameter) all
workload management statistics are collected and sent to any active statistics event
monitor; then the statistics are reset. If an active statistics event monitor exists,
depending on how it was created, the statistics are written to a file, to a pipe, or to
a table. If it does not exist, the statistics are only reset and not collected.

Collections occur at the specified interval times as measured relative to Sunday at
00:00:00. When the catalog database partition becomes active, the next collection
will occur at the start of the next scheduled interval relative to this fixed time. The
scheduled interval is not relative to the catalog partition activation time. If a
database partition is not active at the time of collection, no statistics are gathered
for that database partition. For example, if the interval value was set to 60 and the
catalog partition was activated on 9:24 AM on Sunday, then the collections would
be scheduled to occur each hour on the hour. Therefore, the next collection will
occur at 10:00 AM. If the database partition is not active at 10:00 AM, then no
statistics will be gathered for that partition.

The collect and reset process is initiated from the catalog partition. The
wlm_collect_int parameter must be specified on the catalog partition. It is not used
on other partitions.

Configuration type
Database

Parameter type
Configurable online

Default [range]
0 [0 (no collection performed), 5 - 32 767]

The workload management statistics collected by a statistics event monitor can be
used to monitor both short term and long term system behavior. A small interval
can be used to obtain both short term and long term system behavior because the
results can be merged together to obtain long term behavior. However, having to
manually merge the results from different intervals complicates the analysis. If it's
not required, a small interval unnecessarily increases the overhead. Therefore,
reduce the interval to capture shorter term behavior, and increase the interval to
reduce overhead when only analysis of long term behavior is sufficient.

The interval needs to be customized per database, not for each SQL request, or
command invocation, or application. There are no other configuration parameters
that need to be considered.

Note: All WLM statistics table functions return statistics that have been
accumulated since the last time the statistics were reset. The statistics will be reset
regularly on the interval specified by this configuration parameter.

DB2 Administration Server (DAS) configuration parameters

authentication - Authentication type DAS
This parameter determines how and where authentication of a user takes place.

Configuration type
DB2 Administration Server

Applies to
DB2 Administration Server

702 Database Administration Concepts and Configuration Reference

Parameter type
Configurable

Default [range]
SERVER_ENCRYPT [SERVER_ENCRYPT; KERBEROS_ENCRYPT]

If authentication is SERVER_ENCRYPT, then the user ID and password are sent
from the client to the server so authentication can take place on the server. User
IDs and passwords sent over the network are encrypted.

A value of KERBEROS_ENCRYPT means that authentication is performed at a
Kerberos server using the Kerberos security protocol for authentication.

Note: The KERBEROS_ENCRYPT authentication type is only supported on servers
running Windows.

This parameter can only be updated from a Version 9 command line processor
(CLP).

contact_host - Location of contact list
This parameter specifies the location where the contact information used for
notification by the Scheduler and the Health Monitor is stored.

Configuration type
DB2 Administration Server

Applies to
DB2 Administration Server

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
Null [any valid DB2 administration server TCP/IP hostname]

The location is defined to be a DB2 administration server's TCP/IP hostname.
Allowing contact_host to be located on a remote DAS provides support for sharing
a contact list across multiple DB2 administration servers. If contact_host is not
specified, the DAS assumes the contact information is local.

This parameter can only be updated from a Version 8 command line processor
(CLP).

das_codepage - DAS code page
This parameter indicates the code page used by the DB2 administration server.

Configuration type
DB2 Administration Server

Applies to
DB2 Administration Server

Parameter type
Configurable Online

Propagation class
Immediate

Chapter 21. Configuration parameters 703

Default [range]
Null [any valid DB2 code page]

If the parameter is null, then the default code page of the system is used. This
parameter should be compatible with the locale of the local DB2 instances.
Otherwise, the DB2 administration server cannot communicate with the DB2
instances.

This parameter can only be updated from a Version 8 command line processor
(CLP).

das_territory - DAS territory
This parameter shows the territory used by the DB2 administration server.

Configuration type
DB2 Administration Server

Applies to
DB2 Administration Server

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
Null [any valid DB2 territory]

If the parameter is null, then the default territory of the system is used.

This parameter can only be updated from a Version 8 command line processor
(CLP).

dasadm_group - DAS administration authority group name
This parameter defines the group name with DAS Administration (DASADM)
authority for the DAS.

Configuration type
DB2 Administration Server

Applies to
DB2 Administration Server

Parameter type
Configurable

Default [range]
Null [any valid group name]

DASADM authority is the highest level of authority within the DAS.

DASADM authority is determined by the security facilities used in a specific
operating environment.
v For the Windows operating systems, this parameter can be set to any local group

that is defined in the Windows security database. Group names are accepted as
long as they are 30 bytes or less in length. If “NULL” is specified for this
parameter, all members of the Administrators group have DASADM authority.

704 Database Administration Concepts and Configuration Reference

v For Linux and UNIX systems, if “NULL” is specified as the value of this
parameter, the DASADM group defaults to the primary group of the instance
owner.
If the value is not “NULL”, the DASADM group can be any valid UNIX group
name.

This parameter can only be updated from a Version 8 command line processor
(CLP).

db2system - Name of the DB2 server system
This parameter specifies the name that is used by your users and database
administrators to identify the DB2 server system.

Configuration type
DB2 Administration Server

Applies to
DB2 Administration Server

Parameter type
Configurable Online

Default [range]
TCP/IP host name [any valid system name]

If possible, this name should be unique within your network.

This name is displayed in the system level of the Control Center's object tree to aid
administrators in the identification of server systems that can be administered from
the Control Center.

When using the 'Search the Network' function of the Configuration Assistant, DB2
discovery returns this name and it is displayed at the system level in the resulting
object tree. This name aids users in identifying the system that contains the
database they want to access. A value for db2system is set at installation time as
follows:
v On Windows, the setup program sets it equal to the computer name specified

for the Windows system.
v On UNIX systems, it is set equal to the UNIX system's TCP/IP hostname.

diaglevel - Diagnostic error capture level configuration
parameter

This parameter specifies the type of diagnostic errors that will be recorded in the
db2dasdiag.log file.

Configuration Type
Database manager

Applies to

v Database server with local and remote clients
v Client
v Database server with local clients
v Partitioned database server with local and remote clients

Parameter Type
Configurable Online

Chapter 21. Configuration parameters 705

Propagation Class
Immediate

Default [Range]
3 [0 — 4]

Valid values for this parameter are:
v 0 – No diagnostic data captured
v 1 – Severe errors only
v 2 – All errors
v 3 – All errors and warnings
v 4 – All errors, warnings and informational messages

Usage notes

v The dynamic behaviour for diaglevel does not extend to all processes.
v The db2sysc DB2 server process can detect dynamic changes, for example, when

you issue the UPDATE DATABASE MANAGER CONFIGURATION command over an
instance attachment.

v When DB2 client and application processes start, they use the diaglevel
configuration parameter setting and do not detect any dynamic changes.

v To help resolve a problem, you can increase the value of this parameter to gather
additional problem determination data.

v In specific circumstances, to display high importance messages, DB2 will
override the diaglevel configuration parameter setting.

discover - DAS discovery mode
This parameter determines the type of discovery mode that is started when the
DB2 Administration Server starts.

Configuration type
DB2 Administration Server

Applies to
DB2 Administration Server

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
SEARCH [DISABLE; KNOWN; SEARCH]

v If discover = SEARCH, the administration server handles SEARCH discovery
requests from clients. SEARCH provides a superset of the functionality provided
by KNOWN discovery. When discover = SEARCH, the administration server
will handle both SEARCH and KNOWN discovery requests from clients.

v If discover = KNOWN, the administration server handles only KNOWN
discovery requests from clients.

v If discover = DISABLE, then the administration server will not handle any type
of discovery request. The information for this server system is essentially hidden
from clients.

The default discovery mode is SEARCH.

706 Database Administration Concepts and Configuration Reference

This parameter can only be updated from a Version 8 command line processor
(CLP).

exec_exp_task - Execute expired tasks
This parameter specifies whether or not the Scheduler will execute tasks that have
been scheduled in the past, but have not yet been executed.

Configuration type
DB2 Administration Server

Applies to
DB2 Administration Server

Parameter type
Configurable

Default [range]
No [Yes; No]

The Scheduler only detects expired tasks when it starts up. For example, if you
have a job scheduled to run every Saturday, and the Scheduler is turned off on
Friday and then restarted on Monday, the job scheduled for Saturday is now a job
that is scheduled in the past. If exec_exp_task is set to Yes, your Saturday job will
run when the Scheduler is restarted.

This parameter can only be updated from a Version 8 command line processor
(CLP).

jdk_path - Software Developer's Kit for Java installation path
DAS

This parameter specifies the directory under which the Software Developer's Kit
(SDK) for Java, to be used for running DB2 administration server functions, is
installed.

Configuration type
DB2 Administration Server

Applies to
DB2 Administration Server

Parameter type
Configurable Online

Propagation class
Immediate

Default [range]
Default Java install path [any valid path]

Environment variables used by the Java interpreter are computed from the value of
this parameter.

On Windows operating systems, Java files (if needed) are placed under the sqllib
directory (in java\jdk) during DB2 installation. The jdk_path configuration
parameter is then set to sqllib\java\jdk. Java is never actually installed by DB2 on
Windows platforms; the files are merely placed under the sqllib directory, and this
is done regardless of whether or not Java is already installed.

Chapter 21. Configuration parameters 707

This parameter can only be updated from a Version 8 command line processor
(CLP).

sched_enable - Scheduler mode
This parameter indicates whether or not the Scheduler is started by the
administration server.

Configuration type
DB2 Administration Server

Applies to
DB2 Administration Server

Parameter type
Configurable

Default [range]
Off [On; Off]

The Scheduler allows tools such as the Task Center to schedule and execute tasks
at the administration server.

This parameter can only be updated from a Version 8 command line processor
(CLP).

sched_userid - Scheduler user ID
This parameter specifies the user ID used by the Scheduler to connect to the tools
catalog database. This parameter is only relevant if the tools catalog database is
remote to the DB2 administration server.

Configuration type
DB2 Administration Server

Applies to
DB2 Administration Server

Parameter type
Informational

Default [range]
Null [any valid user ID]

The userid and password used by the Scheduler to connect to the remote tools
catalog database are specified using the db2admin command.

smtp_server - SMTP server
When the Scheduler is on, this parameter identifies the SMTP server that the
Scheduler will use to send e-mail and pager notifications.

Configuration type
DB2 Administration Server

Applies to
DB2 Administration Server

Parameter type
Configurable Online

Propagation class
Immediate

708 Database Administration Concepts and Configuration Reference

Default [range]
Null [any valid SMTP server TCP/IP hostname]

This parameter is used by the Scheduler and the Health Monitor.

This parameter can only be updated from a Version 8 command line processor
(CLP).

toolscat_db - Tools catalog database
This parameter indicates the tools catalog database used by the Scheduler.

Configuration type
DB2 Administration Server

Applies to
DB2 Administration Server

Parameter type
Configurable

Default [range]
Null [any valid database alias]

This database must be in the database directory of the instance specified by
toolscat_inst.

This parameter can only be updated from a Version 8 command line processor
(CLP).

toolscat_inst - Tools catalog database instance
This parameter indicates the instance name that is used by the Scheduler, along
with toolscat_db and toolscat_schema, to identify the tools catalog database.

Configuration type
DB2 Administration Server

Applies to
DB2 Administration Server

Parameter type
Configurable

Default [range]
Null [any valid instance]

The tools catalog database contains task information created by the Task Center
and the Control Center. The tools catalog database must be listed in the database
directory of the instance specified by this configuration parameter. The database
can be local or remote. If the tools catalog database is local, the instance must be
configured for TCP/IP. If the database is remote, the database partition cataloged
in the database directory must be a TCP/IP node.

This parameter can only be updated from a Version 8 command line processor
(CLP).

toolscat_schema - Tools catalog database schema
This parameter indicates the schema of the tools catalog database used by the
Scheduler.

Chapter 21. Configuration parameters 709

Configuration type
DB2 Administration Server

Applies to
DB2 Administration Server

Parameter type
Configurable

Default [range]
Null [any valid schema]

The schema is used to uniquely identify a set of tools catalog tables and views
within the database.

This parameter can only be updated from a Version 8 command line processor
(CLP).

710 Database Administration Concepts and Configuration Reference

Part 5. Appendixes

© Copyright IBM Corp. 1993, 2012 711

712 Database Administration Concepts and Configuration Reference

Appendix A. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:
v DB2 Information Center

– Topics (Task, concept and reference topics)
– Help for DB2 tools
– Sample programs
– Tutorials

v DB2 books
– PDF files (downloadable)
– PDF files (from the DB2 PDF DVD)
– printed books

v Command line help
– Command help
– Message help

Note: The DB2 Information Center topics are updated more frequently than either
the PDF or the hardcopy books. To get the most current information, install the
documentation updates as they become available, or refer to the DB2 Information
Center at ibm.com.

You can access additional DB2 technical information such as technotes, white
papers, and IBM Redbooks® publications online at ibm.com. Access the DB2
Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for
how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.
The DB2 documentation team reads all of your feedback, but cannot respond to
you directly. Provide specific examples wherever possible so that we can better
understand your concerns. If you are providing feedback on a specific topic or
help file, include the topic title and URL.

Do not use this e-mail address to contact DB2 Customer Support. If you have a
DB2 technical issue that the documentation does not resolve, contact your local
IBM service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications
Center at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.
English Version 9.7 manuals in PDF format can be downloaded from
www.ibm.com/support/docview.wss?uid=swg27015148 and translated DB2
manuals in PDF format can be downloaded from www.ibm.com/support/
docview.wss?uid=swg27015149.

© Copyright IBM Corp. 1993, 2012 713

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27015148
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27015149
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27015149

Although the tables identify books available in print, the books might not be
available in your country or region.

The form number increases each time a manual is updated. Ensure that you are
reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF
or the hard-copy books.

Table 76. DB2 technical information

Name Form Number Available in print Last updated

Administrative API
Reference

SC27-2435-03 Yes July, 2012

Administrative Routines
and Views

SC27-2436-03 No July, 2012

Call Level Interface
Guide and Reference,
Volume 1

SC27-2437-03 Yes July, 2012

Call Level Interface
Guide and Reference,
Volume 2

SC27-2438-03 Yes July, 2012

Command Reference SC27-2439-03 Yes July, 2012

Data Movement Utilities
Guide and Reference

SC27-2440-01 Yes July, 2012

Data Recovery and High
Availability Guide and
Reference

SC27-2441-03 Yes July, 2012

Database Administration
Concepts and
Configuration Reference

SC27-2442-03 Yes July, 2012

Database Monitoring
Guide and Reference

SC27-2458-03 Yes July, 2012

Database Security Guide SC27-2443-02 Yes July, 2012

DB2 Text Search Guide SC27-2459-03 Yes July, 2012

Developing ADO.NET
and OLE DB
Applications

SC27-2444-02 Yes July, 2012

Developing Embedded
SQL Applications

SC27-2445-02 Yes July, 2012

Developing Java
Applications

SC27-2446-03 Yes July, 2012

Developing Perl, PHP,
Python, and Ruby on
Rails Applications

SC27-2447-02 No July, 2012

Developing User-defined
Routines (SQL and
External)

SC27-2448-02 Yes July, 2012

Getting Started with
Database Application
Development

GI11-9410-02 Yes July, 2012

714 Database Administration Concepts and Configuration Reference

Table 76. DB2 technical information (continued)

Name Form Number Available in print Last updated

Getting Started with
DB2 Installation and
Administration on Linux
and Windows

GI11-9411-00 Yes August, 2009

Globalization Guide SC27-2449-00 Yes August, 2009

Installing DB2 Servers GC27-2455-03 Yes July, 2012

Installing IBM Data
Server Clients

GC27-2454-02 No July, 2012

Message Reference
Volume 1

SC27-2450-01 No August, 2009

Message Reference
Volume 2

SC27-2451-01 No August, 2009

Net Search Extender
Administration and
User's Guide

SC27-2469-02 No September, 2010

Partitioning and
Clustering Guide

SC27-2453-02 Yes July, 2012

pureXML Guide SC27-2465-02 Yes July, 2012

Query Patroller
Administration and
User's Guide

SC27-2467-00 No August, 2009

Spatial Extender and
Geodetic Data
Management Feature
User's Guide and
Reference

SC27-2468-02 No July, 2012

SQL Procedural
Languages: Application
Enablement and Support

SC27-2470-03 Yes July, 2012

SQL Reference, Volume 1 SC27-2456-03 Yes July, 2012

SQL Reference, Volume 2 SC27-2457-03 Yes July, 2012

Troubleshooting and
Tuning Database
Performance

SC27-2461-03 Yes July, 2012

Upgrading to DB2
Version 9.7

SC27-2452-03 Yes July, 2012

Visual Explain Tutorial SC27-2462-00 No August, 2009

What's New for DB2
Version 9.7

SC27-2463-03 Yes July, 2012

Workload Manager
Guide and Reference

SC27-2464-03 Yes July, 2012

XQuery Reference SC27-2466-01 No November, 2009

Appendix A. Overview of the DB2 technical information 715

Table 77. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

Installing and
Configuring DB2
Connect Personal Edition

SC27-2432-03 Yes July, 2012

Installing and
Configuring DB2
Connect Servers

SC27-2433-03 Yes July, 2012

DB2 Connect User's
Guide

SC27-2434-02 Yes September, 2010

Table 78. Information Integration technical information

Name Form Number Available in print Last updated

Information Integration:
Administration Guide for
Federated Systems

SC19-1020-02 Yes August, 2009

Information Integration:
ASNCLP Program
Reference for Replication
and Event Publishing

SC19-1018-04 Yes August, 2009

Information Integration:
Configuration Guide for
Federated Data Sources

SC19-1034-02 No August, 2009

Information Integration:
SQL Replication Guide
and Reference

SC19-1030-02 Yes August, 2009

Information Integration:
Introduction to
Replication and Event
Publishing

GC19-1028-02 Yes August, 2009

Ordering printed DB2 books

About this task

If you require printed DB2 books, you can buy them online in many but not all
countries or regions. You can always order printed DB2 books from your local IBM
representative. Keep in mind that some softcopy books on the DB2 PDF
Documentation DVD are unavailable in print. For example, neither volume of the
DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF
Documentation DVD can be ordered for a fee from IBM. Depending on where you
are placing your order from, you may be able to order books online, from the IBM
Publications Center. If online ordering is not available in your country or region,
you can always order printed DB2 books from your local IBM representative. Note
that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the
DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r7.

716 Database Administration Concepts and Configuration Reference

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7

To order printed DB2 books:

Procedure
v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access
publication ordering information and then follow the ordering instructions for
your location.

v To order printed DB2 books from your local IBM representative:
1. Locate the contact information for your local representative from one of the

following websites:
– The IBM directory of world wide contacts at www.ibm.com/planetwide
– The IBM Publications website at http://www.ibm.com/shop/

publications/order. You will need to select your country, region, or
language to the access appropriate publications home page for your
location. From this page, follow the "About this site" link.

2. When you call, specify that you want to order a DB2 publication.
3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical
library in hardcopy or PDF format” on page 713.

Displaying SQL state help from the command line processor
DB2 products return an SQLSTATE value for conditions that can be the result of an
SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state
class codes.

Procedure

To start SQL state help, open the command line processor and enter:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the
first two digits of the SQL state.
For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help
for the 08 class code.

Accessing different versions of the DB2 Information Center
About this task

For DB2 Version 9.8 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r8/.

For DB2 Version 9.7 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r7/.

For DB2 Version 9.5 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r5.

For DB2 Version 9.1 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

Appendix A. Overview of the DB2 technical information 717

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the DB2 Information Center URL at:
http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

Displaying topics in your preferred language in the DB2 Information
Center

About this task

The DB2 Information Center attempts to display topics in the language specified in
your browser preferences. If a topic has not been translated into your preferred
language, the DB2 Information Center displays the topic in English.

Procedure
v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...
button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of
languages.
– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the
fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the
Move Up button until the language is first in the list of languages.

3. Refresh the page to display the DB2 Information Center in your preferred
language.

v To display topics in your preferred language in a Firefox or Mozilla browser:
1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences
window.

2. Ensure your preferred language is specified as the first entry in the list of
languages.
– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.
– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Refresh the page to display the DB2 Information Center in your preferred

language.

Results

On some browser and operating system combinations, you must also change the
regional settings of your operating system to the locale and language of your
choice.

Updating the DB2 Information Center installed on your computer or
intranet server

A locally installed DB2 Information Center must be updated periodically.

718 Database Administration Concepts and Configuration Reference

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Before you begin

A DB2 Version 9.7 Information Center must already be installed. For details, see
the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in
Installing DB2 Servers. All prerequisites and restrictions that applied to installing
the Information Center also apply to updating the Information Center.

About this task

An existing DB2 Information Center can be updated automatically or manually:
v Automatic updates - updates existing Information Center features and

languages. An additional benefit of automatic updates is that the Information
Center is unavailable for a minimal period of time during the update. In
addition, automatic updates can be set to run as part of other batch jobs that run
periodically.

v Manual updates - should be used when you want to add features or languages
during the update process. For example, a local Information Center was
originally installed with both English and French languages, and now you want
to also install the German language; a manual update will install German, as
well as, update the existing Information Center features and languages.
However, a manual update requires you to manually stop, update, and restart
the Information Center. The Information Center is unavailable during the entire
update process.

This topic details the process for automatic updates. For manual update
instructions, see the “Manually updating the DB2 Information Center installed on
your computer or intranet server” topic.

Procedure

To automatically update the DB2 Information Center installed on your computer or
intranet server:
1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,
the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the update-ic script:

update-ic

2. On Windows operating systems,
a. Open a command window.
b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2
Information Center\Version 9.7 directory, where <Program Files>
represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the update-ic.bat file:

update-ic.bat

Results

The DB2 Information Center restarts automatically. If updates were available, the
Information Center displays the new and updated topics. If Information Center

Appendix A. Overview of the DB2 technical information 719

updates were not available, a message is added to the log. The log file is located in
doc\eclipse\configuration directory. The log file name is a randomly generated
number. For example, 1239053440785.log.

Manually updating the DB2 Information Center installed on your
computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install
documentation updates from IBM.

About this task

Updating your locally-installed DB2 Information Center manually requires that you:
1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone
mode prevents other users on your network from accessing the Information
Center, and allows you to apply updates. The Workstation version of the DB2
Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates
that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center
updates on a machine that is not connected to the internet, mirror the update
site to a local file system using a machine that is connected to the internet and
has the DB2 Information Center installed. If many users on your network will be
installing the documentation updates, you can reduce the time required for
individuals to perform the updates by also mirroring the update site locally
and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.
However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information Center
on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later
in this section must be run as an administrator. To open a command prompt or
graphical tool with full administrator privileges, right-click the shortcut and then
select Run as administrator.

Procedure

To update the DB2 Information Center installed on your computer or intranet server:
1. Stop the DB2 Information Center.

v On Windows, click Start > Control Panel > Administrative Tools > Services.
Then right-click DB2 Information Center service and select Stop.

v On Linux, enter the following command:
/etc/init.d/db2icdv97 stop

2. Start the Information Center in stand-alone mode.
v On Windows:

a. Open a command window.
b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

720 Database Administration Concepts and Configuration Reference

Program_Files\IBM\DB2 Information Center\Version 9.7 directory,
where Program_Files represents the location of the Program Files
directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the help_start.bat file:

help_start.bat

v On Linux:
a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information
Center.

3. Click the Update button (). (JavaScript must be enabled in your browser.)
On the right panel of the Information Center, click Find Updates. A list of
updates for existing documentation displays.

4. To initiate the installation process, check the selections you want to install, then
click Install Updates.

5. After the installation process has completed, click Finish.
6. Stop the stand-alone Information Center:

v On Windows, navigate to the installation directory's doc\bin directory, and
run the help_end.bat file:
help_end.bat

Note: The help_end batch file contains the commands required to safely stop
the processes that were started with the help_start batch file. Do not use
Ctrl-C or any other method to stop help_start.bat.

v On Linux, navigate to the installation directory's doc/bin directory, and run
the help_end script:
help_end

Note: The help_end script contains the commands required to safely stop the
processes that were started with the help_start script. Do not use any other
method to stop the help_start script.

7. Restart the DB2 Information Center.
v On Windows, click Start > Control Panel > Administrative Tools > Services.

Then right-click DB2 Information Center service and select Start.
v On Linux, enter the following command:

/etc/init.d/db2icdv97 start

Results

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials
The DB2 tutorials help you learn about various aspects of DB2 products. Lessons
provide step-by-step instructions.

Appendix A. Overview of the DB2 technical information 721

Before you begin

You can view the XHTML version of the tutorial from the Information Center at
http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any
prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML” in pureXML Guide
Set up a DB2 database to store XML data and to perform basic operations
with the native XML data store.

“Visual Explain” in Visual Explain Tutorial
Analyze, optimize, and tune SQL statements for better performance using
Visual Explain.

DB2 troubleshooting information
A wide variety of troubleshooting and problem determination information is
available to assist you with using DB2 database products.

DB2 documentation
Troubleshooting information can be found in the Troubleshooting and Tuning
Database Performance or the Database fundamentals section of the DB2
Information Center. The troubleshooting information contains topics that can
help you isolate and identify problems with DB2 diagnostic tools and
utilities. There are also solutions to some of the most common problems
and advice on how to solve problems you might encounter with your DB2
database products.

IBM Support Portal
See the IBM Support Portal if you are experiencing problems and want
help finding possible causes and solutions. The Technical Support site has
links to the latest DB2 publications, TechNotes, Authorized Program
Analysis Reports (APARs or bug fixes), fix packs, and other resources. You
can search through this knowledge base to find possible solutions to your
problems.

Access the IBM Support Portal at http://www.ibm.com/support/entry/
portal/Overview/Software/Information_Management/
DB2_for_Linux,_UNIX_and_Windows.

Terms and Conditions
Permissions for the use of these publications is granted subject to the following
terms and conditions.

Personal use: You may reproduce these Publications for your personal, non
commercial use provided that all proprietary notices are preserved. You may not
distribute, display or make derivative work of these Publications, or any portion
thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications
solely within your enterprise provided that all proprietary notices are preserved.

722 Database Administration Concepts and Configuration Reference

http://publib.boulder.ibm.com/infocenter/db2luw/v9
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows

You may not make derivative works of these Publications, or reproduce, distribute
or display these Publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the Publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the Publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix A. Overview of the DB2 technical information 723

724 Database Administration Concepts and Configuration Reference

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
Information about non-IBM products is based on information available at the time
of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information about the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements,
changes, or both in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 1993, 2012 725

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Canada Limited
U59/3600
3600 Steeles Avenue East
Markham, Ontario L3R 9Z7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems, and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

726 Database Administration Concepts and Configuration Reference

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies
v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.
v Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Oracle, its affiliates, or both.
v UNIX is a registered trademark of The Open Group in the United States and

other countries.
v Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

v Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix B. Notices 727

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

728 Database Administration Concepts and Configuration Reference

Index

A
Active Directory

configuring DB2 409
DB2 objects 410
extending directory schema 410
Lightweight Directory Access Protocol (LDAP) 391
security 409
support 408

ADC (automatic dictionary creation)
details 255

ADMIN_COPY_SCHEMA procedure
example 220

ADMIN_GET_TAB_COMPRESS_INFO table function
dictionary size 258

ADMIN_GET_TAB_INFO table function
dictionary size 258

AFTER triggers
details 339

agent_stack_sz database manager configuration
parameter 536

agentpri database manager configuration parameter 537
agents

configuration 39
configuration parameters

affecting number of agents 531
agent_stack_sz 536
agentpri 537
applheapsz 608
aslheapsz 541
maxagents 577
maxcagents 578
num_poolagents 582

aggregate registry variables 439
AIX

large page support 4
pinning shared memory 5
system commands

vmo 4, 5
alerts

summaries
DB2 Health Monitor 92

aliases
chaining process 227
creating 96
dropping 109
overview 227

alt_collate configuration parameter 605
alt_diagpath configuration parameter 539
ALTER TABLE statement

enabling compression 253
SET DATA TYPE option 276

ALTER TABLESPACE statement
examples 174

ALTER triggers
details 338

alternate_auth_enc configuration parameter
details 540

app_ctl_heap_sz database configuration parameter 605
append mode tables

comparison with other table types 233

appgroup_mem_sz database manager configuration
parameter 606

appl_memory database configuration parameter
details 607
memory parameter interactions 29

applheapsz configuration parameter
details 608

application control heap size configuration parameter 605
application development

sequences 360
application processes

connection states 102
application requesters 97
application support layer heap size configuration

parameter 541
application-directed distributed unit of work facility 101
applications

control heap 605
maximum number of coordinating agents at node 575
performance

comparison of sequences and identity columns 362
sequences 361

archretrydelay configuration parameter 609
aslheapsz configuration parameter 541
asynchronous index cleanup

details 53
ATTACH command

attaching to instances 67
attributes

Netscape LDAP 405
audit_buf_sz configuration parameter

details 543
authentication

trust all clients configuration parameter 603
trusted clients authentication configuration parameter 603

authentication configuration parameter
details 543

authentication DAS configuration parameter 702
AUTHID identifier

restrictions 385
authorities

defining group names
system administration authority group name

configuration parameter 598
system control authority group name configuration

parameter 599
system maintenance authority group name

configuration parameter 599
auto restart enable configuration parameter 613
auto_del_rec_obj database configuration parameter 609
auto_maint configuration parameter 610
auto_reval database configuration parameter

CREATE with errors support 229
details 612

AUTOCONFIGURE command
running Configuration Advisor 50
sample output 51

automatic
prefetch size adjustment

after adding or dropping containers 187

© Copyright IBM Corp. 1993, 2012 729

automatic dictionary creation (ADC)
details 255

automatic features 21
automatic maintenance

overview 23
windows 24

automatic memory tuning 32
automatic revalidation

details 228
automatic statistics collection

details 21
enabling 49

automatic storage
overview 21, 44

automatic storage databases
converting 89
creating 87
details 87
dropping storage paths

details 91
automatic storage paths

adding 90
automatic storage table spaces

adding storage 190
altering 190
changing 190
container names 139
converting 140, 189
details 136
dropping 190
reducing size 191

autonomic computing
overview 19

avg_appls configuration parameter 613

B
backup_pending configuration parameter 614
backups

tracking modified pages 697
base tables

comparison with other table types 233
BEFORE DELETE triggers

details 338
BEFORE triggers

comparison with check constraints 298
details 338, 339

bidirectional indexes
details 312

binding
configuration parameters 515, 516
database utilities 96

blank data type 239
blk_log_dsk_ful configuration parameter

details 614
block-structured devices 164
blocknonlogged database configuration parameter

details 615
books

ordering 716
buffer pools

creating 116
designing 113
dropping 118
memory

protection 115
modifying 117

buffer pools (continued)
overview 113
query optimization 531

built-in functions
optimistic locking 260

bypass federated authentication configuration parameter 562

C
caching

file system for table spaces 155
call level interface (CLI)

binding to a database 96
capacity

management 3
catalog cache size configuration parameter 615
CATALOG DATABASE command

example 95
catalog views

details 374
catalog_noauth configuration parameter 545
catalogcache_sz database configuration parameter 615
character serial devices 164
check constraints

BEFORE triggers comparison 298
designing 298
details 241
overview 289

check option
views 375

chngpgs_thresh configuration parameter 617
CIO/DIO

using as default 157
client I/O block size configuration parameter 586
client interface copy

default 8
clients

client I/O block size configuration parameter 586
TCP/IP service name configuration parameter 597

clnt_krb_plugin configuration parameter 545
clnt_pw_plugin configuration parameter 546
cluster_mgr configuration parameter 546
clustered indexes 312
clustering indexes

designing 322
clusters

managing
cluster manager name configuration parameter 546

code pages
database configuration parameter 618

codepage database configuration parameter 618
codeset database configuration parameter 618
collate_info database configuration parameter 618
columns

altering 280
constraints

overview 239
definitions 280
implicitly hidden 262, 268
ordering 240
properties 279
renaming 282

comm_bandwidth database manager configuration parameter
details 547
query optimization 531

command line processor (CLP)
binding to a database 96

730 Database Administration Concepts and Configuration Reference

commits
mincommit configuration parameter 663

communications
connection elapse time 547

compression
data row

details 248, 249
default system values 248
estimating storage savings 251
index

details 328
NULLs 259
of default system values 259
overview 44
table

column values 259
tables

creating 251
decompressing 254
enabling 253
index compression 328
rows 249

temporary tables 249
value 248, 259

compression dictionaries
automated creation 255
creating 21
description 255
forcing creation 258
KEEPDICTIONARY option 258
multiple 258
rebuilding 258
RESETDICTIONARY option 258
role in row compression 249
size reporting 258

concurrency
maximum number of active applications 658
transactions 97

configuration
agent and process model 39
file system caching 158
LDAP

user for applications 416
memory 37, 39

Configuration Advisor
defining the scope of configuration parameters 50
details 21, 49
generating recommended values 50
sample output 51

configuration file release level configuration parameter 585
configuration files

details 515
configuration parameters 626, 667, 669, 670

agent_stack_sz 536
agentpri 537
agents 531
alt_collate 605
alt_diagpath 539
alternate_auth_enc 540
app_ctl_heap_sz 605
appgroup_mem_sz 606
appl_memory 607
applheapsz 608
archretrydelay 609
aslheapsz 541
audit_buf_sz 543
authentication 543

configuration parameters (continued)
authentication (DAS) 702
auto_del_rec_obj 609
auto_maint 610
auto_reval 228, 612
autorestart 613
avg_appls 613
backup_pending 614
blk_log_dsk_ful 614
blocknonlogged 615
catalog_noauth 545
catalogcache_sz 615
chngpgs_thresh 617
clnt_krb_plugin 545
clnt_pw_plugin 546
cluster_mgr 546
codepage 618
codeset 618
collate_info 618
comm_bandwidth 547
Configuration Advisor for defining scope 50
configuring DB2 database manager 516
conn_elapse 547
connect_proc 619
contact_host 703
cpuspeed 548
cur_commit 620
das_codepage 703
das_territory 704
dasadm_group 704
database

changing 515
recommended values 50

database_consistent 621
database_level 621
database_memory 621
date_compat 548, 626
db_mem_thresh 625
db2system 705
dbheap 623
decflt_rounding 627
details 515
dft_account_str 549
dft_degree 628
dft_extent_sz 629
dft_loadrec_ses 629
dft_monswitches 549
dft_mttb_types 630
dft_prefetch_sz 630
dft_queryopt 631
dft_refresh_age 632
dft_sqlmathwarn 632
dftdbpath 551
diaglevel 551, 705
diagpath 552
diagsize 556
dir_cache 558
discover 559
discover (DAS) 706
discover_db 634
discover_inst 560
dlchktime 634
dyn_query_mgmt 635
enable_xmlchar 635
exec_exp_task 707
failarchpath 636
fcm_num_buffers 560

Index 731

configuration parameters (continued)
fcm_num_channels 561
fed_noauth 562
federated 563
federated_async 563
fenced_pool 564
group_plugin 565
groupheap_ratio 636
hadr_db_role 637
hadr_local_host 637
hadr_local_svc 638
hadr_peer_window 638
hadr_remote_host 639
hadr_remote_inst 639
hadr_remote_svc 640
hadr_syncmode 640
hadr_timeout 641
health_mon 566
indexrec 566, 642
instance_memory 568
interaction between memory parameters 29
intra_parallel 570
java_heap_sz 571
jdk_64_path 644
jdk_path 572
jdk_path (DAS) 707
keepfenced 572
local_gssplugin 573
locklist 644
locktimeout 647
log_retain_status 648
logarchmeth1 648
logarchmeth2 649
logarchopt1

details 650
logarchopt2

details 651
logbufsz 651
logfilsiz 652
loghead 653
logindexbuild 653
logpath 654
logprimary 654
logretain 655
logsecond 656
max_connections

details 574
restrictions 534

max_connretries 574
max_coordagents

details 575
restrictions 534

max_querydegree 575
max_time_diff 576
maxagents 577
maxappls 658
maxcagents 578
maxfilop 659
maxlocks 660
maxlog 657
min_dec_div_3 662
mincommit 663
mirrorlogpath 664
mon_act_metrics 665
mon_deadlock 666
mon_heap_sz 579
mon_lockwait 668

configuration parameters (continued)
mon_lw_thresh 669
mon_obj_metrics 669
mon_req_metrics 670
mon_uow_metrics 671
multipage_alloc 672
newlogpath 672
nodetype 580
notifylevel 580
num_db_backups 674
num_freqvalues 674
num_initagents 581
num_initfenced 582
num_iocleaners 675
num_ioservers 677
num_poolagents 582
num_quantiles 678
numarchretry 680
number_compat 680
numdb 583
numlogspan 678
numsegs 680
overflowlogpath 681
pagesize 682
pckcachesz 682
priv_mem_thresh 684
query optimization 531
query_heap_sz 584
rec_his_retentn 684
recompiling 533
release 585
restore_pending 685
restrict_access 685
resync_interval 585
rollfwd_pending 686
rqrioblk 586
sched_enable 708
sched_userid 708
section_actuals 686
self_tuning_mem 687
seqdetect 688
sheapthres 587
sheapthres_shr 689
smtp_server 690, 708
softmax 690
sortheap 692
spm_log_file_sz 589
spm_log_path 589
spm_max_resync 590
spm_name 590
sql_ccflags 693
srv_plugin_mode 592
srvcon_auth 590
srvcon_gssplugin_list 591
srvcon_pw_plugin 592
ssl_cipherspecs 592
ssl_clnt_keydb 593
ssl_clnt_stash 593
ssl_svcename 596
ssl_svr_keydb 594
ssl_svr_label 594
ssl_svr_stash 595
ssl_versions 597
start_stop_time 595
stat_heap_sz 694
stmt_conc 695
stmtheap 695

732 Database Administration Concepts and Configuration Reference

configuration parameters (continued)
summary 519
svcename 597
sysadm_group 598
sysctrl_group 599
sysmaint_group 599
sysmon_group 600
territory 697
tm_database 600
toolscat_db 709
toolscat_inst 709
toolscat_schema 710
tp_mon_name 601
trackmod 697
trust_allclnts 603
trust_clntauth 603
tsm_mgmtclass 697
tsm_nodename 698
tsm_owner 698
tsm_password 699
user_exit_status 699
userexit 699
util_heap_sz 700
util_impact_lim 604
varchar2_compat 701
vendoropt

details 701
wlm_collect_int 702

conn_elapse configuration parameter 547
Connect stored procedure name configuration parameter 619
connect_proc configuration parameter

details 619
connection elapsed time configuration parameter 547
connection states

application processes 102
details 103

connections
elapsed time 547

constraints
(table) check 291
BEFORE triggers comparison 298
creating

overview 306
definitions

foreign keys 299
referential 299
viewing 308

designing 296, 298
details 289
dropping

ALTER TABLE statement 309
foreign key interactions 302
informational 291, 296, 304
modifying 306
NOT NULL 290
primary key

details 291
effects on index reuse 308

referential 291
table check 291
types 289
unique 291, 312
unique key

details 290
effects on index reuse 308

contact_host configuration parameter 703

containers
adding

adjusting prefetch size 187
DMS table spaces

adding 177
adding containers 174
dropping 177
dropping containers 175
modifying containers 175
rebalancing 177
reducing containers 175

dropping
adjusting prefetch size 187

Coordinated Universal Time
max_time_diff configuration parameter 576

cpuspeed configuration parameter
details 548
query optimization effect 531

CREATE DATABASE command
example 85

CREATE GLOBAL TEMPORARY TABLE statement
creating created temporary tables 270

CREATE TABLE statement
referential constraints 299

CREATE TABLESPACE statement
adjusting system temporary table spaces page sizes 152

created temporary tables
comparison between table types 274

cur_commit database configuration parameter
details 620

CURRENT SCHEMA special register
identifying schema names 217

Customizing
application environment

connect procedure 104

D
DAS discovery mode configuration parameter 706
das_codepage configuration parameter 703
das_territory configuration parameter 704
dasadm_group configuration parameter 704
data

access
optimization 23

compression
dictionary 258

organizing
table partitioning 269

representation 108
data defragmentation

overview 23
data partitions

creating 272
data types

columns 235
default values 239
setting

ALTER TABLE statement 276
database

configuration parameters
smtp_server 690

database configuration file
changing 81
creating 77

database directories
structure 75

Index 733

database heap configuration parameter 623
database manager

binding utilities 96
limits 421
machine node type configuration parameter 580
multiple instances 13
starting 595
stopping 595

database manager configuration parameters
recommended values 50
summary 519

database objects
CREATE with errors support 229
naming rules

NLS 389
overview 386
Unicode 390

overview 225
REPLACE option 229
statement dependencies when modifying 303
unlimited REORG-recommended operations 276

database partitions
cataloging 78
node directory 78
overview 111

database system monitor
default database system monitor switches configuration

parameter 549
database territory code configuration parameter 620
database_consistent configuration parameter 621
database_level configuration parameter 621
database_memory database configuration parameter

details 621
interaction between memory parameters 29
self-tuning 24, 25

database-managed space (DMS)
containers

dropping 177
rebalancing 177
reducing size 175

details 125
devices 151
page sizes 162
table sizes 162
table spaces

altering 174
automatic storage 140, 189
containers (dropping) 175
containers (rebalancing) 177
containers (reducing) 175
creating 164
maps 128
sizes 162

workloads 150
databases

aliases
creating 96

appl_memory configuration parameter 607
automatic storage

converting 89
creating 87
overview 87

autorestart configuration parameter 613
backup_pending configuration parameter 614
backups

automated 21, 23

databases (continued)
cataloging

overview 95
codepage configuration parameter 618
codeset configuration parameter 618
collating information 618
configuration parameter summary 519
configuring

multiple partitions 42
designing

overview 73
distributed 73
dropping

DROP DATABASE command 109
maximum number of concurrently active databases

configuration parameter 583
package dependencies 303
partitioned 73
release level configuration parameter 585
restoring 92
size estimates 82
territory code configuration parameter 620
territory configuration parameter 697

DATE data type
default value 239

date_compat database configuration parameter
overview 548, 626

db_mem_thresh configuration parameter 625
DB2 administration server (DAS)

configuration parameters
authentication 702
contact_host 703
das_codepage 703
das_territory 704
dasadm_group 704
db2system 705
exec_exp_task 707
jdk_64_path 644
jdk_path 707
sched_enable 708
sched_userid 708
smtp_server 708
toolscat_db 709
toolscat_inst 709
toolscat_schema 710

multiple DB2 copies setup 11
DB2 copies

default IBM database client interface copy 8
multiple on same computer

DB2 administration server (DAS) setting 11
default instance setting 12
overview 7

updating
Linux 15
UNIX 15
Windows 16

DB2 Information Center
languages 718
updating 719, 720
versions 717

DB2 servers
capacity management 3
overview 3
post-upgrade tasks

adjusting system temporary table space page sizes 152
DB2_ALLOCATION_SIZE registry variable

description 474

734 Database Administration Concepts and Configuration Reference

DB2_ALTERNATE_GROUP_LOOKUP environment
variable 452

DB2_ANTIJOIN variable 469
DB2_APM_PERFORMANCE variable 474
DB2_ASYNC_IO_MAXFILOP registry variable

description 474
DB2_ATS_ENABLE registry variable

details 493
DB2_AVOID_PREFETCH variable 474
DB2_BACKUP_USE_DIO registry variable 474
DB2_CAPTURE_LOCKTIMEOUT registry variable

details 443
DB2_CLP_EDITOR registry variable 465
DB2_CLP_HISTSIZE registry variable 465
DB2_CLPPROMPT registry variable 465
DB2_COLLECT_TS_REC_INFO registry variable 443
DB2_COMMIT_ON_EXIT registry variable 493
DB2_COMPATIBILITY_VECTOR registry variable

overview 493
DB2_CONNRETRIES_INTERVAL registry variable

details 443
DB2_COPY_NAME environment variable 452
DB2_CREATE_DB_ON_PATH registry variable 493
DB2_DDL_SOFT_INVAL registry variable

details 493
DB2_DEFERRED_PREPARE_SEMANTICS registry variable

details 469
DB2_DIAGPATH variable

description 452
DB2_DISABLE_FLUSH_LOG registry variable 493
DB2_DISPATCHER_PEEKTIMEOUT registry variable 493
DB2_DJ_INI variable 493
DB2_DOCHOST variable 493
DB2_DOCPORT variable 493
DB2_ENABLE_AUTOCONFIG_DEFAULT variable 493
DB2_ENABLE_LDAP variable

details 493
DB2_EVALUNCOMMITTED registry variable

description 474
DB2_EVMON_EVENT_LIST_SIZE registry variable 493
DB2_EVMON_STMT_FILTER registry variable

details 493
DB2_EXPRESSION_RULES registry variable 443
DB2_EXTENDED_IN2JOIN variable 474
DB2_EXTENDED_IO_FEATURES variable

description 474
DB2_EXTENDED_OPTIMIZATION variable 474
DB2_EXTSECURITY registry variable 493
DB2_FALLBACK variable 493
DB2_FCM_SETTINGS registry variable 467
DB2_FMP_COMM_HEAPSZ variable 493
DB2_FORCE_APP_ON_MAX_LOG registry variable 443
DB2_FORCE_NLS_CACHE registry variable

details 462
DB2_FORCE_OFFLINE_ADD_PARTITION registry

variable 467
DB2_GRP_LOOKUP variable 493
DB2_HADR_BUF_SIZE variable 493
DB2_HADR_NO_IP_CHECK variable 493
DB2_HADR_PEER_WAIT_LIMIT registry variable 493
DB2_HADR_SOSNDBUF registry variable 493
DB2_HASH_JOIN registry variable

description 474
DB2_HISTORY_FILTER registry variable 493
DB2_INLIST_TO_NLJN registry variable 469
DB2_IO_PRIORITY_SETTING registry variable 474

DB2_KEEP_AS_AND_DMS_CONTAINERS_OPEN registry
variable 474

DB2_KEEPTABLELOCK registry variable 474
DB2_LARGE_PAGE_MEM registry variable

description 474
DB2_LIC_STAT_SIZE registry variable 443
DB2_LIKE_VARCHAR registry variable 469
DB2_LIMIT_FENCED_GROUP registry variable

details 493
DB2_LOAD_COPY_NO_OVERRIDE variable 493
DB2_LOGGER_NON_BUFFERED_IO registry variable 474
DB2_MAP_XML_AS_CLOB_FOR_DLC registry variable

details 493
DB2_MAX_CLIENT_CONNRETRIES registry variable

details 443
DB2_MAX_INACT_STMTS variable 474
DB2_MAX_LOB_BLOCK_SIZE variable 493
DB2_MAX_NON_TABLE_LOCKS variable 474
DB2_MDC_ROLLOUT registry variable

description 474
DB2_MEM_TUNING_RANGE variable 474
DB2_MEMORY_PROTECT registry variable 493
DB2_MIN_IDLE_RESOURCES registry variable

details 493
DB2_MINIMIZE_LISTPREFETCH registry variable 469
DB2_MMAP_READ variable 474
DB2_MMAP_WRITE variable 474
DB2_NCHAR_SUPPORT registry variable

details 493
DB2_NEW_CORR_SQ_FF variable 469
DB2_NO_FORK_CHECK registry variable

description 474
DB2_NUM_CKPW_DAEMONS registry variable 493
DB2_NUM_FAILOVER_NODES registry variable 467
DB2_OBJECT_TABLE_ENTRIES registry variable 443
DB2_OPT_MAX_TEMP_SIZE registry variable 469
DB2_OPTSTATS_LOG registry variable 493
DB2_OVERRIDE_BPF variable 474
DB2_PARALLEL_IO registry variable 209

description 452
using 187

DB2_PARTITIONEDLOAD_DEFAULT registry variable 467
DB2_PINNED_BP registry variable

description 474
DB2_PMAP_COMPATIBILITY registry variable

details 452
DB2_PMODEL_SETTINGS registry variable 462
DB2_RCT_FEATURES registry variable 474
DB2_REDUCED_OPTIMIZATION registry variable

details 469
DB2_RESOLVE_CALL_CONFLICT variable 493
DB2_RESOURCE_POLICY registry variable

description 474
DB2_RESTORE_GRANT_ADMIN_AUTHORITIES registry

variable
details 452

DB2_SAS_SETTINGS registry variable 493
DB2_SELECTIVITY registry variable 469
DB2_SELUDI_COMM_BUFFER registry variable 474
DB2_SERVER_CONTIMEOUT registry variable 493
DB2_SERVER_ENCALG registry variable

details 493
DB2_SET_MAX_CONTAINER_SIZE registry variable

description 474
DB2_SKIPDELETED registry variable 474
DB2_SKIPINSERTED registry variable 474
DB2_SMS_TRUNC_TMPTABLE_THRESH variable 474

Index 735

DB2_SORT_AFTER_TQ variable 474
DB2_SQLROUTINE_PREPOPTS registry variable

details 469
DB2_SQLWORKSPACE_CACHE registry variable 474
DB2_SYSTEM_MONITOR_SETTINGS registry variable 443
DB2_TRUNCATE_REUSESTORAGE registry variable 493
DB2_TRUSTED_BINDIN registry variable

description 474
DB2_UPDDBCFG_SINGLE_DBPARTITION variable

description 452
DB2_USE_ALTERNATE_PAGE_CLEANING registry variable

description 474
DB2_USE_DB2JCCT2_JROUTINE variable

details 493
DB2_USE_FAST_PREALLOCATION registry variable 474
DB2_USE_PAGE_CONTAINER_TAG variable

description 452
performance impact 209

DB2_UTIL_MSGPATH registry variable 493
DB2_VENDOR_INI registry variable 493
DB2_VIEW_REOPT_VALUES registry variable 443
DB2_WORKLOAD aggregate registry variable

description 452
DB2_XBSA_LIBRARY registry variable 493
DB2ACCOUNT registry variable

details 443
DB2ADMINSERVER variable 493
DB2ASSUMEUPDATE registry variable 474
DB2AUTH registry variable 493
DB2BIDI registry variable

details 443
DB2BPVARS registry variable

description 474
DB2BQTIME registry variable 465
DB2BQTRY registry variable 465
DB2CHECKCLIENTINTERVAL variable 462
DB2CHGPWD_EEE registry variable 467
DB2CHKPTR variable 474
DB2CHKSQLDA variable 474
DB2CLIINIPATH variable

details 493
DB2CODEPAGE registry variable

details 443
DB2COMM registry variable

details 462
DB2CONNECT_DISCONNECT_ON_INTERRUPT

variable 493
DB2CONNECT_ENABLE_EURO_CODEPAGE 452
DB2CONNECT_IN_APP_PROCESS environment variable 452
DB2CONSOLECP registry variable 443
DB2COUNTRY registry variable 443
DB2DBDFT variable 443
DB2DBMSADDR registry variable 452
DB2DEFPREP registry variable 493
DB2DISCOVERYTIME registry variable 443
DB2DMNBCKCTLR registry variable 493
DB2DOMAINLIST variable

description 452
db2envar.bat command

switching DB2 copies 12
DB2ENVLIST environment variable 452
DB2FCMCOMM variable 462
DB2FFDC registry variable 443
DB2FODC registry variable

details 443
DB2GRAPHICUNICODESERVER registry variable

details 443

db2icrt command
creating instances 62

db2idrop command
dropping instances 70

DB2INCLUDE registry variable 443
DB2INSTANCE environment variable

defining default instance 13
description 452
setting 12

DB2INSTDEF registry variable
details 443
setting 12

DB2INSTOWNER registry variable 443
DB2INSTPROF registry variable

description 452
location 515

DB2IQTIME registry variable 465
db2iupdt command

updating instance configuration
Linux 63
UNIX 63
Windows 65

DB2LDAP_BASEDN variable
details 493

DB2LDAP_CLIENT_PROVIDER registry variable
details 493
IBM LDAP client 402

DB2LDAP_KEEP_CONNECTION registry variable
details 493

DB2LDAP_SEARCH_SCOPE variable
details 493

DB2LDAPCACHE variable 493
DB2LDAPHOST variable

details 493
DB2LDAPSecurityConfig environment variable 452
db2ldcfg command

configuring LDAP user 416
DB2LIBPATH environment variable 452
DB2LOADREC registry variable

details 493
DB2LOCALE registry variable

details 443
DB2LOCK_TO_RB variable 493
DB2LOGINRESTRICTIONS variable 452
DB2MAXFSCRSEARCH variable 474
DB2MEMDISCLAIM registry variable 474
DB2MEMMAXFREE registry variable

description 474
db2move command

COPY schema errors 222
schema copying examples 221

DB2NODE environment variable
description 452

db2nodes.cfg file
creating 79
overview 60

DB2NOEXITLIST registry variable
details 493

DB2NTMEMSIZE variable 474
DB2NTNOCACHE registry variable

description 474
NO FILE SYSTEM CACHING clause comparison 155

DB2NTPRICLASS registry variable
description 474

DB2NTWORKSET variable 474
DB2OPTIONS environment variable

description 452

736 Database Administration Concepts and Configuration Reference

DB2PATH environment variable 452
DB2PORTRANGE registry variable 467
DB2PRIORITIES registry variable

description 474
DB2PROCESSORS environment variable 452
DB2RCMD_LEGACY_MODE environment variable 452
DB2REMOTEPREG variable 493
DB2RESILIENCE environment variable

details 452
DB2ROUTINE_DEBUG registry variable 493
DB2RQTIME registry variable 465
DB2RSHCMD registry variable 462
DB2RSHTIMEOUT registry variable 462
DB2SATELLITEID variable 493
db2SelectDB2Copy API

switching DB2 copies 12
db2set command

setting registry and environment variables 434
DB2SORCVBUF variable

details 462
DB2SORT variable 493
DB2SOSNDBUF variable

details 462
DB2STMM registry variable

details 493
db2system configuration parameter 705
DB2SYSTEM environment variable 452
DB2TCP_CLIENT_CONTIMEOUT registry variable 462
DB2TCP_CLIENT_KEEPALIVE_TIMEOUT registry variable

details 462
DB2TCP_CLIENT_RCVTIMEOUT registry variable

details 462
DB2TCPCONNMGRS registry variable 462
DB2TERRITORY registry variable

details 443
DBCS (double-byte character set)

see double-byte character set (DBCS) 389
dbheap database configuration parameter

details 623
DDL

details 73
statements

details 73
supported by automatic revalidation 228
supported by soft invalidation 227

deadlocks
checking for 634
dlchktime configuration parameter 634

dec_to_char_fmt database configuration parameter
details 626

decflt_rounding database configuration parameter 627
decimal division scale to 3 configuration parameter 662
DECLARE GLOBAL TEMPORARY TABLE statement

declaring temporary tables 270
declared temporary tables

comparison to other table types 274
deep compression

See row compression
default database path configuration parameter 551
default number of SMS containers configuration

parameter 680
default values

compression for 259
deferred index cleanup

monitoring 55
deletable views

details 377

delete rule
details 291

delimited identifiers
naming rules 388

dependent rows
overview 291

dependent tables
overview 291

descendent row
overview 291

descendent table
overview 291

design
tables 234

DETACH command
detaching from instances 67

dft_account_str configuration parameter 549
dft_degree configuration parameter

details 628
effect on query optimization 531

dft_extent_sz configuration parameter 629
dft_loadrec_ses configuration parameter 629
dft_mon_bufpool configuration parameter 549
dft_mon_lock configuration parameter 549
dft_mon_sort configuration parameter 549
dft_mon_stmt configuration parameter 549
dft_mon_table configuration parameter 549
dft_mon_timestamp configuration parameter 549
dft_mon_uow configuration parameter 549
dft_monswitches configuration parameter 549
dft_mttb_types configuration parameter 630
dft_prefetch_sz configuration parameter 630
dft_queryopt configuration parameter 631
dft_refresh_age configuration parameter

details 632
dft_sqlmathwarn configuration parameter 632
dftdbpath configuration parameter 551
diaglevel configuration parameter 705

details 551
diagpath configuration parameter 552
diagsize database manager configuration parameter

details 556
dictionaries

row compression 255
dir_cache configuration parameter 558
directories

instance 60
local database

details 78
viewing 109

node
cataloguing database partition 78
viewing 78

system database
details 78
viewing 109

directory cache support configuration parameter
details 558

directory schema
extending

IBM Tivoli Directory Server 404
Sun One Directory Server 407

discover server instance configuration parameter 560
discover_db configuration parameter 634
discover_inst configuration parameter 560
discovery feature

discovery mode configuration parameter 559

Index 737

discovery mode configuration parameter 559
distinct types

user-defined 239
distributed relational databases

connecting to 97
remote units of work 98

dlchktime configuration parameter 634
DMS (database-managed space)

see database-managed space (DMS) 125
documentation

overview 713
PDF files 713
printed 713
terms and conditions of use 722

double-byte character set (DBCS)
naming rules 389

dyn_query_mgmt configuration parameter
details 635

E
enable_xmlchar database configuration parameter 635
environment variables

overview 440
profile registry 433
setting 434

Linux and UNIX 437
partitioned database environment 438
Windows 436

estimating compression savings 251
exec_exp_task configuration parameter 707
expressions

NEXT VALUE 359
PREVIOUS VALUE 359

extents
sizes in table spaces 161

F
failarchpath configuration parameter 636
FCM (fast communication manager)

channels 561
monitor elements

fcm_num_buffers 560
fcm_num_channels 561

fcm_num_buffers configuration parameter
details 560

fcm_num_channels configuration parameter
details 561

fed_noauth configuration parameter 562
federated configuration parameter 563
federated databases

system support configuration parameter 563
federated_async database manager configuration

parameter 563
fenced_pool database manager configuration parameter 564
fenced-mode processes

running vendor library functions 44
file names

general 385
file systems

caching for table spaces 155, 158
recommended 74

first active log file configuration parameter 653
first-fit order 245

foreign keys
composite 299
constraint names 299
designing 299
details 291
overview 289, 302
utility implications 303

G
generated columns

defining 237
examples 237
modifying 280

global-level profile registry 433
group_plugin configuration parameter 565
groupheap_ratio database manager configuration

parameter 636
groups

names 388

H
hadr_db_role configuration parameter 637
hadr_local_host configuration parameter 637
hadr_local_svc configuration parameter 638
hadr_peer_window database configuration parameter 638
hadr_remote_host configuration parameter 639
hadr_remote_inst configuration parameter 639
hadr_remote_svc configuration parameter 640
hadr_syncmode configuration parameter 640
hadr_timeout configuration parameter 641
hard invalidation of database objects 227
health monitor

details 21
health_mon configuration parameter 566

health_mon configuration parameter 566
heaps

configuring 37
help

configuring language 718
SQL statements 717

high water marks
lowering

automatic storage table spaces 143, 191
DMS table spaces 143, 186

overview 141
historical compression dictionary 258

I
I/O

parallelism
RAID devices 209

table space design 163
IBM database client interface copies

default 8
IBM eNetwork Directory

object classes and attributes 392
IBM SecureWay Directory Server 404
identifiers

length limits 421
identity columns

defining on new tables 238
example 238
modifying 280

738 Database Administration Concepts and Configuration Reference

identity columns (continued)
sequence comparison 362, 364

IMPLICIT_SCHEMA (implicit schema) authority
details 213

index compression
details 328
restrictions 328

indexes
asynchronous cleanup 53, 55
bidirectional 312
clustered 312
creating

nonpartitioned tables 331
nonpartitioned, for partitioned tables 331
partitioned, for partitioned tables 333

deferred cleanup 55
Design Advisor 324
designing 322, 324
details 311
dropping 336
improving performance 312
modifying 334
non-clustered 312
non-unique 312
nonpartitioned 315
partitioned

overview 317
partitioned tables

nonpartitioned indexes 315, 331
overview 314
partitioned indexes 317

rebuilding 335
renaming 334
reusing 308
space requirements 324
unique 312

indexrec configuration parameter 566, 642
informational constraints

designing 304
details 291, 296
overview 289

initial number of agents in pool configuration parameter 581
initial number of fenced processes configuration

parameter 582
inline storage

LOBs
details 246

XML data 246
insert rule 291
insertable views

overview 378
instance directories 60
instance level profile registry

setting variables in a partitioned database
environment 438

instance node-level profile registry 433
instance profile registry 433
instance_memory configuration parameter 29
instance-level profile registry

overview 433
instances

auto-starting 66
creating

additional 62
current 438
default 12, 57, 59
designing 58

instances (continued)
environment variables 438
instance_memory configuration parameter 568
modifying 63
multiple

Linux 60
overview 13
UNIX 60
Windows 14, 61

overview 13, 57
profile registry 433
removing 70
running concurrently 17, 18, 67
starting

Linux 66
UNIX 66
Windows 66

stopping
Linux 68
UNIX 68
Windows 69

updating configurations
Linux 63
UNIX 63
Windows 65

INSTEAD OF triggers
details 340
overview 338

intra_parallel database manager configuration parameter 570
invalidation

hard 227
soft 227

J
java_heap_sz database manager configuration parameter 571
jdk_64_path configuration parameter 644
jdk_path configuration parameter

details 572
jdk_path DAS configuration parameter 707

K
keepfenced configuration parameter

details 572
keys

foreign
details 291

parent 291

L
label-based access control (LBAC)

limits 421
optimistic locking 262
security labels

component name length 421
name length 421

security policies
name length 421

large objects (LOBs)
caching 151
storage

inline 246
large page support

AIX 4

Index 739

library functions
running in fenced-mode processes 44

Lightweight Directory Access Protocol (LDAP)
attaching remotely 418
attributes 392
cataloging node entries 414
configurations 402
creating a user 415
DB2 Connect 403
deregistering

databases 415
servers 414

details 391
directory service 84
disabling 416
enabling 411
extending directory schema 402
object classes 392
protocol information 417
refreshing entries 418
registering

databases 414
DB2 servers 412
host databases 403

registry variables 416
rerouting clients 417
searching

directory domains 419
directory partitions 419

security 391
user creation 415
Windows 2000 active directory 410

limits
SQL 421

local database directory
details 78
viewing 109

local_gssplugin configuration parameter 573
locking services

optimistic 260
locklist configuration parameter

details 644
query optimization 531

locks
maximum percent of lock list before escalation

configuration parameter 660
maximum storage for lock list configuration

parameter 644
optimistic 260
time interval for checking deadlock configuration

parameter 634
locktimeout configuration parameter 647
log_retain_status configuration parameter 648
logarchmeth1 configuration parameter

details 648
logarchmeth2 configuration parameter

details 649
logarchopt1 configuration parameter

details 650
logarchopt2 configuration parameter

details 651
logbufsz database configuration parameter

details 651
logfilsiz database configuration parameter

details 652
loghead configuration parameter 653
logindexbuild configuration parameter 653

logpath configuration parameter 654
logprimary database configuration parameter

details 654
logretain database configuration parameter

details 655
logs

configuration parameters
blk_log_dsk_ful 614
log_retain_status 648
logbufsz 651
logfilsiz 652
loghead 653
logpath 654
logprimary 654
logretain 655
logsecond 656
mirrorlogpath 664
newlogpath 672
overflowlogpath 681
softmax 690
userexit 699

database recovery 82
raw devices 170
space requirements

overview 83
logsecond configuration parameter

overview 656
LONG data type

caching 151
long fields 151

M
maintenance

automatic 23
windows 24

materialized query tables (MQTs)
altering properties 278
dropping 284
refreshing data 278

max_connections database manager configuration
parameter 534

max_connretries configuration parameter 574
max_coordagents database manager configuration parameter

details 575
restrictions 534

max_logicagents configuration parameter 574
max_querydegree configuration parameter 575
max_time_diff configuration parameter 576
maxagents database manager configuration parameter

details 577
maxappls configuration parameter

details 658
effect on memory use 27

maxcagents database manager configuration parameter 578
maxcoordagents configuration parameter 27
MAXDARI configuration parameter

renamed to fenced_pool configuration parameter 564
maxfilop database configuration parameter 659
maximum database files open per application configuration

parameter 659
maximum Java interpreter heap size configuration

parameter 571
maximum log per transaction configuration parameter 657
maximum number of active applications configuration

parameter 658
maximum number of agents configuration parameter 577

740 Database Administration Concepts and Configuration Reference

maximum number of concurrent agents configuration
parameter 578

maximum number of concurrently active databases
configuration parameter 583

maximum number of coordinating agents configuration
parameter 575

maximum number of fenced processes configuration
parameter 564

maximum percent of lock list before escalation configuration
parameter 660

maximum query degree of parallelism configuration parameter
details 575
effect on query optimization 531

maximum size of application group memory set configuration
parameter 606

maximum storage for lock list configuration parameter 644
maximum time difference among nodes configuration

parameter 576
maxlocks configuration parameter

details 660
maxlog configuration parameter 657
memory

allocating
overview 27

applheapsz configuration parameter 608
application memory configuration parameter 607
aslheapsz configuration parameter 541
configuring 37, 39
dbheap configuration parameter 623
instance memory configuration parameter 568
interaction between memory parameters 29
package cache size configuration parameter 682
partitioned database environments 35
self-tuning 24, 25, 26
sort heap size configuration parameter 692
sort heap threshold configuration parameter 587
statement heap size configuration parameter 695

min_dec_div_3 configuration parameter 662
mincommit database configuration parameter

details 663
mirror log path configuration parameter 664
mirrorlogpath database configuration parameter

details 664
mon_act_metrics configuration parameter

details 665
mon_deadlock configuration parameter

details 666
mon_heap_sz database manager configuration parameter

details 579
mon_lck_msg_lvl 669
mon_lck_msg_lvl configuration parameter 669
mon_locktimeout 667
mon_locktimeout configuration parameter 667
mon_lockwait configuration parameter

details 668
mon_lw_thresh configuration parameter

details 669
mon_obj_metrics configuration parameter

details 669
mon_pkglist_sz 670
mon_pkglist_sz configuration parameter 670
mon_req_metrics configuration parameter

details 670
mon_uow_metrics configuration parameter

details 671
multidimensional clustering (MDC) tables

comparison with other table types 233

multidimensional clustering (MDC) tables (continued)
deferred index cleanup 55

multipage_alloc configuration parameter 672
multiple DB2 copies

default IBM database client interface copy 8
overview 7
running instances concurrently 18, 67
setting default instance 12

multiple instances
Linux 60
overview 13
UNIX 60
Windows 14, 61

N
naming conventions

DB2 objects 386
delimited identifiers and object names 388
general 385
groups 388
national languages 389
schema name restrictions 217
Unicode 390
user IDs 388
users 388

nested views
definitions 377

Netscape browser support
LDAP directory support 405

newlogpath database configuration parameter
details 672

NEXT VALUE expression
sequences 359
using identity columns 364

node configuration files
creating 79

node connection retries configuration parameter 574
node directories

cataloguing database partitions 78
details 78
viewing 78

nodes
connection elapse time 547
coordinating agents 575
maximum time difference among 576

nodetype configuration parameter 580
non-buffered I/O

disabling 155
enabling 155

non-clustered indexes 312
non-unique indexes 312
nonpartitioned indexes

creating for partitioned tables 331
overview 314, 315

nonpartitioned tables
creating indexes 331

NOT NULL constraints
overview 290
types 289

notices 725
notify level configuration parameter

overview 580
NULL

data type 239
num_db_backups configuration parameter 674
num_freqvalues configuration parameter 674

Index 741

num_initfenced database manager configuration parameter
details 582

num_iocleaners configuration parameter 675
num_ioservers configuration parameter 677
num_poolagents database manager configuration parameter

details 582
num_quantiles configuration parameter 678
numarchretry configuration parameter 680
number log span configuration parameter 678
number of commits to group configuration parameter 663
number of database backups configuration parameter 674
number_compat database configuration parameter

details 680
numdb database manager configuration parameter

details 583
effect on memory use 27

numinitagents configuration parameter 581
numlogspan configuration parameter 678
numsegs database configuration parameter 680

O
objects

names 388
offline maintenance 24
online maintenance 24
online transaction processing (OLTP)

table space design 150
optimistic locking

conditions 267
enabling 268
implicitly hidden columns 262, 268
LBAC considerations 262
overview 260
planning enablement 267
restrictions 262
RID() functions 268
ROW CHANGE TOKEN 268
scenarios 285, 287
time-based update detection 264, 268

ordering DB2 books 716
overflowlogpath database configuration parameter 681

P
packages

inoperative 303
pages

sizes
database default 682
table spaces 162
tables 162, 244

pagesize configuration parameter 682
parallelism

configuration parameters
dft_degree 628
intra_parallel 570
max_querydegree 575

I/O
Redundant Array of Independent Disks (RAID)

devices 209
parent keys

overview 291
parent rows

overview 291

parent tables
overview 291

partitioned database environments
self-tuning memory 33, 35
table spaces 122

partitioned indexes
creating 333
overview 314, 317

partitioned tables
comparison with other table types 233
creating 272
nonpartitioned indexes

creating 331
overview 315

partitioned indexes
creating 333
overview 317

paths
naming rules 385

pckcachesz database configuration parameter
details 682

performance
improving with indexes 312
sequences 360
table spaces 209

Performance Configuration wizard
see Configuration Advisor 81

pool size for agents configuration parameter 582
post-upgrade tasks

DB2 servers
system temporary table space page size

adjustments 152
prefetching

automatic size adjustment 187
manual size adjustment

implications for performance 187
PREVIOUS VALUE expression

identity columns 364
overview 359

primary keys
designing 297
details 241, 291
index reuse 308
overview 289

priv_mem_thresh database manager configuration
parameter 684

problem determination
information available 722
tutorials 722

process model
configuration simplification 39

processors
adding 3

profile registries
authorization requirements 434
global 433
instance 433
instance node 433
locations 434
user 433

properties
columns

changing 279
protocols

TCP/IP service name configuration parameter 597

742 Database Administration Concepts and Configuration Reference

Q
queries

statement heap size configuration parameter 695
workloads

table space design 150
query optimization

configuration parameters 531
query_heap_sz database manager configuration

parameter 584

R
range-clustered tables

comparison with other table types 233
raw devices

creating table spaces 164
raw I/O

setting up (Linux) 171
specifying 170

read-only views
using 379

rebalancing
across containers 174

rebuilding compression dictionaries 258
rec_his_retentn configuration parameter 684
reclaimable storage

automatic storage table spaces 191
compressed tables 249
details 143
DMS table spaces 186

recommended file systems 74
recovery

auto restart enable configuration parameter 613
backup pending indicator configuration parameter 614
default number of load recovery sessions configuration

parameter 629
index re-creation time configuration parameter 566, 642
inoperative summary tables 282
inoperative views 381
log retain status indicator configuration parameter 648
number of database backups configuration parameter 674
restore pending configuration parameter 685
roll-forward pending indicator configuration

parameter 686
user exit status indicator configuration parameter 699

recovery history file
retention period configuration parameter 684

recovery log
allocating during database creation 82

recovery range and soft checkpoint interval configuration
parameter 690

Redundant Array of Independent Disks (RAID) devices
optimizing performance 209
optimizing table space performance 209

referential constraints
defining 299
details 291
interaction with foreign keys 302
PRIMARY KEY clause of CREATE/ALTER TABLE

statements 299
REFERENCES clause of CREATE/ALTER TABLE

statements 299
referential integrity

constraints 291
delete rule 291
details 241

referential integrity (continued)
insert rule 291
update rule 291

registry variables
aggregate 439
DB2_ALLOCATION_SIZE 474
DB2_ALTERNATE_GROUP_LOOKUP 452
DB2_ANTIJOIN 469
DB2_APM_PERFORMANCE 474
DB2_ASYNC_IO_MAXFILOP 474
DB2_ATS_ENABLE 493
DB2_AVOID_PREFETCH 474
DB2_BACKUP_USE_DIO 474
DB2_CAPTURE_LOCKTIMEOUT 443
DB2_CLP_EDITOR 465
DB2_CLP_HISTSIZE 465
DB2_CLPPROMPT 465
DB2_COLLECT_TS_REC_INFO 443
DB2_COMMIT_ON_EXIT 493
DB2_COMPATIBILITY_VECTOR 493
DB2_CONNRETRIES_INTERVAL 443
DB2_COPY_NAME 452
DB2_CREATE_DB_ON_PATH 493
DB2_DDL_SOFT_INVAL 493
DB2_DEFERRED_PREPARE_SEMANTICS 469
DB2_DIAGPATH 452
DB2_DISABLE_FLUSH_LOG 493
DB2_DISPATCHER_PEEKTIMEOUT 493
DB2_DJ_INI 493
DB2_DOCHOST 493
DB2_DOCPORT 493
DB2_ENABLE_AUTOCONFIG_DEFAULT 493
DB2_ENABLE_LDAP 493
DB2_EVALUNCOMMITTED 474
DB2_EVMON_EVENT_LIST_SIZE 493
DB2_EVMON_STMT_FILTER 493
DB2_EXPRESSION_RULES 443
DB2_EXTENDED_IO_FEATURES 474
DB2_EXTENDED_OPTIMIZATION 474
DB2_EXTSECURITY 493
DB2_FALLBACK 493
DB2_FCM_SETTINGS 467
DB2_FMP_COMM_HEAPSZ 493
DB2_FORCE_APP_ON_MAX_LOG 443
DB2_FORCE_NLS_CACHE 462
DB2_FORCE_OFFLINE_ADD_PARTITION 467
DB2_GRP_LOOKUP 493
DB2_HADR_BUF_SIZE 493
DB2_HADR_NO_IP_CHECK 493
DB2_HADR_PEER_WAIT_LIMIT 493
DB2_HADR_SORCVBUF 493
DB2_HADR_SOSNDBUF 493
DB2_HASH_JOIN 474
DB2_HISTORY_FILTER 493
DB2_INLIST_TO_NLJN 469
DB2_IO_PRIORITY_SETTING 474
DB2_KEEP_AS_AND_DMS_CONTAINERS_OPEN 474
DB2_KEEPTABLELOCK 474
DB2_LARGE_PAGE_MEM 474
DB2_LIC_STAT_SIZE 443
DB2_LIKE_VARCHAR 469
DB2_LIMIT_FENCED_GROUP 493
DB2_LOAD_COPY_NO_OVERRIDE 493
DB2_LOGGER_NON_BUFFERED_IO 474
DB2_MAP_XML_AS_CLOB_FOR_DLC 493
DB2_MAX_CLIENT_CONNRETRIES 443
DB2_MAX_INACT_STMTS 474

Index 743

registry variables (continued)
DB2_MAX_LOB_BLOCK_SIZE 493
DB2_MAX_NON_TABLE_LOCKS 474
DB2_MDC_ROLLOUT 474
DB2_MEM_TUNING_RANGE 474
DB2_MEMORY_PROTECT 493
DB2_MIN_IDLE_RESOURCES 493
DB2_MINIMIZE_LISTPREFETCH 469
DB2_MMAP_READ 474
DB2_MMAP_WRITE 474
DB2_NCHAR_SUPPORT 493
DB2_NEW_CORR_SQ_FF 469
DB2_NO_FORK_CHECK 474
DB2_NUM_CKPW_DAEMONS 493
DB2_NUM_FAILOVER_NODES 467
DB2_OBJECT_TABLE_ENTRIES 443
DB2_OPT_MAX_TEMP_SIZE 469
DB2_OPTSTATS_LOG 493
DB2_OVERRIDE_BPF 474
DB2_PARALLEL_IO 452
DB2_PARTITIONEDLOAD_DEFAULT 467
DB2_PINNED_BP 474
DB2_PMAP_COMPATIBILITY 452
DB2_PMODEL_SETTINGS 462
DB2_RCT_FEATURES 474
DB2_REDUCED_ OPTIMIZATION 469
DB2_RESOLVE_CALL_CONFLICT 493
DB2_RESOURCE_POLICY 474
DB2_RESTORE_GRANT_ADMIN_AUTHORITIES 452
DB2_SAS_SETTINGS 493
DB2_SELECTIVITY 469
DB2_SELUDI_COMM_BUFFER 474
DB2_SERVER_CONTIMEOUT 493
DB2_SERVER_ENCALG 493
DB2_SET_MAX_CONTAINER_SIZE 474
DB2_SKIPDELETED 474
DB2_SKIPINSERTED 474
DB2_SMS_TRUNC_TMPTABLE_THRESH 474
DB2_SORT_AFTER_TQ 474
DB2_SQLROUTINE_PREPOPTS 469
DB2_SQLWORKSPACE_CACHE 474
DB2_SYSTEM_MONITOR_SETTINGS 443
DB2_TRUNCATE_REUSESTORAGE 493
DB2_TRUSTED_BINDIN 474
DB2_UPDDBCFG_SINGLE_DBPARTITION 452
DB2_USE_ALTERNATE_PAGE_CLEANING 474
DB2_USE_DB2JCCT2_JROUTINE 493
DB2_USE_FAST_PREALLOCATION 474
DB2_USE_PAGE_CONTAINER_TAG 452
DB2_UTIL_MSGPATH 493
DB2_VENDOR_INI 493
DB2_VIEW_REOPT_VALUES 443
DB2_WORKLOAD 452
DB2_XBSA_LIBRARY 493
DB2ACCOUNT 443
DB2ADMINSERVER 493
DB2ASSUMEUPDATE 474
DB2AUTH 493
DB2BIDI 443
DB2BPVARS 474
DB2BQTIME 465
DB2BQTRY 465
DB2CHECKCLIENTINTERVAL 462
DB2CHGPWD_EEE 467
DB2CHKPTR 474
DB2CHKSQLDA 474
DB2CLIINIPATH 493

registry variables (continued)
DB2CODEPAGE 443
DB2COMM 462
DB2CONNECT_DISCONNECT_ON_INTERRUPT 493
DB2CONNECT_ENABLE_EURO_CODEPAGE 452
DB2CONNECT_IN_APP_PROCESS 452
DB2CONSOLECP 443
DB2COUNTRY 443
DB2DBDFT 443
DB2DBMSADDR 452
DB2DEFPREP 493
DB2DISCOVERYTIME 443
DB2DMNBCKCTLR 493
DB2DOMAINLIST 452
DB2ENVLIST 452
DB2FCMCOMM 462
DB2FFDC 443
DB2FODC 443
DB2GRAPHICUNICODESERVER 443
DB2INCLUDE 443
DB2INSTANCE 452
DB2INSTDEF 443
DB2INSTOWNER 443
DB2INSTPROF 452
DB2IQTIME 465
DB2LDAP_BASEDN 493
DB2LDAP_CLIENT_PROVIDER 493
DB2LDAP_KEEP_CONNECTION 493
DB2LDAP_SEARCH_SCOPE 493
DB2LDAPCACHE 493
DB2LDAPHOST 493
DB2LDAPSecurityConfig 452
DB2LIBPATH 452
DB2LOADREC 493
DB2LOCALE 443
DB2LOCK_TO_RB 493
DB2LOGINRESTRICTIONS 452
DB2MAXFSCRSEARCH 474
DB2MEMDISCLAIM 474
DB2MEMMAXFREE 474
DB2NODE 452
DB2NOEXITLIST 493
DB2NTMEMSIZE 474
DB2NTNOCACHE 474
DB2NTPRICLASS 474
DB2NTWORKSET 474
DB2OPTIONS 452
DB2PATH 452
DB2PORTRANGE 467
DB2PRIORITIES 474
DB2PROCESSORS 452
DB2RCMD_LEGACY_MODE 452
DB2REMOTEPREG 493
DB2RESILIENCE 452
DB2ROUTINE_DEBUG 493
DB2RQTIME 465
DB2RSHCMD 462
DB2RSHTIMEOUT 462
DB2SATELLITEID 493
DB2SLOGON 443
DB2SORCVBUF 462
DB2SORT 493
DB2SOSNDBUF 462
DB2STMM 493
DB2SYSTEM 452
DB2TCP_CLIENT_CONTIMEOUT 462
DB2TCP_CLIENT_KEEPALIVE_TIMEOUT 462

744 Database Administration Concepts and Configuration Reference

registry variables (continued)
DB2TCP_CLIENT_RCVTIMEOUT 462
DB2TCPCONNMGRS 462
DB2TERRITORY 443
overview 440
profile authorization requirements 434
profile locations 434
profile registry 433
setting 434

partitioned database environment 438
regular tables

comparison with other table types 233
release configuration parameter 585
remote units of work

distributed relational databases 98
renaming

table spaces 199
REORG TABLE command

compression dictionary maintenance options
KEEPDICTIONARY 258
RESETDICTIONARY 258

REORG-recommended operations
single transaction 276

reorganization
binding utilities to databases 96

replication
compression dictionaries for source tables 258

rerouting clients
LDAP 417

restore_pending configuration parameter 685
restrict_access configuration parameter 685
RESTRICTIVE option of CREATE DATABASE command

indicating use 685
result tables

comparison with other table types 233
resync_interval configuration parameter 585
revalidation

soft 227
RID_BIT() built-in function

details 265
optimistic locking 263

RID() built-in function 265
rollforward utility

roll forward pending indicator 686
rollfwd_pending configuration parameter 686
rollout deletion

deferred cleanup 55
row change time stamps 265
ROW CHANGE TIMESTAMP column 263
row compression

details 248, 249
dictionaries

description 255
estimating storage savings 251
rebuilding compression dictionaries 258
update logs 240

row identifier (RID_BIT) built-in function 260
row identifier (RID) built-in function 260
rows

change tokens 263
dependent 291
descendent 291
parent 291
self-referencing 291

rqrioblk configuration parameter
details 586

RUNSTATS command
automatic statistics collection 45

RUNSTATS utility
automatic statistics collection 49

S
scenarios

adding storage paths 192
rebalancing

after adding and dropping storage paths 197
after adding storage paths 193
after dropping storage paths 195
overview 192

removing storage paths 192
time-based update detection 287

sched_enable configuration parameter 708
sched_userid configuration parameter 708
schemas

copying 218
creating 218
db2move COPY errors 222
designing 214
details 213, 217
dropping 224
names

restrictions 217
naming rules

recommendations 217
restrictions 217

restarting failed copy operation 222
restarting failed copy schema operation 222
troubleshooting tips 218

scope
adding to reference type columns 280

section_actuals configuration parameter
details 686

security
plug-ins

configuration parameters 543, 545, 546, 590, 592
security labels (LBAC)

component name length 421
name length 421
policies

name length 421
self_tuning_mem configuration parameter 687
self-referencing rows 291
self-referencing tables 291
self-tuning memory

details 24, 25
disabling 32
enabling 31, 687
monitoring 32
overview 21, 26
partitioned database environments 33, 35

Self-tuning Memory Manager (STMM)
see self-tuning memory 26

seqdetect configuration parameter 688
sequence expressions

SQL 364
sequences

application performance 361
comparison with identity columns 362, 364
creating 363
designing 359
dropping 367
examples 367

Index 745

sequences (continued)
generating 359, 364
managing behavior 360
modifying 365
recovering databases that use 363
using 364
values 368
viewing 366

SET DATA TYPE support 276
set integrity pending state

enforcement of referential constraints 291
shared file handle table 43
sheapthres configuration parameter 587
sheapthres_shr configuration parameter 689
smtp_server configuration parameter 708
smtp_server database configuration parameter 690
soft invalidation

overview 227
softmax configuration parameter 690
sortheap database configuration parameter

details 692
effect on query optimization 531

sorting
sort heap size configuration parameter 692
sort heap threshold configuration parameter 587
sort heap threshold for shared sorts configuration

parameter 689
source tables

creating 272
spm_log_file_sz configuration parameter 589
spm_log_path configuration parameter 589
spm_max_resync configuration parameter 590
spm_name configuration parameter 590
SQL

size limits 421
SQL Procedural Language (SQL PL)

statements
supported in trigger-actions 348

SQL statements
help

displaying 717
inoperative 303
optimization configuration parameters 531
statement heap size configuration parameter 695

sql_ccflags database configuration parameter
description 693

SQLDBCON database configuration file
configuring the DB2 database manager 516
overview 77, 515

SQLDBCONF database configuration file
configuring the DB2 database manager 516
overview 77, 515

srv_plugin_mode configuration parameter 592
srvcon_auth configuration parameter

details 590
srvcon_gssplugin_list configuration parameter 591
srvcon_pw_plugin configuration parameter 592
ssl_cipherspecs configuration parameter

details 592
ssl_clnt_keydb configuration parameter

details 593
ssl_clnt_stash configuration parameter

details 593
ssl_svcename configuration parameter

details 596
ssl_svr_keydb configuration parameter

details 594

ssl_svr_label configuration parameter
details 594

ssl_svr_stash configuration parameter
details 595

ssl_versions configuration parameter
details 597

staging tables
creating 273
dropping 284

start and stop timeout configuration parameter 595
start_stop_time configuration parameter 595
stat_heap_sz database configuration parameter 694
statement heap size configuration parameter 695
statistics

collection
automatic 45, 49

profiling
overview 23

stmt_conc database configuration parameter
details 695

stmtheap database configuration parameter
details 695
effect on query optimization 531

storage
automatic

adding 190
converting 89
overview 87
table spaces 136, 137, 140, 189

compression
indexes 328
reclaiming storage freed 249
row 249
tables 248

database-managed space (DMS) 125
estimating savings offered by compression 251
reclaimable

details 143
reclaiming storage in automatic storage table

spaces 191
reclaiming storage in DMS table spaces 186

removing from automatic storage table spaces 91
system managed space (SMS) 123
table spaces

calculating free space 173
storage paths

automatic
adding 90

monitoring 92
scenarios

adding 192
rebalancing table spaces after adding 193
rebalancing table spaces after adding and

dropping 197
rebalancing table spaces after dropping 195
removing 192

strings
data types

zero-length 239
stripe sets

DMS table spaces 128, 174
striping 123
summary tables

comparison with other table types 233
recovering inoperative 282

Sun One Directory Server
extending directory schema 407

746 Database Administration Concepts and Configuration Reference

svcename configuration parameter 597
switching

DB2 copies 12
synonyms

aliases 227
sysadm_group configuration parameter

details 598
SYSCAT.INDEXES view

viewing constraint definitions for table 308
SYSCATSPACE table spaces 168
sysctrl_group configuration parameter 599
sysmaint_group configuration parameter 599
sysmon_group configuration parameter 600
system catalogs

views
overview 374

system clock
change considerations 265

system database directory
details 78
viewing 109

system temporary table spaces
page sizes

larger RID 152
post-upgrade tasks for DB2 servers 152

system-managed space (SMS)
device considerations 151
directories in non-automatic storage databases 75
page size 162
table spaces

altering 174
creating 164
details 123
size 162

workload considerations 150

T
table compression

compression dictionaries 258
creating new tables using 251
decompressing tables 254
default values 248
enabling 253
overview 248
removing 254

table partitioning
data organization schemes 269

Table space states 199
table spaces

adding
containers 174

altering
automatic storage 190
DMS containers 174
general procedure 172
SMS containers 174

automatic resizing 132
automatic storage

converting to use 140, 189
overview 136
reducing size 191

containers
extending 175
file example 164

creating
procedure 164

table spaces (continued)
database managed space (DMS) 125
designing 121
details 119
device container example 164
disk I/O considerations 163
DMS 132
dropping

procedure 210
dropping storage paths 91
extent sizes 161
free space 173
initial 168
mapping to tables 154
maps 128
page sizes 162
partitioned database environments 122
performance 209
rebalancing

dropping storage paths 91
reducing size of automatic storage 191
removing automatic storage 91
renaming 199
resizing

automatic 132
containers 175

scenarios
rebalancing (after adding and dropping storage

paths) 197
rebalancing (after adding storage paths) 193
rebalancing (after dropping storage paths) 195
rebalancing (overview) 192

states 199
storage expansion 137
storage management 123
switching states 208
system managed space (SMS) 123
temporary

creating 168
details 151

type comparison 148
types

overview 123
without file system caching 155, 158
workload considerations 150

tables
adding columns 279
aliases 227
append mode 233
base 233, 274
check constraints

overview 241, 291
types 291

compression
column value 259
NULLS 259

created temporary 274
creating

like existing tables 272
overview 269

data type definitions 239
declared temporary 274
default columns 239
dependent 291
descendent 291
designing 234, 235
dropping 283

Index 747

tables (continued)
dropping columns 279
examples 284
generated columns 237
identity columns 238
mapping to table spaces 154
modifying 276
modifying DEFAULT clause column definitions 280
multidimensional clustering (MDC) 233
overview 233
page sizes 162, 244
parent 291
partitioned

nonpartitioned indexes 331
overview 233
partitioned indexes 317

primary keys 241
range-clustered 233
referential constraints

designing 299
overview 241

refreshing 278
regular

overview 233
renaming 282
result 233
row compression 249
scenarios 284
self-referencing 291
shared file handles 43
size requirements 82
source 272
space requirements 242
summary 233
target 272
temporary

overview 233
Unicode table and data considerations 241
unique constraints 241
user 245
viewing definitions 283

TCP/IP service name configuration parameter 597
temporary table spaces

creating 168
details 151

temporary tables
comparison with other table types 233
row compression 249
user-defined 270

TEMPSPACE1 table space 168
terms and conditions

publications 722
territory configuration parameter 697
time

interval for checking deadlock configuration
parameter 634

maximum difference among nodes 576
time stamps

row changes 265
time-based update detection

details 264
scenario 287

TIMESTAMP data type
default value 239

Tivoli Storage Manager (TSM)
management class configuration parameter 697
node name configuration parameter 698

Tivoli Storage Manager (TSM) (continued)
owner name configuration parameter 698
password configuration parameter 699

tm_database configuration parameter 600
toolscat_db configuration parameter 709
toolscat_inst configuration parameter 709
toolscat_schema configuration parameter 710
tp_mon_name configuration parameter 601
track modified pages configuration parameter 697
trackmod configuration parameter 697
transaction processing monitors

transaction processing monitor name configuration
parameter 601

transition tables
referencing old and new table result sets 350

transition variables
accessing old and new column values 349

triggered-actions
coding 347
conditions 347
supported SQL PL statements 348

triggers
accessing old and new column values 349
activation time 344
AFTER

overview 339
specifying 344

BEFORE
overview 339
specifying 344

cascading 337
coding triggered-actions 347
comparison with check constraints 298
conditions 347
constraint interactions 300, 354
creating 352
designing 341
details 337
dropping 353
examples

defining actions 356
defining business rules 356
preventing operations on tables 357

granularity rules 343
INSTEAD OF

overview 340
specifying 344

interactions 300, 354
maximum name length 421
modifying 353
referencing old and new table result sets 350
triggering events 343
types 338

troubleshooting
online information 722
tutorials 722

trust_allclnts configuration parameter 603
trust_clntauth configuration parameter 603
tsm_mgmtclass configuration parameter 697
tsm_nodename configuration parameter 698
tsm_owner configuration parameter 698
tsm_password configuration parameter 699
tuning partition

determining 35
tutorials

list 721
problem determination 722

748 Database Administration Concepts and Configuration Reference

tutorials (continued)
troubleshooting 722
Visual Explain 721

typed tables
comparison with other table types 233

typed views
modifying 381
overview 373

U
Unicode

overview 241
Unicode UCS-2 encoding

identifiers 390
naming rules 390

unique constraints
designing 296
details 290, 291
overview 241, 289

unique indexes 312
unique keys

details 291
effects on index reuse 308
generating using sequences 359

UNIQUERULE column 308
units of work (UOW)

application-directed distributed 101
semantics 108

updatable views
overview 379

update rule
referential integrity 291

updates
DB2 copies

Linux 15
UNIX 15
Windows 16

DB2 Information Center 719, 720
user data

directories 539, 552
user exit enable configuration parameter 699
user exit status indicator configuration parameter 699
user IDs

naming rules 388
user table page limits 245
user_exit_status configuration parameter 699
user-defined functions (UDFs)

used with views 380
user-defined temporary tables

creating 270
defining 270

user-level profile registry 433
userexit database configuration parameter

details 699
users

profile registry 433
USERSPACE1 table space 168
util_heap_sz configuration parameter 700
util_impact_lim configuration parameter 604
utility operations

constraint implications 303
utility throttling

details 53
overview 21

V
value compression 259
values

sequence 368
VARCHAR data type

table columns 280
varchar2_compat configuration parameter

details 701
vendor code

fenced vendor processes 44
vendoropt configuration parameter

details 701
views

creating 379
definition of nested views 377
deletable 377
designing 374
dropping 382
inoperative 381
insertable 378
modifying 381
overview 373
read-only 379
recovering inoperative 381
updatable 379
user-defined functions 380
WITH CHECK OPTION examples 375

vmo AIX system command
enabling large page support 4
enabling pinned memory 5

W
Windows

active directory
DB2 object creation 410
LDAP object classes and attributes 392

extending directory schema 410
wizards

Configuration Advisor 81
wlm_collect_int database configuration parameter 702

X
XML

size limits 421
XQuery statements

inoperative 303
optimization configuration parameters 531
statement heap size configuration parameter 695

Index 749

750 Database Administration Concepts and Configuration Reference

����

Printed in USA

SC27-2442-03

Sp
in
e
in
fo
rm
at
io
n:

DB
2

fo
rL

in
ux

,U
NI

X,
an

d
W

in
do

w
s

Ve
rs

io
n

9
Re

le
as

e
7

Da
ta

ba
se

Ad
m

in
is

tra
tio

n
Co

nc
ep

ts
an

d
Co

nf
ig

ur
at

io
n

Re
fe

re
nc

e
�
�

�

	Contents
	About this book
	Part 1. Data servers
	Chapter 1. DB2 data servers
	Management of data server capacity
	Enabling large page support (AIX)
	Pinning DB2 database shared memory (AIX)

	Chapter 2. Multiple DB2 copies overview
	Default IBM database client interface copy
	Setting the DAS when running multiple DB2 copies
	Setting the default instance when using multiple DB2 copies (Windows)
	Multiple instances of the database manager
	Multiple instances (Windows)
	Updating DB2 copies (Linux and UNIX)
	Updating DB2 copies (Windows)
	Running multiple instances concurrently (Windows)
	Working with instances on the same or different DB2 copies

	Chapter 3. Autonomic computing overview
	Automatic features
	Automatic maintenance
	Maintenance windows

	Self-tuning memory
	Self-tuning memory
	Self-tuning memory overview
	Memory allocation
	Memory parameter interaction and limitations
	Enabling self-tuning memory
	Disabling self-tuning memory
	Determining which memory consumers are enabled for self tuning
	Self-tuning memory in partitioned database environments
	Using self-tuning memory in partitioned database environments

	Configuring memory and memory heaps
	Agent and process model configuration
	Agent, process model, and memory configuration overview
	Configuring databases across multiple partitions
	Shared file handle table
	Running vendor library functions in fenced-mode processes

	Automatic storage
	Data compression
	Automatic statistics collection
	Enabling automatic statistics collection

	Configuration Advisor
	Tuning configuration parameters using the Configuration Advisor
	Generating database configuration recommendations
	Example: Requesting configuration recommendations using the Configuration Advisor

	Utility throttling
	Asynchronous index cleanup
	Asynchronous index cleanup for MDC tables

	Chapter 4. Instances
	Designing instances
	Default instance
	Instance directory
	Multiple instances (Linux, UNIX)
	Multiple instances (Windows)

	Creating instances
	Modifying instances
	Updating the instance configuration (Linux, UNIX)
	Updating the instance configuration (Windows)

	Working with instances
	Auto-starting instances
	Starting instances (Linux, UNIX)
	Starting instances (Windows)
	Attaching to and detaching from instances
	Working with instances on the same or different DB2 copies
	Stopping instances (Linux, UNIX)
	Stopping instances (Windows)

	Dropping instances

	Part 2. Databases
	Chapter 5. Databases
	Designing databases
	Recommended file systems
	Database directories and files
	Database configuration file
	Node directory
	Local database directory
	System database directory
	Creating node configuration files
	Changing node and database configuration files
	Database recovery log

	Space requirements for database objects
	Space requirements for log files
	Lightweight Directory Access Protocol (LDAP) directory service

	Creating databases
	Automatic storage databases
	Creating automatic storage databases
	Converting a nonautomatic storage database to use automatic storage
	Adding storage paths to a database enabled for automatic storage
	Dropping storage paths from a database enabled for automatic storage
	Monitoring storage paths
	Implications for restoring databases

	Cataloging databases
	Binding utilities to the database
	Creating database aliases

	Connecting to distributed relational databases
	Remote unit of work for distributed relational databases
	Application-directed distributed unit of work
	Application process connection states
	Connection states
	Customizing an application environment using the connect procedure
	Options that govern unit of work semantics
	Data representation considerations

	Viewing the local or system database directory files
	Dropping databases
	Dropping aliases

	Chapter 6. Database partitions
	Chapter 7. Buffer pools
	Designing buffer pools
	Buffer pool memory protection (AIX running on POWER6)
	Creating buffer pools
	Modifying buffer pools
	Dropping buffer pools

	Chapter 8. Table spaces
	Table spaces for system, user and temporary data
	Table spaces in a partitioned database environment
	Table spaces and storage management
	System managed space
	Database managed space
	Automatic storage table spaces
	The table space high water mark
	Reclaimable storage
	Comparison of SMS, DMS and automatic storage table spaces

	Temporary table spaces
	Ensuring system temporary table spaces page sizes meet requirements

	Considerations when choosing table spaces for your tables
	Table spaces without file system caching
	New table space containers use concurrent I/O or direct I/O by default
	File system caching configurations

	Extent sizes in table spaces
	Page, table and table space size
	Disk I/O efficiency and table space design

	Creating table spaces
	Creating temporary table spaces
	Defining initial table spaces on database creation
	Attaching DMS direct disk access devices
	Configuring and setting up DMS direct disk access (Linux)

	Altering table spaces
	Calculating table space usage
	Altering SMS table spaces
	Altering DMS table spaces
	Adding DMS containers
	Dropping DMS containers
	Resizing DMS containers
	Rebalancing DMS containers
	Reclaiming unused storage in DMS table spaces
	Prefetch size adjustment when adding or dropping containers
	Converting table spaces to use automatic storage

	Altering automatic storage table spaces
	Reclaiming unused storage in automatic storage table spaces
	Scenarios: Adding and removing storage with automatic storage table spaces

	Renaming a table space

	Table space states
	Switching table spaces from offline to online
	Optimizing table space performance when data is on RAID devices
	Dropping table spaces

	Chapter 9. Schemas
	Designing schemas
	Grouping objects by schema
	Schema name restrictions and recommendations

	Creating schemas
	Copying schemas
	Example of schema copy using the ADMIN_COPY_SCHEMA procedure
	Examples of schema copy using the db2move utility

	Restarting a failed copy schema operation
	Dropping schemas

	Part 3. Database objects
	Chapter 10. Concepts common to most database objects
	Aliases
	Soft invalidation of database objects
	Automatic revalidation of database objects
	Creating and maintaining database objects

	Chapter 11. Tables
	Types of tables
	Designing tables
	Table design concepts
	Data types and table columns
	Generated columns
	Auto numbering and identifier columns
	Constraining column data with constraints, defaults, and null settings
	Primary key, referential integrity, check, and unique constraints
	Unicode table and data considerations

	Space requirements for tables
	Table page sizes
	Space requirements for user table data
	Storing LOBs inline in table rows

	Table compression
	Row compression
	Value compression

	Optimistic locking overview
	Optimistic locking
	Optimistic locking restrictions and considerations
	Granularity of row change tokens and false negatives
	Time-based update detection
	Time values generated for ROW CHANGE TIMESTAMPs
	RID_BIT() and RID() built-in function
	Planning the enablement of optimistic locking
	Enabling optimistic locking in applications

	Table partitioning and data organization schemes
	Creating tables
	Declaring temporary tables
	Creating and connecting to created temporary tables
	Creating tables like existing tables
	Creating tables for staging data
	Distinctions between DB2 base tables and temporary tables

	Modifying tables
	Altering tables
	Altering materialized query table properties
	Refreshing the data in a materialized query table
	Changing column properties
	Adding and dropping columns
	Modifying DEFAULT clause column definitions
	Modifying the generated or identity property of a column
	Modifying column definitions

	Renaming tables and columns
	Recovering inoperative summary tables
	Viewing table definitions
	Dropping tables
	Dropping materialized query or staging tables

	Scenarios and examples of tables
	Scenarios: Optimistic locking and time-based detection
	Scenario: Using optimistic locking in an application program
	Scenarios: Optimistic locking using implicitly hidden columns
	Scenario: Time-based update detection

	Chapter 12. Constraints
	Types of constraints
	NOT NULL constraints
	Unique constraints
	Primary key constraints
	(Table) Check constraints
	Foreign key (referential) constraints
	Informational constraints

	Designing constraints
	Designing unique constraints
	Designing primary key constraints
	Designing check constraints
	Comparison of check constraints and BEFORE triggers

	Designing foreign key (referential) constraints
	Examples of interaction between triggers and referential constraints
	Foreign keys in referential constraints
	Table constraint implications for utility operations
	Statement dependencies when changing objects

	Designing informational constraints

	Creating and modifying constraints
	Reuse of indexes with unique or primary key constraints
	Viewing constraint definitions for a table
	Dropping constraints

	Chapter 13. Indexes
	Types of indexes
	Indexes on partitioned tables
	Nonpartitioned indexes on partitioned tables
	Partitioned indexes on partitioned tables

	Designing indexes
	Tools for designing indexes
	Space requirements for indexes
	Index compression

	Creating indexes
	Creating nonpartitioned indexes on partitioned tables
	Creating partitioned indexes

	Modifying indexes
	Renaming indexes
	Rebuilding indexes

	Dropping indexes

	Chapter 14. Triggers
	Types of triggers
	BEFORE triggers
	AFTER triggers
	INSTEAD OF triggers

	Designing triggers
	Specifying what makes a trigger fire (triggering statement or event)
	Specifying when a trigger fires (BEFORE, AFTER, and INSTEAD OF clauses)
	Defining conditions for when trigger-action will fire (WHEN clause)
	Supported SQL PL statements in triggers
	Accessing old and new column values in triggers using transition variables
	Referencing old and new table result sets using transition tables

	Creating triggers
	Modifying and dropping triggers
	Examples of triggers and trigger use
	Examples of interaction between triggers and referential constraints
	Examples of defining actions using triggers
	Example of defining business rules using triggers
	Example of preventing operations on tables using triggers

	Chapter 15. Sequences
	Designing sequences
	Managing sequence behavior
	Application performance and sequences
	Sequences compared to identity columns

	Creating sequences
	Generating sequential values
	Determining when to use identity columns or sequences

	Modifying sequences
	Viewing sequence definitions
	Dropping sequences
	Examples of how to code sequences
	Sequence reference

	Chapter 16. Views
	Designing views
	System catalog views
	Views with the check option
	Nested view definitions

	Deletable views
	Insertable views
	Updatable views
	Read-only views

	Creating views
	Creating views that use user-defined functions (UDFs)

	Modifying typed views
	Recovering inoperative views
	Dropping views

	Part 4. Reference
	Chapter 17. Conforming to naming rules
	General naming rules
	DB2 object naming rules
	Delimited identifiers and object names
	User, user ID and group naming rules
	Naming rules in an NLS environment
	Naming rules in a Unicode environment

	Chapter 18. Lightweight Directory Access Protocol (LDAP)
	Security considerations in an LDAP environment
	LDAP object classes and attributes used by DB2
	Extending the LDAP directory schema with DB2 object classes and attributes
	Supported LDAP client and server configurations
	LDAP support and DB2 Connect
	Registering host databases in LDAP

	Extending the directory schema for IBM Tivoli Directory Server
	Netscape LDAP directory support and attribute definitions
	Extending the directory schema for Sun One Directory Server
	Windows Active Directory
	Configuring the DB2 database manager to use Active Directory
	Security considerations for Active Directory
	DB2 objects in the Active Directory
	Extending the directory schema for Active Directory

	Enabling LDAP support after installation is complete

	Registering LDAP entries
	Registration of DB2 servers after installation
	Catalog a node alias for ATTACH
	Registration of databases in the LDAP directory

	Deregistering LDAP entries
	Deregistering the DB2 server
	Deregistering the database from the LDAP directory

	Configuring LDAP users
	Creating an LDAP user
	Configuring the LDAP user for DB2 applications
	Setting DB2 registry variables at the user level in the LDAP environment

	Disabling LDAP support
	Updating the protocol information for the DB2 server
	Rerouting LDAP clients to another server
	Attaching to a remote server in the LDAP environment
	Refreshing LDAP entries in local database and node directories
	Searching the LDAP servers

	Chapter 19. SQL and XML limits
	Chapter 20. Registry and environment variables
	Environment variables and the profile registries
	Profile registry locations and authorization requirements
	Setting registry and environment variables
	Setting environment variables outside the profile registries on Windows
	Setting environment variables outside the profile registries on Linux and UNIX operating systems
	Identifying the current instance
	Setting variables at the instance level in a partitioned database environment

	Aggregate registry variables
	DB2 registry and environment variables
	General registry variables
	System environment variables
	Communications variables
	Command-line variables
	Partitioned database environment variables
	Query compiler variables
	Performance variables
	Miscellaneous variables

	Chapter 21. Configuration parameters
	Configuring the DB2 database manager with configuration parameters
	Configuration parameters summary
	Configuration parameters that affect the number of agents
	Configuration parameters that affect query optimization
	Recompiling a query after configuration changes
	Restrictions and behavior when configuring max_coordagents and max_connections
	Database Manager configuration parameters
	agent_stack_sz - Agent stack size
	agentpri - Priority of agents
	alt_diagpath - Alternate diagnostic data directory path
	alternate_auth_enc - Alternate encryption algorithm for incoming connections at server configuration parameter
	aslheapsz - Application support layer heap size
	audit_buf_sz - Audit buffer size
	authentication - Authentication type
	catalog_noauth - Cataloging allowed without authority
	clnt_krb_plugin - Client Kerberos plug-in
	clnt_pw_plugin - Client userid-password plug-in
	cluster_mgr - Cluster manager name
	comm_bandwidth - Communications bandwidth
	conn_elapse - Connection elapse time
	cpuspeed - CPU speed
	date_compat - Date compatibility database configuration parameter
	dft_account_str - Default charge-back account
	dft_monswitches - Default database system monitor switches
	dftdbpath - Default database path
	diaglevel - Diagnostic error capture level
	diagpath - Diagnostic data directory path
	diagsize - Rotating diagnostic and administration notification logs configuration parameter
	dir_cache - Directory cache support
	discover - Discovery mode
	discover_inst - Discover server instance
	fcm_num_buffers - Number of FCM buffers
	fcm_num_channels - Number of FCM channels
	fed_noauth - Bypass federated authentication
	federated - Federated database system support
	federated_async - Maximum asynchronous TQs per query configuration parameter
	fenced_pool - Maximum number of fenced processes
	group_plugin - Group plug-in
	health_mon - Health monitoring
	indexrec - Index re-creation time
	instance_memory - Instance memory
	intra_parallel - Enable intra-partition parallelism
	java_heap_sz - Maximum Java interpreter heap size
	jdk_path - Software Developer's Kit for Java installation path
	keepfenced - Keep fenced process
	local_gssplugin - GSS API plug-in used for local instance level authorization
	max_connections - Maximum number of client connections
	max_connretries - Node connection retries
	max_coordagents - Maximum number of coordinating agents
	max_querydegree - Maximum query degree of parallelism
	max_time_diff - Maximum time difference among nodes
	maxagents - Maximum number of agents
	maxcagents - Maximum number of concurrent agents
	mon_heap_sz - Database system monitor heap size
	nodetype - Machine node type
	notifylevel - Notify level
	num_initagents - Initial number of agents in pool
	num_initfenced - Initial number of fenced processes
	num_poolagents - Agent pool size
	numdb - Maximum number of concurrently active databases including host and System i databases
	query_heap_sz - Query heap size
	release - Configuration file release level
	resync_interval - Transaction resync interval
	rqrioblk - Client I/O block size
	sheapthres - Sort heap threshold
	spm_log_file_sz - Sync point manager log file size
	spm_log_path - Sync point manager log file path
	spm_max_resync - Sync point manager resync agent limit
	spm_name - Sync point manager name
	srvcon_auth - Authentication type for incoming connections at the server
	srvcon_gssplugin_list - List of GSS API plug-ins for incoming connections at the server
	srvcon_pw_plugin - Userid-password plug-in for incoming connections at the server
	srv_plugin_mode - Server plug-in mode
	ssl_cipherspecs - Supported cipher specifications at the server configuration parameter
	ssl_clnt_keydb - SSL key file path for outbound SSL connections at the client configuration parameter
	ssl_clnt_stash - SSL stash file path for outbound SSL connections at the client configuration parameter
	ssl_svr_keydb - SSL key file path for incoming SSL connections at the server configuration parameter
	ssl_svr_label - Label in the key file for incoming SSL connections at the server configuration parameter
	ssl_svr_stash - SSL stash file path for incoming SSL connections at the server configuration parameter
	start_stop_time - Start and stop timeout
	ssl_svcename - SSL service name configuration parameter
	ssl_versions - Supported SSL versions at the server configuration parameter
	svcename - TCP/IP service name
	sysadm_group - System administration authority group name
	sysctrl_group - System control authority group name
	sysmaint_group - System maintenance authority group name
	sysmon_group - System monitor authority group name
	tm_database - Transaction manager database name
	tp_mon_name - Transaction processor monitor name
	trust_allclnts - Trust all clients
	trust_clntauth - Trusted clients authentication
	util_impact_lim - Instance impact policy

	Database configuration parameters
	alt_collate - Alternate collating sequence
	app_ctl_heap_sz - Application control heap size
	appgroup_mem_sz - Maximum size of application group memory set
	appl_memory - Application Memory configuration parameter
	applheapsz - Application heap size
	archretrydelay - Archive retry delay on error
	auto_del_rec_obj - Automated deletion of recovery objects configuration parameter
	auto_maint - Automatic maintenance
	auto_reval - Automatic revalidation and invalidation configuration parameter
	autorestart - Auto restart enable
	avg_appls - Average number of active applications
	backup_pending - Backup pending indicator
	blk_log_dsk_ful - Block on log disk full
	blocknonlogged - Block creation of tables that allow non-logged activity
	catalogcache_sz - Catalog cache size
	chngpgs_thresh - Changed pages threshold
	codepage - Code page for the database
	codeset - Codeset for the database
	collate_info - Collating information
	connect_proc - Connect procedure name database configuration parameter
	country/region - Database territory code
	cur_commit - Currently committed configuration parameter
	database_consistent - Database is consistent
	database_level - Database release level
	database_memory - Database shared memory size
	dbheap - Database heap
	db_mem_thresh - Database memory threshold
	date_compat - Date compatibility database configuration parameter
	dec_to_char_fmt - Decimal to character function configuration parameter
	decflt_rounding - Decimal floating point rounding configuration parameter
	dft_degree - Default degree
	dft_extent_sz - Default extent size of table spaces
	dft_loadrec_ses - Default number of load recovery sessions
	dft_mttb_types - Default maintained table types for optimization
	dft_prefetch_sz - Default prefetch size
	dft_queryopt - Default query optimization class
	dft_refresh_age - Default refresh age
	dft_sqlmathwarn - Continue upon arithmetic exceptions
	discover_db - Discover database
	dlchktime - Time interval for checking deadlock
	dyn_query_mgmt - Dynamic SQL and XQuery query management
	enable_xmlchar - Enable conversion to XML configuration parameter
	failarchpath - Failover log archive path
	groupheap_ratio - Percent of memory for application group heap
	hadr_db_role - HADR database role
	hadr_local_host - HADR local host name
	hadr_local_svc - HADR local service name
	hadr_peer_window - HADR peer window configuration parameter
	hadr_remote_host - HADR remote host name
	hadr_remote_inst - HADR instance name of the remote server
	hadr_remote_svc - HADR remote service name
	hadr_syncmode - HADR synchronization mode for log write in peer state
	hadr_timeout - HADR timeout value
	indexrec - Index re-creation time
	jdk_64_path - 64-Bit Software Developer's Kit for Java installation path DAS
	locklist - Maximum storage for lock list
	locktimeout - Lock timeout
	log_retain_status - Log retain status indicator
	logarchmeth1 - Primary log archive method
	logarchmeth2 - Secondary log archive method
	logarchopt1 - Primary log archive options
	logarchopt2 - Secondary log archive options
	logbufsz - Log buffer size
	logfilsiz - Size of log files
	loghead - First active log file
	logindexbuild - Log index pages created
	logpath - Location of log files
	logprimary - Number of primary log files
	logretain - Log retain enable
	logsecond - Number of secondary log files
	max_log - Maximum log per transaction
	maxappls - Maximum number of active applications
	maxfilop - Maximum database files open per database
	maxlocks - Maximum percent of lock list before escalation
	min_dec_div_3 - Decimal division scale to 3
	mincommit - Number of commits to group
	mirrorlogpath - Mirror log path
	mon_act_metrics - Monitoring activity metrics configuration parameter
	mon_deadlock - Monitoring deadlock configuration parameter
	mon_locktimeout - Monitoring lock timeout configuration parameter
	mon_lockwait - Monitoring lock wait configuration parameter
	mon_lw_thresh - Monitoring lock wait threshold configuration parameter
	mon_lck_msg_lvl - Monitoring lock event notification messages configuration parameter
	mon_obj_metrics - Monitoring object metrics configuration parameter
	mon_pkglist_sz - Monitoring package list size configuration parameter
	mon_req_metrics - Monitoring request metrics configuration parameter
	mon_uow_data - Monitoring unit of work events configuration parameter
	multipage_alloc - Multipage file allocation enabled
	newlogpath - Change the database log path
	num_db_backups - Number of database backups
	num_freqvalues - Number of frequent values retained
	num_iocleaners - Number of asynchronous page cleaners
	num_ioservers - Number of I/O servers
	num_log_span - Number log span
	num_quantiles - Number of quantiles for columns
	numarchretry - Number of retries on error
	numsegs - Default number of SMS containers
	number_compat - Number compatibility database configuration parameter
	overflowlogpath - Overflow log path
	pagesize - Database default page size
	pckcachesz - Package cache size
	priv_mem_thresh - Private memory threshold
	rec_his_retentn - Recovery history retention period
	restore_pending - Restore pending
	restrict_access - Database has restricted access configuration parameter
	rollfwd_pending - Roll forward pending indicator
	section_actuals - Section actuals configuration parameter
	self_tuning_mem- Self-tuning memory
	seqdetect - Sequential detection flag
	sheapthres_shr - Sort heap threshold for shared sorts
	smtp_server - SMTP server
	softmax - Recovery range and soft checkpoint interval
	sortheap - Sort heap size
	sql_ccflags - Conditional compilation flags
	stat_heap_sz - Statistics heap size
	stmt_conc - Statement concentrator configuration parameter
	stmtheap - Statement heap size
	territory - Database territory
	trackmod - Track modified pages enable
	tsm_mgmtclass - Tivoli Storage Manager management class
	tsm_nodename - Tivoli Storage Manager node name
	tsm_owner - Tivoli Storage Manager owner name
	tsm_password - Tivoli Storage Manager password
	user_exit_status - User exit status indicator
	userexit - User exit enable
	util_heap_sz - Utility heap size
	varchar2_compat - varchar2 compatibility database configuration parameter
	vendoropt - Vendor options
	wlm_collect_int - Workload management collection interval configuration parameter

	DB2 Administration Server (DAS) configuration parameters
	authentication - Authentication type DAS
	contact_host - Location of contact list
	das_codepage - DAS code page
	das_territory - DAS territory
	dasadm_group - DAS administration authority group name
	db2system - Name of the DB2 server system
	diaglevel - Diagnostic error capture level configuration parameter
	discover - DAS discovery mode
	exec_exp_task - Execute expired tasks
	jdk_path - Software Developer's Kit for Java installation path DAS
	sched_enable - Scheduler mode
	sched_userid - Scheduler user ID
	smtp_server - SMTP server
	toolscat_db - Tools catalog database
	toolscat_inst - Tools catalog database instance
	toolscat_schema - Tools catalog database schema

	Part 5. Appendixes
	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

