
DB2
for Linux, UNIX, and Windows

Administrative Routines and Views
Updated July, 2012

Version 9 Release 7

SC27-2436-03

���

DB2
for Linux, UNIX, and Windows

Administrative Routines and Views
Updated July, 2012

Version 9 Release 7

SC27-2436-03

���

Note
Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on
page 1273.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2006, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. System-defined routines and
views 1
Best practices for calling built-in routines and views
in applications 1
Authorization for administrative views 2
Administrative views versus table functions 3

Chapter 2. Supported system-defined
SQL routines and views 5

Chapter 3. Activity monitor routines . . 21
AM_BASE_RPT_RECOMS – Recommendations for
activity reports 21
AM_BASE_RPTS – Activity monitor reports . . . 22
AM_DROP_TASK – Delete a monitoring task . . . 23
AM_GET_LOCK_CHN_TB – Retrieve application
lock chain data in a tabular format 23
AM_GET_LOCK_CHNS – Retrieve lock chain
information for a specific application 24
AM_GET_LOCK_RPT – Retrieve application lock
details 25
AM_GET_RPT – Retrieve activity monitor data . . 32
AM_SAVE_TASK – Create or modify a monitoring
task 33

Chapter 4. ADMIN_CMD procedure and
associated routines 35
ADMIN_CMD – Run administrative commands . . 35

ADD CONTACT command using the
ADMIN_CMD procedure 37
ADD CONTACTGROUP command using the
ADMIN_CMD procedure 38
AUTOCONFIGURE command using the
ADMIN_CMD procedure 39
BACKUP DATABASE command using the
ADMIN_CMD procedure 43
DESCRIBE command using the ADMIN_CMD
procedure 51
DROP CONTACT command using the
ADMIN_CMD procedure 64
DROP CONTACTGROUP command using the
ADMIN_CMD procedure 65
EXPORT command using the ADMIN_CMD
procedure 66
FORCE APPLICATION command using the
ADMIN_CMD procedure 76
GET STMM TUNING DBPARTITIONNUM
command using the ADMIN_CMD procedure . . 77
IMPORT command using the ADMIN_CMD
procedure 79
INITIALIZE TAPE command using the
ADMIN_CMD procedure 103
LOAD command using the ADMIN_CMD
procedure 104

PRUNE HISTORY/LOGFILE command using
the ADMIN_CMD procedure 142
QUIESCE DATABASE command using the
ADMIN_CMD procedure 144
QUIESCE TABLESPACES FOR TABLE
command using the ADMIN_CMD procedure . 145
REDISTRIBUTE DATABASE PARTITION
GROUP command using the ADMIN_CMD
procedure 148
REORG INDEXES/TABLE command using the
ADMIN_CMD procedure 157
RESET ALERT CONFIGURATION command
using the ADMIN_CMD procedure 173
RESET DATABASE CONFIGURATION
command using the ADMIN_CMD procedure . 174
RESET DATABASE MANAGER
CONFIGURATION command using the
ADMIN_CMD procedure 176
REWIND TAPE command using the
ADMIN_CMD procedure 177
RUNSTATS command using the ADMIN_CMD
procedure 178
SET TAPE POSITION command using the
ADMIN_CMD procedure 190
UNQUIESCE DATABASE command using the
ADMIN_CMD procedure 191
UPDATE ALERT CONFIGURATION command
using the ADMIN_CMD procedure 191
UPDATE CONTACT command using the
ADMIN_CMD procedure 197
UPDATE CONTACTGROUP command using
the ADMIN_CMD procedure 198
UPDATE DATABASE CONFIGURATION
command using the ADMIN_CMD procedure . 199
UPDATE DATABASE MANAGER
CONFIGURATION command using the
ADMIN_CMD procedure 202
UPDATE HEALTH NOTIFICATION CONTACT
LIST command using the ADMIN_CMD
procedure 204
UPDATE HISTORY command using the
ADMIN_CMD procedure 205
UPDATE STMM TUNING DBPARTITIONNUM
command using the ADMIN_CMD procedure . 207

ADMIN_EST_INLINE_LENGTH function -
Estimate length required to inline data 208
ADMIN_GET_DBP_MEM_USAGE table function -
Get total memory consumption for instance . . . 210
ADMIN_GET_INDEX_COMPRESS_INFO table
function - returns compressed index information . 212
ADMIN_GET_INDEX_INFO table function -
returns index information 215
ADMIN_GET_MSGS table function - Retrieve
messages generated by a data movement utility
that is executed through the ADMIN_CMD
procedure 219

© Copyright IBM Corp. 2006, 2012 iii

ADMIN_IS_INLINED function - Determine if data
is inlined 220
ADMIN_REMOVE_MSGS procedure - Clean up
messages generated by a data movement utility
that is executed through the ADMIN_CMD
procedure 221
ADMIN_REVALIDATE_DB_OBJECTS procedure -
Revalidate invalid database objects 222
ADMINTABCOMPRESSINFO administrative view
and ADMIN_GET_TAB_COMPRESS_INFO_V97
table function - returns compressed information . . 225
ADMINTABINFO administrative view and
ADMIN_GET_TAB_INFO_V97 table function -
retrieve table size and state information 232
ADMINTEMPCOLUMNS administrative view and
ADMIN_GET_TEMP_COLUMNS table function -
Retrieve column information for temporary tables . 240
ADMINTEMPTABLES administrative view and
ADMIN_GET_TEMP_TABLES table function -
Retrieve information for temporary tables 244

Chapter 5. Administrative Task
Scheduler routines and views 249
ADMIN_TASK_ADD procedure - Schedule a new
task 249

UNIX cron format 252
ADMIN_TASK_LIST administrative view - Retrieve
information about tasks in the scheduler 254
ADMIN_TASK_REMOVE procedure - Remove
scheduled tasks or task status records 255
ADMIN_TASK_STATUS administrative view -
Retrieve task status information 257
ADMIN_TASK_UPDATE procedure - Update an
existing task 258

Chapter 6. Audit routines and
procedures 261
AUDIT_ARCHIVE procedure and table function -
Archive audit log file 261
AUDIT_DELIM_EXTRACT - performs extract to
delimited file 262
AUDIT_LIST_LOGS table function - Lists archived
audit log files 263

Chapter 7. Automatic maintenance
routines. 265
AUTOMAINT_GET_POLICY procedure - retrieve
automatic maintenance policy 265
AUTOMAINT_GET_POLICYFILE procedure -
retrieve automatic maintenance policy 266
AUTOMAINT_SET_POLICY procedure - configure
automatic maintenance policy 267
AUTOMAINT_SET_POLICYFILE procedure -
configure automatic maintenance policy 268

Chapter 8. Common SQL API
procedures 271
Common input and output parameters 271
Versioning of XML documents. 272

XML input documents 273
Complete mode for returning valid XML input
documents 273

XML output documents 274
XPath expressions for filtering output 275

XML message documents 276
CANCEL_WORK procedure - Cancel work . . . 277
DESIGN_ADVISOR - retrieve design advisor
recommendations 283
GET_CONFIG procedure - Get configuration data 290
GET_MESSAGE procedure - Get message text . . 297
GET_SYSTEM_INFO procedure - Get system
information 304
SET_CONFIG procedure - Set configuration
parameters 311

Chapter 9. Configuration routines and
views 323
DB_PARTITIONS 323
DBCFG administrative view - Retrieve database
configuration parameter information 324
DBMCFG administrative view - Retrieve database
manager configuration parameter information . . 326
REG_VARIABLES administrative view - Retrieve
DB2 registry settings in use. 328

Chapter 10. Environment views. . . . 331
ENV_FEATURE_INFO administrative view -
Return license information for DB2 features . . . 331
ENV_GET_DB2_SYSTEM_RESOURCES table
function - Return DB2 system information. . . . 332
ENV_GET_NETWORK_RESOURCES table function
- Return network information 333
ENV_GET_SYSTEM_RESOURCES table function -
Return system information 334
ENV_INST_INFO administrative view - Retrieve
information about the current instance 336
ENV_PROD_INFO administrative view - Retrieve
information about installed DB2 products 338
ENV_SYS_INFO administrative view - Retrieve
information about the system 339

Chapter 11. Explain routines 341
EXPLAIN_GET_MSGS 341
EXPLAIN_FORMAT_STATS 343
EXPLAIN_FROM_ACTIVITY procedure - Explain
statement using activity event monitor information. 348
EXPLAIN_FROM_CATALOG procedure - Explain
a statement using section information from
catalogs 351
EXPLAIN_FROM_DATA procedure - Explain a
statement using the input section. 353
EXPLAIN_FROM_SECTION procedure - Explain a
statement using package cache or package cache
event monitor information 355

Chapter 12. Monitor routines and
views 359
EVMON_FORMAT_UE_TO_TABLES procedure -
move an XML document to relational tables . . . 361

iv Administrative Routines and Views

EVMON_FORMAT_UE_TO_XML table function -
convert unformatted events to XML 369
MON_BP_UTILIZATION - Retrieve metrics for
bufferpools 372
MON_CONNECTION_SUMMARY - Retrieve
metrics for all connections 379
MON_CURRENT_SQL - Retrieve key metrics for
all activities on all members 383
MON_CURRENT_UOW - Retrieve metrics for all
units of work 384
MON_DB_SUMMARY - Retrieve accumulated
metrics across all members of the database . . . 386
MON_FORMAT_LOCK_NAME - format the
internal lock name and return details 389
MON_FORMAT_XML_COMPONENT
_TIMES_BY_ROW - Get formatted row-based
component times 392
MON_FORMAT_XML_METRICS_BY_ROW - Get
formatted row-based output for all metrics . . . 396
MON_FORMAT_XML_TIMES_BY_ROW - Get
formatted row-based combined hierarchy wait and
processing times 404
MON_FORMAT_XML_WAIT_TIMES_BY_ROW -
Get formatted row-based output for wait times . . 409
MON_GET_ACTIVITY_DETAILS table function -
Get complete activity details 413
MON_GET_APPL_LOCKWAIT - get information
about locks for which an application is waiting . . 423
MON_GET_BUFFERPOOL table function - Get
buffer pool metrics 426
MON_GET_CONNECTION table function - Get
connection metrics. 430
MON_GET_CONNECTION_DETAILS table
function - Get detailed connection metrics 436
MON_GET_CONTAINER table function - Get table
space container metrics 443
MON_GET_EXTENT_MOVEMENT_STATUS - get
extent movement progress 446
MON_GET_FCM - Get FCM metrics 447
MON_GET_FCM_CONNECTION_LIST - Get
details for all FCM connections 448
MON_GET_INDEX table function - get index
metrics 449
MON_GET_LOCKS - list all locks in the currently
connected database 452
MON_GET_MEMORY_POOL - get memory pool
information 456
MON_GET_MEMORY_SET - get memory set
information 459
MON_GET_PKG_CACHE_STMT table function -
Get SQL statement activity metrics in the package
cache 461
MON_GET_PKG_CACHE_STMT_DETAILS - get
detailed metrics for package cache entries 467
MON_GET_SERVICE_SUBCLASS table function -
Get service subclass metrics 473
MON_GET_SERVICE_SUBCLASS_DETAILS table
function - Get detailed service subclass metrics . . 480
MON_GET_TABLE table function - get table
metrics 487

MON_GET_TABLESPACE table function - Get
table space metrics 490
MON_GET_UNIT_OF_WORK table function - Get
unit of work metrics 494
MON_GET_UNIT_OF_WORK_DETAILS table
function - Get detailed unit of work metrics . . . 500
MON_GET_WORKLOAD table function - Get
workload metrics 508
MON_GET_WORKLOAD_DETAILS table function
- Get detailed workload metrics 513
MON_LOCKWAITS administrative view - Retrieve
metrics for applications that are waiting to obtain
locks 520
MON_PKG_CACHE_SUMMARY - Retrieve a
high-level summary of the database package cache . 522
MON_SERVICE_SUBCLASS_SUMMARY - Retrieve
metrics for all service subclasses 524
MON_TBSP_UTILIZATION - Retrieve monitoring
metrics for all table spaces and all database
partitions 527
MON_WORKLOAD_SUMMARY - Retrieves
metrics for all workloads 531

Chapter 13. MQSeries routines 535
MQPUBLISH 535
MQREAD 536
MQREADALL 538
MQREADALLCLOB 540
MQREADCLOB 542
MQRECEIVE 543
MQRECEIVEALL 544
MQRECEIVEALLCLOB 546
MQRECEIVECLOB 549
MQSEND 550
MQSUBSCRIBE 552
MQUNSUBSCRIBE 553

Chapter 14. Security routines and
views 555
AUTH_GET_INSTANCE_AUTHID - Get the
instance owner authorization ID 555
AUTH_LIST_AUTHORITIES_FOR_AUTHID . . . 556
AUTH_LIST_GROUPS_FOR_AUTHID table
function - Retrieve group membership list for a
given authorization ID 560
AUTH_LIST_ROLES_FOR_AUTHID function -
Returns the list of roles 561
AUTHORIZATIONIDS administrative view -
Retrieve authorization IDs and types 563
OBJECTOWNERS administrative view – Retrieve
object ownership information 564
PRIVILEGES administrative view – Retrieve
privilege information 565

Chapter 15. Snapshot routines and
views 567
APPL_PERFORMANCE administrative view -
Retrieve percentage of rows selected for an
application 567

Contents v

APPLICATIONS administrative view - Retrieve
connected database application information . . . 568
BP_HITRATIO administrative view - Retrieve
bufferpool hit ratio information 572
BP_READ_IO administrative view - Retrieve
bufferpool read performance information 574
BP_WRITE_IO administrative view - Retrieve
bufferpool write performance information 576
CONTAINER_UTILIZATION administrative view -
Retrieve table space container and utilization
information 577
LOCKS_HELD administrative view - Retrieve
information about the locks held 579
LOCKWAITS administrative view - Retrieve
current lockwaits information 582
LOG_UTILIZATION administrative view - Retrieve
log utilization information 585
LONG_RUNNING_SQL administrative view . . . 587
QUERY_PREP_COST administrative view -
Retrieve statement prepare time information . . . 590
SNAPAGENT administrative view and
SNAP_GET_AGENT table function – Retrieve
agent logical data group application snapshot
information 591
SNAPAPPL_INFO administrative view and
SNAP_GET_APPL_INFO_V95 table function -
Retrieve appl_info logical data group snapshot
information 594
SNAPAPPL administrative view and
SNAP_GET_APPL_V95 table function - Retrieve
appl logical data group snapshot information . . 602
SNAPBP administrative view and
SNAP_GET_BP_V95 table function - Retrieve
bufferpool logical group snapshot information . . 610
SNAPBP_PART administrative view and
SNAP_GET_BP_PART table function – Retrieve
bufferpool_nodeinfo logical data group snapshot
information 615
SNAPCONTAINER administrative view and
SNAP_GET_CONTAINER_V91 table function -
Retrieve tablespace_container logical data group
snapshot information 619
SNAPDB administrative view and
SNAP_GET_DB_V97 table function - Retrieve
snapshot information from the dbase logical group . 623
SNAPDBM administrative view and
SNAP_GET_DBM_V95 table function - Retrieve the
dbm logical grouping snapshot information . . . 634
SNAPDETAILLOG administrative view and
SNAP_GET_DETAILLOG_V91 table function -
Retrieve snapshot information from the detail_log
logical data group 639
SNAPDYN_SQL administrative view and
SNAP_GET_DYN_SQL_V95 table function -
Retrieve dynsql logical group snapshot information 642
SNAPFCM administrative view and
SNAP_GET_FCM table function – Retrieve the fcm
logical data group snapshot information 647

SNAPFCM_PART administrative view and
SNAP_GET_FCM_PART table function – Retrieve
the fcm_node logical data group snapshot
information 650
SNAPHADR administrative view and
SNAP_GET_HADR table function – Retrieve hadr
logical data group snapshot information 653
SNAPLOCK administrative view and
SNAP_GET_LOCK table function – Retrieve lock
logical data group snapshot information 657
SNAPLOCKWAIT administrative view and
SNAP_GET_LOCKWAIT table function – Retrieve
lockwait logical data group snapshot information . 662
SNAPSTMT administrative view and
SNAP_GET_STMT table function – Retrieve
statement snapshot information 668
SNAPSTORAGE_PATHS administrative view and
SNAP_GET_STORAGE_PATHS_V97 table function
- Retrieve automatic storage path information . . 674
SNAPSUBSECTION administrative view and
SNAP_GET_SUBSECTION table function –
Retrieve subsection logical monitor group snapshot
information 677
SNAPSWITCHES administrative view and
SNAP_GET_SWITCHES table function – Retrieve
database snapshot switch state information . . . 681
SNAPTAB administrative view and
SNAP_GET_TAB_V91 table function - Retrieve
table logical data group snapshot information . . 684
SNAPTAB_REORG administrative view and
SNAP_GET_TAB_REORG table function - Retrieve
table reorganization snapshot information 688
SNAPTBSP administrative view and
SNAP_GET_TBSP_V91 table function - Retrieve
table space logical data group snapshot
information 693
SNAPTBSP_PART administrative view and
SNAP_GET_TBSP_PART_V97 table function -
Retrieve tablespace_nodeinfo logical data group
snapshot information 699
SNAPTBSP_QUIESCER administrative view and
SNAP_GET_TBSP_QUIESCER table function -
Retrieve quiescer table space snapshot information . 704
SNAPTBSP_RANGE administrative view and
SNAP_GET_TBSP_RANGE table function -
Retrieve range snapshot information 708
SNAPUTIL administrative view and
SNAP_GET_UTIL table function - Retrieve
utility_info logical data group snapshot
information 712
SNAPUTIL_PROGRESS administrative view and
SNAP_GET_UTIL_PROGRESS table function -
Retrieve progress logical data group snapshot
information 716
SNAP_WRITE_FILE procedure 719
SNAPAGENT administrative view and
SNAP_GET_AGENT table function – Retrieve
agent logical data group application snapshot
information 720

vi Administrative Routines and Views

SNAPAGENT_MEMORY_POOL administrative
view and SNAP_GET_AGENT_MEMORY_POOL
table function – Retrieve memory_pool logical data
group snapshot information 723
SNAPAPPL_INFO administrative view and
SNAP_GET_APPL_INFO_V95 table function -
Retrieve appl_info logical data group snapshot
information 727
SNAPAPPL administrative view and
SNAP_GET_APPL_V95 table function - Retrieve
appl logical data group snapshot information . . 735
SNAPBP administrative view and
SNAP_GET_BP_V95 table function - Retrieve
bufferpool logical group snapshot information . . 743
SNAPBP_PART administrative view and
SNAP_GET_BP_PART table function – Retrieve
bufferpool_nodeinfo logical data group snapshot
information 748
SNAPCONTAINER administrative view and
SNAP_GET_CONTAINER_V91 table function -
Retrieve tablespace_container logical data group
snapshot information 752
SNAPDB administrative view and
SNAP_GET_DB_V95 table function - Retrieve
snapshot information from the dbase logical group . 756
SNAPDBM administrative view and
SNAP_GET_DBM_V95 table function - Retrieve the
dbm logical grouping snapshot information . . . 768
SNAPDETAILLOG administrative view and
SNAP_GET_DETAILLOG_V91 table function -
Retrieve snapshot information from the detail_log
logical data group 772
SNAPDYN_SQL administrative view and
SNAP_GET_DYN_SQL_V95 table function -
Retrieve dynsql logical group snapshot information 775
SNAPFCM administrative view and
SNAP_GET_FCM table function – Retrieve the fcm
logical data group snapshot information 781
SNAPFCM_PART administrative view and
SNAP_GET_FCM_PART table function – Retrieve
the fcm_node logical data group snapshot
information 783
SNAPHADR administrative view and
SNAP_GET_HADR table function – Retrieve hadr
logical data group snapshot information 786
SNAPLOCK administrative view and
SNAP_GET_LOCK table function – Retrieve lock
logical data group snapshot information 790
SNAPLOCKWAIT administrative view and
SNAP_GET_LOCKWAIT table function – Retrieve
lockwait logical data group snapshot information . 795
SNAPSTMT administrative view and
SNAP_GET_STMT table function – Retrieve
statement snapshot information 801
SNAPSTORAGE_PATHS administrative view and
SNAP_GET_STORAGE_PATHS table function -
Retrieve automatic storage path information . . . 807
SNAPSUBSECTION administrative view and
SNAP_GET_SUBSECTION table function –
Retrieve subsection logical monitor group snapshot
information 810

SNAPSWITCHES administrative view and
SNAP_GET_SWITCHES table function – Retrieve
database snapshot switch state information . . . 814
SNAPTAB administrative view and
SNAP_GET_TAB_V91 table function - Retrieve
table logical data group snapshot information . . 818
SNAPTAB_REORG administrative view and
SNAP_GET_TAB_REORG table function - Retrieve
table reorganization snapshot information 821
SNAPTBSP administrative view and
SNAP_GET_TBSP_V91 table function - Retrieve
table space logical data group snapshot
information 827
SNAPTBSP_PART administrative view and
SNAP_GET_TBSP_PART_V91 table function -
Retrieve tablespace_nodeinfo logical data group
snapshot information 833
SNAPTBSP_QUIESCER administrative view and
SNAP_GET_TBSP_QUIESCER table function -
Retrieve quiescer table space snapshot information . 838
SNAPTBSP_RANGE administrative view and
SNAP_GET_TBSP_RANGE table function -
Retrieve range snapshot information 842
SNAPUTIL administrative view and
SNAP_GET_UTIL table function - Retrieve
utility_info logical data group snapshot
information 846
SNAPUTIL_PROGRESS administrative view and
SNAP_GET_UTIL_PROGRESS table function -
Retrieve progress logical data group snapshot
information 850
SNAP_WRITE_FILE procedure 853
TBSP_UTILIZATION administrative view -
Retrieve table space configuration and utilization
information 854
TOP_DYNAMIC_SQL administrative view -
Retrieve information about the top dynamic SQL
statements 857

Chapter 16. SQL procedures routines 859
ALTER_ROUTINE_PACKAGE procedure 859
GET_ROUTINE_OPTS 860
GET_ROUTINE_SAR 860
PUT_ROUTINE_SAR 861
REBIND_ROUTINE_PACKAGE procedure - rebind
a package 863
SET_ROUTINE_OPTS 865

Chapter 17. Stepwise redistribute
routines. 867
ANALYZE_LOG_SPACE procedure - Retrieve log
space analysis information 867
GENERATE_DISTFILE procedure - Generate a data
distribution file 869
GET_SWRD_SETTINGS procedure - Retrieve
redistribute information 870
SET_SWRD_SETTINGS procedure - Create or
change redistribute registry. 872
STEPWISE_REDISTRIBUTE_DBPG procedure -
Redistribute part of database partition group . . . 874

Contents vii

Chapter 18. Storage management tool
routines. 877
CAPTURE_STORAGEMGMT_INFO procedure -
Retrieve storage-related information for a given
root object 877
CREATE_STORAGEMGMT_TABLES procedure -
Create storage management tables 879
DROP_STORAGEMGMT_TABLES procedure -
Drop all storage management tables 880

Chapter 19. Text Search routines . . . 881
SYSTS_ADMIN_CMD stored procedure - Run text
search administration commands 881
SYSTS_ALTER procedure - Change the update
characteristics of an index 882
SYSTS_CLEAR_COMMANDLOCKS procedure -
Remove command locks for text search indexes . . 887
SYSTS_CLEAR_EVENTS procedure - Delete
indexing events from an index's event table . . . 889
SYSTS_CREATE procedure - Create a text search
index on a column 891
SYSTS_DISABLE procedure - Disable current
database for text search 898
SYSTS_DROP procedure - Drop a text search index 901
SYSTS_ENABLE procedure - Enable current
database for text search 903
SYSTS_UPDATE procedure - Update the text
search index 905

Chapter 20. Workload Management
routines. 909
WLM_CANCEL_ACTIVITY - Cancel an activity 909
WLM_CAPTURE_ACTIVITY_IN_PROGRESS -
Collect activity information for activities event
monitor 910
WLM_COLLECT_STATS - Collect and reset
workload management statistics 912
WLM_GET_CONN_ENV - get settings for activity
data collection for a connection 913
WLM_GET_QUEUE_STATS table function - Return
threshold queue statistics 915
WLM_GET_SERVICE_CLASS_AGENTS_V97 table
function - list agents running in a service class . . 919
WLM_GET_SERVICE_CLASS_WORKLOAD
_OCCURRENCES_V97 - list workload occurrences . 927
WLM_GET_SERVICE_SUBCLASS_STATS_V97
table function - Return statistics of service
subclasses 931
WLM_GET_SERVICE_SUPERCLASS_STATS -
Return statistics of service superclasses 938
WLM_GET_WORK_ACTION_SET_STATS - Return
work action set statistics. 940
WLM_GET_WORKLOAD_OCCURRENCE
_ACTIVITIES_V97 - return a list of activities . . . 942
WLM_GET_WORKLOAD_STATS_V97 table
function - Return workload statistics 947
WLM_SET_CLIENT_INFO procedure - Set client
information 950
WLM_SET_CONN_ENV - enable collection of
activity data and measurement of section actuals . 952

Chapter 21. Miscellaneous routines
and views 957
ADMIN_COPY_SCHEMA procedure - Copy a
specific schema and its objects. 957
ADMIN_DROP_SCHEMA procedure - Drop a
specific schema and its objects. 961
ADMIN_MOVE_TABLE procedure - Move tables
online 963
ADMIN_MOVE_TABLE_UTIL procedure - Modify
the online move table procedure 981
ALTOBJ 983
APPLICATION_ID 986
COMPILATION_ENV table function - Retrieve
compilation environment elements 986
CONTACTGROUPS administrative view - Retrieve
the list of contact groups 989
CONTACTS administrative view - Retrieve list of
contacts 990
DB_HISTORY administrative view - Retrieve
history file information 991
DBPATHS administrative view - Retrieve database
paths 996
GET_DBSIZE_INFO 999
NOTIFICATIONLIST administrative view -
Retrieve contact list for health notification . . . 1001
PD_GET_DIAG_HIST - Return records from a
given facility 1002
PDLOGMSGS_LAST24HOURS administrative
view and PD_GET_LOG_MSGS table function –
Retrieve problem determination messages . . . 1009
REORGCHK_IX_STATS procedure – Retrieve
index statistics for reorganization evaluation . . 1016
REORGCHK_TB_STATS procedure – Retrieve
table statistics for reorganization evaluation . . . 1018
SQLERRM scalar functions - Retrieves error
message information 1020
SYSINSTALLOBJECTS 1022

Chapter 22. Deprecated SQL
administrative routines and their
replacement routines or views . . . 1025
ADMIN_GET_TAB_INFO table function - Retrieve
size and state information for tables 1028
ADMINTABCOMPRESSINFO view and
ADMIN_GET_TAB_COMPRESS_INFO 1035
ENV_SYS_RESOURCES administrative view -
Return system information 1040
GET_DB_CONFIG 1043
GET_DBM_CONFIG 1044
Health snapshot routines 1045

HEALTH_CONT_HI 1045
HEALTH_CONT_HI_HIS 1047
HEALTH_CONT_INFO 1049
HEALTH_DB_HI 1051
HEALTH_DB_HI_HIS 1054
HEALTH_DB_HIC 1058
HEALTH_DB_HIC_HIS 1060
HEALTH_DB_INFO 1062
HEALTH_DBM_HI 1064
HEALTH_DBM_HI_HIS 1065

viii Administrative Routines and Views

HEALTH_DBM_INFO 1068
HEALTH_GET_ALERT_ACTION_CFG . . . 1069
HEALTH_GET_ALERT_CFG 1072
HEALTH_GET_IND_DEFINITION 1075
HEALTH_HI_REC 1077
HEALTH_TBS_HI 1079
HEALTH_TBS_HI_HIS 1082
HEALTH_TBS_INFO 1086

SNAPAGENT_MEMORY_POOL administrative
view and SNAP_GET_AGENT_MEMORY_POOL
table function – Retrieve memory_pool logical
data group snapshot information 1087
SNAP_GET_APPL table function – Retrieve appl
logical data group snapshot information 1091
SNAP_GET_APPL_INFO table function – Retrieve
appl_info logical data group snapshot information 1098
SNAP_GET_BP table function – Retrieve
bufferpool logical group snapshot information . . 1104
SNAP_GET_CONTAINER 1107
SNAP_GET_DB 1109
SNAPDB_MEMORY_POOL administrative view
and SNAP_GET_DB_MEMORY_POOL table
function – Retrieve database level memory usage
information. 1116
SNAP_GET_DBM table function – Retrieve the
dbm logical grouping snapshot information . . . 1120
SNAPDBM_MEMORY_POOL administrative view
and SNAP_GET_DBM_MEMORY_POOL table
function – Retrieve database manager level
memory usage information 1123
SNAP_GET_DB_V91 table function - Retrieve
snapshot information from the dbase logical
group 1126
SNAPDB administrative view and
SNAP_GET_DB_V95 table function - Retrieve
snapshot information from the dbase logical
group 1136
SNAP_GET_DYN_SQL_V91 table function -
Retrieve dynsql logical group snapshot
information. 1148
SNAP_GET_DYN_SQL 1151
SNAP_GET_STO_PATHS 1153
SNAP_GET_TAB 1154
SNAP_GET_TBSP 1156
SNAP_GET_TBSP_PART 1159
SNAPAGENT_MEMORY_POOL administrative
view and SNAP_GET_AGENT_MEMORY_POOL
table function – Retrieve memory_pool logical
data group snapshot information 1161
SNAPDB_MEMORY_POOL administrative view
and SNAP_GET_DB_MEMORY_POOL table
function – Retrieve database level memory usage
information. 1165
SNAPDBM_MEMORY_POOL administrative view
and SNAP_GET_DBM_MEMORY_POOL table
function – Retrieve database manager level
memory usage information 1169
SNAPLOCK administrative view and
SNAP_GET_LOCK table function – Retrieve lock
logical data group snapshot information 1172

SNAPLOCKWAIT administrative view and
SNAP_GET_LOCKWAIT table function – Retrieve
lockwait logical data group snapshot information . 1178
SNAPSHOT_AGENT 1184
SNAPSHOT_APPL 1185
SNAPSHOT_APPL_INFO 1191
SNAPSHOT_BP 1193
SNAPSHOT_CONTAINER 1195
SNAPSHOT_DATABASE 1197
SNAPSHOT_DBM 1202
SNAPSHOT_DYN_SQL 1205
SNAPSHOT_FCM 1206
SNAPSHOT_FCMNODE 1208
SNAPSHOT_FILEW 1209
SNAPSHOT_LOCK 1210
SNAPSHOT_LOCKWAIT 1211
SNAPSHOT_QUIESCERS 1213
SNAPSHOT_RANGES 1214
SNAPSHOT_STATEMENT 1215
SNAPSHOT_SUBSECT 1217
SNAPSHOT_SWITCHES 1219
SNAPSHOT_TABLE. 1221
SNAPSHOT_TBREORG 1222
SNAPSHOT_TBS 1224
SNAPSHOT_TBS_CFG 1226
SQLCACHE_SNAPSHOT 1228
SYSINSTALLROUTINES 1230
WLM_GET_ACTIVITY_DETAILS - Return
detailed information about a specific activity . . 1230
WLM_GET_SERVICE_CLASS_AGENTS - List
agents running in a service class 1237
WLM_GET_SERVICE_CLASS_WORKLOAD_
OCCURRENCES - List of workload occurrences . 1243
WLM_GET_SERVICE_SUBCLASS_STATS - return
statistics of service subclasses 1247
WLM_GET_WORKLOAD_OCCURRENCE_
ACTIVITIES - Return a list of activities 1253
WLM_GET_WORKLOAD_STATS - return
workload statistics 1258

Appendix A. Overview of the DB2
technical information 1261
DB2 technical library in hardcopy or PDF format 1261
Ordering printed DB2 books 1264
Displaying SQL state help from the command line
processor 1265
Accessing different versions of the DB2
Information Center 1265
Displaying topics in your preferred language in
the DB2 Information Center 1266
Updating the DB2 Information Center installed on
your computer or intranet server 1266
Manually updating the DB2 Information Center
installed on your computer or intranet server . . 1268
DB2 tutorials 1269
DB2 troubleshooting information 1270
Terms and Conditions 1270

Appendix B. Notices 1273

Contents ix

Index 1277

x Administrative Routines and Views

Chapter 1. System-defined routines and views

The system-defined routines and views provide a primary, easy-to-use
programmatic interface to administer and use DB2® through SQL. They encompass
a collection of built-in views, table functions, procedures, and scalar functions for
performing a variety of DB2 tasks. For example, system-defined routines are
available for reorganizing a table, capturing and retrieving monitor data, or
retrieving the application ID of the current connection.

These routines and views can be invoked from an SQL-based application, a DB2
command line, or a command script.

Best practices for calling built-in routines and views in applications
To ensure your successful use of the built-in routines and views, certain coding
practices are recommended. These practices are especially important because at
times the routines might change, as can happen from release to release as
enhancements are made.

When you issue a query to retrieve information using a system-defined routine or
view, do not use a statement of the form SELECT * For example, do not issue
the following query:
SELECT * FROM TABLE(MON_GET_UNIT_OF_WORK(NULL,-1)) AS t
ORDER BY total_cpu_time DESC

Instead, name the result columns in the SELECT statement. This gives the
application control over the number of result columns and the sequence in which
they are returned. For example:
SELECT application_handle,

uow_id,
total_cpu_time,
app_rqsts_completed_total,
rqsts_completed_total

FROM TABLE(MON_GET_UNIT_OF_WORK(NULL,-1)) AS t
ORDER BY total_cpu_time DESC

This prevents problems when the sequence and number of columns in the routines
changes. It is possible the number of result columns that a routine returns might
increase, and if, for example, you provide only five host variables when the routine
returns six result columns, your application will break.

In addition, the type and size of output parameters or result columns of routines
might change, for example a column might change from VARCHAR(8) to
VARCHAR(128), or an INTEGER column might become a BIGINT column. If a
variable you use is too small, the data you receive from the routine could be
truncated.

To protect your application from such changes, for C applications, you can describe
a prepared statement in order to determine which result columns are being
returned and what are their types and sizes. For example, the following code
snippet describes the query SELECT application_handle, uow_id,total_cpu_time
FROM TABLE(MON_GET_UNIT_OF_WORK(NULL,-1)) AS t ORDER BY total_cpu_time DESC:

© Copyright IBM Corp. 2006, 2012 1

strcpy(strStmt, "SELECT application_handle, uow_id,total_cpu_time
FROM TABLE(MON_GET_UNIT_OF_WORK(NULL,-1))
AS t ORDER BY total_cpu_time DESC");

EXEC SQL PREPARE stmt FROM :strStmt;
EXEC SQL DESCRIBE stmt into :*pSqlda;

See the RowDatamemoryAlloc function in samples/c/tbread.sqc for more details
regarding how to use the information returned in the SQLDA.

For Java and .Net applications, if data type and size is an issue, you can use
metadata to determine which result columns are being returned and what are their
types and sizes. For example:
ResultSet rs = pstmt.executeQuery();
ResultSetMetaData rsms = rs.getMetaData();

See the execPreparedQueryWithUnknownOutputColumn() method in
samples/java/jdbc/TbRead.java for details regarding how to use the metadata of
the result set.

Authorization for administrative views

For all administrative views in the SYSIBMADM schema, you need SELECT
privilege on the view. This can be validated with the following query to check that
your authorization ID, or a group or a role to which you belong, has SELECT
privilege (that is, it meets the search criteria and is listed in the GRANTEE
column):
SELECT GRANTEE, GRANTEETYPE

FROM SYSCAT.TABAUTH
WHERE TABSCHEMA = ’SYSIBMADM’ AND TABNAME = ’<view_name>’ AND
SELECTAUTH <> ’N’

where <view_name> is the name of the administrative view.

With the exception of SYSIBMADM.AUTHORIZATIONIDS,
SYSIBMADM.OBJECTOWNERS, and SYSIBMADM.PRIVILEGES, you also need
EXECUTE privilege on the underlying administrative table function. The
underlying administrative table function is listed in the authorization section of the
administrative view. This can be validated with the following query:
SELECT GRANTEE, GRANTEETYPE

FROM SYSCAT.ROUTINEAUTH
WHERE SCHEMA = ’SYSPROC’ AND SPECIFICNAME = ’<routine_name>’ AND
EXECUTEAUTH <> ’N’

where <routine_name> is the name of the underlying administrative table function
as listed in the documentation.

Some administrative views require additional authorities beyond SELECT on the
view and EXECUTE on the underlying administrative table function. Any
additional authority required is documented in the reference information
describing the view.

2 Administrative Routines and Views

Administrative views versus table functions

DB2 Version 9.5 introduced administrative views that provide an easy-to-use
application programming interface to DB2 administrative functions through SQL.

The administrative views fall into three categories:
v Views based on catalog views.
v Views based on table functions with no input parameters.
v Views based on table functions with one or more input parameters.

The administrative views are the preferred and only documented interfaces for the
views based on catalog views and the views based on table functions with no
input parameters because the table functions do not provide any additional
information or performance benefits.

For administrative views based on table functions with one or more input
parameters, both the administrative view and the table function can be used, each
achieving a different goal:
v The ADMINTABINFO administrative view and the

ADMIN_GET_TAB_INFO_V95 table function: The administrative view retrieves
information for all tables in the database. This can have a significant
performance impact for large databases. The performance impact can be reduced
by using the table function and specifying a schema name, table name, or both
as input.

v The PDLOGMSGS_LAST24HOURS administrative view and the
PD_GET_LOG_MSGS table function: The administrative view, which retrieves
notification log messages, provides quick access to data from the previous 24
hours, whereas the table function allows you to retrieve data from a specified
period of time.

v All snapshot monitor administrative views and table functions (SNAP*
administrative views, SNAP_GET_* table functions): The snapshot monitor
administrative views provide access to data from each database partition. The
table functions provide the option to choose between data from a single
database partition or data aggregated across all database partitions.

Applications that use the table functions instead of the views might need to be
changed because the table functions might change from release to release to enable
new information to be returned. The new table function will have the same base
name as the original function and will be suffixed with '_Vxx' for the version of
the product in which it is added (for example, _V97). The administrative views
will always be based on the most current version of the table functions, and
therefore allow for more application portability. As the columns may vary from
one release to the next, it is recommended that specific columns be selected from
the administrative views, or that the result set be described if a SELECT * statement
is used by an application.

Chapter 1. System-defined routines and views 3

4 Administrative Routines and Views

Chapter 2. Supported system-defined SQL routines and views

The following tables summarize information about the supported administrative
SQL routines and views.
v Activity monitor administrative SQL routines: Table 1
v ADMIN_CMD stored procedure and associated administrative SQL routines:

Table 2 on page 6
v Administrative task scheduler routines and views: Table 3 on page 7
v Audit routines and proceduresTable 4 on page 7
v Automatic maintenance administrative SQL routines and views:Table 5 on page 7
v Common SQL API stored procedures: Table 6 on page 7
v Configuration administrative SQL routines and views: Table 7 on page 8
v Environment administrative views: Table 8 on page 8
v Health snapshot administrative SQL routines: Table 9 on page 8
v Monitor administrative SQL routines: Table 10 on page 10
v MQSeries® administrative SQL routines: Table 11 on page 11
v Security administrative SQL routines and views: Table 12 on page 12
v Snapshot administrative SQL routines and views: Table 13 on page 12
v SQL procedures administrative SQL routines: Table 14 on page 16
v Stepwise redistribute administrative SQL routines: Table 15 on page 16
v Storage management tool administrative SQL routines: Table 16 on page 16
v Text search administrative SQL routines: Table 17 on page 17
v Workload Management routines: Table 18 on page 17
v Miscellaneous administrative SQL routines and views: Table 19 on page 18

Table 1. Activity monitor administrative SQL routines

Routine name Schema Description

AM_BASE_RPT_RECOMS table function
SYSPROC This table function returns recommendations

for activity reports used by the activity
monitor.

AM_BASE_RPTS table function
SYSPROC This table function returns activity reports

used by the activity monitor.

AM_DROP_TASK procedure SYSPROC This procedure deletes a monitoring task.

AM_GET_LOCK_CHN_TB procedure
SYSPROC This procedure returns application lock chain

data in tabular format.

AM_GET_LOCK_CHNS procedure
SYSPROC This procedure displays lock chains for a

specified application using a formatted
string.

AM_GET_LOCK_RPT procedure
SYSPROC This procedure displays lock details for an

application.

AM_GET_RPT procedure
SYSPROC This procedure displays activity monitor

data for a report.

AM_SAVE_TASK procedure
SYSPROC This procedure creates or modifies a

monitoring task.

© Copyright IBM Corp. 2006, 2012 5

Table 2. ADMIN_CMD stored procedure and associated administrative SQL routines

Routine name Schema Description

ADMIN_CMD procedure

SYSPROC This procedure allows the administrator to
execute administrative commands
(including DB2 command line processor
(CLP) commands) by running
ADMIN_CMD through a CALL statement.

ADMIN_EST_INLINE_LENGTH function

SYSIBM This function returns an estimate of the
inline length that is required to inline the
data stored in an XML column, BLOB
column, CLOB column, or DBCLOB
column.

ADMIN_GET_DBP_MEM_USAGE table
function

SYSPROC This table function gets the total memory
consumption for a given instance.

ADMIN_GET_INDEX_COMPRESS_INFO

SYSPROC This table function returns the potential
index compression savings for
uncompressed indexes or reports the index
compression statistics from the catalogs.

ADMIN_GET_INDEX_INFO table function
SYSPROC This table function returns index

information not available in the catalog
views.

ADMIN_GET_MSGS table function

SYSPROC This table function is used to retrieve
messages generated by data movement
utilities that are executed through the
ADMIN_CMD procedure.

ADMIN_IS_INLINED function

SYSIBM This function retrieves state information
about inline data for an XML column,
BLOB column, CLOB column, or DBCLOB
column.

ADMIN_REMOVE_MSGS procedure

SYSPROC This procedure is used to clean up
messages generated by data movement
utilities that are executed through the
ADMIN_CMD procedure.

ADMIN_REVALIDATE_DB_OBJECTS
procedure

SYSPROC This procedure revalidates invalid database
objects.

ADMINTABCOMPRESSINFO view and
ADMIN_GET_TAB_COMPRESS_INFO_V97
table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This view and table function return
compression information for tables,
materialized query tables (MQT) and
hierarchy tables.

ADMINTABINFO and
ADMIN_GET_TAB_INFO_V97

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This view and table function return size
and state information for tables,
materialized query tables (MQT) and
hierarchy tables.

ADMINTEMPCOLUMNS view and
ADMIN_GET_TEMP_COLUMNS table
function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This view and table function retrieve
column attribute information for created
temporary tables and declared temporary
tables

ADMINTEMPTABLES view and
ADMIN_GET_TEMP_TABLES table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This view and table function retrieve table
attribute and instantiation time information
for instances of created temporary tables
and declared temporary tables.

6 Administrative Routines and Views

Table 3. Administrative task scheduler routines and views

Routine or view name Schema Description

ADMIN_TASK_ADD
SYSPROC This procedure schedules an administrative

task.

ADMIN_TASK_LIST
SYSTOOLS This administrative view retrieves

information about each task defined in the
scheduler.

ADMIN_TASK_REMOVE
SYSPROC This procedure removes scheduled tasks or

task status records.

ADMIN_TASK_STATUS
SYSTOOLS This administrative view retrieves

information about the status of each task.

ADMIN_TASK_UPDATE SYSPROC This procedure updates an existing task

Table 4. Audit routines and procedures

Routine or view name Schema Description

AUDIT_ARCHIVE procedure and table
function

SYSPROC This procedure and table function archives
the current audit log.

AUDIT_DELIM_EXTRACT procedure SYSPROC This procedure extracts data from the
binary archived logs and loads it into
delimited files.

AUDIT_LIST_LOGS table function SYSPROC This table function returns a list of the
archived audit logs at the specified path,
for the current database.

Table 5. Automatic Maintenance administrative SQL routines and views

Routine or view name Schema Description

AUTOMAINT_GET_POLICY procedure SYSPROC This procedure gets the current automatic
maintenance settings for the database.

AUTOMAINT_GET_POLICYFILE procedure SYSPROC This procedure gets the current automatic
maintenance settings for the database.

AUTOMAINT_SET_POLICY procedure SYSPROC This procedure sets the automatic
maintenance policy settings for the
currently connected database.

AUTOMAINT_SET_POLICYFILE procedure SYSPROC This procedure sets the automatic
maintenance settings for the currently
connected database.

Table 6. Common SQL API stored procedures

Routine or view name Schema Description

CANCEL_WORK procedure

SYSPROC This procedure cancels a specified activity.
If no unique activity ID is specified, cancels
all activity for a connected application, and
forces the application off of the system.

DESIGN_ADVISOR procedure
SYSPROC This procedure retrieves design advisor

recommendations from a DB2 server.

GET_CONFIG procedure

SYSPROC This procedure retrieves data server
configuration data, including nodes.cfg file
data, database manager configuration data,
database configuration data, and registry
settings from all database partitions.

Chapter 2. Supported routines and views 7

Table 6. Common SQL API stored procedures (continued)

Routine or view name Schema Description

GET_MESSAGE procedure
SYSPROC This procedure retrieves the short message

text, long message text, and SQLSTATE for
an SQLCODE.

GET_SYSTEM_INFO procedure

SYSPROC This procedure retrieves information about
the data server, including information about
the system, the current instance, installed
DB2 database products, environment
variables, available CPUs, and other system
information.

SET_CONFIG procedure
SYSPROC This procedure updates the configuration

parameters retrieved by the GET_CONFIG
procedure.

Table 7. Configuration administrative SQL routines and views

Routine or view name Schema Description

DB_PARTITIONS table function
SYSPROC This table function returns the contents of

the db2nodes.cfg file in table form.

DBCFG administrative view
SYSIBMADM This administrative view returns database

configuration information.

DBMCFG administrative view
SYSIBMADM This administrative view returns database

manager configuration information.

REG_VARIABLES administrative view
SYSIBMADM This administrative view returns the DB2

registry settings from all database
partitions.

Table 8. Environment administrative views

View name Schema Description

ENV_FEATURE_INFO administrative view
SYSPROC This administrative view returns

information about all available features for
which a license is required.

ENV_INST_INFO administrative view
SYSIBMADM This administrative view returns

information about the current instance.

ENV_PROD_INFO administrative view
SYSIBMADM This administrative view returns

information about installed DB2 database
products.

ENV_SYS_INFO administrative view
SYSIBMADM This administrative view returns

information about the system.

ENV_SYS_RESOURCES administrative view
SYSIBMADM This administrative view returns operating

system, CPU, memory and other
information related to the system

Table 9. Health snapshot administrative SQL routines

Routine name Schema Description

HEALTH_CONT_HI table function
SYSPROC This table function returns a table with

health indicator information for containers
from a health snapshot of a database.

8 Administrative Routines and Views

Table 9. Health snapshot administrative SQL routines (continued)

Routine name Schema Description

HEALTH_CONT_HI_HIS table function

SYSPROC This table function returns a table with
health indicator history information for
containers from a health snapshot of a
database.

HEALTH_CONT_INFO table function

SYSPROC This table function returns a table with
rolled-up alert state information for
containers from a health snapshot of a
database.

HEALTH_DB_HI table function
SYSPROC This table function returns a table with

health indicator information from a health
snapshot of a database.

HEALTH_DB_HI_HIS table function
SYSPROC This table function returns a table with

health indicator history information from a
health snapshot of a database.

HEALTH_DB_HIC table function
SYSPROC This table function returns collection health

indicator information from a health
snapshot of a database.

HEALTH_DB_HIC_HIS table function
SYSPROC This table function returns collection health

indicator history information from a health
snapshot of a database.

HEALTH_DB_INFO table function
SYSPROC This table function returns a table with

rolled-up alert state information from a
health snapshot of one or all databases.

HEALTH_DBM_HI table function
SYSPROC This table function returns a table with

health indicator information from a health
snapshot of the DB2 database manager.

HEALTH_DBM_HI_HIS table function

SYSPROC This table function returns a table with
health indicator history information from a
health snapshot of the DB2 database
manager.

HEALTH_DBM_INFO table function

SYSPROC This table function returns a table with
rolled-up alert state information from a
health snapshot of the DB2 database
manager.

HEALTH_GET_ALERT_ACTION_CFG table
function

SYSPROC This table function returns health alert
action configuration settings for objects of
various types (dbm, database, table space,
and table space containers) and for various
configuration levels (install default,
instance, global, and object).

HEALTH_GET_ALERT_CFG table function

SYSPROC This table function returns health alert
configuration settings for objects of various
types (dbm, database, table space, table
space containers) and for various
configuration levels (install default, global,
and object).

HEALTH_GET_IND_DEFINITION table
function

SYSPROC This table function returns the health
indicator definition.

HEALTH_HI_REC procedure

SYSPROC This procedure retrieves a set of
recommendations that address a health
indicator in alert state on a particular DB2
object.

Chapter 2. Supported routines and views 9

Table 9. Health snapshot administrative SQL routines (continued)

Routine name Schema Description

HEALTH_TBS_HI table function
SYSPROC This table function returns a table with

health indicator information for table spaces
from a health snapshot of a database.

HEALTH_TBS_HI_HIS table function

SYSPROC This table function returns a table with
health indicator history information for
table spaces from a health snapshot of a
database.

HEALTH_TBS_INFO table function

SYSPROC This table function returns a table with
rolled-up alert state information for table
spaces from a health snapshot of a
database.

Table 10. Monitor SQL routines

Routine name Schema Description

EVMON_FORMAT_UE_TO_TABLES procedure

SYSPROC This procedure retrieves data stored in
an unformatted event table and
moves the XML document into a set
of relational tables.

EVMON_FORMAT_UE_TO_XML table function

SYSPROC This table function extracts binary
events from an unformatted event
table and formats them into an XML
document.

MON_GET_ACTIVITY_DETAILS

SYSPROC This table function returns details
about an activity, including general
activity information and a set of
metrics for the activity.

MON_GET_BUFFERPOOL table function
SYSPROC This table function returns monitor

metrics for one or more buffer pools.

MON_GET_CONNECTION table function
SYSPROC This table function returns metrics for

one or more connections.

MON_GET_CONNECTION_DETAILS table function
SYSPROC This table function returns detailed

metrics for one or more connections.

MON_GET_CONTAINER table function
SYSPROC This table function returns monitor

metrics for one or more table space
containers.

MON_GET_EXTENT_MOVEMENT_STATUS table
function

SYSPROC This table function returns the status
of the extent movement operation.

MON_GET_FCM
SYSPROC This table function returns metrics for

the fast communication manager
(FCM).

MON_GET_FCM_CONNECTION_LIST

SYSPROC This table function returns monitor
metrics for all the fast communication
manager (FCM) connections on the
specified member or members.

MON_GET_INDEX table function
SYSPROC This table function returns metrics for

one or more indexes.

MON_GET_LOCKS table function
SYSPROC This table function returns a list of all

locks in the currently connected
database.

10 Administrative Routines and Views

Table 10. Monitor SQL routines (continued)

Routine name Schema Description

MON_GET_MEMORY_POOL table function
SYSPROC This table function retrieves metrics

from the memory pools contained
within a memory set.

MON_GET_MEMORY_SET table function

SYSPROC This table function retrieves metrics
from the allocated memory sets, both
at the instance level and for all active
databases within the instance.

MON_GET_PKG_CACHE_STMT table function

SYSPROC This table function returns a
point-in-time view of both static and
dynamic SQL statements in the
database package cache.

MON_GET_SERVICE_SUBCLASS table function
SYSPROC This table function returns metrics for

one or more service subclasses.

MON_GET_SERVICE_SUBCLASS_DETAILS table
function

SYSPROC This table function returns detailed
metrics for one or more service
subclasses.

MON_GET_TABLE table function
SYSPROC This table function returns monitor

metrics for one or more tables.

MON_GET_TABLESPACE table function
SYSPROC This table function returns monitor

metrics for one or more table spaces.

MON_GET_UNIT_OF_WORK table function
SYSPROC This table function returns metrics for

one or more units of work.

MON_GET_UNIT_OF_WORK_DETAILS table function
SYSPROC This table function returns detailed

metrics for one or more units of work.

MON_GET_WORKLOAD table function
SYSPROC This table function returns metrics for

one or more workloads.

MON_GET_WORKLOAD_DETAILS table function
SYSPROC This table function returns detailed

metrics for one or more workloads.

Table 11. MQSeries administrative SQL routines

Routine name Schema Description

MQPUBLISH scalar function
DB2MQ, DB2MQ1C This scalar function publishes data to an

MQSeries location.

MQREAD scalar function
DB2MQ, DB2MQ1C This scalar function returns a message from

an MQSeries location.

MQREADALL table function
DB2MQ, DB2MQ1C This table function returns a table with

messages and message metadata from an
MQSeries location.

MQREADALLCLOB table function
DB2MQ This table function returns a table

containing messages and message metadata
from a specified MQSeries location.

MQREADCLOB scalar function
DB2MQ This scalar function returns a message from

a specified MQSeries location.

MQRECEIVE scalar function
DB2MQ, DB2MQ1C This scalar function returns a message from

an MQSeries location and removes the
message from the associated queue.

Chapter 2. Supported routines and views 11

Table 11. MQSeries administrative SQL routines (continued)

Routine name Schema Description

MQRECEIVEALL table function

DB2MQ, DB2MQ1C This table function returns a table
containing the messages and message
metadata from an MQSeries location and
removes the messages from the associated
queue.

MQRECEIVEALLCLOB table function
DB2MQ This table function returns a table

containing messages and message metadata
from a specified MQSeries location.

MQRECEIVECLOB scalar function
DB2MQ This scalar function returns a message from

a specified MQSeries location.

MQSEND scalar function
DB2MQ, DB2MQ1C This scalar function sends data to an

MQSeries location.

MQSUBSCRIBE scalar function
DB2MQ, DB2MQ1C This scalar function subscribes to MQSeries

messages published on a specific topic.

MQUNSUBSCRIBE scalar function
DB2MQ, DB2MQ1C This scalar function unsubscribes from

MQSeries messages published on a specific
topic.

Table 12. Security administrative SQL routines and views:

Routine or view name Schema Description

AUTH_LIST_AUTHORITIES_FOR_AUTHID
table function

SYSPROC This table function returns all authorities
held by the authorization ID, either found
in the database configuration file or granted
to an authorization ID directly or indirectly
through a group or a role.

AUTH_LIST_GROUPS_FOR_AUTHID table
function

SYSPROC This table function returns the list of groups
of which the given authorization ID is a
member.

AUTH_LIST_ROLES_FOR_AUTHID function
SYSPROC This function returns the list of roles in

which the given authorization ID is a
member.

AUTHORIZATIONIDS administrative view

SYSIBMADM This administrative view contains a list of
authorization IDs that have been granted
privileges or authorities, along with their
types, for the currently connected database.

OBJECTOWNERS administrative view
SYSIBMADM This administrative view contains all object

ownership information for the currently
connected database.

PRIVILEGES administrative view
SYSIBMADM This administrative view contains all

explicit privileges for the currently
connected database.

Table 13. Snapshot administrative SQL routines and views

Routine or view name Schema Description

APPL_PERFORMANCE administrative view
SYSIBMADM This administrative view displays

information about the rate of rows selected
versus rows read per application.

12 Administrative Routines and Views

Table 13. Snapshot administrative SQL routines and views (continued)

Routine or view name Schema Description

APPLICATIONS administrative view
SYSIBMADM This administrative view returns

information about the connected database
applications.

BP_HITRATIO administrative view
SYSIBMADM This administrative view returns bufferpool

hit ratios, including total, data, and index,
in the database.

BP_READ_IO administrative view
SYSIBMADM This administrative view returns bufferpool

read performance information.

BP_WRITE_IO administrative view
SYSIBMADM This administrative view returns bufferpool

write performance information per
bufferpool.

CONTAINER_UTILIZATION administrative
view

SYSIBMADM This administrative view returns
information about table space containers
and utilization rates.

LOCKS_HELD administrative view
SYSIBMADM This administrative view returns

information about the current locks held.

LOCKWAITS administrative view
SYSIBMADM This administrative view returns

information about the locks that are waiting
to be granted.

LOG_UTILIZATION administrative view
SYSIBMADM This administrative view returns

information about log utilization for the
currently connected database.

LONG_RUNNING_SQL administrative view
SYSIBMADM This administrative view returns the longest

running SQL statements in the currently
connected database.

QUERY_PREP_COST administrative view
SYSIBMADM This administrative view returns a list of

statements with information about the time
required to prepare the statement.

SNAP_WRITE_FILE procedure
SYSPROC This procedure writes system snapshot data

to a file in the tmp subdirectory of the
instance directory.

SNAPAGENT administrative view and
SNAP_GET_AGENT table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about agents from an
application snapshot, in particular, the
agent logical data group.

SNAPAGENT_MEMORY_POOL administrative
view and
SNAP_GET_AGENT_MEMORY_POOL table
function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about memory usage at
the agent level.

SNAPAPPL administrative view and
SNAP_GET_APPL_V95 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about applications from
an application snapshot, in particular, the
appl logical data group.

SNAPAPPL_INFO administrative view and
SNAP_GET_APPL_INFO_V95 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about applications from
an application snapshot, in particular, the
appl_info logical data group.

SNAPBP administrative view and
SNAP_GET_BP_V95 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about buffer pools from
a bufferpool snapshot, in particular, the
bufferpool logical data group.

Chapter 2. Supported routines and views 13

Table 13. Snapshot administrative SQL routines and views (continued)

Routine or view name Schema Description

SNAPBP_PART administrative view and
SNAP_GET_BP_PART table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about buffer pools from
a bufferpool snapshot, in particular, the
bufferpool_nodeinfo logical data group.

SNAPCONTAINER administrative view and
SNAP_GET_CONTAINER_V91 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return table space snapshot information
from the tablespace_container logical data
group.

SNAPDB administrative view and
SNAP_GET_DB_V95 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information from the
database (dbase) and database storage
(db_storage_group) logical groupings.

SNAPDBM administrative view and
SNAP_GET_DBM_V95 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return the snapshot monitor DB2 database
manager (dbm) logical grouping
information.

SNAPDETAILLOG administrative view and
SNAP_GET_DETAILLOG_V91 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information from the
detail_log logical data group.

SNAPDYN_SQL administrative view and
SNAP_GET_DYN_SQL_V95 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information from the
dynsql logical data group.

SNAPFCM administrative view and
SNAP_GET_FCM table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about the fast
communication manager (FCM) from a
database manager snapshot, in particular,
the fcm logical data group.

SNAPFCM_PART administrative view and
SNAP_GET_FCM_PART table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about the fast
communication manager (FCM) from a
database manager snapshot, in particular,
the fcm_node logical data group.

SNAPHADR administrative view and
SNAP_GET_HADR table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about high availability
disaster recovery from a database snapshot,
in particular, the hadr logical data group.

SNAPLOCK administrative view and
SNAP_GET_LOCK table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information about locks, in
particular, the lock logical data group.

SNAPLOCKWAIT administrative view and
SNAP_GET_LOCKWAIT table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information about lock
waits, in particular, the lockwait logical
data group.

SNAPSTMT administrative view and
SNAP_GET_STMT table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about statements from
an application snapshot.

14 Administrative Routines and Views

Table 13. Snapshot administrative SQL routines and views (continued)

Routine or view name Schema Description

SNAPSTORAGE_PATHS administrative view
and SNAP_GET_STORAGE_PATHS table
function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return a list of automatic storage paths for
the database including file system
information for each storage path,
specifically, from the db_storage_group
logical data group

SNAPSUBSECTION administrative view and
SNAP_GET_SUBSECTION table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about application
subsections, namely the subsection logical
monitor grouping.

SNAPSWITCHES administrative view and
SNAP_GET_SWITCHES table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about the database
snapshot switch state.

SNAPTAB administrative view and
SNAP_GET_TAB_V91 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information from the table
logical data group.

SNAPTAB_REORG administrative view and
SNAP_GET_TAB_REORG table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return table reorganization information.

SNAPTBSP administrative view and
SNAP_GET_TBSP_V91 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information from the table
space logical data group.

SNAPTBSP_PART administrative view and
SNAP_GET_TBSP_PART_V91 table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information from the
tablespace_nodeinfo logical data group.

SNAPTBSP_QUIESCER administrative view
and SNAP_GET_TBSP_QUIESCER table
function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about quiescers from a
table space snapshot.

SNAPTBSP_RANGE administrative view and
SNAP_GET_TBSP_RANGE table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information from a range snapshot.

SNAPUTIL administrative view and
SNAP_GET_UTIL table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return snapshot information about the
utilities from the utility_info logical data
group.

SNAPUTIL_PROGRESS administrative view
and SNAP_GET_UTIL_PROGRESS table
function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return information about utility progress, in
particular, the progress logical data group.

TBSP_UTILIZATION administrative view
SYSIBMADM This administrative view returns table space

configuration and utilization information.

Chapter 2. Supported routines and views 15

Table 13. Snapshot administrative SQL routines and views (continued)

Routine or view name Schema Description

TOP_DYNAMIC_SQL administrative view

SYSIBMADM This administrative view returns the top
dynamic SQL statements sortable by
number of executions, average execution
time, number of sorts, or sorts per
statement.

Table 14. SQL procedures administrative SQL routines

Routine name Schema Description

ALTER_ROUTINE_PACKAGE procedure

SYSPROC This procedure alters values for the package
associated with a compiled SQL routine or
a compiled trigger, without the need for
rebinding.

GET_ROUTINE_OPTS scalar function

SYSPROC This scalar function returns a character
string value of the options that are to be
used for the creation of SQL procedures in
the current session.

GET_ROUTINE_SAR procedure

SYSFUN This procedure returns the information
necessary to install an identical routine on
another database server running at least at
the same level and operating system.

PUT_ROUTINE_SAR procedure
SYSFUN This procedure passes the information

necessary to create and define an SQL
routine at the database server.

REBIND_ROUTINE_PACKAGE procedure
SYSPROC This procedure rebinds the package

associated with an SQL procedure.

SET_ROUTINE_OPTS procedure
SYSPROC This procedure sets the options that are to

be used for the creation of SQL procedures
in the current session.

Table 15. Stepwise redistribute administrative SQL routines

Routine name Schema Description

ANALYZE_LOG_SPACE procedure
SYSPROC This procedure returns log space analysis

information.

GENERATE_DISTFILE procedure
SYSPROC This procedure generates a data

distribution file.

GET_SWRD_SETTINGS procedure
SYSPROC This procedure returns redistribute

information.

SET_SWRD_SETTINGS procedure
SYSPROC This procedure creates or changes the

redistribute registry.

STEPWISE_REDISTRIBUTE_DBPG procedure
SYSPROC This procedure redistributes part of

database partition group.

Table 16. Storage management tool administrative SQL routines

Routine name Schema Description

CAPTURE_STORAGEMGMT_INFO procedure
SYSPROC This procedure returns storage-related

information for a given root object.

CREATE_STORAGEMGMT_TABLES procedure
SYSPROC This procedure creates storage management

tables.

16 Administrative Routines and Views

Table 16. Storage management tool administrative SQL routines (continued)

Routine name Schema Description

DROP_STORAGEMGMT_TABLES procedure
SYSPROC This procedure drops all storage

management tables.

Table 17. Text search administrative SQL routines

Routine name Schema Description

SYSTS_ADMIN_CMD stored procedure
SYSPROC This procedure runs text search

administrative commands using the SQL
CALL statement.

SYSTS_ALTER procedure
SYSPROC This procedure changes the update

characteristics of an index.

SYSTS_CLEAR_COMMANDLOCKS procedure
SYSPROC This procedure removes all command locks

for a specific text search index or for all
text search indexes in the database.

SYSTS_CLEAR_EVENTS procedure
SYSPROC This procedure deletes indexing events

from an index's event table used for
administration.

SYSTS_CREATE procedure

SYSPROC This procedure creates a text search index
for a text column which allows the column
data to be searched using text search
functions.

SYSTS_DISABLE procedure
SYSPROC This procedure disables DB2 Text Search for

the current database.

SYSTS_DROP procedure
SYSPROC This procedure drops an existing text

search index associated with any table
column.

SYSTS_ENABLE procedure
SYSPROC This procedure must be issued successfully

before text search indexes on columns in
tables within the database can be created.

SYSTS_UPDATE procedure

SYSPROC This procedure updates the text search
index to reflect the current contents of the
text columns with which the index is
associated.

Table 18. Workload management administrative SQL routines

Routine name Schema Description

WLM_CANCEL_ACTIVITY procedure SYSPROC This procedure cancels the given activity.

WLM_CAPTURE_ACTIVITY_IN_PROGRESS
procedure

SYSPROC This procedure sends information about the
given activity to the activities event
monitor.

WLM_COLLECT_STATS procedure SYSPROC This procedure sends statistics for service
classes, workloads, work classes and
threshold queues to the statistics event
monitor and resets the in-memory copy of
the statistics.

WLM_GET_QUEUE_STATS table function SYSPROC This table function returns basic statistic
information for one or more threshold
queues.

Chapter 2. Supported routines and views 17

Table 18. Workload management administrative SQL routines (continued)

Routine name Schema Description

WLM_GET_SERVICE _CLASS_AGENTS_V97
table function

SYSPROC This table function returns the list of agents
on the given partition that are executing in
the service class given by the
SERVICE_SUPERCLASS_NAME and
SERVICE_SUBCLASS_NAME or on behalf
of the application given by the
APPLICATION_HANDLE.

WLM_GET_SERVICE_CLASS_WORKLOAD
_OCCURRENCES_V97 table function

SYSPROC This table function returns the list of all
workload occurrences executing in a given
service class on a particular partition.

WLM_GET_SERVICE_SUBCLASS_STATS_V97
table function

SYSPROC This table function returns basic statistics of
one or more service subclasses.

WLM_GET_SERVICE_SUPERCLASS_STATS
table function

SYSPROC This table function returns basic statistics of
one or more service superclasses.

WLM_GET_WORK_ACTION_SET_STATS table
function

SYSPROC This table function returns basic statistics
for work classes in a work action set.

WLM_GET_WORKLOAD_OCCURRENCE
_ACTIVITIES_V97 table function

SYSPROC This table function returns the list of all
activities that were submitted through the
given application on the specified partition
and have not yet completed.

WLM_GET_WORKLOAD_STATS_V97 table
function

SYSPROC This table function returns basic statistics
for one or more workloads.

WLM_SET_CLIENT_INFO procedure SYSPROC This procedure sets client information
associated with the current connection at
the DB2 database server.

Table 19. Miscellaneous administrative SQL routines and views

Routine or view name Schema Description

ADMIN_COPY_SCHEMA procedure
SYSPROC This procedure is used to copy a specific

schema and all objects contained in it.

ADMIN_DROP_SCHEMA procedure
SYSPROC This procedure is used to drop a specific

schema and all objects contained in it.

ADMIN_MOVE_TABLE procedure

SYSPROC This procedure moves data in an active
table into a new table object with the same
name, while the data remains online and
available for access.

ADMIN_MOVE_TABLE_UTIL procedure
SYSPROC This procedure alters the user definable

values used by the ADMIN_MOVE_TABLE
procedure.

ALTOBJ procedure
SYSPROC This procedure alters an existing table

using the input CREATE TABLE statement
as the target table definition.

APPLICATION_ID scalar function
SYSFUN This scalar function returns the application

ID of the current connection.

COMPILATION_ENV table function
SYSPROC This table function returns the elements of

a compilation environment.

CONTACTGROUPS administrative view
SYSIBMADM This administrative view returns the list of

contact groups.

18 Administrative Routines and Views

Table 19. Miscellaneous administrative SQL routines and views (continued)

Routine or view name Schema Description

CONTACTS administrative view
SYSIBMADM This administrative view returns the list of

contacts defined on the database server.

DB_HISTORY administrative view

SYSIBMADM This administrative view returns
information from the history file that is
associated with the currently connected
database partition.

DBPATHS administrative view
SYSIBMADM This administrative view returns the values

for database paths required for tasks such
as split mirror backups.

EXPLAIN_FORMAT_STATS scalar function

SYSPROC This new scalar function is used to display
formatted statistics information which is
parsed and extracted from explain snapshot
captured for a given query.

EXPLAIN_GET_MSGS table function

The schema is the
same as the Explain
table schema.

This table function queries the
EXPLAIN_DIAGNOSTIC and
EXPLAIN_DIAGNOSTIC_DATA Explain
tables, and returns formatted messages.

GET_DBSIZE_INFO procedure
SYSPROC This procedure calculates the database size

and maximum capacity.

NOTIFICATIONLIST administrative view
SYSIBMADM This administrative view returns the list of

contacts and contact groups that are
notified about the health of an instance.

PD_GET_DIAG_HIST table function
SYSPROC The table function returns log records,

event records and notification records from
a given facility.

PDLOGMSGS_LAST24HOURS administrative
view and PD_GET_LOG_MSGS table function

SYSIBMADM
(administrative view),
SYSPROC (table
function)

This administrative view and table function
return problem determination log messages
that were logged in the DB2 notification
log. The information is intended for use by
database and system administrators.

REORGCHK_IX_STATS procedure
SYSPROC This procedure checks index statistics to

determine whether or not there is a need
for reorganization.

REORGCHK_TB_STATS procedure
SYSPROC This procedure checks table statistics to

determine whether or not there is a need
for reorganization.

SQLERRM scalar function

SYSPROC This scalar function has two versions. The
first allows for full flexibility of message
retrieval including using message tokens
and language selection. The second is a
simple interface which takes only an
SQLCODE as an input parameter and
returns the short message in English.

SYSINSTALLOBJECTS procedure
SYSPROC This procedure creates or drops the

database objects that are required for a
specific tool.

Chapter 2. Supported routines and views 19

20 Administrative Routines and Views

Chapter 3. Activity monitor routines

AM_BASE_RPT_RECOMS – Recommendations for activity reports

The AM_BASE_RPT_RECOMS table function returns recommendations for activity
reports used by the activity monitor.

Syntax

�� AM_BASE_RPT_RECOMS (report_id , client_locale) ��

The schema is SYSPROC.

Table function parameters

report_id
An input argument of type INTEGER that specifies a report ID. If the
argument is null, recommendations for all available reports are returned.

client_locale
An input argument of type VARCHAR(33) that specifies a client language
identifier. If the argument is null or an empty string, the default value is
'En_US' (English). If the message files for the specified locale are not available
on the server, 'En_US' is used.

Authorization

EXECUTE privilege on the AM_BASE_RPT_RECOMS table function.

Examples

Example 1: Request recommendations (in English) for the activity monitor report
with an ID of 1. Assume the default client language identifier 'En_US'.
SELECT *

FROM TABLE(SYSPROC.AM_BASE_RPT_RECOMS(1, CAST(NULL AS VARCHAR(33))))
AS RECOMS

Example 2: Request recommendations (in French) for the activity monitor report
with an ID of 12.
SELECT *

FROM TABLE(SYSPROC.AM_BASE_RPT_RECOMS(12, CAST(’Fr_FR’ AS VARCHAR(33))))
AS RECOMS

Information returned

Table 20. Information returned by the AM_BASE_RPT_RECOMS table function

Column name Data type Description

REPORT_ID INTEGER The report ID.

RECOM_NAME VARCHAR(256) The name or short
description of the
recommendation.

© Copyright IBM Corp. 2006, 2012 21

Table 20. Information returned by the AM_BASE_RPT_RECOMS table function (continued)

Column name Data type Description

RECOM_DESCRIPTION CLOB(32K) The detailed description of
the recommendation.

AM_BASE_RPTS – Activity monitor reports

The AM_BASE_RPTS table function returns activity reports used by the activity
monitor.

Syntax

�� AM_BASE_RPTS (report_id , type , client_locale) ��

The schema is SYSPROC.

Table function parameters

report_id
An input argument of type INTEGER that specifies a unique report ID. If the
argument is null, reports with any report ID are returned.

type
An input argument of type CHAR(4) that specifies the report type. Valid
values are:

APPL Application

STMT SQL statement

TRAN Transaction

CACH Dynamic SQL statement cache

Values can be specified in uppercase or lowercase characters. If the argument is
null or an empty string, reports of any type are returned.

client_locale
An input argument of type VARCHAR(33) that specifies a client language
identifier. If the argument is null or an empty string, or the message files for
the specified locale are not available on the server, 'En_US' is used.

Authorization

EXECUTE privilege on the AM_BASE_RPTS table function.

Examples

Example 1:
SELECT * FROM TABLE(SYSPROC.AM_BASE_RPTS(CAST(NULL AS INTEGER),

CAST(NULL AS CHAR(4)), CAST(NULL AS VARCHAR(33)))) AS REPORTS

Example 2:
SELECT ID, NAME FROM TABLE(SYSPROC.AM_BASE_RPTS(

CAST(NULL AS INTEGER), CAST(’STMT’ AS CHAR(4)), ’En_US’))
AS REPORTS WHERE TYPE = ’STMT’

22 Administrative Routines and Views

Information returned

Table 21. Information returned by the AM_BASE_RPTS table function

Column name Data type Description

ID INTEGER The unique report ID.

TYPE CHAR(4) The report type. Valid values
are: APPL, STMT, TRAN,
CACH.

NAME VARCHAR(256) The name or short
description of the report.

DESCRIPTION VARCHAR(16384) The detailed description of
the report.

SWITCHES VARCHAR(100) The monitor switches
required for this report.

AM_DROP_TASK – Delete a monitoring task

The AM_DROP_TASK procedure deletes a monitoring task. It does not return any
data.

Syntax

�� AM_DROP_TASK (task_id) ��

The schema is SYSPROC.

Procedure parameter

task_id
An input argument of type INTEGER that specifies a unique monitoring task
ID.

Authorization

EXECUTE privilege on the AM_DROP_TASK procedure.

Example

Drop the monitoring task with ID 5.
CALL SYSPROC.AM_DROP_TASK(5)

AM_GET_LOCK_CHN_TB – Retrieve application lock chain data in a
tabular format

The AM_GET_LOCK_CHN_TB procedure returns application lock chain data in
tabular format. A lock chain consists of all the applications that the current
application is holding up or waiting for, either directly or indirectly.

Syntax

Chapter 3. Activity monitor routines 23

�� AM_GET_LOCK_CHN_TB (agent_id) ��

The schema is SYSPROC.

Procedure parameters

agent_id
An input argument of type BIGINT that specifies the agent ID of the
application for which lock chain data is to be retrieved.

Authorization
v SYSMON authority
v EXECUTE privilege on the AM_GET_LOCK_CHN_TB procedure.

Example

Retrieve lock chain information for agent ID 68.
CALL SYSPROC.AM_GET_LOCK_CHN_TB(68)

Information returned

The procedure returns a table as shown in the following section. Each row of the
table represents a lock-wait relationship. The result set also contains a row for each
holding-only application; in this case, the HOLDING_AGENT_ID column is null,
and the other four columns are for the holding-only application.

Table 22. Information returned by the AM_GET_LOCK_CHN_TB procedure

Column name Data Type Description

HOLDING_AGENT_ID BIGINT The agent ID of the application
holding the lock.

AGENT_ID BIGINT The agent ID of the application
waiting for the lock.

APPL_NAME VARCHAR(255) The name of the application
waiting for the lock.

AUTH_ID VARCHAR(128) The authorization ID of the
application waiting for the lock.

APPL_ID VARCHAR(64) The application ID of the
application waiting for the lock.

AM_GET_LOCK_CHNS – Retrieve lock chain information for a specific
application

The AM_GET_LOCK_CHNS procedure returns lock chains for the specified
application as a formatted string. A lock chain consists of all the applications that
the current application is holding up or waiting for, either directly or indirectly.

Syntax

�� AM_GET_LOCK_CHNS (agent_id , lock_chains) ��

The schema is SYSPROC.

24 Administrative Routines and Views

Procedure parameters

agent_id
An input argument of type BIGINT that specifies the agent ID of the
application whose lock chains are to be displayed.

lock_chains
An output argument of type CLOB(2M) that shows all the lock chains for the
specified application.

Authorization
v SYSMON authority
v EXECUTE privilege on the AM_GET_LOCK_CHNS procedure.

Example
CALL SYSPROC.AM_GET_LOCK_CHNS(17,?)

Value of output parameters

Parameter Name : LOCK_CHAINS
Parameter Value : >db2bp.exe (Agent ID: 17) (Auth ID: AMUSERC)

<db2bp.exe (Agent ID: 17) (Auth ID: AMUSERC)
<db2bp.exe (Agent ID: 18) (Auth ID: AMUSERB)

<db2bp.exe (Agent ID: 16) (Auth ID: AMUSERA)

Return Status = 0

AM_GET_LOCK_RPT – Retrieve application lock details

The AM_GET_LOCK_RPT procedure returns lock details for an application in three
output result sets.

Syntax

�� AM_GET_LOCK_RPT (agent_id) ��

The schema is SYSPROC.

Procedure parameter

agent_id
An input argument of type BIGINT that specifies the agent ID of the
application whose lock details are to be returned.

Authorization
v SYSMON authority
v EXECUTE privilege on the AM_GET_LOCK_RPT procedure.

Example
CALL SYSPROC.AM_GET_LOCK_RPT(68)

Usage note

The DFT_MON_LOCK monitor switch must be turned on for this procedure to
return any information.

Chapter 3. Activity monitor routines 25

Information returned

The procedure returns three result sets: one for application general information;
one for locks that the application holds; and one for locks that the application is
waiting for.

Table 23. General application information returned by the AM_GET_LOCK_RPT procedure

Column name Data Type Description

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

APPL_NAME VARCHAR(256) appl_name - Application name

PRIMARY_AUTH_ID VARCHAR(128) auth_id - Authorization ID

APPL_ID VARCHAR(128) appl_id - Application ID

APPL_STATUS VARCHAR(22) appl_status - Application status.
This interface returns a text
identifier based on the defines in
sqlmon.h, and is one of:

v BACKUP

v COMMIT_ACT

v COMP

v CONNECTED

v CONNECTPEND

v CREATE_DB

v DECOUPLED

v DISCONNECTPEND

v INTR

v IOERROR_WAIT

v LOAD

v LOCKWAIT

v QUIESCE_TABLESPACE

v RECOMP

v REMOTE_RQST

v RESTART

v RESTORE

v ROLLBACK_ACT

v ROLLBACK_TO_SAVEPOINT

v TEND

v THABRT

v THCOMT

v TPREP

v UNLOAD

v UOWEXEC

v UOWWAIT

v WAITFOR_REMOTE

COORD_NODE_NUM SMALLINT coord_node - Coordinating node

SEQUENCE_NO VARCHAR(4) sequence_no - Sequence number

CLIENT_PRDID VARCHAR(128) client_prdid - Client
product/version ID

CLIENT_PID BIGINT client_pid - Client process ID

26 Administrative Routines and Views

Table 23. General application information returned by the AM_GET_LOCK_RPT
procedure (continued)

Column name Data Type Description

CLIENT_PLATFORM VARCHAR(12) client_platform - Client operating
platform. This interface returns a
text identifier based on the defines
in sqlmon.h,

v AIX

v AIX64

v AS400_DRDA

v DOS

v DYNIX

v HP

v HP64

v HPIA

v HPIA64

v LINUX

v LINUX390

v LINUXIA64

v LINUXPPC

v LINUXPPC64

v LINUXX8664

v LINUXZ64

v MAC

v MVS_DRDA

v NT

v NT64

v OS2

v OS390

v SCO

v SGI

v SNI

v SUN

v SUN64

v UNKNOWN

v UNKNOWN_DRDA

v VM_DRDA

v VSE_DRDA

v WINDOWS

v WINDOWS95

Chapter 3. Activity monitor routines 27

Table 23. General application information returned by the AM_GET_LOCK_RPT
procedure (continued)

Column name Data Type Description

CLIENT_PROTOCOL VARCHAR(10) client_protocol - Client
communication protocol. This
interface returns a text identifier
based on the defines in sqlmon.h,

v CPIC

v LOCAL

v NETBIOS

v NPIPE

v TCPIP (for DB2 Universal
Database™, or DB2 UDB)

v TCPIP4

v TCPIP6

CLIENT_NNAME VARCHAR(128) The client_nname monitor element
is deprecated. The value returned
is not a valid value.

LOCKS_HELD BIGINT locks_held - Locks held

LOCK_WAIT_START_TIME TIMESTAMP lock_wait_start_time - Lock wait
start timestamp

LOCK_WAIT_TIME BIGINT lock_wait_time - Time waited on
locks

LOCK_WAITS BIGINT lock_waits - Lock waits

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of lock
timeouts

LOCK_ESCALS BIGINT lock_escals - Number of lock
escalations

X_LOCK_ESCALS BIGINT x_lock_escals - Exclusive lock
escalations

DEADLOCKS BIGINT deadlocks - Deadlocks detected

Table 24. Locks held information returned by the AM_GET_LOCK_RPT procedure

Column name Data Type Description

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

TABSCHEMA VARCHAR(128) table_schema - Table schema name

TABNAME VARCHAR(128) table_name - Table name

28 Administrative Routines and Views

Table 24. Locks held information returned by the AM_GET_LOCK_RPT
procedure (continued)

Column name Data Type Description

LOCK_OBJECT_TYPE VARCHAR(18) lock_object_type - Lock object type
waited on. This interface returns a
text identifier based on the defines
in sqlmon.h and is one of:

v AUTORESIZE_LOCK

v AUTOSTORAGE_LOCK

v BLOCK_LOCK

v EOT_LOCK

v INPLACE_REORG_LOCK

v INTERNAL_LOCK

v INTERNALB_LOCK

v INTERNALC_LOCK

v INTERNALJ_LOCK

v INTERNALL_LOCK

v INTERNALO_LOCK

v INTERNALQ_LOCK

v INTERNALP_LOCK

v INTERNALS_LOCK

v INTERNALT_LOCK

v INTERNALV_LOCK

v KEYVALUE_LOCK

v ROW_LOCK

v SYSBOOT_LOCK

v TABLE_LOCK

v TABLE_PART_LOCK

v TABLESPACE_LOCK

v XML_PATH_LOCK

LOCK_MODE VARCHAR(10) lock_mode - Lock mode. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

Chapter 3. Activity monitor routines 29

Table 24. Locks held information returned by the AM_GET_LOCK_RPT
procedure (continued)

Column name Data Type Description

LOCK_STATUS VARCHAR(10) lock_status - Lock status. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v CONV

v GRNT

LOCK_ESCALATION SMALLINT lock_escalation - Lock escalation

LOCK_NAME VARCHAR(32) lock_name - Lock name

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

Table 25. Locks wait information returned by the AM_GET_LOCK_RPT procedure

Column name Data Type Description

AGENT_ID_HOLDING_LK BIGINT agent_id_holding_lock - Agent ID
holding lock

APPL_ID_HOLDING_LK VARCHAR(128) appl_id_holding_lk - Application
ID holding lock

LOCK_WAIT_START_TIME TIMESTAMP lock_wait_start_time - Lock wait
start timestamp

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

TABSCHEMA VARCHAR(128) table_schema - Table schema name

TABNAME VARCHAR(128) table_name - Table name

30 Administrative Routines and Views

Table 25. Locks wait information returned by the AM_GET_LOCK_RPT
procedure (continued)

Column name Data Type Description

LOCK_OBJECT_TYPE VARCHAR(18) lock_object_type - Lock object type
waited on. This interface returns a
text identifier based on the defines
in sqlmon.h and is one of:

v AUTORESIZE_LOCK

v AUTOSTORAGE_LOCK

v BLOCK_LOCK

v EOT_LOCK

v INPLACE_REORG_LOCK

v INTERNAL_LOCK

v INTERNALB_LOCK

v INTERNALC_LOCK

v INTERNALJ_LOCK

v INTERNALL_LOCK

v INTERNALO_LOCK

v INTERNALQ_LOCK

v INTERNALP_LOCK

v INTERNALS_LOCK

v INTERNALT_LOCK

v INTERNALV_LOCK

v KEYVALUE_LOCK

v ROW_LOCK

v SYSBOOT_LOCK

v TABLE_LOCK

v TABLE_PART_LOCK

v TABLESPACE_LOCK

v XML_PATH_LOCK

LOCK_MODE VARCHAR(10) lock_mode - Lock mode. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

Chapter 3. Activity monitor routines 31

Table 25. Locks wait information returned by the AM_GET_LOCK_RPT
procedure (continued)

Column name Data Type Description

LOCK_MODE_REQUESTED VARCHAR(10) lock_mode_requested - Lock mode
requested. This interface returns a
text identifier based on the defines
in sqlmon.h and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

LOCK_ESCALATION SMALLINT lock_escalation - Lock escalation

AM_GET_RPT – Retrieve activity monitor data

The AM_GET_RPT procedure returns activity monitor data for a report.

Syntax

�� AM_GET_RPT (partition , report_id , appl_filter , max_number) ��

The schema is SYSPROC.

Procedure parameters

partition
An input argument of type INTEGER that specifies a database partition
number. Valid values are -2 (denoting all database partitions) and the database
partition number of any existing database partition.

report_id
An input argument of type INTEGER that specifies a unique report ID.

appl_filter
An input argument of type CLOB(32K) that specifies an application filter. An
application filter is a search condition involving any or all of the three columns
AGENT_ID, APPL_NAME, and PRIMARY_AUTH_ID, where AGENT_ID and
PRIMARY_AUTH_ID are integers, and APPL_NAME is a character string. If
the argument is null or an empty string, no filtering is performed.

max_number
An input argument of type INTEGER that specifies the maximum number of
applications, statements, or transactions that are to be displayed. If the
argument is null, all applications, statements, and transactions will be
displayed.

32 Administrative Routines and Views

Authorization
v SYSMON authority
v EXECUTE privilege on the AM_GET_RPT procedure.

Example
CALL SYSPROC.AM_GET_RPT(-2, 18,

CAST(’AGENT_ID=29 AND PRIMARY_AUTH_ID <> ’’dbuser’’ AND APPL_NAME LIKE ’’db2%’’’
AS CLOB(32K)), 100)

Usage note

The result set returned is different for each report id. This procedure is intended to
support the Activity Monitor graphical tool. To build reports that can be parsed,
snapshot administrative SQL routines and views should be used instead. To use
this procedure, the DFT_MON_LOCK monitor switch must be turned on.

AM_SAVE_TASK – Create or modify a monitoring task

The AM_SAVE_TASK procedure creates or modifies a monitoring task.

Syntax

�� AM_SAVE_TASK (mode , task_id , task_name , appl_filter , �

� show_lock_chains , report_ids) ��

The schema is SYSPROC.

Procedure parameters

mode
An input argument of type CHAR(1) that specifies whether to create a new
monitoring task ('C') or to modify an existing monitoring task ('M').

task_id
An input argument of type INTEGER that specifies a unique monitoring task
ID. When mode is 'C', any specified input for task_id is ignored. An ID for the
new monitoring task will be generated by the procedure and returned in the
output. When mode is 'M', specifies the ID of the monitoring task that is being
modified.

task_name
An input argument of type VARCHAR(128) that specifies a name or short
description for a monitoring task.

appl_filter
An input argument of type CLOB(32K) that specifies an application filter. An
application filter is a search condition involving any or all of the three columns
AGENT_ID, APPL_NAME, and AUTH_ID, where AGENT_ID and AUTH_ID
are integers, and APPL_NAME is a character string. If the argument is null or
an empty string, no filtering is performed.

show_lock_chains
An input argument of type CHAR(1) that specifies whether lock chains are to
be shown. Valid values are 'Y' and 'N'. If the argument is null, lock chains are
not to be shown.

Chapter 3. Activity monitor routines 33

report_ids
An input argument of type VARCHAR(3893) that specifies one or more report
IDs separated by commas.

Authorization

EXECUTE privilege on the AM_SAVE_TASK procedure.

Example

Example:
CALL SYSPROC.AM_SAVE_TASK(’M’,11,’Task ABC’,CAST (NULL AS CLOB(32K)),

’N’,’1,2,4,8,9,12’)

34 Administrative Routines and Views

Chapter 4. ADMIN_CMD procedure and associated routines

ADMIN_CMD – Run administrative commands

The ADMIN_CMD procedure is used by applications to run administrative
commands using the SQL CALL statement.

Syntax

�� ADMIN_CMD (command-string) ��

The schema is SYSPROC.

Procedure parameter

command-string
An input argument of type CLOB (2M) that specifies a single command that is
to be executed.

Authorization

EXECUTE privilege on the ADMIN_CMD procedure.

The procedure currently supports the following DB2 command line processor
(CLP) commands:
v ADD CONTACT
v ADD CONTACTGROUP
v AUTOCONFIGURE
v BACKUP - online only
v DESCRIBE
v DROP CONTACT
v DROP CONTACTGROUP
v EXPORT
v FORCE APPLICATION
v IMPORT
v INITIALIZE TAPE
v LOAD
v PRUNE HISTORY/LOGFILE
v QUIESCE DATABASE
v QUIESCE TABLESPACES FOR TABLE
v REDISTRIBUTE
v REORG INDEXES/TABLE
v RESET ALERT CONFIGURATION
v RESET DATABASE CONFIGURATION
v RESET DATABASE MANAGER CONFIGURATION
v REWIND TAPE

© Copyright IBM Corp. 2006, 2012 35

v RUNSTATS
v SET TAPE POSITION
v UNQUIESCE DATABASE
v UPDATE ALERT CONFIGURATION
v UPDATE CONTACT
v UPDATE CONTACTGROUP
v UPDATE DATABASE CONFIGURATION
v UPDATE DATABASE MANAGER CONFIGURATION
v UPDATE HEALTH NOTIFICATION CONTACT LIST
v UPDATE HISTORY

Note: Some commands might have slightly different supported syntax when
executed through the ADMIN_CMD procedure.

The procedure also supports the following commands which are not supported by
the CLP:
v GET STMM TUNING DBPARTITIONNUM
v UPDATE STMM TUNING DBPARTITIONNUM

Usage notes

Retrieving command execution information:
v As the ADMIN_CMD procedure runs on the server, the utility messages are also

created on the server. The MESSAGES ON SERVER option (refer to the specific
command for further details) indicates that the message file is to be created on
the server.

v Command execution status is returned in the SQLCA resulting from the CALL
statement.

v If the execution of the administrative command is successful, and the command
returns more than the execution status, the additional information is returned in
the form of a result set (up to two result sets). For example, if the EXPORT
command executes successfully, the returned result set contains information
about the number of exported rows; however, if the RUNSTATS command
executes successfully, no result set is returned. The result set information is
documented with the corresponding command.

v If the execution of the administrative command is not successful, an SQL20397W
warning message is returned by the ADMIN_CMD procedure along with a
result set containing more details about the reason for the failure of the
administrative command. Any application that uses the ADMIN_CMD
procedure should check the SQLCODE returned by the procedure. If the
SQLCODE is >= 0, the result set for the administrative command should be
retrieved. The following table indicates what information might be returned
depending on whether the MESSAGES ON SERVER option is used or not.

36 Administrative Routines and Views

Table 26. SQLCODE and information returned by the ADMIN_CMD procedure

Administrative command
execution status

MESSAGES ON SERVER
option specified

MESSAGES ON SERVER
option not specified

Successful The SQLCODE returned is
>= 0: Additional information
(result sets) returned, if any.

The SQLCODE returned is
>= 0: Additional information
(result sets) returned, if any,
but the MSG_RETRIEVAL
and MSG_REMOVAL
columns are NULL.

Failed The SQLCODE returned
20397: Additional
information (result sets)
returned, but only the
MSG_RETRIEVAL and
MSG_REMOVAL columns
are populated.

The SQLCODE returned is <
0: No additional information
(result sets) is returned.

v The result sets can be retrieved from the CLP or from applications such as JDBC
and CLI applications, but not from embedded C applications.

v Case-sensitive names and double-byte character set (DBCS) names must be
enclosed inside a backward slash and double quotation delimiter, for example,
\" MyTabLe \".

For all commands executed through the ADMIN_CMD, the user ID that
established the connection to the database is used for authentication.

Any additional authority required, for example, for commands that need file
system access on the database server, is documented in the reference information
describing the command.

This procedure cannot be called from a user-defined function (SQLSTATE 38001) or
a trigger.

ADD CONTACT command using the ADMIN_CMD procedure
Adds a contact to the contact list which can be either defined locally on the system
or in a global list. Contacts are users to whom processes such as the Scheduler and
Health Monitor send messages.

The setting of the Database Administration Server (DAS) contact_host
configuration parameter determines whether the list is local or global.

Authorization

None

Required connection

Database. The DAS must be running.

Command syntax

�� ADD CONTACT name TYPE EMAIL
PAGE

MAXIMUM PAGE LENGTH pg-length
MAX LEN

�

Chapter 4. ADMIN_CMD procedure and associated routines 37

� ADDRESS recipients address
DESCRIPTION contact description

��

Command parameters

ADD CONTACT name
The name of the contact that will be added. By default the contact will be
added in the local system, unless the DB2 administration server
configuration parameter contact_host points to another system.

TYPE Method of contact, which must be one of the following two:

EMAIL This contact wishes to be notified by e-mail at (ADDRESS).

PAGE This contact wishes to be notified by a page sent to ADDRESS.

MAXIMUM PAGE LENGTH pg-length
If the paging service has a message-length restriction, it is
specified here in characters.

The notification system uses the SMTP protocol to send the
notification to the mail server specified by the DB2 Administration
Server configuration parameter smtp_server. It is the responsibility
of the SMTP server to send the e-mail or call the pager.

ADDRESS recipients-address
The SMTP mailbox address of the recipient. For example,
joe@somewhere.org. The smtp_server DAS configuration parameter must
be set to the name of the SMTP server.

DESCRIPTION contact description
A textual description of the contact. This has a maximum length of 128
characters.

Example

Add a contact for user 'testuser' with e-mail address 'testuser@test.com'.
CALL SYSPROC.ADMIN_CMD

(’ADD CONTACT testuser TYPE EMAIL ADDRESS testuser@test.com’)

Usage notes

The DAS must have been created and be running.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

ADD CONTACTGROUP command using the ADMIN_CMD
procedure

Adds a new contact group to the list of groups defined on the local system. A
contact group is a list of users and groups to whom monitoring processes such as
the Scheduler and Health Monitor can send messages.

The setting of the Database Administration Server (DAS) contact_host
configuration parameter determines whether the list is local or global.

38 Administrative Routines and Views

Authorization

None

Required connection

Database. The DAS must be running.

Command Syntax

�� ADD CONTACTGROUP name �

,

CONTACT name
GROUP

�

�
DESCRIPTION group description

��

Command Parameters

ADD CONTACTGROUP name
Name of the new contact group, which must be unique among the set of
groups on the system.

CONTACT name
Name of the contact which is a member of the group. A contact can be
defined with the ADD CONTACT command after it has been added to a group.

GROUP name
Name of the contact group of which this group is a member.

DESCRIPTION group description
Optional. A textual description of the contact group.

Example

Create a contact group named 'gname1' that contains two contacts: 'cname1' and
'cname2'.
CALL SYSPROC.ADMIN_CMD(’add contactgroup gname1 contact cname1, contact cname2’)

Usage notes

The DAS must have been created and be running.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

AUTOCONFIGURE command using the ADMIN_CMD
procedure

Calculates and displays initial values for the buffer pool size, database
configuration and database manager configuration parameters, with the option of
applying these recommended values.

Chapter 4. ADMIN_CMD procedure and associated routines 39

Authorization

SYSADM

Required connection

Database

Command syntax

�� AUTOCONFIGURE

�USING input-keyword param-value

�

� APPLY DB ONLY
DB AND DBM
NONE

ON CURRENT NODE
��

Command parameters

USING input-keyword param-value

Table 27. Valid input keywords and parameter values

Keyword Valid values
Default
value Explanation

mem_percent 1–100 25 Percentage of instance memory that is
assigned to the database. However, if the
CREATE DATABASE command invokes the
configuration advisor and you do not
specify a value for mem_percent, the
percentage is calculated based on memory
usage in the instance and the system up to
a maximum of 25% of the instance
memory.

workload_type simple,
mixed,
complex

mixed Simple workloads tend to be I/O intensive
and mostly transactions, whereas complex
workloads tend to be CPU intensive and
mostly queries.

num_stmts 1–1 000 000 10 Number of statements per unit of work

tpm 1–200 000 60 Transactions per minute

admin_priority performance,
recovery,
both

both Optimize for better performance (more
transactions per minute) or better recovery
time

is_populated yes, no yes Is the database populated with data?

num_local_apps 0–5 000 0 Number of connected local applications

num_remote_
apps

0–5 000 10 Number of connected remote applications

40 Administrative Routines and Views

Table 27. Valid input keywords and parameter values (continued)

Keyword Valid values
Default
value Explanation

isolation RR, RS, CS, UR RR Maximum isolation level of applications
connecting to this database (Repeatable
Read, Read Stability, Cursor Stability,
Uncommitted Read). It is only used to
determine values of other configuration
parameters. Nothing is set to restrict the
applications to a particular isolation level
and it is safe to use the default value.

bp_resizeable yes, no yes Are buffer pools resizeable?

APPLY

DB ONLY
Displays the recommended values for the database configuration
and the buffer pool settings based on the current database manager
configuration. Applies the recommended changes to the database
configuration and the buffer pool settings.

DB AND DBM
Displays and applies the recommended changes to the database
manager configuration, the database configuration, and the buffer
pool settings.

NONE Displays the recommended changes, but does not apply them.

ON CURRENT NODE
In a partitioned database environment, the Configuration Advisor updates
the database configuration on all nodes by default. Running with the ON
CURRENT NODE option makes the advisor apply the recommended database
configuration to the coordinator (connection) node only.

The buffer pool changes are always applied to the system catalogs. Thus,
all nodes are affected. The ON CURRENT NODE option does not matter for
buffer pool recommendations.

Example

Invoke autoconfigure on a database through the ADMIN_CMD stored procedure.
CALL SYSPROC.ADMIN_CMD(’AUTOCONFIGURE APPLY NONE’)

The following is an example of the result set returned by the command.
LEVEL NAME VALUE RECOMMENDED_VALUE DATATYPE
-----...- ----------------...- -------...- ------------------ --------...-
DBM ASLHEAPSZ 15 15 BIGINT
DBM FCM_NUM_BUFFERS 512 512 BIGINT
...
DB APP_CTL_HEAP_SZ 128 144 INTEGER
DB APPGROUP_MEM_SZ 20000 14559 BIGINT
...
BP IBMDEFAULTBP 1000 164182 BIGINT

Usage notes
v This command makes configuration recommendations for the currently

connected database and assumes that the database is the only active database on
the instance. If you have not enabled the self tuning memory manager and you

Chapter 4. ADMIN_CMD procedure and associated routines 41

have more than one active database on the instance, specify a mem_percent value
that reflects the database memory distribution. For example, if you have two
active databases on the instance that should use 80% of the instance memory
and should share the resources equally, specify 40% (80% divided by 2
databases) as the mem_percent value.

v If you have multiple instances on the same computer and the self tuning
memory manager is not enabled, you should set a fixed value for
instance_memory on each instance or specify a mem_percent value that reflects the
database memory distribution. For example, if all active databases should use
80% of the computer memory and there are 4 instances each with one database,
specify 20% (80% divided by 4 databases) as the mem_percent value.

v When explicitly invoking the Configuration Advisor with the AUTOCONFIGURE
command, the setting of the DB2_ENABLE_AUTOCONFIG_DEFAULT registry variable
will be ignored.

v Running the AUTOCONFIGURE command on a database will recommend
enablement of the Self Tuning Memory Manager. However, if you run the
AUTOCONFIGURE command on a database in an instance where sheapthres is not
zero, sort memory tuning (sortheap) will not be enabled automatically. To enable
sort memory tuning (sortheap), you must set sheapthres equal to zero using the
UPDATE DATABASE MANAGER CONFIGURATION command. Note that changing the
value of sheapthres may affect the sort memory usage in your previously
existing databases.

v Command execution status is returned in the SQLCA resulting from the CALL
statement.

v SQL executed in the ADMIN_CMD procedure on behalf of AUTOCONFIGURE is
monitored by Query Patroller.

v The AUTOCONFIGURE command issues a COMMIT statement at the end if its
execution. In the case of Type-2 connections this will cause the ADMIN_CMD
procedure to return SQL30090N with reason code 2.

Result set information

Command execution status is returned in the SQLCA resulting from the CALL
statement. If execution is successful, the command returns additional information
the following result set:

Table 28. Result set returned by the AUTOCONFIGURE command

Column name Data type Description

LEVEL VARCHAR(3) Level of parameter and is one of:

v BP for buffer pool level

v DBM for database manager level

v DB for database level

NAME VARCHAR(128) v If LEVEL is DB or DBM, this
contains the configuration
parameter keyword.

v If LEVEL is BP, this value
contains the buffer pool name.

42 Administrative Routines and Views

Table 28. Result set returned by the AUTOCONFIGURE command (continued)

Column name Data type Description

VALUE VARCHAR(256) v If LEVEL is DB or DBM, and the
recommended values were
applied, this column contains
the value of the configuration
parameter identified in the
NAME column prior to applying
the recommended value (that is,
it contains the old value). If the
change was not applied, this
column contains the current
on-disk (deferred value) of the
identified configuration
parameter.

v If LEVEL is BP, and the
recommended values were
applied, this column contains
the size (in pages) of the buffer
pool identified in the NAME
column prior to applying the
recommended value (that is, it
contains the old size). If the
change was not applied, this
column contains the current size
(in pages) of the identified
buffer pool.

RECOMMENDED_VALUE VARCHAR(256) v If LEVEL is DB or DBM, this
column contains the
recommended (or applied) value
of the configuration parameter
identified in the parameter
column.

v If type is BP, this column
contains the recommended (or
applied) size (in pages) of the
buffer pool identified in the
parameter column.

DATATYPE VARCHAR(128) Parameter data type.

BACKUP DATABASE command using the ADMIN_CMD
procedure

Creates a backup copy of a database or a table space.

For information on the backup operations supported by DB2 database systems
between different operating systems and hardware platforms, see “Backup and
restore operations between different operating systems and hardware platforms”.

Scope

In a partitioned database environment, if no database partitions are specified, this
command affects only the database partition on which it is executed.

If the option to perform a partitioned backup is specified, the command can be
called only on the catalog node. If the option specifies that all database partition

Chapter 4. ADMIN_CMD procedure and associated routines 43

servers are to be backed up, it affects all database partition servers that are listed
in the db2nodes.cfg file. Otherwise, it affects the database partition servers that are
specified on the command.

Authorization

One of the following:
v SYSADM
v SYSCTRL
v SYSMAINT

Required connection

Database. The existing database connection remains after the completion of the
backup operation.

Command syntax

�� BACKUP DATABASE database-alias
DB

�

�
ON DBPARTITIONNUM Partition number(s)

DBPARTITIONNUMS
ALL DBPARTITIONNUMS

EXCEPT DBPARTITIONNUM Partition number(s)
DBPARTITIONNUMS

�

�

�

,

TABLESPACE (tablespace-name)

ONLINE

INCREMENTAL
DELTA

�

�

�

USE TSM Open sessions Options
XBSA

SNAPSHOT
LIBRARY library-name

LOAD library-name Open sessions Options
,

TO dir
dev

DEDUP_DEVICE
�

�
WITH num-buffers BUFFERS BUFFER buffer-size PARALLELISM n

�

�
COMPRESS

COMPRLIB name COMPROPTS string
EXCLUDE

�

�
UTIL_IMPACT_PRIORITY

priority
EXCLUDE LOGS
INCLUDE LOGS

WITHOUT PROMPTING
��

44 Administrative Routines and Views

Partition number(s):

�

,

(db-partition-number1)
TO db-partition-number2

Open sessions:

OPEN num-sessions SESSIONS

Options:

OPTIONS "options-string"
@ file-name

Command parameters

DATABASE | DB database-alias
Specifies the alias of the database to back up. The alias must be a local
database defined on the server and must be the database name that the
user is currently connected to. If the database-alias is not the one the user
is connected to, an SQL20322N error is returned.

ON Backup the database on a set of database partitions. This clause shall be
specified only on the catalog partition.

DBPARTITIONNUM db-partition-number1
Specifies a database partition number in the database partition list.

DBPARTITIONNUMS db-partition-number1 TO db-partition-number2
Specifies a range of database partition numbers, so that all
partitions from db-partition-number1 up to and including
db-partition-number2 are included in the database partition list.

ALL DBPARTITIONNUMS
Specifies that the database is to be backed up on all partitions
specified in the db2nodes.cfg file.

EXCEPT Specifies that the database is to be backed up on all
partitions specified in the db2nodes.cfg file, except those
specified in the database partition list.

DBPARTITIONNUM db-partition-number1
Specifies a database partition number in the
database partition list.

DBPARTITIONNUMS db-partition-number1 TO
db-partition-number2

Specifies a range of database partition numbers, so
that all partitions from db-partition-number1 up to
and including db-partition-number2 are included in
the database partition list.

TABLESPACE tablespace-name
A list of names used to specify the table spaces to be backed up.

Chapter 4. ADMIN_CMD procedure and associated routines 45

ONLINE

Specifies online backup. This is the only supported mode and is the
default. The ONLINE clause does not need to be specified.

INCREMENTAL
Specifies a cumulative (incremental) backup image. An incremental backup
image is a copy of all database data that has changed since the most recent
successful, full backup operation.

DELTA Specifies a non-cumulative (delta) backup image. A delta backup
image is a copy of all database data that has changed since the
most recent successful backup operation of any type.

USE

TSM Specifies that the backup is to use Tivoli® Storage Manager (TSM)
output.

XBSA Specifies that the XBSA interface is to be used. Backup Services
APIs (XBSA) are an open application programming interface for
applications or facilities needing data storage management for
backup or archiving purposes.

SNAPSHOT
Specifies that a snapshot backup is to be taken.

You cannot use the SNAPSHOT parameter with any of the following
parameters:
v TABLESPACE

v INCREMENTAL

v WITH num-buffers BUFFERS

v BUFFER

v PARALLELISM

v COMPRESS

v UTIL_IMPACT_PRIORITY

v SESSIONS

The default behavior for a snapshot backup is a FULL DATABASE
OFFLINE backup of all paths that make up the database including
all containers, local volume directory, database path (DBPATH), and
primary log and mirror log paths (INCLUDE LOGS is the default for
all snapshot backups unless EXCLUDE LOGS is explicitly stated).

LIBRARY library-name
Integrated into IBM® Data Server is a DB2 ACS API driver
for the following storage hardware:
v IBM TotalStorage SAN Volume Controller
v IBM Enterprise Storage Server® Model 800
v IBM System Storage® DS6000™

v IBM System Storage DS8000®

v IBM System Storage N Series
v NetApp V-series
v NetApp FAS

If you have other storage hardware, and a DB2 ACS API
driver for that storage hardware, you can use the LIBRARY
parameter to specify the DB2 ACS API driver.

46 Administrative Routines and Views

The value of the LIBRARY parameter is a fully-qualified
library file name.

OPTIONS

"options-string"
Specifies options to be used for the backup operation. The string
will be passed exactly as it was entered, without the double
quotation marks.

@ file-name
Specifies that the options to be used for the backup operation are
contained in a file located on the DB2 server. The string will be
passed to the vendor support library. The file must be a fully
qualified file name.

You cannot use the vendoropt database configuration parameter to specify
vendor-specific options for snapshot backup operations. You must use the
OPTIONS parameter of the backup utilities instead.

OPEN num-sessions SESSIONS
The number of I/O sessions to be created between DB2 and TSM or
another backup vendor product. This parameter has no effect when
backing up to tape, disk, or other local device. For an online backup, if the
INCLUDE LOGS option is specified than an extra session will be created for
this parameter after the initial sessions are closed.

TO dir | dev
A list of directory or tape device names. The full path on which the
directory resides must be specified. This target directory or device must
exist on the database server.

In a partitioned database, the target directory or device must exist on all
database partitions, and can optionally be a shared path. The directory or
device name may be specified using a database partition expression. For
more information about database partition expressions, see “Automatic
storage databases”.

This parameter can be repeated to specify the target directories and devices
that the backup image will span. If more than one target is specified
(target1, target2, and target3, for example), target1 will be opened first. The
media header and special files (including the configuration file, table space
table, and history file) are placed in target1. All remaining targets are
opened, and are then used in parallel during the backup operation.
Because there is no general tape support on Windows operating systems,
each type of tape device requires a unique device driver.

Use of tape devices or floppy disks might require prompts and user
interaction, which will result in an error being returned.

If the tape system does not support the ability to uniquely reference a
backup image, it is recommended that multiple backup copies of the same
database not be kept on the same tape.

LOAD library-name
The name of the shared library (DLL on Windows operating systems)
containing the vendor backup and restore I/O functions to be used. It can
contain the full path. If the full path is not given, it will default to the path
on which the user exit program resides.

Chapter 4. ADMIN_CMD procedure and associated routines 47

DEDUP_DEVICE
Optimizes the format of the backup images for target storage devices that
support data deduplication. Available in Version 9.7 Fix Pack 4 and later
fix packs.

WITH num-buffers BUFFERS
The number of buffers to be used. If the number of buffers that you specify
is not enough to create a successful backup, than the minimum value
necessary to complete the backup is automatically chosen for this
parameter. If you are backing up to multiple locations, you can specify a
larger number of buffers to improve performance. If you specify the
COMPRESS parameter, to help improve performance, you can add an extra
buffer for each table space that you specify for the PARALLELISM parameter.

BUFFER buffer-size
The size, in 4 KB pages, of the buffer used when building the backup
image. DB2 will automatically choose an optimal value for this parameter
unless you explicitly enter a value. The minimum value for this parameter
is 8 pages.

If using tape with variable block size, reduce the buffer size to within the
range that the tape device supports. Otherwise, the backup operation
might succeed, but the resulting image might not be recoverable.

With most versions of Linux, using DB2's default buffer size for backup
operations to a SCSI tape device results in error SQL2025N, reason code 75.
To prevent the overflow of Linux internal SCSI buffers, use this formula:
bufferpages <= ST_MAX_BUFFERS * ST_BUFFER_BLOCKS / 4

where bufferpages is the value you want to use with the BUFFER parameter,
and ST_MAX_BUFFERS and ST_BUFFER_BLOCKS are defined in the Linux kernel
under the drivers/scsi directory.

PARALLELISM n
Determines the number of table spaces which can be read in parallel by the
backup utility. DB2 will automatically choose an optimal value for this
parameter unless you explicitly enter a value.

UTIL_IMPACT_PRIORITY priority
Specifies that the backup will run in throttled mode, with the priority
specified. Throttling allows you to regulate the performance impact of the
backup operation. Priority can be any number between 1 and 100, with 1
representing the lowest priority, and 100 representing the highest priority.
If the UTIL_IMPACT_PRIORITY keyword is specified with no priority, the
backup will run with the default priority of 50. If UTIL_IMPACT_PRIORITY is
not specified, the backup will run in unthrottled mode. An impact policy
must be defined by setting the util_impact_lim configuration parameter
for a backup to run in throttled mode.

COMPRESS
Indicates that the backup is to be compressed.

COMPRLIB name
Indicates the name of the library to be used to perform the
compression (for example, db2compr.dll for Windows;
libdb2compr.so for Linux or UNIX systems). The name must be a
fully qualified path referring to a file on the server. If this
parameter is not specified, the default DB2 compression library
will be used. If the specified library cannot be loaded, the backup
will fail.

48 Administrative Routines and Views

EXCLUDE
Indicates that the compression library will not be stored in the
backup image.

COMPROPTS string
Describes a block of binary data that will be passed to the
initialization routine in the compression library. DB2 will pass this
string directly from the client to the server, so any issues of byte
reversal or code page conversion will have to be handled by the
compression library. If the first character of the data block is '@',
the remainder of the data will be interpreted by DB2 as the name
of a file residing on the server. DB2 will then replace the contents
of string with the contents of this file and will pass this new value
to the initialization routine instead. The maximum length for string
is 1024 bytes.

EXCLUDE LOGS
Specifies that the backup image should not include any log files. Logs are
excluded by default in the following backup scenarios:
v Offline backup of a single-partitioned database.
v Online or offline backup of a multi-partitioned database, when not using

a single system view backup.

INCLUDE LOGS
Specifies that the backup image should include the range of log files
required to restore and roll forward this image to some consistent point in
time. This option is not valid for an offline backup, with the exception of
snapshot backups. INCLUDE LOGS is always the default option for any online
backup operation, except a multi-partitioned online backup where each
database partition is backed up independently (that is, a non-single system
view backup).

If any of the log files that are required for the backup have previously been
backed up and are no longer in the log path, then the DB2 database
manager retrieves them for backup from the overflow log path, if the path
has been set. Otherwise, the database manager retrieves them for backup
from the current log path or mirror log path. These log files are removed
from the log path after the backup has completed.

WITHOUT PROMPTING

Specifies that the backup will run unattended, and that any actions which
normally require user intervention will return an error message. This is the
default.

Examples

The following is a sample weekly incremental backup strategy for a recoverable
database. It includes a weekly full database backup operation, a daily
non-cumulative (delta) backup operation, and a mid-week cumulative
(incremental) backup operation:
(Sun) CALL SYSPROC.ADMIN_CMD(’backup db sample online use tsm’)
(Mon) CALL SYSPROC.ADMIN_CMD

(’backup db sample online incremental delta use tsm’)
(Tue) CALL SYSPROC.ADMIN_CMD

(’backup db sample online incremental delta use tsm’)
(Wed) CALL SYSPROC.ADMIN_CMD

(’backup db sample online incremental use tsm’)
(Thu) CALL SYSPROC.ADMIN_CMD

(’backup db sample online incremental delta use tsm’)

Chapter 4. ADMIN_CMD procedure and associated routines 49

(Fri) CALL SYSPROC.ADMIN_CMD
(’backup db sample online incremental delta use tsm’)

(Sat) CALL SYSPROC.ADMIN_CMD
(’backup db sample online incremental use tsm’)

Usage notes

The data in a backup cannot be protected by the database server. Make sure that
backups are properly safeguarded, particularly if the backup contains
LBAC-protected data.

When backing up to tape, use of a variable block size is currently not supported. If
you must use this option, ensure that you have well tested procedures in place that
enable you to recover successfully, using backup images that were created with a
variable block size.

When using a variable block size, you must specify a backup buffer size that is less
than or equal to the maximum limit for the tape devices that you are using. For
optimal performance, the buffer size must be equal to the maximum block size
limit of the device being used.

Snapshot backups should be complemented with regular disk backups in case of
failure in the filer/storage system.

As you regularly backup your database, you might accumulate very large database
backup images, many database logs and load copy images, all of which might be
taking up a large amount of disk space. Refer to “Managing recovery objects” for
information on how to manage these recovery objects.

You can use the OPTIONS parameter to enable backup operations in TSM
environments supporting proxy nodes. For more information, see the “Configuring
a Tivoli Storage Manager client” topic.

Result set information

Command execution status is returned in the SQLCA resulting from the CALL
statement. If execution is successful, the command returns additional information.
The backup operation will return one result set, comprising one row per database
partition that participated in the backup.

Table 29. Result set for a backup operation

Column name Data type Description

BACKUP_TIME VARCHAR(14) Corresponds to the
timestamp string used to
name the backup image.

DBPARTITIONNUM SMALLINT The database partition
number on which the agent
executed the backup
operation.

SQLCODE INTEGER Final SQLCODE resulting
from the backup processing
on the specified database
partition.

50 Administrative Routines and Views

Table 29. Result set for a backup operation (continued)

Column name Data type Description

SQLERRMC VARCHAR(70) Final SQLERRMC resulting
from the backup processing
on the specified database
partition.

SQLERRML SMALLINT Final SQLERRML resulting
from the backup processing
on the specified database
partition.

If a non-partitioned database is backed up, or if a partitioned database is backed
up using the traditional single-partition syntax, the result set will comprise a single
row. DBPARTITIONNUM will contain the identifier number of the database
partition being backed up.

SQLCODE, SQLERRMC, and SQLERRML refer to the equivalently-named
members of the SQLCA that is returned by the backup on the specified database
partition.

DESCRIBE command using the ADMIN_CMD procedure
The DESCRIBE command displays metadata about the columns, indexes, and data
partitions of tables or views. This command can also display metadata about the
output of SELECT, CALL, or XQuery statements.

Use the DESCRIBE command to display information about any of the following
items:
v Output of a SELECT, CALL, or XQuery statement
v Columns of a table or a view
v Indexes of a table or a view
v Data partitions of a table or view

Authorization

The authorization required depends on the type of information you want to
display using the DESCRIBE command.
v If the SYSTOOLSTMPSPACE table space exists, one of the authorities shown in

the following table is required.

Object to display information about Privileges or authorities required

Output of a SELECT statement or XQuery
statement

Any of the following privileges or
authorities for each table or view referenced
in the SELECT statement:

v SELECT privilege

v DATAACCESS authority

v DBADM authority

v SQLADM authority

v EXPLAIN authority

Chapter 4. ADMIN_CMD procedure and associated routines 51

Object to display information about Privileges or authorities required

Output of a CALL statement Any of the following privileges or
authorities:

v DATAACCESS authority

v EXECUTE privilege on the stored
procedure

Columns of a table or a view Any of the following privileges or
authorities for the SYSCAT.COLUMNS
system catalog table:

v SELECT privilege

v ACCESSCTRL authority

v DATAACCESS authority

v DBADM authority

v SECADM authority

v SQLADM authority

If you want to use the SHOW DETAIL
parameter, you also require any of these
privileges or authorities on the
SYSCAT.DATAPARTITIONEXPRESSION
system catalog table.

Because PUBLIC has all the privileges over
declared temporary tables, you can use the
command to display information about any
declared temporary table that exists within
your connection.

Indexes of a table or a view Any of the following privileges or
authorities on the SYSCAT.INDEXES system
catalog table:

v SELECT privilege

v ACCESSCTRL authority

v DATAACCESS authority

v DBADM authority

v SECADM authority

v SQLADM authority

If you want to use the SHOW DETAIL
parameter, you also require EXECUTE
privilege on the GET_INDEX_COLNAMES()
UDF.

Because PUBLIC has all the privileges over
declared temporary tables, you can use the
command to display information about any
declared temporary table that exists within
your connection.

52 Administrative Routines and Views

Object to display information about Privileges or authorities required

Data partitions of a table or view Any of the following privileges or
authorities on the
SYSCAT.DATAPARTITIONS system catalog
table:

v SELECT privilege

v ACCESSCTRL authority

v DATAACCESS authority

v DBADM authority

v SECADM authority

v SQLADM authority

Because PUBLIC has all the privileges over
declared temporary tables, you can use the
command to display information about any
declared temporary table that exists within
your connection.

v If the SYSTOOLSTMPSPACE table space does not exist, SYSADM or SYSCTRL
authority is also required in addition to the one of the above authorities.

Required connection

Database

Command syntax

�� DESCRIBE �

�
OUTPUT

select-statement
call-statement
XQUERY XQuery-statement

TABLE table-name
INDEXES FOR TABLE SHOW DETAIL

RELATIONAL DATA
XML DATA
TEXT SEARCH

DATA PARTITIONS FOR TABLE

��

Command parameters

OUTPUT Indicates that the output of the statement should be described. This
keyword is optional.

select-statement | call-statement | XQUERY XQuery-statement
Identifies the statement about which information is wanted. The
statement is automatically prepared by CLP. To identify an XQuery
statement, precede the statement with the keyword XQUERY. A
DESCRIBE OUTPUT statement only returns information about an
implicitly hidden column if the column is explicitly specified as
part of the SELECT list of the final result table of the query
described.

TABLE table-name
Specifies the table or view to be described. The fully qualified name in the

Chapter 4. ADMIN_CMD procedure and associated routines 53

form schema.table-name must be used. An alias for the table cannot be used
in place of the actual table. Information about implicitly hidden columns is
returned.

The DESCRIBE TABLE command lists the following information about each
column:
v Column name
v Type schema
v Type name
v Length
v Scale
v Nulls (yes/no)

INDEXES FOR TABLE table-name
Specifies the table or view for which indexes need to be described. You can
use the fully qualified name in the form schema.table-name or you can just
specify the table-name and default schema will be used automatically. An
alias for the table cannot be used in place of the actual table.

The DESCRIBE INDEXES FOR TABLE command lists the following information
about each index of the table or view:
v Index schema
v Index name
v Unique rule
v Number of columns
v Index type

If the DESCRIBE INDEXES FOR TABLE command is specified with the SHOW
DETAIL option, the index name is truncated when the index name is greater
than 18 bytes. If no index type option is specified, information for all index
types is listed: relational data index, index over XML data, and Text Search
index. The output includes the following additional information:
v Index ID for a relational data index, an XML path index, an XML regions

index, or an index over XML data
v Data Type for an index over XML data
v Hashed for an index over XML data
v Max VARCHAR Length for an index over XML data
v XML Pattern specified for an index over XML data
v Codepage for a text search index
v Language for a text search index
v Format specified for a text search index
v Update minimum for a text search index
v Update frequency for a text search index
v Collection directory for a text search index
v Column names

Specify an index type to list information for only a specific index type.
Specifying multiple index types is not supported.

RELATIONAL DATA
If the RELATIONAL DATA index type option is specified without the
SHOW DETAIL option, only the following information is listed:
v Index schema

54 Administrative Routines and Views

v Index name
v Unique rule
v Number of columns

If SHOW DETAIL is specified, the column names information is also
listed.

XML DATA
If the XML DATA index type option is specified without the SHOW
DETAIL option, only the following information is listed:
v Index schema
v Index name
v Unique rule
v Number of columns
v Index type

If SHOW DETAIL is specified, the following information for an index
over XML data is also listed:
v Index ID
v Data type
v Hashed
v Max Varchar length
v XML Pattern
v Column names

TEXT SEARCH
If the TEXT SEARCH index type option is specified without the SHOW
DETAIL option, only the following information is listed:
v Index schema
v Index name

If SHOW DETAIL is specified, the following text search index
information is also listed:
v Column name
v Codepage
v Language
v Format
v Update minimum
v Update frequency
v Collection directory

If the TEXT SEARCH option is specified and a text search option is
not installed or not properly configured, an error (SQLSTATE
42724) is returned.

See DB2 Text Search for information listed in the columns.

DATA PARTITIONS FOR TABLE table-name
Specifies the table or view for which data partitions need to be described.
The information displayed for each data partition in the table includes; the
partition identifier and the partitioning intervals. Results are ordered
according to the partition identifier sequence. The fully qualified name in

Chapter 4. ADMIN_CMD procedure and associated routines 55

the form schema.table-name must be used. An alias for the table cannot be
used in place of the actual table. The schema is the user name under which
the table or view was created.

For the DESCRIBE DATA PARTITIONS FOR TABLE command, specifies that
output include a second table with the following additional information:
v Data partition sequence identifier
v Data partition expression in SQL

SHOW DETAIL

For the DESCRIBE TABLE command, specifies that output include the
following additional information as well as a second result set which
contains the table data partition expressions (which might return 0 rows if
the table is not data partitioned):
v Whether a CHARACTER, VARCHAR or LONG VARCHAR column was

defined as FOR BIT DATA
v Column number
v Distribution key sequence
v Code page
v Default
v Table partitioning type (for tables partitioned by range this output

appears below the original output)
v Partitioning key columns (for tables partitioned by range this output

appears below the original output)
v Identifier of table space used for the index

Examples

Describing the output of a SELECT statement

The following example shows how to describe a SELECT statement:
CALL SYSPROC.ADMIN_CMD(’describe select * from emp_photo’)

The following is an example of output for this SELECT statement.
Result set 1

SQLTYPE_ID SQLTYPE SQLLENGTH SQLSCALE SQLNAME_DATA ...
---------- ---------..- --------- -------- ------------..- ...

452 CHARACTER 6 0 EMPNO ...
448 VARCHAR 10 0 PHOTO_FORMAT ...
405 BLOB 102400 0 PICTURE ...

3 record(s) selected.

Return Status = 0

Output for this SELECT statement (continued).
... SQLNAME_LENGTH SQLDATATYPENAME_DATA SQLDATATYPENAME_LENGTH
... -------------- ---------------------..- -----------------------
... 5 SYSIBM .CHARACTER 18
... 12 SYSIBM .VARCHAR 16
... 7 SYSIBM .BLOB 13

Describing a table

56 Administrative Routines and Views

Describing a non-partitioned table.
CALL SYSPROC.ADMIN_CMD(’describe table org show detail’)

The following is an example of output for this CALL statement.
Result set 1

COLNAME TYPESCHEMA TYPENAME FOR_BINARY_DATA ...
-------...- ----------...- --------...- ---------------...- ...
DEPTNUMB SYSIBM SMALLINT N ...
DEPTNAME SYSIBM VARCHAR N ...
MANAGER SYSIBM SMALLINT N ...
DIVISION SYSIBM VARCHAR N ...
LOCATION SYSIBM VARCHAR N ...

5 record(s) selected.

Output for this CALL statement (continued).
... LENGTH SCALE NULLABLE COLNO PARTKEYSEQ CODEPAGE DEFAULT
... ------ ----- -------- ----- ---------- -------- -------
... 2 0 N 0 1 0 -
... 14 0 Y 1 0 1208 -
... 2 0 Y 2 0 0 -
... 10 0 Y 3 0 1208 -
... 13 0 Y 4 0 1208 -

Output for this CALL statement (continued).
Result set 2

DATA_PARTITION_KEY_SEQ DATA_PARTITION_EXPRESSION
---------------------- --------------------------

0 record(s) selected.

Return Status = 0

Describing a partitioned table.
CALL SYSPROC.ADMIN_CMD(’describe table part_table1 show detail’)

The following is an example of output for this CALL statement.
Result set 1

COLNAME TYPESCHEMA TYPENAME FOR_BINARY_DATA ...
-------...- ----------...- -------- --------------- ...
COL1 SYSIBM INTEGER N ...

1 record(s) selected.

Output for this CALL statement (continued).
... LENGTH SCALE NULLABLE COLNO PARTKEYSEQ CODEPAGE DEFAULT
... ------ ----- -------- ----- ---------- -------- -------
... 4 0 N 0 1 0 -

Output for this CALL statement (continued).
Result set 2

DATA_PARTITION_KEY_SEQ DATA_PARTITION_EXPRESSION
---------------------- --------------------------

1 COL1

1 record(s) selected

Chapter 4. ADMIN_CMD procedure and associated routines 57

Describing a table index

The following example shows how to describe a table index. This call describes
table USER1.DEPARTMENT and lists two relational data indexes, six xml data
indexes, two text search indexes, and the system indexes:
CALL SYSPROC.ADMIN_CMD(’describe indexes for table user1.department’)

The following is an example of output for this CALL statement.
Result set 1

INDSCHEMA INDNAME UNIQUE_RULE
----------... ------------------... -------------------
SYSIBM SQL070531145253450 DUPLICATES_ALLOWED
SYSIBM SQL070531145253620 UNIQUE_ENTRIES_ONLY
USER1 RELIDX1 DUPLICATES_ALLOWED
USER1 RELIDX2 DUPLICATES_ALLOWED
SYSIBM SQL070531145253650 PRIMARY_INDEX
USER1 XMLIDX1 DUPLICATES_ALLOWED
SYSIBM SQL070531154625650 DUPLICATES_ALLOWED
USER1 XMLIDX2 DUPLICATES_ALLOWED
SYSIBM SQL070531154626000 DUPLICATES_ALLOWED
USER1 XMLIDX3 DUPLICATES_ALLOWED
SYSIBM SQL070531154626090 DUPLICATES_ALLOWED
USER1 XMLIDX4 DUPLICATES_ALLOWED
SYSIBM SQL070531154626190 DUPLICATES_ALLOWED
USER1 XMLIDX5 DUPLICATES_ALLOWED
SYSIBM SQL070531154626290 DUPLICATES_ALLOWED
USER1 XMLIDX6 DUPLICATES_ALLOWED
SYSIBM SQL070531154626400 DUPLICATES_ALLOWED
USER1 TXTIDX1 -
USER1 TXTIDX2 -

19 record(s) selected.

Return Status = 0

Output for this CALL statement (continued).
... COLCOUNT INDEXTYPE
... --------- --------------------------
... - XML_DATA_REGIONS
... 1 XML_DATA_PATH
... 1 RELATIONAL_DATA
... 2 RELATIONAL_DATA
... 1 RELATIONAL_DATA
... 1 XML_DATA_VALUES_LOGICAL
... 1 XML_DATA_VALUES_PHYSICAL
... 1 XML_DATA_VALUES_LOGICAL
... 1 XML_DATA_VALUES_PHYSICAL
... 1 XML_DATA_VALUES_LOGICAL
... 1 XML_DATA_VALUES_PHYSICAL
... 1 XML_DATA_VALUES_LOGICAL
... 1 XML_DATA_VALUES_PHYSICAL
... 1 XML_DATA_VALUES_LOGICAL
... 1 XML_DATA_VALUES_PHYSICAL
... 1 XML_DATA_VALUES_LOGICAL
... 1 XML_DATA_VALUES_PHYSICAL
... 1 TEXT_SEARCH
... 1 TEXT_SEARCH

Describing a data partition

The following example shows how to describe data partitions.

58 Administrative Routines and Views

CALL SYSPROC.ADMIN_CMD(’describe data partitions for table part_table2’)

The following is an example of output for this CALL statement.
Result set 1

DATA_PARTITION_ID LOW_KEY_INCLUSIVE LOW_KEY_VALUE ...
----------------- ----------------- ------------- ...

0 Y 1 ...
1 Y 10 ...
2 Y 20 ...

3 record(s) selected.

Output for this CALL statement (continued).
... HIGH_KEY_INCLUSIVE HIGH_KEY_VALUE
... ------------------ --------------
... N 10
... N 20
... N 40

The following example shows how to describe data partitions with 'SHOW
DETAIL' clause.
CALL SYSPROC.ADMIN_CMD(’describe data partitions

for table part_table2 show detail’)

The following is an example of output for this CALL statement.
Result set 1

DATA_PARTITION_ID LOW_KEY_INCLUSIVE LOW_KEY_VALUE ...
----------------- ----------------- ------------- ...

0 Y 1 ...
1 Y 10 ...
2 Y 20 ...

3 record(s) selected.

Return Status = 0

Output for this CALL statement (continued).
... HIGH_KEY_INCLUSIVE HIGH_KEY_VALUE
... ------------------ --------------
... N 10
... N 20
... N 40

Output for this CALL statement (continued).
Result set 2

DATA_PARTITION_ID DATA_PARTITION_NAME TBSPID ...
----------------- ------------------- ------ ...

0 PART0 3 ...
1 PART1 3 ...
2 PART2 3 ...

3 record(s) selected.

Return Status = 0

Output for this CALL statement (continued).

Chapter 4. ADMIN_CMD procedure and associated routines 59

... PARTITION_OBJECT_ID LONG_TBSPID ACCESSMODE STATUS

... ------------------- ----------- ----------- ------

... 15 3 FULL_ACCESS

... 16 3 FULL_ACCESS

... 17 3 FULL_ACCESS

Usage note

If the DESCRIBE command tries to create a temporary table and fails, creation of
SYSTOOLSTMPSPACE is attempted, and then creation of the temporary table is
attempted again, this time in SYSTOOLSTMPSPACE. SYSCTRL or SYSADM
authority is required to create the SYSTOOLSTMPSPACE table space.

Result set information

Command execution status is returned in the SQLCA resulting from the CALL
statement. If execution is successful, the commands return additional information
in result sets as follows:
v Table 30: DESCRIBE select-statement, DESCRIBE call-statement and DESCRIBE XQUERY

XQuery-statement commands
v Table 31 on page 61: Result set 1 for the DESCRIBE TABLE command
v Table 32 on page 61: Result set 2 for the DESCRIBE TABLE command
v Table 33 on page 62: DESCRIBE INDEXES FOR TABLE command
v Table 34 on page 63: Result set 1 for the DESCRIBE DATA PARTITIONS FOR TABLE

command
v Table 35 on page 63: Result set 2 for the DESCRIBE DATA PARTITIONS FOR TABLE

command

Table 30. Result set returned by the DESCRIBE select-statement, DESCRIBE call-statement and DESCRIBE
XQUERY XQuery-statement commands

Column name Data type LOB only1 Description

SQLTYPE_ID SMALLINT No Data type of the column, as it
appears in the SQLTYPE field of the
SQL descriptor area (SQLDA).

SQLTYPE VARCHAR (257) No Data type corresponding to the
SQLTYPE_ID value.

SQLLEN INTEGER No Length attribute of the column, as it
appears in the SQLLEN field of the
SQLDA.

SQLSCALE SMALLINT No Number of digits in the fractional
part of a decimal value; 0 in the case
of other data types.

SQLNAME_DATA VARCHAR (128) No Name of the column.

SQLNAME_LENGTH SMALLINT No Length of the column name.

SQLDATA_TYPESCHEMA VARCHAR (128) Yes Data type schema name.

SQLDATA_TYPENAME VARCHAR (128) Yes Data type name.

Note: 1: Yes indicates that non-null values are returned only when there is LOB
data being described.

60 Administrative Routines and Views

Table 31. Result set 1 returned by the DESCRIBE TABLE command

Column name Data type Detail2 Description

COLNAME VARCHAR (128) No Column name.

TYPESCHEMA VARCHAR (128) No If the column name is distinct, the
schema name is returned, otherwise,
'SYSIBM' is returned.

TYPENAME VARCHAR (128) No Name of the column type.

FOR_BINARY_DATA CHAR (1) Yes Returns 'Y' if the column is of type
CHAR, VARCHAR or LONG
VARCHAR, and is defined as FOR
BIT DATA, 'N' otherwise.

LENGTH INTEGER No Maximum length of the data. For
DECIMAL data, this indicates the
precision. For discinct types, 0 is
returned.

SCALE SMALLINT No For DECIMAL data, this indicates
the scale. For all other types, 0 is
returned.

NULLABLE CHAR (1) No One of:

v 'Y' if column is nullable

v 'N' if column is not nullable

COLNO SMALLINT Yes Ordinal of the column.

PARTKEYSEQ SMALLINT Yes Ordinal of the column within the
table's partitioning key. NULL or 0 is
returned if the column is not part of
the partitioning key, and is NULL for
subtables and hierarchy tables.

CODEPAGE SMALLINT Yes Code page of the column and is one
of:

v Value of the database code page
for columns that are not defined
with FOR BIT DATA.

v Value of the DBCS code page for
graphic columns.

v 0 otherwise.

DEFAULT VARCHAR (254) Yes Default value for the column of a
table expressed as a constant, special
register, or cast-function appropriate
for the data type of the column.
Might also be NULL.

Note: 2: Yes indicates that non-null values are returned only when the SHOW DETAIL
clause is used.

Table 32. Result set 2 returned by the DESCRIBE TABLE command when the SHOW DETAIL clause is used.

Column name Data type Description

DATA_PARTITION_KEY_SEQ INTEGER Data partition key number, for example, 1
for the first data partition expression and 2
for the second data partition expression.

DATA_PARTITION_EXPRESSION CLOB (32K) Expression for this data partition key in SQL
syntax

Chapter 4. ADMIN_CMD procedure and associated routines 61

Table 33. Result set returned by the DESCRIBE INDEXES FOR TABLE command

Column name Data type Detail3 Index type option4, 5 Description

INDSCHEMA VARCHAR
(128)

No RELATIONAL DATA
XML DATA
TEXT SEARCH

Index schema name.

INDNAME VARCHAR
(128)

No RELATIONAL DATA
XML DATA
TEXT SEARCH

Index name.

UNIQUE_RULE VARCHAR (30) No RELATIONAL DATA
XML DATA

One of following values:

v DUPLICATES_ALLOWED

v PRIMARY_INDEX

v UNIQUE_ENTRIES_ONLY

INDEX
_PARTITIONING

CHAR(1) No N/A Identifies the partitioning
characteristic of the index. Possible
values are:

v N= Nonpartitioned index

v P= Partitioned index

v Blank = Index is not on a
partitioned table

COLCOUNT SMALLINT No RELATIONAL DATA
XML DATA

Number of columns in the key, plus
the number of include columns, if
any.

INDEX_TYPE VARCHAR (30) No RELATIONAL DATA
XML DATA
TEXT SEARCH

Type of index:

v RELATIONAL_DATA

v TEXT_SEARCH

v XML_DATA_REGIONS

v XML_DATA_PATH

v XML_DATA_VALUES_LOGICAL

v XML_DATA_VALUES_PHYSICAL

INDEX_ID SMALLINT Yes RELATIONAL DATA
XML DATA

Index ID for a relational data index,
an XML path index, an XML regions
index, or an index over XML data

DATA_TYPE VARCHAR
(128)

Yes XML DATA SQL data type specified for an index
over XML data. One of the following
values:

v VARCHAR

v DOUBLE

v DATE

v TIMESTAMP

HASHED CHAR (1) Yes XML DATA Indicates whether or not the value for
an index over XML data is hashed.

v 'Y' if the value is hashed.

v 'N' if the value is not hashed.

LENGTH SMALLINT Yes XML DATA For an index over XML data, the
VARCHAR (integer) length; 0
otherwise.

PATTERN CLOB (2M) Yes XML DATA XML pattern expression specified for
an index over XML data

CODEPAGE INTEGER Yes TEXT SEARCH Document code page specified for the
text search index

62 Administrative Routines and Views

Table 33. Result set returned by the DESCRIBE INDEXES FOR TABLE command (continued)

Column name Data type Detail3 Index type option4, 5 Description

LANGUAGE VARCHAR (5) Yes TEXT SEARCH Document language specified for the
text search index

FORMAT VARCHAR (30) Yes TEXT SEARCH Document format specified for a text
search index

UPDATEMINIMUM INTEGER Yes TEXT SEARCH Minimum number of entries in the
text search log table before an
incremental update is performed

UPDATEFREQUENCY VARCHAR
(300)

Yes TEXT SEARCH Trigger criterion specified for
applying updates to the text index

COLLECTION
DIRECTORY

VARCHAR
(512)

Yes TEXT SEARCH Directory specified for the text search
index files

COLNAMES VARCHAR
(2048)

Yes RELATIONAL DATA
XML DATA
TEXT SEARCH

List of the column names, each
preceded with a + to indicate
ascending order or a - to indicate
descending order.

Note: 3: Yes indicates that values are returned only when the SHOW DETAIL clause is
used without specifying an index type option. Values might be NULL.

Note: 4: Indicates the values returned when using DESCRIBE index-type INDEXES FOR
TABLE. For example, INDEX_ID values are not returned if TEXT SEARCH is specified
as index-type. INDEX_ID values are returned if either RELATIONAL DATA or XML DATA
are specified.

Note: 5: When using DESCRIBE index-type INDEXES FOR TABLE SHOW DETAIL, the
values are returned only when the index type is listed. For example, DATA_TYPE
values are returned if XML DATA is specified as index-type. DATA_TYPE values are
not returned if either TEXT SEARCH or RELATIONAL DATA is specified as index-type.

Table 34. Result set 1 returned by the DESCRIBE DATA PARTITIONS FOR TABLE command

Column name Data type Detail2 Description

DATA_PARTITION_ID INTEGER No Data partition identifier.

LOW_KEY_INCLUSIVE CHAR (1) No 'Y' if the low key value is inclusive,
otherwise, 'N'.

LOW_KEY_VALUE VARCHAR (512) No Low key value for this data
partition.

HIGH_KEY_INCLUSIVE CHAR (1) No 'Y' if the high key value is inclusive,
otherwise, 'N'.

HIGH_KEY_VALUE VARCHAR (512) No High key value for this data
partition.

Note: 2: Yes indicates that non-null values are returned only when the SHOW DETAIL
clause is used.

Table 35. Result set 2 returned by the DESCRIBE DATA PARTITIONS FOR TABLE command when the SHOW
DETAIL clause is used.

Column name Data type Description

DATA_PARTITION_ID INTEGER Data partition identifier.

Chapter 4. ADMIN_CMD procedure and associated routines 63

Table 35. Result set 2 returned by the DESCRIBE DATA PARTITIONS FOR TABLE command when the SHOW
DETAIL clause is used. (continued)

Column name Data type Description

DATA_PARTITION_NAME VARCHAR (128) Data partition name.

TBSPID INTEGER Identifier of the table space where this data
partition is stored.

PARTITION_OBJECT_ID INTEGER Identifier of the DMS object where this data
partition is stored.

LONG_TBSPID INTEGER Identifier of the table space where long data
is stored.

INDEX_TBSPID INTEGER Identifier of the table space where index data
is stored.

ACCESSMODE VARCHAR (20) Defines accessibility of the data partition and
is one of:

v FULL_ACCESS

v NO_ACCESS

v NO_DATA_MOVEMENT

v READ_ONLY

STATUS VARCHAR(64) Data partition status and can be one of:

v NEWLY_ATTACHED

v NEWLY_DETACHED: MQT maintenance
is required.

v INDEX_CLEANUP_PENDING: detached
data partition whose tuple in
SYSDATAPARTITIONS is maintained only
for index cleanup. This tuple is removed
when all index records referring to the
detached data partition have been deleted.

The column is blank otherwise.

DROP CONTACT command using the ADMIN_CMD procedure
Removes a contact from the list of contacts defined on the local system. A contact
is a user to whom the Scheduler and Health Monitor send messages. The setting of
the Database Administration Server (DAS) contact_host configuration parameter
determines whether the list is local or global.

Authorization

None

Required connection

Database. The DAS must be running.

Command syntax

�� DROP CONTACT name ��

64 Administrative Routines and Views

Command parameters

CONTACT name
The name of the contact that will be dropped from the local system.

Example

Drop the contact named 'testuser' from the list of contacts on the server system.
CALL SYSPROC.ADMIN_CMD(’drop contact testuser’)

Usage notes

The DAS must have been created and be running.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

DROP CONTACTGROUP command using the ADMIN_CMD
procedure

Removes a contact group from the list of contacts defined on the local system. A
contact group contains a list of users to whom the Scheduler and Health Monitor
send messages. The setting of the Database Administration Server (DAS)
contact_host configuration parameter determines whether the list is local or
global.

Authorization

None

Required Connection

Database. The DAS must be running.

Command Syntax

�� DROP CONTACTGROUP name ��

Command Parameters

CONTACTGROUP name
The name of the contact group that will be dropped from the local system.

Example

Drop the contact group named 'gname1'.
CALL SYSPROC.ADMIN_CMD(’drop contactgroup gname1’)

Usage notes

The DAS must have been created and be running.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

Chapter 4. ADMIN_CMD procedure and associated routines 65

EXPORT command using the ADMIN_CMD procedure
Exports data from a database to one of several external file formats. The user
specifies the data to be exported by supplying an SQL SELECT statement, or by
providing hierarchical information for typed tables. The data is exported to the
server only.

Quick link to “File type modifiers for the export utility” on page 71.

Authorization

One of the following:
v DATAACCESS authority
v CONTROL or SELECT privilege on each participating table or view

Required connection

Database. Utility access to Linux, UNIX, or Windows database servers from Linux,
UNIX, or Windows clients must be a direct connection through the engine and not
through a DB2 Connect™ gateway or loop back environment.

Command syntax

�� EXPORT TO filename OF filetype

�

,

LOBS TO lob-path

�

�

�

,

LOBFILE filename �

,

XML TO xml-path

�

�

�

,

XMLFILE filename �MODIFIED BY filetype-mod

�

�
XMLSAVESCHEMA

�

,

METHOD N (column-name)

�

�
MESSAGES ON SERVER

�

�

�

select-statement
XQUERY xquery-statement
HIERARCHY STARTING sub-table-name

traversal-order-list

WHERE

��

66 Administrative Routines and Views

traversal-order-list:

�

,

(sub-table-name)

Command parameters

HIERARCHY traversal-order-list
Export a sub-hierarchy using the specified traverse order. All sub-tables
must be listed in PRE-ORDER fashion. The first sub-table name is used as
the target table name for the SELECT statement.

HIERARCHY STARTING sub-table-name
Using the default traverse order (OUTER order for ASC, DEL, or WSF files,
or the order stored in PC/IXF data files), export a sub-hierarchy starting
from sub-table-name.

LOBFILE filename
Specifies one or more base file names for the LOB files. When name space
is exhausted for the first name, the second name is used, and so on. This
will implicitly activate the LOBSINFILE behavior.

When creating LOB files during an export operation, file names are
constructed by appending the current base name from this list to the
current path (from lob-path), and then appending a 3-digit sequence
number to start and the three character identifier lob. For example, if the
current LOB path is the directory /u/foo/lob/path/, and the current LOB
file name is bar, the LOB files created will be /u/foo/lob/path/
bar.001.lob, /u/foo/lob/path/bar.002.lob, and so on. The 3-digit
sequence number in the LOB file name will grow to 4-digits once 999 is
used, 4-digits will grow to 5-digits once 9999 is used, and so on.

LOBS TO lob-path
Specifies one or more paths to directories in which the LOB files are to be
stored. The path(s) must exist on the coordinator partition of the server
and must be fully qualified. There will be at least one file per LOB path,
and each file will contain at least one LOB. The maximum number of paths
that can be specified is 999. This will implicitly activate the LOBSINFILE
behavior.

MESSAGES ON SERVER
Specifies that the message file created on the server by the EXPORT
command is to be saved. The result set returned will include the following
two columns: MSG_RETRIEVAL, which is the SQL statement required to
retrieve all the warnings and error messages that occur during this
operation, and MSG_REMOVAL, which is the SQL statement required to
clean up the messages.

If this clause is not specified, the message file will be deleted when the
ADMIN_CMD procedure returns to the caller. The MSG_RETRIEVAL and
MSG_REMOVAL column in the result set will contain null values.

Note that with or without the clause, the fenced user ID must have the
authority to create files under the directory indicated by the
DB2_UTIL_MSGPATH registry variable, as well as the directory where the data
is to be exported to.

METHOD N column-name
Specifies one or more column names to be used in the output file. If this

Chapter 4. ADMIN_CMD procedure and associated routines 67

parameter is not specified, the column names in the table are used. This
parameter is valid only for WSF and IXF files, but is not valid when
exporting hierarchical data.

MODIFIED BY filetype-mod
Specifies file type modifier options. See “File type modifiers for the export
utility” on page 71.

OF filetype
Specifies the format of the data in the output file:
v DEL (delimited ASCII format), which is used by a variety of database

manager and file manager programs.
v WSF (work sheet format), which is used by programs such as:

– Lotus® 1-2-3®

– Lotus Symphony™

When exporting BIGINT or DECIMAL data, only values that fall within
the range of type DOUBLE can be exported accurately. Although values
that do not fall within this range are also exported, importing or loading
these values back might result in incorrect data, depending on the
operating system.

Note: Support for the WSF file format is deprecated and might be
removed in a future release. It is recommended that you start using a
supported file format instead of WSF files before support is removed.

v IXF (Integration Exchange Format, PC version) is a proprietary binary
format.

select-statement
Specifies the SELECT or XQUERY statement that will return the data to be
exported. If the statement causes an error, a message is written to the
message file (or to standard output). If the error code is one of SQL0012W,
SQL0347W, SQL0360W, SQL0437W, or SQL1824W, the export operation
continues; otherwise, it stops.

TO filename
Specifies the name of the file to which data is to be exported to on the
server. This must be a fully qualified path and must exist on the server
coordinator partition.

If the name of a file that already exists is specified, the export utility
overwrites the contents of the file; it does not append the information.

XMLFILE filename
Specifies one or more base file names for the XML files. When name space
is exhausted for the first name, the second name is used, and so on.

When creating XML files during an export operation, file names are
constructed by appending the current base name from this list to the
current path (from xml-path), appending a 3-digit sequence number, and
appending the three character identifier xml. For example, if the current
XML path is the directory /u/foo/xml/path/, and the current XML file
name is bar, the XML files created will be /u/foo/xml/path/bar.001.xml,
/u/foo/xml/path/bar.002.xml, and so on.

XML TO xml-path
Specifies one or more paths to directories in which the XML files are to be
stored. There will be at least one file per XML path, and each file will

68 Administrative Routines and Views

contain at least one XQuery Data Model (XDM) instance. If more than one
path is specified, then XDM instances are distributed evenly among the
paths.

XMLSAVESCHEMA
Specifies that XML schema information should be saved for all XML
columns. For each exported XML document that was validated against an
XML schema when it was inserted, the fully qualified SQL identifier of that
schema will be stored as an (SCH) attribute inside the corresponding XML
Data Specifier (XDS). If the exported document was not validated against
an XML schema or the schema object no longer exists in the database, an
SCH attribute will not be included in the corresponding XDS.

The schema and name portions of the SQL identifier are stored as the
"OBJECTSCHEMA" and "OBJECTNAME" values in the row of the
SYSCAT.XSROBJECTS catalog table corresponding to the XML schema.

The XMLSAVESCHEMA option is not compatible with XQuery sequences that
do not produce well-formed XML documents.

Example

The following example shows how to export information from the STAFF table in
the SAMPLE database to the file myfile.ixf. The output will be in IXF format. You
must be connected to the SAMPLE database before issuing the command.
CALL SYSPROC.ADMIN_CMD (’EXPORT to /home/user1/data/myfile.ixf

OF ixf MESSAGES ON SERVER select * from staff’)

Usage notes
v Any path used in the EXPORT command must be a valid fully-qualified path on

the server.
v If a table contains LOB columns, at least one fully-qualified LOB path and LOB

name must be specified, using the LOBS TO and LOBFILE clauses.
v The export utility issues a COMMIT statement at the beginning of the operation

which, in the case of Type 2 connections, causes the procedure to return
SQL30090N with reason code 2.

v When exporting from a UCS-2 database to a delimited ASCII (DEL) file, all
character data is converted to the code page that is in effect where the procedure
is executing. Both character string and graphic string data are converted to the
same SBCS or MBCS code page of the server.

v Be sure to complete all table operations and release all locks before starting an
export operation. This can be done by issuing a COMMIT after closing all
cursors opened WITH HOLD, or by issuing a ROLLBACK.

v Table aliases can be used in the SELECT statement.
v The messages placed in the message file include the information returned from

the message retrieval service. Each message begins on a new line.
v PC/IXF import should be used to move data between databases. If character

data containing row separators is exported to a delimited ASCII (DEL) file and
processed by a text transfer program, fields containing the row separators will
shrink or expand.

v The file copying step is not necessary if the source and the target databases are
both accessible from the same client.

v DB2 Connect can be used to export tables from DRDA® servers such as DB2 for
OS/390®, DB2 for VM and VSE, and DB2 for OS/400®. Only PC/IXF export is
supported.

Chapter 4. ADMIN_CMD procedure and associated routines 69

v When exporting to the IXF format, if identifiers exceed the maximum size
supported by the IXF format, the export will succeed but the resulting datafile
cannot be used by a subsequent import operation using the CREATE mode.
SQL27984W will be returned.

v When exporting to a diskette on Windows, and the table that has more data
than the capacity of a single diskette, the system will prompt for another
diskette, and multiple-part PC/IXF files (also known as multi-volume PC/IXF
files, or logically split PC/IXF files), are generated and stored in separate
diskettes. In each file, with the exception of the last, there is a DB2
CONTINUATION RECORD (or "AC" Record in short) written to indicate the
files are logically split and where to look for the next file. The files can then be
transferred to an AIX® system, to be read by the import and load utilities. The
export utility will not create multiple-part PC/IXF files when invoked from an
AIX system. For detailed usage, see the IMPORT command or LOAD command.

v The export utility will store the NOT NULL WITH DEFAULT attribute of the
table in an IXF file if the SELECT statement provided is in the form SELECT *
FROM tablename.

v When exporting typed tables, subselect statements can only be expressed by
specifying the target table name and the WHERE clause. Fullselect and
select-statement cannot be specified when exporting a hierarchy.

v For file formats other than IXF, it is recommended that the traversal order list be
specified, because it tells DB2 how to traverse the hierarchy, and what sub-tables
to export. If this list is not specified, all tables in the hierarchy are exported, and
the default order is the OUTER order. The alternative is to use the default order,
which is the order given by the OUTER function.

v Use the same traverse order during an import operation. The load utility does
not support loading hierarchies or sub-hierarchies.

v When exporting data from a table that has protected rows, the LBAC credentials
held by the session authorization id might limit the rows that are exported.
Rows that the session authorization ID does not have read access to will not be
exported. No error or warning is given.

v If the LBAC credentials held by the session authorization id do not allow
reading from one or more protected columns included in the export then the
export fails and an error (SQLSTATE 42512) is returned.

v When running Data Movement utilities such as export and db2move, the query
compiler might determine that the underlying query will run more efficiently
against an MQT than the base table or tables. In this case, the query will execute
against a refresh deferred MQT, and the result of the utilities might not
accurately represent the data in the underlying table.

v Export packages are bound using DATETIME ISO format, thus, all
date/time/timestamp values are converted into ISO format when cast to a string
representation. Since the CLP packages are bound using DATETIME LOC format
(locale specific format), you may see inconsistent behavior between CLP and
export if the CLP DATETIME format is different from ISO. For instance, the
following SELECT statement may return expected results:

db2 select col2 from tab1 where char(col2)=’05/10/2005’;
COL2

05/10/2005
05/10/2005
05/10/2005
3 record(s) selected.

But an export command using the same select clause will not:

70 Administrative Routines and Views

db2 export to test.del of del select col2 from test
where char(col2)=’05/10/2005’;

Number of rows exported: 0

Now, replacing the LOCALE date format with ISO format gives the expected
results:

db2 export to test.del of del select col2 from test
where char(col2)=’2005-05-10’;

Number of rows exported: 3

Result set information

Command execution status is returned in the SQLCA resulting from the CALL
statement. If execution is successful, the command returns additional information
in result sets as follows:

Table 36. Result set returned by the EXPORT command

Column name Data type Description

ROWS_EXPORTED BIGINT Total number of exported rows.

MSG_RETRIEVAL VARCHAR(512) SQL statement that is used to retrieve messages created
by this utility. For example:

SELECT SQLCODE, MSG
FROM TABLE (SYSPROC.ADMIN_GET_MSGS
(’3203498_txu’)) AS MSG

MSG_REMOVAL VARCHAR(512) SQL statement that is used to clean up messages created
by this utility. For example:

CALL SYSPROC.ADMIN_REMOVE_MSGS
(’3203498_txu’)

File type modifiers for the export utility

Table 37. Valid file type modifiers for the export utility: All file formats

Modifier Description

lobsinfile lob-path specifies the path to the files containing LOB data.

Each path contains at least one file that contains at least one LOB pointed to by a
Lob Location Specifier (LLS) in the data file. The LLS is a string representation of
the location of a LOB in a file stored in the LOB file path. The format of an LLS is
filename.ext.nnn.mmm/, where filename.ext is the name of the file that contains the
LOB, nnn is the offset in bytes of the LOB within the file, and mmm is the length
of the LOB in bytes. For example, if the string db2exp.001.123.456/ is stored in
the data file, the LOB is located at offset 123 in the file db2exp.001, and is 456
bytes long.

If you specify the lobsinfile modifier when using EXPORT, the LOB data is placed
in the locations specified by the LOBS TO clause. Otherwise the LOB data is sent to
the data file directory. The LOBS TO clause specifies one or more paths to
directories in which the LOB files are to be stored. There will be at least one file
per LOB path, and each file will contain at least one LOB. The LOBS TO or LOBFILE
options will implicitly activate the LOBSINFILE behavior.

To indicate a null LOB , enter the size as -1. If the size is specified as 0, it is
treated as a 0 length LOB. For null LOBS with length of -1, the offset and the file
name are ignored. For example, the LLS of a null LOB might be db2exp.001.7.-1/.

xmlinsepfiles Each XQuery Data Model (XDM) instance is written to a separate file. By default,
multiple values are concatenated together in the same file.

Chapter 4. ADMIN_CMD procedure and associated routines 71

Table 37. Valid file type modifiers for the export utility: All file formats (continued)

Modifier Description

lobsinsepfiles Each LOB value is written to a separate file. By default, multiple values are
concatenated together in the same file.

xmlnodeclaration XDM instances are written without an XML declaration tag. By default, XDM
instances are exported with an XML declaration tag at the beginning that includes
an encoding attribute.

xmlchar XDM instances are written in the character codepage. Note that the character
codepage is the value specified by the codepage file type modifier, or the
application codepage if it is not specified. By default, XDM instances are written
out in Unicode.

xmlgraphic If the xmlgraphic modifier is specified with the EXPORT command, the exported
XML document will be encoded in the UTF-16 code page regardless of the
application code page or the codepage file type modifier.

Table 38. Valid file type modifiers for the export utility: DEL (delimited ASCII) file format

Modifier Description

chardelx x is a single character string delimiter. The default value is a double quotation mark (").
The specified character is used in place of double quotation marks to enclose a character
string.2 If you want to explicitly specify the double quotation mark as the character string
delimiter, it should be specified as follows:

modified by chardel""

The single quotation mark (') can also be specified as a character string delimiter as
follows:

modified by chardel’’

codepage=x x is an ASCII character string. The value is interpreted as the code page of the data in
the output data set. Converts character data to this code page from the application code
page during the export operation.

For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to the range of
x00 to x3F, inclusive. The codepage modifier cannot be used with the lobsinfile
modifier.

coldelx x is a single character column delimiter. The default value is a comma (,). The specified
character is used in place of a comma to signal the end of a column.2

In the following example, coldel; causes the export utility to use the semicolon character
(;) as a column delimiter for the exported data:

db2 "export to temp of del modified by coldel;
select * from staff where dept = 20"

decplusblank Plus sign character. Causes positive decimal values to be prefixed with a blank space
instead of a plus sign (+). The default action is to prefix positive decimal values with a
plus sign.

decptx x is a single character substitute for the period as a decimal point character. The default
value is a period (.). The specified character is used in place of a period as a decimal
point character.2

nochardel Column data will not be surrounded by character delimiters. This option should not be
specified if the data is intended to be imported or loaded using DB2. It is provided to
support vendor data files that do not have character delimiters. Improper usage might
result in data loss or corruption.

This option cannot be specified with chardelx or nodoubledel. These are mutually
exclusive options.

nodoubledel Suppresses recognition of double character delimiters.2

72 Administrative Routines and Views

Table 38. Valid file type modifiers for the export utility: DEL (delimited ASCII) file format (continued)

Modifier Description

striplzeros Removes the leading zeros from all exported decimal columns.

Consider the following example:

db2 create table decimalTable (c1 decimal(31, 2))
db2 insert into decimalTable values (1.1)

db2 export to data of del select * from decimalTable

db2 export to data of del modified by STRIPLZEROS
select * from decimalTable

In the first export operation, the content of the exported file data will be
+00000000000000000000000000001.10. In the second operation, which is identical to the
first except for the striplzeros modifier, the content of the exported file data will be
+1.10.

timestampformat="x" x is the format of the time stamp in the source file.4 Valid time stamp elements are:

YYYY - Year (four digits ranging from 0000 - 9999)
M - Month (one or two digits ranging from 1 - 12)
MM - Month (two digits ranging from 01 - 12;

mutually exclusive with M and MMM)
MMM - Month (three-letter case-insensitive abbreviation for

the month name; mutually exclusive with M and MM)
D - Day (one or two digits ranging from 1 - 31)
DD - Day (two digits ranging from 01 - 31; mutually exclusive with D)
DDD - Day of the year (three digits ranging from 001 - 366;

mutually exclusive with other day or month elements)
H - Hour (one or two digits ranging from 0 - 12

for a 12 hour system, and 0 - 24 for a 24 hour system)
HH - Hour (two digits ranging from 00 - 12

for a 12 hour system, and 00 - 24 for a 24 hour system;
mutually exclusive with H)

M - Minute (one or two digits ranging from 0 - 59)
MM - Minute (two digits ranging from 00 - 59;

mutually exclusive with M, minute)
S - Second (one or two digits ranging from 0 - 59)
SS - Second (two digits ranging from 00 - 59;

mutually exclusive with S)
SSSSS - Second of the day after midnight (5 digits

ranging from 00000 - 86400; mutually
exclusive with other time elements)

U (1 to 12 times)
- Fractional seconds(number of occurrences of U represent the

number of digits with each digit ranging from 0 to 9
TT - Meridian indicator (AM or PM)

Following is an example of a time stamp format:

"YYYY/MM/DD HH:MM:SS.UUUUUU"

The MMM element will produce the following values: 'Jan', 'Feb', 'Mar', 'Apr', 'May',
'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', and 'Dec'. 'Jan' is equal to month 1, and 'Dec' is equal
to month 12.

The following example illustrates how to export data containing user-defined time stamp
formats from a table called 'schedule':

db2 export to delfile2 of del
modified by timestampformat="yyyy.mm.dd hh:mm tt"
select * from schedule

Chapter 4. ADMIN_CMD procedure and associated routines 73

Table 39. Valid file type modifiers for the export utility: IXF file format

Modifier Description

codepage=x x is an ASCII character string. The value is interpreted as the code page of the
data in the output data set. Converts character data from this code page to the
application code page during the export operation.

For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to the
range of x00 to x3F, inclusive.

Table 40. Valid file type modifiers for the export utility: WSF file format6

Modifier Description

1 Creates a WSF file that is compatible with Lotus 1-2-3 Release 1, or Lotus 1-2-3
Release 1a.5 This is the default.

2 Creates a WSF file that is compatible with Lotus Symphony Release 1.0.5

3 Creates a WSF file that is compatible with Lotus 1-2-3 Version 2, or Lotus
Symphony Release 1.1.5

4 Creates a WSF file containing DBCS characters.

Note:

1. The export utility does not issue a warning if an attempt is made to use
unsupported file types with the MODIFIED BY option. If this is attempted, the
export operation fails, and an error code is returned.

2. Delimiter considerations for moving data lists restrictions that apply to the
characters that can be used as delimiter overrides.

3. The export utility normally writes
v date data in YYYYMMDD format
v char(date) data in "YYYY-MM-DD" format
v time data in "HH.MM.SS" format
v time stamp data in "YYYY-MM-DD-HH.MM.SS.uuuuuu" format

Data contained in any datetime columns specified in the SELECT statement
for the export operation will also be in these formats.

4. For time stamp formats, care must be taken to avoid ambiguity between the
month and the minute descriptors, since they both use the letter M. A month
field must be adjacent to other date fields. A minute field must be adjacent to
other time fields. Following are some ambiguous time stamp formats:

"M" (could be a month, or a minute)
"M:M" (Which is which?)
"M:YYYY:M" (Both are interpreted as month.)
"S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation
will fail.
Following are some unambiguous time stamp formats:

"M:YYYY" (Month)
"S:M" (Minute)
"M:YYYY:S:M" (Month....Minute)
"M:H:YYYY:M:D" (Minute....Month)

5. These files can also be directed to a specific product by specifying an L for
Lotus 1-2-3, or an S for Symphony in the filetype-mod parameter string. Only
one value or product designator can be specified. Support for the WSF file

74 Administrative Routines and Views

format is deprecated and might be removed in a future release. It is
recommended that you start using a supported file format instead of WSF
files before support is removed.

6. The WSF file format is not supported for XML columns. Support for this file
format is deprecated and might be removed in a future release. It is
recommended that you start using a supported file format instead of WSF
files before support is removed.

7. All XDM instances are written to XML files that are separate from the main
data file, even if neither the XMLFILE nor the XML TO clause is specified. By
default, XML files are written to the path of the exported data file. The default
base name for XML files is the name of the exported data file with the
extension ".xml" appended to it.

8. All XDM instances are written with an XML declaration at the beginning that
includes an encoding attribute, unless the XMLNODECLARATION file type
modifier is specified.

9. By default, all XDM instances are written in Unicode unless the XMLCHAR or
XMLGRAPHIC file type modifier is specified.

10. The default path for XML data and LOB data is the path of the main data file.
The default XML file base name is the main data file. The default LOB file
base name is the main data file. For example, if the main data file is:
/mypath/myfile.del

the default path for XML data and LOB data is:
/mypath"

the default XML file base name is:
myfile.del

and the default LOB file base name is:
myfile.del

The LOBSINFILE file type modifier must be specified in order to have LOB
files generated.

11. The export utility appends a numeric identifier to each LOB file or XML file.
The identifier starts as a 3 digit, 0 padded sequence value, starting at:
.001

After the 999th LOB file or XML file, the identifier will no longer be padded
with zeroes (for example, the 1000th LOG file or XML file will have an
extension of:
.1000

Following the numeric identifier is a three character type identifier
representing the data type, either:
.lob

or
.xml

For example, a generated LOB file would have a name in the format:
myfile.del.001.lob

and a generated XML file would be have a name in the format:
myfile.del.001.xml

Chapter 4. ADMIN_CMD procedure and associated routines 75

12. It is possible to have the export utility export XDM instances that are not
well-formed documents by specifying an XQuery. However, you will not be
able to import or load these exported documents directly into an XML
column, since XML columns can only contain complete documents.

FORCE APPLICATION command using the ADMIN_CMD
procedure

Forces local or remote users or applications off the system to allow for
maintenance on a server.

Attention: If an operation that cannot be interrupted (RESTORE DATABASE, for
example) is forced, the operation must be successfully re-executed before the
database becomes available.

Scope

This command affects all database partitions that are listed in the
$HOME/sqllib/db2nodes.cfg file.

In a partitioned database environment, this command does not have to be issued
from the coordinator database partition of the application being forced. It can be
issued from any node (database partition server) in the partitioned database
environment.

Authorization

One of the following:
v SYSADM
v SYSCTRL
v SYSMAINT

Required connection

Database

Command syntax

�� FORCE APPLICATION

�

ALL
,

(application-handle)

MODE ASYNC
��

Command parameters

FORCE APPLICATION

ALL All applications will be disconnected from the database. This might
close the connection the ADMIN_CMD procedure is running on,
which causes an SQL1224N error to be returned for the
ADMIN_CMD procedure once the force operation is completed
successfully.

application-handle
Specifies the agent to be terminated. List the values using the LIST
APPLICATIONS command.

76 Administrative Routines and Views

MODE ASYNC
The command does not wait for all specified users to be terminated before
returning; it returns as soon as the function has been successfully issued or
an error (such as invalid syntax) is discovered.

This is the only mode that is currently supported.

Examples

The following example forces two users, with application-handle values of 41408 and
55458, to disconnect from the database:
CALL SYSPROC.ADMIN_CMD(’force application (41408, 55458)’)

Usage notes

The database manager remains active so that subsequent database manager
operations can be handled without the need for db2start.

To preserve database integrity, only users who are idling or executing interruptible
database operations can be terminated.

The following types of users and applications cannot be forced:
v users creating a database
v system applications

In order to successfully force these types of users and applications, the database
must be deactivated and/or the instance restarted.

After a FORCE APPLICATION has been issued, the database will still accept requests
to connect. Additional forces might be required to completely force all users off.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

GET STMM TUNING DBPARTITIONNUM command using the
ADMIN_CMD procedure

Used to read the catalog tables to report the user preferred self tuning memory
manager (STMM) tuning database partition number and current STMM tuning
database partition number.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities or privilege:
v DBADM
v SECADM
v SQLADM
v ACCESSCTRL
v DATAACCESS
v SELECT on SYSIBM.SYSTUNINGINFO

Chapter 4. ADMIN_CMD procedure and associated routines 77

Required connection

Database

Command syntax

�� GET STMM TUNING DBPARTITIONNUM ��

Example
CALL SYSPROC.ADMIN_CMD(’get stmm tuning dbpartitionnum’)

The following example is a sample output from this query.
Result set 1

USER_PREFERRED_NUMBER CURRENT_NUMBER
--------------------- --------------

2 2

1 record(s) selected.

Return Status = 0

Usage notes

The user preferred self tuning memory manager (STMM) tuning database partition
number (USER_PREFERRED_NUMBER) is set by the user and specifies the
database partition on which the user wishes to run the memory tuner. While the
database is running, the tuning partition is updated asynchronously a few times an
hour. As a result, it is possible that the CURRENT_NUMBER and
USER_PREFERRED_NUMBER returned are not in sync after an update of the user
preferred STMM partition number. To resolve this, either wait for the
CURRENT_NUMBER to be updated asynchronously, or stop and start the database
to force the update of CURRENT_NUMBER.

Result set information

Command execution status is returned in the SQLCA resulting from the CALL
statement. If execution is successful, the command returns additional information
in the following result set:

Table 41. Result set returned by the GET STMM TUNING DBPARTITIONNUM command

Column name Data type Description

USER_PREFERRED_NUMBER INTEGER User preferred self tuning memory
manager (STMM) tuning database
partition number. A value of -1
indicates that the default database
partition is used.

CURRENT_NUMBER INTEGER Current STMM tuning database
partition number. A value of -1
indicates that the default database
partition is used.

78 Administrative Routines and Views

IMPORT command using the ADMIN_CMD procedure
Inserts data from an external file with a supported file format into a table,
hierarchy, view or nickname. LOAD is a faster alternative, but the load utility does
not support loading data at the hierarchy level.

Quick link to “File type modifiers for the import utility” on page 93.

Authorization
v IMPORT using the INSERT option requires one of the following:

– DATAACCESS authority
– CONTROL privilege on each participating table, view, or nickname
– INSERT and SELECT privilege on each participating table or view

v IMPORT to an existing table using the INSERT_UPDATE option, requires one of the
following:
– DATAACCESS authority
– CONTROL privilege on each participating table, view, or nickname
– INSERT, SELECT, UPDATE and DELETE privilege on each participating table

or view
v IMPORT to an existing table using the REPLACE or REPLACE_CREATE option, requires

one of the following:
– DATAACCESS authority
– CONTROL privilege on the table or view
– INSERT, SELECT, and DELETE privilege on the table or view

v IMPORT to a new table using the CREATE or REPLACE_CREATE option, requires one
of the following:
– DBADM authority
– CREATETAB authority on the database and USE privilege on the table space,

as well as one of:
- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist
- CREATEIN privilege on the schema, if the schema name of the table refers

to an existing schema
v IMPORT to a hierarchy that does not exist using the CREATE, or the

REPLACE_CREATE option, requires one of the following:
– DBADM authority
– CREATETAB authority on the database and USE privilege on the table space

and one of:
- IMPLICIT_SCHEMA authority on the database, if the schema name of the

table does not exist
- CREATEIN privilege on the schema, if the schema of the table exists
- CONTROL privilege on every sub-table in the hierarchy, if the

REPLACE_CREATE option on the entire hierarchy is used
v IMPORT to an existing hierarchy using the REPLACE option requires one of the

following:
– DATAACCESS authority
– CONTROL privilege on every sub-table in the hierarchy

Chapter 4. ADMIN_CMD procedure and associated routines 79

v To import data into a table that has protected columns, the session authorization
ID must have LBAC credentials that allow write access to all protected columns
in the table. Otherwise the import fails and an error (SQLSTATE 42512) is
returned.

v To import data into a table that has protected rows, the session authorization ID
must hold LBAC credentials that meet these criteria:
– It is part of the security policy protecting the table
– It was granted to the session authorization ID for write access

The label on the row to insert, the user's LBAC credentials, the security policy
definition, and the LBAC rules determine the label on the row.

v If the REPLACE or REPLACE_CREATE option is specified, the session authorization ID
must have the authority to drop the table.

v To import data into a nickname, the session authorization ID must have the
privilege to access and use a specified data source in pass-through mode.

Required connection

Database. Utility access to Linux, UNIX, or Windows database servers from Linux,
UNIX, or Windows clients must be a direct connection through the engine and not
through a DB2 Connect gateway or loop back environment.

Command syntax

�� IMPORT FROM filename OF filetype

�

,

LOBS FROM lob-path �

,

XML FROM xml-path

�

�

�MODIFIED BY filetype-mod

�

�

�

�

�

�

,

METHOD L (column-start column-end)
,

NULL INDICATORS (null-indicator-list)
,

N (column-name)
,

P (column-position)

�

�
XMLPARSE STRIP WHITESPACE

PRESERVE

�

�
XMLVALIDATE USING XDS Ignore and Map parameters

DEFAULT schema-sqlid
SCHEMA schema-sqlid
SCHEMALOCATION HINTS

ALLOW NO ACCESS

ALLOW WRITE ACCESS
�

�
COMMITCOUNT n

AUTOMATIC
RESTARTCOUNT n
SKIPCOUNT

ROWCOUNT n WARNINGCOUNT n NOTIMEOUT
�

�
MESSAGES ON SERVER

�

80 Administrative Routines and Views

�

�

�

INSERT INTO table-name
INSERT_UPDATE ,
REPLACE
REPLACE_CREATE (insert-column)

hierarchy description
CREATE INTO table-name tblspace-specs

,

(insert-column)
hierarchy description AS ROOT TABLE

UNDER sub-table-name

��

Ignore and Map parameters:

�

,

IGNORE (schema-sqlid)

�

�

�

,

MAP ((schema-sqlid , schema-sqlid))

hierarchy description:

ALL TABLES
sub-table-list

IN
HIERARCHY STARTING sub-table-name

traversal-order-list

sub-table-list:

�

�

,

(sub-table-name)
,

(insert-column)

traversal-order-list:

�

,

(sub-table-name)

tblspace-specs:

IN tablespace-name
INDEX IN tablespace-name LONG IN tablespace-name

Command parameters

ALL TABLES
An implicit keyword for hierarchy only. When importing a hierarchy, the
default is to import all tables specified in the traversal order.

Chapter 4. ADMIN_CMD procedure and associated routines 81

ALLOW NO ACCESS
Runs import in the offline mode. An exclusive (X) lock on the target table
is acquired before any rows are inserted. This prevents concurrent
applications from accessing table data. This is the default import behavior.

ALLOW WRITE ACCESS
Runs import in the online mode. An intent exclusive (IX) lock on the target
table is acquired when the first row is inserted. This allows concurrent
readers and writers to access table data. Online mode is not compatible
with the REPLACE, CREATE, or REPLACE_CREATE import options. Online mode
is not supported in conjunction with buffered inserts. The import operation
will periodically commit inserted data to prevent lock escalation to a table
lock and to avoid running out of active log space. These commits will be
performed even if the COMMITCOUNT option was not used. During each
commit, import will lose its IX table lock, and will attempt to reacquire it
after the commit. This parameter is required when you import to a
nickname and COMMITCOUNT must be specified with a valid number
(AUTOMATIC is not considered a valid option).

AS ROOT TABLE
Creates one or more sub-tables as a stand-alone table hierarchy.

COMMITCOUNT n | AUTOMATIC
Performs a COMMIT after every n records are imported. When a number n
is specified, import performs a COMMIT after every n records are
imported. When compound inserts are used, a user-specified commit
frequency of n is rounded up to the first integer multiple of the compound
count value. When AUTOMATIC is specified, import internally determines
when a commit needs to be performed. The utility will commit for either
one of two reasons:
v to avoid running out of active log space
v to avoid lock escalation from row level to table level

If the ALLOW WRITE ACCESS option is specified, and the COMMITCOUNT option
is not specified, the import utility will perform commits as if COMMITCOUNT
AUTOMATIC had been specified.

The ability of the import operation to avoid running out of active log space
is affected by the DB2 registry variable DB2_FORCE_APP_ON_MAX_LOG:
v If DB2_FORCE_APP_ON_MAX_LOG is set to FALSE and the COMMITCOUNT

AUTOMATIC command option is specified, the import utility will be able to
automatically avoid running out of active log space.

v If DB2_FORCE_APP_ON_MAX_LOG is set to FALSE and the COMMITCOUNT n
command option is specified, the import utility will attempt to resolve
the log full condition if it encounters an SQL0964C (Transaction Log
Full) while inserting or updating a record. It will perform an
unconditional commit and then will reattempt to insert or update the
record. If this does not help resolve the issue (which would be the case
when the log full is attributed to other activity on the database), then the
IMPORT command will fail as expected, however the number of rows
committed may not be a multiple of the COMMITCOUNT n value. To avoid
processing the rows that were already committed when you retry the
import operation, use the RESTARTCOUNT or SKIPCOUNT command
parameters.

v If DB2_FORCE_APP_ON_MAX_LOG is set to TRUE (which is the default), the
import operation will fail if it encounters an SQL0964C while inserting

82 Administrative Routines and Views

or updating a record. This can occur irrespective of whether you specify
COMMITCOUNT AUTOMATIC or COMMITCOUNT n.
The application is forced off the database and the current unit of work is
rolled back. To avoid processing the rows that were already committed
when you retry the import operation, use the RESTARTCOUNT or SKIPCOUNT
command parameters.

CREATE

Note: The CREATE parameter is deprecated and may be removed in a future
release. For additional details, see “IMPORT command options CREATE and
REPLACE_CREATE are deprecated”.

Creates the table definition and row contents in the code page of the
database. If the data was exported from a DB2 table, sub-table, or
hierarchy, indexes are created. If this option operates on a hierarchy, and
data was exported from DB2, a type hierarchy will also be created. This
option can only be used with IXF files.

This parameter is not valid when you import to a nickname.

Note: If the data was exported from an MVS™ host database, and it
contains LONGVAR fields whose lengths, calculated on the page size, are
more than 254, CREATE might fail because the rows are too long. See
“Imported table re-creation” for a list of restrictions. In this case, the table
should be created manually, and IMPORT with INSERT should be invoked, or,
alternatively, the LOAD command should be used.

DEFAULT schema-sqlid
This option can only be used when the USING XDS parameter is specified.
The schema specified through the DEFAULT clause identifies a schema to use
for validation when the XML Data Specifier (XDS) of an imported XML
document does not contain an SCH attribute identifying an XML Schema.

The DEFAULT clause takes precedence over the IGNORE and MAP clauses. If an
XDS satisfies the DEFAULT clause, the IGNORE and MAP specifications will be
ignored.

FROM filename
Specifies the name of the file that contains the data to be imported. This
must be a fully qualified path and the file must exist on the database
server.

HIERARCHY
Specifies that hierarchical data is to be imported.

IGNORE schema-sqlid
This option can only be used when the USING XDS parameter is specified.
The IGNORE clause specifies a list of one or more schemas to ignore if they
are identified by an SCH attribute. If an SCH attribute exists in the XML
Data Specifier for an imported XML document, and the schema identified
by the SCH attribute is included in the list of schemas to ignore, then no
schema validation will occur for the imported XML document.

If a schema is specified in the IGNORE clause, it cannot also be present in
the left side of a schema pair in the MAP clause.

The IGNORE clause applies only to the XDS. A schema that is mapped by
the MAP clause will not be subsequently ignored if specified by the IGNORE
clause.

Chapter 4. ADMIN_CMD procedure and associated routines 83

IN tablespace-name
Identifies the table space in which the table will be created. The table space
must exist, and must be a REGULAR table space. If no other table space is
specified, all table parts are stored in this table space. If this clause is not
specified, the table is created in a table space created by the authorization
ID. If none is found, the table is placed into the default table space
USERSPACE1. If USERSPACE1 has been dropped, table creation fails.

INDEX IN tablespace-name
Identifies the table space in which any indexes on the table will be created.
This option is allowed only when the primary table space specified in the
IN clause is a DMS table space. The specified table space must exist, and
must be a REGULAR or LARGE DMS table space.

Note: Specifying which table space will contain an index can only be done
when the table is created.

insert-column
Specifies the name of a column in the table or the view into which data is
to be inserted.

INSERT Adds the imported data to the table without changing the existing table
data.

INSERT_UPDATE
Adds rows of imported data to the target table, or updates existing rows
(of the target table) with matching primary keys.

INTO table-name
Specifies the database table into which the data is to be imported. This
table cannot be a system table, a created temporary table, a declared
temporary table, or a summary table.

One can use an alias for INSERT, INSERT_UPDATE, or REPLACE, except in the
case of an earlier server, when the fully qualified or the unqualified table
name should be used. A qualified table name is in the form:
schema.tablename. The schema is the user name under which the table was
created.

LOBS FROM lob-path
Specifies one or more fully qualified paths that store LOB files. The paths
must exist on the database server coordinator partition. The names of the
LOB data files are stored in the main data file (ASC, DEL, or IXF), in the
column that will be loaded into the LOB column. The maximum number of
paths that can be specified is 999. This will implicitly activate the
LOBSINFILE behavior.

This parameter is not valid when you import to a nickname.

LONG IN tablespace-name
Identifies the table space in which the values of any long columns (LONG
VARCHAR, LONG VARGRAPHIC, LOB data types, or distinct types with
any of these as source types) will be stored. This option is allowed only if
the primary table space specified in the IN clause is a DMS table space. The
table space must exist, and must be a LARGE DMS table space.

MAP schema-sqlid
This option can only be used when the USING XDS parameter is specified.
Use the MAP clause to specify alternate schemas to use in place of those
specified by the SCH attribute of an XML Data Specifier (XDS) for each
imported XML document. The MAP clause specifies a list of one or more

84 Administrative Routines and Views

schema pairs, where each pair represents a mapping of one schema to
another. The first schema in the pair represents a schema that is referred to
by an SCH attribute in an XDS. The second schema in the pair represents
the schema that should be used to perform schema validation.

If a schema is present in the left side of a schema pair in the MAP clause, it
cannot also be specified in the IGNORE clause.

Once a schema pair mapping is applied, the result is final. The mapping
operation is non-transitive, and therefore the schema chosen will not be
subsequently applied to another schema pair mapping.

A schema cannot be mapped more than once, meaning that it cannot
appear on the left side of more than one pair.

MESSAGES ON SERVER
Specifies that the message file created on the server by the IMPORT
command is to be saved. The result set returned will include the following
two columns: MSG_RETRIEVAL, which is the SQL statement required to
retrieve all the warnings and error messages that occur during this
operation, and MSG_REMOVAL, which is the SQL statement required to
clean up the messages.

If this clause is not specified, the message file will be deleted when the
ADMIN_CMD procedure returns to the caller. The MSG_RETRIEVAL and
MSG_REMOVAL column in the result set will contain null values.

Note that with or without the clause, the fenced user ID must have the
authority to create files under the directory indicated by the
DB2_UTIL_MSGPATH registry variable, as well as the directory where the data
is to be exported to.

METHOD

L Specifies the start and end column numbers from which to import
data. A column number is a byte offset from the beginning of a
row of data. It is numbered starting from 1.

Note: This method can only be used with ASC files, and is the
only valid option for that file type.

N Specifies the names of the columns in the data file to be imported.
The case of these column names must match the case of the
corresponding names in the system catalogs. Each table column
that is not nullable should have a corresponding entry in the
METHOD N list. For example, given data fields F1, F2, F3, F4, F5, and
F6, and table columns C1 INT, C2 INT NOT NULL, C3 INT NOT
NULL, and C4 INT, method N (F2, F1, F4, F3) is a valid request,
while method N (F2, F1) is not valid.

Note: This method can only be used with IXF files.

P Specifies the field numbers of the input data fields to be imported.

Note: This method can only be used with IXF or DEL files, and is
the only valid option for the DEL file type.

MODIFIED BY filetype-mod
Specifies file type modifier options. See “File type modifiers for the import
utility” on page 93.

Chapter 4. ADMIN_CMD procedure and associated routines 85

NOTIMEOUT
Specifies that the import utility will not time out while waiting for locks.
This option supersedes the locktimeout database configuration parameter.
Other applications are not affected.

NULL INDICATORS null-indicator-list
This option can only be used when the METHOD L parameter is specified.
That is, the input file is an ASC file. The null indicator list is a
comma-separated list of positive integers specifying the column number of
each null indicator field. The column number is the byte offset of the null
indicator field from the beginning of a row of data. There must be one
entry in the null indicator list for each data field defined in the METHOD L
parameter. A column number of zero indicates that the corresponding data
field always contains data.

A value of Y in the NULL indicator column specifies that the column data
is NULL. Any character other than Y in the NULL indicator column
specifies that the column data is not NULL, and that column data specified
by the METHOD L option will be imported.

The NULL indicator character can be changed using the MODIFIED BY
option, with the nullindchar file type modifier.

OF filetype
Specifies the format of the data in the input file:
v ASC (non-delimited ASCII format)
v DEL (delimited ASCII format), which is used by a variety of database

manager and file manager programs
v WSF (work sheet format), which is used by programs such as:

– Lotus 1-2-3
– Lotus Symphony

v IXF (Integration Exchange Format, PC version) is a binary format that is
used exclusively by DB2.

Important: Support for the WSF file format is deprecated and might be
removed in a future release. It is recommended that you start using a
supported file format instead of WSF files before support is removed.

The WSF file type is not supported when you import to a nickname.

REPLACE
Deletes all existing data from the table by truncating the data object, and
inserts the imported data. The table definition and the index definitions are
not changed. This option can only be used if the table exists. If this option
is used when moving data between hierarchies, only the data for an entire
hierarchy, not individual subtables, can be replaced.

This parameter is not valid when you import to a nickname.

This option does not honor the CREATE TABLE statement's NOT
LOGGED INITIALLY (NLI) clause or the ALTER TABLE statement's
ACTIVE NOT LOGGED INITIALLY clause.

If an import with the REPLACE option is performed within the same
transaction as a CREATE TABLE or ALTER TABLE statement where the
NLI clause is invoked, the import will not honor the NLI clause. All inserts
will be logged.

86 Administrative Routines and Views

Workaround 1
Delete the contents of the table using the DELETE statement, then
invoke the import with INSERT statement

Workaround 2
Drop the table and recreate it, then invoke the import with INSERT
statement.

This limitation applies to DB2 Universal Database Version 7 and DB2 UDB
Version 8

REPLACE_CREATE

Note: The REPLACE_CREATE parameter is deprecated and may be removed
in a future release. For additional details, see “IMPORT command options
CREATE and REPLACE_CREATE are deprecated”.

If the table exists, deletes all existing data from the table by truncating the
data object, and inserts the imported data without changing the table
definition or the index definitions.

If the table does not exist, creates the table and index definitions, as well as
the row contents, in the code page of the database. See Imported table
re-creation for a list of restrictions.

This option can only be used with IXF files. If this option is used when
moving data between hierarchies, only the data for an entire hierarchy, not
individual subtables, can be replaced.

This parameter is not valid when you import to a nickname.

RESTARTCOUNT n
Specifies that an import operation is to be started at record n+1. The first n
records are skipped. This option is functionally equivalent to SKIPCOUNT.
RESTARTCOUNT and SKIPCOUNT are mutually exclusive.

ROWCOUNT n
Specifies the number n of physical records in the file to be imported
(inserted or updated). Allows a user to import only n rows from a file,
starting from the record determined by the SKIPCOUNT or RESTARTCOUNT
options. If the SKIPCOUNT or RESTARTCOUNT options are not specified, the
first n rows are imported. If SKIPCOUNT m or RESTARTCOUNT m is specified,
rows m+1 to m+n are imported. When compound inserts are used, user
specified ROWCOUNT n is rounded up to the first integer multiple of the
compound count value.

SKIPCOUNT n
Specifies that an import operation is to be started at record n+1. The first n
records are skipped. This option is functionally equivalent to RESTARTCOUNT.
SKIPCOUNT and RESTARTCOUNT are mutually exclusive.

STARTING sub-table-name
A keyword for hierarchy only, requesting the default order, starting from
sub-table-name. For PC/IXF files, the default order is the order stored in the
input file. The default order is the only valid order for the PC/IXF file
format.

sub-table-list
For typed tables with the INSERT or the INSERT_UPDATE option, a list of
sub-table names is used to indicate the sub-tables into which data is to be
imported.

Chapter 4. ADMIN_CMD procedure and associated routines 87

traversal-order-list
For typed tables with the INSERT, INSERT_UPDATE, or the REPLACE option, a
list of sub-table names is used to indicate the traversal order of the
importing sub-tables in the hierarchy.

UNDER sub-table-name
Specifies a parent table for creating one or more sub-tables.

WARNINGCOUNT n
Stops the import operation after n warnings. Set this parameter if no
warnings are expected, but verification that the correct file and table are
being used is desired. If the import file or the target table is specified
incorrectly, the import utility will generate a warning for each row that it
attempts to import, which will cause the import to fail. If n is zero, or this
option is not specified, the import operation will continue regardless of the
number of warnings issued.

XML FROM xml-path
Specifies one or more paths that contain the XML files.

XMLPARSE
Specifies how XML documents are parsed. If this option is not specified,
the parsing behavior for XML documents will be determined by the value
of the CURRENT XMLPARSE OPTION special register.

STRIP WHITESPACE
Specifies to remove whitespace when the XML document is parsed.

PRESERVE WHITESPACE
Specifies not to remove whitespace when the XML document is
parsed.

XMLVALIDATE
Specifies that XML documents are validated against a schema, when
applicable.

USING XDS
XML documents are validated against the XML schema identified
by the XML Data Specifier (XDS) in the main data file. By default,
if the XMLVALIDATE option is invoked with the USING XDS clause, the
schema used to perform validation will be determined by the SCH
attribute of the XDS. If an SCH attribute is not present in the XDS,
no schema validation will occur unless a default schema is
specified by the DEFAULT clause.

The DEFAULT, IGNORE, and MAP clauses can be used to modify the
schema determination behavior. These three optional clauses apply
directly to the specifications of the XDS, and not to each other. For
example, if a schema is selected because it is specified by the
DEFAULT clause, it will not be ignored if also specified by the IGNORE
clause. Similarly, if a schema is selected because it is specified as
the first part of a pair in the MAP clause, it will not be re-mapped
if also specified in the second part of another MAP clause pair.

USING SCHEMA schema-sqlid
XML documents are validated against the XML schema with the
specified SQL identifier. In this case, the SCH attribute of the XML
Data Specifier (XDS) will be ignored for all XML columns.

USING SCHEMALOCATION HINTS
XML documents are validated against the schemas identified by

88 Administrative Routines and Views

XML schema location hints in the source XML documents. If a
schemaLocation attribute is not found in the XML document, no
validation will occur. When the USING SCHEMALOCATION HINTS clause
is specified, the SCH attribute of the XML Data Specifier (XDS) will
be ignored for all XML columns.

See examples of the XMLVALIDATE option below.

Example

The following example shows how to import information from the file myfile.ixf
to the STAFF table in the SAMPLE database.
CALL SYSPROC.ADMIN_CMD

(’IMPORT FROM /home/userid/data/myfile.ixf
OF IXF MESSAGES ON SERVER INSERT INTO STAFF’)

Usage notes

Any path used in the IMPORT command must be a valid fully-qualified path on the
coordinator node for the server.

If the ALLOW WRITE ACCESS or COMMITCOUNT options are specified, a commit will be
performed by the import utility. This causes the ADMIN_CMD procedure to return
an SQL30090N error with reason code 1 in the case of Type 2 connections.

If the value to be assigned for a column of a result set from the ADMIN_CMD
procedure is greater than the maximum value for the data type of the column, then
the maximum value for the data type is assigned and a warning message,
SQL1155W, is returned.

Be sure to complete all table operations and release all locks before starting an
import operation. This can be done by issuing a COMMIT after closing all cursors
opened WITH HOLD, or by issuing a ROLLBACK.

The import utility adds rows to the target table using the SQL INSERT statement.
The utility issues one INSERT statement for each row of data in the input file. If an
INSERT statement fails, one of two actions result:
v If it is likely that subsequent INSERT statements can be successful, a warning

message is written to the message file, and processing continues.
v If it is likely that subsequent INSERT statements will fail, and there is potential

for database damage, an error message is written to the message file, and
processing halts.

The utility performs an automatic COMMIT after the old rows are deleted during a
REPLACE or a REPLACE_CREATE operation. Therefore, if the system fails, or the
application interrupts the database manager after the table object is truncated, all
of the old data is lost. Ensure that the old data is no longer needed before using
these options.

If the log becomes full during a CREATE, REPLACE, or REPLACE_CREATE operation, the
utility performs an automatic COMMIT on inserted records. If the system fails, or
the application interrupts the database manager after an automatic COMMIT, a
table with partial data remains in the database. Use the REPLACE or the
REPLACE_CREATE option to rerun the whole import operation, or use INSERT with the
RESTARTCOUNT parameter set to the number of rows successfully imported.

Chapter 4. ADMIN_CMD procedure and associated routines 89

Updates from the IMPORT command will always be committed at the end of an
IMPORT task. The IMPORT command can also perform automatic commits during
its execution to reduce the size of the lock list and the active log space. The
IMPORT command will rollback if the active log becomes full during IMPORT
processing.
v By default, automatic commits are not performed for the INSERT or the

INSERT_UPDATE option. They are, however, performed if the COMMITCOUNT
parameter is not zero.

v Offline import does not perform automatic COMMITs if any of the following
conditions are true:
– The target is a view, not a table
– Compound inserts are used
– Buffered inserts are used

v By default, online import performs automatic commit to free both the active log
space and the lock list. Automatic commits are not performed only if a
COMMITCOUNT value of zero is specified.

Whenever the import utility performs a COMMIT, two messages are written to the
message file: one indicates the number of records to be committed, and the other is
written after a successful COMMIT. When restarting the import operation after a
failure, specify the number of records to skip, as determined from the last
successful COMMIT.

The import utility accepts input data with minor incompatibility problems (for
example, character data can be imported using padding or truncation, and numeric
data can be imported with a different numeric data type), but data with major
incompatibility problems is not accepted.

You cannot REPLACE or REPLACE_CREATE an object table if it has any dependents
other than itself, or an object view if its base table has any dependents (including
itself). To replace such a table or a view, do the following:
1. Drop all foreign keys in which the table is a parent.
2. Run the import utility.
3. Alter the table to recreate the foreign keys.

If an error occurs while recreating the foreign keys, modify the data to maintain
referential integrity.

Referential constraints and foreign key definitions are not preserved when
recreating tables from PC/IXF files. (Primary key definitions are preserved if the
data was previously exported using SELECT *.)

Importing to a remote database requires enough disk space on the server for a
copy of the input data file, the output message file, and potential growth in the
size of the database.

If an import operation is run against a remote database, and the output message
file is very long (more than 60 KB), the message file returned to the user on the
client might be missing messages from the middle of the import operation. The
first 30 KB of message information and the last 30 KB of message information are
always retained.

Importing PC/IXF files to a remote database is much faster if the PC/IXF file is on
a hard drive rather than on diskettes.

90 Administrative Routines and Views

The database table or hierarchy must exist before data in the ASC, DEL, or WSF
file formats can be imported; however, if the table does not already exist, IMPORT
CREATE or IMPORT REPLACE_CREATE creates the table when it imports data from a
PC/IXF file. For typed tables, IMPORT CREATE can create the type hierarchy and the
table hierarchy as well.

PC/IXF import should be used to move data (including hierarchical data) between
databases. If character data containing row separators is exported to a delimited
ASCII (DEL) file and processed by a text transfer program, fields containing the
row separators will shrink or expand. The file copying step is not necessary if the
source and the target databases are both accessible from the same client.

The data in ASC and DEL files is assumed to be in the code page of the client
application performing the import. PC/IXF files, which allow for different code
pages, are recommended when importing data in different code pages. If the
PC/IXF file and the import utility are in the same code page, processing occurs as
for a regular application. If the two differ, and the FORCEIN option is specified, the
import utility assumes that data in the PC/IXF file has the same code page as the
application performing the import. This occurs even if there is a conversion table
for the two code pages. If the two differ, the FORCEIN option is not specified, and
there is a conversion table, all data in the PC/IXF file will be converted from the
file code page to the application code page. If the two differ, the FORCEIN option is
not specified, and there is no conversion table, the import operation will fail. This
applies only to PC/IXF files on DB2 clients on the AIX operating system.

For table objects on an 8 KB page that are close to the limit of 1012 columns,
import of PC/IXF data files might cause DB2 to return an error, because the
maximum size of an SQL statement was exceeded. This situation can occur only if
the columns are of type CHAR, VARCHAR, or CLOB. The restriction does not
apply to import of DEL or ASC files. If PC/IXF files are being used to create a
new table, an alternative is use db2look to dump the DDL statement that created
the table, and then to issue that statement through the CLP.

DB2 Connect can be used to import data to DRDA servers such as DB2 for
OS/390, DB2 for VM and VSE, and DB2 for OS/400. Only PC/IXF import (INSERT
option) is supported. The RESTARTCOUNT parameter, but not the COMMITCOUNT
parameter, is also supported.

When using the CREATE option with typed tables, create every sub-table defined in
the PC/IXF file; sub-table definitions cannot be altered. When using options other
than CREATE with typed tables, the traversal order list enables one to specify the
traverse order; therefore, the traversal order list must match the one used during
the export operation. For the PC/IXF file format, one need only specify the target
sub-table name, and use the traverse order stored in the file.

The import utility can be used to recover a table previously exported to a PC/IXF
file. The table returns to the state it was in when exported.

Data cannot be imported to a system table, a created temporary table, a declared
temporary table, or a summary table.

Views cannot be created through the import utility.

Importing a multiple-part PC/IXF file whose individual parts are copied from a
Windows system to an AIX system is supported. Only the name of the first file

Chapter 4. ADMIN_CMD procedure and associated routines 91

must be specified in the IMPORT command. For example, IMPORT FROM data.ixf OF
IXF INSERT INTO TABLE1. The file data.002, etc should be available in the same
directory as data.ixf.

On the Windows operating system:
v Importing logically split PC/IXF files is not supported.
v Importing bad format PC/IXF or WSF files is not supported.

Security labels in their internal format might contain newline characters. If you
import the file using the DEL file format, those newline characters can be mistaken
for delimiters. If you have this problem use the older default priority for delimiters
by specifying the delprioritychar file type modifier in the IMPORT command.

Federated considerations

When using the IMPORT command and the INSERT, UPDATE, or INSERT_UPDATE
command parameters, you must ensure that you have CONTROL privilege on the
participating nickname. You must ensure that the nickname you want to use when
doing an import operation already exists. There are also several restrictions you
should be aware of as shown in the IMPORT command parameters section.

Some data sources, such as ODBC, do not support importing into nicknames.

Result set information

Command execution status is returned in the SQLCA resulting from the CALL
statement. If execution is successful, the command returns additional information
in result sets as follows:

Table 42. Result set returned by the IMPORT command

Column name Data type Description

ROWS_READ BIGINT Number of records read from the file during import.

ROWS_SKIPPED BIGINT Number of records skipped before inserting or updating
begins.

ROWS_INSERTED BIGINT Number of rows inserted into the target table.

ROWS_UPDATED BIGINT Number of rows in the target table updated with
information from the imported records (records whose
primary key value already exists in the table).

ROWS_REJECTED BIGINT Number of records that could not be imported.

ROWS_COMMITTED BIGINT Number of records imported successfully and
committed to the database.

MSG_RETRIEVAL VARCHAR(512) SQL statement that is used to retrieve messages created
by this utility. For example:

SELECT SQLCODE, MSG
FROM TABLE (SYSPROC.ADMIN_GET_MSGS
(’1203498_txu’)) AS MSG

MSG_REMOVAL VARCHAR(512) SQL statement that is used to clean up messages created
by this utility. For example:

CALL SYSPROC.ADMIN_REMOVE_MSGS
(’1203498_txu’)

92 Administrative Routines and Views

File type modifiers for the import utility

Table 43. Valid file type modifiers for the import utility: All file formats

Modifier Description

compound=x x is a number between 1 and 100 inclusive. Uses nonatomic compound SQL to
insert the data, and x statements will be attempted each time.

If this modifier is specified, and the transaction log is not sufficiently large, the
import operation will fail. The transaction log must be large enough to
accommodate either the number of rows specified by COMMITCOUNT, or the number
of rows in the data file if COMMITCOUNT is not specified. It is therefore
recommended that the COMMITCOUNT option be specified to avoid transaction log
overflow.

This modifier is incompatible with INSERT_UPDATE mode, hierarchical tables, and
the following modifiers: usedefaults, identitymissing, identityignore,
generatedmissing, and generatedignore.

generatedignore This modifier informs the import utility that data for all generated columns is
present in the data file but should be ignored. This results in all values for the
generated columns being generated by the utility. This modifier cannot be used
with the generatedmissing modifier.

generatedmissing If this modifier is specified, the utility assumes that the input data file contains no
data for the generated columns (not even NULLs), and will therefore generate a
value for each row. This modifier cannot be used with the generatedignore
modifier.

identityignore This modifier informs the import utility that data for the identity column is
present in the data file but should be ignored. This results in all identity values
being generated by the utility. The behavior will be the same for both
GENERATED ALWAYS and GENERATED BY DEFAULT identity columns. This
means that for GENERATED ALWAYS columns, no rows will be rejected. This
modifier cannot be used with the identitymissing modifier.

identitymissing If this modifier is specified, the utility assumes that the input data file contains no
data for the identity column (not even NULLs), and will therefore generate a
value for each row. The behavior will be the same for both GENERATED
ALWAYS and GENERATED BY DEFAULT identity columns. This modifier cannot
be used with the identityignore modifier.

lobsinfile lob-path specifies the path to the files containing LOB data.

Each path contains at least one file that contains at least one LOB pointed to by a
Lob Location Specifier (LLS) in the data file. The LLS is a string representation of
the location of a LOB in a file stored in the LOB file path. The format of an LLS is
filename.ext.nnn.mmm/, where filename.ext is the name of the file that contains
the LOB, nnn is the offset in bytes of the LOB within the file, and mmm is the
length of the LOB in bytes. For example, if the string db2exp.001.123.456/ is
stored in the data file, the LOB is located at offset 123 in the file db2exp.001, and
is 456 bytes long.

The LOBS FROM clause specifies where the LOB files are located when the
“lobsinfile” modifier is used. The LOBS FROM clause will implicitly activate the
LOBSINFILE behavior. The LOBS FROM clause conveys to the IMPORT utility the list
of paths to search for the LOB files while importing the data.

To indicate a null LOB, enter the size as -1. If the size is specified as 0, it is
treated as a 0 length LOB. For null LOBS with length of -1, the offset and the file
name are ignored. For example, the LLS of a null LOB might be db2exp.001.7.-1/.

no_type_id Valid only when importing into a single sub-table. Typical usage is to export data
from a regular table, and then to invoke an import operation (using this modifier)
to convert the data into a single sub-table.

Chapter 4. ADMIN_CMD procedure and associated routines 93

Table 43. Valid file type modifiers for the import utility: All file formats (continued)

Modifier Description

nodefaults If a source column for a target table column is not explicitly specified, and the
table column is not nullable, default values are not loaded. Without this option, if
a source column for one of the target table columns is not explicitly specified, one
of the following occurs:

v If a default value can be specified for a column, the default value is loaded

v If the column is nullable, and a default value cannot be specified for that
column, a NULL is loaded

v If the column is not nullable, and a default value cannot be specified, an error
is returned, and the utility stops processing.

norowwarnings Suppresses all warnings about rejected rows.

rowchangetimestampignore This modifier informs the import utility that data for the row change timestamp
column is present in the data file but should be ignored. This results in all ROW
CHANGE TIMESTAMP being generated by the utility. The behavior will be the
same for both GENERATED ALWAYS and GENERATED BY DEFAULT columns.
This means that for GENERATED ALWAYS columns, no rows will be rejected.
This modifier cannot be used with the rowchangetimestampmissing modifier.

rowchangetimestampmissing If this modifier is specified, the utility assumes that the input data file contains no
data for the row change timestamp column (not even NULLs), and will therefore
generate a value for each row. The behavior will be the same for both
GENERATED ALWAYS and GENERATED BY DEFAULT columns. This modifier
cannot be used with the rowchangetimestampignore modifier.

seclabelchar Indicates that security labels in the input source file are in the string format for
security label values rather than in the default encoded numeric format. IMPORT
converts each security label into the internal format as it is loaded. If a string is
not in the proper format the row is not loaded and a warning (SQLSTATE 01H53)
is returned. If the string does not represent a valid security label that is part of
the security policy protecting the table then the row is not loaded and a warning
(SQLSTATE 01H53, SQLCODE SQL3243W)) is returned.

This modifier cannot be specified if the seclabelname modifier is specified,
otherwise the import fails and an error (SQLCODE SQL3525N) is returned.

seclabelname Indicates that security labels in the input source file are indicated by their name
rather than the default encoded numeric format. IMPORT will convert the name to
the appropriate security label if it exists. If no security label exists with the
indicated name for the security policy protecting the table the row is not loaded
and a warning (SQLSTATE 01H53, SQLCODE SQL3244W) is returned.

This modifier cannot be specified if the seclabelchar modifier is specified,
otherwise the import fails and an error (SQLCODE SQL3525N) is returned.
Note: If the file type is ASC, any spaces following the name of the security label
will be interpreted as being part of the name. To avoid this use the striptblanks
file type modifier to make sure the spaces are removed.

94 Administrative Routines and Views

Table 43. Valid file type modifiers for the import utility: All file formats (continued)

Modifier Description

usedefaults If a source column for a target table column has been specified, but it contains no
data for one or more row instances, default values are loaded. Examples of
missing data are:

v For DEL files: two adjacent column delimiters (",,") or two adjacent column
delimiters separated by an arbitrary number of spaces (", ,") are specified for a
column value.

v For DEL/ASC/WSF files: A row that does not have enough columns, or is not
long enough for the original specification.
Note: For ASC files, NULL column values are not considered explicitly
missing, and a default will not be substituted for NULL column values. NULL
column values are represented by all space characters for numeric, date, time,
and /timestamp columns, or by using the NULL INDICATOR for a column of
any type to indicate the column is NULL.

Without this option, if a source column contains no data for a row instance, one
of the following occurs:

v For DEL/ASC/WSF files: If the column is nullable, a NULL is loaded. If the
column is not nullable, the utility rejects the row.

Table 44. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL)

Modifier Description

codepage=x x is an ASCII character string. The value is interpreted as the code page of the data in the
input data set. Converts character data from this code page to the application code page
during the import operation.

The following rules apply:

v For pure DBCS (graphic) mixed DBCS, and EUC, delimiters are restricted to the range of
x00 to x3F, inclusive.

v nullindchar must specify symbols included in the standard ASCII set between code
points x20 and x7F, inclusive. This refers to ASCII symbols and code points.

Note:

1. The codepage modifier cannot be used with the lobsinfile modifier.

2. If data expansion occurs when the code page is converted from the application code
page to the database code page, the data might be truncated and loss of data can occur.

dateformat="x" x is the format of the date in the source file.2 Valid date elements are:

YYYY - Year (four digits ranging from 0000 - 9999)
M - Month (one or two digits ranging from 1 - 12)
MM - Month (two digits ranging from 01 - 12;

mutually exclusive with M)
D - Day (one or two digits ranging from 1 - 31)
DD - Day (two digits ranging from 01 - 31;

mutually exclusive with D)
DDD - Day of the year (three digits ranging

from 001 - 366; mutually exclusive
with other day or month elements)

A default value of 1 is assigned for each element that is not specified. Some examples of
date formats are:

"D-M-YYYY"
"MM.DD.YYYY"
"YYYYDDD"

implieddecimal The location of an implied decimal point is determined by the column definition; it is no
longer assumed to be at the end of the value. For example, the value 12345 is loaded into a
DECIMAL(8,2) column as 123.45, not 12345.00.

Chapter 4. ADMIN_CMD procedure and associated routines 95

Table 44. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

timeformat="x" x is the format of the time in the source file.2 Valid time elements are:

H - Hour (one or two digits ranging from 0 - 12
for a 12 hour system, and 0 - 24
for a 24 hour system)

HH - Hour (two digits ranging from 00 - 12
for a 12 hour system, and 00 - 24
for a 24 hour system; mutually exclusive
with H)

M - Minute (one or two digits ranging
from 0 - 59)

MM - Minute (two digits ranging from 00 - 59;
mutually exclusive with M)

S - Second (one or two digits ranging
from 0 - 59)

SS - Second (two digits ranging from 00 - 59;
mutually exclusive with S)

SSSSS - Second of the day after midnight (5 digits
ranging from 00000 - 86400; mutually
exclusive with other time elements)

TT - Meridian indicator (AM or PM)

A default value of 0 is assigned for each element that is not specified. Some examples of
time formats are:

"HH:MM:SS"
"HH.MM TT"
"SSSSS"

96 Administrative Routines and Views

Table 44. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

timestampformat="x" x is the format of the time stamp in the source file.2 Valid time stamp elements are:

YYYY - Year (four digits ranging from 0000 - 9999)
M - Month (one or two digits ranging from 1 - 12)
MM - Month (two digits ranging from 01 - 12;

mutually exclusive with M and MMM)
MMM - Month (three-letter case-insensitive abbreviation for

the month name; mutually exclusive with M and MM)
D - Day (one or two digits ranging from 1 - 31)
DD - Day (two digits ranging from 01 - 31; mutually exclusive with D)
DDD - Day of the year (three digits ranging from 001 - 366;

mutually exclusive with other day or month elements)
H - Hour (one or two digits ranging from 0 - 12

for a 12 hour system, and 0 - 24 for a 24 hour system)
HH - Hour (two digits ranging from 00 - 12

for a 12 hour system, and 00 - 24 for a 24 hour system;
mutually exclusive with H)

M - Minute (one or two digits ranging from 0 - 59)
MM - Minute (two digits ranging from 00 - 59;

mutually exclusive with M, minute)
S - Second (one or two digits ranging from 0 - 59)
SS - Second (two digits ranging from 00 - 59;

mutually exclusive with S)
SSSSS - Second of the day after midnight (5 digits

ranging from 00000 - 86400; mutually
exclusive with other time elements)

U (1 to 12 times)
- Fractional seconds(number of occurrences of U represent the

number of digits with each digit ranging from 0 to 9
TT - Meridian indicator (AM or PM)

A default value of 1 is assigned for unspecified YYYY, M, MM, D, DD, or DDD elements. A
default value of 'Jan' is assigned to an unspecified MMM element. A default value of 0 is
assigned for all other unspecified elements. Following is an example of a time stamp
format:

"YYYY/MM/DD HH:MM:SS.UUUUUU"

The valid values for the MMM element include: 'jan', 'feb', 'mar', 'apr', 'may', 'jun',
'jul', 'aug', 'sep', 'oct', 'nov' and 'dec'. These values are case insensitive.

The following example illustrates how to import data containing user defined date and
time formats into a table called schedule:

db2 import from delfile2 of del
modified by timestampformat="yyyy.mm.dd hh:mm tt"
insert into schedule

usegraphiccodepage If usegraphiccodepage is given, the assumption is made that data being imported into
graphic or double-byte character large object (DBCLOB) data fields is in the graphic code
page. The rest of the data is assumed to be in the character code page. The graphic code
page is associated with the character code page. IMPORT determines the character code
page through either the codepage modifier, if it is specified, or through the code page of the
application if the codepage modifier is not specified.

This modifier should be used in conjunction with the delimited data file generated by drop
table recovery only if the table being recovered has graphic data.

Restrictions

The usegraphiccodepage modifier MUST NOT be specified with DEL files created by the
EXPORT utility, as these files contain data encoded in only one code page. The
usegraphiccodepage modifier is also ignored by the double-byte character large objects
(DBCLOBs) in files.

Chapter 4. ADMIN_CMD procedure and associated routines 97

Table 44. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

xmlchar Specifies that XML documents are encoded in the character code page.

This option is useful for processing XML documents that are encoded in the specified
character code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute, the
encoding must match the character code page, otherwise the row containing the document
will be rejected. Note that the character codepage is the value specified by the codepage file
type modifier, or the application codepage if it is not specified. By default, either the
documents are encoded in Unicode, or they contain a declaration tag with an encoding
attribute.

xmlgraphic Specifies that XML documents are encoded in the specified graphic code page.

This option is useful for processing XML documents that are encoded in a specific graphic
code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute, the
encoding must match the graphic code page, otherwise the row containing the document
will be rejected. Note that the graphic code page is the graphic component of the value
specified by the codepage file type modifier, or the graphic component of the application
code page if it is not specified. By default, documents are either encoded in Unicode, or
they contain a declaration tag with an encoding attribute.
Note: If the xmlgraphic modifier is specified with the IMPORT command, the XML
document to be imported must be encoded in the UTF-16 code page. Otherwise, the XML
document may be rejected with a parsing error, or it may be imported into the table with
data corruption.

Table 45. Valid file type modifiers for the import utility: ASC (non-delimited ASCII) file format

Modifier Description

nochecklengths If nochecklengths is specified, an attempt is made to import each row, even if the
source data has a column definition that exceeds the size of the target table
column. Such rows can be successfully imported if code page conversion causes
the source data to shrink; for example, 4-byte EUC data in the source could
shrink to 2-byte DBCS data in the target, and require half the space. This option
is particularly useful if it is known that the source data will fit in all cases despite
mismatched column definitions.

nullindchar=x x is a single character. Changes the character denoting a null value to x. The
default value of x is Y.3

This modifier is case sensitive for EBCDIC data files, except when the character is
an English letter. For example, if the null indicator character is specified to be the
letter N, then n is also recognized as a null indicator.

reclen=x x is an integer with a maximum value of 32 767. x characters are read for each
row, and a new-line character is not used to indicate the end of the row.

98 Administrative Routines and Views

Table 45. Valid file type modifiers for the import utility: ASC (non-delimited ASCII) file format (continued)

Modifier Description

striptblanks Truncates any trailing blank spaces when loading data into a variable-length field.
If this option is not specified, blank spaces are kept.

In the following example, striptblanks causes the import utility to truncate
trailing blank spaces:

db2 import from myfile.asc of asc
modified by striptblanks
method l (1 10, 12 15) messages msgs.txt
insert into staff

This option cannot be specified together with striptnulls. These are mutually
exclusive options. This option replaces the obsolete t option, which is supported
for earlier compatibility only.

striptnulls Truncates any trailing NULLs (0x00 characters) when loading data into a
variable-length field. If this option is not specified, NULLs are kept.

This option cannot be specified together with striptblanks. These are mutually
exclusive options. This option replaces the obsolete padwithzero option, which is
supported for earlier compatibility only.

Table 46. Valid file type modifiers for the import utility: DEL (delimited ASCII) file format

Modifier Description

chardelx x is a single character string delimiter. The default value is a double quotation
mark ("). The specified character is used in place of double quotation marks to
enclose a character string.34 If you want to explicitly specify the double quotation
mark as the character string delimiter, it should be specified as follows:

modified by chardel""

The single quotation mark (') can also be specified as a character string delimiter.
In the following example, chardel’’ causes the import utility to interpret any
single quotation mark (') it encounters as a character string delimiter:

db2 "import from myfile.del of del
modified by chardel’’
method p (1, 4) insert into staff (id, years)"

coldelx x is a single character column delimiter. The default value is a comma (,). The
specified character is used in place of a comma to signal the end of a column.34

In the following example, coldel; causes the import utility to interpret any
semicolon (;) it encounters as a column delimiter:

db2 import from myfile.del of del
modified by coldel;
messages msgs.txt insert into staff

decplusblank Plus sign character. Causes positive decimal values to be prefixed with a blank
space instead of a plus sign (+). The default action is to prefix positive decimal
values with a plus sign.

decptx x is a single character substitute for the period as a decimal point character. The
default value is a period (.). The specified character is used in place of a period as
a decimal point character.34

In the following example, decpt; causes the import utility to interpret any
semicolon (;) it encounters as a decimal point:

db2 "import from myfile.del of del
modified by chardel’’
decpt; messages msgs.txt insert into staff"

Chapter 4. ADMIN_CMD procedure and associated routines 99

Table 46. Valid file type modifiers for the import utility: DEL (delimited ASCII) file format (continued)

Modifier Description

delprioritychar The current default priority for delimiters is: record delimiter, character delimiter,
column delimiter. This modifier protects existing applications that depend on the
older priority by reverting the delimiter priorities to: character delimiter, record
delimiter, column delimiter. Syntax:

db2 import ... modified by delprioritychar ...

For example, given the following DEL data file:

"Smith, Joshua",4000,34.98<row delimiter>
"Vincent,<row delimiter>, is a manager", ...
... 4005,44.37<row delimiter>

With the delprioritychar modifier specified, there will be only two rows in this
data file. The second <row delimiter> will be interpreted as part of the first data
column of the second row, while the first and the third <row delimiter> are
interpreted as actual record delimiters. If this modifier is not specified, there will
be three rows in this data file, each delimited by a <row delimiter>.

keepblanks Preserves the leading and trailing blanks in each field of type CHAR, VARCHAR,
LONG VARCHAR, or CLOB. Without this option, all leading and trailing blanks
that are not inside character delimiters are removed, and a NULL is inserted into
the table for all blank fields.

nochardel The import utility will assume all bytes found between the column delimiters to
be part of the column's data. Character delimiters will be parsed as part of
column data. This option should not be specified if the data was exported using
DB2 (unless nochardel was specified at export time). It is provided to support
vendor data files that do not have character delimiters. Improper usage might
result in data loss or corruption.

This option cannot be specified with chardelx, delprioritychar or nodoubledel.
These are mutually exclusive options.

nodoubledel Suppresses recognition of double character delimiters.

Table 47. Valid file type modifiers for the import utility: IXF file format

Modifier Description

forcein Directs the utility to accept data despite code page mismatches, and to suppress
translation between code pages.

Fixed length target fields are checked to verify that they are large enough for the
data. If nochecklengths is specified, no checking is done, and an attempt is made
to import each row.

indexixf Directs the utility to drop all indexes currently defined on the existing table, and
to create new ones from the index definitions in the PC/IXF file. This option can
only be used when the contents of a table are being replaced. It cannot be used
with a view, or when a insert-column is specified.

indexschema=schema Uses the specified schema for the index name during index creation. If schema is
not specified (but the keyword indexschema is specified), uses the connection user
ID. If the keyword is not specified, uses the schema in the IXF file.

nochecklengths If nochecklengths is specified, an attempt is made to import each row, even if the
source data has a column definition that exceeds the size of the target table
column. Such rows can be successfully imported if code page conversion causes
the source data to shrink; for example, 4-byte EUC data in the source could
shrink to 2-byte DBCS data in the target, and require half the space. This option
is particularly useful if it is known that the source data will fit in all cases despite
mismatched column definitions.

100 Administrative Routines and Views

Table 47. Valid file type modifiers for the import utility: IXF file format (continued)

Modifier Description

forcecreate Specifies that the table should be created with possible missing or limited
information after returning SQL3311N during an import operation.

Table 48. IMPORT behavior when using codepage and usegraphiccodepage

codepage=N usegraphiccodepage IMPORT behavior

Absent Absent All data in the file is assumed to be in the application
code page.

Present Absent All data in the file is assumed to be in code page N.

Warning: Graphic data will be corrupted when
imported into the database if N is a single-byte code
page.

Absent Present Character data in the file is assumed to be in the
application code page. Graphic data is assumed to be in
the code page of the application graphic data.

If the application code page is single-byte, then all data
is assumed to be in the application code page.

Warning: If the application code page is single-byte,
graphic data will be corrupted when imported into the
database, even if the database contains graphic columns.

Present Present Character data is assumed to be in code page N. Graphic
data is assumed to be in the graphic code page of N.

If N is a single-byte or double-byte code page, then all
data is assumed to be in code page N.

Warning: Graphic data will be corrupted when
imported into the database if N is a single-byte code
page.

Note:

1. The import utility does not issue a warning if an attempt is made to use
unsupported file types with the MODIFIED BY option. If this is attempted, the
import operation fails, and an error code is returned.

2. Double quotation marks around the date format string are mandatory. Field
separators cannot contain any of the following: a-z, A-Z, and 0-9. The field
separator should not be the same as the character delimiter or field delimiter
in the DEL file format. A field separator is optional if the start and end
positions of an element are unambiguous. Ambiguity can exist if (depending
on the modifier) elements such as D, H, M, or S are used, because of the
variable length of the entries.
For time stamp formats, care must be taken to avoid ambiguity between the
month and the minute descriptors, since they both use the letter M. A month
field must be adjacent to other date fields. A minute field must be adjacent to
other time fields. Following are some ambiguous time stamp formats:

"M" (could be a month, or a minute)
"M:M" (Which is which?)
"M:YYYY:M" (Both are interpreted as month.)
"S:M:YYYY" (adjacent to both a time value and a date value)

Chapter 4. ADMIN_CMD procedure and associated routines 101

In ambiguous cases, the utility will report an error message, and the operation
will fail.
Following are some unambiguous time stamp formats:

"M:YYYY" (Month)
"S:M" (Minute)
"M:YYYY:S:M" (Month....Minute)
"M:H:YYYY:M:D" (Minute....Month)

Some characters, such as double quotation marks and back slashes, must be
preceded by an escape character (for example, \).

3. Character values provided for the chardel, coldel, or decpt file type modifiers
must be specified in the code page of the source data.
The character code point (instead of the character symbol), can be specified
using the syntax xJJ or 0xJJ, where JJ is the hexadecimal representation of the
code point. For example, to specify the # character as a column delimiter, use
one of the following:

... modified by coldel# ...

... modified by coldel0x23 ...

... modified by coldelX23 ...

4. Delimiter considerations for moving data lists restrictions that apply to the
characters that can be used as delimiter overrides.

5. The following file type modifiers are not allowed when importing into a
nickname:
v indexixf

v indexschema

v dldelfiletype

v nodefaults

v usedefaults

v no_type_idfiletype

v generatedignore

v generatedmissing

v identityignore

v identitymissing

v lobsinfile

6. The WSF file format is not supported for XML columns. Support for this file
format is also deprecated and might be removed in a future release. It is
recommended that you start using a supported file format instead of WSF
files before support is removed

7. The CREATE mode is not supported for XML columns.
8. All XML data must reside in XML files that are separate from the main data

file. An XML Data Specifier (XDS) (or a NULL value) must exist for each XML
column in the main data file.

9. XML documents are assumed to be in Unicode format or to contain a
declaration tag that includes an encoding attribute, unless the XMLCHAR or
XMLGRAPHIC file type modifier is specified.

10. Rows containing documents that are not well-formed will be rejected.
11. If the XMLVALIDATE option is specified, documents that successfully validate

against their matching schema will be annotated with the schema information
as they are inserted. Rows containing documents that fail to validate against
their matching schema will be rejected. To successfully perform the validation,
the privileges held by the user invoking the import must include at least one
of the following:

102 Administrative Routines and Views

v DBADM authority
v USAGE privilege on the XML schema to be used in the validation

12. When importing into a table containing an implicitly hidden row change
timestamp column, the implicitly hidden property of the column is not
honoured. Therefore, the rowchangetimestampmissing file type modifier must
be specified in the import command if data for the column is not present in
the data to be imported and there is no explicit column list present.

INITIALIZE TAPE command using the ADMIN_CMD procedure
Initializes tapes for backup and restore operations to streaming tape devices. This
command is only supported on Windows operating systems.

Authorization

One of the following:
v SYSADM
v SYSCTRL
v SYSMAINT

Required connection

Database

Command syntax

�� INITIALIZE TAPE
ON device USING blksize

��

Command parameters

ON device
Specifies a valid tape device name. The default value is \\.\TAPE0. The
device specified must be relative to the server.

USING blksize
Specifies the block size for the device, in bytes. The device is initialized to
use the block size specified, if the value is within the supported range of
block sizes for the device.

The buffer size specified for the BACKUP DATABASE command and for
RESTORE DATABASE must be divisible by the block size specified here.

If a value for this parameter is not specified, the device is initialized to use
its default block size. If a value of zero is specified, the device is initialized
to use a variable length block size; if the device does not support variable
length block mode, an error is returned.

When backing up to tape, use of a variable block size is currently not
supported. If you must use this option, ensure that you have well tested
procedures in place that enable you to recover successfully, using backup
images that were created with a variable block size.

When using a variable block size, you must specify a backup buffer size
that is less than or equal to the maximum limit for the tape devices that
you are using. For optimal performance, the buffer size must be equal to
the maximum block size limit of the device being used.

Chapter 4. ADMIN_CMD procedure and associated routines 103

Example

Initialize the tape device to use a block size of 2048 bytes, if the value is within the
supported range of block sizes for the device.
CALL SYSPROC.ADMIN_CMD(’initialize tape using 2048’)

Usage notes

Command execution status is returned in the SQLCA resulting from the CALL
statement.

LOAD command using the ADMIN_CMD procedure
Loads data into a DB2 table.

Data stored on the server can be in the form of a file, tape, or named pipe. Data
can also be loaded from a cursor defined from a query running against the
currently connected database, a different database, or by using a user-written script
or application. If the COMPRESS attribute for the table is set to YES, the data loaded is
subject to compression on every data and database partition for which a dictionary
exists in the table, including data in the XML storage object of the table.

Quick link to “File type modifiers for the load utility” on page 129.

Restrictions

The load utility does not support loading data at the hierarchy level. The load
utility is not compatible with range-clustered tables. The load utility does not
support the NOT LOGGED INITIALLY parameter for the CREATE TABLE or
ALTER TABLE statements.

Scope

This command can be issued against multiple database partitions in a single
request.

Authorization

One of the following:
v DATAACCESS
v LOAD authority on the database and the following privileges:

– INSERT privilege on the table when the load utility is invoked in INSERT
mode, TERMINATE mode (to terminate a previous load insert operation), or
RESTART mode (to restart a previous load insert operation)

– INSERT and DELETE privilege on the table when the load utility is invoked
in REPLACE mode, TERMINATE mode (to terminate a previous load replace
operation), or RESTART mode (to restart a previous load replace operation)

– INSERT privilege on the exception table, if such a table is used as part of the
load operation.

v To load data into a table that has protected columns, the session authorization
ID must have LBAC credentials directly or indirectly through a group or a role
that allow write access to all protected columns in the table. Otherwise the load
fails and an error (SQLSTATE 5U014) is returned.

v To load data into a table that has protected rows, the session authorization ID
must hold a security label that meets these criteria:

104 Administrative Routines and Views

– The security label is part of the security policy protecting the table.
– The security label was granted to the session authorization ID directly or

indirectly through a group or a role for write access or for all access.

If the session authorization ID does not hold such a security label, then the load
fails and an error (SQLSTATE 5U014) is returned. The security label protects a
loaded row if the session authorization ID LBAC credentials do not allow it to
write to the security label that protects that row in the data. This does not
happen, however, when the security policy protecting the table was created with
the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option of the
CREATE SECURITY POLICY statement. In this case the load fails and an error
(SQLSTATE 42519) is returned.
When you load data into a table with protected rows, the target table has one
column with a data type of DB2SECURITYLABEL. If the input row of data does
not contain a value for that column, that row is rejected unless the usedefaults
file type modifier is specified in the load command, in which case the security
label you hold for write access from the security policy protecting the table is
used. If you do not hold a security label for write access, the row is rejected and
processing continues on to the next row

v If the REPLACE option is specified, the session authorization ID must have the
authority to drop the table.

v If the LOCK WITH FORCE option is specified, SYSADM authority is required.

Since all load processes (and all DB2 server processes, in general) are owned by the
instance owner, and all of these processes use the identification of the instance
owner to access needed files, the instance owner must have read access to input
data files. These input data files must be readable by the instance owner, regardless
of who invokes the command.

Required connection

Database.

Instance. An explicit attachment is not required. If a connection to the database has
been established, an implicit attachment to the local instance is attempted.

Command syntax

�� LOAD FROM �

,

filename
pipename
device
(query-statement)
(DATABASE database-alias query-statement)

OF filetype

�

,

LOBS FROM lob-path

�

�

�

,

XML FROM xml-path �MODIFIED BY file-type-mod

�

Chapter 4. ADMIN_CMD procedure and associated routines 105

�

�

�

�

�

,

METHOD L (column-start column-end)
,

NULL INDICATORS (null-indicator-list)
,

N (column-name)
,

P (column-position)

�

�
XMLPARSE STRIP WHITESPACE

PRESERVE

�

�
XMLVALIDATE USING XDS Ignore and Map parameters

DEFAULT schema-sqlid
SCHEMA schema-sqlid
SCHEMALOCATION HINTS

SAVECOUNT n
�

�
ROWCOUNT n WARNINGCOUNT n MESSAGES ON SERVER TEMPFILES PATH temp-pathname

�

� INSERT
KEEPDICTIONARY

REPLACE
RESETDICTIONARY

RESTART
TERMINATE

�

INTO table-name
,

(insert-column)

�

�

�

,
(1) (2)

FOR EXCEPTION table-name
NORANGEEXC
NOUNIQUEEXC

STATISTICS USE PROFILE
NO

�

�

�

NO
COPY YES USE TSM

OPEN num-sess SESSIONS
,

TO device/directory
LOAD lib-name

OPEN num-sess SESSIONS
NONRECOVERABLE

WITHOUT PROMPTING
�

�
DATA BUFFER buffer-size SORT BUFFER buffer-size CPU_PARALLELISM n DISK_PARALLELISM n

�

�
INDEXING MODE AUTOSELECT

REBUILD
INCREMENTAL
DEFERRED

ALLOW NO ACCESS

ALLOW READ ACCESS
USE tablespace-name

�

�
YES

FETCH_PARALLELISM NO
SET INTEGRITY PENDING CASCADE IMMEDIATE

DEFERRED
LOCK WITH FORCE

�

�
SOURCEUSEREXIT executable Redirect Input/Output parameters

PARALLELIZE

�

106 Administrative Routines and Views

�

�
PARTITIONED DB CONFIG

partitioned-db-option

��

Ignore and Map parameters:

�

,

IGNORE (schema-sqlid)

�

�

�

,

MAP ((schema-sqlid , schema-sqlid))

Redirect Input/Output parameters:

REDIRECT INPUT FROM BUFFER input-buffer
FILE input-file OUTPUT TO FILE output-file

OUTPUT TO FILE output-file

Notes:

1 These keywords can appear in any order.

2 Each of these keywords can only appear once.

Command parameters

FROM filename | pipename | device(query-statement) | (DATABASE database-alias
query-statement)

Specifies the file, pipe or device referring to an SQL statement that contains
the data being loaded, or the SQL statement itself and the optional source
database to load from cursor.

The query-statement option is used to LOAD from a cursor. It contains only
one query statement, which is enclosed in parentheses, and can start with
VALUES, SELECT or WITH. For example,
LOAD FROM (SELECT * FROM T1) OF CURSOR INSERT INTO T2

When the DATABASE database-alias clause is included prior to the query
statement in the parentheses, the LOAD command will attempt to load the
data using the query-statement from the given database as indicated by the
database-alias name. Note that the LOAD will be executed using the user ID
and password explicitly provided for the currently connected database (an
implicit connection will cause the LOAD to fail).

If the input source is a file, pipe, or device, it must be accessible from the
coordinator partition on the server.

If several names are specified, they will be processed in sequence. If the
last item specified is a tape device and the user is prompted for a tape, the
LOAD will fail and the ADMIN_CMD procedure will return an error.

Note:

Chapter 4. ADMIN_CMD procedure and associated routines 107

v A fully qualified path file name must be used and must exist on the
server.

v If data is exported into a file using the EXPORT command using the
ADMIN_CMD procedure, the data file is owned by the fenced user ID.
This file is not usually accessible by the instance owner. To run the LOAD
from CLP or the ADMIN_CMD procedure, the data file must be
accessible by the instance owner ID, so read access to the data file must
be granted to the instance owner.

v Loading data from multiple IXF files is supported if the files are
physically separate, but logically one file. It is not supported if the files
are both logically and physically separate. (Multiple physical files would
be considered logically one if they were all created with one invocation
of the EXPORT command.)

v When loading XML data from files into tables in a partitioned database
environment, the XML data files must be read-accessible to all the
database partitions where loading is taking place.

OF filetype
Specifies the format of the data:
v ASC (non-delimited ASCII format)
v DEL (delimited ASCII format)
v IXF (Integration Exchange Format, PC version) is a binary format that is

used exclusively by DB2 databases.
v CURSOR (a cursor declared against a SELECT or VALUES statement).

Note: When using a CURSOR file type to load XML data into a table in a
distributed database environment, the PARTITION_ONLY and
LOAD_ONLY modes are not supported.

LOBS FROM lob-path
The path to the data files containing LOB values to be loaded. The path
must end with a slash. The path must be fully qualified and accessible
from the coordinator partition on the server . The names of the LOB data
files are stored in the main data file (ASC, DEL, or IXF), in the column that
will be loaded into the LOB column. The maximum number of paths that
can be specified is 999. This will implicitly activate the LOBSINFILE
behavior.

This option is ignored when specified in conjunction with the CURSOR file
type.

MODIFIED BY file-type-mod
Specifies file type modifier options. See “File type modifiers for the load
utility” on page 129.

METHOD

L Specifies the start and end column numbers from which to load
data. A column number is a byte offset from the beginning of a
row of data. It is numbered starting from 1. This method can only
be used with ASC files, and is the only valid method for that file
type.

NULL INDICATORS null-indicator-list
This option can only be used when the METHOD L parameter
is specified; that is, the input file is an ASC file). The null
indicator list is a comma-separated list of positive integers
specifying the column number of each null indicator field.

108 Administrative Routines and Views

The column number is the byte offset of the null indicator
field from the beginning of a row of data. There must be
one entry in the null indicator list for each data field
defined in the METHOD L parameter. A column number of
zero indicates that the corresponding data field always
contains data.

A value of Y in the NULL indicator column specifies that
the column data is NULL. Any character other than Y in
the NULL indicator column specifies that the column data
is not NULL, and that column data specified by the METHOD
L option will be loaded.

The NULL indicator character can be changed using the
MODIFIED BY option.

N Specifies the names of the columns in the data file to be loaded.
The case of these column names must match the case of the
corresponding names in the system catalogs. Each table column
that is not nullable should have a corresponding entry in the
METHOD N list. For example, given data fields F1, F2, F3, F4, F5, and
F6, and table columns C1 INT, C2 INT NOT NULL, C3 INT NOT
NULL, and C4 INT, method N (F2, F1, F4, F3) is a valid request,
while method N (F2, F1) is not valid. This method can only be
used with file types IXF or CURSOR.

P Specifies the field numbers (numbered from 1) of the input data
fields to be loaded. Each table column that is not nullable should
have a corresponding entry in the METHOD P list. For example, given
data fields F1, F2, F3, F4, F5, and F6, and table columns C1 INT, C2
INT NOT NULL, C3 INT NOT NULL, and C4 INT, method P (2,
1, 4, 3) is a valid request, while method P (2, 1) is not valid.
This method can only be used with file types IXF, DEL, or
CURSOR, and is the only valid method for the DEL file type.

XML FROM xml-path
Specifies one or more paths that contain the XML files. XDSs are contained
in the main data file (ASC, DEL, or IXF), in the column that will be loaded
into the XML column.

XMLPARSE
Specifies how XML documents are parsed. If this option is not specified,
the parsing behavior for XML documents will be determined by the value
of the CURRENT XMLPARSE OPTION special register.

STRIP WHITESPACE
Specifies to remove whitespace when the XML document is parsed.

PRESERVE WHITESPACE
Specifies not to remove whitespace when the XML document is
parsed.

XMLVALIDATE
Specifies that XML documents are validated against a schema, when
applicable.

USING XDS
XML documents are validated against the XML schema identified
by the XML Data Specifier (XDS) in the main data file. By default,
if the XMLVALIDATE option is invoked with the USING XDS clause, the
schema used to perform validation will be determined by the SCH

Chapter 4. ADMIN_CMD procedure and associated routines 109

attribute of the XDS. If an SCH attribute is not present in the XDS,
no schema validation will occur unless a default schema is
specified by the DEFAULT clause.

The DEFAULT, IGNORE, and MAP clauses can be used to modify the
schema determination behavior. These three optional clauses apply
directly to the specifications of the XDS, and not to each other. For
example, if a schema is selected because it is specified by the
DEFAULT clause, it will not be ignored if also specified by the IGNORE
clause. Similarly, if a schema is selected because it is specified as
the first part of a pair in the MAP clause, it will not be re-mapped if
also specified in the second part of another MAP clause pair.

USING SCHEMA schema-sqlid
XML documents are validated against the XML schema with the
specified SQL identifier. In this case, the SCH attribute of the XML
Data Specifier (XDS) will be ignored for all XML columns.

USING SCHEMALOCATION HINTS
XML documents are validated against the schemas identified by
XML schema location hints in the source XML documents. If a
schemaLocation attribute is not found in the XML document, no
validation will occur. When the USING SCHEMALOCATION HINTS clause
is specified, the SCH attribute of the XML Data Specifier (XDS) will
be ignored for all XML columns.

See examples of the XMLVALIDATE option below.

IGNORE schema-sqlid
This option can only be used when the USING XDS parameter is specified.
The IGNORE clause specifies a list of one or more schemas to ignore if they
are identified by an SCH attribute. If an SCH attribute exists in the XML
Data Specifier for a loaded XML document, and the schema identified by
the SCH attribute is included in the list of schemas to ignore, then no
schema validation will occur for the loaded XML document.

Note:

If a schema is specified in the IGNORE clause, it cannot also be present in
the left side of a schema pair in the MAP clause.

The IGNORE clause applies only to the XDS. A schema that is mapped by
the MAP clause will not be subsequently ignored if specified by the IGNORE
clause.

DEFAULT schema-sqlid
This option can only be used when the USING XDS parameter is specified.
The schema specified through the DEFAULT clause identifies a schema to use
for validation when the XML Data Specifier (XDS) of a loaded XML
document does not contain an SCH attribute identifying an XML Schema.

The DEFAULT clause takes precedence over the IGNORE and MAP clauses. If an
XDS satisfies the DEFAULT clause, the IGNORE and MAP specifications will be
ignored.

MAP schema-sqlid
This option can only be used when the USING XDS parameter is specified.
Use the MAP clause to specify alternate schemas to use in place of those
specified by the SCH attribute of an XML Data Specifier (XDS) for each

110 Administrative Routines and Views

loaded XML document. The MAP clause specifies a list of one or more
schema pairs, where each pair represents a mapping of one schema to
another. The first schema in the pair represents a schema that is referred to
by an SCH attribute in an XDS. The second schema in the pair represents
the schema that should be used to perform schema validation.

If a schema is present in the left side of a schema pair in the MAP clause, it
cannot also be specified in the IGNORE clause.

Once a schema pair mapping is applied, the result is final. The mapping
operation is non-transitive, and therefore the schema chosen will not be
subsequently applied to another schema pair mapping.

A schema cannot be mapped more than once, meaning that it cannot
appear on the left side of more than one pair.

SAVECOUNT n
Specifies that the load utility is to establish consistency points after every n
rows. This value is converted to a page count, and rounded up to intervals
of the extent size. Since a message is issued at each consistency point, this
option should be selected if the load operation will be monitored using
LOAD QUERY. If the value of n is not sufficiently high, the synchronization of
activities performed at each consistency point will impact performance.

The default value is zero, meaning that no consistency points will be
established, unless necessary.

This option is not allowed when specified in conjunction with the
CURSOR file type or when loading a table containing an XML column.

ROWCOUNT n
Specifies the number of n physical records in the file to be loaded. Allows
a user to load only the first n rows in a file.

WARNINGCOUNT n
Stops the load operation after n warnings. Set this parameter if no
warnings are expected, but verification that the correct file and table are
being used is desired. If the load file or the target table is specified
incorrectly, the load utility will generate a warning for each row that it
attempts to load, which will cause the load to fail. If n is zero, or this
option is not specified, the load operation will continue regardless of the
number of warnings issued. If the load operation is stopped because the
threshold of warnings was encountered, another load operation can be
started in RESTART mode. The load operation will automatically continue
from the last consistency point. Alternatively, another load operation can
be initiated in REPLACE mode, starting at the beginning of the input file.

MESSAGES ON SERVER
Specifies that the message file created on the server by the LOAD command
is to be saved. The result set returned will include the following two
columns: MSG_RETRIEVAL, which is the SQL statement required to
retrieve all the warnings and error messages that occur during this
operation, and MSG_REMOVAL, which is the SQL statement required to
clean up the messages.

If this clause is not specified, the message file will be deleted when the
ADMIN_CMD procedure returns to the caller. The MSG_RETRIEVAL and
MSG_REMOVAL column in the result set will contain null values.

Chapter 4. ADMIN_CMD procedure and associated routines 111

Note that with or without the clause, the fenced user ID must have the
authority to create files under the directory indicated by the
DB2_UTIL_MSGPATH registry variable.

TEMPFILES PATH temp-pathname
Specifies the name of the path to be used when creating temporary files
during a load operation, and should be fully qualified according to the
server database partition.

Temporary files take up file system space. Sometimes, this space
requirement is quite substantial. Following is an estimate of how much file
system space should be allocated for all temporary files:
v 136 bytes for each message that the load utility generates
v 15 KB overhead if the data file contains long field data or LOBs. This

quantity can grow significantly if the INSERT option is specified, and
there is a large amount of long field or LOB data already in the table.

INSERT One of four modes under which the load utility can execute. Adds the
loaded data to the table without changing the existing table data.

REPLACE
One of four modes under which the load utility can execute. Deletes all
existing data from the table, and inserts the loaded data. The table
definition and index definitions are not changed. If this option is used
when moving data between hierarchies, only the data for an entire
hierarchy, not individual subtables, can be replaced.

KEEPDICTIONARY
An existing compression dictionary is preserved across the LOAD
REPLACE operation. Provided the table COMPRESS attribute is YES,
the newly replaced data is subject to being compressed using the
dictionary that existed prior to the invocation of the load. If no
dictionary previously existed in the table, a new dictionary is built
using the data that is being replaced into the table as long as the
table COMPRESS attribute is YES. The amount of data that is
required to build the compression dictionary in this case is subject
to the policies of ADC. This data is populated into the table as
uncompressed. Once the dictionary is inserted into the table, the
remaining data to be loaded is subject to being compressed with
this dictionary. This is the default parameter. For summary, see
Table 1 below.

The following example keeps the old dictionary if it is currently in
the table:
CALL SYSPROC.ADMIN_CMD(’load from staff.del of del replace
keepdictionary into SAMPLE.STAFF statistics use profile
data buffer 8’)

Table 49. LOAD REPLACE KEEPDICTIONARY

Compress
Table row data
dictionary exists

XML storage
object dictionary
exists1 Compression dictionary Data compression

YES YES YES Preserve table row data
and XML dictionaries.

Data to be loaded is subject to
compression.

112 Administrative Routines and Views

Table 49. LOAD REPLACE KEEPDICTIONARY (continued)

Compress
Table row data
dictionary exists

XML storage
object dictionary
exists1 Compression dictionary Data compression

YES YES NO Preserve table row data
dictionary and build a
new XML dictionary.

Table row data to be loaded is
subject to compression. After
XML dictionary is built,
remaining XML data to be
loaded is subject to
compression.

YES NO YES Build table row data
dictionary and preserve
XML dictionary.

After table row data
dictionary is built, remaining
table row data to be loaded is
subject to compression. XML
data to be loaded is subject to
compression.

YES NO NO Build new table row data
and XML dictionaries.

After dictionaries are built,
remaining data to be loaded
is subject to compression.

NO YES YES Preserve table row data
and XML dictionaries.

Data to be loaded is not
compressed.

NO YES NO Preserve table row data
dictionary.

Data to be loaded is not
compressed.

NO NO YES No effect on table row
dictionary. Preserve XML
dictionary.

Data to be loaded is not
compressed.

NO NO NO No effect. Data to be loaded is not
compressed.

Note:

1. A compression dictionary can be created for the XML storage
object of a table only if the XML columns are added to the table
in DB2 Version 9.7 or later, or if the table is migrated using an
online table move.

2. If LOAD REPLACE KEEPDICTIONARY operation is interrupted, load
utility can recover after either LOAD RESTART or LOAD TERMINATE
is issued. Existing XML storage object dictionary may not be
preserved after recovery from interrupted LOAD REPLACE
KEEPDICTIONARY operation. A new XML storage object dictionary
will be created if LOAD RESTART is used

RESETDICTIONARY
This directive instructs LOAD REPLACE processing to build a new
dictionary for the table data object provided that the table
COMPRESS attribute is YES. If the COMPRESS attribute is NO and
a dictionary was already present in the table it will be removed
and no new dictionary will be inserted into the table. A
compression dictionary can be built with just one user record. If
the loaded data set size is zero and if there is a preexisting
dictionary, the dictionary will not be preserved. The amount of
data required to build a dictionary with this directive is not subject
to the policies of ADC. For summary, see Table 2 below.

Chapter 4. ADMIN_CMD procedure and associated routines 113

The following example will reset the current dictionary and make a
new one:
CALL SYSPROC.ADMIN_CMD(’load from staff.del of del replace
resetdictionary into SAMPLE.STAFF statistics use profile
data buffer 8’)

Table 50. LOAD REPLACE RESETDICTIONARY

Compress
Table row data
dictionary exists

XML storage object
dictionary exists1 Compression dictionary Data compression

YES YES YES Build new dictionaries2.
If the DATA CAPTURE
CHANGES option is
enabled on the CREATE
TABLE or ALTER TABLE
statements, the current
table row data dictionary
is kept (and referred to
as the historical
compression dictionary).

After dictionaries are built,
remaining data to be loaded is
subject to compression.

YES YES NO Build new dictionaries2.
If the DATA CAPTURE
CHANGES option is
enabled on the CREATE
TABLE or ALTER TABLE
statements, the current
table row data dictionary
is kept (and referred to
as the historical
compression dictionary).

After dictionaries are built,
remaining data to be loaded is
subject to compression.

YES NO YES Build new dictionaries. After dictionaries are built,
remaining data to be loaded is
subject to compression.

YES NO NO Build new dictionaries. After dictionaries are built,
remaining data to be loaded is
subject to compression.

NO YES YES Remove dictionaries. Data to be loaded is not
compressed.

NO YES NO Remove table row data
dictionary.

Data to be loaded is not
compressed.

NO NO YES Remove XML storage
object dictionary.

Data to be loaded is not
compressed.

NO NO NO No effect. All table data is not
compressed.

Notes:

1. A compression dictionary can be created for the XML storage
object of a table only if the XML columns are added to the table
in DB2 Version 9.7 or later, or if the table is migrated using an
online table move.

2. If a dictionary exists and the compression attribute is enabled,
but there are no records to load into the table partition, a new
dictionary cannot be built and the RESETDICTIONARY operation
will not keep the existing dictionary.

114 Administrative Routines and Views

TERMINATE
One of four modes under which the load utility can execute. Terminates a
previously interrupted load operation, and rolls back the operation to the
point in time at which it started, even if consistency points were passed.
The states of any table spaces involved in the operation return to normal,
and all table objects are made consistent (index objects might be marked as
invalid, in which case index rebuild will automatically take place at next
access). If the load operation being terminated is a LOAD REPLACE, the table
will be truncated to an empty table after the LOAD TERMINATE operation. If
the load operation being terminated is a LOAD INSERT, the table will retain
all of its original records after the LOAD TERMINATE operation. For summary
of dictionary management, see Table 3 below.

The LOAD TERMINATE option will not remove a backup pending state from
table spaces.

RESTART
One of four modes under which the load utility can execute. Restarts a
previously interrupted load operation. The load operation will
automatically continue from the last consistency point in the load, build, or
delete phase. For summary of dictionary management, see Table 4 below.

INTO table-name
Specifies the database table into which the data is to be loaded. This table
cannot be a system table, a declared temporary table, or a created
temporary table. An alias, or the fully qualified or unqualified table name
can be specified. A qualified table name is in the form schema.tablename. If
an unqualified table name is specified, the table will be qualified with the
CURRENT SCHEMA.

insert-column
Specifies the table column into which the data is to be inserted.

The load utility cannot parse columns whose names contain one or more
spaces. For example,
CALL SYSPROC.ADMIN_CMD(’load from delfile1 of del noheader

method P (1, 2, 3, 4, 5, 6, 7, 8, 9)
insert into table1 (BLOB1, S2, I3, Int 4, I5, I6, DT7, I8, TM9)’)

will fail because of the Int 4 column. The solution is to enclose such
column names with double quotation marks:
CALL SYSPROC.ADMIN_CMD(’load from delfile1 of del noheader

method P (1, 2, 3, 4, 5, 6, 7, 8, 9)
insert into table1 (BLOB1, S2, I3, "Int 4", I5, I6, DT7, I8, TM9)’)

FOR EXCEPTION table-name
Specifies the exception table into which rows in error will be copied. Any
row that is in violation of a unique index or a primary key index is copied.
If an unqualified table name is specified, the table will be qualified with
the CURRENT SCHEMA.

Information that is written to the exception table is not written to the
dump file. In a partitioned database environment, an exception table must
be defined for those database partitions on which the loading table is
defined. The dump file, otherwise, contains rows that cannot be loaded
because they are invalid or have syntax errors.

When loading XML data, using the FOR EXCEPTION clause to specify a load
exception table is not supported in the following cases:
v When using label-based access control (LBAC).

Chapter 4. ADMIN_CMD procedure and associated routines 115

v When loading data into a partitioned table.

NORANGEEXC
Indicates that if a row is rejected because of a range violation it will not be
inserted into the exception table.

NOUNIQUEEXC
Indicates that if a row is rejected because it violates a unique constraint it
will not be inserted into the exception table.

STATISTICS USE PROFILE
Instructs load to collect statistics during the load according to the profile
defined for this table. This profile must be created before load is executed.
The profile is created by the RUNSTATS command. If the profile does not
exist and load is instructed to collect statistics according to the profile, a
warning is returned and no statistics are collected.

During load, distribution statistics are not collected for columns of type
XML.

STATISTICS NO
Specifies that no statistics are to be collected, and that the statistics in the
catalogs are not to be altered. This is the default.

COPY NO
Specifies that the table space in which the table resides will be placed in
backup pending state if forward recovery is enabled (that is, logretain or
userexit is on). The COPY NO option will also put the table space state into
the Load in Progress table space state. This is a transient state that will
disappear when the load completes or aborts. The data in any table in the
table space cannot be updated or deleted until a table space backup or a
full database backup is made. However, it is possible to access the data in
any table by using the SELECT statement.

LOAD with COPY NO on a recoverable database leaves the table spaces in a
backup pending state. For example, performing a LOAD with COPY NO and
INDEXING MODE DEFERRED will leave indexes needing a refresh. Certain
queries on the table might require an index scan and will not succeed until
the indexes are refreshed. The index cannot be refreshed if it resides in a
table space which is in the backup pending state. In that case, access to the
table will not be allowed until a backup is taken. Index refresh is done
automatically by the database when the index is accessed by a query. If
one of COPY NO, COPY YES, or NONRECOVERABLE is not specified, and the
database is recoverable (logretain or logarchmeth1 is enabled), then COPY
NO is the default.

COPY YES
Specifies that a copy of the loaded data will be saved. This option is
invalid if forward recovery is disabled.

USE TSM
Specifies that the copy will be stored using Tivoli Storage Manager
(TSM).

OPEN num-sess SESSIONS
The number of I/O sessions to be used with TSM or the vendor
product. The default value is 1.

TO device/directory
Specifies the device or directory on which the copy image will be
created.

116 Administrative Routines and Views

LOAD lib-name
The name of the shared library (DLL on Windows operating
systems) containing the vendor backup and restore I/O functions
to be used. It can contain the full path. If the full path is not given,
it will default to the path where the user exit programs reside.

NONRECOVERABLE
Specifies that the load transaction is to be marked as nonrecoverable and
that it will not be possible to recover it by a subsequent roll forward
action. The roll forward utility will skip the transaction and will mark the
table into which data was being loaded as "invalid". The utility will also
ignore any subsequent transactions against that table. After the roll
forward operation is completed, such a table can only be dropped or
restored from a backup (full or table space) taken after a commit point
following the completion of the non-recoverable load operation.

With this option, table spaces are not put in backup pending state
following the load operation, and a copy of the loaded data does not have
to be made during the load operation. If one of COPY NO, COPY YES, or
NONRECOVERABLE is not specified, and the database is not recoverable
(logretain or logarchmeth1 is not enabled), then NONRECOVERABLE is the
default.

WITHOUT PROMPTING
Specifies that the list of data files contains all the files that are to be
loaded, and that the devices or directories listed are sufficient for the entire
load operation. If a continuation input file is not found, or the copy targets
are filled before the load operation finishes, the load operation will fail,
and the table will remain in load pending state.

This is the default. Any actions which normally require user intervention
will return an error message.

DATA BUFFER buffer-size
Specifies the number of 4 KB pages (regardless of the degree of
parallelism) to use as buffered space for transferring data within the utility.
If the value specified is less than the algorithmic minimum, the minimum
required resource is used, and no warning is returned.

This memory is allocated directly from the utility heap, whose size can be
modified through the util_heap_sz database configuration parameter.
Beginning in version 9.5, the value of the DATA BUFFER option of the
LOAD command can temporarily exceed util_heap_sz if more memory is
available in the system. In this situation, the utility heap is dynamically
increased as needed until the database_memory limit is reached. This
memory will be released once the load operation completes.

If a value is not specified, an intelligent default is calculated by the utility
at run time. The default is based on a percentage of the free space available
in the utility heap at the instantiation time of the loader, as well as some
characteristics of the table.

SORT BUFFER buffer-size
This option specifies a value that overrides the sortheap database
configuration parameter during a load operation. It is relevant only when
loading tables with indexes and only when the INDEXING MODE parameter is
not specified as DEFERRED. The value that is specified cannot exceed the
value of sortheap. This parameter is useful for throttling the sort memory
that is used when loading tables with many indexes without changing the
value of sortheap, which would also affect general query processing.

Chapter 4. ADMIN_CMD procedure and associated routines 117

CPU_PARALLELISM n
Specifies the number of processes or threads that the load utility will create
for parsing, converting, and formatting records when building table
objects. This parameter is designed to exploit the number of processes
running per database partition. It is particularly useful when loading
presorted data, because record order in the source data is preserved. If the
value of this parameter is zero, or has not been specified, the load utility
uses an intelligent default value (usually based on the number of CPUs
available) at run time.

Note:

1. If this parameter is used with tables containing either LOB or LONG
VARCHAR fields, its value becomes one, regardless of the number of
system CPUs or the value specified by the user.

2. Specifying a small value for the SAVECOUNT parameter causes the loader
to perform many more I/O operations to flush both data and table
metadata. When CPU_PARALLELISM is greater than one, the flushing
operations are asynchronous, permitting the loader to exploit the CPU.
When CPU_PARALLELISM is set to one, the loader waits on I/O during
consistency points. A load operation with CPU_PARALLELISM set to two,
and SAVECOUNT set to 10 000, completes faster than the same operation
with CPU_PARALLELISM set to one, even though there is only one CPU.

DISK_PARALLELISM n
Specifies the number of processes or threads that the load utility will create
for writing data to the table space containers. If a value is not specified, the
utility selects an intelligent default based on the number of table space
containers and the characteristics of the table.

INDEXING MODE
Specifies whether the load utility is to rebuild indexes or to extend them
incrementally. Valid values are:

AUTOSELECT
The load utility will automatically decide between REBUILD or
INCREMENTAL mode. The decision is based on the amount of
data being loaded and the depth of the index tree. Information
relating to the depth of the index tree is stored in the index object.
RUNSTATS is not required to populate this information. AUTOSELECT
is the default indexing mode.

REBUILD
All indexes will be rebuilt. The utility must have sufficient
resources to sort all index key parts for both old and appended
table data.

INCREMENTAL
Indexes will be extended with new data. This approach consumes
index free space. It only requires enough sort space to append
index keys for the inserted records. This method is only supported
in cases where the index object is valid and accessible at the start
of a load operation (it is, for example, not valid immediately
following a load operation in which the DEFERRED mode was
specified). If this mode is specified, but not supported due to the
state of the index, a warning is returned, and the load operation
continues in REBUILD mode. Similarly, if a load restart operation
is begun in the load build phase, INCREMENTAL mode is not
supported.

118 Administrative Routines and Views

DEFERRED
The load utility will not attempt index creation if this mode is
specified. Indexes will be marked as needing a refresh. The first
access to such indexes that is unrelated to a load operation might
force a rebuild, or indexes might be rebuilt when the database is
restarted. This approach requires enough sort space for all key
parts for the largest index. The total time subsequently taken for
index construction is longer than that required in REBUILD mode.
Therefore, when performing multiple load operations with deferred
indexing, it is advisable (from a performance viewpoint) to let the
last load operation in the sequence perform an index rebuild,
rather than allow indexes to be rebuilt at first non-load access.

Deferred indexing is only supported for tables with non-unique
indexes, so that duplicate keys inserted during the load phase are
not persistent after the load operation.

ALLOW NO ACCESS
Load will lock the target table for exclusive access during the load. The
table state will be set to Load In Progress during the load. ALLOW NO ACCESS
is the default behavior. It is the only valid option for LOAD REPLACE.

When there are constraints on the table, the table state will be set to Set
Integrity Pending as well as Load In Progress. The SET INTEGRITY
statement must be used to take the table out of Set Integrity Pending state.

ALLOW READ ACCESS
Load will lock the target table in a share mode. The table state will be set
to both Load In Progress and Read Access. Readers can access the
non-delta portion of the data while the table is being load. In other words,
data that existed before the start of the load will be accessible by readers to
the table, data that is being loaded is not available until the load is
complete. LOAD TERMINATE or LOAD RESTART of an ALLOW READ ACCESS load
can use this option; LOAD TERMINATE or LOAD RESTART of an ALLOW NO ACCESS
load cannot use this option. Furthermore, this option is not valid if the
indexes on the target table are marked as requiring a rebuild.

When there are constraints on the table, the table state will be set to Set
Integrity Pending as well as Load In Progress, and Read Access. At the end
of the load, the table state Load In Progress will be removed but the table
states Set Integrity Pending and Read Access will remain. The SET
INTEGRITY statement must be used to take the table out of Set Integrity
Pending. While the table is in Set Integrity Pending and Read Access
states, the non-delta portion of the data is still accessible to readers, the
new (delta) portion of the data will remain inaccessible until the SET
INTEGRITY statement has completed. A user can perform multiple loads
on the same table without issuing a SET INTEGRITY statement. Only the
original (checked) data will remain visible, however, until the SET
INTEGRITY statement is issued.

ALLOW READ ACCESS also supports the following modifiers:

USE tablespace-name
If the indexes are being rebuilt, a shadow copy of the index is built
in table space tablespace-name and copied over to the original table
space at the end of the load during an INDEX COPY PHASE. Only
system temporary table spaces can be used with this option. If not
specified then the shadow index will be created in the same table
space as the index object. If the shadow copy is created in the same

Chapter 4. ADMIN_CMD procedure and associated routines 119

table space as the index object, the copy of the shadow index object
over the old index object is instantaneous. If the shadow copy is in
a different table space from the index object a physical copy is
performed. This could involve considerable I/O and time. The
copy happens while the table is offline at the end of a load during
the INDEX COPY PHASE.

Without this option the shadow index is built in the same table
space as the original. Since both the original index and shadow
index by default reside in the same table space simultaneously,
there might be insufficient space to hold both indexes within one
table space. Using this option ensures that you retain enough table
space for the indexes.

This option is ignored if the user does not specify INDEXING MODE
REBUILD or INDEXING MODE AUTOSELECT. This option will also be
ignored if INDEXING MODE AUTOSELECT is chosen and load chooses to
incrementally update the index.

FETCH_PARALLELISM YES | NO
When performing a load from a cursor where the cursor is declared using
the DATABASE keyword, or when using the API sqlu_remotefetch_entry
media entry, and this option is set to YES, the load utility attempts to
parallelize fetching from the remote data source if possible. If set to NO, no
parallel fetching is performed. The default value is YES. For more
information, see “Moving data using the CURSOR file type”.

SET INTEGRITY PENDING CASCADE
If LOAD puts the table into Set Integrity Pending state, the SET INTEGRITY
PENDING CASCADE option allows the user to specify whether or not Set
Integrity Pending state of the loaded table is immediately cascaded to all
descendents (including descendent foreign key tables, descendent
immediate materialized query tables and descendent immediate staging
tables).

IMMEDIATE
Indicates that Set Integrity Pending state is immediately extended
to all descendent foreign key tables, descendent immediate
materialized query tables and descendent staging tables. For a LOAD
INSERT operation, Set Integrity Pending state is not extended to
descendent foreign key tables even if the IMMEDIATE option is
specified.

When the loaded table is later checked for constraint violations
(using the IMMEDIATE CHECKED option of the SET INTEGRITY
statement), descendent foreign key tables that were placed in Set
Integrity Pending Read Access state will be put into Set Integrity
Pending No Access state.

DEFERRED
Indicates that only the loaded table will be placed in the Set
Integrity Pending state. The states of the descendent foreign key
tables, descendent immediate materialized query tables and
descendent immediate staging tables will remain unchanged.

Descendent foreign key tables might later be implicitly placed in
Set Integrity Pending state when their parent tables are checked for
constraint violations (using the IMMEDIATE CHECKED option of
the SET INTEGRITY statement). Descendent immediate
materialized query tables and descendent immediate staging tables

120 Administrative Routines and Views

will be implicitly placed in Set Integrity Pending state when one of
its underlying tables is checked for integrity violations. A query of
a table that is in the Set Integrity Pending state might succeed if an
eligible materialized query table that is not in the Set Integrity
Pending state is accessed by the query instead of the specified
table. A warning (SQLSTATE 01586) will be issued to indicate that
descendent tables have been placed in Set Integrity Pending state.
See the Notes section of the SET INTEGRITY statement in the SQL
Reference for when these descendent tables will be put into Set
Integrity Pending state.

If the SET INTEGRITY PENDING CASCADE option is not specified:
v Only the loaded table will be placed in Set Integrity Pending state. The

state of descendent foreign key tables, descendent immediate
materialized query tables and descendent immediate staging tables will
remain unchanged, and can later be implicitly put into Set Integrity
Pending state when the loaded table is checked for constraint violations.

If LOAD does not put the target table into Set Integrity Pending state, the
SET INTEGRITY PENDING CASCADE option is ignored.

LOCK WITH FORCE
The utility acquires various locks including table locks in the process of
loading. Rather than wait, and possibly timeout, when acquiring a lock,
this option allows load to force off other applications that hold conflicting
locks on the target table. Applications holding conflicting locks on the
system catalog tables will not be forced off by the load utility. Forced
applications will roll back and release the locks the load utility needs. The
load utility can then proceed. This option requires the same authority as
the FORCE APPLICATIONS command (SYSADM or SYSCTRL).

ALLOW NO ACCESS loads might force applications holding conflicting locks at
the start of the load operation. At the start of the load the utility can force
applications that are attempting to either query or modify the table.

ALLOW READ ACCESS loads can force applications holding conflicting locks at
the start or end of the load operation. At the start of the load the load
utility can force applications that are attempting to modify the table. At the
end of the load operation, the load utility can force applications that are
attempting to either query or modify the table.

SOURCEUSEREXIT executable
Specifies an executable filename which will be called to feed data into the
utility.

REDIRECT

INPUT FROM

BUFFER input-buffer
The stream of bytes specified in input-buffer is
passed into the STDIN file descriptor of the process
executing the given executable.

FILE input-file
The contents of this client-side file are passed into
the STDIN file descriptor of the process executing
the given executable.

OUTPUT TO

Chapter 4. ADMIN_CMD procedure and associated routines 121

FILE output-file
The STDOUT and STDERR file descriptors are
captured to the fully qualified server-side file
specified.

PARALLELIZE
Increases the throughput of data coming into the load utility by
invoking multiple user exit processes simultaneously. This option is
only applicable in multi-partition database environments and is
ignored in single-partition database environments.

For more information, see “Moving data using a customized application
(user exit)”.

PARTITIONED DB CONFIG partitioned-db-option
Allows you to execute a load into a table distributed across multiple
database partitions. The PARTITIONED DB CONFIG parameter allows you to
specify partitioned database-specific configuration options. The
partitioned-db-option values can be any of the following:
PART_FILE_LOCATION x
OUTPUT_DBPARTNUMS x
PARTITIONING_DBPARTNUMS x
MODE x
MAX_NUM_PART_AGENTS x
ISOLATE_PART_ERRS x
STATUS_INTERVAL x
PORT_RANGE x
CHECK_TRUNCATION
MAP_FILE_INPUT x
MAP_FILE_OUTPUT x
TRACE x
NEWLINE
DISTFILE x
OMIT_HEADER
RUN_STAT_DBPARTNUM x

Detailed descriptions of these options are provided in “Load configuration
options for partitioned database environments”.

RESTARTCOUNT
Deprecated.

USING directory
Deprecated.

Example

Issue a load with replace option for the employee table data from a file.
CALL SYSPROC.ADMIN_CMD(’LOAD FROM /home/theresax/tmp/emp_exp.dat

OF DEL METHOD P (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)
MESSAGES /home/theresax/tmp/emp_load.msg
REPLACE INTO THERESAX.EMPLOYEE (EMPNO, FIRSTNME, MIDINIT, LASTNAME,
WORKDEPT, PHONENO, HIREDATE, JOB, EDLEVEL, SEX, BIRTHDATE, SALARY,
BONUS, COMM) COPY NO INDEXING MODE AUTOSELECT ISOLATE_PART_ERRS
LOAD_ERRS_ONLY MODE PARTITION_AND_LOAD’)

The following is an example of output from a single-partition database.
Result set 1

ROWS_READ ROWS_SKIPPED ROWS_LOADED ROWS_REJECTED ...
---------...- ------------...- -----------...- -------------...- ...

122 Administrative Routines and Views

32 0 32 0 ...

1 record(s) selected.

Return Status = 0

Output from a single-partition database (continued).
... ROWS_DELETED ROWS_COMMITTED MSG_RETRIEVAL
... ------------...- --------------...- ------------------------------...-
... 0 32 SELECT SQLCODE, MSG_TEXT FROM
... TABLE(SYSPROC.ADMIN_GET_MSGS(
... ’2203498_thx’)) AS MSG

Output from a single-partition database (continued).
... MSG_REMOVAL
... --...-
... CALL SYSPROC.ADMIN_REMOVE_MSGS(’2203498_thx’)
...

Note: The following columns are also returned in this result set, but are set to
NULL because they are only populated when loading into a multi-partition
database: ROWS_PARTITIONED and NUM_AGENTINFO_ENTRIES.

The following is an example of output from a multi-partition database.
Result set 1

ROWS_READ ROWS_REJECTED ROWS_PARTITIONED NUM_AGENTINFO_ENTRIES ...
---------...- -------------...- ----------------...- --------------------- ...

32 0 32 5 ...
...
...

1 record(s) selected.

Output from a multi-partition database (continued).
... MSG_RETRIEVAL MSG_REMOVAL
... ----------------------------------...- -----------------------------...-
... SELECT DBPARTITIONNUM, AGENT_TYPE, CALL SYSPROC.ADMIN_REMOVE_MSGS
... SQLCODE, MSG_TEXT FROM TABLE (’2203498_thx’)
... (SYSPROC.ADMIN_GET_MSGS
... (’2203498_thx’)) AS MSG

Note: The following columns are also returned in this result set, but are set to
NULL because they are only populated when loading into a single-partition
database: ROWS_SKIPPED, ROWS_LOADED, ROWS_DELETED and
ROWS_COMMITTED.

Output from a multi-partition database (continued).
Result set 2

DBPARTITIONNUM SQLCODE TABSTATE AGENTTYPE
--------------...- -------...- --------...- ------------...-

10 0 NORMAL LOAD
20 0 NORMAL LOAD
30 0 NORMAL LOAD
20 0 NORMAL PARTITION
10 0 NORMAL PRE_PARTITION

Chapter 4. ADMIN_CMD procedure and associated routines 123

1 record(s) selected.

Return Status = 0

Examples of loading data from XML documents

Loading XML data

Example 1

The user has constructed a data file with XDS fields to describe the documents that
are to be inserted into the table. It might appear like this :
1, "<XDS FIL=""file1.xml"" />"
2, "<XDS FIL=’file2.xml’ OFF=’23’ LEN=’45’ />"

For the first row, the XML document is identified by the file named file1.xml.
Note that since the character delimiter is the double quote character, and double
quotation marks exist inside the XDS, the double quotation marks contained within
the XDS are doubled. For the second row, the XML document is identified by the
file named file2.xml, and starts at byte offset 23, and is 45 bytes in length.

Example 2

The user issues a load command without any parsing or validation options for the
XML column, and the data is loaded successfully:
LOAD
FROM data.del of DEL INSERT INTO mytable

Loading XML data from CURSOR

Loading data from cursor is the same as with a regular relational column type. The
user has two tables, T1 and T2, each of which consist of a single XML column
named C1. To LOAD from T1 into T2, the user will first declare a cursor:
DECLARE
X1 CURSOR FOR SELECT C1 FROM T1;

Next, the user may issue a LOAD using the cursor type:
LOAD FROM X1 of
CURSOR INSERT INTO T2

Applying the XML specific LOAD options to the cursor type is the same as loading
from a file.

Usage notes
v Data is loaded in the sequence that appears in the input file. If a particular

sequence is desired, the data should be sorted before a load is attempted. If
preservation of the source data order is not required, consider using the
ANYORDER file type modifier, described below in the “File type modifiers for the
load utility” section.

v The load utility builds indexes based on existing definitions. The exception
tables are used to handle duplicates on unique keys. The utility does not enforce
referential integrity, perform constraints checking, or update materialized query
tables that are dependent on the tables being loaded. Tables that include
referential or check constraints are placed in Set Integrity Pending state.
Summary tables that are defined with REFRESH IMMEDIATE, and that are

124 Administrative Routines and Views

dependent on tables being loaded, are also placed in Set Integrity Pending state.
Issue the SET INTEGRITY statement to take the tables out of Set Integrity
Pending state. Load operations cannot be carried out on replicated materialized
query tables.

v If a clustering index exists on the table, the data should be sorted on the
clustering index prior to loading. Data does not need to be sorted prior to
loading into a multidimensional clustering (MDC) table, however.

v If you specify an exception table when loading into a protected table, any rows
that are protected by invalid security labels will be sent to that table. This might
allow users that have access to the exception table to access to data that they
would not normally be authorized to access. For better security be careful who
you grant exception table access to, delete each row as soon as it is repaired and
copied to the table being loaded, and drop the exception table as soon as you
are done with it.

v Security labels in their internal format might contain newline characters. If you
load the file using the DEL file format, those newline characters can be mistaken
for delimiters. If you have this problem use the older default priority for
delimiters by specifying the delprioritychar file type modifier in the LOAD
command.

v The LOAD utility issues a COMMIT statement at the beginning of the operation
which, in the case of Type 2 connections, causes the procedure to return
SQL30090N with reason code 1.

v Any path used in the LOAD command must be a valid fully-qualified path on the
server coordinator partition.

v For performing a load using the CURSOR file type where the DATABASE
keyword was specified during the DECLARE CURSOR statement, the user ID
and password used to authenticate against the database currently connected to
(for the load) will be used to authenticate against the source database (specified
by the DATABASE option of the DECLARE CURSOR statement). If no user ID
or password was specified for the connection to the loading database, a user ID
and password for the source database must be specified during the DECLARE
CURSOR statement.

v Loading a multiple-part PC/IXF file whose individual parts are copied from a
Windows system to an AIX system is supported. The names of all the files must
be specified in the LOAD command. For example, LOAD FROM DATA.IXF, DATA.002
OF IXF INSERT INTO TABLE1. Loading to the Windows operating system from
logically split PC/IXF files is not supported.

v When restarting a failed LOAD, the behavior will follow the existing behavior in
that the BUILD phase will be forced to use the REBUILD mode for indexes.

v Loading XML documents between databases is not supported and returns error
message SQL1407N.

v The LOAD utility does not support loading into tables that contain columns that
reference fenced procedures. If you issue the LOAD command on such table, you
will receive error message SQL1376N. To work around this restriction, you can
redefine the routine to be unfenced, or use the import utility.

v The STATISTICS YES command has limited functionality and may be removed in
future releases.

v The STATISTICS options only work for the LOAD REPLACE option and do not work
for other LOAD command options.

Chapter 4. ADMIN_CMD procedure and associated routines 125

Summary of LOAD TERMINATE and LOAD RESTART dictionary
management

The following chart summarizes the compression dictionary management behavior
for LOAD processing under the TERMINATE directive.

Table 51. LOAD TERMINATE dictionary management

Table
COMPRESS
attribute

Does table row
data dictionary
exist prior to
LOAD?

XML storage object
dictionary exists
prior to LOAD1

TERMINATE: LOAD
REPLACE
KEEPDICTIONARY or
LOAD INSERT

TERMINATE: LOAD
REPLACE
RESETDICTIONARY

YES YES YES Keep existing dictionaries. Neither dictionary is
kept. 2

YES YES NO Keep existing dictionary. Nothing is kept. 2

YES NO YES Keep existing dictionary. Nothing is kept.

YES NO NO Nothing is kept. Nothing is kept.

NO YES YES Keep existing dictionaries. Nothing is kept.

NO YES NO Keep existing dictionary. Nothing is kept.

NO NO YES Keep existing dictionary. Nothing is kept.

NO NO NO Do nothing. Do nothing.

Note:

1. A compression dictionary can be created for the XML storage object of a table
only if the XML columns are added to the table in DB2 Version 9.7 or later, or if
the table is migrated using an online table move.

2. In the special case that the table has data capture enabled, the table row data
dictionary is kept.

LOAD RESTART truncates a table up to the last consistency point reached. As part of
LOAD RESTART processing, a compression dictionary will exist in the table if it was
present in the table at the time the last LOAD consistency point was taken. In that
case, LOAD RESTART will not create a new dictionary. For a summary of the possible
conditions, see Table 4 below.

Table 52. LOAD RESTART dictionary management

Table
COMPRESS
Attribute

Table row data
dictionary exist
prior to LOAD
consistency
point?1

XML Storage object
dictionary existed
prior to last LOAD?2

RESTART: LOAD
REPLACE
KEEPDICTIONARY or
LOAD INSERT

RESTART: LOAD
REPLACE
RESETDICTIONARY

YES YES YES Keep existing dictionaries. Keep existing
dictionaries.

YES YES NO Keep existing table row
data dictionary and build
XML dictionary subject to
ADC.

Keep existing table row
data dictionary and
build XML dictionary.

YES NO YES Build table row data
dictionary subject to ADC.
Keep existing XML
dictionary.

Build table row data
dictionary. Keep existing
XML dictionary.

126 Administrative Routines and Views

Table 52. LOAD RESTART dictionary management (continued)

Table
COMPRESS
Attribute

Table row data
dictionary exist
prior to LOAD
consistency
point?1

XML Storage object
dictionary existed
prior to last LOAD?2

RESTART: LOAD
REPLACE
KEEPDICTIONARY or
LOAD INSERT

RESTART: LOAD
REPLACE
RESETDICTIONARY

YES NO NO Build table row data and
XML dictionaries subject to
ADC.

Build table row data and
XML dictionaries.

NO YES YES Keep existing dictionaries. Remove existing
dictionaries.

NO YES NO Keep existing table row
data dictionary.

Remove existing table
row data dictionary.

NO NO YES Keep existing XML
dictionary.

Remove existing XML
dictionary.

NO NO NO Do nothing. Do nothing.

Notes:

1. The SAVECOUNT option is not allowed when loading XML data, load operations
that fail during the load phase restart from the beginning of the operation.

2. A compression dictionary can be created for the XML storage object of a table
only if the XML columns are added to the table in DB2 Version 9.7 or later, or if
the table is migrated using an online table move.

Result set information

Command execution status is returned in the SQLCA resulting from the CALL
statement. If execution is successful, the command returns additional information.
A single-partition database will return one result set; a multi-partition database
will return two result sets.
v Table 53: Result set for a load operation.
v Table 54 on page 128: Result set 2 contains information for each database

partition in a multi-partition load operation.

Table 53. Result set returned by the LOAD command

Column name Data type Description

ROWS_READ BIGINT Number of rows read during the load
operation.

ROWS_SKIPPED BIGINT Number of rows skipped before the load
operation started. This information is
returned for a single-partition database only.

ROWS_LOADED BIGINT Number of rows loaded into the target table.
This information is returned for a
single-partition database only.

ROWS_REJECTED BIGINT Number of rows that could not be loaded
into the target table.

ROWS_DELETED BIGINT Number of duplicate rows that were not
loaded into the target table. This information
is returned for a single-partition database
only.

Chapter 4. ADMIN_CMD procedure and associated routines 127

Table 53. Result set returned by the LOAD command (continued)

Column name Data type Description

ROWS_COMMITTED BIGINT Total number of rows processed: the number
of rows successfully loaded into the target
table, plus the number of skipped and
rejected rows. This information is returned
for a single-partition database only.

ROWS_PARTITIONED BIGINT Number of rows distributed by all database
distributing agents. This information is
returned for a multi-partition database only.

NUM_AGENTINFO_ENTRIES BIGINT Number of entries returned in the second
result set for a multi-partition database. This
is the number of agent information entries
produced by the load operation. This
information is returned for multi-partition
database only.

MSG_RETRIEVAL VARCHAR(512) SQL statement that is used to retrieve
messages created by this utility. For example,

SELECT SQLCODE, MSG
FROM TABLE
(SYSPROC.ADMIN_GET_MSGS
(’2203498_thx’)) AS MSG

This information is returned only if the
MESSAGES ON SERVER clause is specified.

MSG_REMOVAL VARCHAR(512) SQL statement that is used to clean up
messages created by this utility. For example:

CALL SYSPROC.ADMIN_REMOVE_MSGS
(’2203498_thx’)

This information is returned only if the
MESSAGES ON SERVER clause is specified.

Table 54. Result set 2 returned by the LOAD command for each database partition in a multi-partition database.

Column name Data type Description

DBPARTITIONNUM SMALLINT The database partition number on which the
agent executed the load operation.

SQLCODE INTEGER Final SQLCODE resulting from the load
processing.

128 Administrative Routines and Views

Table 54. Result set 2 returned by the LOAD command for each database partition in a multi-partition
database. (continued)

Column name Data type Description

TABSTATE VARCHAR(20) Table state after load operation has
completed. It is one of:

v LOADPENDING: Indicates that the load did
not complete, but the table on the partition
has been left in a LOAD PENDING state.
A load restart or terminate operation must
be done on the database partition.

v NORMAL: Indicates that the load completed
successfully on the database partition and
the table was taken out of the LOAD IN
PROGRESS (or LOAD PENDING) state.
Note that the table might still be in Set
Integrity Pending state if further
constraints processing is required, but this
state is not reported by this interface.

v UNCHANGED: Indicates that the load did not
complete due to an error, but the state of
the table has not yet been changed. It is
not necessary to perform a load restart or
terminate operation on the database
partition.

Note: Not all possible table states are
returned by this interface.

AGENTTYPE VARCHAR(20) Agent type and is one of:

v FILE_TRANSFER

v LOAD

v LOAD_TO_FILE

v PARTITIONING

v PRE_PARTITIONING

File type modifiers for the load utility

Table 55. Valid file type modifiers for the load utility: All file formats

Modifier Description

anyorder This modifier is used in conjunction with the cpu_parallelism parameter.
Specifies that the preservation of source data order is not required, yielding
significant additional performance benefit on SMP systems. If the value of
cpu_parallelism is 1, this option is ignored. This option is not supported if
SAVECOUNT > 0, since crash recovery after a consistency point requires that data be
loaded in sequence.

generatedignore This modifier informs the load utility that data for all generated columns is
present in the data file but should be ignored. This results in all generated
column values being generated by the utility. This modifier cannot be used with
either the generatedmissing or the generatedoverride modifier.

generatedmissing If this modifier is specified, the utility assumes that the input data file contains no
data for the generated column (not even NULLs). This results in all generated
column values being generated by the utility. This modifier cannot be used with
either the generatedignore or the generatedoverride modifier.

Chapter 4. ADMIN_CMD procedure and associated routines 129

Table 55. Valid file type modifiers for the load utility: All file formats (continued)

Modifier Description

generatedoverride This modifier instructs the load utility to accept user-supplied data for all
generated columns in the table (contrary to the normal rules for these types of
columns). This is useful when migrating data from another database system, or
when loading a table from data that was recovered using the RECOVER DROPPED
TABLE option on the ROLLFORWARD DATABASE command. When this modifier is used,
any rows with no data or NULL data for a non-nullable generated column will be
rejected (SQL3116W). When this modifier is used, the table will be placed in Set
Integrity Pending state. To take the table out of Set Integrity Pending state
without verifying the user-supplied values, issue the following command after
the load operation:

SET INTEGRITY FOR table-name GENERATED COLUMN
IMMEDIATE UNCHECKED

To take the table out of Set Integrity Pending state and force verification of the
user-supplied values, issue the following command after the load operation:

SET INTEGRITY FOR table-name IMMEDIATE CHECKED.

When this modifier is specified and there is a generated column in any of the
partitioning keys, dimension keys or distribution keys, then the LOAD command
will automatically convert the modifier to generatedignore and proceed with the
load. This will have the effect of regenerating all of the generated column values.

This modifier cannot be used with either the generatedmissing or the
generatedignore modifier.

identityignore This modifier informs the load utility that data for the identity column is present
in the data file but should be ignored. This results in all identity values being
generated by the utility. The behavior will be the same for both GENERATED
ALWAYS and GENERATED BY DEFAULT identity columns. This means that for
GENERATED ALWAYS columns, no rows will be rejected. This modifier cannot
be used with either the identitymissing or the identityoverride modifier.

identitymissing If this modifier is specified, the utility assumes that the input data file contains no
data for the identity column (not even NULLs), and will therefore generate a
value for each row. The behavior will be the same for both GENERATED
ALWAYS and GENERATED BY DEFAULT identity columns. This modifier cannot
be used with either the identityignore or the identityoverride modifier.

identityoverride This modifier should be used only when an identity column defined as
GENERATED ALWAYS is present in the table to be loaded. It instructs the utility
to accept explicit, non-NULL data for such a column (contrary to the normal rules
for these types of identity columns). This is useful when migrating data from
another database system when the table must be defined as GENERATED
ALWAYS, or when loading a table from data that was recovered using the
DROPPED TABLE RECOVERY option on the ROLLFORWARD DATABASE command. When
this modifier is used, any rows with no data or NULL data for the identity
column will be rejected (SQL3116W). This modifier cannot be used with either the
identitymissing or the identityignore modifier. The load utility will not attempt
to maintain or verify the uniqueness of values in the table's identity column when
this option is used.

indexfreespace=x x is an integer between 0 and 99 inclusive. The value is interpreted as the
percentage of each index page that is to be left as free space when load rebuilds
the index. Load with INDEXING MODE INCREMENTAL ignores this option. The first
entry in a page is added without restriction; subsequent entries are added to
maintain the percent free space threshold. The default value is the one used at
CREATE INDEX time.

This value takes precedence over the PCTFREE value specified in the CREATE
INDEX statement. The indexfreespace option affects index leaf pages only.

130 Administrative Routines and Views

Table 55. Valid file type modifiers for the load utility: All file formats (continued)

Modifier Description

lobsinfile lob-path specifies the path to the files containing LOB data. The ASC, DEL, or IXF
load input files contain the names of the files having LOB data in the LOB
column.

This option is not supported in conjunction with the CURSOR filetype.

The LOBS FROM clause specifies where the LOB files are located when the
lobsinfile modifier is used. The LOBS FROM clause will implicitly activate the
lobsinfile behavior. The LOBS FROM clause conveys to the LOAD utility the list of
paths to search for the LOB files while loading the data.

Each path contains at least one file that contains at least one LOB pointed to by a
Lob Location Specifier (LLS) in the data file. The LLS is a string representation of
the location of a LOB in a file stored in the LOB file path. The format of an LLS is
filename.ext.nnn.mmm/, where filename.ext is the name of the file that contains
the LOB, nnn is the offset in bytes of the LOB within the file, and mmm is the
length of the LOB in bytes. For example, if the string db2exp.001.123.456/ is
stored in the data file, the LOB is located at offset 123 in the file db2exp.001, and
is 456 bytes long.

To indicate a null LOB , enter the size as -1. If the size is specified as 0, it is
treated as a 0 length LOB. For null LOBS with length of -1, the offset and the file
name are ignored. For example, the LLS of a null LOB might be
db2exp.001.7.-1/.

noheader Skips the header verification code (applicable only to load operations into tables
that reside in a single-partition database partition group).

If the default MPP load (mode PARTITION_AND_LOAD) is used against a table
residing in a single-partition database partition group, the file is not expected to
have a header. Thus the noheader modifier is not needed. If the LOAD_ONLY
mode is used, the file is expected to have a header. The only circumstance in
which you should need to use the noheader modifier is if you wanted to perform
LOAD_ONLY operation using a file that does not have a header.

norowwarnings Suppresses all warnings about rejected rows.

pagefreespace=x x is an integer between 0 and 100 inclusive. The value is interpreted as the
percentage of each data page that is to be left as free space. If the specified value
is invalid because of the minimum row size, (for example, a row that is at least
3 000 bytes long, and an x value of 50), the row will be placed on a new page. If
a value of 100 is specified, each row will reside on a new page. The PCTFREE
value of a table determines the amount of free space designated per page. If a
pagefreespace value on the load operation or a PCTFREE value on a table have
not been set, the utility will fill up as much space as possible on each page. The
value set by pagefreespace overrides the PCTFREE value specified for the table.

rowchangetimestampignore This modifier informs the load utility that data for the row change timestamp
column is present in the data file but should be ignored. This results in all ROW
CHANGE TIMESTAMPs being generated by the utility. The behavior will be the
same for both GENERATED ALWAYS and GENERATED BY DEFAULT columns.
This means that for GENERATED ALWAYS columns, no rows will be rejected.
This modifier cannot be used with either the rowchangetimestampmissing or the
rowchangetimestampoverride modifier.

rowchangetimestampmissing If this modifier is specified, the utility assumes that the input data file contains no
data for the row change timestamp column (not even NULLs), and will therefore
generate a value for each row. The behavior will be the same for both
GENERATED ALWAYS and GENERATED BY DEFAULT columns. This modifier
cannot be used with either the rowchangetimestampignore or the
rowchangetimestampoverride modifier.

Chapter 4. ADMIN_CMD procedure and associated routines 131

Table 55. Valid file type modifiers for the load utility: All file formats (continued)

Modifier Description

rowchangetimestampoverride This modifier should be used only when a row change timestamp column
defined as GENERATED ALWAYS is present in the table to be loaded. It instructs
the utility to accept explicit, non-NULL data for such a column (contrary to the
normal rules for these types of row change timestamp columns). This is useful
when migrating data from another database system when the table must be
defined as GENERATED ALWAYS, or when loading a table from data that was
recovered using the DROPPED TABLE RECOVERY option on the ROLLFORWARD DATABASE
command. When this modifier is used, any rows with no data or NULL data for
the ROW CHANGE TIMESTAMP column will be rejected (SQL3116W). This
modifier cannot be used with either the rowchangetimestampmissing or the
rowchangetimestampignore modifier. The load utility will not attempt to maintain
or verify the uniqueness of values in the table's row change timestamp column
when this option is used.

seclabelchar Indicates that security labels in the input source file are in the string format for
security label values rather than in the default encoded numeric format. LOAD
converts each security label into the internal format as it is loaded. If a string is
not in the proper format the row is not loaded and a warning (SQLSTATE 01H53,
SQLCODE SQL3242W) is returned. If the string does not represent a valid
security label that is part of the security policy protecting the table then the row
is not loaded and a warning (SQLSTATE 01H53, SQLCODE SQL3243W) is
returned.

This modifier cannot be specified if the seclabelname modifier is specified,
otherwise the load fails and an error (SQLCODE SQL3525N) is returned.

If you have a table consisting of a single DB2SECURITYLABEL column, the data file
might look like this:

"CONFIDENTIAL:ALPHA:G2"
"CONFIDENTIAL;SIGMA:G2"
"TOP SECRET:ALPHA:G2"

To load or import this data, the seclabelchar file type modifier must be used:

LOAD FROM input.del OF DEL MODIFIED BY SECLABELCHAR INSERT INTO t1

seclabelname Indicates that security labels in the input source file are indicated by their name
rather than the default encoded numeric format. LOAD will convert the name to
the appropriate security label if it exists. If no security label exists with the
indicated name for the security policy protecting the table the row is not loaded
and a warning (SQLSTATE 01H53, SQLCODE SQL3244W) is returned.

This modifier cannot be specified if the seclabelchar modifier is specified,
otherwise the load fails and an error (SQLCODE SQL3525N) is returned.

If you have a table consisting of a single DB2SECURITYLABEL column, the data file
might consist of security label names similar to:

"LABEL1"
"LABEL1"
"LABEL2"

To load or import this data, the seclabelname file type modifier must be used:

LOAD FROM input.del OF DEL MODIFIED BY SECLABELNAME INSERT INTO t1

Note: If the file type is ASC, any spaces following the name of the security label
will be interpreted as being part of the name. To avoid this use the striptblanks
file type modifier to make sure the spaces are removed.

132 Administrative Routines and Views

Table 55. Valid file type modifiers for the load utility: All file formats (continued)

Modifier Description

totalfreespace=x x is an integer greater than or equal to 0. The value is interpreted as the
percentage of the total pages in the table that is to be appended to the end of the
table as free space. For example, if x is 20, and the table has 100 data pages after
the data has been loaded, 20 additional empty pages will be appended. The total
number of data pages for the table will be 120. The data pages total does not
factor in the number of index pages in the table. This option does not affect the
index object. If two loads are done with this option specified, the second load will
not reuse the extra space appended to the end by the first load.

usedefaults If a source column for a target table column has been specified, but it contains no
data for one or more row instances, default values are loaded. Examples of
missing data are:

v For DEL files: two adjacent column delimiters (",,") or two adjacent column
delimiters separated by an arbitrary number of spaces (", ,") are specified for a
column value.

v For DEL/ASC/WSF files: A row that does not have enough columns, or is not
long enough for the original specification. For ASC files, NULL column values
are not considered explicitly missing, and a default will not be substituted for
NULL column values. NULL column values are represented by all space
characters for numeric, date, time, and /timestamp columns, or by using the
NULL INDICATOR for a column of any type to indicate the column is NULL.

Without this option, if a source column contains no data for a row instance, one
of the following occurs:

v For DEL/ASC/WSF files: If the column is nullable, a NULL is loaded. If the
column is not nullable, the utility rejects the row.

Table 56. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL)

Modifier Description

codepage=x x is an ASCII character string. The value is interpreted as the code page of the
data in the input data set. Converts character data (and numeric data specified in
characters) from this code page to the database code page during the load
operation.

The following rules apply:

v For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to
the range of x00 to x3F, inclusive.

v For DEL data specified in an EBCDIC code page, the delimiters might not
coincide with the shift-in and shift-out DBCS characters.

v nullindchar must specify symbols included in the standard ASCII set between
code points x20 and x7F, inclusive. This refers to ASCII symbols and code
points. EBCDIC data can use the corresponding symbols, even though the code
points will be different.

This option is not supported in conjunction with the CURSOR filetype.

Chapter 4. ADMIN_CMD procedure and associated routines 133

Table 56. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

dateformat="x" x is the format of the date in the source file.1 Valid date elements are:

YYYY - Year (four digits ranging from 0000 - 9999)
M - Month (one or two digits ranging from 1 - 12)
MM - Month (two digits ranging from 01 - 12;

mutually exclusive with M)
D - Day (one or two digits ranging from 1 - 31)
DD - Day (two digits ranging from 01 - 31;

mutually exclusive with D)
DDD - Day of the year (three digits ranging

from 001 - 366; mutually exclusive
with other day or month elements)

A default value of 1 is assigned for each element that is not specified. Some
examples of date formats are:

"D-M-YYYY"
"MM.DD.YYYY"
"YYYYDDD"

dumpfile = x x is the fully qualified (according to the server database partition) name of an
exception file to which rejected rows are written. A maximum of 32 KB of data is
written per record. Following is an example that shows how to specify a dump
file:

db2 load from data of del
modified by dumpfile = /u/user/filename
insert into table_name

The file will be created and owned by the instance owner. To override the default
file permissions, use the dumpfileaccessall file type modifier.
Note:

1. In a partitioned database environment, the path should be local to the loading
database partition, so that concurrently running load operations do not
attempt to write to the same file.

2. The contents of the file are written to disk in an asynchronous buffered mode.
In the event of a failed or an interrupted load operation, the number of
records committed to disk cannot be known with certainty, and consistency
cannot be guaranteed after a LOAD RESTART. The file can only be assumed to be
complete for a load operation that starts and completes in a single pass.

3. If the specified file already exists, it will not be recreated, but it will be
truncated.

dumpfileaccessall Grants read access to 'OTHERS' when a dump file is created.

This file type modifier is only valid when:

1. it is used in conjunction with dumpfile file type modifier

2. the user has SELECT privilege on the load target table

3. it is issued on a DB2 server database partition that resides on a UNIX
operating system

If the specified file already exists, its permissions will not be changed.

fastparse Use with caution. Reduces syntax checking on user-supplied column values, and
enhances performance. Tables are guaranteed to be architecturally correct (the
utility performs sufficient data checking to prevent a segmentation violation or
trap), however, the coherence of the data is not validated. Only use this option if
you are certain that your data is coherent and correct. For example, if the
user-supplied data contains an invalid timestamp column value of
:1>0-00-20-07.11.12.000000, this value is inserted into the table if fastparse is
specified, and rejected if fastparse is not specified.

134 Administrative Routines and Views

Table 56. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

implieddecimal The location of an implied decimal point is determined by the column definition;
it is no longer assumed to be at the end of the value. For example, the value
12345 is loaded into a DECIMAL(8,2) column as 123.45, not 12345.00.

This modifier cannot be used with the packeddecimal modifier.

timeformat="x" x is the format of the time in the source file.1 Valid time elements are:

H - Hour (one or two digits ranging from 0 - 12
for a 12 hour system, and 0 - 24
for a 24 hour system)

HH - Hour (two digits ranging from 00 - 12
for a 12 hour system, and 00 - 24
for a 24 hour system; mutually exclusive

with H)
M - Minute (one or two digits ranging

from 0 - 59)
MM - Minute (two digits ranging from 00 - 59;

mutually exclusive with M)
S - Second (one or two digits ranging

from 0 - 59)
SS - Second (two digits ranging from 00 - 59;

mutually exclusive with S)
SSSSS - Second of the day after midnight (5 digits

ranging from 00000 - 86400; mutually
exclusive with other time elements)

TT - Meridian indicator (AM or PM)

A default value of 0 is assigned for each element that is not specified. Some
examples of time formats are:

"HH:MM:SS"
"HH.MM TT"
"SSSSS"

Chapter 4. ADMIN_CMD procedure and associated routines 135

Table 56. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

timestampformat="x" x is the format of the time stamp in the source file.1 Valid time stamp elements
are:

YYYY - Year (four digits ranging from 0000 - 9999)
M - Month (one or two digits ranging from 1 - 12)
MM - Month (two digits ranging from 01 - 12;

mutually exclusive with M and MMM)
MMM - Month (three-letter case-insensitive abbreviation for

the month name; mutually exclusive with M and MM)
D - Day (one or two digits ranging from 1 - 31)
DD - Day (two digits ranging from 01 - 31; mutually exclusive with D)
DDD - Day of the year (three digits ranging from 001 - 366;

mutually exclusive with other day or month elements)
H - Hour (one or two digits ranging from 0 - 12

for a 12 hour system, and 0 - 24 for a 24 hour system)
HH - Hour (two digits ranging from 00 - 12

for a 12 hour system, and 00 - 24 for a 24 hour system;
mutually exclusive with H)

M - Minute (one or two digits ranging from 0 - 59)
MM - Minute (two digits ranging from 00 - 59;

mutually exclusive with M, minute)
S - Second (one or two digits ranging from 0 - 59)
SS - Second (two digits ranging from 00 - 59;

mutually exclusive with S)
SSSSS - Second of the day after midnight (5 digits

ranging from 00000 - 86400; mutually
exclusive with other time elements)

U (1 to 12 times)
- Fractional seconds(number of occurrences of U represent the

number of digits with each digit ranging from 0 to 9
TT - Meridian indicator (AM or PM)

timestampformat="x"
(Continued)

A default value of 1 is assigned for unspecified YYYY, M, MM, D, DD, or DDD
elements. A default value of 'Jan' is assigned to an unspecified MMM element. A
default value of 0 is assigned for all other unspecified elements. Following is an
example of a time stamp format:

"YYYY/MM/DD HH:MM:SS.UUUUUU"

The valid values for the MMM element include: 'jan', 'feb', 'mar', 'apr', 'may', 'jun',
'jul', 'aug', 'sep', 'oct', 'nov' and 'dec'. These values are case insensitive.

If the timestampformat modifier is not specified, the load utility formats the
timestamp field using one of two possible formats:

YYYY-MM-DD-HH.MM.SS
YYYY-MM-DD HH:MM:SS

The load utility chooses the format by looking at the separator between the DD
and HH. If it is a dash '-', the load utility uses the regular dashes and dots format
(YYYY-MM-DD-HH.MM.SS). If it is a blank space, then the load utility expects a colon
':' to separate the HH, MM and SS.

In either format, if you include the microseconds field (UUUUUU), the load
utility expects the dot '.' as the separator. Either YYYY-MM-DD-HH.MM.SS.UUUUUU or
YYYY-MM-DD HH:MM:SS.UUUUUU are acceptable.

The following example illustrates how to load data containing user defined date
and time formats into a table called schedule:

db2 load from delfile2 of del
modified by timestampformat="yyyy.mm.dd hh:mm tt"
insert into schedule

136 Administrative Routines and Views

Table 56. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

usegraphiccodepage If usegraphiccodepage is given, the assumption is made that data being loaded
into graphic or double-byte character large object (DBCLOB) data field(s) is in the
graphic code page. The rest of the data is assumed to be in the character code
page. The graphic codepage is associated with the character code page. LOAD
determines the character code page through either the codepage modifier, if it is
specified, or through the code page of the database if the codepage modifier is not
specified.

This modifier should be used in conjunction with the delimited data file
generated by drop table recovery only if the table being recovered has graphic
data.

Restrictions

The usegraphiccodepage modifier MUST NOT be specified with DEL files created
by the EXPORT utility, as these files contain data encoded in only one code page.
The usegraphiccodepage modifier is also ignored by the double-byte character
large objects (DBCLOBs) in files.

xmlchar Specifies that XML documents are encoded in the character code page.

This option is useful for processing XML documents that are encoded in the
specified character code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,
the encoding must match the character code page, otherwise the row containing
the document will be rejected. Note that the character codepage is the value
specified by the codepage file type modifier, or the application codepage if it is
not specified. By default, either the documents are encoded in Unicode, or they
contain a declaration tag with an encoding attribute.

xmlgraphic Specifies that XML documents are encoded in the specified graphic code page.

This option is useful for processing XML documents that are encoded in a specific
graphic code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,
the encoding must match the graphic code page, otherwise the row containing
the document will be rejected. Note that the graphic code page is the graphic
component of the value specified by the codepage file type modifier, or the
graphic component of the application code page if it is not specified. By default,
documents are either encoded in Unicode, or they contain a declaration tag with
an encoding attribute.

Chapter 4. ADMIN_CMD procedure and associated routines 137

Table 57. Valid file type modifiers for the load utility: ASC file formats (Non-delimited ASCII)

Modifier Description

binarynumerics Numeric (but not DECIMAL) data must be in binary form, not the character
representation. This avoids costly conversions.

This option is supported only with positional ASC, using fixed length records
specified by the reclen option.

The following rules apply:

v No conversion between data types is performed, with the exception of BIGINT,
INTEGER, and SMALLINT.

v Data lengths must match their target column definitions.

v FLOATs must be in IEEE Floating Point format.

v Binary data in the load source file is assumed to be big-endian, regardless of
the platform on which the load operation is running.

NULLs cannot be present in the data for columns affected by this modifier.
Blanks (normally interpreted as NULL) are interpreted as a binary value when
this modifier is used.

nochecklengths If nochecklengths is specified, an attempt is made to load each row, even if the
source data has a column definition that exceeds the size of the target table
column. Such rows can be successfully loaded if code page conversion causes the
source data to shrink; for example, 4-byte EUC data in the source could shrink to
2-byte DBCS data in the target, and require half the space. This option is
particularly useful if it is known that the source data will fit in all cases despite
mismatched column definitions.

nullindchar=x x is a single character. Changes the character denoting a NULL value to x. The
default value of x is Y.2

This modifier is case sensitive for EBCDIC data files, except when the character is
an English letter. For example, if the NULL indicator character is specified to be
the letter N, then n is also recognized as a NULL indicator.

packeddecimal Loads packed-decimal data directly, since the binarynumerics modifier does not
include the DECIMAL field type.

This option is supported only with positional ASC, using fixed length records
specified by the reclen option.

Supported values for the sign nibble are:

+ = 0xC 0xA 0xE 0xF
- = 0xD 0xB

NULLs cannot be present in the data for columns affected by this modifier.
Blanks (normally interpreted as NULL) are interpreted as a binary value when
this modifier is used.

Regardless of the server platform, the byte order of binary data in the load source
file is assumed to be big-endian; that is, when using this modifier on Windows
operating systems, the byte order must not be reversed.

This modifier cannot be used with the implieddecimal modifier.

reclen=x x is an integer with a maximum value of 32 767. x characters are read for each
row, and a newline character is not used to indicate the end of the row.

138 Administrative Routines and Views

Table 57. Valid file type modifiers for the load utility: ASC file formats (Non-delimited ASCII) (continued)

Modifier Description

striptblanks Truncates any trailing blank spaces when loading data into a variable-length field.
If this option is not specified, blank spaces are kept.

This option cannot be specified together with striptnulls. These are mutually
exclusive options. This option replaces the obsolete t option, which is supported
for earlier compatibility only.

striptnulls Truncates any trailing NULLs (0x00 characters) when loading data into a
variable-length field. If this option is not specified, NULLs are kept.

This option cannot be specified together with striptblanks. These are mutually
exclusive options. This option replaces the obsolete padwithzero option, which is
supported for earlier compatibility only.

zoneddecimal Loads zoned decimal data, since the binarynumerics modifier does not include
the DECIMAL field type. This option is supported only with positional ASC,
using fixed length records specified by the reclen option.

Half-byte sign values can be one of the following:

+ = 0xC 0xA 0xE 0xF 0x3
- = 0xD 0xB 0x7

Supported values for digits are 0x0 to 0x9.

Supported values for zones are 0x3 and 0xF.

Table 58. Valid file type modifiers for the load utility: DEL file formats (Delimited ASCII)

Modifier Description

chardelx x is a single character string delimiter. The default value is a double quotation
mark ("). The specified character is used in place of double quotation marks to
enclose a character string.23 If you want to explicitly specify the double quotation
mark (") as the character string delimiter, you should specify it as follows:

modified by chardel""

The single quotation mark (') can also be specified as a character string delimiter
as follows:

modified by chardel’’

coldelx x is a single character column delimiter. The default value is a comma (,). The
specified character is used in place of a comma to signal the end of a column.23

decplusblank Plus sign character. Causes positive decimal values to be prefixed with a blank
space instead of a plus sign (+). The default action is to prefix positive decimal
values with a plus sign.

decptx x is a single character substitute for the period as a decimal point character. The
default value is a period (.). The specified character is used in place of a period as
a decimal point character.23

Chapter 4. ADMIN_CMD procedure and associated routines 139

Table 58. Valid file type modifiers for the load utility: DEL file formats (Delimited ASCII) (continued)

Modifier Description

delprioritychar The current default priority for delimiters is: record delimiter, character delimiter,
column delimiter. This modifier protects existing applications that depend on the
older priority by reverting the delimiter priorities to: character delimiter, record
delimiter, column delimiter. Syntax:

db2 load ... modified by delprioritychar ...

For example, given the following DEL data file:

"Smith, Joshua",4000,34.98<row delimiter>
"Vincent,<row delimiter>, is a manager", ...
... 4005,44.37<row delimiter>

With the delprioritychar modifier specified, there will be only two rows in this
data file. The second <row delimiter> will be interpreted as part of the first data
column of the second row, while the first and the third <row delimiter> are
interpreted as actual record delimiters. If this modifier is not specified, there will
be three rows in this data file, each delimited by a <row delimiter>.

keepblanks Preserves the leading and trailing blanks in each field of type CHAR, VARCHAR,
LONG VARCHAR, or CLOB. Without this option, all leading and trailing blanks
that are not inside character delimiters are removed, and a NULL is inserted into
the table for all blank fields.

The following example illustrates how to load data into a table called TABLE1,
while preserving all leading and trailing spaces in the data file:

db2 load from delfile3 of del
modified by keepblanks
insert into table1

nochardel The load utility will assume all bytes found between the column delimiters to be
part of the column's data. Character delimiters will be parsed as part of column
data. This option should not be specified if the data was exported using a DB2
database system (unless nochardel was specified at export time). It is provided to
support vendor data files that do not have character delimiters. Improper usage
might result in data loss or corruption.

This option cannot be specified with chardelx, delprioritychar or nodoubledel.
These are mutually exclusive options.

nodoubledel Suppresses recognition of double character delimiters.

Table 59. Valid file type modifiers for the load utility: IXF file format

Modifier Description

forcein Directs the utility to accept data despite code page mismatches, and to suppress
translation between code pages.

Fixed length target fields are checked to verify that they are large enough for the
data. If nochecklengths is specified, no checking is done, and an attempt is made
to load each row.

nochecklengths If nochecklengths is specified, an attempt is made to load each row, even if the
source data has a column definition that exceeds the size of the target table
column. Such rows can be successfully loaded if code page conversion causes the
source data to shrink; for example, 4-byte EUC data in the source could shrink to
2-byte DBCS data in the target, and require half the space. This option is
particularly useful if it is known that the source data will fit in all cases despite
mismatched column definitions.

Note:

140 Administrative Routines and Views

1. Double quotation marks around the date format string are mandatory. Field
separators cannot contain any of the following: a-z, A-Z, and 0-9. The field
separator should not be the same as the character delimiter or field delimiter in
the DEL file format. A field separator is optional if the start and end positions
of an element are unambiguous. Ambiguity can exist if (depending on the
modifier) elements such as D, H, M, or S are used, because of the variable
length of the entries.
For time stamp formats, care must be taken to avoid ambiguity between the
month and the minute descriptors, since they both use the letter M. A month
field must be adjacent to other date fields. A minute field must be adjacent to
other time fields. Following are some ambiguous time stamp formats:
"M" (could be a month, or a minute)
"M:M" (Which is which?)
"M:YYYY:M" (Both are interpreted as month.)
"S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation
will fail.
Following are some unambiguous time stamp formats:
"M:YYYY" (Month)
"S:M" (Minute)
"M:YYYY:S:M" (Month....Minute)
"M:H:YYYY:M:D" (Minute....Month)

Some characters, such as double quotation marks and back slashes, must be
preceded by an escape character (for example, \).

2. Character values provided for the chardel, coldel, or decpt file type modifiers
must be specified in the code page of the source data.
The character code point (instead of the character symbol), can be specified
using the syntax xJJ or 0xJJ, where JJ is the hexadecimal representation of the
code point. For example, to specify the # character as a column delimiter, use
one of the following:
... modified by coldel# ...
... modified by coldel0x23 ...
... modified by coldelX23 ...

3. “Delimiter considerations for moving data” lists restrictions that apply to the
characters that can be used as delimiter overrides.

4. The load utility does not issue a warning if an attempt is made to use
unsupported file types with the MODIFIED BY option. If this is attempted, the
load operation fails, and an error code is returned.

5. When importing into a table containing an implicitly hidden row change
timestamp column, the implicitly hidden property of the column is not
honoured. Therefore, the rowchangetimestampmissing file type modifier must be
specified in the IMPORT command if data for the column is not present in the
data to be imported and there is no explicit column list present.

Table 60. LOAD behavior when using codepage and usegraphiccodepage

codepage=N usegraphiccodepage LOAD behavior

Absent Absent All data in the file is assumed to be in the database code
page, not the application code page, even if the CLIENT
option is specified.

Present Absent All data in the file is assumed to be in code page N.

Warning: Graphic data will be corrupted when loaded
into the database if N is a single-byte code page.

Chapter 4. ADMIN_CMD procedure and associated routines 141

Table 60. LOAD behavior when using codepage and usegraphiccodepage (continued)

codepage=N usegraphiccodepage LOAD behavior

Absent Present Character data in the file is assumed to be in the
database code page, even if the CLIENT option is
specified. Graphic data is assumed to be in the code
page of the database graphic data, even if the CLIENT
option is specified.

If the database code page is single-byte, then all data is
assumed to be in the database code page.

Warning: Graphic data will be corrupted when loaded
into a single-byte database.

Present Present Character data is assumed to be in code page N. Graphic
data is assumed to be in the graphic code page of N.

If N is a single-byte or double-byte code page, then all
data is assumed to be in code page N.

Warning: Graphic data will be corrupted when loaded
into the database if N is a single-byte code page.

PRUNE HISTORY/LOGFILE command using the ADMIN_CMD
procedure

Used to delete entries from the recovery history file or to delete log files from the
active log file path of the currently connected database partition. Deleting entries
from the recovery history file might be necessary if the file becomes excessively
large and the retention period is high.

In a partitioned environment, the PRUNE HISTORY command only performs on the
database partition it is issued on. To prune the history on multiple partitions, you
can either issue the PRUNE HISTORY command from each individual database
partition, or use the db2_all prefix to run the PRUNE HISTORY command on all
database partitions.

Authorization

One of the following:
v SYSADM
v SYSCTRL
v SYSMAINT
v DBADM

Required connection

Database

Command syntax

�� PRUNE HISTORY timestamp
WITH FORCE OPTION AND DELETE

LOGFILE PRIOR TO log-file-name

��

142 Administrative Routines and Views

Command parameters

HISTORY timestamp
Identifies a range of entries in the recovery history file that will be deleted.
A complete time stamp (in the form yyyymmddhhmmss), or an initial prefix
(minimum yyyy) can be specified. All entries with time stamps equal to or
less than the time stamp provided are deleted from the recovery history
file. When an initial prefix is specified, the unspecified components of the
time stamp are interpreted as yyyy0101000000.

WITH FORCE OPTION
Specifies that the entries will be pruned according to the time stamp
specified, even if some entries from the most recent restore set are deleted
from the file. A restore set is the most recent full database backup
including any restores of that backup image. If this parameter is not
specified, all entries from the backup image forward will be maintained in
the history.

AND DELETE
Specifies that the associated log archives will be physically deleted (based
on the location information) when the history file entry is removed. This
option is especially useful for ensuring that archive storage space is
recovered when log archives are no longer needed. If you are archiving
logs via a user exit program, the logs cannot be deleted using this option.

If you set the auto_del_rec_obj database configuration parameter to ON,
calling PRUNE HISTORY with the AND DELETE parameter will also physically
delete backup images and load copy images if their history file entry is
pruned.

LOGFILE PRIOR TO log-file-name
Specifies a string for a log file name, for example S0000100.LOG. All log
files prior to (but not including) the specified log file will be deleted. The
logretain database configuration parameter must be set to RECOVERY or
CAPTURE.

Example

Example 1: Remove all entries from the recovery history file that were written on or
before December 31, 2003:
CALL SYSPROC.ADMIN_CMD (’prune history 20031231’)

Example 2: Delete all log files from the active log file path prior to (but not
including) S0000100.LOG:
CALL SYSPROC.ADMIN_CMD(’prune logfile prior to S0000100.LOG’)

Usage notes

If the WITH FORCE OPTION is used, you might delete entries that are required for
automatic restoration of databases. Manual restores will still work correctly. Use of
this command can also prevent the db2ckrst utility from being able to correctly
analyze the complete chain of required backup images. Using the PRUNE HISTORY
command without the WITH FORCE OPTION prevents required entries from being
deleted.

Those entries with status DB2HISTORY_STATUS_DO_NOT_DELETE will not be
pruned. If the WITH FORCE OPTION is used, then objects marked as
DB2HISTORY_STATUS_DO_NOT_DELETE will still be pruned or deleted. You can

Chapter 4. ADMIN_CMD procedure and associated routines 143

set the status of recovery history file entries to
DB2HISTORY_STATUS_DO_NOT_DELETE using the UPDATE HISTORY command,
the ADMIN_CMD with UPDATE_HISTORY, or the db2HistoryUpdate API. You can
use the DB2HISTORY_STATUS_DO_NOT_DELETE status to prevent key recovery
history file entries from being pruned and to prevent associated recovery objects
from being deleted.

You can prune snapshot backup database history file entries using the PRUNE
HISTORY command, but you cannot delete the related physical recovery objects
using the AND DELETE parameter. The only way to delete snapshot backup object is
to use the db2acsutil command.

The command affects only the database partition to which the application is
currently connected.

QUIESCE DATABASE command using the ADMIN_CMD
procedure

Forces all users off the specified instance and database and puts it into a quiesced
mode.

While the database is in quiesced mode, you can perform administrative tasks on
it. After administrative tasks are complete, use the UNQUIESCE command to activate
the database and allow other users to connect to the database without having to
shut down and perform another database start.

In this mode, only users with authority in this restricted mode are allowed to
connect to the database. Users with SYSADM and DBADM authority always have
access to a database while it is quiesced.

Scope

QUIESCE DATABASE results in all objects in the database being in the quiesced mode.
Only the allowed user or group and SYSADM, SYSMAINT, DBADM, or SYSCTRL
will be able to access the database or its objects.

Authorization

One of the following:

For database level quiesce:
v SYSADM
v DBADM

Required connection

Database

Command syntax

�� QUIESCE DATABASE
DB

IMMEDIATE
DEFER

WITH TIMEOUT minutes

�

144 Administrative Routines and Views

�
FORCE CONNECTIONS

��

Command parameters

DEFER Wait for applications until they commit the current unit of work.

WITH TIMEOUT minutes
Specifies a time, in minutes, to wait for applications to commit the
current unit of work. If no value is specified, in a single-partition
database environment, the default value is 10 minutes. In a
partitioned database environment the value specified by the
start_stop_time database manager configuration parameter will be
used.

IMMEDIATE
Do not wait for the transactions to be committed, immediately rollback the
transactions.

FORCE CONNECTIONS
Force the connections off.

DATABASE
Quiesce the database. All objects in the database will be placed in quiesced
mode. Only specified users in specified groups and users with SYSADM,
SYSMAINT, and SYSCTRL authority will be able to access to the database
or its objects.

Example

Force off all users with connections to the database.
CALL SYSPROC.ADMIN_CMD(’quiesce db immediate’)

v This command will force all users off the database if the FORCE CONNECTIONS
option is supplied. FORCE CONNECTIONS is the default behavior; the parameter is
allowed in the command for compatibility reasons.

v The command will be synchronized with the FORCE CONNECTIONS and will only
complete once the FORCE CONNECTIONS has completed.

Usage notes
v After QUIESCE DATABASE, users with SYSADM, SYSMAINT, SYSCTRL, or

DBADM authority, and GRANT or REVOKE privileges can designate who will
be able to connect. This information will be stored permanently in the database
catalog tables.
For example,
grant quiesce_connect on database to username/groupname
revoke quiesce_connect on database from username/groupname

v Command execution status is returned in the SQLCA resulting from the CALL
statement.

QUIESCE TABLESPACES FOR TABLE command using the
ADMIN_CMD procedure

Quiesces table spaces for a table. There are three valid quiesce modes: share, intent
to update, and exclusive.

There are three possible states resulting from the quiesce function:

Chapter 4. ADMIN_CMD procedure and associated routines 145

v Quiesced: SHARE
v Quiesced: UPDATE
v Quiesced: EXCLUSIVE

Scope

In a single-partition environment, this command quiesces all table spaces involved
in a load operation in exclusive mode for the duration of the load operation. In a
partitioned database environment, this command acts locally on a database
partition. It quiesces only that portion of table spaces belonging to the database
partition on which the load operation is performed. For partitioned tables, all of
the table spaces listed in SYSDATAPARTITIONS.TBSPACEID and
SYSDATAPARTITIONS.LONG_TBSPACEID associated with a table and with a
status of normal, attached or detached, (for example,
SYSDATAPARTITIONS.STATUS of '"', 'A' or 'D', respectively) are quiesced.

Authorization

One of the following:
v SYSADM
v SYSCTRL
v SYSMAINT
v DBADM
v LOAD

Required connection

Database

Command syntax

�� QUIESCE TABLESPACES FOR TABLE tablename
schema.tablename

SHARE
INTENT TO UPDATE
EXCLUSIVE
RESET

��

Command parameters

TABLE

tablename
Specifies the unqualified table name. The table cannot be a system
catalog table.

schema.tablename
Specifies the qualified table name. If schema is not provided, the
CURRENT SCHEMA will be used. The table cannot be a system
catalog table.

SHARE Specifies that the quiesce is to be in share mode.

When a "quiesce share" request is made, the transaction requests intent
share locks for the table spaces and a share lock for the table. When the
transaction obtains the locks, the state of the table spaces is changed to
QUIESCED SHARE. The state is granted to the quiescer only if there is no
conflicting state held by other users. The state of the table spaces, along

146 Administrative Routines and Views

with the authorization ID and the database agent ID of the quiescer, are
recorded in the table space table, so that the state is persistent. The table
cannot be changed while the table spaces for the table are in QUIESCED
SHARE state. Other share mode requests to the table and table spaces are
allowed. When the transaction commits or rolls back, the locks are
released, but the table spaces for the table remain in QUIESCED SHARE
state until the state is explicitly reset.

INTENT TO UPDATE
Specifies that the quiesce is to be in intent to update mode.

When a "quiesce intent to update" request is made, the table spaces are
locked in intent exclusive (IX) mode, and the table is locked in update (U)
mode. The state of the table spaces is recorded in the table space table.

EXCLUSIVE
Specifies that the quiesce is to be in exclusive mode.

When a "quiesce exclusive" request is made, the transaction requests super
exclusive locks on the table spaces, and a super exclusive lock on the table.
When the transaction obtains the locks, the state of the table spaces
changes to QUIESCED EXCLUSIVE. The state of the table spaces, along
with the authorization ID and the database agent ID of the quiescer, are
recorded in the table space table. Since the table spaces are held in super
exclusive mode, no other access to the table spaces is allowed. The user
who invokes the quiesce function (the quiescer) has exclusive access to the
table and the table spaces.

RESET Specifies that the state of the table spaces is to be reset to normal. A
quiesce state cannot be reset if the connection that issued the quiesce
request is still active.

Example

Quiesce the table spaces containing the staff table.
CALL SYSPROC.ADMIN_CMD(’quiesce tablespaces for table staff share’)

Usage notes

This command is not supported for declared temporary tables.

A quiesce is a persistent lock. Its benefit is that it persists across transaction
failures, connection failures, and even across system failures (such as power failure,
or reboot).

A quiesce is owned by a connection. If the connection is lost, the quiesce remains,
but it has no owner, and is called a phantom quiesce. For example, if a power outage
caused a load operation to be interrupted during the delete phase, the table spaces
for the loaded table would be left in quiesce exclusive state. Upon database restart,
this quiesce would be an unowned (or phantom) quiesce. The removal of a
phantom quiesce requires a connection with the same user ID used when the
quiesce mode was set.

To remove a phantom quiesce:
1. Connect to the database with the same user ID used when the quiesce mode

was set.
2. Use the LIST TABLESPACES command to determine which table space is

quiesced.

Chapter 4. ADMIN_CMD procedure and associated routines 147

3. Re-quiesce the table space using the current quiesce state. For example:
CALL SYSPROC.ADMIN_CMD(’quiesce tablespaces for table mytable exclusive’)

Once completed, the new connection owns the quiesce, and the load operation can
be restarted.

There is a limit of five quiescers on a table space at any given time.

A quiescer can upgrade the state of a table space from a less restrictive state to a
more restrictive one (for example, S to U, or U to X). If a user requests a state
lower than one that is already held, the original state is returned. States are not
downgraded.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

REDISTRIBUTE DATABASE PARTITION GROUP command
using the ADMIN_CMD procedure

Redistributes data across all partitions in a database partition group. This
command affects all objects present in the database partition group and cannot be
restricted to one object alone.

Scope

This command affects all database partitions in the database partition group.

Authorization

One of the following authorities is required:
v SYSADM
v SYSCTRL
v DBADM

In addition, one of the following groups of authorizations is also required:
v DELETE, INSERT, and SELECT privileges on all tables in the database partition

group being redistributed
v DATAACCESS authority

Required connection

Connection to the catalog partition.

Command syntax

�� REDISTRIBUTE DATABASE PARTITION GROUP db-partition-group �

� Action
NOT ROLLFORWARD RECOVERABLE Action Not roll-forward recoverable options

�

�

�

* *
,

ONLY
TABLE (table-name)

FIRST

�

* *
,

EXCLUDE (table-name)

�

148 Administrative Routines and Views

� * *
STOP AT local-isotime

��

Action:

UNIFORM Add/Drop DB partition
USING DISTFILE distfilename

USING TARGETMAP targetmapfilename
CONTINUE
ABORT

Add/Drop DB partition:

�

,

ADD DBPARTITIONNUM (n)
DBPARTITIONNUMS TO m

�

�

�

,

DROP DBPARTITIONNUM (n)
DBPARTITIONNUMS TO m

Not roll-forward recoverable options:

INDEXING MODE REBUILD PRECHECK YES
* * * *

DATA BUFFER n INDEXING MODE DEFERRED PRECHECK NO
PRECHECK ONLY

�

�
QUIESCE DATABASE YES STATISTICS USE PROFILE

* * *
QUIESCE DATABASE NO STATISTICS NONE

Command parameters

DATABASE PARTITION GROUP db-partition-group
The name of the database partition group. This one-part name identifies a
database partition group described in the SYSCAT.DBPARTITIONGROUPS
catalog table. The database partition group cannot currently be undergoing
redistribution.

Note: Tables in the IBMCATGROUP and the IBMTEMPGROUP database
partition groups cannot be redistributed.

NOT ROLLFORWARD RECOVERABLE
When this option is used, the REDISTRIBUTE DATABASE PARTITION GROUP
command is not roll-forward recoverable.
v Data is moved in bulk instead of by internal insert and delete operations.

This reduces the number of times that a table must be scanned and accessed,
which results in better performance.

v Log records are no longer required for each of the insert and delete
operations. This means that you no longer need to manage large amounts of
active log space and log archiving space in your system when performing

Chapter 4. ADMIN_CMD procedure and associated routines 149

data redistribution. This is particularly beneficial if, in the past, large active
log space and storage requirements forced you to break a single data
redistribution operation into multiple smaller redistribution tasks, which
might have resulted in even more time required to complete the end-to-end
data redistribution operation.

v When using the REDISTRIBUTE DATABASE PARTITION GROUP command with the
NOT ROLLFORWARD RECOVERABLE option, the redistribute operation uses the
INDEXING MODE DEFERRED option for tables that contain XML columns. If a
table does not contain an XML column, the redistribute operation uses the
indexing mode specified when issuing the command.

When this option is not used, extensive logging of all row movement is
performed such that the database can be recovered later in the event of any
interruptions, errors, or other business need.

UNIFORM
Specifies that the data is uniformly distributed across hash partitions (that is,
every hash partition is assumed to have the same number of rows), but the
same number of hash partitions do not map to each database partition. After
redistribution, all database partitions in the database partition group have
approximately the same number of hash partitions.

USING DISTFILE distfilename
If the distribution of distribution key values is skewed, use this option to
achieve a uniform redistribution of data across the database partitions of a
database partition group.

Use the distfilename to indicate the current distribution of data across the
32 768 hash partitions.

Use row counts, byte volumes, or any other measure to indicate the amount of
data represented by each hash partition. The utility reads the integer value
associated with a partition as the weight of that partition. When a distfilename
is specified, the utility generates a target distribution map that it uses to
redistribute the data across the database partitions in the database partition
group as uniformly as possible. After the redistribution, the weight of each
database partition in the database partition group is approximately the same
(the weight of a database partition is the sum of the weights of all hash
partitions that map to that database partition).

For example, the input distribution file might contain entries as follows:
10223
1345
112000
0
100
...

In the example, hash partition 2 has a weight of 112000, and partition 3 (with a
weight of 0) has no data mapping to it at all.

The distfilename should contain 32 768 positive integer values in character
format. The sum of the values should be less than or equal to 4 294 967 295.

The complete path name for distfilename must be included and distfilename must
exist on the server and be accessible from the connected partition.

USING TARGETMAP targetmapfilename
The file specified in targetmapfilename is used as the target distribution map.
Data redistribution is done according to this file. The complete path name for

150 Administrative Routines and Views

targetmapfilename must be included and targetmapfilename must exist on the
server and be accessible from the connected partition.

The targetmapfilename should contain 32 768 integers, each representing a valid
database partition number. The number on any row maps a hash value to a
database partition. This means that if row X contains value Y, then every
record with HASHEDVALUE() of X is to be located on database partition Y.

If a database partition, included in the target map, is not in the database
partition group, an error is returned. Issue ALTER DATABASE PARTITION
GROUP ADD DBPARTITIONNUM statement before running REDISTRIBUTE
DATABASE PARTITION GROUP command.

If a database partition, excluded from the target map, is in the database
partition group, that database partition will not be included in the partitioning.
Such a database partition can be dropped using ALTER DATABASE
PARTITION GROUP DROP DBPARTITIONNUM statement either before or
after the REDISTRIBUTE DATABASE PARTITION GROUP command.

CONTINUE
Continues a previously failed or stopped REDISTRIBUTE DATABASE PARTITION
GROUP operation. If none occurred, an error is returned.

ABORT
Aborts a previously failed or stopped REDISTRIBUTE DATABASE PARTITION GROUP
operation. If none occurred, an error is returned.

ADD

DBPARTITIONNUM n

TO m

n or n TO m specifies a list or lists of database partition numbers which are
to be added into the database partition group. Any specified partition must
not already be defined in the database partition group (SQLSTATE 42728).
This is equivalent to executing the ALTER DATABASE PARTITION
GROUP statement with ADD DBPARTITIONNUM clause specified.

DBPARTITIONNUMS n

TO m

n or n TO m specifies a list or lists of database partition numbers which are
to be added into the database partition group. Any specified partition must
not already be defined in the database partition group (SQLSTATE 42728).
This is equivalent to executing the ALTER DATABASE PARTITION
GROUP statement with ADD DBPARTITIONNUM clause specified.

Note: When a database partition is added using this option, containers for
table spaces are based on the containers of the corresponding table space
on the lowest numbered existing partition in the database partition group.
If this would result in a naming conflict among containers, which could
happen if the new partitions are on the same physical machine as existing
containers, this option should not be used. Instead, the ALTER DATABASE
PARTITION GROUP statement should be used with the WITHOUT
TABLESPACES option before issuing the REDISTRIBUTE DATABASE PARTITION
GROUP command. Table space containers can then be created manually
specifying appropriate names.

DROP

Chapter 4. ADMIN_CMD procedure and associated routines 151

DBPARTITIONNUM n

TO m

n or n TO m specifies a list or lists of database partition numbers which are
to be dropped from the database partition group. Any specified partition
must already be defined in the database partition group (SQLSTATE
42729). This is equivalent to executing the ALTER DATABASE PARTITION
GROUP statement with the DROP DBPARTITIONNUM clause specified.

DBPARTITIONNUMS n

TO m

n or n TO m specifies a list or lists of database partition numbers which are
to be dropped from the database partition group. Any specified partition
must already be defined in the database partition group (SQLSTATE
42729). This is equivalent to executing the ALTER DATABASE PARTITION
GROUP statement with the DROP DBPARTITIONNUM clause specified.

TABLE tablename
Specifies a table order for redistribution processing.

ONLY
If the table order is followed by the ONLY keyword (which is the default),
then, only the specified tables will be redistributed. The remaining tables
can be later processed by REDISTRIBUTE CONTINUE commands. This is the
default.

FIRST
If the table order is followed by the FIRST keyword, then, the specified
tables will be redistributed with the given order and the remaining tables
in the database partition group will be redistributed with random order.

EXCLUDE tablename
Specifies tables to omit from redistribution processing. For example, you can
temporarily omit a table until you can configure it to meet the requirements for
data redistribution. The omitted tables can be later processed by REDISTRIBUTE
CONTINUE commands. This command parameter is available in DB2 Version 9.7
Fix Pack 5 and later fix packs.

STOP AT local-isotime
When this option is specified, before beginning data redistribution for each
table, the local-isotime is compared with the current local timestamp. If the
specified local-isotime is equal to or earlier than the current local timestamp, the
utility stops with a warning message. Data redistribution processing of tables
in progress at the stop time will complete without interruption. No new data
redistribution processing of tables begins. The unprocessed tables can be
redistributed using the CONTINUE option. This local-isotime value is specified as a
time stamp, a 7-part character string that identifies a combined date and time.
The format is yyyy-mm-dd-hh.mm.ss.nnnnnn (year, month, day, hour, minutes,
seconds, microseconds) expressed in local time.

DATA BUFFER n
Specifies the number of 4 KB pages to use as buffered space for transferring
data within the utility. This command parameter can be used only when the
NOT ROLLFORWARD RECOVERABLE parameter is also specified.

If the value specified is lower than the minimum supported value, the
minimum value is used and no warning is returned. If a DATA BUFFER value is
not specified, an intelligent default is calculated by the utility at runtime at the

152 Administrative Routines and Views

beginning of processing each table. Specifically, the default is to use 50% of the
memory available in the utility heap at the time redistribution of the table
begins and to take into account various table properties as well.

This memory is allocated directly from the utility heap, whose size can be
modified through the util_heap_sz database configuration parameter.
Beginning in version 9.5, the value of the DATA BUFFER parameter of the
REDISTRIBUTE DATABASE PARTITION GROUP command can temporarily exceed
util_heap_sz if more memory is available in the system.

INDEXING MODE
Specifies how indexes are maintained during redistribution. This command
parameter can be used only when the NOT ROLLFORWARD RECOVERABLE parameter
is also specified.

Valid values are:

REBUILD
Indexes will be rebuilt from scratch. Indexes do not have to be valid to use
this option. As a result of using this option, index pages will be clustered
together on disk.

DEFERRED
Redistribute will not attempt to maintain any indexes. Indexes will be
marked as needing a refresh. The first access to such indexes might force a
rebuild, or indexes might be rebuilt when the database is restarted.

Note: For non-MDC tables, if there are invalid indexes on the tables, the
REDISTRIBUTE DATABASE PARTITION GROUP command automatically rebuilds
them if you do not specify INDEXING MODE DEFERRED. For an MDC table,
even if you specify INDEXING MODE DEFERRED, a composite index that is
invalid is rebuilt before table redistribution begins because the utility needs
the composite index to process an MDC table.

PRECHECK
Verifies that the database partition group can be redistributed. This command
parameter is available in DB2 Version 9.7 Fix Pack 5 and later fix packs. It can
be used only when the NOT ROLLFORWARD RECOVERABLE command parameter is
also specified.

YES
This is the default value. The redistribution operation begins only if the
verification completes successfully. If the verification fails, the command
terminates and returns an error message related to the first check that
failed.

NO The redistribution operation begins immediately; no verification occurs.

ONLY
The command terminates after performing the verification; no
redistribution occurs. By default it will not quiesce the database. If the
QUIESCE DATABASE command parameter was set to YES or defaulted to a
value of YES, the database remains quiesced. To restore connectivity to the
database, perform the redistribution operation or issue UNQUIESCE DATABASE
command.

QUIESCE DATABASE
Specifies to force all users off the database and put it into a quiesced mode.
This command parameter is available in DB2 Version 9.7 Fix Pack 5 and later
fix packs. It can be used only when the NOT ROLLFORWARD RECOVERABLE
command parameter is also specified.

Chapter 4. ADMIN_CMD procedure and associated routines 153

YES
This is the default value. Only users with SYSADM, SYSMAINT, or
SYSCTRL authority or users who have been granted QUIESCE_CONNECT
authority will be able to access the database or its objects. Once the
redistribution completes successfully, the database is unquiesced.

NO The redistribution operation does not quiesce the database; no users are
forced off the database.

For more information, refer to the QUIESCE DATABASE command.

STATISTICS
Specifies that the utility should collect statistics for the tables that have a
statistics profile. This command parameter can be used only when the NOT
ROLLFORWARD RECOVERABLE parameter is also specified.

Specifying this option is more efficient than separately issuing the RUNSTATS
command after the data redistribution is completed.

USE PROFILE
Statistics will be collected for the tables with a statistics profile. For tables
without a statistics profile, nothing will be done. This is the default.

NONE
Statistics will not be collected for tables.

Consequences of using the NOT ROLLFORWARD RECOVERABLE option

When the REDISTRIBUTE DATABASE PARTITION GROUP command is issued and the NOT
ROLLFORWARD RECOVERABLE option is specified, a minimal logging strategy is used
that minimizes the writing of log records for each moved row. This type of logging
is important for the usability of the redistribute operation since an approach that
fully logs all data movement could, for large systems, require an impractical
amount of active and permanent log space and would generally have poorer
performance characteristics. It is important, however, for users to be aware that as
a result of this minimal logging model, the REDISTRIBUTE DATABASE PARTITION
GROUP command is not roll-forward recoverable. This means that any operation that
results in the database rolling forward through a redistribute operation results in
all tables touched by the redistribution operation being left in the UNAVAILABLE
state. Such tables can only be dropped, which means there is no way to recover the
data in these tables. This is why, for recoverable databases, the REDISTRIBUTE
DATABASE PARTITION GROUP utility when issued with the NOT ROLLFORWARD
RECOVERABLE option puts all table spaces it touches into the BACKUP PENDING
state, forcing the user to back up all redistributed table spaces at the end of a
successful redistribute operation. With a backup taken after the redistribution
operation, the user should not have a need to roll-forward through the redistribute
operation itself.

There is one important consequence of the redistribute utility's lack of roll-forward
recoverability of which the user should be aware: If the user chooses to allow
updates to be made against tables in the database (even tables outside the database
partition group being redistributed) while the redistribute operation is running,
including the period at the end of redistribute where the table spaces touched by
redistribute are being backed up by the user, such updates can be lost in the event
of a serious failure, for example, a database container is destroyed. The reason that
such updates can be lost is that the redistribute operation is not roll-forward
recoverable. If it is necessary to restore the database from a backup taken before
the redistribution operation, then it will not be possible to roll forward through the

154 Administrative Routines and Views

logs in order to replay the updates that were made during the redistribution
operation without also rolling forward through the redistribute operation which, as
was described above, leaves the redistributed tables in the UNAVAILABLE state.
Thus, the only thing that can be done in this situation is to restore the database
from the backup taken before the redistribution without rolling forward. Then the
redistribute operation can be performed again. Unfortunately, all the updates that
occurred during the original redistribute operation are lost.

The importance of this point cannot be overemphasized. In order to be certain that
there will be no lost updates during a redistribution operation, one of the
following must be true:
v The user avoids making updates during the operation of the REDISTRIBUTE

DATABASE PARTITION GROUP command, including the period after the command
finishes where the affected table spaces are being backed up.

v The redistribution operation is performed with the QUIESCE DATABASE command
parameter set to YES. You must still ensure that any applications or users that are
allowed to access the quiesced database are not making updates.

v Updates that are applied during the redistribute operation come from a
repeatable source, meaning that they can be applied again at any time. For
example, if the source of updates is data that is stored in a file and the updates
are applied during batch processing, then clearly even in the event of a failure
requiring a database restore, the updates would not be lost since they could
simply be applied again at any time.

With respect to allowing updates to the database during the redistribution
operation, the user must decide whether such updates are appropriate or not for
their scenario based on whether or not the updates can be repeated after a
database restore, if necessary.

Note: Not every failure during operation of the REDISTRIBUTE DATABASE PARTITION
GROUP command results in this problem. In fact, most do not. The REDISTRIBUTE
DATABASE PARTITION GROUP command is fully restartable, meaning that if the utility
fails in the middle of its work, it can be easily continued or aborted with the
CONTINUE or ABORT options. The failures mentioned above are failures that require
the user to restore from the backup taken prior to the redistribute operation.

Examples

Redistribute database partition group DBPG_1 by providing the current data
distribution through a data distribution file, distfile_for_dbpg_1, and moving
data onto two new database partitions, 6 and 7.
CALL SYSPROC.ADMIN_CMD(’REDISTRIBUTE DATABASE PARTITION GROUP DBPG_1

USING DISTFILE /home/user1/data/distfile_for_dbpg_1
ADD DATABASE PARTITION (6 TO 7) ’)

Redistribute database partition group DBPG_2 such that:
v The redistribution is not roll-forward recoverable;
v Data is uniformly distributed across hash partitions;
v Indexes are rebuilt from scratch;
v Statistics are not collected;
v 180,000 4 KB pages are used as buffered space for transferring the data.

Chapter 4. ADMIN_CMD procedure and associated routines 155

CALL SYSPROC.ADMIN_CMD(’REDISTRIBUTE DATABASE PARTITION GROUP DBPG_2
NOT ROLLFORWARD RECOVERABLE
UNIFORM
INDEXING MODE REBUILD
DATA BUFFER 180000
STATISTICS NONE’)

In DB2 Version 9.7 Fix Pack 5 and later fix packs, this redistribution operation
would also quiesce the database and perform a precheck due to the default values
for the QUIESCE DATABASE and PRECHECK command parameters.

Usage notes
v Before starting a redistribute operation, ensure that the tables are in normal state

and not in "load pending" state or "reorg pending" state. Table states can be
checked by using the LOAD QUERY command.

v When the NOT ROLLFORWARD RECOVERABLE option is specified and the database is a
recoverable database, the first time the utility accesses a table space, it is put into
the BACKUP PENDING state. All the tables in that table space will become
read-only until the table space is backed-up, which can only be done when all
tables in the table space have finished being redistributed.

v When a redistribution operation is running, it produces an event log file
containing general information about the redistribution operation and
information such as the starting and ending time of each table processed. This
event log file is written to the server:
– The homeinst/sqllib/redist directory on Linux and UNIX operating systems,

using the following format for subdirectories and file name:
database-name.database-partition-group-name.timestamp.log.

– The DB2INSTPROF\instance\redist directory on Windows operating systems
(where DB2INSTPROF is the value of the DB2INSTPROF registry variable), using
the following format for subdirectories and file name: database-
name.database-partition-group-name.timestamp.log.

– The time stamp value is the time when the command was issued.
v This utility performs intermittent COMMITs during processing. This can cause

type 2 connections to receive an SQL30090N error.
v All packages having a dependency on a table that has undergone redistribution

are invalidated. It is recommended to explicitly rebind such packages after the
redistribute database partition group operation has completed. Explicit rebinding
eliminates the initial delay in the execution of the first SQL request for the
invalid package. The redistribute message file contains a list of all the tables that
have undergone redistribution.

v By default, the redistribute utility will update the statistics for those tables that
have a statistics profile. For the tables without a statistics profile, it is
recommended that you separately update the table and index statistics for these
tables by calling the db2Runstats API or by issuing the RUNSTATS command after
the redistribute operation has completed.

v Database partition groups containing replicated materialized query tables or
tables defined with DATA CAPTURE CHANGES cannot be redistributed.

v Redistribution is not allowed if there are user temporary table spaces with
existing declared temporary tables or created temporary tables in the database
partition group.

v Options such as INDEXING MODE are ignored on tables, on which they do not
apply, without warning. For example, INDEXING MODE will be ignored on tables
without indexes.

156 Administrative Routines and Views

v Command execution status is returned in the SQLCA resulting from the CALL
statement.

v The file referenced in USING DISTFILE distfilename or USING TARGETMAP
targetmapfilename, must refer to a file on the server.

v The REDISTRIBUTE DATABASE PARTITION GROUP command might fail (SQLSTATE
55071) if an add database partition server request is either pending or in
progress. This command might also fail (SQLSTATE 55077) if a new database
partition server is added online to the instance and not all applications are
aware of the new database partition server.

Compatibilities

Tables containing XML columns that use the DB2 Version 9.5 or earlier XML record
format cannot be redistributed. Use the ADMIN_MOVE_TABLE stored procedure
to migrate the table to the new format.

REORG INDEXES/TABLE command using the ADMIN_CMD
procedure

Reorganizes an index or a table.

You can reorganize all indexes defined on a table by rebuilding the index data into
unfragmented, physically contiguous pages. On a data partitioned table, you can
reorganize a specific nonpartitioned index on a partitioned table, or you can
reorganize all the partitioned indexes on a specific data partition.

If you specify the CLEANUP ONLY option of the index clause, cleanup is performed
without rebuilding the indexes. This command cannot be used against indexes on
declared temporary tables or created temporary tables (SQLSTATE 42995).

The table option reorganizes a table by reconstructing the rows to eliminate
fragmented data, and by compacting information. On a partitioned table, you can
reorganize a single partition.

Scope

This command affects all database partitions in the database partition group.

Authorization

One of the following:
v SYSADM
v SYSCTRL
v SYSMAINT
v DBADM
v SQLADM
v CONTROL privilege on the table.

Required connection

Database

Chapter 4. ADMIN_CMD procedure and associated routines 157

Command syntax

�� REORG �

� TABLE table-name Table clause
INDEXES ALL FOR TABLE table-name Index clause
INDEX index-name

FOR TABLE table-name
ALLOW WRITE ACCESS

TABLE mdc-table-name RECLAIM EXTENTS ONLY
ALLOW READ ACCESS
ALLOW NO ACCESS

�

�
Table partitioning clause Database partition clause

��

Table clause:

INDEX index-name
�

�
KEEPDICTIONARY

ALLOW NO ACCESS USE tbspace-name INDEXSCAN LONGLOBDATA RESETDICTIONARY
ALLOW READ ACCESS USE longtbspace-name

ALLOW WRITE ACCESS START
INPLACE

ALLOW READ ACCESS NOTRUNCATE TABLE RESUME
STOP
PAUSE

Index clause:

ALLOW NO ACCESS
ALLOW WRITE ACCESS
ALLOW READ ACCESS

ALL
CLEANUP ONLY

PAGES
CONVERT

Table partitioning clause:

ON DATA PARTITION partition-name

Database partition clause:

ON �

�

,

DBPARTITIONNUM (db-partition-number1)
DBPARTITIONNUMS TO db-partition-number2

ALL DBPARTITIONNUMS
,

EXCEPT DBPARTITIONNUM (db-partition-number1)
DBPARTITIONNUMS TO db-partition-number2

Command parameters

INDEXES ALL FOR TABLE table-name
Specifies the table whose indexes are to be reorganized. The table can be in
a local or a remote database.

INDEX index-name
Specifies an individual index to be reorganized on a data partitioned table.

158 Administrative Routines and Views

Reorganization of individual indexes are only supported for nonpartitioned
indexes on a partitioned table. This parameter is not supported for block
indexes.

FOR TABLE table-name
Specifies the name of the table on which the nonpartitioned index
index-name is created. This parameter is optional, given that index names
are unique across the database.

ALLOW NO ACCESS
For REORG INDEXES, specifies that no other users can access the
table while the indexes are being reorganized. If the ON DATA
PARTITION clause is specified for a partitioned table, only the
specified partition is restricted to the access mode level.

For REORG INDEX, specifies that no other users can access the table
while the nonpartitioned index is being reorganized.

ALLOW READ ACCESS
For REORG INDEXES, specifies that other users can have read-only
access to the table while the indexes are being reorganized. ALLOW
READ ACCESS mode is not supported for REORG INDEXES of a
partitioned table unless the CLEANUP ONLY option or ON DATA
PARTITION clause is specified. If the ON DATA PARTITION clause is
specified for a partitioned table, only the specified partition is
restricted to the access mode level.

For REORG INDEX, specifies that can have read-only access to the
table while the nonpartitioned index is being reorganized.

ALLOW WRITE ACCESS
For REORG INDEXES, specifies that other users can read from and
write to the table while the indexes are being reorganized. ALLOW
WRITE ACCESS mode is not supported for a partitioned table unless
the CLEANUP ONLY option or ON DATA PARTITION clause is specified.
If the ON DATA PARTITION clause is specified for a partitioned table,
only the specified partition is restricted to the access mode level.

For REORG INDEX, specifies that can read from and write to the table
while the nonpartitioned index is being reorganized.

ALLOW WRITE ACCESS mode is not supported for multidimensional
clustering (MDC) tables or extended indexes unless the CLEANUP
ONLY option is specified.

The following items apply for a data partitioned table when the ON DATA
PARTITION clause is specified with the REORG INDEXES ALL command:
v Only the specified data partition is restricted to the access mode level.

Users are allowed to read from and write to the other partitions of the
table while the partitioned indexes of a specified partition are being
reorganized.
The following table lists the access modes supported and the concurrent
access allowed on other partitions of the table when the ON DATA
PARTITION clause is specified:

Chapter 4. ADMIN_CMD procedure and associated routines 159

Table 61. Access modes supported and concurrent access allowed when the ON DATA
PARTITION clause is specified with REORG INDEXES ALL

Access mode
Concurrent access allowed
on the specified partition

Concurrent access allowed
on other partitions

ALLOW NO ACCESS No access Read and write access

ALLOW READ ACCESS Read on the partition up
until index is updated

Read and write access

ALLOW WRITE ACCESS Read and write access on the
partition up until index is
updated

Read and write access

v Only the partitioned indexes for the specified partition are reorganized.
The nonpartitioned indexes on the partitioned table are not reorganized.
If there are any nonpartitioned indexes on the table marked "invalid" or
"for rebuild", all indexes marked "invalid" or "for rebuild" are rebuilt
before reorganization. Otherwise, only the partitioned indexes on the
specified partition are reorganized or rebuilt if the index object is
marked "invalid" or "for rebuild".

v Only partitioned indexes for the specified partition are cleaned when the
CLEANUP ONLY option is also specified.

The following table lists the supported access modes for index
reorganization of partitioned and nonpartitioned tables:

Table 62. Supported access modes for index reorganization on partitioned and nonpartitioned table

Command Table type
Table partitioning

clause

Additional
parameters

specified for
index clause Supported access mode

REORG INDEXES Nonpartitioned table Not applicable Any ALLOW NO ACCESS,
ALLOW READ ACCESS1,
ALLOW WRITE ACCESS

REORG INDEX Partitioned table Not applicable Any ALLOW READ ACCESS1

REORG INDEXES Partitioned table None None specified ALLOW NO ACCESS 1

REORG INDEXES Partitioned table ON DATA PARTITION None specified ALLOW NO ACCESS,
ALLOW READ ACCESS1,
ALLOW WRITE ACCESS

REORG INDEXES Partitioned table With or without the
ON DATA PARTITION
clause

CLEANUP ONLY
specified

ALLOW NO ACCESS,
ALLOW READ ACCESS1,
ALLOW WRITE ACCESS

Note:

1. Default mode when an access clause is not specified.

CLEANUP ONLY
When CLEANUP ONLY is requested, a cleanup rather than a full
reorganization will be done. The indexes will not be rebuilt and
any pages freed up will be available for reuse by indexes defined
on this table only.

The CLEANUP ONLY PAGES option will search for and free committed
pseudo empty pages. A committed pseudo empty page is one
where all the keys on the page are marked as deleted and all these
deletions are known to be committed. The number of pseudo

160 Administrative Routines and Views

empty pages in an indexes can be determined by running RUNSTATS
and looking at the NUM EMPTY LEAFS column in
SYSCAT.INDEXES. The PAGES option will clean the NUM EMPTY
LEAFS if they are determined to be committed.

The CLEANUP ONLY ALL option will free committed pseudo empty
pages, as well as remove committed pseudo deleted keys from
pages that are not pseudo empty. This option will also try to merge
adjacent leaf pages if doing so will result in a merged leaf page
that has at least PCTFREE free space on the merged leaf page,
where PCTFREE is the percent free space defined for the index at
index creation time. The default PCTFREE is ten percent. If two
pages can be merged, one of the pages will be freed. The number
of pseudo deleted keys in an index , excluding those on pseudo
empty pages, can be determined by running RUNSTATS and then
selecting the NUMRIDS DELETED from SYSCAT.INDEXES. The
ALL option will clean the NUMRIDS DELETED and the NUM
EMPTY LEAFS if they are determined to be committed.

ALL Specifies that indexes should be cleaned up by removing
committed pseudo deleted keys and committed pseudo empty
pages.

PAGES Specifies that committed pseudo empty pages should be removed
from the index tree. This will not clean up pseudo deleted keys on
pages that are not pseudo empty. Since it is only checking the
pseudo empty leaf pages, it is considerably faster than using the
ALL option in most cases.

CONVERT
Converts type-1 indexes to type-2 index. If the index is already
type 2, this option has no effect.

In Version 9.7, type-1 indexes are discontinued and all indexes that
are created are type-2 indexes. As a result, the CONVERT option is
deprecated.

All indexes created prior to Version 8 are type-1 indexes. Prior to
Version 9.7, all indexes created by Version 8 and later are type-2
indexes, except when you create an index on a table that already
has a type-1 index. In this case, the new index was also of type 1.
This is no longer the case in Version 9.7 because all indexes created
are type 2.

Use the ALLOW READ ACCESS or ALLOW WRITE ACCESS option to allow other
transactions either read-only or read-write access to the table while the
indexes are being reorganized. While ALLOW READ ACCESS and ALLOW WRITE
ACCESS allow access to the table, during the period in which the
reorganized copies of the indexes are made available, no access to the table
is allowed.

TABLE mdc-table-name RECLAIM EXTENTS ONLY
Specifies the multidimensional clustering (MDC) table to reorganize to
reclaim extents that are not being used. The name or alias in the form:
schema.table-name can be used. The schema is the user name under which
the table was created. If you omit the schema name, the default schema is
assumed.

For REORG TABLE RECLAIM EXTENTS ONLY when the ON DATA PARTITION
clause is specified, the access clause only applies to the named partition.

Chapter 4. ADMIN_CMD procedure and associated routines 161

Users can read from and write to the rest of the table while the extents on
the specified partition are being reclaimed. This situation also applies to
the default access levels.

ALLOW NO ACCESS
For REORG TABLE RECLAIM EXTENTS ONLY, specifies that no other
users can access the table while the extents are being reclaimed.

ALLOW READ ACCESS
For REORG TABLE RECLAIM EXTENTS ONLY, specifies that other users
can have read-only access to the table while the extents are being
reclaimed.

ALLOW WRITE ACCESS
For REORG TABLE RECLAIM EXTENTS ONLY, specifies that other users
can read from and write to the table while the extents are being
reclaimed.

TABLE table-name
Specifies the table to reorganize. The table can be in a local or a remote
database. The name or alias in the form: schema.table-name can be used. The
schema is the user name under which the table was created. If you omit the
schema name, the default schema is assumed.

For typed tables, the specified table name must be the name of the
hierarchy's root table.

You cannot specify an index for the reorganization of a multidimensional
clustering (MDC) table. In place reorganization of tables cannot be used for
MDC tables.

When the ON DATA PARTITION clause is specified for a table reorganization
of a data partitioned table, only the specified data partition is reorganized:
v If there are no nonpartitioned indexes (except system-generated XML

path indexes) defined on the table, the access mode applies only to the
specified partition, users are allowed to read from and write to the other
partitions of the table.

v If there are nonpartitioned indexes defined on the table (excluding
system-generated XML path indexes), the ALLOW NO ACCESS mode is the
default and only supported access mode. In this case, the table is placed
in ALLOW NO ACCESS mode. If ALLOW READ ACCESS is specified, SQL1548N
is returned (SQLSTATE 5U047).

Table 63. Supported access mode for table reorganization on nonpartitioned and partitioned table

Command Table type Table partitioning clause Supported access mode

REORG TABLE Nonpartitioned table Not applicable ALLOW NO ACCESS,
ALLOW READ ACCESS1

REORG TABLE Partitioned table Not specified ALLOW NO ACCESS1

REORG TABLE (There are no
indexes or only partitioned
indexes defined on the table.)

Partitioned table ON DATA PARTITION ALLOW NO ACCESS,
ALLOW READ ACCESS1

REORG TABLE (there are
nonpartitioned indexes
defined on the table,
excluding system-generated
XML path indexes.)

Partitioned table ON DATA PARTITION ALLOW NO ACCESS1

162 Administrative Routines and Views

Note:

1. Default mode when an access clause is not specified.

For a data partitioned table, a table reorganization rebuilds the
nonpartitioned indexes and partitioned indexes on the table after
reorganizing the table. If the ON DATA PARTITION clause is used to
reorganize a specific data partition of a data partitioned table, a table
reorganization rebuilds the nonpartitioned indexes and partitioned indexes
only for the specified partition.

INDEX index-name
Specifies the index to use when reorganizing the table. If you do
not specify the fully qualified name in the form: schema.index-name,
the default schema is assumed. The schema is the user name under
which the index was created. The database manager uses the index
to physically reorder the records in the table it is reorganizing.

For an in place table reorganization, if a clustering index is defined
on the table and an index is specified, it must be the clustering
index. If the in place option is not specified, any index specified
will be used. If you do not specify the name of an index, the
records are reorganized without regard to order. If the table has a
clustering index defined, however, and no index is specified, then
the clustering index is used to cluster the table. You cannot specify
an index if you are reorganizing an MDC table.

If a table reorganization uses both the INDEX and ON DATA
PARTITION clauses, only the specified partition is reorganized using
the index index-name.

ALLOW NO ACCESS
Specifies that no other users can access the table while the table is
being reorganized.

The ALLOW NO ACCESS mode is the default and only supported
access mode when reorganizing a partitioned table without the ON
DATA PARTITION clause.

If the ON DATA PARTITION clause is specified for a data partitioned
table, only the specified data partition is reorganized:
v If there are no nonpartitioned indexes defined on the table

(except system-generated XML path indexes), only the specified
partition is restricted to the ALLOW NO ACCESS mode. Users are
allowed to read from and write to the other partitions of the
table.

v If there are nonpartitioned indexes defined on the table (except
system-generated XML path indexes), the ALLOW NO ACCESS mode
is the default and only supported access mode. In this case, the
table is placed in ALLOW NO ACCESS mode.

ALLOW READ ACCESS
Allow only read access to the table during reorganization.

The ALLOW READ ACCESS mode is the default mode for a
nonpartitioned table.

If the ON DATA PARTITION clause is specified for a data partitioned
table, only the specified data partition is reorganized:
v If there are no nonpartitioned indexes defined on the table

(except system-generated XML path indexes), the ALLOW READ

Chapter 4. ADMIN_CMD procedure and associated routines 163

ACCESS mode is the default mode and only the specified partition
is restricted to the access mode level. Users are allowed to read
from and write to the other partitions of the table.

v If there are nonpartitioned indexes defined on the table (except
system-generated XML path indexes), the ALLOW READ ACCESS
mode is not supported. If ALLOW READ ACCESS is specified in this
case, SQL1548N is returned (SQLSTATE 5U047)

INPLACE
Reorganizes the table while permitting user access.

In place table reorganization is allowed only on nonpartitioned and
non-MDC tables with type-2 indexes, but without extended
indexes and with no indexes defined over XML columns in the
table. In place table reorganization can only be performed on tables
that are at least three pages in size.

In place table reorganization takes place asynchronously, and might
not be effective immediately.

ALLOW READ ACCESS
Allow only read access to the table during reorganization.

ALLOW WRITE ACCESS
Allow write access to the table during reorganization. This
is the default behavior.

NOTRUNCATE TABLE
Do not truncate the table after in place reorganization.
During truncation, the table is S-locked.

START Start the in place REORG processing. Because this is the
default, this keyword is optional.

STOP Stop the in place REORG processing at its current point.

PAUSE Suspend or pause in place REORG for the time being.

RESUME Continue or resume a previously paused in place table
reorganization. When an online reorganization is resumed
and you want the same options as when the reorganization
was paused, you must specify those options again while
resuming.

USE tbspace-name
Specifies the name of a system temporary table space in which to
store a temporary copy of the table being reorganized. If you do
not provide a table space name, the database manager stores a
working copy of the table in the table spaces that contain the table
being reorganized.

For an 8 KB, 16 KB, or 32 KB table object, if the page size of the
system temporary table space that you specify does not match the
page size of the table spaces in which the table data resides, the
DB2 database product will try to find a temporary table space of
the correct size of the LONG/LOB objects. Such a table space must
exist for the reorganization to succeed.

For partitioned tables, the temporary table space is used as
temporary storage for the reorganization of data partitions in the
table. Reorganization of the entire partitioned table reorganizes a
single data partition at a time. The temporary table space must be

164 Administrative Routines and Views

able to hold the largest data partition in the table, and not the
entire table. When the ON DATA PARTITION clause is specified, the
temporary table space must be able to hold the specified partition.

If you do not supply a table space name for a partitioned table, the
table space where each data partition is located is used for
temporary storage of that data partition. There must be enough
free space in each data partition's table space to hold a copy of the
data partition.

INDEXSCAN
For a clustering REORG an index scan will be used to re-order table
records. Reorganize table rows by accessing the table through an
index. The default method is to scan the table and sort the result to
reorganize the table, using temporary table spaces as necessary.
Even though the index keys are in sort order, scanning and sorting
is typically faster than fetching rows by first reading the row
identifier from an index.

LONGLOBDATA
Long field and LOB data are to be reorganized.

This is not required even if the table contains long or LOB
columns. The default is to avoid reorganizing these objects because
it is time consuming and does not improve clustering. However,
running a reorganization with the LONGLOBDATA option on tables
with XML columns will reclaim unused space and thereby reduce
the size of the XML storage object.

This parameter is required when converting existing LOB data into
inlined LOB data.

USE longtbspace-name
This is an optional parameter, which can be used to specify the
name of a temporary table space to be used for rebuilding long
data. If no temporary table space is specified for either the table
object or for the long objects, the objects will be constructed in the
table space they currently reside. If a temporary table space is
specified for the table but this parameter is not specified, then the
table space used for base reorg data will be used, unless the page
sizes differ. In this situation, the DB2 database system will attempt
to choose a temporary container of the appropriate page size to
create the long objects in.

If USE longtbspace-name is specified, USE tbspace-name must also be
specified. If it is not, the longtbspace-name argument is ignored.

KEEPDICTIONARY
If the COMPRESS attribute for the table is YES and the table has a
compression dictionary then no new dictionary is built. All the
rows processed during reorganization are subject to compression
using the existing dictionary. If the COMPRESS attribute is YES and a
compression dictionary doesn't exist for the table, a dictionary will
only be created (and the table compressed) in this scenario if the
table is of a certain size (approximately 1 to 2 MB) and sufficient
data exists within this table. If, instead, you explicitly state REORG
RESETDICTIONARY, then a dictionary is built as long as there is at
least 1 row in the table. If the COMPRESS attribute for the table is NO
and the table has a compression dictionary, then reorg processing
will preserve the dictionary and all the rows in the newly

Chapter 4. ADMIN_CMD procedure and associated routines 165

reorganized table will be in noncompressed format. It is not
possible to compress some data such as LOB data not stored in the
base table row.

When the LONGLOBDATA option is not specified, only the table row
data is reorganized. The following table describes the behavior of
KEEPDICTIONARY syntax in REORG command when the LONGLOBDATA
option is not specified.

Table 64. REORG KEEPDICTIONARY

Compress Dictionary Exists Result; outcome

Y Y Preserve dictionary; rows compressed.

Y N Build dictionary; rows compressed

N Y Preserve dictionary; all rows uncompressed

N N No effect; all rows uncompressed

The following table describes the behavior of KEEPDICTIONARY
syntax in REORG command when the LONGLOBDATA option is
specified.

Table 65. REORG KEEPDICTIONARY when LONGLOBDATA option is specified.

Compress

Table row
data
dictionary
exists

XML storage
object
dictionary
exists1

Compression
dictionary Data compression

Y Y Y Preserve dictionaries. Existing data is
compressed. New data
will be compressed.

Y Y N Preserve table row
dictionary and create
an XML storage object
dictionary.

Existing data is
compressed. New data
will be compressed.

Y N Y Create table row
dictionary and
preserve the XML
dictionary.

Existing data is
compressed. New data
will be compressed.

Y N N Create table row and
XML dictionaries.

Existing data is
compressed. New data
will be compressed.

N Y Y Preserve table row and
XML dictionaries.

Table data is
uncompressed. New
data will be not be
compressed.

N Y N Preserve table row
dictionary.

Table data is
uncompressed. New
data will be not be
compressed.

N N Y Preserve XML
dictionary.

Table data is
uncompressed. New
data will be not be
compressed.

166 Administrative Routines and Views

Table 65. REORG KEEPDICTIONARY when LONGLOBDATA option is
specified. (continued)

Compress

Table row
data
dictionary
exists

XML storage
object
dictionary
exists1

Compression
dictionary Data compression

N N N No effect. Table data is
uncompressed. New
data will be not be
compressed.

Note:

1. A compression dictionary can be created for the XML storage
object of a table only if the XML columns are added to the table
in DB2 V9.7 or later, or if the table is migrated using the
ONLINE_TABLE_MOVE stored procedure.

For any reinitialization or truncation of a table (such as for a
replace operation), if the compress attribute for the table is NO, the
dictionary is discarded if one exists. Conversely, if a dictionary
exists and the compress attribute for the table is YES then a
truncation will save the dictionary and not discard it. The
dictionary is logged in its entirety for recovery purposes and for
future support with data capture changes (that is, replication).

RESETDICTIONARY
If the COMPRESS attribute for the table is YES then a new row
compression dictionary is built. All the rows processed during
reorganization are subject to compression using this new
dictionary. This dictionary replaces any previous dictionary. If the
COMPRESS attribute for the table is NO and the table does have an
existing compression dictionary then reorg processing will remove
the dictionary and all rows in the newly reorganized table will be
in noncompressed format. It is not possible to compress some data
such as LOB data not stored in the base table row.

If the LONGLOBDATA option is not specified, only the table row data
is reorganized. The following table describes the behavior of
RESETDICTIONARY syntax in REORG command when the LONGLOBDATA
option is not specified.

Table 66. REORG RESETDICTIONARY

Compress Dictionary Exists Result; outcome

Y Y Build new dictionary*; rows compressed. If
DATA CAPTURE CHANGES option is specified
on the CREATE TABLE or ALTER TABLE
statements, the current dictionary is kept
(referred to as the historical compression
dictionary).

Y N Build new dictionary; rows compressed

N Y Remove dictionary; all rows uncompressed. If
the DATA CAPTURE NONE option is specified
on the CREATE TABLE or ALTER TABLE
statements, the historical compression dictionary is
also removed for the specified table.

N N No effect; all rows uncompressed

Chapter 4. ADMIN_CMD procedure and associated routines 167

* - If a dictionary exists and the compression attribute is enabled
but there currently isn't any data in the table, the RESETDICTIONARY
operation will keep the existing dictionary. Rows which are smaller
in size than the internal minimum record length and rows which
do not demonstrate a savings in record length when an attempt is
made to compress them are considered "insufficient" in this case.

The following table describes the behavior of RESETDICTIONARY
syntax in REORG command when the LONGLOBDATA option is
specified.

Table 67. REORG RESETDICTIONARY when LONGLOBDATA option is specified.

Compress

Table row
data
dictionary
exists

XML storage
object
dictionary
exists1 Data dictionary Data compression

Y Y Y Build dictionaries2 3. Existing data is
compressed. New data
will be compressed.

Y Y N Build new table row
dictionary and create a
new XML dictionary3.

Existing data is
compressed. New data
will be compressed.

Y N Y Create table row data
dictionary and build a
new XML dictionary.

Existing data is
compressed. New data
will be compressed.

Y N N Create dictionaries. Existing data is
compressed. New data
will be compressed.

N Y Y Remove dictionaries.
Existing and new data
is not compressed.

Existing table data is
uncompressed. New
data will be not be
compressed.

N Y N Remove table row
dictionary. All data is
uncompressed.

Existing table data is
uncompressed. New
data will be not be
compressed.

N N Y Remove XML storage
object dictionary.

Existing table data is
uncompressed. New
data will be not be
compressed.

N N N No effect. Existing table data is
uncompressed. New
data will be not be
compressed.

Note:

1. A compression dictionary can be created for the XML storage
object of a table only if the XML columns are added to the table
in DB2 V9.7 or later, or if the table is migrated using an online
table move.

2. If a dictionary exists and the compression attribute is enabled
but there currently isn't any data in the table, the
RESETDICTIONARY operation will keep the existing dictionary.

168 Administrative Routines and Views

Rows which are smaller in size than the internal minimum
record length and rows which do not demonstrate a savings in
record length when an attempt is made to compress them are
considered insufficient in this case.

3. If DATA CAPTURE CHANGES option is specified on the
CREATE TABLE or ALTER TABLE statements, the current data
dictionary is kept (referred to as the historical compression
dictionary).

ON DATA PARTITION partition-name
For data partitioned tables, specifies the data partition for the
reorganization.

For DB2 V9.7 Fix Pack 1 and later releases, the clause can be used with the
REORG INDEXES ALL command to reorganize the partitioned indexes on a
specific partition and the REORG TABLE command to reorganize data of a
specific partition.

When using the clause with a REORG TABLE or REORG INDEXES ALL command
on a partitioned table, the reorganization fails and returns SQL2222N with
reason code 1 if the partition partition-name does not exist for the specified
table. The reorganization fails and returns SQL2222N with reason code 3 if
the partition partition-name is in the attached or detached state.

If the REORG INDEX command is issued with the ON DATA PARTITION clause,
the reorganization fails and returns SQL2222N with reason code 2.

The REORG TABLE command fails and returns SQL1549N (SQLSTATE 5U047)
if the partitioned table is in the reorg pending state and there are
nonpartitioned indexes defined on the table.

ALL DBPARTITIONNUMS
Specifies that operation is to be done on all database partitions specified in
the db2nodes.cfg file. This is the default if a node clause is not specified.

EXCEPT Specifies that operation is to be done on all database partitions specified in
the db2nodes.cfg file, except those specified in the node list.

ON DBPARTITIONNUM | ON DBPARTITIONNUMS
Perform operation on a set of database partitions.

db-partition-number1
Specifies a database partition number in the database partition list.

db-partition-number2
Specifies the second database partition number, so that all database
partitions from db-partition-number1 up to and including
db-partition-number2 are included in the database partition list.

Example

Reorganize the tables in a database partition group consisting of database
partitions 1, 3 and 4.
CALL SYSPROC.ADMIN_CMD (’REORG TABLE employee

INDEX empid ON DBPARTITIONNUM (1,3,4)’)

Usage notes

Restrictions:

Chapter 4. ADMIN_CMD procedure and associated routines 169

v Command execution status is returned in the SQLCA resulting from the CALL
statement.

v The REORG utility issue a COMMIT statement at the beginning of the operation
which, in the case of Type 2 connections, causes the procedure to return
SQL30090N with reason code 2.

v The REORG utility does not support the use of nicknames.
v The REORG TABLE command is not supported for declared temporary tables or

created temporary tables.
v The REORG TABLE command cannot be used on views.
v Reorganization of a table is not compatible with range-clustered tables, because

the range area of the table always remains clustered.
v REORG TABLE cannot be used on a partitioned table in a DMS table space while

an online backup of ANY table space in which the table resides, including LOBs
and indexes, is being performed.

v REORG TABLE cannot use an index that is based on an index extension.
v If a table is in reorg pending state, an inplace reorg is not allowed on the table.
v Concurrent table reorganization sharing the same temporary DMS table space is

not supported.
v Before running a reorganization operation against a table to which event

monitors write, you need to deactivate the event monitors on that table.
v For data partitioned tables:

– The table must have an ACCESS_MODE in SYSCAT.TABLES of Full Access.
– Reorganization skips data partitions that are in a restricted state due to an

attach or detach operation. If the ON DATA PARTITION clause is specified, that
partition must be fully accessible.

– If an error occurs during table reorganization, some indexes or index
partitions might be left invalid. The nonpartitioned indexes of the table will
be marked invalid if the reorganization has reached or passed the replace
phase for the first data partition. The index partitions for any data partition
that has already reached or passed the replace phase will be marked invalid.
Indexes will be rebuilt on the next access to the table or data partition.

– If an error occurs during index reorganization when the ALLOW NO ACCESS
mode is used, some indexes on the table might be left invalid. For
nonpartitioned RID indexes on the table, only the index that is being
reorganized at the time of the failure will be left invalid. For MDC tables with
nonpartitioned block indexes, one or more of the block indexes might be left
invalid if an error occurs. For partitioned indexes, only the index object on
the data partition being reorganized will be left invalid. Any indexes marked
invalid will be rebuilt on the next access to the table or data partition.

– When a data partitioned table with only partitioned indexes defined on the
table is in the reorg pending state, issuing a REORG TABLE command with the
ON DATA PARTITION clause brings only the specified data partition out of the
reorg pending state. To bring the remaining partitions of the table out of the
reorg pending state, either issue REORG TABLE command on the entire table
(without the ON DATA PARTITION clause), or issue a REORG TABLE command
with the ON DATA PARTITION clause for each of the remaining partitions.

Information about the current progress of table reorganization is written to the
history file for database activity. The history file contains a record for each
reorganization event. To view this file, execute the LIST HISTORY command for the
database that contains the table you are reorganizing.

170 Administrative Routines and Views

You can also use table snapshots to monitor the progress of table reorganization.
Table reorganization monitoring data is recorded regardless of the Database
Monitor Table Switch setting.

If an error occurs, an SQLCA dump is written to the history file. For an inplace
table reorganization, the status is recorded as PAUSED.

When an indexed table has been modified many times, the data in the indexes
might become fragmented. If the table is clustered with respect to an index, the
table and index can get out of cluster order. Both of these factors can adversely
affect the performance of scans using the index, and can impact the effectiveness of
index page prefetching. REORG INDEX or REORG INDEXES can be used to reorganize
one or all of the indexes on a table. Index reorganization will remove any
fragmentation and restore physical clustering to the leaf pages. Use the REORGCHK
command to help determine if an index needs reorganizing. Be sure to complete all
database operations and release all locks before invoking index reorganization. This
can be done by issuing a COMMIT after closing all cursors opened WITH HOLD,
or by issuing a ROLLBACK.

A classic table reorganization (offline reorganization) rebuilds the indexes during
the last phase of the reorganization. When more than one temporary table space
exists, it is possible that a temporary table space in addition to the one specified on
the REORG TABLE command may be utilized for additional sorts that can
accompanying table reorg processing. However, the inplace table reorganization
(online reorganization) does not rebuild the indexes. It is recommended that you
issue a REORG INDEXES command after the completion of an inplace table
reorganization. An inplace table reorganization is asynchronous, therefore care
must be taken to ensure that the inplace table reorganization is complete before
issuing the REORG INDEXES command. Issuing the REORG INDEXES command before
the inplace table reorganization is complete, might cause the reorganization to fail
(SQLCODE -2219).

Tables that have been modified so many times that data is fragmented and access
performance is noticeably slow are candidates for the REORG TABLE command. You
should also invoke this utility after altering the inline length of a structured type
column in order to benefit from the altered inline length. Use the REORGCHK
command to determine whether a table needs reorganizing. Be sure to complete all
database operations and release all locks before invoking REORG TABLE. This can be
done by issuing a COMMIT after closing all cursors opened WITH HOLD, or by
issuing a ROLLBACK. After reorganizing a table, use RUNSTATS to update the table
statistics, and REBIND to rebind the packages that use this table. The reorganize
utility will implicitly close all the cursors.

With DB2 V9.7 Fix Pack 1 and later, REORG TABLE commands and REORG INDEXES
ALL commands can be issued on a data partitioned table to concurrently reorganize
different data partitions or partitioned indexes on a partition. When concurrently
reorganizing data partitions or the partitioned indexes on a partition, users can
access the unaffected partitions but cannot access the affected partitions. All the
following criteria must be met to issue REORG commands that operate concurrently
on the same table:
v Each REORG command must specify a different partition with the ON DATA

PARTITION clause.
v Each REORG command must use the ALLOW NO ACCESS mode restrict access to the

data partitions.

Chapter 4. ADMIN_CMD procedure and associated routines 171

v The partitioned table must have only partitioned indexes if issuing REORG TABLE
commands. No nonpartitioned indexes (except system-generated XML path
indexes) can be defined on the table.

For a partitioned table T1 with no nonpartitioned indexes (except system-generated
XML path indexes) and with partitions P1, P2, P3, and P4, the following REORG
commands can run concurrently:
REORG INDEXES ALL FOR TABLE T1 ALLOW NO ACCESS ON DATA PARTITION P1
REORG TABLE T1 ALLOW NO ACCESS ON DATA PARTITION P2
REORG INDEXES ALL FOR TABLE T1 ALLOW NO ACCESS ON DATA PARTITION P3

Operations such as the following are not supported when using concurrent REORG
commands:
v Using a REORG command without the ON DATA PARTITION clause on the table.
v Using an ALTER TABLE statement on the table to add, attach, or detach a data

partition.
v Loading data into the table.
v Performing an online backup that includes the table.

If the table contains mixed row format because the table value compression has
been activated or deactivated, an offline table reorganization can convert all the
existing rows into the target row format.

If the table is distributed across several database partitions, and the table or index
reorganization fails on any of the affected database partitions, only the failing
database partitions will have the table or index reorganization rolled back.

If the reorganization is not successful, temporary files should not be deleted. The
database manager uses these files to recover the database.

If the name of an index is specified, the database manager reorganizes the data
according to the order in the index. To maximize performance, specify an index
that is often used in SQL queries. If the name of an index is not specified, and if a
clustering index exists, the data will be ordered according to the clustering index.

The PCTFREE value of a table determines the amount of free space designated per
page. If the value has not been set, the utility will fill up as much space as possible
on each page.

To complete a table space roll-forward recovery following a table reorganization,
both regular and large table spaces must be enabled for roll-forward recovery.

If the table contains LOB columns that do not use the COMPACT option, the LOB
DATA storage object can be significantly larger following table reorganization. This
can be a result of the order in which the rows were reorganized, and the types of
table spaces used (SMS or DMS).

Indexes over XML data may be recreated by the REORG INDEXES/TABLE command.
For details, see “Recreation of indexes over XML data”.

172 Administrative Routines and Views

RESET ALERT CONFIGURATION command using the
ADMIN_CMD procedure

Resets the health indicator settings for specific objects to the current defaults for
that object type or resets the current default health indicator settings for an object
type to the install defaults.

Important: This command or API has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Authorization

One of the following:
v SYSADM
v SYSMAINT
v SYSCTRL

Required connection

Database

Command syntax

�� RESET ALERT CONFIGURATION FOR
CONFIG
CFG

�

� DATABASE MANAGER
DB MANAGER
DBM

CONTAINERS
DATABASES
TABLESPACES

CONTAINER container-name FOR tblspace-name ON database-alias
DATABASE USING health-indicator-name
TABLESPACE tblspace-name

��

Command parameters

DATABASE MANAGER | DB MANAGER | DBM
Resets alert settings for the database manager.

CONTAINERS
Resets default alert settings for all table space containers managed by the
database manager to the install default. These are the settings that apply to
all table space containers that do not have custom settings. Custom settings
are defined using the CONTAINER container-name FOR tblspace-name ON
database-alias clause.

DATABASES
Resets alert settings for all databases managed by the database manager.
These are the settings that apply to all databases that do not have custom
settings. Custom settings are defined using the DATABASE ON database-alias
clause.

TABLESPACES
Resets default alert settings for all table spaces managed by the database
manager to the install default. These are the settings that apply to all table
spaces that do not have custom settings. Custom settings are defined using
the TABLESPACE tblspace-name ON database-alias clause.

Chapter 4. ADMIN_CMD procedure and associated routines 173

CONTAINER container-name FOR tblspace-name ON database-alias
Resets the alert settings for the table space container called container-name,
for the table space specified using the FOR tblspace-name clause, on the
database specified using the ON database-alias clause. If this table space
container has custom settings, then these settings are removed and the
current table space containers default is used.

DATABASE ON database-alias
Resets the alert settings for the database specified using the ON database-alias
clause. If this database has custom settings, then these settings are removed
and the install default is used.

TABLESPACE tblspace-name ON database-alias
Resets the alert settings for the table space called tblspace-name, on the
database specified using the ON database-alias clause. If this table space has
custom settings, then these settings are removed and the install default is
used.

USING health-indicator-name
Specifies the set of health indicators for which alert configuration will be
reset. Health indicator names consist of a two-letter object identifier
followed by a name that describes what the indicator measures. For
example:
db.sort_privmem_util

If you do not specify this option, all health indicators for the specified
object or object type will be reset.

Example

Reset alert settings for the database manager that owns the database which
contains the ADMIN_CMD procedure.
CALL SYSPROC.ADMIN_CMD(’reset alert cfg for dbm’)

Usage notes

Command execution status is returned in the SQLCA resulting from the CALL
statement.

The database-alias must be a local database defined in the catalog on the server
because the ADMIN_CMD procedure runs on the server only.

RESET DATABASE CONFIGURATION command using the
ADMIN_CMD procedure

Resets the configuration of a specific database to the system defaults.

Scope

This command only affects the database partition that the application is connected
to.

Authorization

One of the following:
v SYSADM
v SYSCTRL

174 Administrative Routines and Views

v SYSMAINT

Required connection

Database

Command syntax

�� RESET DATABASE
DB

CONFIGURATION
CONFIG
CFG

FOR database-alias �

�
DBPARTITIONNUM db-partition-num

��

Command parameters

FOR database-alias
Specifies the alias of the database whose configuration is to be reset to the
system defaults. The database alias must be one that is defined in the
catalog on the server, and must refer to a local database on the server.

DBPARTITIONNUM db-partition-num
If a database configuration reset is to be applied to a specific database
partition, this parameter may be used. If this parameter is not provided,
the reset will take effect on all database partitions.

Example

Reset the configuration of a database cataloged with alias SAMPLE on the server
CALL SYSPROC.ADMIN_CMD(’reset db cfg for SAMPLE’)

Usage notes

To view or print a list of the database configuration parameters, use the
SYSIBMADM.DBCFG administration view.

To change the value of a configurable parameter, use the UPDATE DATABASE
CONFIGURATION command.

Changes to the database configuration file become effective only after they are
loaded into memory. All applications must disconnect from the database before
this can occur.

If an error occurs, the database configuration file does not change.

The database configuration file cannot be reset if the checksum is invalid. This
might occur if the database configuration file is changed without using the
appropriate command. If this happens, the database must be restored to reset the
database configuration file.

The RESET DATABASE CONFIGURATION command will reset the database configuration
parameters to the documented default configuration values, where auto_runstats
will be ON. Self_tuning_mem will be reset to ON on non-partitioned database
environments and to OFF on partitioned database environments.

Chapter 4. ADMIN_CMD procedure and associated routines 175

Command execution status is returned in the SQLCA resulting from the CALL
statement.

The database-alias must be a local database defined in the catalog on the server
because the ADMIN_CMD procedure runs on the server only.

RESET DATABASE MANAGER CONFIGURATION command
using the ADMIN_CMD procedure

Resets the parameters in the database manager configuration file to the system
defaults for the instance that contains the currently connected database. The values
are reset by node type.

Authorization

SYSADM

Required connection

Database

Command syntax

�� RESET DATABASE MANAGER
DB MANAGER
DBM

CONFIGURATION
CONFIG
CFG

��

Command parameters

None

Example

Reset the configuration of the instance which contains the database the
ADMIN_CMD stored procedure belongs to.
CALL SYSPROC.ADMIN_CMD(’reset dbm cfg’)

Usage notes

This command resets all parameters set by the installation program. This could
cause error messages to be returned when restarting DB2. For example, if the
svcename parameter is reset, the user will receive the SQL5043N error message
when trying to restart DB2.

Before running this command, save the output from the SYSIBMADM.DBMCFG
administrative view to a file so that you can refer to the existing settings.
Individual settings can then be updated using the UPDATE DATABASE MANAGER
CONFIGURATION command through the ADMIN_CMD procedure.

It is not recommended that the svcename parameter, set by the installation
program, be modified by the user.

176 Administrative Routines and Views

To view or print a list of the database manager configuration parameters, use the
SYSIBMADM.DBMCFG administration view. To change the value of a configurable
parameter, use the UPDATE DATABASE MANAGER CONFIGURATION command through the
ADMIN_CMD procedure.

For more information about these parameters, refer to the summary list of
configuration parameters and the individual parameters.

Some changes to the database manager configuration file become effective only
after they are loaded into memory. For more information on which parameters are
configurable on-line and which ones are not, see the configuration parameter
summary. Server configuration parameters that are not reset immediately are reset
during execution of db2start. For a client configuration parameter, parameters are
reset the next time you restart the application. If the client is the command line
processor, it is necessary to invoke TERMINATE.

If an error occurs, the database manager configuration file does not change.

The database manager configuration file cannot be reset if the checksum is invalid.
This might occur if you edit the configuration file manually and do not use the
appropriate command. If the checksum is invalid, you must recreate the instance.

REWIND TAPE command using the ADMIN_CMD procedure
Rewinds tapes for backup and restore operations to streaming tape devices. This
command is only supported on Windows operating systems.

Authorization

One of the following:
v SYSADM
v SYSCTRL
v SYSMAINT

Required connection

Database

Command syntax

�� REWIND TAPE
ON device

��

Command parameters

ON device
Specifies a valid tape device name. The default value is \\.\TAPE0.The
device specified must be relative to the server.

Example

Rewind the tape on the device named '\\.\TAPE1'.
CALL SYSPROC.ADMIN_CMD(’rewind tape on \\.\TAPE1’)

Chapter 4. ADMIN_CMD procedure and associated routines 177

Usage notes

Command execution status is returned in the SQLCA resulting from the CALL
statement.

RUNSTATS command using the ADMIN_CMD procedure
Updates statistics about the characteristics of a table and/or associated indexes, or
statistical views. These characteristics include number of records, number of pages,
and average record length. The optimizer uses these statistics when determining
access paths to the data.

For a table, this utility should be called when the table has had many updates, or
after reorganizing the table. For a statistical view, this utility should be called when
changes to underlying tables have substantially affected the rows returned by the
view. The view must have been previously enabled for use in query optimization
using the ALTER VIEW statement.

Scope

This command can be issued from any database partition in the db2nodes.cfg file.
It can be used to update the catalogs on the catalog database partition.

For tables, this command collects statistics for a table on the database partition
from which it is invoked. If the table does not exist on that database partition, the
first database partition in the database partition group is selected.

For views, this command collects statistics using data from tables on all
participating database partitions.

Authorization

For tables, one of the following:
v SYSADM
v SYSCTRL
v SYSMAINT
v DBADM
v SQLADM
v CONTROL privilege on the table
v LOAD authority

You do not need any explicit privilege to use this command on any declared
temporary table that exists within its connection.

For statistical views, one of the following:
v SYSADM
v SYSCTRL
v SYSMAINT
v DBADM
v SQLADM
v CONTROL privilege on the statistical view

178 Administrative Routines and Views

Required connection

Database

Command syntax

�� RUNSTATS ON TABLE object-name
USE PROFILE
UNSET PROFILE

Statistics Options

�

�
UTIL_IMPACT_PRIORITY

priority

��

Statistics Options:

Table Object Options

ALLOW WRITE ACCESS

ALLOW READ ACCESS
�

�
Table Sampling Options Profile Options

Table Object Options:

FOR Index Clause
EXCLUDING XML COLUMNS

Column Stats Clause EXCLUDING XML COLUMNS AND Index Clause

Table Sampling Options:

TABLESAMPLE BERNOULLI
SYSTEM

(numeric-literal) �

�
REPEATABLE (integer-literal)

Profile Options:

SET PROFILE NONE

SET PROFILE
UPDATE ONLY

Index Clause:

DETAILED
SAMPLED

INDEXES
INDEX

�

,

index-name
ALL

Chapter 4. ADMIN_CMD procedure and associated routines 179

Column Stats Clause:

On Cols Clause
Distribution Clause

On Cols Clause

On Cols Clause:

�

ON ALL COLUMNS
,

ON COLUMNS (Column Option)
ALL COLUMNS AND
KEY

ON KEY COLUMNS

Distribution Clause:

WITH DISTRIBUTION
On Dist Cols Clause

�

�
Default Dist Options

On Dist Cols Clause:

� �

ON ALL COLUMNS
,

ON COLUMNS (Column Option)
ALL COLUMNS AND Frequency Option
KEY Quantile Option

ON KEY COLUMNS

Default Dist Option:

DEFAULT � Frequency Option
Quantile Option

Frequency Option:

NUM_FREQVALUES integer

Quantile Option:

NUM_QUANTILES integer

Column Option:

180 Administrative Routines and Views

�

column-name
LIKE STATISTICS

,

(column-name)

Command parameters

object-name
Identifies the table or statistical view on which statistics are to be collected.
It must not be a hierarchy table. For typed tables, object-name must be the
name of the root table of the table hierarchy. The fully qualified name or
alias in the form: schema.object-name must be used. The schema is the user
name under which the table was created.

index-name
Identifies an existing index defined on the table. The fully qualified name
in the form schema.index-name must be used. This option cannot be used for
views.

USE PROFILE
This option allows RUNSTATS to employ a previously stored statistics profile
to gather statistics for a table or statistical view. The statistics profile is
created using the SET PROFILE options and is updated using the UPDATE
PROFILE options.

UNSET PROFILE
Specify this option to remove an existing statistics profile. For example,
RUNSTATS ON tablemyschema.mytable UNSET PROFILE

FOR INDEXES
Collects and updates statistics for the indexes only. If no table statistics had
been previously collected on the table, basic table statistics are also
collected. These basic statistics do not include any distribution statistics.
This option cannot be used for views.

AND INDEXES
Collects and updates statistics for both the table and the indexes. This
option cannot be used for views.

DETAILED
Calculates extended index statistics. These are the CLUSTERFACTOR and
PAGE_FETCH_PAIRS statistics that are gathered for relatively large indexes.
This option cannot be used for views.

SAMPLED
This option, only used with the DETAILED option, directs RUNSTATS to use a
sampling technique when compiling the extended index statistics. When
the sampling option is not used, detailed index statistics collection can
consume considerable CPU and memory for large tables. The SAMPLED
option provides detailed index statistics with nearly the same accuracy but
requires less CPU and memory.

ON ALL COLUMNS
To collect statistics on all eligible columns, use the ON ALL COLUMNS clause.
Columns can be specified either for basic statistics collection (On Cols
clause) or in conjunction with the WITH DISTRIBUTION clause (On Dist Cols
clause). The ON ALL COLUMNS specification is the default option if neither of
the column specific clauses are specified.

Chapter 4. ADMIN_CMD procedure and associated routines 181

If it is specified in the On Cols clause, all columns will have only basic
column statistics collected unless specific columns are chosen as part of the
WITH DISTRIBUTION clause. Those columns specified as part of the WITH
DISTRIBUTION clause will also have basic and distribution statistics
collected.

If the WITH DISTRIBUTION ON ALL COLUMNS is specified both basic statistics
and distribution statistics are collected for all eligible columns. Anything
specified in the On Cols clause is redundant and therefore not necessary.

ON COLUMNS
This clause allows the user to specify a list of column options. The column
options can be a list of single columns for which to collect statistics and/or
one or more column groups. Column groups are specified by a
parenthesized list of comma separated column names, within the
parenthesized list of column options. If you specify a column group the
number of distinct values for the group will be collected.

When you run RUNSTATS on a table without gathering index statistics, and
specify a subset of columns for which statistics are to be gathered, then:
1. Statistics for columns not specified in the RUNSTATS command but which

are the first column in an index are NOT reset.
2. Statistics for all other columns not specified in the RUNSTATS command

are reset.

This clause can be used in the On Cols clause and the On Dist Cols clause.
Collecting distribution statistics for a group of columns is not currently
supported.

If XML type columns are specified in a column group, the XML type
columns will be ignored for the purpose of collecting distinct values for the
group. However, basic XML column statistics will be collected for the XML
type columns in the column group.

EXCLUDING XML COLUMNS
This clause allows you to omit all XML type columns from statistics
collection. This clause facilitates the collection of statistics on non-XML
columns because the inclusion of XML data can require greater system
resources. The EXCLUDING XML COLUMNS clause takes precedence over other
clauses that specify XML columns for statistics collection. For example, if
you use the EXCLUDING XML COLUMNS clause, and you also specify XML type
columns with the ON COLUMNS clause or you use the ON ALL COLUMNS clause,
all XML type columns will be ignored during statistics collection. For DB2
V9.7 Fix Pack 1 and later releases, distribution statistics over XML type
columns are not collected when this clause is specified.

ON KEY COLUMNS
Instead of listing specific columns, you can choose to collect statistics on
columns that make up all the indexes defined on the table. It is assumed
here that critical columns in queries are also those used to create indexes
on the table. If there are no indexes on the table, it is as good as an empty
list and no column statistics will be collected. It can be used in the On Cols
clause or the On Dist Cols clause. It is redundant in the On Cols clause if
specified in both clauses since the WITH DISTRIBUTION clause is used to
specify collection of both basic and distribution statistics. XML type
columns are by definition not a key column and will not be included for
statistics collection by the ON KEY COLUMNS clause. This option cannot be
used for views.

182 Administrative Routines and Views

column-name
Name of a column in the table or statistical view. If you specify the name
of an ineligible column for statistics collection, such as a nonexistent
column or a mistyped column name, error (-205) is returned. Two lists of
columns can be specified, one without distribution and one with
distribution. If the column is specified in the list that is not associated with
the WITH DISTRIBUTION clause only basic column statistics will be collected.
If the column appears in both lists, distribution statistics will be collected
(unless NUM_FREQVALUES and NUM_QUANTILES are set to zero).

NUM_FREQVALUES
Defines the maximum number of frequency values to collect. It can be
specified for an individual column in the ON COLUMNS clause. If the value is
not specified for an individual column, the frequency limit value will be
picked up from that specified in the DEFAULT clause. If it is not specified
there either, the maximum number of frequency values to be collected will
be what is set in the num_freqvalues database configuration parameter.

NUM_QUANTILES
Defines the maximum number of distribution quantile values to collect. It
can be specified for an individual column in the ON COLUMNS clause. If the
value is not specified for an individual column, the quantile limit value
will be picked up from that specified in the DEFAULT clause. If it is not
specified there either, the maximum number of quantile values to be
collected will be what is set in the num_quantiles database configuration
parameter.

For DB2 V9.7 Fix Pack 1 and later releases, distribution statistics for each
index over XML data uses a maximum of 250 quantiles as the default. The
default can be changed by specifying the NUM_QUANTILES parameter in the
ON COLUMNS or the DEFAULT clause. The num_quantiles database
configuration parameter is ignored while collecting XML distribution
statistics.

WITH DISTRIBUTION
This clause specifies that both basic statistics and distribution statistics are
to be collected on the columns. If the ON COLUMNS clause is not specified,
distribution statistics are collected on all the columns of the table or
statistical view (excluding columns that are ineligible such as CLOB and
LONG VARCHAR). If the ON COLUMNS clause is specified, distribution
statistics are collected only on the column list provided (excluding those
ineligible for statistics collection). If the clause is not specified, only basic
statistics are collected.

Collection of frequent values and distribution statistics on column groups
is currently not supported; distribution statistics will not be collected when
column groups are specified in the WITH DISTRIBUTION ON COLUMNS clause.

DEFAULT
If NUM_FREQVALUES or NUM_QUANTILES are specified, these values will be used
to determine the maximum number of frequency and quantile statistics to
be collected for the columns, if these are not specified for individual
columns in the ON COLUMNS clause. If the DEFAULT clause is not specified, the
values used will be those in the corresponding database configuration
parameters.

LIKE STATISTICS
When this option is specified additional column statistics might be
collected for columns of type CHAR and VARCHAR with a code page

Chapter 4. ADMIN_CMD procedure and associated routines 183

attribute of single-byte character set (SBCS), FOR BIT DATA, or UTF-8.
The statistics are collected if the runstats utility determines that such
statistics are appropriate after analyzing column values. These statistics
are the SUB_COUNT and the SUB_DELIM_LENGTH statistics in SYSSTAT.COLUMNS.
They are used by the query optimizer to improve the selectivity estimates
for predicates of the type "column LIKE ’%xyz’"and "column LIKE
’%xyz%’".

ALLOW WRITE ACCESS
Specifies that other users can read from and write to the tables while
statistics are calculated. For statistical views, these are the base tables
referenced in the view definition.

The ALLOW WRITE ACCESS option is not recommended for tables that will
have a lot of inserts, updates or deletes occurring concurrently. The
RUNSTATS command first performs table statistics and then performs index
statistics. Changes in the table's state between the time that the table and
index statistics are collected might result in inconsistencies. Although
having up-to-date statistics is important for the optimization of queries, it
is also important to have consistent statistics. Therefore, statistics should be
collected at a time when inserts, updates or deletes are at a minimum.

ALLOW READ ACCESS
Specifies that other users can have read-only access to the tables while
statistics are calculated. For statistical views, these are the base tables
referenced in the view definition.

TABLESAMPLE BERNOULLI
This option allows RUNSTATS to collect statistics on a sample of the rows
from the table or statistical view. Bernoulli sampling considers each row
individually, including that row with probability P/100 (where P is the
value of numeric-literal) and excluding it with probability 1-P/100. Thus, if
the numeric-literal were evaluated to be the value 10, representing a 10
percent sample, each row would be included with probability 0.1 and be
excluded with probability 0.9. Unless the optional REPEATABLE clause is
specified, each execution of RUNSTATS will usually yield a different such
sample of the table. All data pages will be retrieved through a table scan
but only the percentage of rows as specified through the numeric-literal
parameter will be used for the statistics collection.

TABLESAMPLE SYSTEM
This option allows RUNSTATS to collect statistics on a sample of the data
pages from the tables. System sampling considers each page individually,
including that page with probability P/100 (where P is the value of
numeric-literal) and excluding it with probability 1-P/100. Unless the
optional REPEATABLE clause is specified, each execution of RUNSTATS will
usually yield a different such sample of the table. The size of the sample is
controlled by the numeric-literal parameter in parentheses, representing an
approximate percentage P of the table to be returned. Only a percentage of
the data pages as specified through the numeric-literal parameter will be
retrieved and used for the statistics collection.

On statistical views, system sampling is restricted to views whose
definitions are a select over a single base table. If the view contains
multiple tables, SYSTEM sampling is also possible if:
v the tables are joined using equality predicates on all the primary key

and foreign key columns included in a referential integrity constraint
defined between the tables,

184 Administrative Routines and Views

v no search condition filters rows in any parent tables in the relationship,
and

v a single child table, that is also not a parent table, can be identified
among all the tables.

If the statistical view does not meet those conditions, Bernoulli sampling
will be used instead and a warning will be returned (SQL2317W).

REPEATABLE (integer-literal)
Adding the REPEATABLE clause to the TABLESAMPLE clause ensures that
repeated executions of RUNSTATS return the same sample. The integer-literal
parameter is a non-negative integer representing the seed to be used in
sampling. Passing a negative seed will result in an error (SQL1197N). The
sample set might still vary between repeatable RUNSTATS invocations if
activity against the table or statistical view resulted in changes to the table
or statistical view data since the last time TABLESAMPLE REPEATABLE was
run. Also, the method by which the sample was obtained as specified by
the BERNOULLI or SYSTEM keyword, must also be the same to ensure
consistent results.

numeric-literal
The numeric-literal parameter specifies the size of the sample to be
obtained, as a percentage P. This value must be a positive number that is
less than or equal to 100, and can be between 1 and 0. For example, a
value of 0.01 represents one one-hundredth of a percent, such that 1 row in
10,000 would be sampled, on average. A value of 0 or 100 will be treated
by the DB2 database system as if sampling was not specified, regardless of
whether TABLESAMPLE BERNOULLI or TABLESAMPLE SYSTEM is specified. A
value greater than 100 or less than 0 will be treated as an error (SQL1197N)
by the DB2 database system.

SET PROFILE NONE
Specifies that no statistics profile will be set for this RUNSTATS invocation.

SET PROFILE
Allows RUNSTATS to generate and store a specific statistics profile in the
system catalog tables and executes the RUNSTATS command options to
gather statistics.

SET PROFILE ONLY
Allows RUNSTATS to generate and store a specific statistics profile in the
system catalog tables without running the RUNSTATS command options.

UPDATE PROFILE
Allows RUNSTATS to modify an existing statistics profile in the system
catalog tables, and runs the RUNSTATS command options of the updated
statistics profile to gather statistics. You cannot use the UPDATE PROFILE
option to remove clauses that are in a statistics profile.

UPDATE PROFILE ONLY
Allows RUNSTATS to modify an existing statistics profile in the system
catalog tables without running the RUNSTATS command options of the
updated statistics profile. You cannot use the UPDATE PROFILE ONLY option
to remove clauses that are in a statistics profile.

UTIL_IMPACT_PRIORITY priority
Specifies that RUNSTATS will be throttled at the level specified by priority.
priority is a number in the range of 1 to 100, with 100 representing the
highest priority and 1 representing the lowest. The priority specifies the
amount of throttling to which the utility is subjected. All utilities at the

Chapter 4. ADMIN_CMD procedure and associated routines 185

same priority undergo the same amount of throttling, and utilities at lower
priorities are throttled more than those at higher priorities. If priority is not
specified, the RUNSTATS will have the default priority of 50. Omitting the
UTIL_IMPACT_PRIORITY keyword will invoke the RUNSTATS utility without
throttling support. If the UTIL_IMPACT_PRIORITY keyword is specified, but
the util_impact_lim configuration parameter is set to 100, then the utility
will run unthrottled. This option cannot be used for views.

In a partitioned database, when used on tables, the RUNSTATS command collects the
statistics on only a single database partition. If the database partition from which
the RUNSTATS command is executed has a partition of the table, then the command
executes on that database partition. Otherwise, the command executes on the first
database partition in the database partition group across which the table is
partitioned.

Example

Collect statistics on all columns used in indexes and on all indexes.
CALL SYSPROC.ADMIN_CMD (’RUNSTATS ON TABLE db2user.employee

ON KEY COLUMNS and INDEXES ALL’)

Usage notes
1. When there are detached partitions on a partitioned table, index keys that still

belong to detached data partitions which require cleanup will not be counted
as part of the keys in the statistics. These keys are not counted because they
are invisible and no longer part of the table. They will eventually get removed
from the index by asynchronous index cleanup. As a result, statistics collected
before asynchronous index cleanup is run will be misleading. If the RUNSTATS
command is issued before asynchronous index cleanup completes, it will
likely generate a false alarm for index reorganization or index cleanup based
on the inaccurate statistics. Once asynchronous index cleanup is run, all the
index keys that still belong to detached data partitions which require cleanup
will be removed and this may eliminate the need for index reorganization.
For partitioned tables, you are encouraged to issue the RUNSTATS command
after an asynchronous index cleanup has completed in order to generate
accurate index statistics in the presence of detached data partitions. To
determine whether or not there are detached data partitions in the table, you
can check the status field in the SYSCAT.DATAPARTITIONS catalog view and
look for the value L (logically detached), I (index cleanup), or D (detached
with dependent MQT).
The RUNSTATS command collects statistics for all index partitions of a
partitioned index. Statistics in the SYSTAT.INDEXES view for the partitioned
index represent an index partition, except for FIRSTKEYCARD,
FIRST2KEYCARD, FIRST3KEYCARD, FIRST4KEYCARD, and FULLKEYCARD
statistics. Because these statistics are used in cardinality estimates, they are for
the entire index and not for an index partition. Distribution statistics (frequent
values and quantiles) are not collected for partitioned indexes, but are
gathered if RUNSTATS is run on the table. Statistics on the leading columns of a
partitioned index might not be as accurate as statistics on the leading columns
of a nonpartitioned index.
Collection of frequent values and distribution statistics on column groups is
currently not supported.

2. Command execution status is returned in the SQLCA resulting from the CALL
statement.

186 Administrative Routines and Views

3. It is recommended to run the RUNSTATS command:
v On tables that have been modified considerably (for example, if a large

number of updates have been made, or if a significant amount of data has
been inserted or deleted or if LOAD has been done without the statistics
option during LOAD).

v On tables that have been reorganized (using REORG, REDISTRIBUTE DATABASE
PARTITION GROUP).

v On tables which have been row compressed.
v When a new index has been created.
v Before binding applications whose performance is critical.
v When the prefetch quantity is changed.
v On statistical views whose underlying tables have been modified

substantially so as to change the rows that are returned by the view.
v After LOAD has been executed with the STATISTICS option, use the RUNSTATS

utility to collect statistics on XML columns. Statistics for XML columns are
never collected during LOAD, even when LOAD is executed with the
STATISTICS option. When RUNSTATS is used to collect statistics for XML
columns only, existing statistics for non-XML columns that have been
collected by LOAD or a previous execution of the RUNSTATS utility are
retained. In the case where statistics on some XML columns have been
collected previously, the previously collected statistics for an XML column
will either be dropped if no statistics on that XML column are collected by
the current command, or be replaced if statistics on that XML column are
collected by the current command.

4. The options chosen must depend on the specific table and the application. In
general:
v If the table is a very critical table in critical queries, is relatively small, or

does not change too much and there is not too much activity on the system
itself, it might be worth spending the effort on collecting statistics in as
much detail as possible.

v If the time to collect statistics is limited, if the table is relatively large, or if
the table is updated frequently, it might be beneficial to execute RUNSTATS
limited to the set of columns that are used in predicates. This way, you will
be able to execute the RUNSTATS command more often.

v If time to collect statistics is very limited and the effort to tailor the
RUNSTATS command on a table by table basis is a major issue, consider
collecting statistics for the "KEY" columns only. It is assumed that the index
contains the set of columns that are critical to the table and are most likely
to appear in predicates.

v If time to collect statistics is very limited and table statistics are to be
gathered, consider using the TABLESAMPLE option to collect statistics on a
subset of the table data.

v If there are many indexes on the table and DETAILED (extended) information
on the indexes might improve access plans, consider the SAMPLED option to
reduce the time it takes to collect statistics.

v If there is skew in certain columns and predicates of the type "column =
constant", it might be beneficial to specify a larger NUM_FREQVALUES value
for that column

v Collect distribution statistics for all columns that are used in equality
predicates and for which the distribution of values might be skewed.

Chapter 4. ADMIN_CMD procedure and associated routines 187

v For columns that have range predicates (for example "column >=
constant", "column BETWEEN constant1 AND constant2") or of the type
"column LIKE ’%xyz’", it might be beneficial to specify a larger
NUM_QUANTILES value.

v If storage space is a concern and one cannot afford too much time on
collecting statistics, do not specify high NUM_FREQVALUES or NUM_QUANTILES
values for columns that are not used in predicates.

v If index statistics are requested, and statistics have never been run on the
table containing the index, statistics on both the table and indexes are
calculated.

v If statistics for XML columns in the table are not required, the EXCLUDING
XML COLUMNS option can be used to exclude all XML columns. This option
takes precedence over all other clauses that specify XML columns for
statistics collection.

5. After the command is run, note the following:
v A COMMIT should be issued to release the locks.
v To allow new access plans to be generated, the packages that reference the

target table must be rebound.
v Executing the command on portions of the table could result in

inconsistencies as a result of activity on the table since the command was
last issued. In this case a warning message is returned. Issuing RUNSTATS on
the table only might make table and index level statistics inconsistent. For
example, you might collect index level statistics on a table and later delete a
significant number of rows from the table. If you then issue RUNSTATS on the
table only, the table cardinality might be less than FIRSTKEYCARD, which is
an inconsistency. In the same way, if you collect statistics on a new index
when you create it, the table level statistics might be inconsistent.

6. The RUNSTATS command will drop previously collected distribution statistics if
table statistics are requested. For example, RUNSTATS ON TABLE, or RUNSTATS ON
TABLE ... AND INDEXES ALL will cause previously collected distribution
statistics to be dropped. If the command is run on indexes only then
previously collected distribution statistics are retained. For example, RUNSTATS
ON TABLE ... FOR INDEXES ALL will cause the previously collected distribution
statistics to be retained. If the RUNSTATS command is run on XML columns
only, then previously collected basic column statistics and distribution
statistics are retained. In the case where statistics on some XML columns have
been collected previously, the previously collected statistics for an XML
column will either be dropped if no statistics on that XML column are
collected by the current command, or be replaced if statistics on that XML
column are collected by the current command.

7. For DB2 V9.7 Fix Pack 1 and later releases, distribution statistics are collected
on indexes over XML data defined on an XML column. When the RUNSTATS
command is run on a table with the WITH DISTRIBUTION clause, the following
apply to the collection of distribution statistics on a column of type XML:
v Distribution statistics are collected for each index over XML data specified

on an XML column.
v The RUNSTATS command must collect both distribution statistics and table

statistics to collect distribution statistics for indexes over XML data defined
on an XML column. Table statistics must be gathered in order for
distribution statistics to be collected since XML distribution statistics are
stored with table statistics.
An index clause is not required to collect XML distribution statistics.
Specifying only an index clause does not collect XML distribution statistics

188 Administrative Routines and Views

By default, XML distribution statistics use a maximum of 250 quantiles for
each index over XML data. When collecting distribution statistics on an
XML column, you can change the maximum number of quantiles by
specifying a value with NUM_QUANTILES parameter in the ON COLUMNS or the
DEFAULT clause.

v Distribution statistics are collected for indexes over XML data of type
VARCHAR, DOUBLE, TIMESTAMP, and DATE. Distribution statistics are
not collected over indexes of type VARCHAR HASHED.

v Distribution statistics are not collected for partitioned indexes over XML
data defined on a partitioned table.

8. For range-clustered tables, there is a special system-generated index in the
catalog tables which represents the range ordering property of range-clustered
tables. When statistics are collected on this type of table, if the table is to be
included as part of the statistics collection, statistics will also be collected for
the system-generated index. The statistics reflect the fast access of the range
lookups by representing the index as a two-level index with as many pages as
the base data table, and having the base data clustered perfectly along the
index order.

9. In the On Dist Cols clause of the command syntax, the Frequency Option and
Quantile Option parameters are currently not supported for column GROUPS.
These options are supported for single columns.

10. There are three prefetch statistics that cannot be computed when working in
DMS mode. When looking at the index statistics in the index catalogs, you
will see a -1 value for the following statistics:
v AVERAGE_SEQUENCE_FETCH_PAGES

v AVERAGE_SEQUENCE_FETCH_GAP

v AVERAGE_RANDOM_FETCH_PAGES

11. RUNSTATS sampling through TABLESAMPLE only occurs with table data pages and
not index pages. When index statistics as well as sampling is requested, all the
index pages are scanned for statistics collection. It is only in the collection of
table statistics where TABLESAMPLE is applicable. However, a more efficient
collection of detailed index statistics is available through the SAMPLED DETAILED
option. This is a different method of sampling than that employed by
TABLESAMPLE and only applies to the detailed set of index statistics.

12. A statistics profile can be set or updated for the table or statistical view
specified in the RUNSTATS command, by using the set profile or update profile
options. The statistics profile is stored in a visible string format, which
represents the RUNSTATS command, in the STATISTICS_PROFILE column of the
SYSCAT.TABLES system catalog table.

13. Statistics collection on XML type columns is governed by two DB2 database
system registry values: DB2_XML_RUNSTATS_PATHID_K and
DB2_XML_RUNSTATS_PATHVALUE_K. These two parameters are similar to the
NUM_FREQVALUES parameter in that they specify the number of frequency values
to collect. If not set, a default of 200 will be used for both parameters.

14. RUNSTATS acquires an IX table lock on SYSTABLES and a U lock on the row for
the table on which statistics are being gathered at the beginning of RUNSTATS.
Operations can still read from SYSTABLES including the row with the U lock.
Write operations are also possible, providing they do not occur against the
row with the U lock. However, another reader or writer will not be able
acquire an S lock on SYSTABLES because of RUNSTATS' IX lock.

15. Statistics are not collected for columns with structured types. If they are
specified, columns with these data types are ignored.

Chapter 4. ADMIN_CMD procedure and associated routines 189

16. Only AVGCOLLEN and NUMNULLS are collected for columns with LOB or
LONG data types.

17. AVGCOLLEN represents the average space in bytes when the column is
stored in database memory or a temporary table. This value represents the
length of the data descriptor for LOB or LONG data types, except when LOB
data is inlined on the data page.

Note: The average space required to store the column on disk may be
different than the value represented by this statistic.

SET TAPE POSITION command using the ADMIN_CMD
procedure

Sets the positions of tapes for backup and restore operations to streaming tape
devices. This command is only supported on Windows operating systems.

Authorization

One of the following:
v SYSADM
v SYSCTRL
v SYSMAINT

Required connection

Database

Command syntax

�� SET TAPE POSITION
ON device

TO position ��

Command parameters

ON device
Specifies a valid tape device name. The default value is \\.\TAPE0. The
device specified must be relative to the server.

TO position
Specifies the mark at which the tape is to be positioned. DB2 for Windows
writes a tape mark after every backup image. A value of 1 specifies the
first position, 2 specifies the second position, and so on. If the tape is
positioned at tape mark 1, for example, archive 2 is positioned to be
restored.

Example

Because DB2 databases write a tape mark after every backup image, specifying a
position of 1 will move the tape to the start of the second archive on the tape.
CALL SYSPROC.ADMIN_CMD(’set tape position to 1’)

Usage notes

Command execution status is returned in the SQLCA resulting from the CALL
statement.

190 Administrative Routines and Views

UNQUIESCE DATABASE command using the ADMIN_CMD
procedure

Restores user access to databases which have been quiesced for maintenance or
other reasons.UNQUIESCE restores user access without necessitating a shutdown and
database restart.

Unless specifically designated, no user except those with SYSADM, SYSMAINT, or
SYSCTRL has access to a database while it is quiesced. Therefore an UNQUIESCE is
required to restore general access to a quiesced database.

Scope

UNQUIESCE DB restores user access to all objects in the quiesced database.

To stop the instance and unquiesce it and all its databases, issue the db2stop
command. Stopping and restarting DB2 will unquiesce all instances and databases.

Authorization

One of the following:

For database level unquiesce:
v SYSADM
v DBADM

Command syntax

�� UNQUIESCE DB ��

Required connection

Database

Command parameters

DB Unquiesce the database. User access will be restored to all objects in the
database.

Examples

Unquiescing a Database
CALL SYSPROC.ADMIN_CMD(’unquiesce db’)

This command will unquiesce the database that had previously been quiesced.

Usage notes

Command execution status is returned in the SQLCA resulting from the CALL
statement.

UPDATE ALERT CONFIGURATION command using the
ADMIN_CMD procedure

Updates the alert configuration settings for health indicators.

Chapter 4. ADMIN_CMD procedure and associated routines 191

Important: This command or API has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Authorization

One of the following:
v SYSADM
v SYSMAINT
v SYSCTRL

Required Connection

Database

Command Syntax

�� UPDATE ALERT CONFIGURATION
CONFIG
CFG

FOR �

� DATABASE MANAGER
DB MANAGER
DBM

DATABASES
CONTAINERS
TABLESPACES
DATABASE ON database-alias
TABLESPACE tblspace-name
CONTAINER container-name FOR tblspace-name

USING health-indicator-name �

� �

� �

�

�

,

SET parameter-name value
,

,

UPDATE ACTION SCRIPT pathname ON WARNING SET parameter-name value
TASK task-name ALARM

ALLALERT
ATTENTION state

,

DELETE ACTION SCRIPT pathname ON WARNING
TASK task-name ALARM

ALLALERT
ATTENTION state

,

ADD ACTION SCRIPT pathname Add Script Details ON State and User Details
TASK task-name

��

Add Script Details:

TYPE DB2
STATEMENT TERMINATION CHARACTER character
STMT TERM CHAR
TERM CHAR

OPERATING SYSTEM
OS COMMAND LINE PARAMETERS parms

PARMS

�

192 Administrative Routines and Views

� WORKING DIRECTORY pathname

State and User Details:

WARNING
ALARM
ALLALERT
ATTENTION state

ON hostname
USER username USING password

Command Parameters

DATABASE MANAGER
Updates alert settings for the database manager.

DATABASES
Updates alert settings for all databases managed by the database manager.
These are the settings that apply to all databases that do not have custom
settings. Custom settings are defined using the DATABASE ON database-alias
clause.

CONTAINERS
Updates alert settings for all table space containers managed by the
database manager. These are the settings that apply to all table space
containers that do not have custom settings. Custom settings are defined
using the CONTAINER container-name ON database-alias clause.

TABLESPACES
Updates alert settings for all table spaces managed by the database
manager. These are the settings that apply to all table spaces that do not
have custom settings. Custom settings are defined using the TABLESPACE
tblspace-name ON database-alias clause.

DATABASE ON database-alias
Updates the alert settings for the database specified using the ON
database-alias clause. If this database has custom settings, then they override
the settings for all databases for the instance, which is specified using the
DATABASES parameter.

CONTAINER container-name FOR tblspace-name ON database-alias
Updates the alert settings for the table space container called
container-name, for the table space specified using the FOR tblspace-name
clause, on the database specified using the ON database-alias clause. If this
table space container has custom settings, then they override the settings
for all table space containers for the database, which is specified using the
CONTAINERS parameter.

TABLESPACE tblspace-name ON database-alias
Updates the alert settings for the table space called name, on the database
specified using the ON database-alias clause. If this table space has custom
settings, then they override the settings for all table spaces for the
database, which is specified using the TABLESPACES parameter.

USING health-indicator-name
Specifies the set of health indicators for which alert configuration will be
updated. Health indicator names consist of a two-letter object identifier
followed by a name which describes what the indicator measures. For
example:
db.sort_privmem_util

Chapter 4. ADMIN_CMD procedure and associated routines 193

SET parameter-name value
Updates the alert configuration element, parameter-name, of the health
indicator to the specified value. parameter-name must be one of the
following:
v ALARM: the value is a health indicator unit.
v WARNING: the value is a health indicator unit.
v SENSITIVITY: the value is in seconds.
v ACTIONSENABLED: the value can be either YES or NO.
v THRESHOLDSCHECKED: the value can be either YES or NO.

The list of possible health indicator units for your specific DB2 version can
be gathered by running the following query :
SELECT SUBSTR(UNIT,1,80) AS UNIT

FROM TABLE(HEALTH_GET_IND_DEFINITION(’’)) AS T GROUP BY UNIT

UPDATE ACTION SCRIPT pathname ON [WARNING | ALARM | ALLALERT | ATTENTION state]
Specifies that the script attributes of the predefined script with absolute
path name pathname will be updated according to the following clause:

SET parameter-name value
Updates the script attribute, parameter-name, to the specified value.
parameter-name must be one of the following:
v SCRIPTTYPE

OS or DB2 are the valid types.
v WORKINGDIR

v TERMCHAR

v CMDLINEPARMS

The command line parameters that you specify for the operating
system script will precede the default supplied parameters . The
parameters that are sent to the operating system script are:
– List of user supplied parameters
– Health indicator short name
– Fully qualified object name
– Health indicator value
– Alert state

v USERID

v PASSWORD

v SYSTEM

UPDATE ACTION TASK task-name ON [WARNING | ALARM | ALLALERT | ATTENTION state]
Specifies that the task attributes of the task with name name will be
updated according to the following clause:

SET parameter-name value
Updates the task attribute, parameter-name, to the specified value.
parameter-name must be one of the following:
v USERID

v PASSWORD

v SYSTEM

DELETE ACTION SCRIPT pathname ON [WARNING | ALARM | ALLALERT | ATTENTION state]
Removes the action script with absolute path name pathname from the list
of alert action scripts.

194 Administrative Routines and Views

DELETE ACTION TASK task-name ON [WARNING | ALARM | ALLALERT | ATTENTION state]
Removes the action task called name from the list of alert action tasks.

ADD ACTION SCRIPT pathname ON [WARNING | ALARM | ALLALERT | ATTENTION state]
Specifies that a new action script with absolute path name pathname is to
be added, the attributes of which are given by the following:

TYPE An action script must be either a DB2 Command script or an
operating system script:
v DB2

v OPERATING SYSTEM

If it is a DB2 Command script, then the following clause allows
one to optionally specify the character, character, that is used in the
script to terminate statements:
STATEMENT TERMINATION CHARACTER ;

If it is an operating system script, then the following clause allows
one to optionally specify the command-line parameters, parms, that
would be passed to the script upon invocation: COMMAND LINE
PARAMETERS parms

WORKING DIRECTORY pathname
Specifies the absolute path name, pathname, of the directory in
which the script will be executed.

USER username USING password
Specifies the user account, username, and associated password,
password, under which the script will be executed. When using the
ADD ACTION option, the username and password might be exposed in
the network (where the username and password are sent
unencrypted), the db2diag log file, trace files, dump file, snapshot
monitor (dynamic SQL snapshot), system monitor snapshots, a
number of event monitors (such as statement, deadlock), Query
Patroller, explain tables, db2pd output (such as package cache and
lock timeout mechanisms) and DB2 audit records.

ADD ACTION TASK name ON [WARNING | ALARM | ALLALERT | ATTENTION state]
Specifies that a new task, called name, is to be added to be run ON the
specified condition.

ON [WARNING | ALARM | ALLALERT | ATTENTION state]
Specifies the condition on which the action or task will run. For
threshold-based health indicators (HIs), this is WARNING or ALARM. For
state-based HIs, this can be a numeric state as documented for each
state-based HI (for example, for the ts.ts_op_status health indicator, refer to
the tablespace_state monitor element for table space states), or a text
identifier for this state. ALLALERTS handles any changes in the state for
threshold-based HIs and state-based HIs (for example, the state changes
from warning to normal).

ATTENTION state
Valid numerical values for some of the database health indicator
states are given below as an example for the ADD ACTION SCRIPT
CLP command option:
v 0 - Active; Normal (ACTIVE)
v 1 - Quiesce pending (QUIESCE_PEND)
v 2 - Quiesced (QUIESCED)
v 3 - Rollforward (ROLLFWD)

Chapter 4. ADMIN_CMD procedure and associated routines 195

Additional state-based health indicators are defined in the header
files sqlmon.h and sqlutil.h.

The UPDATE ALERT CFG command called by the ADMIN_CMD
stored procedure supports either a numeric value or a text
identifier for state. Valid numerical values and text identifiers for
some additional health indicator states, as an example for the table
space operational status health indicator (ts.ts_op_status), are:
v 0x1 - QUIESCED_SHARE
v 0x2 - QUIESCED_UPDATE
v 0x4 - QUIESCED_EXCLUSIVE

Using the UPDATE ALERT CFG command and the above health
indicator values, the following command line entry,
ADD ACTION SCRIPT ... ON ATTENTION 2

is equivalent to
ADD ACTION SCRIPT ... ON ATTENTION QUIESCED_UPDATE

In addition, for the table space operational status health indicator
(ts.ts_op_status), you can specify multiple states using a single
numeric value by OR'ing states together. For example, you can
specify state 7 (= 0x1 + 0x2 + 0x4), the action will be performed
when the table space enters any of the Quiesced: SHARE,
Quiesced: UPDATE or Quiesce: EXCLUSIVE states. Alternatively,
you could specify QUIESCED_SHARE, QUIESCED_UPDATE, and
QUIESCED_EXCLUSIVE in three separate UPDATE ALERT CFG
command executions.

Example

Add an action for the db.log_fs_util indicator that will execute the script
/home/test/scripts/logfsutilact when there is an alarm on the system with
hostname 'plato'.
CALL SYSPROC.ADMIN_CMD(’update alert cfg for databases using

db.log_fs_util add action script /home/test/scripts/logfsutilact
type os command line parameters "param1 param2" working
directory /tmp on alarm on plato user dricard using mypasswdv’)

To check the alert configuration after it has been set, you can use the
HEALTH_GET_IND_DEFINITION and HEALTH_GET_ALERT_ACTION_CFG
table functions as follows:
SELECT OBJECTTYPE, ID, CONDITION, ACTIONTYPE,

SUBSTR(ACTIONNAME,1,50) AS ACTION_NAME
FROM TABLE(SYSPROC.HEALTH_GET_ALERT_ACTION_CFG(’DB’,’G’,’’,’’))
AS ALERT_ACTION_CFG

The following is an example of output from this query:
OBJECTTYPE ID CONDITION ACTIONTYPE ACTION_NAME
---------- ------ ---------- ---------- ----------------------------------
DB 1006 ALARM S /home/dricard/scripts/logfsutilact

1 record(s) selected.

196 Administrative Routines and Views

Usage notes

For the ADD ACTION option, the supplied username and password may be exposed in
various places where SQL statement text is captured:
v the network (username/password are passed over the wire unencrypted)
v db2diag log file
v trace files
v dump file
v snapshot monitor (dynamic SQL snapshot)
v system monitor snapshots
v a number of event monitors (statement, deadlock)
v query patroller
v explain tables
v db2pd output (package cache and lock timeout mechanisms, among others)
v DB2 audit records

Command execution status is returned in the SQLCA resulting from the CALL
statement.

The database-alias must be defined in the catalog on the server and be local to the
server.

The pathname must be with a fully-qualified server path name.

UPDATE CONTACT command using the ADMIN_CMD
procedure

Updates the attributes of a contact that is defined on the local system. A contact is
a user to whom the Scheduler and Health Monitor send messages.

To create a contact, use the ADD CONTACT command. The setting of the Database
Administration Server (DAS) contact_host configuration parameter determines
whether the list is local or global.

Authorization

None

Required connection

Database. The DAS must be running.

Command syntax

�� �

,

UPDATE CONTACT name USING keyword value ��

Command parameters

UPDATE CONTACT name
The name of the contact that will be updated.

Chapter 4. ADMIN_CMD procedure and associated routines 197

USING keyword value
Specifies the contact parameter to be updated (keyword) and the value to
which it will be set (value). The valid set of keywords is:

ADDRESS
The e-mail address that is used by the SMTP server to send the
notification.

TYPE Whether the address is for an e-mail address or a pager.

MAXPAGELEN
The maximum number of characters that the pager can accept.

DESCRIPTION
A textual description of the contact. This has a maximum length of
128 characters.

Example

Update the address of user 'test' to 'newaddress@test.com'.
CALL SYSPROC.ADMIN_CMD(’update contact test using address newaddress@test.com’)

Usage notes

The DAS must have been created and be running.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

UPDATE CONTACTGROUP command using the ADMIN_CMD
procedure

Updates the attributes of a contact group that is defined on the local system. A
contact group is a list of users who should be notified by the Scheduler and the
Health Monitor.

The setting of the Database Administration Server (DAS) contact_host
configuration parameter determines whether the list is local or global.

Authorization

None

Required Connection

Database. The DAS must be running.

Command Syntax

�� UPDATE CONTACTGROUP name �

,

(ADD CONTACT name)
DROP GROUP

�

198 Administrative Routines and Views

�
DESCRIPTION new description

��

Command Parameters

CONTACTGROUP name
Name of the contact group which will be updated.

ADD CONTACT name
Specifies the name of the new contact to be added to the group. A contact
can be defined with the ADD CONTACT command after it has been added to a
group.

DROP CONTACT name
Specifies the name of a contact in the group that will be dropped from the
group.

ADD GROUP name
Specifies the name of the new contact group to be added to the group.

DROP GROUP name
Specifies the name of a contact group that will be dropped from the group.

DESCRIPTION new description
Optional. A new textual description for the contact group.

Example

Add the contact named 'cname2' to the contact group named 'gname1':
CALL SYSPROC.ADMIN_CMD(’update contactgroup gname1 add contact cname2’)

Usage notes

The DAS must have been created and be running.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

UPDATE DATABASE CONFIGURATION command using the
ADMIN_CMD procedure

Modifies individual entries in a specific database configuration file. A database
configuration file resides on every database partition on which the database has
been created.

Scope

This command updates all database partitions by default, except when
DBPARTITIONNUM is specified to update only one database partition.

Authorization

One of the following:
v SYSADM
v SYSCTRL

Chapter 4. ADMIN_CMD procedure and associated routines 199

v SYSMAINT

Required connection

Database. The database connection must be local to the instance containing the
connected database.

Command syntax

�� UPDATE DATABASE
DB

CONFIGURATION
CONFIG
CFG

FOR database-alias
�

�
DBPARTITIONNUM db-partition-num

�

� �USING config-keyword value
value AUTOMATIC
AUTOMATIC
MANUAL

IMMEDIATE

DEFERRED
��

Command parameters

AUTOMATIC
Some configuration parameters can be set to AUTOMATIC, allowing DB2 to
automatically adjust these parameters to reflect the current resource
requirements. For a list of configuration parameters that support the
AUTOMATIC keyword, refer to the configuration parameters summary. If a
value is specified along with the AUTOMATIC keyword, it might influence the
automatic calculations. For specific details about this behavior, refer to the
documentation for the configuration parameter.

Note: The appl_memory, logindexbuild, max_log and num_log_span
database configuration parameters can only be set to AUTOMATIC using the
command line processor.

DEFERRED
Make the changes only in the configuration file, so that the changes take
effect the next time you reactivate the database.

FOR database-alias
Specifies the alias of the database whose configuration is to be updated.
Specifying the database alias is not required when a database connection
has already been established. The database alias must be defined locally on
the server. You can update the configuration file for another database
residing under the same database instance. For example, if you are
connected only to database db11, and issue update db config for alias
db22 using immediate:

200 Administrative Routines and Views

v If there is no active connection on db22, the update will be successful
because only the configuration file needs to be updated. A new
connection (which will activate the database) will see the new change in
memory.

v If there are active connections on db22 from other applications, the
update will work on disk but not in memory. You will receive a warning
saying that the database needs to be restarted.

DBPARTITIONNUM db-partition-num
If a database configuration update is to be applied to a specific database
partition, this parameter may be used. If this parameter is not provided,
the update will take effect on all database partitions.

IMMEDIATE
Make the changes immediately, while the database is running. IMMEDIATE is
the default action. Since the ADMIN_CMD procedure requires a database
connection, the changes will be effective immediately for any dynamically
configurable parameters for the connected database.

This is a default clause when operating in the CLPPlus interface as well.
IMMEDIATE need not be called when using CLPPlus processor.

MANUAL Disables automatic tuning for the configuration parameter. The parameter
is set to its current internal value and is no longer updated automatically.

USING config-keyword value
config-keyword specifies the database configuration parameter to be
updated. value specifies the value to be assigned to the parameter.

Example

Set the database configuration parameter sortheap to a value of 1000 on the
database partition to which the application is currently connected to.
CALL SYSPROC.ADMIN_CMD (’UPDATE DB CFG USING sortheap 1000’)

Usage notes

Command execution status is returned in the SQLCA resulting from the CALL
statement.

The database-alias must be an alias name that is defined on the server.

The command affect all database partitions unless DBPARTITIONNUM is specified.

To view or print a list of the database configuration parameters, use the
SYSIBMADM.DBCFG administration view.

To reset all the database configuration parameters to the recommended defaults,
use the RESET DATABASE CONFIGURATION command using the ADMIN_CMD
procedure.

To change a database configuration parameter, use the UPDATE DATABASE
CONFIGURATION command through the ADMIN_CMD procedure. For example, to
change the logging mode to “archival logging” on a single-partition database
environment containing a database called ZELLMART, use:
CALL SYSPROC.ADMIN_CMD (’update db cfg for zellmart using logretain recovery’)

To check that the logretain configuration parameter has changed, use:

Chapter 4. ADMIN_CMD procedure and associated routines 201

SELECT * FROM SYSIBMADM.DBCFG WHERE NAME=’logretain’

To update a database configuration parameter on a specific database partition, you
can:
1. set the DB2NODE variable to a database partition number.
2. connect to the database partition.
3. update the database configuration parameters using UPDATE DATABASE

CONFIGURATION command through the ADMIN_CMD procedure.
4. disconnect from the database partition.

or you can use DBPARTITIONNUM. For example, to update the logging mode to only
one specific partition (30) using DBPARTITIONNUM, use:
CALL SYSPROC.ADMIN_CMD (’update db cfg for zellmart dbpartitionnum 30 using
logretain recovery’)

For more information about DB2 configuration parameters and the values available
for each type of database node, see the individual configuration parameter
descriptions. The values of these parameters differ for each type of database node
configured (server, client, or server with remote clients).

Not all parameters can be updated.

Some changes to the database configuration file become effective only after they
are loaded into memory. All applications must disconnect from the database before
this can occur. For more information on which parameters are configurable online
and which ones are not, see summary list of configuration parameters.

If an error occurs, the database configuration file does not change. The database
configuration file cannot be updated if the checksum is invalid. This might occur if
the database configuration file is changed without using the appropriate command.
If this happens, the database must be restored to reset the database configuration
file.

UPDATE DATABASE MANAGER CONFIGURATION command
using the ADMIN_CMD procedure

Modifies individual entries in the database manager configuration file for the
instance that contains the currently connected database.

Authorization

SYSADM

Required connection

Database

Command syntax

�� UPDATE DATABASE MANAGER
DB MANAGER
DBM

CONFIGURATION
CONFIG
CFG

�

202 Administrative Routines and Views

� �USING config-keyword value
value AUTOMATIC
AUTOMATIC
MANUAL

DEFERRED
��

Command parameters

AUTOMATIC
Some configuration parameters can be set to AUTOMATIC, allowing DB2 to
automatically adjust these parameters to reflect the current resource
requirements. For a list of configuration parameters that support the
AUTOMATIC keyword, refer to the configuration parameters summary. If a
value is specified along with the AUTOMATIC keyword, it might influence the
automatic calculations. For specific details about this behavior, refer to the
documentation for the configuration parameter.

Note: Note that the federated_async database manager configuration
parameter can only be set to AUTOMATIC using the command line processor.

DEFERRED
Make the changes only in the configuration file, so that the changes take
effect when the instance is restarted. This is the default.

This is a default clause when operating in the CLPPlus interface. DEFERRED
need not be called when using CLPPlus processor.

MANUAL Disables automatic tuning for the configuration parameter. The parameter
is set to its current internal value and is no longer updated automatically.

USING config-keyword value
Specifies the database manager configuration parameter to be updated. For
a list of configuration parameters, refer to the configuration parameters
summary. value specifies the value to be assigned to the parameter.

Example

Update the diagnostic level to 1 for the database manager configuration.
CALL SYSPROC.ADMIN_CMD(’db2 update dbm cfg using DIAGLEVEL 1’)

Usage notes

To view or print a list of the database manager configuration parameters, use the
SYSIBMADM.DBMCFG administrative view. To reset the database manager
configuration parameters to the recommended database manager defaults, use the
RESET DATABASE MANAGER CONFIGURATION command through the ADMIN_CMD
procedure. For more information about database manager configuration parameters
and the values of these parameters appropriate for each type of database node
configured (server, client, or server with remote clients), see individual
configuration parameter descriptions.

Not all parameters can be updated.

Some changes to the database manager configuration file become effective only
after they are loaded into memory. For more information on which parameters are
configurable online and which ones are not, see the configuration parameter
summary. Server configuration parameters that are not reset immediately are reset

Chapter 4. ADMIN_CMD procedure and associated routines 203

during execution of db2start. For a client configuration parameter, parameters are
reset the next time you restart the application. If the client is the command line
processor, it is necessary to invoke TERMINATE.

If an error occurs, the database manager configuration file does not change.

The database manager configuration file cannot be updated if the checksum is
invalid. This can occur if you edit database manager configuration file and do not
use the appropriate command. If the checksum is invalid, you must reinstall the
database manager to reset the database manager configuration file.

When you update the SVCENAME, or TPNAME database manager configuration
parameters for the current instance, if LDAP support is enabled and there is an
LDAP server registered for this instance, the LDAP server is updated with the new
value or values.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

Updates can only be made to the database instance that contains the connected
database.

If a parameter supports dynamic update, an attempt is made to update it
dynamically, even if the IMMEDIATE keyword is not specified. The authorization
used is the current SYSTEM_USER id.

UPDATE HEALTH NOTIFICATION CONTACT LIST command
using the ADMIN_CMD procedure

Updates the contact list for notification about health alerts issued by an instance.

Authorization

One of the following:
v SYSADM
v SYSCTRL
v SYSMAINT

Required Connection

Database

Command Syntax

�� UPDATE HEALTH NOTIFICATION CONTACT
NOTIFICATION

LIST �

� �

,

ADD CONTACT name
DROP GROUP

��

204 Administrative Routines and Views

Command Parameters

ADD GROUP name
Add a new contact group that will notified of the health of the instance.

ADD CONTACT name
Add a new contact that will notified of the health of the instance.

DROP GROUP name
Removes the contact group from the list of contacts that will notified of the
health of the instance.

DROP CONTACT name
Removes the contact from the list of contacts that will notified of the health
of the instance.

Example

Add the contact group 'gname1' to the health notification contact list:
CALL SYSPROC.ADMIN_CMD(’update notification list add group gname1’)

Usage note

Command execution status is returned in the SQLCA resulting from the CALL
statement.

UPDATE HISTORY command using the ADMIN_CMD
procedure

Updates the location, device type, comment, or status in a database history records
entry on the currently connected database partition.

Authorization

One of the following:
v SYSADM
v SYSCTRL
v SYSMAINT
v DBADM

Required connection

Database

Command syntax

�� UPDATE HISTORY FOR object-part
EID eid

WITH �

� LOCATION new-location DEVICE TYPE new-device-type
COMMENT new-comment
STATUS new-status

��

Command parameters

FOR object-part
Specifies the identifier for the history entry to be updated. It is a time

Chapter 4. ADMIN_CMD procedure and associated routines 205

stamp with an optional sequence number from 001 to 999. This parameter
cannot be used to update the entry status. To update the entry status,
specify an EID instead.

EID eid Specifies the history entry ID.

LOCATION new-location
Specifies the new physical location of a backup image. The interpretation
of this parameter depends on the device type.

DEVICE TYPE new-device-type
Specifies a new device type for storing the backup image. Valid device
types are:

D Disk

K Diskette

T Tape

A Tivoli Storage Manager

F Snapshot backup

U User exit

P Pipe

N Null device

X XBSA

Q SQL statement

O Other

COMMENT new-comment
Specifies a new comment to describe the entry.

STATUS new-status
Specifies a new status for an entry. Only backup entries can have their
status updated. Valid values are:

A Active. The backup image is on the active log chain. Most entries
are active.

I Inactive. Backup images that no longer correspond to the current
log sequence, also called the current log chain, are flagged as
inactive.

E Expired. Backup images that are no longer required, because there
are more than NUM_DB_BACKUPS active images, are flagged as
expired.

D Deleted. Backup images that are no longer available for recovery
should be marked as having been deleted.

X Do not delete. Recovery database history records file entries that
are marked DB2HISTORY_STATUS_DO_NOT_DELETE will not be
pruned by calls to the PRUNE HISTORY command, running the
ADMIN_CMD procedure with PRUNE HISTORY, calls to the
db2Prune API, or automated recovery database history records
pruning. You can use the
DB2HISTORY_STATUS_DO_NOT_DELETE status to protect key
recovery file entries from being pruned and the recovery objects
associated with them from being deleted. Only log files, backup

206 Administrative Routines and Views

images, and load copy images can be marked as
DB2HISTORY_STATUS_DO_NOT_DELETE.

Example

To update the database history records entry for a full database backup taken on
April 13, 1997 at 10:00 a.m., enter:
CALL SYSPROC.ADMIN_CMD(’update history

for 19970413100000001 with location
/backup/dbbackup.1 device type D’)

Usage notes

The primary purpose of the database history records is to record information, but
the data contained in the history is used directly by automatic restore operations.
During any restore where the AUTOMATIC option is specified, the history of backup
images and their locations will be referenced and used by the restore utility to
fulfill the automatic restore request. If the automatic restore function is to be used
and backup images have been relocated since they were created, it is
recommended that the database history record for those images be updated to
reflect the current location. If the backup image location in the database history is
not updated, automatic restore will not be able to locate the backup images, but
manual restore commands can still be used successfully.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

The object-part or eid must refer to the log history entries on the connected database
partition.

UPDATE STMM TUNING DBPARTITIONNUM command using
the ADMIN_CMD procedure

Update the user preferred self tuning memory manager (STMM) tuning database
partition.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v DBADM
v DATAACCESS
v SQLADM

Required connection

Database

Command syntax

�� UPDATE STMM TUNING DBPARTITIONNUM partitionnum ��

Chapter 4. ADMIN_CMD procedure and associated routines 207

Command parameter

partitionnum
partitionnum is an integer. If -1 or a nonexistent database partition number
is used, DB2 will automatically select an appropriate database partition on
which to run the STMM memory tuner.

Example

Update the user preferred self tuning memory manager (STMM) tuning database
partition to database partition 3.
CALL SYSPROC.ADMIN_CMD(’update stmm tuning dbpartitionnum 3’)

Usage notes

The STMM tuning process periodically checks for a change in the user preferred
STMM tuning database partition number value. The STMM tuning process will
move to the user preferred STMM tuning database partition if partitionnum exists
and is an active database partition. Once this command changes the STMM tuning
database partition number an immediate change is made to the current STMM
tuning database partition number.

Command execution status is returned in the SQLCA resulting from the CALL
statement.

This command commits its changes in the ADMIN_CMD procedure.

ADMIN_EST_INLINE_LENGTH function - Estimate length required to
inline data

The ADMIN_EST_INLINE_LENGTH function returns an estimate of the inline
length that is required to inline the data stored in an XML column, BLOB column,
CLOB column, or DBCLOB column.

If the data cannot be inlined, the function returns a negative value.

If the data is already inlined, the function returns the actual length of the inlined
data.

Syntax

�� ADMIN_EST_INLINE_LENGTH (column-name) ��

The schema is SYSIBM.

Return value

This function returns either an INTEGER value that represents the estimated inline
length (in bytes) of the data, or one of the following values:

NULL Indicates that the inputs are NULL.

-1 Indicates that the data cannot be inlined because there is no valid inline
length that would allow the column value to be inlined.

-2 Indicates that the estimated inline length of the document cannot be

208 Administrative Routines and Views

determined because the document was inserted and stored in a release
before DB2 for Linux, UNIX, and Windows Version 9.7.

Function parameters

column-name
Identifies a column of the base table with a data type of XML, BLOB, CLOB, or
DBCLOB (SQLSTATE 42884). The column must directly or indirectly reference
the column of a base table that is not generated based on an expression
(SQLSTATE 42815).

Example

Example 1: The following example returns the estimated inline length of three XML
documents that are contained in XML column xml_doc1 of TAB1 table.
db2 => SELECT PK, ADMIN_IS_INLINED(xml_doc1) as IS_INLINED,

ADMIN_EST_INLINE_LENGTH(xml_doc1) as EST_INLINE_LENGTH
from TAB1

This query results in the following output:
PK IS_INLINED EST_INLINE_LENGTH
----------- ---------- -----------------

1 1 292
2 0 450
3 0 454

3 record(s) selected.

In the example, the ADMIN_IS_INLINED function indicates that the first
document is inlined. Therefore, the ADMIN_EST_INLINE_LENGTH function
returns the actual length of the inlined XML document. The second document is
not inlined, so the ADMIN_EST_INLINE_LENGTH function returns the estimated
inline length that is required to inline the second XML document.

Example 2: The following example returns the estimated inline length of one XML
document that is contained in the XML column xml_doc1 of the TAB1 table. This
example includes a predicate.
db2 => SELECT PK, ADMIN_IS_INLINED(xml_doc1) as IS_INLINED,

ADMIN_EST_INLINE_LENGTH(xml_doc1) as EST_INLINE_LENGTH
from TAB1 where PK=2

This query results in the following output:
PK IS_INLINED EST_INLINE_LENGTH
----------- ---------- -----------------

2 0 450

1 record(s) selected.

Example 3: The following example returns the estimated inline length of three
CLOB data that are contained in CLOB column clob_1 of the TAB1 table.
db2 => SELECT PK, ADMIN_IS_INLINED(clob_1) as IS_INLINED,

ADMIN_EST_INLINE_LENGTH(clob_1) as EST_INLINE_LENGTH
from TAB1

This query results in the following output:
PK IS_INLINED EST_INLINE_LENGTH
----------- ---------- -----------------

1 1 68

Chapter 4. ADMIN_CMD procedure and associated routines 209

2 0 3665
3 0 -1

3 record(s) selected.

Usage notes
v XML columns are only supported when the XML documents were inserted using

DB2 for Linux, UNIX, and Windows Version 9.7 or later. XML documents
inserted before this release have a different storage format. When the
ADMIN_EST_INLINE_LENGTH function encounters an incorrect storage format,
it returns a value of -2.

v If you plan to increase the column inline length, remember that this length
cannot be reduced.

v Increasing the inline length also increases the total row size and might affect the
performance of buffer pools. The total row size has the following limits.

Table 68. Row size limits

Page size Row size limit Inline length limit

4K 4005 4001

8K 8101 8097

16K 16 293 16 289

32K 32 677 32 673

v The estimated inline length might not be accurate if the XML storage object page
size is not same as the base table page size.

ADMIN_GET_DBP_MEM_USAGE table function - Get total memory
consumption for instance

The ADMIN_GET_DBP_MEM_USAGE table function gets the total memory
consumption for a given instance.

The ADMIN_GET_DBP_MEM_USAGE table function takes an optional input
argument dbpartitionnum (INTEGER type), which specifies a valid database
partition number, and returns only statistics for that single database partition. If
the argument is omitted, statistics are returned for all active database partitions.
When in a partitioned database environment, if you specify -1 or a NULL value
for dbpartitionnum, data is returned from the currently connected partition.

Syntax

�� ADMIN_GET_DBP_MEM_USAGE ()
dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbpartitionnum
An optional input argument of type integer that specifies the database partition
from which the memory usage statistics will be retrieved. If -1 or the NULL
value is specified, data will be returned from the currently connected partition.

210 Administrative Routines and Views

Authorization

EXECUTE privilege on the ADMIN_GET_DBP_MEM_USAGE function.

Information returned

Table 69. The result set for ADMIN_GET_DBP_MEM_USAGE

Column Name Data Type Description

DBPARTITIONNUM SMALLINT The database partition number from which memory usage
statistics is retrieved.

MAX_PARTITION_MEM BIGINT The maximum amount of instance memory (in bytes) allowed
to be consumed in the database partition if an instance
memory limit is enforced.

CURRENT_PARTITION_MEM BIGINT The amount of instance memory (in bytes) currently consumed
in the database partition.

PEAK_PARTITION_MEM BIGINT The peak or high watermark consumption of instance memory
(in bytes) in the database partition.

Examples

Example 1: Retrieve memory usage statistics from database partition 3
SELECT * FROM TABLE (SYSPROC.ADMIN_GET_DBP_MEM_USAGE(3)) AS T

DBPARTITIONNUM MAX_PARTITION_MEM CURRENT_PARTITION_MEM PEAK_PARTITION_MEM
-------------- ----------------- --------------------- ------------------

3 500000000 381000000 481000000

1 record(s) selected.

Example 2: Retrieve memory usage statistics from the currently connected partition
(assuming the user is connected to the database at partition 2.)
SELECT * FROM TABLE (SYSPROC.ADMIN_GET_DBP_MEM_USAGE(-1)) AS T

DBPARTITIONNUM MAX_PARTITION_MEM CURRENT_PARTITION_MEM PEAK_PARTITION_MEM
-------------- ----------------- --------------------- ------------------

2 500000000 381000000 481000000

1 record(s) selected.

Example 3: Retrieve memory usage statistics from all partitions
SELECT * FROM TABLE (SYSPROC.ADMIN_GET_DBP_MEM_USAGE()) AS T

DBPARTITIONNUM MAX_PARTITION_MEM CURRENT_PARTITION_MEM PEAK_PARTITION_MEM
-------------- ----------------- --------------------- ------------------

0 500000000 381000000 481000000
1 500000000 381000000 481000000
2 500000000 381000000 481000000
3 500000000 381000000 481000000

4 record(s) selected.

Example 4: Retrieve memory usage statistics in megabyte (MB) values
SELECT DBPARTITIONNUM, MAX_PARTITION_MEM/1048576 AS MAX_MEM_MB,

CURRENT_PARTITION_MEM/1048576 AS CURRENT_MEM_MB, PEAK_PARTITION_MEM/1048576
AS PEAK_MEM_MB FROM TABLE (SYSPROC.ADMIN_GET_DBP_MEM_USAGE()) AS T

DBPARTITIONNUM MAX_MEM_MB CURRENT_MEM_MB PEAK_MEM_MB
-------------- ---------- -------------- -----------

Chapter 4. ADMIN_CMD procedure and associated routines 211

0 4590 1107 1107
1 4590 1108 1108
2 4590 1106 1106

3 record(s) selected.

ADMIN_GET_INDEX_COMPRESS_INFO table function - returns
compressed index information

The ADMIN_GET_INDEX_COMPRESS_INFO table function returns the potential
index compression savings for uncompressed indexes or reports the index
compression statistics from the catalogs.

Syntax

�� ADMIN_GET_INDEX_COMPRESS_INFO (objecttype , objectschema , objectname , �

� dbpartitionnum , datapartitionid) ��

The schema is SYSPROC.

Table function parameters

objecttype
An input argument of type VARCHAR(1) that indicates the object type. The
value must be one of the following case-sensitive values:
v 'T', NULL, or the empty string to indicate a table
v 'I' for an index

objectschema
A case-sensitive input parameter of type VARCHAR(128) that specifies the
object schema.

If objecttype is 'T', NULL, or the empty string ("), then objectschema indicates the
table schema.
v If objectschema is specified and objectname is NULL or the empty string ("),

then information is returned for all indexes on all tables in the specified
schema.

v If both objectschema and objectname are specified, then information is returned
for all indexes on the specified table.

If objecttype is 'I', then objectschema indicates the index schema.
v If objectschema is specified and objectname is NULL or the empty string ("),

then information is returned for all indexes in the specified schema.
v If both objectschema and objectname are specified, then information is returned

for the specified index.
v If neither objectschema or objectname are specified, then information is

returned for all indexes in all of the schemas.

If objectname is specified and objectschema is not specified, the function returns
an SQL error. A parameter value is said to be unspecified when either it has a
value of NULL or the empty string (").

objectname
A case-sensitive input parameter of type VARCHAR(128) that specifies the
object name. See the description for the objectschema parameter.

212 Administrative Routines and Views

dbpartitionnum
An input parameter of type INTEGER that specifies a database partition
number. When specified, information is returned only for indexes that reside
on the specified database partition. To specify that data should be returned for
all active database partitions, set the dbpartitionnum parameter value to either
-2 or NULL. In nonpartitioned database environments, specify -2 or NULL.

datapartitionid
An input parameter of type INTEGER that specifies the data partition ID.
When specified, information is returned only for index partitions defined on
the specified data partitions. The data partition ID should correspond to the
DATAPARTITIONID found in the SYSCAT.DATAPARTITIONS view. To specify
that data should be returned for all data partitions, set the datapartitionid
parameter value to either -2 or NULL. For nonpartitioned indexes, specify -2,
0, or NULL.

Authorization

EXECUTE privilege on the ADMIN_GET_INDEX_COMPRESS_INFO table
function.

Example

After database migration, all the existing indexes are uncompressed. You may want
to estimate the potential index compression savings for existing indexes on the
table "S.T1", which has a data partition ID of 3 and resides on database partition
number 2. In this example, S is the schema name and T1 is the table name, and T1
is not compressed

SELECT compress_attr, iid, dbpartitionnum, index_compressed,
pct_pages_saved, num_leaf_pages_saved

FROM TABLE(sysproc.admin_get_index_compress_info(’’, ’S’, ’T1’, 2, 3))
AS t

The following example is a sample output from this statement.
COMPRESS_ATTR IID DBPARTITIONNUM INDEX_COMPRESSED ...
------------- --------- -------------- ---------------- ...
N 1 2 N ...
N 2 2 N ...

... PCT_PAGES_SAVED NUM_LEAF_PAGES_SAVED

... --------------- --------------------

... 50 200

... 45 150

You may decide that the savings from compression are worthwhile, and you want
to enable index compression.

ALTER INDEX INDEX1 compress yes
ALTER INDEX INDEX2 compress yes
REORG INDEXES all FOR table S.T1

As time passes, you may determine the need to create new indexes for the table
and want to estimate index compression savings for these indexes before
compressing them. You may also want to see the compression statistics from
already compressed indexes.

SELECT compress_attr, iid, dbpartitionnum, index_compressed,
pct_pages_saved, num_leaf_pages_saved

FROM TABLE(sysproc.admin_get_index_compress_info(’’, ’S’, ’T1’, 2, 3))
AS t

Chapter 4. ADMIN_CMD procedure and associated routines 213

The following example is a sample output from this statement.
COMPRESS_ATTR IID DBPARTITIONNUM INDEX_COMPRESSED ...
------------- --------- -------------- ---------------- ...
Y 1 2 Y ...
Y 2 2 Y ...
N 3 2 N ...
N 4 2 N ...

... PCT_PAGES_SAVED NUM_LEAF_PAGES_SAVED

... --------------- --------------------

... -1 -1

... -1 -1

... 58 230

... 49 140

As the first two indexes were already compressed, as indicated by the
index_compressed column, the statement returns values from the system catalogs.
In this case, the values from the catalogs were not collected.

After running RUNSTATS on the table, the next run of the index function yields
the corrected results.

RUNSTATS ON TABLE S.T1 FOR INDEXES ALL
SELECT compress_attr, iid, dbpartitionnum, index_compressed,

pct_pages_saved, num_leaf_pages_saved
FROM TABLE(sysproc.admin_get_index_compress_info(’’, ’S’, ’T1’, 2, 3))
AS t

The following example is a sample output from this statement.
COMPRESS_ATTR IID DBPARTITIONNUM INDEX_COMPRESSED ...
------------- --------- -------------- ---------------- ...
Y 1 2 Y ...
Y 2 2 Y ...
N 3 2 N ...
N 4 2 N ...

... PCT_PAGES_SAVED NUM_LEAF_PAGES_SAVED

... --------------- --------------------

... 50 200

... 45 150

... 58 230

... 49 140

ADMIN_GET_INDEX_COMPRESS_INFO table function metadata

Table 70. ADMIN_GET_INDEX_COMPRESS_INFO table function metadata

Column Name Data Type Description

INDSCHEMA VARCHAR(128) Name of the schema where the index is defined.

INDNAME VARCHAR(128) Index name.

TABSCHEMA VARCHAR(128) Name of the schema where the table is defined.

TABNAME VARCHAR(128) Table name.

DBPARTITIONNUM SMALLINT Database partition number.

IID SMALLINT Identifier for the index.

DATAPARTITIONID INTEGER Data partition ID.

COMPRESS_ATTR CHAR(1) The state of the COMPRESSION attribute on the index.

v “Y” = Index compression is enabled

v “N” = Index compression is not enabled

214 Administrative Routines and Views

Table 70. ADMIN_GET_INDEX_COMPRESS_INFO table function metadata (continued)

Column Name Data Type Description

INDEX_COMPRESSED CHAR(1) Physical index format.

v “Y” = Index is in compressed format

v “N” = Index is in uncompressed format

If the physical index format does not match the compression
attribute, an index reorganization is needed to convert index to
the defined format If the table or index is in error at the time
this function is executed, then this value is NULL.

PCT_PAGES_SAVED SMALLINT If the index is not physically compressed
(INDEX_COMPRESSED is “N”), then this value represents the
estimated percentage of leaf pages saved, as if the index were
actually compressed. If the index is physically compressed
(INDEX_COMPRESSED is “Y”), then this value reports the
PCTPAGESSAVED value from the system catalog view (either
SYSCAT.INDEXES or SYSCAT.INDEXPARTITIONS).
Note: This value is the same for each entry of an index or index
partition for each database partition in a partitioned database
environment. If the table or index is in error at the time this
function is executed, then this value is NULL.

NUM_LEAF_PAGES_SAVED BIGINT If the index is not physically compressed
(INDEX_COMPRESSED is “N”), then this value represents the
estimated number of leaf pages saved as if the index were
actually compressed. If the index is physically compressed
(INDEX_COMPRESSED is “Y”), then this value reports the
calculated number of leaf pages saved, based on the
PCTPAGESSAVED and NLEAF values from the system catalog
view (either SYSCAT.INDEXES or SYSCAT.INDEXPARTITIONS).
If either PCTPAGESSAVED or NLEAF are invalid values (-1),
then this value is set to -1 as well.
Note: This value is the same for each entry of an index or index
partition for each database partition in a partitioned database
environment. If the table or index is in error at the time this
function is executed, then this value is NULL.

ADMIN_GET_INDEX_INFO table function - returns index information
The ADMIN_GET_INDEX_INFO table function returns index information not
available in the catalog views, such as compression information and the logical and
physical size of the index.

Syntax

�� ADMIN_GET_INDEX_INFO (objecttype , objectschema , objectname) ��

The schema is SYSPROC.

Table function parameters

objecttype
An input argument of type VARCHAR(1) that indicates the object type. The
value must be one of the following case-sensitive values:
v 'T', NULL, or the empty string (") to indicate a table
v 'I' for an index

Chapter 4. ADMIN_CMD procedure and associated routines 215

objectschema
A case-sensitive input parameter of type VARCHAR(128) that specifies the
object schema.

If objecttype is 'T', NULL, or the empty string (''), thenobjectschema indicates the
table schema.
v If objectschema is specified and objectname is NULL or the empty string (''),

then information is returned for all indexes on all tables in the specified
schema.

v If both objectschema and objectname are specified, then information is returned
for all indexes on the specified table.

If objecttype is 'I', then objectschema indicates the index schema.
v If objectschema is specified and objectname is NULL or the empty string ("),

then information is returned for all indexes in the specified schema.
v If both objectschema and objectname are specified, then information is returned

for the specified index.
v If neither objectschema or objectname are specified, then information is

returned for all indexes in all of the schemas.

If objectname is specified and objectschema is not specified, the function returns
an SQL error. A parameter value is said to be unspecified when either it has a
value of NULL or the empty string (").

objectname
A case-sensitive input parameter of type VARCHAR(128) that specifies the
object name. See the description for the objectschema parameter.

Authorization

EXECUTE privilege on the ADMIN_GET_INDEX_INFO table function.

Example

After enabling index compression for several indexes on a table, you want to
determine which indexes are compressed and which indexes require a rebuild in
order to be compressed. In this example, S is the schema name and T1 is the table
name.
db2 SELECT iid, compress_attr, index_compressed

FROM TABLE(sysproc.admin_get_index_info(’’,’S’,’T1’)) AS t

The following example is a sample output from this query.
IID COMPRESS_ATTR INDEX_COMPRESSED
--------- ------------- ----------------

1 Y Y
2 Y Y
3 Y N
4 N N

Additionally, you want to see other index information for all indexes in the schema
S2. In this example:
v T2 = a partitioned table with two data partitions
v T3 = a nonpartitioned table
v IND_1 = a nonpartitioned index on T2
v IND_2 = a partitioned index on T2
v IND_3 = a partitioned index on T2

216 Administrative Routines and Views

v IND_4 = an index on T3
v IND_5 = an index on T3
db2 SELECT tabname, indname, iid,index_partitioning, datapartitionid,

index_object_l_size, index_object_p_size, index_requires_rebuild,
large_rids FROM TABLE(sysproc.admin_get_index_info(’I’,’S2’,’’)) AS t

The following example is a sample output from this query.
TABNAME INDNAME IID INDEX_PARTITIONING DATAPARTITIONID
------- ------- --------- ------------------ ---------------
T2 IND_1 1 N 0
T2 IND_2 2 P 1
T2 IND_2 2 P 2
T2 IND_3 3 P 1
T2 IND_3 3 P 2
T3 IND_4 4 0
T3 IND_5 5 0

Output from this procedure (continued):
INDEX_OBJECT_L_SIZE INDEX_OBJECT_P_SIZE INDEX_REQUIRES_REBUILD LARGE_RIDS
------------------- ------------------- ---------------------- ----------

50 51 N Y
40 40 N Y
45 45 N Y
40 40 N Y
45 45 N Y
20 20 N Y
20 20 N Y

ADMIN_GET_INDEX_INFO table function metadata

Table 71. ADMIN_GET_INDEX_INFO table function metadata

Column Name Data Type Description

INDSCHEMA VARCHAR(128) Name of the schema where the index is defined.

INDNAME VARCHAR(128) Index name.

TABSCHEMA VARCHAR(128) Name of the schema where the table is defined.

TABNAME VARCHAR(128) Table name.

DBPARTITIONNUM SMALLINT Database partition number.

IID SMALLINT Identifier for the index.

DATAPARTITIONID INTEGER Data partition ID.

COMPRESS_ATTR CHAR(1) The state of the COMPRESSION attribute on the index.

v “Y” = Index compression is enabled

v “N” = Index compression is not enabled

INDEX_COMPRESSED CHAR(1) Physical index format.

v “Y” = Index is in compressed format

v “N” = Index is in uncompressed format

If the physical index format does not match the compression
attribute, an index reorganization is needed to convert the index
to the defined format. If the table or index is in error when this
function is executed, then this value is NULL.

INDEX_PARTITIONING CHAR(1) Identifies the partitioning characteristic of the index.

v “N” = Nonpartitioned index

v “P” = Partitioned index

v Blank = Index is not on a partitioned table

Chapter 4. ADMIN_CMD procedure and associated routines 217

Table 71. ADMIN_GET_INDEX_INFO table function metadata (continued)

Column Name Data Type Description

INDEX_OBJECT_L_SIZE BIGINT Logical size of the index object. For nonpartitioned tables, this is
the amount of disk space logically allocated for all indexes
defined on the table. For a nonpartitioned index on a partitioned
table, this is the amount of disk space logically allocated for the
index. For a partitioned index on a partitioned table, this is the
amount of disk space logically allocated for all index partitions
defined on the data partition. All sizes are reported in kilobytes
(KB).

The logical size is the amount of space that the table or data
partition knows about. It may be less than the amount of space
physically allocated to hold index data for the table or data
partition (for example, in the case of a logical table truncation).
The size returned takes into account full extents that are
logically allocated for the indexes and, for indexes created in
DMS table spaces, an estimate of the EMP extents. If the table or
index is in error when this function is executed, then this value
is NULL.

INDEX_OBJECT_P_SIZE BIGINT Physical size of the index object. For nonpartitioned tables, this
is the amount of disk space physically allocated for all indexes
defined on the table. For a nonpartitioned index on a partitioned
table, this is the amount of disk space physically allocated for
the index. For a partitioned index on a partitioned table, this is
the amount of disk space physically allocated for all index
partitions defined on the data partition. All sizes are reported in
kilobytes (KB).

The size returned takes into account full extents allocated for the
indexes and includes the EMP extents for indexes created in
DMS table spaces. If the table or index is in error when this
function is executed, then this value is NULL.

INDEX_REQUIRES_REBUILD CHAR(1) Rebuild status for the index.

v “Y” if the index defined on the table or data partition requires
a rebuild

v “N” otherwise

If the table is in error when this function is executed, then this
value is NULL.

LARGE_RIDS CHAR(1) Indicates whether or not the index is using large row IDs (RIDs)
(4 byte page number, 2 byte slot number).

v “Y” indicates that the index is using large RIDs

v “N” indicates that the index is not using large RIDs

v “P” (pending) indicates that the table that the index is defined
on supports large RIDs (that is, the table is in a large table
space), but the index for the table or data partition has not
been reorganized or rebuilt yet. Therefore, the table is still
using 4 byte RIDs, and action must be taken to convert the
table or index to large RIDs.

If the table is in error where this function is executed, then this
value is NULL.

218 Administrative Routines and Views

ADMIN_GET_MSGS table function - Retrieve messages generated by a
data movement utility that is executed through the ADMIN_CMD
procedure

The ADMIN_GET_MSGS table function is used to retrieve messages generated by
a single execution of a data movement utility command through the ADMIN_CMD
procedure. The input parameter operation_id identifies that operation.

Syntax

�� ADMIN_GET_MSGS (operation_id) ��

The schema is SYSPROC.

Table function parameter

operation_id
An input argument of type VARCHAR(139) that specifies the operation ID of
the message file(s) produced by a data movement utility that was executed
through the ADMIN_CMD procedure. The operation ID is generated by the
ADMIN_CMD procedure.

Authorization

EXECUTE privilege on the ADMIN_GET_MSGS table function. The fenced user ID
must have read access to the files under the directory indicated by registry variable
DB2_UTIL_MSGPATH. If the registry variable is not set, then the fenced user ID
must have read access to the files in the tmp subdirectory of the instance directory.

Example

Check all the messages returned by EXPORT utility that was executed through
ADMIN_CMD procedure, with operation ID '24523_THERESAX'
SELECT * FROM TABLE(SYSPROC.ADMIN_GET_MSGS(’24523_THERESAX’)) AS MSG

The following example is a sample output from this query.
DBPARTITIONNUM AGENTTYPE SQLCODE MSG
-------------- --------- --------- ---------------------------------------...-
- - SQL3104N The Export utility is beginning to

export data to file
"/home/theresax/rtest/data/ac_load03.del".

- - SQL3105N The Export utility has finished
exporting "8" rows.

2 record(s) selected.

Usage notes

The query statement that invokes this table function with the appropriate
operation_id can be found in the MSG_RETRIEVAL column of the first result set
returned by the ADMIN_CMD procedure.

Chapter 4. ADMIN_CMD procedure and associated routines 219

Information returned

Table 72. Information returned by the ADMIN_GET_MSGS table function

Column name Data type Description

DBPARTITIONNUM INTEGER Database partition number.
This value is only returned
for a distributed load and
indicates which database
partition the corresponding
message is for.

AGENTTYPE CHAR(4) Agent type. This value is
only returned for a
distributed load. The
possible values are:

v 'LOAD': for load agent

v 'PART': for partitioning
agent

v 'PREP': for pre-partitioning
agent

v NULL: no agent type
information is available

SQLCODE VARCHAR(9) SQLCODE of the message
being returned.

MSG VARCHAR(1024) Short error message that
corresponds to the
SQLCODE.

ADMIN_IS_INLINED function - Determine if data is inlined
The ADMIN_IS_INLINED function retrieves state information about inline data for
an XML column, BLOB column, CLOB column, or DBCLOB column.

Syntax

�� ADMIN_IS_INLINED (column-name) ��

The schema is SYSIBM.

Return value

This function returns one of the following values of type SMALLINT, or the null
value:

1 Indicates that the data is inlined.

0 Indicates that the data is not inlined.

NULL Indicates that the inputs are NULL.

Function parameters

column-name
Identifies a column of the base table with a data type of XML, BLOB, CLOB, or

220 Administrative Routines and Views

DBCLOB (SQLSTATE 42884). The column must directly or indirectly reference
the column of a base table that is not generated based on an expression
(SQLSTATE 42815).

Example

Example 1: The following example indicates whether the three XML documents in
the XML column xml_doc1 of the TAB1 table are inlined:
db2 => SELECT PK, ADMIN_IS_INLINED(xml_doc1) as IS_INLINED

from TAB1

This query results in the following output:
PK IS_INLINED
----------- -------------------

1 1
2 0
3 0

3 record(s) selected.

Example 2: The following example indicates whether one of the XML documents in
the XML column xml_doc1 of the TAB1 table is inlined:
db2 => SELECT PK, ADMIN_IS_INLINED(xml_doc1) as IS_INLINED

from TAB1 where PK=1

This query results in the following output:
PK IS_INLINED
----------- -------------------

1 1

1 record(s) selected.

Example 3: The following example indicates whether the three CLOB data
contained in the CLOB column clob_1 of the TAB1 table are inlined:
db2 => SELECT PK, ADMIN_IS_INLINED(clob_1) as IS_INLINED

from TAB1

This query results in the following output:
PK IS_INLINED
----------- -------------------

1 0
2 0
3 1

3 record(s) selected.

ADMIN_REMOVE_MSGS procedure - Clean up messages generated by
a data movement utility that is executed through the ADMIN_CMD
procedure

The ADMIN_REMOVE_MSGS procedure is used to clean up messages generated
by a single execution of a data movement utility command through the
ADMIN_CMD procedure. The input parameter operation_id identifies the operation.

Chapter 4. ADMIN_CMD procedure and associated routines 221

Syntax

�� ADMIN_REMOVE_MSGS (operation_id) ��

The schema is SYSPROC.

Procedure parameter

operation_id
An input argument of type VARCHAR(139) that specifies the operation ID of
the message file(s) produced by a data movement utility that was executed
through the ADMIN_CMD procedure. The operation ID is generated by the
ADMIN_CMD procedure.

Authorization

EXECUTE privilege on the ADMIN_REMOVE_MSGS procedure. The fenced user
ID must be able to delete files under the directory indicated by registry variable
DB2_UTIL_MSGPATH. If the registry variable is not set, then the fenced user ID
must be able to delete the files in the tmp subdirectory of the instance directory.

Example

Clean up messages with operation ID '24523_THERESAX'.
CALL SYSPROC.ADMIN_REMOVE_MSGS(’24523_THERESAX’)

Usage notes

The CALL statement that invokes this procedure with the appropriate operation_id
can be found in the MSG_REMOVAL column of the first result set returned by
ADMIN_CMD procedure.

ADMIN_REVALIDATE_DB_OBJECTS procedure - Revalidate invalid
database objects

The ADMIN_REVALIDATE_DB_OBJECTS procedure revalidates invalid database
objects.

This procedure takes three input parameters, object_type, object_schema, and
object_name, that control the level of revalidation that is performed:
v To revalidate all of the invalid objects in the database, either specify NULL for

all parameters, or call the procedure without parameters.
v To revalidate all of the invalid database objects under a specific schema, specify

a value for object_schema, and specify NULL for object_name and object_type.
v To revalidate a specific invalid database object, specify valid values for all

parameters.

Syntax

�� ADMIN_REVALIDATE_DB_OBJECTS (object_type , object_schema , �

� object_name) ��

222 Administrative Routines and Views

The schema is SYSPROC.

Procedure parameters

object_type
An input argument of type VARCHAR(30) that identifies the type of the
database object. The following types are valid:
v FUNCTION
v GLOBAL VARIABLE
v METHOD
v MODULE
v PROCEDURE
v SPECIFIC
v TABLE
v TRIGGER
v TYPE
v VIEW

This value is not case-sensitive. This value can be NULL.

If any of these types is specified, the procedure revalidates all of the invalid
objects of that type, with the exception of those that belong to a MODULE. If
you want to revalidate objects that are inside of a module, use the MODULE
type with the name of a specific module, and all of the invalid objects inside of
that module will be revalidated.

If there is a routine that has more than one parameter signature and you only
want to revalidate one of them, use the SPECIFIC type with the name of the
routine that you want to revalidate.

If you use the TABLE type, the specified tables will be reorganized and their
statistics will be collected. The procedure invokes the reorg utility, followed by
the runstats utility, against regular or materialized query tables that are in
reorg-pending state. The procedure will attempt to use a user profile for
runstats, if one exists. If not, a default runstats operation is invoked.

object_schema
An input argument of type VARCHAR(128) that identifies the schema name
used to qualify database object references. The name is case-sensitive. This
value can be NULL.

object_name
An input argument of type VARCHAR(128) that identifies a database object.
The name is case-sensitive. This value cannot be the value of a typed table or a
row function, because the procedure does not support these types of objects; if
the name of such an object is specified, an error is returned. This value can be
NULL.

Authorization

EXECUTE privilege on the ADMIN_REVALIDATE_DB_OBJECTS procedure.

Examples

Example 1: Revalidate everything in the current database.
CALL SYSPROC.ADMIN_REVALIDATE_DB_OBJECTS(NULL, NULL, NULL)

Chapter 4. ADMIN_CMD procedure and associated routines 223

Or, alternatively, call the procedure without any parameters.
CALL SYSPROC.ADMIN_REVALIDATE_DB_OBJECTS()

Example 2: Revalidate all objects that are qualified by the schema MY_SCHEMA.
CALL SYSPROC.ADMIN_REVALIDATE_DB_OBJECTS(NULL, ’MY_SCHEMA’, NULL)

Example 3: Revalidate all trigger objects in the database.
CALL SYSPROC.ADMIN_REVALIDATE_DB_OBJECTS(’trigger’, NULL, NULL)

Example 4: Revalidate a specific view object.
CALL SYSPROC.ADMIN_REVALIDATE_DB_OBJECTS(’view’, ’MY_SCHEMA’, ’MY_VIEW’)

Example 5: Revalidate all procedures under MY_SCHEMA. In this example, there
are three procedures (proc1, proc2, and proc3) under this schema. The referenced
object used by proc1 does not exist. The following call revalidates proc2 and proc3,
but proc1 remains invalid. In this situation, the call returns a warning.

CALL SYSPROC.ADMIN_REVALIDATE_DB_OBJECTS(’procedure’, ’MY_SCHEMA’, NULL)

Example 6: Revalidate an object that does not exist. This example returns an error.
CALL SYSPROC.ADMIN_REVALIDATE_DB_OBJECTS(’procedure’, ’MY_SCHEMA’, ’MY_VIEW’)

Example 7: Revalidate all procedures under MY_SCHEMA using the named
parameter notation.

CALL SYSPROC.ADMIN_REVALIDATE_DB_OBJECTS(
object_type=>’PROCEDURE’,object_schema=>’MY_SCHEMA’)

Usage notes

All of the non-null parameter values that are passed to the
ADMIN_REVALIDATE_DB_OBJECTS procedure must be satisfied, or the
procedure cannot identify the objects that need to be revalidated. For example, if
you specify a view name, but with a trigger type, the procedure does not
revalidate the view, because the type does not match.

This procedure will revalidate only invalid objects and regular or materialized
query tables in reorg-pending state. All invalid objects can be found in
SYSCAT.INVALIDOBJECTS. To find out which tables are in reorg-pending state,
use the ADMIN_GET_TAB_INFO table function.

If a valid object is specified as input, the procedure will not perform any operation
and returns a success code. If a failure occurs during the revalidation of tables, the
procedure fails. If a failure occurs during the revalidation of other objects, the
procedure ignores the failure and continues revalidating the other objects. If there
is at least one failure, the procedure returns a warning (SQLSTATE 0168B). If the
revalidation of all objects fails, the procedure returns an error (SQLSTATE 429C4).
The details of all revalidation failures of objects except tables can be found in
SYSCAT.INVALIDOBJECTS.

When a global variable is revalidated, it is also instantiated for the current session.

To monitor the progress of a table revalidation, you can monitor the progress of
the associated table reorg operation. For all other objects, query the
SYSCAT.INVALIDOBJECTS catalog view; objects are deleted from this view when
they are successfully revalidated, and entries are updated if revalidation fails.

224 Administrative Routines and Views

ADMINTABCOMPRESSINFO administrative view and
ADMIN_GET_TAB_COMPRESS_INFO_V97 table function - returns
compressed information

The ADMINTABCOMPRESSINFO administrative view and the
ADMIN_GET_TAB_COMPRESS_INFO_V97 table function return compression
information for tables, materialized query tables (MQT) and hierarchy tables.

ADMINTABCOMPRESSINFO administrative view

The ADMINTABCOMPRESSINFO administrative view returns compression
information for tables, materialized query tables (MQT) and hierarchy tables only.
These table types are reported as T for table, S for materialized query tables and H
for hierarchy tables in the SYSCAT.TABLES catalog view. The information is
returned at both the data partition level and the database partition level for a table.

The schema is SYSIBMADM.

Refer to the \ADMINTABCOMPRESSINFO administrative view and
ADMIN_GET_TAB_COMPRESS_INFO_V97 table function metadata table for a
complete list of information that can be returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the ADMINTABCOMPRESSINFO administrative view
v CONTROL privilege on the ADMINTABCOMPRESSINFO administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the ADMIN_GET_TAB_COMPRESS_INFO_V97 table

function
v DATAACCESS authority

Examples

Example 1: Retrieve all compression information for all tables
SELECT * FROM SYSIBMADM.ADMINTABCOMPRESSINFO

The following example is a sample output from this query:
TABSCHEMA TABNAME DBPARTITIONNUM DATA_PARTITION_ID COMPRESS_ATTR DICT_BUILDER ...
--------- --------- -------------- ----------------- ------------- ------------ ...
SYSIBM SYSTABLES 0 0 N NOT BUILT ...
SYSIBM SYSTABLES 0 0 N NOT BUILT ...
...
SIMAP2 STAFF 0 4 Y REORG ...
SIMAP2 STAFF 0 4 Y REORG ...
...

156 record(s) selected.

Output from this query (continued):
DICT_BUILD_TIMESTAMP COMPRESS_DICT_SIZE EXPAND_DICT_SIZE ROWS_SAMPLED ...
------------------------- ------------------- ---------------- ------------ ...
- 0 0 0 ...
- 0 0 0 ...

Chapter 4. ADMIN_CMD procedure and associated routines 225

...
2009-03-31-11.08.18.000000 3968 3000 6 ...
2009-03-31-11.08.18.000000 13312 10944 6 ...
...

Output from this query (continued):
PAGES_SAVED_PERCENT BYTES_SAVED_PERCENT AVG_COMPRESS_REC_LENGTH OBJECT_TYPE
------------------- ------------------- ----------------------- -----------

0 0 0 DATA
0 0 0 XML

...
70 70 31 DATA
66 66 235 XML

...

Example 2: Determine the object on which the dictionary was created, the
dictionary building action, and the time of dictionary creation for all tables.

SELECT TABSCHEMA, TABNAME, DBPARTITIONNUM, DATA_PARTITION_ID,
OBJECT_TYPE, DICT_BUILDER, DICT_BUILD_TIMESTAMP

FROM SYSIBMADM.ADMINTABCOMPRESSINFO

The following example is a sample output from this query:
TABSCHEMA TABNAME DBPARTITIONNUM DATA_PARTITION_ID ...
--------------- --------------- -------------- ----------------- ...
SYSIBM SYSTABLES 0 0 ...
SYSIBM SYSTABLES 0 0 ...
...
SIMAP2 STAFF 0 4 ...
SIMAP2 STAFF 0 4 ...
SYSTOOLS HMON_COLLECTION 0 0 ...
SYSTOOLS HMON_COLLECTION 0 0 ...

156 record(s) selected.

Output from this query (continued):
OBJECT_TYPE DICT_BUILDER DICT_BUILD_TIMESTAMP
----------- --------------------------- --------------------------
DATA NOT BUILT -
XML NOT BUILT -
...
DATA REORG 2009-03-31-11.08.18.000000
XML REORG 2009-03-31-11.08.18.000000
DATA REDISTRIBUTE 2009-03-29-06.44.32.000000
XML REDISTRIBUTE 2009-03-29-06.44.32.000000

ADMIN_GET_TAB_COMPRESS_INFO_V97 table function

The ADMIN_GET_TAB_COMPRESS_INFO_V97 table function returns the same
information as the ADMINTABCOMPRESSINFO administrative view, but allows
you to specify a schema, table name and an execution mode.

Refer to the ADMINTABCOMPRESSINFO administrative view and
ADMIN_GET_TAB_COMPRESS_INFO_V97 table function metadata table for a
complete list of information that can be returned.

This function returns two rows for every table. One row has a value of DATA in
the OBJECT_TYPE column, and the other row has a value of XML for that column.
The row marked as DATA is equivalent to the return value from the deprecated
“ADMINTABCOMPRESSINFO view and ADMIN_GET_TAB_COMPRESS_INFO”
on page 1035

226 Administrative Routines and Views

on page 1035 table function. The row marked as XML describes the XML
compression dictionary.

Syntax

�� ADMIN_GET_TAB_COMPRESS_INFO_V97 (tabschema , tabname , execmode) ��

The schema is SYSPROC.

Table function parameters

tabschema
An input argument of type VARCHAR(128) that specifies a schema name.

tabname
An input argument of type VARCHAR(128) that specifies a table name, a
materialized query table name or a hierarchy table name.

execmode
An input argument of type VARCHAR(30) that specifies the execution mode.
The execution mode can be one of the following values:
v 'REPORT' -- Reports compression information as of last generation. This is

the default value.
v 'ESTIMATE' -- Generates new compression information based on the current

table.

Authorization

EXECUTE privilege on the ADMIN_GET_TAB_COMPRESS_INFO_V97 function.

Examples

Example 1: Retrieve existing compression information for table SIMAP2.STAFF
SELECT *

FROM TABLE (
SYSPROC.ADMIN_GET_TAB_COMPRESS_INFO_V97(’SIMAP2’, ’STAFF’, ’REPORT’))

AS T

The following example is a sample output of this query:
TABSCHEMA TABNAME DBPARTITIONNUM DATA_PARTITION_ID COMPRESS_ATTR DICT_BUILDER ...
--------- ------- -------------- ----------------- ------------- ------------ ...
SIMAP2 STAFF 0 4 Y REORG ...
SIMAP2 STAFF 0 4 Y NOT BUILT ...

2 record(s) selected.

Output from this query (continued):
DICT_BUILD_TIMESTAMP COMPRESS_DICT_SIZE EXPAND_DICT_SIZE ROWS_SAMPLED ...
-------------------------- ------------------ ---------------- ------------ ...
2009-03-31-12.19.30.000000 13312 5296 35 ...
- 0 0 0 ...

Output from this query (continued):
PAGES_SAVED_PERCENT BYTES_SAVED_PERCENT AVG_COMPRESS_REC_LENGTH OBJECT_TYPE
------------------- ------------------- ----------------------- -----------

38 38 27 DATA
0 0 0 XML

Chapter 4. ADMIN_CMD procedure and associated routines 227

Example 2: Retrieve estimated compression information for table SIMAP2.STAFF as
of now.

SELECT *
FROM TABLE (

SYSPROC.ADMIN_GET_TAB_COMPRESS_INFO_V97(’SIMAP2’, ’STAFF’, ’ESTIMATE’))
AS T

The following example is a sample output of this query:
TABSCHEMA TABNAME DBPARTITIONNUM DATA_PARTITION_ID COMPRESS_ATTR DICT_BUILDER ...
--------- ------- -------------- ----------------- ------------- -------------- ...
SIMAP2 STAFF 0 4 Y TABLE FUNCTION ...
SIMAP2 STAFF 0 4 Y TABLE FUNCTION ...

2 record(s) selected.

Output from this query (continued):
DICT_BUILD_TIMESTAMP COMPRESS_DICT_SIZE EXPAND_DICT_SIZE ROWS_SAMPLED ...
-------------------------- ------------------ ---------------- ------------ ...
2009-03-31-12.27.06.000000 13312 5296 35 ...
2009-03-31-12.27.06.000000 13312 9544 8 ...

Output from this query (continued):
PAGES_SAVED_PERCENT BYTES_SAVED_PERCENT AVG_COMPRESS_REC_LENGTH OBJECT_TYPE
------------------- ------------------- ----------------------- -----------

38 38 27 DATA
75 75 95 XML

Example 3: Determine the total dictionary size for all objects in tables in the schema
SIMAP2

SELECT TABSCHEMA, TABNAME, OBJECT_TYPE, DICT_BUILDER, (
COMPRESS_DICT_SIZE+EXPAND_DICT_SIZE)
AS TOTAL_DICT_SIZE, DBPARTITIONNUM, DATA_PARTITION_ID

FROM TABLE (
SYSPROC.ADMIN_GET_TAB_COMPRESS_INFO_V97(’SIMAP2’, ’’, ’REPORT’))

AS T

Output from this query:
TABSCHEMA TABNAME OBJECT_TYPE DICT_BUILDER ...
------------ ---------- -------------- ------------ ...
SIMAP2 ACT DATA NOT BUILT ...
SIMAP2 ACT XML NOT BUILT ...
SIMAP2 ADEFUSR DATA INSPECT ...
SIMAP2 ADEFUSR XML NOT BUILT ...
...
SIMAP2 CUSTOMER DATA REORG ...
SIMAP2 CUSTOMER XML REORG ...
SIMAP2 DEPARTMENT DATA NOT BUILT ...
SIMAP2 DEPARTMENT XML NOT BUILT ...
...
SIMAP2 STAFF DATA REORG ...
SIMAP2 STAFF XML NOT BUILT ...
SIMAP2 SUPPLIERS DATA TABLE GROWTH ...
SIMAP2 SUPPLIERS XML NOT BUILT ...

44 record(s) selected.

Output from this query (continued):
TOTAL_DICT_SIZE DBPARTITIONNUM DATA_PARTITION_ID
--------------- -------------- -----------------

0 0 0
0 0 0

228 Administrative Routines and Views

1890 0 0
0 0 0

...
6968 0 1
24256 0 1

0 1 0
0 1 0

...
18608 0 4

0 0 4
6960 0 2

0 0 2

Example 4: View a report of the dictionary information of tables in the SIMAP2
schema.

SELECT * FROM TABLE (
SYSPROC.ADMIN_GET_TAB_COMPRESS_INFO_V97(’SIMAP2’, ’’, ’REPORT’))

AS T

Output from this query:
TABSCHEMA TABNAME DBPARTITIONNUM DATA_PARTITION_ID COMPRESS_ATTR DICT_BUILDER ...
--------- --------- -------------- ----------------- ------------- ------------ ...
SIMAP2 ACT 0 0 N NOT BUILT ...
SIMAP2 ACT 0 0 N NOT BUILT ...
SIMAP2 ADEFUSR 0 0 N INSPECT ...
SIMAP2 ADEFUSR 0 0 N NOT BUILT ...
...
SIMAP2 CUSTOMER 0 1 Y REORG ...
SIMAP2 CUSTOMER 0 1 Y REORG ...
...
SIMAP2 STAFF 0 4 Y REORG ...
SIMAP2 STAFF 0 4 Y NOT BUILT ...
SIMAP2 SUPPLIERS 0 2 N NOT BUILT ...
SIMAP2 SUPPLIERS 0 2 N NOT BUILT ...

44 record(s) selected.

Output from this query (continued):
DICT_BUILD_TIMESTAMP COMPRESS_DICT_SIZE EXPAND_DICT_SIZE ROWS_SAMPLED ...
-------------------------- ------------------ ---------------- ------------ ...
- 0 0 0 ...
- 0 0 0 ...
2009-03-31-12.11.02.000000 290 1890 22 ...
- 0 0 0 ...
...
2009-03-31-11.08.18.000000 3968 3000 6 ...
2009-03-31-11.08.18.000000 13312 10944 6 ...
...
2009-03-31-12.19.30.000000 13312 5296 35 ...
- 0 0 0 ...
- 0 0 0 ...
- 0 0 0 ...

Output from this query (continued):
PAGES_SAVED_PERCENT BYTES_SAVED_PERCENT AVG_COMPRESS_REC_LENGTH OBJECT_TYPE
------------------- ------------------- ----------------------- -----------

0 0 0 DATA
0 0 0 XML
20 25 21 DATA
0 0 0 XML

...
70 70 31 DATA
66 66 235 XML

...

Chapter 4. ADMIN_CMD procedure and associated routines 229

38 38 27 DATA
0 0 0 XML
0 0 0 DATA
0 0 0 XML

Example 5: View a report of the dictionary information of DATA objects of tables in
the SIMAP2 schema.

SELECT * FROM TABLE (
SYSPROC.ADMIN_GET_TAB_COMPRESS_INFO_V97(’SIMAP2’,’’,’REPORT’))

WHERE OBJECT_TYPE=’DATA’

Output from this query:
TABSCHEMA TABNAME DBPARTITIONNUM DATA_PARTITION_ID COMPRESS_ATTR DICT_BUILDER ...
--------- --------- -------------- ----------------- ------------- ------------ ...
SIMAP2 ACT 0 0 N NOT BUILT ...
SIMAP2 ADEFUSR 0 0 N INSPECT ...
...
SIMAP2 CUSTOMER 0 1 Y REORG ...
SIMAP2 DEPARTMENT 1 0 N NOT BUILT ...
...
SIMAP2 STAFF 0 4 Y REORG ...
SIMAP2 SUPPLIERS 0 2 N NOT BUILT ...

22 record(s) selected.

Output from this query (continued):
DICT_BUILD_TIMESTAMP COMPRESS_DICT_SIZE EXPAND_DICT_SIZE ROWS_SAMPLED...
-------------------------- ------------------ ---------------- ------------ ...
- 0 0 0 ...
2009-03-31-12.11.02.000000 290 1890 22 ...
...
2009-03-31-11.08.18.000000 3968 3000 6 ...
- 0 0 0 ...
...
2009-03-31-12.19.30.000000 13312 5296 35 ...
- 0 0 0 ...

Output from this query (continued):
PAGES_SAVED_PERCENT BYTES_SAVED_PERCENT AVG_COMPRESS_REC_LENGTH OBJECT_TYPE
------------------- ------------------- ----------------------- -----------

0 0 0 DATA
20 25 21 DATA

70 70 31 DATA
0 0 0 DATA

38 38 27 DATA
0 0 0 DATA

Example 6: View a report of the dictionary information of XML objects of the
CUSTOMER table in the SIMAP2 schema.

SELECT * FROM TABLE (
SYSPROC.ADMIN_GET_TAB_COMPRESS_INFO_V97(’SIMAP2’, ’CUSTOMER’, ’REPORT’))

WHERE OBJECT_TYPE=’XML’

Output from this query:
TABSCHEMA TABNAME DBPARTITIONNUM DATA_PARTITION_ID COMPRESS_ATTR DICT_BUILDER ...
--------- --------- -------------- ----------------- ------------- ------------ ...
SIMAP2 CUSTOMER 0 1 Y REORG ...

Output from this query (continued):

230 Administrative Routines and Views

DICT_BUILD_TIMESTAMP COMPRESS_DICT_SIZE EXPAND_DICT_SIZE ROWS_SAMPLED ...
-------------------------- ------------------ ---------------- ------------ ...
2009-03-31-11.08.18.000000 13312 10944 6 ...

Output from this query (continued):
PAGES_SAVED_PERCENT BYTES_SAVED_PERCENT AVG_COMPRESS_REC_LENGTH OBJECT_TYPE
------------------- ------------------- ----------------------- -----------

66 66 235 XML

Usage notes
v If both the tabschema and tabname are specified, information is returned for that

specific table only.
v If the tabschema is specified but tabname is empty (") or NULL, information is

returned for all tables in the given schema.
v If the tabschema is empty (") or NULL and tabname is specified, an error is

returned. To retrieve information for a specific table, the table must be identified
by both schema and table name.

v If both tabschema and tabname are empty (") or NULL, information is returned for
all tables.

v If tabschema or tabname do not exist, or tabname does not correspond to a table
name (type T), a materialized query table name (type S) or a hierarchy table
name (type H), an empty result set is returned.

v When the ADMIN_GET_TAB_COMPRESS_INFO_V97 table function is retrieving
data for a given table, it will acquire a shared lock on the corresponding row of
SYSTABLES to ensure consistency of the data that is returned (for example, to
ensure that the table is not altered while information is being retrieved for it).
The lock will only be held for as long as it takes to retrieve the compression
information for the table, and not for the duration of the table function call.

v If the queried table is a non-XML table, there will be a row returned for the
XML storage object (XDA).

ADMINTABCOMPRESSINFO administrative view and the
ADMIN_GET_TAB_COMPRESS_INFO_V97 table function
metadata

Table 73. ADMINTABCOMPRESSINFO administrative view and the ADMIN_GET_TAB_COMPRESS_INFO_V97 table
function metadata

Column Name Data Type Description

TABSCHEMA VARCHAR(128) Schema name

TABNAME VARCHAR(128) Table name

DBPARTITIONNUM SMALLINT Database partition number

DATA_PARTITION_ID INTEGER Data partition number

COMPRESS_ATTR CHAR(1) The state of the COMPRESS attribute on the table which
can be one of the following values:

v 'Y' = Row compression is set to yes

v 'N' = Row compression is set to no

Chapter 4. ADMIN_CMD procedure and associated routines 231

Table 73. ADMINTABCOMPRESSINFO administrative view and the ADMIN_GET_TAB_COMPRESS_INFO_V97 table
function metadata (continued)

Column Name Data Type Description

DICT_BUILDER VARCHAR(30) Code path taken to build the dictionary which can be one
of the following values:

v 'INSPECT' = INSPECT ROWCOMPESTIMATE

v 'LOAD' = LOAD INSERT/REPLACE

v 'NOT BUILT' = no dictionary available

v 'REDISTRIBUTE' = REDISTRIBUTE

v 'REORG' = REORG RESETDICTIONARY

v 'TABLE GROWTH' = INSERT

v 'TABLE FUNCTION' = built by table function for the
'ESTIMATE' option

DICT_BUILD_TIMESTAMP TIMESTAMP Timestamp of when the dictionary was built. Timestamp
granularity is to the second. If no dictionary is available,
then the timestamp is NULL.

COMPRESS_DICT_SIZE BIGINT Size of compression dictionary measured in bytes.

EXPAND_DICT_SIZE BIGINT Size of the expansion dictionary measured in bytes. If a
historical dictionary exists, this value is the sum of the
current and historical dictionary sizes.

ROWS_SAMPLED INTEGER Number of records that contributed to building the
dictionary. Migrated tables with compression dictionaries
will return NULL in this column.

PAGES_SAVED_PERCENT SMALLINT Percentage of pages saved from compression. This
information is based on the record data in the sample
buffer only. Migrated tables with compression dictionaries
will return NULL in this column.

BYTES_SAVED_PERCENT SMALLINT Percentage of bytes saved from compression. This
information is based on the record data in the sample
buffer only. Migrated tables with compression dictionaries
will return NULL in this column.

AVG_COMPRESS_REC_LENGTH SMALLINT Average compressed record length of the records
contributing to building the dictionary. Migrated tables
with compression dictionaries will return NULL in this
column.

OBJECT_TYPE VARCHAR(4) The type of the object. Depending on the type, this row
contains values pertaining to the specified object. Output
can be one of the following values

v 'XML'

v 'DATA'

ADMINTABINFO administrative view and ADMIN_GET_TAB_INFO_V97
table function - retrieve table size and state information

The ADMINTABINFO administrative view and the ADMIN_GET_TAB_INFO_V97
table function provide methods to retrieve table size and state information that is
not currently available in the catalog views.

232 Administrative Routines and Views

ADMINTABINFO administrative view

The ADMINTABINFO administrative view returns size and state information for
tables, materialized query tables (MQT) and hierarchy tables only. These table
types are reported as T for table, S for materialized query tables and H for
hierarchy tables in the SYSCAT.TABLES catalog view. The information is returned
at both the data partition level and the database partition level for a table.

The schema is SYSIBMADM.

Refer to the ADMINTABINFO administrative view and
ADMIN_GET_TAB_INFO_V97 table function metadata table for a complete list of
information that can be returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the ADMINTABINFO administrative view
v CONTROL privilege on the ADMINTABINFO administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the ADMIN_GET_TAB_INFO_V97 table function
v DATAACCESS authority

Examples

Example 1: Retrieve size and state information for all tables
SELECT * FROM SYSIBMADM.ADMINTABINFO

Example 2: Determine the amount of physical space used by a large number of
sparsely populated tables.
SELECT TABSCHEMA, TABNAME, SUM(DATA_OBJECT_P_SIZE),

SUM(INDEX_OBJECT_P_SIZE), SUM(LONG_OBJECT_P_SIZE),
SUM(LOB_OBJECT_P_SIZE), SUM(XML_OBJECT_P_SIZE)
FROM SYSIBMADM.ADMINTABINFO GROUP BY TABSCHEMA, TABNAME

Example 3: Identify tables that are eligible to use large RIDs, but are not currently
enabled to use large RIDs.
SELECT TABSCHEMA, TABNAME FROM SYSIBMADM.ADMINTABINFO

WHERE LARGE_RIDS = ’P’

Example 4: Identify which tables are using type-1 indexes and require a
reorganization to convert to type-2 indexes.
SELECT TABSCHEMA, TABNAME FROM SYSIBMADM.ADMINTABINFO

WHERE INDEX_TYPE = 1

Example 5: Identify which tables have XML data in type-1 format and require an
online table move to convert to type-2 format.
SELECT TABSCHEMA, TABNAME FROM SYSIBMADM.ADMINTABINFO

WHERE XML_RECORD_TYPE=1

Example 4: Check the current type of statistics information collected for table T1

Chapter 4. ADMIN_CMD procedure and associated routines 233

SELECT SUBSTR(TABSCHEMA, 1, 10) AS TBSCHEMA, SUBSTR(TABNAME, 1, 10)
AS TBNAME, STATSTYPE FROM SYSIBMADM.ADMINTABINFO WHERE TABNAME = ’T1’;

TBSCHEMA TBNAME STATSTYPE
---------- ---------- ---------
DB2USER1 T1 U

1 record(s) selected.

ADMIN_GET_TAB_INFO_V97 table function

The ADMIN_GET_TAB_INFO_V97 table function returns the same information as
the ADMINTABINFO administrative view, but allows you to specify a schema and
table name.

Refer to the ADMINTABINFO administrative view and
ADMIN_GET_TAB_INFO_V97 table function metadata table for a complete list of
information that can be returned.

Syntax

�� ADMIN_GET_TAB_INFO_V97 (tabschema , tabname) ��

The schema is SYSPROC.

Table function parameters

tabschema
An input argument of type VARCHAR(128) that specifies a schema name.

tabname
An input argument of type VARCHAR(128) that specifies a table name, a
materialized query table name or a hierarchy table name.

Authorization

EXECUTE privilege on the ADMIN_GET_TAB_INFO_V97 table function.

Examples

Example 1: Retrieve size and state information for the table DBUSER1.EMPLOYEE.
SELECT * FROM TABLE (SYSPROC.ADMIN_GET_TAB_INFO_V97(’DBUSER1’, ’EMPLOYEE’))

AS T

Example 2: Suppose there exists a non-partitioned table (DBUSER1.EMPLOYEE),
with all associated objects (for example, indexes and LOBs) stored in a single table
space. Calculate how much physical space the table is using in the table space:
SELECT (data_object_p_size + index_object_p_size + long_object_p_size +

lob_object_p_size + xml_object_p_size) as total_p_size
FROM TABLE(SYSPROC.ADMIN_GET_TAB_INFO_V97(’DBUSER1’, ’EMPLOYEE’)) AS T

Calculate how much space would be required if the table were moved to another
table space, where the new table space has the same page size and extent size as
the original table space:
SELECT (data_object_l_size + index_object_l_size + long_object_l_size +

lob_object_l_size + xml_object_l_size) as total_l_size
FROM TABLE(SYSPROC.ADMIN_GET_TAB_INFO_V97(’DBUSER1’, ’EMPLOYEE’)) AS T

234 Administrative Routines and Views

Example 3: Determine the total size for the compression dictionaries for the table
DBUSER1.EMPLOYEE.
SELECT SUBSTR(TABSCHEMA,1,10) AS TBSCHEMA, SUBSTR(TABNAME,1,10) AS TBNAME,

DICTIONARY_SIZE + XML_DICTIONARY_SIZE AS TOTAL_DICTIONARY_SIZE
FROM TABLE(SYSPROC.ADMIN_GET_TAB_INFO_V97(’DBUSER1’,’EMPLOYEE’))

Example 4: Determine the amount of space reclaimable from a multidimensional
clustering table SAMPLE.STAFF:
SELECT RECLAIMABLE_SPACE

FROM TABLE(SYSPROC.ADMIN_GET_TAB_INFO_V97(’SAMPLE’,’STAFF’))

Usage notes
v If both the tabschema and tabname are specified, information is returned for that

specific table only.
v If the tabschema is specified but tabname is NULL or the empty string ("), then

information is returned for all tables in the given schema.
v If the tabschema is NULL or the empty string (") and tabname is specified, then an

error is returned. To retrieve information for a specific table, the table must be
identified by both schema and table name.

v If both tabschema and tabname are NULL or the empty string ("), then information
is returned for all tables.

v If tabschema or tabname do not exist, or tabname does not correspond to a table
name (type T), a materialized query table name (type S) or a hierarchy table
name (type H), an empty result set is returned.

v When the ADMIN_GET_TAB_INFO_V97 table function is retrieving data for a
given table, it will acquire a shared lock on the corresponding row of
SYSTABLES to ensure consistency of the data that is returned (for example, to
ensure that the table is not dropped while information is being retrieved for it).
The lock will only be held for as long as it takes to retrieve the size and state
information for the table, not for the duration of the table function call.

v Physical size reported for tables in SMS table spaces is the same as logical size.
v When an inplace reorg is active on a table, the physical size for the data object

(DATA_OBJECT_P_SIZE) will not be calculated. Only the logical size will be
returned. You can tell if an inplace reorg is active on the table by looking at the
INPLACE_REORG_STATUS output column.

v The logical size reported for LOB objects created before DB2 UDB Version 8
might be larger than the physical size if the objects have not yet been
reorganized.

REDISTRIBUTING_PENDING
1. no redistribute has been run for the given table N
2. redistribute started to run on the database partition group but not on the table

N
3. redistribute failed in the phase before moving data N
4. redistribute failed in the phase of moving data Y
5. redistribute completely successfully and committed for the table N

Chapter 4. ADMIN_CMD procedure and associated routines 235

ADMINTABINFO administrative view and the
ADMIN_GET_TAB_INFO_V97 table function metadata

Table 74. ADMINTABINFO administrative view and the ADMIN_GET_TAB_INFO_V97 table function metadata

Column name Data type Description

TABSCHEMA VARCHAR(128) Schema name.

TABNAME VARCHAR(128) Table name.

TABTYPE CHAR(1) Table type:

v 'H' = hierarchy table

v 'S' = materialized query table

v 'T' = table

DBPARTITIONNUM SMALLINT Database partition number.

DATA_PARTITION_ID INTEGER Data partition number.

AVAILABLE CHAR(1) State of the table:

v 'N' = the table is unavailable. If the table is unavailable,
all other output columns relating to the size and state
will be NULL.

v 'Y' = the table is available.

Note: Rollforward through an unrecoverable load will put
a table into the unavailable state.

DATA_OBJECT_L_SIZE BIGINT Data object logical size. Amount of disk space logically
allocated for the table, reported in kilobytes. The logical
size is the amount of space that the table knows about. It
might be less than the amount of space physically
allocated for the table (for example, in the case of a logical
table truncation). For multi-dimensional clustering (MDC)
tables, this size includes the logical size of the block map
object. The size returned takes into account full extents
that are logically allocated for the table and, for objects
created in DMS table spaces, an estimate of the Extent
Map Page (EMP) extents. This size represents the logical
size of the base table only. Space consumed by LOB data,
Long Data, Indexes and XML objects are reported by
other columns.

DATA_OBJECT_P_SIZE BIGINT Data object physical size. Amount of disk space physically
allocated for the table, reported in kilobytes. For MDC
tables, this size includes the size of the block map object.
The size returned takes into account full extents allocated
for the table and includes the EMP extents for objects
created in DMS table spaces. This size represents the
physical size of the base table only. Space consumed by
LOB data, Long Data, Indexes and XML objects are
reported by other columns.

236 Administrative Routines and Views

Table 74. ADMINTABINFO administrative view and the ADMIN_GET_TAB_INFO_V97 table function
metadata (continued)

Column name Data type Description

INDEX_OBJECT_L_SIZE BIGINT Index object logical size. Amount of disk space logically
allocated for the indexes defined on the table, reported in
kilobytes. The logical size is the amount of space that the
table knows about. It might be less than the amount of
space physically allocated to hold index data for the table
(for example, in the case of a logical table truncation). The
size returned takes into account full extents that are
logically allocated for the indexes and, for indexes created
in DMS table spaces, an estimate of the EMP extents.

For partitioned indexes on partitioned tables, this is the
logical size of the index object containing index partitions
for the data partition identified by DATA_PARTITION_ID.
This value does not take into account nonpartitioned
indexes on partitioned tables. For information about both
partitioned and nonpartitioned indexes, you can use the
ADMIN_GET_INDEX_INFO function.

INDEX_OBJECT_P_SIZE BIGINT Index object physical size. Amount of disk space
physically allocated for the indexes defined on the table,
reported in kilobytes. The size returned takes into account
full extents allocated for the indexes and includes the
EMP extents for indexes created in DMS table spaces.

For partitioned indexes on partitioned tables, this is the
physical size of the index object containing index
partitions for the data partition identified by
DATA_PARTITION_ID. This value does not take into
account nonpartitioned indexes on partitioned tables. For
information about both partitioned and nonpartitioned
indexes, you can use the ADMIN_GET_INDEX_INFO
function.

LONG_OBJECT_L_SIZE BIGINT Long object logical size. Amount of disk space logically
allocated for long field data in a table, reported in
kilobytes. The logical size is the amount of space that the
table knows about. It might be less than the amount of
space physically allocated to hold long field data for the
table (for example, in the case of a logical table
truncation). The size returned takes into account full
extents that are logically allocated for long field data and,
for long field data created in DMS table spaces, an
estimate of the EMP extents.

LONG_OBJECT_P_SIZE BIGINT Long object physical size. Amount of disk space
physically allocated for long field data in a table, reported
in kilobytes. The size returned takes into account full
extents allocated for long field data and includes the EMP
extents for long field data created in DMS table spaces.

Chapter 4. ADMIN_CMD procedure and associated routines 237

Table 74. ADMINTABINFO administrative view and the ADMIN_GET_TAB_INFO_V97 table function
metadata (continued)

Column name Data type Description

LOB_OBJECT_L_SIZE BIGINT LOB object logical size. Amount of disk space logically
allocated for LOB data in a table, reported in kilobytes.
The logical size is the amount of space that the table
knows about. It might be less than the amount of space
physically allocated to hold LOB data for the table (for
example, in the case of a logical table truncation). The size
includes space logically allocated for the LOB allocation
object. The size returned takes into account full extents
that are logically allocated for LOB data and, for LOB
data created in DMS table spaces, an estimate of the EMP
extents.

LOB_OBJECT_P_SIZE BIGINT LOB object physical size. Amount of disk space physically
allocated for LOB data in a table, reported in kilobytes.
The size includes space allocated for the LOB allocation
object. The size returned takes into account full extents
allocated for LOB data and includes the EMP extents for
LOB data created in DMS table spaces.

XML_OBJECT_L_SIZE BIGINT XML object logical size. Amount of disk space logically
allocated for XML data in a table, reported in kilobytes.
The logical size is the amount of space that the table
knows about. It might be less than the amount of space
physically allocated to hold XML data for the table (for
example, in the case of a logical table truncation). The size
returned takes into account full extents that are logically
allocated for XML data and, for XML data created in DMS
table spaces, an estimate of the EMP extents.

XML_OBJECT_P_SIZE BIGINT XML object physical size. Amount of disk space physically
allocated for XML data in a table, reported in kilobytes.
The size returned takes into account full extents allocated
for XML data and includes the EMP extents for XML data
created in DMS table spaces.

INDEX_TYPE SMALLINT Indicates the type of indexes currently in use for the table.
Returns:

v 1 if type-1 indexes are being used.

v 2 if type-2 indexes are being used.

REORG_PENDING CHAR(1) A value of 'Y' indicates that a reorg recommended alter
has been applied to the table and a classic (offline) reorg
is required. Otherwise 'N' is returned.

INPLACE_REORG_STATUS VARCHAR(10) Current status of an inplace table reorganization on the
table. The status can be one of the following values:

v ABORTED (in a PAUSED state, but unable to RESUME;
STOP is required)

v EXECUTING

v NULL (if no inplace reorg has been performed on the
table)

v PAUSED

238 Administrative Routines and Views

Table 74. ADMINTABINFO administrative view and the ADMIN_GET_TAB_INFO_V97 table function
metadata (continued)

Column name Data type Description

LOAD_STATUS VARCHAR(12) Current status of a load operation against the table. The
status can be one of the following values:

v IN_PROGRESS

v NULL (if there is no load in progress for the table and
the table is not in load pending state)

v PENDING

READ_ACCESS_ONLY CHAR(1) 'Y' if the table is in Read Access Only state, 'N' otherwise.
A value of 'N' should not be interpreted as meaning that
the table is fully accessible. If a load is in progress or
pending, a value of 'Y' means the table data is available
for read access, and a value of 'N' means the table is
inaccessible. Similarly, if the table status is set integrity
pending (refer to SYSCAT.TABLES STATUS column), then
a value of 'N' means the table is inaccessible.

NO_LOAD_RESTART CHAR(1) A value of 'Y' indicates the table is in a partially loaded
state that will not allow a load restart. A value of 'N' is
returned otherwise.

NUM_REORG_REC_ALTERS SMALLINT Number of reorg recommend alter operations (for
example, alter operations after which a reorganization is
required) that have been performed against this table
since the last reorganization.

INDEXES_REQUIRE_REBUILD CHAR(1) For nonpartitioned tables, 'Y' if any of the indexes defined
on the table require a rebuild, and 'N' otherwise. For
partitioned tables, 'Y' if any index partitions for the data
partition identified by DATA_PARTITION_ID require a
rebuild, and 'N' otherwise.

LARGE_RIDS CHAR(1) Indicates whether or not the table is using large row IDs
(RIDs) (4 byte page number, 2 byte slot number). A value
of 'Y' indicates that the table is using large RIDs and 'N'
indicates that it is not using large RIDs. A value of 'P'
(pending) will be returned if the table supports large RIDs
(that is, the table is in a large table space), but at least one
of the indexes for the table has not been reorganized or
rebuilt yet, so the table is still using 4 byte RIDs (which
means that action must be taken to convert the table or
indexes).

LARGE_SLOTS CHAR(1) Indicates whether or not the table is using large slots
(which allows more than 255 rows per page). A value of
'Y' indicates that the table is using large slots and 'N'
indicates that it is not using large slots. A value of 'P'
(pending) will be returned if the table supports large slots
(that is, the table is in a large table space), but there has
been no offline table reorganization or table truncation
operation performed on the table yet, so it is still using a
maximum of 255 rows per page.

DICTIONARY_SIZE BIGINT Size of the table dictionary, in bytes, used for row
compression if a row compression dictionary exists for the
table. If a historical dictionary exists, this value is the sum
of the current and historical dictionary sizes.

BLOCKS_PENDING_CLEANUP BIGINT For MDC tables, the number of blocks pending cleanup.
For non MDC tables this value will always be zero.

Chapter 4. ADMIN_CMD procedure and associated routines 239

Table 74. ADMINTABINFO administrative view and the ADMIN_GET_TAB_INFO_V97 table function
metadata (continued)

Column name Data type Description

STATSTYPE CHAR(1) v 'F' = System fabricated statistics without table or index
scan. These statistics are stored in memory and are
different from what is stored in the system catalogs.
This is a temporary state and eventually full statistics
will be gathered by DB2 and stored in the system
catalogs.

v 'A'= System asynchronously gathered statistics.
Statistics have been automatically collected by DB2 by a
background process and stored in the system catalogs.

v 'S' = System synchronously gathered statistics. Statistics
have been automatically collected by DB2 during SQL
statement compilation. These statistics are stored in
memory and are different from what is stored in the
system catalogs. This is a temporary state and
eventually DB2 will store the statistics in the system
catalogs.

v 'U' = User gathered statistics. Statistics gathering was
initiated by the user through a utility such as
RUNSTATS, CREATE INDEX, LOAD, REDISTRIBUTE
or by manually updating system catalog statistics.

v NULL = unknown type

XML_RECORD_TYPE SMALLINT Indicates the type of XML record currently in use for the
table.

v 1 if the type-1 (single node) XML record format is being
used.

v 2 if the type-2 (multi-node) XML record format is being
used.

v Null if the table has no XML columns.

RECLAIMABLE_SPACE BIGINT For an MDC table in a DMS table space, this value
indicates the amount of disk space that can be reclaimed
by running the REORG command with the RECLAIM
option. Disk space is reported in kilobytes. For any other
table, the value is zero.

XML_DICTIONARY_SIZE BIGINT Size of the XML dictionary, in bytes, used for data
compression if a data compression dictionary exists for
the XML storage object. If the table does not contain any
XML columns or if a compression dictionary has not been
created, the value is 0.

ADMINTEMPCOLUMNS administrative view and
ADMIN_GET_TEMP_COLUMNS table function - Retrieve column
information for temporary tables

The ADMINTEMPCOLUMNS administrative view and the
ADMIN_GET_TEMP_COLUMNS table function provide methods to retrieve
column attribute information for created temporary tables and declared temporary
tables.

240 Administrative Routines and Views

Although the catalog views contain column attribute information for instances of
created temporary tables, they do not have this information for declared temporary
tables.

ADMINTEMPCOLUMNS administrative view

The ADMINTEMPCOLUMNS administrative view returns column attribute
information for instances of created temporary tables and declared temporary
tables.

The schema is SYSIBMADM.

Refer to the ADMINTEMPCOLUMNS administrative view and
ADMIN_GET_TEMP_COLUMNS table function metadata table for a complete list
of information that can be returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the ADMINTEMPCOLUMNS administrative view
v CONTROL privilege on the ADMINTEMPCOLUMNS administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the ADMIN_GET_TEMP_COLUMNS table function
v DATAACCESS authority

Examples

Example 1: Retrieve column attribute information for all instances of created
temporary tables and all declared temporary tables currently existing in the
database.
SELECT * FROM SYSIBMADM.ADMINTEMPCOLUMNS

Example 2: Determine which temporary tables active in the database are using the
user-defined data type of USMONEY.
SELECT APPLICATION_HANDLE, TABSCHEMA, TABNAME

FROM SYSIBMADM.ADMINTEMPCOLUMNS
WHERE TYPENAME = ’USMONEY’

Example 3: Retrieve table schema, table name, and the column names for all
declared temporary tables declared by the SYSTEM_USER.
SELECT T.TABSCHEMA, T.TABNAME, C.COLNAME

FROM SYSIBMADM.ADMINTEMPCOLUMNS C, SYSIBMADM.ADMINTEMPTABLES T
WHERE T.TEMPTABTYPE = ’D’
AND T.INSTANTIATOR = SYSTEM_USER
AND T.TABSCHEMA = C.TABSCHEMA
AND T.TABNAME = C.TABNAME

ADMIN_GET_TEMP_COLUMNS table function

The ADMIN_GET_TEMP_TABLES table function returns the same information as
the ADMINTEMPCOLUMNS administrative view, but allows you to specify a
schema name and a table name.

Chapter 4. ADMIN_CMD procedure and associated routines 241

Refer to the ADMINTEMPCOLUMNS administrative view and
ADMIN_GET_TEMP_COLUMNS table function metadata table for a complete list
of information that can be returned.

Syntax

�� ADMIN_GET_TEMP_COLUMNS (application_handle , tabschema , tabname) ��

The schema is SYSPROC.

Table function parameters

application_handle
An input argument of type BIGINT that specifies an application handle. If
application_handle is specified, data is returned for the specified connection
only; if application_handle is NULL, data is returned for all connections.

tabschema
An input argument of type VARCHAR(128) that specifies a schema name.

tabname
An input argument of type VARCHAR(128) that specifies a created temporary
table name or a declared temporary table name.

Authorization

EXECUTE privilege on the ADMIN_GET_TEMP_COLUMNS table function.

Examples

Example 1: Retrieve column information for the declared temporary table
TEMPEMPLOYEE for the current connection.
SELECT *

FROM TABLE (
SYSPROC.ADMIN_GET_TEMP_COLUMNS(

APPLICATION_ID(), ’SESSION’, ’TEMPEMPLOYEE’))
AS T

Usage notes
v If both tabschema and tabname are specified, then information is returned for that

specific temporary table only.
v If tabschema is specified but tabname is NULL or the empty string ("), then

information is returned for all tables in the given schema.
v If tabschema is NULL or the empty string (") and tabname is specified, then an

error is returned. To retrieve information for a specific temporary table, the table
must be identified by both schema and table name.

v If both tabschema and tabname are NULL or the empty string ("), then information
is returned for all temporary tables for the connection or all connections,
depending on the value of application_handle.

v If tabschema or tabname do not exist, or tabname does not correspond to a
temporary table name, or instances of the identified temporary table do not exist
in the database, then an empty result set is returned.

242 Administrative Routines and Views

ADMINTEMPCOLUMNS administrative view and the
ADMIN_GET_TEMP_COLUMNS table function metadata

Table 75. ADMINTEMPCOLUMNS administrative view and the ADMIN_GET_TEMP_COLUMNS table function
metadata

Column name Data type Description

APPLICATION_HANDLE BIGINT A system-wide unique ID for the application. On a
single-partitioned database, this identifier consists of a 16
bit counter. On a multi-partitioned database, this identifier
consists of the coordinating partition number
concatenated with a 16 bit counter. In addition, this
identifier is the same on every partition where the
application can make a secondary connection.

APPLICATION_NAME VARCHAR(256) Name of the application.

TABSCHEMA VARCHAR(128) Schema name of the temporary table that contains the
column.

TABNAME VARCHAR(128) Table name of the temporary table that contains the
column.

COLNAME VARCHAR(128) Name of the column.

COLNO SMALLINT Number of this column in the table (starting with 0).

TYPESCHEMA VARCHAR(128) Schema name of the data type for the column.

TYPENAME VARCHAR(128) Unqualified name of the data type for the column.

LENGTH INTEGER Maximum length of the data. 0 for distinct types. The
LENGTH column indicates precision for DECIMAL fields,
and indicates the number of bytes of storage required for
decimal floating-point columns; that is, 8 and 16 for
DECFLOAT(16) and DECFLOAT(34).

SCALE SMALLINT Scale if the column type is DECIMAL; or the number of
digits of fractional seconds if the column type is
TIMESTAMP; 0 otherwise.

DEFAULT VARCHAR(254) Default value for the column of a table expressed as a
constant, special register, or cast-function appropriate for
the data type of the column. Can also be the keyword
NULL. Values might be converted from what was
specified as a default value. For example, date and time
constants are shown in ISO format, cast-function names
are qualified with schema names, and identifiers are
delimited. Null value if a DEFAULT clause was not
specified or the column is a view column.

NULLS CHAR(1) Nullability attribute for the column.

v “Y” = Column is nullable

v “N” = Column is not nullable

The value can be “N” for a view column that is derived
from an expression or function. Nevertheless, such a
column allows null values when the statement using the
view is processed with warnings for arithmetic errors.

CODEPAGE SMALLINT Code page used for data in this column; 0 if the column is
defined as FOR BIT DATA or is not a string type.

LOGGED CHAR(1) Applies only to columns whose type is LOB or distinct
based on LOB; blank otherwise.

v “Y” = Column is logged

v “N” = Column is not logged

Chapter 4. ADMIN_CMD procedure and associated routines 243

Table 75. ADMINTEMPCOLUMNS administrative view and the ADMIN_GET_TEMP_COLUMNS table function
metadata (continued)

Column name Data type Description

COMPACT CHAR(1) Applies only to columns whose type is LOB or distinct
based on LOB; blank otherwise.

v “Y” = Column is compacted in storage

v “N” = Column is not compacted

INLINE_LENGTH INTEGER Maximum size in bytes of the internal representation of
an instance of an XML document or a structured type that
can be stored in the base table; 0 when not applicable.

IDENTITY CHAR(1) v “Y” = Identity column

v “N” = Not an identity column

GENERATED CHAR(1) Type of generated column.

v “A” = Column value is always generated

v “D” = Column values is generated by default

v Blank = Column is not generated

ADMINTEMPTABLES administrative view and
ADMIN_GET_TEMP_TABLES table function - Retrieve information for
temporary tables

The ADMINTEMPTABLES administrative view and the
ADMIN_GET_TEMP_TABLES table function provide methods to retrieve table
attribute and instantiation time information for instances of created temporary
tables and declared temporary tables.

Although the catalog views contain table attribute information for created
temporary tables, they do not contain this information for declared temporary
tables. In addition, the catalog views do not contain table instantiation time
information for created temporary tables or declared temporary tables.

ADMINTEMPTABLES administrative view

The ADMINTEMPTABLES administrative view returns table attribute and
instantiation time information for instances of created temporary tables and
declared temporary tables.

The schema is SYSIBMADM.

Refer to the ADMINTEMPTABLES administrative view and
ADMIN_GET_TEMP_TABLES table function metadata table for a complete list of
information that can be returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the ADMINTEMPTABLES administrative view
v CONTROL privilege on the ADMINTEMPTABLES administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:

244 Administrative Routines and Views

v EXECUTE privilege on the ADMIN_GET_TEMP_TABLES table function
v DATAACCESS authority

Examples

Example 1: Retrieve table attributes and instantiation time information for all
instances of created temporary tables and declared temporary tables currently
existing in the database.
SELECT * FROM SYSIBMADM.ADMINTEMPTABLES

Example 2: Determine which connections have an instance of a created temporary
table.
SELECT APPLICATION_HANDLE, TABSCHEMA, TABNAME

FROM SYSIBMADM.ADMINTEMPTABLES
WHERE TEMPTABTYPE = ’C’

Example 3: Retrieve table attributes and instantiation time information for all
declared temporary tables declared for all the tables instantiated by the user that
connected to the database.
SELECT TABSCHEMA, TABNAME, ONCOMMIT, ONROLLBACK,

INSTANTIATION_TIME
FROM SYSIBMADM.ADMINTEMPTABLES
WHERE TEMPTABTYPE = ’D’ AND INSTANTIATOR = SYSTEM_USER

ADMIN_GET_TEMP_TABLES table function

The ADMIN_GET_TEMP_TABLES table function returns the same information as
the ADMINTABINFO administrative view, but allows you to specify a schema
name and a table name.

Refer to the ADMINTABINFO administrative view and
ADMIN_GET_TEMP_TABLES table function metadata table for a complete list of
information that can be returned.

Syntax

�� ADMIN_GET_TEMP_TABLES (application_handle , tabschema , tabname) ��

The schema is SYSPROC.

Table function parameters

application_handle
An input argument of type BIGINT that specifies an application handle. If
application_handle is specified, data is returned for the specified connection
only; if application_handle is NULL, data is returned for all connections.

tabschema
An input argument of type VARCHAR(128) that specifies a schema name.

tabname
An input argument of type VARCHAR(128) that specifies a created temporary
table name or a declared temporary table name.

Authorization

EXECUTE privilege on the ADMIN_GET_TEMP_TABLES table function.

Chapter 4. ADMIN_CMD procedure and associated routines 245

Examples

Example 1: Retrieve table attributes and instantiation time information for all
instances of the created temporary table DBUSER1.EMPLOYEE for all connections.
SELECT TABSCHEMA, TABNAME, ONCOMMIT, ONROLLBACK, INSTANTIATION_TIME

FROM TABLE (SYSPROC.ADMIN_GET_TEMP_TABLES(NULL, ’DBUSER1’, ’EMPLOYEE’))
AS T

Example 2: Retrieve the instantiation time and table space ID for all instances of
user temporary tables for the current connection.
SELECT TABSCHEMA, TABNAME, INSTANTIATION_TIME, TBSP_ID

FROM TABLE (SYSPROC.ADMIN_GET_TEMP_TABLES(APPLICATION_ID(), ’’, ’’))
AS T

Usage notes
v

v If both tabschema and tabname are specified, then information is returned for that
specific temporary table only.

v If tabschema is specified but tabname is NULL or the empty string ("), then
information is returned for all tables in the given schema.

v If tabschema is NULL or the empty string (") and tabname is specified, then an
error is returned. To retrieve information for a specific temporary table, the table
must be identified by both schema and table name.

v If both tabschema and tabname are NULL or the empty string ("), then information
is returned for all temporary tables for the connection or all connections,
depending on the value of application_handle.

v If tabschema or tabname do not exist, or tabname does not correspond to a
temporary table name, or instances of the identified temporary table do not exist
in the database, then an empty result set is returned.

ADMINTEMPTABLES administrative view and the
ADMIN_GET_TEMP_TABLES table function metadata

Table 76. ADMINTEMPTABLES administrative view and the ADMIN_GET_TEMP_TABLES table function metadata

Column name Data type Description

APPLICATION_HANDLE BIGINT A system-wide unique ID for the application. On a
single-partitioned database, this identifier consists of a 16
bit counter. On a multi-partitioned database, this identifier
consists of the coordinating partition number
concatenated with a 16 bit counter. In addition, this
identifier is the same on every partition where the
application can make a secondary connection.

APPLICATION_NAME VARCHAR(256) Name of the application.

TABSCHEMA VARCHAR(128) Schema name.

TABNAME VARCHAR(128) Table name.

INSTANTIATOR VARCHAR(128) Authorization ID under which the created temporary
table was instantiated or declared temporary table was
declared.

INSTANTIATORTYPE CHAR(1) v “U” = The instantiator is an individual user

TEMPTABTYPE CHAR(1) Temporary table type:

v “C” = Created temporary table

v “D” = Declared temporary table

246 Administrative Routines and Views

Table 76. ADMINTEMPTABLES administrative view and the ADMIN_GET_TEMP_TABLES table function
metadata (continued)

Column name Data type Description

INSTANTIATION_TIME TIMESTAMP Time at which the created temporary table instance was
instantiated or the declared temporary table was declared.

COLCOUNT SMALLINT Number of columns, including inherited columns (if any).

TAB_FILE_ID BIGINT table_file_id - The file ID (FID) for the table.

TBSP_ID BIGINT tablespace_id - An integer that uniquely represents a table
space used by the current database.

PMAP_ID SMALLINT Identifier for the distribution map that is currently in use
by this table.

PARTITION_MODE CHAR(1) Indicates how data is distributed among database
partitions in a partitioned database system.

v “H” = Hashing

v Blank = No database partitioning

CODEPAGE SMALLINT Code page of the object. This is the default code page
used for all character columns and expression-generated
columns.

ONCOMMIT CHAR(1) Specifies the action taken on this table when a COMMIT
operation is performed.

v “D” = Delete rows

v “P” = Preserve rows

ONROLLBACK CHAR(1) Specifies the action taken on this table when a
ROLLBACK operation is performed.

v “D” = Delete rows

v “P” = Preserve rows

LOGGED CHAR(1) Specifies whether this table is logged.

v “N” = Not logged

v “Y” = Logged

Chapter 4. ADMIN_CMD procedure and associated routines 247

248 Administrative Routines and Views

Chapter 5. Administrative Task Scheduler routines and views

ADMIN_TASK_ADD procedure - Schedule a new task
The ADMIN_TASK_ADD procedure schedules an administrative task, which is any
piece of work that can be encapsulated inside a procedure.

Syntax

�� ADMIN_TASK_ADD (name , begin_timestamp , end_timestamp , �

� max_invocations , schedule , procedure_schema , procedure_name , �

� procedure_input , options , remarks) ��

The schema is SYSPROC.

Procedure parameters

name
An input argument of type VARCHAR(128) that specifies the name of the task.
This argument cannot be NULL.

begin_timestamp
An input argument of type TIMESTAMP that specifies the earliest time a task
can begin execution. The value of this argument cannot be in the past, and it
cannot be later than end_timestamp.

When task execution begins depends on how this argument and the schedule
argument are defined:
v If the begin_timestamp argument is not NULL:

– If the schedule argument is NULL, the task execution begins at
begin_timestamp.

– If the schedule argument is not NULL, the task execution begins at the next
scheduled time at or after begin_timestamp.

v If the begin_timestamp argument is NULL:
– If the schedule argument is NULL, the task execution begins immediately.
– If the schedule argument is not NULL, the task execution begins at the next

scheduled time.

end_timestamp
An input argument of type TIMESTAMP that specifies the last time that a task
can begin execution. The value of this argument cannot be in the past, and it
cannot be earlier than begin_timestamp. If the argument is NULL, the task can
continue to execute as scheduled indefinitely.

An executing task will not be interrupted at its end_timestamp.

max_invocations
An input argument of type INTEGER that specifies the maximum number of
executions allowed for the task. If the argument is NULL, there is no limit to the
number of times the task can execute. If the argument is 0, the task will not
execute.

© Copyright IBM Corp. 2006, 2012 249

This value applies to the schedule if schedule is not NULL.

If both end_timestamp and max_invocations are specified, end_timestamp takes
precedence. That is, if the end_timestamp timestamp is reached, even though the
number of task executions so far has not reached the value of max_invocations,
the task will not be executed again.

schedule
An input argument of type VARCHAR(1024) that specifies a task execution
schedule at fixed points in time. If the argument is NULL, the task is not
scheduled at fixed points in time.

The schedule string must be specified using the UNIX cron format.

Multiple schedules are not supported.

procedure_schema
An input argument of type VARCHAR(128) that specifies the schema of the
procedure that this task will execute. This argument cannot be NULL.

procedure_name
An input argument of type VARCHAR(128) that specifies the name of the
procedure that this task will execute. This argument cannot be NULL.

procedure_input
An input argument of type CLOB(2M) that specifies the input arguments of
the procedure that this task will execute. This argument must contain an SQL
statement that returns one row of data. The returned values will be passed as
arguments to the procedure. If this argument is NULL, no arguments are passed
to the procedure.

The number of columns returned by the SQL statement must match the total
number (and type) of arguments for the procedure and must contain a single
row. For output arguments, the value itself is ignored, but should be of the
same SQL data type as the procedure requires.

This SQL statement is executed every time the task is executed. If the SQL
statement fails, the task's status will be set to NOTRUN and specific SQLCODE
information will be recorded. If the statement does not return a result set, does
not return a row, returns multiple rows or result sets the task will not be
executed. The task's status will be set to NOTRUN and SQLCODE SQL1465N will
be set to indicate that this argument is invalid.

If the statement result contains serialized XML parameters, the total size of all
XML parameters combined is limited to 256 kilobytes. If the result exceeds this
threshold, the task's status will be set to NOTRUN. SQLCODE -302 and
SQLSTATE 22001 will be set to indicate that data truncation has occurred.

To view the task's status, use the SYSTOOL.ADMIN_TASK_STATUS view

options
An input argument of type VARCHAR(512). This argument must be NULL.

remarks
An input argument of type VARCHAR(254) that specifies a description of the
task. This argument is optional and can be NULL.

Authorization

EXECUTE privilege on the ADMIN_TASK_ADD procedure. Unless the database
was created with the RESTRICTIVE option, EXECUTE privilege is granted to
PUBLIC by default.

250 Administrative Routines and Views

Usage notes

The SYSTOOLSPACE table space must exist before you call the
ADMIN_TASK_ADD procedure. If it does not exist, the procedure will return an
SQL0204N error message.

When a task is scheduled, the authorization ID of the current session user is
recorded. The scheduler switches to this session authorization ID when the
executing the task.

The administrative task scheduler does not support the execution of procedures
that perform a database connection without a specified user ID and password. For
example, the ADMIN_CMD procedure can be used to perform a LOAD from a
database. A connection to the source database is established using the user ID and
password provided for the currently connected database. This type of LOAD
operation cannot be executed by the task scheduler.

If invalid arguments are passed into the procedure, SQL0171N will be returned.
The tokens of the message will indicate which argument is invalid and the name of
the procedure.

The task cannot be scheduled for execution until the unit of work is committed
and the scheduler has fetched the task definition.

The scheduler checks for new or updated tasks every 5 minutes. To ensure the task
executes as expected, the earliest begin time, as defined by the begin_timestamp,
end_timestamp and schedule arguments, should be at least 5 minutes after the unit of
work commits.

The database must be active on all database partitions to ensure the task can be
executed by the scheduler.

In a partitioned database environment, the ADMIN_TASK_ADD procedure can be
called from any database partition. The scheduler, however, will execute all tasks
from the catalog database partition.

The begin_timestamp, end_timestamp, and schedule are based on the server's time
zone. Special attention is required when scheduling a task during the transition
period of daylight savings time (DST). If the task is scheduled to run 2:01 AM and
it is the time of year when the time springs forward, the task will not run as the
clock skips from 2:00 AM to 3:00 AM. On the other hand, when the time falls back
an hour, tasks that were originally scheduled between 2:00 AM and 3:00 AM will
execute twice. The user is responsible for making adjustments for daylight savings
time to ensure their required behavior.

The scheduler will always commit after calling the procedure specified by
procedure_schema and procedure_name. If a transaction roll back is required, the
rollback must occur inside the procedure.

If the task name is not unique, the procedure will fail with SQL0601N.

Example

Example 1: Create a task that performs an online TSM backup daily at 12:00 AM,
with immediate effect:

Chapter 5. Administrative Task Scheduler routines and views 251

CALL SYSPROC.ADMIN_TASK_ADD
(’DAILY TSM BACKUP’,

CURRENT_TIMESTAMP,
NULL,
NULL,
’0 0 * * *’,
’SYSPROC’,
’ADMIN_CMD’,
’VALUES(’’BACKUP DATABASE SALES ONLINE USE TSM WITHOUT PROMPTING’’)’,
NULL,
NULL)

Example 2: Schedule a task to flush an event monitor every hour:
1. Create an SQL procedure, in the PROD schema, that flushes an event monitor

called "em":
CREATE PROCEDURE FLUSH_EVENT_MONITOR()
SPECIFIC FLUSH_EVENT_MONITOR

LANGUAGE SQL
BEGIN
DECLARE stmt VARCHAR(100) ;
SET stmt = ’FLUSH EVENT MONITOR em’ ;
EXECUTE IMMEDIATE stmt ;
END

Note: The FLUSH EVENT MONITOR SQL statement cannot be called directly
in the procedure. However, EXECUTE IMMEDIATE can be used.

2. Call ADMIN_TASK_ADD to schedule the task:
CALL SYSPROC.ADMIN_TASK_ADD
(’FLUSH EVENT MONITOR EVERY HOUR’,

NULL,
NULL,
NULL,
’0 0-23 * * *’,
’PROD’,
’FLUSH_EVENT_MONITOR’,
NULL,
NULL,
NULL)

UNIX cron format
The UNIX cron format is used to specify time in the schedule parameter of the
ADMIN_TASK_ADD and ADMIN_TASK_UPDATE procedures.

The cron format has five time and date fields separated by at least one blank.
There can be no blank within a field value. Scheduled tasks are executed when the
minute, hour, and month of year fields match the current time and date, and at least
one of the two day fields (day of month, or day of week) match the current date.

Table 1 lists the time and date fields and their allowed values in cron format.

Table 77. Field names and values for the UNIX cron format

Field name Allowed values

minute 0-59

hour 0-23

day of month 1-31

252 Administrative Routines and Views

Table 77. Field names and values for the UNIX cron format (continued)

Field name Allowed values

month v 1-12, where 1 is January, 2 is February,
and so on.

v Uppercase, lowercase and mixed-case
three character strings, based on the
English name of the month. For example:
jan, feb, mar, apr, may, jun, jul, aug, sep,
oct, nov, or dec.

day of week v 0-7, where 0 or 7 is Sunday, 1 is Monday,
and so on.

v Uppercase, and lowercase or mixed-case
three character strings, based on the
English name of the day: mon, tue, wed,
thu, fri, sat, or sun.

Ranges and lists

Ranges of numbers are allowed. Ranges are two numbers separated with a
hyphen. The specified range is inclusive. For example, the range 8-11 for an hour
entry specifies execution at hours 8, 9, 10 and 11.

Lists are allowed. A list is a set of numbers or ranges separated by commas. For
example:
1,2,5,9

0-4,8-12

Unrestricted range

A field can contain an asterisk (*), which represents all possible values in the field.

The day of a command's execution can be specified by two fields: day of month and
day of week. If both fields are restricted by the use of a value other than the asterisk,
the command will run when either field matches the current time. For example,
the value 30 4 1,15 * 5 causes a command to run at 4:30 AM on the 1st and 15th
of each month, plus every Friday.

Step values

Step values can be used in conjunction with ranges. The syntax range/step defines
the range and an execution interval.

If you specify first-last/step, execution takes place at first, then at all successive
values that are distant from first by step, until last.

For example, to specify command execution every other hour, use 0-23/2. This
expression is equivalent to the value 0,2,4,6,8,10,12,14,16,18,20,22.

If you specify */step, execution takes place at every interval of step through the
unrestricted range. For example, as an alternative to 0-23/2 for execution every
other hour, use */2.

Chapter 5. Administrative Task Scheduler routines and views 253

Example

Table 2 lists values that you can use for the schedule argument in
ADMIN_TASK_ADD or ADMIN_TASK_UPDATE procedures for various
scheduling scenarios.

Table 78. Example task schedules and the appropriate schedule argument values

Desired task schedule schedule value

2:10 PM every Monday 10 14 * * 1

Every day at midnight 0 0 * * *

Every weekday at midnight 0 0 * * 1-5

Midnight on 1st and 15th day of the month 0 0 1,15 * *

6.32 PM on the 17th, 21st and 29th of
November plus each Monday and
Wednesday in November each year

32 18 17,21,29 11 mon,wed

ADMIN_TASK_LIST administrative view - Retrieve information about
tasks in the scheduler

The ADMIN_TASK_LIST administrative view retrieves information about each task
defined in the administrative task scheduler.

The schema is SYSTOOLS.

This view is created the first time the ADMIN_TASK_ADD procedure is called.

Authorization

SELECT or CONTROL privilege on the ADMIN_TASK_LIST administrative view.
Unless the database was created with the RESTRICTIVE option, SELECT privilege is
granted to PUBLIC by default.

When you query the ADMIN_TASK_LIST view, it will only return the tasks that
were created using your session authorization ID. If you have SYSADM, SYSCTRL,
SYSMAINT, or DBADM authority, all tasks are returned.

Example

Request the list of tasks in the scheduler:
SELECT * from SYSTOOLS.ADMIN_TASK_LIST

Information returned

Table 79. Information returned by the ADMIN_TASK_LIST administrative view

Column name Data type Description

NAME VARCHAR(128) The name of the task.

TASKID INTEGER The task identifier.

OWNER VARCHAR(128) The session authorization ID of the
user that created the task.

254 Administrative Routines and Views

Table 79. Information returned by the ADMIN_TASK_LIST administrative view (continued)

Column name Data type Description

OWNERTYPE VARCHAR(1) The authorization ID type. Valid
values are:

v U - User

BEGIN_TIME TIMESTAMP The timestamp of when the task is
first able to run.1

END_TIME TIMESTAMP The timestamp of when the task is
last able to run.1

If this column is NULL, the task can
run indefinitely unless
MAX_INVOCATIONS is specified.

MAX_INVOCATIONS INTEGER The maximum number of executions
allowed for the task. If this column is
NULL, the task can run indefinitely
unless END_TIME is specified.

SCHEDULE VARCHAR(1024) The schedule for the task, in UNIX
cron format.

PROCEDURE_SCHEMA VARCHAR(128) The schema of the procedure that this
task will execute.

PROCEDURE_NAME VARCHAR(128) The name of the procedure that this
task will execute.

PROCEDURE_INPUT CLOB(2M) The input parameters of the
procedure that this task will execute.
If this column is NULL, there are no
input parameters.

OPTIONS VARCHAR(512) Options that affect the behavior of
the task.

UPDATE_TIME TIMESTAMP The timestamp when the task was
last updated.

REMARKS VARCHAR(254) A description of the task.

Note:

v
1 The BEGIN_TIME and END_TIME are based on the database server's time
zone. The user is responsible for making adjustments for daylight savings time
(DST).

ADMIN_TASK_REMOVE procedure - Remove scheduled tasks or task
status records

The ADMIN_TASK_REMOVE procedure removes scheduled administrative tasks,
which are pieces of work that can be encapsulated inside a procedure. It also
removes task status records.

Syntax

�� ADMIN_TASK_REMOVE (name , end_timestamp) ��

The schema is SYSPROC.

Chapter 5. Administrative Task Scheduler routines and views 255

Procedure parameters

name
An input argument of type VARCHAR(128) that specifies the name of the task.

end_timestamp
An output argument of type TIMESTAMP that specifies the status record
end_timestamp timestamp.

Authorization

EXECUTE privilege on the ADMIN_TASK_REMOVE procedure. Unless the
database was created with the RESTRICTIVE option, EXECUTE privilege is granted
to PUBLIC by default.

Although the statement authorization ID might allow the procedure to be
executed, successful removal of task and status records depends on the value of
the current session authorization ID. The current session authorization ID must
match the session authorization ID that was recorded when the task was created.
Users with SYSADM, SYSCTRL, SYSMAINT, or DBADM authority can remove any
task or status record. If an unauthorized user attempts to remove a task or status
record, an SQL0551N is returned.

Usage notes

The task is not removed until the unit of work is committed.

The behavior of the task removal depends on how the name and end_timestamp
arguments are defined:
v If the end_timestamp argument is NULL:

– If the name argument is NULL, all tasks and status records are removed. If one
or more tasks are currently running, then the task and associated status
records are not removed. In this case, SQL1464W is returned.

– If the name argument is not NULL, the task record that matches name is
removed. If the specified task is currently running, the task is not removed
and SQL20453N is returned. If the specified task is removed, all associated
status records are removed.

v If the end_timestamp argument is not NULL:
– If the name argument is NULL, all status records with end_timestamp timestamps

less than or equal to end_timestamp are removed. No task records are
removed. The procedure will not remove any status records that have a status
value of RUNNING.

– If the name argument is not NULL, the status records for the task that matches
name are removed if their end_timestamp timestamp is less than or equal to
end_timestamp. No task records are removed. The procedure will not remove
any status records that have a status value of RUNNING.

If a user attempts to remove a task that does not exist, an SQL0204N is returned.

Example

Remove a backup task called 'DAILY TSM BACKUP':
CALL SYSPROC.ADMIN_TASK_REMOVE(’DAILY TSM BACKUP’, NULL)

256 Administrative Routines and Views

ADMIN_TASK_STATUS administrative view - Retrieve task status
information

The ADMIN_TASK_STATUS administrative view retrieves information about the
status of task execution in the administrative task scheduler.

The schema is SYSTOOLS.

This view is created the first time the ADMIN_TASK_ADD procedure is called.

Authorization

SELECT or CONTROL privilege on the ADMIN_TASK_STATUS administrative
view. Unless the database was created with the RESTRICTIVE option, SELECT
privilege is granted to PUBLIC by default.

When you query the ADMIN_TASK_STATUS view, it will only return the task
status records that were created by your session authorization ID.

Example

Example 1: Request the status of tasks in the scheduler:
SELECT * from SYSTOOLS.ADMIN_TASK_STATUS

Example 2: Format the data in the SQLERRMC column using the SQLERRM
function:
SELECT TASKID, STATUS, SQLCODE, SQLSTATE, RC,

VARCHAR(SQLERRM(’SQL’ || CHAR(ABS(SQLCODE)),
SQLERRMC, x’FF’, ’en_US’, 1), 256) AS MSG_TXT
FROM SYSTOOLS.ADMIN_TASK_STATUS

Information returned

Table 80. Information returned by the ADMIN_TASK_STATUS administrative view

Column name Data type Description

NAME VARCHAR(128) The name of the task.

TASKID INTEGER The task identifier.

STATUS VARCHAR(10) The status of the task. Valid values are:

v RUNNING - The task is currently running.

v COMPLETED - The task has finished running.

v NOTRUN - An error prevented the scheduler from calling the task's
procedure.

v UNKNOWN - The task started running but an unexpected condition
prevented the scheduler from recording the task outcome. This can
occur if the system ends abnormally or a power failure happens while
the task is running.

INVOCATION INTEGER The current invocation count.

BEGIN_TIME TIMESTAMP The time that the task began.1

If the STATUS is RUNNING, COMPLETED, or UNKNOWN, this value indicates the
time that the task started running.

If the STATUS is NOTRUN, it indicates the time that the task should have
started.

Chapter 5. Administrative Task Scheduler routines and views 257

Table 80. Information returned by the ADMIN_TASK_STATUS administrative view (continued)

Column name Data type Description

END_TIME TIMESTAMP The time that the task finished running.1

This value will be NULL if the STATUS is RUNNING.

If the STATUS is UNKNOWN, this value is the time the task scheduler
detected the task was no longer executing and updated the status table.

AGENT_ID BIGINT The agent ID for the application executing the task. The agent ID is
synonymous with the application handle. This value is only valid while
the task is executing.

SQLCODE INTEGER If the STATUS is COMPLETED, this value indicates the SQLCODE returned
by the CALL to the procedure.

If the STATUS is NOTRUN, this value indicates the SQLCODE of the error
that prevented the task from running.

If the status is RUNNING or UNKNOWN, this value will be NULL.

SQLSTATE CHAR(5) If the STATUS is COMPLETED, this value indicates the SQLSTATE returned
by the CALL to the procedure.

If the STATUS is NOTRUN, this value indicates the SQLSTATE of the error
that prevented the task from running.

If the status is RUNNING or UNKNOWN, this value will be NULL.

SQLERRMC VARCHAR(70) FOR
BIT DATA

Contains one or more tokens, separated by X'FF', as they appear in the
SQLERRMC field of the SQLCA. These tokens are substituted for
variables in the descriptions of error conditions

If the STATUS is COMPLETED, this value indicates the SQLERRMC returned
by the CALL to the procedure.

If the STATUS is NOTRUN, this value indicates the SQLERRMC of the error
that prevented the task from running.

If the status is RUNNING or UNKNOWN, this value will be NULL.

RC INTEGER If the STATUS is COMPLETED, this contains the return code from the CALL
to the procedure if the procedure had a return code. Otherwise, this will
be NULL.

v
1 The BEGIN_TIME and END_TIME are based on the database server's time
zone. The user is responsible for making adjustments for daylight savings time
(DST).

ADMIN_TASK_UPDATE procedure - Update an existing task
The ADMIN_TASK_UPDATE procedure updates an administrative task, which is
any piece of work that can be encapsulated inside a procedure.

Syntax

�� ADMIN_TASK_UPDATE (name , begin_timestamp , end_timestamp , �

� max_invocations , schedule , options , remarks) ��

The schema is SYSPROC.

258 Administrative Routines and Views

Procedure parameters

name
An input argument of type VARCHAR(128) that specifies the name of an
existing task. This argument cannot be NULL.

begin_timestamp
An input argument of type TIMESTAMP that specifies the earliest time a task
can begin execution. The value of this argument cannot be in the past, and it
cannot be later than end_timestamp.

When task execution begins depends on how this parameter and the schedule
parameter are defined:
v If the begin_timestamp argument is not NULL:

– If the schedule argument is NULL, the task execution begins at
begin_timestamp.

– If the schedule argument is not NULL, the task execution begins at the next
scheduled time at or after begin_timestamp.

v If the begin_timestamp argument is NULL:
– If the schedule argument is NULL, the task execution begins immediately.
– If the schedule argument is not NULL, the task execution begins at the next

scheduled time.

end_timestamp
An input argument of type TIMESTAMP that specifies the last time that a task
can begin execution. The value of this argument cannot be in the past, and it
cannot be earlier than begin_timestamp. If the argument is NULL, the task can
continue to execute as scheduled indefinitely.

An executing task will not be interrupted at its end_timestamp.

max_invocations
An input argument of type INTEGER that specifies the maximum number of
executions allowed for the task. If the argument is NULL, there is no limit to the
number of times the task can execute. If the argument is 0, the task will not
execute.

This value applies to the schedule if schedule is not NULL.

If both end_timestamp and max_invocations are specified, end_timestamp takes
precedence. That is, if the end_timestamp timestamp is reached, even though the
number of task executions so far has not reached the value of max_invocations,
the task will not be executed again.

schedule
An input argument of type VARCHAR(1024) that specifies a task execution
schedule at fixed points in time. If the argument is NULL, the task is not
scheduled at fixed points in time.

The schedule string must be specified using the UNIX cron format.

Multiple schedules are not supported.

options
An input argument of type VARCHAR(512). This argument must be NULL.

remarks
An input argument of type VARCHAR(254) that specifies a description of the
task. This is an optional argument that can be set to NULL.

Chapter 5. Administrative Task Scheduler routines and views 259

Authorization

EXECUTE privilege on the ADMIN_TASK_UPDATE procedure. Unless the
database was created with the RESTRICTIVE option, EXECUTE privilege is granted
to PUBLIC by default.

Although the statement authorization ID might allow the procedure to be
executed, a task cannot be updated unless the current session authorization ID
matches the session authorization ID that was recorded when the task was created.
Users with SYSADM, SYSCTRL, SYSMAINT, or DBADM can update any existing
task. Attempting to update a task that was added by a different user returns
SQL0551N.

Usage notes

If invalid arguments are passed into the procedure, SQL0171N will be returned.
The tokens of the message will indicate which argument is invalid and the name of
the procedure.

Changes to the task do not take effect until the unit of work is committed and the
scheduler has fetched the updated task definition. Leaving the unit of work
uncommitted may delay or prevent the execution of the existing task.

The scheduler checks for updated tasks every 5 minutes. To ensure the task
executes as expected, the earliest begin time, as defined by the begin_timestamp,
end_timestamp and schedule parameters, should be at least 5 minutes after the unit
of work commits.

The database must be active on all database partitions to ensure the task can be
executed by the scheduler.

The begin_timestamp, end_timestamp, and schedule are based on the database server's
time zone. Special attention is required when scheduling a task during the
transition period of daylight savings time (DST). If the task is scheduled to run
2:01 AM and it is the time of year when the time springs forward, the task will not
run as the clock skips from 2:00 AM to 3:00 AM. On the other hand, when the time
falls back an hour, tasks that were originally scheduled between 2:00 AM and 3:00
AM will execute twice. The user is responsible for making adjustments for daylight
savings time to ensure their required behavior.

When a task is updated, the task's internal invocation counter is reset. To illustrate,
consider a recurring task with a max_invocations value of 10. If the task executes 3
times, there are 3 corresponding status records in the ADMIN_TASK_STATUS
output. The entries have INVOCATION values of 1, 2, and 3. Now assume the task
creator updates the task. This update will reset the internal invocation counter. The
original status records remain in intact. Over time, new status records will be
created with INVOCATION values of 1, 2, 3, and so on. The BEGIN_TIME can be
used to distinguish between the original and updated task execution.

260 Administrative Routines and Views

Chapter 6. Audit routines and procedures

AUDIT_ARCHIVE procedure and table function - Archive audit log file
The AUDIT_ARCHIVE procedure and table function both archive the audit log file
for the connected database.

Syntax

�� AUDIT_ARCHIVE (directory , dbpartitionnum) ��

The schema is SYSPROC.

The syntax is the same for both the procedure and table function.

Procedure and table function parameters

directory
An input argument of type VARCHAR(1024) that specifies the directory where
the archived audit file(s) will be written. The directory must exist on the server
and the instance owner must be able to create files in that directory. If the
argument is null or an empty string, the default directory is used.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, NULL or -2 for an
aggregate of all database partitions.

Authorization

Execute privilege on the AUDIT_ARCHIVE procedure or table function.

Examples

Example 1: Archive the audit log(s) for all database partitions to the default
directory using the procedure.

CALL SYSPROC.AUDIT_ARCHIVE(NULL, NULL)

Example 2: Archive the audit log(s) for all database partitions to the default
directory using the table function.

SELECT * FROM TABLE(SYSPROC.AUDIT_ARCHIVE(’’, -2)) AS T1

Information returned

Table 81. Information returned by the AUDIT_ARCHIVE procedure and table function

Column name Data type Description

DBPARTITIONNUM SMALLINT Partition number of archived file.

PATH VARCHAR(1024) Directory location of archived file.

FILE VARCHAR(1024) Name of the archived file.

SQLCODE INTEGER The SQLCODE received while attempting to
archive file.

© Copyright IBM Corp. 2006, 2012 261

Table 81. Information returned by the AUDIT_ARCHIVE procedure and table
function (continued)

Column name Data type Description

SQLSTATE VARCHAR(5) The SQLSTATE received while attempting
archive file. If SQLSTATE is NULL, the value
is zero.

SQLERRMC VARCHAR(70)
FOR BIT DATA

The sqlerrmc received while attempting
archive file. If SQLSTATE is NULL, the value
is zero.

AUDIT_DELIM_EXTRACT - performs extract to delimited file
The AUDIT_DELIM_EXTRACT stored procedure performs an extract to a
delimited file on archived audit files of the connected database. Specifically, to
those archived audit files that have filenames that match the specified mask
pattern.

Syntax

�� AUDIT_DELIM_EXTRACT (delimiter , target_directory , source_directory , �

� file_mask , event_options) ��

The schema is SYSPROC.

Procedure parameters

delimiter
An optional input argument of type VARCHAR(1) that specifies the character
delimiter to be used in the delimited files. If the argument is null or an empty
string, a double quote will be used as the delimiter.

target_directory
An optional input argument of type VARCHAR(1024) that specifies the
directory where the delimited files will be stored. If the argument is null or an
empty string, same directory as the source_directory will be used

source_directory
An optional input argument of type VARCHAR(1024) that specifies the
directory where the archived audit log files are stored. If the argument is null
or an empty string, the audit default will be used.

file_mask
An optional input argument of type VARCHAR(1024) is a mask for which files
to extract. If the argument is null or an empty string, it will extract from all
audit log files in the source directory.

event_options
An optional input argument of type VARCHAR(1024) that specifies the string
defines which events to extract. This matches the same string in the db2audit
utility. If the argument is null or an empty string, it will extract all events.

Authorization

Execute privilege on the AUDIT_DELIM_EXTRACT function.

262 Administrative Routines and Views

Examples

Note: Audit log files contain a timestamp as part of their naming convention.

Example 1:Performs a delimited extract on all audit log files archived on June 18th,
2007 in the default archive directory. This example is extracting just execute events,
using a double quote (") character delimiter, and creating or appending the
resulting extract files (<category>.del) in the $HOME/audit_delim_extract
directory.
CALL SYSPROC.AUDIT_DELIM_EXTRACT(NULL, ’$HOME/AUDIT_DELIM_EXTRACT’, NULL,
’%20070618%’, ’CATEGORY EXECUTE’)

AUDIT_LIST_LOGS table function - Lists archived audit log files
The AUDIT_LIST_LOGS table function lists the archived audit log files for a
database which are present in the specified directory.

Syntax

�� AUDIT_LIST_LOGS (directory) ��

The schema is SYSPROC.

Procedure parameters

directory
An optional input argument of type VARCHAR(1024) that specifies the
directory where the archived audit file(s) will be written. The directory must
exist on the server and the instance owner must be able to create files in that
directory. If the argument is null or an empty string, then the search default
directory is used.

Authorization

EXECUTE privilege on AUDIT_LIST_LOGS table function.

Examples

Example 1: Lists all archived audit logs in the default audit archive directory:
SELECT * FROM TABLE(SYSPROC.AUDIT_LIST_LOGS(’’)) AS T1

Note: This only lists the logs in the directory for database on which the query is
run. Archived files have the format db2audit.db.<dbname>.log.<timestamp>

Information Returned

Table 82. The information returned for AUDIT_LIST_LOGS

Column Name Data Type Description

PATH VARCHAR(1024) Path location of the archived file.

FILE VARCHAR(1024) Filename of the archived file.

SIZE BIGINT File size of the archived file.

Chapter 6. Audit routines and procedures 263

264 Administrative Routines and Views

Chapter 7. Automatic maintenance routines

AUTOMAINT_GET_POLICY procedure - retrieve automatic maintenance
policy

The AUTOMAINT_GET_POLICY system stored procedure retrieves the automatic
maintenance configuration for the database. This procedure takes two parameters:
the type of automatic maintenance about which to collect information; and a
pointer to a BLOB in which to return the configuration information. The
configuration information is returned in XML format.

Syntax

�� AUTOMAINT_GET_POLICY (policy_type , policy) ��

The schema is SYSPROC.

Procedure parameters

policy_type
An input argument of type VARCHAR(128) that specifies the type of automatic
maintenance policy to retrieve. The argument can be one of the following
values:

AUTO_BACKUP
automatic backup

AUTO_REORG
automatic table and index reorganization

AUTO_RUNSTATS
automatic table runstats operations

MAINTENANCE_WINDOW
maintenance window

policy
An output argument of type BLOB(2M) that specifies the automatic
maintenance settings for the given policy type, in XML format.

Authorization

EXECUTE privilege on the AUTOMAINT_GET_POLICY procedure.

Example

Here is an example of a call to the AUTOMAINT_GET_POLICY procedure from
within embedded SQL C source code.
v A BLOB variable is declared for the procedure output parameter.
v The procedure is called, specifying automated backup as the type of automatic

maintenance policy, and specifying the BLOB variable as the output parameter
in which the procedure will return the backup policy for the currently connected
database.

© Copyright IBM Corp. 2006, 2012 265

EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS BLOB(2M) backupPolicy;
EXEC SQL END DECLARE SECTION;

EXEC SQL CALL AUTOMAINT_GET_POLICY(’AUTO_BACKUP’, :backupPolicy);

AUTOMAINT_GET_POLICYFILE procedure - retrieve automatic
maintenance policy

The AUTOMAINT_GET_POLICYFILE system stored procedure retrieves the
automatic maintenance configuration for the database. This procedure takes two
parameters: the type of automatic maintenance about which to collect information;
and the name of a file in which to return the configuration information. The
configuration information is returned in XML format.

Syntax

�� AUTOMAINT_GET_POLICYFILE (policy_type , policy_file_name) ��

The schema is SYSPROC.

Procedure parameters

policy_type
An input argument of type VARCHAR(128) that specifies the type of automatic
maintenance policy to retrieve. The argument can be one of the following
values:

AUTO_BACKUP
automatic backup

AUTO_REORG
automatic table and index reorganization

AUTO_RUNSTATS
automatic table runstats operations

MAINTENANCE_WINDOW
maintenance window

policy_file_name
An input argument of type VARCHAR(2048) that specifies the name of the file
that is created in the tmp subdirectory of the DB2 instance directory.

Note: The file name may be prefixed with a path relative to tmp. In that case
the directory should exist, should have permission to create/overwrite the file
and the correct path separator for the DB2 Server must be used.

For example:

On UNIX if the instance directory is defined as $HOME/sqllib. For a policy file
named 'policy.xml', the file name will be '$HOME/sqllib/tmp/policy.xml'

On Windows, the instance directory name can be determined from the values
of the DB2INSTPROF registry variable and the DB2INSTANCE environment variable.
For a policy file named 'policy.xml', if db2set gives DB2INSTPROF=C:\DB2PROF
and %DB2INSTANCE%=db2, then the file name will be C:\DB2PROF\db2\tmp\
policy.xml

266 Administrative Routines and Views

Authorization

EXECUTE privilege on the AUTOMAINT_GET_POLICYFILE procedure.

Example

To get the current automatic maintenance settings for backup operations:
call sysproc.automaint_get_policyfile(’AUTO_BACKUP’, ’AutoBackup.xml’)

This will create an XML file named AutoBackup.xml in the tmp subdirectory under
the DB2 instance directory.

AUTOMAINT_SET_POLICY procedure - configure automatic
maintenance policy

You can use the AUTOMAINT_SET_POLICY system stored procedure to configure
automatic maintenance for the database. This procedure takes two parameters: the
type of automatic maintenance to configure; and a BLOB containing XML that
specifies the configuration.

To enable the reclamation of extents during the automatic reorganization
operations on multidimensional clustering (MDC) tables, you need to specify the
“reclaimExtentsSizeForMDCTables” attribute to the ReorgOptions element, along
with a threshold value in the XML input files. This threshold value is the
minimum size, in kilobytes, of free space inside the table that can be reclaimed.
This value must be 0 or larger. For example, if you specify a value of 1024 KB for
the threshold, only tables with 1 MB of free space or more are considered for
automatic reorganization to reclaim extents.

Syntax

�� AUTOMAINT_SET_POLICY (policy_type , policy) ��

The schema is SYSPROC.

Table function parameters

policy_type
An input argument of type VARCHAR(128) that specifies the type of automatic
maintenance policy to configure. The argument can be one of the following
values:

AUTO_BACKUP
automatic backup

AUTO_REORG
automatic table and index reorganization

AUTO_RUNSTATS
automatic table runstats operations

MAINTENANCE_WINDOW
maintenance window

policy
An input argument of type BLOB(2M) that specifies the automatic maintenance
policy in XML format.

Chapter 7. Automatic maintenance routines 267

Authorization

EXECUTE privilege on the SYSPROC.AUTOMAINT_SET_POLICY procedure.

Examples

Example 1: To set the current automatic maintenance settings for runstats
operations:
CALL SYSPROC.AUTOMAINT_SET_POLICY

(’AUTO_RUNSTATS’,
BLOB(’ <?xml version=\"1.0\" encoding=\"UTF-8\"?>

<DB2AutoRunstatsPolicy
xmlns=\"http://www.ibm.com/xmlns/prod/db2/autonomic/config\">

<RunstatsTableScope><FilterCondition/></RunstatsTableScope>
</DB2AutoRunstatsPolicy>’)

)

This will replace the current automatic statistics collection configuration with the
new configuration contained in the XML document that is passed as the second
parameter to the procedure."

Example 2: The automatic reorganization feature of DB2 can use the new
"RECLAIM EXTENTS ONLY" option to reorganize multi dimensional clustering
(MDC) tables. To enable this feature, set the "reclaimExtentsSizeForMDCTables"
value in the AUTO_REORG policy:
CALL SYSPROC.AUTOMAINT_SET_POLICY

(’AUTO_REORG’,
BLOB(’ <?xml version=\"1.0\" encoding=\"UTF-8\"?>

<DB2AutoReorgPolicy
xmlns=\"http://www.ibm.com/xmlns/prod/db2/autonomic/config\">

<ReorgOptions dictionaryOption=”Keep” indexReorgMode=”Online”
useSystemTempTableSpace=”false” reclaimExtentsSizeForMDCTables ="1024" >

<ReorgTableScope>
<FilterClause>TABSCHEMA NOT LIKE ’EMP%’</FilterClause>

</ReorgTableScope>
</DB2AutoReorgPolicy>’)

)

There are sample XML input files located in the SQLLIB/samples/automaintcfg
directory that you can modify to suit your requirements and then pass the XML
content in through the BLOB() scalar function as in the example.

AUTOMAINT_SET_POLICYFILE procedure - configure automatic
maintenance policy

You can use the AUTOMAINT_SET_POLICYFILE system stored procedure to
configure automatic maintenance for the database. This procedure takes two
parameters: the type of automatic maintenance to configure; and the name of an
XML document that specifies the configuration.

This procedure return the SQL success or SQL error code.

Syntax

�� AUTOMAINT_SET_POLICYFILE (policy_type , policy_file_name) ��

The schema is SYSPROC.

268 Administrative Routines and Views

Table function parameters

policy_type
An input argument of type VARCHAR(128) that specifies the type of automatic
maintenance policy to configure. The argument can be one of the following
values:

AUTO_BACKUP
automatic backup

AUTO_REORG
automatic table and index reorganization

AUTO_RUNSTATS
automatic table runstats operations

MAINTENANCE_WINDOW
maintenance window

policy_file_name
An input argument of type VARCHAR(2048) that specifies the name of the file
that is available in the tmp subdirectory of the DB2 instance directory.

Note: When the file name is specified with a relative path, the correct path
separator for the DB2 Server must be used and the directory and file should
exist with read permission.

For example:

On UNIX if the instance directory is defined as $HOME/sqllib. For a policy file
named 'automaint/policy.xml', the file name will be '$HOME/sqllib/tmp/
automaint/policy.xml'

On Windows, the instance directory name can be determined from the values
of the DB2INSTPROF registry variable and the DB2INSTANCE environment variable.
For a policy file named 'automaint\policy.xml', if db2set gives
DB2INSTPROF=C:\DB2PROF and %DB2INSTANCE%=db2, then the file name will be
C:\DB2PROF\db2\tmp\automaint\policy.xml

Authorization

EXECUTE privilege on the SYSPROC.AUTOMAINT_SET_POLICYFILE procedure.

Example

To modify the current automatic maintenance settings for automatic backup:
call sysproc.automaint_set_policyfile(’AUTO_BACKUP’, ’AutoBackup.xml’)

This will replace the current automatic backup configuration settings with the new
configuration contained in the AutoBackup.xml file located in the tmp directory
under the DB2 instance directory.

There are sample XML input files located in the SQLLIB/samples/automaintcfg
directory which can be used as reference to create policy xml files.

Chapter 7. Automatic maintenance routines 269

270 Administrative Routines and Views

Chapter 8. Common SQL API procedures

The common SQL API provides a collection of common-signature and
signature-stable stored procedures that are portable across IBM data servers. You
can use these stored procedures to create applications that perform a variety of
common administrative functions, such as getting and setting configuration
parameters, and getting system information.

The stored procedures provide syntactically identical XML parameters and error
handling across all data servers to ensure data server version independence.
Signature-stability and commonality are achieved by using simple XML documents
(with a common DTD) as parameters. Version, platform, and technology
differences are expressed through different key value pairs in hierarchical property
lists.

Common input and output parameters
The common SQL API stored procedures share a set of input and output
parameters.

The following table provides a brief description of these parameters. For more
detailed information, see the reference topics about the common SQL API stored
procedures.

Table 83. Common SQL API shared input and output parameters

Parameter Description

major_version Indicates the document type major version
that the caller supports for the XML
documents passed as parameters in the
procedure.

minor_version Indicates the document type minor version
that the caller supports for the XML
documents passed as parameters in the
procedure.

The parameters major_version and
minor_version are used together to ensure
that the caller does not use an XML input
document of an incorrect version. The
procedure processes all XML documents in
the specified major_version and minor_version,
or returns an error if a version is not valid.
This design supports extensibility in future
releases because newer document type
versions can be added without affecting
existing applications.

requested_locale Specifies the locale to use to return
translated content in the XML documents
returned in the xml_output and xml_message
parameters. Only values are translated, not
key names.

xml_input Specifies an XML input document that
contains input values for the procedure.

© Copyright IBM Corp. 2006, 2012 271

Table 83. Common SQL API shared input and output parameters (continued)

Parameter Description

xml_filter Specifies a valid XPath query string that is
used to retrieve a single value from an
output parameter document.

xml_output Returns a complete XML output document
encoded in UTF-8. Depending on the
procedure that is being called, this document
might contain configuration parameters and
their values, system information, or message
text. When the procedure operates in
complete mode, this parameter returns an
XML document that you can modify and
pass back to the procedure as the xml_input
parameter. This approach provides a
programmatic way to create valid XML
input documents.

xml_message Returns a complete XML output document
of type Data Server Message in UTF-8 that
provides detailed information about a SQL
warning condition.

Versioning of XML documents
To support extensibility in future releases, the common SQL API stored procedures
return XML output documents that include version information.

Whenever the structure of an XML output document changes (for example, when
an element is added or removed), the version levels are incremented. Therefore, a
procedure might support several versions of the XML output document.

Version information in the XML document is expressed as key-value pairs for
document type major version and document type minor version. For example, an
XML output document might define the following keys and values in a dictionary
element:

<key>Document Type Name</key><string>Data Server Configuration Output</string>
<key>Document Type Major Version</key><integer>2</integer>
<key>Document Type Minor Version</key><integer>0</integer>

When you call the procedure, you specify the major version and minor version of
the XML document that you want to return. The contents of the XML output
document will vary depending on the values that you specify.

For example, the GET_CONFIG procedure retrieves the database and database
manager configuration parameters that are set for a particular instance. When this
procedure is called with major_version 2 and minor_version 0, it returns an XML
document that contains configuration parameters grouped into categories.
However, when the same procedure is called with major_version 1 and
minor_version 0, it returns an XML document that contains configuration
parameters, but they are not grouped into categories.

Likewise, the GET_MESSAGE procedure retrieves the message text and SQLSTATE
for a specified SQLCODE. When this procedure is called with major_version 2 and
minor_version 0, it returns an XML document that contains the short text message,
long text message, and SQLSTATE for the corresponding SQLCODE. However,

272 Administrative Routines and Views

when the same procedure is called with major_version 1 and minor_version 0, it
returns an XML document that contains only the short text message and
SQLSTATE. The long text message is not available in version 1 of the document.

To determine the highest supported document versions for a procedure, specify
NULL for major_version, minor_version, and all other input parameters. The
procedure returns the highest supported document versions as values in the
major_version and minor_version output parameters, and sets the xml_output and
xml_message output parameters to NULL.

If you specify non-null values for major_version and minor_version, you must specify
supported document versions, or the procedure raises an error (-20457) to indicate
that the procedure encountered an unsupported version.

XML input documents can optionally include values for the document type major
version and document type minor version. If these values are specified in the XML
input document, then the values passed for major_version and minor_version in the
procedure call must exactly match the values that are specified in the XML
document, or the procedure raises an error (+20458). This behavior ensures that the
caller does not specify an unsupported version of the XML input document.

XML input documents
The XML documents that are passed as input to common SQL API stored
procedures share a simple XML format that is based on a common DTD.

The XML input document consists of a set of entries that are common to all stored
procedures, and a set of entries that are specific to each stored procedure. The
XML input document has the following general structure:
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server Message Input</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Document Locale</key><string>en_US</string>
<key>Complete</key><false/>
<dict>

<!-- Document type specific data appears here. -->
</dict>

</dict>
</plist>

Important: XML input documents must be encoded in UTF-8 and contain English
characters only.

Complete mode for returning valid XML input documents
You can use complete mode to create a valid XML document for any common SQL
API stored procedure that accepts input. You can then customize the document
and pass it back to the procedure.

To run a procedure in complete mode, specify "true" for the Complete key in the
input XML document, and pass the following minimal content:

Chapter 8. Common SQL API procedures 273

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Complete</key><true/>
</dict>
</plist>

Any XML elements that are not required are ignored and are not returned in the
output document.

When you run the procedure, a complete XML input document is returned in the
xml_output parameter of the stored procedure. The returned XML document
includes a document type and a section for all possible required parameters and
optional parameters. The returned XML document also includes other entries (such
as display names, hints, and the document locale) that are not required, but are
typically needed when rendering the document in a client application.

After rendering the XML document and modifying it in a platform-independent
way, you can run the same stored procedure and pass in the modified XML
document as input.

XML output documents
The XML documents that are returned as output from common SQL API stored
procedures share a common set of entries.

At a minimum, XML documents returned in the xml_output parameter include the
following mandatory, key value pairs:
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key>
<string>Data Server Configuration Output</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Data Server Product Name</key><string>DSN</string>
<key>Data Server Product Version</key><string>8.1.0.356</string>
<key>Data Server Major Version</key><integer>8</integer>
<key>Data Server Minor Version</key><integer>1</integer>
<key>Data Server Platform</key><string>z/OS</string>
<key>Document Locale</key><string>en_US</string>

<!-- Document type specific data appears here. -->
</dict>
</plist>

Entries in the XML output document might be grouped using nested dictionaries.
Each entry in the XML output document describes a single piece of information.
The entry consists of the value, the display name, and a hint. Optionally, a display
unit might be provided. Display name, hint, and display unit are
language-sensitive and will be translated to the language specified in the value for
the requested_locale parameter (or the default if the requested locale is not yet
supported). In general, an entry has a structure similar to the following example:
<key>Real Storage Size</key>
<dict>

<key>Display Name</key><string>Real Storage Size</string>
<key>Value</key><integer>2048</integer>
<key>Display Unit</key><string>MB</string>
<key>Hint</key><string>Size of actual real storage online</string>

</dict>

274 Administrative Routines and Views

IBM data servers have a common parameter document that includes some
keywords that are applicable to all data servers, and others that are data server
specific. Whenever a data server adds or removes a new keyword, the version
number (for all data servers) is incremented. Depending on the change, the major
version number might be increased and the minor version number set to 0 (zero),
or only the minor version number might be incremented.

XML output documents are generated in UTF-8 and contain English characters
only.

XPath expressions for filtering output
You can use an XPath expression to filter the XML output returned by a common
SQL API stored procedure.

To filter the output, specify a valid XPath query string in the xml_filter parameter
of the procedure. The following restrictions apply to the XPath expression that you
specify:
v The XPath expression must reference a single value.
v The XPath expression must always be absolute from the root node. For example,

the following path expressions are allowed: /, nodename, ., and ... The following
expressions are not allowed: // and @

v The only predicates allowed are [path=’value’] and [n].
v The only axis allowed is following-sibling.
v The XPath expression must end with one of the following, and, if necessary, be

appended with the predicate [1]: following-sibling::string,
following-sibling:: data, following-sibling::date, following-sibling::real,
or following-sibling::integer.

v Unless the axis is found at the end of the XPath expression, it must be followed
by a ::dict, ::string, ::data, ::date, ::real, or ::integer, and if necessary, be
appended with the predicate [1].

v The only supported XPath operator is =.
v The XPath expression cannot contain a function, namespace, processing

instruction, or comment.

Tip: If the stored procedure operates in complete mode, do not apply filtering, or a
SQLCODE (+20458) is raised.

For better control over processing the XML document returned in the xml_output
parameter, you can use the XMLPARSE function available with DB2 pureXML®.

Example

The following XPath expression selects the value for the Data Server Product
Version key from an XML output document:
/plist/dict/key[.=’Data Server Product Version’]following-sibling::string[1]

The procedure returns the string 8.1.0.356 in the xml_output parameter. Therefore,
the procedure call returns a single value rather than an XML document.

Chapter 8. Common SQL API procedures 275

XML message documents
When a common SQL API stored procedure encounters an internal processing
error or invalid parameter, the data server returns a SQLCODE and the
corresponding SQL message to the caller. When this occurs, the procedure returns
an XML message document in the xml_message parameter that contains more
detailed information about the warning situation.

The XML message document has the following general structure:
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server Message</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Data Server Product Name</key><string>QDB2/AIX64</string>
<key>Data Server Product Version</key><string>9.5.0.3</string>
<key>Data Server Major Version</key><integer>9</integer>
<key>Data Server Minor Version</key><integer>5</integer>
<key>Data Server Platform</key><string>AIX 64BIT</string>
<key>Document Locale</key><string>en_US</string>
<key>Short Message Text</key>
<dict>

<key>Value</key><string>
<!-- Additional description of warning appears here. --></string>
<key>Hint</key><string></string>

</dict>
</dict>
</plist>

XML message documents are generated in UTF-8 and contain English characters
only.

Example

In the following example, a call to the GET_MESSAGE procedure results in an SQL
warning:
db2 "CALL SYSPROC.GET_MESSAGE(NULL,NULL,’en_US’,NULL,NULL,?,?)"

SQL20458W The procedure "SYSPROC.GET_MESSAGE" has encountered
an internal parameter processing error in parameter "3".
The value for parameter "7" contains further information about
the error. SQLSTATE=01H54

The XML document that is returned in parameter 7 (xml_message) contains the
following content:
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server Message</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Data Server Product Name</key><string>QDB2/AIX64</string>
<key>Data Server Product Version</key><string>9.5.0.3</string>
<key>Data Server Major Version</key><integer>9</integer>
<key>Data Server Minor Version</key><integer>5</integer>
<key>Data Server Platform</key><string>AIX 64BIT</string>
<key>Document Locale</key><string>en_US</string>
<key>Short Message Text</key>
<dict>

<key>Value</key><string>If parameters 1 and 2 are set to NULL, all
other input parameters must be set to NULL as well, but the value
of parameter "3" is not NULL. </string>

276 Administrative Routines and Views

<key>Hint</key><string></string>
</dict>

</dict>
</plist>

The value for the Short Message Text key provides additional information about
the warning.

CANCEL_WORK procedure - Cancel work
The CANCEL_WORK stored procedure cancels either a specific activity (for
example, a SQL statement), or all activity for a connected application.

To cancel a specific activity, you pass in the application handle, unit of work ID,
and activity ID for the activity that you want to cancel. To cancel all activity for a
connected application, you pass in the application handle. Any changes associated
with the cancelled activity are rolled back.

Syntax

�� CANCEL_WORK (major_version , minor_version , requested_locale , �

� xml_input , xml_filter , xml_output , xml_message) ��

The schema is SYSPROC.

Procedure parameters

major_version
An input and output argument of type INTEGER that indicates the major
document version. On input, this argument indicates the major document
version that the caller supports for the XML documents passed as parameters
in the procedure (see the parameter descriptions for xml_input, xml_output, and
xml_message). The procedure processes all XML documents in the specified
version, or returns an error (+20458) if the version is not valid. On output, this
parameter specifies the highest major document version that is supported by
the procedure. To determine the highest supported document version, specify
NULL for this input parameter and all other required parameters.

Supported versions: 1

minor_version
An input and output argument of type INTEGER that indicates the minor
document version. On input, this argument specifies the minor document
version that the caller supports for the XML documents passed as parameters
for this procedure (see the parameter descriptions for xml_input, xml_output,
and xml_message). The procedure processes all XML documents in the specified
version, or returns an error if the version is not valid. On output, this
parameter indicates the highest minor document version that is supported for
the highest supported major version. To determine the highest supported
document version, specify NULL for this input parameter and all other
required parameters.

Supported versions: 0

requested_locale
An input argument of type VARCHAR(33) that specifies a locale. If the

Chapter 8. Common SQL API procedures 277

specified language is supported on the server, translated content is returned in
the xml_output and xml_message parameters. Otherwise, content is returned in
the default language. Only the language and possibly the territory information
is used from the locale. The locale is not used to format numbers or influence
the document encoding. For example, key names and values are not translated.
The only translated portion of the XML output and XML message documents
are the text for hint, display name, and display unit of each entry. The caller
should always compare the requested language to the language that is used in
the XML output document (see the document locale entry in the XML output
document).

Currently, the only supported value for requested_locale is en_US.

xml_input
An input argument of type BLOB(32MB) that specifies an XML input
document (encoded in UTF-8) that contains input values for the procedure.

For this procedure, the XML input document must specify an application
handle. If you want to cancel a specific activity, the XML input document must
also specify optional parameters that identify a unit of work ID and an activity
ID. A complete XML input document for this stored procedure looks
something like the following document:
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server Cancel Work Input</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Required Parameters</key>
<dict>

<key>Application Handle</key>
<dict>

<key>Display name</key><string>Application Handle</string>
<key>Value</key><integer>10</integer>
<key>Hint</key>
<string>
Numeric value equivalent to the application handle to be cancelled
</string>

</dict>
</dict>
<key>Optional Parameters</key>
<dict>

<key>Unit Of Work Id</key>
<dict>

<key>Display Name</key><string>Unit Of Work Id</string>
<key>Value</key><integer>20</integer>
<key>Hint</key>
<string>
Numeric value that specifies the unit of work id of the activity
that is to be cancelled
</string>

</dict>
<key>Activity Id</key>
<dict>

<key>Display Name</key><string>Activity Id</string>
<key>Value</key><integer>10</integer>
<key>Hint</key>
<string>
Numeric value equivalent to the activity id to be cancelled
</string>

</dict>
</dict>

</dict>
</plist>

278 Administrative Routines and Views

If you specify the application handle of the application where the stored
procedure is running, the procedure returns a warning (SQL20458).

xml_filter
An input argument of type BLOB(4K) that specifies a valid XPath query string.
Use a filter when you want to retrieve a single value from an XML output
document. For more information, see the topic that describes XPath filtering.

The following example selects the value for the Data Server Product Version
from the XML output document: /plist/dict/key[.=’Data Server Product
Version’]/following-sibling::string. If the key is not followed by the
specified sibling, an error is returned.

xml_output
An output parameter of type BLOB(32MB) that returns a complete XML output
document in UTF-8. If a filter is specified, this parameter returns a string
value. If the stored procedure is unable to return a complete output document
(for example, if a processing error occurs that results in an SQL warning or
error), this parameter is set to NULL.

The XML output is determined by the values that you specify for major_version
and minor_version:

Major version Minor version xml_output value

NULL NULL NULL

1 0 The status of the activity that
the procedure attempted to
cancel.

When the procedure operates in complete mode, this parameter returns an XML
document that you can modify and pass back to the procedure as the
xml_input parameter. This approach provides a programmatic way to create
valid XML input documents. For more information, see the topic about
complete mode.

xml_message
An output parameter of type BLOB(64K) that returns a complete XML output
document of type Data Server Message in UTF-8 that provides detailed
information about a SQL warning condition. This document is returned when a
call to the procedure results in a SQL warning, and the warning message
indicates that additional information is returned in the XML message output
document. If the warning message does not indicate that additional
information is returned, then this parameter is set to NULL.

Authorization
v SYSADM or DBADM authority
v EXECUTE privilege on the CANCEL_WORK procedure

Example

Example 1: Return the highest supported version of the procedure.
db2 "call sysproc.cancel_work(null,null,null,null,null,?,?)"

The following example is a sample output from this query:
Value of output parameters

Parameter Name : MAJOR_VERSION

Chapter 8. Common SQL API procedures 279

Parameter Value : 1

Parameter Name : MINOR_VERSION
Parameter Value : 0

Parameter Name : XML_OUTPUT
Parameter Value : -

Parameter Name : XML_MESSAGE
Parameter Value : -

Return Status = 0

Example 2: Cancel a specific activity.
db2 "call sysproc.cancel_work(1,0,’en_US’,blob(
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server Cancel Work Input</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Required Parameters</key>
<dict>

<key>Application Handle</key>
<dict>

<key>Display name</key><string>Application Handle</string>
<key>Value</key><integer>1</integer>
<key>Hint</key>
<string>
Numeric value equivalent to the application handle to be cancelled
</string>

</dict>
</dict>
<key>Optional Parameters</key>
<dict>

<key>Unit Of Work Id</key>
<dict>

<key>Display Name</key><string>Unit Of Work Id</string>
<key>Value</key><integer>2</integer>
<key>Hint</key>
<string>
Numeric value that specifies the unit of work id of the activity
that is to be cancelled
</string>

</dict>
<key>Activity Id</key>
<dict>

<key>Display Name</key><string>Activity Id</string>
<key>Value</key><integer>3</integer>
<key>Hint</key>
<string>
Numeric value equivalent to the activity id to be cancelled
</string>

</dict>
</dict>

</dict>
</plist>) ,null,?,?)"

The following example is a sample output from this query:
Value of output parameters

Parameter Name : MAJOR_VERSION
Parameter Value : 1

Parameter Name : MINOR_VERSION
Parameter Value : 0

280 Administrative Routines and Views

Parameter Name : XML_OUTPUT
Parameter Value : x’3C3F78...’

Parameter Name : XML_MESSAGE
Parameter Value : -

Return Status = 0

If the CANCEL_WORK procedure is able to cancel the activity, the XML output
document contains the following content:
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict><key>Document Type Name</key><string>Data Server Cancel Work Output</string>

<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Data Server Product Name</key><string>QDB2/AIX64</string>
<key>Data Server Product Version</key><string>9.7.0.0</string>
<key>Data Server Major Version</key><integer>9</integer>
<key>Data Server Minor Version</key><integer>7</integer>
<key>Data Server Platform</key><string>AIX 64BIT</string>
<key>Document Locale</key><string>en_US</string>
<key>Successful Cancel Work Message</key>
<dict>

<key>Display Name</key><string>Successful Cancel Work Message</string>
<key>Value</key><string>The activity has been cancelled successfully</string>
<key>Hint</key><string></string>

</dict>
</dict>
</plist>

Example 2: Cancel the application.
db2 "call sysproc.cancel_work(1,0,’en_US,blob(
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server Cancel Work Input</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Required Parameters</key>
<dict>

<key>Application Handle</key>
<dict>

<key>Display name</key><string>Application Handle</string>
<key>Value</key><integer>101</integer>
<key>Hint</key>
<string>
Numeric value equivalent to the application handle to be cancelled
</string>

</dict>
</dict>

</dict>
</plist>),null,?,?)"

The following example is a sample output from this query:
Value of output parameters

Parameter Name : MAJOR_VERSION
Parameter Value : 1

Parameter Name : MINOR_VERSION
Parameter Value : 0

Parameter Name : XML_OUTPUT
Parameter Value : x’3C3F78...’

Chapter 8. Common SQL API procedures 281

Parameter Name : XML_MESSAGE
Parameter Value : -

Return Status = 0

If the CANCEL_WORK procedure is able to cancel the application, the XML
output document contains the following content:
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server Cancel Work Output</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Data Server Product Name</key><string>QDB2/AIX64</string>
<key>Data Server Product Version</key><string>9.7.0.0</string>
<key>Data Server Major Version</key><integer>9</integer>
<key>Data Server Minor Version</key><integer>7</integer>
<key>Data Server Platform</key><string>AIX 64BIT</string>
<key>Document Locale</key><string>en_US</string>
<key>Successful Cancel Work Message</key>
<dict>

<key>Display Name</key><string>Successful Cancel Work Message</string>
<key>Value</key>
<string>The application has been cancelled successfully</string>
<key>Hint</key><string></string>

</dict>
</dict>
</plist>

Example 3: Specify a filter to return the value of a successful cancel work message.
db2 "call sysproc.cancel_work(1,0,’en_US,blob(
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server Cancel Work Input</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Required Parameters</key>
<dict>

<key>Application Handle</key>
<dict>

<key>Display name</key><string>Application Handle</string>
<key>Value</key><integer>101</integer>
<key>Hint</key>
<string>
Numeric value equivalent to the application handle to be cancelled
</string>

</dict>
</dict>

</dict>
</plist>),blob(’/plist/dict/key[.="Successful Cancel Work Message"]
/following-sibling::dict[1]/key[.="Value"]
/following-sibling::string[1]’),?,?)"

The following example is a sample output from this query:
Value of output parameters

Parameter Name : MAJOR_VERSION
Parameter Value : 1

Parameter Name : MINOR_VERSION
Parameter Value : 0

Parameter Name : XML_OUTPUT

282 Administrative Routines and Views

Parameter Value : x’3C3F78...’

Parameter Name : XML_MESSAGE
Parameter Value : -

Return Status = 0

The following value is returned for xml_output:
"The application has been cancelled successfully"

DESIGN_ADVISOR - retrieve design advisor recommendations
The DESIGN_ADVISOR procedure retrieves design advisor recommendations from
a DB2 server.

Syntax

Note: If your instance has databases created in Version 9.7 before Fix Pack 5, you
must run the db2updv97 command to add this new procedure to the system
catalog.

�� DESIGN_ADVISOR (major_version , minor_version , requested_locale , �

� xml_input , xml_filter , xml_output , xml_message) ��

The schema is SYSPROC.

Procedure parameters

major_version
An input and output argument of type INTEGER that indicates the major
document version. On input, this argument indicates the major document
version that the caller supports for the XML documents passed as parameters
in the procedure (see the parameter descriptions for xml_input, xml_output, and
xml_message). The procedure processes all XML documents in the specified
version, or returns an error (+20458) if the version is not valid. On output, this
parameter specifies the highest major document version that is supported by
the procedure. To determine the highest supported document version, specify
NULL for this input parameter and all other required parameters.

If the xml_input parameter specifies a Document Type Major Version key and
the major_version parameter is not NULL, then the major_version parameter
takes precedence.

Supported versions: 1

minor_version
An input and output argument of type INTEGER that indicates the minor
document version. On input, this argument specifies the minor document
version that the caller supports for the XML documents passed as parameters
for this procedure (see the parameter descriptions for xml_input, xml_output,
and xml_message). The procedure processes all XML documents in the specified
version, or returns an error if the version is not valid. On output, this
parameter indicates the highest minor document version that is supported for
the highest supported major version. To determine the highest supported
document version, specify NULL for this input parameter and all other
required parameters.

Chapter 8. Common SQL API procedures 283

If the xml_input parameter specifies a Document Type Minor Version key and
the minor_version parameter is not NULL, then the minor_version parameter
takes precedence.

Supported versions: 0

requested_locale
An input argument of type VARCHAR(33) that specifies a locale. If the
specified language is supported on the server, translated content is returned in
the xml_output and xml_message parameters. Otherwise, content is returned in
the default language. Only the language, and possibly the territory
information, is used from the locale. The locale is not used to format numbers
or influence the document encoding. For example, key names and values are
not translated. The only translated portion of the XML output and XML
message documents is the error message text. The caller should always
compare the requested language to the language that is used in the XML
output document (see the document locale entry in the XML output
document).

Currently, the only supported value for requested_locale is en_US.

xml_input
An input argument of type BLOB(32M) that specifies a PLIST XML input
string.

xml_filter
An input argument of type BLOB(4K). This parameter is reserved for future
use.

xml_output
An output parameter of type BLOB(12K) that returns a PLIST XML output
string.

xml_message
An output parameter of type BLOB(64K) that returns a complete XML output
document of type Data Server Message, in UTF-8 encoding. This document
provides detailed information about an SQL warning condition.

Authorization
v Read access to the database.
v Read and write access to the explain tables of the currently connected schema or

the SYSTOOLS schema.
v If materialized query tables (MQTs) are used, you must have CREATE TABLE

authorization, and read and write access to the MQTs
v EXECUTE privilege on the DESIGN_ADVISOR function.

Information returned

This information is always returned unless an error is generated.

Table 84. Information returned by the DESIGN_ADVISOR - retrieve design advisor
recommendations table function

Column name Data type Description

SCHEMA VARCHAR(128) Schema name of the object or the proposed
object to which this recommendation
applies.

284 Administrative Routines and Views

Table 84. Information returned by the DESIGN_ADVISOR - retrieve design advisor
recommendations table function (continued)

Column name Data type Description

NAME VARCHAR(128) Name of the object or the proposed object
to which this recommendation applies.

EXISTS CHAR(1) Indicates that the object exists.

RECOMMENDATION VARCHAR(8) Indicates the recommendation type. Valid
values are:

v M for MQT

v P for database partitioning

v C for MDC

v I for index

v D if the object is not used by the given
workload and can be considered for
deletion.

The result can be any combination of these
values. For example “MC” indicates that
the table is recommended as an MQT and
an MDC table.

BENEFIT DOUBLE Estimated benefit, in timerons, of the
proposed object or modification to the
proposed object of the query. For base
tables or MQTs that have MDC or
partitioning recommendations, this value is
NULL.

OVERHEAD DOUBLE Estimated cost, in timerons, to maintain
either the proposed object or the
modification to the proposed object. Indexes
are ranked with the formula BENEFIT -
OVERHEAD. MQTs are ranked with BENEFIT -
(0.5 * OVERHEAD). For base tables or MQTs
that have MDC or partitioning
recommendations, this value is NULL.

STATEMENT_NO INTEGER Statement number referred to by this
recommendation. Reflects the statement
number in the ADVISE_WORKLOAD table.
When a recommendation applies to
multiple statements, only one row is
returned for each statement.

DISKUSE DOUBLE Estimated size, in MB, of either the
recommended object or the result of
modifications to the current object on disk.

Chapter 8. Common SQL API procedures 285

Usage Notes

XML_INPUT options

Table 85. XML_INPUT options

Key name Optional Data type Description

MAJOR_VERSION Y INTEGER XML_OUTPUT schema major version
supported by the client as input. If the
procedure parameter of the same name
is provided, it is used. Otherwise, this
value is retrieved and required in
XML_INPUT.

MINOR_VERSION Y INTEGER XML_OUTPUT schema minor version
supported by the client as input. If the
procedure parameter of the same name
is provided, it is used. Otherwise, this
value is retrieved and required in
XML_INPUT.

REQUESTED_
LOCALE

Y STRING If the locale is supported at the server,
the error messages are returned in the
requested locale. If the locale is
unsupported or invalid, the data is
returned in the default locale of the
server. If the procedure parameter of
the same name is provided, it is used.
Otherwise, this value is retrieved and
required in XML_INPUT.

CMD_OPTIONS N STRING List of arguments as accepted by the
db2advis command. See the Usage
Notes for a list of differences between
the command-line parameters accepted
by the db2advis command and this
procedure.

USER_TEMP_TSPACE Y STRING The name of a USER TEMPORARY
TABLESPACE where a declared global
temporary table (DGTT) can be created
to hold the result set. If no name is
provided, fenced process memory is
used instead. The supplied table space
must exist, be writeable by the caller,
and have enough space for the entire
result set. The DGTT exists and uses
system resources until the application
disconnects. Contents are deleted each
time to save space and because the
output is non-deterministic.

Note: Special characters like “&”, “<”, “>”, “’” (single quotation mark),
and “"” (double quotation mark) can be specified by their corresponding
HTML entities of “&”, “<”, “>”, “'”, and “quot;”.

XML_OUTPUT description
The XML_OUTPUT document is always returned in a UTF-8 code page.
Code page conversion is done for database identifiers, objects, and other
possible non-UTF-8 characters. Special characters (see XML_INPUT options
for a list) are translated as well.

286 Administrative Routines and Views

Table 86. XML_OUTPUT description

Key name Data type Description

Document Type Name STRING Always returns the string “Data Server
Message Output”

MAJOR_VERSION INTEGER Document version. Currently, the only
return value is 1.

MINOR_VERSION INTEGER Document sub-version. Currently, the only
return value is 0.

NUM_OUTPUT_ROWS INTEGER Number of rows returned in the result set.

ADVISE_START_TIME STRING Timestamp when the advisor began
working. Equivalent to the
ADVISE_INSTANCE.
START_TIME column.

WORKLOAD_NAME STRING Name of the workload used by the advisor.
Equivalent to the ADVISE_WORKLOAD.
WORKLOAD_NAME column.

ADVISE_SCHEMA STRING Name of the explain/advisor table schema.
This schema is used to read from and write
to the ADVISE_WORKLOAD.
ADVISE_INSTANCE and other
explain/advisor tables.

TOTAL_DISK STRING Total initial disk space, in MB, needed if all
recommended objects are to be created.

TOTAL_DISK_
UPPER_BOUND

INTEGER Upper bound limit for total disk space used
when evaluating solution options, in MB.

ORIG_TOTAL_COST STRING Total cost, in timerons, without
recommendations.

NEW_TOTAL_COST STRING Total cost, in timerons, with
recommendations.

NUM_SOLUTIONS_EVAL INTEGER Number of solutions considered and
evaluated by the advisor.

Difference between db2advis command-line parameters and
DESIGN_ADVISOR

These options are not allowed because only the current database
connection is being used by the procedure:

-[db|d]
The database name. The current database connection is used.

-[user|a]
The username to connect with (and optionally, the user password).
In DESIGN_ADVISOR, this option is replaced by the
SESSION_USER special register.

-[password|x]
This parameter indicates that the password is read from the
standard input. It is not used in DESIGN_ADVISOR.

For file and directory locations, supply absolute path names whenever
possible, to ensure a consistent behavior on different database server
installations. Files and directories need to be readable (-file) or writeable
(-script) by the fenced user ID on Linux/UNIX, or the DB2USERS group
on Windows.

Chapter 8. Common SQL API procedures 287

When the command-line options -file or -script are used, the statements
are inserted into the ADVISE_WORKLOAD table for later reference with a
unique workload name.

Clarification of the different schemas used by db2advis

Explain/advisor table schema name
The explain/advisor table schema name used by the
DESIGN_ADVISOR procedure is defined by the CURRENT_USER
special register. This special register defaults to the currently
connected user. If the explain/advisor tables are not found through
the user ID defined in the previous two options, then the
SYSTOOLS schema is used.

Recommended objects schema name
The schema name for recommended objects is optionally defined
using the -[schema|n] command-line option. If no name is
provided, the value of the SESSION_USER special register is used
by default.

Default workload schema name
The schema name for the default workload is optionally defined
using the -q command-line option. If no name is provided, the
value of the SESSION_USER special register is used by default.

Examples

Example 1: An example of an XML_INPUT:
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
<key>MAJOR_VERSION</key><integer>1</integer>
<key>MINOR_VERSION</key><integer>0</integer>
<key>REQUESTED_LOCALE</key><string>en_US</string>
<key>CMD_OPTIONS</key><string>-w "workload 1" -t 5</string>
<key>USER_TEMP_TSPACE</key><string>MY_TEMP_TS</string>
</dict>
</plist>

Example 2: An example of an XML_OUTPUT:
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
<key>Document Type Name</key><string>Data Server Message Output</string>
<key>MAJOR_VERSION</key><integer>1</integer>
<key>MINOR_VERSION</key><integer>0</integer>
<key>NUM_OUTPUT_ROWS</key><integer>1</integer>
<key>NUM_RESULT_SETS</key><integer>1</integer>
<key>ADVISE_START_TIME</key><string>2011-03-10-14.22.51.707742</string>
<key>WORKLOAD_NAME</key><string>MYWORKLOAD</string>
<key>ADVISE_SCHEMA</key><string>MYSCHEMA</string>
<key>TOTAL_DISK</key><string>0.0762</string>
<key>TOTAL_DISK_UPPER_BOUND</key><string>33.3203</string>
<key>ORIG_TOTAL_COST</key><string>28434.0000</string>
<key>NEW_TOTAL_COST</key><string>11108.0000</string>
<key>NUM_SOLUTIONS_EVAL</key><integer>31</integer>
</dict>
</plist>

Example 3: An example of an XML_MESSAGE:

288 Administrative Routines and Views

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
<key>db2luw20458E</key><string>SQLCODE: 20458, SQLSTATE: 01H54 ,
<![CDATA[SQL20458W The procedure "SYSPROC.DESIGN_ADVISOR" has
encountered an internal parameter processing error in parameter "4".
The value for parameter "7" contains further information about
the error.]]>(Extra message: <![CDATA[Error: Unsupported major
version.]]>)</string>
</dict>
</plist>

Example 4: A full initialization and procedure call, with the resulting XML outputs.

Initializing the workload:
db2 "INSERT INTO ADVISE_WORKLOAD values(’workload 1’, 0,
’SELECT COUNT(*) FROM EMPLOYEE’,’’,100,0,0,0,0,’’)"

db2 "INSERT INTO ADVISE_WORKLOAD values(’workload 1’, 1,
’SELECT * FROM EMPLOYEE WHERE LASTNAME=’’HAAS’’ ’,’’,100,0,0,0,0,’’)"

db2 "INSERT INTO ADVISE_WORKLOAD values(’workload 1’, 2,
’SELECT AVG(BONUS), AVG(SALARY) FROM EMPLOYEE GROUP BY WORKDEPT
ORDER BY WORKDEPT’,’’,1,0,0,0,0,’’)"

Call the stored procedure:
CALL SYSPROC.DESIGN_ADVISOR(?,?, ’en_US’, blob(’

<plist version="1.0">
<dict>
<key>MAJOR_VERSION</key><integer>1</integer>
<key>MINOR_VERSION</key><integer>0</integer>
<key>REQUESTED_LOCALE</key><string>en_US</string>
<key>CMD_OPTIONS</key><string>-d sample -i

"/home/dricard/prog/adv spaces!
sp/cli/db2advis.in" -t 5</string>

<key>USER_TEMP_TSPACE</key><string>MY_TEMP_TS</string>
</dict>
</plist>’) , NULL, ?, ?)”

The value of the output parameters:
Parameter Name : MAJOR_VERSION
Parameter Value : 1

Parameter Name : MINOR_VERSION
Parameter Value : 0

Parameter Name : XML_OUTPUT
Parameter Value : x’
<plist version="1.0">
<dict>
<key>Document Type Name</key><string>Data Server Message Output</string>
<key>MAJOR_VERSION</key><integer>1</integer>
<key>MINOR_VERSION</key><integer>0</integer>
<key>NUM_OUTPUT_ROWS</key><integer>3</integer>
<key>NUM_RESULT_SETS</key><integer>1</integer>
<key>ADVISE_START_TIME</key><string>2011-03-10-14.22.51.707742</string>
<key>WORKLOAD_NAME</key><string>MYWORKLOAD</string>
<key>ADVISE_SCHEMA</key><string>MYSCHEMA</string>
<key>TOTAL_DISK</key><string>0.076</string>
<key>TOTAL_DISK_UPPER_BOUND</key><string>33.377</string>
<key>ORIG_TOTAL_COST</key><string>28434.0000</string>
<key>NEW_TOTAL_COST</key><string>11108.0000</string>
<key>NUM_SOLUTIONS_EVAL</key><string>31</string>

Chapter 8. Common SQL API procedures 289

</dict>
</plist>’
Parameter Name : XML_MESSAGE
Parameter Value : -

The values of the result set:
CREATOR NAME EXISTS RECOMMENDATION ...
------------------------- ------------------------- ------ -------------- ...
DRICARD XEMP2 Y I ...
DRICARD IDX1103211528140 N I ...
DRICARD IDX1103211529540 N I ...

Output from the result set continued:
BENEFIT OVERHEAD STMTNO DISKUSE
------------------------ ------------------------ ----------- ----------------------

+0.00000000000000E+000 +0.00000000000000E+000 0 +0.00000000000000E+000
+1.72000000000000E+004 +0.00000000000000E+000 1 +0.06350000000000E+000
+1.26000000000000E+002 +0.00000000000000E+000 2 +1.27190000000000E-002

3 record(s) selected.

GET_CONFIG procedure - Get configuration data
The GET_CONFIG stored procedure retrieves the database configuration, database
manager configuration, and registry variables that are set for a particular instance.

In a partitioned database environment, this procedure retrieves database
configuration and registry variable settings from all partitions.

Syntax

�� GET_CONFIG (major_version , minor_version , requested_locale , �

� xml_input , xml_filter , xml_output , xml_message) ��

The schema is SYSPROC.

Procedure parameters

major_version
An input and output argument of type INTEGER that indicates the major
document version. On input, this argument indicates the major document
version that the caller supports for the XML documents passed as parameters
in the procedure (see the parameter descriptions for xml_input, xml_output, and
xml_message). The procedure processes all XML documents in the specified
version, or returns an error (+20458) if the version is not valid. On output, this
parameter specifies the highest major document version that is supported by
the procedure. To determine the highest supported document version, specify
NULL for this input parameter and all other required parameters.

Supported versions: 1 and 2

minor_version
An input and output argument of type INTEGER that indicates the minor
document version. On input, this argument specifies the minor document
version that the caller supports for the XML documents passed as parameters
for this procedure (see the parameter descriptions for xml_input, xml_output,
and xml_message). The procedure processes all XML documents in the specified

290 Administrative Routines and Views

version, or returns an error if the version is not valid. On output, this
parameter indicates the highest minor document version that is supported for
the highest supported major version. To determine the highest supported
document version, specify NULL for this input parameter and all other
required parameters.

Supported versions: 0

requested_locale
An input argument of type VARCHAR(33) that specifies a locale. If the
specified language is supported on the server, translated content is returned in
the xml_output and xml_message parameters. Otherwise, content is returned in
the default language. Only the language and possibly the territory information
is used from the locale. The locale is not used to format numbers or influence
the document encoding. For example, key names and values are not translated.
The only translated portion of the XML output and XML message documents
are the text for hint, display name, and display unit of each entry. The caller
should always compare the requested language to the language that is used in
the XML output document (see the document locale entry in the XML output
document).

Currently, the only supported value for requested_locale is en_US.

xml_input
Currently, this procedure accepts no input. You must specify NULL for this
parameter, or an error (+20458) is raised to indicate that the input is not valid.

xml_filter
An input argument of type BLOB(4K) that specifies a valid XPath query string.
Use a filter when you want to retrieve a single value from an XML output
document. For more information, see the topic that describes XPath filtering.

The following example selects the value for the data server product version
from the XML output document: /plist/dict/key[.=’Data Server Product
Version’]/following-sibling::string. If the key is not followed by the
specified sibling, an error is returned.

xml_output
An output parameter of type BLOB(32MB) that returns a complete XML output
document in UTF-8. If a filter is specified, this parameter returns a string
value. If the stored procedure is unable to return a complete output document
(for example, if a processing error occurs that results in an SQL warning or
error), this parameter is set to NULL.

The XML output is determined by the values that you specify for major_version
and minor_version:

Major version Minor version xml_output value

NULL NULL NULL

1 0 Database manager and
database configuration
parameters and registry
variables, including their
values.

Chapter 8. Common SQL API procedures 291

Major version Minor version xml_output value

2 0 Database manager and
database configuration
parameters grouped into
categories. For each
parameter, indicates whether
the parameter can be
updated. Also returns
registry variables and the
values set for the instance.

When the procedure operates in complete mode, this parameter returns an XML
document that you can modify and pass back to the procedure as the
xml_input parameter. This approach provides a programmatic way to create
valid XML input documents. For more information, see the topic about
complete mode.

xml_message
An output parameter of type BLOB(64K) that returns a complete XML output
document of type Data Server Message in UTF-8 that provides detailed
information about a SQL warning condition. This document is returned when a
call to the procedure results in a SQL warning, and the warning message
indicates that additional information is returned in the XML message output
document. If the warning message does not indicate that additional
information is returned, then this parameter is set to NULL.

Authorization
v SYSADM or DBADM authority
v EXECUTE privilege on the GET_CONFIG procedure

Example

Example 1: Return the latest version of the procedure.
db2 "call sysproc.get_config(null,null,null,null,null,?,?)"

The following example is a sample output from this query:
Value of output parameters

Parameter Name : MAJOR_VERSION
Parameter Value : 2

Parameter Name : MINOR_VERSION
Parameter Value : 0

Parameter Name : XML_OUTPUT
Parameter Value : -

Parameter Name : XML_MESSAGE
Parameter Value : -

Return Status = 0

Example 2: Return database and database manager configuration parameters,
grouped into categories.
db2 "call sysproc.get_config(2,0,’en_US’,null, null, ?,?)"

The following example is a sample output from this query:

292 Administrative Routines and Views

Value of output parameters

Parameter Name : MAJOR_VERSION
Parameter Value : 2

Parameter Name : MINOR_VERSION
Parameter Value : 0

Parameter Name : XML_OUTPUT
Parameter Value : x’3C3F78.......’

Parameter Name : XML_MESSAGE
Parameter Value : -

Return Status = 0

The XML output document contains the following content:
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server Configuration Output</string>
<key>Document Type Major Version</key><integer>2</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Data Server Product Name</key><string>QDB2/AIX64</string>
<key>Data Server Product Version</key><string>9.7.0.0</string>
<key>Data Server Major Version</key><integer>9</integer>
<key>Data Server Minor Version</key><integer>7</integer>
<key>Data Server Platform</key><string>AIX 64BIT</string>
<key>Document Locale</key><string>en_US</string>
<key>Database Manager Configuration Parameter Settings</key>
<dict>

<key>Display Name</key>
<string>Database Manager Configuration Parameter Settings</string>
<key>Application</key>
<dict>

<key>Display Name</key><string>Application</string>
<key>agentpri</key>
<dict>

<key>Display Name</key><string>agentpri</string>
<key>Parameter Value</key>
<dict>

<key>Display Name</key><string>Parameter Value</string>
<key>Value</key><string>-1</string>
<key>Updatable</key><string>No</string>
<key>Hint</key><string></string>

</dict>
<key>Value Flags</key>
<dict>

<key>Display Name</key><string>Value Flags</string>
<key>Value</key><string>NONE</string>
<key>Updatable</key><string>No</string>
<key>Hint</key><string></string>

</dict>
<key>Deferred Value</key>
<dict>

<key>Display Name</key><string>Deferred Value</string>
<key>Value</key><string>-1</string>
<key>Updatable</key><string>Yes</string>
<key>Hint</key><string></string>

</dict>
<key>Deferred Value Flags</key>
<dict>

<key>Display Name</key><string>Deferred Value Flags</string>
<key>Value</key><string>INTEGER</string>
<key>Updatable</key><string>Yes</string>
<key>Hint</key><string></string>

</dict>

Chapter 8. Common SQL API procedures 293

<key>Data Type</key>
<dict>

<key>Display Name</key><string>Data Type</string>
<key>Value</key><string>NONE</string>
<key>Hint</key><string></string>

</dict>
<key>Hint</key>
<string>
Specifies the priority given to an agent and other database manager
instance processes and threads by the operating system scheduler.
Consider rebinding applications after changing this parameter.
</string>

</dict>
<key>Hint</key><string></string>

</dict>
</dict>
<key>Administration</key>
.
.
.
<key>Communication</key>
.
.
.
<key>Diagnostics</key>
.
.
.
<key>Environment</key>
.
.
.
<key>Miscellaneous</key>
.
.
.
<key>Monitor</key>
.
.
.
<key>Parallel</key>
.
.
.
<key>Performance</key>
.
.
.
</dict>
<key>Database Partition</key>
<dict>

<key>Display Name</key><string>Database Partition</string>
<key>0</key>
<dict>

<key>Display Name</key><string>0</string>
<key>Database Configuration Parameter Settings</key>
<dict>

<key>Display Name</key>
<string>Database Configuration Parameter Settings</string>
<key>Application</key>
.
.
.
<key>Environment</key>

<dict>
<key>Display Name</key><string>Environment</string>
<key>alt_collate</key>

294 Administrative Routines and Views

<dict>
<key>Display Name</key><string>alt_collate</string>
<key>Parameter Value</key>
<dict>

<key>Display Name</key><string>Parameter Value</string>
<key>Value</key><string></string>
<key>Updatable</key><string>No</string>
<key>Hint</key><string></string>

</dict>
<key>Value Flags</key>
<dict>

<key>Display Name</key><string>Value Flags</string>
<key>Value</key><string>NONE</string>
<key>Updatable</key><string>No</string>
<key>Hint</key><string></string>

</dict>
<key>Deferred Value</key>
<dict>

<key>Display Name</key><string>Deferred Value</string>
<key>Value</key><string></string>
<key>Updatable</key><string>Yes</string>
<key>Hint</key><string></string>

</dict>
<key>Deferred Value Flags</key>
<dict>

<key>Display Name</key><string>Deferred Value Flags</string>
<key>Value</key><string>INTEGER</string>
<key>Updatable</key><string>Yes</string>
<key>Hint</key><string></string>

</dict>
<key>Data Type</key>
<dict>

<key>Display Name</key><string>Data Type</string>
<key>Value</key><string>NONE</string>
<key>Hint</key><string></string>

</dict>
<key>Hint</key>
<string>
Specifies the collating sequence to be used for Unicode tables in a
non-Unicode database. Until this parameter is set, Unicode tables and
routines cannot be created in a non-Unicode database. When set, this
parameter cannot be changed or reset. Default [range] :
Null [IDENTITY_16BIT].
</string>

</dict>
.
.
.

</dict>
<key>Logs</key>
.
.
.
<key>Maintenance</key>
.
.
.
<key>Performance</key>
.
.
.
<key>Recovery</key>
.
.
.
<key>Status</key>
.

Chapter 8. Common SQL API procedures 295

.

.
</dict>
<key>Registry Variables Settings</key>
<dict>

<key>Display Name</key><string>Registry Variables Settings</string>
<key>DB2CODEPAGE</key>
<dict>

<key>Display Name</key><string>DB2CODEPAGE</string>
<key>Parameter Value</key>
<dict>

<key>Display Name</key><string>Parameter Value</string>
<key>Value</key><string>1208</string>
<key>Hint</key><string></string>

</dict>
<key>Is Aggregate</key>
<dict>

<key>Display Name</key><string>Is Aggregate</string>
<key>Value</key><integer>0</integer>
<key>Hint</key><string></string>

</dict>
<key>Aggregate Name</key>
<dict>

<key>Display Name</key><string>Aggregate Name</string>
<key>Value</key><string></string>
<key>Hint</key><string></string>

</dict>
<key>Level</key>
<dict>

<key>Display Name</key><string>Level</string>
<key>Value</key><string>I</string>
<key>Hint</key><string></string>

</dict>
<key>Hint</key><string></string>

</dict>
.
.
.

</dict>
<key>Hint</key><string></string>

</dict>
</dict>
</plist>

Example 3: Return database and database manager configuration parameters.
db2 "call sysproc.get_config(1,0,’en_US’,null, null, ?,?)"

The following example is a sample output from this query:
Value of output parameters

Parameter Name : MAJOR_VERSION
Parameter Value : 1

Parameter Name : MINOR_VERSION
Parameter Value : 0

Parameter Name : XML_OUTPUT
Parameter Value : x’3C3F78.......’

Parameter Name : XML_MESSAGE
Parameter Value : -

Return Status = 0

296 Administrative Routines and Views

The XML output document contains content that is similar to example 2, but does
not group the configuration parameters into categories.

Example 4: Call the procedure from a function.
EXEC SQL BEGIN DECLARE SECTION;

sqlint16 getconfigMaj;
sqlint16 getconfigMin;

SQL TYPE IS BLOB(2M) xmlOutput;
SQL TYPE IS BLOB(2K) xmlOutMessage;

EXEC SQL END DECLARE SECTION;
getconfigMaj = 2;
getconfigMin = 0;

EXEC SQL CALL SYSPROC.GET_CONFIG(
:getconfigMaj,
:getconfigMin,
’en_US’,
null,
null,
:xmlOutput,
:xmlOutMessage);

GET_MESSAGE procedure - Get message text
The GET_MESSAGE procedure returns the short message text, long message text,
and SQLSTATE for an SQLCODE.

Syntax

�� GET_MESSAGE (major_version , minor_version , requested_locale , �

� xml_input , xml_filter , xml_output , xml_message) ��

The schema is SYSPROC.

Procedure parameters

major_version
An input and output argument of type INTEGER that indicates the major
document version. On input, this argument indicates the major document
version that the caller supports for the XML documents passed as parameters
in the procedure (see the parameter descriptions for xml_input, xml_output, and
xml_message). The procedure processes all XML documents in the specified
version, or returns an error (+20458) if the version is not valid. On output, this
parameter specifies the highest major document version that is supported by
the procedure. To determine the highest supported document version, specify
NULL for this input parameter and all other required parameters.

If the XML document in the xml_input parameter specifies a Document Type
Major Version key, the value for that key must be equal to the value provided
in the major_version parameter, or an error (+20458) is raised.

Supported versions: 1 and 2

minor_version
An input and output argument of type INTEGER that indicates the minor
document version. On input, this argument specifies the minor document
version that the caller supports for the XML documents passed as parameters

Chapter 8. Common SQL API procedures 297

for this procedure (see the parameter descriptions for xml_input, xml_output,
and xml_message). The procedure processes all XML documents in the specified
version, or returns an error if the version is not valid. On output, this
parameter indicates the highest minor document version that is supported for
the highest supported major version. To determine the highest supported
document version, specify NULL for this input parameter and all other
required parameters.

If the XML document in the xml_input parameter specifies a Document Type
Minor Version key, the value for that key must be equal to the value provided
in the minor_version parameter, or an error (+20458) is raised.

Supported versions: 0

requested_locale
An input argument of type VARCHAR(33) that specifies a locale. If the
specified language is supported on the server, translated content is returned in
the xml_output and xml_message parameters. Otherwise, content is returned in
the default language. Only the language and possibly the territory information
is used from the locale. The locale is not used to format numbers or influence
the document encoding. For example, key names and values are not translated.
The only translated portion of the XML output and XML message documents
are the text for hint, display name, and display unit of each entry. The caller
should always compare the requested language to the language that is used in
the XML output document (see the document locale entry in the XML output
document).

Currently, the only supported value for requested_locale is en_US.

xml_input
An input argument of type BLOB(32MB) that specifies an XML input
document (encoded in UTF-8) that contains input values for the procedure.

For this procedure, the XML input document contains an SQLCODE and uses
the following format:
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server Message Input</string>
<key>Required Parameters</key>
<!-- Specify either SQLCODE or message identifier and message tokens
for the key values below. -->
<dict>

<key>SQL Code</key><integer></integer>
<key>Message Identifier</key><integer></integer>
<key>Message Tokens</key><array><string>...</string></array>

</dict>
<key>Optional Parameters</key>
<dict>

<key>Message Token Delimiter<key><string>;</string>
</key></key></dict>

</dict>
</plist>

xml_filter
An input argument of type BLOB(4K) that specifies a valid XPath query string.
Use a filter when you want to retrieve a single value from an XML output
document. For more information, see the topic that describes XPath filtering.

The following example selects the value for the SQLSTATE from the XML
output document: /plist/dict/key[.="SQLSTATE"]/following-

298 Administrative Routines and Views

sibling::dict[1]/key[.="Value"]/following-sibling::string[1]. If the key is
not followed by the specified sibling, an error is returned.

xml_output
An output parameter of type BLOB(32MB) that returns a complete XML output
document in UTF-8. If a filter is specified, this parameter returns a string
value. If the stored procedure is unable to return a complete output document
(for example, if a processing error occurs that results in an SQL warning or
error), this parameter is set to NULL.

The XML output is determined by the values that you specify for major_version
and minor_version:

Major version Minor version xml_output value

NULL NULL NULL

1 0 Returns the short text
message and SQLSTATE for
the corresponding SQLCODE
passed in xml_input.

2 0 Returns the short text
message, long text message
and SQLSTATE for the
corresponding SQLCODE
passed in xml_input.

When the procedure operates in complete mode, this parameter returns an XML
document that you can modify and pass back to the procedure as the
xml_input parameter. This approach provides a programmatic way to create
valid XML input documents. For more information, see the topic about
complete mode.

xml_message
An output parameter of type BLOB(64K) that returns a complete XML output
document of type Data Server Message in UTF-8 that provides detailed
information about a SQL warning condition. This document is returned when a
call to the procedure results in a SQL warning, and the warning message
indicates that additional information is returned in the XML message output
document. If the warning message does not indicate that additional
information is returned, then this parameter is set to NULL.

Authorization
v SYSADM or DBADM authority
v EXECUTE privilege on the GET_MESSAGE procedure

Example

Example 1: Return the highest supported version of the procedure.
db2 "call sysproc.get_message(null,null,null,null,null,?,?)"

The following example is a sample output from this query:
Value of output parameters

Parameter Name : MAJOR_VERSION
Parameter Value : 2

Parameter Name : MINOR_VERSION
Parameter Value : 0

Chapter 8. Common SQL API procedures 299

Parameter Name : XML_OUTPUT
Parameter Value : -

Parameter Name : XML_MESSAGE
Parameter Value : -

Return Status = 0

Example 2: Run a script called getmsglong.sql to return the short text message and
long text message for SQL1034.
getmsglong.sql:

call sysproc.get_message(2,0, ’en_US’, blob(’
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server Message Input</string>
<key>Document Type Major Version</key><integer>2</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Required Parameters</key>
<dict>

<key>SQLCODE</key><string>SQL1034</string>
</dict>

</dict>
</plist>’), null, ? , ?)@

The following example is a sample output from this query:
Value of output parameters

Parameter Name : MAJOR_VERSION
Parameter Value : 2

Parameter Name : MINOR_VERSION
Parameter Value : 0

Parameter Name : XML_OUTPUT
Parameter Value : x’3C3F786D6C20766572........................’

Parameter Name : XML_MESSAGE
Parameter Value : -

Return Status = 0

The output XML document contains the following content:
<plist version="1.0">
<dict>

<key>Document Type Name</key>
<string>Data Server Message Output</string>
<key>Document Type Major Version</key>
<integer>2</integer>
<key>Document Type Minor Version</key>
<integer>0</integer>
<key>Data Server Product Name</key>
<string>QDB2/AIX64</string>
<key>Data Server Product Version</key>
<string>9.7.0.0</string>
<key>Data Server Major Version</key>
<integer>9</integer>
<key>Data Server Minor Version</key>
<integer>7</integer>
<key>Data Server Platform</key>
<string>AIX 64BIT</string>
<key>Document Locale</key>
<string>en_US</string>

300 Administrative Routines and Views

<key>Short Message Text</key>
<dict>
<key>Display Name</key><string>Short Message Text</string>
<key>Value</key>
<string>
SQL1034C The database is damaged. All applications processing the database
have been stopped.
</string>
<key>Hint</key><string></string>

</dict>
<key>SQLSTATE</key>
<dict>

<key>Display Name</key><string>SQLSTATE</string>
<key>Value</key><string> 58031</string>
<key>Hint</key><string></string>

</dict>
<key>Long Message Text</key>
<dict>

<key>Display Name</key><string>Long Message Text</string>
<key>Value</key>
<array>

<string>
SQL1034C The database is damaged. All applications
processing the
</string>
<string> database have been stopped.</string>
<string></string>
<string>Explanation: </string>
<string></string>
<string>
Damage has occurred to the database. It cannot be used until it is
</string>
<string>
recovered. All applications connected to the database have been
</string>
<string>
disconnected and all processes running applications on the
database have
</string>
<string>been stopped.</string>
<string></string>
<string>The command cannot be processed.</string>
<string></string>
<string>User response: </string>
<string></string>
<string>
Issue a RESTART DATABASE command to recover the database. If the RESTART
</string>
<string>
command consistently fails, you may want to restore the database from a
</string>
<string>
backup. In a partitioned database server environment, check the syslog
</string>
<string>
to find out if the RESTART command fails because of node or
</string>
<string>
communication failures before restoring the database from a backup. If
</string>
<string>
so, ensure the database manager is up and running and communication is
</string>
<string>
available among all the nodes, then resubmit the restart command.
</string>
<string></string>

Chapter 8. Common SQL API procedures 301

<string>
If you encountered this error during roll-forward processing, you must
</string>
<string>
restore the database from a backup and perform roll-forward again.
</string>
<string></string>
<string>
Note that in a partitioned database environment, the RESTART database
</string>
<string>
command is run on a per-node basis. To ensure that the database is
</string>
<string>restarted on all nodes, use the command: </string>
<string></string>
<string>db2_all db2 restart database</string>
<string><database_name></string>
<string></string>
<string>
This command may have to be run several times to ensure that all
</string>
<string>in-doubt transactions have been resolved.</string>
<string></string>
<string>
If you are installing the sample database, drop it and install the
</string>
<string>sample database again.</string>
<string></string>
<string> sqlcode: -1034</string>
<string></string>
<string> sqlstate: 58031</string>
<string></string>
<string></string>
<string></string>
</array>

<key>Hint</key><string></string>
</dict>

</dict>
</plist>

Example 3: Run a script called getmsgshort.sql to return only the short text
message for SQL1034.
getmsgshort.sql:

call sysproc.get_message(1,0,’en_US’, blob(’
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server Message Input</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Required Parameters</key>
<dict>

<key>SQLCODE</key><string>SQL1034</string>
</dict>

</dict>
</plist>’), null, ? , ?)@

The following example is a sample output from this query:
Value of output parameters

Parameter Name : MAJOR_VERSION
Parameter Value : 2

Parameter Name : MINOR_VERSION

302 Administrative Routines and Views

Parameter Value : 0

Parameter Name : XML_OUTPUT
Parameter Value : x’3C3F786D6C20766572........................’

Parameter Name : XML_MESSAGE
Parameter Value : -

Return Status = 0

SQL20460W The procedure "SYSPROC.GET_MESSAGE" supports a higher version, "2",
than the specified version, "1", for parameter "1".

The XML output document contains the following content:
<plist version="1.0">
<dict><key>Document Type Name</key><string>Data Server Message Output</string>

<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Data Server Product Name</key><string>QDB2/AIX64</string>
<key>Data Server Product Version</key><string>9.7.0.0</string>
<key>Data Server Major Version</key><integer>9</integer>
<key>Data Server Minor Version</key><integer>7</integer>
<key>Data Server Platform</key><string>AIX 64BIT</string>
<key>Document Locale</key><string>en_US</string>
<key>Short Message Text</key>
<dict>

<key>Display Name</key><string>Short Message Text</string>
<key>Value</key>
<string>
SQL1034C The database is damaged. All applications processing the database
have been stopped.
</string>
<key>Hint</key><string></string>

</dict>
<key>SQLSTATE</key>
<dict>

<key>Display Name</key><string>SQLSTATE</string>
<key>Value</key><string> 58031</string>
<key>Hint</key><string></string>

</dict>
</dict>
</plist>

Example 4: Specify a filter to return the SQLSTATE for SQL1034.
db2 "call sysproc.get_message(2,0, ’en_US’, blob(’
<plist version="1.0">
<dict>

<key>Document Type Name</key>
<string>Data Server Message Input</string>
<key>Required Parameters</key>
<dict>

<key>SQLCODE</key><string>SQL1034</string>
</dict>

</dict>
</plist>’),
blob(’/plist/dict/key[.="SQLSTATE"]/following-sibling::dict[1]/
key[.="Value"]/following-sibling::string[1]’), ? , ?)"

The following example is a sample output from this query:
Value of output parameters

Parameter Name : MAJOR_VERSION
Parameter Value : 2

Parameter Name : MINOR_VERSION

Chapter 8. Common SQL API procedures 303

Parameter Value : 0

Parameter Name : XML_OUTPUT
Parameter Value : x’203538303331’

Parameter Name : XML_MESSAGE
Parameter Value : -

Return Status = 0

The following value is returned for xml_output:
58031

Example 5: Call the procedure from a function.
EXEC SQL BEGIN DECLARE SECTION;

sqlint16 getMsgMaj;
sqlint16 getMsgMin;

SQL TYPE IS BLOB(2M) xmlOutput;
SQL TYPE IS BLOB(2K) xmlOutMessage;
EXEC SQL END DECLARE SECTION;

getMsgMaj = 2;
getMsgMin = 0;

EXEC SQL CALL SYSPROC.GET_MESSAGE(
:getMsgMaj,
:getMsgMin,
’en_US’,
BLOB(’
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key>
<string>
Data Server Message Input
</string>
<key>Document Type Major Version</key><integer>2</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Required Parameters</key>
<dict>

<key>SQLCODE</key><string>SQL1034</string>
</dict>

</dict>
</plist>’),
null,
:xmlOutput,
:xmlOutMessage);

GET_SYSTEM_INFO procedure - Get system information
The GET_SYSTEM_INFO procedure returns information about the data server,
including information about the system, the current instance, installed data server
products, environment variables, available CPUs, and other system information.

Syntax

�� GET_SYSTEM_INFO (major_version , minor_version , requested_locale , �

� xml_input , xml_filter , xml_output , xml_message) ��

The schema is SYSPROC.

304 Administrative Routines and Views

Procedure parameters

major_version
An input and output argument of type INTEGER that indicates the major
document version. On input, this argument indicates the major document
version that the caller supports for the XML documents passed as parameters
in the procedure (see the parameter descriptions for xml_input, xml_output, and
xml_message). The procedure processes all XML documents in the specified
version, or returns an error (+20458) if the version is not valid. On output, this
parameter specifies the highest major document version that is supported by
the procedure. To determine the highest supported document version, specify
NULL for this input parameter and all other required parameters.

If the XML document in the xml_input parameter specifies a Document Type
Major Version key, the value for that key must be equal to the value provided
in the major_version parameter, or an error (+20458) is raised.

Supported versions: 1

minor_version
An input and output argument of type INTEGER that indicates the minor
document version. On input, this argument specifies the minor document
version that the caller supports for the XML documents passed as parameters
for this procedure (see the parameter descriptions for xml_input, xml_output,
and xml_message). The procedure processes all XML documents in the specified
version, or returns an error if the version is not valid. On output, this
parameter indicates the highest minor document version that is supported for
the highest supported major version. To determine the highest supported
document version, specify NULL for this input parameter and all other
required parameters.

Supported versions: 0

requested_locale
An input argument of type VARCHAR(33) that specifies a locale. If the
specified language is supported on the server, translated content is returned in
the xml_output and xml_message parameters. Otherwise, content is returned in
the default language. Only the language and possibly the territory information
is used from the locale. The locale is not used to format numbers or influence
the document encoding. For example, key names and values are not translated.
The only translated portion of the XML output and XML message documents
are the text for hint, display name, and display unit of each entry. The caller
should always compare the requested language to the language that is used in
the XML output document (see the document locale entry in the XML output
document).

Currently, the only supported value for requested_locale is en_US.

xml_input
Currently, this procedure accepts no input. You must specify NULL for this
parameter, or an error (+20458) is raised to indicate that the input is not valid.

xml_filter
An input argument of type BLOB(4K) that specifies a valid XPath query string.
Use a filter when you want to retrieve a single value from an XML output
document. For more information, see the topic that describes XPath filtering.

Chapter 8. Common SQL API procedures 305

The following example selects the value for the Data Server Product Version
from the XML output document: /plist/dict/key[.=’Data Server Product
Version’]/following-sibling::string. If the key is not followed by the
specified sibling, an error is returned.

xml_output
An output parameter of type BLOB(32MB) that returns a complete XML output
document in UTF-8. If a filter is specified, this parameter returns a string
value. If the stored procedure is unable to return a complete output document
(for example, if a processing error occurs that results in an SQL warning or
error), this parameter is set to NULL.

The XML output document contains instance information, including
information about the fix pack level, release, system information, and
environment variables.

xml_message
An output parameter of type BLOB(64K) that returns a complete XML output
document of type Data Server Message in UTF-8 that provides detailed
information about a SQL warning condition. This document is returned when a
call to the procedure results in a SQL warning, and the warning message
indicates that additional information is returned in the XML message output
document. If the warning message does not indicate that additional
information is returned, then this parameter is set to NULL.

Authorization
v SYSADM or DBADM authority
v EXECUTE privilege on the GET_SYSTEM_INFO procedure

Example

Example 1: Return the highest version of the procedure.
db2 "call sysproc.get_system_info(null,null,null,null,null,?,?)"

The following example is a sample output from this query:
Value of output parameters

Parameter Name : MAJOR_VERSION
Parameter Value : 1

Parameter Name : MINOR_VERSION
Parameter Value : 0

Parameter Name : XML_OUTPUT
Parameter Value : -

Parameter Name : XML_MESSAGE
Parameter Value : -

Return Status = 0

Example 2: Return system information.
db2 "call sysproc.get_system_info(1,0,’en_US’,null,null,?,?)"

The following example is a sample output from this query:
Value of output parameters

Parameter Name : MAJOR_VERSION
Parameter Value : 1

306 Administrative Routines and Views

Parameter Name : MINOR_VERSION
Parameter Value : 0

Parameter Name : XML_OUTPUT
Parameter Value : x’3C3F786D6C20766572.....

Parameter Name : XML_MESSAGE
Parameter Value : -

Return Status = 0

The XML output document contains something similar to the following content:
<plist version="1.0">
<dict><key>Document Type Name</key><string>Data Server System Output</string>

<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Data Server Product Name</key><string>QDB2/AIX64</string>
<key>Data Server Product Version</key><string>9.7.0.0</string>
<key>Data Server Major Version</key><integer>9</integer>
<key>Data Server Minor Version</key><integer>7</integer>
<key>Data Server Platform</key><string>AIX 64BIT</string>
<key>Document Locale</key><string>en_US</string>
<key>Instance Information</key>
<dict>

<key>Display Name</key><string>Instance Information</string>
<key>Instance Name</key>
<dict>

<key>Display Name</key><string>Instance Name</string>
<key>Value</key><string>myinstance</string>
<key>Hint</key><string></string>

</dict>
<key>Partitionable State</key>
<dict>

<key>Display Name</key><string>Partitionable State</string>
<key>Value</key><integer>0</integer>
<key>Hint</key><string></string>

</dict>
<key>Number of Database Partitions</key>
<dict>

<key>Display Name</key><string>Number of Database Partitions</string>
<key>Value</key><integer>1</integer>
<key>Hint</key><string></string>

</dict>
.
.
.

</dict>
<key>Product Information</key>
<dict>

<key>Display Name</key><string>Product Information</string>
.
.
.
<key>DB2_ENTERPRISE_SERVER_EDITION</key>
<dict>

<key>Display Name</key><string>DB2_ENTERPRISE_SERVER_EDITION</string>
<key>Product short name</key>
<dict>

<key>Display Name</key><string>Product short name</string>
<key>Value</key><string>ESE</string>
<key>Hint</key><string></string>

</dict>
<key>Licence</key>
<dict>

<key>Display Name</key><string>Licence</string>

Chapter 8. Common SQL API procedures 307

<key>Value</key><string>Y</string>
<key>Hint</key><string></string>

</dict>
<key>Product Release</key>
<dict>

<key>Display Name</key><string>Product Release</string>
<key>Value</key><string>9.7</string>
<key>Hint</key><string></string>

</dict>
<key>Licence type</key>
<dict>

<key>Display Name</key><string>Licence type</string>
<key>Value</key><string>DEVELOPER</string>
<key>Hint</key><string></string>

</dict>
<key>Hint</key><string></string>

</dict>
.
.
.

<key>Operating System Information</key>
<dict>

<key>Display Name</key><string>Operating System Information</string>
<key>Name</key>
<dict>

<key>Display Name</key><string>Name</string>
<key>Value</key><string>AIX</string>
<key>Hint</key><string></string>

</dict>
<key>Version</key>
<dict>

<key>Display Name</key><string>Version</string>
<key>Value</key><string>5</string>
<key>Hint</key><string></string>

</dict>
<key>Release</key>
<dict>

<key>Display Name</key><string>Release</string>
<key>Value</key><string>3</string>
<key>Hint</key><string></string>

</dict>
<key>Hostname</key>
<dict>

<key>Display Name</key><string>Hostname</string>
<key>Value</key><string>achilles</string>
<key>Hint</key><string></string>

</dict>
.
.
.

</dict>
<key>Workload Management Configuration</key>
<dict>

<key>Display Name</key><string>Workload Management Configuration</string>
<key>Service Class Information</key>
<dict>

<key>Display Name</key><string>Service Class Information</string>
<key>1</key>
<dict>

<key>Display Name</key><string>1</string>
<key>Service Class Name</key>
<dict>

<key>Display Name</key><string>Service Class Name</string>
<key>Value</key><string>SYSDEFAULTSYSTEMCLASS</string>
<key>Hint</key><string></string>

</dict>
<key>Parent Identifier</key>

308 Administrative Routines and Views

<dict>
<key>Display Name</key><string>Parent Identifier</string>
<key>Value</key><integer>0</integer>
<key>Hint</key><string></string>

</dict>
<key>Parent Class Name</key>
<dict>

<key>Display Name</key><string>Parent Class Name</string>
<key>Value</key><string></string>
<key>Hint</key><string></string>

</dict>
<key>Creation Time</key>
<dict>

<key>Display Name</key><string>Creation Time</string>
<key>Value</key><string>2008-04-21-15.14.32.956930</string>
<key>Hint</key><string></string>

</dict>
<key>Alter Time</key>
<dict>

<key>Display Name</key><string>Alter Time</string>
<key>Value</key><string>2008-04-21-15.14.32.956930</string>
<key>Hint</key><string></string>

</dict>
<key>Enabled</key>
<dict>

<key>Display Name</key><string>Enabled</string>
<key>Value</key><string>Y</string>
<key>Hint</key><string></string>

</dict>
<key>Agent Priority</key>
<dict>

<key>Display Name</key><string>Agent Priority</string>
<key>Value</key><integer>-32768</integer>
<key>Hint</key><string></string>

</dict>
<key>Prefetcher Priority</key>
<dict>

<key>Display Name</key><string>Prefetcher Priority</string>
<key>Value</key><string> </string>
<key>Hint</key><string></string>

</dict>
.
.
.

</dict>
.
.
.

<key>Workload Information</key>
<dict>

<key>Display Name</key><string>Workload Information</string>
<key>1</key>
<dict>

<key>Display Name</key><string>1</string>
<key>Workload Name</key>
<dict>

<key>Display Name</key><string>Workload Name</string>
<key>Value</key><string>SYSDEFAULTUSERWORKLOAD</string>
<key>Hint</key><string></string>

</dict>
<key>Evaluation Order</key>
<dict>

<key>Display Name</key><string>Evaluation Order</string>
<key>Value</key><integer>1</integer>
<key>Hint</key><string></string>

</dict>

Chapter 8. Common SQL API procedures 309

<key>Creation Time</key>
<dict>

<key>Display Name</key><string>Creation Time</string>
<key>Value</key><string>2008-04-21-15.14.32.955296</string>
<key>Hint</key><string></string>

</dict>
<key>Alter Time</key>
<dict>

<key>Display Name</key><string>Alter Time</string>
<key>Value</key><string>2008-04-21-15.14.32.955296</string>
<key>Hint</key><string></string>

</dict>
<key>Enabled</key>
<dict>

<key>Display Name</key><string>Enabled</string>
<key>Value</key><string>Y</string>
<key>Hint</key><string></string>

</dict>
<key>Allow Access</key>
<dict>

<key>Display Name</key><string>Allow Access</string>
<key>Value</key><string>Y</string>
<key>Hint</key><string></string>

</dict>
<key>Service Class Name</key>
<dict>

<key>Display Name</key><string>Service Class Name</string>
<key>Value</key><string>SYSDEFAULTSUBCLASS</string>
<key>Hint</key><string></string>

</dict>
<key>Parent Service Class Name</key>
<dict>

<key>Display Name</key><string>Parent Service Class Name</string>
<key>Value</key><string>SYSDEFAULTUSERCLASS</string>
<key>Hint</key><string></string>

</dict>
.
.
.

</dict>
<key>Hint</key><string></string>

</dict>
</dict>

</dict></dict></dict></plist>

Example 3: Call the GET_SYSTEM_INFO procure and pass in an unsupported
locale.
db2 "call sysproc. get_system_info(1,0,’ja_JP’,null,null,?,?)"

The following example is a sample output from this query:
Value of output parameters

Parameter Name : MAJOR_VERSION
Parameter Value : 1

Parameter Name : MINOR_VERSION
Parameter Value : 0

Parameter Name : XML_OUTPUT
Parameter Value : x’3C3F786D6C20766572.....

Parameter Name : XML_MESSAGE
Parameter Value : -

Return Status = 0

310 Administrative Routines and Views

SQL20461W The procedure "SYSPROC.GET_SYSTEM_INFO" returned output in the
alternate locale, "en_US", instead of the locale, "ja_JP", specified in
parameter "3". SQLSTATE=01H57

The XML output document will contain the same content that is shown for
Example 2.

Example 4: Call the procedure from a function.
EXEC SQL BEGIN DECLARE SECTION;
sqlint16 getSysInfMaj;
sqlint16 getSysInfMin;

SQL TYPE IS BLOB(2M) xmlOutput;
SQL TYPE IS BLOB(2K) xmlOutMessage;
EXEC SQL END DECLARE SECTION;

getSysInfMaj = 1;
getSysInfMin = 0;

EXEC SQL CALL SYSPROC.GET_SYSTEM_INFO(
:getSysInfMaj,
:getSysInfMin,
’en_US’,
null,
null,
:xmlOutput,
:xmlOutMessage);

SET_CONFIG procedure - Set configuration parameters
The SET_CONFIG stored procedure updates the database and database manager
configuration parameters that are returned by the GET_CONFIG procedure.

The SET_CONFIG procedure accepts an input XML document that contains
configuration parameters and their values, uses this information to update the
specified configuration parameters, and returns an output XML document that
indicates the update status of each configuration parameter.

Syntax

�� SET_CONFIG (major_version , minor_version , requested_locale , �

� xml_input , xml_filter , xml_output , xml_message) ��

The schema is SYSPROC.

Procedure parameters

major_version
An input and output argument of type INTEGER that indicates the major
document version. On input, this argument indicates the major document
version that the caller supports for the XML documents passed as parameters
in the procedure (see the parameter descriptions for xml_input, xml_output, and
xml_message). The procedure processes all XML documents in the specified
version, or returns an error (+20458) if the version is not valid. On output, this
parameter specifies the highest major document version that is supported by
the procedure. To determine the highest supported document version, specify
NULL for this input parameter and all other required parameters.

Chapter 8. Common SQL API procedures 311

If the XML document in the xml_input parameter specifies a Document Type
Major Version key, the value for that key must be equal to the value provided
in the major_version parameter, or an error (+20458) is raised.

Supported versions: 1

minor_version
An input and output argument of type INTEGER that indicates the minor
document version. On input, this argument specifies the minor document
version that the caller supports for the XML documents passed as parameters
for this procedure (see the parameter descriptions for xml_input, xml_output,
and xml_message). The procedure processes all XML documents in the specified
version, or returns an error if the version is not valid. On output, this
parameter indicates the highest minor document version that is supported for
the highest supported major version. To determine the highest supported
document version, specify NULL for this input parameter and all other
required parameters.

If the XML document in the xml_input parameter specifies a Document Type
Minor Version key, the value for that key must be equal to the value provided
in the minor_version parameter, or an error (+20458) is raised.

Supported versions: 0

requested_locale
An input argument of type VARCHAR(33) that specifies a locale. If the
specified language is supported on the server, translated content is returned in
the xml_output and xml_message parameters. Otherwise, content is returned in
the default language. Only the language and possibly the territory information
is used from the locale. The locale is not used to format numbers or influence
the document encoding. For example, key names and values are not translated.
The only translated portion of the XML output and XML message documents
are the text for hint, display name, and display unit of each entry. The caller
should always compare the requested language to the language that is used in
the XML output document (see the document locale entry in the XML output
document).

Currently, the only supported value for requested_locale is en_US.

xml_input
An input argument of type BLOB(32MB) that specifies an XML input
document (encoded in UTF-8) that contains input values for the procedure.

For this procedure, the XML input document contains database and database
manager configuration settings.

xml_filter
An input argument of type BLOB(4K) that specifies a valid XPath query string.
Use a filter when you want to retrieve a single value from an XML output
document. For more information, see the topic that describes XPath filtering.

The following example selects the value for a specific configuration parameter
setting from the XML output document: /plist/dict/key[.="Database Manager
Configuration Parameter Settings"]/following-sibling::dict[1]/key[3]/
following-sibling::dict[1]/dict[1]/key[.="Value"]/following-
sibling::string[1]. If the key is not followed by the specified sibling, an error
is returned.

xml_output
An output parameter of type BLOB(32MB) that returns a complete XML output

312 Administrative Routines and Views

document in UTF-8. If a filter is specified, this parameter returns a string
value. If the stored procedure is unable to return a complete output document
(for example, if a processing error occurs that results in an SQL warning or
error), this parameter is set to NULL.

When this procedure operates in complete mode, this parameter returns an
XML document that contains the current configuration values set in the server.
You can modify this document and pass it back to the procedure as the
xml_input parameter. This approach provides a programmatic way to create
valid XML input documents.

xml_message
An output parameter of type BLOB(64K) that returns a complete XML output
document of type Data Server Message in UTF-8 that provides detailed
information about a SQL warning condition. This document is returned when a
call to the procedure results in a SQL warning, and the warning message
indicates that additional information is returned in the XML message output
document. If the warning message does not indicate that additional
information is returned, then this parameter is set to NULL.

Authorization
v SYSADM or DBADM authority
v EXECUTE privilege on the SET_CONFIG procedure

Example

Example 1: Return the latest version of the procedure.
db2 "call sysproc.set_config (null,null,null,null,null,?,?)"

The following example is a sample output from this query:
Value of output parameters

Parameter Name : MAJOR_VERSION
Parameter Value : 1

Parameter Name : MINOR_VERSION
Parameter Value : 0

Parameter Name : XML_OUTPUT
Parameter Value : -

Parameter Name : XML_MESSAGE
Parameter Value : -

Return Status = 0

Example 2: Run a script called setconfig.sql that updates a few database and
database manager configuration parameters.
setconfig.sql:

call sysproc.set_config(1,0,’en_US’,blob(’
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server Set Configuration Input</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Document Locale</key><string>en_US</string>
<key>Database Manager Configuration Parameter Settings</key>
<dict>

Chapter 8. Common SQL API procedures 313

<key>diaglevel</key><dict><key>Parameter Value</key>
<dict>

<key>Value</key><string>4</string>
</dict>

</dict>
<key>fcm_num_buffers</key>
<dict>

<key>Parameter Value</key>
<dict>

<key>Value</key><string>4096</string>
</dict>
<key>Value Flags</key>
<dict>

<key>Value</key><string>MANUAL</string>
</dict>

</dict>
<key>instance_memory</key>
<dict>

<key>Deferred Value</key>
<dict>

<key>Value</key><string>7424</string>
</dict>
<key>Deferred Value Flags</key>
<dict>

<key>Value</key><string>AUTOMATIC</string>
</dict>

</dict>
</dict>
<key>Database Partition</key>
<dict>

<key>All</key>
<dict>

<key>Database Configuration Parameter Settings</key>
<dict>

<key>avg_appls</key>
<dict>

<key>Parameter Value</key>
<dict>

<key>Value></key><string>2</string>
</dict>
<key>Value Flags</key>
<dict>

<key>Value</key><string>AUTOMATIC</string>
</dict>

</dict>
<key>database_memory</key>
<dict>

<key>Deferred Value</key>
<dict>

<key>Value</key><string>2</string>
</dict>
<key>Deferred Value Flags</key>
<dict>

<key>Value</key><string>MANUAL</string>
</dict>

</dict>
</dict>

</dict>
</dict>

</dict>
</plist>’), null, ?,?)@

The following example is a sample output from this query:
Value of output parameters

Parameter Name : MAJOR_VERSION

314 Administrative Routines and Views

Parameter Value : 1

Parameter Name : MINOR_VERSION
Parameter Value : 0

Parameter Name : XML_OUTPUT
Parameter Value : x’3C3F78...’

Parameter Name : XML_MESSAGE
Parameter Value : -

Return Status = 0

The output XML document contains something similar to the following content:
<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key>
<string>Data Server Set Configuration Output</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Data Server Product Name</key><string>QDB2/AIX64</string>
<key>Data Server Product Version</key><string>9.7.0.0</string>
<key>Data Server Major Version</key><integer>9</integer>
<key>Data Server Minor Version</key><integer>7</integer>
<key>Data Server Platform</key><string>AIX 64BIT</string>
<key>Document Locale</key><string>en_US</string>
<key>Database Manager Configuration Parameter Settings</key>
<dict>

<key>Display Name</key>
<string>Database Manager Configuration Parameter Settings</string>
<key>diaglevel</key>
<dict>

<key>Display Name</key><string>diaglevel</string>
<key>Parameter Value</key>
<dict>

<key>Display Name</key><string>Parameter Value</string>
<key>Value</key><string>4</string>

</dict>
<key>Parameter Update Status</key>
<dict>

<key>Display Name</key><string>Parameter Update Status</string>
<key>SQLCODE</key>
<dict

<key>Display Name</key><string>SQLCODE</string>
<key>Value</key><integer>0</integer>

</dict>
<key>Message Tokens</key>
<dict>

<key>Display Name</key><string>Message Tokens</string>
<key>Value</key><array><string></string></array>

</dict>
<key>SQLSTATE</key>
<dict>

<key>Display Name</key><string>SQLSTATE</string>
<key>Value</key><string></string>

</dict>
</dict>

</dict>
<key>fcm_num_buffers</key>
<dict>

<key>Display Name</key><string>fcm_num_buffers</string>
<key>Parameter Value</key>

<dict>
<key>Display Name</key><string>Parameter Value</string>
<key>Value</key><string>4096</string>

Chapter 8. Common SQL API procedures 315

</dict>
<key>Value Flags</key>
<dict>

<key>Display Name</key><string>Value Flags</string>
<key>Value</key><string>MANUAL</string>

</dict>
<key>Parameter Update Status</key>
<dict>

<key>Display Name</key><string>Parameter Update Status</string>
<key>SQLCODE</key><dict>
<key>Display Name</key><string>SQLCODE</string>
<key>Value</key> <integer>0</integer>

</dict>
<key>Message Tokens</key>
<dict>

<key>Display Name</key><string>Message Tokens</string>
<key>Value</key><array><string></string></array>

</dict>
<key>SQLSTATE</key>
<dict>

<key>Display Name</key><string>SQLSTATE</string>
<key>Value</key><string></string>

</dict>
</dict>

</dict>
<key>instance_memory</key>
<dict>

<key>Display Name</key><string>instance_memory</string>
<key>Deferred Value</key>
<dict>

<key>Display Name</key><string>Deferred Value</string>
<key>Value</key><string>7424</string>
</dict>
<key>Deferred Value Flags</key>
<dict>

<key>Display Name</key><string>Deferred Value Flags</string>
<key>Value</key><string>AUTOMATIC</string>

</dict>
<key>Parameter Update Status</key>
<dict>

<key>Display Name</key><string>Parameter Update Status</string>
<key>SQLCODE</key>
<dict>

<key>Display Name</key><string>SQLCODE</string>
<key>Value</key><integer>0</integer>

</dict>
<key>Message Tokens</key>
<dict>

<key>Display Name</key><string>Message Tokens</string>
<key>Value</key><array><string></string></array>

</dict>
<key>SQLSTATE</key>
<dict>

<key>Display Name</key><string>SQLSTATE</string>
<key>Value</key><string></string>

</dict>
</dict>

</dict>
</dict>
<key>Database Partition</key>
<dict>

<key>Display Name</key><string>Database Partition</string>
<key>All</key>
<dict>

<key>Display Name</key><string>All</string>
<key>Database Configuration Parameter Settings</key>
<dict>

316 Administrative Routines and Views

<key>Display Name</key>
<string>Database Configuration Parameter Settings</string>
<key>avg_appls</key>
<dict>

<key>Display Name</key><string>avg_appls</string>
<key>Parameter Value</key>
<dict>

<key>Display Name</key><string>Parameter Value</string>
<key>Value</key><string>2</string>

</dict>
<key>Value Flags</key>
<dict>

<key>Display Name</key><string>Value Flags</string>
<key>Value</key><string>AUTOMATIC</string>

</dict>
<key>Parameter Update Status</key>
<dict>

<key>Display Name</key><string>Parameter Update Status</string>
<key>Update Coverage</key>
<dict>

<key>Display Name</key><string>Update Coverage</string>
<key>Value</key><string>Complete</string>

</dict>
<key>SQLCODE</key>
<dict>

<key>Display Name</key><string>SQLCODE</string>
<key>Value</key><integer>0</integer>

</dict>
<key>Message Tokens</key>
<dict>

<key>Display Name</key><string>Message Tokens</string>
<key>Value</key><array><string></string> </array>

</dict>
<key>SQLSTATE</key>
<dict>

<key>Display Name</key><string>SQLSTATE</string>
<key>Value</key><string></string>

</dict>
</dict>

</dict>
<key>database_memory</key>
<dict>

<key>Display Name</key><string>database_memory</string>
<key>Deferred Value</key>
<dict>

<key>Display Name</key><string>Deferred Value</string>
<key>Value</key><string>2</string>

</dict>
<key>Deferred Value Flags</key>
<dict>

<key>Display Name</key><string>Deferred Value Flags</string>
<key>Value</key><string>MANUAL</string>

</dict>
<key>Parameter Update Status</key>
<dict>

<key>Display Name</key><string>Parameter Update Status</string>
<key>Update Coverage</key>
<dict>

<key>Display Name</key><string>Update Coverage</string>
<key>Value</key><string>Complete</string>

</dict>
<key>SQLCODE</key>
<dict>

<key>Display Name</key><string>SQLCODE</string>
<key>Value</key><integer>0</integer>

</dict>
<key>Message Tokens</key>

Chapter 8. Common SQL API procedures 317

<dict>
<key>Display Name</key><string>Message Tokens</string>
<key>Value</key><array><string></string></array>

</dict>
<key>SQLSTATE</key>
<dict>

<key>Display Name</key><string>SQLSTATE</string>
<key>Value</key><string></string>

</dict>
</dict>

</dict>
</dict>

</dict>
</dict>

</dict>
</plist>

Example 3: Specify a filter to return the value for a specific configuration parameter.
db2 "call sysproc.set_config(1,0, ’en_US’, blob(’
<plist version="1.0">
<dict>

<key>Document Type Name</key><string>Data Server Set Configuration Input</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Document Locale</key><string>en_US</string>
<key>Database Manager Configuration Parameter Settings</key>
<dict>

<key>diaglevel</key>
<dict>

<key>Parameter Value</key>
<dict>

<key>Value</key><string>4</string>
</dict>

</dict>
<key>fcm_num_buffers</key>
<dict>

<key>Parameter Value</key>
<dict>

<key>Value</key><string>4096</string>
</dict>
<key>Value Flags</key>
<dict>

<key>Value</key><string>MANUAL</string>
</dict>

</dict>
<key>instance_memory</key>
<dict>

<key>Deferred Value</key>
<dict>

<key>Value</key><string>7424</string>
</dict>
<key>Deferred Value Flags</key>
<dict>

<key>Value</key><string>AUTOMATIC</string>
</dict>

</dict>
</dict>
<key>Database Partition</key>
<dict>

<key>All</key>
<dict>

<key>Database Configuration Parameter Settings</key>
<dict>

<key>avg_appls</key>
<dict>

<key>Parameter Value</key>

318 Administrative Routines and Views

<dict>
<key>Value></key><string>2</string>

</dict>
<key>Value Flags</key>
<dict>

<key>Value</key><string>AUTOMATIC</string>
</dict>

</dict>
<key>database_memory</key>
<dict>

<key>Deferred Value</key>
<dict>

<key>Value</key><string>2</string>
</dict>
<key>Deferred Value Flags</key>
<dict>

<key>Value</key><string>MANUAL</string>
</dict>

</dict>
</dict>

</dict>
</dict>

</dict>
</plist>’),
blob(’/plist/dict/key[.="Database Manager Configuration Parameter Settings"]
/following-sibling::dict[1]/key[3]
/following-sibling::dict[1]/dict[1]/key[.="Value"]
/following-sibling::string[1]’),?,?)"

The following example is a sample output from this query:
Value of output parameters

Parameter Name : MAJOR_VERSION
Parameter Value : 1

Parameter Name : MINOR_VERSION
Parameter Value : 0

Parameter Name : XML_OUTPUT
Parameter Value : x’34303936’

Parameter Name : XML_MESSAGE
Parameter Value : -

Return Status = 0

The following value is returned for xml_output:
4096

Example 4: Call the procedure from a function.
EXEC SQL BEGIN DECLARE SECTION;
sqlint16 getconfigMaj;
sqlint16 getconfigMin;

SQL TYPE IS BLOB(2M) xmlOutput;
SQL TYPE IS BLOB(2K) xmlOutMessage;
EXEC SQL END DECLARE SECTION;
getconfigMaj = 1;
getconfigMin = 0;

EXEC SQL CALL SYSPROC.SET_CONFIG(
:getconfigMaj,
:getconfigMin,
’en_US’,
BLOB(’blob(’

Chapter 8. Common SQL API procedures 319

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>

<key>Document Type Name</key>
<string>Data Server Set Configuration Input</string>
<key>Document Type Major Version</key><integer>1</integer>
<key>Document Type Minor Version</key><integer>0</integer>
<key>Document Locale</key><string>en_US</string>
<key>Database Manager Configuration Parameter Settings</key>
<dict>

<key>diaglevel</key><dict><key>Parameter Value</key>
<dict>

<key>Value</key><string>4</string>
</dict>

</dict>
<key>fcm_num_buffers</key>
<dict>

<key>Parameter Value</key>
<dict>

<key>Value</key><string>4096</string>
</dict>
<key>Value Flags</key>
<dict>

<key>Value</key><string>MANUAL</string>
</dict>

</dict>
<key>instance_memory</key>
<dict>

<key>Deferred Value</key>
<dict>

<key>Value</key><string>7424</string>
</dict>
<key>Deferred Value Flags</key>
<dict>

<key>Value</key><string>AUTOMATIC</string>
</dict>

</dict>
</dict>
<key>Database Partition</key>
<dict>

<key>All</key>
<dict>

<key>Database Configuration Parameter Settings</key>
<dict>

<key>avg_appls</key>
<dict>

<key>Parameter Value</key>
<dict>

<key>Value></key><string>2</string>
</dict>
<key>Value Flags</key>
<dict>

<key>Value</key><string>AUTOMATIC</string>
</dict>

</dict>
<key>database_memory</key>
<dict>

<key>Deferred Value</key>
<dict>

<key>Value</key><string>2</string>
</dict>
<key>Deferred Value Flags</key>
<dict>

<key>Value</key><string>MANUAL</string>
</dict>

</dict>
</dict>

320 Administrative Routines and Views

</dict>
</dict>

</dict>
</plist>’),
null,
:xmlOutput,
:xmlOutMessage);

Chapter 8. Common SQL API procedures 321

322 Administrative Routines and Views

Chapter 9. Configuration routines and views

DB_PARTITIONS

The DB_PARTITIONS table function returns the contents of the db2nodes.cfg file in
table format.

Syntax

�� DB_PARTITIONS () ��

The schema is SYSPROC.

Authorization

EXECUTE privilege on the DB_PARTITIONS table function.

Table function parameters

The function has no input parameters.

Example

Retrieve information from a 3 logical partition database.
SELECT * FROM TABLE(DB_PARTITIONS()) AS T

The following example is a sample output from this query.
PARTITION_NUMBER HOST_NAME PORT_NUMBER SWITCH_NAME
---------------- --------------------...- ----------- -----------

0 jessicae.torolab.ibm.com 0 jessicae
1 jessicae.torolab.ibm.com 1 jessicae
2 jessicae.torolab.ibm.com 2 jessicae

3 record(s) selected.

Information returned

Table 87. Information returned by the DB_PARTITIONS table function

Column name Data type Description

PARTITION_NUMBER SMALLINT A unique number between 0
and 999 that identifies a
database partition server in a
partitioned database
environment.

HOST_NAME VARCHAR(256) The TCP/IP host name of
the database partition server.

PORT_NUMBER SMALLINT The port number for the
database partition server.

© Copyright IBM Corp. 2006, 2012 323

Table 87. Information returned by the DB_PARTITIONS table function (continued)

Column name Data type Description

SWITCH_NAME VARCHAR(128) The name of a high speed
interconnect, or switch, for
database partition
communications.

DBCFG administrative view - Retrieve database configuration
parameter information

The DBCFG administrative view retrieves database configuration parameter
information for the currently connected database for all database partitions.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the DBCFG administrative view
v CONTROL privilege on the DBCFG administrative view
v DATAACCESS authority

Examples

Example 1: Retrieve the automatic maintenance settings in the database
configuration that are stored in memory for all database partitions.
SELECT DBPARTITIONNUM, NAME, VALUE FROM SYSIBMADM.DBCFG WHERE NAME LIKE ’auto_%’

The following example is a sample output for this query.
DBPARTITIONNUM NAME VALUE
-------------- -------------------------------- --------------

0 auto_maint OFF
0 auto_db_backup OFF
0 auto_tbl_maint OFF
0 auto_runstats OFF
0 auto_stats_prof OFF
0 auto_prof_upd OFF
0 auto_reorg OFF
0 autorestart ON

8 record(s) selected.

Example 2: Retrieve all the database configuration parameters values stored on disk
for all database partitions.
SELECT NAME, DEFERRED_VALUE, DBPARTITIONNUM FROM SYSIBMADM.DBCFG

The following example is a sample output for this query.
NAME DEFERRED_VALUE DBPARTITIONNUM
----------------...- ---------------...- --------------
app_ctl_heap_sz 128 0
appgroup_mem_sz 30000 0
applheapsz 256 0
archretrydelay 20 0
...
autorestart ON 0

324 Administrative Routines and Views

avg_appls 1 0
blk_log_dsk_ful NO 0
catalogcache_sz -1 0
...

Information returned

Table 88. Information returned by the DBCFG administrative view

Column name Data type Description

NAME VARCHAR(32) Configuration parameter
name.

VALUE VARCHAR(1024) The current value of the
configuration parameter
stored in memory.

VALUE_FLAGS VARCHAR(10) Provides specific information
for the configuration
parameter current value.
Valid values are:

v NONE - no additional
information

v AUTOMATIC - the
configuration parameter
has been set to automatic

DEFERRED_VALUE VARCHAR(1024) The value of the
configuration parameter on
disk. For some database
configuration parameters,
changes only take effect
when the database is
reactivated. In these cases, all
applications must first
disconnect from the
database. (If the database
was activated, then it must
be deactivated and
reactivated.) The changes
take effect at the next
connection to the database.

DEFERRED_VALUE_FLAGS VARCHAR(10) Provides specific information
for the configuration
parameter deferred value.
Valid values are:

v NONE - no additional
information

v AUTOMATIC - the
configuration parameter
has been set to automatic

DATATYPE VARCHAR(128) Configuration parameter
data type.

DBPARTITIONNUM SMALLINT Database partition number.

Chapter 9. Configuration routines and views 325

DBMCFG administrative view - Retrieve database manager
configuration parameter information

The DBMCFG administrative view returns database manager configuration
parameter information including the values in memory and the values stored on
disk.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the DBMCFG administrative view
v CONTROL privilege on the DBMCFG administrative view
v DATAACCESS authority

Examples

Example 1: Retrieve values for all the database manager configuration parameters
stored on disk:
SELECT NAME, DEFERRED_VALUE FROM SYSIBMADM.DBMCFG

The following example is a sample output for this query.
NAME DEFERRED_VALUE
-------------------------------- -------------------...----
agent_stack_sz 0
agentpri -1
alternate_auth_enc AES_ONLY
aslheapsz 15
audit_buf_sz 0
authentication SERVER
catalog_noauth YES
clnt_krb_plugin
...
comm_bandwidth 0.000000e+00
conn_elapse 0
cpuspeed 4.000000e-05
dft_account_str
dft_mon_bufpool OFF
...
dft_mon_timestamp ON
dft_mon_uow OFF
...
jdk_path /wsdb/v91/bldsupp/AIX5L
...
ssl_svcename 22711
ssl_svr_keydb /GSKit/Keystore/key.kdb
ssl_svr_label
ssl_svr_stash /GSKit/Keystore/key.sth

Example 2: Retrieve all the database manager configuration parameters values.
SELECT * FROM SYSIBMADM.DBMCFG

The following example is a sample output for this query.
NAME VALUE VALUE_FLAGS ...
-------------...------------...- ------------- ...
agent_stack_sz 0 NONE ...
agentpri -1 NONE ...

326 Administrative Routines and Views

alternate_auth_enc NOT_SPECIFIED NONE
aslheapsz 15 NONE ...
audit_buf_sz 0 NONE ...
authentication SERVER NONE ...
catalog_noauth YES NONE ...
clnt_krb_plugin NONE ...
clnt_pw_plugin NONE ...
comm_bandwidth 0.000000e+00 NONE ...
conn_elapse 0 NONE ...
cpuspeed 4.000000e-05 NONE ...
dft_account_str NONE ...
dft_mon_bufpool OFF NONE ...
dft_mon_lock OFF NONE ...
dft_mon_sort OFF NONE ...
dft_mon_stmt OFF NONE ...
dft_mon_table OFF NONE ...
... ...
dir_cache YES NONE ...
discover SEARCH NONE ...
discover_inst ENABLE NONE ...
fcm_num_anchors 0 AUTOMATIC ...
fcm_num_buffers 0 AUTOMATIC ...
fcm_num_connect 0 AUTOMATIC ...

Output for this query (continued).
... DEFERRED_VALUE DEFERRED_VALUE_FLAGS DATATYPE
... --------------...- ------------------------- ---------...-
... 0 NONE INTEGER
... -1 NONE INTEGER
... AES_ONLY NONE VARCHAR(32)
... 15 NONE BIGINT
... 0 NONE BIGINT
... SERVER NONE VARCHAR(32)
... YES NONE VARCHAR(3)
... NONE VARCHAR(32)
... NONE VARCHAR(32)
... 0.000000e+00 NONE REAL
... 0 NONE INTEGER
... 4.000000e-05 NONE REAL
... NONE VARCHAR(25)
... OFF NONE VARCHAR(3)
... OFF NONE VARCHAR(3)
... OFF NONE VARCHAR(3)
... OFF NONE VARCHAR(3)
... OFF NONE VARCHAR(3)
...
... YES NONE VARCHAR(3)
... SEARCH NONE VARCHAR(8)
... ENABLE NONE VARCHAR(8)
... 0 AUTOMATIC BIGINT
... 512 AUTOMATIC BIGINT
... 0 AUTOMATIC BIGINT
...

Information returned

Table 89. Information returned by the DBMCFG administrative view

Column name Data type Description

NAME VARCHAR(32) Configuration parameter
name.

VALUE VARCHAR(256) The current value of the
configuration parameter
stored in memory.

Chapter 9. Configuration routines and views 327

Table 89. Information returned by the DBMCFG administrative view (continued)

Column name Data type Description

VALUE_FLAGS VARCHAR(10) Provides specific information
for the configuration
parameter current value.
Valid values are:

v NONE - no additional
information

v AUTOMATIC - the
configuration parameter
has been set to automatic

DEFERRED_VALUE VARCHAR(256) The value of the
configuration parameter on
disk. For some database
manager configuration
parameters, the database
manager must be stopped
(db2stop) and restarted
(db2start) for this value to
take effect.

DEFERRED_VALUE_FLAGS VARCHAR(10) Provides specific information
for the configuration
parameter deferred value.
Valid values are:

v NONE - no additional
information

v AUTOMATIC - the
configuration parameter
has been set to automatic

DATATYPE VARCHAR(128) Configuration parameter
data type.

REG_VARIABLES administrative view - Retrieve DB2 registry settings
in use

The REG_VARIABLES administrative view returns the DB2 registry settings from
all database partitions. The DB2 registry variable values returned when the
REG_VARIABLES administrative view is queried can differ from those returned by
the db2set command if a DB2 registry variable is configured using the db2set
command after the instance has been started. The difference occurs because
REG_VARIABLES only returns the values that were in effect when the instance
was started.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the REG_VARIABLES administrative view
v CONTROL privilege on the REG_VARIABLES administrative view
v DATAACCESS authority

328 Administrative Routines and Views

Example

Request the DB2 registry settings that are currently being used.
SELECT * from SYSIBMADM.REG_VARIABLES

The following example is a sample output from this query.
DBPARTITIONNUM REG_VAR_NAME REG_VAR_VALUE IS_AGGREGATE AGGREGATE_NAME
-------------- ---------------...- -------------...- ------------ --------------...-

0 DB2ADMINSERVER DB2DAS00 0 -
0 DB2INSTPROF D:\SQLLIB 0 -
0 DB2PATH D:\SQLLIB 0 -
0 DB2SYSTEM D570 0 -
0 DB2TEMPDIR D:\SQLLIB\ 0 -
0 DB2_EXTSECURITY YES 0 -

6 record(s) selected.

Information returned

Table 90. Information returned by the REG_VARIABLES administrative view

Column name Data type Description

DBPARTITIONNUM SMALLINT Logical partition number of
each database partition on
which the function operates.

REG_VAR_NAME VARCHAR(256) Name of the DB2 registry
variable.

REG_VAR_VALUE VARCHAR(2048) Current setting of the DB2
registry variable.

IS_AGGREGATE SMALLINT Indicates whether or not the
DB2 registry variable is an
aggregate variable. The
possible return values are 0
if it is not an aggregate
variable, and 1 if it is an
aggregate variable.

AGGREGATE_NAME VARCHAR(256) Name of the aggregate if the
DB2 registry variable is
currently obtaining its value
from a configured aggregate.
If the registry variable is not
being set through an
aggregate, or is set through
an aggregate but has been
overridden, the value of
AGGREGATE_NAME is
NULL.

LEVEL CHAR(1) Indicates the level at which
the DB2 registry variable
acquires its value. The
possible return values and
the corresponding levels that
they represent are:

v I = instance

v G = global

v N = database partition

v E = environment

Chapter 9. Configuration routines and views 329

330 Administrative Routines and Views

Chapter 10. Environment views

ENV_FEATURE_INFO administrative view - Return license information
for DB2 features

The ENV_FEATURE_INFO administrative view returns information about all
available features for which a license is required. For each feature, there is
information about whether or not a valid license for the feature has been installed.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the ENV_FEATURE_INFO administrative view
v CONTROL privilege on the ENV_FEATURE_INFO administrative view
v DATAACCESS authority

Example

Request the installed DB2 features license information.
SELECT * FROM SYSIBMADM.ENV_FEATURE_INFO

The following example is a sample output from this query.
FEATURE_NAME FEATURE_FULLNAME ...
------------ -- ...
DPF DB2_DATABASE_PARTITIONING_FEATURE ...
POESE DB2_PERFORMANCE_OPTIMIZATION_FEATURE_FOR_ESE ...
SO DB2_STORAGE_OPTIMIZATION_FEATURE ...
AAC DB2_ADVANCED_ACCESS_CONTROL_FEATURE ...
GEO DB2_GEODETIC_DATA_MANAGEMENT_FEATURE ...
HFESE IBM_HOMOGENEOUS_FEDERATION_FEATURE_FOR_ESE ...
XMLESE DB2_PUREXML_FEATURE_FOR_ESE ...

Output from this query (continued).
... LICENSE_INSTALLED PRODUCT_NAME FEATURE_USE_STATUS
... ----------------- ------------ ------------------
... Y ESE IN_COMPLIANCE
... Y ESE IN_COMPLIANCE
... Y ESE IN_COMPLIANCE
... Y ESE NOT_USED
... Y ESE NOT_USED
... Y ESE NOT_USED
... N ESE IN_VIOLATION

ENV_FEATURE_INFO administrative view metadata

Table 91. ENV_FEATURE_INFO administrative view metadata

Column name Data type Description

FEATURE_NAME VARCHAR(26) Short names for DB2 features which are available
on licensed DB2 servers.

© Copyright IBM Corp. 2006, 2012 331

Table 91. ENV_FEATURE_INFO administrative view metadata (continued)

Column name Data type Description

FEATURE_FULLNAME VARCHAR(100) Full name of DB2 features. Column values will be
displayed in English in uppercase. Words are
separated with an underscore character instead of a
space character.

LICENSE_INSTALLED CHAR(1) Indicates if feature is licensed. If the value is 'N', the
feature is not licensed. If the value is 'Y', the feature
is licensed.

PRODUCT_NAME VARCHAR(26) Identifiers for DB2 server product on which the
feature is available. The possible return values are:

v ESE - DB2 Enterprise Server Edition

v WSE - DB2 Workgroup Server Edition

v EXP - DB2 Express® Edition

FEATURE_USE_STATUS VARCHAR(30) Indicates the license compliance status. This value
indicates the usage status of the feature. There are
three possible values:

v IN_COMPLIANCE: Feature has been used at
least once and there is a valid license for the
feature.

v IN_VIOLATION: Feature has been used at least
once and there is no valid license for the feature.

v NOT_USED: Feature has not been used.

ENV_GET_DB2_SYSTEM_RESOURCES table function - Return DB2
system information

The ENV_GET_DB2_SYSTEM_RESOURCES table function returns CPU usage and
DB2 process information for specified members in the current instance.

Syntax

�� ENV_GET_DB2_SYSTEM_RESOURCES (member) ��

The schema is SYSPROC.

Table function parameters

member
An input argument of type INTEGER that specifies a valid member in the
same instance as the currently connected database when calling this function.
Specify -1 for the current database member, or -2 for all database members. If
the NULL value is specified, -1 is set implicitly.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the ENV_GET_DB2_SYSTEM_RESOURCES table function

Example
SELECT VARCHAR(db2_process_name, 20) AS NAME, CPU_USER, CPU_SYSTEM, MEMBER

FROM TABLE(ENV_GET_DB2_SYSTEM_RESOURCES(-2))

332 Administrative Routines and Views

This query returns the following output:
NAME CPU_USER CPU_SYSTEM MEMBER
------------------------------ -------- ---------- ------
db2fmp 14 9 0
db2sysc 11752 541 0
db2syscr 13 8 0
db2fmp 24 14 0

4 record(s) selected.

Usage Notes

This function is supported on the following platforms: Windows, Linux and AIX.

Information returned

Table 92. Information returned by the ENV_GET_DB2_SYSTEM_RESOURCES table
function

Column name Data type Description

MEMBER SMALLINT member - Database member
monitor element

DB2_PROCESS_NAME VARCHAR(128) db2_process_name - DB2
process name monitor
element

DB2_PROCESS_ID BIGINT db2_process_id - DB2 process
ID monitor element

CPU_USER BIGINT cpu_user - Non-kernel
processing time monitor
element

CPU_SYSTEM BIGINT cpu_system - Kernel time
monitor element

ENV_GET_NETWORK_RESOURCES table function - Return network
information

The ENV_GET_NETWORK_RESOURCES table function returns information for all
active network adaptors on the host machines running DB2.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the function
v DATAACCESS authority

The schema is SYSPROC.

Example
SELECT varchar(adapter_name, 20) as name,

packets_received,
packets_sent,
total_bytes_received,
total_bytes_sent

FROM TABLE(ENV_GET_NETWORK_RESOURCES())

The query returns the following input:

Chapter 10. Environment views 333

NAME PACKETS_RECEIVED PACKETS_SENT TOTAL_BYTES_RECEIVED
-------------------------------- ---------------- ------------ --------------------
lo 467182039 467182039 528451011980
eth0 426287355 431398744 351656704796
eth1

0 0 0
TOTAL_BYTES_SENT

528451011980
272061746005

0

Usage Notes

This function is supported on the following platforms: Windows, Linux and AIX.

Information returned

Table 93. Information returned by the ENV_GET_NETWORK_RESOURCES table function

Column name Data type Description

MEMBER SMALLINT member - Database member
monitor element

HOST_NAME VARCHAR(255) host_name - Host name
monitor element

ADAPTER_NAME VARCHAR(255) adapter_name - Adapter
name monitor element

PACKETS_RECEIVED BIGINT packets_received - Packets
received monitor element

PACKETS_SENT BIGINT packets_sent - Packets sent
monitor element

PACKET_RECEIVE_ERRORS BIGINT packet_receive_errors -
Packet receive errors monitor
element

PACKET_SEND_ERRORS BIGINT packet_send_errors - Packet
send errors monitor element

TOTAL_BYTES_RECEIVED BIGINT total_bytes_received - Bytes
received monitor element

TOTAL_BYTES_SENT BIGINT total_bytes_sent - Bytes sent
monitor element

ENV_GET_SYSTEM_RESOURCES table function - Return system
information

The ENV_GET_SYSTEM_RESOURCES table function returns operating system,
CPU, memory, and other information that is related to members on the system.
The active database can reside on one or more members on the system. This table
function returns data only from members where the database that issued the
command is active.

The schema is SYSPROC.

334 Administrative Routines and Views

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the ENV_GET_SYSTEM_RESOURCES table function
v DATAACCESS authority

Example
select MEMBER, varchar(HOST_NAME,12) as HOST_NAME, CPU_TOTAL,
MEMORY_TOTAL, CPU_LOAD_SHORT from
table(SYSPROC.ENV_GET_SYSTEM_RESOURCES()) order by MEMBER

Sample output is as follows:
MEMBER HOST_NAME CPU_TOTAL MEMORY_TOTAL CPU_LOAD_SHORT
----- -------------- --------- ------------ -----------------------

0 coralpib23 24 81920 +1.23696899414062E+000
1 coralpib23 24 81920 +1.23696899414062E+000
2 coralpib23 24 81920 +1.23696899414062E+000
3 coralpib23 24 81920 +1.23696899414062E+000

4 record(s) selected.

Usage Notes
v In a virtualized environment (such as VMWare ESX) DB2 may be unable to

determine the CPU topology such as CPU_HMT_DEGREE or
CPU_CORES_PER_SOCKET. This occurs because of limited information that the
hypervisor makes available to the virtualized operating system. In such cases,
CPU_CORES_PER_SOCKET and CPU_HMT_DEGREE will have a value of 1.

Information returned

Information is returned for all supported operating systems, except where noted.

Table 94. Information returned for ENV_GET_SYSTEM_RESOURCES

Column name Data type Description

MEMBER SMALLINT member - Database member monitor element

OS_NAME VARCHAR(256) os_name - Operating system name monitor element

HOST_NAME VARCHAR(255) host_name - Host name monitor element

OS_VERSION VARCHAR(256) os_version - Operating system version monitor element

OS_RELEASE VARCHAR(256) os_release - Operating system release monitor element

MACHINE_IDENTIFICATION VARCHAR(256) machine_identification - Host hardware identification
monitor element

OS_LEVEL VARCHAR(256) os_level - Operating system level monitor element

CPU_TOTAL BIGINT cpu_total - Number of CPUs monitor element

CPU_ONLINE BIGINT cpu_online - Number of CPUs online monitor element

CPU_CONFIGURED BIGINT cpu_configured - Number of configured CPUs monitor
element

CPU_SPEED BIGINT cpu_speed - CPU clock speed monitor element

CPU_TIMEBASE BIGINT cpu_timebase - Frequency of timebase register increment
monitor element

CPU_HMT_DEGREE BIGINT cpu_hmt_degree - Number of logical CPUs monitor
element

Chapter 10. Environment views 335

Table 94. Information returned for ENV_GET_SYSTEM_RESOURCES (continued)

Column name Data type Description

CPU_CORES_PER_SOCKET BIGINT cpu_cores_per_socket - Number of CPU cores per socket
monitor element

MEMORY_TOTAL BIGINT memory_total - Total physical memory monitor element

MEMORY_FREE BIGINT memory_free - Amount of free physical memory monitor
element

MEMORY_SWAP_TOTAL BIGINT memory_swap_total - Total swap space monitor element

MEMORY_SWAP_FREE BIGINT memory_swap_free - Total free swap space monitor
element

VIRTUAL_MEM_TOTAL BIGINT virtual_mem_total - Total virtual memory monitor
element

VIRTUAL_MEM_RESERVED BIGINT virtual_mem_reserved - Reserved virtual memory monitor
element

VIRTUAL_MEM_FREE BIGINT virtual_mem_free - Free virtual memory monitor element

CPU_LOAD_SHORT DOUBLE cpu_load_short - Processor load (short timeframe)
monitor element

CPU_LOAD_MEDIUM DOUBLE cpu_load_medium - Processor load (medium timeframe)
monitor element

CPU_LOAD_LONG DOUBLE cpu_load_long - Processor load (long timeframe) monitor
element

CPU_USAGE_TOTAL SMALLINT cpu_usage_total - Processor usage monitor element

CPU_USER1 BIGINT cpu_user - Non-kernel processing time monitor element

CPU_IDLE1 BIGINT cpu_idle - Processor idle time monitor element

CPU_IOWAIT1 BIGINT cpu_iowait - IO Wait time monitor element

CPU_SYSTEM1 BIGINT cpu_system - Kernel time monitor element

SWAP_PAGE_SIZE BIGINT swap_page_size - Swap page size monitor element

SWAP_PAGES_IN BIGINT swap_pages_in - Pages swapped in from disk monitor
element

SWAP_PAGES_OUT BIGINT swap_pages_out - Pages swapped out to disk monitor
element

Note:

1 These metrics have been aggregated across all logical processors on the system.

On the AIX operating system, the metrics are for the Workload partition (WPAR) and Logical partition
(LPAR) on which the DB2 server is running.

ENV_INST_INFO administrative view - Retrieve information about the
current instance

The ENV_INST_INFO administrative view returns information about the current
instance.

The schema is SYSIBMADM.

336 Administrative Routines and Views

Authorization

One of the following authorizations is required:
v SELECT privilege on the ENV_INST_INFO administrative view
v CONTROL privilege on the ENV_INST_INFO administrative view
v DATAACCESS authority

Example

Request information about the current instance.
SELECT * FROM SYSIBMADM.ENV_INST_INFO

The following example is a sample output for this query.
INST_NAME IS_INST_PARTITIONABLE NUM_DBPARTITIONS INST_PTR_SIZE ...
-----------...---- --------------------- ---------------- ------------- ...
DB2 0 1 32 ...

1 record(s) selected.

Output for this query (continued).
... RELEASE_NUM SERVICE_LEVEL BLD_LEVEL PTF FIXPACK_NUM
... -----------...--- --------------...--- ----------...--- ----...--- -----------
... 01010107 DB2 v9.1.0.115 n051106 0

Information returned

Table 95. Information returned by the ENV_INST_INFO administrative view

Column name Data type Description

INST_NAME VARCHAR(128) Name of the current instance.

IS_INST_PARTITIONABLE SMALLINT Indicates whether or not the current
instance is a partitionable database
server instance. Possible return
values are 0 if it is not a partitionable
database server instance, and 1 if it is
a partitionable database server
instance.

NUM_DBPARTITIONS INTEGER Number of database partitions. If it is
not a partitioned database
environment, returns a value of 1.

INST_PTR_SIZE INTEGER Bit size of the current instance (32 or
64).

RELEASE_NUM VARCHAR(128) Internal release number, as returned
by the db2level command; for
example, 03030106.

SERVICE_LEVEL VARCHAR(128) Service level, as returned by the
db2level command; for example, DB2
v8.1.1.80.

BLD_LEVEL VARCHAR(128) Build level, as returned by the
db2level command; for example,
n041021.

PTF VARCHAR(128) Program temporary fix (PTF)
identifier, as returned by the db2level
command; for example, U498350.

Chapter 10. Environment views 337

Table 95. Information returned by the ENV_INST_INFO administrative view (continued)

Column name Data type Description

FIXPACK_NUM INTEGER Fix Pack number, as returned by the
db2level command; for example, 9.

ENV_PROD_INFO administrative view - Retrieve information about
installed DB2 products

The ENV_PROD_INFO administrative view returns information about installed
DB2 products.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the ENV_PROD_INFO administrative view
v CONTROL privilege on the ENV_PROD_INFO administrative view
v DATAACCESS authority

Example

Request the installed DB2 product information.
SELECT * FROM SYSIBMADM.ENV_PROD_INFO

The following example is a sample output from this query.
INSTALLED_PROD INSTALLED_PROD_FULLNAME ...
-------------- ------------------------------ ...
ESE DB2_ENTERPRISE_SERVER_EDITION ...
WSE DB2_WORKGROUP_SERVER_EDITION ...
EXP DB2_EXPRESS_EDITION ...

Output from this query (continued).
... LICENSE_INSTALLED PROD_RELEASE LICENSE_TYPE
... ----------------- ------------ ----------------------
... Y 9.5 AUTHORIZED_USER_OPTION
... N 9.5 LICENSE_NOT_REGISTERED
... Y 9.5 RESTRICTED

ENV_PROD_INFO administrative view metadata

Table 96. ENV_PROD_INFO administrative view metadata

Column name Data type Description

INSTALLED_PROD VARCHAR(26) Identifiers for DB2 products that are installed on the
system.

INSTALLED_PROD_FULLNAME VARCHAR(100) Full name of installed DB2 products. Column values
will be displayed in English in uppercase. Words are
separated with an underscore character.

LICENSE_INSTALLED CHAR(1) Indicates if product is licensed. If the value is N, the
product is not licensed. If the value is Y, the product
is licensed.

PROD_RELEASE VARCHAR(26) Product release number.

338 Administrative Routines and Views

Table 96. ENV_PROD_INFO administrative view metadata (continued)

Column name Data type Description

LICENSE_TYPE VARCHAR(50) Name of the type of license that is installed for the
product. The possible return values are:

v 12_MONTHS_LICENSE_AND_SUBSCRIPTION

v AUTHORIZED_USER

v AUTHORIZED_USER_OPTION

v CLIENT_DEVICE

v CPU

v CPU_OPTION

v HOST_SERVER_AND_MSU

v LICENSE_NOT_REGISTERED

v MANAGED_PROCESSOR

v N/A

v RESTRICTED

v TRIAL

v UNWARRANTED

v USER

ENV_SYS_INFO administrative view - Retrieve information about the
system

The ENV_SYS_INFO administrative view returns information about the system.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the ENV_SYS_INFO administrative view
v CONTROL privilege on the ENV_SYS_INFO administrative view
v DATAACCESS authority

Example

Request information about the system.
SELECT * from SYSIBMADM.ENV_SYS_INFO

The following example is a sample output from this query.
OS_NAME OS_VERSION OS_RELEASE HOST_NAME
--------...- ----------...- --------------...- ---------...-
WIN32_NT 5.1 Service Pack 1 D570

1 record(s) selected.

Output from this query (continued).
... TOTAL_CPUS CONFIGURED_CPUS TOTAL_MEMORY
... ----------- --------------- ------------
... 1 2 1527

Chapter 10. Environment views 339

Information returned

Table 97. Information returned by the ENV_SYS_INFO administrative view

Column name Data type Description

OS_NAME VARCHAR(256) Name of the operating
system.

OS_VERSION VARCHAR(256) Version number of the
operating system.

OS_RELEASE VARCHAR(256) Release number of the
operating system.

HOST_NAME VARCHAR(256) Name of the system.

TOTAL_CPUS INTEGER Total number of physical
CPUs on the system.

CONFIGURED_CPUS INTEGER Number of configured
physical CPUs on the
system.

TOTAL_MEMORY INTEGER Total amount of memory on
the system (in megabytes).

340 Administrative Routines and Views

Chapter 11. Explain routines

EXPLAIN_GET_MSGS
The EXPLAIN_GET_MSGS table function queries the EXPLAIN_DIAGNOSTIC and
EXPLAIN_DIAGNOSTIC_DATA Explain tables, and returns formatted messages.

Syntax

�� EXPLAIN_GET_MSGS (explain-requester , explain-time , source-name , �

� source-schema , source-version , explain-level , stmtno , sectno , �

� locale) ��

The schema is the same as the Explain table schema.

Table function parameters

Any of the following input arguments can be null. If an argument is null, it is not
used to limit the query.

explain-requester
An input argument of type VARCHAR(128) that specifies the authorization ID
of the initiator of this Explain request. A null value excludes this parameter
from the search condition of the query.

explain-time
An input argument of type TIMESTAMP that specifies the time of initiation for
the Explain request. A null value excludes this parameter from the search
condition of the query.

source-name
An input argument of type VARCHAR(128) that specifies the name of the
package running when the dynamic statement was explained, or the name of
the source file when the static SQL statement was explained. A null value
excludes this parameter from the search condition of the query.

source-schema
An input argument of type VARCHAR(128) that specifies the schema, or
qualifier, of the source of the Explain request. A null value excludes this
parameter from the search condition of the query.

source-version
An input argument of type VARCHAR(64) that specifies the version of the
source of the Explain request. A null value excludes this parameter from the
search condition of the query.

explain-level
An input argument of type CHAR(1) that specifies the level of Explain
information for which this row is relevant. A null value excludes this
parameter from the search condition of the query.

stmtno
An input argument of type INTEGER that specifies the statement number

© Copyright IBM Corp. 2006, 2012 341

within the package to which this Explain information is related. A null value
excludes this parameter from the search condition of the query.

sectno
An input argument of type INTEGER that specifies the section number within
the package to which this Explain information is related. A null value excludes
this parameter from the search condition of the query.

locale
An input argument of type VARCHAR(33) that specifies the locale of returned
messages. If the specified locale is not installed on the DB2 server, the value is
ignored.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority

Information returned

Table 98. Information returned by the EXPLAIN_GET_MSGS table function

Column name Data type Description

EXPLAIN_REQUESTER VARCHAR(128) Authorization ID of the initiator of
this Explain request.

EXPLAIN_TIME TIMESTAMP Time of initiation for the Explain
request.

SOURCE_NAME VARCHAR(128) Name of the package running when
the dynamic statement was
explained, or the name of the source
file when the static SQL statement
was explained.

SOURCE_SCHEMA VARCHAR(128) Schema, or qualifier, of the source of
the Explain request.

SOURCE_VERSION VARCHAR(64) Version of the source of the Explain
request.

EXPLAIN_LEVEL CHAR(1) Level of Explain information for
which this row is relevant.

STMTNO INTEGER Statement number within the package
to which this Explain information is
related.

SECTNO INTEGER Section number within the package to
which this Explain information is
related.

DIAGNOSTIC_ID INTEGER ID of the diagnostic for a particular
instance of a statement in the
EXPLAIN_STATEMENT table.

LOCALE VARCHAR(33) Locale of returned messages. This
locale will not match the specified
locale if the latter is not installed on
the DB2 server.

MSG VARCHAR(4096) Formatted message text.

342 Administrative Routines and Views

Examples

Request formatted English messages from the Explain tables in the default schema
for requester SIMMEN that were generated in the last hour. Specify a source name
of SQLC2E03.

SELECT MSG
FROM TABLE(EXPLAIN_GET_MSGS(

’SIMMEN’,
CAST(NULL AS TIMESTAMP),
’SQLC2E03’,
CAST(NULL AS VARCHAR(128)),
CAST(NULL AS VARCHAR(64)),
CAST(NULL AS CHAR(1)),
CAST(NULL AS INTEGER),
CAST(NULL AS INTEGER),
’en_US’))

AS REGISTRYINFO
WHERE EXPLAIN_TIME >= (CURRENT TIMESTAMP - 1 HOUR)
ORDER BY DIAGNOSTIC_ID

The following example is a sample output from this query.
MSG
--
EXP0012W Invalid access request. The index "index1" could not be found.

Line number "554", character number "20".
EXP0012W Invalid access request. The index "index2" could not be found.

Line number "573", character number "20".
EXP0015W Invalid join request. Join refers to tables that are not in

the same FROM clause. Line number "573", character number "20".

EXPLAIN_FORMAT_STATS

This new scalar function is used to display formatted statistics information which
is parsed and extracted from explain snapshot captured for a given query. The data
type of the result is CLOB(50M).

Syntax

�� EXPLAIN_FORMAT_STATS (snapshot) ��

The schema is SYSPROC.

Function parameters

snapshot
An input argument of type BLOB(10M) that is the explain snapshot captured
for a given query. It is stored as snapshot column of explain table
EXPLAIN_STATEMENT

Authorization

EXECUTE privilege on the EXPLAIN_FORMAT_STATS function.

Example
SELECT EXPLAIN_FORMAT_STATS(SNAPSHOT)

FROM EXPLAIN_STATEMENT
WHERE EXPLAIN_REQUESTER = ’DB2USER1’ AND

EXPLAIN_TIME = timestamp(’2006-05-12-14.38.11.109432’) AND

Chapter 11. Explain routines 343

SOURCE_NAME = ’SQLC2F0A’ AND
SOURCE_SCHEMA = ’NULLID’ AND
SOURCE_VERSION = ’’ AND
EXPLAIN_LEVEL = ’O’ AND
STMTNO = 1 AND
SECTNO = 201

The following example is a sample output of this function:
Tablespace Context:

Name: USERSPACE1
Overhead: 7.500000
Transfer Rate: 0.060000
Prefetch Size: 32
Extent Size: 32
Type: Database managed
Partition Group Name: NULLP
Buffer Pool Identifier: 0

Base Table Statistics:

Name: T1
Schema: DB2USER2
Number of Columns: 3
Number of Pages with Rows: 1
Number of Pages: 1
Number of Rows: 5
Table Overflow Record Count: 0
Width of Rows: 26
Time of Creation: 2006-06-16-11.46.53.041085
Last Statistics Update: 2006-06-26-12.23.44.814201
Statistics Type: Fabrication
Primary Tablespace: USERSPACE1
Tablespace for Indexes: USERSPACE1
Tablespace for Long Data: NULLP
Number of Referenced Columns: 2
Number of Indexes: 1
Volatile Table: No
Table Active Blocks: 1
Number of Column Groups: 0
Number of Data Partitions: 1
Average Row Compression Ratio: -9.000000
Percent Rows Compressed: -9.000000
Average Compressed Row Size: -9
Statistics Type: U

Column Information:

Number: 1
Name: C1
Statistics Available: Yes

Column Statistics:

Schema name of the column type: SYSIBM
Name of column type: INTEGER
Maximum column length: 4
Scale for decimal column: 0
Number of distinct column values: 4
Average column length: 5
Number of most frequent values: 1
Number of quantiles: 5
Second highest data value: 3
Second lowest data value: 2
Column sequence in partition key: 0
Average number of sub-elements: -1

344 Administrative Routines and Views

Average length of delimiters: -1

Column Distribution Statistics:

Frequency Statistics:

Valcount Value
---------- -----------
2 1

Quantile Statistics:
Valcount Distcount Value
---------- ----------- ----------
0 1 1
2 1 1
3 2 2
4 3 3
5 4 4

Column Information:

Number: 2
Name: C2
Statistics Available: Yes

Column Statistics:

Schema name of the column type: SYSIBM
Name of column type: INTEGER
Maximum column length: 4
Scale for decimal column: 0
Number of distinct column values: 4
Average column length: 5
Number of most frequent values: 1
Number of quantiles: 5
Second highest data value: 3
Second lowest data value: 2
Column sequence in partition key: 0
Average number of sub-elements: -1
Average length of delimiters: -1

Column Distribution Statistics:

Frequency Statistics:

Valcount Value
---------- -----------
2 1

Quantile Statistics:
Valcount Distcount Value
---------- ----------- -----------
0 0 1
2 0 1
3 0 2
4 0 4
5 0 4

Indexes defined on the table:

Name: IDX_T1C1C2
Schema: DB2USER2
Unique Rule: Duplicate index
Used in Operator: Yes
Page Fetch Pairs: Not Available
Number of Columns: 2
Index Leaf Pages: 1
Index Tree Levels: 1
Index First Key Cardinality: 4

Chapter 11. Explain routines 345

Index Full Key Cardinality: 4
Index Cluster Ratio: 100
Index Cluster Factor: -1.000000
Time of Creation: 2006-06-16-11.46.53.596717
Last Statistics Update: 2006-06-26-12.23.44.814201
Index Sequential Pages: 0
Index First 2 Keys Cardinality: 4
Index First 3 Keys Cardinality: -1
Index First 4 Keys Cardinality: -1
Index Avg Gap between Sequences: 0.000000
Fetch Avg Gap between Sequences: -1.000000
Index Avg Sequential Pages: 0.000000
Fetch Avg Sequential Pages: -1.000000
Index Avg Random Pages: 1.000000
Fetch Avg Random Pages: -1.000000
Index RID Count: 5
Index Deleted RID Count: 0
Index Empty Leaf Pages: 0
Avg Partition Cluster Ratio: -1
Avg Partition Cluster Factor: -1.000000
Data Partition Cluster Factor: 1.000000
Data Partition Page Fetch Pairs: Not Available

Base Table Statistics:

Name: T2
Schema: DB2USER2
Number of Columns: 3
Number of Pages with Rows: 1
Number of Pages: 1
Number of Rows: 2
Table Overflow Record Count: 0
Width of Rows: 26
Time of Creation: 2006-06-16-11.46.53.398092
Last Statistics Update: 2006-06-26-12.23.45.157028
Statistics Type: Synchronous
Primary Tablespace: USERSPACE1
Tablespace for Indexes: USERSPACE1
Tablespace for Long Data: NULLP
Number of Referenced Columns: 2
Number of Indexes: 1
Volatile Table: No
Table Active Blocks: -1
Number of Column Groups: 0
Number of Data Partitions: 1

Column Information:

Number: 1
Name: C1
Statistics Available: Yes

Column Statistics:

Schema name of the column type: SYSIBM
Name of column type: INTEGER
Maximum column length: 4
Scale for decimal column: 0
Number of distinct column values: 2
Average column length: 5
Number of most frequent values: -1
Number of quantiles: 2
Second highest data value: 2
Second lowest data value: 1
Column sequence in partition key: 0
Average number of sub-elements: -1
Average length of delimiters: -1

346 Administrative Routines and Views

Column Distribution Statistics:

Quantile Statistics:

Valcount Distcount Value
---------- ----------- -----------
1 1 1
2 2 2

Column Information:

Number: 2
Name: C2
Statistics Available: Yes

Column Statistics:

Schema name of the column type: SYSIBM
Name of column type: INTEGER
Maximum column length: 4
Scale for decimal column: 0
Number of distinct column values: 2
Average column length: 5
Number of most frequent values: -1
Number of quantiles: 2
Second highest data value: 2
Second lowest data value: 1
Column sequence in partition key: 0
Average number of sub-elements: -1
Average length of delimiters: -1

Column Distribution Statistics:

Quantile Statistics:

Valcount Distcount Value
---------- ----------- -----------
1 0 1
2 0 2

Indexes defined on the table:

Name : IDX_T2C1
Schema: DB2USER2
Unique Rule: Duplicate index
Used in Operator: No
Page Fetch Pairs: Not Available
Number of Columns: 1
Index Leaf Pages: 1
Index Tree Levels: 1
Index First Key Cardinality: 2
Index Full Key Cardinality: 2
Index Cluster Ratio: 100
Index Cluster Factor: -1.000000
Time of Creation: 2006-06-16-11.46.53.857520
Last Statistics Update: 2006-06-26-12.23.45.157028
Index Sequential Pages: 0
Index First 2 Keys Cardinality: -1
Index First 3 Keys Cardinality: -1
Index First 4 Keys Cardinality: -1
Index Avg Gap between Sequences: 0.000000
Fetch Avg Gap between Sequences: -1.000000
Index Avg Sequential Pages: 0.000000
Fetch Avg Sequential Pages: -1.000000
Index Avg Random Pages: 1.000000
Fetch Avg Random Pages: -1.000000
Index RID Count: 2
Index Deleted RID Count: 0

Chapter 11. Explain routines 347

Index Empty Leaf Pages: 0
Avg Partition Cluster Ratio: -1
Avg Partition Cluster Factor: -1.000000
Data Partition Cluster Factor: 1.000000
Data Partition Page Fetch Pairs: Not Available

EXPLAIN_FROM_ACTIVITY procedure - Explain statement using
activity event monitor information

The EXPLAIN_FROM_ACTIVITY procedure explains a specific execution of a
statement using the contents of the section obtained from an activity event
monitor.

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7, it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7, this routine will no longer work.

The Explain output is placed in the Explain tables for processing using any
existing Explain tools (for example, db2exfmt). The Explain output contains, if
available, both the access plan and section actuals (runtime statistics for operators
in the access plan).

�� EXPLAIN_FROM_ACTIVITY �

� (appl_id , uow_id , activity_id , activity_evmon_name , explain_schema �

� , explain_requester , explain_time , source_name , source_schema , source_version) ��

The schema is SYSPROC.

Authorization

All of the following privileges and authority are required:
v EXECUTE privilege on the EXPLAIN_FROM_ACTIVITY procedure
v INSERT privilege on the Explain tables in the specified schema
v SELECT privilege on the event monitor tables for the source activity event

monitor

appl_id
An input argument of type VARCHAR(64) that uniquely identifies the
application that issued the activity whose section is to be explained. If appl_id
is null or an empty string, SQL2032N is returned.

uow_id
An input argument of type INTEGER specifying the unit of work identifier for
the activity whose section is to be explained. Unit of work ID is only unique
within a given application. If uow_id is null, SQL2032N is returned.

activity_id
An input argument of type INTEGER specifying the identifier of the activity
whose section is to be explained. Activity ID is only unique within a unit of
work. If activity_id is null, SQL2032N is returned.

activity_evmon_name
An input argument of VARCHAR(128) that specifies the name of a write to
table activity event monitor containing the activity whose section is to be

348 Administrative Routines and Views

explained. If the event monitor does not exist or is not an activity event
monitor, SQL0204N is returned. If the event monitor is not a write to table
event monitor, SQL20502N is returned. If activity_evmon_name is not specified,
SQL2032N is returned. If the caller does not have SELECT privilege on the
activity event monitor tables, SQL0551N is returned.

explain_schema
An optional input or output argument of type VARCHAR(128) that specifies
the schema containing the Explain tables where the explain information should
be written. If an empty string or NULL is specified, a search is made for the
explain tables under the session authorization ID and, following that, the
SYSTOOLS schema. If the Explain tables cannot be found, SQL0219N is
returned. If the caller does not have INSERT privilege on the Explain tables,
SQL0551N is returned. On output, this parameter is set to the schema
containing the Explain tables where the information was written.

explain_requester
An output argument of type VARCHAR(128) that contains the session
authorization ID of the connection in which this routine was invoked.

explain_time
An output argument of type TIMESTAMP that contains the time of initiation
for the Explain request.

source_name
An output argument of type VARCHAR(128) that contains the name of the
package running when the statement was prepared or compiled.

source_schema
An output argument of type VARCHAR(128) that contains the schema, or
qualifier, of the source of Explain request.

source_version
An output argument of type VARCHAR(64) that contains the version of the
source of the Explain request.

Example

The following example assumes that you are mining the data collected in the
activity event monitor over a period of time and using the following query, you
notice a particularly expensive SQL statement in terms of CPU cost.
SELECT APPL_ID,

UOW_ID,
ACTIIVTY_ID,
USER_CPU_TIME

FROM ACTIVITY_A
ORDER BY USER_CPU_TIME

The following example shows output from this query. The application with an ID
of N2.DB2INST1.0B5A12222841 is using a large amount of CPU time.

APPL_ID UOW_ID ACTIVITY_ID USER_CPU_TIME
------------------------ -------- -------------- ---------------
*N2.DB2INST1.0B5A12222841 1 1 92782334234
*N2.DB2INST1.0B5A12725841 2 7 326

2 record(s) selected.

You can use the EXPLAIN_FROM_ACTIVITY procedure to investigate the access
plan for this activity, to determine if the activity could benefit from tuning, for
example, by adding an index.

Chapter 11. Explain routines 349

CALL EXPLAIN_FROM_ACTIVITY(’*N2.DB2INST1.0B5A12222841’, 1, 1, ’A’, ’MYSCHEMA’,
?, ?, ?, ?, ?)

Usage notes

In order to run Explain on the section of the activity, you must specify the
COLLECT ACTIVITY DATA WITH SECTION clause when you enable collection of
activity data, so that the section is collected with the activity information. If there
is no section stored with the identified activity entry, SQL20501 is returned.

If section actuals were not collected for an activity, the section explain will succeed,
but the Explain output will not include actuals information. Section actuals will not
be collected in the following cases:
v The activity specified as input was captured using the

WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored procedure. In this case, the
value of the partial_record element in the activity logical group is 1.

v The activity event monitor ACTIVITY table is missing the SECTION_ACTUALS
element.

v The section executed is a static section and it has not been rebound since
applying DB2 Version 9.7 Fix Pack 1.

v Section actuals were not enabled for the section that was captured. Section
actuals are enabled using the section_actuals database configuration parameter
or for a specific application using the WLM_SET_CONN_ENV procedure. By default,
section actuals are disabled.

Note: To verify that section actuals were collected for an activity, check whether
the SECTION_ACTUALS element in the ACTIVITY table has a length greater than
0.

Note: The section_actuals setting specified by the WLM_SET_CONN_ENV procedure
for an application takes effect immediately. Section actuals will be collected for the
next statement issued by the application.

Note: In a partitioned database environment, section actuals will be collected only
on partitions where activity data is collected. To collect actuals on all partitions,
ensure the activity is collected using the COLLECT ACTIVITY DATA ON ALL
DATABASE PARTITIONS WITH DETAILS, SECTION clause. If the user wishes to
enable collection at all partitions for a particular application, they can include the
<collect_act_partition> tag with a value of "ALL" in the second argument when
calling the WLM_SET_CONN_ENV procedure.

If no activity can be found that corresponds to the appl_id, uow_id, and activity_id
that you input, SQL20501 is returned. If multiple activities match, which may occur
if an activity was collected multiple times during execution using the
WLM_CAPTURE_ACTIVITY_IN_PROGRESS stored procedure, the most recent
entry for which a section was captured will be used for Explain.

The output parameters explain_requester, explain_time, source_name, source_schema,
and source_version comprise the key used to look up the Explain information for
the section in the Explain tables. Use these parameters with any existing Explain
tools (for example, db2exfmt) to format the explain information retrieved from the
section.

350 Administrative Routines and Views

The EXPLAIN_FROM_ACTIVITY procedure does not issue a COMMIT statement
after inserting into the Explain tables. It is the responsibility of the caller of the
procedure to issue a COMMIT.

The following elements must be present in the ACTIVITYSTMT logical group:
STMT_TEXT, ORIGINAL_STMT_TEXT, SECTION_ENV, EXECUTABLE_ID,
APPL_ID, ACTIVITY_ID, UOW_ID. If any of these elements are missing, the stored
procedure returns SQL206.

EXPLAIN_FROM_CATALOG procedure - Explain a statement using
section information from catalogs

The EXPLAIN_FROM_CATALOG procedure explains a statement using the
contents of the section obtained from the catalogs. The Explain output is placed in
the Explain tables for processing using any existing explain tools (for example,
db2exfmt).

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7, it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7, this routine will no longer work.

�� EXPLAIN_FROM_CATALOG (pkgschema , pkgname , pkgversion , sectno , explain_schema �

� , explain_requester , explain_time , source_name , source_schema , source_version) ��

The schema is SYSPROC.

Authorization

All of the following privileges and authority are required:
v EXECUTE privilege on the EXPLAIN_FROM_CATALOG procedure
v INSERT privilege on the Explain tables in the specified schema
v EXPLAIN authority

pkgschema
An input argument of type VARCHAR(128) specifying the schema of the
package containing the section to be explained. If pkgschema is null or an
empty string, SQL2032N is returned.

pkgname
An input argument of type VARCHAR(128) specifying the package containing
the section to be explained. If pkgname is null or an empty string, SQL2032N is
returned.

pkgversion
An input argument of type VARCHAR(64) specifying the version identifier for
the package containing the section to be explained. Specify an empty string if
the package has no version (a blank ' ' character if VARCHAR2 compatibility
mode is enabled). If pkgversion is null, SQL2032N is returned.

sectno
An input argument of type SMALLINT specifying the section to be explained.
If sectno is null, SQL2032N is returned.

Chapter 11. Explain routines 351

explain_schema
An optional input or output argument of type VARCHAR(128) that specifies
the schema containing the Explain tables where the explain information should
be written. If an empty string or NULL is specified, a search is made for the
explain tables under the session authorization ID and, following that, the
SYSTOOLS schema. If the Explain tables cannot be found, SQL0219N is
returned. If the caller does not have INSERT privilege on the Explain tables,
SQL0551N is returned. On output, this parameter is set to the schema
containing the Explain tables where the information was written.

explain_requester
An output argument of type VARCHAR(128) that contains the session
authorization ID of the connection in which this routine was invoked.

explain_time
An output argument of type TIMESTAMP that contains the time of initiation
for the Explain request.

source_name
An output argument of type VARCHAR(128) that contains the name of the
package running when the statement was prepared or compiled.

source_schema
An output argument of type VARCHAR(128) that contains the schema, or
qualifier, of the source of Explain request.

source_version
An output argument of type VARCHAR(64) that contains the version of the
source of the Explain request.

Example

The following example demonstrates how to explain a static statement that was
compiled and exists in the catalogs. First, you can identify the section by selecting
from the SYSCAT.STATEMENTS catalog view, for example:
SELECT pkgschema,

pkgname,
version,
Sectno

FROM SYSCAT.STATEMENTS
WHERE TEXT = 'select count(*) from syscat.tables’

This query returns the following sample output:
PKGSCHEMA PKGNAME VERSION SECTNO
---------- -------------------- --------------------- ------
NULLID SQLE2G0S 1
NULLID SQLE2G0S VERSION1 1

2 record(s) selected.

Then pass the pkgschema, pkgname, version and sectno identification information into
the EXPLAIN_FROM_CATALOG procedure, for example:
CALL EXPLAIN_FROM_CATALOG(’NULLID’, ’SQLE2G0S’, ’’, 1, ’MYSCHEMA’, ?, ?, ?, ?, ?)

Usage notes

If no section can be found corresponding to the input parameters, SQL20501 is
returned.

352 Administrative Routines and Views

The output parameters explain_requester, explain_time, source_name, source_schema,
source_version comprise the key used to look up the Explain information for the
section in the Explain tables. Use these parameters with any existing Explain tools
(for example, db2exfmt) to format the explain information retrieved from the
section.

The procedure does not issue a COMMIT statement after inserting into the Explain
tables. It is the responsibility of the caller of the procedure to issue a COMMIT.

EXPLAIN_FROM_DATA procedure - Explain a statement using the
input section

The EXPLAIN_FROM_DATA procedure explains a statement using the contents of
the input section. The Explain output is placed in the Explain tables for processing
using any existing Explain tools (for example, db2exfmt).

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7, it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7, this routine will no longer work.

�� EXPLAIN_FROM_DATA (section , stmt_text , executable_id , explain_schema �

� , explain_requester , explain_time , source_name , source_schema , source_version) ��

The schema is SYSPROC.

Authorization

All of the following privileges and authority are required:
v EXECUTE privilege on the EXPLAIN_FROM_DATA procedure
v INSERT privilege on the Explain tables in the specified schema

section
An input argument of type BLOB(134M) that contains the section to be
explained. You can obtain the section from various sources, including event
monitor tables and the catalog tables. If the input section is not a valid section,
SQL20503N is returned.

stmt_text
An optional input argument of type CLOB(2M) that contains the text of the
statement corresponding to the input section. If stmt_text is NULL, the
formatted Explain output will not contain any statement text.

executable_id
An optional input argument of type VARCHAR(32) FOR BIT DATA that
contains the executable ID used to identify the section. If executable_id is NULL,
the formatted explain output will not contain an executable ID.

explain_schema
An optional input or output argument of type VARCHAR(128) that specifies
the schema containing the Explain tables where the explain information should
be written. If an empty string or NULL is specified, a search is made for the
explain tables under the session authorization ID and, following that, the
SYSTOOLS schema. If the Explain tables cannot be found, SQL0219N is
returned. If the caller does not have INSERT privilege on the Explain tables,

Chapter 11. Explain routines 353

SQL0551N is returned. On output, this parameter is set to the schema
containing the Explain tables where the information was written.

explain_requester
An output argument of type VARCHAR(128) that contains the session
authorization ID of the connection in which this routine was invoked.

explain_time
An output argument of type TIMESTAMP that contains the time of initiation
for the Explain request.

source_name
An output argument of type VARCHAR(128) that contains the name of the
package running when the statement was prepared or compiled.

source_schema
An output argument of type VARCHAR(128) that contains the schema, or
qualifier, of the source of Explain request.

source_version
An output argument of type VARCHAR(64) that contains the version of the
source of the Explain request.

Example

Assume you have captured a number of statements using the package cache event
monitor and extracted the event monitor data (using the
EVMON_FORMAT_UE_TO_TABLE stored procedure) to a table named
PKGCACHE. Looking at the data in the table, you identify a particularly expensive
statement which has executable id
x'0100000000000000070000000000000000000000000200200811261904103698'.

You issue the EXPLAIN_FROM_DATA procedure to understand the access plan for
this statement, passing as input the section from the entry in the PKGCACHE
table. You place the Explain output in the explain tables in the MYSCHEMA
schema.
SET SERVEROUTPUT ON;

BEGIN
DECLARE EXECUTABLE_ID VARCHAR(32) FOR BIT DATA; --
DECLARE SECTION BLOB(134M); --
DECLARE STMT_TEXT CLOB(2M); --
DECLARE EXPLAIN_SCHEMA VARCHAR(128); --

DECLARE EXPLAIN_REQUESTER VARCHAR(128); --
DECLARE EXPLAIN_TIME TIMESTAMP; --
DECLARE SOURCE_NAME VARCHAR(128); --
DECLARE SOURCE_SCHEMA VARCHAR(128); --
DECLARE SOURCE_VERSION VARCHAR(128); --

SET EXPLAIN_SCHEMA = ’MYSCHEMA’; --

SELECT P.SECTION, P.STMT_TEXT, P.EXECUTABLE_ID INTO
SECTION, STMT_TEXT, EXECUTABLE_ID

FROM PKGCACHE WHERE EXECUTABLE_ID =
x’0100000000000000070000000000000000000000000200200811261904103698’; --

CALL EXPLAIN_FROM_DATA(SECTION,
STMT_TEXT,
EXECUTABLE_ID,
EXPLAIN_SCHEMA,
EXPLAIN_REQUESTER,
EXPLAIN_TIME,

354 Administrative Routines and Views

SOURCE_NAME,
SOURCE_SCHEMA,
SOURCE_VERSION); --

CALL DBMS_OUTPUT.PUT(’EXPLAIN_REQUESTER = ’); --
CALL DBMS_OUTPUT.PUT_LINE(EXPLAIN_REQUESTER); --
CALL DBMS_OUTPUT.PUT(’EXPLAIN_TIME = ’); --
CALL DBMS_OUTPUT.PUT_LINE(EXPLAIN_TIME); --
CALL DBMS_OUTPUT.PUT(’SOURCE_NAME = ’); --
CALL DBMS_OUTPUT.PUT_LINE(SOURCE_NAME); --
CALL DBMS_OUTPUT.PUT(’SOURCE_SCHEMA = ’); --
CALL DBMS_OUTPUT.PUT_LINE(SOURCE_SCHEMA); --
CALL DBMS_OUTPUT.PUT(’SOURCE_VERSION = ’); --
CALL DBMS_OUTPUT.PUT_LINE(SOURCE_VERSION); --

END;

SET SERVEROUTPUT OFF;

Usage notes

The input section can be obtained from a number of different sources:
v Activity event monitor
v Package cache event monitor
v Catalog tables
v Any user table or input source that has made a copy of the section from one of

the locations shown in the preceding list.

The output parameters explain_requester, explain_time, source_name, source_schema,
source_version comprise the key used to look up the Explain information for the
section in the Explain tables. Use these parameters with any existing Explain tools
(for example, db2exfmt) to format the explain information retrieved from the
section.

The procedure does not issue a COMMIT after inserting into the Explain tables. It
is the responsibility of the caller of the procedure to issue a COMMIT.

EXPLAIN_FROM_SECTION procedure - Explain a statement using
package cache or package cache event monitor information

The EXPLAIN_FROM_SECTION procedure explains a statement using the contents
of the section obtained from the package cache or from the package cache event
monitor. The Explain output is placed in the Explain tables for processing using
any existing explain tools (for example, db2exfmt).

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7, it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7, this routine will no longer work.

�� EXPLAIN_FROM_SECTION �

� (executable_id , section_source_type , section_source_name , member , explain_schema �

� , explain_requester , explain_time , source_name , source_schema , source_version) ��

The schema is SYSPROC.

Chapter 11. Explain routines 355

Authorization

All of the following privileges and authority are required:
v EXECUTE privilege on the EXPLAIN_FROM_SECTION procedure
v INSERT privilege on the Explain tables in the specified schema
v SELECT privilege on the package cache event monitor table, if the section source

name identifies a package cache event monitor

executable_id
An input argument of type VARCHAR(32) FOR BIT DATA that uniquely
identifies a section to be explained. If this argument is null or an empty string,
SQL2032 is returned.

section_source_type
An input argument of type CHAR(1) that specifies the source of the section to
be explained. Valid values are:
v M - Section is obtained from the in-memory package cache
v P - Section is obtained from a package cache event monitor

For static SQL, if the section_source_type is M and the section cannot be located
in the package cache, the catalog tables are searched for the section.

section_source_name
An input argument of VARCHAR(128) that specifies the name of a package
cache event monitor if the section_source_type is P. If the section_source_type is
M, the name of a package cache event monitor can be optionally specified. The
event monitor is searched for the section if the section cannot be found in the
package cache (for example, if the section was flushed from the package cache
before the EXPLAIN_FROM_SECTION stored procedure was invoked). If the
source input event monitor is not a package cache event monitor created with
the COLLECT DETAILED DATA option, SQL0204N is returned. If the caller
does not have SELECT privilege on the package cache event monitor table,
SQL0551N is returned.

member
An input argument of type INTEGER that specifies the member where the
section to be explained resides in memory if the section_source_type is M. If -1 is
specified, the procedure searches for the section on the current coordinator
member and the section compilation member. This argument is ignored if the
section_source_type is anything other than M.

explain_schema
An optional input or output argument of type VARCHAR(128) that specifies
the schema containing the Explain tables where the explain information should
be written. If an empty string or NULL is specified, a search is made for the
explain tables under the session authorization ID and, following that, the
SYSTOOLS schema. If the Explain tables cannot be found, SQL0219N is
returned. If the caller does not have INSERT privilege on the Explain tables,
SQL0551N is returned. On output, this parameter is set to the schema
containing the Explain tables where the information was written.

explain_requester
An output argument of type VARCHAR(128) that contains the session
authorization ID of the connection in which this routine was invoked.

explain_time
An output argument of type TIMESTAMP that contains the time of initiation
for the Explain request.

356 Administrative Routines and Views

source_name
An output argument of type VARCHAR(128) that contains the name of the
package running when the statement was prepared or compiled.

source_schema
An output argument of type VARCHAR(128) that contains the schema, or
qualifier, of the source of Explain request.

source_version
An output argument of type VARCHAR(64) that contains the version of the
source of the Explain request.

Example

This example shows how to identify and analyze a particularly expensive
statement in the package cache by looking at the monitoring metrics available per
section. First, issue a query similar to the following SELECT statement to
determine the CPU time usage of sections.
SELECT executable_id,

Total_cpu_time,
Varchar(stmt_text, 100) as stmt_text

FROM TABLE(MON_GET_PKG_CACHE_STMT (NULL, NULL,NULL, -1)) AS T

The following sample shows output from this query.
EXECUTABLE_ID TOTAL_CPU_TIME ...
-------------- -------------- ...
x’010000000000000012...200200811261904103698’ 91875622 ...
x’010000000000000007...200200811261904103238’ 300 ...

2 record(s) selected.

The following sample continues the output from this query.
...STMT_TEXT
...----------------------
...SELECT * FROM SYSCAT.TABLES
...INSERT INTO T1 VALUES(123)

2 record(s) selected.

To examine the access plan for the expensive SELECT statement, pass its
executable_id to the EXPLAIN_FROM_SECTION procedure. Place the output in the
Explain tables in the MYSCHEMA schema.
CALL EXPLAIN_FROM_SECTION

(x’01000000000000001200000000000000000000000200200811261904103698’,
’M’, NULL, 0, ’MYSCHEMA’, ?, ?, ?, ?, ?)

Usage notes

If the section corresponding to the input executable ID cannot be found, SQL20501
is returned. The input executable_id can be obtained from the following sources
v Activity event monitor
v Package cache event monitor
v MON_GET_ACTIVITY_DETAILS table function
v MON_GET_PKG_CACHE_STMT table function
v WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES_V97 table function
v WLM_GET_SERVICE_CLASS_AGENTS_V97 table function
v MON_GET_PKG_CACHE_STMT_DETAILS table function

Chapter 11. Explain routines 357

v MON_GET_APPL_LOCKWAIT table function

The output parameters explain_requester, explain_time, source_name, source_schema,
source_version comprise the key used to look up the information for the section in
the Explain tables. Use these parameters with any existing Explain tools (for
example, db2exfmt) to format the explain information retrieved from the section.

The procedure does not issue a COMMIT statement after inserting into the Explain
tables. It is the responsibility of the caller of the procedure to issue a COMMIT.

358 Administrative Routines and Views

Chapter 12. Monitor routines and views

Monitor table functions and views are routines with names that begin with
"MON", such as MON_GET_SERVICE_SUBCLASS. These table functions and
views provide access to monitor elements that are available from the monitoring
infrastructure introduced in DB2 Version 9.7. Certain other routines, such as
snapshot functions, also return monitoring information.

The "MON" routines are strategically important, therefore the names of these
routines will not change in future releases. However, they will have new output
columns added when enhancements are made in future releases. Therefore, when
you issue a query to retrieve information using a built-in routine or view, do not
use a statement of the form SELECT * Instead, name the result columns in the
SELECT statement. This gives the application control over the number of result
columns and the sequence in which they are returned.

Monitor (MON) table functions

All table functions include a common set of monitor elements. These elements
provide information about a diverse set of system performance indicators that can
affect application response time. You can also obtain monitor data for a subset of
the workload you are interested in.

Some monitor table functions report on various aspects of the overall system
workload, for example:
v MON_GET_CONNECTION and MON_GET_CONNECTION_DETAILS
v MON_GET_SERVICE_SUBCLASS and

MON_GET_SERVICE_SUBCLASS_DETAILS
v MON_GET_UNIT_OF_WORK and MON_GET_UNIT_OF_WORK_DETAILS
v MON_GET_WORKLOAD and MON_GET_WORKLOAD_DETAILS

These table functions have two versions, one of which has a _DETAILS suffix. The
version without the _DETAILS suffix provides a relational SQL interface that
returns the most commonly used data. The version with the _DETAILS suffix
provides XML-based access to the monitor data, and returns a more
comprehensive data set.

Other table functions return data for a specific type of data object, for example:
v MON_GET_APPL_LOCKWAIT
v MON_GET_BUFFERPOOL
v MON_GET_CONTAINER
v MON_GET_INDEX
v MON_GET_LOCKS
v MON_GET_TABLE
v MON_GET_TABLESPACE
v MON_GET_PKG_CACHE_STMT

Use these table functions to investigate performance issues associated with a
particular data object.

© Copyright IBM Corp. 2006, 2012 359

The following table functions, which return data about fast communication
manager (FCM), have been added with the Version 9.7 Fix Pack 2 release:
v MON_GET_FCM
v MON_GET_FCM_CONNECTION_LIST

Other table functions are useful for examining details of individual activities and
statements:
v MON_GET_ACTIVITY_DETAILS returns details for a specific activity currently

running on the system; these details include general activity information (like
statement text) and a set of metrics.

In addition, this table function serves a progress monitoring role:
v MON_GET_EXTENT_MOVEMENT_STATUS returns the status of the extent

movement operation.

The table functions that begin with MON_FORMAT_ return information in an
easy-to-read row-based format. The MON_FORMAT_LOCK_NAME takes the
internal binary name of a lock and returns detailed information about the lock. The
table functions that begin with MON_FORMAT_XML_ take as input an XML
metrics document returned by one of the MON_GET_*_DETAILS table functions
(or from the output of statistics, activity, unit of work, or package cache event
monitors) and returns formatted row-based output.
v MON_FORMAT_XML_COMPONENT_TIMES_BY_ROW returns formatted

row-based output on component times.
v MON_FORMAT_XML_METRICS_BY_ROW returns formatted row-based output

for all metrics.
v MON_FORMAT_XML_TIMES_BY_ROW returns formatted row-based output on

the combined hierarchy of wait and processing times.
v MON_FORMAT_XML_WAIT_TIMES_BY_ROW table function returns formatted

row-based output on wait times.

Characteristics of monitor (MON) table functions
v The metrics returned by the monitoring table functions are never reset. They

start at 0 when the database is activated and continue to accumulate until the
database is deactivated.

v With most table functions, you can choose to receive data for a single object (for
example, service class "A") or for all objects.

v As with most table functions, when using these table functions in a partitioned
database environment, you can choose to receive data for a single partition or
for all partitions. If you choose to receive data for all partitions, the table
functions return one row for each partition. You can add the values across
partitions to obtain the value of a monitor element across partitions.

Monitor (MON) views

The monitor views return metrics on various database activities, for example:
v MON_CURRENT_SQL returns metrics for all activities that were submitted on

all members of the database and have not yet been completed, including a
point-in-time view of currently executing SQL statements.

v MON_DB_SUMMARY returns metrics aggregated over all service classes.
v MON_LOCKWAITS returns information about agents working on behalf of

applications that are waiting to obtain locks in the currently connected database.

360 Administrative Routines and Views

v MON_SERVICE_SUBCLASS_SUMMARY returns metrics for all service
subclasses, showing work executed per service class.

v MON_CURRENT_UOW returns metrics for all units of work.
v MON_WORKLOAD_SUMMARY returns metrics for all workloads, showing

incoming work per workload.

Event monitor (EVMON) routines

The DB2 Version 9.7 release also introduces two new routines whose purpose is
somewhat different than the other "MON" table functions. These routines extract
and format data from event monitors that write events to an unformatted event
table. The LOCKING and UNIT OF WORK event monitor types use unformatted
event tables. The routines names are as follows:
v EVMON_FORMAT_UE_TO_XML table function
v EVMON_FORMAT_UE_TO_TABLES procedure

These routines allow you to access event monitor data, either through an XML
document, by using the EVMON_FORMAT_UE_TO_XML table function; or
through relational tables, by using the EVMON_FORMAT_UE_TO_TABLES
procedure.

EVMON_FORMAT_UE_TO_TABLES procedure - move an XML
document to relational tables

The EVMON_FORMAT_UE_TO_TABLES procedure retrieves data stored in an
unformatted event (UE) table produced by an event monitor and converts it into a
set of relational tables.

The process of creating relational tables takes place in two steps. First the data in
the UE table is converted to XML format, using the
EVMON_FORMAT_UE_TO_XML table function. This table function is run for you
automatically as part of running the EVMON_FORMAT_UE_TO_TABLES
procedure. Next, the XML document that contains the event monitor data is turned
into relational tables using XML decomposition.

Syntax

�� EVMON_FORMAT_UE_TO_TABLES (evmon_type , xsrschema , �

� xsrobjectname , xmlschemafile , tabschema , �

� tbsp_name , options , commit_count , fullselect) ��

The schema is SYSPROC.

Table function parameters

evmon_type
An input parameter of type VARCHAR(128) that represents the type of data
stored in the unformatted event table. The possible values are as follows:

LOCKING
Data stored in the unformatted event table is from a locking event
monitor.

Chapter 12. Monitor routines and views 361

PKGCACHE
Data stored in the unformatted event table is from a PACKAGE
CACHE event monitor.

UOW Data stored in the unformatted event table is from a UOW event
monitor.

xsrschema
An input parameter of type VARCHAR (128) that specifies the first-part of the
name of the XSR object that describes how data from the UE file corresponds
to columns in tables. The second-part of the XSR object name is derived from
the xsrobjectname parameter. The complete XSR object name is defined as
xsrschema.xsrobjectname. If this value is NULL, then the authorization ID of the
current session user is used.

xsrobjectname
An input parameter of type VARCHAR (128) that specifies the second-part of
the name of the XSR object that describes how data from the UE file
corresponds to columns in tables. The first-part of the XSR object name is
derived from the xsrschema parameter. The complete XSR object name is
defined as xsrschema.xsrobjectname and is unique among all objects in the XSR.
If this value is NULL then the xsrobjectname is derived as follows:
EVMON_<evmon_type>_SCHEMA_<SQL release level>. For example, a locking
event monitor in DB2 Version 9.7 would have a derived xsrname of
EVMON_LOCKING_SCHEMA_SQL09070.

The XSR object is a copy of the XML schema file that describes the output of
the event monitor. It is stored in the XML schema repository (XSR), and defines
the relationship between the elements of the interim XML document produced
by the first stage of EVMON_FORMAT_UE_TO_TABLES processing, and the
tables and columns the procedure ultimately produces. The XSR object is also
used to manage the mutual dependency between any tables that have been
created and the XML schema from which those tables are derived. If the XSR
object is dropped, or if any of the tables produced by the procedure are
dropped or the columns altered, the dependency between the two is said to be
broken. If EVMON_FORMAT_UE_TO_TABLES (or the
EVMON_FORMAT_UE_TO_XML table function) has not yet been run against
the UE file for a specific type of event monitor, the XSR object that describes
the event monitor output will not yet exist. In this case, the XML schema file
for the event monitor is used to create and register an XSR object in the system
catalog tables.

xmlschemafile
An input parameter of type VARCHAR (1024) that is a fully qualified path to
the XML schema document on disk that describes the output produced by the
event monitor. The XML schema document elements are annotated with
information that maps XML elements and attributes to the relational tables and
their columns.

This parameter is used register an XSR object. If there is no XSR object
registered and enabled for the type of event monitor specified in evmon_type,
then an XSR object is registered as follows:
v If xmlschemafile is NULL, then the procedure uses the XML schema file on

disk that corresponds to value specified for evmon_type, as follows:

LOCKING
sqllib/misc/DB2EvmonLocking.xsd

PKGCACHE
sqllib/misc/DB2EvmonPkgCache.xsd

362 Administrative Routines and Views

UOW sqllib/misc/DB2EvmonUOW.xsd

v If you specify the name of an XML schema file, then that file is used to
register and enable the XSR object for decomposition.

v If you specify values for the xsrschema and xsrobjectname parameters, then
XSR object is created with these names. Otherwise, the XSR object is named
as using the defaults previously described for xsrobjectname.

Important: If an XSR object has previously been registered and is enabled for
decomposition, this parameter is ignored. If you want to register an XSR object
using a different XML schema file, you must first drop the existing XSR object.

tabschema
An input parameter of type VARCHAR (128) that represents the SQL schema
name where the event monitor relational tables are created. If this value is
NULL, then the authorization ID of the current session user is used. The SQL
schema under which the tables are created is determined as follows:
v If <db2-xdb:SQLSchema> is specified, use this schema;
v If <db2-xdb:defaultSchema> is specified, use this schema;
v If neither of these values is specified, use the value from the sqlschema input

parameter.

Note: When an XML schema is registered for decomposition, the XSR schema
repository creates a dependency between each table referenced in the schema
and the XSR object that corresponds to this schema. Which means the XSR
object name is linked to a unique set of relational tables in the database. If you
reference an existing XSR object, its data is always decomposed and inserted
into the tables to which the XSR object was linked.

tbsp_name
An input parameter of type VARCHAR(128) that indicates the table space
where the relational tables are created. The default value for this parameter is
NULL. The table space name specified on the CREATE TABLE statement
within the XML schema file takes precedence over this input parameter.

options
An input parameter of type VARCHAR(1024) which represents a list of
keyword options supported by this table function. Each option must be
delimited using a semicolon (;) character. The possible values are:

RECREATE_FORCE
Indicates that the relational tables are dropped and re-created before
decomposition.

RECREATE_ONERROR
Indicates that the relational tables are dropped and re-created in the
following situations:
1. If the XSR object is not registered, but the tables exist.
2. On the first failed decomposition attempt. Subsequent failures are

returned, and no attempts are made to re-create the tables.

If an error occurs, for example, a table space full error or an
authorization error, the procedure does not filter the SQLCODE
returned by the decomposition procedure. The procedure treats all
negative SQLCODES equally and tries to re-create the tables.

commit_count
An input parameter of type INTEGER. The possible values are as follows:

Chapter 12. Monitor routines and views 363

-1 Commit after every 100 successful documents decomposed.-1 is the
default value.

0 Never commit.

n Commit after every n documents successfully decomposed.

fullselect
An input parameter of type CLOB(2M) that represents the fullselect statement
from an unformatted event table. The fullselect statement is a query that
conforms to the rules of the SELECT statement. The query must follow the
following rules:
v The query must use the "*" clause or specify all the columns of the

unformatted event table. Otherwise an error is returned. The columns must
be specified in the same order as returned by the DESCRIBE statement of
the unformatted event table.

v The query must select only from an unformatted event table.
v The WHERE clause can use any of the non-LOB columns of the unformatted

event table to filter out events.

Authorization

EXECUTE privilege on the EVMON_FORMAT_UE_TO_TABLES stored procedure.

SELECT privilege on the unformatted event table, if you did not create it.

CREATE privilege to create the relational tables in the specified SQL schema.

INSERT privilege to insert into the relational tables, if you did not create them.

All privileges required by the XDB_DECOMP_XMP_FROM_QUERY procedure.

Usage notes

Relationship of records in a UE table to the output of the
EVMON_FORMAT_UE_TO_TABLES table function

There is not a one-to-one mapping between the records written to the UE table and
the output of the EVMON_FORMAT_UE_TO_TABLES procedure. Some events
generate multiple records in the UE table; some result in just one record being
added. When writing data to relational tables, the
EVMON_FORMAT_UE_TO_TABLES procedure might, in some cases combine
information in multiple UE table records into a single relational table, or it may
produce more than one row in different output tables.

Table creation

In order for decomposition to occur, a set of relational tables must exist. The
EVMON_FORMAT_UE_TO_TABLES procedure creates the relational tables
automatically, as follows:
v The procedure parses the event monitor XML schema file to find the

<db2–mon:createStmt> elements. Each element contains a complete CREATE
TABLE statement.

v The procedure extracts and runs the CREATE TABLE statements.

364 Administrative Routines and Views

The <db2–mon:createStmt> is a child element of the existing <db2–xdb:table>
element. Only the EVMON_FORMAT_UE_TO_TABLES procedure recognizes and
uses this element. All other procedures that parse the XML schema file, such as the
XSR objects, ignore this element.

Do not qualify the table name within the <db2–mon:createStmt>.

XML schema files from release to release

The default XML schema files provided by each event monitor always reflects the
XML schema for the current release. So, when you run
EVMON_FORMAT_UE_TO_TABLES (or EVMON_FORMAT_UE_TO_XML), the
output reflects the monitor elements defined for that event monitor in that release.
The next section describes what happens if the schema files for the event monitors
happen to change over time. Understanding the impact of these changes is
important if you create tables using the EVMON_FORMAT_UE_TO_TABLES
procedure, and then apply a fix pack or upgrade to a new release.

Impact of schema updates on tables produced by
EVMON_FORMAT_UE_TO_TABLES

New monitor elements are likely to be added to event monitors in future fix packs
or releases. These new monitor elements might result in new columns or even new
tables being produced by the EVMON_FORMAT_UE_TO_TABLES procedure.
However, if you already have tables that were created by this procedure before a
fix pack was applied, or before upgrading to a new release, you need to do the
following to have the new relational columns or tables created:

For fix pack updates
If relational tables produced by EVMON_FORMAT_UE_TO_TABLES before
the installation of the latest fix pack still exist, you must force the creation
of a new set of tables based on the new schema shipped in the fix pack if
you want to see the new monitor elements in relational format.

To force the EVMON_FORMAT_UE_TO_TABLES procedure to use the new
schema shipped in the fix pack and create new tables, perform the
following steps:
1. Break the dependency between the currently registered version of the

XML schema (see the note under the tabschema parameter of the
EVMON_FORMAT_UE_TO_TABLES procedure for more information
about schema registration) and the existing tables by performing one of
the following actions:
v Drop one of the existing tables that were produced by

EVMON_FORMAT_UE_TO_TABLES
v Drop the registered XML schema object associated with the existing

tables using the DROP XSROBJECT statement. For example, to drop
the registered XML schema object associated with the tables
produced by EVMON_FORMAT_UE_TO_TABLES for the locking
event monitor for DB2 V9.7, use the following command: DROP
XSROBJECT EVMON_LOCKING_SCHEMA_SQL09070.

v Alter any existing column that corresponds to an annotated monitor
element in the currently registered XML schema object.

2. Run the EVMON_FORMAT_UE_TO_TABLES procedure, using the
FORCE option. This option causes the old tables to be dropped, and a
new set of tables to be produced. If you omit this option, a SQL0601N
error is returned.

Chapter 12. Monitor routines and views 365

This process is illustrated in “Example 5: Picking up new elements in a fix
pack update” on page 368.

If you do not perform the preceding steps, existing tables are updated
based on the previously registered schema file. Any new columns or tables
that might have been added in the fix pack are not reflected in the output
of the EVMON_FORMAT_UE_TO_TABLES procedure.

For release upgrades
Unless you specify otherwise, the default version of the XML schema file
for the current release is used when you call the
EVMON_FORMAT_UE_TO_TABLES procedure. So, if you upgrade to a
new release of the DB2 product, then, by default, the new version of the
schema file is used when you run the procedure.

If tables from the previous release do not exist,
EVMON_FORMAT_UE_TO_TABLES produces tables using the most recent
schema. However, if tables from the previous release exist, you must use
the FORCE or RECREATE_ONERROR options to cause the old tables to be
replaced by new ones. Otherwise, a SQL0601N error is returned. “Example
6: Picking up new elements in a release update” on page 369 shows an
example of recreating the tables using the default schema for a new
release.

Alternatively, you can continue to use the existing tables, without adding
any new columns or tables that might have been introduced in the latest
release. To have the existing tables updated, you must specify the name of
the registered XML schema file that was used to create the tables for the
xsrobjectname parameter of the EVMON_FORMAT_UE_TO_TABLES
procedure. “Example 7: Using the previous relational tables on a release
update” on page 369 shows an example of using the schema from a
previous release.

Note: You cannot pick up any new columns or tables introduced in fix packs or in
new releases while retaining the data that was previously in the relational tables
produced by EVMON_FORMAT_UE_TO_TABLES. Picking up any new columns
requires the tables to be re-created.

Partial events

If partial or incomplete events exist in the UE table, a message (SQL443N) is
returned when you run EVMON_FORMAT_UE_TO_TABLES. Incomplete events
can occur when an agent finishes processing before the entire event record can be
inserted in to the UE table. This situation can sometimes arise where locking is
involved, particularly in partitioned database environments. For example, when
the LOCKWAIT threshold is exceeded, details about the holder of the lock are
written to the UE table. However, details about agents waiting for a lock on the
same object are not captured until the lock times out or the waiter acquires the
lock. If EVMON_FORMAT_UE_TO_TABLES is run before the agent waiting for the
lock has written its information, then only a part of the information about the lock
might exist in the UE table.

To see details about the incomplete events, run EVMON_FORMAT_UE_TO_XML
with the LOG_PARTIAL_EVENTS option.

366 Administrative Routines and Views

Examples
v “Example 1: Using default parameters”
v “Example 2: Attempting to use tables under a different schema”
v “Example 3: Attempting to use tables under a different schema”
v “Example 4: Using the RECREATE_FORCE option” on page 368
v “Example 5: Picking up new elements in a fix pack update” on page 368
v “Example 6: Picking up new elements in a release update” on page 369
v “Example 7: Using the previous relational tables on a release update” on page

369

Example 1: Using default parameters

A user named Paul calls the procedure using the default parameters and requires
all events that are part of the service class STUDENTS to be inserted into the
relational tables.
EVMON_FORMAT_UE_TO_TABLES (

’UOW’, NULL, NULL, NULL, NULL, NULL, NULL, -1,
’SELECT * FROM UOWUE

WHERE service_subclass_name = ’STUDENTS’
ORDER BY event_id, event_timestamp’)

The results of the call are as follows:
1. The procedure parses the DB2EvmonUOW.xsd file, which is the default XML

schema file, to identify the set of relational tables to create.
2. The relational tables are created under SQL schema Paul.
3. The XML schema is registered with an XSR object name of

PAUL.EVMON_UOW_SCHEMA_SQL09070

4. XSR object is enabled for decomposition.
5. Data is decomposed and inserted into the tables under SQL schema Paul.

Example 2: Attempting to use tables under a different schema

In a continuation of the previous example, a user named Dave calls the stored
procedure, setting the tabschema parameter to Paul.
EVMON_FORMAT_UE_TO_TABLES (

’UOW’, NULL, NULL, NULL, ’Paul’, NULL, NULL, -1,
’SELECT * FROM UOWTBLE

ORDER BY event_timestamp’)

The results of the call are as follows:
1. The procedure parses the DB2EvmonUOW.xsd file, which is the default XML

schema file, to identify the set of relational tables to create.
2. The procedure attempts to create the tables under schema Paul. However, an

error is returned because the relational tables currently exist under the SQL
schema PAUL. Previously existing tables cannot be used when a new XSR
object is being registered.

Example 3: Attempting to use tables under a different schema

In a continuation of the previous example, a user named Greg calls the stored
procedure setting the input parameter xsrschema to Paul.

Chapter 12. Monitor routines and views 367

EVMON_FORMAT_UE_TO_TABLES (
’UOW’, ’Paul’, NULL, NULL, NULL, NULL, NULL, -1,
’SELECT * FROM UOWTBL

ORDER BY event_timestamp’)

The results of the call are as follows:
1. The XSR object Paul.EVMON_UOW_SCHEMA_SQL09070, which exists, is enabled for

decomposition.
2. If Greg has INSERT privileges on the tables, then data is decomposed and

inserted into the relational tables under SQL schema Paul. The existing XSR
object Paul.EVMON_UOW_SCHEMA_SQL09070 is used, so the SQL schema for the
relational tables is obtained from the XSR object, instead of being provided as
an input parameter to the procedure.

Example 4: Using the RECREATE_FORCE option

In a continuation of the previous example, Paul wants to re-create the tables again,
but in table space MYSPACE. Paul calls the procedure with the
RECREATE_FORCE option and the tbsp_name parameter.
EVMON_FORMAT_UE_TO_TABLES (

’UOW’, NULL, NULL, NULL, NULL, ’MYSPACE’, ’RECREATE_FORCE’, -1,
’SELECT * FROM UOWTBL

ORDER BY event_timestamp’)

The results of the call are as follows:
1. The XSR object Paul.EVMON_UOW_SCHEMA_SQL09070, which exists, is enabled for

decomposition.
2. The RECREATE_FORCE option is set.
3. The XML schema file is retrieved from the schema repository and parsed to

identify the set of relational files.
4. The current tables are dropped and created again in the MYSPACE table space.
5. Data is decomposed and inserted into the new tables.

Example 5: Picking up new elements in a fix pack update

A new XML element called “db2EventNew” has been added to the XML schema
file of the locking event monitor in the latest fix pack. Paul wants to pick up the
new element to use in the decomposition of an XML file. To do so, he follows the
following steps:
1. Paul drops the XSR object created in the original release:

DROP XSROBJECT EVMON_LOCKING_SCHEMA_SQL09070

2. He calls the procedure with the RECREATE_ONERROR option.
EVMON_FORMAT_UE_TO_TABLES (

’LOCKING’, NULL, NULL, NULL, NULL, NULL, ’RECREATE_ONERROR’, -1,
’SELECT * FROM LOCK

ORDER BY event_timestamp’)

The results of the call are as follows:
a. The XSR object does not exist, so the default DB2EvmonLocking.xsd schema

file is parsed to identify the set of relational tables.
b. As the RECREATE_ONERROR option was specified, the existing tables are

dropped and re-created.

368 Administrative Routines and Views

Example 6: Picking up new elements in a release update

Paul is upgrading to a new DB2 release and wants to pick up the new changes in
the event monitor XML schema file. Paul calls the procedure with the
RECREATE_ONERROR option.
EVMON_FORMAT_UE_TO_TABLES (

’LOCKING’, NULL, NULL, NULL, NULL, NULL, ’RECREATE_ONERROR’, -1,
’SELECT * FROM LOCK

ORDER BY event_timestamp’)

The results of the call are as follows:
1. The XSR object Paul.EVMON_LOCKING_SCHEMA_SQL1000 does not exist.
2. As the RECREATE_ONERROR option was specified, the tables are dropped and

re-created.

Example 7: Using the previous relational tables on a release
update

Greg has upgraded to a new DB2 release and does not want to pick up the new
changes in the event monitor XML schema file. Greg calls the procedure with the
xsrobjectname value from the previous release.
EVMON_FORMAT_UE_TO_TABLES (

’LOCKING’, NULL, ’EVMON_LOCKING_SCHEMA_SQL09070’, NULL, NULL, NULL, NULL, -1,
’SELECT * FROM LOCK

ORDER BY event_timestamp’)

Information returned

There is no output from the procedure except the SQLCA. The SQLCA indicates
the completion status. The possible SQLCODES are:

0 All events were successfully inserted into the relational tables.

16278 One or more events were not inserted into the relational tables. The tokens
within the SQLCA contain the total number of documents that were
attempted and the total number of documents that succeeded
decomposition.

A diagnostic file is also created; and the name and location of that
diagnostic file is stored in the db2diag log files, located in the DB2
diagnostic path.

negative sqlcode
An error has occurred, and investigating the SQLCODE message can
provide additional details regarding the failure. For additional diagnostic
messages, see the db2diag log files located in the DB2 diagnostic path.

EVMON_FORMAT_UE_TO_XML table function - convert unformatted
events to XML

The EVMON_FORMAT_UE_TO_XML table function extracts binary events from an
unformatted event table and formats them into an XML document.

Syntax

�� EVMON_FORMAT_UE_TO_XML (options , �

Chapter 12. Monitor routines and views 369

� FOR EACH ROW OF (fullselect-statement)) ��

The schema is SYSPROC.

Table function parameters

options
An input argument of type VARCHAR(1024) that represents a list of keyword
options supported by this table function.

LOG_TO_FILE
Indicates that the table function is to write the XML document to a file
if the XML document is greater than 100 MB. The maximum size of
each document returned by this table function per row is 100 MB. The
file is written to the <xml_document_id>.xml file, where
<xml_document_id> is the unique ID generated for each document. The
output file is written to the DB2 diagnostic path directory.

LOG_PARTIAL_EVENTS
Indicates that the table function is to write all partial (incomplete)
events to a file. See the “Usage notes” on page 371“Usage notes” on
page 371 section of this topic for more information about partial
events.

NULL No options selected.

fullselect-statement
The fullselect statement is a query that conforms to the rules of the SELECT
statement. The query must follow the following rules:
v The query must use the "*" clause or specify all the columns of the

unformatted event table. Otherwise an error is returned. The columns must
be specified in the same order as returned by the DESCRIBE statement of
the unformatted event table.

v The query must select only from an unformatted event table.
v The WHERE clause can use any of the non-LOB columns of the unformatted

event table to filter out events.
v The SELECT statement must be specified by the keyword FOR EACH

ROWS OF, enclosed in brackets.

Authorization

EXECUTE privilege on the EVMON_FORMAT_UE_TO_XML function.

SELECT privilege on the unformatted event table.

Examples

Example 1: Query all events from the unformatted event table “MYLOCKS”.
SELECT evmon.* FROM TABLE (

EVMON_FORMAT_UE_TO_XML (
NULL,
FOR EACH ROW OF (

select * from MYLOCKS
order by EVENT_TIMESTAMP)))

AS evmon;

370 Administrative Routines and Views

Example 2: Query all events of type “LOCKWAIT” that have occurred in the last 5
hours from the unformatted event table “LOCK”.
SELECT evmon.* FROM TABLE (

EVMON_FORMAT_UE_TO_XML (
NULL,
FOR EACH ROW OF (

select * from LOCK order by EVENT_TIMESTAMP
where EVENT_TYPE = ’LOCKWAIT’
and EVENT_TIMESTAMP >= CURRENT_TIMESTAMP – 5 hours)))

AS evmon;

Example 3: Get all events that belong to workload “PAYROLL” that occurred in the
last 32 hours from the unformatted event table “UOW”. Write the result to a file if
any document is greater than 100 MB.
SELECT evmon.* FROM TABLE (

EVMON_FORMAT_UE_TO_XML(
’LOG TO FILE’,
FOR EACH ROW OF (

select * from UOW order by EVENT_TIMESTAMP
where WORKLOAD_NAME = ’PAYROLL’
and EVENT_TIMESTAMP = CURRENT_TIMESTAMP - 32 hours)))

AS evmon;

Example 4: Query all unit of work events from the “UOWEVMON” table, and use
the XMLTABLE table function to present the UOW ID, UOW start and stop times,
and the user ID for the person who issued the unit of work.
SELECT EVENT.UOW_ID, EVENT.APPLICATION_ID, EVENT.SESSION_AUTHID,

EVENT.START_TIME, EVENT.STOP_TIME
FROM TABLE(

EVMON_FORMAT_UE_TO_XML(
’LOG TO FILE’,
FOR EACH ROW OF(

select * from UOWEVMON)))
AS UEXML,
XMLTABLE(

XMLNAMESPACES(DEFAULT ’http://www.ibm.com/xmlns/prod/db2/mon’),
’$uowevent/db2_uow_event’
PASSING XMLPARSE(DOCUMENT UEXML.XMLREPORT) as "uowevent"
COLUMNS UOW_ID INTEGER PATH ’uow_id’,
MEMBER SMALLINT PATH ’@member’,
APPLICATION_ID VARCHAR(128) PATH ’application_id’,
SESSION_AUTHID VARCHAR(128) PATH ’session_authid’,
START_TIME TIMESTAMP PATH ’start_time’,
STOP_TIME TIMESTAMP PATH ’stop_time’

)
AS EVENT

Usage notes

Impact of the EVMON_FORMAT_UE_TO_XML table function on memory usage

Depending on the event monitor type that produced the UE table, the
EVMON_FORMAT_UE_TO_XML table function might map multiple records from
the unformatted event table into a single event. In such a case, the records are
cached in memory until all the records that make up the event are received. A
larger memory requirement might result if the records passed into the table
function are not in the order they were created and inserted into the table. If the
records are not sorted in this manner, the table function must cache records for
multiple events. To avoid this issue, qualify the fullselect-statement parameter with
an ORDER BY clause that contains the following columns: EVENT_ID,

Chapter 12. Monitor routines and views 371

EVENT_TIMESTAMP, EVENT_TYPE, and MEMBER. Memory consumption is
reduced because at any particular time, the table function is processing and
caching records from only a single event.

Relationship of records in a UE table to the output of the
EVMON_FORMAT_UE_TO_XML table function

There is not a one-to-one mapping between the records written to the UE table and
the output of the EVMON_FORMAT_UE_TO_XML table function. Some events
generate multiple records in the UE table; some result in just one record being
added. The EVMON_FORMAT_UE_XML table function always combines all
records from a UE table that describe a single event into one XML document.

Partial events

If partial or incomplete events exist in the UE table, a message (SQL443N) is
returned when you run EVMON_FORMAT_UE_TO_XML, whether or not you
specify the LOG_PARTIAL_EVENTS option. Incomplete events can occur when an agent
finishes processing before the entire event record can be inserted in to the UE
table. This situation can sometimes arise where locking is involved, particularly in
partitioned database environments. For example, when the LOCKWAIT threshold
is exceeded, details about the holder of the lock are written to the UE table.
However, details about agents waiting for a lock on the same object are not
captured until the lock times out or the waiter acquires the lock. If
EVMON_FORMAT_UE_TO_XML is run before the agent waiting for the lock has
written its information, then only a part of the information about the lock might
exist in the UE table.

When you specify the LOG_PARTIAL_EVENTS option, incomplete events in the UE
table are written to a separate XML document. In addition, a message is written to
the db2diag.log file indicating that an incomplete event took place. The message
specifies the file name of the XML document that contains details about the
incomplete event. The XML documents produced can be formatted using the
db2evmonfmt tool.

Information returned

Table 99. Information returned for EVMON_FORMAT_UE_TO_XML.

Column Name Data Type Description or corresponding monitor element

XMLID VARCHAR(1024) A unique document ID. The ID is derived as
follows:<event_header>_<event_id>_<event_type>_
<event_timestamp>_<partition>

XMLREPORT BLOB(100M) An XML document containing a single complete
event. Each document has a maximum size of 100
MB.

MON_BP_UTILIZATION - Retrieve metrics for bufferpools
The MON_BP_UTILIZATION administrative view returns key monitoring metrics,
including hit ratios and average read and write times, for all buffer pools and all
database partitions in the currently connected database. It provides information
that is critical for performance monitoring, because it helps you check how
efficiently you are using your buffer pools.

372 Administrative Routines and Views

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7 , it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7 , this routine will no longer work.

Authorization

One of the following authorizations is required:
v SELECT privilege on the MON_BP_UTILIZATION administrative view
v CONTROL privilege on the MON_BP_UTILIZATION administrative view

Information returned

Table 100. Information returned by the MON_BP_UTILIZATION administrative view

Column name Data type
Description or Monitor
element

BP_NAME VARCHAR(128) bp_name - Buffer pool name

MEMBER SMALLINT member - Database member

DATA_PHYSICAL_READS BIGINT Indicates the number of data
pages read from the table
space containers (physical)
for temporary as well as
regular and large table
spaces. This is calculated as
(pool_data_p_reads +
pool_temp_data_p_reads)
where pool_data_p_reads and
pool_temp_data_p_reads
represent the following
monitor elements:

v pool_data_p_reads -
Buffer pool data physical
reads

v pool_temp_data_p_reads -
Buffer pool temporary
data physical reads

DATA_HIT_RATIO_
PERCENT

DECIMAL(5,2) Data hit ratio, that is, the
percentage of time that the
database manager did not
need to load a page from
disk to service a data page
request.

Chapter 12. Monitor routines and views 373

Table 100. Information returned by the MON_BP_UTILIZATION administrative
view (continued)

Column name Data type
Description or Monitor
element

INDEX_PHYSICAL_READS BIGINT Indicates the number of
index pages read from the
table space containers
(physical) for temporary as
well as regular and large
table spaces. This is
calculated as
(pool_index_p_reads +
pool_temp_index_p_reads)
where pool_index_p_reads +
pool_temp_index_p_reads
represent the following
monitor elements:

v pool_index_p_reads -
Buffer pool index physical
reads

v pool_temp_index_p_reads
- Buffer pool temporary
index physical reads

INDEX_HIT_RATIO_
PERCENT

DECIMAL(5,2) Index hit ratio, that is, the
percentage of time that the
database manager did not
need to load a page from
disk to service an index data
page request.

XDA_PHYSICAL_READS BIGINT Indicates the number of data
pages for XML storage
objects (XDAs) read from the
table space containers
(physical) for temporary as
well as regular and large
table spaces. This is
calculated as
(pool_xda_p_reads +
pool_temp_xda_p_reads) where
pool_xda_p_reads and
pool_temp_xda_p_reads
represent the following
monitor elements:

v pool_xda_p_reads - Buffer
pool XDA data physical
reads

v pool_temp_xda_p_reads -
Buffer pool temporary
XDA data physical reads

XDA_HIT_RATIO_PERCENT DECIMAL(5,2) Auxiliary storage objects hit
ratio, that is, the percentage
of time that the database
manager did not need to
load a page from disk to
service a data page request
for XML storage objects
(XDAs).

374 Administrative Routines and Views

Table 100. Information returned by the MON_BP_UTILIZATION administrative
view (continued)

Column name Data type
Description or Monitor
element

TOTAL_PHYSICAL_READS BIGINT Indicates the number of data
pages, index pages, and data
pages for XML storage
objects (XDAs) read from the
table space containers
(physical) for temporary as
well as regular and large
table spaces.

This is calculated as
(pool_data_p_reads +
pool_temp_data_p_reads +
pool_index_p_reads +
pool_temp_index_p_reads +
pool_xda_p_reads +
pool_temp_xda_p_reads) where
pool_data_p_reads,
pool_temp_data_p_reads,
pool_index_p_reads,
pool_temp_index_p_reads,
pool_xda_p_reads and
pool_temp_xda_p_reads
represent the following
monitor elements:

v pool_data_p_reads -
Buffer pool data physical
reads

v pool_temp_data_p_reads -
Buffer pool temporary
data physical reads

v pool_index_p_reads -
Buffer pool index physical
reads

v pool_temp_index_p_reads
- Buffer pool temporary
index physical reads

v pool_xda_p_reads - Buffer
pool XDA data physical
reads

v pool_temp_xda_p_reads -
Buffer pool temporary
XDA data physical reads

Chapter 12. Monitor routines and views 375

Table 100. Information returned by the MON_BP_UTILIZATION administrative
view (continued)

Column name Data type
Description or Monitor
element

AVG_PHYSICAL_
READ_TIME

BIGINT Average time, in
milliseconds, spent reading
pages from the table space
containers (physical) for all
types of table spaces.

If the sum of physical reads
is greater than zero, this is
calculated as pool_read_time /
(pool_data_p_reads +
pool_temp_data_p_reads +
pool_index_p_reads +
pool_temp_index_p_reads +
pool_xda_p_reads +
pool_temp_xda_p_reads) where
pool_read_time,
pool_data_p_reads,
pool_temp_data_p_reads,
pool_index_p_reads,
pool_temp_index_p_reads,
pool_xda_p_reads and
pool_temp_xda_p_reads
represent the following
monitor elements:

v pool_read_time - Total
buffer pool physical read
time

v pool_data_p_reads -
Buffer pool data physical
reads

v pool_temp_data_p_reads -
Buffer pool temporary
data physical reads

v pool_index_p_reads -
Buffer pool index physical
reads

v pool_temp_index_p_reads
- Buffer pool temporary
index physical reads

v pool_xda_p_reads - Buffer
pool XDA data physical
reads

v pool_temp_xda_p_reads -
Buffer pool temporary
XDA data physical reads

If the sum of physical reads
is not greater than zero,
NULL is returned.

376 Administrative Routines and Views

Table 100. Information returned by the MON_BP_UTILIZATION administrative
view (continued)

Column name Data type
Description or Monitor
element

PREFETCH_RATIO_
PERCENT

DECIMAL(5,2) Percentage of pages read
asynchronously (with
prefetching). If many
applications are reading data
synchronously without
prefetching, your system
might not be tuned
optimally.

ASYNC_NOT_READ_
PERCENT

DECIMAL(5,2) Percentage of pages read
asynchronously from disk,
but never accessed by a
query. If too many pages are
read asynchronously from
disk into the bufferpool, but
no query ever accesses those
pages, the prefetching might
degrade performance.

If the sum of asynchronous
reads is greater than zero,
this is calculated as
unread_prefetch_pages /
(pool_async_data_reads +
pool_async_index_reads +
pool_async_xda_reads) where
unread_prefetch_pages,
pool_async_data_reads,
pool_async_index_reads and
pool_async_xda_reads
represent the following
monitor elements:

v unread_prefetch_pages -
Unread prefetch pages

v pool_async_data_reads -
Buffer pool asynchronous
data reads

v pool_async_index_reads -
Buffer pool asynchronous
index reads

v pool_async_xda_reads -
Buffer pool asynchronous
XDA data reads

If the sum of asynchronous
reads is not greater than
zero, NULL is returned.

Chapter 12. Monitor routines and views 377

Table 100. Information returned by the MON_BP_UTILIZATION administrative
view (continued)

Column name Data type
Description or Monitor
element

TOTAL_WRITES BIGINT The number of times a data,
index, or data page for an
XML storage object (XDA)
was physically written to
disk.

This is calculated as
(pool_data_writes +
pool_index_writes +
pool_xda_writes) where
pool_data_writes,
pool_index_writes, and
pool_xda_writes represent the
following monitor elements:

v pool_data_writes - Buffer
pool data writes

v pool_index_writes - Buffer
pool index writes

v pool_xda_writes - Buffer
pool XDA data writes

AVG_WRITE_TIME BIGINT Average time, in
milliseconds, spent
physically writing pages
from the buffer pool to disk.

If the sum of write
operations is greater than
zero, this is calculated as
pool_write_time /
(pool_data_writes +
pool_index_writes +
pool_xda_writes) where
pool_write_time,
pool_data_writes,
pool_index_writes, and
pool_xda_writes represent the
following monitor elements:

v pool_write_time - Total
buffer pool physical write
time

v pool_data_writes - Buffer
pool data writes

v pool_index_writes - Buffer
pool index writes

v pool_xda_writes - Buffer
pool XDA data writes

If the sum of write
operations is not greater than
zero, NULL is returned.

SYNC_WRITES_PERCENT DECIMAL(5,2) Percentage of write
operations that are
synchronous.

378 Administrative Routines and Views

Table 100. Information returned by the MON_BP_UTILIZATION administrative
view (continued)

Column name Data type
Description or Monitor
element

AVG_SYNC_READ_TIME BIGINT Average time, in
milliseconds, spent
synchronous reading from
bufferpool. This is calculated
as (pool_read_time -
pool_async_read_time) /
(total_physical_reads –
total_async_reads)

If pool_read_time –
pool_async_read_time is zero,
NULL is returned.

AVG_ASYNC_READ_TIME BIGINT Average time, in
milliseconds, spent
asynchronous reading from
bufferpool. This is calculated
as pool_async_read_time /
total_async_reads

If pool_async_read_time is
zero, NULL is returned.

AVG_SYNC_WRITE_TIME BIGINT Average time, in
milliseconds, spent
synchronous writing from
bufferpool. This is calculated
as (pool_write_time -
pool_async_write_time) /
(total_writes –
total_async_writes)

If pool_write_time –
pool_async_write_time is zero,
NULL is returned.

AVG_ASYNC_WRITE_TIME BIGINT Average time, in
milliseconds, spent
asynchronous writing from
bufferpool. This is calculated
as pool_async_write_time /
total_async_writes

If pool_async_write_time is
zero, NULL is returned.

MON_CONNECTION_SUMMARY - Retrieve metrics for all connections
The MON_CONNECTION_SUMMARY administrative view returns key metrics for
all connections in the currently connected database. It is designed to help monitor
the system in a high-level manner, showing incoming work per connection.

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7 , it is not necessary to run the db2updv97 command

Chapter 12. Monitor routines and views 379

(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7, this routine will no longer work.

The metrics returned represent the accumulation of all metrics for requests that
were submitted by the identified connection across all members of the database.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the MON_CONNECTION_SUMMARY administrative view
v CONTROL privilege on the MON_CONNECTION_SUMMARY administrative

view
v DATAACCESS authority

Information returned

Table 101. Information returned by the MON_CONNECTION_SUMMARY administrative
view

Column name Data type
Description or Monitor
element

APPLICATION_HANDLE BIGINT application_handle -
Application handle

APPLICATION_NAME VARCHAR(128) appl_name - Application
name

APPLICATION_ID VARCHAR(128) appl_id - Application ID

SESSION_AUTH_ID VARCHAR(128) session_auth_id - Session
authorization ID

TOTAL_APP_COMMITS BIGINT Total number of application
commits across all members
of the database for the
specified service subclass.

TOTAL_APP_ROLLBACKS BIGINT Total number of application
rollbacks across all members
of the database for the
specified service subclass.

ACT_COMPLETED_TOTAL BIGINT Total number of coordinator
activities at any nesting level
that completed successfully
across all members of the
database for the specified
service subclass.

APP_RQSTS_COMPLETED
_TOTAL

BIGINT Total number of external
(application) requests that
completed successfully across
all members of the database
for the specified service
subclass

380 Administrative Routines and Views

Table 101. Information returned by the MON_CONNECTION_SUMMARY administrative
view (continued)

Column name Data type
Description or Monitor
element

AVG_RQST_CPU_TIME BIGINT Average amount of CPU
time, in microseconds, used
by all external requests that
completed successfully. It
represents the total of both
user and system CPU time.

ROUTINE_TIME_
RQST_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent
working on requests that
was spent executing user
routines.

RQST_WAIT_
TIME_PERCENT

DECIMAL(5,2) The percentage of the time
spent working on requests
that was spent waiting
within the DB2 database
server.

ACT_WAIT_TIME_
PERCENT

DECIMAL(5,2) The percentage of the time
spent executing activities that
was spent waiting within the
DB2 database server.

IO_WAIT_TIME_PERCENT DECIMAL(5,2) The percentage of the time
spent waiting within the DB2
database server that was due
to I/O operations. This
includes time spent
performing direct reads or
direct writes, and time spent
reading data and index
pages from the table space to
the bufferpool or writing
them back to disk.

LOCK_WAIT_TIME_
PERCENT

DECIMAL(5,2) The percentage of time spent
waiting within the DB2
database server that was
spent waiting on locks.

AGENT_WAIT_TIME_
PERCENT

DECIMAL(5,2) The percentage of time spent
waiting within the DB2
database server that was
spent by an application
queued to wait for an agent
under concentrator
configurations.

NETWORK_WAIT_
TIME_PERCENT

DECIMAL(5,2) The percentage of time spent
waiting within the DB2
database server that was
spent on client-server
communications. This
includes time spent sending
and receiving data over
TCP/IP or using the IPC
protocol.

Chapter 12. Monitor routines and views 381

Table 101. Information returned by the MON_CONNECTION_SUMMARY administrative
view (continued)

Column name Data type
Description or Monitor
element

SECTION_PROC_
TIME_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent
actively working on requests
that was spent executing
sections. This includes the
time spent performing sorts.

SECTION_SORT_
PROC_TIME_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent
actively working on requests
that was spent performing
sorts while executing
sections.

COMPILE_PROC_
TIME_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent
actively working on requests
that was spent compiling an
SQL statement. This includes
explicit and implicit compile
times.

TRANSACT_END_PROC
_TIME_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent
actively working on requests
that was spent performing
commit processing or rolling
back transactions.

UTILS_PROC_
TIME_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent
actively working on requests
that was spent running
utilities. This includes
performing runstats,
reorganization, and load
operations.

AVG_LOCK_WAITS
_PER_ACT

BIGINT The average number of times
that applications or
connections waited for locks
per coordinator activities
(successful and aborted).

AVG_LOCK_TIMEOUTS
_PER_ACT

BIGINT The average number of times
that a request to lock an
object timed out per
coordinator activities
(successful and aborted).

AVG_DEADLOCKS_
PER_ACT

BIGINT The average number of
deadlocks per coordinator
activities (successful and
aborted).

382 Administrative Routines and Views

Table 101. Information returned by the MON_CONNECTION_SUMMARY administrative
view (continued)

Column name Data type
Description or Monitor
element

AVG_LOCK_ESCALS
_PER_ACT

BIGINT The average number of times
that locks have been
escalated from several row
locks to a table lock per
coordinator activities
(successful and aborted).

ROWS_READ_PER_
ROWS_RETURNED

BIGINT The average number of rows
read from the table per rows
returned to the application.

TOTAL_BP_HIT_
RATIO_PERCENT

DECIMAL(5,2) The percentage of time that
the database manager did
not need to load a page from
disk to service a data or
index page request, including
requests for XML storage
objects (XDAs).

MON_CURRENT_SQL - Retrieve key metrics for all activities on all
members

The MON_CURRENT_SQL administrative view returns key metrics for all
activities that were submitted on all members of the database and have not yet
been completed, including a point-in-time view of currently executing SQL
statements (both static and dynamic) in the currently connected database.

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7 , it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7 , this routine will no longer work.

You can use the MON_CURRENT_SQL administrative view to identify long
running activities and prevent performance problems.

This view represents the coordinator perspective, and not that of individual
members.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the MON_CURRENT_SQL administrative view
v CONTROL privilege on the MON_CURRENT_SQL administrative view
v DATAACCESS authority

Chapter 12. Monitor routines and views 383

Information returned

Table 102. Information returned by the MON_CURRENT_SQL administrative view

Column name Data type
Description or Monitor
element

COORD_MEMBER SMALLINT coord_member -
Coordinating member

APPLICATION_HANDLE BIGINT application_handle -
Application handle

APPLICATION_NAME VARCHAR(128) appl_name - Application
name

SESSION_AUTH_ID VARCHAR(128) session_auth_id - Session
authorization ID

CLIENT_APPLNAME VARCHAR(255) CURRENT
CLIENT_APPLNAME special
register

ELAPSED_TIME_SEC INTEGER The time elapsed since this
activity began, in seconds.
The value of this column is
null when an activity has
entered the system but is in
a queue and has not started
running.

ACTIVITY_STATE VARCHAR(32) activity_state - Activity state

ACTIVITY_TYPE VARCHAR(32) activity_type - Activity type

TOTAL_CPU_TIME BIGINT total_cpu_time - Total CPU
time

ROWS_READ BIGINT rows_read - Rows read

ROWS_RETURNED BIGINT rows_returned - Rows
returned

QUERY_COST_ESTIMATE BIGINT query_cost_estimate - Query
cost estimate

DIRECT_READS BIGINT direct_reads - Direct reads
from database

DIRECT_WRITES BIGINT direct_writes - Direct writes
to database

STMT_TEXT CLOB(2MB) stmt_text - SQL statement
text

MON_CURRENT_UOW - Retrieve metrics for all units of work
The MON_CURRENT_UOW administrative view returns key metrics for all units
of work that were submitted on all members of the database. It identifies long
running units of work and can therefore be used to prevent performance problems.

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7 , it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7 , this routine will no longer work.

384 Administrative Routines and Views

The MON_CURRENT_UOW view represents the coordinator perspective, and not
individual members.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the MON_CURRENT_UOW administrative view
v CONTROL privilege on the MON_CURRENT_UOW administrative view
v DATAACCESS authority

Example

The following example retrieves the application handle, the unit of work ID, the
elapsed time, and the total number of rows read and rows returned, for all units of
work that have been executed for more than 1 minute.
SELECT APPLICATION_HANDLE AS APPL_HANDLE,

UOW_ID, ELAPSED_TIME_SEC,
TOTAL_ROWS_MODIFIED AS TOTAL_READ,
TOTAL_ROWS_MODIFIED AS TOTAL_MODIFIED

FROM MON_CURRENT_UOW
WHERE ELAPSED_TIME_SEC > 60
ORDER BY ELAPSED_TIME_SEC DESC

The following example is a sample output for this query.
APPL_HANDLE UOW_ID ELAPSED_TIME_SEC TOTAL_READ TOTAL_MODIFIED
----------- ------ ---------------- ---------- --------------

254 1 750 87460 0
61 1 194 108 0
145 4 82 0 34

3 record(s) selected.

Information returned

Table 103. Information returned by the MON_CURRENT_UOW administrative view

Column name Data type
Description or Monitor
element

COORD_MEMBER SMALLINT coord_member - Coordinator
member

UOW_ID INTEGER uow_id - Unit of work ID

APPLICATION_HANDLE BIGINT application_handle -
Application handle

APPLICATION_NAME VARCHAR(128) appl_name - Application
name

SESSION_AUTH_ID VARCHAR(128) session_auth_id - Session
authorization ID

CLIENT_APPLNAME VARCHAR(255) CURRENT
CLIENT_APPLNAME
special register

Chapter 12. Monitor routines and views 385

Table 103. Information returned by the MON_CURRENT_UOW administrative
view (continued)

Column name Data type
Description or Monitor
element

ELAPSED_TIME_SEC INTEGER The time elapsed since this
unit of work began, in
seconds. The value of the
column is NULL when an
activity has entered the
system but is in a queue and
has not started running.

WORKLOAD_OCCURRENCE
_STATE

VARCHAR(32) workload_occurrence_state -
Workload occurrence state

TOTAL_CPU_TIME BIGINT total_cpu_time - Total CPU
time

TOTAL_ROWS_MODIFIED BIGINT The total number of rows
inserted, updated or deleted.

TOTAL_ROWS_READ BIGINT The total number of rows
read from tables.

TOTAL_ROWS_RETURNED BIGINT The total number of rows
that have been selected and
returned to the application.

MON_DB_SUMMARY - Retrieve accumulated metrics across all
members of the database

The MON_DB_SUMMARY administrative view returns key metrics aggregated
over all service classes in the currently connected database. It is designed to help
monitor the system in a high-level manner by providing a concise summary of the
database.

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7 , it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7 , this routine will no longer work.

The metrics returned represent the accumulation of metrics across all members of
the database.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the MON_DB_SUMMARY administrative view
v CONTROL privilege on the MON_DB_SUMMARY administrative view
v DATAACCESS authority

386 Administrative Routines and Views

Information returned

Table 104. Information returned by the MON_DB_SUMMARY administrative view

Column name Data type
Description or Monitor
element

TOTAL_APP_COMMITS BIGINT Total number of application
commits across all members
of the database for the
specified service subclass.

TOTAL_APP_ROLLBACKS BIGINT Total number of application
rollbacks across all members
of the database for the
specified service subclass.

ACT_COMPLETED_TOTAL BIGINT Total number of coordinator
activities at any nesting level
that completed successfully
across all members of the
database for the specified
service subclass.

APP_RQSTS_COMPLETED
_TOTAL

BIGINT Total number of external
(application) requests that
completed successfully across
all members of the database
for the specified service
subclass

AVG_RQST_CPU_TIME BIGINT Average amount of CPU
time, in microseconds, used
by all external requests that
completed successfully. It
represents the total of both
user and system CPU time.

ROUTINE_TIME_
RQST_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent
working on requests that
was spent executing user
routines.

RQST_WAIT_
TIME_PERCENT

DECIMAL(5,2) The percentage of the time
spent working on requests
that was spent waiting
within the DB2 database
server.

ACT_WAIT_TIME_
PERCENT

DECIMAL(5,2) The percentage of the time
spent executing activities that
was spent waiting within the
DB2 database server.

IO_WAIT_TIME_PERCENT DECIMAL(5,2) The percentage of the time
spent waiting within the DB2
database server that was due
to I/O operations. This
includes time spent
performing direct reads or
direct writes, and time spent
reading data and index
pages from the table space to
the bufferpool or writing
them back to disk.

Chapter 12. Monitor routines and views 387

Table 104. Information returned by the MON_DB_SUMMARY administrative
view (continued)

Column name Data type
Description or Monitor
element

LOCK_WAIT_TIME_
PERCENT

DECIMAL(5,2) The percentage of time spent
waiting within the DB2
database server that was
spent waiting on locks.

AGENT_WAIT_TIME_
PERCENT

DECIMAL(5,2) The percentage of time spent
waiting within the DB2
database server that was
spent by an application
queued to wait for an agent
under concentrator
configurations.

NETWORK_WAIT_
TIME_PERCENT

DECIMAL(5,2) The percentage of time spent
waiting within the DB2
database server that was
spent on client-server
communications. This
includes time spent sending
and receiving data over
TCP/IP or using the IPC
protocol.

SECTION_PROC_
TIME_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent
actively working on requests
that was spent executing
sections. This includes the
time spent performing sorts.

SECTION_SORT_
PROC_TIME_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent
actively working on requests
that was spent performing
sorts while executing
sections.

COMPILE_PROC_
TIME_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent
actively working on requests
that was spent compiling an
SQL statement. This includes
explicit and implicit compile
times.

TRANSACT_END_PROC
_TIME_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent
actively working on requests
that was spent performing
commit processing or rolling
back transactions.

388 Administrative Routines and Views

Table 104. Information returned by the MON_DB_SUMMARY administrative
view (continued)

Column name Data type
Description or Monitor
element

UTILS_PROC_
TIME_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent
actively working on requests
that was spent running
utilities. This includes
performing runstats,
reorganization, and load
operations.

AVG_LOCK_WAITS
_PER_ACT

BIGINT The average number of times
that applications or
connections waited for locks
per coordinator activities
(successful and aborted).

AVG_LOCK_TIMEOUTS
_PER_ACT

BIGINT The average number of times
that a request to lock an
object timed out per
coordinator activities
(successful and aborted).

AVG_DEADLOCKS_
PER_ACT

BIGINT The average number of
deadlocks per coordinator
activities (successful and
aborted).

AVG_LOCK_ESCALS
_PER_ACT

BIGINT The average number of times
that locks have been
escalated from several row
locks to a table lock per
coordinator activities
(successful and aborted).

ROWS_READ_PER_
ROWS_RETURNED

BIGINT The average number of rows
read from the table per rows
returned to the application.

TOTAL_BP_HIT_
RATIO_PERCENT

DECIMAL(5,2) The percentage of time that
the database manager did
not need to load a page from
disk to service a data or
index page request, including
requests for XML storage
objects (XDAs).

MON_FORMAT_LOCK_NAME - format the internal lock name and
return details

The MON_FORMAT_LOCK_NAME table function formats the internal lock name
and returns details regarding the lock in a row-based format. Each returned row
consists of a key-value pair relevant for that particular lock.

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7, it is not necessary to run the db2updv97 command

Chapter 12. Monitor routines and views 389

(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7, this routine will no longer work.

To get information about locks, use the MON_FORMAT_LOCK_NAME,
MON_GET_LOCKS, and, MON_GET_APPL_LOCKWAIT table functions instead of
the SNAPLOCKWAIT administrative view and SNAP_GET_LOCKWAIT table
function, and the SNAPLOCK administrative view and SNAP_GET_LOCK table
function, which are deprecated in Fixpack 1 of Version 9.7.

�� MON_FORMAT_LOCK_NAME (lockname) ��

The schema is SYSPROC.

Table function parameters

lockname
An input argument of type VARCHAR(32) that specifies the internal binary
name of the lock that is to be formatted. A NULL value results in error
SQL0171N being returned.

Authorization

The following privilege is required:
v EXECUTE privilege on the MON_FORMAT_LOCK_NAME table function

Examples

The internal lock name is returned in a variety of situations, such as being written
to the db2diag log files, or as the value of the lock_name monitor element. The
following example shows how to use the MON_FORMAT_LOCK_NAME table
function to find out further information about the lock, in this case with a lock
name of 0000000E00000000000B00C152.
SELECT SUBSTR(NAME,1,20) AS NAME,

SUBSTR(VALUE,1,50) AS VALUE
FROM
TABLE(MON_FORMAT_LOCK_NAME(’0000000E00000000000B00C152’)) as LOCK

The following output is returned:
NAME VALUE
-------------------- -------------
LOCK_OBJECT_TYPE ROW
ROWID 0
DATA_PARTITION_ID 49408
PAGEID 184549376
TBSP_NAME SYSCATSPACE

5 record(s) selected.

Information returned

Table 105. Information returned by the MON_FORMAT_LOCK_NAME table function

Column name Data type Description

NAME VARCHAR(256) Element of the lock name.
See the next table for more
details.

VALUE VARCHAR(1024) Value of the element.

390 Administrative Routines and Views

Not all elements that make up the specified lock name are returned; only those
key-value pairs that are relevant are returned.

The elements that can be returned are as follows:

Table 106. Monitor elements that can be returned

Element name Description
Possible values or monitor
element

LOCK_OBJECT_TYPE The lock object type lock_object_type - Lock
object type

For possible values, see
“lock_object_type - Lock
object type waited on
monitor element”.

DATA_PARTITION_ID The identifier of the data
partition for which
information is returned. This
element is only applicable to
partitioned tables and
partitioned indexes. When
returning lock level
information, a value of -1
represents a lock which
controls access to the whole
table.

data_partition_id - Data
partition identifier

TBSP_NAME The name of a table space tablespace_name - Table
space name

TABSCHEMA The schema of the table table_schema - Table schema
name

TABNAME The name of the table table_name - Table name

ROWID Row ID of the table -

PAGEID The page ID -

WORKLOAD_NAME Name of the workload workload_name - Workload
name

STORAGE_GRP_ID The storage group ID -

BUFFERPOOL_NAME Name of the buffer pool -

FED_SERVER_NAME Name of the federation
server

-

FED_USER_NAME Name of the federation user
mapping

-

Chapter 12. Monitor routines and views 391

Table 106. Monitor elements that can be returned (continued)

Element name Description
Possible values or monitor
element

SEQ_OPERATION Operation requesting a
sequence lock

Possible values are:

v AUTONOMIC_POLICIES

v CATALOG_ARRAY

v DESCRIBE

v INIT_EVMON

v INIT_PACKAGE

v INIT_AUDIT

v PACKAGE_CREATION

v INIT_ROUTINE_ID

v INIT_ROLE_ID

v TEMP_TBSPACE

v AUDIT_DDL

v VERSION_TIMES

v WLM

v TRUSTED_CTX

v INIT_TRUSTED_CTX

v STATIC_STMT

v USER_TEMP_TBSPACE

CONTAINER_ID The container ID -

STMT_UID The statement ID -

PACKAGE_TOKEN The package token -

INTERNAL Reserved for internal use -

MON_FORMAT_XML_COMPONENT
_TIMES_BY_ROW - Get formatted row-based component times

The MON_FORMAT_XML_COMPONENT_TIMES_BY_ROW table function returns
formatted row-based output for the component times contained in an XML metrics
document.

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7, it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7, this routine will no longer work.

Syntax

�� MON_FORMAT_XML_COMPONENT_TIMES_BY_ROW (xmldoc) ��

The schema is SYSPROC.

Table function parameters

xmldoc
An input argument of type BLOB(100M) that contains an XML document with

392 Administrative Routines and Views

either a system_metrics or activity_metrics element. XML documents with
these elements can be obtained from the following sources:
v Returned by one of the MON_GET_*_DETAILS table functions.
v From the metrics column output by statistics and activity event monitors.
v From the formatted output of the unit of work, or package cache event

monitors.

Authorization

EXECUTE privilege on the
MON_FORMAT_XML_COMPONENT_TIMES_BY_ROW function.

Example

The following example returns the breakdown of component times within the DB2
database manager for service subclasses, which shows both the total time spent in
any given component, as well as the amount of time that was actually spent
processing, rather than waiting, in a component.
SELECT SUBSTR(T.SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS,

SUBSTR(T.SERVICE_SUBCLASS_NAME,1,19) AS SUBCLASS,
T.MEMBER,
SUBSTR(COMP.METRIC_NAME,1,15) AS METRIC_NAME
SUBSTR(COMP.PARENT_METRIC_NAME,1,15) AS PARENT_NAME
COMP.TOTAL_TIME_VALUE AS TOTAL_TIME,
COMP.PROC_TIME_VALUE AS TOTAL_PROC_TIME,
COMP.COUNT

FROM TABLE (MON_GET_SERVICE_SUBCLASS_DETAILS(NULL,
NULL,-2)) AS T,

TABLE(MON_FORMAT_XML_COMPONENT_TIMES_BY_ROW(
T.DETAILS

)) AS COMP

WHERE COMP.PARENT_METRIC_NAME IS NOT NULL;

The following example is a sample output from this query.
SUPERCLASS SUBCLASS MEMBER METRIC_NAME PARENT_NAME ...
------------------- ------------------ ------ --------------- ---------------...
MYSC MYSSC 0 TOTAL_COMPILE_T TOTAL_RQST_TIME...
MYSC MYSSC 0 TOTAL_IMPLICIT_ TOTAL_RQST_TIME...
MYSC MYSSC 0 TOTAL_SECTION_T TOTAL_RQST_TIME...
MYSC MYSSC 0 TOTAL_COMMIT_TI TOTAL_RQST_TIME...
MYSC MYSSC 0 TOTAL_ROLLBACK_ TOTAL_RQST_TIME...
MYSC MYSSC 0 TOTAL_RUNSTATS_ TOTAL_RQST_TIME...
MYSC MYSSC 0 TOTAL_REORG_TIM TOTAL_RQST_TIME...
MYSC MYSSC 0 TOTAL_LOAD_TIME TOTAL_RQST_TIME...
MYSC MYSSC 0 TOTAL_SECTION_S TOTAL_SECTION_T...

9 record(s) selected.

The following example is a continuation of sample output from this query.
...TOTAL_TIME TOTAL_PROC_TIME COUNT
...-------------------- -------------------- --------------------
... 100 100 1
... 0 0 0
... 1253 953 0
... 213 153 0
... 0 0 0
... 0 0 0
... 0 0 0

Chapter 12. Monitor routines and views 393

... 0 0 0

... 0 0 0

9 record(s) selected.

Information returned

Table 107. Information returned for MON_FORMAT_XML_COMPONENT_TIMES_BY_ROW

Column Name Data Type Description

METRIC_NAME VARCHAR(128) The unique identifier for the total time metric value.

PROC_METRIC_NAME VARCHAR(128) The unique identifier for the processing time metric.

TOTAL_TIME_VALUE BIGINT The total time value in milliseconds corresponding to
metric_name.

PROC_TIME_VALUE BIGINT The processing time value in milliseconds corresponding
to proc_metric_name

COUNT BIGINT Number of occurrences of this type of interval.

PARENT_METRIC_NAME VARCHAR(128) The identifier of the parent total time metric whose value
contains the total_time_value as a subset

PARENT_PROC_
METRIC_NAME

VARCHAR(128) The identifier of the parent processing time metric whose
value contains the proc_time_value as a subset

XML documents that contain an element of type system_metrics are generated from
the following interfaces:
v MON_GET_CONNECTION_DETAILS
v MON_GET_SERVICE_SUBCLASS_DETAILS
v MON_GET_UNIT_OF_WORK_DETAILS
v MON_GET_WORKLOAD_DETAILS
v DETAILS_XML column from a STATISTICS event monitor
v METRICS column produced by EVMON_FORMAT_UE_TO_TABLES for the

UNIT OF WORK event monitor
v XMLREPORT column of EVMON_FORMAT_UE_TO_XML for the UNIT OF

WORK event monitor

See Table 108 for the types of metrics and their parent metrics that are returned
from the XML document in this case:

Table 108. Metric names returned by MON_FORMAT_XML_COMPONENT_TIMES_BY_ROW for XML documents
containing a system_metrics element type

Metric Name
Proc Metric
Name

Parent Metric
Name

Parent Proc
Metric Name

Description of metric or Monitor
element

TOTAL_
RQST_TIME

NULL NULL NULL total_rqst_time - Total request time

TOTAL_COMPILE
_TIME

TOTAL_
COMPILE_
PROC_TIME

TOTAL_
RQST_TIME

TOTAL_
RQST_TIME

total_compile_time - Total compile
time

TOTAL_IMPLICIT_
COMPILE_TIME

TOTAL_
IMPLICIT_
COMPILE_
PROC_TIME

TOTAL_
RQST_TIME

TOTAL_
RQST_TIME

total_implicit_compile_time - Total
implicit compile time

394 Administrative Routines and Views

Table 108. Metric names returned by MON_FORMAT_XML_COMPONENT_TIMES_BY_ROW for XML documents
containing a system_metrics element type (continued)

Metric Name
Proc Metric
Name

Parent Metric
Name

Parent Proc
Metric Name

Description of metric or Monitor
element

TOTAL_SECTION_
TIME

TOTAL_
SECTION_
PROC_TIME

TOTAL_
RQST_TIME

TOTAL_
RQST_TIME

total_section_time - Total section time

TOTAL_COMMIT_
TIME

TOTAL_
COMMIT_
PROC_TIME

TOTAL_
RQST_TIME

TOTAL_
RQST_TIME

total_commit_time - Total commit
time

TOTAL_ROLLBACK
_TIME

TOTAL_
ROLLBACK_
PROC_TIME

TOTAL_
RQST_TIME

TOTAL_
RQST_TIME

total_rollback_time - Total rollback
time

TOTAL_ROUTINE_
USER_CODE_
TIME

TOTAL_
ROUTINE_
USER_CODE_
PROC_TIME

TOTAL_
RQST_TIME

TOTAL_
RQST_TIME

total_routine_user_code_time - Total
routine user code time

TOTAL_RUNSTATS_
TIME

TOTAL_
RUNSTATS_
PROC_TIME

TOTAL_
RQST_TIME

TOTAL_
RQST_TIME

total_runstats_time - Total runtime
statistics

TOTAL_REORG_
TIME

TOTAL_
REORG_
PROC_TIME

TOTAL_
RQST_TIME

TOTAL_
RQST_TIME

total_reorg_time - Total
reorganization time

TOTAL_LOAD_
TIME

TOTAL_
LOAD_
PROC_TIME

TOTAL_
RQST_TIME

TOTAL_
RQST_TIME

total_load_time - Total load time

TOTAL_SECTION_
SORT_TIME

TOTAL_
SECTION_
SORT_
PROC_TIME

TOTAL_
SECTION_TIME

TOTAL_
SECTION_
PROC_TIME

total_section_sort_time - Total section
sort time

XML documents that contain an element of type activity_metrics are generated from
the following interfaces:
v MON_GET_ACTIVITY_DETAILS
v MON_GET_PKG_CACHE_STMT_DETAILS
v DETAILS_XML column from an ACTIVITY event monitor
v METRICS column produced by EVMON_FORMAT_UE_TO_TABLES for the

PACKAGE CACHE event monitor
v XMLREPORT column of EVMON_FORMAT_UE_TO_XML for the PACKAGE

CACHE event monitor

See Table 109 for the types of metrics and their parent metrics that are returned
from the XML document in this case:

Table 109. Metric names returned by MON_FORMAT_XML_COMPONENT_TIMES_BY_ROW for XML documents
containing an activity_metrics element type

Metric Name
Proc Metric
Name

Parent Metric
Name

Parent Proc
Metric Name Description or Monitor element

STMT_
EXEC_TIME

NULL NULL NULL stmt_exec_time - Statement execution
time

Chapter 12. Monitor routines and views 395

Table 109. Metric names returned by MON_FORMAT_XML_COMPONENT_TIMES_BY_ROW for XML documents
containing an activity_metrics element type (continued)

Metric Name
Proc Metric
Name

Parent Metric
Name

Parent Proc
Metric Name Description or Monitor element

TOTAL_
ROUTINE_
TIME

NULL STMT_
EXEC_TIME

NULL total_routine_time - Total routine
time

TOTAL_
ROUTINE_
NON_SECT_
TIME

TOTAL_
ROUTINE_
NON_SECT_
PROC_
TIME

TOTAL_
ROUTINE_
TIME

STMT_
EXEC_TIME

total_routine_non_sect_time -
Non-section routine execution time

TOTAL_
ROUTINE_USER_
CODE_TIME

TOTAL_
ROUTINE_
USER_
CODE_
PROC_TIME

TOTAL_
ROUTINE_
NON_SECT_
TIME

TOTAL_
ROUTINE_
NON_
SECT_PROC_
TIME

total_routine_user_code_time - Total
routine user code time

TOTAL_
SECTION_
TIME

TOTAL_
SECTION_
PROC_TIME

STMT_
EXEC_TIME

STMT_
EXEC_TIME

total_section_time - Total section time

TOTAL_
SECTION_
SORT_TIME

TOTAL_
SECTION_
SORT_PROC_
TIME

TOTAL_
SECTION_
TIME

TOTAL_
SECTION_
PROC_TIME

total_section_sort_time - Total section
sort time

MON_FORMAT_XML_METRICS_BY_ROW - Get formatted row-based
output for all metrics

The MON_FORMAT_XML_METRICS_BY_ROW table function returns formatted
row-based output for all metrics contained in an XML metrics document.

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7, it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7, this routine will no longer work.

Syntax

�� MON_FORMAT_XML_METRICS_BY_ROW (xmldoc) ��

The schema is SYSPROC.

Table function parameters

xmldoc
An input argument of type BLOB(100M) that contains an XML document with
either a system_metrics or activity_metrics element. XML documents with
these elements can be obtained from the following sources:
v Returned by one of the MON_GET_*_DETAILS table functions.
v From the metrics column output by statistics and activity event monitors.

396 Administrative Routines and Views

v From the formatted output of the unit of work, or package cache event
monitors.

Authorization

EXECUTE privilege on the MON_FORMAT_XML_METRICS_BY_ROW function.

Example

This example shows how to call the MON_FORMAT_XML_METRICS _BY_ROW
table function to return row-based formatted information from the XML document
produced by the MON_GET_WORKLOAD_DETAILS table function.
SELECT SUBSTR(TFXML.WORKLOAD_NAME, 1, 13) AS WORKLOAD_NAME,

SUBSTR(METRICS.METRIC_NAME, 1, 25) AS METRIC_NAME,
METRICS.VALUE

FROM
TABLE(MON_GET_WORKLOAD_DETAILS(NULL, -2)) AS TFXML,
TABLE(MON_FORMAT_XML_METRICS_BY_ROW(TFXML.DETAILS)) AS METRICS

ORDER BY METRICS.VALUE DESC

The following example is a partial listing of the output of this query.
WORKLOAD_NAME METRIC_NAME VALUE
------------- ------------------------- ---------------
PAYROLL ACT_COMPLETED_TOTAL 15
FINANCE ACT_COMPLETED_TOTAL 12
PAYROLL LOCK_WAITS 8
FINANCE LOCK_WAITS 5
FINANCE DEADLOCKS 3
PAYROLL DEADLOCKS 0

Information returned

Table 110. Information returned for MON_FORMAT_XML_METRICS_BY_ROW

Column Name Data Type Description

METRIC_NAME VARCHAR(128) The unique identifier for the total time metric value.

VALUE BIGINT The current value of the metric.

XML documents that contain an element of type system_metrics are generated from
the following interfaces:
v MON_GET_CONNECTION_DETAILS
v MON_GET_SERVICE_SUBCLASS_DETAILS
v MON_GET_UNIT_OF_WORK_DETAILS
v MON_GET_WORKLOAD_DETAILS
v DETAILS_XML column from a STATISTICS event monitor
v METRICS column produced by EVMON_FORMAT_UE_TO_TABLES for the

UNIT OF WORK event monitor
v XMLREPORT column of EVMON_FORMAT_UE_TO_XML for the UNIT OF

WORK event monitor

See Table 111 on page 398 for the types of metrics that are returned from the XML
document in this case:

Chapter 12. Monitor routines and views 397

Table 111. Metric names returned by MON_FORMAT_XML_METRICS_BY_ROW for XML documents containing a
system_metrics element type

Metric Name Description of metric or Monitor element

TOTAL_WAIT_TIME total_wait_time - Total wait time

CLIENT_IDLE_WAIT_TIME client_idle_wait_time - Client idle wait time

POOL_READ_TIME pool_read_time - Total buffer pool physical read time

POOL_WRITE_TIME pool_write_time - Total buffer pool physical write time

DIRECT_READ_TIME direct_read_time - Direct read time

DIRECT_WRITE_TIME direct_write_time - Direct write time

LOCK_WAIT_TIME lock_wait_time - Time waited on locks

AGENT_WAIT_TIME agent_wait_time - Agent wait time

WLM_QUEUE_TIME_TOTAL wlm_queue_time_total - Workload manager total queue time

FCM_SEND_WAIT_TIME fcm_send_wait_time - FCM send wait time

FCM_RECV_WAIT_TIME fcm_recv_wait_time - FCM recv wait time

TCPIP_SEND_WAIT_TIME tcpip_send_wait_time - TCP/IP send wait time

TCPIP_RECV_WAIT_TIME tcpip_recv_wait_time - TCP/IP recv wait time

IPC_SEND_WAIT_TIME ipc_send_wait_time - Interprocess communication send wait time

IPC_RECV_WAIT_TIME ipc_recv_wait_time - Interprocess communication recv wait time

LOG_BUFFER_WAIT_TIME log_buffer_wait_time - Log buffer wait time

LOG_DISK_WAIT_TIME log_disk_wait_time - Log disk wait time

FCM_MESSAGE_SEND_WAIT_TIME fcm_message_send_wait_time - FCM message send wait time

FCM_MESSAGE_RECV_WAIT_TIME fcm_message_recv_wait_time - FCM message recv wait time

FCM_TQ_SEND_WAIT_TIME fcm_tq_send_wait_time - FCM tablequeue send wait time

FCM_TQ_RECV_WAIT_TIME fcm_tq_recv_wait_time - FCM tablequeue recv wait time

AUDIT_FILE_WRITE_WAIT_TIME audit_file_write_wait_time - Audit file write wait time

AUDIT_SUBSYSTEM_WAIT_TIME audit_subsystem_wait_time - Audit subsystem wait time

DIAGLOG_WRITE_WAIT_TIME diaglog_write_wait_time - Diag log write time

TOTAL_RQST_TIME total_rqst_time - Total request time

TOTAL_COMPILE_TIME total_compile_time - Total compile time

TOTAL_IMPLICIT_COMPILE_TIME total_implicit_compile_time - Total implicit compile time

TOTAL_SECTION_TIME total_section_time - Total section time

TOTAL_COMMIT_TIME total_commit_time - Total commit time

TOTAL_ROLLBACK_TIME total_rollback_time - Total rollback time

TOTAL_RUNSTATS_TIME total_runstats_time - Total runtime statistics

TOTAL_REORG_TIME total_reorg_time - Total reorganization time

TOTAL_LOAD_TIME total_load_time - Total load time

TOTAL_SECTION_SORT_TIME total_section_sort_time - Total section sort time

TOTAL_ROUTINE_USER_CODE_TIME total_routine_user_code_time - Total routine user code time

TOTAL_COMPILE_PROC_TIME total_compile_proc_time - Total compile processing time

TOTAL_IMPLICIT_
COMPILE_PROC_TIME

total_implicit_compile_proc_time - Total implicit compile processing time

TOTAL_SECTION_PROC_TIME total_section_proc_time - Total section processing time

398 Administrative Routines and Views

Table 111. Metric names returned by MON_FORMAT_XML_METRICS_BY_ROW for XML documents containing a
system_metrics element type (continued)

Metric Name Description of metric or Monitor element

TOTAL_COMMIT_PROC_TIME total_commit_proc_time - Total commits processing time

TOTAL_ROLLBACK_PROC_TIME total_rollback_proc_time - Total rollback processing time

TOTAL_RUNSTATS_PROC_TIME total_runstats_proc_time - Total runtime statistics processing time

TOTAL_REORG_PROC_TIME total_reorg_proc_time - Total reorganization processing time

TOTAL_LOAD_PROC_TIME total_load_proc_time - Total load processing time

TOTAL_SECTION_SORT_PROC_TIME total_section_sort_proc_time - Total section sort processing time

TOTAL_ROUTINE_USER_CODE_
PROC_TIME

total_routine_user_code_proc_time - Total routine user code processing
time

ACT_ABORTED_TOTAL act_aborted_total - Total aborted activities

ACT_COMPLETED_TOTAL act_completed_total - Total completed activities

ACT_REJECTED_TOTAL act_rejected_total - Total rejected activities

AGENT_WAITS_TOTAL agent_waits_total - Total agent waits

POOL_DATA_L_READS pool_data_l_reads - Buffer pool data logical reads

POOL_INDEX_L_READS pool_index_l_reads - Buffer pool index logical reads

POOL_TEMP_DATA_L_READS pool_temp_data_l_reads - Buffer pool temporary data logical reads

POOL_TEMP_INDEX_L_READS pool_temp_index_l_reads - Buffer pool temporary index logical reads

POOL_TEMP_XDA_L_READS pool_temp_xda_l_reads - Buffer pool temporary XDA data logical reads

POOL_XDA_L_READS pool_xda_l_reads - Buffer pool XDA data logical reads

POOL_DATA_P_READS pool_data_p_reads - Buffer pool data physical reads

POOL_INDEX_P_READS pool_index_p_reads - Buffer pool index physical reads

POOL_TEMP_DATA_P_READS pool_temp_data_p_reads - Buffer pool temporary data physical reads

POOL_TEMP_INDEX_P_READS pool_temp_index_p_reads - Buffer pool temporary index physical reads

POOL_TEMP_XDA_P_READS pool_temp_xda_p_reads - Buffer pool temporary XDA data physical
reads

POOL_XDA_P_READS pool_xda_p_reads - Buffer pool XDA data physical reads

POOL_DATA_WRITES pool_data_writes - Buffer pool data writes

POOL_INDEX_WRITES pool_index_writes - Buffer pool index writes

POOL_XDA_WRITES pool_xda_writes - Buffer pool XDA data writes

DEADLOCKS deadlocks - Deadlocks detected

DIRECT_READS direct_reads - Direct reads from database

DIRECT_WRITES direct_writes - Direct writes to database

DIRECT_READ_REQS direct_read_reqs - Direct read requests

DIRECT_WRITE_REQS direct_write_reqs - Direct write requests

FCM_RECV_VOLUME fcm_recv_volume - FCM recv volume

FCM_RECVS_TOTAL fcm_recvs_total - FCM recvs total

FCM_SEND_VOLUME fcm_send_volume - FCM send volume

FCM_SENDS_TOTAL fcm_sends_total - FCM sends total

IPC_RECV_VOLUME ipc_recv_volume - Interprocess communication recv volume

IPC_RECVS_TOTAL ipc_recvs_total - Interprocess communication recvs total

IPC_SEND_VOLUME ipc_send_volume - Interprocess communication send volume

Chapter 12. Monitor routines and views 399

Table 111. Metric names returned by MON_FORMAT_XML_METRICS_BY_ROW for XML documents containing a
system_metrics element type (continued)

Metric Name Description of metric or Monitor element

IPC_SENDS_TOTAL ipc_sends_total - Interprocess communication send total

LOCK_ESCALS lock_escals - Number of lock escalations

LOCK_TIMEOUTS lock_timeouts - Number of lock timeouts

LOCK_WAITS lock_waits - Lock waits

NUM_LOG_BUFFER_FULL num_log_buffer_full - Number of full log buffers

LOG_DISK_WAITS_TOTAL log_disk_waits_total - Log disk waits total

RQSTS_COMPLETED_TOTAL rqsts_completed_total - Total requests completed

ROWS_MODIFIED rows_modified - Rows modified

ROWS_READ rows_read - Rows read

ROWS_RETURNED rows_returned - Rows returned

TCPIP_RECV_VOLUME tcpip_recv_volume - TCP/IP received volume

TCPIP_SEND_VOLUME tcpip_send_volume - TCP/IP send volume

TCPIP_RECVS_TOTAL tcpip_recvs_total - TCP/IP recvs total

TCPIP_SENDS_TOTAL tcpip_sends_total - TCP/IP sends total

WLM_QUEUE_ASSIGNMENTS_TOTAL wlm_queue_assignments_total - Workload manager total queue
assignments

APP_RQSTS_COMPLETED_TOTAL app_rqsts_completed_total - Total application requests completed

TOTAL_SECTION_SORTS total_section_sorts - Total section sorts

TOTAL_SORTS total_sorts - Total Sorts

POST_THRESHOLD_SORTS post_threshold_sorts - Post threshold sorts

POST_SHRTHRESHOLD_SORTS post_shrthreshold_sorts - Post shared threshold sorts

SORT_OVERFLOWS sort_overflows - Sort overflows

ACT_RQSTS_TOTAL act_rqsts_total - Total activity requests

TOTAL_ROUTINE_INVOCATIONS total_routine_invocations - Total routine invocations

TOTAL_COMPILATIONS total_compilations - Total compilations

TOTAL_IMPLICIT_COMPILATIONS total_implicit_compilations - Total implicit complications

TOTAL_APP_SECTION_EXECUTIONS total_app_section_executions - Total section executions

TOTAL_APP_COMMITS total_app_commits - Total application commits

INT_COMMITS int_commits - Internal commits

TOTAL_APP_ROLLBACKS total_app_rollbacks - Total application rollbacks

INT_ROLLBACKS int_rollbacks - Internal rollbacks

TOTAL_RUNSTATS total_runstats - Total runtime statistics

TOTAL_REORGS total_reorgs - Total reorganizations

TOTAL_LOADS total_loads - Total loads

CAT_CACHE_INSERTS cat_cache_inserts - Catalog cache inserts

CAT_CACHE_LOOKUPS cat_cache_lookups - Catalog cache lookups

PKG_CACHE_INSERTS pkg_cache_inserts - Package cache inserts

PKG_CACHE_LOOKUPS pkg_cache_lookups - Package cache lookups

THRESH_VIOLATIONS thresh_violations - Number of threshold violations

400 Administrative Routines and Views

Table 111. Metric names returned by MON_FORMAT_XML_METRICS_BY_ROW for XML documents containing a
system_metrics element type (continued)

Metric Name Description of metric or Monitor element

NUM_LW_THRESH_EXCEEDED num_lw_thresh_exceeded - Number of thresholds exceeded

AUDIT_EVENTS_TOTAL audit_events_total - Total audit events

AUDIT_SUBSYSTEM_WAITS_TOTAL audit_subsystem_waits_total - Total audit subsystem waits

AUDIT_FILE_WRITES_TOTAL audit_file_writes_total - Total Audit files written

DIAGLOG_WRITES_TOTAL diaglog_writes_total - Diag log total writes

FCM_MESSAGE_RECV_VOLUME fcm_message_recv_volume - FCM message recv volume

FCM_MESSAGE_RECVS_TOTAL fcm_message_recvs_total - FCM message recvs total

FCM_MESSAGE_SEND_VOLUME fcm_message_send_volume - FCM message send volume

FCM_MESSAGE_SENDS_TOTAL fcm_message_sends_total - FCM message sends total

FCM_TQ_RECV_VOLUME fcm_tq_recv_volume - FCM tablequeue recv volume

FCM_TQ_RECVS_TOTAL fcm_tq_recvs_total - FCM tablequeue recvs total

FCM_TQ_SEND_VOLUME fcm_tq_send_volume - FCM tablequeue send volume

FCM_TQ_SENDS_TOTAL fcm_tq_sends_total - FCM tablequeue send total

TQ_TOT_SEND_SPILLS tq_tot_send_spills - Total number of table queue buffers overflowed

TOTAL_ROUTINE_TIME total_routine_time - Total routine time

TOTAL_CPU_TIME total_cpu_time - Total CPU time

TOTAL_ACT_TIME total_act_time - Total activity time

TOTAL_ACT_WAIT_TIME total_act_wait_time - Total activity wait time

TOTAL_APP_RQST_TIME total_app_rqst_time - Total application request time

IDA_SEND_WAIT_TIME ida_send_wait_time - Time spent waiting to send data

IDA_SENDS_TOTAL ida_sends_total - Number of times data sent

IDA_SEND_VOLUME ida_send_volume - Total data volume sent

IDA_RECV_VOLUME ida_recv_volume - Total data volume received

IDA_RECV_WAIT_TIME ida_recv_wait_time - Time spent waiting to receive data

IDA_RECVS_TOTAL ida_recvs_total - Number of times data received

XML documents that contain an element of type activity_metrics are generated from
the following interfaces:
v MON_GET_ACTIVITY_DETAILS
v MON_GET_PKG_CACHE_STMT_DETAILS
v DETAILS_XML column from an ACTIVITY event monitor
v METRICS column produced by EVMON_FORMAT_UE_TO_TABLES for the

PACKAGE CACHE event monitor
v XMLREPORT column of EVMON_FORMAT_UE_TO_XML for the PACKAGE

CACHE event monitor

See Table 112 on page 402 for the types of metrics that are returned from the XML
document in this case:

Chapter 12. Monitor routines and views 401

Table 112. Metric names returned by MON_FORMAT_XML_METRICS_BY_ROW for XML documents containing an
activity_metrics element type

Metric Name Description or Monitor element

TOTAL_ACT_WAIT_TIME total_act_wait_time - Total activity wait time

POOL_READ_TIME pool_read_time - Total buffer pool physical read time

POOL_WRITE_TIME pool_write_time - Total buffer pool physical write time

DIRECT_READ_TIME direct_read_time - Direct read time

DIRECT_WRITE_TIME direct_write_time - Direct write time

WLM_QUEUE_TIME_TOTAL wlm_queue_time_total - Workload manager total queue time

LOCK_WAIT_TIME lock_wait_time - Time waited on locks

LOG_BUFFER_WAIT_TIME log_buffer_wait_time - Log buffer wait time

LOG_DISK_WAIT_TIME log_disk_wait_time - Log disk wait time

AUDIT_FILE_WRITE_WAIT_TIME audit_file_write_wait_time - Audit file write wait time

AUDIT_SUBSYSTEM_WAIT_TIME audit_subsystem_wait_time - Audit subsystem wait time

DIAGLOG_WRITE_WAIT_TIME diaglog_write_wait_time - Diag log write time

FCM_SEND_WAIT_TIME fcm_send_wait_time - FCM send wait time

FCM_RECV_WAIT_TIME fcm_recv_wait_time - FCM recv wait time

FCM_MESSAGE_SEND_WAIT_TIME fcm_message_send_wait_time - FCM message send wait time

FCM_MESSAGE_RECV_WAIT_TIME fcm_message_recv_wait_time - FCM message recv wait time

FCM_TQ_SEND_WAIT_TIME fcm_tq_send_wait_time - FCM tablequeue send wait time

FCM_TQ_RECV_WAIT_TIME fcm_tq_recv_wait_time - FCM tablequeue recv wait time

STMT_EXEC_TIME stmt_exec_time - Statement execution time

TOTAL_ROUTINE_TIME total_routine_time - Total routine time

TOTAL_ROUTINE_NON_SECT_TIME total_routine_non_sect_time - Non-section routine execution time

TOTAL_ROUTINE_USER_CODE_TIME total_routine_user_code_time - Total routine user code time

TOTAL_SECTION_TIME total_section_time - Total section time

TOTAL_SECTION_SORT_TIME total_section_sort_time - Total section sort time

TOTAL_ROUTINE_NON_
SECT_PROC_TIME

total_routine_non_sect_proc_time - Non-section processing time

TOTAL_ROUTINE_USER_CODE_
PROC_TIME

total_routine_user_code_proc_time - Total routine user code processing
time

TOTAL_SECTION_PROC_TIME total_section_proc_time - Total section processing time

TOTAL_SECTION_SORT_PROC_TIME total_section_sort_proc_time - Total section sort processing time

TOTAL_SECTION_SORTS total_section_sorts - Total section sorts

LOCK_ESCALS lock_escals - Number of lock escalations

LOCK_WAITS lock_waits - Lock waits

ROWS_MODIFIED rows_modified - Rows modified

ROWS_READ rows_read - Rows read

ROWS_RETURNED rows_returned - Rows returned

DIRECT_READS direct_reads - Direct reads from database

DIRECT_READ_REQS direct_read_reqs - Direct read requests

DIRECT_WRITES direct_writes - Direct writes to database

DIRECT_WRITE_REQS direct_write_reqs - Direct write requests

402 Administrative Routines and Views

Table 112. Metric names returned by MON_FORMAT_XML_METRICS_BY_ROW for XML documents containing an
activity_metrics element type (continued)

Metric Name Description or Monitor element

POOL_DATA_L_READS pool_data_l_reads - Buffer pool data logical reads

POOL_TEMP_DATA_L_READS pool_temp_data_l_reads - Buffer pool temporary data logical reads

POOL_XDA_L_READS pool_xda_l_reads - Buffer pool XDA data logical reads

POOL_TEMP_XDA_L_READS pool_temp_xda_l_reads - Buffer pool temporary XDA data logical reads

POOL_INDEX_L_READS pool_index_l_reads - Buffer pool index logical reads

POOL_TEMP_INDEX_L_READS pool_temp_index_l_reads - Buffer pool temporary index logical reads

POOL_DATA_P_READS pool_data_p_reads - Buffer pool data physical reads

POOL_TEMP_DATA_P_READS pool_temp_data_p_reads - Buffer pool temporary data physical reads

POOL_TEMP_XDA_P_READS pool_temp_xda_p_reads - Buffer pool temporary XDA data physical
reads

POOL_TEMP_INDEX_P_READS pool_temp_index_p_reads - Buffer pool temporary index physical reads

POOL_INDEX_P_READS pool_index_p_reads - Buffer pool index physical reads

POOL_DATA_WRITES pool_data_writes - Buffer pool data writes

POOL_XDA_WRITES pool_xda_writes - Buffer pool XDA data writes

POOL_INDEX_WRITES pool_index_writes - Buffer pool index writes

TOTAL_SORTS total_sorts - Total Sorts

POST_THRESHOLD_SORTS post_threshold_sorts - Post threshold sorts

POST_SHRTHRESHOLD_SORTS post_shrthreshold_sorts - Post shared threshold sorts

SORT_OVERFLOWS sort_overflows - Sort overflows

WLM_QUEUE_ASSIGNMENTS_TOTAL wlm_queue_assignments_total - Workload manager total queue
assignments

DEADLOCKS deadlocks - Deadlocks detected

FCM_RECV_VOLUME fcm_recv_volume - FCM recv volume

FCM_RECVS_TOTAL fcm_recvs_total - FCM recvs total

FCM_SEND_VOLUME fcm_send_volume - FCM send volume

FCM_SENDS_TOTAL fcm_sends_total - FCM sends total

LOCK_TIMEOUTS lock_timeouts - Number of lock timeouts

NUM_LOG_BUFFER_FULL num_log_buffer_full - Number of full log buffers

LOG_DISK_WAITS_TOTAL log_disk_waits_total - Log disk waits total

TOTAL_ROUTINE_INVOCATIONS total_routine_invocations - Total routine invocations

AUDIT_EVENTS_TOTAL audit_events_total - Total audit events

AUDIT_SUBSYSTEM_WAITS_TOTAL audit_subsystem_waits_total - Total audit subsystem waits

AUDIT_FILE_WRITES_TOTAL audit_file_writes_total - Total Audit files written

DIAGLOG_WRITES_TOTAL diaglog_writes_total - Diag log total writes

FCM_MESSAGE_RECV_VOLUME fcm_message_recv_volume - FCM message recv volume

FCM_MESSAGE_RECVS_TOTAL fcm_message_recvs_total - FCM message recvs total

FCM_MESSAGE_SEND_VOLUME fcm_message_send_volume - FCM message send volume

FCM_MESSAGE_SENDS_TOTAL fcm_message_sends_total - FCM message sends total

FCM_TQ_RECV_VOLUME fcm_tq_recv_volume - FCM tablequeue recv volume

FCM_TQ_RECVS_TOTAL fcm_tq_recvs_total - FCM tablequeue recvs total

Chapter 12. Monitor routines and views 403

Table 112. Metric names returned by MON_FORMAT_XML_METRICS_BY_ROW for XML documents containing an
activity_metrics element type (continued)

Metric Name Description or Monitor element

FCM_TQ_SEND_VOLUME fcm_tq_send_volume - FCM tablequeue send volume

FCM_TQ_SENDS_TOTAL fcm_tq_sends_total - FCM tablequeue send total

TQ_TOT_SEND_SPILLS tq_tot_send_spills - Total number of table queue buffers overflowed

THRESH_VIOLATIONS thresh_violations - Number of threshold violations

NUM_LW_THRESH_EXCEEDED num_lw_thresh_exceeded - Number of thresholds exceeded

COORD_STMT-EXEC_TIME coord_stmt_exec_time - Execution time for statement by coordinator
agent

TOTAL_ACT_TIME total_act_time - Total activity time

TOTAL_CPU_TIME total_cpu_time - Total CPU time

IDA_SEND_WAIT_TIME ida_send_wait_time - Time spent waiting to send data

IDA_SENDS_TOTAL ida_sends_total - Number of times data sent

IDA_SEND_VOLUME ida_send_volume - Total data volume sent

IDA_RECV_VOLUME ida_recv_volume - Total data volume received

IDA_RECV_WAIT_TIME ida_recv_wait_time - Time spent waiting to receive data

IDA_RECVS_TOTAL ida_recvs_total - Number of times data received

MON_FORMAT_XML_TIMES_BY_ROW - Get formatted row-based
combined hierarchy wait and processing times

The MON_FORMAT_XML_TIMES_BY_ROW table function returns formatted row
based output for the combined hierarchy of wait and processing times that are
contained in an XML metrics document.

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7, it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7, this routine will no longer work.

Syntax

�� MON_FORMAT_XML_TIMES_BY_ROW (xmldoc) ��

The schema is SYSPROC.

Table function parameters

xmldoc
An input argument of type BLOB(100M) that contains an XML document with
either a system_metrics or activity_metrics element. XML documents with
these elements can be obtained from the following sources:
v Returned by one of the MON_GET_*_DETAILS table functions.
v From the metrics column output by statistics and activity event monitors.
v From the formatted output of the unit of work, or package cache event

monitors.

404 Administrative Routines and Views

Authorization

EXECUTE privilege on the MON_FORMAT_XML_TIMES_BY_ROW function.

Example

To determine where time is being spent by your application within the DB2
database manger, you can run the following query to show the combined wait and
processing time metrics in the metrics hierarchy.
SELECT SUBSTR(T.SERVICE_SUPERCLASS_NAME,1,15) as SUPERCLASS,

SUBSTR(T.SERVICE_SUBCLASS_NAME,1,15) as SUBCLASS,
T.MEMBER,
SUBSTR(U.METRIC_NAME, 1,15) AS METRIC_NAME,
SUBSTR(U.PARENT_METRIC_NAME,1,15) AS PARENT_NAME,
U.TOTAL_TIME_VALUE,
U.COUNT

FROM
TABLE(MON_GET_SERVICE_SUBCLASS_DETAILS(NULL, NULL, -2)) AS T,
TABLE(MON_FORMAT_XML_TIMES_BY_ROW(T.DETAILS)) AS U

The following example is a sample output from this query.
SUPERCLASS SUBCLASS MEMBER METRIC_NAME PARENT_NAME T..._VALUE COUNT
---------- -------- ------ --------------- --------------- ---------- -----
MYSC MYSSC 0 FCM_MESSAGE_REC FCM_RECV_WAIT_T 0 0
MYSC MYSSC 0 FCM_TQ_RECV_WAI FCM_RECV_WAIT_T 0 0
MYSC MYSSC 0 FCM_MESSAGE_SEN FCM_SEND_WAIT_T 0 0
MYSC MYSSC 0 FCM_TQ_SEND_WAI FCM_SEND_WAIT_T 0 0
MYSC MYSSC 0 TOTAL_COMMIT_PR TOTAL_RQST_TIME 300 1
MYSC MYSSC 0 TOTAL_COMPILE_P TOTAL_RQST_TIME 700 1
MYSC MYSSC 0 TOTAL_IMPLICIT_ TOTAL_RQST_TIME 0 0
MYSC MYSSC 0 TOTAL_LOAD_PROC TOTAL_RQST_TIME 0 0
MYSC MYSSC 0 TOTAL_REORG_PRO TOTAL_RQST_TIME 0 0
MYSC MYSSC 0 TOTAL_ROLLBACK_ TOTAL_RQST_TIME 0 0
MYSC MYSSC 0 TOTAL_RUNSTATS_ TOTAL_RQST_TIME 0 0
MYSC MYSSC 0 TOTAL_SECTION_P TOTAL_RQST_TIME 7322 1
MYSC MYSSC 0 TOTAL_WAIT_TIME TOTAL_RQST_TIME 0 0
MYSC MYSSC 0 TOTAL_SECTION_S TOTAL_SECTION_P 0 0
MYSC MYSSC 0 AGENT_WAIT_TIME TOTAL_WAIT_TIME 0 0
MYSC MYSSC 0 AUDIT_FILE_WRIT TOTAL_WAIT_TIME 0 0
MYSC MYSSC 0 AUDIT_SUBSYSTEM TOTAL_WAIT_TIME 0 0
MYSC MYSSC 0 DIAGLOG_WRITE_W TOTAL_WAIT_TIME 0 0
MYSC MYSSC 0 DIRECT_READ_TIM TOTAL_WAIT_TIME 1204 17
MYSC MYSSC 0 DIRECT_WRITE_TI TOTAL_WAIT_TIME 0 0
MYSC MYSSC 0 FCM_RECV_WAIT_T TOTAL_WAIT_TIME 0 0
MYSC MYSSC 0 FCM_SEND_WAIT_T TOTAL_WAIT_TIME 0 0
MYSC MYSSC 0 IPC_RECV_WAIT_T TOTAL_WAIT_TIME 0 0
MYSC MYSSC 0 IPC_SEND_WAIT_T TOTAL_WAIT_TIME 0 0
MYSC MYSSC 0 LOCK_WAIT_TIME TOTAL_WAIT_TIME 0 0
MYSC MYSSC 0 LOG_BUFFER_WAIT TOTAL_WAIT_TIME 0 0
MYSC MYSSC 0 LOG_DISK_WAIT_T TOTAL_WAIT_TIME 523 2
MYSC MYSSC 0 POOL_READ_TIME TOTAL_WAIT_TIME 2432 7
MYSC MYSSC 0 POOL_WRITE_TIME TOTAL_WAIT_TIME 0 0
MYSC MYSSC 0 TCPIP_RECV_WAIT TOTAL_WAIT_TIME 523 1
MYSC MYSSC 0 TCPIP_SEND_WAIT TOTAL_WAIT_TIME 241 1
MYSC MYSSC 0 WLM_QUEUE_TIME_ TOTAL_WAIT_TIME 0 0
MYSC MYSSC 0 CLIENT_IDLE_WAI - 234 -
MYSC MYSSC 0 TOTAL_RQST_TIME - 13245 1

34 record(s) selected.

Chapter 12. Monitor routines and views 405

Information returned

Table 113. Information returned for MON_FORMAT_XML_TIMES_BY_ROW

Column Name Data Type Description

METRIC_NAME VARCHAR(128) The unique identifier for the total time metric value.

TOTAL_TIME_VALUE BIGINT The total time value in milliseconds corresponding to
metric_name.

COUNT BIGINT Number of occurrences of this type of interval.

PARENT_METRIC_NAME VARCHAR(128) The identifier of the parent total time metric whose value
contains the total_time_value as a subset.

XML documents that contain an element of type system_metrics are generated from
the following interfaces:
v MON_GET_CONNECTION_DETAILS
v MON_GET_SERVICE_SUBCLASS_DETAILS
v MON_GET_UNIT_OF_WORK_DETAILS
v MON_GET_WORKLOAD_DETAILS
v DETAILS_XML column from a STATISTICS event monitor
v METRICS column produced by EVMON_FORMAT_UE_TO_TABLES for the

UNIT OF WORK event monitor
v XMLREPORT column of EVMON_FORMAT_UE_TO_XML for the UNIT OF

WORK event monitor

See Table 114 for the types of metrics and their parent metrics that are returned
from the XML document in this case:

Table 114. Metric names returned by MON_FORMAT_XML_TIMES_BY_ROW for XML documents containing a
system_metrics element type

Metric Name Parent Metric Name Description of metric or Monitor element

TOTAL_RQST_TIME NULL total_rqst_time - Total request time

TOTAL_COMPILE_
PROC_TIME

TOTAL_RQST_TIME total_compile_proc_time - Total compile processing
time

TOTAL_IMPLICIT_
COMPILE_PROC_TIME

TOTAL_RQST_TIME total_implicit_compile_proc_time - Total implicit
compile processing time

TOTAL_SECTION_
PROC_TIME

TOTAL_RQST_TIME total_section_proc_time - Total section processing time

TOTAL_COMMIT_
PROC_TIME

TOTAL_RQST_TIME total_commit_proc_time - Total commits processing
time

TOTAL_ROLLBACK
_PROC_TIME

TOTAL_RQST_TIME total_rollback_proc_time - Total rollback processing
time

TOTAL_ROUTINE_USER
_CODE_PROC_TIME

TOTAL_RQST_TIME total_routine_user_code_proc_time - Total routine user
code processing time

TOTAL_RUNSTATS_
PROC_TIME

TOTAL_RQST_TIME total_runstats_proc_time - Total runtime statistics
processing time

TOTAL_REORG
_PROC_TIME

TOTAL_RQST_TIME total_reorg_proc_time - Total reorganization processing
time

TOTAL_LOAD_PROC_TIME TOTAL_RQST_TIME total_load_proc_time - Total load processing time

TOTAL_SECTION_
SORT_PROC_TIME

TOTAL_SECTION_
PROC_TIME

total_section_sort_proc_time - Total section sort
processing time

406 Administrative Routines and Views

Table 114. Metric names returned by MON_FORMAT_XML_TIMES_BY_ROW for XML documents containing a
system_metrics element type (continued)

Metric Name Parent Metric Name Description of metric or Monitor element

TOTAL_WAIT_TIME TOTAL_RQST_TIME total_wait_time - Total wait time

CLIENT_IDLE_WAIT_TIME NULL client_idle_wait_time - Client idle wait time

POOL_READ_TIME TOTAL_WAIT_TIME pool_read_time - Total buffer pool physical read time

POOL_WRITE_TIME TOTAL_WAIT_TIME pool_write_time - Total buffer pool physical write time

DIRECT_READ_TIME TOTAL_WAIT_TIME direct_read_time - Direct read time

DIRECT_WRITE_TIME TOTAL_WAIT_TIME direct_write_time - Direct write time

LOCK_WAIT_TIME TOTAL_WAIT_TIME lock_wait_time - Time waited on locks

AGENT_WAIT_TIME TOTAL_WAIT_TIME agent_wait_time - Agent wait time

WLM_QUEUE_TIME_TOTAL TOTAL_WAIT_TIME wlm_queue_time_total - Workload manager total queue
time

FCM_SEND_WAIT_TIME TOTAL_WAIT_TIME fcm_send_wait_time - FCM send wait time

FCM_RECV_WAIT_TIME TOTAL_WAIT_TIME fcm_recv_wait_time - FCM recv wait time

TCPIP_SEND_WAIT_TIME TOTAL_WAIT_TIME tcpip_send_wait_time - TCP/IP send wait time

TCPIP_RECV_WAIT_TIME TOTAL_WAIT_TIME tcpip_recv_wait_time - TCP/IP recv wait time

IPC_SEND_WAIT_TIME TOTAL_WAIT_TIME ipc_send_wait_time - Interprocess communication send
wait time

IPC_RECV_WAIT_TIME TOTAL_WAIT_TIME ipc_recv_wait_time - Interprocess communication recv
wait time

LOG_BUFFER_WAIT_TIME TOTAL_WAIT_TIME log_buffer_wait_time - Log buffer wait time

LOG_DISK_WAIT_TIME TOTAL_WAIT_TIME log_disk_wait_time - Log disk wait time

FCM_MESSAGE_
SEND_WAIT_TIME

FCM_SEND_
WAIT_TIME

fcm_message_send_wait_time - FCM message send
wait time

FCM_MESSAGE_
RECV_WAIT_TIME

FCM_RECV_
WAIT_TIME

fcm_message_recv_wait_time - FCM message recv wait
time

FCM_TQ_SEND_WAIT_TIME FCM_SEND_
WAIT_TIME

fcm_tq_send_wait_time - FCM tablequeue send wait
time

FCM_TQ_RECV_WAIT_TIME FCM_RECV_
WAIT_TIME

fcm_tq_recv_wait_time - FCM tablequeue recv wait
time

AUDIT_FILE_WRITE
_WAIT_TIME

TOTAL_WAIT_TIME audit_file_write_wait_time - Audit file write wait time

AUDIT_SUBSYSTEM
_WAIT_TIME

TOTAL_WAIT_TIME audit_subsystem_wait_time - Audit subsystem wait
time

DIAGLOG_WRITE_
WAIT_TIME

TOTAL_WAIT_TIME diaglog_write_wait_time - Diag log write time

IDA_RECV_WAIT_TIME TOTAL_WAIT_TIME ida_recv_wait_time - Time spent waiting to receive data

IDA_SEND_WAIT_TIME TOTAL_WAIT_TIME ida_send_wait_time - Time spent waiting to send data

XML documents that contain an element of type activity_metrics are generated from
the following interfaces:
v MON_GET_ACTIVITY_DETAILS
v MON_GET_PKG_CACHE_STMT_DETAILS
v DETAILS_XML column from an ACTIVITY event monitor

Chapter 12. Monitor routines and views 407

v METRICS column produced by EVMON_FORMAT_UE_TO_TABLES for the
PACKAGE CACHE event monitor

v XMLREPORT column of EVMON_FORMAT_UE_TO_XML for the PACKAGE
CACHE event monitor

See Table 115 for the types of metrics and their parent metrics that are returned
from the XML document in this case:

Table 115. Metric names returned by MON_FORMAT_XML_TIMES_BY_ROW for XML documents containing an
activity_metrics element type

Metric Name Parent Metric Name Description or Monitor element

STMT_EXEC_TIME NULL stmt_exec_time - Statement execution time

TOTAL_ROUTINE_NON
_SECT_PROC_TIME

STMT_EXEC_TIME total_routine_non_sect_proc_time - Non-section
processing time

TOTAL_ROUTINE_USER
_CODE_PROC_TIME

TOTAL_ROUTINE_NON
_SECT_PROC_TIME

total_routine_user_code_proc_time - Total routine user
code processing time

TOTAL_SECTION_
PROC_TIME

STMT_EXEC_TIME total_section_proc_time - Total section processing time

TOTAL_SECTION_SORT
PROC_TIME

TOTAL_SECTION_
PROC_TIME

total_section_sort_proc_time - Total section sort
processing time

TOTAL_ACT_WAIT_TIME STMT_EXEC_TIME total_act_wait_time - Total activity wait time

WLM_QUEUE_TIME_TOTAL NULL wlm_queue_time_total - Workload manager total queue
time

POOL_READ_TIME TOTAL_ACT_
WAIT_TIME

pool_read_time - Total buffer pool physical read time

POOL_WRITE_TIME TOTAL_ACT_
WAIT_TIME

pool_write_time - Total buffer pool physical write time

DIRECT_READ_TIME TOTAL_ACT_
WAIT_TIME

direct_read_time - Direct read time

DIRECT_WRITE_TIME TOTAL_ACT_
WAIT_TIME

direct_write_time - Direct write time

LOCK_WAIT_TIME TOTAL_ACT_
WAIT_TIME

lock_wait_time - Time waited on locks

LOG_BUFFER_WAIT_TIME TOTAL_ACT_
WAIT_TIME

log_buffer_wait_time - Log buffer wait time

LOG_DISK_WAIT_TIME TOTAL_ACT_
WAIT_TIME

log_disk_wait_time - Log disk wait time

AUDIT_FILE_WRITE
_WAIT_TIME

TOTAL_ACT_
WAIT_TIME

audit_file_write_wait_time - Audit file write wait time

AUDIT_SUBSYSTEM
_WAIT_TIME

TOTAL_ACT_
WAIT_TIME

audit_subsystem_wait_time - Audit subsystem wait
time

DIAGLOG_WRITE_
WAIT_TIME

TOTAL_ACT_
WAIT_TIME

diaglog_write_wait_time - Diag log write time

FCM_SEND_WAIT_TIME TOTAL_ACT_
WAIT_TIME

fcm_send_wait_time - FCM send wait time

FCM_RECV_WAIT_TIME TOTAL_ACT_
WAIT_TIME

fcm_recv_wait_time - FCM recv wait time

FCM_MESSAGE_
SEND_WAIT_TIME

FCM_SEND_
WAIT_TIME

fcm_message_send_wait_time - FCM message send
wait time

408 Administrative Routines and Views

Table 115. Metric names returned by MON_FORMAT_XML_TIMES_BY_ROW for XML documents containing an
activity_metrics element type (continued)

Metric Name Parent Metric Name Description or Monitor element

FCM_MESSAGE_
RECV_WAIT_TIME

FCM_RECV_
WAIT_TIME

fcm_message_recv_wait_time - FCM message recv wait
time

FCM_TQ_SEND_WAIT_TIME FCM_SEND_
WAIT_TIME

fcm_tq_send_wait_time - FCM tablequeue send wait
time

FCM_TQ_RECV_WAIT_TIME FCM_RECV_
WAIT_TIME

fcm_tq_recv_wait_time - FCM tablequeue recv wait
time

IDA_RECV_WAIT_TIME TOTAL_WAIT_TIME ida_recv_wait_time - Time spent waiting to receive data

IDA_SEND_WAIT_TIME TOTAL_WAIT_TIME ida_send_wait_time - Time spent waiting to send data

MON_FORMAT_XML_WAIT_TIMES_BY_ROW - Get formatted
row-based output for wait times

The MON_FORMAT_XML_WAIT_TIMES_BY_ROW table function returns
formatted row-based output for the wait times contained in an XML metrics
document.

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7, it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7, this routine will no longer work.

Syntax

�� MON_FORMAT_XML_WAIT_TIMES_BY_ROW (xmldoc) ��

The schema is SYSPROC.

Table function parameters

xmldoc
An input argument of type BLOB(100M) that contains an XML document with
either a system_metrics or activity_metrics element. XML documents with
these elements can be obtained from the following sources:
v Returned by one of the MON_GET_*_DETAILS table functions.
v From the metrics column output by statistics and activity event monitors.
v From the formatted output of the unit of work, or package cache event

monitors.

Authorization

EXECUTE privilege on the MON_FORMAT_XML_WAIT_TIMES_BY_ROW
function.

Example

This example shows how to call the
MON_FORMAT_XML_WAIT_TIMES_BY_ROW table function to return formatted

Chapter 12. Monitor routines and views 409

row-based output from the XML document produced by the
MON_GET_WORKLOAD_DETAILS table function. The output shows the metrics
and their values for each workload.
SELECT SUBSTR(TFXML.WORKLOAD_NAME, 1, 13) AS WORKLOAD_NAME,

SUBSTR(WAITS.METRIC_NAME, 1, 25) AS METRIC_NAME,
WAITS.TOTAL_TIME_VALUE,
WAITS.COUNT

FROM
TABLE(MON_GET_WORKLOAD_DETAILS(NULL, -2)) AS TFXML,
TABLE(MON_FORMAT_XML_WAIT_TIMES_BY_ROW(

TFXML.DETAILS
)) AS WAITS

ORDER BY WAITS.TOTAL_TIME_VALUE DESC

The following example is a partial listing of the output of this query.
WORKLOAD_NAME METRIC_NAME TOTAL_TIME_VALUE COUNT
------------- ------------------------- ------------------- ------
PAYROLL CLIENT_IDLE_WAIT_TIME 2193672 174
FINANCE CLIENT_IDLE_WAIT_TIME 738290 16
PAYROLL DIRECT_READ_TIME 67892 81
FINANCE DIRECT_READ_TIME 32343 8
FINANCE LOCK_WAIT_TIME 8463 3
PAYROLL LOCK_WAIT_TIME 55 1

Information returned

Table 116. Information returned for MON_FORMAT_XML_WAIT_TIMES_BY_ROW

Column Name Data Type Description

METRIC_NAME VARCHAR(128) The unique identifier for the total time metric value.

TOTAL_TIME_VALUE BIGINT The total time value in milliseconds corresponding to
metric_name.

COUNT BIGINT Number of occurrences of this type of interval.

PARENT_METRIC_NAME VARCHAR(128) The identifier of the parent total time metric whose value
contains the total_time_value as a subset.

XML documents that contain an element of type system_metrics are generated from
the following interfaces:
v MON_GET_CONNECTION_DETAILS
v MON_GET_SERVICE_SUBCLASS_DETAILS
v MON_GET_UNIT_OF_WORK_DETAILS
v MON_GET_WORKLOAD_DETAILS
v DETAILS_XML column from a STATISTICS event monitor
v METRICS column produced by EVMON_FORMAT_UE_TO_TABLES for the

UNIT OF WORK event monitor
v XMLREPORT column of EVMON_FORMAT_UE_TO_XML for the UNIT OF

WORK event monitor

See Table 117 for the types of metrics and their parent metrics that are returned
from the XML document in this case:

Table 117. Metric names returned by MON_FORMAT_XML_WAIT_TIMES_BY_ROW for XML documents containing a
system_metrics element type

Metric Name Parent Metric Name Description of metric or Monitor element

TOTAL_WAIT_TIME TOTAL_RQST_TIME total_wait_time - Total wait time

410 Administrative Routines and Views

Table 117. Metric names returned by MON_FORMAT_XML_WAIT_TIMES_BY_ROW for XML documents containing a
system_metrics element type (continued)

Metric Name Parent Metric Name Description of metric or Monitor element

CLIENT_IDLE_WAIT_TIME NULL client_idle_wait_time - Client idle wait time

POOL_READ_TIME TOTAL_WAIT_TIME pool_read_time - Total buffer pool physical read time

POOL_WRITE_TIME TOTAL_WAIT_TIME pool_write_time - Total buffer pool physical write time

DIRECT_READ_TIME TOTAL_WAIT_TIME direct_read_time - Direct read time

DIRECT_WRITE_TIME TOTAL_WAIT_TIME direct_write_time - Direct write time

LOCK_WAIT_TIME TOTAL_WAIT_TIME lock_wait_time - Time waited on locks

AGENT_WAIT_TIME TOTAL_WAIT_TIME agent_wait_time - Agent wait time

WLM_QUEUE_TIME_TOTAL TOTAL_WAIT_TIME wlm_queue_time_total - Workload manager total queue
time

FCM_SEND_WAIT_TIME TOTAL_WAIT_TIME fcm_send_wait_time - FCM send wait time

FCM_RECV_WAIT_TIME TOTAL_WAIT_TIME fcm_recv_wait_time - FCM recv wait time

TCPIP_SEND_WAIT_TIME TOTAL_WAIT_TIME tcpip_send_wait_time - TCP/IP send wait time

TCPIP_RECV_WAIT_TIME TOTAL_WAIT_TIME tcpip_recv_wait_time - TCP/IP recv wait time

IPC_SEND_WAIT_TIME TOTAL_WAIT_TIME ipc_send_wait_time - Interprocess communication send
wait time

IPC_RECV_WAIT_TIME TOTAL_WAIT_TIME ipc_recv_wait_time - Interprocess communication recv
wait time

LOG_BUFFER_WAIT_TIME TOTAL_WAIT_TIME log_buffer_wait_time - Log buffer wait time

LOG_DISK_WAIT_TIME TOTAL_WAIT_TIME log_disk_wait_time - Log disk wait time

FCM_MESSAGE_
SEND_WAIT_TIME

FCM_SEND_
WAIT_TIME

fcm_message_send_wait_time - FCM message send
wait time

FCM_MESSAGE_
RECV_WAIT_TIME

FCM_RECV_
WAIT_TIME

fcm_message_recv_wait_time - FCM message recv wait
time

FCM_TQ_SEND_WAIT_TIME FCM_SEND_
WAIT_TIME

fcm_tq_send_wait_time - FCM tablequeue send wait
time

FCM_TQ_RECV_WAIT_TIME FCM_RECV_
WAIT_TIME

fcm_tq_recv_wait_time - FCM tablequeue recv wait
time

AUDIT_FILE_WRITE
_WAIT_TIME

TOTAL_WAIT_TIME audit_file_write_wait_time - Audit file write wait time

AUDIT_SUBSYSTEM
_WAIT_TIME

TOTAL_WAIT_TIME audit_subsystem_wait_time - Audit subsystem wait
time

DIAGLOG_WRITE_
WAIT_TIME

TOTAL_WAIT_TIME diaglog_write_wait_time - Diag log write time

IDA_RECV_WAIT_TIME TOTAL_WAIT_TIME ida_recv_wait_time - Time spent waiting to receive data

IDA_SEND_WAIT_TIME TOTAL_WAIT_TIME ida_send_wait_time - Time spent waiting to send data

XML documents that contain an element of type activity_metrics are generated from
the following interfaces:
v MON_GET_ACTIVITY_DETAILS
v MON_GET_PKG_CACHE_STMT_DETAILS
v DETAILS_XML column from an ACTIVITY event monitor
v METRICS column produced by EVMON_FORMAT_UE_TO_TABLES for the

PACKAGE CACHE event monitor

Chapter 12. Monitor routines and views 411

v XMLREPORT column of EVMON_FORMAT_UE_TO_XML for the PACKAGE
CACHE event monitor

See Table 118 for the types of metrics and their parent metrics that are returned
from the XML document in this case:

Table 118. Metric names returned by MON_FORMAT_XML_WAIT_TIMES_BY_ROW for XML documents containing
an activity_metrics element type

Metric Name Parent Metric Name Description or Monitor element

TOTAL_ACT_WAIT_TIME STMT_EXEC_TIME total_act_wait_time - Total activity wait time

WLM_QUEUE_TIME_TOTAL NULL wlm_queue_time_total - Workload manager total queue
time

POOL_READ_TIME TOTAL_ACT_
WAIT_TIME

pool_read_time - Total buffer pool physical read time

POOL_WRITE_TIME TOTAL_ACT_
WAIT_TIME

pool_write_time - Total buffer pool physical write time

DIRECT_READ_TIME TOTAL_ACT_
WAIT_TIME

direct_read_time - Direct read time

DIRECT_WRITE_TIME TOTAL_ACT_
WAIT_TIME

direct_write_time - Direct write time

LOCK_WAIT_TIME TOTAL_ACT_
WAIT_TIME

lock_wait_time - Time waited on locks

LOG_BUFFER_WAIT_TIME TOTAL_ACT_
WAIT_TIME

log_buffer_wait_time - Log buffer wait time

LOG_DISK_WAIT_TIME TOTAL_ACT_
WAIT_TIME

log_disk_wait_time - Log disk wait time

AUDIT_FILE_WRITE
_WAIT_TIME

TOTAL_ACT_
WAIT_TIME

audit_file_write_wait_time - Audit file write wait time

AUDIT_SUBSYSTEM
_WAIT_TIME

TOTAL_ACT_
WAIT_TIME

audit_subsystem_wait_time - Audit subsystem wait
time

DIAGLOG_WRITE_
WAIT_TIME

TOTAL_ACT_
WAIT_TIME

diaglog_write_wait_time - Diag log write time

FCM_SEND_WAIT_TIME TOTAL_ACT_
WAIT_TIME

fcm_send_wait_time - FCM send wait time

FCM_RECV_WAIT_TIME TOTAL_ACT_
WAIT_TIME

fcm_recv_wait_time - FCM recv wait time

FCM_MESSAGE_
SEND_WAIT_TIME

FCM_SEND_
WAIT_TIME

fcm_message_send_wait_time - FCM message send
wait time

FCM_MESSAGE_
RECV_WAIT_TIME

FCM_RECV_
WAIT_TIME

fcm_message_recv_wait_time - FCM message recv wait
time

FCM_TQ_SEND_
WAIT_TIME

FCM_SEND_
WAIT_TIME

fcm_tq_send_wait_time - FCM tablequeue send wait
time

FCM_TQ_RECV_
WAIT_TIME

FCM_RECV_
WAIT_TIME

fcm_tq_recv_wait_time - FCM tablequeue recv wait
time

IDA_RECV_WAIT_TIME TOTAL_WAIT_TIME ida_recv_wait_time - Time spent waiting to receive data

IDA_SEND_WAIT_TIME TOTAL_WAIT_TIME ida_send_wait_time - Time spent waiting to send data

412 Administrative Routines and Views

MON_GET_ACTIVITY_DETAILS table function - Get complete activity
details

The MON_GET_ACTIVITY_DETAILS table function returns details about an
activity, including general activity information (like statement text) and a set of
metrics for the activity.

Syntax

�� MON_GET_ACTIVITY_DETAILS (application_handle , uow_id , �

� activity_id , member) ��

The schema is SYSPROC.

Table function parameters

application_handle
An input argument of type BIGINT that specifies a valid application handle. If
the argument is null, no rows are returned from this function, and an
SQL0171N error is returned.

uow_id
An input argument of type INTEGER that specifies a valid unit of work
identifier unique within the application. If the argument is null, no rows are
returned from this function, and an SQL0171N error is returned.

activity_id
An input argument of type INTEGER that specifies a valid activity ID unique
within the unit of work. If the argument is null, no rows are returned from this
function, and an SQL0171N error is returned.

member
An input argument of type INTEGER that specifies a valid member number in
the same instance as the currently connected database when calling this
function. Specify -1 for the current database member, or -2 for all database
members. If the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the MON_GET_ACTIVITY_DETAILS function.

Example

Investigate a long running query to determine if it is spending its time
executing or waiting (for example, blocked on locks or I/O).

Note: The following queries can be combined into one statement and are shown in
2 steps for reasons of clarity. Also, if you want to retrieve the complete text, you
could use the executable ID to obtain the statement text from the
MON_GET_PKG_CACHE_STMT table function.
1. First use the WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES_V9.7 table

function to list activities and their start times.
SELECT application_handle,

activity_id,
uow_id,
local_start_time

Chapter 12. Monitor routines and views 413

FROM TABLE(
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES_V97(

cast(NULL as bigint), -1)
) AS T

The following example is a sample output from this query.
APPLICATION_HANDLE ACTIVITY_ID UOW_ID LOCAL_START_TIME
-------------------- ----------- ----------- --------------------------

7 1 2 2008-06-10-10.06.55.675668
16 1 7 2008-06-10-10.08.38.613610

2 record(s) selected.

2. Then use the MON_GET_ACTIVITY_DETAILS table function to view the
percentage of time that the activity has spent waiting.
SELECT actmetrics.application_handle,

actmetrics.activity_id,
actmetrics.uow_id,
varchar(actmetrics.stmt_text, 50) as stmt_text,
actmetrics.total_act_time,
actmetrics.total_act_wait_time,
CASE WHEN actmetrics.total_act_time > 0

THEN DEC((
FLOAT(actmetrics.total_act_wait_time) /
FLOAT(actmetrics.total_act_time)) * 100, 5, 2)

ELSE NULL
END AS PERCENTAGE_WAIT_TIME

FROM TABLE(MON_GET_ACTIVITY_DETAILS(7, 2, 1, -2)) AS ACTDETAILS,
XMLTABLE (XMLNAMESPACES(DEFAULT ’http://www.ibm.com/xmlns/prod/db2/mon’),

’$actmetrics/db2_activity_details’
PASSING XMLPARSE(DOCUMENT ACTDETAILS.DETAILS) as "actmetrics"
COLUMNS "APPLICATION_HANDLE" INTEGER PATH ’application_handle’,

"ACTIVITY_ID" INTEGER PATH ’activity_id’,
"UOW_ID" INTEGER PATH ’uow_id’,
"STMT_TEXT" VARCHAR(1024) PATH ’stmt_text’,
"TOTAL_ACT_TIME" INTEGER PATH ’activity_metrics/total_act_time’,
"TOTAL_ACT_WAIT_TIME" INTEGER PATH ’activity_metrics/total_act_wait_time’

) AS ACTMETRICS;

The following example is a sample output from this query.
APPLICATION_HANDLE ACTIVITY_ID UOW_ID ...
------------------ ----------- ----------- ...

7 1 2 ...

1 record(s) selected.

Output for query (continued).
... STMT_TEXT ...
... -- ...
... select * from syscat.tables optimize for 1 row ...

Output for query (continued).
... TOTAL_ACT_TIME TOTAL_ACT_WAIT_TIME PERCENTAGE_WAIT_TIME
... -------------- ------------------- --------------------
... 459 0 0.00

Use the MON_GET_ACTIVITY_DETAILS table function to create a query that
captures information about all the activities currently running on a system.

v Example 1: Run the following command using the DB2 command line processor
(CLP)
WITH A1 AS

(SELECT * FROM TABLE(wlm_get_workload_occurrence_activities_v97(null, -1))
WHERE activity_id > 0)

SELECT A1.application_handle,
A1.activity_id,
A1.uow_id,
total_act_time,

414 Administrative Routines and Views

total_act_wait_time,
varchar(actmetrics.stmt_text, 50) AS stmt_text FROM A1,

TABLE(MON_GET_ACTIVITY_DETAILS(A1.application_handle, A1.uow_id,A1.activity_id, -1))
AS ACTDETAILS,

XMLTABLE (XMLNAMESPACES(DEFAULT ’http://www.ibm.com/xmlns/prod/db2/mon’),
’$actmetrics/db2_activity_details’
PASSING XMLPARSE(DOCUMENT ACTDETAILS.DETAILS) AS "actmetrics"
COLUMNS "STMT_TEXT" VARCHAR(1024) PATH ’stmt_text’,
"TOTAL_ACT_TIME" INTEGER PATH ’activity_metrics/total_act_time’,
"TOTAL_ACT_WAIT_TIME" INTEGER PATH ’activity_metrics/total_act_wait_time’)
AS ACTMETRICS

The following example is a sample output from this query:
APP...HANDLE A..._ID UOW_ID T...ACT_TIME T...WAIT_TIME
------------ ------- ------ ------------ -------------
15 1 5 16 5
15 1 3 17 5
7 1 49 0 0
SQL0445W Value "with A1 as (select * from table(wlm_get_workload
3 record(s) selected with 1 warning messages printed.

The following sample continues output from this query:
... STMT_TEXT
... ---
... select name from sysibm.systables
... select * from sysibm.systables
... with A1 as (select * from table(wlm_get_workload_o
occurrence" has been truncated. SQLSTATE=01004

3 record(s) selected with 1 warning messages printed.

Usage notes

The MON_GET_ACTIVITY_DETAILS function provides maximum flexibility for
formatting output because it returns detailed information for a single activity as an
XML document. The XML output includes both descriptive information (for
example, statement text) and metrics. The output can be parsed directly by an
XML parser, or it can be converted to relational format by the XMLTABLE function
as shown in the example.

The metrics reported through this function (for example, CPU usage) are rolled up
to the activity periodically during the lifetime of the activity. Therefore, the values
reported by this table function reflect the current state of the system at the time of
the most recent rollup.

Activity metrics are controlled through the COLLECT ACTIVITY METRICS clause
on workloads, or the mon_act_metrics database configuration parameter at the
database level. Metrics are collected if the connection that submits the activity is
associated with a workload or database for which activity metrics are enabled. If
activity metrics are not collected for an activity, all metrics are reported as 0.

The MON_GET_ACTIVITY_DETAILS table function returns one row of data for
each member on which the activity exists. No aggregation across members is
performed for the metrics. However, aggregation can be achieved through SQL
queries.

The schema for the XML document that is returned in the DETAILS column is
available in the file sqllib/misc/DB2MonRoutines.xsd. Further details can be found
in the file sqllib/misc/DB2MonCommon.xsd.

Chapter 12. Monitor routines and views 415

Information returned

Table 119. Information returned for MON_GET_ACTIVITY_DETAILS

Column name Data type Description

APPLICATION_HANDLE BIGINT application_handle - Application handle

UOW_ID INTEGER uow_id - Unit of work ID

ACTIVITY_ID INTEGER activity_id - Activity ID

MEMBER SMALLINT member - Database member

DETAILS BLOB(8M) XML document that contains activity details. See
Table 120 for a description of the elements in this
document.

The following example shows the structure of the XML document that is returned
in the DETAILS column.

<db2_activity_details xmlns="http://www.ibm.com/xmlns/prod/db2/mon" release="90700000">
<member>0</member>
<application_handle>70</application_handle>
<activity_id>1</activity_id>
<activity_state>IDLE</activity_state>
<activity_type>READ_DML</activity_type>
<uow_id>1</uow_id>
...
<activity_metrics release="90700000">

<lock_wait_time>2000</lock_wait_time>
...

</activity_metrics>
</db2_activity_details>

For the full schema, see sqllib/misc/DB2MonRoutines.xsd. This document uses the
following XML non-primitive type definitions:

<xs:simpleType name = "executable_id_type" >
<xs:annotation>

<xs:documentation>
The binary Executable ID

</xs:documentation>
</xs:annotation>
<xs:restriction base = "xs:hexBinary" >

<xs:maxLength value = "32" />
</xs:restriction>

</xs:simpleType>

Detailed metrics returned

Table 120. Detailed metrics returned for MON_GET_ACTIVITY_DETAILS

Element name Data type Description or corresponding monitor element

member xs:nonNegativeInteger member - Database member

client_userid xs:string(255) CURRENT CLIENT_USERID special register

client_wrkstnname xs:string(255) CURRENT CLIENT_WRKSTNNAME special register

client_applname xs:string(255) CURRENT CLIENT_APPLNAME special register

client_acctng xs:string(255) CURRENT CLIENT_ACCTNG special register

application_handle xs:nonNegativeInteger application_handle - Application handle

coord_member xs:nonNegativeInteger coord_member - Coordinator member

uow_id xs:nonNegativeInteger uow_id - Unit of work ID

activity_id xs:nonNegativeInteger activity_id - Activity ID

416 Administrative Routines and Views

Table 120. Detailed metrics returned for MON_GET_ACTIVITY_DETAILS (continued)

Element name Data type Description or corresponding monitor element

parent_uow_id xs:nonNegativeInteger parent_uow_id - Parent unit of work ID

parent_activity_id xs:nonNegativeInteger parent_activity_id - Parent activity ID

activity_state xs:string activity_state - Activity state

activity_type xs:string activity_type - Activity type

nesting_level xs:nonNegativeInteger stmt_nest_level - Statement nesting level

invocation_id xs:nonNegativeInteger stmt_invocation_id - Statement invocation identifier

routine_id xs:nonNegativeInteger routine_id - Routine ID

utility_id xs:nonNegativeInteger utility_id - Utility ID

service_class_id xs:integer service_class_id - Service class

database_work_action_set_id xs:nonNegativeInteger db_work_action_set_id - Database work action set ID

database_work_class_id xs:nonNegativeInteger db_work_class_id - Database work class ID

service_class_work
_action_set_id

xs:nonNegativeInteger sc_work_action_set_id - Service class work action set ID

service_class_work_class_id xs:nonNegativeInteger sc_work_class_id - Service class work class ID

entry_time xs:dateTime entry_time - Entry timeThe time that this activity arrived
into the system.

local_start_time xs:dateTime local_start_time - Local start time.

last_reference_time xs:dateTime last_reference_time - Last reference time. Every time a
request occurs in this activity, this field is updated.

package_name xs:string (128) package_name - Package name

package_schema xs:string (128) package_schema - Package schema

package_version_id xs:string (128) package_version_id - Package version

section_number xs:integer section_number - Section number

stmt_pkg_cache_id xs:nonNegativeInteger stmt_pkgcache_id - Statement package cache identifier

stmt_text xs:string stmt_text - SQL statement text. If the activity is dynamic
SQL or it is static SQL for which the statement text is
available, this field contains the first 1024 characters of the
statement text. Otherwise, it contains an empty string.

effective_isolation xs:string effective_isolation - Effective isolation

effective_lock_timeout xs:integer effective_lock_timeout - Effective lock time-out

effective_query_degree xs:integer effective_query_degree - Effective query degree

query_cost_estimate xs:integer query_cost_estimate - Query cost estimate

qp_query_id xs:nonNegativeInteger qp_query_id - Query patroller query ID

concurrentdbcoordactivities_db
_threshold_id

xs:int concurrentdbcoordactivities_db_threshold_id - Concurrent
database coordinator activities threshold ID

concurrentdbcoordactivities_db
_threshold_value

xs:long concurrentdbcoordactivities_db_threshold_value -
Concurrent database coordinator activities

concurrentdbcoordactivities_db
_threshold_queued

xs:short (1 = yes, 0 =
no)

concurrentdbcoordactivities_db_threshold_queued -
Concurrent database coordinator activities

concurrentdbcoordactivities_db
_threshold_violated

xs:short (1 = yes, 0 =
no)

concurrentdbcoordactivities_db_threshold_violated -
Concurrent database coordinator activities threshold
violated

Chapter 12. Monitor routines and views 417

Table 120. Detailed metrics returned for MON_GET_ACTIVITY_DETAILS (continued)

Element name Data type Description or corresponding monitor element

concurrentdbcoordactivities
_superclass_threshold_id

xs:int concurrentdbcoordactivities_superclass_threshold_id -
Concurrent database coordinator activities superclass

concurrentdbcoordactivities
_superclass_threshold_value

xs:long concurrentdbcoordactivities_superclass_threshold_value -
Concurrent database coordinator activities superclass
threshold value

concurrentdbcoordactivities
_superclass_threshold_queued

xs:short (1 = yes, 0 =
no)

concurrentdbcoordactivities_superclass_threshold_queued
- Concurrent database coordinator activities superclass
threshold queued

concurrentdbcoordactivities
_superclass_threshold_violated

xs:short (1 = yes, 0 =
no)

concurrentdbcoordactivities_superclass_threshold_violated
- Concurrent database coordinator activities superclass
threshold violated

concurrentdbcoordactivities
_subclass_threshold_id

xs:int concurrentdbcoordactivities_subclass_threshold_id -
Concurrent database coordinator activities subclass
threshold ID

concurrentdbcoordactivities
_subclass_threshold_value

xs:long concurrentdbcoordactivities_subclass_threshold_value -
Concurrent database coordinator activities subclass
threshold value

concurrentdbcoordactivities
_subclass_threshold_queued

xs:short (1 = yes, 0 =
no)

concurrentdbcoordactivities_subclass_threshold_queued -
Concurrent database coordinator activities subclass
threshold queued

concurrentdbcoordactivities
_subclass_threshold_violated

xs:short (1 = yes, 0 =
no)

concurrentdbcoordactivities_subclass_threshold_violated -
Concurrent database coordinator activities subclass
threshold violated

concurrentdbcoordactivities
_work_action_set_threshold
_id

xs:int concurrentdbcoordactivities_work_action
_set_threshold_id - Concurrent database coordinator
activities work action set threshold ID

concurrentdbcoordactivities
_work_action_set_threshold
_value

xs:long concurrentdbcoordactivities_work_action
_set_threshold_value - Concurrent database coordinator
activities work action set threshold value

concurrentdbcoordactivities
_work_action_set_threshold
_queued

xs:short (1 = yes, 0 =
no)

concurrentdbcoordactivities_work_action
_set_threshold_queued - Concurrent database coordinator
activities work action set threshold queued

concurrentdbcoordactivities
_work_action_set_threshold
_violated

xs:short (1 = yes, 0 =
no)

concurrentdbcoordactivities_work_action
_set_threshold_violated - Concurrent database coordinator
activities work action set threshold violated

estimatedsqlcost_threshold_id xs:int estimatedsqlcost_threshold_id - Estimated SQL cost
threshold ID

estimatedsqlcost_threshold
_value

xs:long estimatedsqlcost_threshold_value - Estimated SQL cost
threshold value

estimatedsqlcost_threshold
_violated

xs:short (1 = yes, 0 =
no)

estimatedsqlcost_threshold_violated - Estimated SQL cost
threshold violated

sqltempspace_threshold_id xs:int sqltempspace_threshold_id - SQL temporary space
threshold ID

sqltempspace_threshold
_value

xs:long sqltempspace_threshold_value - SQL temporary space
threshold value

sqltempspace_threshold
_violated

xs:short (1 = yes, 0 =
no)

sqltempspace_threshold_violated - SQL temporary space
threshold violated

sqlrowsreturned_threshold_id xs:int sqlrowsreturned_threshold_id - SQL rows read returned
threshold ID

418 Administrative Routines and Views

Table 120. Detailed metrics returned for MON_GET_ACTIVITY_DETAILS (continued)

Element name Data type Description or corresponding monitor element

sqlrowsreturned_threshold
_value

xs:long sqlrowsreturned_threshold_value - SQL rows read
returned threshold value

sqlrowsreturned_threshold
_violated

xs:short (1 = yes, 0 =
no)

sqlrowsreturned_threshold_violated - SQL rows read
returned threshold violated

activitytotaltime_threshold_id xs:int activitytotaltime_threshold_id - Activity total time
threshold ID

activitytotaltime_threshold
_value

xs:dateTime activitytotaltime_threshold_value - Activity total time
threshold value

activitytotaltime_threshold
_violated

xs:short (1 = yes, 0 =
no)

activitytotaltime_threshold_violated - Activity total time
threshold violated

cputime_threshold_id xs:int cputime_threshold_id - CPU time threshold ID

cputime_threshold_value xs:long cputime_threshold_value - CPU time threshold value

cputime_threshold_violated xs:short (1 = yes, 0 =
no)

cputime_threshold_violated - CPU time threshold violated

cputimeinsc_threshold_id xs:int cputimeinsc_threshold_id - CPU time in service threshold
ID

cputimeinsc_threshold_value xs:long cputimeinsc_threshold_value - CPU time in service
threshold value

cputimeinsc_threshold
_violated

xs:short (1 = yes, 0 =
no)

cputimeinsc_threshold_violated - CPU time in service
threshold violated

sqlrowsread_threshold_id xs:int sqlrowsread_threshold_ID - SQL rows read threshold ID

sqlrowsread_threshold_value xs:long sqlrowsread_threshold_value - SQL rows read threshold
value

sqlrowsread_threshold_violated xs:short (1 = yes, 0 =
no)

sqlrowsread_threshold_violated - SQL rows read threshold
violated

sqlrowsreadinsc_threshold_id xs:int sqlrowsreadinsc_threshold_id - SQL rows read in service
threshold ID

sqlrowsreadinsc_threshold
_value

xs:long sqlrowsreadinsc_threshold_value - SQL rows read in
service threshold value

sqlrowsreadinsc_threshold
_violated

xs:short (1 = yes, 0 =
no)

sqlrowsreadinsc_threshold_violated - SQL rows read in
service threshold violated

aggsqltempspace_threshold_id xs:int aggsqltempspace_threshold_id - AggSQL temporary space
threshold ID.

aggsqltempspace_threshold
_value

xs:long aggsqltempspace_threshold_value - AggSQL temporary
space threshold value

aggsqltempspace_threshold
_violated

xs:short (1 = yes, 0 =
no)

aggsqltempspace_threshold_violated - AggSQL temporary
space threshold violated

audit_events_total xs:nonNegativeInteger audit_events_total - Total audit events

audit_subsystem_wait_time xs:nonNegativeInteger audit_subsystem_wait_time - Audit subsystem wait time

audit_subsystem_waits_total xs:nonNegativeInteger audit_subsystem_waits_total - Total audit subsystem waits

audit_file_write_wait_time xs:nonNegativeInteger audit_file_write_wait_time - Audit file write wait time

audit_file_writes_total xs:nonNegativeInteger audit_file_writes_total - Total Audit files written

coord_stmt_exec_time coord_stmt_exec_time - Execution time for statement by
coordinator agent

deadlocks xs:nonNegativeInteger deadlocks - Deadlocks detected

Chapter 12. Monitor routines and views 419

Table 120. Detailed metrics returned for MON_GET_ACTIVITY_DETAILS (continued)

Element name Data type Description or corresponding monitor element

diaglog_writes_total xs:nonNegativeInteger diaglog_writes_total - Diag log total writes

diaglog_write_wait_time xs:nonNegativeInteger diaglog_write_wait_time - Diag log write time

direct_read_time xs:nonNegativeInteger direct_read_time - Direct read time

direct_write_time xs:nonNegativeInteger direct_write_time - Direct write time

direct_read_reqs xs:nonNegativeInteger direct_read_reqs - Direct read requests

direct_reads xs:nonNegativeInteger direct_reads - Direct reads from database

direct_write_reqs xs:nonNegativeInteger direct_write_reqs - Direct write requests

direct_writes xs:nonNegativeInteger direct_writes - Direct writes to database

fcm_recv_volume xs:nonNegativeInteger fcm_recv_volume - FCM recv volume

fcm_recv_wait_time xs:nonNegativeInteger fcm_recv_wait_time - FCM recv wait time

fcm_recvs_total xs:nonNegativeInteger fcm_recvs_total - FCM recvs total

fcm_message_recv_volume xs:nonNegativeInteger fcm_message_recv_volume - FCM message recv volume

fcm_message_recvs_total xs:nonNegativeInteger fcm_message_recvs_total - FCM message recvs total

fcm_message_recv_wait_time xs:nonNegativeInteger fcm_message_recv_wait_time - FCM message recv wait
time

fcm_message_send_volume xs:nonNegativeInteger fcm_message_send_volume - FCM message send volume

fcm_message_send_wait_time xs:nonNegativeInteger fcm_message_send_wait_time - FCM message send wait
time

fcm_message_sends_total xs:nonNegativeInteger fcm_message_sends_total - FCM message sends total

fcm_send_volume xs:nonNegativeInteger fcm_send_volume - FCM send volume

fcm_send_wait_time xs:nonNegativeInteger fcm_send_wait_time - FCM send wait time

fcm_sends_total xs:nonNegativeInteger fcm_sends_total - FCM sends total

fcm_tq_recv_wait_time xs:nonNegativeInteger fcm_tq_recv_wait_time - FCM tablequeue recv wait time

fcm_tq_send_wait_time xs:nonNegativeInteger fcm_tq_send_wait_time - FCM tablequeue send wait time

fcm_tq_recv_volume xs:nonNegativeInteger fcm_tq_recv_volume - FCM tablequeue recv volume

fcm_tq_recvs_total xs:nonNegativeInteger fcm_tq_recvs_total - FCM tablequeue recvs total

fcm_tq_send_volume xs:nonNegativeInteger fcm_tq_send_volume - FCM tablequeue send volume

fcm_tq_sends_total xs:nonNegativeInteger fcm_tq_sends_total - FCM tablequeue send total

tq_tot_send_spills xs:nonNegativeInteger tq_tot_send_spills - Total number of tablequeue buffers
overflowed

lock_escals xs:nonNegativeInteger lock_escals - Number of lock escalations

lock_timeouts xs:nonNegativeInteger lock_timeouts - Number of lock timeouts

lock_wait_time xs:nonNegativeInteger lock_wait_time - Time waited on locks

lock_waits xs:nonNegativeInteger lock_waits - Lock waits

log_buffer_wait_time xs:nonNegativeInteger log_buffer_wait_time - Log buffer wait time

log_disk_wait_time xs:nonNegativeInteger log_disk_wait_time - Log disk wait time

log_disk_waits_total xs:nonNegativeInteger log_disk_waits_total - Log disk waits total

num_lw_thresh_exceeded xs:nonNegativeInteger num_lw_thresh_exceeded - Number of thresholds
exceeded

pool_data_l_reads xs:nonNegativeInteger pool_data_l_reads - Buffer pool data logical reads

pool_data_p_reads xs:nonNegativeInteger pool_data_p_reads - Buffer pool data physical reads

420 Administrative Routines and Views

Table 120. Detailed metrics returned for MON_GET_ACTIVITY_DETAILS (continued)

Element name Data type Description or corresponding monitor element

pool_data_writes xs:nonNegativeInteger pool_data_writes - Buffer pool data writes

pool_index_l_reads xs:nonNegativeInteger pool_index_l_reads - Buffer pool index logical reads

pool_index_p_reads xs:nonNegativeInteger pool_index_p_reads - Buffer pool index physical reads

pool_index_writes xs:nonNegativeInteger pool_index_writes - Buffer pool index writes

pool_read_time xs:nonNegativeInteger pool_read_time - Total buffer pool physical read time

pool_temp_data_l_reads xs:nonNegativeInteger pool_temp_data_l_reads - Buffer pool temporary data
logical reads

pool_temp_data_p_reads xs:nonNegativeInteger pool_temp_data_p_reads - Buffer pool temporary data
physical reads

pool_temp_index_l_reads xs:nonNegativeInteger pool_temp_index_l_reads - Buffer pool temporary index
logical reads

pool_temp_index_p_reads xs:nonNegativeInteger pool_temp_index_p_reads - Buffer pool temporary index
physical reads

pool_temp_xda_l_reads xs:nonNegativeInteger pool_temp_xda_l_reads - Buffer pool temporary XDA data
logical reads

pool_temp_xda_p_reads xs:nonNegativeInteger pool_temp_xda_p_reads - Buffer pool temporary XDA
data physical reads

pool_write_time xs:nonNegativeInteger pool_write_time - Total buffer pool physical write time

pool_xda_l_reads xs:nonNegativeInteger pool_xda_l_reads - Buffer pool XDA data logical reads

pool_xda_p_reads xs:nonNegativeInteger pool_xda_p_reads - Buffer pool XDA data physical reads

pool_xda_writes xs:nonNegativeInteger pool_xda_writes - Buffer pool XDA data writes

num_log_buffer_full xs:nonNegativeInteger num_log_buffer_full - Number of full log buffers

rows_modified xs:nonNegativeInteger rows_modified - Rows modified

rows_read xs:nonNegativeInteger rows_read - Rows read

rows_returned xs:nonNegativeInteger rows_returned - Rows returned

stmt_exec_time xs:nonNegativeInteger stmt_exec_time - Statement execution time

thresh_violations xs:nonNegativeInteger thresh_violations - Number of threshold violations

total_cpu_time xs:nonNegativeInteger total_cpu_time - Total CPU time

total_act_time xs:nonNegativeInteger total_act_time - Total activity time

total_act_wait_time xs:nonNegativeInteger total_act_wait_time - Total activity wait time

total_app_section_executions xs:nonNegativeInteger total_app_section_executions - Total section executions

total_routine_invocations xs:nonNegativeInteger total_routine_invocations - Total routine invocations

total_routine_non_
sect_proc_time

xs:nonNegativeInteger total_routine_non_sect_proc_time - Non-section processing
time

total_routine_non_
sect_time

xs:nonNegativeInteger total_routine_non_sect_time - Non-section routine
execution time

total_routine_time xs:nonNegativeInteger total_routine_time - Total routine time

total_routine_user_
code_proc_time

xs:nonNegativeInteger total_routine_user_code_proc_time - Total routine user
code processing time

total_routine_user_
code_time

xs:nonNegativeInteger total_routine_user_code_time - Total routine user code
time

total_section_proc_time xs:nonNegativeInteger total_section_proc_time - Total section processing time

total_section_sort_time xs:nonNegativeInteger total_section_sort_time - Total section sort time.

Chapter 12. Monitor routines and views 421

Table 120. Detailed metrics returned for MON_GET_ACTIVITY_DETAILS (continued)

Element name Data type Description or corresponding monitor element

total_section_sort_
proc_time

xs:nonNegativeInteger total_section_sort_proc_time - Total section sort processing
time

total_section_sorts xs:nonNegativeInteger total_section_sorts - Total section sorts.

total_section_time xs:nonNegativeInteger total_section_time - Total section time

total_sorts xs:nonNegativeInteger total_sorts - Total Sorts

post_threshold_sorts xs:nonNegativeInteger post_threshold_sorts - Post threshold sorts

post_shrthreshold_sorts xs:nonNegativeInteger post_shrthreshold_sorts - Post shared threshold sorts

sort_overflows xs:nonNegativeInteger sort_overflows - Sort overflows

executable_id executable_id_type executable_id - Executable ID

wlm_queue_time_total xs:nonNegativeInteger wlm_queue_time_total - Workload manager total queue
time

wlm_queue_assignments_total xs:nonNegativeInteger wlm_queue_assignments_total - Workload manager total
queue assignments

eff_stmt_text xs:string eff_stmt_text - Effective statement text. The first 1024
characters of the concentrated statement text following
any literal replacement done by the statement
concentrator. Only present if the statement concentrator is
enabled and this statement was altered by the statement
concentrator.

wl_work_action_set_id xs:nonNegativeInteger wl_work_action_set_id - Workload work action set
identifier monitor element

wl_work_class_id xs:nonNegativeInteger wl_work_class_id - Workload work class identifier

concurrentdbcoordactivities
_wl_was_threshold_id

xs:int concurrentdbcoordactivities_wl_was_threshold_id -
Concurrent database coordinator activities workload work
action set threshold ID

concurrentdbcoordactivities
_wl_was_threshold_value

xs:long concurrentdbcoordactivities_wl_was_threshold_value -
Concurrent database coordinator activities workload work
action set threshold value

concurrentdbcoordactivities
_wl_was_threshold_queued

xs:short (1 = yes, 0 =
no)

concurrentdbcoordactivities_wl_was_threshold_queued -
Concurrent database coordinator activities workload work
action set threshold queued

concurrentdbcoordactivities
_wl_was_threshold_violated

xs:short (1 = yes, 0 =
no)

concurrentdbcoordactivities_wl_was_threshold_violated -
Concurrent database coordinator activities workload work
action set threshold violated

ida_send_wait_time xs:nonNegativeInteger ida_send_wait_time - Time spent waiting to send data

ida_sends_total xs:nonNegativeInteger ida_sends_total - Number of times data sent

ida_send_volume xs:nonNegativeInteger ida_send_volume - Total data volume sent

ida_recv_volume xs:nonNegativeInteger ida_recv_volume - Total data volume received

ida_recv_wait_time xs:nonNegativeInteger ida_recv_wait_time - Time spent waiting to receive data

ida_recvs_total xs:nonNegativeInteger ida_recvs_total - Number of times data received

422 Administrative Routines and Views

MON_GET_APPL_LOCKWAIT - get information about locks for which
an application is waiting

The MON_GET_APPL_LOCKWAIT table function returns information about all
locks that each application's agents (that are connected to the current database) are
waiting to acquire.

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7, it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7, this routine will no longer work.

To get information about locks, use the MON_GET_APPL_LOCKWAIT,
MON_FORMAT_LOCK_NAME, and MON_GET_LOCKS, table functions instead of
the SNAPLOCKWAIT administrative view and SNAP_GET_LOCKWAIT table
function, and the SNAPLOCK administrative view and SNAP_GET_LOCK table
function, which are deprecated in Fixpack 1 of Version 9.7.

�� MON_GET_APPL_LOCKWAIT (application_handle , member) ��

The schema is SYSPROC.

Table function parameters

application_handle
An optional input parameter of type BIGINT that specifies a valid application
handle in the same database as the one to which you are currently connected.
If the argument is null, locks are retrieved for all applications that are currently
waiting for locks to be acquired.

member
An input parameter of type INTEGER that specifies a valid member in the
same instance as the currently connected database. Specify -1 for the current
database member, or -2 for all active members. If the NULL value is specified,
-1 is set.

Authorization

One of the following authorities or privilege is required:
v SYSADM authority
v SYSMON authority
v EXECUTE privilege on the MON_GET_APPL_LOCKWAIT table function.

Example

In this sample scenario, the MON_GET_APPL_LOCKWAIT table function is used
to investigate a hung application for the session authorization ID USER1.
1. Use the WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES_V97

table function to look up the application handle for all connections with the
SESSION_USER value of USER1:
SELECT COORD_PARTITION_NUM,

APPLICATION_HANDLE
FROM TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES_V97(’’,’’,-2))
WHERE SESSION_USER = ’USER1’

Chapter 12. Monitor routines and views 423

This query returns the following output:
COORD_PARTITION_NUM APPLICATION_HANDLE
------------------------------- ----------------------------

2 131130

1 record(s) selected.

2. Use the WLM_GET_SERVICE_CLASS_AGENTS_V97 table function to obtain
current information about all agents working for this connection, on all
database partitions:
SELECT SUBSTR(CHAR(DBPARTITIONNUM),1,3) AS DBPART,

SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APP_ID,
SUBSTR(CHAR(WORKLOAD_OCCURRENCE_ID),1,7) AS WLO_ID,
SUBSTR(CHAR(AGENT_TID),1,7) AS AGENT_ID,
SUBSTR(CHAR(AGENT_TYPE),1,12) AS AGENT_TYPE,
SUBSTR(AGENT_STATE,1, 8) AS STATE,
SUBSTR(EVENT_TYPE,1, 8) AS EV_TYPE,
SUBSTR(EVENT_OBJECT,1,12) AS EV_OBJECT

FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS_V97(’’,’’,131130,-2))
ORDER BY AGENT_TYPE, DBPART

This query returns the following output:
DBPART APP_ID WLO_ID AGENT_ID AGENT_TYPE STATE EV_TYPE EV_OBJECT
------ ------- ------- --------- ----------- ------ -------- ----------
2 131130 1 3110 COORDINATOR ACTIVE WAIT REQUEST
0 131130 1 7054 PDBSUBAGENT ACTIVE ACQUIRE LOCK
1 131130 1 5709 PDBSUBAGENT ACTIVE ACQUIRE LOCK
2 131130 1 5960 PDBSUBAGENT ACTIVE ACQUIRE LOCK

4 record(s) selected.

An event of type ACQUIRE on an event object of type LOCK indicates a lock
wait scenario, so we need to investigate which object is being waited for and
who is holding the lock on it.

3. To determine all locks that the application is waiting for, call the
MON_GET_APPL_LOCKWAIT table function with application handle 131130
and member -2 as input parameters.
SELECT lock_name,

hld_member AS member,
hld_agent_tid as TID,
hld_application_handle AS HLD_APP FROM
TABLE (MON_GET_APPL_LOCKWAIT(131130, -2))

This query returns the following output:
LOCK_NAME MEMBER TID HLD_APP
-------------------------- ------ ------ -------
00030005000000000280000452 0 1234 65564
00030005000000000280000452 1 5478 65564
00030005000000000280000452 2 4678 65564

3 record(s) selected.

4. Call the WLM_SERVICE_CLASS_WORKLOAD_OCCURRENCES_V97 table
function to find out more about the application that is holding the lock (this
application has an application handle of 65564).
SELECT SYSTEM_AUTH_ID,

APPLICATION_NAME AS APP_NAME,
WORKLOAD_NAME AS WORKLOAD,
WORKLOAD_OCCURRENCE_STATE AS WL_STATE

FROM TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES_V97(’’,’’,-2))
WHERE APPLICATION_HANDLE = 65564

This query returns the following output:

424 Administrative Routines and Views

SYSTEM_AUTH_ID APP_NAME WORKLOAD WL_STATE
-------------- -------- ----------------------- -----------

ZURBIE db2bp SYSDEFAULTUSERWORKLOAD UOWWAIT

1 record(s) selected

Information returned

The columns that are returned provide information in the following areas:
v The following columns represent details about the lock that the application is

currently waiting to acquire:
LOCK_WAIT_START_TIME, LOCK_NAME, LOCK_OBJECT_TYPE,
LOCK_MODE, LOCK_CURRENT_MODE, LOCK_MODE_REQUESTED,
LOCK_STATUS, LOCK_ESCALATION, LOCK_ATTRIBUTES, LOCK_RRIID,
LOCK_COUNT, TBSP_ID, TAB_FILE_ID, SUBSECTION_NUMBER.

v The following columns represent details about the application that is waiting to
acquire this lock.
REQ_APPLICATION_HANDLE, REQ_AGENT_TID, REQ_MEMBER,
REQ_EXECUTABLE_ID

v The following columns represent details about the application that is currently
holding the lock.
HLD_APPLICATION_HANDLE, HLD_MEMBER, ADDITIONAL_DETAILS

Table 121. Information returned by the MON_GET_APPL_LOCKWAIT table function

Column name Data type Description or monitor element

LOCK_WAIT_START_TIME TIMESTAMP lock_wait_start_time - Lock Wait
Start Timestamp

LOCK_NAME VARCHAR(32) lock_name - Lock name

The internal name can be formatted
using the
MON_FORMAT_LOCK_NAME
table function to obtain details
regarding the lock. For example,
the table and table space that the
lock references can be found, if this
is a table lock.

LOCK_OBJECT_TYPE_ID CHAR(1) FOR BIT
DATA

Reserved for internal use

LOCK_OBJECT_TYPE VARCHAR(32) lock_object_type - Lock object type
waited on

For possible values, see
“lock_object_type - Lock object
type waited on monitor element”

LOCK_MODE VARCHAR(3) lock_mode - Lock mode

If the application holding this lock
cannot be found, a value of NULL
is returned.

LOCK_CURRENT_MODE VARCHAR(3) lock_current_mode - Original Lock
Mode Before Conversion

If no conversion took place, then a
value of NULL is returned.

Chapter 12. Monitor routines and views 425

Table 121. Information returned by the MON_GET_APPL_LOCKWAIT table
function (continued)

Column name Data type Description or monitor element

LOCK_MODE_REQUESTED VARCHAR(3) lock_mode_requested - Lock mode
requested

LOCK_STATUS CHAR(1) lock_status - Lock status

LOCK_ESCALATION CHAR(1) lock_escalation - Lock escalation

LOCK_ATTRIBUTES CHAR(16) lock_attributes - Lock attributes

LOCK_RRIID BIGINT Reserved for internal use

LOCK_COUNT BIGINT Reserved for internal use

TBSP_ID BIGINT tablespace_id - Table space ID

TAB_FILE_ID BIGINT table_file_id - Table file ID

SUBSECTION_NUMBER BIGINT ss_number - Subsection Number

If the subsection number is not
available, then a value of NULL is
returned.

REQ_APPLICATION_
HANDLE

BIGINT req_application_handle -
Requesting application handle

REQ_AGENT_TID BIGINT req_agent_tid - Requesting agent
TID

REQ_MEMBER SMALLINT req_member - Requesting member

REQ_EXECUTABLE_ID VARCHAR (32) FOR
BIT DATA

req_executable_id - Requesting
executable ID

HLD_APPLICATION_
HANDLE

BIGINT hld_application_handle - Holding
application handle

If the application holding this lock
is unknown or cannot be found
then a value of NULL is returned.

HLD_MEMBER SMALLINT hld_member - Holding member

ADDITIONAL_DETAILS BLOB(100K) Reserved for internal use

MON_GET_BUFFERPOOL table function - Get buffer pool metrics
The MON_GET_BUFFERPOOL table function returns monitor metrics for one or
more buffer pools.

Syntax

�� MON_GET_BUFFERPOOL (bp_name , member) ��

The schema is SYSPROC.

Table function parameters

bp_name
An input argument of type VARCHAR(128) that specifies a valid buffer pool

426 Administrative Routines and Views

name in the currently connected database when calling this function. If the
argument is null or an empty string, metrics are retrieved for all buffer pools
in the database.

member
An input argument of type INTEGER that specifies a valid member in the
same instance as the currently connected database when calling this function.
Specify -1 for the current database member, or -2 for all database members. If
the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the MON_GET_BUFFERPOOL function.

Example

Compute the buffer pool hit ratio.
WITH BPMETRICS AS (

SELECT bp_name,
pool_data_l_reads + pool_temp_data_l_reads +
pool_index_l_reads + pool_temp_index_l_reads +
pool_xda_l_reads + pool_temp_xda_l_reads as logical_reads,
pool_data_p_reads + pool_temp_data_p_reads +
pool_index_p_reads + pool_temp_index_p_reads +
pool_xda_p_reads + pool_temp_xda_p_reads as physical_reads,
member

FROM TABLE(MON_GET_BUFFERPOOL(’’,-2)) AS METRICS)
SELECT
VARCHAR(bp_name,20) AS bp_name,
logical_reads,
physical_reads,
CASE WHEN logical_reads > 0
THEN DEC((1 - (FLOAT(physical_reads) / FLOAT(logical_reads))) * 100,5,2)
ELSE NULL
END AS HIT_RATIO,
member
FROM BPMETRICS;

The following example is a sample output from this query.
BP_NAME LOGICAL_READS PHYSICAL_READS HIT_RATIO MEMBER
---------------- ---------------- -------------- --------- ---------
IBMDEFAULTBP 619 385 37.80 0
IBMSYSTEMBP4K 0 0 - 0
IBMSYSTEMBP8K 0 0 - 0
IBMSYSTEMBP16K 0 0 - 0
IBMSYSTEMBP32K 0 0 - 0

5 record(s) selected.

Output for query (continued).
... HIT_RATIO MEMBER
... --------- ------
... 37.80 0
... - 0
... - 0
... - 0
... - 0

Chapter 12. Monitor routines and views 427

Usage notes

The MON_GET_BUFFERPOOL table function returns one row of data per database
buffer pool and per database member. No aggregation across database members is
performed. However, aggregation can be achieved through SQL queries as shown
in the example.

Metrics collected by this function are controlled at the database level using the
mon_obj_metrics configuration parameter. By default, metrics collection is enabled.

Information returned

Table 122. Information returned for MON_GET_BUFFERPOOL

Column Name Data Type Description or corresponding monitor element

BP_NAME VARCHAR(128)

MEMBER SMALLINT member - Database member

AUTOMATIC SMALLINT automatic - Buffer pool automatic

DIRECT_READS BIGINT direct_reads - Direct reads from database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read requests

DIRECT_WRITES BIGINT direct_writes - Direct writes to database

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write requests

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool data logical reads

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer pool temporary data
logical reads

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer pool XDA data logical reads

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer pool temporary XDA
data logical reads

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool index logical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer pool temporary index
logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool data physical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer pool temporary data
physical reads

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer pool XDA data physical
reads

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer pool temporary XDA
data physical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool index physical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer pool temporary
index physical reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data writes

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer pool XDA data writes

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool index writes

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write time

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool physical read time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool physical write time

428 Administrative Routines and Views

Table 122. Information returned for MON_GET_BUFFERPOOL (continued)

Column Name Data Type Description or corresponding monitor element

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer pool asynchronous data
reads

POOL_ASYNC_DATA_READ_REQS BIGINT pool_async_data_read_reqs - Buffer pool asynchronous
read requests

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer pool asynchronous
data writes

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer pool asynchronous
index reads

POOL_ASYNC_INDEX_READ_REQS BIGINT pool_async_index_read_reqs - Buffer pool asynchronous
index read requests

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer pool asynchronous
index writes

POOL_ASYNC_XDA_READS BIGINT pool_async_xda_reads - Buffer pool asynchronous XDA
data reads

POOL_ASYNC_XDA_READ_REQS BIGINT pool_async_xda_read_reqs - Buffer pool asynchronous
XDA read requests

POOL_ASYNC_XDA_WRITES BIGINT pool_async_xda_writes - Buffer pool asynchronous
XDA data writes

POOL_NO_VICTIM_BUFFER BIGINT pool_no_victim_buffer - Buffer pool no victim buffers

POOL_LSN_GAP_CLNS BIGINT pool_lsn_gap_clns - Buffer pool log space cleaners
triggered

POOL_DRTY_PG_STEAL_CLNS BIGINT pool_drty_pg_steal_clns - Buffer pool victim page
cleaners triggered

POOL_DRTY_PG_THRSH_CLNS BIGINT pool_drty_pg_thrsh_clns - Buffer pool threshold
cleaners triggered

VECTORED_IOS BIGINT vectored_ios - Number of vectored IO requests

PAGES_FROM_VECTORED_IOS BIGINT pages_from_vectored_ios - Total number of pages read
by vectored IO

BLOCK_IOS BIGINT block_ios - Number of block IO requests

PAGES_FROM_BLOCK_IOS BIGINT pages_from_block_ios - Total number of pages read by
block IO

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread prefetch pages

FILES_CLOSED BIGINT files_closed - Database files closed

POOL_DATA_GBP_L_READS BIGINT Reserved for future use

POOL_DATA_GBP_P_READS BIGINT Reserved for future use

POOL_DATA_LBP_PAGES_FOUND BIGINT Reserved for future use

POOL_DATA_GBP_INVALID_PAGES BIGINT Reserved for future use

POOL_INDEX_GBP_L_READS BIGINT Reserved for future use

POOL_INDEX_GBP_P_READS BIGINT Reserved for future use

POOL_INDEX_LBP_PAGES_FOUND BIGINT Reserved for future use

POOL_INDEX_GBP_INVALID_PAGES BIGINT Reserved for future use

POOL_ASYNC_DATA_GBP_L_READS BIGINT Reserved for future use

POOL_ASYNC_DATA_GBP_P_READS BIGINT Reserved for future use

Chapter 12. Monitor routines and views 429

Table 122. Information returned for MON_GET_BUFFERPOOL (continued)

Column Name Data Type Description or corresponding monitor element

POOL_ASYNC_DATA_LBP
_PAGES_FOUND

BIGINT Reserved for future use

POOL_ASYNC_DATA_GBP
_INVALID_PAGES

BIGINT Reserved for future use

POOL_ASYNC_INDEX_GBP
_L_READS

BIGINT Reserved for future use

POOL_ASYNC_INDEX_GBP
_P_READS

BIGINT Reserved for future use

POOL_ASYNC_INDEX_LBP
_PAGES_FOUND

BIGINT Reserved for future use

POOL_ASYNC_INDEX_GBP
_INVALID_PAGES

BIGINT Reserved for future use

POOL_XDA_GBP_L_READS BIGINT Reserved for future use

POOL_XDA_GBP_P_READS BIGINT Reserved for future use

POOL_XDA_LBP_PAGES_FOUND BIGINT Reserved for future use

POOL_XDA_GBP_INVALID_PAGES BIGINT Reserved for future use

POOL_ASYNC_XDA_GBP_L_READS BIGINT Reserved for future use

POOL_ASYNC_XDA_GBP_P_READS BIGINT Reserved for future use

POOL_ASYNC_XDA_LBP
_PAGES_FOUND

BIGINT Reserved for future use

POOL_ASYNC_XDA_GBP
_INVALID_PAGES

BIGINT Reserved for future use

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer Pool Asynchronous Read
Time monitor element

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer pool asynchronous
write time monitor element

BP_CUR_BUFFSZ BIGINT bp_cur_buffsz - Current Size of Buffer Pool monitor
element

ADDITIONAL_DETAILS BLOB(100K) Reserved for future use

MON_GET_CONNECTION table function - Get connection metrics
The MON_GET_CONNECTION table function returns metrics for one or more
connections.

Syntax

�� MON_GET_CONNECTION (application_handle , member) ��

The schema is SYSPROC.

Table function parameters

application_handle
An input argument of type BIGINT that specifies a specific application handle
identifying the connection for which the metrics are to be returned. If the
argument is null, metrics are returned for all connections

430 Administrative Routines and Views

member
An input argument of type INTEGER that specifies a valid member in the
same instance as the currently connected database when calling this function.
Specify -1 for the current database member, or -2 for all database members. If
the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the MON_GET_CONNECTION function.

Example

Display connections that return the highest volume of data to clients, ordered by
rows returned.
SELECT application_handle,

rows_returned,
tcpip_send_volume

FROM TABLE(MON_GET_CONNECTION(cast(NULL as bigint), -2)) AS t
ORDER BY rows_returned DESC

The following example is a sample output from this query.
APPLICATION_HANDLE ROWS_RETURNED TCPIP_SEND_VOLUME
-------------------- -------------------- --------------------

55 6 0

1 record(s) selected.

Usage notes

The metrics returned by the MON_GET_CONNECTION table function represent
the accumulation of all metrics for requests that were submitted by a connection.
Metrics are rolled up at unit of work boundaries, and periodically during the
execution of requests. Therefore, the values reported by this table function reflect
the current state of the system at the time of the most recent rollup. Metrics are
strictly increasing in value. To determine the value of a given metric for an interval
of time, use the MON_GET_CONNECTION table function to query the metric at
the start and end of the interval, and compute the difference.

Request metrics are controlled through the COLLECT REQUEST METRICS clause
on service superclasses and the mon_req_metrics database configuration parameter
at the database level. Metrics are only collected for a request if the request is
processed by an agent in a service subclass whose parent service superclass has
request metrics enabled, or if request metrics collection is enabled for the entire
database. By default, request metrics are enabled at the database level. If request
metrics are disabled at the database level and for a service superclass, then the
metrics reported for each connection that is mapped to that service superclass will
stop increasing (or remain at 0 if request metrics were disabled at database
activation time).

Tip: As a connection can be mapped to more than one service superclass during
its lifetime, the metrics reported through the MON_GET_CONNECTION table
function might represent a subset of the metrics for all requests submitted over the
connection. This might occur if metrics collection is disabled for some of the
superclasses that are mapped by the connection.

The MON_GET_CONNECTION table function returns one row of data per
connection and per member. No aggregation across members (for a service class or

Chapter 12. Monitor routines and views 431

more), is performed. However, aggregation can be achieved through SQL queries.

Information returned

Table 123. Information returned for MON_GET_CONNECTION

Column name Data type Description

APPLICATION_HANDLE BIGINT application_handle - Application handle

APPLICATION_NAME VARCHAR(128) appl_name - Application name

APPLICATION_ID VARCHAR(128) appl_id - Application ID

MEMBER SMALLINT member - Database member

CLIENT_WRKSTNNAME VARCHAR(255) CURRENT CLIENT_WRKSTNNAME special
register

CLIENT_ACCTNG VARCHAR(255) CURRENT CLIENT_ACCTNG special register

CLIENT_USERID VARCHAR(255) CURRENT CLIENT_USERID special register

CLIENT_APPLNAME VARCHAR(255) CURRENT CLIENT_APPLNAME special register

CLIENT_PID BIGINT client_pid - Client process ID

CLIENT_PRDID VARCHAR(128) client_prdid - Client product and version ID

CLIENT_PLATFORM VARCHAR(12) client_platform - Client platform

CLIENT_PROTOCOL VARCHAR(10) client_protocol - Client communication protocol

SYSTEM_AUTH_ID VARCHAR(128) system_auth_id - System authorization identifier

SESSION_AUTH_ID VARCHAR(128) session_auth_id - Session authorization ID

COORD_MEMBER SMALLINT coord_member - Coordinating member

CONNECTION_START_TIME TIMESTAMP connection_start_time - Connection start time

ACT_ABORTED_TOTAL BIGINT act_aborted_total - Total aborted activities

ACT_COMPLETED_TOTAL BIGINT act_completed_total - Total completed activities

ACT_REJECTED_TOTAL BIGINT act_rejected_total - Total rejected activities

AGENT_WAIT_TIME BIGINT agent_wait_time - Agent wait time

AGENT_WAITS_TOTAL BIGINT agent_waits_total - Total agent waits

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool data logical reads

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool index logical reads

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer pool temporary
data logical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer pool temporary
index logical reads

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer pool temporary
XDA data logical reads

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool XDA Data Logical
Reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool data physical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool index physical
reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer pool temporary
data physical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer pool temporary
index physical reads

432 Administrative Routines and Views

Table 123. Information returned for MON_GET_CONNECTION (continued)

Column name Data type Description

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer pool temporary
XDA data physical reads

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer pool XDA data physical
reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data writes

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool index writes

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer pool XDA data writes

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool physical read
time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool physical write
time

CLIENT_IDLE_WAIT_TIME BIGINT client_idle_wait_time - Client idle wait time

DEADLOCKS BIGINT deadlocks - Deadlocks detected

DIRECT_READS BIGINT direct_reads - Direct reads from database

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITES BIGINT direct_writes - Direct writes to database

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write time

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write requests

FCM_RECV_VOLUME BIGINT fcm_recv_volume - FCM recv volume

FCM_RECVS_TOTAL BIGINT fcm_recvs_total - FCM recvs total

FCM_SEND_VOLUME BIGINT fcm_send_volume - FCM send volume

FCM_SENDS_TOTAL BIGINT fcm_sends_total - FCM sends total

FCM_RECV_WAIT_TIME BIGINT fcm_recv_wait_time - FCM recv wait time

FCM_SEND_WAIT_TIME BIGINT fcm_send_wait_time - FCM send wait time

IPC_RECV_VOLUME BIGINT ipc_recv_volume - Interprocess communication recv
volume

IPC_RECV_WAIT_TIME BIGINT ipc_recv_wait_time - Interprocess communication
recv wait time

IPC_RECVS_TOTAL BIGINT ipc_recvs_total - Interprocess communication recvs
total

IPC_SEND_VOLUME BIGINT ipc_send_volume - Interprocess communication
send volume

IPC_SEND_WAIT_TIME BIGINT ipc_send_wait_time - Interprocess communication
send wait time

IPC_SENDS_TOTAL BIGINT ipc_sends_total - Interprocess communication send
total

LOCK_ESCALS BIGINT lock_escals - Number of lock escalations

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of lock timeouts

LOCK_WAIT_TIME BIGINT lock_wait_time - Time waited on locks

LOCK_WAITS BIGINT lock_waits - Lock waits

LOG_BUFFER_WAIT_TIME BIGINT log_buffer_wait_time - Log buffer wait time

NUM_LOG_BUFFER_FULL BIGINT num_log_buffer_full - Number of full log buffers

Chapter 12. Monitor routines and views 433

Table 123. Information returned for MON_GET_CONNECTION (continued)

Column name Data type Description

LOG_DISK_WAIT_TIME BIGINT log_disk_wait_time - Log disk wait time

LOG_DISK_WAITS_TOTAL BIGINT log_disk_waits_total - Log disk waits total

NUM_LOCKS_HELD BIGINT locks_held - Locks held

RQSTS_COMPLETED_TOTAL BIGINT rqsts_completed_total - Total requests completed

ROWS_MODIFIED BIGINT rows_modified - Rows modified

ROWS_READ BIGINT rows_read - Rows read

ROWS_RETURNED BIGINT rows_returned - Rows returned

TCPIP_RECV_VOLUME BIGINT tcpip_recv_volume - TCP/IP received volume

TCPIP_SEND_VOLUME BIGINT tcpip_send_volume - TCP/IP send volume

TCPIP_RECV_WAIT_TIME BIGINT tcpip_recv_wait_time - TCP/IP recv wait time

TCPIP_RECVS_TOTAL BIGINT tcpip_recvs_total - TCP/IP recvs total

TCPIP_SEND_WAIT_TIME BIGINT tcpip_send_wait_time - TCP/IP send wait time

TCPIP_SENDS_TOTAL BIGINT tcpip_sends_total - TCP/IP sends total

TOTAL_APP_RQST_TIME BIGINT total_app_rqst_time - Total application request time

TOTAL_RQST_TIME BIGINT total_rqst_time - Total request time

WLM_QUEUE_TIME_TOTAL BIGINT wlm_queue_time_total - Workload manager total
queue time

WLM_QUEUE_ASSIGNMENTS_TOTAL BIGINT wlm_queue_assignments_total - Workload manager
total queue assignments

TOTAL_CPU_TIME BIGINT total_cpu_time - Total CPU time

TOTAL_WAIT_TIME BIGINT total_wait_time - Total wait time

APP_RQSTS_COMPLETED_TOTAL BIGINT app_rqsts_completed_total - Total application
requests completed

TOTAL_SECTION_SORT_TIME BIGINT total_section_sort_time - Total section sort time

TOTAL_SECTION_SORT_PROC_TIME BIGINT total_section_sort_proc_time - Total section sort
processing time

TOTAL_SECTION_SORTS BIGINT total_section_sorts - Total section sorts

TOTAL_SORTS BIGINT total_sorts - Total Sorts

POST_THRESHOLD_SORTS BIGINT post_threshold_sorts - Post threshold sorts

POST_SHRTHRESHOLD_SORTS BIGINT post_shrthreshold_sorts - Post shared threshold
sorts

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

TOTAL_COMPILE_TIME BIGINT total_compile_time - Total compile time

TOTAL_COMPILE_PROC_TIME BIGINT total_compile_proc_time - Total compile processing
time

TOTAL_COMPILATIONS BIGINT total_compilations - Total compilations

TOTAL_IMPLICIT_COMPILE_TIME BIGINT total_implicit_compile_time - Total implicit compile
time

TOTAL_IMPLICIT_COMPILE
_PROC_TIME

BIGINT total_implicit_compile_proc_time - Total implicit
compile processing time

TOTAL_IMPLICIT_COMPILATIONS BIGINT total_implicit_compilations - Total implicit
complications

TOTAL_SECTION_TIME BIGINT total_section_time - Total section time

434 Administrative Routines and Views

Table 123. Information returned for MON_GET_CONNECTION (continued)

Column name Data type Description

TOTAL_SECTION_PROC_TIME BIGINT total_section_proc_time - Total section processing
time

TOTAL_APP_SECTION_EXECUTIONS BIGINT total_app_section_executions - Total section
executions

TOTAL_ACT_TIME BIGINT total_act_time - Total activity time

TOTAL_ACT_WAIT_TIME BIGINT total_act_wait_time - Total activity wait time

ACT_RQSTS_TOTAL BIGINT act_rqsts_total - Total activity requests

TOTAL_ROUTINE_TIME BIGINT total_routine_time - Total routine time

TOTAL_ROUTINE_INVOCATIONS BIGINT total_routine_invocations - Total routine invocations

TOTAL_COMMIT_TIME BIGINT total_commit_time - Total commit time

TOTAL_COMMIT_PROC_TIME BIGINT total_commit_proc_time - Total commits processing
time

TOTAL_APP_COMMITS BIGINT total_app_commits - Total application commits

INT_COMMITS BIGINT int_commits - Internal commits

TOTAL_ROLLBACK_TIME BIGINT total_rollback_time - Total rollback time

TOTAL_ROLLBACK_PROC_TIME BIGINT total_rollback_proc_time - Total rollback processing
time

TOTAL_APP_ROLLBACKS BIGINT total_app_rollbacks - Total application rollbacks

INT_ROLLBACKS BIGINT int_rollbacks - Internal rollbacks

TOTAL_RUNSTATS_TIME BIGINT total_runstats_time - Total runtime statistics

TOTAL_RUNSTATS_PROC_TIME BIGINT total_runstats_proc_time - Total runtime statistics
processing time

TOTAL_RUNSTATS BIGINT total_runstats - Total runtime statistics

TOTAL_REORG_TIME BIGINT total_reorg_time - Total reorganization time

TOTAL_REORG_PROC_TIME BIGINT total_reorg_proc_time - Total reorganization
processing time

TOTAL_REORGS BIGINT total_reorgs - Total reorganizations

TOTAL_LOAD_TIME BIGINT total_load_time - Total load time

TOTAL_LOAD_PROC_TIME BIGINT total_load_proc_time - Total load processing time

TOTAL_LOADS BIGINT total_loads - Total loads

CAT_CACHE_INSERTS BIGINT cat_cache_inserts - Catalog cache inserts

CAT_CACHE_LOOKUPS BIGINT cat_cache_lookups - Catalog cache lookups

PKG_CACHE_INSERTS BIGINT pkg_cache_inserts - Package cache inserts

PKG_CACHE_LOOKUPS BIGINT pkg_cache_lookups - Package cache lookups

THRESH_VIOLATIONS BIGINT thresh_violations - Number of threshold violations

NUM_LW_THRESH_EXCEEDED BIGINT num_lw_thresh_exceeded - Number of thresholds
exceeded

IDA_SEND_WAIT_TIME BIGINT ida_send_wait_time - Time spent waiting to send
data

IDA_SENDS_TOTAL BIGINT ida_sends_total - Number of times data sent

IDA_SEND_VOLUME BIGINT ida_send_volume - Total data volume sent

IDA_RECV_WAIT_TIME BIGINT ida_recv_wait_time - Time spent waiting to receive
data

Chapter 12. Monitor routines and views 435

Table 123. Information returned for MON_GET_CONNECTION (continued)

Column name Data type Description

IDA_RECVS_TOTAL BIGINT ida_recvs_total - Number of times data received

IDA_RECV_VOLUME BIGINT ida_recv_volume - Total data volume received

ADDITIONAL_DETAILS BLOB(100K) Reserved for future use

MON_GET_CONNECTION_DETAILS table function - Get detailed
connection metrics

The MON_GET_CONNECTION_DETAILS table function returns detailed metrics
for one or more connections.

Syntax

�� MON_GET_CONNECTION_DETAILS (application_handle , member) ��

The schema is SYSPROC.

Table function parameters

application_handle
An input argument of type BIGINT that specifies a specific application handle
identifying the connection for which the metrics are to be returned. If the
argument is NULL, metrics are returned for all connections.

member
An input argument of type INTEGER that specifies a valid member in the
same instance as the currently connected database when calling this function.
Specify -1 for the current database member, or -2 for all database members. If
the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the MON_GET_CONNECTION_DETAILS function.

Example

Display connections returning the highest volume of data to clients, ordered by
rows returned.
SELECT detmetrics.application_handle,

detmetrics.rows_returned,
detmetrics.tcpip_send_volume

FROM TABLE(MON_GET_CONNECTION_DETAILS(CAST(NULL as bigint), -2))
AS CONNMETRICS,
XMLTABLE (XMLNAMESPACES(DEFAULT ’http://www.ibm.com/xmlns/prod/db2/mon’),

’$detmetric/db2_connection’ PASSING XMLPARSE(DOCUMENT CONNMETRICS.DETAILS)
as "detmetric"

COLUMNS "APPLICATION_HANDLE" INTEGER PATH ’application_handle’,
"ROWS_RETURNED" BIGINT PATH ’system_metrics/rows_returned’,
"TCPIP_SEND_VOLUME" BIGINT PATH ’system_metrics/tcpip_send_volume’
) AS DETMETRICS

ORDER BY rows_returned DESC

The following example is a sample output from this query.

436 Administrative Routines and Views

APPLICATION_HANDLE ROWS_RETURNED TCPIP_SEND_VOLUME
------------------ -------------------- --------------------

21 4 0

1 record(s) selected.

Usage notes

The metrics returned by the MON_GET_CONNECTION_DETAILS table function
represent the accumulation of all metrics for requests that were submitted by a
connection. This function is similar to the MON_GET_CONNECTION table
function:
v The MON_GET_CONNECTION table function returns the most commonly used

metrics in a column-based format and is the most performance efficient method
of retrieving metrics.

v The MON_GET_CONNECTION_DETAILS table function returns the entire set of
available metrics in an XML document format, which provides maximum
flexibility for formatting output. The XML-based output can be parsed directly
by an XML parser, or it can be converted to relational format by the XMLTABLE
function (see the example).

Metrics are rolled up at unit of work boundaries, and periodically during the
execution of requests. Therefore, the values reported by this table function reflect
the current state of the system at the time of the most recent rollup. Metrics are
strictly increasing in value. To determine the value of a given metric for an interval
of time, use the MON_GET_CONNECTION_DETAILS table function to query the
metric at the start and end of the interval, and compute the difference.

Request metrics are controlled through the COLLECT REQUEST METRICS clause
on service superclasses and the mon_req_metrics database configuration parameter
at the database level. Metrics are only collected for a request if the request is
processed by an agent in a service subclass whose parent service superclass has
request metrics enabled, or if request metrics collection is enabled for the entire
database. By default, request metrics are enabled are enabled at the database level.
If request metrics are disabled at the database level, and for a service superclass,
the metrics reported for each connection mapped to that service superclass stop
increasing (or remain at 0 if request metrics were disabled at database activation
time).

Tip: As a connection can be mapped to more than one service superclass during
its lifetime, if collection is disabled at the database level, the metrics reported
through the MON_GET_CONNECTION_DETAILS table function might represent a
subset of the metrics for all requests submitted over the connection. This might
occur if metrics collection is disabled for some of the superclasses to which the
connection maps.

The MON_GET_CONNECTION_DETAILS table function returns one row of data
per connection and per member. No aggregation across members (for a service
class or more) is performed. However, aggregation can be achieved through SQL
queries.

The schema for the XML document that is returned in the DETAILS column is
available in the file sqllib/misc/DB2MonRoutines.xsd. Further details can be found
in the file sqllib/misc/DB2MonCommon.xsd.

Chapter 12. Monitor routines and views 437

Information returned

Table 124. Information returned for MON_GET_CONNECTION_DETAILS

Column Name Data Type Description

APPLICATION_HANDLE BIGINT application_handle - Application handle

MEMBER SMALLINT member - Database member

DETAILS BLOB(1M) XML document containing detailed metrics for the unit of
work. See Table 125 for a description of the elements in
this document.

The following example shows the structure of the XML document that is returned
in the DETAILS column.
<db2_connection xmlns="http://www.ibm.com/xmlns/prod/db2/mon" release="90700000">

<application_handle>21</application_handle>
<member>0</member>
<system_metrics release="90700000">
<act_aborted_total>5</act_aborted_total>
...
<wlm_queue_assignments_total>3</wlm_queue_assignments_total>
</system_metrics>

</db2_connection>

For the full schema, see sqllib/misc/DB2MonRoutines.xsd.

This document uses the following non-primitive XML type definitions:
<xs:simpleType name="db2DbObjectString">

<xs:restriction base="xs:string">
<xs:maxLength value="128"/>

</xs:restriction>
</xs:simpleType>

<xs:simpleType name="db2PartitionNum">
<xs:restriction base="xs:nonNegativeInteger">

<xs:maxInclusive value="999"/>
</xs:restriction>

</xs:simpleType>

Table 125. Detailed metrics returned for MON_GET_CONNECTION_DETAILS

Element Name Data Type Description

act_aborted_total xs:nonNegativeInteger act_aborted_total - Total aborted activities

act_completed_total xs:nonNegativeInteger act_completed_total - Total completed activities

act_rejected_total xs:nonNegativeInteger act_rejected_total - Total rejected activities

act_rqsts_total xs:nonNegativeInteger act_rqsts_total - Total activity requests

agent_wait_time xs:nonNegativeInteger agent_wait_time - Agent wait time

agent_waits_total xs:nonNegativeInteger agent_waits_total - Total agent waits

application_handle xs:nonNegativeInteger application_handle - Application handle

application_id xs:string appl_id - Application ID

application_name xs:string appl_name - Application name

app_rqsts_completed_total xs:nonNegativeInteger app_rqsts_completed_total - Total application requests
completed

audit_events_total xs:nonNegativeInteger audit_events_total - Total audit events

audit_subsystem_wait_time xs:nonNegativeInteger audit_subsystem_wait_time - Audit subsystem wait
time

438 Administrative Routines and Views

Table 125. Detailed metrics returned for MON_GET_CONNECTION_DETAILS (continued)

Element Name Data Type Description

audit_subsystem_waits_total xs:nonNegativeInteger audit_subsystem_waits_total - Total audit subsystem
waits

audit_file_write_wait_time xs:nonNegativeInteger audit_file_write_wait_time - Audit file write wait time

audit_file_writes_total xs:nonNegativeInteger audit_file_writes_total - Total Audit files written

cat_cache_inserts xs:nonNegativeInteger cat_cache_inserts - Catalog cache inserts

cat_cache_lookups xs:nonNegativeInteger cat_cache_lookups - Catalog cache lookups

client_acctng xs:string (255) CURRENT CLIENT_ACCTNG special register

client_applname xs:string (255) CURRENT CLIENT_APPLNAME special register

client_hostname xs:string client_hostname - Client hostname

client_idle_wait_time xs:nonNegativeInteger client_idle_wait_time - Client idle wait time

client_pid xs:nonNegativeInteger client_pid - Client process ID

client_platform xs:string client_platform - Client platform

client_port_number xs:nonNegativeInteger client_port_number - Client port number

client_prdid xs:string client_prdid - Client product and version ID

client_protocol xs:string client_protocol - Client communication protocol

client_userid xs:string (255) CURRENT CLIENT_USERID special register

client_wrkstnname xs:string (255) CURRENT CLIENT_WRKSTNNAME special register

connection_start_time xs:dateTime connection_start_time - Connection start time

coord_member xs:short coord_member - Coordinating member

deadlocks xs:nonNegativeInteger deadlocks - Deadlocks detected

diaglog_writes_total xs:nonNegativeInteger diaglog_writes_total - Diag log total writes

diaglog_write_wait_time xs:nonNegativeInteger diaglog_write_wait_time - Diag log write time

direct_read_time xs:nonNegativeInteger direct_read_time - Direct read time

direct_write_time xs:nonNegativeInteger direct_write_time - Direct write time

direct_read_reqs xs:nonNegativeInteger direct_read_reqs - Direct read requests

direct_reads xs:nonNegativeInteger direct_reads - Direct reads from database

direct_write_reqs xs:nonNegativeInteger direct_write_reqs - Direct write requests

direct_writes xs:nonNegativeInteger direct_writes - Direct writes to database

fcm_recv_volume xs:nonNegativeInteger fcm_recv_volume - FCM recv volume

fcm_recv_wait_time xs:nonNegativeInteger fcm_recv_wait_time - FCM recv wait time

fcm_recvs_total xs:nonNegativeInteger fcm_recvs_total - FCM recvs total

fcm_message_recv_volume xs:nonNegativeInteger fcm_message_recv_volume - FCM message recv
volume

fcm_message_recvs_total xs:nonNegativeInteger fcm_message_recvs_total - FCM message recvs total

fcm_message_recv_wait_time xs:nonNegativeInteger fcm_message_recv_wait_time - FCM message recv wait
time

fcm_message_send_volume xs:nonNegativeInteger fcm_message_send_volume - FCM message send
volume

fcm_message_send_wait_time xs:nonNegativeInteger fcm_message_send_wait_time - FCM message send
wait time

fcm_message_sends_total xs:nonNegativeInteger fcm_message_sends_total - FCM message sends total

Chapter 12. Monitor routines and views 439

Table 125. Detailed metrics returned for MON_GET_CONNECTION_DETAILS (continued)

Element Name Data Type Description

fcm_send_volume xs:nonNegativeInteger fcm_send_volume - FCM send volume

fcm_send_wait_time xs:nonNegativeInteger fcm_send_wait_time - FCM send wait time

fcm_sends_total xs:nonNegativeInteger fcm_sends_total - FCM sends total

fcm_tq_recv_wait_time xs:nonNegativeInteger fcm_tq_recv_wait_time - FCM tablequeue recv wait
time

fcm_tq_send_wait_time xs:nonNegativeInteger fcm_tq_send_wait_time - FCM tablequeue send wait
time

fcm_tq_recv_volume xs:nonNegativeInteger fcm_tq_recv_volume - FCM tablequeue recv volume

fcm_tq_recvs_total xs:nonNegativeInteger fcm_tq_recvs_total - FCM tablequeue recvs total

fcm_tq_send_volume xs:nonNegativeInteger fcm_tq_send_volume - FCM tablequeue send volume

fcm_tq_sends_total xs:nonNegativeInteger fcm_tq_sends_total - FCM tablequeue send total

ida_send_wait_time xs:nonNegativeInteger ida_send_wait_time - Time spent waiting to send data

ida_sends_total xs:nonNegativeInteger ida_sends_total - Number of times data sent

ida_send_volume xs:nonNegativeInteger ida_send_volume - Total data volume sent

ida_recv_volume xs:nonNegativeInteger ida_recv_volume - Total data volume received

ida_recv_wait_time xs:nonNegativeInteger ida_recv_wait_time - Time spent waiting to receive data

ida_recvs_total xs:nonNegativeInteger ida_recvs_total - Number of times data received

int_commits xs:nonNegativeInteger int_commits - Internal commits

int_rollbacks xs:nonNegativeInteger int_rollbacks - Internal rollbacks

ipc_recv_volume xs:nonNegativeInteger ipc_recv_volume - Interprocess communication recv
volume

ipc_recv_wait_time xs:nonNegativeInteger ipc_recv_wait_time - Interprocess communication recv
wait time

ipc_recvs_total xs:nonNegativeInteger ipc_recvs_total - Interprocess communication recvs total

ipc_send_volume xs:nonNegativeInteger ipc_send_volume - Interprocess communication send
volume

ipc_send_wait_time xs:nonNegativeInteger ipc_send_wait_time - Interprocess communication send
wait time

ipc_sends_total xs:nonNegativeInteger ipc_sends_total - Interprocess communication send total

last_executable_id xs:hexBinary(32) last_executable_id - Last executable identifier

last_request_type xs:string(32) last_request_type - Last request type

lock_escals xs:nonNegativeInteger lock_escals - Number of lock escalations

lock_timeouts xs:nonNegativeInteger lock_timeouts - Number of lock timeouts

lock_wait_time xs:nonNegativeInteger lock_wait_time - Time waited on locks

lock_waits xs:nonNegativeInteger lock_waits - Lock waits

log_buffer_wait_time xs:nonNegativeInteger log_buffer_wait_time - Log buffer wait time

log_disk_wait_time xs:nonNegativeInteger log_disk_wait_time - Log disk wait time

log_disk_waits_total xs:nonNegativeInteger log_disk_waits_total - Log disk waits total

member xs:nonNegativeInteger member - Database member

num_locks_held xs:nonNegativeInteger locks_held - Locks held

num_log_buffer_full xs:nonNegativeInteger num_log_buffer_full - Number of full log buffers

440 Administrative Routines and Views

Table 125. Detailed metrics returned for MON_GET_CONNECTION_DETAILS (continued)

Element Name Data Type Description

num_lw_thresh_exceeded xs:nonNegativeInteger num_lw_thresh_exceeded - Number of thresholds
exceeded

pkg_cache_inserts xs:nonNegativeInteger pkg_cache_inserts - Package cache inserts

pkg_cache_lookups xs:nonNegativeInteger pkg_cache_lookups - Package cache lookups

pool_data_l_reads xs:nonNegativeInteger pool_data_l_reads - Buffer pool data logical reads

pool_data_p_reads xs:nonNegativeInteger pool_data_p_reads - Buffer pool data physical reads

pool_data_writes xs:nonNegativeInteger pool_data_writes - Buffer pool data writes

pool_index_l_reads xs:nonNegativeInteger pool_index_l_reads - Buffer pool index logical reads

pool_index_p_reads xs:nonNegativeInteger pool_index_p_reads - Buffer pool index physical reads

pool_index_writes xs:nonNegativeInteger pool_index_writes - Buffer pool index writes

pool_read_time xs:nonNegativeInteger pool_read_time - Total buffer pool physical read time

pool_temp_data_l_reads xs:nonNegativeInteger pool_temp_data_l_reads - Buffer pool temporary data
logical reads

pool_temp_data_p_reads xs:nonNegativeInteger pool_temp_data_p_reads - Buffer pool temporary data
physical reads

pool_temp_index_l_reads xs:nonNegativeInteger pool_temp_index_l_reads - Buffer pool temporary
index logical reads

pool_temp_index_p_reads xs:nonNegativeInteger pool_temp_index_p_reads - Buffer pool temporary
index physical reads

pool_temp_xda_l_reads xs:nonNegativeInteger pool_temp_xda_l_reads - Buffer pool temporary XDA
data logical reads

pool_temp_xda_p_reads xs:nonNegativeInteger pool_temp_xda_p_reads - Buffer pool temporary XDA
data physical reads

pool_write_time xs:nonNegativeInteger pool_write_time - Total buffer pool physical write time

pool_xda_l_reads xs:nonNegativeInteger pool_xda_l_reads - Buffer pool XDA data logical reads

pool_xda_p_reads xs:nonNegativeInteger pool_xda_p_reads - Buffer pool XDA data physical
reads

pool_xda_writes xs:nonNegativeInteger pool_xda_writes - Buffer pool XDA data writes

post_shrthreshold_sorts xs:nonNegativeInteger post_shrthreshold_sorts - Post shared threshold sorts

post_threshold_sorts xs:nonNegativeInteger post_threshold_sorts - Post threshold sorts

rows_modified xs:nonNegativeInteger rows_modified - Rows modified

rows_read xs:nonNegativeInteger rows_read - Rows read

rows_returned xs:nonNegativeInteger rows_returned - Rows returned

rqsts_completed_total xs:nonNegativeInteger rqsts_completed_total - Total requests completed

session_auth_id xs:string session_auth_id - Session authorization ID

sort_overflows xs:nonNegativeInteger sort_overflows - Sort overflows

system_auth_id xs:string system_auth_id - System authorization identifier

tcpip_recv_volume xs:nonNegativeInteger tcpip_recv_volume - TCP/IP received volume

tcpip_recv_wait_time xs:nonNegativeInteger tcpip_recv_wait_time - TCP/IP recv wait time

tcpip_recvs_total xs:nonNegativeInteger tcpip_recvs_total - TCP/IP recvs total

tcpip_send_volume xs:nonNegativeInteger tcpip_send_volume - TCP/IP send volume

tcpip_send_wait_time xs:nonNegativeInteger tcpip_send_wait_time - TCP/IP send wait time

Chapter 12. Monitor routines and views 441

Table 125. Detailed metrics returned for MON_GET_CONNECTION_DETAILS (continued)

Element Name Data Type Description

tcpip_sends_total xs:nonNegativeInteger tcpip_sends_total - TCP/IP sends total

thresh_violations xs:nonNegativeInteger thresh_violations - Number of threshold violations

total_act_time xs:nonNegativeInteger total_act_time - Total activity time

total_act_wait_time xs:nonNegativeInteger total_act_wait_time - Total activity wait time

total_app_commits xs:nonNegativeInteger total_app_commits - Total application commits

total_app_rollbacks xs:nonNegativeInteger total_app_rollbacks - Total application rollbacks

total_app_rqst_time xs:nonNegativeInteger total_app_rqst_time - Total application request time

total_app_section_executions xs:nonNegativeInteger total_app_section_executions - Total section executions

total_commit_proc_time xs:nonNegativeInteger total_commit_proc_time - Total commits processing
time

total_commit_time xs:nonNegativeInteger total_commit_time - Total commit time

total_compilations xs:nonNegativeInteger total_compilations - Total compilations

total_compile_proc_time xs:nonNegativeInteger total_compile_proc_time - Total compile processing
time

total_compile_time xs:nonNegativeInteger total_compile_time - Total compile time

total_cpu_time xs:nonNegativeInteger total_cpu_time - Total CPU time

total_implicit_compilations xs:nonNegativeInteger total_implicit_compilations - Total implicit
complications

total_implicit_compile_
proc_time

xs:nonNegativeInteger total_implicit_compile_proc_time - Total implicit
compile processing time

total_implicit_compile_time xs:nonNegativeInteger total_implicit_compile_time - Total implicit compile
time

total_loads xs:nonNegativeInteger total_loads - Total loads

total_load_proc_time xs:nonNegativeInteger total_load_proc_time - Total load processing time

total_load_time xs:nonNegativeInteger total_load_time - Total load time

total_reorgs xs:nonNegativeInteger total_reorgs - Total reorganizations

total_reorg_proc_time xs:nonNegativeInteger total_reorg_proc_time - Total reorganization processing
time

total_reorg_time xs:nonNegativeInteger total_reorg_time - Total reorganization time

total_rollback_proc_time xs:nonNegativeInteger total_rollback_proc_time - Total rollback processing
time

total_rollback_time xs:nonNegativeInteger total_rollback_time - Total rollback time

total_routine_invocations xs:nonNegativeInteger total_routine_invocations - Total routine invocations

total_routine_user_code
_proc_time

xs:nonNegativeInteger total_routine_user_code_proc_time - Total routine user
code processing time

total_routine_user_code_time xs:nonNegativeInteger total_routine_user_code_time - Total routine user code
time

total_routine_time xs:nonNegativeInteger total_routine_time - Total routine time

total_rqst_time xs:nonNegativeInteger total_rqst_time - Total request time

total_runstats xs:nonNegativeInteger total_runstats - Total runtime statistics

total_runstats_proc_time xs:nonNegativeInteger total_runstats_proc_time - Total runtime statistics
processing time

total_runstats_time xs:nonNegativeInteger total_runstats_time - Total runtime statistics

442 Administrative Routines and Views

Table 125. Detailed metrics returned for MON_GET_CONNECTION_DETAILS (continued)

Element Name Data Type Description

total_section_proc_time xs:nonNegativeInteger total_section_proc_time - Total section processing time

total_section_time xs:nonNegativeInteger total_section_time - Total section time

total_wait_time xs:nonNegativeInteger total_wait_time - Total wait time

total_section_sort_time xs:nonNegativeInteger total_section_sort_time - Total section sort time

total_section_sort_proc_time xs:nonNegativeInteger total_section_sort_proc_time - Total section sort
processing time

total_section_sorts xs:nonNegativeInteger total_section_sorts - Total section sorts

total_sorts xs:nonNegativeInteger total_sorts - Total Sorts

tq_tot_send_spills xs:nonNegativeInteger tq_tot_send_spills - Total number of table queue buffers
overflowed

wlm_queue_time_total xs:nonNegativeInteger wlm_queue_time_total - Workload manager total queue
time

wlm_queue_assignments_total xs:nonNegativeInteger wlm_queue_assignments_total - Workload manager
total queue assignments

MON_GET_CONTAINER table function - Get table space container
metrics

The MON_GET_CONTAINER table function returns monitor metrics for one or
more table space containers.

Syntax

�� MON_GET_CONTAINER (tbsp_name , member) ��

The schema is SYSPROC.

Table function parameters

tbsp_name
An input argument of type VARCHAR(128) that specifies a valid table space
name in the same database as the one currently connected to when calling this
function. If the argument is null or an empty string, metrics are returned for all
containers in all table spaces in the database.

member
An input argument of type INTEGER that specifies a valid member in the
same instance as the currently connected database when calling this function.
Specify -1 for the current database member, or -2 for all database members. If
the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the MON_GET_CONTAINER function.

Example

Example 1: List containers on all database members that have the highest read time.

Chapter 12. Monitor routines and views 443

SELECT varchar(container_name,70) as container_name,
varchar(tbsp_name,20) as tbsp_name,
pool_read_time

FROM TABLE(MON_GET_CONTAINER(’’,-2)) AS t
ORDER BY pool_read_time DESC

The following example is a sample output from this query.
CONTAINER_NAME ...
-- ...
/home/hotel55/swalkty/swalkty/NODE0000/TEST/T0000000/C0000000.CAT ...
/home/hotel55/swalkty/swalkty/NODE0000/TEST/T0000002/C0000000.LRG ...
/home/hotel55/swalkty/swalkty/NODE0000/TEST/T0000001/C0000000.TMP ...

3 record(s) selected.

Output for query (continued).
... TBSP_NAME POOL_READ_TIME
... -------------------- --------------------
... SYSCATSPACE 597
... USERSPACE1 42
... TEMPSPACE1 0

Example 2: List any containers that are not accessible.
SELECT varchar(container_name, 70) as container_name
FROM TABLE(MON_GET_CONTAINER(’’,-1)) AS t
WHERE accessible = 0

The following example is a sample output from this query.
CONTAINER_NAME
--

0 record(s) selected.

Example 3: List utilization of container file systems, ordered by highest utilization.
SELECT varchar(container_name, 65) as container_name,

fs_id,
fs_used_size,
fs_total_size,
CASE WHEN fs_total_size > 0

THEN DEC(100*(FLOAT(fs_used_size)/FLOAT(fs_total_size)),5,2)
ELSE DEC(-1,5,2)

END as utilization
FROM TABLE(MON_GET_CONTAINER(’’,-1)) AS t
ORDER BY utilization DESC

The following example is a sample output from this query.
CONTAINER_NAME ...
--- ...
/home/hotel55/swalkty/swalkty/NODE0000/TEST/T0000000/C0000000.CAT ...
/home/hotel55/swalkty/swalkty/NODE0000/TEST/T0000001/C0000000.TMP ...
/home/hotel55/swalkty/swalkty/NODE0000/TEST/T0000002/C0000000.LRG ...

3 record(s) selected.

Output for query (continued).
FS_ID FS_USED_SIZE FS_TOTAL_SIZE UTILIZATION
-------------------- -------------------- -------------------- -----------

64768 106879311872 317068410880 33.70
64768 106879311872 317068410880 33.70
64768 106879311872 317068410880 33.70

444 Administrative Routines and Views

Usage notes

The MON_GET_CONTAINER table function returns one row of data per container
and per database member. Data can be returned for all containers in a given table
space, or for all containers in the database. No aggregation across database
partitions is performed. However, aggregation can be achieved through SQL
queries.

Metrics collected by this function are controlled at the database level using the
mon_obj_metrics configuration parameter. By default, metrics collection is enabled.

Information returned

Table 126. Information returned for MON_GET_CONTAINER

Column Name Data Type Description or corresponding monitor element

TBSP_NAME VARCHAR(128) tablespace_name - Table space name

TBSP_ID BIGINT tablespace_id - Table space identification

CONTAINER_NAME VARCHAR(256) container_name - Container name

CONTAINER_ID BIGINT container_id - Container identification

MEMBER SMALLINT member - Database member

CONTAINER_TYPE VARCHAR(16) container_type - Container type This is a text identifier
based on the defines in sqlutil.h and is one of:

v DISK_EXTENT_TAG

v DISK_PAGE_TAG

v FILE_EXTENT_TAG

v FILE_PAGE_TAG

v PATH

STRIPE_SET BIGINT container_stripe_set - Stripe set

DIRECT_READS BIGINT direct_reads - Direct reads from database

DIRECT_WRITES BIGINT direct_writes - Direct writes to database

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write time

PAGES_READ BIGINT pages_read - Number of pages read

PAGES_WRITTEN BIGINT pages_written - Number of pages written

VECTORED_IOS BIGINT vectored_ios - Number of vectored IO requests

PAGES_FROM_VECTORED_IOS BIGINT pages_from_vectored_ios - Total number of pages read
by vectored IO

BLOCK_IOS BIGINT block_ios - Number of block IO requests

PAGES_FROM_BLOCK_IOS BIGINT pages_from_block_ios - Total number of pages read by
block IO

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool physical read time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool physical write time

TOTAL_PAGES BIGINT container_total_pages - Total pages in container

USABLE_PAGES BIGINT container_usable_pages - Usable pages in container

ACCESSIBLE SMALLINT container_accessible - Accessibility of container

FS_ID VARCHAR(22) fs_id - Unique file system identification number

FS_TOTAL_SIZE BIGINT fs_total_size - Total size of a file system

Chapter 12. Monitor routines and views 445

Table 126. Information returned for MON_GET_CONTAINER (continued)

Column Name Data Type Description or corresponding monitor element

FS_USED_SIZE BIGINT fs_used_size - Amount of space used on a file system

ADDITIONAL_DETAILS BLOB(100K) Reserved for future use.

MON_GET_EXTENT_MOVEMENT_STATUS - get extent movement
progress

The MON_GET_EXTENT_MOVEMENT_STATUS table function returns the status
of the extent movement operation.

Syntax

�� MON_GET_EXTENT_MOVEMENT_STATUS (tbsp_name , member) ��

The schema is SYSPROC.

Table function parameters

tbsp_name
An input argument of type VARCHAR(128) that specifies the table space to
query. If the argument value is null, the function returns information for all
table spaces.

member
An input argument of type INTEGER that specifies a valid member inside the
same instance as the currently connected database. Specify -1 for the current
database member, or -2 for all database members. If the argument value is null,
-1 is set implicitly.

Authorization

EXECUTE privilege on the MON_GET_EXTENT_MOVEMENT_STATUS function.

Example

Retrieve all information about the current extent progress for all table spaces:
SELECT * FROM TABLE(SYSPROC.MON_GET_EXTENT_MOVEMENT_STATUS(’’, -1))

Here is an example of the output from the preceding query:
TBSP_NAME TBSP_ID MEMBER CURRENT_EXTENT LAST_EXTENT NUM_EXTENTS_MOVED
--------- ------- ------ -------------- ----------- -----------------
SYSCATSPACE 0 0 -1 -1 -1
TEMPSPACE1 1 0 -1 -1 -1
USERSPACE1 2 0 -1 -1 -1
TS1 3 0 1 2 3
SYSTOOLSPACE 4 0 -1 -1 -1

5 record(s) selected.

Output from the query continued:
... NUM_EXTENTS_LEFT TOTAL_MOVE_TIME ADDITIONAL_DETAILS
... ---------------- --------------- ------------------
... -1 -1 -
... -1 -1 -

446 Administrative Routines and Views

... -1 -1 -

... 4 0 -

... -1 -1 -

Information returned

Table 127. Information returned for MON_GET_EXTENT_MOVEMENT_STATUS

Column Name Data Type
Description or corresponding
monitor element

TBSP_NAME VARCHAR(128) tablespace_name - Table space name

TBSP_ID BIGINT tablespace_id - Table space identifier

MEMBER SMALLINT member - Member from which this
information was collected

CURRENT_EXTENT INTEGER current_extent - Current extent being
moved

LAST_EXTENT INTEGER last_extent - Last extent moved

NUM_EXTENTS_MOVED INTEGER num_extents_moved - Number of
extents moved so far during this
extent movement operation

NUM_EXTENTS_LEFT INTEGER num_extents_left - Number of extents
left to move during this extent
movement operation

TOTAL_MOVE_TIME BIGINT total_move_time - Total move time
for all extents moved (in
milliseconds)

ADDITIONAL_DETAILS BLOB(100K) Reserved for future use

MON_GET_FCM - Get FCM metrics
The MON_GET_FCM table function returns metrics for the fast communication
manager (FCM).

Syntax

�� MON_GET_FCM (member) ��

The schema is SYSPROC.

Table function parameter

member
An input argument of type INTEGER that specifies a valid database member
number. Specify -1 for the current database member, or -2 for information
from all active database members. An active database member is where the
database is available for connection and use by applications.

Authorization

EXECUTE privilege on the MON_GET_FCM table function.

Chapter 12. Monitor routines and views 447

Example

To retrieve information about the fast communication manager message buffers on
all members:
SELECT member, buff_free, buff_free_bottom

FROM TABLE (MON_GET_FCM (-2))

This query returns the following output:
MEMBER BUFF_FREE BUFF_FREE_BOTTTOM
------ ------------------- -----------------

2 13425 13416
10 13425 13416
1 13425 13416

3 record(s) selected.

Information returned

Table 128. Information returned for MON_GET_FCM

Column Name Data Type Description or corresponding monitor element

HOSTNAME VARCHAR(128) hostname - Host name

MEMBER SMALLINT member - Database member

BUFF_MAX BIGINT buff_max - Maximum possible number of FCM buffers

BUFF_TOTAL BIGINT buff_total - Number of currently allocated FCM buffers

BUFF_FREE BIGINT buff_free - FCM buffers currently free

BUFF_FREE_BOTTOM BIGINT buff_free_bottom - Minimum FCM buffers free

BUFF_AUTO_TUNING SMALLINT buff_auto_tuning - FCM buffer auto-tuning indicator

CH_MAX BIGINT ch_max - Maximum possible number of FCM channels

CH_TOTAL BIGINT ch_total - Number of currently allocated FCM channels

CH_FREE BIGINT ch_free - Channels currently free

CH_FREE_BOTTOM BIGINT ch_free_bottom - Minimum channels free

CH_AUTO_TUNING SMALLINT ch_auto_tuning - FCM channel auto-tuning indicator

ADDITIONAL_DETAILS BLOB(100K) Reserved for future use.

Note: The metrics provided by this table function apply to all members on a given
host machine. All members on a given host machine share the same set of buffers
and channels. This means that the individual metrics will usually be the same for
each member on given host machine. However, each member executes
independently and the metrics might differ slightly as the resource numbers
change in between the sampling on different members.

MON_GET_FCM_CONNECTION_LIST - Get details for all FCM
connections

The MON_GET_FCM_CONNECTION_LIST table function returns monitor metrics
for all the fast communication manager (FCM) connections on the specified
member or members.

448 Administrative Routines and Views

Syntax

�� MON_GET_FCM_CONNECTION_LIST (+ +)
member

��

The schema is SYSPROC.

Table function parameter

member
An input argument of type INTEGER that specifies a valid database member
number. Specify -1 for the current database member, or -2 for information
from all active database members. An active database member is where the
database is available for connection and use by applications.

Authorization

EXECUTE privilege on the MON_GET_FCM_CONNECTION_LIST table function.

Information returned

Table 129. Information returned for MON_GET_FCM_CONNECTION_LIST

Column Name Data Type Description or corresponding monitor element

MEMBER SMALLINT member - Database member

REMOTE_MEMBER SMALLINT remote_member - Remote member

CONNECTION_STATUS VARCHAR(16) connection_status - Connection status

TOTAL_BUFFERS_SENT BIGINT total_buffers_sent - Total FCM buffers sent

TOTAL_BUFFERS_RCVD BIGINT total_buffers_rcvd - Total FCM buffers received

FCM_CONGESTION_TIME BIGINT Reserved for future use.

FCM_CONGESTED_SENDS BIGINT Reserved for future use.

FCM_NUM_CONGESTION_
TIMEOUTS

BIGINT Reserved for future use.

FCM_SEND_VOLUME BIGINT Reserved for future use.

FCM_RECV_VOLUME BIGINT Reserved for future use.

FCM_MESSAGE_SEND_
VOLUME

BIGINT Reserved for future use.

FCM_MESSAGE_RECV_
VOLUME

BIGINT Reserved for future use.

FCM_TQ_SEND_VOLUME BIGINT Reserved for future use.

FCM_TQ_RECV_VOLUME BIGINT Reserved for future use.

FCM_NUM_CONN_LOST BIGINT Reserved for future use.

FCM_NUM_CONN_TIMEOUTS BIGINT Reserved for future use.

ADDITIONAL_DETAILS BLOB(100K) Reserved for future use.

MON_GET_INDEX table function - get index metrics
The MON_GET_INDEX table function returns metrics for one or more indexes.

Chapter 12. Monitor routines and views 449

Syntax

�� MON_GET_INDEX (tabschema , tabname , member) ��

The schema is SYSPROC.

Table function parameters

tabschema
An input argument of type VARCHAR(128) that specifies a valid table schema
name in the same database as the one currently connected to when calling this
function. If the argument is NULL or an empty string, metrics are retrieved for
indexes of tables in all schemas in the database. If the argument is specified,
metrics are only returned for indexes for tables in the specified schema.

tabname
An input argument of type VARCHAR(128) that specifies a valid table name in
the same database as the one currently connected to when calling this function.
Metrics are returned for all indexes on the specified table. If the argument is
null or an empty string, metrics are retrieved for all indexes for all tables in the
database.

member
An input argument of type INTEGER that specifies a valid member in the
same instance as the currently connected database when calling this function.
Specify a -1 for the current database member, or -2 for all database members. If
the NULL value is specified, -1 is set implicitly

Authorization

EXECUTE privilege on the MON_GET_INDEX function.

Example

Identify the most frequently used indexes on the DMEXT002.TABLE1 table, since
the last database activation:

SELECT VARCHAR(S.INDSCHEMA, 10) AS INDSCHEMA,
VARCHAR(S.INDNAME, 10) AS INDNAME,
T.DATA_PARTITION_ID,
T.MEMBER,
T.INDEX_SCANS,
T.INDEX_ONLY_SCANS

FROM TABLE(MON_GET_INDEX(’DMEXT002’,’TABLE1’, -2)) as T, SYSCAT.INDEXES AS S
WHERE T.TABSCHEMA = S.TABSCHEMA AND

T.TABNAME = S.TABNAME AND
T.IID = S.IID

ORDER BY INDEX_SCANS DESC

The following example is a sample output from this query.
INDSCHEMA INDNAME DATA_PARTITION_ID MEMBER INDEX_SCANS INDEX_ONLY_SCANS
---------- ---------- ----------------- -------------- -------------------- --------------------
DMEXT002 INDEX3 - 0 1 1
DMEXT002 INDEX4 - 0 1 0
DMEXT002 INDEX1 - 0 0 0
DMEXT002 INDEX2 - 0 0 0
DMEXT002 INDEX5 - 0 0 0
DMEXT002 INDEX6 - 0 0 0

6 record(s) selected.

450 Administrative Routines and Views

Usage notes

The MON_GET_INDEX table function returns one row of data per index, and per
database member. If partitioned indexes are being used, one row is returned for
each index partition per database member. No aggregation across database
members is performed. However, aggregation can be achieved through SQL
queries as shown in previous example.

Metrics will only be returned for indexes on tables that have been accessed since
the database was activated. All counters represent data since the current database
activation. For example, the pseudo_empty_pages counter is the number of pages
that have been identified as pseudo empty since the database was activated. it is
not the current number of pseudo empty pages in the index.

Metrics are always enabled. It is not necessary to turn on any system monitor
switches to access table metrics through this function.

Information returned

Table 130. Information returned for MON_GET_INDEX

Column Name Data Type Description or corresponding monitor element

TABSCHEMA VARCHAR(128) table_schema - Table schema name

TABNAME VARCHAR(128) table_name - Table name

IID SMALLINT iid - Index identifier

MEMBER SMALLINT member - Database member

DATA_PARTITION_ID INTEGER data_partition_id - Data partition identifier. If index
is not partitioned, NULL is returned.

NLEAF BIGINT nleaf - Number of leaf pages

NLEVELS SMALLINT nlevels - Number of index levels

INDEX_SCANS BIGINT index_scans - Index scans

INDEX_ONLY_SCANS BIGINT index_only_scans - Index-only scans

KEY_UPDATES BIGINT key_updates - Key updates

INCLUDE_COL_UPDATES BIGINT include_col_updates - Include column updates

PSEUDO_DELETES BIGINT pseudo_deletes - Pseudo deletes

DEL_KEYS_CLEANED BIGINT del_keys_cleaned - Pseudo deleted keys cleaned

ROOT_NODE_SPLITS BIGINT root_node_splits - Root node splits

INT_NODE_SPLITS BIGINT int_node_splits - Intermediate node splits

BOUNDARY_LEAF
_NODE_SPLITS

BIGINT boundary_leaf_node_splits - Boundary leaf node
splits

NONBOUNDARY_LEAF
_NODE_SPLITS

BIGINT nonboundary_leaf_node_splits - Non-boundary leaf
node splits

PAGE_ALLOCATIONS BIGINT page_allocations - Page allocations

PSEUDO_EMPTY_PAGES BIGINT pseudo_empty_pages - Pseudo empty pages

EMPTY_PAGES_REUSED BIGINT empty_pages_reused - Empty pages reused

EMPTY_PAGES_DELETED BIGINT empty_pages_deleted - Empty pages deleted

PAGES_MERGED BIGINT pages_merged - Pages merged

ADDITIONAL_DETAILS BLOB(100K) Reserved for future use.

Chapter 12. Monitor routines and views 451

MON_GET_LOCKS - list all locks in the currently connected database
The MON_GET_LOCKS table function returns a list of all locks in the currently
connected database.

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7, it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7, this routine will no longer work.

To get information about locks, use the MON_GET_LOCKS,
MON_FORMAT_LOCK_NAME, and MON_GET_APPL_LOCKWAIT table
functions, and the MON_LOCKWAIT administrative view instead of the
SNAPLOCKWAIT administrative view and SNAP_GET_LOCKWAIT table
function, the SNAPLOCK administrative view and SNAP_GET_LOCK table
function, and the LOCKS_HELD administrative view which are deprecated in Fix
Pack 1 of Version 9.7.

�� MON_GET_LOCKS (search_args , member) ��

The schema is SYSPROC.

Table function parameters

search_args

An input parameter of type CLOB(1K) that represents a list of key-value pairs.
If the list is empty or NULL, all locks in the currently connected database are
returned. Otherwise, all locks that match all of the conditions represented by
the list of key-value pairs are returned. A key-value pair must follow this format:
v A key is a string that consists of an opening tag, followed by the value,

followed by a closing tag.
v An opening tag consists of an opening angle bracket, followed by the key

name, followed by a closing angle bracket. No spaces are allowed.
v A closing tag consists of an opening angle bracket, followed by a forward

slash, followed by the key name, followed by a closing angle bracket. No
spaces are allowed.

v All keys are case-sensitive and can only be specified once in the search_args
parameter.

v The order of the keys does not matter.

SQLCODE -171 is returned for an invalid key-value pair.

SQLCODE -204 is returned if the table does not exist.

An AND operation is performed between different keys. An OR operation is
performed between multiple values of the same key. For example, the
following use of the search_args parameter returns a list of all locks of type
Table or Row, that are held, or waiting to be acquired, in either Shared or
Exclusive mode, by the application with the handle 123:
CLOB('<application_handle>123</application_handle>

<lock_object_type>Table:Row</lock_object_type>
<lock_mode>S:X</lock_mode>’)

The available keys for the MON_GET_LOCKS table function are as follows:

452 Administrative Routines and Views

v application_handle
Returns a list of all locks that are currently held or are in the process of
being acquired by the specified application handle. Only a single occurrence
of the key value can be specified. The value is specified as an INTEGER. For
example:
CLOB(’<application_handle>145</application_handle>’)

v lock_name
Returns a list of all locks that match the specified lock name. Only a single
occurrence of the key value can be specified. The value is specified as a
string of maximum length 32. For example:
CLOB(’<lock_name>00030005000000000280000452</lock_name>’)

v lock_object_type
Returns a list of all locks that match the specified lock object type. Multiple
occurrences of the key value can be specified (to a maximum of 5). Each
value (case insensitive) must be separated by a colon (:) and is specified as a
string of a maximum length of 32 characters. For example:
CLOB(’<lock_object_type>Table:Chunk:Plan</lock_object_type>’)

For a list of possible input values, see “lock_object_type - Lock object type
waited on monitor element”.

v lock_mode
Returns a list of all locks that match the specified lock mode. Multiple
occurrences of the key value can be specified (to a maximum of 5). Each
value (case insensitive) is separated by a colon (:) and is specified as a string
of maximum length 3. For example:
CLOB('<lock_mode>IS:IN:U</lock_mode>’)

For a list of possible input values, see “lock_mode - Lock mode monitor
element”.

v lock_status
Returns a list of all locks in the specified status. Only a single occurrence of
the key value can be specified. The value is specified as a character.
CLOB('<lock_status>W</lock_status>’)

For a list of possible input values, see “lock_status - Lock status monitor
element”.

v table_schema
Returns a list of all locks that are qualified by the specified schema name.
The table_name key must also be specified. Only a single occurrence of the
key value can be specified. The value is specified as a string of maximum
length 128.

v table_name
Returns a list of all locks that reference the specified table. The table_schema
key must also be specified. Only a single occurrence of the key value can be
specified. The value is specified as a string of maximum length 128. For
example:
CLOB('<table_schema>USER1</table_schema>

<table_name>INVENTORY</table_name>’)

The following examples demonstrate how to use key-value pairs in the
search_args parameter.
1. To search for all ROW and TABLE locks:

CLOB(’<lock_object_type>Table:Row</lock_object_type>’)

Chapter 12. Monitor routines and views 453

2. To search for all locks that application handle 123 is holding or waiting to
acquire that reference table T1, and were created by user USER1:
CLOB(’<application_handle>123</application_handle>

<table_schema>USER1</table_schema>
<table_name>T1</table_name>’)

3. To search for all TABLE, ROW, and BUFFERPOOL locks that are currently
held in Shared mode:
CLOB(’<lock_mode>S</lock_mode>

<lock_status>G</lock_status>
<lock_object_type>Table:Row:Bufferpool</lock_object_type>’)

member
An input argument of type INTEGER that specifies from which member the
data is returned. Specify -1 for the current member, and -2 for all active
members.

Authorization

One of the following authorities or privilege is required:
v SYSADM authority
v SYSMON authority

Example

In this sample scenario, the MON_GET_LOCKS and
MON_GET_APPL_LOCKWAIT table functions are used to investigate the locking
situation in the current connected database, on all members.
1. Call the MON_GET_APPL_LOCKWAIT table function to determine all the

locks that are waiting to be acquired in the current connected database, on all
members:
SELECT lock_name,

hld_member,
lock_status,
hld_application_handle FROM
TABLE (MON_GET_APPL_LOCKWAIT(NULL, -2))

This query returns the following output:
LOCK_NAME HLD_MEMBER LOCK_STATUS HLD_APPLICATION_HANDLE
-------------------------- ---------- ----------- ----------------------
00030005000000000280000452 -2 W
00030005000000000280000452 -2 W
00030005000000000280000452 -2 W

3 record(s) selected.

The records that show HLD_MEMBER is -2 indicate that the lock
0x00030005000000000280000452 is being held at a remote member.

2. Call the MON_GET_LOCKS table function to determine the holder of the lock,
by specifying the lock name, 0x00030005000000000280000452, as the search
argument:
SELECT lock_name,

member,
lock_status,
application_handle FROM

TABLE (MON_GET_LOCKS(
CLOB(’<lock_name>00030005000000000280000452</lock_name>’),

-2))

This query returns the following output:

454 Administrative Routines and Views

LOCK_NAME MEMBER LOCK_STATUS APPLICATION_HANDLE
-------------------------- ------ ----------- ------------------
00030005000000000280000452 0 W 12562
00030005000000000280000452 1 W 12562
00030005000000000280000452 2 G 65545
00030005000000000280000452 3 W 12562

4 record(s) selected.

To find out more about the application holding the lock, you can call the
WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES_V97 or
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES_V97 table functions.

Information returned

Table 131. Information returned by the MON_GET_LOCKS table function

Column name Data type
Description or monitor
element

APPLICATION_HANDLE BIGINT application_handle -
Application handle

If the LOCK_STATUS
column is G, this represents
the application that is
currently holding the lock.

If the LOCK_STATUS
column is W or C, this
represents the application
that is currently waiting to
acquire the lock.

MEMBER SMALLINT member - Database member
from which the data was
retrieved for this row.

LOCK_NAME VARCHAR(32) lock_name - Lock name

LOCK_OBJECT_TYPE_ID CHAR(1) FOR BIT DATA Reserved for internal use

LOCK_OBJECT_TYPE VARCHAR(32) lock_object_type - Lock
object type

If the LOCK_STATUS
column is G, this represents
the type of object that the
application is currently
holding.

If the LOCK_STATUS
column is W or C, then this
represents the type of object
that the application is
currently waiting to acquire.

For possible input values, see
“lock_object_type - Lock
object type waited on
monitor element”.

Chapter 12. Monitor routines and views 455

Table 131. Information returned by the MON_GET_LOCKS table function (continued)

Column name Data type
Description or monitor
element

LOCK_MODE VARCHAR(3) lock_mode - Lock mode

If the LOCK_STATUS
column is G, this represents
the mode that the application
is currently holding the lock
in.

If the LOCK_STATUS
column is W or C, this
represents the mode that the
application is currently
waiting to acquire the lock
in.

If the mode is unknown, a
value of NULL is returned
for this column.

LOCK_CURRENT_MODE VARCHAR(3) lock_current_mode - Original
Lock Mode Before
Conversion

If the mode is unknown, a
value of NULL is returned
for this column.

LOCK_STATUS CHAR(1) lock_status - Lock status

LOCK_ATTRIBUTES CHAR(16) lock_attributes - Lock
attributes

LOCK_RELEASE_FLAGS CHAR(16) Reserved for internal use

LOCK_RRIID BIGINT Reserved for internal use

LOCK_COUNT BIGINT Reserved for internal use

LOCK_HOLD_COUNT BIGINT Reserved for internal use

TBSP_ID BIGINT tablespace_id - Table space
ID

For locks that do not
reference a table space, a
value of NULL is returned.

TAB_FILE_ID BIGINT table_file_id - Table file ID

ADDITIONAL_DETAILS BLOB(100K) Reserved for internal use

MON_GET_MEMORY_POOL - get memory pool information
The MON_GET_MEMORY_POOL table function retrieves metrics from the
memory pools contained within a memory set.

Syntax

�� MON_GET_MEMORY_POOL (memory_set_type , db_name , member) ��

456 Administrative Routines and Views

The schema is SYSPROC.

Table function parameters

memory_set_type
An input argument of type VARCHAR(32) that specifies the type of the
memory set when calling this function. If the argument is NULL or an empty
string, then metrics are retrieved for all memory sets at the instance and
database level. Otherwise metrics for the specified memory set are retrieved.

These parameter values are accepted:

Value Scope Description

DBMS Instance DB2 database manager (DBM) memory set

FMP Instance Fenced mode process (FMP) memory set

PRIVATE Instance Private memory set

DATABASE Database Database memory set

APPLICATION Database Application memory set

FCM Host - there is only
one FCM memory set
allocated per machine
for an instance.

Fast communication manager (FCM)
memory set

NULL All All memory sets at the instance and
database level

db_name
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database when calling
this function.

The database must have a directory entry type of either “INDIRECT” or
“HOME”, as returned by a LIST DATABASE DIRECTORY command. The
database must be active. Alternatively, the CURRENT_SERVER special register
can be specified to retrieve metrics from the currently connected database. The
register value contains the actual name of the database, not an alias.

If the argument is NULL or an empty string, metrics are taken from all active
databases in the instance. This input argument applies only to database level
memory sets.

member
An input argument of type INTEGER that specifies from which member the
data is returned. Specify -1 for the current database member, or -2 for all active
members. If the NULL value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the MON_GET_MEMORY_POOL function.

Example

Example 1: Retrieve memory set metrics for the current instance and the currently
connected database.
SELECT varchar(memory_set_type, 20) AS set_type,

varchar(memory_pool_type,20) AS pool_type,
varchar(db_name, 20) AS dbname,
memory_pool_used,

Chapter 12. Monitor routines and views 457

memory_pool_used_hwm
FROM TABLE(

MON_GET_MEMORY_POOL(NULL, CURRENT_SERVER, -2))

An example of output from this query.
SET_TYPE POOL_TYPE DBNAME MEMORY_POOL_USED MEMORY_POOL_HWM_USED
------------ ---------------- ------------ ---------------- --------------------
DBMS FCM_LOCAL - 0 0
DBMS FCM_SESSION - 2359296 2359296
DBMS FCM_CHANNEL - 589824 589824
DBMS FCMBP - 983040 983040
DBMS FCM_CHANNEL - 35520512 35520512
DBMS MONITOR - 458752 589824
DBMS RESYNC - 262144 262144
DBMS OSS_TRACKER - 7667712 7667712
DBMS APM - 13041664 13238272
DBMS BSU - 3932160 4390912
DBMS KERNEL_CONTROL - 3932160 4390912
DBMS EDU - 655360 655360
FMP MISC - 655360 655360
DATABASE UTILITY TESTDB 65536 65536
DATABASE PACKAGE_CACHE TESTDB 983040 983040
DATABASE XMLCACHE TESTDB 196608 196608
DATABASE CAT_CACHE TESTDB 458752 458752
DATABASE BP TESTDB 850132992 850132992
DATABASE BP TESTDB 655360 655360
APPLICATION APPLICATION TESTDB 393216 393216
APPLICATION APPLICATION TESTDB 262144 262144

21 record(s) selected

Usage notes

In a partitioned database environment, the fast communication manager (FCM)
memory set is allocated per host; all members on this host machine share this set.
The MON_GET_MEMORY_POOL function retrieves data from each member. Since
the FCM memory set is shared among all members on the host, the metrics
reported for FCM memory for each member on the host represent information
about the same shared memory set. For this reason, when examining metrics for
FCM memory, examine the data for each unique host. For hosts with multiple
members, use data from only one member on that host, as the metrics for FCM
memory represent the aggregated total for all members on the given host.

Information returned

Table 132. Information returned for MON_GET_MEMORY_POOL

Column name Data type Description

MEMBER SMALLINT member - Database member

HOST_NAME VARCHAR(255) host_name - Host name

DB_NAME VARCHAR(128) db_name - Database name

MEMORY_SET_TYPE VARCHAR(32) memory_set_type - Memory set type. See the
memory_set_type input parameter for the list of possible
types.

MEMORY_POOL_TYPE VARCHAR(32) memory_pool_type - Memory pool type.

MEMORY_POOL_ID BIGINT memory_pool_id - Memory pool identifier

458 Administrative Routines and Views

Table 132. Information returned for MON_GET_MEMORY_POOL (continued)

Column name Data type Description

APPLICATION_HANDLE BIGINT application_handle - Application handle. Only
applicable to APPLICATION, STATISTICS, STATEMENT,
and SORT_PRIVATE memory pool types. Otherwise, the
value is NULL.

EDU_ID BIGINT edu_id - Engine dispatchable unit identifier. Only
applicable for memory pools allocated from the
PRIVATE memory set type. Otherwise, the value is
NULL.

MEMORY_POOL_USED BIGINT memory_pool_used - Amount of memory pool in use
The value is in KB.

MEMORY_POOL_USED_HWM BIGINT memory_pool_used_hwm - Memory pool high water
mark The value is in KB.

MON_GET_MEMORY_SET - get memory set information
The MON_GET_MEMORY_SET table function retrieves metrics from the allocated
memory sets, both at the instance level, and for all active databases within the
instance.

Syntax

�� MON_GET_MEMORY_SET (memory_set_type , db_name , member) ��

The schema is SYSPROC.

Table function parameters

memory_set_type
An input argument of type VARCHAR(32) that specifies the type of the
memory set when calling this function. If the argument is NULL or an empty
string, then metrics are retrieved for all memory sets at the instance and
database level. Otherwise metrics for the specified memory set are retrieved.

These parameter values are accepted:

Value Scope Description

DBMS Instance DB2 database manager (DBM) memory set

FMP Instance Fenced mode process (FMP) memory set

PRIVATE Instance Private memory set

DATABASE Database Database memory set

APPLICATION Database Application memory set

FCM Host - there is only
one FCM memory set
allocated per machine
for an instance.

Fast communication manager (FCM)
memory set

NULL All All memory sets at the instance and
database level

Chapter 12. Monitor routines and views 459

db_name
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database when calling
this function.

The database must have a directory entry type of either “INDIRECT” or
“HOME”, as returned by a LIST DATABASE DIRECTORY command. The
database must be active. Alternatively, the CURRENT_SERVER special register
can be specified to retrieve metrics from the currently connected database. The
register value contains the actual name of the database, not an alias.

If the argument is NULL or an empty string, metrics are taken from all active
databases in the instance. This input argument applies only to database level
memory sets.

member
An input argument of type INTEGER that specifies from which member the
data is returned. Specify -1 for the current database member, or -2 for all active
members. If the NULL value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the MON_GET_MEMORY_SET function.

Example

Example 1: Retrieve memory set metrics for the current instance and the currently
connected database.
SELECT varchar(memory_set_type, 20) as set_type,

varchar(db_name, 20) as dbname,
memory_set_used,
memory_set_hwm_used

FROM TABLE(
MON_GET_MEMORY_SET(NULL, CURRENT_SERVER, -2))

An example of output from this query.
SET_TYPE DBNAME MEMORY_SET_USED MEMORY_SET_HWM_USED
------------ ---------------- --------------- -------------------
DBMS - 86080 87360
FMP - 0 704
PRIVATE - 10624 16256
DATABASE TESTDB 928000 928000
APPLICATION TESTDB 1472 2752

5 record(s) selected

Usage notes

In a partitioned database environment, the fast communication manager (FCM)
memory set is allocated per host; all members on this host machine share this set.
The MON_GET_MEMORY_SET function retrieves data from each member. Since
the FCM memory set is shared among all members on the host, the metrics
reported for FCM memory for each member on the host represent information
about the same shared memory set. For this reason, when examining metrics for
FCM memory, examine the data for each unique host. For hosts with multiple
members, use data from only one member on that host, as the metrics for FCM
memory represent the aggregated total for all members on the given host.

460 Administrative Routines and Views

Information returned

Table 133. Information returned for MON_GET_MEMORY_SET

Column name Data type Description

MEMBER SMALLINT member - Database member

HOST_NAME VARCHAR(255) host_name - Host name

DB_NAME VARCHAR(128) db_name - Database name

MEMORY_SET_TYPE VARCHAR(32) memory_set_type - Memory set type. See the
memory_set_type input parameter for the list of possible
types.

MEMORY_SET_ID BIGINT memory_set_id - Memory set identifier.

MEMORY_SET_SIZE BIGINT memory_set_size - Memory set size. The value is in KB.

MEMORY_SET_COMMITTED BIGINT memory_set_committed - Memory currently committed.
The value is in KB.

MEMORY_SET_USED BIGINT memory_set_used - Memory in use by this set. The
value is in KB.

MEMORY_SET_USED_HWM BIGINT memory_set_used_hwm - Memory set high water mark.
The value is in KB.

MON_GET_PKG_CACHE_STMT table function - Get SQL statement
activity metrics in the package cache

The MON_GET_PKG_CACHE_STMT table function returns a point-in-time view of
both static and dynamic SQL statements in the database package cache.

Syntax

�� MON_GET_PKG_CACHE_STMT (section_type , �

� executable_id , search_args , member) ��

The schema is SYSPROC.

Table function parameters

section_type
An optional input argument (either "D" or "S") of type CHAR(1) that specifies
information type for the returned statement. If the argument is NULL or the
empty string, information is returned for all SQL statements. Not case
sensitive: “D” stands for dynamic; “S” for static.

executable_id
An optional input argument of type VARCHAR (32) for bit data that specifies
a unique section of the database package cache. If a null value is specified,
information is returned for all SQL statements. Note that when the executable_id
is specified, the section_type argument is ignored. For example, if an
executable_id is specified for a dynamic statement, the dynamic statement
details will be returned by this table function even if section_type is specified as
static ("S").

search_args
An optional input parameter of type CLOB(1K), that allows you to specify one
or more optional search argument strings. For example:

Chapter 12. Monitor routines and views 461

’<modified_within>5</modified_within><update_boundary_time>myPkgEvmon
</update_boundary_time>’

The available search argument tags are as follows:
v '<modified_within>X</modified_within>'

Returns only those statement entries that have either been inserted into the
cache or executed within the last X minutes (where X is a positive integer
value). If the argument is not specified, all entries in the cache are returned.

v '<update_boundary_time>evmon_name</update_boundary_time>'
Updates the event monitor boundary timestamp to the current time for the
package cache event monitor specified by evmon_name. If this event monitor
specifies where updated_since_boundary_time as an output criteria in its
WHERE clause, only package cache entries that subsequently have their
metrics updated are captured when evicted from the package cache. This
operation only has an effect if the specified package cache event monitor is
active when the command is issued.

Each input argument can be specified only once. The search argument tags
must be specified in lowercase.

member
An optional input argument of type INTEGER that specifies a valid member in
the same instance as the currently connected database when calling this
function. Specify -1 for the current database member, or -2 for all database
members. If the null value is specified, -1 is set.

Authorization

EXECUTE privilege on the MON_GET_PKG_CACHE_STMT function.

Example

List all the dynamic SQL statements from the database package cache ordered by
the average CPU time.
db2 SELECT MEMBER,

SECTION_TYPE ,
TOTAL_CPU_TIME/NUM_EXEC_WITH_METRICS as
AVG_CPU_TIME,EXECUTABLE_ID
FROM TABLE(MON_GET_PKG_CACHE_STMT (’D’, NULL, NULL, -2)) as T

WHERE T.NUM_EXEC_WITH_METRICS <> 0 ORDER BY AVG_CPU_TIME

The following example is a sample output from this query.
MEMBER SECTION_TYPE AVG_CPU_TIME EXECUTABLE_ID
------ ------------ -------------------- ---

0 D 754 x’01000000000000007A0000000000000000000000020020081126171554951791’
0 D 2964 x’0100000000000000790000000000000000000000020020081126171533551120’
0 D 5664 x’01000000000000007C0000000000000000000000020020081126171720728997’
0 D 5723 x’01000000000000007B0000000000000000000000020020081126171657272914’
0 D 9762 x’01000000000000007D0000000000000000000000020020081126172409987719’

5 record(s) selected.

Note: It takes a longer time period to build the compilation environment and to
transfer statement text (which can be as large as 2 MB) between members. To
improve performance when retrieving a list of all the statements from the package
cache, do not to select the STMT_TEXT and the COMP_ENV_DESC columns.

With the above output, we can use the executable_id to find out the details about
the most expensive statement (in terms of the average CPU time):

462 Administrative Routines and Views

db2 SELECT STMT_TEXT FROM TABLE(MON_GET_PKG_CACHE_STMT
(null, x’01000000000000007D0000000000000000000000020020081126172409987719’, null, -2))

STMT_TEXT

SELECT * FROM EMPLOYEE

As another example, assume a user named Alex has a connection associated to
workload A which has the COLLECT ACTIVITY METRICS set. Another user,
Brent, is associated to workload B that has the COLLECT ACTIVITY METRICS set
to NONE. In addition, the database mon_act_metrics configuration parameter is set
to NONE. When Brent executes the query:
SELECT count(*) FROM syscat.tables

all metrics are returned as 0 and the value of num_exec_with_metrics is also 0.
Then Alex executes the same statement afterwards, but the metrics are collected
this time for the execution of the statement and num_exec_with_metrics increments.
So, after Brent and Alex execute that statement, the result of this query:
SELECT num_executions, num_exec_with_metrics, SUBSTR(stmt_text,1,50) AS stmt_text

FROM TABLE (MON_GET_PKG_CACHE_STMT(’d’, null, null, -1)) AS tf
WHERE stmt_text LIKE ’SELECT count%’

shows that the SELECT statement ran twice and one of the execution times had the
activity metrics collected.
NUM_EXECUTIONS NUM_EXEC_WITH_METRICS STMT_TEXT
-------------- --------------------- --------------------

2 1 SELECT count(*) FROM syscat.tables

1 record(s) selected.

Usage notes

The MON_GET_PKG_CACHE_STMT table function returns a point-in-time view of
both static and dynamic SQL statements in the database package cache. This allows
you to examine the aggregated metrics for a particular SQL statement, allowing
you to quickly determine the reasons for poor query performance. The metrics
returned are aggregates of the metrics gathered during each execution of the
statement.

It also allows you to compare the behavior of an individual cached section, relative
to the other statements, to assist in identifying the most expensive section or
statements (in terms of the execution costs).

The activity metrics reported by this function are rolled up to the database cache at
the end of the execution of the activity.

Metrics collection for the execution of any statement is controlled through the
COLLECT ACTIVITY METRICS clause on workloads, or the mon_act_metrics
database configuration parameter at the database level. Metrics are only collected
for executions of the statement if the statement was submitted by a connection
associated with a workload or database for which activity metrics are enabled. The
num_exec_with_metrics element returned by the MON_GET_PKG_CACHE_STMT
function indicates how many executions of the statement have had metrics
collected and have contributed to the aggregate metrics reported. If no metrics are
collected for any execution of the statement, then the num_exec_with_metrics
element is 0 and all metric values are returned as 0.

Chapter 12. Monitor routines and views 463

Information returned

Table 134. Information returned for MON_GET_PKG_CACHE_STMT

Column Name Data Type Description or corresponding monitor element

MEMBER SMALLINT member - Database member

SECTION_TYPE CHAR(1) section_type - Section type indicator.

INSERT_TIMESTAMP TIMESTAMP insert_timestamp - Statement insert timestamp

EXECUTABLE_ID VARCHAR(32) FOR
BIT DATA

executable_id - Executable ID.

PACKAGE_NAME VARCHAR(128) package_name - Package name. This output is valid
for static SQL statements only. A NULL value is
returned if the statement is dynamic.

PACKAGE_SCHEMA VARCHAR(128) package_schema - Package schema. This output is
valid for static SQL statements only. A NULL value
is returned if the statement is dynamic.

PACKAGE_VERSION_ID VARCHAR(64) package_version_id - Package version. This output
is valid for static SQL statements only. A NULL
value is returned if the statement is dynamic or if
you did not specify the package version for static
statement. An empty string will be returned for
static statement if the package version identifier was
not specified by you when the package was created.

SECTION_NUMBER BIGINT section_number - Section number. A NULL value is
returned if the statement is dynamic.

EFFECTIVE_ISOLATION CHAR(2) effective_isolation - Effective isolation. This is the
isolation value in effect for the section; it can be
different from what it was originally requested at
compilation time.

NUM_EXECUTIONS BIGINT num_executions - Statement executions

NUM_EXEC_WITH_METRICS BIGINT num_exec_with_metrics - Number of executions
with metrics collected.

PREP_TIME BIGINT prep_time - Preparation time Note that PREP_TIME
is only valid for dynamic SQL statements.
PREP_TIME is reported as 0 for static SQL
statements.

TOTAL_ACT_TIME BIGINT total_act_time - Total activity time

TOTAL_ACT_WAIT_TIME BIGINT total_act_wait_time - Total activity wait time

TOTAL_CPU_TIME BIGINT total_cpu_time - Total CPU time

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool physical read
time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool physical write
time

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write time

LOCK_WAIT_TIME BIGINT lock_wait_time - Time waited on locks

TOTAL_SECTION_SORT_TIME BIGINT total_section_sort_time - Total section sort time

TOTAL_SECTION_SORT_PROC_TIME BIGINT total_section_sort_proc_time - Total section sort
processing time

TOTAL_SECTION_SORTS BIGINT total_section_sorts - Total section sorts

464 Administrative Routines and Views

Table 134. Information returned for MON_GET_PKG_CACHE_STMT (continued)

Column Name Data Type Description or corresponding monitor element

LOCK_ESCALS BIGINT lock_escals - Number of lock escalations

LOCK_WAITS BIGINT lock_waits - Lock waits

ROWS_MODIFIED BIGINT rows_modified - Rows modified

ROWS_READ BIGINT rows_read - Rows read

ROWS_RETURNED BIGINT rows_returned - Rows returned

DIRECT_READS BIGINT direct_reads - Direct reads from database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read requests

DIRECT_WRITES BIGINT direct_writes - Direct writes to database

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write requests

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool data logical reads

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer pool temporary
data logical reads

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool XDA Data Logical
Reads

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer pool temporary
XDA data logical reads

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool index logical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer pool temporary
index logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool data physical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer pool temporary
data physical reads

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer pool XDA data physical
reads

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer pool temporary
XDA data physical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool index physical
reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer pool temporary
index physical reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data writes

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer pool XDA data writes

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool index writes

TOTAL_SORTS BIGINT total_sorts - Total Sorts

POST_THRESHOLD_SORTS BIGINT post_threshold_sorts - Post threshold sorts

POST_SHRTHRESHOLD_SORTS BIGINT post_shrthreshold_sorts - Post shared threshold sorts

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

WLM_QUEUE_TIME_TOTAL BIGINT wlm_queue_time_total - Workload manager total
queue time

WLM_QUEUE_ASSIGNMENTS_TOTAL BIGINT wlm_queue_assignments_total - Workload manager
total queue assignments

DEADLOCKS BIGINT deadlocks - Deadlocks detected

FCM_RECV_VOLUME BIGINT fcm_recv_volume - FCM recv volume

Chapter 12. Monitor routines and views 465

Table 134. Information returned for MON_GET_PKG_CACHE_STMT (continued)

Column Name Data Type Description or corresponding monitor element

FCM_RECVS_TOTAL BIGINT fcm_recvs_total - FCM recvs total

FCM_SEND_VOLUME BIGINT fcm_send_volume - FCM send volume

FCM_SENDS_TOTAL BIGINT fcm_sends_total - FCM sends total

FCM_RECV_WAIT_TIME BIGINT fcm_recv_wait_time - FCM recv wait time

FCM_SEND_WAIT_TIME BIGINT fcm_send_wait_time - FCM send wait time

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of lock timeouts

LOG_BUFFER_WAIT_TIME BIGINT log_buffer_wait_time - Log buffer wait time

NUM_LOG_BUFFER_FULL BIGINT num_log_buffer_full - Number of full log buffers

LOG_DISK_WAIT_TIME BIGINT log_disk_wait_time - Log disk wait time

LOG_DISK_WAITS_TOTAL BIGINT log_disk_waits_total - Log disk waits total

LAST_METRICS_UPDATE TIMESTAMP last_metrics_update - Metrics last update timestamp

NUM_COORD_EXEC BIGINT num_coord_exec - Number of executions by
coordinator agent

NUM_COORD_EXEC_WITH_METRICS BIGINT num_coord_exec_with_metrics - Number of
executions by coordinator agent

VALID CHAR(1) valid - Section validity indicator.

TOTAL_ROUTINE_TIME BIGINT total_routine_time - Total routine time

TOTAL_ROUTINE_INVOCATIONS BIGINT total_routine_invocations - Total routine invocations

ROUTINE_ID BIGINT Reserved for future use.

STMT_TYPE_ID VARCHAR(32) stmt_type_id - Statement type identifier

QUERY_COST_ESTIMATE BIGINT query_cost_estimate - Query cost estimate

STMT_PKG_CACHE_ID BIGINT stmt_pkgcache_id - Statement package cache
identifier

COORD_STMT_EXEC_TIME BIGINT coord_stmt_exec_time - Execution time for statement
by coordinator agent

STMT_EXEC_TIME BIGINT stmt_exec_time - Statement execution time

TOTAL_SECTION_TIME BIGINT total_section_time - Total section time

TOTAL_SECTION_PROC_TIME BIGINT total_section_proc_time - Total section processing
time

TOTAL_ROUTINE_NON
_SECT_TIME

BIGINT total_routine_non_sect_time - Non-section routine
execution time

TOTAL_ROUTINE_NON
_SECT_PROC_TIME

BIGINT total_routine_non_sect_proc_time - Non-section
processing time

IDA_SEND_WAIT_TIME BIGINT ida_send_wait_time - Time spent waiting to send
data

IDA_SENDS_TOTAL BIGINT ida_sends_total - Number of times data sent

IDA_SEND_VOLUME BIGINT ida_send_volume - Total data volume sent

IDA_RECV_WAIT_TIME BIGINT ida_recv_wait_time - Time spent waiting to receive
data

IDA_RECVS_TOTAL BIGINT ida_recvs_total - Number of times data received

IDA_RECV_VOLUME BIGINT ida_recv_volume - Total data volume received

STMT_TEXT CLOB(2MB) stmt_text - SQL statement text

466 Administrative Routines and Views

Table 134. Information returned for MON_GET_PKG_CACHE_STMT (continued)

Column Name Data Type Description or corresponding monitor element

COMP_ENV_DESC BLOB(10K) comp_env_desc - Compilation environment handle.
You can use the existing COMPILATION_ENV table
function to get the detailed compilation
environment of the specific statement if needed.

ADDITIONAL_DETAILS BLOB(100K) Reserved for future additional metrics.

MON_GET_PKG_CACHE_STMT_DETAILS - get detailed metrics for
package cache entries

The MON_GET_PKG_CACHE_STMT_DETAILS table function returns detailed
metrics for one or more package cache entries.

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7, it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7, this routine will no longer work.

The metrics returned by the MON_GET_PKG_CACHE_STMT_DETAILS table
function represent the accumulation of all metrics for statements in the package
cache. Statement metrics are rolled up to the package cache upon activity
completion.

Syntax

�� MON_GET_PKG_CACHE_STMT_DETAILS (section_type , �

� executable_id , search_args , member) ��

The schema is SYSPROC.

Table function parameters

section_type
An optional input argument (either "D" or "S") of type CHAR(1) that specifies
information type for the returned statement. If the argument is NULL or an
empty string, information is returned for all SQL statements. Not case
sensitive: D stands for dynamic; S for static.

executable_id
An optional input argument of type VARCHAR (32) for bit data that specifies
a unique section of the database package cache. If a null value is specified,
information is returned for all SQL statements. When the executable_id is
specified, the section_type argument is ignored. For example, if an executable_id
is specified for a dynamic statement, the dynamic statement details will be
returned by this table function even if section_type is specified as static ("S").

search_args
An optional input parameter of type CLOB(1K), that allows you to specify one
or more optional search argument strings. For example:
’<modified_within>5</modified_within><update_boundary_time>myPkgEvmon

</update_boundary_time>’

Chapter 12. Monitor routines and views 467

The available search argument tags are as follows:
v '<modified_within>X</modified_within>'

Returns only those statement entries that have either been inserted into the
cache or executed within the last X minutes (where X is a positive integer
value). If the argument is not specified, all entries in the cache are returned.

v '<update_boundary_time>evmon_name</update_boundary_time>'
Updates the event monitor boundary timestamp to the current time for the
package cache event monitor specified by evmon_name. If this event monitor
specifies where updated_since_boundary_time as an output criteria in its
WHERE clause, only package cache entries that subsequently have their
metrics updated are captured when evicted from the package cache. This
operation only has an effect if the specified package cache event monitor is
active when the command is issued.

v '<stmt_details>true</stmt_details>' or '<stmt_details>false</stmt_details>'
Includes or excludes the stmt_text and comp_env_desc data in the resulting
XML document. This allows you to exclude these relatively large portions of
the document when you do not need them (for example, if you are using the
XML document to provide input for the MON_FORMAT_XML_* table
functions that return formatted row-based output). If this argument tag is
not specified, the stmt_text and comp_env_desc data are included by default.

Each input argument can be specified only once. The search argument tags
must be specified in lowercase.

member
An optional input argument of type INTEGER that specifies a valid member in
the same instance as the currently connected database when calling this
function. Specify -1 for the current database member, or -2 for all database
members. If the null value is specified, -1 is set.

Authorization

EXECUTE privilege on the MON_GET_PKG_CACHE_STMT_DETAILS function.

Examples

The first example demonstrates how to examine the package cache and select the
10 statements that have read and returned the largest number of rows.
Additionally, the results show the cumulative amount of time spent executing each
of these statements (in the STMT_EXEC_TIME output column).
SELECT SUBSTR(DETMETRICS.STMT_TEXT, 1, 40) STMT_TEXT,

DETMETRICS.ROWS_RETURNED,
DETMETRICS.STMT_EXEC_TIME

FROM TABLE(MON_GET_PKG_CACHE_STMT_DETAILS(CAST(NULL AS CHAR(1)),
CAST(NULL AS VARCHAR(32) FOR BIT DATA),
CAST(NULL AS CLOB(1K)), -1)) AS STMT_METRICS,
XMLTABLE (XMLNAMESPACES(DEFAULT ’http://www.ibm.com/xmlns/prod/db2/mon’),

’$DETMETRICS/db2_pkg_cache_stmt_details’ PASSING
XMLPARSE(DOCUMENT STMT_METRICS.DETAILS) as "DETMETRICS"
COLUMNS "STMT_TEXT" CLOB PATH ’stmt_text’,

"ROWS_RETURNED" BIGINT PATH ’activity_metrics/rows_returned’,
"STMT_EXEC_TIME" BIGINT PATH ’activity_metrics/stmt_exec_time’

) AS DETMETRICS
ORDER BY rows_returned DESC
FETCH FIRST 10 ROWS ONLY

The following example is a sample output from this query.

468 Administrative Routines and Views

STMT_TEXT ROWS_RETURNED STMT_EXEC_TIME
-- ------------- --------------
SELECT CREATOR, NAME, CTIME FROM SYSIBM. 134 38
SELECT SUBSTR(DETMETRICS.STMT_TEXT, 1, 4 44 336
SELECT SUBSTR(DETMETRICS.STMT_TEXT, 1, 4 10 333
SELECT COLNAME, TYPENAME FROM SYSCAT.CO 10 6
SELECT SUBSTR(DETMETRICS.STMT_TEXT, 1, 4 10 334
SELECT TRIGNAME FROM SYSCAT.TRIGGERS WH 8 1
SELECT COUNT(*) FROM SYSCAT.TABLESPACES 2 0
SELECT POLICY FROM SYSTOOLS.POLICY WHERE 1 0
CALL SYSPROC.POLICY_INSTALL (’I’,’DB2Tab 1 62
CALL SYSPROC.POLICY_INSTALL (’I’,’DB2Tab 1 64

10 record(s) selected.

The second example shows, for dynamic SQL statements that have waited on a
lock while executing, the number of executions, number of lock waits and average
time spent per lock wait. The output shows values accumulated over the lifetime
of the package cache entries, but restricts information to statements that have
executed within the last minute (by setting the modified_within argument tag to
1). The query excludes the statement details (stmt_text and comp_env_desc data)
because they are not required and they are computationally expensive to report (by
setting the stmt_details argument tag to false).
SELECT NUM_EXEC_WITH_METRICS, LOCK_WAITS,

(LOCK_WAIT_TIME / LOCK_WAITS) AVG_LOCK_WAIT_TIME
FROM TABLE(MON_GET_PKG_CACHE_STMT_DETAILS(’D’, CAST(NULL

AS VARCHAR(32) FOR BIT DATA),
CLOB(

’<modified_within>1</modified_within><stmt_details>false</stmt_details>’)
, -1))

AS STMT_METRICS,
XMLTABLE (XMLNAMESPACES(DEFAULT ’http://www.ibm.com/xmlns/prod/db2/mon’),

’$DETMETRICS/db2_pkg_cache_stmt_details’ PASSING
XMLPARSE(DOCUMENT STMT_METRICS.DETAILS) as "DETMETRICS"
COLUMNS "NUM_EXEC_WITH_METRICS" BIGINT PATH ’num_exec_with_metrics’,

"LOCK_WAITS" BIGINT PATH ’lock_waits’,
"LOCK_WAIT_TIME" BIGINT PATH ’activity_metrics/lock_wait_time’

) AS DETMETRICS
WHERE LOCK_WAITS <> 0
ORDER BY AVG_LOCK_WAIT_TIME DESC

The following example is a sample output from this query.
NUM_EXEC_WITH_METRICS LOCK_WAITS AVG_LOCK_WAIT_TIME
--------------------- -------------------- --------------------

4 2 139
9 3 90

Usage notes

The metrics returned by this function represent the accumulation of all metrics for
statements in the package cache. Statement metrics are rolled up to the package
cache upon activity completion.

The schema for the XML document that is returned in the DETAILS column is
available in the file sqllib/misc/DB2MonRoutines.xsd. Further details can be found
in the file sqllib/misc/DB2MonCommon.xsd.

Information returned

Table 135. Information returned for MON_GET_PKG_CACHE_STMT_DETAILS

Column Name Data Type Description or corresponding monitor element

MEMBER SMALLINT member - Database member

Chapter 12. Monitor routines and views 469

Table 135. Information returned for MON_GET_PKG_CACHE_STMT_DETAILS (continued)

Column Name Data Type Description or corresponding monitor element

SECTION_TYPE CHAR(1) section_type - Section type indicator.

EXECUTABLE_ID VARCHAR(32) FOR
BIT DATA

executable_id - Executable ID.

DETAILS BLOB(8M) XML document containing detailed metrics for the
unit of work. See Table 136 for a description of the
elements in this document.

Table 136. Detailed metrics returned for MON_GET_PKG_CACHE_STMT_DETAILS

Element Name Data Type Description

member xs:short member - Database member

valid xs:string(1) valid - Section validity indicator

executable_id xs:hexBinary(32) executable_id - Executable ID.

section_type xs:string(1) section_type - Section type indicator.

num_executions xs:nonNegativeInteger num_executions - Statement executions

num_exec_with_metrics xs:nonNegativeInteger num_exec_with_metrics - Number of executions with
metrics collected.

prep_time xs:nonNegativeInteger prep_time - Preparation time Note that PREP_TIME is
only valid for dynamic SQL statements. PREP_TIME is
reported as 0 for static SQL statements.

effective_isolation xs:string(2) effective_isolation - Effective isolation. This is the
isolation value in effect for the section; it can be
different from what it was originally requested at
compilation time.

stmt_pkgcache_id xs:long stmt_pkgcache_id - Statement package cache identifier

query_cost_estimate xs:long query_cost_estimate - Query cost estimate

stmt_type_id xs:string stmt_type_id - Statement type identifier

insert_timestamp xs:dateTime insert_timestamp - Statement insert timestamp

last_metrics_update xs:dateTime last_metrics_update - Metrics last update timestamp

package_name xs:string(128) package_name - Package name. This output is valid for
static SQL statements only. A NULL value is returned if
the statement is dynamic.

package_schema xs:string(128) package_schema - Package schema. This output is valid
for static SQL statements only. A NULL value is
returned if the statement is dynamic.

package_version_id xs:string(64) package_version_id - Package version. This output is
valid for static SQL statements only. This element is not
produced if the statement is dynamic or if you did not
specify the package version for static statement. If you
did not specify the package version identifier when the
package was created, an empty string is returned for a
static statement.

section_number xs:short section_number - Section number. This element is not
produced if the statement is dynamic.

stmt_text xs:string(2097152) stmt_text - SQL statement text

470 Administrative Routines and Views

Table 136. Detailed metrics returned for MON_GET_PKG_CACHE_STMT_DETAILS (continued)

Element Name Data Type Description

comp_env_desc xs:hexBinary(10240) comp_env_desc - Compilation environment handle.
You can use the existing COMPILATION_ENV table
function to get the detailed compilation environment of
the specific statement if needed.

wlm_queue_time_total xs:long wlm_queue_time_total - Workload manager total queue
time

wlm_queue_assignments_total xs:long wlm_queue_assignments_total - Workload manager
total queue assignments

fcm_tq_recv_wait_time xs:long fcm_tq_recv_wait_time - FCM tablequeue recv wait
time

fcm_message_recv_wait_time xs:long fcm_message_recv_wait_time - FCM message recv wait
time

fcm_tq_send_wait_time xs:long fcm_tq_send_wait_time - FCM tablequeue send wait
time

fcm_message_send_wait_time xs:long fcm_message_send_wait_time - FCM message send
wait time

lock_wait_time xs:long lock_wait_time - Time waited on locks

lock_waits xs:long lock_waits - Lock waits

direct_read_time xs:long direct_read_time - Direct read time

direct_read_reqs xs:long direct_read_reqs - Direct read requests

direct_write_time xs:long direct_write_time - Direct write time

direct_write_reqs xs:long direct_write_reqs - Direct write requests

log_buffer_wait_time xs:long log_buffer_wait_time - Log buffer wait time

num_log_buffer_full xs:long num_log_buffer_full - Number of full log buffers

log_disk_wait_time xs:long log_disk_wait_time - Log disk wait time

log_disk_waits_total xs:long log_disk_waits_total - Log disk waits total

pool_write_time xs:long pool_write_time - Total buffer pool physical write time

pool_read_time xs:long pool_read_time - Total buffer pool physical read time

audit_file_write_wait_time xs:long audit_file_write_wait_time - Audit file write wait time

audit_file_writes_total xs:long audit_file_writes_total - Total Audit files written

audit_subsystem_wait_time xs:long audit_subsystem_wait_time - Audit subsystem wait
time

audit_subsystem_waits_total xs:long audit_subsystem_waits_total - Total audit subsystem
waits

diaglog_write_wait_time xs:long diaglog_write_wait_time - Diag log write time

diaglog_writes_total xs:long diaglog_writes_total - Diag log total writes

fcm_send_wait_time xs:long fcm_send_wait_time - FCM send wait time

fcm_recv_wait_time xs:long fcm_recv_wait_time - FCM recv wait time

total_act_wait_time xs:long total_act_wait_time - Total activity wait time

total_section_sort_proc_time xs:long total_section_sort_proc_time - Total section sort
processing time

total_section_sort_time xs:long total_section_sort_time - Total section sort time

total_section_sorts xs:long total_section_sorts - Total section sorts

Chapter 12. Monitor routines and views 471

Table 136. Detailed metrics returned for MON_GET_PKG_CACHE_STMT_DETAILS (continued)

Element Name Data Type Description

total_act_time xs:long total_act_time - Total activity time

rows_read xs:long rows_read - Rows read

rows_modified xs:long rows_modified - Rows modified

pool_data_l_reads xs:long pool_data_l_reads - Buffer pool data logical reads

pool_index_l_reads xs:long pool_index_l_reads - Buffer pool index logical reads

pool_temp_data_l_reads xs:long pool_temp_data_l_reads - Buffer pool temporary data
logical reads

pool_temp_index_l_reads xs:long pool_temp_index_l_reads - Buffer pool temporary
index logical reads

total_cpu_time xs:long total_cpu_time - Total CPU time

pool_data_p_reads xs:long pool_data_p_reads - Buffer pool data physical reads

pool_temp_data_p_reads xs:long pool_temp_data_p_reads - Buffer pool temporary data
physical reads

pool_xda_p_reads xs:long pool_xda_p_reads - Buffer pool XDA data physical
reads

pool_temp_xda_p_reads xs:long pool_temp_xda_p_reads - Buffer pool temporary XDA
data physical reads

pool_index_p_reads xs:long pool_index_p_reads - Buffer pool index physical reads

pool_temp_index_p_reads xs:long pool_temp_index_p_reads - Buffer pool temporary
index physical reads

pool_data_writes xs:long pool_data_writes - Buffer pool data writes

pool_xda_writes xs:long pool_xda_writes - Buffer pool XDA data writes

pool_index_writes xs:long pool_index_writes - Buffer pool index writes

direct_reads xs:long direct_reads - Direct reads from database

direct_writes xs:long direct_writes - Direct writes to database

rows_returned xs:long rows_returned - Rows returned

deadlocks xs:long deadlocks - Deadlocks detected

lock_timeouts xs:long lock_timeouts - Number of lock timeouts

lock_escals xs:long lock_escals - Number of lock escalations

fcm_sends_total xs:long fcm_sends_total - FCM sends total

fcm_recvs_total xs:long fcm_recvs_total - FCM recvs total

fcm_send_volume xs:long fcm_send_volume - FCM send volume

fcm_recv_volume xs:long fcm_recv_volume - FCM recv volume

fcm_message_sends_total xs:long fcm_message_sends_total - FCM message sends total

fcm_message_recvs_total xs:long fcm_message_recvs_total - FCM message recvs total

fcm_message_send_volume xs:long fcm_message_send_volume - FCM message send
volume

fcm_message_recv_volume xs:long fcm_message_recv_volume - FCM message recv
volume

fcm_tq_sends_total xs:long fcm_tq_sends_total - FCM tablequeue send total

fcm_tq_recvs_total xs:long fcm_tq_recvs_total - FCM tablequeue recvs total

fcm_tq_send_volume xs:long fcm_tq_send_volume - FCM tablequeue send volume

472 Administrative Routines and Views

Table 136. Detailed metrics returned for MON_GET_PKG_CACHE_STMT_DETAILS (continued)

Element Name Data Type Description

fcm_tq_recv_volume xs:long fcm_tq_recv_volume - FCM tablequeue recv volume

tq_tot_send_spills xs:long tq_tot_send_spills - Total number of table queue buffers
overflowed

post_threshold_sorts xs:long post_threshold_sorts - Post threshold sorts

post_shrthreshold_sorts xs:long post_shrthreshold_sorts - Post shared threshold sorts

sort_overflows xs:long sort_overflows - Sort overflows

audit_events_total xs:long audit_events_total - Total audit events

total_sorts xs:long total_sorts - Total Sorts

stmt_exec_time xs:long stmt_exec_time - Statement execution time

coord_stmt_exec_time xs:long coord_stmt_exec_time - Execution time for statement by
coordinator agent

total_routine_non_
sect_proc_time

xs:long total_routine_non_sect_proc_time - Non-section
processing time

total_routine_non_sect_time xs:long total_routine_non_sect_time - Non-section routine
execution time

total_section_proc_time xs:long total_section_proc_time - Total section processing time

total_section_time xs:long total_section_time - Total section time

total_app_section_executions xs:long total_app_section_executions - Total section executions

total_routine_user_
code_proc_time

xs:long total_routine_user_code_proc_time - Total routine user
code processing time

total_routine_user_code_time xs:long total_routine_user_code_time - Total routine user code
time

total_routine_time xs:long total_routine_time - Total routine time

num_coord_exec xs:long num_coord_exec - Number of executions by
coordinator agent

num_coord_exec_with_metrics xs:long num_coord_exec_with_metrics - Number of executions
by coordinator agent with metrics

thresh_violations xs:long thresh_violations - Number of threshold violations

num_lw_thresh_exceeded xs:long num_lw_thresh_exceeded - Number of thresholds
exceeded

total_routine_invocations xs:long total_routine_invocations - Total routine invocations

ida_send_wait_time xs:nonNegativeInteger ida_send_wait_time - Time spent waiting to send data

ida_sends_total xs:nonNegativeInteger ida_sends_total - Number of times data sent

ida_send_volume xs:nonNegativeInteger ida_send_volume - Total data volume sent

ida_recv_volume xs:nonNegativeInteger ida_recv_volume - Total data volume received

ida_recv_wait_time xs:nonNegativeInteger ida_recv_wait_time - Time spent waiting to receive data

ida_recvs_total xs:nonNegativeInteger ida_recvs_total - Number of times data received

MON_GET_SERVICE_SUBCLASS table function - Get service subclass
metrics

The MON_GET_SERVICE_SUBCLASS table function returns metrics for one or
more service subclasses.

Chapter 12. Monitor routines and views 473

Syntax

�� MON_GET_SERVICE_SUBCLASS (service_superclass_name , �

� service_subclass_name , member) ��

The schema is SYSPROC.

Table function parameters

service_superclass_name
An input argument of type VARCHAR(128) that specifies a valid service
superclass name in the currently connected database when calling this
function. If the argument is null or an empty string, metrics are retrieved for
all the superclasses in the database.

service_subclass_name
An input argument of type VARCHAR(128) that specifies a valid service
subclass name in the currently connected database when calling this function.
If the argument is null or an empty string, metrics are retrieved for all the
subclasses in the database.

member
An input argument of type INTEGER that specifies a valid member in the
same instance as the currently connected database when calling this function.
Specify -1 for the current database member, or -2 for all database members. If
the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the MON_GET_SERVICE_SUBCLASS function.

Example

Display the total CPU time used and total number of requests processed for each
service class, ordered by CPU usage.
SELECT varchar(service_superclass_name,30) as service_superclass,

varchar(service_subclass_name,30) as service_subclass,
sum(total_cpu_time) as total_cpu,
sum(app_rqsts_completed_total) as total_rqsts

FROM TABLE(MON_GET_SERVICE_SUBCLASS(’’,’’,-2)) AS t
GROUP BY service_superclass_name, service_subclass_name
ORDER BY total_cpu desc

The following example is a sample output from this query.
SERVICE_SUPERCLASS SERVICE_SUBCLASS ...
------------------------------ ------------------------------ ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS ...
SYSDEFAULTMAINTENANCECLASS SYSDEFAULTSUBCLASS ...
SYSDEFAULTSYSTEMCLASS SYSDEFAULTSUBCLASS ...

3 record(s) selected.

Output for query (continued).
... TOTAL_CPU TOTAL_RQSTS
... -------------------- --------------------
... 967673 100
.. . 0 0
... 0 0

474 Administrative Routines and Views

Usage notes

The metrics returned by the MON_GET_SERVICE_SUBCLASS table function
represent the accumulation of all metrics for requests that have executed under the
indicated service subclass. Metrics are rolled up to a service class on unit of work
boundaries, and periodically during the execution of requests. Therefore, the
values reported by this table function reflect the current state of the system at the
time of the most recent rollup. Metrics are strictly increasing in value. To determine
the value of a given metric for an interval of time, use the
MON_GET_SERVICE_SUBCLASS table function to query the metric at the start
and end of the interval, and compute the difference.

Request metrics are controlled through the COLLECT REQUEST METRICS clause
on service superclasses and the mon_req_metrics database configuration parameter
at the database level. Metrics are only collected for a request if the request is
processed by an agent in a service subclass whose parent service superclass has
request metrics enabled, or if request metrics collection is enabled for the entire
database. By default, request metrics are enabled at the database level. If request
metrics are disabled at the database level and for a service superclass, the metrics
reported for each connection mapped to that service superclass stop increasing (or
remain at 0 if request metrics were disabled at database activation time).

The MON_GET_SERVICE_SUBCLASS table function returns one row of data per
service subclass and per member. No aggregation across service classes (on a
member), or across members (for a service class or more), is performed. However,
aggregation can be achieved through SQL queries as shown in the example. The
input parameters have the effect of being ANDed together. Therefore, if you
specify conflicting input parameters (for example, a superclass name SUPA and
subclass name SUBB that is not a subclass of SUPA), no rows are returned.

Tip: A request might execute in more than one service subclass. For example, this
situation might occur if a request is mapped from one service subclass to another
by using a Workload Manager (WLM) threshold with a REMAP ACTIVITY action.
Although the time spent metrics are updated for each service subclass under which
the request executes, the request counters are incremented for the service subclass
where the request completed. Therefore, you should not analyze the averages of
request times for a single subclass. All subclasses to which an activity can be
mapped must be analyzed in conjunction with one another. For example, if a
threshold exists that can map activities from service subclass A to service subclass
B, then when you compute averages of requests, you should aggregate the
counters and metrics for service subclasses A and B, and compute the averages
using the aggregates.

Information returned

Table 137. Information returned for MON_GET_SERVICE_SUBCLASS

Column Name Data Type
Description or corresponding monitor
element

SERVICE_SUPERCLASS_NAME VARCHAR(128) service_superclass_name - Service superclass
name

SERVICE_SUBCLASS_NAME VARCHAR(128) service_subclass_name - Service subclass
name

SERVICE_CLASS_ID INTEGER service_class_id - Service class ID

MEMBER SMALLINT member - Database member

Chapter 12. Monitor routines and views 475

Table 137. Information returned for MON_GET_SERVICE_SUBCLASS (continued)

Column Name Data Type
Description or corresponding monitor
element

ACT_ABORTED_TOTAL BIGINT act_aborted_total - Total aborted activities

ACT_COMPLETED_TOTAL BIGINT act_completed_total - Total completed
activities

ACT_REJECTED_TOTAL BIGINT act_rejected_total - Total rejected activities

AGENT_WAIT_TIME BIGINT agent_wait_time - Agent wait time

AGENT_WAITS_TOTAL BIGINT agent_waits_total - Total agent waits

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool data logical
reads

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool index logical
reads

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer pool
temporary data logical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer pool
temporary index logical reads

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer pool
temporary XDA data logical reads

POOL_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer pool
temporary XDA data logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool data physical
reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool index
physical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer pool
temporary data physical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer pool
temporary index physical reads

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer pool
temporary XDA data physical reads

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer pool XDA data
physical reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data writes

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool index writes

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer pool XDA data
writes

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool physical
read time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool physical
write time

CLIENT_IDLE_WAIT_TIME BIGINT client_idle_wait_time - Client idle wait time

DEADLOCKS BIGINT deadlocks - Deadlocks detected

DIRECT_READS BIGINT direct_reads - Direct reads from database

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITES BIGINT direct_writes - Direct writes to database

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write time

476 Administrative Routines and Views

Table 137. Information returned for MON_GET_SERVICE_SUBCLASS (continued)

Column Name Data Type
Description or corresponding monitor
element

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write requests

FCM_RECV_VOLUME BIGINT fcm_recv_volume - FCM recv volume

FCM_RECVS_TOTAL BIGINT fcm_recvs_total - FCM recvs total

FCM_SEND_VOLUME BIGINT fcm_send_volume - FCM send volume

FCM_SENDS_TOTAL BIGINT fcm_sends_total - FCM sends total

FCM_RECV_WAIT_TIME BIGINT fcm_recv_wait_time - FCM recv wait time

FCM_SEND_WAIT_TIME BIGINT fcm_send_wait_time - FCM send wait time

IPC_RECV_VOLUME BIGINT ipc_recv_volume - Interprocess
communication recv volume

IPC_RECV_WAIT_TIME BIGINT ipc_recv_wait_time - Interprocess
communication recv wait time

IPC_RECVS_TOTAL BIGINT ipc_recvs_total - Interprocess communication
recvs total

IPC_SEND_VOLUME BIGINT ipc_send_volume - Interprocess
communication send volume

IPC_SEND_WAIT_TIME BIGINT ipc_send_wait_time - Interprocess
communication send wait time

IPC_SENDS_TOTAL BIGINT ipc_sends_total - Interprocess communication
send total

LOCK_ESCALS BIGINT lock_escals - Number of lock escalations

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of lock timeouts

LOCK_WAIT_TIME BIGINT lock_wait_time - Time waited on locks

LOCK_WAITS BIGINT lock_waits - Lock waits

LOG_BUFFER_WAIT_TIME BIGINT log_buffer_wait_time - Log buffer wait time

NUM_LOG_BUFFER_FULL BIGINT num_log_buffer_full - Number of full log
buffers

LOG_DISK_WAIT_TIME BIGINT log_disk_wait_time - Log disk wait time

LOG_DISK_WAITS_TOTAL BIGINT log_disk_waits_total - Log disk waits total

RQSTS_COMPLETED_TOTAL BIGINT rqsts_completed_total - Total requests
completed

ROWS_MODIFIED BIGINT rows_modified - Rows modified

ROWS_READ BIGINT rows_read - Rows read

ROWS_RETURNED BIGINT rows_returned - Rows returned

TCPIP_RECV_VOLUME BIGINT tcpip_recv_volume - TCP/IP received volume

TCPIP_SEND_VOLUME BIGINT tcpip_send_volume - TCP/IP send volume

TCPIP_RECV_WAIT_TIME BIGINT tcpip_recv_wait_time - TCP/IP recv wait time

TCPIP_RECVS_TOTAL BIGINT tcpip_recvs_total - TCP/IP recvs total

TCPIP_SEND_WAIT_TIME BIGINT tcpip_send_wait_time - TCP/IP send wait
time

TCPIP_SENDS_TOTAL BIGINT tcpip_sends_total - TCP/IP sends total

Chapter 12. Monitor routines and views 477

Table 137. Information returned for MON_GET_SERVICE_SUBCLASS (continued)

Column Name Data Type
Description or corresponding monitor
element

TOTAL_APP_RQST_TIME BIGINT total_app_rqst_time - Total application
request time

TOTAL_RQST_TIME BIGINT total_rqst_time - Total request time

WLM_QUEUE_TIME_TOTAL BIGINT wlm_queue_time_total - Workload manager
total queue time

WLM_QUEUE_ASSIGNMENTS
_TOTAL

BIGINT wlm_queue_assignments_total - Workload
manager total queue assignments

TOTAL_RQST_MAPPED_IN BIGINT total_rqst_mapped_in - Total request
mapped-in

TOTAL_RQST_MAPPED_OUT BIGINT total_rqst_mapped_out - Total request
mapped-out

TOTAL_CPU_TIME BIGINT total_cpu_time - Total CPU time

TOTAL_WAIT_TIME BIGINT total_wait_time - Total wait time

APP_RQSTS_COMPLETED_TOTAL BIGINT app_rqsts_completed_total - Total application
requests completed

TOTAL_SECTION_SORT_TIME BIGINT total_section_sort_time - Total section sort
time

TOTAL_SECTION_SORT_PROC_TIME BIGINT total_section_sort_proc_time - Total section
sort processing time

TOTAL_SECTION_SORTS BIGINT total_section_sorts - Total section sorts

TOTAL_SORTS BIGINT total_sorts - Total Sorts

POST_THRESHOLD_SORTS BIGINT post_threshold_sorts - Post threshold sorts

POST_SHRTHRESHOLD_SORTS BIGINT post_shrthreshold_sorts - Post shared
threshold sorts

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

TOTAL_COMPILE_TIME BIGINT total_compile_time - Total compile time

TOTAL_COMPILE_PROC_TIME BIGINT total_compile_proc_time - Total compile
processing time

TOTAL_COMPILATIONS BIGINT total_compilations - Total compilations

TOTAL_IMPLICIT_COMPILE_TIME BIGINT total_implicit_compile_time - Total implicit
compile time

TOTAL_IMPLICIT_COMPILE
_PROC_TIME

BIGINT total_implicit_compile_proc_time - Total
implicit compile processing time

TOTAL_IMPLICIT_COMPILATIONS BIGINT total_implicit_compilations - Total implicit
complications

TOTAL_SECTION_TIME BIGINT total_section_time - Total section time

TOTAL_SECTION_PROC_TIME BIGINT total_section_proc_time - Total section
processing time

TOTAL_APP_SECTION_EXECUTIONS BIGINT total_app_section_executions - Total section
executions

TOTAL_ACT_TIME BIGINT total_act_time - Total activity time

TOTAL_ACT_WAIT_TIME BIGINT total_act_wait_time - Total activity wait time

ACT_RQSTS_TOTAL BIGINT act_rqsts_total - Total activity requests

TOTAL_ROUTINE_TIME BIGINT total_routine_time - Total routine time

478 Administrative Routines and Views

Table 137. Information returned for MON_GET_SERVICE_SUBCLASS (continued)

Column Name Data Type
Description or corresponding monitor
element

TOTAL_ROUTINE_INVOCATIONS BIGINT total_routine_invocations - Total routine
invocations

TOTAL_COMMIT_TIME BIGINT total_commit_time - Total commit time

TOTAL_COMMIT_PROC_TIME BIGINT total_commit_proc_time - Total commits
processing time

TOTAL_APP_COMMITS BIGINT total_app_commits - Total application
commits

INT_COMMITS BIGINT int_commits - Internal commits

TOTAL_ROLLBACK_TIME BIGINT total_rollback_time - Total rollback time

TOTAL_ROLLBACK_PROC_TIME BIGINT total_rollback_proc_time - Total rollback
processing time

TOTAL_APP_ROLLBACKS BIGINT total_app_rollbacks - Total application
rollbacks

INT_ROLLBACKS BIGINT int_rollbacks - Internal rollbacks

TOTAL_RUNSTATS_TIME BIGINT total_runstats_time - Total runtime statistics

TOTAL_RUNSTATS_PROC_TIME BIGINT total_runstats_proc_time - Total runtime
statistics processing time

TOTAL_RUNSTATS BIGINT total_runstats - Total runtime statistics

TOTAL_REORG_TIME BIGINT total_reorg_time - Total reorganization time

TOTAL_REORG_PROC_TIME BIGINT total_reorg_proc_time - Total reorganization
processing time

TOTAL_REORGS BIGINT total_reorgs - Total reorganizations

TOTAL_LOAD_TIME BIGINT total_load_time - Total load time

TOTAL_LOAD_PROC_TIME BIGINT total_load_proc_time - Total load processing
time

TOTAL_LOADS BIGINT total_loads - Total loads

CAT_CACHE_INSERTS BIGINT cat_cache_inserts - Catalog cache inserts

CAT_CACHE_LOOKUPS BIGINT cat_cache_lookups - Catalog cache lookups

PKG_CACHE_INSERTS BIGINT pkg_cache_inserts - Package cache inserts

PKG_CACHE_LOOKUPS BIGINT pkg_cache_lookups - Package cache lookups

THRESH_VIOLATIONS BIGINT thresh_violations - Number of threshold
violations

NUM_LW_THRESH_EXCEEDED BIGINT num_lw_thresh_exceeded - Number of
thresholds exceeded

IDA_SEND_WAIT_TIME BIGINT ida_send_wait_time - Time spent waiting to
send data

IDA_SENDS_TOTAL BIGINT ida_sends_total - Number of times data sent

IDA_SEND_VOLUME BIGINT ida_send_volume - Total data volume sent

IDA_RECV_WAIT_TIME BIGINT ida_recv_wait_time - Time spent waiting to
receive data

IDA_RECVS_TOTAL BIGINT ida_recvs_total - Number of times data
received

IDA_RECV_VOLUME BIGINT ida_recv_volume - Total data volume received

Chapter 12. Monitor routines and views 479

Table 137. Information returned for MON_GET_SERVICE_SUBCLASS (continued)

Column Name Data Type
Description or corresponding monitor
element

ADDITIONAL_DETAILS BLOB(100K) Reserved for future use

MON_GET_SERVICE_SUBCLASS_DETAILS table function - Get
detailed service subclass metrics

The MON_GET_SERVICE_SUBCLASS_DETAILS table function returns detailed
metrics for one or more service subclasses.

Syntax

�� MON_GET_SERVICE_SUBCLASS_DETAILS (service_superclass_name , �

� service_subclass_name , member) ��

The schema is SYSPROC.

Table function parameters

service_superclass_name
An input argument of type VARCHAR(128) that specifies a valid service
superclass name in the currently connected database when calling this
function. If the argument is null or an empty string, metrics are retrieved for
all the superclasses in the database.

service_subclass_name
An input argument of type VARCHAR(128) that specifies a valid service
subclass name in the currently connected database when calling this function.
If the argument is null or an empty string, metrics are retrieved for all the
subclasses in the database.

member
An input argument of type INTEGER that specifies a valid member in the
same instance as the currently connected database when calling this function.
Specify -1 for the current database member, or -2 for all database members. If
the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the MON_GET_SERVICE_SUBCLASS_DETAILS function.

Example

Display the total CPU time used and total number of requests processed for each
service superclass, ordered by CPU usage in relational format (using XMLTABLE).
SELECT varchar(scmetrics.service_superclass_name,30) as service_superclass,

sum(detmetrics.total_cpu_time) as total_cpu,
sum(detmetrics.app_rqsts_completed_total) as total_rqsts

FROM TABLE(MON_GET_SERVICE_SUBCLASS_DETAILS(’’,’’,-2)) AS SCMETRICS,
XMLTABLE (XMLNAMESPACES(DEFAULT ’http://www.ibm.com/xmlns/prod/db2/mon’),

’$detmetric/db2_service_subclass’
PASSING XMLPARSE(DOCUMENT SCMETRICS.DETAILS)
as "detmetric"

COLUMNS "TOTAL_CPU_TIME" INTEGER PATH ’system_metrics/total_cpu_time’,

480 Administrative Routines and Views

"APP_RQSTS_COMPLETED_TOTAL" INTEGER PATH
’system_metrics/app_rqsts_completed_total’)
AS DETMETRICS

GROUP BY service_superclass_name
ORDER BY total_cpu desc

The following example is a sample output from this query.
SERVICE_SUPERCLASS TOTAL_CPU TOTAL_RQSTS
------------------------------ -------------------- --------------------
SYSDEFAULTUSERCLASS 2428188 26
SYSDEFAULTMAINTENANCECLASS 0 0
SYSDEFAULTSYSTEMCLASS 0 0

3 record(s) selected.

Usage notes

The metrics returned by the MON_GET_SERVICE_SUBCLASS_DETAILS table
function represent the accumulation of all metrics for requests that have executed
under the indicated service subclass. This function is similar to the
MON_GET_SERVICE_SUBCLASS table function:
v The the MON_GET_SERVICE_SUBCLASS table function returns the most

commonly used metrics in a column based format and is the most performance
efficient method of retrieving metrics.

v The MON_GET_SERVICE_SUBCLASS_DETAILS table function returns the entire
set of available metrics in an XML document format, which provides maximum
flexibility for formatting output. The XML-based output can be parsed directly
by an XML parser, or it can be converted to relational format by the XMLTABLE
function (see the example).

Metrics are rolled up to a service class on unit of work boundaries, and
periodically during the execution of requests. Therefore, the values reported by this
table function reflect the current state of the system at the time of the most recent
rollup. Metrics are strictly increasing in value. To determine the value of a given
metric for an interval of time, use the MON_GET_SERVICE_SUBCLASS_DETAILS
table function to query the metric at the start and end of the interval, and compute
the difference.

Request metrics are controlled through the COLLECT REQUEST METRICS clause
on service superclasses, and the mon_req_metrics database configuration parameter
at the database level. Metrics are only collected for a request if the request is
processed by an agent in a service subclass whose parent service superclass has
request metrics enabled, or if request metrics collection is enabled for the entire
database. By default request metrics are enabled at the database level. If request
metrics are disabled at the database level and for a service superclass, the metrics
reported for each connection mapped to that service superclass stop increasing (or
remain at 0 if request metrics were disabled at database activation time).

The MON_GET_SERVICE_SUBCLASS_DETAILS table function returns one row of
data per service subclass and per member. No aggregation across service classes
(on a member), or across members (for a service class or more), is performed.
However, aggregation can be achieved through SQL queries (see the example). The
input parameters have the effect of being ANDed together. Therefore, if you
specify conflicting input parameters (for example, a superclass name SUPA and
subclass name SUBB that is not a subclass of SUPA), no rows are returned.

Chapter 12. Monitor routines and views 481

Tip: A request might execute in more than one service subclass. For example, this
situation might occur if a request is mapped from one service subclass to another
by using a Workload Manager (WLM) threshold with a REMAP ACTIVITY action.
Although the time spent metrics are updated for each service subclass under which
the request executes, the request counters are incremented for the service subclass
where the request completed. Therefore, you should not analyze the averages of
request times for a single subclass. All subclasses to which an activity can be
mapped must be analyzed in conjunction with one another. For example, if a
threshold exists that can map activities from service subclass A to service subclass
B, then when you compute averages of requests, you should aggregate the
counters and metrics for service subclasses A and B, and compute the averages
using the aggregates.

The schema for the XML document that is returned in the DETAILS column is
available in the file sqllib/misc/DB2MonRoutines.xsd. Further details can be found
in the file sqllib/misc/DB2MonCommon.xsd.

Information returned

Table 138. Information returned for MON_GET_SERVICE_SUBCLASS_DETAILS

Column Name Data Type Description

SERVICE_SUPERCLASS_NAME VARCHAR(128) service_superclass_name - Service superclass name

SERVICE_SUBCLASS_NAME VARCHAR(128) service_subclass_name - Service subclass name

SERVICE_CLASS_ID INTEGER service_class_id - Service class ID

MEMBER SMALLINT member - Database member

DETAILS BLOB(1M) XML document that contains detailed metrics for the
service class. See Table 139 for a description of the
elements in this document.

The following example shows the structure of the XML document that is returned
in the DETAILS column.

<db2_service_subclass xmlns="http://www.ibm.com/xmlns/prod/db2/mon" release="90700000">
<service_superclass_name>SYSDEFAULTSYSTEMCLASS</service_superclass_name>
<service_subclass_name>SYSDEFAULTSUBCLASS</service_subclass_name>
<service_subclass_id>11</service_subclass_id>
<member>0</member>
<system_metrics release="90700000">
<act_aborted_total>5</act_aborted_total>
...
<wlm_queue_assignments_total>3</wlm_queue_assignments_total>
</system_metrics>

</db2_service_subclass>

For the full schema, see sqllib/misc/DB2MonRoutines.xsd.

Table 139. Detailed metrics returned for MON_GET_SERVICE_SUBCLASS_DETAILS

Element Name Data Type Description or corresponding monitor element

service_superclass_name xs:string(128) service_superclass_name - Service superclass name

service_subclass_name xs:string(128) service_subclass_name - Service subclass name

service_class_id xs:nonNegativeInteger service_class_id - Service class ID

member xs:nonNegativeInteger member - Database member

act_aborted_total xs:nonNegativeInteger act_aborted_total - Total aborted activities

act_completed_total xs:nonNegativeInteger act_completed_total - Total completed activities

482 Administrative Routines and Views

Table 139. Detailed metrics returned for MON_GET_SERVICE_SUBCLASS_DETAILS (continued)

Element Name Data Type Description or corresponding monitor element

act_rejected_total xs:nonNegativeInteger act_rejected_total - Total rejected activities

act_rqsts_total xs:nonNegativeInteger act_rqsts_total - Total activity requests

agent_wait_time xs:nonNegativeInteger agent_wait_time - Agent wait time

agent_waits_total xs:nonNegativeInteger agent_waits_total - Total agent waits

app_rqsts_completed_total xs:nonNegativeInteger app_rqsts_completed_total - Total application requests
completed

audit_events_total xs:nonNegativeInteger audit_events_total - Total audit events

audit_subsystem_wait_time xs:nonNegativeInteger audit_subsystem_wait_time - Audit subsystem wait time

audit_subsystem_waits_total xs:nonNegativeInteger audit_subsystem_waits_total - Total audit subsystem waits

audit_file_write_wait_time xs:nonNegativeInteger audit_file_write_wait_time - Audit file write wait time

audit_file_writes_total xs:nonNegativeInteger audit_file_writes_total - Total Audit files written

cat_cache_inserts xs:nonNegativeInteger cat_cache_inserts - Catalog cache inserts

cat_cache_lookups xs:nonNegativeInteger cat_cache_lookups - Catalog cache lookups

client_idle_wait_time xs:nonNegativeInteger client_idle_wait_time - Client idle wait time

deadlocks xs:nonNegativeInteger deadlocks - Deadlocks detected

diaglog_writes_total xs:nonNegativeInteger diaglog_writes_total - Diag log total writes

diaglog_write_wait_time xs:nonNegativeInteger diaglog_write_wait_time - Diag log write time

direct_read_time xs:nonNegativeInteger direct_read_time - Direct read time

direct_write_time xs:nonNegativeInteger direct_write_time - Direct write time

direct_read_reqs xs:nonNegativeInteger direct_read_reqs - Direct read requests

direct_reads xs:nonNegativeInteger direct_reads - Direct reads from database

direct_write_reqs xs:nonNegativeInteger direct_write_reqs - Direct write requests

direct_writes xs:nonNegativeInteger direct_writes - Direct writes to database

fcm_recv_volume xs:nonNegativeInteger fcm_recv_volume - FCM recv volume

fcm_recv_wait_time xs:nonNegativeInteger fcm_recv_wait_time - FCM recv wait time

fcm_recvs_total xs:nonNegativeInteger fcm_recvs_total - FCM recvs total

fcm_message_recv_volume xs:nonNegativeInteger fcm_message_recv_volume - FCM message recv volume

fcm_message_recvs_total xs:nonNegativeInteger fcm_message_recvs_total - FCM message recvs total

fcm_message_recv_wait_time xs:nonNegativeInteger fcm_message_recv_wait_time - FCM message recv wait
time

fcm_message_send_volume xs:nonNegativeInteger fcm_message_send_volume - FCM message send volume

fcm_message_send_wait_time xs:nonNegativeInteger fcm_message_send_wait_time - FCM message send wait
time

fcm_message_sends_total xs:nonNegativeInteger fcm_message_sends_total - FCM message sends total

fcm_send_volume xs:nonNegativeInteger fcm_send_volume - FCM send volume

fcm_send_wait_time xs:nonNegativeInteger fcm_send_wait_time - FCM send wait time

fcm_sends_total xs:nonNegativeInteger fcm_sends_total - FCM sends total

fcm_tq_recv_wait_time xs:nonNegativeInteger fcm_tq_recv_wait_time - FCM tablequeue recv wait time

fcm_tq_send_wait_time xs:nonNegativeInteger fcm_tq_send_wait_time - FCM tablequeue send wait time

fcm_tq_recv_volume xs:nonNegativeInteger fcm_tq_recv_volume - FCM tablequeue recv volume

fcm_tq_recvs_total xs:nonNegativeInteger fcm_tq_recvs_total - FCM tablequeue recvs total

Chapter 12. Monitor routines and views 483

Table 139. Detailed metrics returned for MON_GET_SERVICE_SUBCLASS_DETAILS (continued)

Element Name Data Type Description or corresponding monitor element

fcm_tq_send_volume xs:nonNegativeInteger fcm_tq_send_volume - FCM tablequeue send volume

fcm_tq_sends_total xs:nonNegativeInteger fcm_tq_sends_total - FCM tablequeue send total

ida_send_wait_time xs:nonNegativeInteger ida_send_wait_time - Time spent waiting to send data

ida_sends_total xs:nonNegativeInteger ida_sends_total - Number of times data sent

ida_send_volume xs:nonNegativeInteger ida_send_volume - Total data volume sent

ida_recv_volume xs:nonNegativeInteger ida_recv_volume - Total data volume received

ida_recv_wait_time xs:nonNegativeInteger ida_recv_wait_time - Time spent waiting to receive data

ida_recvs_total xs:nonNegativeInteger ida_recvs_total - Number of times data received

int_commits xs:nonNegativeInteger int_commits - Internal commits

int_rollbacks xs:nonNegativeInteger int_rollbacks - Internal rollbacks

tq_tot_send_spills xs:nonNegativeInteger tq_tot_send_spills - Total number of tablequeue buffers
overflowed

ipc_recv_volume xs:nonNegativeInteger ipc_recv_volume - Interprocess communication recv
volume

ipc_recv_wait_time xs:nonNegativeInteger ipc_recv_wait_time - Interprocess communication recv
wait time

ipc_recvs_total xs:nonNegativeInteger ipc_recvs_total - Interprocess communication recvs total

ipc_send_volume xs:nonNegativeInteger ipc_send_volume - Interprocess communication send
volume

ipc_send_wait_time xs:nonNegativeInteger ipc_send_wait_time - Interprocess communication send
wait time

ipc_sends_total xs:nonNegativeInteger ipc_sends_total - Interprocess communication send total

lock_escals xs:nonNegativeInteger lock_escals - Number of lock escalations

lock_timeouts xs:nonNegativeInteger lock_timeouts - Number of lock timeouts

lock_wait_time xs:nonNegativeInteger lock_wait_time - Time waited on locks

lock_waits xs:nonNegativeInteger lock_waits - Lock waits

log_buffer_wait_time xs:nonNegativeInteger log_buffer_wait_time - Log buffer wait time

log_disk_wait_time xs:nonNegativeInteger log_disk_wait_time - Log disk wait time

log_disk_waits_total xs:nonNegativeInteger log_disk_waits_total - Log disk waits total

num_lw_thresh_exceeded xs:nonNegativeInteger num_lw_thresh_exceeded - Number of thresholds
exceeded

pkg_cache_inserts xs:nonNegativeInteger pkg_cache_inserts - Package cache inserts

pkg_cache_lookups xs:nonNegativeInteger pkg_cache_lookups - Package cache lookups

pool_data_l_reads xs:nonNegativeInteger pool_data_l_reads - Buffer pool data logical reads

pool_data_p_reads xs:nonNegativeInteger pool_data_p_reads - Buffer pool data physical reads

pool_data_writes xs:nonNegativeInteger pool_data_writes - Buffer pool data writes

pool_index_l_reads xs:nonNegativeInteger pool_index_l_reads - Buffer pool index logical reads

pool_index_p_reads xs:nonNegativeInteger pool_index_p_reads - Buffer pool index physical reads

pool_index_writes xs:nonNegativeInteger pool_index_writes - Buffer pool index writes

pool_read_time xs:nonNegativeInteger pool_read_time - Total buffer pool physical read time

pool_temp_data_l_reads xs:nonNegativeInteger pool_temp_data_l_reads - Buffer pool temporary data
logical reads

484 Administrative Routines and Views

Table 139. Detailed metrics returned for MON_GET_SERVICE_SUBCLASS_DETAILS (continued)

Element Name Data Type Description or corresponding monitor element

pool_temp_data_p_reads xs:nonNegativeInteger pool_temp_data_p_reads - Buffer pool temporary data
physical reads

pool_temp_index_l_reads xs:nonNegativeInteger pool_temp_index_l_reads - Buffer pool temporary index
logical reads

pool_temp_index_p_reads xs:nonNegativeInteger pool_temp_index_p_reads - Buffer pool temporary index
physical reads

pool_temp_xda_l_reads xs:nonNegativeInteger pool_temp_xda_l_reads - Buffer pool temporary XDA data
logical reads

pool_temp_xda_p_reads xs:nonNegativeInteger pool_temp_xda_p_reads - Buffer pool temporary XDA
data physical reads

pool_write_time xs:nonNegativeInteger pool_write_time - Total buffer pool physical write time

pool_xda_l_reads xs:nonNegativeInteger pool_xda_l_reads - Buffer pool XDA data logical reads

pool_xda_p_reads xs:nonNegativeInteger pool_xda_p_reads - Buffer pool XDA data physical reads

pool_xda_writes xs:nonNegativeInteger pool_xda_writes - Buffer pool XDA data writes

num_log_buffer_full xs:nonNegativeInteger num_log_buffer_full - Number of full log buffers

rqsts_completed_total xs:nonNegativeInteger rqsts_completed_total - Total requests completed

total_rqst_mapped_in xs:nonNegativeInteger total_rqst_mapped_in - Total request mapped-in

total_rqst_mapped_out xs:nonNegativeInteger total_rqst_mapped_out - Total request mapped-out

rows_modified xs:nonNegativeInteger rows_modified - Rows modified

rows_read xs:nonNegativeInteger rows_read - Rows read

rows_returned xs:nonNegativeInteger rows_returned - Rows returned

tcpip_recv_volume xs:nonNegativeInteger tcpip_recv_volume - TCP/IP received volume

tcpip_recv_wait_time xs:nonNegativeInteger tcpip_recv_wait_time - TCP/IP recv wait time

tcpip_recvs_total xs:nonNegativeInteger tcpip_recvs_total - TCP/IP recvs total

tcpip_send_volume xs:nonNegativeInteger tcpip_send_volume - TCP/IP send volume

tcpip_send_wait_time xs:nonNegativeInteger tcpip_send_wait_time - TCP/IP send wait time

tcpip_sends_total xs:nonNegativeInteger tcpip_sends_total - TCP/IP sends total

thresh_violations xs:nonNegativeInteger thresh_violations - Number of threshold violations

total_act_time xs:nonNegativeInteger total_act_time - Total activity time

total_act_wait_time xs:nonNegativeInteger total_act_wait_time - Total activity wait time

total_app_commits xs:nonNegativeInteger total_app_commits - Total application commits

total_app_rollbacks xs:nonNegativeInteger total_app_rollbacks - Total application rollbacks

total_app_rqst_time xs:nonNegativeInteger total_app_rqst_time - Total application request time

total_app_section_executions xs:nonNegativeInteger total_app_section_executions - Total section executions

total_commit_proc_time xs:nonNegativeInteger total_commit_proc_time - Total commits processing time

total_commit_time xs:nonNegativeInteger total_commit_time - Total commit time

total_compilations xs:nonNegativeInteger total_compilations - Total compilations

total_compile_proc_time xs:nonNegativeInteger total_compile_proc_time - Total compile processing time

total_compile_time xs:nonNegativeInteger total_compile_time - Total compile time

total_cpu_time xs:nonNegativeInteger total_cpu_time - Total CPU time

total_implicit_compilations xs:nonNegativeInteger total_implicit_compilations - Total implicit complications

Chapter 12. Monitor routines and views 485

Table 139. Detailed metrics returned for MON_GET_SERVICE_SUBCLASS_DETAILS (continued)

Element Name Data Type Description or corresponding monitor element

total_implicit_compile
_proc_time

xs:nonNegativeInteger total_implicit_compile_proc_time - Total implicit compile
processing time

total_implicit_compile_time xs:nonNegativeInteger total_implicit_compile_time - Total implicit compile time

total_loads xs:nonNegativeInteger total_loads - Total loads

total_load_proc_time xs:nonNegativeInteger total_load_proc_time - Total load processing time

total_load_time xs:nonNegativeInteger total_load_time - Total load time

total_reorgs xs:nonNegativeInteger total_reorgs - Total reorganizations

total_reorg_proc_time xs:nonNegativeInteger total_reorg_proc_time - Total reorganization processing
time

total_reorg_time xs:nonNegativeInteger total_reorg_time - Total reorganization time

total_rollback_proc_time xs:nonNegativeInteger total_rollback_proc_time - Total rollback processing time

total_rollback_time xs:nonNegativeInteger total_rollback_time - Total rollback time

total_routine_invocations xs:nonNegativeInteger total_routine_invocations - Total routine invocations

total_routine_time xs:nonNegativeInteger total_routine_time - Total routine time

total_routine_user_
code_proc_time

xs:nonNegativeInteger total_routine_user_code_proc_time - Total routine user
code processing time

total_routine_user_
code_time

xs:nonNegativeInteger total_routine_user_code_time - Total routine user code
time

total_rqst_time xs:nonNegativeInteger total_rqst_time - Total request time

total_runstats xs:nonNegativeInteger total_runstats - Total runtime statistics

total_runstats_proc_time xs:nonNegativeInteger total_runstats_proc_time - Total runtime statistics
processing time

total_runstats_time xs:nonNegativeInteger total_runstats_time - Total runtime statistics

total_section_proc_time xs:nonNegativeInteger total_section_proc_time - Total section processing time

total_section_sort_time xs:nonNegativeInteger total_section_sort_time - Total section sort time

total_section_sort_proc_time xs:nonNegativeInteger total_section_sort_proc_time - Total section sort processing
time

total_section_sorts xs:nonNegativeInteger total_section_sorts - Total section sorts

total_section_time xs:nonNegativeInteger total_section_time - Total section time

total_sorts xs:nonNegativeInteger total_sorts - Total Sorts

post_threshold_sorts xs:nonNegativeInteger post_shrthreshold_sorts - Post shared threshold sorts

post_shrthreshold_sorts xs:nonNegativeInteger post_shrthreshold_sorts - Post shared threshold sorts

sort_overflows xs:nonNegativeInteger sort_overflows - Sort overflows

tq_tot_send_spills xs:nonNegativeInteger tq_tot_send_spills - Total number of table queue buffers
overflowed

total_wait_time xs:nonNegativeInteger total_wait_time - Total wait time

wlm_queue_time_total xs:nonNegativeInteger wlm_queue_time_total - Workload manager total queue
time

wlm_queue_assignments_total xs:nonNegativeInteger wlm_queue_assignments_total - Workload manager total
queue assignments

486 Administrative Routines and Views

MON_GET_TABLE table function - get table metrics
The MON_GET_TABLE table function returns monitor metrics for one or more
tables.

Syntax

�� MON_GET_TABLE (tabschema , tabname , member) ��

The schema is SYSPROC.

Table function parameters

tabschema
An input argument of type VARCHAR(128) that specifies a valid table schema
name in the currently connected database when calling this function. If the
argument is null or an empty string, metrics are retrieved for all tables in all
schemas in the database. If the argument is specified, metrics are only returned
for tables in the specified schema.

tabname
An input argument of type VARCHAR(128) that specifies a valid table name in
the currently connected database when calling this function. If the argument is
null or an empty string, metrics are retrieved for all the tables in the database.

member
An input argument of type INTEGER that specifies a valid member in the
same instance as the currently connected database when calling this function.
Specify -1 for the current database member, or -2 for all database members. If
the NULL value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the MON_GET_TABLE function.

Example

List the activity on all tables accessed since the database was activated, aggregated
across all database members, ordered by highest number of reads.
SELECT varchar(tabschema,20) as tabschema,

varchar(tabname,20) as tabname,
sum(rows_read) as total_rows_read,
sum(rows_inserted) as total_rows_inserted,
sum(rows_updated) as total_rows_updated,
sum(rows_deleted) as total_rows_deleted

FROM TABLE(MON_GET_TABLE(’’,’’,-2)) AS t
GROUP BY tabschema, tabname
ORDER BY total_rows_read DESC

The following example is a sample output from this query.
TABSCHEMA TABNAME TOTAL_ROWS_READ ...
-------------------- -------------------- -------------------- ...
SYSIBM SYSHISTO 113 ...
SYSIBM SYSWORKL 22 ...
SYSIBM SYSROUTI 13 ...
SYSIBM SYSSERVI 13 ...
SYSIBM SYSTHRES 6 ...
SYSIBM SYSTABLE 3 ...
SYSIBM SYSCONTE 2 ...

Chapter 12. Monitor routines and views 487

SYSIBM SYSDBAUT 2 ...
SYSIBM SYSEVENT 2 ...
SYSIBM SYSPLAN 1 ...
SYSIBM SYSSURRO 1 ...
SYSIBM SYSVERSI 1 ...
SYSIBM SYSXMLST 1 ...
SYSIBM SYSAUDIT 0 ...
SYSIBM SYSROLEA 0 ...
SYSIBM SYSROLES 0 ...
SYSIBM SYSTASKS 0 ...
SYSIBM SYSWORKA 0 ...
SYSIBM SYSXMLPA 0 ...

19 record(s) selected.

Output for query (continued).
... TOTAL_ROWS_INSERTED TOTAL_ROWS_UPDATED TOTAL_ROWS_DELETED
... -------------------- -------------------- --------------------
... 0 0 0
... 0 0 0
... 0 0 0
... 0 0 0
... 0 0 0
... 0 0 0
... 0 0 0
... 0 0 0
... 0 0 0
... 0 0 0
... 0 0 0
... 0 0 0
... 0 0 0
... 0 0 0
... 0 0 0
... 0 0 0
... 0 0 0
... 0 0 0
... 0 0 0

Usage notes

The MON_GET_TABLE table function returns one row of data per database table
and per database member. If range-partitioned tables are being used, one row is
returned for each table partition per database member. No aggregation across
database members is performed. However, aggregation can be achieved through
SQL queries as shown in the example.

Metrics are returned only for tables accessed since the database was activated.

Metrics are always enabled. You do not need to turn on any system monitor
switches to access table metrics through this function.

Information returned

Table 140. Information returned for MON_GET_TABLE

Column Name Data Type Description

TABSCHEMA VARCHAR(128) table_schema - Table schema name

TABNAME VARCHAR(128) table_name - Table name

MEMBER SMALLINT member - Database member

488 Administrative Routines and Views

Table 140. Information returned for MON_GET_TABLE (continued)

Column Name Data Type Description

TAB_TYPE VARCHAR(14) table_type - Table type. This interface returns a text
identifier based on defines in sqlmon.h, and is one of:

v USER_TABLE

v TEMP_TABLE

v CATALOG_TABLE

TAB_FILE_ID BIGINT table_file_id - Table file ID

DATA_PARTITION_ID INTEGER data_partition_id - Data partition identifier

TBSP_ID BIGINT tablespace_id - Table space identification

INDEX_TBSP_ID BIGINT index_tbsp_id - Index table space ID

LONG_TBSP_ID BIGINT long_tbsp_id - Long table space ID

TABLE_SCANS BIGINT table_scans - Table scans

ROWS_READ BIGINT rows_read - Rows read

ROWS_INSERTED BIGINT rows_inserted - Rows inserted

ROWS_UPDATED BIGINT rows_updated - Rows updated

ROWS_DELETED BIGINT rows_deleted - Rows deleted

OVERFLOW_ACCESSES BIGINT overflow_accesses - Accesses to overflowed records

OVERFLOW_CREATES BIGINT overflow_creates - Overflow creates

PAGE_REORGS BIGINT page_reorgs - Page reorganizations

DATA_OBJECT_L_PAGES1, 2 BIGINT data_object_l_pages - Table data logical pages

LOB_OBJECT_L_PAGES2 BIGINT lob_object_l_pages - LOB data logical pages

LONG_OBJECT_L_PAGES2 BIGINT long_object_l_pages - Long object data logical pages

INDEX_OBJECT_L_PAGES2 BIGINT index_object_l_pages - Index data logical pages

XDA_OBJECT_L_PAGES2 BIGINT xda_object_l_pages - XML storage object (XDA) data
logical pages

DBPARTITIONNUM SMALLINT In a partitioned database environment, this is the numeric
identifier for the database member. For DB2 Enterprise
Server Edition and in a DB2 pureScale® environment, this
value is 0.

ADDITIONAL_DETAILS BLOB(100K) Reserved for future use.

Notes:

1. This value might be less than the amount of space allocated for the object. This can happen when you use the
RECLAIM EXTENTS ONLY option with the REORG TABLE command. In this case, reclaimed extents are included in the
logical number of pages returned by MON_GET_TABLE.

2. This value might be less than the amount of space physically allocated for the object. This can happen when you
use the REUSE STORAGE option of the TRUNCATE statement. This option causes storage allocated for the table to
continue to be allocated, although the storage will be considered empty. In addition, the value for this monitor
element might be less than the amount of space logically allocated for the object, because the total space logically
allocated includes a small amount of additional meta data.

To retrieve an accurate measure of the logical or physical size of an object, use the
ADMIN_GET_TAB_INFO_V97 function. This function provides more accurate information about the size of
objects than you can obtain by multiplying the number of pages reported for this monitor element by the page
size.

Chapter 12. Monitor routines and views 489

MON_GET_TABLESPACE table function - Get table space metrics
The MON_GET_TABLESPACE table function returns monitor metrics for one or
more table spaces.

Syntax

�� MON_GET_TABLESPACE (tbsp_name , member) ��

The schema is SYSPROC.

Table function parameters

tbsp_name
An input argument of type VARCHAR(128) that specifies a valid table space
name in the currently connected database when calling this function. If the
argument is null or an empty string, metrics are retrieved for all table spaces in
the database.

member
An input argument of type INTEGER that specifies a valid member in the
same instance as the currently connected database when calling this function.
Specify -1 for the current database member, or -2 for all database members. If
the NULL value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the MON_GET_TABLESPACE function.

Example

List table spaces ordered by number of physical reads from table space containers.
SELECT varchar(tbsp_name, 30) as tbsp_name,

member,
tbsp_type,
pool_data_p_reads

FROM TABLE(MON_GET_TABLESPACE(’’,-2)) AS t
ORDER BY pool_data_p_reads DESC

The following example shows the output from this query.
TBSP_NAME MEMBER TBSP_TYPE POOL_DATA_P_READS
------------------------------ ------ ---------- --------------------
SYSCATSPACE 0 DMS 79
USERSPACE1 0 DMS 34
TEMPSPACE1 0 SMS 0

3 record(s) selected.

Usage notes

The MON_GET_TABLESPACE table function returns one row of data per database
table space and per database member. No aggregation across database members is
performed. However, aggregation can be achieved through SQL queries.

Metrics collected by this function are controlled at the database level by using the
mon_obj_metrics configuration parameter. By default, metrics collection is enabled.

490 Administrative Routines and Views

Information returned

Table 141. Information returned for MON_GET_TABLESPACE

Column Name Data Type Description or corresponding monitor element

TBSP_NAME VARCHAR(128) tablespace_name - Table space name

TBSP_ID BIGINT tablespace_id - Table space identification

MEMBER SMALLINT member - Database member

TBSP_TYPE VARCHAR(10) tablespace_type - Table space type. This interface
returns a text identifier based on defines in sqlutil.h,
and is one of:

v DMS

v SMS

TBSP_CONTENT_TYPE VARCHAR(10) tablespace_content_type - Table space content type.
This interface returns a text identifier based on
defines in sqlmon.h, and is one of:

v ANY

v LARGE

v SYSTEMP

v USRTEMP

TBSP_PAGE_SIZE BIGINT tablespace_page_size - Table space page size

TBSP_EXTENT_SIZE BIGINT tablespace_extent_size - Table space extent size

TBSP_PREFETCH_SIZE BIGINT tablespace_prefetch_size - Table space prefetch size

TBSP_CUR_POOL_ID BIGINT tablespace_cur_pool_id - Buffer pool currently being
used

TBSP_NEXT_POOL_ID BIGINT tablespace_next_pool_id - Buffer pool that will be
used at next startup

FS_CACHING SMALLINT fs_caching - File system caching

TBSP_REBALANCER_MODE VARCHAR(30) tablespace_rebalancer_mode - Rebalancer mode.
This interface returns a text identifier based on
defines in sqlmon.h, and is one of:

v NO_REBAL

v FWD_REBAL

v REV_REBAL

v FWD_REBAL_OF_2PASS

v REV_REBAL_OF_2PASS

TBSP_USING_AUTO_STORAGE SMALLINT tablespace_using_auto_storage - Table space enabled
for automatic storage

TBSP_AUTO_RESIZE_ENABLED SMALLINT tablespace_auto_resize_enabled - Table space
automatic resizing enabled

DIRECT_READS BIGINT direct_reads - Direct reads from database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read requests

DIRECT_WRITES BIGINT direct_writes - Direct writes to database

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write requests

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool data logical reads

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer pool temporary
data logical reads

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer pool XDA data logical
reads

Chapter 12. Monitor routines and views 491

Table 141. Information returned for MON_GET_TABLESPACE (continued)

Column Name Data Type Description or corresponding monitor element

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer pool temporary
XDA data logical reads

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool index logical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer pool temporary
index logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool data physical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer pool temporary
data physical reads

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer pool XDA data physical
reads

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer pool temporary
XDA data physical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool index physical
reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer pool temporary
index physical reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data writes

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer pool XDA data writes

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool index writes

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write time

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool physical read
time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool physical write
time

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer pool asynchronous
data reads

POOL_ASYNC_DATA_READ_REQS BIGINT pool_async_data_read_reqs - Buffer pool
asynchronous read requests

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer pool asynchronous
data writes

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer pool asynchronous
index reads

POOL_ASYNC_INDEX_READ_REQS BIGINT pool_async_index_read_reqs - Buffer pool
asynchronous index read requests

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer pool asynchronous
index writes

POOL_ASYNC_XDA_READS BIGINT pool_async_xda_reads - Buffer pool asynchronous
XDA data reads

POOL_ASYNC_XDA_READ_REQS BIGINT pool_async_xda_read_reqs - Buffer pool
asynchronous XDA read requests

POOL_ASYNC_XDA_WRITES BIGINT pool_async_xda_writes - Buffer pool asynchronous
XDA data writes

VECTORED_IOS BIGINT vectored_ios - Number of vectored IO requests

PAGES_FROM_VECTORED_IOS BIGINT pages_from_vectored_ios - Total number of pages
read by vectored IO

492 Administrative Routines and Views

Table 141. Information returned for MON_GET_TABLESPACE (continued)

Column Name Data Type Description or corresponding monitor element

BLOCK_IOS BIGINT block_ios - Number of block IO requests

PAGES_FROM_BLOCK_IOS BIGINT pages_from_block_ios - Total number of pages read
by block IO

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread prefetch pages

FILES_CLOSED BIGINT files_closed - Database files closed

TBSP_STATE VARCHAR(256) tablespace_state - Table space state

TBSP_USED_PAGES BIGINT tablespace_used_pages - Used pages in table space

TBSP_FREE_PAGES BIGINT tablespace_free_pages - Free pages in table space

TBSP_USABLE_PAGES BIGINT tablespace_usable_pages - Usable pages in table
space

TBSP_TOTAL_PAGES BIGINT tablespace_total_pages - Total pages in table space

TBSP_PENDING_FREE_PAGES BIGINT tablespace_pending_free_pages - Pending free pages
in table space

TBSP_PAGE_TOP BIGINT tablespace_page_top - Table space high watermark

TBSP_MAX_PAGE_TOP BIGINT tbsp_max_page_top - Maximum table space page
high watermark

RECLAIMABLE_SPACE_ENABLED SMALLINT reclaimable_space_enabled - Reclaimable space
enabled indicator

AUTO_STORAGE_HYBRID SMALLINT auto_storage_hybrid - Hybrid automatic storage
table space indicator

TBSP_PATHS_DROPPED SMALLINT tablespace_paths_dropped - Table space using
dropped path

POOL_DATA_GBP_L_READS BIGINT Reserved for future use.

POOL_DATA_GBP_P_READS BIGINT Reserved for future use.

POOL_DATA_LBP_PAGES_FOUND BIGINT Reserved for future use.

POOL_DATA_GBP_INVALID_PAGES BIGINT Reserved for future use.

POOL_INDEX_GBP_L_READS BIGINT Reserved for future use.

POOL_INDEX_GBP_P_READS BIGINT Reserved for future use.

POOL_INDEX_LBP_PAGES_FOUND BIGINT Reserved for future use.

POOL_INDEX_GBP_INVALID_PAGES BIGINT Reserved for future use.

POOL_ASYNC_DATA_GBP_L_READS BIGINT Reserved for future use.

POOL_ASYNC_DATA_GBP_P_READS BIGINT Reserved for future use.

POOL_ASYNC_DATA_
LBP_PAGES_FOUND

BIGINT Reserved for future use.

POOL_ASYNC_DATA_
GBP_INVALID_PAGES

BIGINT Reserved for future use.

POOL_ASYNC_INDEX_
GBP_L_READS

BIGINT Reserved for future use.

POOL_ASYNC_INDEX_
GBP_P_READS

BIGINT Reserved for future use.

POOL_ASYNC_INDEX_
LBP_PAGES_FOUND

BIGINT Reserved for future use.

POOL_ASYNC_INDEX_
GBP_INVALID_PAGES

BIGINT Reserved for future use.

Chapter 12. Monitor routines and views 493

Table 141. Information returned for MON_GET_TABLESPACE (continued)

Column Name Data Type Description or corresponding monitor element

TABLESPACE_MIN_RECOVERY_TIME TIMESTAMP Reserved for future use.

DBPARTITIONNUM SMALLINT In a partitioned database environment, this is the
numeric identifier for the database member. For
DB2 Enterprise Server Edition and in a DB2
pureScale environment, this value is 0.

POOL_XDA_GBP_L_READS BIGINT Reserved for future use.

POOL_XDA_GBP_P_READS BIGINT Reserved for future use.

POOL_XDA_LBP_PAGES_FOUND BIGINT Reserved for future use.

POOL_XDA_GBP_INVALID_PAGES BIGINT Reserved for future use.

POOL_ASYNC_XDA_GBP_L_READS BIGINT Reserved for future use.

POOL_ASYNC_XDA_GBP_P_READS BIGINT Reserved for future use.

POOL_ASYNC_XDA_LBP
_PAGES_FOUND

BIGINT Reserved for future use.

POOL_ASYNC_XDA_GBP
_INVALID_PAGES

BIGINT Reserved for future use.

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer pool asynchronous
read time.

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer pool asynchronous
write time.

TBSP_TRACKMOD_STATE VARCHAR(32) tbsp_trackmod_state - Table space trackmod state..
This interface returns a text identifier, and is one of:

v CLEAN

v DIRTY

v ININCREMENTAL

v READFULL

v READINCREMENTAL

v UNAVAILABLE

ADDITIONAL_DETAILS BLOB(100K) Reserved for future use.

MON_GET_UNIT_OF_WORK table function - Get unit of work metrics
The MON_GET_UNIT_OF_WORK table function returns metrics for one or more
units of work.

Syntax

�� MON_GET_UNIT_OF_WORK (application_handle , member) ��

The schema is SYSPROC.

Table function parameters

application_handle
An optional input argument of type BIGINT that specifies a valid application
handle in the same database as the one currently connected to when calling
this function. If the argument is null, metrics are retrieved for units of work
running in all superclasses in the database.

494 Administrative Routines and Views

member
An optional input argument of type INTEGER that specifies a valid member in
the same instance as the currently connected database when calling this
function. Specify -1 for the current database member, or -2 for all database
members. If the NULL value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the MON_GET_UNIT_OF_WORK function.

Example

Identify the units of work that are consuming the highest amount of CPU time on
the system.
SELECT application_handle,

uow_id,
total_cpu_time,
app_rqsts_completed_total,
rqsts_completed_total

FROM TABLE(MON_GET_UNIT_OF_WORK(NULL,-1)) AS t
ORDER BY total_cpu_time DESC

The following example is a sample output from this query.
APPLICATION_HANDLE UOW_ID TOTAL_CPU_TIME ...
-------------------- ----------- -------------------- ...

46 5 27959 ...

1 record(s) selected.

Output for query (continued).
... APP_RQSTS_COMPLETED_TOTAL RQSTS_COMPLETED_TOTAL
... ------------------------- ---------------------
... 72 48

Usage notes

The metrics returned by the MON_GET_UNIT_OF_WORK table function represent
the accumulation of all metrics for requests that were submitted during a unit of
work. Metrics are rolled up periodically during the unit of work. Therefore, the
values reported by this table function reflect the current state of the system at the
time of the most recent rollup. Metrics are strictly increasing in value. To determine
the value of a given metric for an in interval of time, use the function to query the
metric at the start and end of the interval, and compute the difference.

Request metrics are controlled through the COLLECT REQUEST METRICS clause
on service superclasses and the mon_req_metrics database configuration parameter
at the database level. Metrics are only collected for a request if the request is
processed by an agent in a service subclass whose parent service superclass has
request metrics enabled, or if request metrics collection is enabled for the entire
database. By default, request metrics are enabled at the database level. If request
metrics have been disabled at the database level, and for a service superclass, the
metrics reported for each unit of work mapped to that service superclass stop
increasing (or remain at 0 if request metrics were disabled at database activation
time).

The MON_GET_UNIT_OF_WORK table function returns one row of data per unit
of work and per member. No aggregation across units of work (on a member), or

Chapter 12. Monitor routines and views 495

across members (for a service class or more), is performed. However, aggregation
can be achieved through SQL queries. The input parameters have the effect of
being ANDed together.

Information returned

Table 142. Information returned for MON_GET_UNIT_OF_WORK

Column Name Data Type Description or corresponding monitor element

SERVICE_SUPERCLASS_NAME VARCHAR(128) service_superclass_name - Service superclass name

SERVICE_SUBCLASS_NAME VARCHAR(128) service_subclass_name - Service subclass name

SERVICE_CLASS_ID INTEGER service_class_id - Service class ID

MEMBER SMALLINT member - Database member

COORD_MEMBER SMALLINT coord_member - Coordinator member

APPLICATION_HANDLE BIGINT application_handle - Application handle

APPLICATION_ID VARCHAR(128) appl_id - Application ID

WORKLOAD_NAME VARCHAR(128) workload_name - Workload name

WORKLOAD_OCCURRENCE_ID INTEGER workload_occurrence_id - Workload occurrence
identifier. This ID does not uniquely identify the
workload occurrence unless it is coupled with the
coordinator member and the workload name.

UOW_ID INTEGER uow_id - Unit of work ID

WORKLOAD_OCCURRENCE_STATE VARCHAR(32) workload_occurrence_state - Workload occurrence
state

CLIENT_WRKSTNNAME VARCHAR(255) CURRENT CLIENT_WRKSTNNAME special
register

CLIENT_ACCTNG VARCHAR(255) CURRENT CLIENT_ACCTNG special register

CLIENT_USERID VARCHAR(255) CURRENT CLIENT_USERID special register

CLIENT_APPLNAME VARCHAR(255) CURRENT CLIENT_APPLNAME special register

UOW_START_TIME TIMESTAMP uow_start_time - Unit of Work Start Timestamp

SESSION_AUTH_ID VARCHAR(128) session_auth_id - Session authorization ID

ACT_ABORTED_TOTAL BIGINT act_aborted_total - Total aborted activities

ACT_COMPLETED_TOTAL BIGINT act_completed_total - Total completed activities

ACT_REJECTED_TOTAL BIGINT act_rejected_total - Total rejected activities

AGENT_WAIT_TIME BIGINT agent_wait_time - Agent wait time

AGENT_WAITS_TOTAL BIGINT agent_waits_total - Total agent waits

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool data logical reads

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool index logical
reads

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer pool temporary
data logical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer pool temporary
index logical reads

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer pool temporary
XDA data logical reads

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer pool XDA data logical
reads

496 Administrative Routines and Views

Table 142. Information returned for MON_GET_UNIT_OF_WORK (continued)

Column Name Data Type Description or corresponding monitor element

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool data physical
reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool index physical
reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer pool temporary
data physical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer pool temporary
index physical reads

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer pool temporary
XDA data physical reads

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer pool XDA data physical
reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data writes

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool index writes

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer pool XDA data writes

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool physical read
time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool physical write
time

CLIENT_IDLE_WAIT_TIME BIGINT client_idle_wait_time - Client idle wait time

DEADLOCKS BIGINT deadlocks - Deadlocks detected

DIRECT_READS BIGINT direct_reads - Direct reads from database

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITES BIGINT direct_writes - Direct writes to database

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write time

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write requests

FCM_RECV_VOLUME BIGINT fcm_recv_volume - FCM recv volume

FCM_RECVS_TOTAL BIGINT fcm_recvs_total - FCM recvs total

FCM_SEND_VOLUME BIGINT fcm_send_volume - FCM send volume

FCM_SENDS_TOTAL BIGINT fcm_sends_total - FCM sends total

FCM_RECV_WAIT_TIME BIGINT fcm_recv_wait_time - FCM recv wait time

FCM_SEND_WAIT_TIME BIGINT fcm_send_wait_time - FCM send wait time

IPC_RECV_VOLUME BIGINT ipc_recv_volume - Interprocess communication
recv volume

IPC_RECV_WAIT_TIME BIGINT ipc_recv_wait_time - Interprocess communication
recv wait time

IPC_RECVS_TOTAL BIGINT ipc_recvs_total - Interprocess communication recvs
total

IPC_SEND_VOLUME BIGINT ipc_send_volume - Interprocess communication
send volume

IPC_SEND_WAIT_TIME BIGINT ipc_send_wait_time - Interprocess communication
send wait time

Chapter 12. Monitor routines and views 497

Table 142. Information returned for MON_GET_UNIT_OF_WORK (continued)

Column Name Data Type Description or corresponding monitor element

IPC_SENDS_TOTAL BIGINT ipc_sends_total - Interprocess communication send
total

LOCK_ESCALS BIGINT lock_escals - Number of lock escalations

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of lock timeouts

LOCK_WAIT_TIME BIGINT lock_wait_time - Time waited on locks

LOCK_WAITS BIGINT lock_waits - Lock waits

LOG_BUFFER_WAIT_TIME BIGINT log_buffer_wait_time - Log buffer wait time

NUM_LOG_BUFFER_FULL BIGINT num_log_buffer_full - Number of full log buffers

LOG_DISK_WAIT_TIME BIGINT log_disk_wait_time - Log disk wait time

LOG_DISK_WAITS_TOTAL BIGINT log_disk_waits_total - Log disk waits total

NUM_LOCKS_HELD BIGINT locks_held - Locks held

RQSTS_COMPLETED_TOTAL BIGINT rqsts_completed_total - Total requests completed

ROWS_MODIFIED BIGINT rows_modified - Rows modified

ROWS_READ BIGINT rows_read - Rows read

ROWS_RETURNED BIGINT rows_returned - Rows returned

TCPIP_RECV_VOLUME BIGINT tcpip_recv_volume - TCP/IP received volume

TCPIP_SEND_VOLUME BIGINT tcpip_send_volume - TCP/IP send volume

TCPIP_RECV_WAIT_TIME BIGINT tcpip_recv_wait_time - TCP/IP recv wait time

TCPIP_RECVS_TOTAL BIGINT tcpip_recvs_total - TCP/IP recvs total

TCPIP_SEND_WAIT_TIME BIGINT tcpip_send_wait_time - TCP/IP send wait time

TCPIP_SENDS_TOTAL BIGINT tcpip_sends_total - TCP/IP sends total

TOTAL_APP_RQST_TIME BIGINT total_app_rqst_time - Total application request
time

TOTAL_RQST_TIME BIGINT total_rqst_time - Total request time

WLM_QUEUE_TIME_TOTAL BIGINT wlm_queue_time_total - Workload manager total
queue time

WLM_QUEUE_ASSIGNMENTS
_TOTAL

BIGINT wlm_queue_assignments_total - Workload
manager total queue assignments

TOTAL_CPU_TIME BIGINT total_cpu_time - Total CPU time

TOTAL_WAIT_TIME BIGINT total_wait_time - Total wait time

APP_RQSTS_COMPLETED_TOTAL BIGINT app_rqsts_completed_total - Total application
requests completed

TOTAL_SECTION_SORT_TIME BIGINT total_section_sort_time - Total section sort time

TOTAL_SECTION_SORT_PROC_TIME BIGINT total_section_sort_proc_time - Total section sort
processing time

TOTAL_SECTION_SORTS BIGINT total_section_sorts - Total section sorts

TOTAL_SORTS BIGINT total_sorts - Total Sorts

POST_THRESHOLD_SORTS BIGINT post_threshold_sorts - Post threshold sorts

POST_SHRTHRESHOLD_SORTS BIGINT post_shrthreshold_sorts - Post shared threshold
sorts

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

TOTAL_COMPILE_TIME BIGINT total_compile_time - Total compile time

498 Administrative Routines and Views

Table 142. Information returned for MON_GET_UNIT_OF_WORK (continued)

Column Name Data Type Description or corresponding monitor element

TOTAL_COMPILE_PROC_TIME BIGINT total_compile_proc_time - Total compile processing
time

TOTAL_COMPILATIONS BIGINT total_compilations - Total compilations

TOTAL_IMPLICIT_COMPILE_TIME BIGINT total_implicit_compile_time - Total implicit compile
time

TOTAL_IMPLICIT_COMPILE
_PROC_TIME

BIGINT total_implicit_compile_proc_time - Total implicit
compile processing time

TOTAL_IMPLICIT_COMPILATIONS BIGINT total_implicit_compilations - Total implicit
complications

TOTAL_SECTION_TIME BIGINT total_section_time - Total section time

TOTAL_SECTION_PROC_TIME BIGINT total_section_proc_time - Total section processing
time

TOTAL_APP_SECTION_EXECUTIONS BIGINT total_app_section_executions - Total section
executions

TOTAL_ACT_TIME BIGINT total_act_time - Total activity time

TOTAL_ACT_WAIT_TIME BIGINT total_act_wait_time - Total activity wait time

ACT_RQSTS_TOTAL BIGINT act_rqsts_total - Total activity requests

TOTAL_ROUTINE_TIME BIGINT total_routine_time - Total routine time

TOTAL_ROUTINE_INVOCATIONS BIGINT total_routine_invocations - Total routine
invocations

TOTAL_COMMIT_TIME BIGINT total_commit_time - Total commit time

TOTAL_COMMIT_PROC_TIME BIGINT total_commit_proc_time - Total commits processing
time

TOTAL_APP_COMMITS BIGINT total_app_commits - Total application commits

INT_COMMITS BIGINT int_commits - Internal commits

TOTAL_ROLLBACK_TIME BIGINT total_rollback_time - Total rollback time

TOTAL_ROLLBACK_PROC_TIME BIGINT total_rollback_proc_time - Total rollback processing
time

TOTAL_APP_ROLLBACKS BIGINT total_app_rollbacks - Total application rollbacks

INT_ROLLBACKS BIGINT int_rollbacks - Internal rollbacks

TOTAL_RUNSTATS_TIME BIGINT total_runstats_time - Total runtime statistics

TOTAL_RUNSTATS_PROC_TIME BIGINT total_runstats_proc_time - Total runtime statistics
processing time

TOTAL_RUNSTATS BIGINT total_runstats - Total runtime statistics

TOTAL_REORG_TIME BIGINT total_reorg_time - Total reorganization time

TOTAL_REORG_PROC_TIME BIGINT total_reorg_proc_time - Total reorganization
processing time

TOTAL_REORGS BIGINT total_reorgs - Total reorganizations

TOTAL_LOAD_TIME BIGINT total_load_time - Total load time

TOTAL_LOAD_PROC_TIME BIGINT total_load_proc_time - Total load processing time

TOTAL_LOADS BIGINT total_loads - Total loads

CAT_CACHE_INSERTS BIGINT cat_cache_inserts - Catalog cache inserts

CAT_CACHE_LOOKUPS BIGINT cat_cache_lookups - Catalog cache lookups

Chapter 12. Monitor routines and views 499

Table 142. Information returned for MON_GET_UNIT_OF_WORK (continued)

Column Name Data Type Description or corresponding monitor element

PKG_CACHE_INSERTS BIGINT pkg_cache_inserts - Package cache inserts

PKG_CACHE_LOOKUPS BIGINT pkg_cache_lookups - Package cache lookups

THRESH_VIOLATIONS BIGINT thresh_violations - Number of threshold violations

NUM_LW_THRESH_EXCEEDED BIGINT num_lw_thresh_exceeded - Number of thresholds
exceeded

UOW_LOG_SPACE_USED BIGINT uow_log_space_used - Unit of Work Log Space
Used

IDA_SEND_WAIT_TIME BIGINT ida_send_wait_time - Time spent waiting to send
data

IDA_SENDS_TOTAL BIGINT ida_sends_total - Number of times data sent

IDA_SEND_VOLUME BIGINT ida_send_volume - Total data volume sent

IDA_RECV_WAIT_TIME BIGINT ida_recv_wait_time - Time spent waiting to receive
data

IDA_RECVS_TOTAL BIGINT ida_recvs_total - Number of times data received

IDA_RECV_VOLUME BIGINT ida_recv_volume - Total data volume received

ADDITIONAL_DETAILS BLOB(100K) Reserved for future use.

MON_GET_UNIT_OF_WORK_DETAILS table function - Get detailed unit
of work metrics

The MON_GET_UNIT_OF_WORK_DETAILS table function returns detailed
metrics for one or more units of work.

Syntax

�� MON_GET_UNIT_OF_WORK_DETAILS (application_handle , member) ��

The schema is SYSPROC.

Table function parameters

application_handle
An input argument of type BIGINT that specifies a valid application handle in
the same database as the one currently connected to when calling this function.
If the argument is null, metrics are retrieved for units of work running in all
superclasses in the database.

member
An input argument of type INTEGER that specifies a valid member in the
same instance as the currently connected database when calling this function.
Specify -1 for the current database member, or -2 for all database members. If
the NULL value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the MON_GET_UNIT_OF_WORK_DETAILS function.

500 Administrative Routines and Views

Example

Identify the units of work that are consuming the highest amount of CPU time on
the system.
SELECT detmetrics.application_handle,

detmetrics.uow_id,
detmetrics.total_cpu_time,
detmetrics.app_rqsts_completed_total,
detmetrics.rqsts_completed_total

FROM TABLE(MON_GET_UNIT_OF_WORK_DETAILS(NULL,-2)) AS UOWMETRICS,
XMLTABLE (

XMLNAMESPACES(DEFAULT ’http://www.ibm.com/xmlns/prod/db2/mon’),
’$detmetric/db2_unit_of_work’ PASSING
XMLPARSE(DOCUMENT UOWMETRICS.DETAILS)
as "detmetric"

COLUMNS
"APPLICATION_HANDLE" INTEGER PATH ’application_handle’,
"UOW_ID" INTEGER PATH ’uow_id’,
"TOTAL_CPU_TIME" INTEGER PATH ’system_metrics/total_cpu_time’,
"APP_RQSTS_COMPLETED_TOTAL" INTEGER

PATH ’system_metrics/app_rqsts_completed_total’,
"RQSTS_COMPLETED_TOTAL" INTEGER

PATH ’system_metrics/rqsts_completed_total’
) AS DETMETRICS
ORDER BY total_cpu_time DESC

The following example is a sample output from this query.
APPLICATION_HANDLE UOW_ID TOTAL_CPU_TIME ...
-------------------- ----------- -------------------- ...

46 5 27959 ...

1 record(s) selected.

Output for query (continued).
... APP_RQSTS_COMPLETED_TOTAL RQSTS_COMPLETED_TOTAL
... ------------------------- ---------------------
... 72 48

Usage notes

The metrics returned by the MON_GET_UNIT_OF_WORK_DETAILS function
represent the accumulation of all metrics for requests that were submitted during a
unit of work. This function is similar to the MON_GET_UNIT_OF_WORK table
function:
v The MON_GET_UNIT_OF_WORK table function returns the most commonly

used metrics in a column based format and is the most performance efficient
method of retrieving metrics.

v The MON_GET_UNIT_OF_WORK_DETAILS table function returns the entire set
of available metrics in an XML document format, which provides maximum
flexibility for formatting output. The XML based output can be parsed directly
by an XML parser, or it can be converted to relational format by the XMLTABLE
function (see the example).

Metrics are rolled up periodically during the unit of work. Therefore, the values
reported by this table function reflect the current state of the system at the time of
the most recent rollup. Metrics are strictly increasing in value. To determine the
value of a given metric for an interval of time, use the MON_GET_UNIT OF
WORK_DETAILS table function to query the metric at the start and end of the
interval, and compute the difference.

Chapter 12. Monitor routines and views 501

Request metrics are controlled through the COLLECT REQUEST METRICS clause
on service superclasses and the mon_req_metrics database configuration parameter
at the database level. Metrics are only collected for a request if the request is
processed by an agent in a service subclass whose parent service superclass has
request metrics enabled, or if request metrics collection is enabled for the entire
database. By default request metrics are enabled at the database level. If request
metrics have been disabled at the database level, and for a service superclass, the
metrics reported for each unit of work that are mapped to that service superclass
stop increasing (or remain at 0 if request metrics were disabled at database
activation time).

The MON_GET_UNIT_OF_WORK_DETAILS table function returns one row of
data per unit of work and per member. No aggregation across units of work (on a
member), or across members (for a service class or more), is performed. However,
aggregation can be achieved through SQL queries. The input parameters have the
effect of being ANDed together.

The schema for the XML document that is returned in the DETAILS column is
available in the file sqllib/misc/DB2MonRoutines.xsd. Further details can be found
in the file sqllib/misc/DB2MonCommon.xsd.

Information returned

Table 143. Information returned for MON_GET_UNIT_OF_WORK_DETAILS

Column Name Data Type Description or corresponding monitor element

SERVICE_SUPERCLASS_NAME VARCHAR(128) service_superclass_name - Service superclass
name

SERVICE_SUBCLASS_NAME VARCHAR(128) service_subclass_name - Service subclass name

SERVICE_CLASS_ID INTEGER service_class_id - Service class ID

MEMBER SMALLINT member - Database member

COORD_MEMBER SMALLINT coord_member - Coordinator member Database
member for the coordinator partition of the given
unit of work.

APPLICATION_HANDLE BIGINT application_handle - Application handle

WORKLOAD_NAME VARCHAR(128) workload_name - Workload name

WORKLOAD_OCCURRENCE_ID INTEGER workload_occurrence_id - Workload occurrence
identifier. This ID does not uniquely identify the
workload occurrence unless it is coupled with
the coordinator database partition number and
the workload name.

UOW_ID INTEGER uow_id - Unit of work ID

DETAILS BLOB(1M) XML document that contains detailed metrics for
the unit of work. See Table 144 on page 503 for a
description of the elements in this document.

The following example shows the structure of the XML document that is returned
in the DETAILS column.
<db2_unit_of_work xmlns="http://www.ibm.com/xmlns/prod/db2/mon" release="90700000">

<service_superclass_name>SYSDEFAULTUSERCLASS</service_superclass_name>
<service_subclass_name>SYSDEFAULTSUBCLASS</service_subclass_name>
<service_class_id>13</service_class_id>
<workload_name>SYSDEFAULTUSERWORKLOAD</workload_name>
<member>0</member>

502 Administrative Routines and Views

<coord_member>0</coord_member>
<application_handle>21</application_handle>
<workload_occurrence_id>1</workload_occurrence_id>
<uow_id>2</uow_id>
<workload_occurrence_state>UOWEXEC</workload_occurrence_state>
<system_metrics>
<act_aborted_total>5</act_aborted_total>
...
<wlm_queue_assignments_total>3</wlm_queue_assignments_total>
</system_metrics>

</db2_unit_of_work_metrics>

For the full schema, see sqllib/misc/DB2MonRoutines.xsd.

Table 144. Detailed metrics returned for MON_GET_UNIT_OF_WORK_DETAILS

Element Name Data Type Description or corresponding monitor element

service_superclass_name xs:string (128) service_superclass_name - Service superclass name

service_subclass_name xs:string (128) service_subclass_name - Service subclass name

service_class_id xs:nonNegativeInteger service_class_id - Service class ID

workload_name xs:string (128) workload_name - Workload name

member xs:nonNegativeInteger member - Database member

coord_member xs:nonNegativeInteger coord_member - Coordinator member

application_handle xs:nonNegativeInteger application_handle - Application handle

application_id xs:string appl_id - Application ID

workload_occurrence_id xs:nonNegativeInteger workload_occurrence_id - Workload occurrence
identifier This ID does not uniquely identify the
workload occurrence unless it is coupled with the
coordinator member and the workload name.

uow_id xs:nonNegativeInteger uow_id - Unit of work ID

workload_occurrence_state xs:string workload_occurrence_state - Workload occurrence
state

client_userid xs:string CURRENT CLIENT_USERID special register

client_wrkstnname xs:string CURRENT CLIENT_WRKSTNNAME special register

client_applname xs:string CURRENT CLIENT_APPLNAME special register

client_acctng xs:string CURRENT CLIENT_ACCTNG special register

act_aborted_total xs:nonNegativeInteger act_aborted_total - Total aborted activities

act_completed_total xs:nonNegativeInteger act_completed_total - Total completed activities

act_rejected_total xs:nonNegativeInteger act_rejected_total - Total rejected activities

act_rqsts_total xs:nonNegativeInteger act_rqsts_total - Total activity requests

agent_wait_time xs:nonNegativeInteger agent_wait_time - Agent wait time

agent_waits_total xs:nonNegativeInteger agent_waits_total - Total agent waits

app_rqsts_completed_total xs:nonNegativeInteger app_rqsts_completed_total - Total application
requests completed

audit_events_total xs:nonNetagiveIngteger audit_events_total - Total audit events

audit_subsystem_wait_time xs:nonNegativeInteger audit_subsystem_wait_time - Audit subsystem wait
time

audit_subsystem_waits_total xs:nonNegativeInteger audit_subsystem_waits_total - Total audit subsystem
waits

Chapter 12. Monitor routines and views 503

Table 144. Detailed metrics returned for MON_GET_UNIT_OF_WORK_DETAILS (continued)

Element Name Data Type Description or corresponding monitor element

audit_file_write_wait_time xs:nonNegativeInteger audit_file_write_wait_time - Audit file write wait
time

audit_file_writes_total xs:nonNegativeInteger audit_file_writes_total - Total Audit files written

cat_cache_inserts xs:nonNegativeInteger cat_cache_inserts - Catalog cache inserts

cat_cache_lookups xs:nonNegativeInteger cat_cache_lookups - Catalog cache lookups

client_hostname xs:string client_hostname - Client hostname

client_idle_wait_time xs:nonNegativeInteger client_idle_wait_time - Client idle wait time

client_port_number xs:nonNegativeInteger client_port_number - Client port number

deadlocks xs:nonNegativeInteger deadlocks - Deadlocks detected

diaglog_writes_total xs:nonNegativeInteger diaglog_writes_total - Diag log total writes

diaglog_write_wait_time xs:nonNegativeInteger diaglog_write_wait_time - Diag log write time

direct_read_time xs:nonNegativeInteger direct_read_time - Direct read time

direct_write_time xs:nonNegativeInteger direct_write_time - Direct write time

direct_read_reqs xs:nonNegativeInteger direct_read_reqs - Direct read requests

direct_reads xs:nonNegativeInteger direct_reads - Direct reads from database

direct_write_reqs xs:nonNegativeInteger direct_write_reqs - Direct write requests

direct_writes xs:nonNegativeInteger direct_writes - Direct writes to database

fcm_recv_volume xs:nonNegativeInteger fcm_recv_volume - FCM recv volume

fcm_recv_wait_time xs:nonNegativeInteger fcm_recv_wait_time - FCM recv wait time

fcm_recvs_total xs:nonNegativeInteger fcm_recvs_total - FCM recvs total

fcm_message_recv_volume xs:nonNegativeInteger fcm_message_recv_volume - FCM message recv
volume

fcm_message_recvs_total xs:nonNegativeInteger fcm_message_recvs_total - FCM message recvs total

fcm_message_recv_wait_time xs:nonNegativeInteger fcm_message_recv_wait_time - FCM message recv
wait time

fcm_message_send_volume xs:nonNegativeInteger fcm_message_send_volume - FCM message send
volume

fcm_message_send_wait_time xs:nonNegativeInteger fcm_message_send_wait_time - FCM message send
wait time

fcm_message_sends_total xs:nonNegativeInteger fcm_message_sends_total - FCM message sends total

fcm_send_volume xs:nonNegativeInteger fcm_send_volume - FCM send volume

fcm_send_wait_time xs:nonNegativeInteger fcm_send_wait_time - FCM send wait time

fcm_sends_total xs:nonNegativeInteger fcm_sends_total - FCM sends total

fcm_tq_recv_wait_time xs:nonNegativeInteger fcm_tq_recv_wait_time - FCM tablequeue recv wait
time

fcm_tq_send_wait_time xs:nonNegativeInteger fcm_tq_send_wait_time - FCM tablequeue send wait
time

fcm_tq_recv_volume xs:nonNegativeInteger fcm_tq_recv_volume - FCM tablequeue recv volume

fcm_tq_recvs_total xs:nonNegativeInteger fcm_tq_recvs_total - FCM tablequeue recvs total

fcm_tq_send_volume xs:nonNegativeInteger fcm_tq_send_volume - FCM tablequeue send volume

fcm_tq_sends_total xs:nonNegativeInteger fcm_tq_sends_total - FCM tablequeue send total

504 Administrative Routines and Views

Table 144. Detailed metrics returned for MON_GET_UNIT_OF_WORK_DETAILS (continued)

Element Name Data Type Description or corresponding monitor element

ida_send_wait_time xs:nonNegativeInteger ida_send_wait_time - Time spent waiting to send
data

ida_sends_total xs:nonNegativeInteger ida_sends_total - Number of times data sent

ida_send_volume xs:nonNegativeInteger ida_send_volume - Total data volume sent

ida_recv_volume xs:nonNegativeInteger ida_recv_volume - Total data volume received

ida_recv_wait_time xs:nonNegativeInteger ida_recv_wait_time - Time spent waiting to receive
data

ida_recvs_total xs:nonNegativeInteger ida_recvs_total - Number of times data received

int_commits xs:nonNegativeInteger int_commits - Internal commits

int_rollbacks xs:nonNegativeInteger int_rollbacks - Internal rollbacks

tq_tot_send_spills xs:nonNegativeInteger tq_tot_send_spills - Total number of tablequeue
buffers overflowed

ipc_recv_volume xs:nonNegativeInteger ipc_recv_volume - Interprocess communication recv
volume

ipc_recv_wait_time xs:nonNegativeInteger ipc_recv_wait_time - Interprocess communication
recv wait time

ipc_recvs_total xs:nonNegativeInteger ipc_recvs_total - Interprocess communication recvs
total

ipc_send_volume xs:nonNegativeInteger ipc_send_volume - Interprocess communication send
volume

ipc_send_wait_time xs:nonNegativeInteger ipc_send_wait_time - Interprocess communication
send wait time

ipc_sends_total xs:nonNegativeInteger ipc_sends_total - Interprocess communication send
total

last_executable_id xs:hexBinary(32) last_executable_id - Last executable identifier

last_request_type xs:string(32) last_request_type - Last request type

lock_escals xs:nonNegativeInteger lock_escals - Number of lock escalations

lock_timeouts xs:nonNegativeInteger lock_timeouts - Number of lock timeouts

lock_wait_time xs:nonNegativeInteger lock_wait_time - Time waited on locks

lock_waits xs:nonNegativeInteger lock_waits - Lock waits

log_buffer_wait_time xs:nonNegativeInteger log_buffer_wait_time - Log buffer wait time

log_disk_wait_time xs:nonNegativeInteger log_disk_wait_time - Log disk wait time

log_disk_waits_total xs:nonNegativeInteger log_disk_waits_total - Log disk waits total

num_locks_held xs:nonNegativeInteger locks_held - Locks held

num_lw_thresh_exceeded xs:nonNegativeInteger num_lw_thresh_exceeded - Number of thresholds
exceeded

thresh_violations xs:nonNegativeInteger thresh_violations - Number of threshold violations

pkg_cache_inserts xs:nonNegativeInteger pkg_cache_inserts - Package cache inserts

pkg_cache_lookups xs:nonNegativeInteger pkg_cache_lookups - Package cache lookups

pool_data_l_reads xs:nonNegativeInteger pool_data_l_reads - Buffer pool data logical reads

pool_data_p_reads xs:nonNegativeInteger pool_data_p_reads - Buffer pool data physical reads

pool_data_writes xs:nonNegativeInteger pool_data_writes - Buffer pool data writes

pool_index_l_reads xs:nonNegativeInteger pool_index_l_reads - Buffer pool index logical reads

Chapter 12. Monitor routines and views 505

Table 144. Detailed metrics returned for MON_GET_UNIT_OF_WORK_DETAILS (continued)

Element Name Data Type Description or corresponding monitor element

pool_index_p_reads xs:nonNegativeInteger pool_index_p_reads - Buffer pool index physical
reads

pool_index_writes xs:nonNegativeInteger pool_index_writes - Buffer pool index writes

pool_read_time xs:nonNegativeInteger pool_read_time - Total buffer pool physical read time

pool_temp_data_l_reads xs:nonNegativeInteger pool_temp_data_l_reads - Buffer pool temporary data
logical reads

pool_temp_data_p_reads xs:nonNegativeInteger pool_temp_data_p_reads - Buffer pool temporary
data physical reads

pool_temp_index_l_reads xs:nonNegativeInteger pool_temp_index_l_reads - Buffer pool temporary
index logical reads

pool_temp_index_p_reads xs:nonNegativeInteger pool_temp_index_p_reads - Buffer pool temporary
index physical reads

pool_temp_xda_l_reads xs:nonNegativeInteger pool_temp_xda_l_reads - Buffer pool temporary XDA
data logical reads

pool_temp_xda_p_reads xs:nonNegativeInteger pool_temp_xda_p_reads - Buffer pool temporary
XDA data physical reads

pool_write_time xs:nonNegativeInteger pool_write_time - Total buffer pool physical write
time

pool_xda_l_reads xs:nonNegativeInteger pool_xda_l_reads - Buffer pool XDA data logical
reads

pool_xda_p_reads xs:nonNegativeInteger pool_xda_p_reads - Buffer pool XDA data physical
reads

pool_xda_writes xs:nonNegativeInteger pool_xda_writes - Buffer pool XDA data writes

num_log_buffer_full xs:nonNegativeInteger num_log_buffer_full - Number of full log buffers

rqsts_completed_total xs:nonNegativeInteger rqsts_completed_total - Total requests completed

rows_modified xs:nonNegativeInteger rows_modified - Rows modified

rows_read xs:nonNegativeInteger rows_read - Rows read

rows_returned xs:nonNegativeInteger rows_returned - Rows returned

session_auth_id xs:string session_auth_id - Session authorization ID

tcpip_recv_volume xs:nonNegativeInteger tcpip_recv_volume - TCP/IP received volume

tcpip_recv_wait_time xs:nonNegativeInteger tcpip_recv_wait_time - TCP/IP recv wait time

tcpip_recvs_total xs:nonNegativeInteger tcpip_recvs_total - TCP/IP recvs total

tcpip_send_volume xs:nonNegativeInteger tcpip_send_volume - TCP/IP send volume

tcpip_send_wait_time xs:nonNegativeInteger tcpip_send_wait_time - TCP/IP send wait time

tcpip_sends_total xs:nonNegativeInteger tcpip_sends_total - TCP/IP sends total

total_act_time xs:nonNegativeInteger total_act_time - Total activity time

total_act_wait_time xs:nonNegativeInteger total_act_wait_time - Total activity wait time

total_app_commits xs:nonNegativeInteger total_app_commits - Total application commits

total_app_rollbacks xs:nonNegativeInteger total_app_rollbacks - Total application rollbacks

total_app_rqst_time xs:nonNegativeInteger total_app_rqst_time - Total application request time

total_app_section_executions xs:nonNegativeInteger total_app_section_executions - Total section
executions

506 Administrative Routines and Views

Table 144. Detailed metrics returned for MON_GET_UNIT_OF_WORK_DETAILS (continued)

Element Name Data Type Description or corresponding monitor element

total_commit_proc_time xs:nonNegativeInteger total_commit_proc_time - Total commits processing
time

total_commit_time xs:nonNegativeInteger total_commit_time - Total commit time

total_compilations xs:nonNegativeInteger total_compilations - Total compilations

total_compile_proc_time xs:nonNegativeInteger total_compile_proc_time - Total compile processing
time

total_compile_time xs:nonNegativeInteger total_compile_time - Total compile time

total_cpu_time xs:nonNegativeInteger total_cpu_time - Total CPU time

total_implicit_compilations xs:nonNegativeInteger total_implicit_compilations - Total implicit
complications

total_implicit_compile_
proc_time

xs:nonNegativeInteger total_implicit_compile_proc_time - Total implicit
compile processing time

total_implicit_compile_time xs:nonNegativeInteger total_implicit_compile_time - Total implicit compile
time

total_loads xs:nonNegativeInteger total_loads - Total loads

total_load_proc_time xs:nonNegativeInteger total_load_proc_time - Total load processing time

total_load_time xs:nonNegativeInteger total_load_time - Total load time

total_reorgs xs:nonNegativeInteger total_reorgs - Total reorganizations

total_reorg_proc_time xs:nonNegativeInteger total_reorg_proc_time - Total reorganization
processing time

total_reorg_time xs:nonNegativeInteger total_reorg_time - Total reorganization time

total_rollback_proc_time xs:nonNegativeInteger total_rollback_proc_time - Total rollback processing
time

total_rollback_time xs:nonNegativeInteger total_rollback_time - Total rollback time

total_routine_invocations xs:nonNegativeInteger total_routine_invocations - Total routine invocations

total_routine_time xs:nonNegativeInteger total_routine_time - Total routine time

total_routine_user_code
_proc_time

xs:nonNegativeInteger total_routine_user_code_proc_time - Total routine
user code processing time

total_routine_user_code_time xs:nonNegativeInteger total_routine_user_code_time - Total routine user
code time

total_rqst_time xs:nonNegativeInteger total_rqst_time - Total request time

total_runstats xs:nonNegativeInteger total_runstats - Total runtime statistics

total_runstats_proc_time xs:nonNegativeInteger total_runstats_proc_time - Total runtime statistics
processing time

total_runstats_time xs:nonNegativeInteger total_runstats_time - Total runtime statistics

total_section_proc_time xs:nonNegativeInteger total_section_proc_time - Total section processing
time

total_section_sort_time xs:nonNegativeInteger total_section_sort_time - Total section sort time

total_section_sort_proc_time xs:nonNegativeInteger total_section_sort_proc_time - Total section sort
processing time

total_section_sorts xs:nonNegativeInteger total_section_sorts - Total section sorts

total_section_time xs:nonNegativeInteger total_section_time - Total section time

total_sorts xs:nonNegativeInteger total_sorts - Total Sorts

Chapter 12. Monitor routines and views 507

Table 144. Detailed metrics returned for MON_GET_UNIT_OF_WORK_DETAILS (continued)

Element Name Data Type Description or corresponding monitor element

post_threshold_sorts xs:nonNegativeInteger post_threshold_sorts - Post threshold sorts

post_shrthreshold_sorts xs:nonNegativeInteger post_shrthreshold_sorts - Post shared threshold sorts

sort_overflows xs:nonNegativeInteger sort_overflows - Sort overflows

tq_tot_send_spills xs:nonNegativeInteger tq_tot_send_spills - Total number of table queue
buffers overflowed

total_wait_time xs:nonNegativeInteger total_wait_time - Total wait time

uow_log_space_used xs:nonNegativeInteger uow_log_space_used - Unit of Work Log Space Used

uow_start_time xs:dateTime uow_start_time - Unit of Work Start Timestamp

wlm_queue_time_total xs:nonNegativeInteger wlm_queue_time_total - Workload manager total
queue time

wlm_queue_assignments_total xs:nonNegativeInteger wlm_queue_assignments_total - Workload manager
total queue assignments

MON_GET_WORKLOAD table function - Get workload metrics
The MON_GET_WORKLOAD table function returns metrics for one or more
workloads.

Syntax

�� MON_GET_WORKLOAD (workload_name , member) ��

The schema is SYSPROC.

Table function parameters

workload_name
An input argument of type VARCHAR(128) that specifies a specific workload
for which the metrics are to be returned. If the argument is NULL or an empty
string, metrics are returned for all workloads.

member
An input argument of type INTEGER that specifies a valid member in the
same instance as the currently connected database when calling this function.
Specify -1 for the current database member, or -2 for all database members. If
the NULL value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the MON_GET_WORKLOAD function.

Example

Display lock information for each workload, aggregated across member, ordered by
highest lock wait time.
SELECT varchar(workload_name,30) as workload_name,

sum(lock_wait_time) as total_lock_wait_time,
sum(lock_waits) as total_lock_waits,
sum(lock_timeouts) as total_lock_timeouts,

508 Administrative Routines and Views

sum(lock_escals) as total_lock_escals
FROM TABLE(MON_GET_WORKLOAD(’’,-2)) AS t
GROUP BY workload_name
ORDER BY total_lock_wait_time DESC

The following example is a sample output from this query.
WORKLOAD_NAME TOTAL_LOCK_WAIT_TIME TOTAL_LOCK_WAITS ...
------------------------------ -------------------- -------------------- ...
SYSDEFAULTADMWORKLOAD 0 0 ...
SYSDEFAULTUSERWORKLOAD 0 0 ...

2 record(s) selected.

Output for query (continued).
... TOTAL_LOCK_TIMEOUTS TOTAL_LOCK_ESCALS
... -------------------- --------------------
... 0 0
... 0 0

Usage notes

The metrics returned by the MON_GET_WORKLOAD table function represent the
accumulation of all metrics for requests that were submitted by connections
mapped to the identified workload object. Metrics are rolled up to a workload on
unit of work boundaries, and periodically during the execution of requests.
Therefore, the values reported by this table function reflect the current state of the
system at the time of the most recent rollup. Metrics are strictly increasing in
value. To determine the value of a given metric for an interval of time, use the
MON_GET_WORKLOAD table function to query the metric at the start and end of
the interval, and compute the difference.

Request metrics are controlled through the COLLECT REQUEST METRICS clause
on service superclasses and the mon_req_metrics database configuration parameter
at the database level. Metrics are only collected for a request if the request is
processed by an agent in a service subclass whose parent service superclass has
request metrics enabled, or if request metrics collection is enabled for the entire
database. By default, request metrics are enabled at the database level. If request
metrics have been disabled at the database level, and for a service superclass, then
the metrics reported for each workload that is mapped to that service superclass
stop increasing (or remain at 0 if request metrics were disabled at database
activation time).

The MON_GET_WORKLOAD table function returns one row of data per workload
and per member. No aggregation across workloads (on a member), or across
members (for a service class or more), is performed. However, aggregation can be
achieved through SQL queries (see the example).

Information returned

Table 145. Information returned for MON_GET_WORKLOAD

Column Name Data Type Description or corresponding monitor element

WORKLOAD_NAME VARCHAR(128) workload_name - Workload name

WORKLOAD_ID INTEGER workload_id - Workload ID

MEMBER SMALLINT member - Database member

ACT_ABORTED_TOTAL BIGINT act_aborted_total - Total aborted activities

ACT_COMPLETED_TOTAL BIGINT act_completed_total - Total completed activities

Chapter 12. Monitor routines and views 509

Table 145. Information returned for MON_GET_WORKLOAD (continued)

Column Name Data Type Description or corresponding monitor element

ACT_REJECTED_TOTAL BIGINT act_rejected_total - Total rejected activities

AGENT_WAIT_TIME BIGINT agent_wait_time - Agent wait time

AGENT_WAITS_TOTAL BIGINT agent_waits_total - Total agent waits

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool data logical reads

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool index logical reads

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer pool temporary
data logical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer pool temporary
index logical reads

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer pool temporary
XDA data logical reads

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer pool XDA data logical
reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool data physical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool index physical
reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer pool temporary
data physical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer pool temporary
index physical reads

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer pool temporary
XDA data physical reads

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer pool XDA data physical
reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data writes

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool index writes

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer pool XDA data writes

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool physical read
time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool physical write
time

CLIENT_IDLE_WAIT_TIME BIGINT client_idle_wait_time - Client idle wait time

DEADLOCKS BIGINT deadlocks - Deadlocks detected

DIRECT_READS BIGINT direct_reads - Direct reads from database

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITES BIGINT direct_writes - Direct writes to database

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write time

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write requests

FCM_RECV_VOLUME BIGINT fcm_recv_volume - FCM recv volume

FCM_RECVS_TOTAL BIGINT fcm_recvs_total - FCM recvs total

FCM_SEND_VOLUME BIGINT fcm_send_volume - FCM send volume

FCM_SENDS_TOTAL BIGINT fcm_sends_total - FCM sends total

510 Administrative Routines and Views

Table 145. Information returned for MON_GET_WORKLOAD (continued)

Column Name Data Type Description or corresponding monitor element

FCM_RECV_WAIT_TIME BIGINT fcm_recv_wait_time - FCM recv wait time

FCM_SEND_WAIT_TIME BIGINT fcm_send_wait_time - FCM send wait time

IPC_RECV_VOLUME BIGINT ipc_recv_volume - Interprocess communication recv
volume

IPC_RECV_WAIT_TIME BIGINT ipc_recv_wait_time - Interprocess communication
recv wait time

IPC_RECVS_TOTAL BIGINT ipc_recvs_total - Interprocess communication recvs
total

IPC_SEND_VOLUME BIGINT ipc_send_volume - Interprocess communication send
volume

IPC_SEND_WAIT_TIME BIGINT ipc_send_wait_time - Interprocess communication
send wait time

IPC_SENDS_TOTAL BIGINT ipc_sends_total - Interprocess communication send
total

LOCK_ESCALS BIGINT lock_escals - Number of lock escalations

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of lock timeouts

LOCK_WAIT_TIME BIGINT lock_wait_time - Time waited on locks

LOCK_WAITS BIGINT lock_waits - Lock waits

LOG_BUFFER_WAIT_TIME BIGINT log_buffer_wait_time - Log buffer wait time

NUM_LOG_BUFFER_FULL BIGINT num_log_buffer_full - Number of full log buffers

LOG_DISK_WAIT_TIME BIGINT log_disk_wait_time - Log disk wait time

LOG_DISK_WAITS_TOTAL BIGINT log_disk_waits_total - Log disk waits total

RQSTS_COMPLETED_TOTAL BIGINT rqsts_completed_total - Total requests completed

ROWS_MODIFIED BIGINT rows_modified - Rows modified

ROWS_READ BIGINT rows_read - Rows read

ROWS_RETURNED BIGINT rows_returned - Rows returned

TCPIP_RECV_VOLUME BIGINT tcpip_recv_volume - TCP/IP received volume

TCPIP_SEND_VOLUME BIGINT tcpip_send_volume - TCP/IP send volume

TCPIP_RECV_WAIT_TIME BIGINT tcpip_recv_wait_time - TCP/IP recv wait time

TCPIP_RECVS_TOTAL BIGINT tcpip_recvs_total - TCP/IP recvs total

TCPIP_SEND_WAIT_TIME BIGINT tcpip_send_wait_time - TCP/IP send wait time

TCPIP_SENDS_TOTAL BIGINT tcpip_sends_total - TCP/IP sends total

TOTAL_APP_RQST_TIME BIGINT total_app_rqst_time - Total application request time

TOTAL_RQST_TIME BIGINT total_rqst_time - Total request time

WLM_QUEUE_TIME_TOTAL BIGINT wlm_queue_time_total - Workload manager total
queue time

WLM_QUEUE_ASSIGNMENTS
_TOTAL

BIGINT wlm_queue_assignments_total - Workload manager
total queue assignments

TOTAL_CPU_TIME BIGINT total_cpu_time - Total CPU time

TOTAL_WAIT_TIME BIGINT total_wait_time - Total wait time

APP_RQSTS_COMPLETED_TOTAL BIGINT app_rqsts_completed_total - Total application
requests completed

TOTAL_SECTION_SORT_TIME BIGINT total_section_sort_time - Total section sort time

Chapter 12. Monitor routines and views 511

Table 145. Information returned for MON_GET_WORKLOAD (continued)

Column Name Data Type Description or corresponding monitor element

TOTAL_SECTION_SORT_PROC_TIME BIGINT total_section_sort_proc_time - Total section sort
processing time

TOTAL_SECTION_SORTS BIGINT total_section_sorts - Total section sorts

TOTAL_SORTS BIGINT total_sorts - Total Sorts

POST_THRESHOLD_SORTS BIGINT post_threshold_sorts - Post threshold sorts

POST_SHRTHRESHOLD_SORTS BIGINT post_shrthreshold_sorts - Post shared threshold sorts

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

TOTAL_COMPILE_TIME BIGINT total_compile_time - Total compile time

TOTAL_COMPILE_PROC_TIME BIGINT total_compile_proc_time - Total compile processing
time

TOTAL_COMPILATIONS BIGINT total_compilations - Total compilations

TOTAL_IMPLICIT_COMPILE_TIME BIGINT total_implicit_compile_time - Total implicit compile
time

TOTAL_IMPLICIT_COMPILE
_PROC_TIME

BIGINT total_implicit_compile_proc_time - Total implicit
compile processing time

TOTAL_IMPLICIT_COMPILATIONS BIGINT total_implicit_compilations - Total implicit
complications

TOTAL_SECTION_TIME BIGINT total_section_time - Total section time

TOTAL_SECTION_PROC_TIME BIGINT total_section_proc_time - Total section processing
time

TOTAL_APP_SECTION_EXECUTIONS BIGINT total_app_section_executions - Total section
executions

TOTAL_ACT_TIME BIGINT total_activity_time - Total activity time

TOTAL_ACT_WAIT_TIME BIGINT total_activity_wait_time - Total activity wait time

ACT_RQSTS_TOTAL BIGINT act_rqsts_total - Total activity requests

TOTAL_ROUTINE_TIME BIGINT total_routine_time - Total routine time

TOTAL_ROUTINE_INVOCATIONS BIGINT total_routine_invocations - Total routine invocations

TOTAL_COMMIT_TIME BIGINT total_commit_time - Total commit time

TOTAL_COMMIT_PROC_TIME BIGINT total_commit_proc_time - Total commits processing
time

TOTAL_APP_COMMITS BIGINT total_app_commits - Total application commits

INT_COMMITS BIGINT int_commits - Internal commits

TOTAL_ROLLBACK_TIME BIGINT total_rollback_time - Total rollback time

TOTAL_ROLLBACK_PROC_TIME BIGINT total_rollback_proc_time - Total rollback processing
time

TOTAL_APP_ROLLBACKS BIGINT total_app_rollbacks - Total application rollbacks

INT_ROLLBACKS BIGINT int_rollbacks - Internal rollbacks

TOTAL_RUNSTATS_TIME BIGINT total_runstats_time - Total runtime statistics

TOTAL_RUNSTATS_PROC_TIME BIGINT total_runstats_proc_time - Total runtime statistics
processing time

TOTAL_RUNSTATS BIGINT total_runstats - Total runtime statistics

TOTAL_REORG_TIME BIGINT total_reorg_time - Total reorganization time

512 Administrative Routines and Views

Table 145. Information returned for MON_GET_WORKLOAD (continued)

Column Name Data Type Description or corresponding monitor element

TOTAL_REORG_PROC_TIME BIGINT total_reorg_proc_time - Total reorganization
processing time

TOTAL_REORGS BIGINT total_reorgs - Total reorganizations

TOTAL_LOAD_TIME BIGINT total_load_time - Total load time

TOTAL_LOAD_PROC_TIME BIGINT total_load_proc_time - Total load processing time

TOTAL_LOADS BIGINT total_loads - Total loads

CAT_CACHE_INSERTS BIGINT cat_cache_inserts - Catalog cache inserts

CAT_CACHE_LOOKUPS BIGINT cat_cache_lookups - Catalog cache lookups

PKG_CACHE_INSERTS BIGINT pkg_cache_inserts - Package cache inserts

PKG_CACHE_LOOKUPS BIGINT pkg_cache_lookups - Package cache lookups

THRESH_VIOLATIONS BIGINT hresh_violations - Number of threshold violations

NUM_LW_THRESH_EXCEEDED BIGINT num_lw_thresh_exceeded - Number of thresholds
exceeded

IDA_SEND_WAIT_TIME BIGINT ida_send_wait_time - Time spent waiting to send
data

IDA_SENDS_TOTAL BIGINT ida_sends_total - Number of times data sent

IDA_SEND_VOLUME BIGINT ida_send_volume - Total data volume sent

IDA_RECV_WAIT_TIME BIGINT ida_recv_wait_time - Time spent waiting to receive
data

IDA_RECVS_TOTAL BIGINT ida_recvs_total - Number of times data received

IDA_RECV_VOLUME BIGINT ida_recv_volume - Total data volume received

ADDITIONAL_DETAILS BLOB(100K) Reserved for future use.

MON_GET_WORKLOAD_DETAILS table function - Get detailed
workload metrics

The MON_GET_WORKLOAD_DETAILS table function returns detailed metrics for
one or more workloads.

Syntax

�� MON_GET_WORKLOAD_DETAILS (workload_name , member) ��

The schema is SYSPROC.

Table function parameters

workload_name
An input argument of type VARCHAR(128) that specifies a specific workload
for which the metrics are to be returned. If the argument is NULL or an empty
string, metrics are returned for all workloads.

member
An input argument of type INTEGER that specifies a valid member in the
same instance as the currently connected database when calling this function.

Chapter 12. Monitor routines and views 513

Specify -1 for the current database member, or -2 for all database members. If
the NULL value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the MON_GET_WORKLOAD_DETAILS function.

Example

Display lock information for each workload, aggregated across members, ordered
by highest lock wait time.
SELECT varchar(wlmetrics.workload_name,30) as workload_name,

sum(detmetrics.lock_wait_time) as total_lock_wait_time,
sum(detmetrics.lock_waits) as total_lock_waits,
sum(detmetrics.lock_timeouts) as total_lock_timeouts,
sum(detmetrics.lock_escals) as total_lock_escals

FROM TABLE(MON_GET_WORKLOAD_DETAILS(’’,-2)) AS WLMETRICS,
XMLTABLE (XMLNAMESPACES(DEFAULT ’http://www.ibm.com/xmlns/prod/db2/mon’),

’$detmetric/db2_workload’ PASSING
XMLPARSE(DOCUMENT WLMETRICS.DETAILS)
as "detmetric"

COLUMNS "LOCK_WAIT_TIME" INTEGER PATH ’system_metrics/lock_wait_time’,
"LOCK_WAITS" INTEGER PATH ’system_metrics/lock_waits’,
"LOCK_TIMEOUTS" INTEGER PATH ’system_metrics/lock_timeouts’,
"LOCK_ESCALS" INTEGER PATH ’system_metrics/lock_escals’

) AS DETMETRICS
GROUP BY workload_name
ORDER BY total_lock_wait_time desc;

The following example is a sample output from this query.
WORKLOAD_NAME TOTAL_LOCK_WAIT_TIME TOTAL_LOCK_WAITS ...
------------------------------ -------------------- ---------------- ...
SYSDEFAULTADMWORKLOAD 0 0 ...
SYSDEFAULTUSERWORKLOAD 0 0 ...

2 record(s) selected.

Output for query (continued).
... TOTAL_LOCK_TIMEOUTS TOTAL_LOCK_ESCALS
... ------------------- -----------------
... 0 0
... 0 0

Usage notes

The metrics returned by the MON_GET_WORKLOAD_DETAILS function represent
the accumulation of all metrics for requests that were submitted by connections
mapped to the identified workload object. This function is similar to the
MON_GET_WORKLOAD table function:
v The MON_GET_WORKLOAD table function returns the most commonly used

metrics in a column-based format and is the most performance efficient method
of retrieving metrics.

v The MON_GET_WORKLOAD_DETAILS table function returns the entire set of
available metrics in an XML document format, which provides maximum
flexibility for formatting output. The XML based output can be parsed directly
by an XML parser, or it can be converted to relational format by the XMLTABLE
function (see the example).

514 Administrative Routines and Views

Metrics are rolled up to a workload on unit of work boundaries, and periodically
during the execution of requests. Therefore, the values reported by this table
function reflect the current state of the system at the time of the most recent rollup.
Metrics are strictly increasing in value. To determine the value of a given metric
for an interval of time, use the MON_GET_WORKLOAD_DETAILS table function
to query the metric at the start and end of the interval, and compute the difference.

Request metrics are controlled through the COLLECT REQUEST METRICS clause
on service superclasses and the mon_req_metrics database configuration parameter
at the database level. Metrics are only collected for a request if the request is
processed by an agent in a service subclass whose parent service superclass has
request metrics enabled, or if request metrics collection is enabled for the entire
database. By default request metrics are enabled at the database level. If request
metrics have been disabled at the database level, and for a service superclass, the
metrics reported for each workload mapped to that service superclass stop
increasing (or remain at 0 if request metrics were disabled at database activation
time).

The MON_GET_WORKLOAD_DETAILS table function returns one row of data per
workload and per member. No aggregation across workloads (on a member), or
across members (for a service class or more), is performed. However, aggregation
can be achieved through SQL queries as shown in the example.

The schema for the XML document that is returned in the DETAILS column is
available in the file sqllib/misc/DB2MonRoutines.xsd. Further details can be found
in the file sqllib/misc/DB2MonCommon.xsd.

Information returned

Table 146. Information returned for MON_GET_WORKLOAD_DETAILS

Column Name Data Type Description

WORKLOAD_NAME VARCHAR(128) workload_name - Workload name

WORKLOAD_ID INTEGER workload_id - Workload ID

MEMBER SMALLINT member - Database member

DETAILS BLOB(1M) XML document that contains detailed metrics for the
workload. See Table 147 on page 516 for a description of
the elements in this document.

The following example shows the structure of the XML document that is returned
in the DETAILS column.
<db2_workload xmlns="http://www.ibm.com/xmlns/prod/db2/mon" release="90700000">

<workload_name>SYSDEFAULTADMWORKLOAD</workload_name>
<workload_id>11</workload_id>
<member>0</member>
<system_metrics release="90700000">
<act_aborted_total>5</act_aborted_total>
...
<wlm_queue_assignments_total>3</wlm_queue_assignments_total>
</system_metrics>

</db2_workload>

For the full schema, see sqllib/misc/DB2MonRoutines.xsd.

Chapter 12. Monitor routines and views 515

Table 147. Detailed metrics returned for MON_GET_WORKLOAD_DETAILS

Element Name Data Type Description or corresponding monitor element

workload_name xs:string (128) workload_name - Workload name

workload_id xs:nonNegativeInteger workload_id - Workload ID

member xs:nonNegativeInteger member - Database member

act_aborted_total xs:nonNegativeInteger act_aborted_total - Total aborted activities

act_completed_total xs:nonNegativeInteger act_completed_total - Total completed activities

act_rejected_total xs:nonNegativeInteger act_rejected_total - Total rejected activities

act_rqsts_total xs:nonNegativeInteger act_rqsts_total - Total activity requests

agent_wait_time xs:nonNegativeInteger agent_wait_time - Agent wait time

agent_waits_total xs:nonNegativeInteger agent_waits_total - Total agent waits

app_rqsts_completed_total xs:nonNegativeInteger app_rqsts_completed_total - Total application requests
completed

audit_events_total xs:nonNetagiveIngteger audit_events_total - Total audit events

audit_subsystem_wait_time xs:nonNegativeInteger audit_subsystem_wait_time - Audit subsystem wait time

audit_subsystem_waits_total xs:nonNegativeInteger audit_subsystem_waits_total - Total audit subsystem
waits

audit_file_write_wait_time xs:nonNegativeInteger audit_file_write_wait_time - Audit file write wait time

audit_file_writes_total xs:nonNegativeInteger audit_file_writes_total - Total Audit files written

cat_cache_inserts xs:nonNegativeInteger cat_cache_inserts - Catalog cache inserts

cat_cache_lookups xs:nonNegativeInteger cat_cache_lookups - Catalog cache lookups

client_idle_wait_time xs:nonNegativeInteger client_idle_wait_time - Client idle wait time

deadlocks xs:nonNegativeInteger deadlocks - Deadlocks detected

diaglog_writes_total xs:nonNegativeInteger diaglog_writes_total - Diag log total writes

diaglog_write_wait_time xs:nonNegativeInteger diaglog_write_wait_time - Diag log write time

direct_read_time xs:nonNegativeInteger direct_read_time - Direct read time

direct_write_time xs:nonNegativeInteger direct_write_time - Direct write time

direct_read_reqs xs:nonNegativeInteger direct_read_reqs - Direct read requests

direct_reads xs:nonNegativeInteger direct_reads - Direct reads from database

direct_write_reqs xs:nonNegativeInteger direct_write_reqs - Direct write requests

direct_writes xs:nonNegativeInteger direct_writes - Direct writes to database

fcm_recv_volume xs:nonNegativeInteger fcm_recv_volume - FCM recv volume

fcm_recv_wait_time xs:nonNegativeInteger fcm_recv_wait_time - FCM recv wait time

fcm_recvs_total xs:nonNegativeInteger fcm_recvs_total - FCM recvs total

fcm_message_recv_volume xs:nonNegativeInteger fcm_message_recv_volume - FCM message recv volume

fcm_message_recvs_total xs:nonNegativeInteger fcm_message_recvs_total - FCM message recvs total

fcm_message_recv_wait_time xs:nonNegativeInteger fcm_message_recv_wait_time - FCM message recv wait
time

fcm_message_send_volume xs:nonNegativeInteger fcm_message_send_volume - FCM message send volume

fcm_message_send_wait_time xs:nonNegativeInteger fcm_message_send_wait_time - FCM message send wait
time

fcm_message_sends_total xs:nonNegativeInteger fcm_message_sends_total - FCM message sends total

fcm_send_volume xs:nonNegativeInteger fcm_send_volume - FCM send volume

516 Administrative Routines and Views

Table 147. Detailed metrics returned for MON_GET_WORKLOAD_DETAILS (continued)

Element Name Data Type Description or corresponding monitor element

fcm_send_wait_time xs:nonNegativeInteger fcm_send_wait_time - FCM send wait time

fcm_sends_total xs:nonNegativeInteger fcm_sends_total - FCM sends total

fcm_tq_recv_wait_time xs:nonNegativeInteger fcm_tq_recv_wait_time - FCM tablequeue recv wait time

fcm_tq_send_wait_time xs:nonNegativeInteger fcm_tq_send_wait_time - FCM tablequeue send wait
time

fcm_tq_recv_volume xs:nonNegativeInteger fcm_tq_recv_volume - FCM tablequeue recv volume

fcm_tq_recvs_total xs:nonNegativeInteger fcm_tq_recvs_total - FCM tablequeue recvs total

fcm_tq_send_volume xs:nonNegativeInteger fcm_tq_send_volume - FCM tablequeue send volume

fcm_tq_sends_total xs:nonNegativeInteger fcm_tq_sends_total - FCM tablequeue send total

ida_send_wait_time xs:nonNegativeInteger ida_send_wait_time - Time spent waiting to send data

ida_sends_total xs:nonNegativeInteger ida_sends_total - Number of times data sent

ida_send_volume xs:nonNegativeInteger ida_send_volume - Total data volume sent

ida_recv_volume xs:nonNegativeInteger ida_recv_volume - Total data volume received

ida_recv_wait_time xs:nonNegativeInteger ida_recv_wait_time - Time spent waiting to receive data

ida_recvs_total xs:nonNegativeInteger ida_recvs_total - Number of times data received

int_commits xs:nonNegativeInteger int_commits - Internal commits

int_rollbacks xs:nonNegativeInteger int_rollbacks - Internal rollbacks

tq_tot_send_spills xs:nonNegativeInteger tq_tot_send_spills - Total number of tablequeue buffers
overflowed

ipc_recv_volume xs:nonNegativeInteger ipc_recv_volume - Interprocess communication recv
volume

ipc_recv_wait_time xs:nonNegativeInteger ipc_recv_wait_time - Interprocess communication recv
wait time

ipc_recvs_total xs:nonNegativeInteger ipc_recvs_total - Interprocess communication recvs total

ipc_send_volume xs:nonNegativeInteger ipc_send_volume - Interprocess communication send
volume

ipc_send_wait_time xs:nonNegativeInteger ipc_send_wait_time - Interprocess communication send
wait time

ipc_sends_total xs:nonNegativeInteger ipc_sends_total - Interprocess communication send total

lock_escals xs:nonNegativeInteger lock_escals - Number of lock escalations

lock_timeouts xs:nonNegativeInteger lock_timeouts - Number of lock timeouts

lock_wait_time xs:nonNegativeInteger lock_wait_time - Time waited on locks

lock_waits xs:nonNegativeInteger lock_waits - Lock waits

log_buffer_wait_time xs:nonNegativeInteger log_buffer_wait_time - Log buffer wait time

log_disk_wait_time xs:nonNegativeInteger log_disk_wait_time - Log disk wait time

log_disk_waits_total xs:nonNegativeInteger log_disk_waits_total - Log disk waits total

num_lw_thresh_exceeded xs:nonNegativeInteger num_lw_thresh_exceeded - Number of thresholds
exceeded

pkg_cache_inserts xs:nonNegativeInteger pkg_cache_inserts - Package cache inserts

pkg_cache_lookups xs:nonNegativeInteger pkg_cache_lookups - Package cache lookups

pool_data_l_reads xs:nonNegativeInteger pool_data_l_reads - Buffer pool data logical reads

pool_data_p_reads xs:nonNegativeInteger pool_data_p_reads - Buffer pool data physical reads

Chapter 12. Monitor routines and views 517

Table 147. Detailed metrics returned for MON_GET_WORKLOAD_DETAILS (continued)

Element Name Data Type Description or corresponding monitor element

pool_data_writes xs:nonNegativeInteger pool_data_writes - Buffer pool data writes

pool_index_l_reads xs:nonNegativeInteger pool_index_l_reads - Buffer pool index logical reads

pool_index_p_reads xs:nonNegativeInteger pool_index_p_reads - Buffer pool index physical reads

pool_index_writes xs:nonNegativeInteger pool_index_writes - Buffer pool index writes

pool_read_time xs:nonNegativeInteger pool_read_time - Total buffer pool physical read time

pool_temp_data_l_reads xs:nonNegativeInteger pool_temp_data_l_reads - Buffer pool temporary data
logical reads

pool_temp_data_p_reads xs:nonNegativeInteger pool_temp_data_p_reads - Buffer pool temporary data
physical reads

pool_temp_index_l_reads xs:nonNegativeInteger pool_temp_index_l_reads - Buffer pool temporary index
logical reads

pool_temp_index_p_reads xs:nonNegativeInteger pool_temp_index_p_reads - Buffer pool temporary index
physical reads

pool_temp_xda_l_reads xs:nonNegativeInteger pool_temp_xda_l_reads - Buffer pool temporary XDA
data logical reads

pool_temp_xda_p_reads xs:nonNegativeInteger pool_temp_xda_p_reads - Buffer pool temporary XDA
data physical reads

pool_write_time xs:nonNegativeInteger pool_write_time - Total buffer pool physical write time

pool_xda_l_reads xs:nonNegativeInteger pool_xda_l_reads - Buffer pool XDA data logical reads

pool_xda_p_reads xs:nonNegativeInteger pool_xda_p_reads - Buffer pool XDA data physical reads

pool_xda_writes xs:nonNegativeInteger pool_xda_writes - Buffer pool XDA data writes

num_log_buffer_full xs:nonNegativeInteger num_log_buffer_full - Number of full log buffers

rqsts_completed_total xs:nonNegativeInteger rqsts_completed_total - Total requests completed

rows_modified xs:nonNegativeInteger rows_modified - Rows modified

rows_read xs:nonNegativeInteger rows_read - Rows read

rows_returned xs:nonNegativeInteger rows_returned - Rows returned

tcpip_recv_volume xs:nonNegativeInteger tcpip_recv_volume - TCP/IP received volume

tcpip_recv_wait_time xs:nonNegativeInteger tcpip_recv_wait_time - TCP/IP recv wait time

tcpip_recvs_total xs:nonNegativeInteger tcpip_recvs_total - TCP/IP recvs total

tcpip_send_volume xs:nonNegativeInteger tcpip_send_volume - TCP/IP send volume

tcpip_send_wait_time xs:nonNegativeInteger tcpip_send_wait_time - TCP/IP send wait time

tcpip_sends_total xs:nonNegativeInteger tcpip_sends_total - TCP/IP sends total

thresh_violations xs:nonNegativeInteger thresh_violations - Number of threshold violations

total_act_time xs:nonNegativeInteger total_act_time - Total activity time

total_act_wait_time xs:nonNegativeInteger total_act_wait_time - Total activity wait time

total_app_commits xs:nonNegativeInteger total_app_commits - Total application commits

total_app_rollbacks xs:nonNegativeInteger total_app_rollbacks - Total application rollbacks

total_app_rqst_time xs:nonNegativeInteger total_app_rqst_time - Total application request time

total_app_section_executions xs:nonNegativeInteger total_app_section_executions - Total section executions

total_commit_proc_time xs:nonNegativeInteger total_commit_proc_time - Total commits processing time

total_commit_time xs:nonNegativeInteger total_commit_time - Total commit time

total_compilations xs:nonNegativeInteger total_compilations - Total compilations

518 Administrative Routines and Views

Table 147. Detailed metrics returned for MON_GET_WORKLOAD_DETAILS (continued)

Element Name Data Type Description or corresponding monitor element

total_compile_proc_time xs:nonNegativeInteger total_compile_proc_time - Total compile processing time

total_compile_time xs:nonNegativeInteger total_compile_time - Total compile time

total_cpu_time xs:nonNegativeInteger total_cpu_time - Total CPU time

total_implicit_compilations xs:nonNegativeInteger total_implicit_compilations - Total implicit complications

total_implicit_compile_
proc_time

xs:nonNegativeInteger total_implicit_compile_proc_time - Total implicit compile
processing time

total_implicit_compile_time xs:nonNegativeInteger total_implicit_compile_time - Total implicit compile time

total_loads xs:nonNegativeInteger total_loads - Total loads

total_load_proc_time xs:nonNegativeInteger total_load_proc_time - Total load processing time

total_load_time xs:nonNegativeInteger total_load_time - Total load time

total_reorgs xs:nonNegativeInteger total_reorgs - Total reorganizations

total_reorg_proc_time xs:nonNegativeInteger total_reorg_proc_time - Total reorganization processing
time

total_reorg_time xs:nonNegativeInteger total_reorg_time - Total reorganization time

total_rollback_proc_time xs:nonNegativeInteger total_rollback_proc_time - Total rollback processing time

total_rollback_time xs:nonNegativeInteger total_rollback_time - Total rollback time

total_routine_invocations xs:nonNegativeInteger total_routine_invocations - Total routine invocations

total_routine_time xs:nonNegativeInteger total_routine_time - Total routine time

total_routine_user_
code_proc_time

xs:nonNegativeInteger total_routine_user_code_proc_time - Total routine user
code processing time

total_routine_user_
code_time

xs:nonNegativeInteger total_routine_user_code_time - Total routine user code
time

total_rqst_time xs:nonNegativeInteger total_rqst_time - Total request time

total_runstats xs:nonNegativeInteger total_runstats - Total runtime statistics

total_runstats_proc_time xs:nonNegativeInteger total_runstats_proc_time - Total runtime statistics
processing time

total_runstats_time xs:nonNegativeInteger total_runstats_time - Total runtime statistics

total_section_proc_time xs:nonNegativeInteger total_section_proc_time - Total section processing time

total_section_sort_time xs:nonNegativeInteger total_section_sort_time - Total section sort time

total_section_sort_proc_time xs:nonNegativeInteger total_section_sort_proc_time - Total section sort
processing time

total_section_sorts xs:nonNegativeInteger total_section_sorts - Total section sorts

total_section_time xs:nonNegativeInteger total_section_time - Total section time

total_sorts xs:nonNegativeInteger total_sorts - Total Sorts

post_threshold_sorts xs:nonNegativeInteger post_threshold_sorts - Post threshold sorts

post_shrthreshold_sorts xs:nonNegativeInteger post_shrthreshold_sorts - Post shared threshold sorts

sort_overflows xs:nonNegativeInteger sort_overflows - Sort overflows

tq_tot_send_spills xs:nonNegativeInteger tq_tot_send_spills - Total number of table queue buffers
overflowed

total_wait_time xs:nonNegativeInteger total_wait_time - Total wait time

wlm_queue_time_total xs:nonNegativeInteger wlm_queue_time_total - Workload manager total queue
time

Chapter 12. Monitor routines and views 519

Table 147. Detailed metrics returned for MON_GET_WORKLOAD_DETAILS (continued)

Element Name Data Type Description or corresponding monitor element

wlm_queue_assignments_total xs:nonNegativeInteger wlm_queue_assignments_total - Workload manager total
queue assignments

MON_LOCKWAITS administrative view - Retrieve metrics for
applications that are waiting to obtain locks

The MON_LOCKWAITS administrative view returns information about agents
working on behalf of applications that are waiting to obtain locks in the currently
connected database. It is a useful query for identifying locking problems. This
administrative view replaces the SNAPLOCKWAIT administrative view which is
deprecated in DB2 Version 9.7 Fix Pack 1 and might be discontinued in a future
release.

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7, it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7, this routine will no longer work.

Authorization

One of the following authorizations is required:
v SELECT privilege on the MON_LOCKWAITS administrative view
v CONTROL privilege on the MON_LOCKWAITS administrative view
v DATAACCESS authority

Information returned

Table 148. Information returned by the MON_LOCKWAITS administrative view

Column name Data type
Description or Monitor
element

LOCK_NAME VARCHAR(32) lock_name - Lock name

You can use the
MON_FORMAT_LOCK
_NAME routine to format
this internal binary lock
name and obtain more
details regarding the lock,
such as the table and table
space that a table lock
references.

LOCK_OBJECT_TYPE VARCHAR(32) lock_object_type - Lock
object type waited on

LOCK_WAIT_ELAPSED
_TIME

INTEGER The time elapsed since the
agent started waiting to
obtain the lock. This value is
given in seconds.

520 Administrative Routines and Views

Table 148. Information returned by the MON_LOCKWAITS administrative view (continued)

Column name Data type
Description or Monitor
element

TABSCHEMA VARCHAR(128) table_schema - Table schema
name

For locks that do not
reference a table, NULL is
returned.

TABNAME VARCHAR(128) table_name - Table name

For locks that do not
reference a table, NULL is
returned.

DATA_PARTITION_ID INTEGER data_partition_id - Data
Partition identifier

This element is only
applicable to partitioned
tables and partitioned
indexes. When returning lock
level information, a value of
-1 represents a lock which
controls access to the whole
table.

LOCK_MODE VARCHAR(10) lock_mode - Lock mode

LOCK_CURRENT_MODE VARCHAR(10) lock_current_mode - Original
lock mode before conversion

If the LOCK_STATUS is not
"C" (converting), then a value
of NULL is returned.

LOCK_MODE_REQUESTED VARCHAR(10) lock_mode_requested - Lock
mode requested

REQ_APPLICATION_
HANDLE

BIGINT req_application_handle -
Requesting application
handle

REQ_AGENT_TID BIGINT req_agent_tid - Requesting
agent TID

REQ_MEMBER SMALLINT req_member - Requesting
member

REQ_APPLICATION_
NAME

VARCHAR(128) The name of the application
running at the client that is
waiting to acquire this lock.

REQ_USERID VARCHAR(128) The current authorization ID
for the session being used by
the application that is
waiting to acquire this lock.

REQ_STMT_TEXT CLOB(2MB) SQL statement section that
the application waiting to
acquire the lock is executing.

For non-SQL activities, a
0-length string value is
returned.

Chapter 12. Monitor routines and views 521

Table 148. Information returned by the MON_LOCKWAITS administrative view (continued)

Column name Data type
Description or Monitor
element

HLD_APPLICATION_
HANDLE

BIGINT hld_application_handle -
Holding application handle

If the application holding
this lock is unknown or
cannot be found then a value
of NULL is returned.

HLD_MEMBER SMALLINT hld_member - Holding
member

HLD_APPLICATION_
NAME

VARCHAR(128) The name of the application
running at the client that is
holding this lock.

If the application holding
this lock is unknown or
cannot be found then a
0-length string value is
returned.

HLD_USERID VARCHAR(128) The current authorization ID
for the session being used by
the application that is
holding this lock.

HLD_CURRENT_
STMT_TEXT

CLOB(2MB) SQL statement text that is
currently associated with the
application that is holding
the lock. Note that this is not
necessarily the statement that
is causing the lock.

MON_PKG_CACHE_SUMMARY - Retrieve a high-level summary of the
database package cache

The MON_PKG_CACHE_SUMMARY administrative view returns key metrics for
both static and dynamic SQL statements in the cache, providing a high-level
summary of the database package cache. The metrics returned are aggregated over
all executions of the statement across all members of the database.

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7, it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7, this routine will no longer work.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the MON_PKG_CACHE_SUMMARY administrative view
v CONTROL privilege on the MON_PKG_CACHE_SUMMARY administrative

view

522 Administrative Routines and Views

v DATAACCESS authority

Information returned

Table 149. Information returned by the MON_PKG_CACHE_SUMMARY administrative view

Column name Data type Description or Monitor element

SECTION_TYPE CHAR(1) section_type - Section type indicator

EXECUTABLE_ID VARCHAR(32) FOR
BIT DATA

executable_id - Executable ID

NUM_COORD_EXEC BIGINT num_coord_exec - Number of
executions by coordinator agent

NUM_COORD_EXEC_
WITH_METRICS

BIGINT num_coord_exec_with_metrics -
Number of executions by
coordinator agent with metrics

TOTAL_STMT_EXEC_TIME BIGINT The total amount of time, in
milliseconds, spent executing the
statement, including nested
activities, over all executions of the
statement where the metrics have
been collected.

AVG_STMT_EXEC_TIME BIGINT The average amount of time, in
milliseconds, spent executing the
statement, including nested
activities, over all executions of the
statement where the metrics have
been collected.

TOTAL_CPU_TIME BIGINT The total amount of CPU time, in
microseconds, used while within the
DB2 database manager. This value
represents the combined total of
both user and system CPU time. It
is calculated as the sum of all
total_cpu_time - Total CPU time
values for the statement.

AVG_CPU_TIME BIGINT The average amount of CPU time,
in microseconds, spent within the
DB2 database manager over all
executions of the statement where
the metrics have been collected.

TOTAL_LOCK_WAIT_TIME BIGINT The total elapsed time, in
milliseconds, spent waiting for
locks. This value is calculated as the
sum of all lock_wait_time - Time
waited on locks values for the
statement.

AVG_LOCK_WAIT_TIME BIGINT The average elapsed time, in
milliseconds, spent waiting for locks
over all executions of the statement
where the metrics have been
collected.

Chapter 12. Monitor routines and views 523

Table 149. Information returned by the MON_PKG_CACHE_SUMMARY administrative
view (continued)

Column name Data type Description or Monitor element

TOTAL_IO_WAIT_TIME BIGINT The total elapsed time, in
milliseconds, spent on I/O
operations. This value is calculated
as the sum of the elapsed time
required to perform direct reads or
direct writes, plus the elapsed time
spent physically reading or writing
data and index pages from or to the
table space containers.

AVG_IO_WAIT_TIME BIGINT The average elapsed time, in
milliseconds, spent on I/O
operations over all executions of the
statement where the metrics have
been collected.

PREP_TIME BIGINT prep_time - Preparation time

ROWS_READ_PER_
ROWS_RETURNED

BIGINT The average number of rows read
per rows returned over all
executions of the statement where
the metrics have been collected.

STMT_TEXT CLOB(2MB) stmt_text - SQL statement text

MON_SERVICE_SUBCLASS_SUMMARY - Retrieve metrics for all
service subclasses

The MON_SERVICE_SUBCLASS_SUMMARY administrative view returns key
metrics for all service subclasses in the currently connected database. It is designed
to help monitor the system in a high-level manner, showing work executed per
service class.

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7, it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7, this routine will no longer work.

The metrics returned represent the accumulation of all metrics for requests that
have executed under the indicated service subclass across all members of the
database.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the MON_SERVICE_SUBCLASS_SUMMARY

administrative view
v CONTROL privilege on the MON_SERVICE_SUBCLASS_SUMMARY

administrative view
v DATAACCESS authority

524 Administrative Routines and Views

Information returned

Table 150. Information returned by the MON_SERVICE_SUBCLASS_SUMMARY
administrative view

Column name Data type Description or Monitor element

SERVICE_SUPERCLASS
_NAME

VARCHAR(128) service_superclass_name - Service
superclass name

SERVICE_SUBCLASS_NAME VARCHAR(128) service_subclass_name - Service
subclass name

SERVICE_CLASS_ID INTEGER service_class_id - Service class ID

TOTAL_APP_COMMITS BIGINT Total number of application
commits across all members of
the database for the specified
service subclass.

TOTAL_APP_ROLLBACKS BIGINT Total number of application
rollbacks across all members of
the database for the specified
service subclass.

ACT_COMPLETED_TOTAL BIGINT Total number of coordinator
activities at any nesting level that
completed successfully across all
members of the database for the
specified service subclass.

APP_RQSTS_COMPLETED
_TOTAL

BIGINT Total number of external
(application) requests that
completed successfully across all
members of the database for the
specified service subclass

AVG_RQST_CPU_TIME BIGINT Average amount of CPU time, in
microseconds, used by all
external requests that completed
successfully. It represents the total
of both user and system CPU
time.

ROUTINE_TIME_
RQST_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent working on
requests that was spent executing
user routines.

RQST_WAIT_
TIME_PERCENT

DECIMAL(5,2) The percentage of the time spent
working on requests that was
spent waiting within the DB2
database server.

ACT_WAIT_TIME_
PERCENT

DECIMAL(5,2) The percentage of the time spent
executing activities that was spent
waiting within the DB2 database
server.

Chapter 12. Monitor routines and views 525

Table 150. Information returned by the MON_SERVICE_SUBCLASS_SUMMARY
administrative view (continued)

Column name Data type Description or Monitor element

IO_WAIT_TIME_PERCENT DECIMAL(5,2) The percentage of the time spent
waiting within the DB2 database
server that was due to I/O
operations. This includes time
spent performing direct reads or
direct writes, and time spent
reading data and index pages
from the table space to the
bufferpool or writing them back
to disk.

LOCK_WAIT_TIME_PERCENT DECIMAL(5,2) The percentage of time spent
waiting within the DB2 database
server that was spent waiting on
locks.

AGENT_WAIT_TIME_
PERCENT

DECIMAL(5,2) The percentage of time spent
waiting within the DB2 database
server that was spent by an
application queued to wait for an
agent under concentrator
configurations.

NETWORK_WAIT_
TIME_PERCENT

DECIMAL(5,2) The percentage of time spent
waiting within the DB2 database
server that was spent on
client-server communications.
This includes time spent sending
and receiving data over TCP/IP
or using the IPC protocol.

SECTION_PROC_
TIME_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent actively
working on requests that was
spent executing sections. This
includes the time spent
performing sorts.

SECTION_SORT_
PROC_TIME_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent actively
working on requests that was
spent performing sorts while
executing sections.

COMPILE_PROC_
TIME_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent actively
working on requests that was
spent compiling an SQL
statement. This includes explicit
and implicit compile times.

TRANSACT_END_PROC
_TIME_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent actively
working on requests that was
spent performing commit
processing or rolling back
transactions.

526 Administrative Routines and Views

Table 150. Information returned by the MON_SERVICE_SUBCLASS_SUMMARY
administrative view (continued)

Column name Data type Description or Monitor element

UTILS_PROC_
TIME_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent actively
working on requests that was
spent running utilities. This
includes performing runstats,
reorganization, and load
operations.

AVG_LOCK_WAITS
_PER_ACT

BIGINT The average number of times that
applications or connections
waited for locks per coordinator
activities (successful and aborted).

AVG_LOCK_TIMEOUTS
_PER_ACT

BIGINT The average number of times that
a request to lock an object timed
out per coordinator activities
(successful and aborted).

AVG_DEADLOCKS_
PER_ACT

BIGINT The average number of deadlocks
per coordinator activities
(successful and aborted).

AVG_LOCK_ESCALS
_PER_ACT

BIGINT The average number of times that
locks have been escalated from
several row locks to a table lock
per coordinator activities
(successful and aborted).

ROWS_READ_PER_
ROWS_RETURNED

BIGINT The average number of rows read
from the table per rows returned
to the application.

TOTAL_BP_HIT_
RATIO_PERCENT

DECIMAL(5,2) The percentage of time that the
database manager did not need to
load a page from disk to service a
data or index page request,
including requests for XML
storage objects (XDAs).

MON_TBSP_UTILIZATION - Retrieve monitoring metrics for all table
spaces and all database partitions

The MON_TBSP_UTILIZATION administrative view returns key monitoring
metrics, including hit ratios and utilization percentage, for all table spaces and all
database partitions in the currently connected database. It provides critical
information for monitoring performance as well as space utilization. This
administrative view is a replacement for the TBSP_UTILIZATION administrative
view.

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7, it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7, this routine will no longer work.

Chapter 12. Monitor routines and views 527

Authorization

One of the following authorizations is required:
v SELECT privilege on the MON_TBSP_UTILIZATION administrative view
v CONTROL privilege on the MON_TBSP_UTILIZATION administrative view
v DATAACCESS authority

Information returned

Table 151. Information returned by the MON_TBSP_UTILIZATION administrative view

Column name Data type
Description or Monitor
element

TBSP_NAME VARCHAR(128) tablespace_name - Table
space name

MEMBER SMALLINT member - Database member

TBSP_TYPE VARCHAR(10) tablespace_type - Table space
type. This interface returns a
text identifier based on
defines in sqlutil.h, and is
one of:

v DMS

v SMS

TBSP_CONTENT_TYPE VARCHAR(10) tablespace_content_type -
Table space content type.
This interface returns a text
identifier based on defines in
sqlmon.h, and is one of:

v ANY

v LARGE

v SYSTEMP

v USRTEMP

TBSP_STATE VARCHAR(256) tablespace_state - Table space
state

TBSP_PAGE_SIZE BIGINT tablespace_page_size - Table
space page size

TBSP_EXTENT_SIZE BIGINT tablespace_extent_size - Table
space extent size

TBSP_PREFETCH_SIZE BIGINT tablespace_prefetch_size -
Table space prefetch size

TBSP_USING_
AUTO_STORAGE

SMALLINT tablespace_using_auto
_storage - Table space
enabled for automatic
storage

TBSP_AUTO_
RESIZE_ENABLED

SMALLINT tablespace_auto_resize
_enabled - Table space
automatic resizing enabled

528 Administrative Routines and Views

Table 151. Information returned by the MON_TBSP_UTILIZATION administrative
view (continued)

Column name Data type
Description or Monitor
element

TBSP_TOTAL_SIZE_KB BIGINT The total size of the table
space in kilobytes. This is
calculated as
(tablespace_total_pages *
tablespace_page_size) / 1024
where tablespace_total_pages
and tablespace_page_size
represent the following
monitor elements:

v tablespace_total_pages -
Total pages in table space

v tablespace_page_size -
Table space page size

TBSP_USABLE_SIZE_KB BIGINT The total usable size of the
table space, in kilobytes. This
equals the total size of the
table space minus the space
used for overhead pages.
This is calculated as
(tablespace_usable_pages *
tablespace_page_size) / 1024
where tablespace_usable_pages
and tablespace_page_size
represent the following
monitor elements:

v tablespace_usable_pages -
Usable pages in table
space

v tablespace_page_size -
Table space page size

TBSP_UTILIZATION
_PERCENT

DECIMAL(5,2) The utilization of the table
space as a percentage. If
tablespace_usable_pages is
greater than zero, this is
calculated as
(tablespace_used_pages /
tablespace_usable_pages) * 100
where tablespace_used_pages
and tablespace_usable_pages
represent the following
monitor elements:

v tablespace_used_pages -
Used pages in table space

v tablespace_usable_pages -
Usable pages in table
space

NULL is returned if
tablespace_usable_pages is not
greater than zero.

TBSP_PAGE_TOP BIGINT tablespace_page_top - Table
space high watermark

Chapter 12. Monitor routines and views 529

Table 151. Information returned by the MON_TBSP_UTILIZATION administrative
view (continued)

Column name Data type
Description or Monitor
element

DATA_PHYSICAL_READS BIGINT Indicates the number of data
pages read from the table
space containers (physical)
for temporary as well as
regular and large table
spaces. This is calculated as
(pool_data_p_reads +
pool_temp_data_p_reads)
where pool_data_p_reads and
pool_temp_data_p_reads
represent the following
monitor elements:

v pool_data_p_reads -
Buffer pool data physical
reads

v pool_temp_data_p_reads -
Buffer pool temporary
data physical reads

DATA_HIT_
RATIO_PERCENT

DECIMAL(5,2) Data hit ratio, that is, the
percentage of time that the
database manager did not
need to load a page from
disk to service a data page
request.

INDEX_PHYSICAL_READS BIGINT Indicates the number of
index pages read from the
table space containers
(physical) for temporary as
well as regular and large
table spaces. This is
calculated as
(pool_index_p_reads +
pool_temp_index_p_reads)
where pool_index_p_reads and
pool_temp_index_p_reads
represent the following
monitor elements:

v pool_index_p_reads -
Buffer pool index physical
reads

v pool_temp_index_p_reads
- Buffer pool temporary
index physical reads

INDEX_HIT_RATIO
_PERCENT

DECIMAL(5,2) Index hit ratio, that is, the
percentage of time that the
database manager did not
need to load a page from
disk to service an index data
page request.

530 Administrative Routines and Views

Table 151. Information returned by the MON_TBSP_UTILIZATION administrative
view (continued)

Column name Data type
Description or Monitor
element

XDA_PHYSICAL_READS BIGINT Indicates the number of data
pages for XML storage
objects (XDAs) read from the
table space containers
(physical) for temporary as
well as regular and large
table spaces. This is
calculated as
(pool_xda_p_reads +
pool_temp_xda_p_reads) where
pool_xda_p_reads and
pool_temp_xda_p_reads
represent the following
monitor elements:

v pool_xda_p_reads - Buffer
pool XDA data physical
reads

v pool_temp_xda_p_reads -
Buffer pool temporary
XDA data physical reads

XDA_HIT_RATIO_PERCENT DECIMAL(5,2) Auxiliary storage objects hit
ratio, that is, the percentage
of time that the database
manager did not need to
load a page from disk to
service a data page request
for XML storage objects
(XDAs).

MON_WORKLOAD_SUMMARY - Retrieves metrics for all workloads
The MON_WORKLOAD_SUMMARY administrative view returns key metrics for
all workloads in the currently connected database. It is designed to help monitor
the system in a high-level manner, showing incoming work per workload.

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7, it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7, this routine will no longer work.

The metrics returned represent the accumulation of all metrics for requests that
were submitted by connections mapped to the identified workload object across all
members of the database.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the MON_WORKLOAD_SUMMARY administrative view

Chapter 12. Monitor routines and views 531

v CONTROL privilege on the MON_WORKLOAD_SUMMARY administrative
view

v DATAACCESS authority

Information returned

Table 152. Information returned by the MON_WORKLOAD_SUMMARY administrative view

Column name Data type
Description or Monitor
element

WORKLOAD_NAME VARCHAR(128) workload_name - Workload
name

WORKLOAD_ID INTEGER workload_id - Workload ID

TOTAL_APP_COMMITS BIGINT Total number of application
commits across all members
of the database for the
specified service subclass.

TOTAL_APP_ROLLBACKS BIGINT Total number of application
rollbacks across all members
of the database for the
specified service subclass.

ACT_COMPLETED_TOTAL BIGINT Total number of coordinator
activities at any nesting level
that completed successfully
across all members of the
database for the specified
service subclass.

APP_RQSTS_COMPLETED
_TOTAL

BIGINT Total number of external
(application) requests that
completed successfully across
all members of the database
for the specified service
subclass

AVG_RQST_CPU_TIME BIGINT Average amount of CPU
time, in microseconds, used
by all external requests that
completed successfully. It
represents the total of both
user and system CPU time.

ROUTINE_TIME_
RQST_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent
working on requests that
was spent executing user
routines.

RQST_WAIT_
TIME_PERCENT

DECIMAL(5,2) The percentage of the time
spent working on requests
that was spent waiting
within the DB2 database
server.

ACT_WAIT_TIME_
PERCENT

DECIMAL(5,2) The percentage of the time
spent executing activities that
was spent waiting within the
DB2 database server.

532 Administrative Routines and Views

Table 152. Information returned by the MON_WORKLOAD_SUMMARY administrative
view (continued)

Column name Data type
Description or Monitor
element

IO_WAIT_TIME_PERCENT DECIMAL(5,2) The percentage of the time
spent waiting within the DB2
database server that was due
to I/O operations. This
includes time spent
performing direct reads or
direct writes, and time spent
reading data and index
pages from the table space to
the bufferpool or writing
them back to disk.

LOCK_WAIT_TIME_
PERCENT

DECIMAL(5,2) The percentage of time spent
waiting within the DB2
database server that was
spent waiting on locks.

AGENT_WAIT_TIME_
PERCENT

DECIMAL(5,2) The percentage of time spent
waiting within the DB2
database server that was
spent by an application
queued to wait for an agent
under concentrator
configurations.

NETWORK_WAIT_
TIME_PERCENT

DECIMAL(5,2) The percentage of time spent
waiting within the DB2
database server that was
spent on client-server
communications. This
includes time spent sending
and receiving data over
TCP/IP or using the IPC
protocol.

SECTION_PROC_
TIME_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent
actively working on requests
that was spent executing
sections. This includes the
time spent performing sorts.

SECTION_SORT_
PROC_TIME_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent
actively working on requests
that was spent performing
sorts while executing
sections.

COMPILE_PROC_
TIME_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent
actively working on requests
that was spent compiling an
SQL statement. This includes
explicit and implicit compile
times.

Chapter 12. Monitor routines and views 533

Table 152. Information returned by the MON_WORKLOAD_SUMMARY administrative
view (continued)

Column name Data type
Description or Monitor
element

TRANSACT_END_PROC
_TIME_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent
actively working on requests
that was spent performing
commit processing or rolling
back transactions.

UTILS_PROC_
TIME_PERCENT

DECIMAL(5,2) The percentage of time the
database server spent
actively working on requests
that was spent running
utilities. This includes
performing RUNSTATS,
reorganization, and load
operations.

AVG_LOCK_WAITS
_PER_ACT

BIGINT The average number of times
that applications or
connections waited for locks
per coordinator activities
(successful and aborted).

AVG_LOCK_TIMEOUTS
_PER_ACT

BIGINT The average number of times
that a request to lock an
object timed out per
coordinator activities
(successful and aborted).

AVG_DEADLOCKS_
PER_ACT

BIGINT The average number of
deadlocks per coordinator
activities (successful and
aborted).

AVG_LOCK_ESCALS
_PER_ACT

BIGINT The average number of times
that locks have been
escalated from several row
locks to a table lock per
coordinator activities
(successful and aborted).

ROWS_READ_PER_
ROWS_RETURNED

BIGINT The average number of rows
read from the table per rows
returned to the application.

TOTAL_BP_HIT_
RATIO_PERCENT

DECIMAL(5,2) The percentage of time that
the database manager did
not need to load a page from
disk to service a data or
index page request, including
requests for XML storage
objects (XDAs).

534 Administrative Routines and Views

Chapter 13. MQSeries routines

MQPUBLISH

The MQPUBLISH function publishes data to MQSeries. For more details, visit
http://www.ibm.com/software/MQSeries.

The MQPUBLISH function publishes the data contained in msg-data to the
MQSeries publisher specified in publisher-service, and using the quality of service
policy defined by service-policy. An optional topic for the message can be specified,
and an optional user-defined message correlation identifier can also be specified.

The data type of the result is VARCHAR(1). The result of the function is '1' if
successful or '0' if unsuccessful.

Syntax

�� MQPUBLISH (
publisher-service ,

service-policy ,

msg-data �

�
, topic

(1)
, correl-id

) ��

Notes:

1 The correl-id cannot be specified unless a service and a policy are also specified.

The schema is DB2MQ for non-transactional message queuing functions, and
DB2MQ1C for one-phase commit transactional MQ functions.

Function parameters

publisher-service
A string containing the logical MQSeries destination where the message is to
be sent. If specified, the publisher-service must refer to a publisher Service
Point defined in the DB2MQ.MQPUBSUB table that has a type value of 'P' for
publisher service. If publisher-service is not specified, the
DB2.DEFAULT.PUBLISHER will be used. The maximum size of publisher-service
is 48 bytes.

service-policy
A string containing the MQSeries Service Policy to be used in handling of this
message. If specified, the service-policy must refer to a Policy defined in the
DB2MQ.MQPOLICY table. A Service Policy defines a set of quality of service
options that should be applied to this messaging operation. These options
include message priority and message persistence. If service-policy is not
specified, the default DB2.DEFAULT.POLICY will be used. The maximum size
of service-policy is 48 bytes.

msg-data
A string expression containing the data to be sent via MQSeries. The maximum

© Copyright IBM Corp. 2006, 2012 535

size for a VARCHAR string expression is 32 000 bytes and the maximum size
for a CLOB string expression is 1M bytes.

topic
A string expression containing the topic for the message publication. If no topic
is specified, none will be associated with the message. The maximum size of
topic is 40 bytes. Multiple topics can be specified in one string (up to 40
characters long). Each topic must be separated by a colon. For example,
"t1:t2:the third topic" indicates that the message is associated with all three
topics: t1, t2, and "the third topic".

correl-id
An optional string expression containing a correlation identifier to be
associated with this message. The correl-id is often specified in request and
reply scenarios to associate requests with replies. If not specified, no correlation
ID will be added to the message. The maximum size of correl-id is 24 bytes.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

Examples

Example 1: This example publishes the string "Testing 123" to the default publisher
service (DB2.DEFAULT.PUBLISHER) using the default policy
(DB2.DEFAULT.POLICY). No correlation identifier or topic is specified for the
message.

VALUES MQPUBLISH(’Testing 123’)

Example 2: This example publishes the string "Testing 345" to the publisher service
"MYPUBLISHER" under the topic "TESTS". The default policy is used and no
correlation identifier is specified.

VALUES MQPUBLISH(’MYPUBLISHER’,’Testing 345’, ’TESTS’)

Example 3: This example publishes the string "Testing 678" to the publisher service
"MYPUBLISHER" using the policy "MYPOLICY" with a correlation identifier of
"TEST1". The message is published with topic "TESTS".

VALUES MQPUBLISH(’MYPUBLISHER’,’MYPOLICY’,’Testing 678’,’TESTS’,’TEST1’)

Example 4: This example publishes the string "Testing 901" to the publisher service
"MYPUBLISHER" under the topic "TESTS" using the default policy
(DB2.DEFAULT.POLICY) and no correlation identifier.

VALUES MQPUBLISH(’Testing 901’,’TESTS’)

MQREAD

The MQREAD function returns a message from the MQSeries location specified by
receive-service, using the quality of service policy defined in service-policy. Executing
this operation does not remove the message from the queue associated with
receive-service, but instead returns the message at the head of the queue.

536 Administrative Routines and Views

The data type of the result is VARCHAR (32000). If no messages are available to be
returned, the result is the null value.

Syntax

�� MQREAD (
receive-service

, service-policy

) ��

The schema is DB2MQ for non-transactional message queuing functions, and
DB2MQ1C for one-phase commit transactional MQ functions.

Function parameters

receive-service
A string containing the logical MQSeries destination from where the message is
to be received. If specified, the receive-service must refer to a Service Point
defined in the DB2MQ.MQSERVICE table. A service point is a logical
end-point from where a message is sent or received. Service points definitions
include the name of the MQSeries Queue Manager and Queue. If receive-service
is not specified, then the DB2.DEFAULT.SERVICE will be used. The maximum
size of receive-service is 48 bytes.

service-policy
A string containing the MQSeries Service Policy used in handling this message.
If specified, the service-policy must refer to a Policy defined in the
DB2MQ.MQPOLICY table. A Service Policy defines a set of quality of service
options that should be applied to this messaging operation. These options
include message priority and message persistence. If service-policy is not
specified, then the default DB2.DEFAULT.POLICY will be used. The maximum
size of service-policy is 48 bytes.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

Examples

Example 1: This example reads the message at the head of the queue specified by
the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY).

VALUES MQREAD()

Example 2: This example reads the message at the head of the queue specified by
the service "MYSERVICE" using the default policy (DB2.DEFAULT.POLICY).

VALUES MQREAD(’MYSERVICE’)

Example 3: This example reads the message at the head of the queue specified by
the service "MYSERVICE", and using the policy "MYPOLICY".

VALUES MQREAD(’MYSERVICE’,’MYPOLICY’)

Chapter 13. MQSeries routines 537

MQREADALL

The MQREADALL table function returns a table containing the messages and
message metadata from the MQSeries location specified by receive-service, using the
quality of service policy service-policy. Performing this operation does not remove
the messages from the queue associated with receive-service.

Syntax

�� MQREADALL (
receive-service

, service-policy
num-rows

) ��

The schema is DB2MQ for non-transactional message queuing functions, and
DB2MQ1C for one-phase commit transactional MQ functions.

Table function parameters

receive-service
A string containing the logical MQSeries destination from which the message is
read. If specified, the receive-service must refer to a service point defined in the
DB2MQ.MQSERVICE table. A service point is a logical end-point from which a
message is sent or received. Service point definitions include the name of the
MQSeries Queue Manager and Queue. If receive-service is not specified, then the
DB2.DEFAULT.SERVICE will be used. The maximum size of receive-service is 48
bytes.

service-policy
A string containing the MQSeries Service Policy used in the handling of this
message. If specified, the service-policy refers to a Policy defined in the
DB2MQ.MQPOLICY table. A service policy defines a set of quality of service
options that should be applied to this messaging operation. These options
include message priority and message persistence. If service-policy is not
specified, then the default DB2.DEFAULT.POLICY will be used. The maximum
size of service-policy is 48 bytes.

num-rows
A positive integer containing the maximum number of messages to be returned
by the function.

If num-rows is specified, then a maximum of num-rows messages will be
returned. If num-rows is not specified, then all available messages will be
returned.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

538 Administrative Routines and Views

Examples

Example 1: This example receives all the messages from the queue specified by the
default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). The messages and all the metadata are returned as a
table.
SELECT * FROM table (MQREADALL()) AS T

Example 2: This example receives all the messages from the head of the queue
specified by the service MYSERVICE, using the default policy
(DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns are returned.
SELECT T.MSG, T.CORRELID FROM table (MQREADALL(’MYSERVICE’)) AS T

Example 3: This example reads the head of the queue specified by the default
service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). Only messages with a CORRELID of '1234' are returned.
All columns are returned.
SELECT * FROM table (MQREADALL()) AS T WHERE T.CORRELID = ’1234’

Example 4: This example receives the first 10 messages from the head of the queue
specified by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). All columns are returned.
SELECT * FROM table (MQREADALL(10)) AS T

Information returned

Table 153. Information returned by the MQREADALL table function

Column name Data type Description

MSG VARCHAR(32000) Contains the contents of the
MQSeries message.

CORRELID VARCHAR(24) Contains a correlation ID
that can be used to identify
messages. You can select a
message from the queue
using this identifier. In the
case of a request and
response scenario, the
correlation ID enables you to
associate a response with a
particular request.

TOPIC VARCHAR(40) Contains the topic with
which the message was
published, if available.

QNAME VARCHAR(48) Contains the name of the
queue where the message
was received.

MSGID CHAR(24) Contains the assigned unique
MQSeries identifier for this
message.

MSGFORMAT VARCHAR(8) Contains the format of the
message, as defined by
MQSeries. Typical strings
have an MQSTR format.

Chapter 13. MQSeries routines 539

MQREADALLCLOB

The MQREADALLCLOB table function returns a table containing the messages
and message metadata from the MQSeries location specified by receive-service,
using the quality of service policy service-policy. Performing this operation does not
remove the messages from the queue associated with receive-service.

Syntax

�� MQREADALLCLOB �

� ()
receive-service num-rows

, service-policy

��

The schema is DB2MQ.

Table function parameters

receive-service
A string containing the logical MQSeries destination from which the message is
read. If specified, the receive-service must refer to a service point defined in the
DB2MQ.MQSERVICE table. A service point is a logical end-point from which a
message is sent or received. Service point definitions include the name of the
MQSeries Queue Manager and Queue. If receive-service is not specified, then the
DB2.DEFAULT.SERVICE will be used. The maximum size of receive-service is 48
bytes.

service-policy
A string containing the MQSeries Service Policy used in the handling of this
message. If specified, the service-policy refers to a Policy defined in the
DB2MQ.MQPOLICY table. A service policy defines a set of quality of service
options that should be applied to this messaging operation. These options
include message priority and message persistence. If service-policy is not
specified, then the default DB2.DEFAULT.POLICY will be used. The maximum
size of service-policy is 48 bytes.

num-rows
A positive integer containing the maximum number of messages to be returned
by the function.

If num-rows is specified, then a maximum of num-rows messages will be
returned. If num-rows is not specified, then all available messages will be
returned.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

540 Administrative Routines and Views

Examples

Example 1: This example receives all the messages from the queue specified by the
default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). The messages and all the metadata are returned as a
table.
SELECT * FROM table (MQREADALLCLOB()) AS T

Example 2: This example receives all the messages from the head of the queue
specified by the service MYSERVICE, using the default policy
(DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns are returned.
SELECT T.MSG, T.CORRELID FROM table (MQREADALLCLOB(’MYSERVICE’)) AS T

Example 3: This example reads the head of the queue specified by the default
service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). Only messages with a CORRELID of '1234' are returned.
All columns are returned.
SELECT * FROM table (MQREADALLCLOB()) AS T WHERE T.CORRELID = ’1234’

Example 4: This example receives the first 10 messages from the head of the queue
specified by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). All columns are returned.
SELECT * FROM table (MQREADALLCLOB(10)) AS T

Information returned

Table 154. Information returned by the MQREADALLCLOB table function

Column name Data type Description

MSG CLOB(1M) Contains the contents of the
MQSeries message.

CORRELID VARCHAR(24) Contains a correlation ID
that can be used to identify
messages. You can select a
message from the queue
using this identifier. In the
case of a request and
response scenario, the
correlation ID enables you to
associate a response with a
particular request.

TOPIC VARCHAR(40) Contains the topic with
which the message was
published, if available.

QNAME VARCHAR(48) Contains the name of the
queue where the message
was received.

MSGID CHAR(24) Contains the assigned unique
MQSeries identifier for this
message.

MSGFORMAT VARCHAR(8) Contains the format of the
message, as defined by
MQSeries. Typical strings
have an MQSTR format.

Chapter 13. MQSeries routines 541

MQREADCLOB

The MQREADCLOB function returns a message from the MQSeries location
specified by receive-service, using the quality of service policy defined in
service-policy. Executing this operation does not remove the message from the
queue associated with receive-service, but instead returns the message at the head of
the queue.

The data type of the result is CLOB(1M). If no messages are available to be
returned, the result is the null value.

Syntax

�� MQREADCLOB (
receive-service

, service-policy

) ��

The schema is DB2MQ.

Function parameters

receive-service
A string containing the logical MQSeries destination from where the message is
to be received. If specified, the receive-service must refer to a Service Point
defined in the DB2MQ.MQSERVICE table. A service point is a logical
end-point from where a message is sent or received. Service points definitions
include the name of the MQSeries Queue Manager and Queue. If receive-service
is not specified, then the DB2.DEFAULT.SERVICE will be used. The maximum
size of receive-service is 48 bytes.

service-policy
A string containing the MQSeries Service Policy used in handling this message.
If specified, the service-policy must refer to a Policy defined in the
DB2MQ.MQPOLICY table. A Service Policy defines a set of quality of service
options that should be applied to this messaging operation. These options
include message priority and message persistence. If service-policy is not
specified, then the default DB2.DEFAULT.POLICY will be used. The maximum
size of service-policy is 48 bytes.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

Examples

Example 1: This example reads the message at the head of the queue specified by
the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY).

VALUES MQREADCLOB()

542 Administrative Routines and Views

Example 2: This example reads the message at the head of the queue specified by
the service "MYSERVICE" using the default policy (DB2.DEFAULT.POLICY).

VALUES MQREADCLOB(’MYSERVICE’)

Example 3: This example reads the message at the head of the queue specified by
the service "MYSERVICE", and using the policy "MYPOLICY".

VALUES MQREADCLOB(’MYSERVICE’,’MYPOLICY’)

MQRECEIVE

The MQRECEIVE function returns a message from the MQSeries location specified
by receive-service, using the quality of service policy service-policy. Performing this
operation removes the message from the queue associated with receive-service. If the
correl-id is specified, then the first message with a matching correlation identifier
will be returned. If correl-id is not specified, then the message at the head of the
queue will be returned.

The data type of the result is VARCHAR (32000). If no messages are available to be
returned, the result is the null value.

Syntax

�� MQRECEIVE �

� ()
receive-service

, service-policy
, correl-id

��

The schema is DB2MQ for non-transactional message queuing functions, and
DB2MQ1C for one-phase commit transactional MQ functions.

Function parameters

receive-service
A string containing the logical MQSeries destination from which the message is
received. If specified, the receive-service must refer to a Service Point defined in
the DB2MQ.MQSERVICE table. A service point is a logical end-point from
which a message is sent or received. Service points definitions include the
name of the MQSeries Queue Manager and Queue. If receive-service is not
specified, the DB2.DEFAULT.SERVICE is used. The maximum size of
receive-service is 48 bytes.

service-policy
A string containing the MQSeries Service Policy to be used in the handling of
this message. If specified, service-policy must refer to a policy defined in the
DB2MQ.MQPOLICY table. A service policy defines a set of quality of service
options that should be applied to this messaging operation. These options
include message priority and message persistence. If service-policy is not
specified, the default DB2.DEFAULT.POLICY is used. The maximum size of
service-policy is 48 bytes.

correl-id
A string containing an optional correlation identifier to be associated with this
message. The correl-id is often specified in request and reply scenarios to

Chapter 13. MQSeries routines 543

associate requests with replies. If not specified, no correlation id will be
specified. The maximum size of correl-id is 24 bytes.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

Examples

Example 1: This example receives the message at the head of the queue specified
by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY).

VALUES MQRECEIVE()

Example 2: This example receives the message at the head of the queue specified
by the service "MYSERVICE" using the default policy (DB2.DEFAULT.POLICY).

VALUES MQRECEIVE(’MYSERVICE’)

Example 3: This example receives the message at the head of the queue specified
by the service "MYSERVICE" using the policy "MYPOLICY".

VALUES MQRECEIVE(’MYSERVICE’,’MYPOLICY’)

Example 4: This example receives the first message with a correlation id that
matches '1234' from the head of the queue specified by the service "MYSERVICE"
using the policy "MYPOLICY".

VALUES MQRECEIVE(’MYSERVICE’,’MYPOLICY’,’1234’)

MQRECEIVEALL

The MQRECEIVEALL table function returns a table containing the messages and
message metadata from the MQSeries location specified by receive-service, using the
quality of service policy service-policy. Performing this operation removes the
messages from the queue associated with receive-service.

Syntax

�� MQRECEIVEALL (�

�
receive-service

, service-policy
, correl-id

�

�
num-rows

,

) ��

The schema is DB2MQ for non-transactional message queuing functions, and
DB2MQ1C for one-phase commit transactional MQ functions.

544 Administrative Routines and Views

Table function parameters

receive-service
A string containing the logical MQSeries destination from which the message is
received. If specified, the receive-service must refer to a service point defined in
the DB2MQ.MQSERVICE table. A service point is a logical end-point from
which a message is sent or received. Service point definitions include the name
of the MQSeries Queue Manager and Queue. If receive-service is not specified,
then the DB2.DEFAULT.SERVICE will be used. The maximum size of
receive-service is 48 bytes.

service-policy
A string containing the MQSeries Service Policy used in the handling of this
message. If specified, the service-policy refers to a Policy defined in the
DB2MQ.MQPOLICY table. A service policy defines a set of quality of service
options that should be applied to this messaging operation. These options
include message priority and message persistence. If service-policy is not
specified, then the default DB2.DEFAULT.POLICY will be used. The maximum
size of service-policy is 48 bytes.

correl-id
An optional string containing a correlation identifier associated with this
message. The correl-id is often specified in request and reply scenarios to
associate requests with replies. If not specified, no correlation id is specified.
The maximum size of correl-id is 24 bytes.

If a correl-id is specified, all the messages with a matching correlation identifier
are returned and removed from the queue. If correl-id is not specified, the
message at the head of the queue is returned.

num-rows
A positive integer containing the maximum number of messages to be returned
by the function.

If num-rows is specified, then a maximum of num-rows messages will be
returned. If num-rows is not specified, then all available messages will be
returned.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

Examples

Example 1: This example receives all the messages from the queue specified by the
default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). The messages and all the metadata are returned as a
table.
SELECT * FROM table (MQRECEIVEALL()) AS T

Example 2: This example receives all the messages from the head of the queue
specified by the service MYSERVICE, using the default policy
(DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns are returned.
SELECT T.MSG, T.CORRELID FROM table (MQRECEIVEALL(’MYSERVICE’)) AS T

Chapter 13. MQSeries routines 545

Example 3: This example receives all of the message from the head of the queue
specified by the service "MYSERVICE", using the policy "MYPOLICY". Only
messages with a CORRELID of '1234' are returned. Only the MSG and CORRELID
columns are returned.
SELECT T.MSG, T.CORRELID FROM table

(MQRECEIVEALL(’MYSERVICE’,’MYPOLICY’,’1234’)) AS T

Example 4: This example receives the first 10 messages from the head of the queue
specified by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). All columns are returned.
SELECT * FROM table (MQRECEIVEALL(10)) AS T

Information returned

Table 155. Information returned by the MQRECEIVEALL table function

Column name Data type Description

MSG VARCHAR(32000) Contains the contents of the
MQSeries message.

CORRELID VARCHAR(24) Contains a correlation ID
that can be used to identify
messages. You can select a
message from the queue
using this identifier. In the
case of a request and
response scenario, the
correlation ID enables you to
associate a response with a
particular request.

TOPIC VARCHAR(40) Contains the topic with
which the message was
published, if available.

QNAME VARCHAR(48) Contains the name of the
queue where the message
was received.

MSGID CHAR(24) Contains the assigned unique
MQSeries identifier for this
message.

MSGFORMAT VARCHAR(8) Contains the format of the
message, as defined by
MQSeries. Typical strings
have an MQSTR format.

MQRECEIVEALLCLOB

The MQRECEIVEALLCLOB table function returns a table containing the messages
and message metadata from the MQSeries location specified by receive-service,
using the quality of service policy service-policy. Performing this operation removes
the messages from the queue associated with receive-service.

Syntax

�� MQRECEIVEALLCLOB (�

546 Administrative Routines and Views

�
receive-service

, service-policy
, correl-id

�

�
num-rows

,

) ��

The schema is DB2MQ.

Table function parameters

receive-service
A string containing the logical MQSeries destination from which the message is
received. If specified, the receive-service must refer to a service point defined in
the DB2MQ.MQSERVICE table. A service point is a logical end-point from
which a message is sent or received. Service point definitions include the name
of the MQSeries Queue Manager and Queue. If receive-service is not specified,
then the DB2.DEFAULT.SERVICE will be used. The maximum size of
receive-service is 48 bytes.

service-policy
A string containing the MQSeries Service Policy used in the handling of this
message. If specified, the service-policy refers to a Policy defined in the
DB2MQ.MQPOLICY table A service policy defines a set of quality of service
options that should be applied to this messaging operation. These options
include message priority and message persistence. If service-policy is not
specified, then the default DB2.DEFAULT.POLICY will be used. The maximum
size of service-policy is 48 bytes.

correl-id
An optional string containing a correlation identifier associated with this
message. The correl-id is often specified in request and reply scenarios to
associate requests with replies. If not specified, no correlation id is specified.
The maximum size of correl-id is 24 bytes.

If a correl-id is specified, then only those messages with a matching correlation
identifier will be returned. If correl-id is not specified, then the message at the
head of the queue will be returned.

num-rows
A positive integer containing the maximum number of messages to be returned
by the function.

If num-rows is specified, then a maximum of num-rows messages will be
returned. If num-rows is not specified, then all available messages are returned.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

Chapter 13. MQSeries routines 547

Examples

Example 1: This example receives all the messages from the queue specified by the
default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). The messages and all the metadata are returned as a
table.
SELECT * FROM table (MQRECEIVEALLCLOB()) AS T

Example 2: This example receives all the messages from the head of the queue
specified by the service MYSERVICE, using the default policy
(DB2.DEFAULT.POLICY). Only the MSG and CORRELID columns are returned.
SELECT T.MSG, T.CORRELID

FROM table (MQRECEIVEALLCLOB(’MYSERVICE’)) AS T

Example 3: This example receives all of the message from the head of the queue
specified by the service "MYSERVICE", using the policy "MYPOLICY". Only
messages with a CORRELID of '1234' are returned. Only the MSG and CORRELID
columns are returned.
SELECT T.MSG, T.CORRELID

FROM table (MQRECEIVEALLCLOB(’MYSERVICE’,’MYPOLICY’,’1234’)) AS T

Example 4: This example receives the first 10 messages from the head of the queue
specified by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY). All columns are returned.
SELECT * FROM table (MQRECEIVEALLCLOB(10)) AS T

Information returned

Table 156. Information returned by the MQRECEIVEALLCLOB table function

Column name Data type Description

MSG CLOB(1M) Contains the contents of the
MQSeries message.

CORRELID VARCHAR(24) Contains a correlation ID
that can be used to identify
messages. You can select a
message from the queue
using this identifier. In the
case of a request and
response scenario, the
correlation ID enables you to
associate a response with a
particular request.

TOPIC VARCHAR(40) Contains the topic with
which the message was
published, if available.

QNAME VARCHAR(48) Contains the name of the
queue where the message
was received.

MSGID CHAR(24) Contains the assigned unique
MQSeries identifier for this
message.

MSGFORMAT VARCHAR(8) Contains the format of the
message, as defined by
MQSeries. Typical strings
have an MQSTR format.

548 Administrative Routines and Views

MQRECEIVECLOB

The MQRECEIVECLOB function returns a message from the MQSeries location
specified by receive-service, using the quality of service policy service-policy.
Performing this operation removes the message from the queue associated with
receive-service. If the correl-id is specified, the first message with a matching
correlation identifier will be returned. If correl-id is not specified, the message at the
head of the queue will be returned.

The data type of the result is CLOB(1M). If no messages are available to be
returned, the result is the null value.

Syntax

�� MQRECEIVECLOB �

� ()
receive-service

, service-policy
, correl-id

��

The schema is DB2MQ.

Function parameters

receive-service
A string containing the logical MQSeries destination from which the message is
received. If specified, the receive-service must refer to a Service Point defined in
the DB2MQ.MQSERVICE table. A service point is a logical end-point from
which a message is sent or received. Service points definitions include the
name of the MQSeries Queue Manager and Queue. If receive-service is not
specified, the DB2.DEFAULT.SERVICE is used. The maximum size of
receive-service is 48 bytes.

service-policy
A string containing the MQSeries Service Policy to be used in the handling of
this message. If specified, the service-policy must refer to a policy defined in the
DB2MQ.MQPOLICY table. A service policy defines a set of quality of service
options that should be applied to this messaging operation. These options
include message priority and message persistence. If service-policy is not
specified, the default DB2.DEFAULT.POLICY is used. The maximum size of
service-policy is 48 bytes.

correl-id
A string containing an optional correlation identifier to be associated with this
message. The correl-id is often specified in request and reply scenarios to
associate requests with replies. If not specified, no correlation id will be used.
The maximum size of correl-id is 24 bytes.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority

Chapter 13. MQSeries routines 549

v DBADM authority
v SQLADM authority

Examples

Example 1: This example receives the message at the head of the queue specified
by the default service (DB2.DEFAULT.SERVICE), using the default policy
(DB2.DEFAULT.POLICY).

VALUES MQRECEIVECLOB()

Example 2: This example receives the message at the head of the queue specified
by the service "MYSERVICE" using the default policy (DB2.DEFAULT.POLICY).

VALUES MQRECEIVECLOB(’MYSERVICE’)

Example 3: This example receives the message at the head of the queue specified
by the service "MYSERVICE" using the policy "MYPOLICY".

VALUES MQRECEIVECLOB(’MYSERVICE’,’MYPOLICY’)

Example 4: This example receives the first message with a correlation ID that
matches '1234' from the head of the queue specified by the service "MYSERVICE"
using the policy "MYPOLICY".

VALUES MQRECEIVECLOB(’MYSERVICE’,MYPOLICY’,’1234’)

MQSEND

The MQSEND function sends the data contained in msg-data to the MQSeries
location specified by send-service, using the quality of service policy defined by
service-policy. An optional user-defined message correlation identifier can be
specified using correl-id.

The data type of the result is VARCHAR(1). The result of the function is '1' if
successful or '0' if unsuccessful.

Syntax

�� MQSEND (
send-service ,

service-policy ,

msg-data �

�
(1)

, correl-id

) ��

Notes:

1 The correl-id cannot be specified unless a service and a policy are also specified.

The schema is DB2MQ for non-transactional message queuing functions, and
DB2MQ1C for one-phase commit transactional MQ functions.

Function parameters

msg-data
A string expression containing the data to be sent via MQSeries. The maximum

550 Administrative Routines and Views

size for a VARCHAR string expression is 32 000 bytes and the maximum size
for a CLOB string expression is 1M bytes.

send-service
A string containing the logical MQSeries destination where the message is to
be sent. If specified, the send-service refers to a service point defined in the
DB2MQ.MQSERVICE table. A service point is a logical end-point from which a
message may be sent or received. Service point definitions include the name of
the MQSeries Queue Manager and Queue. If send-service is not specified, the
value of DB2.DEFAULT.SERVICE is used. The maximum size of send-service is
48 bytes.

service-policy
A string containing the MQSeries Service Policy used in handling of this
message. If specified, the service-policy must refer to a service policy defined in
the DB2MQ.MQPOLICY table. A Service Policy defines a set of quality of
service options that should be applied to this messaging operation. These
options include message priority and message persistence. If service-policy is
not specified, a default value of DB2.DEFAULT.POLICY will be used. The
maximum size of service-policy is 48 bytes.

correl-id
An optional string containing a correlation identifier associated with this
message. The correl-id is often specified in request and reply scenarios to
associate requests with replies. If not specified, no correlation ID will be sent.
The maximum size of correl-id is 24 bytes.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

Examples

Example 1: This example sends the string "Testing 123" to the default service
(DB2.DEFAULT.SERVICE), using the default policy (DB2.DEFAULT.POLICY), with
no correlation identifier.

VALUES MQSEND(’Testing 123’)

Example 2: This example sends the string "Testing 345" to the service
"MYSERVICE", using the policy "MYPOLICY", with no correlation identifier.

VALUES MQSEND(’MYSERVICE’,’MYPOLICY’,’Testing 345’)

Example 3: This example sends the string "Testing 678" to the service
"MYSERVICE", using the policy "MYPOLICY", with correlation identifier "TEST3".

VALUES MQSEND(’MYSERVICE’,’MYPOLICY’,’Testing 678’,’TEST3’)

Example 4: This example sends the string "Testing 901" to the service
"MYSERVICE", using the default policy (DB2.DEFAULT.POLICY), and no
correlation identifier.

VALUES MQSEND(’MYSERVICE’,’Testing 901’)

Chapter 13. MQSeries routines 551

MQSUBSCRIBE

The MQSUBSCRIBE function is used to register interest in MQSeries messages
published on a specified topic. Successful execution of this function causes the
publish and subscribe server to forward messages matching the topic to the service
point defined by subscriber-service. The subscriber-service specifies a logical
destination for messages that match the specified topic. Messages that match topic
are placed on the queue defined by subscriber-service, and can be read or received
through a subsequent call to MQREAD, MQRECEIVE, MQREADALL, or
MQRECEIVEALL. For more details, visit http://
www.ibm.com�?�software�?�MQSeries.

The data type of the result is VARCHAR(1). The result of the function is '1' if
successful or '0' if unsuccessful.

Syntax

�� MQSUBSCRIBE (
subscriber-service ,

service-policy ,

topic) ��

The schema is DB2MQ for non-transactional message queuing functions, and
DB2MQ1C for one-phase commit transactional MQ functions.

Function parameters

subscriber-service
A string containing the logical MQSeries subscription point to where messages
matching topic will be sent. If specified, the subscriber-service must refer to a
Subscribers Service Point defined in the DB2MQ.MQPUBSUB table that has a
type value of 'S' for publisher service. If subscriber-service is not specified, then
the DB2.DEFAULT.SUBSCRIBER will be used instead. The maximum size of
subscriber-service is 48 bytes.

service-policy
A string containing the MQSeries Service Policy to be used in handling the
message. If specified, the service-policy must refer to a Policy defined in the
DB2MQ.MQPOLICY table. A Service Policy defines a set of quality of service
options to be applied to this messaging operation. These options include
message priority and message persistence. If service-policy is not specified, then
the default DB2.DEFAULT.POLICY will be used instead. The maximum size of
service-policy is 48 bytes.

topic
A string defining the types of messages to receive. Only messages published
with the specified topics will be received by this subscription. Multiple
subscriptions can coexist. The maximum size of topic is 40 bytes. Multiple
topics can be specified in one string (up to 40 bytes long). Each topic must be
separated by a colon. For example, "t1:t2:the third topic" indicates that the
message is associated with all three topics: t1, t2, and "the third topic".

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function

552 Administrative Routines and Views

v DATAACCESS authority
v DBADM authority
v SQLADM authority

Examples

Example 1: This example registers an interest in messages containing the topic
"Weather". The default subscriber-service (DB2.DEFAULT.SUBSCRIBER) is
registered as the subscriber and the default service-policy (DB2.DEFAULT.POLICY)
specifies the quality of service.

VALUES MQSUBSCRIBE(’Weather’)

Example 2: This example demonstrates a subscriber registering interest in messages
containing "Stocks". The subscriber registers as "PORTFOLIO-UPDATES" with
policy "BASIC-POLICY".

VALUES MQSUBSCRIBE(’PORTFOLIO-UPDATES’,’BASIC-POLICY’,’Stocks’)

MQUNSUBSCRIBE

The MQUNSUBSCRIBE function is used to unregister an existing message
subscription. The subscriber-service, service-policy, and topic are used to identify the
subscription that is to be cancelled. Successful execution of this function causes the
publish and subscribe server to remove the specified subscription. Messages with
the specified topic will no longer be sent to the logical destination defined by
subscriber-service. For more details, visit http://www.ibm.com/software/MQSeries.

The data type of the result is VARCHAR(1). The result of the function is '1' if
successful or '0' if unsuccessful.

Syntax

�� MQUNSUBSCRIBE �

� (topic)
subscriber-service ,

service-policy ,

��

The schema is DB2MQ for non-transactional message queuing functions, and
DB2MQ1C for one-phase commit transactional MQ functions.

Function parameters

subscriber-service
If specified, the subscriber-service must refer to a Subscribers Service Point
defined in the DB2MQ.MQPUBSUB table that has a type value of 'S' for
publisher service. If subscriber-service is not specified, then the
DB2.DEFAULT.SUBSCRIBER will be used instead. The maximum size of
subscriber-service is 48 bytes.

service-policy
If specified, the service-policy must refer to a Policy defined in the
DB2MQ.MQPOLICY table. A Service Policy defines a set of quality of service
options to be applied to this messaging operation. If service-policy is not
specified, then the default DB2.DEFAULT.POLICY will be used. The maximum
size of service-policy is 48 bytes.

Chapter 13. MQSeries routines 553

topic
A string specifying the subject of messages that are not to be received. The
maximum size of topic is 40 bytes. Multiple topics can be specified in one
string (up to 40 bytes long). Each topic must be separated by a colon. For
example, "t1:t2:the third topic" indicates that the message is associated with all
three topics: t1, t2, and "the third topic".

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

Examples

Example 1: This example cancels an interest in messages containing the topic
"Weather". The default subscriber-service (DB2.DEFAULT.SUBSCRIBER) is
registered as the unsubscriber and the default service-policy
(DB2.DEFAULT.POLICY) specifies the quality of service.

VALUES MQUNSUBSCRIBE(’Weather’)

Example 2: This example demonstrates a subscriber canceling an interest in
messages containing "Stocks". The subscriber is registered as "PORTFOLIO-
UPDATES" with policy "BASIC-POLICY".

VALUES MQUNSUBSCRIBE(’PORTFOLIO-UPDATES’,’BASIC-POLICY’,’Stocks’)

554 Administrative Routines and Views

Chapter 14. Security routines and views

AUTH_GET_INSTANCE_AUTHID - Get the instance owner authorization
ID

The AUTH_GET_INSTANCE_AUTHID scalar function returns the authorization ID
of the instance owner

Syntax

�� AUTH_GET_INSTANCE_AUTHID () ��

The schema is SYSPROC.

Authorization

EXECUTE privilege on the AUTH_GET_INSTANCE_AUTHID scalar function.

Example

The following example shows how to use the DB2 command line processor (CLP)
to obtain the authorization ID of the instance owner:
db2 "values SYSPROC.AUTH_GET_INSTANCE_AUTHID()"

The following example is a sample output for this command.
1
-------------------------...-------------
ZURBIE

1 record(s) selected.

Usage notes

Common configurations have the instance owner account as a member of the
SYSADM group, therefore, before DB2 Version 9.7, applications that are run under
the instance owner account had unlimited authority on the database. In DB2
Version 9.7, a user who holds SYSADM authority no longer has implicit DBADM
authority and as a result applications that are run under the instance owner
account might experience authorization errors, such as SQL1092N, SQL0551N, and
SQL0552N, when performing operations that are no longer within the scope of
SYSADM authority.

The UPGRADE DATABASE command and the RESTORE DATABASE command (for an
earlier database) grant DBADM authority to the SYSADM group, however this is
not the case for any new Version 9.7 database.

To obtain a list of the authorities held by the instance owner authorization ID,
follow these steps:
1. Use the SYSPROC.AUTH_GET_INSTANCE_AUTHID() scalar function to

determine the instance owner authorization ID. For example:
db2 "VALUES SYSPROC.AUTH_GET_INSTANCE_AUTHID()"

© Copyright IBM Corp. 2006, 2012 555

This command returns.
1

BOB

1 record(s) selected.

2. Get a list of the authorities for this authorization ID. For example:
SELECT * FROM

TABLE (SYSPROC.AUTH_LIST_AUTHORITIES_FOR_AUTHID (’BOB’, ’U’)) AS T
ORDER BY AUTHORITY

3. If necessary, grant any missing authorities. For example:
GRANT DBADM ON DATABASE TO USER BOB

Information returned

Table 157. Information returned by the AUTH_GET_INSTANCE_AUTHID scalar function

Column name Data type Description

InstanceAuthId VARCHAR(128) The authorization ID of the
instance owner.

AUTH_LIST_AUTHORITIES_FOR_AUTHID

The AUTH_LIST_AUTHORITIES_FOR_AUTHID table function returns all
authorities held by the authorization ID, either found in the database configuration
file or granted to an authorization ID directly or indirectly through a group or a
role.

Syntax

�� AUTH_LIST_AUTHORITIES_FOR_AUTHID (authid , authidtype) ��

The schema is SYSPROC.

Table function parameters

authid
An input argument of type VARCHAR(128) that specifies the authorization ID
being queried. The authorization ID can be a user, group or a role. If authid is
NULL or an empty string, an empty result table is returned.

authidtype
An input argument of type VARCHAR(1) that specifies the authorization ID
type being queried. If authidtype does not exist, is NULL or an empty string, an
empty result table is returned. Possible values for authidtype are:
v G: Group
v R: Role
v U: User

Authorization

EXECUTE privilege on the AUTH_LIST_AUTHORITIES_FOR_AUTHID function.

556 Administrative Routines and Views

Information returned

Table 158. The information returned for AUTH_LIST_AUTHORITIES_FOR_AUTHID

Column Name Data Type Description

AUTHORITY VARCHAR(128) Authority held by the authorization ID

D_USER CHAR(1) Authority granted directly to the authid, when the authidtype is a
user (U). If the authidtype is a group (G) or a role (R), then the value
is not applicable ('*').

v N = Not held

v Y= Held

v * = Not applicable

D_GROUP CHAR(1) Authority granted directly to the authid when the authidtype is a
group (G), or to the group to which the authid belongs when the
authidtype is a user (U). If the authidtype is a role (R), then the value
is not applicable ('*').

v N = Not held

v Y= Held

v * = Not applicable

D_PUBLIC CHAR(1) Authority granted directly to the authid called PUBLIC when the
authidtype is a user (U) or a group (G). If the authidtype is a role (R),
then the value is not applicable ('*').

v N = Not held

v Y= Held

v * = Not applicable

ROLE_USER CHAR(1) Authority granted directly to a role granted the authid, when the
authidtype is a user (U). If the authidtype is a group (G) or a role (R),
then the value is not applicable ('*'). The role could be part of a role
hierarchy.

v N = Not held

v Y= Held

v * = Not applicable

ROLE_GROUP CHAR(1) Authority granted directly to a role granted to the authid when the
authidtype is a group (G). If the authidtype is a user (U) or a role (R),
then the value is not applicable ('*'). The role could be part of a role
hierarchy.

v N = Not held

v Y= Held

v * = Not applicable

ROLE_PUBLIC CHAR(1) Authority granted directly to a role granted to the authid called
PUBLIC when the authidtype is a user (U) or a group (G). If the
authidtype is a role (R), then the value is not applicable ('*'). The role
could be part of a role hierarchy.

v N = Not held

v Y= Held

v * = Not applicable

D_ROLE CHAR(1) Authority granted to a role or to a role granted to the role. If the
authidtype is a user (U) or a group (G), then the value is not
applicable ('*'). The role could be part of a role hierarchy.

v N = Not held

v Y= Held

v * = Not applicable

Chapter 14. Security routines and views 557

Example

Consider user ALICE who by default holds BIND, CONNECT, CREATETAB and
IMPLICIT_SCHEMA privileges through special group PUBLIC. ALICE is a member
of a group ADMIN1 who has the following system authorities: SYSADM,
SYSCTRL and SYSMAINT. She is also a member of group ADMIN2 who has
DBADM authority. Also, ALICE has been granted DBADM and SECADM database
authorities. Role R1 was granted to ALICE. LOAD authority was granted to role
R1. Role R2 was granted to group ADMIN1. CREATE_NOT_FENCED_ROUTINE
authority was granted to role R2.

Example 1: Retrieve all authorities user ALICE has granted either directly to her or
indirectly through a group, PUBLIC or a role.
SELECT AUTHORITY, D_USER, D_GROUP, D_PUBLIC, ROLE_USER, ROLE_GROUP, ROLE_PUBLIC, D_ROLE

FROM TABLE (SYSPROC.AUTH_LIST_AUTHORITIES_FOR_AUTHID (’ALICE’, ’U’)) AS T
ORDER BY AUTHORITY

AUTHORITY D_USER D_GROUP D_PUBLIC ROLE_USER ROLE_GROUP ROLE_PUBLIC D_ROLE
------------------------- ------ ------- -------- --------- ---------- ----------- ------
ACCESSCTRL N N N N N N *
BINDADD N N Y N N N *
CONNECT N N Y N N N *
CREATE_EXTERNAL_ROUTINE N N N N N N *
CREATE_NOT_FENCED_ROUTINE N N N N Y N *
CREATETAB N N Y N N N *
DATAACCESS N N N N N N *
DBADM Y Y N N N N *
EXPLAIN N N N N N N *
IMPLICIT_SCHEMA N N Y N N N *
LOAD N N N Y N N *
QUIESCE_CONNECT N N N N N N *
SECADM Y N N N N N *
SQLADM N N N N N N *
SYSADM * Y * * * * *
SYSCTRL * Y * * * * *
SYSMAINT * Y * * * * *
SYSMON * N * * * * *
WLMADM N N N N N N *

Example 2: Retrieve all authorities group ADMIN1 has granted either directly to it
or indirectly through PUBLIC or a role.
SELECT AUTHORITY, D_USER, D_GROUP, D_PUBLIC, ROLE_USER, ROLE_GROUP, ROLE_PUBLIC, D_ROLE

FROM TABLE (SYSPROC.AUTH_LIST_AUTHORITIES_FOR_AUTHID (’ADMIN1’, ’G’)) AS T
ORDER BY AUTHORITY

AUTHORITY D_USER D_GROUP D_PUBLIC ROLE_USER ROLE_GROUP ROLE_PUBLIC D_ROLE
------------------------- ------ ------- -------- --------- ---------- ----------- ------
ACCESSCTRL * N * * N * *
BINDADD * N * * N * *
CONNECT * N * * N * *
CREATE_EXTERNAL_ROUTINE * N * * N * *
CREATE_NOT_FENCED_ROUTINE * N * * Y * *
CREATETAB * N * * N * *
DATAACCESS * N * * N * *
DBADM * N * * N * *
EXPLAIN * N * * N * *
IMPLICIT_SCHEMA * N * * N * *
LOAD * N * * N * *
QUIESCE_CONNECT * N * * N * *
SECADM * N * * N * *
SQLADM * N * * N * *
SYSADM * Y * * * * *
SYSCTRL * Y * * * * *
SYSMAINT * Y * * * * *
SYSMON * N * * * * *
WLMADM * N * * N * *

558 Administrative Routines and Views

Example 3: Retrieve all authorities special group PUBLIC has granted either
directly to it or indirectly through a role
SELECT AUTHORITY, D_USER, D_GROUP, D_PUBLIC, ROLE_USER, ROLE_GROUP, ROLE_PUBLIC, D_ROLE

FROM TABLE (SYSPROC.AUTH_LIST_AUTHORITIES_FOR_AUTHID (’PUBLIC’, ’G’)) AS T
ORDER BY AUTHORITY

1 D_USER D_GROUP D_PUBLIC ROLE_USER ROLE_GROUP ROLE_PUBLIC D_ROLE
------------------------- ------ ------- -------- --------- ---------- ----------- ------
ACCESSCTRL * * N * * N *
BINDADD * * Y * * N *
CONNECT * * Y * * N *
CREATE_EXTERNAL_ROUTINE * * N * * N *
CREATE_NOT_FENCED_ROUTINE * * N * * N *
CREATETAB * * Y * * N *
DATAACCESS * * N * * N *
DBADM * * N * * N *
EXPLAIN * * N * * N *
IMPLICIT_SCHEMA * * Y * * N *
LOAD * * N * * N *
QUIESCE_CONNECT * * N * * N *
SECADM * * N * * N *
SQLADM * * N * * N *
SYSADM * * * * * * *
SYSCTRL * * * * * * *
SYSMAINT * * * * * * *
SYSMON * * * * * * *
WLMADM * * N * * N *

Example 4: Retrieve all authorities role R1 has granted either directly to it or
indirectly through a role. Consider in this case that role R2 was also granted to role
R1.
SELECT AUTHORITY, D_USER, D_GROUP, D_PUBLIC, ROLE_USER, ROLE_GROUP, ROLE_PUBLIC, D_ROLE

FROM TABLE (SYSPROC.AUTH_LIST_AUTHORITIES_FOR_AUTHID (’R1’, ’R’)) AS T
ORDER BY AUTHORITY

AUTHORITY D_USER D_GROUP D_PUBLIC ROLE_USER ROLE_GROUP ROLE_PUBLIC D_ROLE
------------------------- ------ ------- -------- --------- ---------- ----------- ------
ACCESSCTRL * * * * * * N
BINDADD * * * * * * N
CONNECT * * * * * * N
CREATE_EXTERNAL_ROUTINE * * * * * * N
CREATE_NOT_FENCED_ROUTINE * * * * * * Y
CREATETAB * * * * * * N
DATAACCESS * * * * * * N
DBADM * * * * * * N
EXPLAIN * * * * * * N
IMPLICIT_SCHEMA * * * * * * N
LOAD * * * * * * Y
QUIESCE_CONNECT * * * * * * N
SECADM * * * * * * N
SYSADM * * * * * * *
SQLADM * * * * * * N
SYSCTRL * * * * * * *
SYSMAINT * * * * * * *
SYSMON * * * * * * *
WLMADM * * * * * * N

Usage Notes

The output of AUTH_LIST_AUTHORITIES_FOR_AUTHID table function depends
on the authidtype. For example, for an authidtype of USER, it returns all authorities
that authid holds through any means:
v granted directly to the authid

v granted to any group (or roles granted to the group) to which authid belongs
v granted to any role (or roles granted to the role) granted to authid

v granted to PUBLIC (or roles granted to PUBLIC)

Chapter 14. Security routines and views 559

AUTH_LIST_GROUPS_FOR_AUTHID table function - Retrieve group
membership list for a given authorization ID

The AUTH_LIST_GROUPS_FOR_AUTHID table function returns the list of groups
of which the given authorization ID is a member.

Syntax

�� AUTH_LIST_GROUPS_FOR_AUTHID (authid) ��

The schema is SYSPROC.

Table function parameter

authid
An input argument of type VARCHAR(128) that specifies the authorization ID
being queried. The authorization ID can only represent a user. If authid does
not exist, is NULL or empty string, an empty result table is returned.

Authorization

EXECUTE privilege on the AUTH_LIST_GROUPS_FOR_AUTHID table function.

Example

Retrieve all groups that AMY belongs to.
SELECT * FROM TABLE (SYSPROC.AUTH_LIST_GROUPS_FOR_AUTHID(’AMY’)) AS T

The following example is a sample output for this query.
GROUP
-------------------------...-------------
BUILD
PDXDB2

2 record(s) selected.

Usage notes

Group information returned might be different than expected for the following
reasons:
v In a Windows Active Directory environment, the database manager:

– supports one level of group nesting within a local group, except the nesting
of a domain local group within a local group. For example, if authid belongs
to the global group G1, and G1 belongs to the local group L1, the local group
L1 is returned as the group for authid. However, if authid belongs to the
domain local group DL1, and DL1 belongs to the local group L1, no group
information is returned for authid.

– does not support any nesting of global groups. For example, if authid belongs
to the global G2, and G2 belongs to the global G3, only G2 is returned as the
group for authid.

v The registry variable DB2_GRP_LOOKUP specifies which Windows security
mechanism is used to enumerate the groups to which a user belongs.

560 Administrative Routines and Views

v For an authorization ID that belongs to a particular domain, if the domain is not
specified as part of the authid, and both a local and domain authid exist with the
same name, the groups for the local authorization ID is returned.

v If the call to AUTH_LIST_GROUPS_FOR_AUTHID is for the same authid as the
connected user, then it will return the groups for the connected user. For
example, If AMY exists as a local user and as a domain user and the domain
user AMY has connected to the database, then
AUTH_LIST_GROUPS_FOR_AUTHID will return the groups to which the
domain AMY belongs to.

Information returned

Table 159. Information returned by the AUTH_LIST_GROUPS_FOR_AUTHID table function

Column name Data type Description

GROUP VARCHAR(128) The group to which the
authorization ID belongs.

AUTH_LIST_ROLES_FOR_AUTHID function - Returns the list of roles
The AUTH_LIST_ROLES_FOR_AUTHID function returns the list of roles in which
the given authorization ID is a member.

Syntax

�� AUTH_LIST_ROLES_FOR_AUTHID (authid , authidtype) ��

The schema is SYSPROC.

Table function parameters

authid
An input argument of type VARCHAR(128) that specifies the authorization ID
being queried. The authorization ID can be a user, group or a role. If authid is
NULL or an empty string, an empty result table is returned.

authidtype
An input argument of type VARCHAR(1) that specifies the authorization ID
type being queried. If authidtype does not exist, is NULL or an empty string, an
empty result table is returned. Possible values for authidtype are:
v G: Group
v R: Role
v U: User

Authorization

EXECUTE privilege on the AUTH_LIST_ROLES_FOR_AUTHID function.

Information returned

Table 160. The result sets for AUTH_LIST_ROLES_FOR_AUTHID

Column Name Data Type Description

GRANTOR VARCHAR(128) Grantor of the role.

Chapter 14. Security routines and views 561

Table 160. The result sets for AUTH_LIST_ROLES_FOR_AUTHID (continued)

Column Name Data Type Description

GRANTORTYPE CHAR(1) Type of grantor:

v U = Grantor is an individual user

GRANTEE VARCHAR(128) User granted the role.

GRANTEETYPE CHAR(1) Type of grantee:

v G = Grantee is a group

v R= Grantee is a role

v U= Grantee is a user

ROLENAME VARCHAR(128) Name of the role granted to the authorization ID directly or
indirectly through a group or another role.

CREATE_TIME TIMESTAMP Time when role was created.

ADMIN CHAR(1) Privilege to grant the role to, revoke the role from, or to
comment on a role:

v N = Not held

v Y= Held

Example

Consider granting role INTERN to role DOCTOR and role DOCTOR to role
SPECIALIST, then grant role SPECIALIST to user ALICE. ALICE belongs to group
HOSPITAL and role EMPLOYEE is granted to group HOSPITAL. ALICE also
belongs to special group PUBLIC and role PATIENTS is granted to PUBLIC.

Example 1: Retrieve all roles granted to user ALICE.
SELECT GRANTOR, GRANTORTYPE, GRANTEE, GRANTEETYPE, ROLENAME,
CREATE_TIME, ADMIN

FROM TABLE (SYSPROC.AUTH_LIST_ROLES_FOR_AUTHID (’ALICE’, ’U’)) AS T

The following example is a sample output for this query.
GRANTOR GRANTORTYPE GRANTEE GRANTEETYPE ROLENAME CREATE_TIME ADMIN
------- ----------- ------- ----------- -------- -------------------------- -----
ZURBIE U DOCTOR R INTERN 2006-08-01-15.09.58.537399 N
ZURBIE U SPECIALIST R DOCTOR 2006-08-01-15.10.04.540660 N
ZURBIE U ALICE U SPECIALIST 2006-08-01-15.10.08.776218 N
ZURBIE U HOSPITAL G EMPLOYEE 2006-08-01-15.10.14.277576 N
ZURBIE U PUBLIC G PATIENTS 2006-08-01-15.10.18.878609 N

5 record(s) selected.

Example 2: Retrieve all roles granted to group HOSPITAL.
SELECT GRANTOR, GRANTORTYPE, GRANTEE, GRANTEETYPE, ROLENAME,
CREATE_TIME, ADMIN

FROM TABLE (SYSPROC.AUTH_LIST_ROLES_FOR_AUTHID (’HOSPITAL’, ’G’)) AS T

The following example is a sample output for this query.
GRANTOR GRANTORTYPE GRANTEE GRANTEETYPE ROLENAME CREATE_TIME ADMIN
------- ----------- ------- ----------- -------- -------------------------- -----
ZURBIE U HOSPITAL G EMPLOYEE 2006-08-01-15.10.14.277576 N

1 record(s) selected.

Example 3: Retrieve all roles granted to role SPECIALIST.
SELECT GRANTOR, GRANTORTYPE, GRANTEE, GRANTEETYPE, ROLENAME,

CREATE_TIME, ADMIN
FROM TABLE (SYSPROC.AUTH_LIST_ROLES_FOR_AUTHID (’SPECIALIST’, ’R’)) AS T

562 Administrative Routines and Views

The following example is a sample output for this query.
GRANTOR GRANTORTYPE GRANTEE GRANTEETYPE ROLENAME CREATE_TIME ADMIN
------- ----------- ------- ----------- -------- -------------------------- -----
ZURBIE U DOCTOR R INTERN 2006-08-01-15.09.58.537399 N
ZURBIE U SPECIALIST R DOCTOR 2006-08-01-15.10.04.540660 N

2 record(s) selected.

Example 4: Retrieve all roles granted to group PUBLIC
SELECT GRANTOR, GRANTORTYPE, GRANTEE, GRANTEETYPE, ROLENAME,

CREATE_TIME, ADMIN
FROM TABLE (SYSPROC.AUTH_LIST_ROLES_FOR_AUTHID (’PUBLIC’, ’G’)) AS T

The following example is a sample output for this query.
GRANTOR GRANTORTYPE GRANTEE GRANTEETYPE ROLENAME CREATE_TIME ADMIN
------- ----------- ------- ----------- -------- -------------------------- -----
ZURBIE U PUBLIC G PATIENTS 2006-08-01-15.10.18.878609 N

1 record(s) selected.

Usage notes

The output of AUTH_LIST_ROLES_FOR_AUTHID table function depends on the
AUTHIDTYPE:
v For a user it returns the roles granted to the user directly or indirectly through

another roles, groups that the user belongs to (or PUBLIC).
v For a group it returns the roles granted to the group, directly or indirectly

through another roles.
v For a role it returns the roles granted to the role, directly or indirectly through

another roles.

AUTHORIZATIONIDS administrative view - Retrieve authorization IDs
and types

The AUTHORIZATIONIDS administrative view returns a list of authorization IDs
that have been granted privileges or authorities, along with their types, for all
authorization IDs defined in the system catalogs from the currently connected
database. If privileges or authorities have been granted to groups or roles, only the
group or role names are returned.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the AUTHORIZATIONIDS administrative view
v CONTROL privilege on the AUTHORIZATIONIDS administrative view
v DATAACCESS authority

Example

Retrieve all authorization IDs that have been granted privileges or authorities,
along with their types.
SELECT * FROM SYSIBMADM.AUTHORIZATIONIDS

The following example is a sample output for this query.

Chapter 14. Security routines and views 563

AUTHID AUTHIDTYPE
-------------------------...------- ----------
PUBLIC G
JESSICAE U
DOCTOR R

3 record(s) selected.

Information returned

Table 161. Information returned by the AUTHORIZATIONIDS administrative view

Column name Data type Description

AUTHID VARCHAR(128) Authorization ID that has
been explicitly granted
privileges or authorities.

AUTHIDTYPE CHAR(1) Authorization ID type:

v U: user

v R: role

v G: group

OBJECTOWNERS administrative view – Retrieve object ownership
information

The OBJECTOWNERS administrative view returns all object ownership
information for every authorization ID of type USER that owns an object and that
is defined in the system catalogs from the currently connected database.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the OBJECTOWNERS administrative view
v CONTROL privilege on the OBJECTOWNERS administrative view
v DATAACCESS authority

Example

Retrieve all object ownership information for object schema 'THERESAX'.
SELECT SUBSTR(OWNER,1,10) AS OWNER, OWNERTYPE,

SUBSTR(OBJECTNAME,1,30) AS OBJECTNAME,
SUBSTR(OBJECTSCHEMA,1,10) AS OBJECTSCHEMA, OBJECTTYPE
FROM SYSIBMADM.OBJECTOWNERS WHERE OBJECTSCHEMA=’THERESAX’

The following example is a sample output for this query.
OWNER OWNERTYPE OBJECTNAME OBJECTSCHEMA OBJECTTYPE
---------- --------- -----------------... ------------ ----------------
THERESAX U MIN_SALARY THERESAX TRIGGER
THERESAX U POLICY_IR SYSTOOLS TRIGGER
THERESAX U CUSTOMER THERESAX XML SCHEMA
THERESAX U DB2DETAILDEADLOCK EVENTMONITORS
THERESAX U SAMPSEQUENCE THERESAX SEQUENCE
THERESAX U SQLE0F00 NULLID PACKAGE

564 Administrative Routines and Views

...
THERESAX U HI_OBJ_UNIQ SYSTOOLS TABLE CONSTRAINT

257 record(s) selected.

Information returned

Table 162. Information returned by the OBJECTOWNERS administrative view

Column name Data type Description

OWNER VARCHAR(128) Authorization ID that owns
this object.

OWNERTYPE VARCHAR(1) Authorization ID type:

v U: user

OBJECTNAME VARCHAR(128) Database object name.

OBJECTSCHEMA VARCHAR(128) Database object schema.

OBJECTTYPE VARCHAR(24) Database object type.

PRIVILEGES administrative view – Retrieve privilege information

The PRIVILEGES administrative view returns all explicit privileges for all
authorization IDs defined in the system catalogs from the currently connected
database.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the PRIVILEGES administrative view
v CONTROL privilege on the PRIVILEGES administrative view
v DATAACCESS authority

Example

Retrieve the privilege granted along with the object name, schema and type, for all
authorization IDs.
SELECT AUTHID, PRIVILEGE, OBJECTNAME, OBJECTSCHEMA, OBJECTTYPE

FROM SYSIBMADM.PRIVILEGES

The following example is a sample output for this query.
AUTHID PRIVILEGE OBJECTNAME OBJECTSCHEMA OBJECTTYPE
--------...- ----------- -------------------...- ------------...- ----------...-
JESSICAE EXECUTE SQLE0F00 NULLID PACKAGE
PUBLIC EXECUTE SYSSH201 NULLID PACKAGE
JESSICAE EXECUTE SYSSH202 NULLID PACKAGE
PUBLIC EXECUTE SYSSH202 NULLID PACKAGE
DOCTOR EXECUTE PKG0123 NULLID PACKAGE
...
PUBLIC EXECUTE SQL051109185227800 SYSPROC FUNCTION
JESSICAE EXECUTE SQL051109185227801 SYSPROC FUNCTION
PUBLIC EXECUTE SQL051109185227801 SYSPROC FUNCTION
JESSICAE EXECUTE SQL051109185227838 SYSPROC FUNCTION
PUBLIC EXECUTE SQL051109185227838 SYSPROC FUNCTION
...
PUBLIC EXECUTE LIST_SRVR_TYPES SYSPROC PROCEDURE

Chapter 14. Security routines and views 565

PUBLIC EXECUTE LIST_SRVR_VERSIONS SYSPROC PROCEDURE
PUBLIC EXECUTE LIST_WRAP_OPTIONS SYSPROC PROCEDURE
PUBLIC EXECUTE LIST_SRVR_OPTIONS SYSPROC PROCEDURE
...
SYSTEM POLICY_UNQ SYSTOOLS INDEX
PUBLIC CREATEIN NULLID SCHEMA
PUBLIC UPDATE COLUMNS SYSSTAT VIEW
PUBLIC UPDATE COLGROUPS SYSSTAT VIEW
...

Information returned

Table 163. Information returned by the PRIVILEGES administrative view

Column name Data type Description

AUTHID VARCHAR(128) Authorization ID that has
been explicitly granted this
privilege.

AUTHIDTYPE CHAR(1) Authorization ID type:

v U: user

v R: role

v G: group

PRIVILEGE VARCHAR(11) Privilege that has been
explicitly granted to this
authorization ID.

GRANTABLE VARCHAR(1) Indicates if the privilege is
grantable:

v Y: Grantable

v N: Not grantable

OBJECTNAME VARCHAR(128) Database object name.

OBJECTSCHEMA VARCHAR(128) Database object schema.

OBJECTTYPE VARCHAR(24) Database object type.

566 Administrative Routines and Views

Chapter 15. Snapshot routines and views

APPL_PERFORMANCE administrative view - Retrieve percentage of
rows selected for an application

The APPL_PERFORMANCE administrative view displays information about the
percentage of rows selected by an application. The information returned is for all
database partitions for the currently connected database. This view can be used to
look for applications that might be performing large table scans or to look for
potentially troublesome queries.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the APPL_PERFORMANCE administrative view
v CONTROL privilege on the APPL_PERFORMANCE administrative view
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve the report on application performance.
SELECT SNAPSHOT_TIMESTAMP, SUBSTR(AUTHID,1,10) AS AUTHID,

SUBSTR(APPL_NAME,1,10) AS APPL_NAME,AGENT_ID,
PERCENT_ROWS_SELECTED, DBPARTITIONNUM
FROM SYSIBMADM.APPL_PERFORMANCE

The following example is a sample output for this query.
SNAPSHOT_TIMESTAMP AUTHID APPL_NAME ...
-------------------------- ---------- ---------- ...
2006-01-07-17.01.15.966668 JESSICAE db2bp.exe ...
2006-01-07-17.01.15.980278 JESSICAE db2taskd ...
2006-01-07-17.01.15.980278 JESSICAE db2bp.exe ...

...
3 record(s) selected. ...

Output for this query (continued).
... AGENT_ID PERCENT_ROWS_SELECTED DBPARTITIONNUM
... --------...-- --------------------- --------------
... 67 - 1
... 68 - 0
... 67 57.14 0
...

© Copyright IBM Corp. 2006, 2012 567

Information returned

Table 164. Information returned by the APPL_PERFORMANCE administrative view

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

AUTHID VARCHAR(128) auth_id - Authorization ID

APPL_NAME VARCHAR(256) appl_name - Application name

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

PERCENT_ROWS_SELECTED DECIMAL(5,2) The percent of rows read from disk
that were actually returned to the
application.
Note: The percentage shown will
not be greater than 100.00 percent.

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

APPLICATIONS administrative view - Retrieve connected database
application information

The APPLICATIONS administrative view returns information about the connected
database applications. The view is an SQL interface for the LIST APPLICATIONS
SHOW DETAIL CLP command, but only for the currently connected database. Its
information is based on the SNAPAPPL_INFO administrative view.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the APPLICATIONS administrative view
v CONTROL privilege on the APPLICATIONS administrative view
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Example 1: List information for all the active applications in the single-partitioned
database SAMPLE.
SELECT AGENT_ID, SUBSTR(APPL_NAME,1,10) AS APPL_NAME, AUTHID,

APPL_STATUS FROM SYSIBMADM.APPLICATIONS WHERE DB_NAME = ’SAMPLE’

The following example is a sample output for this query.

568 Administrative Routines and Views

AGENT_ID APPL_NAME AUTHID APPL_STATUS
-------------------- ---------- ---------- ---------------------

23 db2bp.exe JESSICAE UOWEXEC

1 record(s) selected.

Example 2: List the number of agents per application on database partition 0 for the
multi-partition database SAMPLE.
SELECT SUBSTR(APPL_NAME, 1, 10) AS APPL_NAME, COUNT(*) AS NUM

FROM SYSIBMADM.APPLICATIONS WHERE DBPARTITIONNUM = 0
AND DB_NAME = ’SAMPLE’ GROUP BY APPL_NAME

The following example is a sample output for this query.
APPL_NAME NUM
---------- -----------
db2bp.exe 3
javaw.exe 1

2 record(s) selected.

Usage notes

The view does not support the GLOBAL syntax available from the CLP. However,
aggregation can be done using SQL aggregation functions as data from all database
partitions is returned from the view.

Information returned

Table 165. Information returned by the APPLICATIONS administrative view

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

CLIENT_DB_ALIAS VARCHAR(128) client_db_alias - Database alias
used by application

DB_NAME VARCHAR(128) db_name - Database name

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

APPL_NAME VARCHAR(256) appl_name - Application name

AUTHID VARCHAR(128) auth_id - Authorization ID

APPL_ID VARCHAR(128) appl_id - Application ID

Chapter 15. Snapshot routines and views 569

Table 165. Information returned by the APPLICATIONS administrative view (continued)

Column name Data type
Description or corresponding
monitor element

APPL_STATUS VARCHAR(22) appl_status - Application status.
This interface returns a text
identifier based on defines in
sqlmon.h, and is one of:

v BACKUP

v COMMIT_ACT

v COMP

v CONNECTED

v CONNECTPEND

v CREATE_DB

v DECOUPLED

v DISCONNECTPEND

v INTR

v IOERROR_WAIT

v LOAD

v LOCKWAIT

v QUIESCE_TABLESPACE

v RECOMP

v REMOTE_RQST

v RESTART

v RESTORE

v ROLLBACK_ACT

v ROLLBACK_TO_SAVEPOINT

v TEND

v THABRT

v THCOMT

v TPREP

v UNLOAD

v UOWEXEC

v UOWWAIT

v WAITFOR_REMOTE

STATUS_CHANGE_TIME TIMESTAMP status_change_time - Application
status change time

SEQUENCE_NO VARCHAR(4) sequence_no - Sequence number

CLIENT_PRDID VARCHAR(128) client_prdid - Client
product/version ID

CLIENT_PID BIGINT client_pid - Client process ID

570 Administrative Routines and Views

Table 165. Information returned by the APPLICATIONS administrative view (continued)

Column name Data type
Description or corresponding
monitor element

CLIENT_PLATFORM VARCHAR(12) client_platform - Client operating
platform. This interface returns a
text identifier based on defines in
sqlmon.h, and is one of:

v AIX

v AIX64

v AS400_DRDA

v DOS

v DYNIX

v HP

v HP64

v HPIA

v HPIA64

v LINUX

v LINUX390

v LINUXIA64

v LINUXPPC

v LINUXPPC64

v LINUXX8664

v LINUXZ64

v MAC

v MVS_DRDA

v NT

v NT64

v OS2

v OS390

v SCO

v SGI

v SNI

v SUN

v SUN64

v UNKNOWN

v UNKNOWN_DRDA

v VM_DRDA

v VSE_DRDA

v WINDOWS

v WINDOWS95

Chapter 15. Snapshot routines and views 571

Table 165. Information returned by the APPLICATIONS administrative view (continued)

Column name Data type
Description or corresponding
monitor element

CLIENT_PROTOCOL VARCHAR(10) client_protocol - Client
communication protocol. This
interface returns a text identifier
based on the defines in sqlmon.h,

v CPIC

v LOCAL

v NETBIOS

v NPIPE

v TCPIP

v TCPIP4

v TCPIP6

CLIENT_NNAME VARCHAR(128) The client_nname monitor element
is deprecated. The value returned
is not a valid value.

COORD_NODE_NUM SMALLINT coord_node - Coordinating node

COORD_AGENT_PID BIGINT coord_agent_pid - Coordinator
agent

NUM_ASSOC_AGENTS BIGINT num_assoc_agents - Number of
associated agents

TPMON_CLIENT_USERID VARCHAR(256) tpmon_client_userid - TP monitor
client user ID

TPMON_CLIENT_WKSTN VARCHAR(256) tpmon_client_wkstn - TP monitor
client workstation name

TPMON_CLIENT_APP VARCHAR(256) tpmon_client_app - TP monitor
client application name

TPMON_ACC_STR VARCHAR(200) tpmon_acc_str - TP monitor client
accounting string

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

BP_HITRATIO administrative view - Retrieve bufferpool hit ratio
information

The BP_HITRATIO administrative view returns bufferpool hit ratios, including
total hit ratio, data hit ratio, XDA hit ratio and index hit ratio, for all bufferpools
and all database partitions in the currently connected database.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the BP_HITRATIO administrative view
v CONTROL privilege on the BP_HITRATIO administrative view
v DATAACCESS authority

572 Administrative Routines and Views

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a report for all bufferpools in the connected database.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, SUBSTR(BP_NAME,1,14) AS BP_NAME,

TOTAL_HIT_RATIO_PERCENT, DATA_HIT_RATIO_PERCENT,
INDEX_HIT_RATIO_PERCENT, XDA_HIT_RATIO_PERCENT, DBPARTITIONNUM
FROM SYSIBMADM.BP_HITRATIO ORDER BY DBPARTITIONNUM

The following example is a sample output for this query.
DB_NAME BP_NAME TOTAL_HIT_RATIO_PERCENT DATA_HIT_RATIO_PERCENT ...
-------- -------------- ----------------------- ---------------------- ...
TEST IBMDEFAULTBP 63.09 68.94 ...
TEST IBMSYSTEMBP4K - - ...
TEST IBMSYSTEMBP8K - - ...
TEST IBMSYSTEMBP16K - - ...
TEST IBMSYSTEMBP32K - - ...

Output for this query (continued).
... INDEX_HIT_RATIO_PERCENT XDA_HIT_RATIO_PERCENT DBPARTITIONNUM
... ----------------------- --------------------- --------------
... 43.20 - 0
... - - 0
... - - 0
... - - 0
... - - 0

Usage notes

The ratio of physical reads to total reads gives the hit ratio for the bufferpool. The
lower the hit ratio, the more the data is being read from disk rather than the
cached buffer pool which can be a more costly operation.

Information returned

Table 166. Information returned by the BP_HITRATIO administrative view

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP Timestamp when the report was
requested.

DB_NAME VARCHAR(128) db_name - Database name

BP_NAME VARCHAR(128) bp_name - Buffer pool name

TOTAL_LOGICAL_READS BIGINT Total logical reads (index, XDA
and data) in the bufferpool.

TOTAL_PHYSICAL_READS BIGINT Total physical reads (index, XDA
and data) in the bufferpool.

TOTAL_HIT_RATIO_PERCENT DECIMAL(5,2) Total hit ratio (index, XDA and
data reads).

Chapter 15. Snapshot routines and views 573

Table 166. Information returned by the BP_HITRATIO administrative view (continued)

Column name Data type
Description or corresponding
monitor element

DATA_LOGICAL_READS BIGINT pool_data_l_reads - Buffer pool
data logical reads

DATA_PHYSICAL_READS BIGINT pool_data_p_reads - Buffer pool
data physical reads

DATA_HIT_RATIO_PERCENT DECIMAL(5,2) Data hit ratio.

INDEX_LOGICAL_READS BIGINT pool_index_l_reads - Buffer pool
index logical reads

INDEX_PHYSICAL_READS BIGINT pool_index_p_reads - Buffer pool
index physical reads

INDEX_HIT_RATIO_PERCENT DECIMAL(5,2) Index hit ratio.

XDA_LOGICAL_READS BIGINT pool_xda_l_reads - Buffer Pool
XDA Data Logical Reads

XDA_PHYSICAL_READS BIGINT pool_xda_p_reads - Buffer Pool
XDA Data Physical Reads

XDA_HIT_RATIO_PERCENT DECIMAL(5,2) Auxiliary storage objects hit ratio.

DBPARTITIONNUM SMALLINT The database partition from which
the data for the row was retrieved.

BP_READ_IO administrative view - Retrieve bufferpool read
performance information

The BP_READ_IO administrative view returns bufferpool read performance
information. This view can be used to look at each bufferpool to see how effective
the prefetchers are.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the BP_READ_IO administrative view
v CONTROL privilege on the BP_READ_IO administrative view
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve total physical reads and average read time for all bufferpools on all
partitions of the currently connected database.

574 Administrative Routines and Views

SELECT SUBSTR(BP_NAME, 1, 15) AS BP_NAME, TOTAL_PHYSICAL_READS,
AVERAGE_READ_TIME_MS, DBPARTITIONNUM
FROM SYSIBMADM.BP_READ_IO ORDER BY DBPARTITIONNUM

The following example is a sample output for this query.
BP_NAME TOTAL_PHYSICAL_READS AVERAGE_READ_TIME_MS DBPARTITIONNUM
--------------- -------------------- -------------------- --------------
IBMDEFAULTBP 811 4 0
IBMSYSTEMBP4K 0 - 0
IBMSYSTEMBP8K 0 - 0
IBMSYSTEMBP16K 0 - 0
IBMDEFAULTBP 34 0 1
IBMSYSTEMBP4K 0 - 1
IBMSYSTEMBP8K 0 - 1
IBMDEFAULTBP 34 0 2
IBMSYSTEMBP4K 0 - 2
IBMSYSTEMBP8K 0 - 2

10 record(s) selected.

Information returned

Table 167. Information returned by the BP_READ_IO administrative view

Column name Data type

Description or
corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP Date and time the
report was generated.

BP_NAME VARCHAR(128) bp_name - Buffer
pool name

TOTAL_PHYSICAL_READS BIGINT Total physical reads.

AVERAGE_READ_TIME_MS BIGINT Average read time in
milliseconds.

TOTAL_ASYNC_READS BIGINT Total asynchronous
reads.

AVERAGE_ASYNC_READ_TIME_MS BIGINT Average
asynchronous read
time in milliseconds.

TOTAL_SYNC_READS BIGINT Total synchronous
reads.

AVERAGE_SYNC_READ_TIME_MS BIGINT Average synchronous
read time in
milliseconds.

PERCENT_SYNC_READS DECIMAL(5,2) Percentage of pages
read synchronously
without prefetching.
If many of the
applications are
reading data
synchronously
without prefetching
then the system
might not be tuned
optimally.

Chapter 15. Snapshot routines and views 575

Table 167. Information returned by the BP_READ_IO administrative view (continued)

Column name Data type

Description or
corresponding
monitor element

ASYNC_NOT_READ_PERCENT DECIMAL(5,2) Percentage of pages
read asynchronously
from disk, but never
accessed by a query.
If too many pages are
read asynchronously
from disk into the
bufferpool, but no
query ever accesses
those pages, then the
prefetching might
degrade performance.

DBPARTITIONNUM SMALLINT The database
partition from which
the data was
retrieved for this row.

BP_WRITE_IO administrative view - Retrieve bufferpool write
performance information

The BP_WRITE_IO administrative view returns bufferpool write performance
information per bufferpool.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the BP_WRITE_IO administrative view
v CONTROL privilege on the BP_WRITE_IO administrative view
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve total writes and average write time for all bufferpools on all database
partitions of the currently connected database.
SELECT SUBSTR(BP_NAME, 1, 15) AS BP_NAME, TOTAL_WRITES,

AVERAGE_WRITE_TIME_MS, DBPARTITIONNUM
FROM SYSIBMADM.BP_WRITE_IO ORDER BY DBPARTITIONNUM

The following example is a sample output for this query.

576 Administrative Routines and Views

BP_NAME TOTAL_WRITES AVERAGE_WRITE_TIME_MS DBPARTITIONNUM
--------------- ------------...- --------------------- --------------
IBMDEFAULTBP 11 5 0
IBMSYSTEMBP4K 0 - 0
IBMSYSTEMBP8K 0 - 0
IBMSYSTEMBP16K 0 - 0
IBMSYSTEMBP32K 0 - 0
IBMDEFAULTBP 0 - 1
IBMSYSTEMBP4K 0 - 1
IBMSYSTEMBP8K 0 - 1
IBMDEFAULTBP 0 - 2
IBMSYSTEMBP4K 0 - 2
IBMSYSTEMBP8K 0 - 2

11 record(s) selected.

Information returned

Table 168. Information returned by the BP_WRITE_IO administrative view

Column name Data type

Description or
corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time the
report was generated.

BP_NAME VARCHAR(128) bp_name - Buffer
pool name

TOTAL_WRITES BIGINT Total writes.

AVERAGE_WRITE_TIME_MS BIGINT Average write time in
milliseconds.

TOTAL_ASYNC_WRITES BIGINT Total asynchronous
writes.

PERCENT_WRITES_ASYNC BIGINT Percent of writes that
are asynchronous.

AVERAGE_ASYNC_WRITE_TIME_MS BIGINT Average
asynchronous write
time in milliseconds.

TOTAL_SYNC_WRITES BIGINT Total synchronous
writes.

AVERAGE_SYNC_WRITE_TIME_MS BIGINT Average synchronous
write time in
milliseconds.

DBPARTITIONNUM SMALLINT The database
partition from which
the data for the row
was retrieved.

CONTAINER_UTILIZATION administrative view - Retrieve table space
container and utilization information

The CONTAINER_UTILIZATION administrative view returns information about
table space containers and utilization rates. It retrieve a similar report to the LIST
TABLESPACES command on a single partitioned database. Its information is based
on the SNAPCONTAINER administrative view.

Chapter 15. Snapshot routines and views 577

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the CONTAINER_UTILIZATION administrative view
v CONTROL privilege on the CONTAINER_UTILIZATION administrative view
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of all table spaces containers in the connected single partition
database, including information about the total and usable pages as well as their
accessibility status.
SELECT SUBSTR(TBSP_NAME,1,20) AS TBSP_NAME, INT(TBSP_ID) AS TBSP_ID,

SUBSTR(CONTAINER_NAME,1,45) AS CONTAINER_NAME, INT(CONTAINER_ID)
AS CONTAINER_ID, CONTAINER_TYPE, INT(TOTAL_PAGES) AS TOTAL_PAGES,
INT(USABLE_PAGES) AS USABLE_PAGES, ACCESSIBLE
FROM SYSIBMADM.CONTAINER_UTILIZATION

The following example is a sample output for this query.
TBSP_NAME TBSP_ID CONTAINER_NAME ...
----------------...- ----------- -------------------------------------...-- ...
SYSCATSPACE 0 D:\DB2\NODE0000\SQL00001\SQLT0000.0 ...
TEMPSPACE1 1 D:\DB2\NODE0000\SQL00001\SQLT0001.0 ...
USERSPACE1 2 D:\DB2\NODE0000\SQL00001\SQLT0002.0 ...
SYSTOOLSPACE 3 D:\DB2\NODE0000\SQL00001\SYSTOOLSPACE ...
SYSTOOLSTMPSPACE 4 D:\DB2\NODE0000\SQL00001\SYSTOOLSTMPSPACE ...

5 record(s) selected.

Output for this query (continued).
... CONTAINER_ID CONTAINER_TYPE TOTAL_PAGES USABLE_PAGES ACCESSIBLE
... ------------ -------------- ----------- ------------ ----------
... 0 PATH 0 0 1
... 0 PATH 0 0 1
... 0 PATH 0 0 1
... 0 PATH 0 0 1
... 0 PATH 0 0 1

Information returned

The BUFFERPOOL snapshot monitor switch must be enabled at the database
manager configuration for the file system information to be returned.

578 Administrative Routines and Views

Table 169. Information returned by the CONTAINER_UTILIZATION administrative view

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

TBSP_ID BIGINT tablespace_id - Table space
identification

CONTAINER_NAME VARCHAR(256) container_name - Container name

CONTAINER_ID BIGINT container_id - Container
identification

CONTAINER_TYPE VARCHAR(16) container_type - Container type

This is a text identifier based on
the defines in sqlutil.h and is one
of:

v DISK_EXTENT_TAG

v DISK_PAGE_TAG

v FILE_EXTENT_TAG

v FILE_PAGE_TAG

v PATH

TOTAL_PAGES BIGINT container_total_pages - Total pages
in container

USABLE_PAGES BIGINT container_usable_pages - Usable
pages in container

ACCESSIBLE SMALLINT container_accessible - Accessibility
of container

STRIPE_SET BIGINT container_stripe_set - Stripe set

FS_ID VARCHAR(22) fs_id - Unique file system
identification number

FS_TOTAL_SIZE_KB BIGINT fs_total_size - Total size of a file
system. This interface returns the
value in KB.

FS_USED_SIZE_KB BIGINT fs_used_size - Amount of space
used on a file system. This
interface returns the value in KB.

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

LOCKS_HELD administrative view - Retrieve information about the
locks held

Note: This administrative view has been deprecated and replaced by the
“MON_GET_APPL_LOCKWAIT - get information about locks for which an
application is waiting” on page 423, “MON_GET_LOCKS - list all locks in the
currently connected database” on page 452, and “MON_FORMAT_LOCK_NAME -
format the internal lock name and return details” on page 389.

Chapter 15. Snapshot routines and views 579

The LOCKS_HELD administrative view returns information about the current
locks held.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the LOCKS_HELD administrative view
v CONTROL privilege on the LOCKS_HELD administrative view
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Example 1: List the total number of locks held by each table in the database
SAMPLE.
SELECT TABSCHEMA, TABNAME, COUNT(*) AS NUMBER_OF_LOCKS_HELD

FROM SYSIBMADM.LOCKS_HELD WHERE DB_NAME = ’SAMPLE’
GROUP BY DBPARTITIONNUM, TABSCHEMA, TABNAME

The following example is a sample output for this query.
TABSCHEMA TABNAME NUMBER_OF_LOCKS_HELD
----------...- ---------...- --------------------
JESSICAE EMPLOYEE 5
JESSICAE EMP_RESUME 1
JESSICAE ORG 3

Example 2: List all the locks that have not escalated in the currently connected
database, SAMPLE.
SELECT AGENT_ID, TABSCHEMA, TABNAME, LOCK_OBJECT_TYPE, LOCK_MODE,

LOCK_STATUS FROM SYSIBMADM.LOCKS_HELD WHERE LOCK_ESCALATION = 0
AND DBPARTITIONNUM = 0

The following example is a sample output for this query.
AGENT_ID TABSCHEMA TABNAME LOCK_OBJECT_TYPE LOCK_MODE LOCK_STATUS
--------...- ---------...- --------...- ------------------ ---------- -----------

680 JESSICAE EMPLOYEE INTERNALV_LOCK S GRNT
680 JESSICAE EMPLOYEE INTERNALP_LOCK S GRNT

Example 3: List lock information for the locks that are currently held by the
application with agent ID 310.
SELECT TABSCHEMA, TABNAME, LOCK_OBJECT_TYPE, LOCK_MODE, LOCK_STATUS,

LOCK_ESCALATION FROM SYSIBMADM.LOCKS_HELD WHERE AGENT_ID = 310

The following example is a sample output for this query.
TABSCHEMA TABNAME LOCK_OBJECT_TYPE LOCK_MODE LOCK_STATUS
---------...- --------...- ------------------ ---------- -----------
JESSICAE EMP_RESUME TABLE_LOCK S GRNT
JESSICAE EMPLOYEE ROW_LOCK S GRNT

580 Administrative Routines and Views

Information returned

Table 170. Information returned by the LOCKS_HELD administrative view

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP Date and time the report was
generated.

DB_NAME VARCHAR(128) db_name - Database name

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

APPL_NAME VARCHAR(256) appl_name - Application name

AUTHID VARCHAR(128) auth_id - Authorization ID

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

TABSCHEMA VARCHAR(128) table_schema - Table schema name

TABNAME VARCHAR(128) table_name - Table name

TAB_FILE_ID BIGINT table_file_id - Table file
identification

LOCK_OBJECT_TYPE VARCHAR(18) lock_object_type - Lock object type
waited on. This interface returns a
text identifier based on the defines
in sqlmon.h and is one of:

v AUTORESIZE_LOCK

v AUTOSTORAGE_LOCK

v BLOCK_LOCK

v EOT_LOCK

v INPLACE_REORG_LOCK

v INTERNAL_LOCK

v INTERNALB_LOCK

v INTERNALC_LOCK

v INTERNALJ_LOCK

v INTERNALL_LOCK

v INTERNALO_LOCK

v INTERNALQ_LOCK

v INTERNALP_LOCK

v INTERNALS_LOCK

v INTERNALT_LOCK

v INTERNALV_LOCK

v KEYVALUE_LOCK

v ROW_LOCK

v SYSBOOT_LOCK

v TABLE_LOCK

v TABLE_PART_LOCK

v TABLESPACE_LOCK

v XML_PATH_LOCK

LOCK_NAME VARCHAR(32) lock_name - Lock name

Chapter 15. Snapshot routines and views 581

Table 170. Information returned by the LOCKS_HELD administrative view (continued)

Column name Data type
Description or corresponding
monitor element

LOCK_MODE VARCHAR(10) lock_mode - Lock mode. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

LOCK_STATUS VARCHAR(10) lock_status - Lock status. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v CONV

v GRNT

LOCK_ESCALATION SMALLINT lock_escalation - Lock escalation

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

LOCKWAITS administrative view - Retrieve current lockwaits
information

Note: This administrative view has been deprecated and replaced by the
“MON_LOCKWAITS administrative view - Retrieve metrics for applications that
are waiting to obtain locks” on page 520.

The LOCKWAITS administrative view returns information about DB2 agents
working on behalf of applications that are waiting to obtain locks.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the LOCKWAITS administrative view
v CONTROL privilege on the LOCKWAITS administrative view
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON

582 Administrative Routines and Views

v SYSCTRL
v SYSMAINT
v SYSADM

Examples

Example 1: List information for all the lock waits for application with agent ID 89.
SELECT SUBSTR(TABSCHEMA,1,8) AS TABSCHEMA, SUBSTR(TABNAME,1,15) AS TABNAME,

LOCK_OBJECT_TYPE, LOCK_MODE, LOCK_MODE_REQUESTED, AGENT_ID_HOLDING_LK
FROM SYSIBMADM.LOCKWAITS WHERE AGENT_ID = 89

The following example is a sample output for this query.
TABSCHEMA TABNAME LOCK_OBJECT_TYPE LOCK_MODE ...
--------- -------...- ---------------- ---------- ...
JESSICAE T1 ROW_LOCK X ...

1 record(s) selected.

Output for this query (continued).
... LOCK_MODE_REQUESTED AGENT_ID_HOLDING_LK
... ------------------- --------------------
... NS 7

Example 2: List the total number of outstanding lock requests per table in the
database SAMPLE. By sorting the output by number of requests, tables with the
highest contention can be identified.
SELECT SUBSTR(TABSCHEMA,1,8) AS TABSCHEMA, SUBSTR(TABNAME, 1, 15)

AS TABNAME, COUNT(*) AS NUM_OF_LOCK_REQUESTS_WAITING,
DBPARTITIONNUM
FROM SYSIBMADM.LOCKWAITS WHERE DB_NAME = ’SAMPLE’
GROUP BY TABSCHEMA, TABNAME, DBPARTITIONNUM
ORDER BY NUM_OF_LOCK_REQUESTS_WAITING DESC

The following example is a sample output for this query.
TABSCHEMA TABNAME NUM_OF_LOCK_REQUESTS_WAITING DBPARTITIONNUM
--------- -------...- ---------------------------- --------------
JESSICAE T3 2 0
JESSICAE T1 1 0
JESSICAE T2 1 0

3 record(s) selected.

Information returned

Table 171. Information returned by the LOCKWAITS administrative view

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP Date and time the report was
generated.

DB_NAME VARCHAR(128) db_name - Database name

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

APPL_NAME VARCHAR(256) appl_name - Application name

AUTHID VARCHAR(128) auth_id - Authorization ID

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

Chapter 15. Snapshot routines and views 583

Table 171. Information returned by the LOCKWAITS administrative view (continued)

Column name Data type
Description or corresponding
monitor element

TABSCHEMA VARCHAR(128) table_schema - Table schema name

TABNAME VARCHAR(128) table_name - Table name

SUBSECTION_NUMBER BIGINT ss_number - Subsection number

LOCK_OBJECT_TYPE VARCHAR(18) lock_object_type - Lock object type
waited on. This interface returns a
text identifier based on the defines
in sqlmon.h and is one of:

v AUTORESIZE_LOCK

v AUTOSTORAGE_LOCK

v BLOCK_LOCK

v EOT_LOCK

v INPLACE_REORG_LOCK

v INTERNAL_LOCK

v INTERNALB_LOCK

v INTERNALC_LOCK

v INTERNALJ_LOCK

v INTERNALL_LOCK

v INTERNALO_LOCK

v INTERNALQ_LOCK

v INTERNALP_LOCK

v INTERNALS_LOCK

v INTERNALT_LOCK

v INTERNALV_LOCK

v KEYVALUE_LOCK

v ROW_LOCK

v SYSBOOT_LOCK

v TABLE_LOCK

v TABLE_PART_LOCK

v TABLESPACE_LOCK

v XML_PATH_LOCK

LOCK_WAIT_START_TIME TIMESTAMP lock_wait_start_time - Lock wait
start timestamp

LOCK_NAME VARCHAR(32) lock_name - Lock name

584 Administrative Routines and Views

Table 171. Information returned by the LOCKWAITS administrative view (continued)

Column name Data type
Description or corresponding
monitor element

LOCK_MODE VARCHAR(10) lock_mode - Lock mode. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

LOCK_MODE_REQUESTED VARCHAR(10) lock_mode_requested - Lock mode
requested. This interface returns a
text identifier based on the defines
in sqlmon.h and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

AGENT_ID_HOLDING_LK BIGINT agent_id_holding_lock - Agent ID
holding lock

APPL_ID_HOLDING_LK VARCHAR(128) appl_id_holding_lk - Application
ID holding lock

LOCK_ESCALATION SMALLINT lock_escalation - Lock escalation

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

LOG_UTILIZATION administrative view - Retrieve log utilization
information

The LOG_UTILIZATION administrative view returns information about log
utilization for the currently connected database. A single row is returned for each
database partition.

The schema is SYSIBMADM.

Chapter 15. Snapshot routines and views 585

Authorization

One of the following authorizations is required:
v SELECT privilege on the LOG_UTILIZATION administrative view
v CONTROL privilege on the LOG_UTILIZATION administrative view
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

List the log utilization for the currently connected database, SAMPLE.
SELECT * FROM SYSIBMADM.LOG_UTILIZATION

The following example is a sample output for this query.
DB_NAME ... LOG_UTILIZATION_PERCENT TOTAL_LOG_USED_KB ...
-------- ... ----------------------- -------------------- ...
SAMPLE ... 9.75 1989 ...

...
1 record(s) selected. ...

Output for this query (continued).
... TOTAL_LOG_AVAILABLE_KB TOTAL_LOG_USED_TOP_KB DBPARTITIONNUM
... ---------------------- --------------------- --------------
... 18411 1990 0
...
...

Usage note

For databases that are configured for infinite logging, the
LOG_UTILIZATION_PERCENT and TOTAL_LOG_AVAILABLE_KB will be NULL.

Information returned

Table 172. Information returned by the LOG_UTILIZATION administrative view

Column name Data type
Description or corresponding
monitor element

DB_NAME VARCHAR(128) db_name - Database name

LOG_UTILIZATION_PERCENT DECIMAL(5,2) Percent utilization of total log
space.

TOTAL_LOG_USED_KB BIGINT total_log_used - Total log space
used. This interface returns the
value in KB.

TOTAL_LOG_AVAILABLE_KB BIGINT total_log_available - Total log
available. This interface returns the
value in KB.

586 Administrative Routines and Views

Table 172. Information returned by the LOG_UTILIZATION administrative view (continued)

Column name Data type
Description or corresponding
monitor element

TOTAL_LOG_USED_TOP_KB BIGINT tot_log_used_top - Maximum total
log space used. This interface
returns the value in KB.

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

LONG_RUNNING_SQL administrative view

The LONG_RUNNING_SQL administrative view returns SQL statements executed
in the currently connected database. This view can be used to identify
long-running SQL statements in the database.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the LONG_RUNNING_SQL administrative view
v CONTROL privilege on the LONG_RUNNING_SQL administrative view
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a report on long running SQL statements in the currently connected
database.
SELECT SUBSTR(STMT_TEXT, 1, 50) AS STMT_TEXT, AGENT_ID,

ELAPSED_TIME_MIN, APPL_STATUS, DBPARTITIONNUM
FROM SYSIBMADM.LONG_RUNNING_SQL ORDER BY DBPARTITIONNUM

The following example is a sample output for this query.
STMT_TEXT AGENT_ID ...
-----------------------------...- --------...- ...
select * from dbuser.employee 228 ...
select * from dbuser.employee 228 ...
select * from dbuser.employee 228 ...

...
3 record(s) selected. ...

Output for this query (continued).

Chapter 15. Snapshot routines and views 587

... ELAPSED_TIME_MIN APPL_STATUS DBPARTITIONNUM

... ---------------- -----------...- --------------

... 2 UOWWAIT 0

... 0 CONNECTED 1

... 0 CONNECTED 2

Usage note

This view can be used to identify long-running SQL statements in the database.
You can look at the currently running queries to see which statements are the
longest running and the current status of the query. Further investigation can be
done of the application containing the SQL statement, using agent ID as the unique
identifier. If executing a long time and waiting on a lock, you might want to dig
deeper using the LOCKWAITS or LOCKS_HELD administrative views. If “waiting
on User”, this means that the DB2 server is not doing anything but rather is
waiting for the application to do something (like issue the next fetch or submit the
next SQL statement).

Information returned

Table 173. Information returned by the LONG_RUNNING_SQL administrative view

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP Time the report was generated.

ELAPSED_TIME_MIN INTEGER Elapsed time of the statement in
minutes.

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

APPL_NAME VARCHAR(256) appl_name - Application name

588 Administrative Routines and Views

Table 173. Information returned by the LONG_RUNNING_SQL administrative
view (continued)

Column name Data type
Description or corresponding
monitor element

APPL_STATUS VARCHAR(22) appl_status - Application status.
This interface returns a text
identifier based on the defines in
sqlmon.h, and is one of:

v BACKUP

v COMMIT_ACT

v COMP

v CONNECTED

v CONNECTPEND

v CREATE_DB

v DECOUPLED

v DISCONNECTPEND

v INTR

v IOERROR_WAIT

v LOAD

v LOCKWAIT

v QUIESCE_TABLESPACE

v RECOMP

v REMOTE_RQST

v RESTART

v RESTORE

v ROLLBACK_ACT

v ROLLBACK_TO_SAVEPOINT

v TEND

v THABRT

v THCOMT

v TPREP

v UNLOAD

v UOWEXEC

v UOWWAIT

v WAITFOR_REMOTE

AUTHID VARCHAR(128) auth_id - Authorization ID

INBOUND_COMM_ADDRESS VARCHAR(32) inbound_comm_address - Inbound
communication address

STMT_TEXT CLOB(16 M) stmt_text - SQL statement text

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

Chapter 15. Snapshot routines and views 589

QUERY_PREP_COST administrative view - Retrieve statement prepare
time information

The QUERY_PREP_COST administrative view returns a list of statements with
information about the time required to prepare the statement.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the QUERY_PREP_COST administrative view
v CONTROL privilege on the SNAPAGENT administrative view
v DATAACCESS authority

Example

Retrieve a report on the queries with the highest percentage of time spent on
preparing.
SELECT NUM_EXECUTIONS, AVERAGE_EXECUTION_TIME_S, PREP_TIME_PERCENT,

SUBSTR(STMT_TEXT, 1, 30) AS STMT_TEXT, DBPARTITIONNUM
FROM SYSIBMADM.QUERY_PREP_COST ORDER BY PREP_TIME_PERCENT

The following example is a sample output for this query.
NUM_EXECUTIONS AVERAGE_EXECUTION_TIME_S ...
--------------...- ------------------------ ...

1 25 ...

1 record(s) selected.

Output for this query (continued).
... PREP_TIME_PERCENT STMT_TEXT DBPARTITIONNUM
... ----------------- ------------------------------ --------------
... 0.0 select * from dbuser.employee 0

Usage notes

When selecting from the view, an order by clause can be used to identify queries
with the highest prep cost. You can examine this view to see how frequently a
query is run as well as the average execution time for each of these queries. If the
time it takes to compile and optimize a query is almost as long as it takes for the
query to execute, you might want to look at the optimization class that you are
using. Lowering the optimization class might make the query complete
optimization more rapidly and therefore return a result sooner. However, if a
query takes a significant amount of time to prepare yet is executed thousands of
times (without being prepared again) then the optimization class might not be an
issue.

590 Administrative Routines and Views

Information returned

Table 174. Information returned by the QUERY_PREP_COST administrative view

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time the report was
generated.

NUM_EXECUTIONS BIGINT num_executions - Statement
executions

AVERAGE_EXECUTION_TIME_S BIGINT Average execution time (in
seconds).

AVERAGE_EXECUTION_TIME_MS BIGINT Average execution time (fractional,
in microseconds).

PREP_TIME_MS BIGINT prep_time_worst - Statement worst
preparation time (in milliseconds).

PREP_TIME_PERCENT DECIMAL
(8,2)

Percent of execution time spent on
preparation. Calculated as prep
time divided by total execution
time.

STMT_TEXT CLOB(2 M) stmt_text - SQL statement text

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPAGENT administrative view and SNAP_GET_AGENT table
function – Retrieve agent logical data group application snapshot
information

The SNAPAGENT administrative view and the SNAP_GET_AGENT table function
return information about agents from an application snapshot, in particular, the
agent logical data group.

SNAPAGENT administrative view

This administrative view allows you to retrieve agent logical data group
application snapshot information for the currently connected database.

Used with the SNAPAGENT_MEMORY_POOL, SNAPAPPL, SNAPAPPL_INFO,
SNAPSTMT and SNAPSUBSECTION administrative views, the SNAPAGENT
administrative view provides information equivalent to the GET SNAPSHOT FOR
APPLICATIONS ON database-alias CLP command, but retrieves data from all
database partitions.

The schema is SYSIBMADM.

Refer to Table 175 on page 594 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPAGENT administrative view

Chapter 15. Snapshot routines and views 591

v CONTROL privilege on the SNAPAGENT administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_AGENT table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve all application snapshot information for the currently connected database
from the agent logical data group.
SELECT * FROM SYSIBMADM.SNAPAGENT

The following example is a sample output from this query.
SNAPSHOT_TIMESTAMP DB_NAME AGENT_ID ...
-------------------------- -------...- ---------...--- ...
2005-07-19-11.03.26.740423 SAMPLE 101 ...
2005-07-19-11.03.26.740423 SAMPLE 49 ...

...
2 record(s) selected. ...

Output from this query (continued).
... AGENT_PID LOCK_TIMEOUT_VAL DBPARTITIONNUM
... -------------------- -------------------- --------------
... 11980 -1 0
... 15940 -1 0
...
...

SNAP_GET_AGENT table function

The SNAP_GET_AGENT table function returns the same information as the
SNAPAGENT administrative view, but allows you to retrieve the information for a
specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Used with the SNAP_GET_AGENT_MEMORY_POOL, SNAP_GET_APPL_V95,
SNAP_GET_APPL_INFO_V95, SNAP_GET_STMT and SNAP_GET_SUBSECTION
table functions, the SNAP_GET_AGENT table function provides information
equivalent to the GET SNAPSHOT FOR ALL APPLICATIONS CLP command, but retrieves
data from all database partitions.

Refer to Table 175 on page 594 for a complete list of information that can be
returned.

592 Administrative Routines and Views

Syntax

�� SNAP_GET_AGENT (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_AGENT table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_AGENT table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve all application snapshot information for all applications in all active
databases.
SELECT * FROM TABLE(SNAP_GET_AGENT(CAST(NULL AS VARCHAR(128)), -1)) AS T

The following example is a sample output from this query.

Chapter 15. Snapshot routines and views 593

SNAPSHOT_TIMESTAMP DB_NAME AGENT_ID ...
-------------------------- -------...- --------...-- ...
2006-01-03-17.21.38.530785 SAMPLE 48 ...
2006-01-03-17.21.38.530785 SAMPLE 47 ...
2006-01-03-17.21.38.530785 SAMPLE 46 ...
2006-01-03-17.21.38.530785 TESTDB 30 ...
2006-01-03-17.21.38.530785 TESTDB 29 ...
2006-01-03-17.21.38.530785 TESTDB 28 ...

6 record(s) selected.

Output from this query (continued).
... AGENT_PID LOCK_TIMEOUT_VAL DBPARTITIONNUM
... ---------...---- -------------------- --------------
... 7696 -1 0
... 8536 -1 0
... 6672 -1 0
... 2332 -1 0
... 8360 -1 0
... 6736 -1 0
...

Information returned

Table 175. Information returned by the SNAPAGENT administrative view and the
SNAP_GET_AGENT table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

AGENT_PID BIGINT agent_pid - Engine dispatchable
unit (EDU)

LOCK_TIMEOUT_VAL BIGINT lock_timeout_val - Lock timeout
(seconds)

DBPARTITIONNUM SMALLINT The database partition from which
the data for the row was retrieved.

SNAPAPPL_INFO administrative view and SNAP_GET_APPL_INFO_V95
table function - Retrieve appl_info logical data group snapshot
information

The SNAPAPPL_INFO administrative view and the SNAP_GET_APPL_INFO_V95
table function return information about applications from an application snapshot,
in particular, the appl_info logical data group.

SNAPAPPL_INFO administrative view

This administrative view allows you to retrieve appl_info logical data group
snapshot information for the currently connected database.

Used with the SNAPAGENT, SNAPAGENT_MEMORY_POOL, SNAPAPPL,
SNAPSTMT and SNAPSUBSECTION administrative views, the SNAPAPPL_INFO

594 Administrative Routines and Views

administrative view provides information equivalent to the GET SNAPSHOT FOR
APPLICATIONS ON database-alias CLP command, but retrieves data from all
database partitions.

The schema is SYSIBMADM.

Refer to Table 176 on page 597 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPAPPL_INFO administrative view
v CONTROL privilege on the SNAPAPPL_INFO administrative view
v DATAACCESS authority

Additionally, one of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_APPL_INFO_V95 table function
v DATAACCESS authority

Also, one of the following authorities is required:
v SYSMON
v SYSMAINT
v SYSCTRL
v SYSADM

Example

Retrieve the status of the applications connected to the current database.
SELECT AGENT_ID, SUBSTR(APPL_NAME,1,10) AS APPL_NAME, APPL_STATUS

FROM SYSIBMADM.SNAPAPPL_INFO

The following example is a sample output from this query.
AGENT_ID APPL_NAME APPL_STATUS
-------------------- ---------- ----------------------

101 db2bp.exe UOWEXEC
49 db2bp.exe CONNECTED

2 record(s) selected.

SNAP_GET_APPL_INFO_V95 table function

The SNAP_GET_APPL_INFO_V95 table function returns the same information as
the SNAPAPPL_INFO administrative view, but allows you to retrieve the
information for a specific database on a specific database partition, aggregate of all
database partitions or all database partitions.

Used with the SNAP_GET_AGENT, SNAP_GET_AGENT_MEMORY_POOL,
SNAP_GET_APPL_V95, SNAP_GET_STMT and SNAP_GET_SUBSECTION table
functions, the SNAP_GET_APPL_INFO_V95 table function provides information
equivalent to the GET SNAPSHOT FOR ALL APPLICATIONS CLP command, but retrieves
data from all database partitions.

Chapter 15. Snapshot routines and views 595

Refer to Table 176 on page 597 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_APPL_INFO_V95 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_APPL_INFO_V95 table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_APPL_INFO_V95 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Examples

Retrieve the status of all applications on the connected database partition.

596 Administrative Routines and Views

SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, AGENT_ID,
SUBSTR(APPL_NAME,1,10) AS APPL_NAME, APPL_STATUS
FROM TABLE(SNAP_GET_APPL_INFO_V95(CAST(NULL AS VARCHAR(128)),-1)) AS T

The following example is a sample output from this query.
DB_NAME AGENT_ID APPL_NAME APPL_STATUS
-------- -------------------- ---------- ----------------------
TOOLSDB 14 db2bp.exe CONNECTED
SAMPLE 15 db2bp.exe UOWEXEC
SAMPLE 8 javaw.exe CONNECTED
SAMPLE 7 db2bp.exe UOWWAIT

4 record(s) selected.

The following shows what you obtain when you SELECT from the result of the
table function.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, AUTHORITY_LVL

FROM TABLE(SNAP_GET_APPL_INFO_V95(CAST(NULL AS VARCHAR(128)),-1)) AS T

The following example is a sample output from this query.
DB_NAME AUTHORITY_LVL
-------- ---....
TESTDB SYSADM(GROUP) + DBADM(USER) + CREATETAB(USER, GROUP) +

BINDADD(USER, GROUP) + CONNECT(USER, GROUP) +
CREATE_NOT_FENC(USER) + IMPLICIT_SCHEMA(USER, GROUP) +
LOAD(USER) + CREATE_EXT_RT(USER) + QUIESCE_CONN(USER)

TESTDB SYSADM(GROUP) + DBADM(USER) + CREATETAB(USER, GROUP) +
BINDADD(USER, GROUP) + CONNECT(USER, GROUP) +
CREATE_NOT_FENC(USER) + IMPLICIT_SCHEMA(USER, GROUP) +
LOAD(USER) + CREATE_EXT_RT(USER) + QUIESCE_CONN(USER)

TESTDB SYSADM(GROUP) + DBADM(USER) + CREATETAB(USER, GROUP) +
BINDADD(USER, GROUP) + CONNECT(USER, GROUP) +
CREATE_NOT_FENC(USER) + IMPLICIT_SCHEMA(USER, GROUP) +
LOAD(USER) + CREATE_EXT_RT(USER) + QUIESCE_CONN(USER)

3 record(s) selected.

Information returned

Table 176. Information returned by the SNAPAPPL_INFO administrative view and the
SNAP_GET_APPL_INFO_V95 table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

Chapter 15. Snapshot routines and views 597

Table 176. Information returned by the SNAPAPPL_INFO administrative view and the
SNAP_GET_APPL_INFO_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

APPL_STATUS VARCHAR(22) appl_status - Application status.
This interface returns a text
identifier based on the defines in
sqlmon.h, and is one of:

v BACKUP

v COMMIT_ACT

v COMP

v CONNECTED

v CONNECTPEND

v CREATE_DB

v DECOUPLED

v DISCONNECTPEND

v INTR

v IOERROR_WAIT

v LOAD

v LOCKWAIT

v QUIESCE_TABLESPACE

v RECOMP

v REMOTE_RQST

v RESTART

v RESTORE

v ROLLBACK_ACT

v ROLLBACK_TO_SAVEPOINT

v TEND

v THABRT

v THCOMT

v TPREP

v UNLOAD

v UOWEXEC

v UOWWAIT

v WAITFOR_REMOTE

CODEPAGE_ID BIGINT codepage_id - ID of code page
used by application

NUM_ASSOC_AGENTS BIGINT num_assoc_agents - Number of
associated agents

COORD_NODE_NUM SMALLINT coord_node - Coordinating node

598 Administrative Routines and Views

Table 176. Information returned by the SNAPAPPL_INFO administrative view and the
SNAP_GET_APPL_INFO_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

AUTHORITY_LVL VARCHAR(512) authority_bitmap - User
authorization level.

This interface returns a text
identifier based on the database
authorities defined in sql.h and
their source, and has the following
format: authority(source, ...) +
authority(source, ...) + ... The
source of an authority can be
multiple: either from a USER, a
GROUP, or a USER and a GROUP.

Possible values for "authority":

v ACCESSCTRL

v BINDADD

v CONNECT

v CREATE_EXT_RT

v CREATE_NOT_FENC

v CREATETAB

v DATAACCESS

v DBADM

v EXPLAIN

v IMPLICIT_SCHEMA

v LOAD

v LIBADM

v QUIESCE_CONN

v SECADM

v SQLADM

v SYSADM

v SYSCTRL

v SYSMAINT

v SYSMON

v SYSQUIESCE

v WLMADM

Possible values for "source":

v USER – authority granted to the
user or to a role granted to the
user.

v GROUP – authority granted to a
group to which the user belongs
or to a role granted to the group
to which the user belongs.

CLIENT_PID BIGINT client_pid - Client process ID

COORD_AGENT_PID BIGINT coord_agent_pid - Coordinator
agent

Chapter 15. Snapshot routines and views 599

Table 176. Information returned by the SNAPAPPL_INFO administrative view and the
SNAP_GET_APPL_INFO_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

STATUS_CHANGE_TIME TIMESTAMP status_change_time - Application
status change time

CLIENT_PLATFORM VARCHAR(12) client_platform - Client operating
platform. This interface returns a
text identifier based on the defines
in sqlmon.h,

v AIX

v AIX64

v AS400_DRDA

v DOS

v DYNIX

v HP

v HP64

v HPIA

v HPIA64

v LINUX

v LINUX390

v LINUXIA64

v LINUXPPC

v LINUXPPC64

v LINUXX8664

v LINUXZ64

v MAC

v MVS_DRDA

v NT

v NT64

v OS2

v OS390

v SCO

v SGI

v SNI

v SUN

v SUN64

v UNKNOWN

v UNKNOWN_DRDA

v VM_DRDA

v VSE_DRDA

v WINDOWS

600 Administrative Routines and Views

Table 176. Information returned by the SNAPAPPL_INFO administrative view and the
SNAP_GET_APPL_INFO_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

CLIENT_PROTOCOL VARCHAR(10) client_protocol - Client
communication protocol. This
interface returns a text identifier
based on the defines in sqlmon.h,

v CPIC

v LOCAL

v NETBIOS

v NPIPE

v TCPIP (for DB2 UDB)

v TCPIP4

v TCPIP6

TERRITORY_CODE SMALLINT territory_code - Database territory
code

APPL_NAME VARCHAR(256) appl_name - Application name

APPL_ID VARCHAR(128) appl_id - Application ID

SEQUENCE_NO VARCHAR(4) sequence_no - Sequence number

PRIMARY_AUTH_ID VARCHAR(128) auth_id - Authorization ID

SESSION_AUTH_ID VARCHAR(128) session_auth_id - Session
authorization ID

CLIENT_NNAME VARCHAR(128) The client_nname monitor element
is deprecated. The value returned
is not a valid value.

CLIENT_PRDID VARCHAR(128) client_prdid - Client
product/version ID

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input database
alias

CLIENT_DB_ALIAS VARCHAR(128) client_db_alias - Database alias
used by application

DB_NAME VARCHAR(128) db_name - Database name

DB_PATH VARCHAR(1024) db_path - Database path

EXECUTION_ID VARCHAR(128) execution_id - User login ID

CORR_TOKEN VARCHAR(128) corr_token - DRDA correlation
token

TPMON_CLIENT_USERID VARCHAR(256) tpmon_client_userid - TP monitor
client user ID

TPMON_CLIENT_WKSTN VARCHAR(256) tpmon_client_wkstn - TP monitor
client workstation name

TPMON_CLIENT_APP VARCHAR(256) tpmon_client_app - TP monitor
client application name

TPMON_ACC_STR VARCHAR(200) tpmon_acc_str - TP monitor client
accounting string

DBPARTITIONNUM SMALLINT The database partition from which
the data for the row was retrieved.

WORKLOAD_ID INTEGER Current workload ID.

Chapter 15. Snapshot routines and views 601

Table 176. Information returned by the SNAPAPPL_INFO administrative view and the
SNAP_GET_APPL_INFO_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

IS_SYSTEM_APPL SMALLINT The value of IS_SYSTEM_APPL
indicates whether or not the
application is a DB2 internal
system application:

0 means it is a user application

1 means it is a system application.

An example of a DB2 system
application is a DB2 event monitor.

In general, the names of DB2
system applications begin with
"db2". For example: db2stmm,
db2taskd.

SNAPAPPL administrative view and SNAP_GET_APPL_V95 table
function - Retrieve appl logical data group snapshot information

The “SNAPAPPL administrative view” and the “SNAP_GET_APPL_V95 table
function” on page 603 return information about applications from an application
snapshot, in particular, the appl logical data group.

SNAPAPPL administrative view

This administrative view allows you to retrieve appl logical data group snapshot
information for the currently connected database.

Used with the SNAPAGENT, SNAPAGENT_MEMORY_POOL, SNAPAPPL_INFO,
SNAPSTMT and SNAPSUBSECTION administrative views, the SNAPAPPL
administrative view provides information equivalent to the GET SNAPSHOT FOR
APPLICATIONS ON database-alias CLP command, but retrieves data from all
database partitions.

The schema is SYSIBMADM.

Refer to Table 177 on page 605 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPAPPL administrative view
v CONTROL privilege on the SNAPAPPL administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_APPL_V95 table function

602 Administrative Routines and Views

v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve details on rows read and written for each application in the connected
database.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, AGENT_ID, ROWS_READ, ROWS_WRITTEN

FROM SYSIBMADM.SNAPAPPL

The following example is a sample output from this query.
DB_NAME AGENT_ID ROWS_READ ROWS_WRITTEN
-------- -------------------- -------------------- --------------------
SAMPLE 7 25 0

1 record(s) selected.

SNAP_GET_APPL_V95 table function

The SNAP_GET_APPL_V95 table function returns the same information as the
SNAPAPPL administrative view, but allows you to retrieve the information for a
specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Used with the SNAP_GET_AGENT, SNAP_GET_AGENT_MEMORY_POOL,
SNAP_GET_APPL_INFO_V95, SNAP_GET_STMT and SNAP_GET_SUBSECTION
table functions, the SNAP_GET_APPL_V95 table function provides information
equivalent to the GET SNAPSHOT FOR ALL APPLICATIONS CLP command, but retrieves
data from all database partitions.

Refer to Table 177 on page 605 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_APPL_V95 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string

Chapter 15. Snapshot routines and views 603

to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_APPL_V95 table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_APPL_V95 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve details on rows read and written for each application for all active
databases.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, AGENT_ID, ROWS_READ, ROWS_WRITTEN

FROM TABLE (SNAP_GET_APPL_V95(CAST(NULL AS VARCHAR(128)),-1)) AS T

The following example is a sample output from this query.
DB_NAME AGENT_ID ROWS_READ ROWS_WRITTEN
-------- --------...--- ---------...-- ------------...-
WSDB 679 0 0
WSDB 461 3 0
WSDB 460 4 0
TEST 680 4 0
TEST 455 6 0
TEST 454 0 0
TEST 453 50 0

604 Administrative Routines and Views

Information returned

Table 177. Information returned by the SNAPAPPL administrative view and the
SNAP_GET_APPL_V95 table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

UOW_LOG_SPACE_USED BIGINT uow_log_space_used - Unit of
work log space used

ROWS_READ BIGINT rows_read - Rows read

ROWS_WRITTEN BIGINT rows_written - Rows written

INACT_STMTHIST_SZ BIGINT stmt_history_list_size - Statement
history list size

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool
data logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool
data physical reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data
writes

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool
index logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool
index physical reads

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool
index writes

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer
pool temporary data logical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer
pool temporary data physical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer
pool temporary index logical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer
pool temporary index physical
reads

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer
Pool Temporary XDA Data Logical
Reads

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer
Pool Temporary XDA Data
Physical Reads monitor element

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool
XDA Data Logical Reads

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool
XDA Data Physical Reads

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer Pool XDA
Data Writes

Chapter 15. Snapshot routines and views 605

Table 177. Information returned by the SNAPAPPL administrative view and the
SNAP_GET_APPL_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool
physical read time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool
physical write time

DIRECT_READS BIGINT direct_reads - Direct reads from
database

DIRECT_WRITES BIGINT direct_writes - Direct writes to
database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read
requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write
requests

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write
time

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread
prefetch pages

LOCKS_HELD BIGINT locks_held - Locks held

LOCK_WAITS BIGINT lock_waits - Lock waits

LOCK_WAIT_TIME BIGINT lock_wait_time - Time waited on
locks

LOCK_ESCALS BIGINT lock_escals - Number of lock
escalations

X_LOCK_ESCALS BIGINT x_lock_escals - Exclusive lock
escalations

DEADLOCKS BIGINT deadlocks - Deadlocks detected

TOTAL_SORTS BIGINT total_sorts - Total sorts

TOTAL_SORT_TIME BIGINT total_sort_time - Total sort time

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

COMMIT_SQL_STMTS BIGINT commit_sql_stmts - Commit
statements attempted

ROLLBACK_SQL_STMTS BIGINT rollback_sql_stmts - Rollback
statements attempted

DYNAMIC_SQL_STMTS BIGINT dynamic_sql_stmts - Dynamic SQL
statements attempted

STATIC_SQL_STMTS BIGINT static_sql_stmts - Static SQL
statements attempted

FAILED_SQL_STMTS BIGINT failed_sql_stmts - Failed statement
operations

SELECT_SQL_STMTS BIGINT select_sql_stmts - Select SQL
statements executed

DDL_SQL_STMTS BIGINT ddl_sql_stmts - Data definition
language (DDL) SQL statements

606 Administrative Routines and Views

Table 177. Information returned by the SNAPAPPL administrative view and the
SNAP_GET_APPL_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

UID_SQL_STMTS BIGINT uid_sql_stmts -
UPDATE/INSERT/DELETE SQL
statements executed

INT_AUTO_REBINDS BIGINT int_auto_rebinds - Internal
automatic rebinds

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal rows
deleted

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal rows
updated

INT_COMMITS BIGINT int_commits - Internal commits

INT_ROLLBACKS BIGINT int_rollbacks - Internal rollbacks

INT_DEADLOCK_ROLLBACKS BIGINT int_deadlock_rollbacks - Internal
rollbacks due to deadlock

ROWS_DELETED BIGINT rows_deleted - Rows deleted

ROWS_INSERTED BIGINT rows_inserted - Rows inserted

ROWS_UPDATED BIGINT rows_updated - Rows updated

ROWS_SELECTED BIGINT rows_selected - Rows selected

BINDS_PRECOMPILES BIGINT binds_precompiles -
Binds/precompiles attempted

OPEN_REM_CURS BIGINT open_rem_curs - Open remote
cursors

OPEN_REM_CURS_BLK BIGINT open_rem_curs_blk - Open remote
cursors with blocking

REJ_CURS_BLK BIGINT rej_curs_blk - Rejected block cursor
requests

ACC_CURS_BLK BIGINT acc_curs_blk - Accepted block
cursor requests

SQL_REQS_SINCE_COMMIT BIGINT sql_reqs_since_commit - SQL
requests since last commit

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of lock
timeouts

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal rows
inserted

OPEN_LOC_CURS BIGINT open_loc_curs - Open local cursors

OPEN_LOC_CURS_BLK BIGINT open_loc_curs_blk - Open local
cursors with blocking

PKG_CACHE_LOOKUPS BIGINT pkg_cache_lookups - Package
cache lookups

PKG_CACHE_INSERTS BIGINT pkg_cache_inserts - Package cache
inserts

CAT_CACHE_LOOKUPS BIGINT cat_cache_lookups - Catalog cache
lookups

CAT_CACHE_INSERTS BIGINT cat_cache_inserts - Catalog cache
inserts

Chapter 15. Snapshot routines and views 607

Table 177. Information returned by the SNAPAPPL administrative view and the
SNAP_GET_APPL_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

CAT_CACHE_OVERFLOWS BIGINT cat_cache_overflows - Catalog
cache overflows

NUM_AGENTS BIGINT num_agents - Number of agents
working on a statement

AGENTS_STOLEN BIGINT agents_stolen - Stolen agents

ASSOCIATED_AGENTS_TOP BIGINT associated_agents_top - Maximum
number of associated agents

APPL_PRIORITY BIGINT appl_priority - Application agent
priority

APPL_PRIORITY_TYPE VARCHAR(16) appl_priority_type - Application
priority type. This interface returns
a text identifier, based on defines
in sqlmon.h, and is one of:

v DYNAMIC_PRIORITY

v FIXED_PRIORITY

PREFETCH_WAIT_TIME BIGINT prefetch_wait_time - Time waited
for prefetch

APPL_SECTION_LOOKUPS BIGINT appl_section_lookups - Section
lookups

APPL_SECTION_INSERTS BIGINT appl_section_inserts - Section
inserts

LOCKS_WAITING BIGINT locks_waiting - Current agents
waiting on locks

TOTAL_HASH_JOINS BIGINT total_hash_joins - Total hash joins

TOTAL_HASH_LOOPS BIGINT total_hash_loops - Total hash loops

HASH_JOIN_OVERFLOWS BIGINT hash_join_overflows - Hash join
overflows

HASH_JOIN_SMALL_
OVERFLOWS

BIGINT hash_join_small_overflows - Hash
join small overflows

APPL_IDLE_TIME BIGINT appl_idle_time - Application idle
time

UOW_LOCK_WAIT_TIME BIGINT uow_lock_wait_time - Total time
unit of work waited on locks

UOW_COMP_STATUS VARCHAR(14) uow_comp_status - Unit of work
completion status. This interface
returns a text identifier, based on
defines in sqlmon.h, and is one of:

v APPL_END

v UOWABEND

v UOWCOMMIT

v UOWDEADLOCK

v UOWLOCKTIMEOUT

v UOWROLLBACK

v UOWUNKNOWN

608 Administrative Routines and Views

Table 177. Information returned by the SNAPAPPL administrative view and the
SNAP_GET_APPL_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

AGENT_USR_CPU_TIME_S BIGINT agent_usr_cpu_time - User CPU
time used by agent (in seconds)*

AGENT_USR_CPU_TIME_MS BIGINT agent_usr_cpu_time - User CPU
time used by agent (fractional, in
microseconds)*

AGENT_SYS_CPU_TIME_S BIGINT agent_sys_cpu_time - System CPU
time used by agent (in seconds)*

AGENT_SYS_CPU_TIME_MS BIGINT agent_sys_cpu_time - System CPU
time used by agent (fractional, in
microseconds)*

APPL_CON_TIME TIMESTAMP appl_con_time - Connection
request start timestamp

CONN_COMPLETE_TIME TIMESTAMP conn_complete_time - Connection
request completion timestamp

LAST_RESET TIMESTAMP last_reset - Last reset timestamp

UOW_START_TIME TIMESTAMP uow_start_time - Unit of work
start timestamp

UOW_STOP_TIME TIMESTAMP uow_stop_time - Unit of work stop
timestamp

PREV_UOW_STOP_TIME TIMESTAMP prev_uow_stop_time - Previous
unit of work completion timestamp

UOW_ELAPSED_TIME_S BIGINT uow_elapsed_time - Most recent
unit of work elapsed time (in
seconds)*

UOW_ELAPSED_TIME_MS BIGINT uow_elapsed_time - Most recent
unit of work elapsed time
(fractional, in microseconds)*

ELAPSED_EXEC_TIME_S BIGINT elapsed_exec_time - Statement
execution elapsed time (in
seconds)*

ELAPSED_EXEC_TIME_MS BIGINT elapsed_exec_time - Statement
execution elapsed time (fractional,
in microseconds)*

INBOUND_COMM_ADDRESS VARCHAR(32) inbound_comm_address - Inbound
communication address

LOCK_TIMEOUT_VAL BIGINT lock_timeout_val - Lock timeout
(seconds)

PRIV_WORKSPACE_NUM_
OVERFLOWS

BIGINT priv_workspace_num_overflows -
Private workspace overflows

PRIV_WORKSPACE_SECTION_
INSERTS

BIGINT priv_workspace_section_inserts -
Private workspace section inserts

PRIV_WORKSPACE_SECTION_
LOOKUPS

BIGINT priv_workspace_section_lookups -
Private workspace section lookups

Chapter 15. Snapshot routines and views 609

Table 177. Information returned by the SNAPAPPL administrative view and the
SNAP_GET_APPL_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

PRIV_WORKSPACE_SIZE_
TOP

BIGINT priv_workspace_size_top -
Maximum private workspace size

SHR_WORKSPACE_NUM_
OVERFLOWS

BIGINT shr_workspace_num_overflows -
Shared workspace overflows

SHR_WORKSPACE_SECTION_
INSERTS

BIGINT shr_workspace_section_inserts -
Shared workspace section inserts

SHR_WORKSPACE_SECTION_
LOOKUPS

BIGINT shr_workspace_section_lookups -
Shared workspace section lookups

SHR_WORKSPACE_SIZE_
TOP

BIGINT shr_workspace_size_top -
Maximum shared workspace size

DBPARTITIONNUM SMALLINT The database partition from which
the data for the row was retrieved.

CAT_CACHE_SIZE_TOP BIGINT cat_cache_size_top - Catalog cache
high water mark

TOTAL_OLAP_FUNCS BIGINT The total number of OLAP
functions executed.

OLAP_FUNC_OVERFLOWS BIGINT The number of times that OLAP
function data exceeded the
available sort heap space.

* To calculate the total time spent for the monitor element that this column is based on,
you must add the full seconds reported in the column for this monitor element that ends
with _S to the fractional seconds reported in the column for this monitor element that ends
with _MS, using the following formula: (monitor-element-name_S × 1,000,000 +
monitor-element-name_MS) ÷ 1,000,000. For example, (ELAPSED_EXEC_TIME_S × 1,000,000
+ ELAPSED_EXEC_TIME_MS) ÷ 1,000,000.

SNAPBP administrative view and SNAP_GET_BP_V95 table function -
Retrieve bufferpool logical group snapshot information

The SNAPBP administrative view and the SNAP_GET_BP_V95 table function
return information about buffer pools from a bufferpool snapshot, in particular, the
bufferpool logical data group.

SNAPBP administrative view

This administrative view allows you to retrieve bufferpool logical group snapshot
information for the currently connected database.

Used with the SNAPBP_PART administrative view, the SNAPBP administrative
view provides the data equivalent to the GET SNAPSHOT FOR BUFFERPOOLS ON
database-alias CLP command.

The schema is SYSIBMADM.

610 Administrative Routines and Views

Refer to Table 178 on page 613 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPBP administrative view
v CONTROL privilege on the SNAPBP administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_BP_V95 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve data and index writes for all the bufferpools of the currently connected
database.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME,SUBSTR(BP_NAME,1,15)

AS BP_NAME,POOL_DATA_WRITES,POOL_INDEX_WRITES
FROM SYSIBMADM.SNAPBP

The following example is a sample output from this query.
DB_NAME BP_NAME POOL_DATA_WRITES POOL_INDEX_WRITES
-------- --------------- -------------------- --------------------
TEST IBMDEFAULTBP 0 0
TEST IBMSYSTEMBP4K 0 0
TEST IBMSYSTEMBP8K 0 0
TEST IBMSYSTEMBP16K 0 0
TEST IBMSYSTEMBP32K 0 0

5 record(s) selected

SNAP_GET_BP_V95 table function

The SNAP_GET_BP_V95 table function returns the same information as the
SNAPBP administrative view, but allows you to retrieve the information for a
specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Used with the SNAP_GET_BP_PART table function, the SNAP_GET_BP_V95 table
function provides the data equivalent to the GET SNAPSHOT FOR ALL BUFFERPOOLS
CLP command.

Refer to Table 178 on page 613 for a complete list of information that can be
returned.

Chapter 15. Snapshot routines and views 611

Syntax

�� SNAP_GET_BP_V95 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_BP_V95 table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_BP_V95 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve total physical and logical reads for all bufferpools for all active databases
for the currently connected database partition.
SELECT SUBSTR(T.DB_NAME,1,10) AS DB_NAME,

SUBSTR(T.BP_NAME,1,20) AS BP_NAME,
(T.POOL_DATA_L_READS+T.POOL_INDEX_L_READS) AS TOTAL_LOGICAL_READS,

612 Administrative Routines and Views

(T.POOL_DATA_P_READS+T.POOL_INDEX_P_READS) AS TOTAL_PHYSICAL_READS,
T.DBPARTITIONNUM
FROM TABLE(SNAP_GET_BP_V95(CAST(NULL AS VARCHAR(128)), -1)) AS T

The following example is a sample output from this query.
DB_NAME BP_NAME TOTAL_LOGICAL_READS ...
---------- ------------...- -------------------- ...
SAMPLE IBMDEFAULTBP 0 ...
TOOLSDB IBMDEFAULTBP 0 ...
TOOLSDB BP32K0000 0 ...

3 record(s) selected.

Output from this query (continued).
... TOTAL_PHYSICAL_READS DBPARTITIONNUM
... -------------------- --------------
... 0 0
... 0 0
... 0 0

Information returned

Table 178. Information returned by the SNAPBP administrative view and the
SNAP_GET_BP_V95 table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

BP_NAME VARCHAR(128) bp_name - Buffer pool name

DB_NAME VARCHAR(128) db_name - Database name

DB_PATH VARCHAR(1024) db_path - Database path

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input database
alias

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool
data logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool
data physical reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data
writes

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool
index logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool
index physical reads

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool
index writes

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool
XDA Data Logical Reads

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool
XDA Data Physical Reads

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer Pool XDA
Data Writes

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool
physical read time

Chapter 15. Snapshot routines and views 613

Table 178. Information returned by the SNAPBP administrative view and the
SNAP_GET_BP_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool
physical write time

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer
pool asynchronous data reads

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer
pool asynchronous data writes

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer
pool asynchronous index reads

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer
pool asynchronous index writes

POOL_ASYNC_XDA_READS BIGINT pool_async_xda_reads - Buffer
Pool Asynchronous XDA Data
Reads

POOL_ASYNC_XDA_WRITES BIGINT pool_async_xda_writes - Buffer
Pool Asynchronous XDA Data
Writes

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer pool
asynchronous read time

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer
pool asynchronous write time

POOL_ASYNC_DATA_
READ_REQS

BIGINT pool_async_data_read_reqs - Buffer
pool asynchronous read requests

POOL_ASYNC_INDEX_
READ_REQS

BIGINT pool_async_index_read_reqs -
Buffer pool asynchronous index
read requests

POOL_ASYNC_XDA_
READ_REQS

BIGINT pool_async_xda_read_reqs - Buffer
Pool Asynchronous XDA Read
Requests

DIRECT_READS BIGINT direct_reads - Direct reads from
database

DIRECT_WRITES BIGINT direct_writes - Direct writes to
database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read
requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write
requests

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write
time

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread
prefetch pages

FILES_CLOSED BIGINT files_closed - Database files closed

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer
pool temporary data logical reads

614 Administrative Routines and Views

Table 178. Information returned by the SNAPBP administrative view and the
SNAP_GET_BP_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer
pool temporary data physical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer
pool temporary index logical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer
pool temporary index physical
reads

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer
Pool Temporary XDA Data Logical
Reads

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer
Pool Temporary XDA Data
Physical Reads monitor element

POOL_NO_VICTIM_BUFFER BIGINT pool_no_victim_buffer - Buffer
pool no victim buffers

PAGES_FROM_BLOCK_IOS BIGINT pages_from_block_ios - Total
number of pages read by block
I/O

PAGES_FROM_VECTORED_IOS BIGINT pages_from_vectored_ios - Total
pages read by vectored I/O

VECTORED_IOS BIGINT vectored_ios - Number of vectored
I/O requests

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPBP_PART administrative view and SNAP_GET_BP_PART table
function – Retrieve bufferpool_nodeinfo logical data group snapshot
information

The SNAPBP_PART administrative view and the SNAP_GET_BP_PART table
function return information about buffer pools from a bufferpool snapshot, in
particular, the bufferpool_nodeinfo logical data group.

SNAPBP_PART administrative view

This administrative view allows you to retrieve bufferpool_nodeinfo logical data
group snapshot information for the currently connected database.

Used with the SNAPBP administrative view, the SNAPBP_PART administrative
view provides the data equivalent to the GET SNAPSHOT FOR BUFFERPOOLS ON
database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 179 on page 618 for a complete list of information that can be
returned.

Chapter 15. Snapshot routines and views 615

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPBP_PART administrative view
v CONTROL privilege on the SNAPBP_PART administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_BP_PART table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve data for all bufferpools when connected to SAMPLE database.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, SUBSTR(BP_NAME,1,15) AS BP_NAME,

BP_CUR_BUFFSZ, BP_NEW_BUFFSZ, BP_PAGES_LEFT_TO_REMOVE, BP_TBSP_USE_COUNT
FROM SYSIBMADM.SNAPBP_PART

The following example is a sample output from this query.
DB_NAME BP_NAME BP_CUR_BUFFSZ BP_NEW_BUFFSZ ...
-------- --------------- -------------------- -------------------- ...
SAMPLE IBMDEFAULTBP 1000 1000 ...
SAMPLE IBMSYSTEMBP4K 16 16 ...
SAMPLE IBMSYSTEMBP8K 16 16 ...
SAMPLE IBMSYSTEMBP16K 16 16 ...

...
4 record(s) selected.

Output from this query (continued).
... BP_PAGES_LEFT_TO_REMOVE BP_TBSP_USE_COUNT
... ----------------------- --------------------
... 0 3
... 0 0
... 0 0
... 0 0
...

SNAP_GET_BP_PART table function

The SNAP_GET_BP_PART table function returns the same information as the
SNAPBP_PART administrative view, but allows you to retrieve the information for
a specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Used with the SNAP_GET_BP_V95 table function, the SNAP_GET_BP_PART table
function provides the data equivalent to the GET SNAPSHOT FOR ALL BUFFERPOOLS
CLP command.

616 Administrative Routines and Views

Refer to Table 179 on page 618 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_BP_PART (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot for all bufferpools in all databases within the same
instance as the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_BP_PART table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_BP_PART table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve data for all bufferpools for all active databases when connected to the
SAMPLE database.

Chapter 15. Snapshot routines and views 617

SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, SUBSTR(BP_NAME,1,15) AS BP_NAME,
BP_CUR_BUFFSZ, BP_NEW_BUFFSZ, BP_PAGES_LEFT_TO_REMOVE, BP_TBSP_USE_COUNT
FROM TABLE(SNAP_GET_BP_PART(CAST(NULL AS VARCHAR(128)),-1)) AS T

The following example is a sample output from this query.
DB_NAME BP_NAME BP_CUR_BUFFSZ BP_NEW_BUFFSZ ...
-------- --------------- -------------------- -------------------- ...
SAMPLE IBMDEFAULTBP 250 250 ...
SAMPLE IBMSYSTEMBP4K 16 16 ...
SAMPLE IBMSYSTEMBP8K 16 16 ...
SAMPLE IBMSYSTEMBP16K 16 16 ...
SAMPLE IBMSYSTEMBP32K 16 16 ...
TESTDB IBMDEFAULTBP 250 250 ...
TESTDB IBMSYSTEMBP4K 16 16 ...
TESTDB IBMSYSTEMBP8K 16 16 ...
TESTDB IBMSYSTEMBP16K 16 16 ...
TESTDB IBMSYSTEMBP32K 16 16 ...

...

Output from this query (continued).
... BP_PAGES_LEFT_TO_REMOVE BP_TBSP_USE_COUNT
... ----------------------- --------------------
... 0 3
... 0 0
... 0 0
... 0 0
... 0 0
... 0 3
... 0 0
... 0 0
... 0 0
... 0 0

...

Information returned

Table 179. Information returned by the SNAPBP_PART administrative view and the
SNAP_GET_BP_PART table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

BP_NAME VARCHAR(128) bp_name - Buffer pool name

DB_NAME VARCHAR(128) db_name - Database name

BP_CUR_BUFFSZ BIGINT bp_cur_buffsz - current size of
buffer pool

BP_NEW_BUFFSZ BIGINT bp_new_buffsz - New buffer pool
size

BP_PAGES_LEFT_TO_REMOVE BIGINT bp_pages_left_to_remove -
Number of pages left to remove

BP_TBSP_USE_COUNT BIGINT bp_tbsp_use_count - Number of
table spaces mapped to buffer pool

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

618 Administrative Routines and Views

SNAPCONTAINER administrative view and
SNAP_GET_CONTAINER_V91 table function - Retrieve
tablespace_container logical data group snapshot information

The SNAPCONTAINER administrative view and the
SNAP_GET_CONTAINER_V91 table function return table space snapshot
information from the tablespace_container logical data group.

SNAPCONTAINER administrative view

This administrative view allows you to retrieve tablespace_container logical data
group snapshot information for the currently connected database.

Used with the SNAPTBSP, SNAPTBSP_PART, SNAPTBSP_QUIESCER and
SNAPTBSP_RANGE administrative views, the SNAPCONTAINER administrative
view returns data equivalent to the GET SNAPSHOT FOR TABLESPACES ON
database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 180 on page 622 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPCONTAINER administrative view
v CONTROL privilege on the SNAPCONTAINER administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_CONTAINER_V91 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve details for the table space containers for all database partitions for the
currently connected database.
SELECT SNAPSHOT_TIMESTAMP, SUBSTR(TBSP_NAME, 1, 15) AS TBSP_NAME,

TBSP_ID, SUBSTR(CONTAINER_NAME, 1, 20) AS CONTAINER_NAME,
CONTAINER_ID, CONTAINER_TYPE, ACCESSIBLE, DBPARTITIONNUM
FROM SYSIBMADM.SNAPCONTAINER ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.

Chapter 15. Snapshot routines and views 619

SNAPSHOT_TIMESTAMP TBSP_NAME TBSP_ID ...
-------------------------- --------------- -------...- ...
2006-01-08-16.49.24.639945 SYSCATSPACE 0 ...
2006-01-08-16.49.24.639945 TEMPSPACE1 1 ...
2006-01-08-16.49.24.639945 USERSPACE1 2 ...
2006-01-08-16.49.24.639945 SYSTOOLSPACE 3 ...
2006-01-08-16.49.24.640747 TEMPSPACE1 1 ...
2006-01-08-16.49.24.640747 USERSPACE1 2 ...
2006-01-08-16.49.24.639981 TEMPSPACE1 1 ...
2006-01-08-16.49.24.639981 USERSPACE1 2 ...

...
8 record(s) selected.

Output from this query (continued).
... CONTAINER_NAME CONTAINER_ID CONTAINER_TYPE ...
... -------------------- ------------...- ---------------- ...
... /home/swalkty/swalkt 0 FILE_EXTENT_TAG ...
... /home/swalkty/swalkt 0 PATH ...
... /home/swalkty/swalkt 0 FILE_EXTENT_TAG ...
... /home/swalkty/swalkt 0 FILE_EXTENT_TAG ...
... /home/swalkty/swalkt 0 PATH ...
... /home/swalkty/swalkt 0 FILE_EXTENT_TAG ...
... /home/swalkty/swalkt 0 PATH ...
... /home/swalkty/swalkt 0 FILE_EXTENT_TAG ...

Output from this query (continued).
... ACCESSIBLE DBPARTITIONNUM
... ---------- --------------
... 1 0
... 1 0
... 1 0
... 1 0
... 1 1
... 1 1
... 1 2
... 1 2

SNAP_GET_CONTAINER_V91 table function

The SNAP_GET_CONTAINER_V91 table function returns the same information as
the SNAPCONTAINER administrative view, but allows you to retrieve the
information for a specific database on a specific database partition, aggregate of all
database partitions or all database partitions.

Used with the SNAP_GET_TBSP_V91, SNAP_GET_TBSP_PART_V91,
SNAP_GET_TBSP_QUIESCER and SNAP_GET_TBSP_RANGE table functions, the
SNAP_GET_CONTAINER_V91 table function returns data equivalent to the GET
SNAPSHOT FOR TABLESPACES ON database-alias CLP command.

Refer to Table 180 on page 622 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_CONTAINER_V91 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

620 Administrative Routines and Views

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify NULL or empty
string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_CONTAINER_V91 table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_CONTAINER_V91 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve details for the table space containers on the currently connected database
on the currently connected database partition.
SELECT SNAPSHOT_TIMESTAMP, TBSP_NAME, TBSP_ID, CONTAINER_NAME,

CONTAINER_ID, CONTAINER_TYPE, ACCESSIBLE
FROM TABLE(SNAP_GET_CONTAINER_V91(’’,-1)) AS T

The following example is a sample output from this query.
SNAPSHOT_TIMESTAMP TBSP_NAME TBSP_ID ...
-------------------------- -------------------- ------- ...
2005-04-25-14.42.10.899253 SYSCATSPACE 0 ...
2005-04-25-14.42.10.899253 TEMPSPACE1 1 ...
2005-04-25-14.42.10.899253 USERSPACE1 2 ...
2005-04-25-14.42.10.899253 SYSTOOLSPACE 3 ...
2005-04-25-14.42.10.899253 MYTEMP 4 ...
2005-04-25-14.42.10.899253 WHATSNEWTEMPSPACE 5 ...

Output from this query (continued).

Chapter 15. Snapshot routines and views 621

... CONTAINER_NAME CONTAINER_ID ...

... -- ------------ ...

... D:\DB2\NODE0000\SQL00002\SQLT0000.0 0 ...

... D:\DB2\NODE0000\SQL00002\SQLT0001.0 0 ...

... D:\DB2\NODE0000\SQL00002\SQLT0002.0 0 ...

... D:\DB2\NODE0000\SQL00002\SYSTOOLSPACE 0 ...

... D:\DB2\NODE0000\SQL003 0 ...

... d:\DGTTsWhatsNewContainer 0 ...

Output from this query (continued).
... CONTAINER_TYPE ACCESSIBLE
... -------------- ----------
... CONT_PATH 1
... CONT_PATH 1
... CONT_PATH 1
... CONT_PATH 1
... CONT_PATH 1
... CONT_PATH 1

Information returned

NOTE: The BUFFERPOOL database manager monitor switch must be turned on in
order for the file system information to be returned.

Table 180. Information returned by the SNAPCONTAINER administrative view and the
SNAP_GET_CONTAINER_V91 table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

TBSP_ID BIGINT tablespace_id - Table space
identification

CONTAINER_NAME VARCHAR(256) container_name - Container name

CONTAINER_ID BIGINT container_id - Container
identification

CONTAINER_TYPE VARCHAR(16) container_type - Container type.
This is a text identifier based on
the defines in sqlutil.h and is one
of:

v DISK_EXTENT_TAG

v DISK_PAGE_TAG

v FILE_EXTENT_TAG

v FILE_PAGE_TAG

v PATH

TOTAL_PAGES BIGINT container_total_pages - Total pages
in container

USABLE_PAGES BIGINT container_usable_pages - Usable
pages in container

ACCESSIBLE SMALLINT container_accessible - Accessibility
of container

STRIPE_SET BIGINT container_stripe_set - Stripe set

622 Administrative Routines and Views

Table 180. Information returned by the SNAPCONTAINER administrative view and the
SNAP_GET_CONTAINER_V91 table function (continued)

Column name Data type
Description or corresponding
monitor element

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

FS_ID VARCHAR(22) fs_id - Unique file system
identification number

FS_TOTAL_SIZE BIGINT fs_total_size - Total size of a file
system

FS_USED_SIZE BIGINT fs_used_size - Amount of space
used on a file system

SNAPDB administrative view and SNAP_GET_DB_V97 table function -
Retrieve snapshot information from the dbase logical group

The SNAPDB administrative view and the SNAP_GET_DB_V97 table function
return snapshot information from the database (dbase) logical group.

SNAPDB administrative view

This administrative view allows you to retrieve snapshot information from the
dbase logical group for the currently connected database.

Used in conjunction with the SNAPDB_MEMORY_POOL, SNAPDETAILLOG,
SNAPHADR and SNAPSTORAGE_PATHS administrative views, the SNAPDB
administrative view provides information equivalent to the GET SNAPSHOT FOR
DATABASE on database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 181 on page 627 for a complete list of information that is returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPDB administrative view
v CONTROL privilege on the SNAPDB administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_DB_V97 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Chapter 15. Snapshot routines and views 623

Examples

Retrieve the status, platform, location, and connect time for all database partitions
of the currently connected database.
SELECT SUBSTR(DB_NAME, 1, 20) AS DB_NAME, DB_STATUS, SERVER_PLATFORM,

DB_LOCATION, DB_CONN_TIME, DBPARTITIONNUM
FROM SYSIBMADM.SNAPDB ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
DB_NAME DB_STATUS SERVER_PLATFORM DB_LOCATION ...
-------...- ------------ --------------- ------------ ...
TEST ACTIVE AIX64 LOCAL ...
TEST ACTIVE AIX64 LOCAL ...
TEST ACTIVE AIX64 LOCAL ...

3 record(s) selected.

Output from this query (continued).
... DB_CONN_TIME DBPARTITIONNUM
... -------------------------- --------------
... 2006-01-08-16.48.30.665477 0
... 2006-01-08-16.48.34.005328 1
... 2006-01-08-16.48.34.007937 2

This routine can be used by calling the following on the command line:
SELECT TOTAL_OLAP_FUNCS, OLAP_FUNC_OVERFLOWS, ACTIVE_OLAP_FUNCS

FROM SYSIBMADM.SNAPDB

TOTAL_OLAP_FUNCS OLAP_FUNC_OVERFLOWS ACTIVE_OLAP_FUNCS
-------------------- -------------------- -----------------

7 2 1

1 record(s) selected.

After running a workload, a user can use the following query:
SELECT STATS_CACHE_SIZE, STATS_FABRICATIONS, SYNC_RUNSTATS,

ASYNC_RUNSTATS, STATS_FABRICATE_TIME, SYNC_RUNSTATS_TIME
FROM SYSIBMADM.SNAPDB

STATS_CACHE_SIZE STATS_FABRICATIONS SYNC_RUNSTATS ASYNC_RUNSTATS ...
---------------- ------------------ ------------- -------------- ...

128 2 1 0 ...

... STATS_FABRICATE_TIME SYNC_RUNSTATS_TIME

... -------------------- ------------------

... 10 100

1 record(s) selected.

SNAP_GET_DB_V97 table function

The SNAP_GET_DB_V97 table function returns the same information as the
SNAPDB administrative view.

Note: If your database was created in Version 9.7 before Fix Pack 1, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7 , it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
migration). If you downgrade to Version 9.7 , this routine will no longer work.

624 Administrative Routines and Views

Used in conjunction with the SNAP_GET_DB_MEMORY_POOL,
SNAP_GET_DETAILLOG_V91, SNAP_GET_HADR and
SNAP_GET_STORAGE_PATHS table functions, the SNAP_GET_DB_V97 table
function provides information equivalent to the GET SNAPSHOT FOR ALL DATABASES
CLP command.

Refer to Table 181 on page 627 for a complete list of information that is returned.

Syntax

�� SNAP_GET_DB_V97 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_DB_V97 table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_DB_V97 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Chapter 15. Snapshot routines and views 625

Examples

Example 1: Retrieve the status, platform, location, and connect time as an aggregate
view across all database partitions of the currently connected database.
SELECT SUBSTR(DB_NAME, 1, 20) AS DB_NAME, DB_STATUS, SERVER_PLATFORM,

DB_LOCATION, DB_CONN_TIME FROM TABLE(SNAP_GET_DB_V97(’’, -2)) AS T

The following example is a sample output from this query.
DB_NAME DB_STATUS SERVER_PLATFORM ...
-------...- ---------... --------------- ...
SAMPLE ACTIVE AIX64 ...

1 record(s) selected.

Output from this query (continued).
... DB_LOCATION DB_CONN_TIME
... ------------ --------------------------
... LOCAL 2005-07-24-22.09.22.013196

Example 2: Retrieve the status, platform, location, and connect time as an aggregate
view across all database partitions for all active databases in the same instance that
contains the currently connected database.
SELECT SUBSTR(DB_NAME, 1, 20) AS DB_NAME, DB_STATUS, SERVER_PLATFORM,

DB_LOCATION, DB_CONN_TIME
FROM TABLE(SNAP_GET_DB_V97(CAST (NULL AS VARCHAR(128)), -2)) AS T

The following example is a sample output from this query.
DB_NAME DB_STATUS SERVER_PLATFORM ...
--------...- ---------... --------------- ...
TOOLSDB ACTIVE AIX64 ...
SAMPLE ACTIVE AIX64 ...

Output from this query (continued).
... DB_LOCATION DB_CONN_TIME
... ------------ --------------------------
... LOCAL 2005-07-24-22.26.54.396335
... LOCAL 2005-07-24-22.09.22.013196

Example 3: This routine can be used by calling the following on the command line:

When connected to a database:
SELECT TOTAL_OLAP_FUNCS, OLAP_FUNC_OVERFLOWS, ACTIVE_OLAP_FUNCS

FROM TABLE (SNAP_GET_DB_V97(’’, 0)) AS T

The output will look like:

TOTAL_OLAP_FUNCS OLAP_FUNC_OVERFLOWS ACTIVE_OLAP_FUNCS
---------------- -------------------- --------------------

7 2 1

1 record(s) selected.

Example 4: After running a workload, a user can use the following query with the
table function.
SELECT STATS_CACHE_SIZE, STATS_FABRICATIONS, SYNC_RUNSTATS,

ASYNC_RUNSTATS, STATS_FABRICATE_TIME, SYNC_RUNSTATS_TIME
FROM TABLE (SNAP_GET_DB_V97(’mytestdb’, -1)) AS SNAPDB

STATS_CACHE_SIZE STATS_FABRICATIONS SYNC_RUNSTATS ASYNC_RUNSTATS ...

626 Administrative Routines and Views

---------------- ------------------ ------------- -------------- ...
200 1 2 0 ...

Continued

...STATS_FABRICATE_TIME SYNC_RUNSTATS_TIME

...-------------------- ------------------

... 2 32

1 record(s) selected.

Example 5: The following example shows how you can use the
SNAP_GET_DB_V97 table function to determine the status of a database:
SELECT SUBSTR

(DB_NAME, 1, 20) AS DB_NAME, DB_STATUS
FROM table(SNAP_GET_DB_V97(’hadrdb’, 0))

DB_NAME DB_STATUS
-------------------- ----------------
HADRDB ACTIVE_STANDBY

SNAPDB administrative view and SNAP_GET_DB_V97 table
function metadata

Table 181. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V97 table function

Column name Data type
Description or corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the snapshot was
taken.

DB_NAME VARCHAR(128) db_name - Database name

DB_PATH VARCHAR(1024) db_path - Database path

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input database alias

DB_STATUS VARCHAR(16) db_status - Status of database. This interface
returns a text identifier based on defines in
sqlmon.h, and is one of:

v ACTIVE

v QUIESCE_PEND

v QUIESCED

v ROLLFWD

v ACTIVE_STANDBY - the HADR database
is in a standby mode with reads on
standby enabled.

v STANDBY - the HADR database is in
standby mode (reads on standby are not
enabled).

CATALOG_PARTITION SMALLINT catalog_node - Catalog node number

CATALOG_PARTITION_NAME VARCHAR(128) catalog_node_name - Catalog node network
name

Chapter 15. Snapshot routines and views 627

Table 181. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V97 table
function (continued)

Column name Data type
Description or corresponding monitor
element

SERVER_PLATFORM VARCHAR(12) server_platform - Server operating system.
This interface returns a text identifier based
on defines in sqlmon.h, and is one of:

v AIX

v AIX64

v AS400_DRDA

v DOS

v DYNIX

v HP

v HP64

v HPIA

v HPIA64

v LINUX

v LINUX390

v LINUXIA64

v LINUXPPC

v LINUXPPC64

v LINUXX8664

v LINUXZ64

v MAC

v MVS_DRDA

v NT

v NT64

v OS2

v OS390

v SCO

v SGI

v SNI

v SUN

v SUN64

v UNKNOWN

v UNKNOWN_DRDA

v VM_DRDA

v VSE_DRDA

v WINDOWS

DB_LOCATION VARCHAR(12) db_location - Database location. This
interface returns a text identifier based on
defines in sqlmon.h, and is one of:

v LOCAL

v REMOTE

DB_CONN_TIME TIMESTAMP db_conn_time - Database activation
timestamp

LAST_RESET TIMESTAMP last_reset - Last reset timestamp

LAST_BACKUP TIMESTAMP last_backup - Last backup timestamp

628 Administrative Routines and Views

Table 181. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V97 table
function (continued)

Column name Data type
Description or corresponding monitor
element

CONNECTIONS_TOP BIGINT connections_top - Maximum number of
concurrent connections

TOTAL_CONS BIGINT total_cons - Connects since database
activation

TOTAL_SEC_CONS BIGINT total_sec_cons - Secondary connections

APPLS_CUR_CONS BIGINT appls_cur_cons - Applications connected
currently

APPLS_IN_DB2 BIGINT appls_in_db2 - Applications executing in the
database currently

NUM_ASSOC_AGENTS BIGINT num_assoc_agents - Number of associated
agents

AGENTS_TOP BIGINT agents_top - Number of agents created

COORD_AGENTS_TOP BIGINT coord_agents_top - Maximum number of
coordinating agents

LOCKS_HELD BIGINT locks_held - Locks held

LOCK_WAITS BIGINT lock_waits - Lock waits

LOCK_WAIT_TIME BIGINT lock_wait_time - Time waited on locks

LOCK_LIST_IN_USE BIGINT lock_list_in_use - Total lock list memory in
use

DEADLOCKS BIGINT deadlocks - Deadlocks detected

LOCK_ESCALS BIGINT lock_escals - Number of lock escalations

X_LOCK_ESCALS BIGINT x_lock_escals - Exclusive lock escalations

LOCKS_WAITING BIGINT locks_waiting - Current agents waiting on
locks

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of lock timeouts

NUM_INDOUBT_TRANS BIGINT num_indoubt_trans - Number of indoubt
transactions

SORT_HEAP_ALLOCATED BIGINT sort_heap_allocated - Total sort heap
allocated

SORT_SHRHEAP_ALLOCATED BIGINT sort_shrheap_allocated - Sort share heap
currently allocated

SORT_SHRHEAP_TOP BIGINT sort_shrheap_top - Sort share heap high
water mark

POST_SHRTHRESHOLD_SORTS BIGINT post_shrthreshold_sorts - Post shared
threshold sorts

TOTAL_SORTS BIGINT total_sorts - Total sorts

TOTAL_SORT_TIME BIGINT total_sort_time - Total sort time

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

ACTIVE_SORTS BIGINT active_sorts - Active sorts

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool data logical
reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool data
physical reads

Chapter 15. Snapshot routines and views 629

Table 181. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V97 table
function (continued)

Column name Data type
Description or corresponding monitor
element

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer pool
temporary data logical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer pool
temporary data physical reads

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer pool
asynchronous data reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data writes

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer pool
asynchronous data writes

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool index
logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool index
physical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer pool
temporary index logical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer pool
temporary index physical reads

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer pool
asynchronous index reads

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool index writes

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer pool
asynchronous index writes

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool XDA Data
Physical Reads

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool XDA Data
Logical Reads

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer Pool XDA Data
Writes

POOL_ASYNC_XDA_READS BIGINT pool_async_xda_reads - Buffer Pool
Asynchronous XDA Data Reads

POOL_ASYNC_XDA_WRITES BIGINT pool_async_xda_writes - Buffer Pool
Asynchronous XDA Data Writes

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer Pool
Temporary XDA Data Physical Reads
monitor element

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer Pool
Temporary XDA Data Logical Reads

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool physical
read time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool physical
write time

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer pool
asynchronous read time

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer pool
asynchronous write time

630 Administrative Routines and Views

Table 181. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V97 table
function (continued)

Column name Data type
Description or corresponding monitor
element

POOL_ASYNC_DATA_
READ_REQS

BIGINT pool_async_data_read_reqs - Buffer pool
asynchronous read requests

POOL_ASYNC_INDEX_
READ_REQS

BIGINT pool_async_index_read_reqs - Buffer pool
asynchronous index read requests

POOL_ASYNC_XDA_
READ_REQS

BIGINT pool_async_xda_read_reqs - Buffer Pool
Asynchronous XDA Read Requests

POOL_NO_VICTIM_BUFFER BIGINT pool_no_victim_buffer - Buffer pool no
victim buffers

POOL_LSN_GAP_CLNS BIGINT pool_lsn_gap_clns - Buffer pool log space
cleaners triggered

POOL_DRTY_PG_STEAL_CLNS BIGINT pool_drty_pg_steal_clns - Buffer pool victim
page cleaners triggered

POOL_DRTY_PG_THRSH_CLNS BIGINT pool_drty_pg_thrsh_clns - Buffer pool
threshold cleaners triggered

PREFETCH_WAIT_TIME BIGINT prefetch_wait_time - Time waited for
prefetch

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread prefetch
pages

DIRECT_READS BIGINT direct_reads - Direct reads from database

DIRECT_WRITES BIGINT direct_writes - Direct writes to database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write requests

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write time

FILES_CLOSED BIGINT files_closed - Database files closed

ELAPSED_EXEC_TIME_S BIGINT elapsed_exec_time - Statement execution
elapsed time

ELAPSED_EXEC_TIME_MS BIGINT elapsed_exec_time - Statement execution
elapsed time

COMMIT_SQL_STMTS BIGINT commit_sql_stmts - Commit statements
attempted

ROLLBACK_SQL_STMTS BIGINT rollback_sql_stmts - Rollback statements
attempted

DYNAMIC_SQL_STMTS BIGINT dynamic_sql_stmts - Dynamic SQL
statements attempted

STATIC_SQL_STMTS BIGINT static_sql_stmts - Static SQL statements
attempted

FAILED_SQL_STMTS BIGINT failed_sql_stmts - Failed statement operations

SELECT_SQL_STMTS BIGINT select_sql_stmts - Select SQL statements
executed

Chapter 15. Snapshot routines and views 631

Table 181. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V97 table
function (continued)

Column name Data type
Description or corresponding monitor
element

UID_SQL_STMTS BIGINT uid_sql_stmts - UPDATE/INSERT/DELETE
SQL statements executed

DDL_SQL_STMTS BIGINT ddl_sql_stmts - Data definition language
(DDL) SQL statements

INT_AUTO_REBINDS BIGINT int_auto_rebinds - Internal automatic rebinds

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal rows deleted

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal rows inserted

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal rows updated

INT_COMMITS BIGINT int_commits - Internal commits

INT_ROLLBACKS BIGINT int_rollbacks - Internal rollbacks

INT_DEADLOCK_ROLLBACKS BIGINT int_deadlock_rollbacks - Internal rollbacks
due to deadlock

ROWS_DELETED BIGINT rows_deleted - Rows deleted

ROWS_INSERTED BIGINT rows_inserted - Rows inserted

ROWS_UPDATED BIGINT rows_updated - Rows updated

ROWS_SELECTED BIGINT rows_selected - Rows selected

ROWS_READ BIGINT rows_read - Rows read

BINDS_PRECOMPILES BIGINT binds_precompiles - Binds/precompiles
attempted

TOTAL_LOG_AVAILABLE BIGINT total_log_available - Total log available

TOTAL_LOG_USED BIGINT total_log_used - Total log space used

SEC_LOG_USED_TOP BIGINT sec_log_used_top - Maximum secondary log
space used

TOT_LOG_USED_TOP BIGINT tot_log_used_top - Maximum total log space
used

SEC_LOGS_ALLOCATED BIGINT sec_logs_allocated - Secondary logs allocated
currently

LOG_READS BIGINT log_reads - Number of log pages read

LOG_READ_TIME_S BIGINT log_read_time - Log read time

LOG_READ_TIME_NS BIGINT log_read_time - Log read time

LOG_WRITES BIGINT log_writes - Number of log pages written

LOG_WRITE_TIME_S BIGINT log_write_time - Log write time

LOG_WRITE_TIME_NS BIGINT log_write_time - Log write time

NUM_LOG_WRITE_IO BIGINT num_log_write_io - Number of log writes

NUM_LOG_READ_IO BIGINT num_log_read_io - Number of log reads

NUM_LOG_PART_PAGE_IO BIGINT num_log_part_page_io - Number of partial
log page writes

NUM_LOG_BUFFER_FULL BIGINT num_log_buffer_full - Number of full log
buffers

NUM_LOG_DATA_FOUND_
IN_BUFFER

BIGINT num_log_data_found_in_buffer - Number of
log data found in buffer

632 Administrative Routines and Views

Table 181. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V97 table
function (continued)

Column name Data type
Description or corresponding monitor
element

APPL_ID_OLDEST_XACT BIGINT appl_id_oldest_xact - Application with oldest
transaction

LOG_TO_REDO_FOR_
RECOVERY

BIGINT log_to_redo_for_recovery - Amount of log to
be redone for recovery

LOG_HELD_BY_DIRTY_PAGES BIGINT log_held_by_dirty_pages - Amount of log
space accounted for by dirty pages

PKG_CACHE_LOOKUPS BIGINT pkg_cache_lookups - Package cache lookups

PKG_CACHE_INSERTS BIGINT pkg_cache_inserts - Package cache inserts

PKG_CACHE_NUM_
OVERFLOWS

BIGINT pkg_cache_num_overflows - Package cache
overflows

PKG_CACHE_SIZE_TOP BIGINT pkg_cache_size_top - Package cache high
water mark

APPL_SECTION_LOOKUPS BIGINT appl_section_lookups - Section lookups

APPL_SECTION_INSERTS BIGINT appl_section_inserts - Section inserts

CAT_CACHE_LOOKUPS BIGINT cat_cache_lookups - Catalog cache lookups

CAT_CACHE_INSERTS BIGINT cat_cache_inserts - Catalog cache inserts

CAT_CACHE_OVERFLOWS BIGINT cat_cache_overflows - Catalog cache
overflows

CAT_CACHE_SIZE_TOP BIGINT cat_cache_size_top - Catalog cache high
water mark

PRIV_WORKSPACE_SIZE_TOP BIGINT priv_workspace_size_top - Maximum private
workspace size

PRIV_WORKSPACE_NUM_
OVERFLOWS

BIGINT priv_workspace_num_overflows - Private
workspace overflows

PRIV_WORKSPACE_SECTION_
INSERTS

BIGINT priv_workspace_section_inserts - Private
workspace section inserts

PRIV_WORKSPACE_SECTION_
LOOKUPS

BIGINT priv_workspace_section_lookups - Private
workspace section lookups

SHR_WORKSPACE_SIZE_TOP BIGINT shr_workspace_size_top - Maximum shared
workspace size

SHR_WORKSPACE_NUM_
OVERFLOWS

BIGINT shr_workspace_num_overflows - Shared
workspace overflows

SHR_WORKSPACE_SECTION_
INSERTS

BIGINT shr_workspace_section_inserts - Shared
workspace section inserts

SHR_WORKSPACE_SECTION_
LOOKUPS

BIGINT shr_workspace_section_lookups - Shared
workspace section lookups

TOTAL_HASH_JOINS BIGINT total_hash_joins - Total hash joins

Chapter 15. Snapshot routines and views 633

Table 181. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V97 table
function (continued)

Column name Data type
Description or corresponding monitor
element

TOTAL_HASH_LOOPS BIGINT total_hash_loops - Total hash loops

HASH_JOIN_OVERFLOWS BIGINT hash_join_overflows - Hash join overflows

HASH_JOIN_SMALL_
OVERFLOWS

BIGINT hash_join_small_overflows - Hash join small
overflows

POST_SHRTHRESHOLD_
HASH_JOINS

BIGINT post_shrthreshold_hash_joins - Post
threshold hash joins

ACTIVE_HASH_JOINS BIGINT active_hash_joins - Active hash joins

NUM_DB_STORAGE_PATHS BIGINT num_db_storage_paths - Number of
automatic storage paths

DBPARTITIONNUM SMALLINT The database partition from which the data
was retrieved for this row.

SMALLEST_LOG_AVAIL_
NODE

INTEGER smallest_log_avail_node - Node with least
available log space

TOTAL_OLAP_FUNCS BIGINT total_olap_funcs - Total OLAP functions

OLAP_FUNC_OVERFLOWS BIGINT olap_func_overflows - OLAP function
overflows

ACTIVE_OLAP_FUNCS BIGINT active_olap_funcs - Active OLAP functions

STATS_CACHE_SIZE BIGINT stats_cache_size - Size of statistics cache

STATS_FABRICATIONS BIGINT stats_fabrications - Total number of statistics
fabrications

SYNC_RUNSTATS BIGINT sync_runstats - Total number of synchronous
RUNSTATS activities

ASYNC_RUNSTATS BIGINT async_runstats - Total number of
asynchronous RUNSTATS requests

STATS_FABRICATE_TIME BIGINT stats_fabricate_time - Total time spent on
statistics fabrication activities

SYNC_RUNSTATS_TIME BIGINT sync_runstats_time - Total time spent on
synchronous RUNSTATS activities

NUM_THRESHOLD_VIOLATIONS BIGINT num_threshold_violations - Number of
threshold violations

SNAPDBM administrative view and SNAP_GET_DBM_V95 table
function - Retrieve the dbm logical grouping snapshot information

The SNAPDBM administrative view and the SNAP_GET_DBM_V95 table function
return the snapshot monitor DB2 database manager (dbm) logical grouping
information.

634 Administrative Routines and Views

SNAPDBM administrative view

Used with the SNAPDBM_MEMORY_POOL, SNAPFCM, SNAPFCM_PART and
SNAPSWITCHES administrative views, the SNAPDBM administrative view
provides the data equivalent to the GET SNAPSHOT FOR DBM command.

The schema is SYSIBMADM.

Refer to Table 182 on page 637 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPDBM administrative view
v CONTROL privilege on the SNAPDBM administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_DBM_V95 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve database manager status and connection information for all database
partitions.
SELECT DB2_STATUS, DB2START_TIME, LAST_RESET, LOCAL_CONS, REM_CONS_IN,

(AGENTS_CREATED_EMPTY_POOL/AGENTS_FROM_POOL) AS AGENT_USAGE,
DBPARTITIONNUM FROM SYSIBMADM.SNAPDBM ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
DB2_STATUS DB2START_TIME LAST_RESET ...
------------ -------------------------- ----------...- ...
ACTIVE 2006-01-06-14.59.59.059879 - ...
ACTIVE 2006-01-06-14.59.59.097605 - ...
ACTIVE 2006-01-06-14.59.59.062798 - ...

3 record(s) selected. ...

Output from this query (continued).
... LOCAL_CONS REM_CONS_IN AGENT_USAGE DBPARTITIONNUM
... ----------...- -----------...- -----------...- --------------
... 1 1 0 0
... 0 0 0 1
... 0 0 0 2

Chapter 15. Snapshot routines and views 635

SNAP_GET_DBM_V95 table function

The SNAP_GET_DBM_V95 table function returns the same information as the
SNAPDBM administrative view, but allows you to retrieve the information for a
specific database partition, aggregate of all database partitions or all database
partitions.

Used with the SNAP_GET_DBM_MEMORY_POOL, SNAP_GET_FCM,
SNAP_GET_FCM_PART and SNAP_GET_SWITCHES table functions, the
SNAP_GET_DBM_V95 table function provides the data equivalent to the GET
SNAPSHOT FOR DBM command.

Refer to Table 182 on page 637 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_DBM_V95 ()
dbpartitionnum

��

The schema is SYSPROC.

Table function parameter

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If this input option is not used, data
will be returned from all active database partitions. An active database
partition is a partition where the database is available for connection and use
by applications.

If dbpartitionnum is set to NULL, an attempt is made to read data from the file
created by SNAP_WRITE_FILE procedure. Note that this file could have been
created at any time, which means that the data might not be current. If a file with
the corresponding snapshot API request type does not exist, then the
SNAP_GET_DBM_V95 table function calls the snapshot from memory.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_DBM_V95 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

636 Administrative Routines and Views

Example

Retrieve the start time and current status of database partition number 2.
SELECT DB2START_TIME, DB2_STATUS FROM TABLE(SNAP_GET_DBM_V95(2)) AS T

The following example is a sample output from this query.
DB2START_TIME DB2_STATUS
-------------------------- ------------
2006-01-06-14.59.59.062798 ACTIVE

Information returned

Table 182. Information returned by the SNAPDBM administrative view and the SNAP_GET_DBM_V95 table function

Column name Data type
Description or corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the snapshot was
taken.

SORT_HEAP_ALLOCATED BIGINT sort_heap_allocated - Total sort heap
allocated

POST_THRESHOLD_SORTS BIGINT post_threshold_sorts - Post threshold sorts

PIPED_SORTS_REQUESTED BIGINT piped_sorts_requested - Piped sorts
requested

PIPED_SORTS_ACCEPTED BIGINT piped_sorts_accepted - Piped sorts accepted

REM_CONS_IN BIGINT rem_cons_in - Remote connections to
database manager

REM_CONS_IN_EXEC BIGINT rem_cons_in_exec - Remote Connections
Executing in the Database Manager monitor
element

LOCAL_CONS BIGINT local_cons - Local connections

LOCAL_CONS_IN_EXEC BIGINT local_cons_in_exec - Local Connections
Executing in the Database Manager monitor
element

CON_LOCAL_DBASES BIGINT con_local_dbases - Local databases with
current connects

AGENTS_REGISTERED BIGINT agents_registered - Agents registered

AGENTS_WAITING_ON_TOKEN BIGINT agents_waiting_on_token - Agents waiting
for a token

DB2_STATUS VARCHAR(12) db2_status - Status of DB2 instance

This interface returns a text identifier based
on defines in sqlmon.h, and is one of:

v ACTIVE

v QUIESCE_PEND

v QUIESCED

AGENTS_REGISTERED_TOP BIGINT agents_registered_top - Maximum number
of agents registered

AGENTS_WAITING_TOP BIGINT agents_waiting_top - Maximum number of
agents waiting

COMM_PRIVATE_MEM BIGINT comm_private_mem - Committed private
memory

IDLE_AGENTS BIGINT idle_agents - Number of idle agents

Chapter 15. Snapshot routines and views 637

Table 182. Information returned by the SNAPDBM administrative view and the SNAP_GET_DBM_V95 table
function (continued)

Column name Data type
Description or corresponding monitor
element

AGENTS_FROM_POOL BIGINT agents_from_pool - Agents assigned from
pool

AGENTS_CREATED_EMPTY_POOL BIGINT agents_created_empty_pool - Agents
created due to empty agent pool

COORD_AGENTS_TOP BIGINT coord_agents_top - Maximum number of
coordinating agents

MAX_AGENT_OVERFLOWS BIGINT max_agent_overflows - Maximum agent
overflows

AGENTS_STOLEN BIGINT agents_stolen - Stolen agents

GW_TOTAL_CONS BIGINT gw_total_cons - Total number of attempted
connections for DB2 Connect

GW_CUR_CONS BIGINT gw_cur_cons - Current number of
connections for DB2 Connect

GW_CONS_WAIT_HOST BIGINT gw_cons_wait_host - Number of
connections waiting for the host to reply

GW_CONS_WAIT_CLIENT BIGINT gw_cons_wait_client - Number of
connections waiting for the client to send
request

POST_THRESHOLD_ HASH_JOINS BIGINT post_threshold_hash_joins - Hash join
threshold

NUM_GW_CONN_SWITCHES BIGINT num_gw_conn_switches - Connection
switches

DB2START_TIME TIMESTAMP db2start_time - Start database manager
timestamp

LAST_RESET TIMESTAMP last_reset - Last reset timestamp

NUM_NODES_IN_ DB2_INSTANCE INTEGER num_nodes_in_db2_instance - Number of
nodes in database partition

PRODUCT_NAME VARCHAR(32) product_name - Product name

SERVICE_LEVEL VARCHAR(18) service_level - Service level

SORT_HEAP_TOP BIGINT sort_heap_top - Sort private heap high
water mark

DBPARTITIONNUM SMALLINT The database partition from which the data
was retrieved for this row.

638 Administrative Routines and Views

Table 182. Information returned by the SNAPDBM administrative view and the SNAP_GET_DBM_V95 table
function (continued)

Column name Data type
Description or corresponding monitor
element

POST_THRESHOLD_OLAP_FUNCS BIGINT The number of OLAP functions which have
requested a sort heap after the sort heap
threshold has been exceeded.

Sorts, hash joins, and OLAP functions are
examples of operations which use a sort
heap. Under normal conditions, the
database manager will allocate sort heap
using the value specified by the sortheap
configuration parameter. If the amount of
memory allocated to sort heaps exceeds the
sort heap threshold (sheapthres
configuration parameter), the database
manager will allocate subsequent sort heaps
using a value less than that specified by the
sortheap configuration parameter.

OLAP functions which start after the sort
heap threshold has been reached may not
receive an optimum amount of memory to
execute.

SNAPDETAILLOG administrative view and
SNAP_GET_DETAILLOG_V91 table function - Retrieve snapshot
information from the detail_log logical data group

The SNAPDETAILLOG administrative view and the SNAP_GET_DETAILLOG_V91
table function return snapshot information from the detail_log logical data group.

SNAPDETAILLOG administrative view

This administrative view allows you to retrieve snapshot information from the
detail_log logical data group for the currently connected database.

Used in conjunction with the SNAPDB, SNAPDB_MEMORY_POOL, SNAPHADR
and SNAPSTORAGE_PATHS administrative views, the SNAPDETAILLOG
administrative view provides information equivalent to the GET SNAPSHOT FOR
DATABASE on database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 183 on page 642 for a complete list of information that is returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPDETAILLOG administrative view
v CONTROL privilege on the SNAPDETAILLOG administrative view
v DATAACCESS authority

Chapter 15. Snapshot routines and views 639

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_DETAILLOG_V91 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve log information for all database partitions for the currently connected
database.
SELECT SUBSTR(DB_NAME, 1, 8) AS DB_NAME, FIRST_ACTIVE_LOG,

LAST_ACTIVE_LOG, CURRENT_ACTIVE_LOG, CURRENT_ARCHIVE_LOG,
DBPARTITIONNUM
FROM SYSIBMADM.SNAPDETAILLOG ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
DB_NAME FIRST_ACTIVE_LOG LAST_ACTIVE_LOG ...
-------- -------------------- -------------------- ...
TEST 0 8 ...
TEST 0 8 ...
TEST 0 8 ...

3 record(s) selected.

Output from this query (continued).
... CURRENT_ACTIVE_LOG CURRENT_ARCHIVE_LOG DBPARTITIONNUM
... -------------------- -------------------- --------------
... 0 - 0
... 0 - 1
... 0 - 2

SNAP_GET_DETAILLOG_V91 table function

The SNAP_GET_DETAILLOG_V91 table function returns the same information as
the SNAPDETAILLOG administrative view.

Used in conjunction with the SNAP_GET_DB_V95,
SNAP_GET_DB_MEMORY_POOL, SNAP_GET_HADR and
SNAP_GET_STORAGE_PATHS table functions, the SNAP_GET_DETAILLOG table
function provides information equivalent to the GET SNAPSHOT FOR ALL DATABASES
CLP command.

Refer to Table 183 on page 642 for a complete list of information that is returned.

Syntax

�� SNAP_GET_DETAILLOG_V91 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

640 Administrative Routines and Views

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_DETAILLOG_V91 table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_DETAILLOG_V91 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve log information for database partition 1 for the currently connected
database.
SELECT SUBSTR(DB_NAME, 1, 8) AS DB_NAME, FIRST_ACTIVE_LOG,

LAST_ACTIVE_LOG, CURRENT_ACTIVE_LOG, CURRENT_ARCHIVE_LOG
FROM TABLE(SNAP_GET_DETAILLOG_V91(’’, 1)) AS T

The following example is a sample output from this query.
DB_NAME FIRST_ACTIVE_LOG LAST_ACTIVE_LOG ...
-------- -------------------- -------------------- ...
TEST 0 8 ...

1 record(s) selected.

Output from this query (continued).

Chapter 15. Snapshot routines and views 641

... CURRENT_ACTIVE_LOG CURRENT_ARCHIVE_LOG

... -------------------- --------------------

... 0 -

SNAPDETAILLOG administrative view and
SNAP_GET_DETAILLOG_V91 table function metadata

Table 183. Information returned by the SNAPDETAILLOG administrative view and
SNAP_GET_DETAILLOG_V91 table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

FIRST_ACTIVE_LOG BIGINT first_active_log - First active log
file number

LAST_ACTIVE_LOG BIGINT last_active_log - Last active log file
number

CURRENT_ACTIVE_LOG BIGINT current_active_log - Current active
log file number

CURRENT_ARCHIVE_LOG BIGINT current_archive_log - Current
archive log file number

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPDYN_SQL administrative view and SNAP_GET_DYN_SQL_V95
table function - Retrieve dynsql logical group snapshot information

The “SNAPDYN_SQL administrative view” and the “SNAP_GET_DYN_SQL_V95
table function” on page 644 return snapshot information from the dynsql logical
data group.

SNAPDYN_SQL administrative view

This administrative view allows you to retrieve dynsql logical group snapshot
information for the currently connected database.

This view returns information equivalent to the GET SNAPSHOT FOR DYNAMIC SQL ON
database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 184 on page 646 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPDYN_SQL administrative view
v CONTROL privilege on the SNAPDYN_SQL administrative view
v DATAACCESS authority

642 Administrative Routines and Views

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_DYN_SQL_V95 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of dynamic SQL run on all database partitions of the currently
connected database, ordered by the number of rows read.
SELECT PREP_TIME_WORST, NUM_COMPILATIONS, SUBSTR(STMT_TEXT, 1, 60)

AS STMT_TEXT, DBPARTITIONNUM
FROM SYSIBMADM.SNAPDYN_SQL ORDER BY ROWS_READ

The following example is a sample output from this query.
PREP_TIME_WORST NUM_COMPILATIONS ...
-------------------- -------------------- ...

98 1 ...
9 1 ...
0 0 ...
0 1 ...
0 1 ...
0 1 ...
0 1 ...
0 1 ...
40 1 ...

9 record(s) selected.

Output from this query (continued).
... STMT_TEXT ...
... -- ...
... select prep_time_worst, num_compilations, substr(stmt_text, ...
... select * from dbuser.employee ...
... SET CURRENT LOCALE LC_CTYPE = ’en_US’ ...
... select prep_time_worst, num_compilations, substr(stmt_text, ...
... select prep_time_worst, num_compilations, substr(stmt_text, ...
... select * from dbuser.employee ...
... insert into dbuser.employee values(1) ...
... select * from dbuser.employee ...
... insert into dbuser.employee values(1) ...

Output from this query (continued).
... DBPARTITIONNUM
... --------------
... 0
... 0
... 0
... 2
... 1
... 2
... 2
... 1
... 0

Chapter 15. Snapshot routines and views 643

SNAP_GET_DYN_SQL_V95 table function

The SNAP_GET_DYN_SQL_V95 table function returns the same information as the
SNAPDYN_SQL administrative view, but allows you to retrieve the information for
a specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

This table function returns information equivalent to the GET SNAPSHOT FOR
DYNAMIC SQL ON database-alias CLP command.

Refer to Table 184 on page 646 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_DYN_SQL_V95 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify NULL or empty
string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_DYN_SQL_V95 table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_DYN_SQL_V95 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL

644 Administrative Routines and Views

v SYSMAINT
v SYSADM

Example

Retrieve a list of dynamic SQL run on the currently connected database partition of
the currently connected database, ordered by the number of rows read.
SELECT PREP_TIME_WORST, NUM_COMPILATIONS, SUBSTR(STMT_TEXT, 1, 60)

AS STMT_TEXT FROM TABLE(SNAP_GET_DYN_SQL_V95(’’,-1)) as T
ORDER BY ROWS_READ

The following example is a sample output from this query.
PREP_TIME_WORST ...
-------------------- ...

0 ...
3 ...

...
4 ...

...
4 ...

...
4 ...

...
3 ...

...
4 ...

...

Output from this query (continued).
... NUM_COMPILATIONS STMT_TEXT
... -------------------- ---------------------------------------...-
... 0 SET CURRENT LOCALE LC_CTYPE = ’en_US’
... 1 select rows_read, rows_written,
... substr(stmt_text, 1, 40) as
... 1 select * from table
... (snap_get_dyn_sqlv9(’’,-1)) as t
... 1 select * from table
... (snap_getdetaillog9(’’,-1)) as t
... 1 select * from table
... (snap_get_hadr(’’,-1)) as t
... 1 select prep_time_worst, num_compilations,
... substr(stmt_text,
... 1 select prep_time_worst, num_compilations,
... substr(stmt_text,

After running a workload, user can use the following query with the table
function.
SELECT STATS_FABRICATE_TIME,SYNC_RUNSTATS_TIME

FROM TABLE (SNAP_GET_DYN_SQL_V95(’mytestdb’, -1))
AS SNAPDB

STATS_FABRICATE_TIME SYNC_RUNSTATS_TIME
---------------------- ------------------

2 12
1 30

For the view based on this table function:
SELECT STATS_FABRICATE_TIME,SYNC_RUNSTATS_TIME

FROM SYSIBMADM.SNAPDYN_SQL

STATS_FABRICATE_TIME SYNC_RUNSTATS_TIME

Chapter 15. Snapshot routines and views 645

---------------------- ------------------
5 10
3 20

2 record(s) selected.

Information returned

Table 184. Information returned by the SNAPDYN_SQL administrative view and the SNAP_GET_DYN_SQL_V95
table function

Column name Data type
Description or corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the snapshot was
taken.

NUM_EXECUTIONS BIGINT num_executions - Statement executions

NUM_COMPILATIONS BIGINT num_compilations - Statement compilations

PREP_TIME_WORST BIGINT prep_time_worst - Statement worst
preparation time

PREP_TIME_BEST BIGINT prep_time_best - Statement best preparation
time

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal rows deleted

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal rows inserted

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal rows updated

ROWS_READ BIGINT rows_read - Rows read

ROWS_WRITTEN BIGINT rows_written - Rows written

STMT_SORTS BIGINT stmt_sorts - Statement sorts

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

TOTAL_SORT_TIME BIGINT total_sort_time - Total sort time

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool data logical
reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool data
physical reads

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer pool
temporary data logical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer pool
temporary data physical reads

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool index
logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool index
physical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer pool
temporary index logical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer pool
temporary index physical reads

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool XDA Data
Logical Reads

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool XDA Data
Physical Reads

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer Pool
Temporary XDA Data Logical Reads

646 Administrative Routines and Views

Table 184. Information returned by the SNAPDYN_SQL administrative view and the SNAP_GET_DYN_SQL_V95
table function (continued)

Column name Data type
Description or corresponding monitor
element

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer Pool
Temporary XDA Data Physical Reads
monitor element

TOTAL_EXEC_TIME BIGINT total_exec_time - Elapsed statement
execution time (in seconds)*

TOTAL_EXEC_TIME_MS BIGINT total_exec_time - Elapsed statement
execution time (fractional, in microseconds)*

TOTAL_USR_CPU_TIME BIGINT total_usr_cpu_time - Total user CPU for a
statement (in seconds)*

TOTAL_USR_CPU_TIME_MS BIGINT total_usr_cpu_time - Total user CPU for a
statement (fractional, in microseconds)*

TOTAL_SYS_CPU_TIME BIGINT total_sys_cpu_time - Total system CPU for a
statement (in seconds)*

TOTAL_SYS_CPU_TIME_MS BIGINT total_sys_cpu_time - Total system CPU for a
statement (fractional, in microseconds)*

STMT_TEXT CLOB(2 M) stmt_text - SQL statement text

DBPARTITIONNUM SMALLINT The database partition from which the data
was retrieved for this row.

STATS_FABRICATE_TIME BIGINT The total time (in milliseconds) spent by
system to create needed statistics without
table or index scan during query compilation
for a dynamic statement.

SYNC_RUNSTATS_TIME BIGINT The total time (in milliseconds) spent on
synchronous statistics-collect activities during
query compilation for a dynamic statement.

* To calculate the total time spent for the monitor element that this column is based on, you must add the full
seconds reported in the column for this monitor element that ends with _S to the fractional seconds reported in the
column for this monitor element that ends with _MS, using the following formula: (monitor-element-name_S ×
1,000,000 + monitor-element-name_MS) ÷ 1,000,000. For example, (ELAPSED_EXEC_TIME_S × 1,000,000 +
ELAPSED_EXEC_TIME_MS) ÷ 1,000,000.

SNAPFCM administrative view and SNAP_GET_FCM table function –
Retrieve the fcm logical data group snapshot information

The SNAPFCM administrative view and the SNAP_GET_FCM table function
return information about the fast communication manager from a database
manager snapshot, in particular, the fcm logical data group.

SNAPFCM administrative view

Used with the SNAPDBM, SNAPDBM_MEMORY_POOL, SNAPFCM_PART and
SNAPSWITCHES administrative views, the SNAPFCM administrative view
provides the data equivalent to the GET SNAPSHOT FOR DBM command.

The schema is SYSIBMADM.

Chapter 15. Snapshot routines and views 647

Refer to Table 185 on page 650 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPFCM administrative view
v CONTROL privilege on the SNAPFCM administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_FCM table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve information about the fast communication manager's message buffers on
all database partitions.
SELECT BUFF_FREE, BUFF_FREE_BOTTOM, DBPARTITIONNUM

FROM SYSIBMADM.SNAPFCM ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
BUFF_FREE BUFF_FREE_BOTTOM DBPARTITIONNUM
---------...---- -------------------- --------------

5120 5100 0
5120 5100 1
5120 5100 2

SNAP_GET_FCM table function

The SNAP_GET_FCM table function returns the same information as the
SNAPFCM administrative view, but allows you to retrieve the information for a
specific database partition, aggregate of all database partitions or all database
partitions.

Used with the SNAP_GET_DBM_V95, SNAP_GET_DBM_MEMORY_POOL,
SNAP_GET_FCM_PART and SNAP_GET_SWITCHES table functions, the
SNAP_GET_FCM table function provides the data equivalent to the GET SNAPSHOT
FOR DBM command.

Refer to Table 185 on page 650 for a complete list of information that can be
returned.

648 Administrative Routines and Views

Syntax

�� SNAP_GET_FCM ()
dbpartitionnum

��

The schema is SYSPROC.

Table function parameter

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If this input option is not used, data
will be returned from all active database partitions. An active database
partition is a partition where the database is available for connection and use
by applications.

If dbpartitionnum is set to NULL, an attempt is made to read data from the file
created by SNAP_WRITE_FILE procedure. Note that this file could have been
created at any time, which means that the data might not be current. If a file with
the corresponding snapshot API request type does not exist, then the
SNAP_GET_FCM table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_FCM table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve information about the fast communication manager's message buffers on
database partition 1.
SELECT BUFF_FREE, BUFF_FREE_BOTTOM, DBPARTITIONNUM

FROM TABLE(SYSPROC.SNAP_GET_FCM(1)) AS T

The following example is a sample output from this query.
BUFF_FREE BUFF_FREE_BOTTOM DBPARTITIONNUM
-------------------- -------------------- --------------

5120 5100 1

Chapter 15. Snapshot routines and views 649

Information returned

Table 185. Information returned by the SNAPFCM administrative view and the
SNAP_GET_FCM table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

BUFF_FREE BIGINT buff_free - FCM buffers currently
free

BUFF_FREE_BOTTOM BIGINT buff_free_bottom - Minimum FCM
Buffers Free

CH_FREE BIGINT ch_free - Channels Currently Free

CH_FREE_BOTTOM BIGINT ch_free_bottom - Minimum
Channels Free

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPFCM_PART administrative view and SNAP_GET_FCM_PART table
function – Retrieve the fcm_node logical data group snapshot
information

The SNAPFCM_PART administrative view and the SNAP_GET_FCM_PART table
function return information about the fast communication manager from a
database manager snapshot, in particular, the fcm_node logical data group.

SNAPFCM_PART administrative view

Used with the SNAPDBM, SNAPDBM_MEMORY_POOL, SNAPFCM and
SNAPSWITCHES administrative views, the SNAPFCM_PART administrative view
provides the data equivalent to the GET SNAPSHOT FOR DBM command.

The schema is SYSIBMADM.

Refer to Table 186 on page 652 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPFCM_PART administrative view
v CONTROL privilege on the SNAPFCM_PART administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_FCM_PART table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON

650 Administrative Routines and Views

v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve buffers sent and received information for the fast communication
manager.
SELECT CONNECTION_STATUS, TOTAL_BUFFERS_SENT, TOTAL_BUFFERS_RECEIVED

FROM SYSIBMADM.SNAPFCM_PART WHERE DBPARTITIONNUM = 0

The following example is a sample output from this query.
CONNECTION_STATUS TOTAL_BUFFERS_SENT TOTAL_BUFFERS_RCVD
-------------------- -------------------- --------------------
INACTIVE 2 1

1 record(s) selected.

SNAP_GET_FCM_PART table function

The SNAP_GET_FCM_PART table function returns the same information as the
SNAPFCM_PART administrative view, but allows you to retrieve the information
for a specific database partition, aggregate of all database partitions or all database
partitions.

Used with the SNAP_GET_DBM_V95, SNAP_GET_DBM_MEMORY_POOL,
SNAP_GET_FCM and SNAP_GET_SWITCHES table functions, the
SNAP_GET_FCM_PART table function provides the data equivalent to the GET
SNAPSHOT FOR DBM command.

Refer to Table 186 on page 652 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_FCM_PART ()
dbpartitionnum

��

The schema is SYSPROC.

Table function parameter

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current partition. If this input option is not
used, data will be returned from all active database partitions. An active
database partition is a partition where the database is available for connection
and use by applications.

If dbpartitionnum is set to NULL, an attempt is made to read data from the file
created by SNAP_WRITE_FILE procedure. Note that this file could have been
created at any time, which means that the data might not be current. If a file with
the corresponding snapshot API request type does not exist, then the
SNAP_GET_FCM_PART table function takes a snapshot for the currently connected
database and database partition number.

Chapter 15. Snapshot routines and views 651

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_FCM_PART table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve buffers sent and received information for the fast communication manager
for all database partitions.
SELECT FCM_DBPARTITIONNUM, TOTAL_BUFFERS_SENT, TOTAL_BUFFERS_RCVD,

DBPARTITIONNUM FROM TABLE(SNAP_GET_FCM_PART()) AS T
ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
FCM_DBPARTITIONNUM TOTAL_BUFFERS_SENT TOTAL_BUFFERS_RCVD DBPARTITIONNUM
------------------ -------------------- -------------------- --------------

0 305 305 0
1 5647 1664 0
2 5661 1688 0
0 19 19 1
1 305 301 1
2 1688 5661 1
0 1664 5647 2
1 10 10 2
2 301 305 2

Information returned

Table 186. Information returned by the SNAPFCM_PART administrative view and the
SNAP_GET_FCM_PART table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

CONNECTION_STATUS VARCHAR(10) connection_status - Connection
status. This interface returns a text
identifier based on the defines in
sqlmon.h and is one of:

v INACTIVE

v ACTIVE

v CONGESTED

TOTAL_BUFFERS_SENT BIGINT total_buffers_sent - Total FCM
buffers sent

TOTAL_BUFFERS_RCVD BIGINT total_buffers_rcvd - Total FCM
buffers received

652 Administrative Routines and Views

Table 186. Information returned by the SNAPFCM_PART administrative view and the
SNAP_GET_FCM_PART table function (continued)

Column name Data type
Description or corresponding
monitor element

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

FCM_DBPARTITIONNUM SMALLINT The database partition number to
which data was sent or from which
data was received (as per the
TOTAL_BUFFERS_SENT and
TOTAL_BUFFERS_RCVD
columns).

SNAPHADR administrative view and SNAP_GET_HADR table function
– Retrieve hadr logical data group snapshot information

The SNAPHADR administrative view and the SNAP_GET_HADR table function
return information about high availability disaster recovery from a database
snapshot, in particular, the hadr logical data group.

SNAPHADR administrative view

This administrative view allows you to retrieve hadr logical data group snapshot
information for the currently connected database. The data is only returned by this
view if the database is a primary or standby high availability disaster recovery
(HADR) database.

Used with the SNAPDB, SNAPDB_MEMORY_POOL, SNAPDETAILLOG and
SNAPSTORAGE_PATHS administrative views, the SNAPHADR administrative
view provides information equivalent to the GET SNAPSHOT FOR DATABASE ON
database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 187 on page 655 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPHADR administrative view
v CONTROL privilege on the SNAPHADR administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_HADR table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL

Chapter 15. Snapshot routines and views 653

v SYSMAINT
v SYSADM

Example

Retrieve the configuration and status information for HADR on the primary
HADR database.
SELECT SUBSTR(DB_NAME, 1, 8) AS DBNAME, HADR_ROLE, HADR_STATE,

HADR_SYNCMODE, HADR_CONNECT_STATUS
FROM SYSIBMADM.SNAPHADR

The following example is a sample output from this query.
DBNAME HADR_ROLE HADR_STATE HADR_SYNCMODE HADR_CONNECT_STATUS
-------- --------- -------------- ------------- -------------------
SAMPLE PRIMARY PEER SYNC CONNECTED

1 record(s) selected.

SNAP_GET_HADR table function

The SNAP_GET_HADR table function returns the same information as the
SNAPHADR administrative view, but allows you to retrieve the information for a
specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Used with the SNAP_GET_DB_V95, SNAP_GET_DB_MEMORY_POOL,
SNAP_GET_DETAILLOG_V91 and SNAP_GET_STORAGE_PATHS table functions,
the SNAP_GET_HADR table function provides information equivalent to the GET
SNAPSHOT FOR ALL DATABASES CLP command.

Refer to Table 187 on page 655 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_HADR (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input

654 Administrative Routines and Views

option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_HADR table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_HADR table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve the configuration and status information for HADR for all databases.
SELECT SUBSTR(DB_NAME, 1, 8) AS DBNAME, HADR_ROLE, HADR_STATE,

HADR_SYNCMODE, HADR_CONNECT_STATUS
FROM TABLE (SNAP_GET_HADR (CAST (NULL as VARCHAR(128)), 0)) as T

The following example is a sample output from this query.
DBNAME HADR_ROLE HADR_STATE HADR_SYNCMODE HADR_CONNECT_STATUS
-------- --------- -------------- ------------- -------------------
SAMPLE PRIMARY PEER SYNC CONNECTED
TESTDB PRIMARY DISCONNECTED NEARSYNC DISCONNECTED

2 record(s) selected.

Information returned

Table 187. Information returned by the SNAPHADR administrative view and the
SNAP_GET_HADR table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

Chapter 15. Snapshot routines and views 655

Table 187. Information returned by the SNAPHADR administrative view and the
SNAP_GET_HADR table function (continued)

Column name Data type
Description or corresponding
monitor element

HADR_ROLE VARCHAR(10) hadr_role - HADR role. This
interface returns a text identifier
based on the defines in sqlmon.h,
and is one of:

v PRIMARY

v STANDARD

v STANDBY

HADR_STATE VARCHAR(14) hadr_state - HADR state. This
interface returns a text identifier
based on the defines in sqlmon.h,
and is one of:

v DISCONNECTED

v LOCAL_CATCHUP

v PEER

v REM_CATCH_PEN

v REM_CATCHUP

HADR_SYNCMODE VARCHAR(10) hadr_syncmode - HADR
synchronization mode. This
interface returns a text identifier
based on the defines in sqlmon.h,
and is one of:

v ASYNC

v NEARSYNC

v SUPERASYNC

v SYNC

HADR_CONNECT_STATUS VARCHAR(12) hadr_connect_status - HADR
connection status. This interface
returns a text identifier based on
the defines in sqlmon.h, and is one
of:

v CONGESTED

v CONNECTED

v DISCONNECTED

HADR_CONNECT_TIME TIMESTAMP hadr_connect_time - HADR
connection time

HADR_HEARTBEAT INTEGER hadr_heartbeat - HADR heartbeat

HADR_LOCAL_HOST VARCHAR(255) hadr_local_host - HADR local host

HADR_LOCAL_SERVICE VARCHAR(40) hadr_local_service - HADR local
service

HADR_REMOTE_HOST VARCHAR(255) hadr_remote_host - HADR remote
host

HADR_REMOTE_SERVICE VARCHAR(40) hadr_remote_service - HADR
remote service

HADR_REMOTE_INSTANCE VARCHAR(128) hadr_remote_instance - HADR
remote instance

HADR_TIMEOUT BIGINT hadr_timeout - HADR timeout

656 Administrative Routines and Views

Table 187. Information returned by the SNAPHADR administrative view and the
SNAP_GET_HADR table function (continued)

Column name Data type
Description or corresponding
monitor element

HADR_PRIMARY_LOG_FILE VARCHAR(255) hadr_primary_log_file - HADR
primary log file

HADR_PRIMARY_LOG_PAGE BIGINT hadr_primary_log_page - HADR
primary log page

HADR_PRIMARY_LOG_LSN BIGINT hadr_primary_log_lsn - HADR
primary log LSN

HADR_STANDBY_LOG_FILE VARCHAR(255) hadr_standby_log_file - HADR
standby log file

HADR_STANDBY_LOG_PAGE BIGINT hadr_standby_log_page - HADR
standby log page

HADR_STANDBY_LOG_LSN BIGINT hadr_standby_log_lsn - HADR
standby log LSN

HADR_LOG_GAP BIGINT hadr_log_gap - HADR log gap

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPLOCK administrative view and SNAP_GET_LOCK table function –
Retrieve lock logical data group snapshot information

Note: This administrative view and table function have been deprecated and
replaced by the “MON_GET_APPL_LOCKWAIT - get information about locks for
which an application is waiting” on page 423, “MON_GET_LOCKS - list all locks
in the currently connected database” on page 452, and
“MON_FORMAT_LOCK_NAME - format the internal lock name and return
details” on page 389.

The SNAPLOCK administrative view and the SNAP_GET_LOCK table function
return snapshot information about locks, in particular, the lock logical data group.

SNAPLOCK administrative view

This administrative view allows you to retrieve lock logical data group snapshot
information for the currently connected database.

Used with the SNAPLOCKWAIT administrative view, the SNAPLOCK
administrative view provides information equivalent to the GET SNAPSHOT FOR
LOCKS ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 188 on page 660 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPLOCK administrative view

Chapter 15. Snapshot routines and views 657

v CONTROL privilege on the SNAPLOCK administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_LOCK table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve lock information for the database partition 0 of the currently connected
database.
SELECT AGENT_ID, LOCK_OBJECT_TYPE, LOCK_MODE, LOCK_STATUS

FROM SYSIBMADM.SNAPLOCK WHERE DBPARTITIONNUM = 0

The following example is a sample output from this query.
AGENT_ID LOCK_OBJECT_TYPE LOCK_MODE LOCK_STATUS
-------------------- ---------------- --------- -----------

7 TABLE IX GRNT

1 record(s) selected.

SNAP_GET_LOCK table function

The SNAP_GET_LOCK table function returns the same information as the
SNAPLOCK administrative view, but allows you to retrieve the information for a
specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Used with the SNAP_GET_LOCKWAIT table function, the SNAP_GET_LOCK table
function provides information equivalent to the GET SNAPSHOT FOR LOCKS ON
database-alias CLP command.

Refer to Table 188 on page 660 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_LOCK (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a

658 Administrative Routines and Views

database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify a null value or
empty string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_LOCK table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_LOCK table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve lock information for the current database partition of the currently
connected database.
SELECT AGENT_ID, LOCK_OBJECT_TYPE, LOCK_MODE, LOCK_STATUS

FROM TABLE(SNAP_GET_LOCK(’’,-1)) as T

The following example is a sample output from this query.
AGENT_ID LOCK_OBJECT_TYPE LOCK_MODE LOCK_STATUS
--------...--- ------------------ ---------- -----------

680 INTERNALV_LOCK S GRNT
680 INTERNALP_LOCK S GRNT

2 record(s) selected.

Chapter 15. Snapshot routines and views 659

Information returned

Table 188. Information returned by the SNAPLOCK administrative view and the
SNAP_GET_LOCK table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

TAB_FILE_ID BIGINT table_file_id - Table file
identification

LOCK_OBJECT_TYPE VARCHAR(18) lock_object_type - Lock object type
waited on. This interface returns a
text identifier based on the defines
in sqlmon.h and is one of:

v AUTORESIZE_LOCK

v AUTOSTORAGE_LOCK

v BLOCK_LOCK

v EOT_LOCK

v INPLACE_REORG_LOCK

v INTERNAL_LOCK

v INTERNALB_LOCK

v INTERNALC_LOCK

v INTERNALJ_LOCK

v INTERNALL_LOCK

v INTERNALO_LOCK

v INTERNALQ_LOCK

v INTERNALP_LOCK

v INTERNALS_LOCK

v INTERNALT_LOCK

v INTERNALV_LOCK

v KEYVALUE_LOCK

v ROW_LOCK

v SYSBOOT_LOCK

v TABLE_LOCK

v TABLE_PART_LOCK

v TABLESPACE_LOCK

v XML_PATH_LOCK

660 Administrative Routines and Views

Table 188. Information returned by the SNAPLOCK administrative view and the
SNAP_GET_LOCK table function (continued)

Column name Data type
Description or corresponding
monitor element

LOCK_MODE VARCHAR(10) lock_mode - Lock mode. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

LOCK_STATUS VARCHAR(10) lock_status - Lock status. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v CONV

v GRNT

LOCK_ESCALATION SMALLINT lock_escalation - Lock escalation

TABNAME VARCHAR(128) table_name - Table name

TABSCHEMA VARCHAR(128) table_schema - Table schema name

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

LOCK_ATTRIBUTES VARCHAR(128) lock_attributes - Lock attributes.
This interface returns a text
identifier based on the defines in
sqlmon.h. If there are no locks, the
text identifier is NONE, otherwise,
it is any combination of the
following separated by a '+' sign:

v ALLOW_NEW

v DELETE_IN_BLOCK

v ESCALATED

v INSERT

v NEW_REQUEST

v RR

v RR_IN_BLOCK

v UPDATE_DELETE

v WAIT_FOR_AVAIL

LOCK_COUNT BIGINT lock_count - Lock count

Chapter 15. Snapshot routines and views 661

Table 188. Information returned by the SNAPLOCK administrative view and the
SNAP_GET_LOCK table function (continued)

Column name Data type
Description or corresponding
monitor element

LOCK_CURRENT_MODE VARCHAR(10) lock_current_mode - Original lock
mode before conversion. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

LOCK_HOLD_COUNT BIGINT lock_hold_count - Lock hold count

LOCK_NAME VARCHAR(32) lock_name - Lock name

LOCK_RELEASE_FLAGS BIGINT lock_release_flags - Lock release
flags

DATA_PARTITION_ID INTEGER data_partition_id - Data Partition
identifier. For a non-partitioned
table, this element is NULL.

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPLOCKWAIT administrative view and SNAP_GET_LOCKWAIT table
function – Retrieve lockwait logical data group snapshot information

Note: This administrative view and table function have been deprecated and
replaced by the “MON_LOCKWAITS administrative view - Retrieve metrics for
applications that are waiting to obtain locks” on page 520 and the
“MON_GET_APPL_LOCKWAIT - get information about locks for which an
application is waiting” on page 423, “MON_GET_LOCKS - list all locks in the
currently connected database” on page 452, and “MON_FORMAT_LOCK_NAME -
format the internal lock name and return details” on page 389.

The SNAPLOCKWAIT administrative view and the SNAP_GET_LOCKWAIT table
function return snapshot information about lock waits, in particular, the lockwait
logical data group.

SNAPLOCKWAIT administrative view

This administrative view allows you to retrieve lockwait logical data group
snapshot information for the currently connected database.

662 Administrative Routines and Views

Used with the SNAPLOCK administrative view, the SNAPLOCKWAIT
administrative view provides information equivalent to the GET SNAPSHOT FOR
LOCKS ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 189 on page 665 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPLOCKWAIT administrative view
v CONTROL privilege on the SNAPLOCKWAIT administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_LOCKWAIT table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve lock wait information about database partition 0 for the currently
connected database.
SELECT AGENT_ID, LOCK_MODE, LOCK_OBJECT_TYPE, AGENT_ID_HOLDING_LK,

LOCK_MODE_REQUESTED FROM SYSIBMADM.SNAPLOCKWAIT
WHERE DBPARTITIONNUM = 0

The following example is a sample output from this query.
AGENT_ID LOCK_MODE LOCK_OBJECT_TYPE ...
--------...- --------- ---------------- ...

7 IX TABLE ...

1 record(s) selected.

Output from this query (continued).
... AGENT_ID_HOLDING_LK LOCK_MODE_REQUESTED
... -------------------- -------------------
... 12 IS

SNAP_GET_LOCKWAIT table function

The SNAP_GET_LOCKWAIT table function returns the same information as the
SNAPLOCKWAIT administrative view, but allows you to retrieve the information
for a specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Chapter 15. Snapshot routines and views 663

Used with the SNAP_GET_LOCK table function, the SNAP_GET_LOCKWAIT table
function provides information equivalent to the GET SNAPSHOT FOR LOCKS ON
database-alias CLP command.

Refer to Table 189 on page 665 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_LOCKWAIT (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify a null value or
empty string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_LOCKWAIT table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_LOCKWAIT table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

664 Administrative Routines and Views

Example

Retrieve lock wait information about current database partition for the currently
connected database.
SELECT AGENT_ID, LOCK_MODE, LOCK_OBJECT_TYPE, AGENT_ID_HOLDING_LK,

LOCK_MODE_REQUESTED FROM TABLE(SNAP_GET_LOCKWAIT(’’,-1)) AS T

The following example is a sample output from this query.
AGENT_ID LOCK_MODE LOCK_OBJECT_TYPE ...
--------...-- ---------- ------------------ ...

12 X ROW_LOCK ...

1 record(s) selected.

Output from this query (continued).
... AGENT_ID_HOLDING_LK LOCK_MODE_REQUESTED
... -------------------- -------------------
... 7 X

Usage note

To see lock wait information, you must first turn on the default LOCK monitor
switch in the database manager configuration. To have the change take effect
immediately explicitly attach to the instance using CLP and then issue the CLP
command:

UPDATE DATABASE MANAGER CONFIGURATION CLP USING DFT_MON_LOCK ON

The default setting can also be turned on through the ADMIN_CMD stored
procedure. For example:
CALL SYSPROC.ADMIN_CMD(’update dbm cfg using DFT_MON_LOCK ON’)

If the ADMIN_CMD stored procedure is used or if the clp command is used
without having previously attached to the instance, the instance must be recycled
before the change takes effect.

Information returned

Table 189. Information returned by the SNAPLOCKWAIT administrative view and the
SNAP_GET_LOCKWAIT table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

SUBSECTION_NUMBER BIGINT ss_number - Subsection number

Chapter 15. Snapshot routines and views 665

Table 189. Information returned by the SNAPLOCKWAIT administrative view and the
SNAP_GET_LOCKWAIT table function (continued)

Column name Data type
Description or corresponding
monitor element

LOCK_MODE VARCHAR(10) lock_mode - Lock mode. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

LOCK_OBJECT_TYPE VARCHAR(18) lock_object_type - Lock object type
waited on. This interface returns a
text identifier based on the defines
in sqlmon.h and is one of:

v AUTORESIZE_LOCK

v AUTOSTORAGE_LOCK

v BLOCK_LOCK

v EOT_LOCK

v INPLACE_REORG_LOCK

v INTERNAL_LOCK

v INTERNALB_LOCK

v INTERNALC_LOCK

v INTERNALJ_LOCK

v INTERNALL_LOCK

v INTERNALO_LOCK

v INTERNALQ_LOCK

v INTERNALP_LOCK

v INTERNALS_LOCK

v INTERNALT_LOCK

v INTERNALV_LOCK

v KEYVALUE_LOCK

v ROW_LOCK

v SYSBOOT_LOCK

v TABLE_LOCK

v TABLE_PART_LOCK

v TABLESPACE_LOCK

v XML_PATH_LOCK

AGENT_ID_HOLDING_LK BIGINT agent_id_holding_lock - Agent ID
holding lock

666 Administrative Routines and Views

Table 189. Information returned by the SNAPLOCKWAIT administrative view and the
SNAP_GET_LOCKWAIT table function (continued)

Column name Data type
Description or corresponding
monitor element

LOCK_WAIT_START_TIME TIMESTAMP lock_wait_start_time - Lock wait
start timestamp

LOCK_MODE_REQUESTED VARCHAR(10) lock_mode_requested - Lock mode
requested. This interface returns a
text identifier based on the defines
in sqlmon.h and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

LOCK_ESCALATION SMALLINT lock_escalation - Lock escalation

TABNAME VARCHAR(128) table_name - Table name

TABSCHEMA VARCHAR(128) table_schema - Table schema name

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

APPL_ID_HOLDING_LK VARCHAR(128) appl_id_holding_lk - Application
ID holding lock

LOCK_ATTRIBUTES VARCHAR(128) lock_attributes - Lock attributes.
This interface returns a text
identifier based on the defines in
sqlmon.h. If there are no locks, the
text identifier is NONE, otherwise,
it is any combination of the
following separated by a '+' sign:

v ALLOW_NEW

v DELETE_IN_BLOCK

v ESCALATED

v INSERT

v NEW_REQUEST

v RR

v RR_IN_BLOCK

v UPDATE_DELETE

v WAIT_FOR_AVAIL

Chapter 15. Snapshot routines and views 667

Table 189. Information returned by the SNAPLOCKWAIT administrative view and the
SNAP_GET_LOCKWAIT table function (continued)

Column name Data type
Description or corresponding
monitor element

LOCK_CURRENT_MODE VARCHAR(10) lock_current_mode - Original lock
mode before conversion. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

LOCK_NAME VARCHAR(32) lock_name - Lock name

LOCK_RELEASE_FLAGS BIGINT lock_release_flags - Lock release
flags.

DATA_PARTITION_ID INTEGER data_partition_id - Data Partition
identifier. For a non-partitioned
table, this element is NULL.

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPSTMT administrative view and SNAP_GET_STMT table function –
Retrieve statement snapshot information

The SNAPSTMT administrative view and the SNAP_GET_STMT table function
return information about SQL or XQuery statements from an application snapshot.

SNAPSTMT administrative view

This administrative view allows you to retrieve statement snapshot information for
the currently connected database.

Used with the SNAPAGENT, SNAPAGENT_MEMORY_POOL, SNAPAPPL,
SNAPAPPL_INFO and SNAPSUBSECTION administrative views, the SNAPSTMT
administrative view provides information equivalent to the GET SNAPSHOT FOR
APPLICATIONS on database-alias CLP command, but retrieves data from all
database partitions.

The schema is SYSIBMADM.

Refer to Table 190 on page 671 for a complete list of information that can be
returned.

668 Administrative Routines and Views

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPSTMT administrative view
v CONTROL privilege on the SNAPSTMT administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_STMT table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve rows read, written and operation performed for statements executed on
the currently connected single-partition database.
SELECT SUBSTR(STMT_TEXT,1,30) AS STMT_TEXT, ROWS_READ, ROWS_WRITTEN,

STMT_OPERATION FROM SYSIBMADM.SNAPSTMT

The following example is a sample output from this query.
STMT_TEXT ROWS_READ ROWS_WRITTEN STMT_OPERATION
---------...- ---------...- ------------...- --------------------
- 0 0 FETCH
- 0 0 STATIC_COMMIT

2 record(s) selected.

SNAP_GET_STMT table function

The SNAP_GET_STMT table function returns the same information as the
SNAPSTMT administrative view, but allows you to retrieve the information for a
specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Used with the SNAP_GET_AGENT, SNAP_GET_AGENT_MEMORY_POOL,
SNAP_GET_APPL_V95, SNAP_GET_APPL_INFO_V95 and
SNAP_GET_SUBSECTION table functions, the SNAP_GET_STMT table function
provides information equivalent to the GET SNAPSHOT FOR ALL APPLICATIONS CLP
command, but retrieves data from all database partitions.

Refer to Table 190 on page 671 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_STMT (dbname)
, dbpartitionnum

��

Chapter 15. Snapshot routines and views 669

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_STMT table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_STMT table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve rows read, written and operation performed for statements executed on
current database partition of currently connected database.
SELECT SUBSTR(STMT_TEXT,1,30) AS STMT_TEXT, ROWS_READ,

ROWS_WRITTEN, STMT_OPERATION FROM TABLE(SNAP_GET_STMT(’’,-1)) AS T

The following example is a sample output from this query.
STMT_TEXT ROWS_READ ...
------------------------------ ---------...- ...
update t set a=3 0 ...
SELECT SUBSTR(STMT_TEXT,1,30) 0 ...
- 0 ...
- 0 ...

670 Administrative Routines and Views

update t set a=2 9 ...
...

5 record(s) selected. ...

Output from this query (continued).
... ROWS_WRITTEN STMT_OPERATION
... ------------...- --------------------
... 0 EXECUTE_IMMEDIATE
... 0 FETCH
... 0 NONE
... 0 NONE
... 1 EXECUTE_IMMEDIATE
...

Information returned

Table 190. Information returned by the SNAPSTMT administrative view and the
SNAP_GET_STMT table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

ROWS_READ BIGINT rows_read - Rows read

ROWS_WRITTEN BIGINT rows_written - Rows written

NUM_AGENTS BIGINT num_agents - Number of agents
working on a statement

AGENTS_TOP BIGINT agents_top - Number of agents
created

STMT_TYPE VARCHAR(20) stmt_type - Statement type. This
interface returns a text identifier
based on defines in sqlmon.h and
is one of:

v DYNAMIC

v NON_STMT

v STATIC

v STMT_TYPE_UNKNOWN

Chapter 15. Snapshot routines and views 671

Table 190. Information returned by the SNAPSTMT administrative view and the
SNAP_GET_STMT table function (continued)

Column name Data type
Description or corresponding
monitor element

STMT_OPERATION VARCHAR(20) stmt_operation/operation -
Statement operation. This interface
returns a text identifier based on
defines in sqlmon.h and is one of:

v CALL

v CLOSE

v COMPILE

v DESCRIBE

v EXECUTE

v EXECUTE_IMMEDIATE

v FETCH

v FREE_LOCATOR

v GETAA

v GETNEXTCHUNK

v GETTA

v NONE

v OPEN

v PREP_COMMIT

v PREP_EXEC

v PREP_OPEN

v PREPARE

v REBIND

v REDIST

v REORG

v RUNSTATS

v SELECT

v SET

v STATIC_COMMIT

v STATIC_ROLLBACK

SECTION_NUMBER BIGINT section_number - Section number

QUERY_COST_ESTIMATE BIGINT query_cost_estimate - Query cost
estimate

QUERY_CARD_ESTIMATE BIGINT query_card_estimate - Query
number of rows estimate

DEGREE_PARALLELISM BIGINT degree_parallelism - Degree of
parallelism

STMT_SORTS BIGINT stmt_sorts - Statement sorts

TOTAL_SORT_TIME BIGINT total_sort_time - Total sort time

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal rows
deleted

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal rows
updated

672 Administrative Routines and Views

Table 190. Information returned by the SNAPSTMT administrative view and the
SNAP_GET_STMT table function (continued)

Column name Data type
Description or corresponding
monitor element

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal rows
inserted

FETCH_COUNT BIGINT fetch_count - Number of successful
fetches

STMT_START TIMESTAMP stmt_start - Statement operation
start timestamp

STMT_STOP TIMESTAMP stmt_stop - Statement operation
stop timestamp

STMT_USR_CPU_TIME_S BIGINT stmt_usr_cpu_time - User CPU
time used by statement (in
seconds)*

STMT_USR_CPU_TIME_MS BIGINT stmt_usr_cpu_time - User CPU
time used by statement (fractional,
in microseconds)*

STMT_SYS_CPU_TIME_S BIGINT stmt_sys_cpu_time - System CPU
time used by statement (in
seconds)*

STMT_SYS_CPU_TIME_MS BIGINT stmt_sys_cpu_time - System CPU
time used by statement (fractional,
in microseconds)*

STMT_ELAPSED_TIME_S BIGINT stmt_elapsed_time - Most recent
statement elapsed time (in
seconds)*

STMT_ELAPSED_TIME_MS BIGINT stmt_elapsed_time - Most recent
statement elapsed time (fractional,
in microseconds)*

BLOCKING_CURSOR SMALLINT blocking_cursor - Blocking cursor

STMT_NODE_NUMBER SMALLINT stmt_node_number - Statement
node

CURSOR_NAME VARCHAR(128) cursor_name - Cursor name

CREATOR VARCHAR(128) creator - Application creator

PACKAGE_NAME VARCHAR(128) package_name - Package name

STMT_TEXT CLOB(16 M) stmt_text - SQL statement text

CONSISTENCY_TOKEN VARCHAR(128) consistency_token - Package
consistency token

PACKAGE_VERSION_ID VARCHAR(128) package_version_id - Package
version

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool
data logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool
data physical reads

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool
index logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool
index physical reads

Chapter 15. Snapshot routines and views 673

Table 190. Information returned by the SNAPSTMT administrative view and the
SNAP_GET_STMT table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool
XDA Data Logical Reads monitor
element

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool
XDA Data Physical Reads monitor
element

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer
pool temporary data logical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer
pool temporary data physical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer
pool temporary index logical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer
pool temporary index physical
reads

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer
Pool Temporary XDA Data Logical
Reads

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer
Pool Temporary XDA Data
Physical Reads monitor element

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

* To calculate the total time spent for the monitor element that this column is based on,
you must add the full seconds reported in the column for this monitor element that ends
with _S to the fractional seconds reported in the column for this monitor element that ends
with _MS, using the following formula: (monitor-element-name_S × 1,000,000 +
monitor-element-name_MS) ÷ 1,000,000. For example, (ELAPSED_EXEC_TIME_S × 1,000,000
+ ELAPSED_EXEC_TIME_MS) ÷ 1,000,000.

SNAPSTORAGE_PATHS administrative view and
SNAP_GET_STORAGE_PATHS_V97 table function - Retrieve automatic
storage path information

The SNAPSTORAGE_PATHS administrative view and the
SNAP_GET_STORAGE_PATHS_V97 table function return a list of automatic
storage paths for the database including file system information for each storage
path, specifically, from the db_storage_group logical data group.

SNAPSTORAGE_PATHS administrative view

This administrative view allows you to retrieve automatic storage path information
for the currently connected database.

Used with the SNAPDB, SNAPDETAILLOG, SNAPHADR and
SNAPDB_MEMORY_POOL administrative views, the SNAPSTORAGE_PATHS

674 Administrative Routines and Views

administrative view provides information equivalent to the GET SNAPSHOT FOR
DATABASE ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 191 on page 676 for a complete list of information that can be
returned.

Authorization
v SYSMON authority
v SELECT or CONTROL privilege on the SNAPSTORAGE_PATHS administrative

view and EXECUTE privilege on the SNAP_GET_STORAGE_PATHS_V97 table
function.

Example

Retrieve the storage path for the currently connected single-partition database.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, SUBSTR(DB_STORAGE_PATH,1,8)

AS DB_STORAGE_PATH, SUBSTR(HOSTNAME,1,10) AS HOSTNAME
FROM SYSIBMADM.SNAPSTORAGE_PATHS

The following example is a sample output from this query.
DB_NAME DB_STORAGE_PATH HOSTNAME
-------- --------------- ----------
STOPATH d: JESSICAE

1 record(s) selected.

SNAP_GET_STORAGE_PATHS_V97 table function

The SNAP_GET_STORAGE_PATHS_V97 table function returns the same
information as the SNAPSTORAGE_PATHS administrative view, but allows you to
retrieve the information for a specific database on a specific database partition,
aggregate of all database partitions or all database partitions.

Used with the SNAP_GET_DB_V95, SNAP_GET_DETAILLOG_V91,
SNAP_GET_HADR and SNAP_GET_DB_MEMORY_POOL table functions, the
SNAP_GET_STORAGE_PATHS_V97 table function provides information equivalent
to the GET SNAPSHOT FOR ALL DATABASES CLP command.

Refer to Table 191 on page 676 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_STORAGE_PATHS_V97 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as

Chapter 15. Snapshot routines and views 675

returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL,-1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_STORAGE_PATHS_V97 table function takes a snapshot for the
currently connected database and database partition number.

Authorization
v SYSMON authority
v EXECUTE privilege on the SNAP_GET_STORAGE_PATHS_V97 table function.

Examples

Retrieve the storage path information for all active databases.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, DB_STORAGE_PATH

FROM TABLE(SNAP_GET_STORAGE_PATHS_V97(CAST (NULL AS VARCHAR(128)), -1)) AS T

The following example is a sample output from this query.
DB_NAME DB_STORAGE_PATH
-------- -------------------...
STOPATH /home/jessicae/sdb
MYDB /home/jessicae/mdb

2 record(s) selected

Information returned

The BUFFERPOOL monitor switch must be turned on in order for the file system
information to be returned.

Table 191. Information returned by the SNAPSTORAGE_PATHS administrative view and the
SNAP_GET_STORAGE_PATHS_V97 table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

DB_STORAGE_PATH VARCHAR(256) db_storage_path - Automatic
storage path

676 Administrative Routines and Views

Table 191. Information returned by the SNAPSTORAGE_PATHS administrative view and the
SNAP_GET_STORAGE_PATHS_V97 table function (continued)

Column name Data type
Description or corresponding
monitor element

DB_STORAGE_PATH_WITH_DPE VARCHAR(256) Automatic storage path containing
the unevaluated database partition
expression (DPE). Returns NULL if
the storage path does not contain a
DPE.

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

DB_STORAGE_PATH_STATE VARCHAR(16) Automatic storage path state
(values can currently be one of
“IN_USE”, “NOT_IN_USE”,
“DROP_PENDING”).

FS_ID VARCHAR(22) fs_id - Unique file system
identification number

FS_TOTAL_SIZE BIGINT fs_total_size - Total size of a file
system

FS_USED_SIZE BIGINT fs_used_size - Amount of space
used on a file system

STO_PATH_FREE_SIZE BIGINT sto_path_free_sz - Automatic
storage path free space

SNAPSUBSECTION administrative view and SNAP_GET_SUBSECTION
table function – Retrieve subsection logical monitor group snapshot
information

The SNAPSUBSECTION administrative view and the SNAP_GET_SUBSECTION
table function return information about application subsections, namely the
subsection logical monitor grouping.

SNAPSUBSECTION administrative view

This administrative view allows you to retrieve subsection logical monitor group
snapshot information for the currently connected database.

Used with the SNAPAGENT, SNAPAGENT_MEMORY_POOL, SNAPAPPL,
SNAPAPPL_INFO and SNAPSTMT administrative views, the SNAPSUBSECTION
administrative view provides information equivalent to the GET SNAPSHOT FOR
APPLICATIONS on database-alias CLP command, but retrieves data from all
database partitions.

The schema is SYSIBMADM.

Refer to Table 192 on page 680 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPSUBSECTION administrative view

Chapter 15. Snapshot routines and views 677

v CONTROL privilege on the SNAPSUBSECTION administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_SUBSECTION table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Get status for subsections executing on all database partitions.
SELECT DB_NAME, STMT_TEXT, SS_STATUS, DBPARTITIONNUM

FROM SYSIBMADM.SNAPSUBSECTION
ORDER BY DB_NAME, SS_STATUS, DBPARTITIONNUM

The following example is a sample output from this query.
DB_NAME STMT_TEXT SS_STATUS DBPARTITIONNUM
-------...- ----------------------...- ---------...- --------------
SAMPLE select * from EMPLOYEE EXEC 0
SAMPLE select * from EMPLOYEE EXEC 1

SNAP_GET_SUBSECTION table function

The SNAP_GET_SUBSECTION table function returns the same information as the
SNAPSUBSECTION administrative view, but allows you to retrieve the
information for a specific database on a specific database partition, aggregate of all
database partitions or all database partitions.

Refer to Table 192 on page 680 for a complete list of information that can be
returned.

Used with the SNAP_GET_AGENT, SNAP_GET_AGENT_MEMORY_POOL,
SNAP_GET_APPL_V95, SNAP_GET_APPL_INFO_V95 and SNAP_GET_STMT
table functions, the SNAP_GET_SUBSECTION table function provides information
equivalent to the GET SNAPSHOT FOR ALL APPLICATIONS CLP command, but retrieves
data from all database partitions.

Syntax

�� SNAP_GET_SUBSECTION (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database

678 Administrative Routines and Views

name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_SUBSECTION table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_SUBSECTION table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Get status for subsections executing on all database partitions.
SELECT DB_NAME, STMT_TEXT, SS_STATUS, DBPARTITIONNUM

FROM TABLE(SYSPROC.SNAP_GET_SUBSECTION(’’, 0)) as T
ORDER BY DB_NAME, SS_STATUS, DBPARTITIONNUM

The following example is a sample output from this query.
DB_NAME STMT_TEXT SS_STATUS DBPARTITIONNUM
-------...- ----------------------...- ---------...- --------------
SAMPLE select * from EMPLOYEE EXEC 0
SAMPLE select * from EMPLOYEE EXEC 1

Chapter 15. Snapshot routines and views 679

Information returned

Table 192. Information returned by the SNAPSUBSECTION administrative view and the
SNAP_GET_SUBSECTION table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

STMT_TEXT CLOB(16 M) stmt_text - SQL statement text

SS_EXEC_TIME BIGINT ss_exec_time - Subsection
execution elapsed time

TQ_TOT_SEND_SPILLS BIGINT tq_tot_send_spills - Total number
of table queue buffers overflowed

TQ_CUR_SEND_SPILLS BIGINT tq_cur_send_spills - Current
number of table queue buffers
overflowed

TQ_MAX_SEND_SPILLS BIGINT tq_max_send_spills - Maximum
number of table queue buffers
overflows

TQ_ROWS_READ BIGINT tq_rows_read - Number of rows
read from table queues

TQ_ROWS_WRITTEN BIGINT tq_rows_written - Number of rows
written to table queues

ROWS_READ BIGINT rows_read - Rows read

ROWS_WRITTEN BIGINT rows_written - Rows written

SS_USR_CPU_TIME_S BIGINT ss_usr_cpu_time - User CPU time
used by subsection (in seconds)*

SS_USR_CPU_TIME_MS BIGINT ss_usr_cpu_time - User CPU time
used by subsection (fractional, in
microseconds)*

SS_SYS_CPU_TIME_S BIGINT ss_sys_cpu_time - System CPU
time used by subsection (in
seconds)*

SS_SYS_CPU_TIME_MS BIGINT ss_sys_cpu_time - System CPU
time used by subsection (fractional,
in microseconds)*

SS_NUMBER INTEGER ss_number - Subsection number

SS_STATUS VARCHAR(20) ss_status - Subsection status. This
interface returns a text identifier
based on defines in sqlmon.h and
is one of:

v EXEC

v TQ_WAIT_TO_RCV

v TQ_WAIT_TO_SEND

v COMPLETED

SS_NODE_NUMBER SMALLINT ss_node_number - Subsection node
number

TQ_NODE_WAITED_FOR SMALLINT tq_node_waited_for - Waited for
node on a table queue

680 Administrative Routines and Views

Table 192. Information returned by the SNAPSUBSECTION administrative view and the
SNAP_GET_SUBSECTION table function (continued)

Column name Data type
Description or corresponding
monitor element

TQ_WAIT_FOR_ANY INTEGER tq_wait_for_any - Waiting for any
node to send on a table queue

TQ_ID_WAITING_ON INTEGER tq_id_waiting_on - Waited on node
on a table queue

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

* To calculate the total time spent for the monitor element that this column is based on,
you must add the full seconds reported in the column for this monitor element that ends
with _S to the fractional seconds reported in the column for this monitor element that ends
with _MS, using the following formula: (monitor-element-name_S × 1,000,000 +
monitor-element-name_MS) ÷ 1,000,000. For example, (ELAPSED_EXEC_TIME_S × 1,000,000
+ ELAPSED_EXEC_TIME_MS) ÷ 1,000,000.

SNAPSWITCHES administrative view and SNAP_GET_SWITCHES table
function – Retrieve database snapshot switch state information

The SNAPSWITCHES administrative view and the SNAP_GET_SWITCHES table
function return information about the database snapshot switch state.

SNAPSWITCHES administrative view

This view provides the data equivalent to the GET DBM MONITOR SWITCHES CLP
command.

The schema is SYSIBMADM.

Refer to Table 193 on page 683 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPSWITCHES administrative view
v CONTROL privilege on the SNAPSWITCHES administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_SWITCHES table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Chapter 15. Snapshot routines and views 681

Example

Retrieve DBM monitor switches state information for all database partitions.
SELECT UOW_SW_STATE, STATEMENT_SW_STATE, TABLE_SW_STATE, BUFFPOOL_SW_STATE,

LOCK_SW_STATE, SORT_SW_STATE, TIMESTAMP_SW_STATE,
DBPARTITIONNUM FROM SYSIBMADM.SNAPSWITCHES

TThe following example is a sample output from this query.
UOW_SW_STATE STATEMENT_SW_STATE TABLE_SW_STATE BUFFPOOL_SW_STATE ...
------------ ------------------ -------------- ----------------- ...

0 0 0 0 ...
0 0 0 0 ...
0 0 0 0 ...

...
3 record selected.

Output from this query (continued).
... LOCK_SW_STATE SORT_SW_STATE TIMESTAMP_SW_STATE DBPARTITIONNUM
... ------------- ------------- ------------------ --------------
... 1 0 1 0
... 1 0 1 1
... 1 0 1 2

SNAP_GET_SWITCHES table function

The SNAP_GET_SWITCHES table function returns the same information as the
SNAPSWITCHES administrative view, but allows you to retrieve the information
for a specific database partition, aggregate of all database partitions or all database
partitions.

This table function provides the data equivalent to the GET DBM MONITOR SWITCHES
CLP command.

Refer to Table 193 on page 683 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_SWITCHES ()
dbpartitionnum

��

The schema is SYSPROC.

Table function parameter

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If this input option is not used, data
will be returned from all active database partitions. An active database
partition is a partition where the database is available for connection and use
by applications.

If dbpartitionnum is set to NULL, an attempt is made to read data from the file
created by SNAP_WRITE_FILE procedure. Note that this file could have been
created at any time, which means that the data might not be current. If a file with
the corresponding snapshot API request type does not exist, then the

682 Administrative Routines and Views

SNAP_GET_SWITCHES table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_SWITCHES table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Examples

Retrieve DBM monitor switches state information for the current database
partition.
SELECT UOW_SW_STATE, STATEMENT_SW_STATE, TABLE_SW_STATE,

BUFFPOOL_SW_STATE,LOCK_SW_STATE, SORT_SW_STATE, TIMESTAMP_SW_STATE
FROM TABLE(SNAP_GET_SWITCHES(-1)) AS T

The following example is a sample output from this query.
UOW_SW_STATE STATEMENT_SW_STATE TABLE_SW_STATE...
------------ ------------------ --------------...

1 1 1...
...

1 record(s) selected. ...

Output from this query (continued).
... BUFFPOOL_SW_STATE LOCK_SW_STATE SORT_SW_STATE TIMESTAMP_SW_STATE
... ----------------- ------------- ------------- ------------------
... 1 1 0 1

Information returned

Table 193. Information returned by the SNAPSWITCHES administrative view and the
SNAP_GET_SWITCHES table function

Column name Data type Description

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

UOW_SW_STATE SMALLINT State of the unit of work monitor
recording switch (0 or 1).

UOW_SW_TIME TIMESTAMP If the unit of work monitor
recording switch is on, the date
and time that this switch was
turned on.

STATEMENT_SW_STATE SMALLINT State of the SQL statement monitor
recording switch (0 or 1).

Chapter 15. Snapshot routines and views 683

Table 193. Information returned by the SNAPSWITCHES administrative view and the
SNAP_GET_SWITCHES table function (continued)

Column name Data type Description

STATEMENT_SW_TIME TIMESTAMP If the SQL statement monitor
recording switch is on, the date
and time that this switch was
turned on.

TABLE_SW_STATE SMALLINT State of the table activity monitor
recording switch (0 or 1).

TABLE_SW_TIME TIMESTAMP If the table activity monitor
recording switch is on, the date
and time that this switch was
turned on.

BUFFPOOL_SW_STATE SMALLINT State of the buffer pool activity
monitor recording switch (0 or 1).

BUFFPOOL_SW_TIME TIMESTAMP If the buffer pool activity monitor
recording switch is on, the date
and time that this switch was
turned on.

LOCK_SW_STATE SMALLINT State of the lock monitor recording
switch (0 or 1).

LOCK_SW_TIME TIMESTAMP If the lock monitor recording
switch is on, the date and time that
this switch was turned on.

SORT_SW_STATE SMALLINT State of the sorting monitor
recording switch (0 or 1).

SORT_SW_TIME TIMESTAMP If the sorting monitor recording
switch is on, the date and time that
this switch was turned on.

TIMESTAMP_SW_STATE SMALLINT State of the timestamp monitor
recording switch (0 or 1)

TIMESTAMP_SW_TIME TIMESTAMP If the timestamp monitor recording
switch is on, the date and time that
this switch was turned on.

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPTAB administrative view and SNAP_GET_TAB_V91 table function
- Retrieve table logical data group snapshot information

The SNAPTAB administrative view and the SNAP_GET_TAB_V91 table function
return snapshot information from the table logical data group.

Note: Beginning in Version 9.7 Fix Pack 5, the SNAPTAB administrative view and
SNAP_GET_TAB_V91 table function are deprecated. You can use the table
functions MON_GET_TABLESPACE, MON_GET_BUFFERPOOL, and
MON_GET_TABLE, and the administrative view MON_BP_UTILIZATION to
retrieve the information returned by these deprecated interfaces.

684 Administrative Routines and Views

SNAPTAB administrative view

This administrative view allows you to retrieve table logical data group snapshot
information for the currently connected database.

Used in conjunction with the SNAPTAB_REORG administrative view, the
SNAPTAB administrative view returns equivalent information to the GET SNAPSHOT
FOR TABLES ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 194 on page 687 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPTAB administrative view
v CONTROL privilege on the SNAPTAB administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_TAB_V91 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve the schema and name for all active tables.
SELECT SUBSTR(TABSCHEMA,1,8), SUBSTR(TABNAME,1,15) AS TABNAME, TAB_TYPE,

DBPARTITIONNUM FROM SYSIBMADM.SNAPTAB

The following example is a sample output from this query.
TABSCHEMA TABNAME TAB_TYPE DBPARTITIONNUM
--------- --------------- ------------ --------------
SYSTOOLS HMON_ATM_INFO USER_TABLE 0

1 record selected.

SNAP_GET_TAB_V91 table function

The SNAP_GET_TAB_V91 table function returns the same information as the
SNAPTAB administrative view, but allows you to retrieve the information for a
specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Chapter 15. Snapshot routines and views 685

Used in conjunction with the SNAP_GET_TAB_REORG table function, the
SNAP_GET_TAB_V91 table function returns equivalent information to the GET
SNAPSHOT FOR TABLES ON database-alias CLP command.

Refer to Table 194 on page 687 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_TAB_V91 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify NULL or empty
string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_TAB_V91 table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_TAB_V91 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

686 Administrative Routines and Views

Example

Retrieve a list of active tables as an aggregate view for the currently connected
database.
SELECT SUBSTR(TABSCHEMA,1,8) AS TABSCHEMA, SUBSTR(TABNAME,1,15) AS TABNAME,

TAB_TYPE, DBPARTITIONNUM FROM TABLE(SNAP_GET_TAB(’’,-2)) AS T

The following example is a sample output from this query.
TABSCHEMA TABNAME TAB_TYPE DBPARTITIONNUM
--------- --------------- ------------- --------------
SYSTOOLS HMON_ATM_INFO USER_TABLE -
JESSICAE EMPLOYEE USER_TABLE -

Information returned

Table 194. Information returned by the SNAPTAB administrative view and the
SNAP_GET_TAB_V91 table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

TABSCHEMA VARCHAR(128) table_schema - Table schema name

TABNAME VARCHAR(128) table_name - Table name

TAB_FILE_ID BIGINT table_file_id - Table file
identification

TAB_TYPE VARCHAR(14) table_type - Table type. This
interface returns a text identifier
based on defines in sqlmon.h, and
is one of:

v USER_TABLE

v DROPPED_TABLE

v TEMP_TABLE

v CATALOG_TABLE

v REORG_TABLE

DATA_OBJECT_PAGES BIGINT data_object_pages - Data object
pages

INDEX_OBJECT_PAGES BIGINT index_object_pages - Index object
pages

LOB_OBJECT_PAGES BIGINT lob_object_pages - LOB object
pages

LONG_OBJECT_PAGES BIGINT long_object_pages - Long object
pages

XDA_OBJECT_PAGES BIGINT xda_object_pages - XDA Object
Pages

ROWS_READ BIGINT rows_read - Rows read

ROWS_WRITTEN BIGINT rows_written - Rows written

OVERFLOW_ACCESSES BIGINT overflow_accesses - Accesses to
overflowed records

PAGE_REORGS BIGINT page_reorgs - Page reorganizations

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

Chapter 15. Snapshot routines and views 687

Table 194. Information returned by the SNAPTAB administrative view and the
SNAP_GET_TAB_V91 table function (continued)

Column name Data type
Description or corresponding
monitor element

TBSP_ID BIGINT tablespace_id - Table space
identification

DATA_PARTITION_ID INTEGER data_partition_id - Data Partition
identifier. For a non-partitioned
table, this element will be NULL.

SNAPTAB_REORG administrative view and SNAP_GET_TAB_REORG
table function - Retrieve table reorganization snapshot information

The SNAPTAB_REORG administrative view and the SNAP_GET_TAB_REORG
table function return table reorganization information. If no tables have been
reorganized, 0 rows are returned. When a data partitioned table is reorganized, one
record for each data partition is returned. If only a specific data partition of a data
partitioned table is reorganized, only a record the for the partition is returned.

SNAPTAB_REORG administrative view

This administrative view allows you to retrieve table reorganization snapshot
information for the currently connected database.

Used with the SNAPTAB administrative view, the SNAPTAB_REORG
administrative view provides the data equivalent to the GET SNAPSHOT FOR TABLES
ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 195 on page 691 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPTAB_REORG administrative view
v CONTROL privilege on the SNAPTAB_REORG administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_TAB_REORG table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

688 Administrative Routines and Views

Example

Select details on reorganization operations for all database partitions on the
currently connected database.
SELECT SUBSTR(TABNAME, 1, 15) AS TAB_NAME, SUBSTR(TABSCHEMA, 1, 15)

AS TAB_SCHEMA, REORG_PHASE, SUBSTR(REORG_TYPE, 1, 20) AS REORG_TYPE,
REORG_STATUS, REORG_COMPLETION, DBPARTITIONNUM
FROM SYSIBMADM.SNAPTAB_REORG ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
TAB_NAME TAB_SCHEMA REORG_PHASE ...
--------...- ----------...- ---------------- ...
EMPLOYEE DBUSER REPLACE ...
EMPLOYEE DBUSER REPLACE ...
EMPLOYEE DBUSER REPLACE ...

...
3 record(s) selected.

Output from this query (continued).
... REORG_TYPE REORG_STATUS REORG_COMPLETION DBPARTITIONNUM
... -------------------- ------------ ---------------- --------------
... RECLAIM+OFFLINE+ALLO COMPLETED SUCCESS 0
... RECLAIM+OFFLINE+ALLO COMPLETED SUCCESS 1
... RECLAIM+OFFLINE+ALLO COMPLETED SUCCESS 2

Select all information about a reorganization operation to reclaim extents from a
multidimensional clustering (MDC) table from the SNAPTAB_REORG
administrative view..
db2 -v "select * from sysibmadm.snaptab_reorg"

TABNAME REORG_PHASE REORG_MAX_PHASE REORG_TYPE
-------- ----------------- ----------------- ---------------------------
T1 RELEASE 3 RECLAIM_EXTENTS+ALLOW_WRITE

REORG_STATUS REORG_COMPLETION REORG_START REORG_END
------------ ---------------- -------------------------- --------------------------
COMPLETED SUCCESS 2008-09-24-14.35.30.734741 2008-09-24-14.35.31.460674

SNAP_GET_TAB_REORG table function

The SNAP_GET_TAB_REORG table function returns the same information as the
SNAPTAB_REORG administrative view, but allows you to retrieve the information
for a specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Used with the SNAP_GET_TAB table function, the SNAP_GET_TAB_REORG table
function provides the data equivalent to the GET SNAPSHOT FOR TABLES ON
database-alias CLP command.

Refer to Table 195 on page 691 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_TAB_REORG (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Chapter 15. Snapshot routines and views 689

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify NULL or empty
string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_TAB_REORG table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_TAB_REORG table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Select details on reorganization operations for database partition 1 on the currently
connected database.
SELECT SUBSTR(TABNAME, 1, 15) AS TAB_NAME, SUBSTR(TABSCHEMA, 1, 15)

AS TAB_SCHEMA, REORG_PHASE, SUBSTR(REORG_TYPE, 1, 20) AS REORG_TYPE,
REORG_STATUS, REORG_COMPLETION, DBPARTITIONNUM
FROM TABLE(SNAP_GET_TAB_REORG(’’, 1)) AS T

The following example is a sample output from this query.
TAB_NAME TAB_SCHEMA REORG_PHASE REORG_TYPE ...
--------...- ----------...- -----------...- -------------------- ...
EMPLOYEE DBUSER REPLACE RECLAIM+OFFLINE+ALLO ...

...
1 record(s) selected. ...

Output from this query (continued).

690 Administrative Routines and Views

... REORG_STATUS REORG_COMPLETION DBPARTITIONNUM

... ------------ ---------------- --------------

... COMPLETED SUCCESS 1

...

Select all information about a reorganization operation to reclaim extents from a
multidimensional clustering (MDC) table using the SNAP_GET_TAB_REORG table
function.
db2 -v "select * from table(snap_get_tab_reorg(’’))"

TABNAME REORG_PHASE REORG_MAX_PHASE REORG_TYPE
-------- ----------------- ----------------- ---------------------------
T1 RELEASE 3 RECLAIM_EXTENTS+ALLOW_WRITE

REORG_STATUS REORG_COMPLETION REORG_START REORG_END
------------ ---------------- -------------------------- --------------------------
COMPLETED SUCCESS 2008-09-24-14.35.30.734741 2008-09-24-14.35.31.460674

Information returned

Table 195. Information returned by the SNAPTAB_REORG administrative view and the
SNAP_GET_TAB_REORG table function

Column name Data type
Description or corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the snapshot was
taken.

TABNAME VARCHAR
(128)

table_name - Table name

TABSCHEMA VARCHAR
(128)

table_schema - Table schema name

PAGE_REORGS BIGINT page_reorgs - Page reorganizations

REORG_PHASE VARCHAR
(16)

reorg_phase - Table reorganize phase. This
interface returns a text identifier based on
defines in sqlmon.h and is one of:

v BUILD

v DICT_SAMPLE

v INDEX_RECREATE

v REPLACE

v SORT

v SCAN

v DRAIN

v RELEASE

or SORT+DICT_SAMPLE.

REORG_MAX_PHASE INTEGER reorg_max_phase - Maximum table
reorganize phase

REORG_CURRENT_
COUNTER

BIGINT reorg_current_counter - Table reorganize
progress

REORG_MAX_COUNTER BIGINT reorg_max_counter - Total amount of table
reorganization

Chapter 15. Snapshot routines and views 691

Table 195. Information returned by the SNAPTAB_REORG administrative view and the
SNAP_GET_TAB_REORG table function (continued)

Column name Data type
Description or corresponding monitor
element

REORG_TYPE VARCHAR
(128)

reorg_type - Table reorganize attributes.
This interface returns a text identifier using
a combination of the following identifiers
separated by '+':

Either:

v RECLAIM

v RECLUSTER

v RECLAIM_EXTS

and either:

v +OFFLINE

v +ONLINE

If access mode is specified, it is one of:

v +ALLOW_NONE

v +ALLOW_READ

v +ALLOW_WRITE

If offline and RECLUSTER option, one of:

v +INDEXSCAN

v +TABLESCAN

If offline, one of:

v +LONGLOB

v +DATAONLY

If offline, and option is specified, any of:

v +CHOOSE_TEMP

v +KEEPDICTIONARY

v +RESETDICTIONARY

If online, and option is specified:

v +NOTRUNCATE

Example 1: If a REORG TABLE
TEST.EMPLOYEE was run, the following
would be displayed:

RECLAIM+OFFLINE+ALLOW_READ+DATAONLY
+KEEPDICTIONARY

Example 2: If a REORG TABLE
TEST.EMPLOYEE INDEX EMPIDX
INDEXSCAN was run, then the following
would be displayed:

RECLUSTER+OFFLINE+ALLOW_READ+INDEXSCAN
+DATAONLY+KEEPDICTIONARY

692 Administrative Routines and Views

Table 195. Information returned by the SNAPTAB_REORG administrative view and the
SNAP_GET_TAB_REORG table function (continued)

Column name Data type
Description or corresponding monitor
element

REORG_STATUS VARCHAR
(10)

reorg_status - Table reorganize status. This
interface returns a text identifier based on
defines in sqlmon.h and is one of:

v COMPLETED

v PAUSED

v STARTED

v STOPPED

v TRUNCATE

REORG_COMPLETION VARCHAR
(10)

reorg_completion - Table reorganization
completion flag. This interface returns a text
identifier, based on defines in sqlmon.h and
is one of:

v FAIL

v SUCCESS

REORG_START TIMESTAMP reorg_start - Table reorganize start time

REORG_END TIMESTAMP reorg_end - Table reorganize end time

REORG_PHASE_START TIMESTAMP reorg_phase_start - Table reorganize phase
start time

REORG_INDEX_ID BIGINT reorg_index_id - Index used to reorganize
the table

REORG_TBSPC_ID BIGINT reorg_tbspc_id - Table space where table is
reorganized

DBPARTITIONNUM SMALLINT The database partition from which the data
was retrieved for this row.

DATA_PARTITION_ID INTEGER data_partition_id - Data Partition identifier.
For a non-partitioned table, this element
will be NULL.

REORG_
ROWSCOMPRESSED

BIGINT reorg_rows_compressed - Rows compressed

REORG_ROWSREJECTED BIGINT reorg_rows_rejected_for_compression -
Rows rejected for compression

REORG_LONG_TBSPC_ID BIGINT reorg_long_tbspc_id - Table space where
long objects are reorganized

SNAPTBSP administrative view and SNAP_GET_TBSP_V91 table
function - Retrieve table space logical data group snapshot
information

The SNAPTBSP administrative view and the SNAP_GET_TBSP_V91 table function
return snapshot information from the table space logical data group.

Chapter 15. Snapshot routines and views 693

SNAPTBSP administrative view

This administrative view allows you to retrieve table space logical data group
snapshot information for the currently connected database.

Used in conjunction with the SNAPTBSP_PART, SNAPTBSP_QUIESCER,
SNAPTBSP_RANGE, SNAPCONTAINER administrative views, the SNAPTBSP
administrative view returns information equivalent to the GET SNAPSHOT FOR
TABLESPACES ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 196 on page 696 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPTBSP administrative view
v CONTROL privilege on the SNAPTBSP administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_TBSP_V91 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of table spaces on the catalog database partition for the currently
connected database.
SELECT SUBSTR(TBSP_NAME,1,30) AS TBSP_NAME, TBSP_ID, TBSP_TYPE,

TBSP_CONTENT_TYPE FROM SYSIBMADM.SNAPTBSP WHERE DBPARTITIONNUM = 1

The following example is a sample output from this query.
TBSP_NAME TBSP_ID TBSP_TYPE TBSP_CONTENT_TYPE
---------- -------...- ---------- -----------------
TEMPSPACE1 1 SMS SYSTEMP
USERSPACE1 2 DMS LONG

2 record(s) selected.

SNAP_GET_TBSP_V91 table function

The SNAP_GET_TBSP_V91 table function returns the same information as the
SNAPTBSP administrative view, but allows you to retrieve the information for a
specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

694 Administrative Routines and Views

Used in conjunction with the SNAP_GET_TBSP_PART_V91,
SNAP_GET_TBSP_QUIESCER, SNAP_GET_TBSP_RANGE,
SNAP_GET_CONTAINER_V91 table functions, the SNAP_GET_TBSP_V91 table
function returns information equivalent to the GET SNAPSHOT FOR TABLESPACES ON
database-alias CLP command.

Refer to Table 196 on page 696 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_TBSP_V91 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify NULL or empty
string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_TBSP_V91 table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_TBSP_V91 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Chapter 15. Snapshot routines and views 695

Example

Retrieve a list of table spaces for all database partitions for the currently connected
database.
SELECT SUBSTR(TBSP_NAME,1,10) AS TBSP_NAME, TBSP_ID, TBSP_TYPE,

TBSP_CONTENT_TYPE, DBPARTITIONNUM FROM TABLE(SNAP_GET_TBSP_V91(’’)) AS T

The following example is a sample output from this query.
TBSP_NAME TBSP_ID TBSP_TYPE TBSP_CONTENT_TYPE DBPARTITIONNUM
-----–---- -------...- ---------- ----------------- --------------
TEMPSPACE1 1 SMS SYSTEMP 1
USERSPACE1 2 DMS LONG 1
SYSCATSPAC 0 DMS ANY 0
TEMPSPACE1 1 SMS SYSTEMP 0
USERSPACE1 2 DMS LONG 0
SYSTOOLSPA 3 DMS LONG 0
TEMPSPACE1 1 SMS SYSTEMP 2
USERSPACE1 2 DMS LONG 2

8 record(s) selected.

Information returned

Table 196. Information returned by the SNAPTBSP administrative view and the
SNAP_GET_TBSP_V91 table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

TBSP_ID BIGINT tablespace_id - Table space
identification

TBSP_TYPE VARCHAR(10) tablespace_type - Table space type.
This interface returns a text
identifier based on defines in
sqlutil.h, and is one of:

v DMS

v SMS

TBSP_CONTENT_TYPE VARCHAR(10) tablespace_content_type - Table
space contents type. This interface
returns a text identifier based on
defines in sqlmon.h, and is one of:

v ANY

v LARGE

v SYSTEMP

v USRTEMP

TBSP_PAGE_SIZE BIGINT tablespace_page_size - Table space
page size

TBSP_EXTENT_SIZE BIGINT tablespace_extent_size - Table
space extent size

TBSP_PREFETCH_SIZE BIGINT tablespace_prefetch_size - Table
space prefetch size

696 Administrative Routines and Views

Table 196. Information returned by the SNAPTBSP administrative view and the
SNAP_GET_TBSP_V91 table function (continued)

Column name Data type
Description or corresponding
monitor element

TBSP_CUR_POOL_ID BIGINT tablespace_cur_pool_id - Buffer
pool currently being used

TBSP_NEXT_POOL_ID BIGINT tablespace_next_pool_id - Buffer
pool that will be used at next
startup

FS_CACHING SMALLINT fs_caching - File system caching

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool
data logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool
data physical reads

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer
pool temporary data logical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer
pool temporary data physical reads

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer
pool asynchronous data reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data
writes

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer
pool asynchronous data writes

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool
index logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool
index physical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer
pool temporary index logical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer
pool temporary index physical
reads

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer
pool asynchronous index reads

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool
index writes

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer
pool asynchronous index writes

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool
XDA Data Logical Reads

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool
XDA Data Physical Reads

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer Pool XDA
Data Writes

POOL_ASYNC_XDA_READS BIGINT pool_async_xda_reads - Buffer
Pool Asynchronous XDA Data
Reads

Chapter 15. Snapshot routines and views 697

Table 196. Information returned by the SNAPTBSP administrative view and the
SNAP_GET_TBSP_V91 table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_ASYNC_XDA_WRITES BIGINT pool_async_xda_writes - Buffer
Pool Asynchronous XDA Data
Writes

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer
Pool Temporary XDA Data Logical
Reads

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer
Pool Temporary XDA Data
Physical Reads monitor element

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool
physical read time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool
physical write time

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer pool
asynchronous read time

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer
pool asynchronous write time

POOL_ASYNC_DATA_
READ_REQS

BIGINT pool_async_data_read_reqs - Buffer
pool asynchronous read requests

POOL_ASYNC_INDEX_
READ_REQS

BIGINT pool_async_index_read_reqs -
Buffer pool asynchronous index
read requests

POOL_ASYNC_XDA_
READ_REQS

BIGINT pool_async_xda_read_reqs - Buffer
Pool Asynchronous XDA Read
Requests

POOL_NO_VICTIM_BUFFER BIGINT pool_no_victim_buffer - Buffer
pool no victim buffers

DIRECT_READS BIGINT direct_reads - Direct reads from
database

DIRECT_WRITES BIGINT direct_writes - Direct writes to
database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read
requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write
requests

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write
time

FILES_CLOSED BIGINT files_closed - Database files closed

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread
prefetch pages

698 Administrative Routines and Views

Table 196. Information returned by the SNAPTBSP administrative view and the
SNAP_GET_TBSP_V91 table function (continued)

Column name Data type
Description or corresponding
monitor element

TBSP_REBALANCER_MODE VARCHAR(10) tablespace_rebalancer_mode -
Rebalancer mode. This interface
returns a text identifier based on
defines in sqlmon.h, and is one of:

v NO_REBAL

v FWD_REBAL

v REV_REBAL

TBSP_USING_AUTO_STORAGE SMALLINT tablespace_using_auto_storage -
Table space enabled for automatic
storage

TBSP_AUTO_RESIZE_ENABLED SMALLINT tablespace_auto_resize_enabled -
Table space automatic resizing
enabled

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPTBSP_PART administrative view and
SNAP_GET_TBSP_PART_V97 table function - Retrieve
tablespace_nodeinfo logical data group snapshot information

The SNAPTBSP_PART administrative view and the SNAP_GET_TBSP_PART_V97
table function return snapshot information from the tablespace_nodeinfo logical
data group.

SNAPTBSP_PART administrative view

This administrative view allows you to retrieve tablespace_nodeinfo logical data
group snapshot information for the currently connected database.

Used in conjunction with the SNAPTBSP, SNAPTBSP_QUIESCER,
SNAPTBSP_RANGE, SNAPCONTAINER administrative views, the
SNAPTBSP_PART administrative view returns information equivalent to the GET
SNAPSHOT FOR TABLESPACES ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 197 on page 701 for a complete list of information that can be
returned.

Authorization
v SYSMON authority
v SELECT or CONTROL privilege on the SNAPTBSP_PART administrative view

and EXECUTE privilege on the SNAP_GET_TBSP_PART_V97 table function.

Example

Retrieve a list of table spaces and their state for all database partitions of the
currently connected database.

Chapter 15. Snapshot routines and views 699

SELECT SUBSTR(TBSP_NAME,1,30) AS TBSP_NAME, TBSP_ID,
SUBSTR(TBSP_STATE,1,30) AS TBSP_STATE, DBPARTITIONNUM
FROM SYSIBMADM.SNAPTBSP_PART

The following example is a sample output from this query.
TBSP_NAME TBSP_ID TBSP_STATE DBPARTITIONNUM
-----------...- -------...- ----------...- --------------
SYSCATSPACE 0 NORMAL 0
TEMPSPACE1 1 NORMAL 0
USERSPACE1 2 NORMAL 0
TEMPSPACE1 1 NORMAL 1
USERSPACE1 2 NORMAL 1

5 record(s) selected.

SNAP_GET_TBSP_PART_V97 table function

The SNAP_GET_TBSP_PART_V97 table function returns the same information as
the SNAPTBSP_PART administrative view, but allows you to retrieve the
information for a specific database on a specific database partition, aggregate of all
database partitions or all database partitions.

Used in conjunction with the SNAP_GET_TBSP_V97,
SNAP_GET_TBSP_QUIESCER, SNAP_GET_TBSP_RANGE,
SNAP_GET_CONTAINER_V91 table functions, the SNAP_GET_TBSP_PART_V97
table function returns information equivalent to the GET SNAPSHOT FOR TABLESPACES
ON database-alias CLP command.

Refer to Table 197 on page 701 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_TBSP_PART_V97 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify NULL or empty
string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could

700 Administrative Routines and Views

have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_TBSP_PART_V97 table function takes a snapshot for the currently
connected database and database partition number.

Authorization
v SYSMON authority
v EXECUTE privilege on the SNAP_GET_TBSP_PART_V97 table function.

Example

Retrieve a list of table spaces and their state for the connected database partition of
the connected database.
SELECT SUBSTR(TBSP_NAME,1,30) AS TBSP_NAME, TBSP_ID,

SUBSTR(TBSP_STATE,1,30) AS TBSP_STATE
FROM TABLE(SNAP_GET_TBSP_PART_V97(CAST(NULL AS VARCHAR(128)),-1)) AS T

The following example is a sample output from this query.
TBSP_NAME TBSP_ID TBSP_STATE
------------------------------ -------------------- ------------...-
SYSCATSPACE 0 NORMAL
TEMPSPACE1 1 NORMAL
USERSPACE1 2 NORMAL
SYSTOOLSPACE 3 NORMAL
SYSTOOLSTMPSPACE 4 NORMAL

5 record(s) selected.

Information returned

Table 197. Information returned by the SNAPTBSP_PART administrative view and the
SNAP_GET_TBSP_PART_V97 table function

Column name Data type
Description or corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the snapshot was
taken.

TBSP_NAME VARCHAR
(128)

tablespace_name - Table space name

TBSP_ID BIGINT tablespace_id - Table space identification

Chapter 15. Snapshot routines and views 701

Table 197. Information returned by the SNAPTBSP_PART administrative view and the
SNAP_GET_TBSP_PART_V97 table function (continued)

Column name Data type
Description or corresponding monitor
element

TBSP_STATE VARCHAR
(256)

tablespace_state - Table space state. This
interface returns a text identifier based on
defines in sqlutil.h and is combination of
the following separated by a '+' sign:

v BACKUP_IN_PROGRESS

v BACKUP_PENDING

v DELETE_PENDING

v DISABLE_PENDING

v DROP_PENDING

v LOAD_IN_PROGRESS

v LOAD_PENDING

v NORMAL

v OFFLINE

v PSTAT_CREATION

v PSTAT_DELETION

v QUIESCED_EXCLUSIVE

v QUIESCED_SHARE

v QUIESCED_UPDATE

v REBAL_IN_PROGRESS

v REORG_IN_PROGRESS

v RESTORE_IN_PROGRESS

v RESTORE_PENDING

v ROLLFORWARD_IN_PROGRESS

v ROLLFORWARD_PENDING

v STORDEF_ALLOWED

v STORDEF_CHANGED

v STORDEF_FINAL_VERSION

v STORDEF_PENDING

v SUSPEND_WRITE

TBSP_PREFETCH_SIZE BIGINT tablespace_prefetch_size - Table space
prefetch size

TBSP_NUM_QUIESCERS BIGINT tablespace_num_quiescers - Number of
quiescers

TBSP_STATE_CHANGE_
OBJECT_ID

BIGINT tablespace_state_change_object_id - State
change object identification

TBSP_STATE_CHANGE_
TBSP_ID

BIGINT tablespace_state_change_ts_id - State
change table space identification

TBSP_MIN_RECOVERY_
TIME

TIMESTAMP tablespace_min_recovery_time - Minimum
recovery time for rollforward

TBSP_TOTAL_PAGES BIGINT tablespace_total_pages - Total pages in table
space

702 Administrative Routines and Views

Table 197. Information returned by the SNAPTBSP_PART administrative view and the
SNAP_GET_TBSP_PART_V97 table function (continued)

Column name Data type
Description or corresponding monitor
element

TBSP_USABLE_PAGES BIGINT tablespace_usable_pages - Usable pages in
table space

TBSP_USED_PAGES BIGINT tablespace_used_pages - Used pages in
table space

TBSP_FREE_PAGES BIGINT tablespace_free_pages - Free pages in table
space

TBSP_PENDING_FREE_
PAGES

BIGINT tablespace_pending_free_pages - Pending
free pages in table space

TBSP_PAGE_TOP BIGINT tablespace_page_top - Table space high
water mark

REBALANCER_MODE VARCHAR
(30)

tablespace_rebalancer_mode - Rebalancer
mode. This interface returns a text identifier
based on defines in sqlmon.h, and is one of:

v FWD_REBAL

v NO_REBAL

v REV_REBAL

v FWD_REBAL_OF_2PASS

v REV_REBAL_OF_2PASS

REBALANCER_EXTENTS_
REMAINING

BIGINT tablespace_rebalancer_extents_remaining -
Total number of extents to be processed by
the rebalancer

REBALANCER_EXTENTS_
PROCESSED

BIGINT tablespace_rebalancer_extents_processed -
Number of extents the rebalancer has
processed

REBALANCER_PRIORITY BIGINT tablespace_rebalancer_priority - Current
rebalancer priority

REBALANCER_START_
TIME

TIMESTAMP tablespace_rebalancer_start_time -
Rebalancer start time

REBALANCER_RESTART_
TIME

TIMESTAMP tablespace_rebalancer_restart_time -
Rebalancer restart time

REBALANCER_LAST_
EXTENT_MOVED

BIGINT tablespace_rebalancer_last_extent_moved -
Last extent moved by the rebalancer

TBSP_NUM_RANGES BIGINT tablespace_num_ranges - Number of ranges
in the table space map

TBSP_NUM_CONTAINERS BIGINT tablespace_num_containers - Number of
containers in table space

TBSP_INITIAL_SIZE BIGINT tablespace_initial_size - Initial table space
size

TBSP_CURRENT_SIZE BIGINT tablespace_current_size - Current table
space size

TBSP_MAX_SIZE BIGINT tablespace_max_size - Maximum table
space size

Chapter 15. Snapshot routines and views 703

Table 197. Information returned by the SNAPTBSP_PART administrative view and the
SNAP_GET_TBSP_PART_V97 table function (continued)

Column name Data type
Description or corresponding monitor
element

TBSP_INCREASE_SIZE BIGINT tablespace_increase_size - Increase size in
bytes

TBSP_INCREASE_SIZE_
PERCENT

SMALLINT tablespace_increase_size_percent - Increase
size by percent

TBSP_LAST_RESIZE_TIME TIMESTAMP tablespace_last_resize_time - Time of last
successful resize

TBSP_LAST_RESIZE_
FAILED

SMALLINT tablespace_last_resize_failed - Last resize
attempt failed

TBSP_PATHS_DROPPED SMALLINT Indicates that the table space resides on one
or more storage paths that have been
dropped (0 - No, 1 - Yes)

DBPARTITIONNUM SMALLINT The database partition from which the data
was retrieved for this row.

SNAPTBSP_QUIESCER administrative view and
SNAP_GET_TBSP_QUIESCER table function - Retrieve quiescer table
space snapshot information

The SNAPTBSP_QUIESCER administrative view and the
SNAP_GET_TBSP_QUIESCER table function return information about quiescers
from a table space snapshot.

SNAPTBSP_QUIESCER administrative view

This administrative view allows you to retrieve quiescer table space snapshot
information for the currently connected database.

Used with the SNAPTBSP, SNAPTBSP_PART, SNAPTBSP_RANGE,
SNAPCONTAINER administrative views, the SNAPTBSP_QUIESCER
administrative view provides information equivalent to the GET SNAPSHOT FOR
TABLESPACES ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 198 on page 708 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPTBSP_QUIESCER administrative view
v CONTROL privilege on the SNAPTBSP_QUIESCER administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:

704 Administrative Routines and Views

v EXECUTE privilege on the SNAP_GET_TBSP_QUIESCER table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve information about the quiesced table spaces for all database partitions for
the currently connected database.
SELECT SUBSTR(TBSP_NAME, 1, 10) AS TBSP_NAME, QUIESCER_TS_ID,

QUIESCER_OBJ_ID, QUIESCER_AUTH_ID, QUIESCER_AGENT_ID,
QUIESCER_STATE, DBPARTITIONNUM
FROM SYSIBMADM.SNAPTBSP_QUIESCER ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
TBSP_NAME QUIESCER_TS_ID QUIESCER_OBJ_ID QUIESCER_AUTH_ID ..
---------- --------------...- ---------------...- ----------------...- ..
USERSPACE1 2 5 SWALKTY ..
USERSPACE1 2 5 SWALKTY ..

2 record(s) selected.

Output from this query (continued).
... QUIESCER_AGENT_ID QUIESCER_STATE DBPARTITIONNUM
... -------------------- -------------- --------------
... 0 EXCLUSIVE 0
... 65983 EXCLUSIVE 1

Example: Determine the range partitioned table names

If the table is range-partitioned and kept in quiesced state, the different values for
table space ID and table ID are represented than in SYSCAT.TABLES. These IDs
will appear as the unsigned short representation. In order to find the quiesced
table name, you need to find the signed short representation first by calculating the
table space ID that is subtracting 65536 (the maximum value) from
QEUIESCER_TS_ID and then use this table space ID to locate the quiesced tables.
(The actual table space ID can be found in SYSCAT.DATAPARTITIONS for each
range partition in the table).
SELECT SUBSTR(TBSP_NAME, 1, 10) AS TBSP_NAME,

CASE WHEN QUIESCER_TS_ID = 65530
THEN QUIESCER_TS_ID - 65536
ELSE QUIESCER_TS_ID END as tbspaceid,

CASE WHEN QUIESCER_TS_ID = 65530
THEN QUIESCER_OBJ_ID - 65536
ELSE QUIESCER_OBJ_ID END as tableid

FROM SYSIBMADM.SNAPTBSP_QUIESCER
ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
TBSP_NAME TBSPACEID TABLEID
------------- ------------ --------
TABDATA -6 -32768

Chapter 15. Snapshot routines and views 705

DATAMART -6 -32765
SMALL 5 17

3 record(s) selected.

Use the given TBSPACEID and TABLEID provided from the preceding query to
find the table schema and name from SYSCAT.TABLES.
SELECT CHAR(tabschema, 10)tabschema, CHAR(tabname,15)tabname

FROM SYSCAT.TABLES
WHERE tbspaceid = -6 AND tableid in (-32768,-32765)

The following example is a sample output from this query.
TABSCHEMA TABNAME
------------ --------
TPCD ORDERS_RP
TPCD ORDERS_DMART

2 record(s) selected.

SELECT CHAR(tabschema, 10)tabschema, CHAR(tabname,15)tabname
FROM SYSCAT.TABLES
WHERE tbspaceid = 5 AND tableid = 17

The following example is a sample output from this query.
TABSCHEMA TABNAME
------------ --------
TPCD NATION

1 record(s) selected.

SNAP_GET_TBSP_QUIESCER table function

The SNAP_GET_TBSP_QUIESCER table function returns the same information as
the SNAPTBSP_QUIESCER administrative view, but allows you to retrieve the
information for a specific database on a specific database partition, aggregate of all
database partitions or all database partitions.

Used with the SNAP_GET_TBSP_V91, SNAP_GET_TBSP_PART_V91,
SNAP_GET_TBSP_RANGE, SNAP_GET_CONTAINER_V91 table functions, the
SNAP_GET_TBSP_QUIESCER table function provides information equivalent to
the GET SNAPSHOT FOR TABLESPACES ON database-alias CLP command.

Refer to Table 198 on page 708 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_TBSP_QUIESCER (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as

706 Administrative Routines and Views

returned by the LIST DATABASE DIRECTORY command. Specify NULL or empty
string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_TBSP_QUIESCER table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_TBSP_QUIESCER table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve information about the quiesced table spaces for database partition 1 for
the currently connected database.
SELECT SUBSTR(TBSP_NAME, 1, 10) AS TBSP_NAME, QUIESCER_TS_ID,

QUIESCER_OBJ_ID, QUIESCER_AUTH_ID, QUIESCER_AGENT_ID,
QUIESCER_STATE, DBPARTITIONNUM
FROM TABLE(SYSPROC.SNAP_GET_TBSP_QUIESCER(’’, 1)) AS T

The following example is a sample output from this query.
TBSP_NAME QUIESCER_TS_ID QUIESCER_OBJ_ID QUIESCER_AUTH_ID ...
---------- --------------...- ---------------...- ----------------...- ...
USERSPACE1 2 5 SWALKTY ...

1 record(s) selected.

Output from this query (continued).
... QUIESCER_AGENT_ID QUIESCER_STATE DBPARTITIONNUM
... -------------------- -------------- --------------
... 65983 EXCLUSIVE 1

Chapter 15. Snapshot routines and views 707

Information returned

Table 198. Information returned by the SNAPTBSP_QUIESCER administrative view and the
SNAP_GET_TBSP_QUIESCER table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

QUIESCER_TS_ID BIGINT quiescer_ts_id - Quiescer table
space identification

QUIESCER_OBJ_ID BIGINT quiescer_obj_id - Quiescer object
identification

QUIESCER_AUTH_ID VARCHAR(128) quiescer_auth_id - Quiescer user
authorization identification

QUIESCER_AGENT_ID BIGINT quiescer_agent_id - Quiescer agent
identification

QUIESCER_STATE VARCHAR(14) quiescer_state - Quiescer state. This
interface returns a text identifier
based on defines in sqlutil.h and
is one of:

v EXCLUSIVE

v UPDATE

v SHARE

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPTBSP_RANGE administrative view and
SNAP_GET_TBSP_RANGE table function - Retrieve range snapshot
information

The SNAPTBSP_RANGE administrative view and the SNAP_GET_TBSP_RANGE
table function return information from a range snapshot.

SNAPTBSP_RANGE administrative view

This administrative view allows you to retrieve range snapshot information for the
currently connected database.

Used with the SNAPTBSP, SNAPTBSP_PART, SNAPTBSP_QUIESCER and
SNAPCONTAINER administrative views, the SNAPTBSP_RANGE administrative
view provides information equivalent to the GET SNAPSHOT FOR TABLESPACES ON
database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 199 on page 711 for a complete list of information that can be
returned.

708 Administrative Routines and Views

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPTBSP_RANGE administrative view
v CONTROL privilege on the SNAPTBSP_RANGE administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_TBSP_RANGE table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Select information about table space ranges for all database partitions for the
currently connected database.
SELECT TBSP_ID, SUBSTR(TBSP_NAME, 1, 15) AS TBSP_NAME, RANGE_NUMBER,

RANGE_STRIPE_SET_NUMBER, RANGE_OFFSET, RANGE_MAX_PAGE,
RANGE_MAX_EXTENT, RANGE_START_STRIPE, RANGE_END_STRIPE,
RANGE_ADJUSTMENT, RANGE_NUM_CONTAINER, RANGE_CONTAINER_ID,
DBPARTITIONNUM FROM SYSIBMADM.SNAPTBSP_RANGE
ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
TBSP_ID TBSP_NAME RANGE_NUMBER RANGE_STRIPE_SET_NUMBER ...
-------...- --------------- ------------...- ----------------------- ...

0 SYSCATSPACE 0 0 ...
2 USERSPACE1 0 0 ...
3 SYSTOOLSPACE 0 0 ...
2 USERSPACE1 0 0 ...
2 USERSPACE1 0 0 ...

5 record(s) selected.

Output from this query (continued).
... RANGE_OFFSET RANGE_MAX_PAGE RANGE_MAX_EXTENT ...
... ------------...- -------------------- -------------------- ...
... 0 11515 2878 ...
... 0 479 14 ...
... 0 251 62 ...
... 0 479 14 ...
... 0 479 14 ...

Output from this query (continued).
... RANGE_START_STRIPE RANGE_END_STRIPE RANGE_ADJUSTMENT ...
... -------------------- -------------------- -------------------- ...
... 0 2878 0 ...
... 0 14 0 ...
... 0 62 0 ...
... 0 14 0 ...
... 0 14 0 ...

Chapter 15. Snapshot routines and views 709

Output from this query (continued).
... RANGE_NUM_CONTAINER RANGE_CONTAINER_ID DBPARTITIONNUM
... -------------------- -------------------- --------------
... 1 0 0
... 1 0 0
... 1 0 0
... 1 0 1
... 1 0 2

SNAP_GET_TBSP_RANGE table function

The SNAP_GET_TBSP_RANGE table function returns the same information as the
SNAPTBSP_RANGE administrative view, but allows you to retrieve the
information for a specific database on a specific database partition, aggregate of all
database partitions or all database partitions.

Used with the SNAP_GET_TBSP_V91, SNAP_GET_TBSP_PART_V91,
SNAP_GET_TBSP_QUIESCER and SNAP_GET_CONTAINER_V91 table functions,
the SNAP_GET_TBSP_RANGE table function provides information equivalent to
the GET SNAPSHOT FOR TABLESPACES ON database-alias CLP command.

Refer to Table 199 on page 711 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_TBSP_RANGE (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify NULL or empty
string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_TBSP_RANGE table function takes a snapshot for the currently
connected database and database partition number.

710 Administrative Routines and Views

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_TBSP_RANGE table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Examples

Select information about the table space range for the table space with tbsp_id = 2
on the currently connected database partition.
SELECT TBSP_ID, SUBSTR(TBSP_NAME, 1, 15) AS TBSP_NAME, RANGE_NUMBER,

RANGE_STRIPE_SET_NUMBER, RANGE_OFFSET, RANGE_MAX_PAGE, RANGE_MAX_EXTENT,
RANGE_START_STRIPE, RANGE_END_STRIPE, RANGE_ADJUSTMENT,
RANGE_NUM_CONTAINER, RANGE_CONTAINER_ID
FROM TABLE(SNAP_GET_TBSP_RANGE(’’,-1)) AS T WHERE TBSP_ID = 2

The following example is a sample output from this query.
TBSP_ID TBSP_NAME RANGE_NUMBER ...
-------...- --------------- ------------...- ...

2 USERSPACE1 0 ...

1 record(s) selected.

Output from this query (continued).
... RANGE_STRIPE_SET_NUMBER RANGE_OFFSET RANGE_MAX_PAGE ...
... ----------------------- ------------...- --------------...---- ...
... 0 0 3967 ...

Output from this query (continued).
... RANGE_MAX_EXTENT RANGE_START_STRIPE RANGE_END_STRIPE ...
... -------------------- -------------------- -------------------- ...
... 123 0 123 ...

Output from this query (continued).
... RANGE_ADJUSTMENT RANGE_NUM_CONTAINER RANGE_CONTAINER_ID
... -------------------- -------------------- --------------------
... 0 1 0

Information returned

Table 199. Information returned by the SNAPTBSP_RANGE administrative view and the
SNAP_GET_TBSP_RANGE table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

TBSP_ID BIGINT tablespace_id - Table space
identification

Chapter 15. Snapshot routines and views 711

Table 199. Information returned by the SNAPTBSP_RANGE administrative view and the
SNAP_GET_TBSP_RANGE table function (continued)

Column name Data type
Description or corresponding
monitor element

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

RANGE_NUMBER BIGINT range_number - Range number

RANGE_STRIPE_SET_NUMBER BIGINT range_stripe_set_number - Stripe
set number

RANGE_OFFSET BIGINT range_offset - Range offset

RANGE_MAX_PAGE BIGINT range_max_page_number -
Maximum page in range

RANGE_MAX_EXTENT BIGINT range_max_extent - Maximum
extent in range

RANGE_START_STRIPE BIGINT range_start_stripe - Start stripe

RANGE_END_STRIPE BIGINT range_end_stripe - End stripe

RANGE_ADJUSTMENT BIGINT range_adjustment - Range
adjustment

RANGE_NUM_CONTAINER BIGINT range_num_containers - Number
of containers in range

RANGE_CONTAINER_ID BIGINT range_container_id - Range
container

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPUTIL administrative view and SNAP_GET_UTIL table function -
Retrieve utility_info logical data group snapshot information

The SNAPUTIL administrative view and the SNAP_GET_UTIL table function
return snapshot information about the utilities from the utility_info logical data
group.

SNAPUTIL administrative view

Used in conjunction with the SNAPUTIL_PROGRESS administrative view, the
SNAPUTIL administrative view provides the same information as the LIST
UTILITIES SHOW DETAIL CLP command.

The schema is SYSIBMADM.

Refer to Table 200 on page 715 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPUTIL administrative view
v CONTROL privilege on the SNAPUTIL administrative view
v DATAACCESS authority

712 Administrative Routines and Views

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_UTIL table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of utilities and their states on all database partitions for all active
databases in the instance that contains the connected database.
SELECT UTILITY_TYPE, UTILITY_PRIORITY, SUBSTR(UTILITY_DESCRIPTION, 1, 72)

AS UTILITY_DESCRIPTION, SUBSTR(UTILITY_DBNAME, 1, 17) AS
UTILITY_DBNAME, UTILITY_STATE, UTILITY_INVOKER_TYPE, DBPARTITIONNUM
FROM SYSIBMADM.SNAPUTIL ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
UTILITY_TYPE UTILITY_PRIORITY ...
------------...- ---------------- ...
LOAD - ...
LOAD - ...
LOAD - ...

3 record(s) selected.

Output from this query (continued).
... UTILITY_DESCRIPTION ...
... ---...
... ONLINE LOAD DEL AUTOMATIC INDEXING INSERT COPY NO TEST .LOADTEST ...
... ONLINE LOAD DEL AUTOMATIC INDEXING INSERT COPY NO TEST .LOADTEST ...
... ONLINE LOAD DEL AUTOMATIC INDEXING INSERT COPY NO TEST .LOADTEST ...

Output from this query (continued).
... UTILITY_DBNAME UTILITY_STATE UTILITY_INVOKER_TYPE DBPARTITIONNUM
... ----------------- ------------- -------------------- --------------
... SAMPLE EXECUTE USER 0
... SAMPLE EXECUTE USER 1
... SAMPLE EXECUTE USER 2

SNAP_GET_UTIL table function

The SNAP_GET_UTIL table function returns the same information as the
SNAPUTIL administrative view, but allows you to retrieve the information for a
specific database partition, aggregate of all database partitions or all database
partitions.

Used in conjunction with the SNAP_GET_UTIL_PROGRESS table function, the
SNAP_GET_UTIL table function provides the same information as the LIST
UTILITIES SHOW DETAIL CLP command.

Refer to Table 200 on page 715 for a complete list of information that can be
returned.

Chapter 15. Snapshot routines and views 713

Syntax

�� SNAP_GET_UTIL ()
dbpartitionnum

��

The schema is SYSPROC.

Table function parameter

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If this input option is not used, data
will be returned from all active database partitions. An active database
partition is a partition where the database is available for connection and use
by applications.

If dbpartitionnum is set to NULL, an attempt is made to read data from the file
created by SNAP_WRITE_FILE procedure. Note that this file could have been
created at any time, which means that the data might not be current. If a file with
the corresponding snapshot API request type does not exist, then the
SNAP_GET_UTIL table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_UTIL table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of utility ids with their type and state for the currently connected
database partition on database SAMPLE.
SELECT UTILITY_ID, UTILITY_TYPE, STATE

FROM TABLE(SNAP_GET_UTIL(-1)) AS T WHERE UTILITY_DBNAME=’SAMPLE’

The following example is a sample output from this query.
UTILITY_ID UTILITY_TYPE STATE
-------------------- -------------------------- --------

1 BACKUP EXECUTE

1 record(s) selected.

714 Administrative Routines and Views

Information returned

Table 200. Information returned by the SNAPUTIL administrative view and the
SNAP_GET_UTIL table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

UTILITY_ID INTEGER utility_id - Utility ID. Unique to a
database partition.

UTILITY_TYPE VARCHAR(26) utility_type - Utility type. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v ASYNC_INDEX_CLEANUP

v BACKUP

v CRASH_RECOVERY

v LOAD

v REBALANCE

v REDISTRIBUTE

v RESTART_RECREATE_INDEX

v RESTORE

v ROLLFORWARD_RECOVERY

v RUNSTATS

UTILITY_PRIORITY INTEGER utility_priority - Utility priority.
Priority if utility supports
throttling, otherwise null.

UTILITY_DESCRIPTION VARCHAR(2048) utility_description - Utility
description. Can be null.

UTILITY_DBNAME VARCHAR(128) utility_dbname - Database
operated on by utility

UTILITY_START_TIME TIMESTAMP utility_start_time - Utility start
time

UTILITY_STATE VARCHAR(10) utility_state - Utility state. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v ERROR

v EXECUTE

v WAIT

UTILITY_INVOKER_TYPE VARCHAR(10) utility_invoker_type - Utility
invoker type. This interface returns
a text identifier based on the
defines in sqlmon.h and is one of:

v AUTO

v USER

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

PROGRESS_LIST_ATTR VARCHAR(10) progress_list_attr - Current
progress list attributes

Chapter 15. Snapshot routines and views 715

Table 200. Information returned by the SNAPUTIL administrative view and the
SNAP_GET_UTIL table function (continued)

Column name Data type
Description or corresponding
monitor element

PROGRESS_LIST_CUR_SEQ_NUM INTEGER progress_list_current_seq_num -
Current progress list sequence
number

SNAPUTIL_PROGRESS administrative view and
SNAP_GET_UTIL_PROGRESS table function - Retrieve progress
logical data group snapshot information

The SNAPUTIL_PROGRESS administrative view and the
SNAP_GET_UTIL_PROGRESS table function return snapshot information about
utility progress, in particular, the progress logical data group.

SNAPUTIL_PROGRESS administrative view

Used in conjunction with the SNAPUTIL administrative view, the
SNAPUTIL_PROGRESS administrative view provides the same information as the
LIST UTILITIES SHOW DETAIL CLP command.

The schema is SYSIBMADM.

Refer to Table 201 on page 718 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPUTIL_PROGRESS administrative view
v CONTROL privilege on the SNAPUTIL_PROGRESS administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_UTIL_PROGRESS table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve details on total and completed units of progress by utility ID.
SELECT SELECT UTILITY_ID, PROGRESS_TOTAL_UNITS, PROGRESS_COMPLETED_UNITS,

DBPARTITIONNUM FROM SYSIBMADM.SNAPUTIL_PROGRESS

716 Administrative Routines and Views

The following example is a sample output from this query.
UTILITY_ID PROGRESS_TOTAL_UNITS PROGRESS_COMPLETED_UNITS DBPARTITIONNU
---------- -------------------- ------------------------ -----------–-

7 10 5 0
9 10 5 1

1 record(s) selected.

SNAP_GET_UTIL_PROGRESS table function

The SNAP_GET_UTIL_PROGRESS table function returns the same information as
the SNAPUTIL_PROGRESS administrative view, but allows you to retrieve the
information for a specific database on a specific database partition, aggregate of all
database partitions or all database partitions.

Used in conjunction with the SNAP_GET_UTIL table function, the
SNAP_GET_UTIL_PROGRESS table function provides the same information as the
LIST UTILITIES SHOW DETAIL CLP command.

Refer to Table 201 on page 718 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_UTIL_PROGRESS ()
dbpartitionnum

��

The schema is SYSPROC.

Table function parameter

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If this input option is not used, data
will be returned from all active database partitions. An active database
partition is a partition where the database is available for connection and use
by applications.

If dbpartitionnum is set to NULL, an attempt is made to read data from the file
created by SNAP_WRITE_FILE procedure. Note that this file could have been
created at any time, which means that the data might not be current. If a file with
the corresponding snapshot API request type does not exist, then the
SNAP_GET_UTIL_PROGRESS table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_UTIL_PROGRESS table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON

Chapter 15. Snapshot routines and views 717

v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve details on the progress of utilities on the currently connect partition.
SELECT UTILITY_ID, PROGRESS_TOTAL_UNITS, PROGRESS_COMPLETED_UNITS,

DBPARTITIONNUM FROM TABLE(SNAP_GET_UTIL_PROGRESS(-1)) as T

The following example is a sample output from this query.
UTILITY_ID PROGRESS_TOTAL_UNITS PROGRESS_COMPLETED_UNITS DBPARTITIONNUM
---------- -------------------- ------------------------ --------------

7 10 5 0

1 record(s) selected.

Information returned

Table 201. Information returned by the SNAPUTIL_PROGRESS administrative view and the
SNAP_GET_UTIL_PROGRESS table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

UTILITY_ID INTEGER utility_id - Utility ID. Unique to a
database partition.

PROGRESS_SEQ_NUM INTEGER progress_seq_num - Progress
sequence number. If serial, the
number of the phase. If concurrent,
then could be NULL.

UTILITY_STATE VARCHAR(16) utility_state - Utility state. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v ERROR

v EXECUTE

v WAIT

PROGRESS_DESCRIPTION VARCHAR(2048) progress_description - Progress
description

PROGRESS_START_TIME TIMESTAMP progress_start_time - Progress start
time. Start time if the phase has
started, otherwise NULL.

718 Administrative Routines and Views

Table 201. Information returned by the SNAPUTIL_PROGRESS administrative view and the
SNAP_GET_UTIL_PROGRESS table function (continued)

Column name Data type
Description or corresponding
monitor element

PROGRESS_WORK_METRIC VARCHAR(16) progress_work_metric - Progress
work metric. This interface returns
a text identifier based on the
defines in sqlmon.h and is one of:

v NOT_SUPPORT

v BYTES

v EXTENTS

v INDEXES

v PAGES

v ROWS

v TABLES

PROGRESS_TOTAL_UNITS BIGINT progress_total_units - Total
progress work units

PROGRESS_COMPLETED_UNITS BIGINT progress_completed_units -
Completed progress work units

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAP_WRITE_FILE procedure

The SNAP_WRITE_FILE procedure writes system snapshot data to a file in the tmp
subdirectory of the instance directory.

Syntax

�� SNAP_WRITE_FILE (requestType , dbname , dbpartitionnum) ��

The schema is SYSPROC.

Procedure parameters

requestType
An input argument of type VARCHAR (32) that specifies a valid snapshot
request type. The possible request types are text identifiers based on defines in
sqlmon.h, and are one of:
v APPL_ALL
v BUFFERPOOLS_ALL
v DB2
v DBASE_ALL
v DBASE_LOCKS
v DBASE_TABLES
v DBASE_TABLESPACES
v DYNAMIC_SQL

dbname
An input argument of type VARCHAR(128) that specifies a valid database

Chapter 15. Snapshot routines and views 719

name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify NULL or empty string to take the snapshot from the currently connected
database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for an aggregate of
all active database partitions. An active database partition is a partition where
the database is available for connection and use by applications.

If a null value is specified, -1 is set implicitly.

Authorization

To execute the procedure, a user must have SYSADM, SYSCTRL, SYSMAINT, or
SYSMON authority. The saved snapshot can be read by users who do not have
SYSADM, SYSCTRL, SYSMAINT, or SYSMON authority by passing null values as
the inputs to snapshot table functions.

Example

Take a snapshot of database manager information by specifying a request type of
'DB2' (which corresponds to SQLMA_DB2), and defaulting to the currently
connected database and current database partition.
CALL SYSPROC.SNAP_WRITE_FILE (’DB2’, ’’, -1)

This will result in snapshot data being written to the instance temporary directory,
which is sqllib/tmp/SQLMA_DB2.dat on UNIX operating systems, and
sqllib\DB2\tmp\SQLMA_DB2.dat on a Windows operating system.

Usage notes

If an unrecognized input parameter is provided, the following error is returned:
SQL2032N The "REQUEST_TYPE" parameter is not valid.

SNAPAGENT administrative view and SNAP_GET_AGENT table
function – Retrieve agent logical data group application snapshot
information

The SNAPAGENT administrative view and the SNAP_GET_AGENT table function
return information about agents from an application snapshot, in particular, the
agent logical data group.

SNAPAGENT administrative view

This administrative view allows you to retrieve agent logical data group
application snapshot information for the currently connected database.

Used with the SNAPAGENT_MEMORY_POOL, SNAPAPPL, SNAPAPPL_INFO,
SNAPSTMT and SNAPSUBSECTION administrative views, the SNAPAGENT
administrative view provides information equivalent to the GET SNAPSHOT FOR
APPLICATIONS ON database-alias CLP command, but retrieves data from all
database partitions.

720 Administrative Routines and Views

The schema is SYSIBMADM.

Refer to Table 175 on page 594 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPAGENT administrative view
v CONTROL privilege on the SNAPAGENT administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_AGENT table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve all application snapshot information for the currently connected database
from the agent logical data group.
SELECT * FROM SYSIBMADM.SNAPAGENT

The following example is a sample output from this query.
SNAPSHOT_TIMESTAMP DB_NAME AGENT_ID ...
-------------------------- -------...- ---------...--- ...
2005-07-19-11.03.26.740423 SAMPLE 101 ...
2005-07-19-11.03.26.740423 SAMPLE 49 ...

...
2 record(s) selected. ...

Output from this query (continued).
... AGENT_PID LOCK_TIMEOUT_VAL DBPARTITIONNUM
... -------------------- -------------------- --------------
... 11980 -1 0
... 15940 -1 0
...
...

SNAP_GET_AGENT table function

The SNAP_GET_AGENT table function returns the same information as the
SNAPAGENT administrative view, but allows you to retrieve the information for a
specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Used with the SNAP_GET_AGENT_MEMORY_POOL, SNAP_GET_APPL_V95,
SNAP_GET_APPL_INFO_V95, SNAP_GET_STMT and SNAP_GET_SUBSECTION

Chapter 15. Snapshot routines and views 721

table functions, the SNAP_GET_AGENT table function provides information
equivalent to the GET SNAPSHOT FOR ALL APPLICATIONS CLP command, but retrieves
data from all database partitions.

Refer to Table 175 on page 594 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_AGENT (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_AGENT table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_AGENT table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

722 Administrative Routines and Views

Example

Retrieve all application snapshot information for all applications in all active
databases.
SELECT * FROM TABLE(SNAP_GET_AGENT(CAST(NULL AS VARCHAR(128)), -1)) AS T

The following example is a sample output from this query.
SNAPSHOT_TIMESTAMP DB_NAME AGENT_ID ...
-------------------------- -------...- --------...-- ...
2006-01-03-17.21.38.530785 SAMPLE 48 ...
2006-01-03-17.21.38.530785 SAMPLE 47 ...
2006-01-03-17.21.38.530785 SAMPLE 46 ...
2006-01-03-17.21.38.530785 TESTDB 30 ...
2006-01-03-17.21.38.530785 TESTDB 29 ...
2006-01-03-17.21.38.530785 TESTDB 28 ...

6 record(s) selected.

Output from this query (continued).
... AGENT_PID LOCK_TIMEOUT_VAL DBPARTITIONNUM
... ---------...---- -------------------- --------------
... 7696 -1 0
... 8536 -1 0
... 6672 -1 0
... 2332 -1 0
... 8360 -1 0
... 6736 -1 0
...

Information returned

Table 202. Information returned by the SNAPAGENT administrative view and the
SNAP_GET_AGENT table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

AGENT_PID BIGINT agent_pid - Engine dispatchable
unit (EDU)

LOCK_TIMEOUT_VAL BIGINT lock_timeout_val - Lock timeout
(seconds)

DBPARTITIONNUM SMALLINT The database partition from which
the data for the row was retrieved.

SNAPAGENT_MEMORY_POOL administrative view and
SNAP_GET_AGENT_MEMORY_POOL table function – Retrieve
memory_pool logical data group snapshot information

The SNAPAGENT_MEMORY_POOL administrative view and the
SNAP_GET_AGENT_MEMORY_POOL table function return information about
memory usage at the agent level.

Chapter 15. Snapshot routines and views 723

Note: Starting in Version 9.7 Fix Pack 5, the SNAPAGENT_MEMORY_POOL
administrative view and SNAP_GET_AGENT_MEMORY_POOL table function
have been deprecated and replaced by the “MON_GET_MEMORY_POOL - get
memory pool information” on page 456 and “MON_GET_MEMORY_SET - get
memory set information” on page 459.

SNAPAGENT_MEMORY_POOL administrative view

This administrative view allows you to retrieve the memory_pool logical data
group snapshot information about memory usage at the agent level for the
currently connected database.

Used with the SNAPAGENT, SNAPAPPL, SNAPAPPL_INFO, SNAPSTMT and
SNAPSUBSECTION administrative views, the SNAPAGENT_MEMORY_POOL
administrative view provides information equivalent to the GET SNAPSHOT FOR
APPLICATIONS ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 203 on page 726 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPAGENT_MEMORY_POOL administrative view
v CONTROL privilege on the SNAPAGENT_MEMORY_POOL administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_AGENT_MEMORY_POOL table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of memory pools and their current size.
SELECT AGENT_ID, POOL_ID, POOL_CUR_SIZE FROM SYSIBMADM.SNAPAGENT_MEMORY_POOL

The following example is a sample output from this query.
AGENT_ID POOL_ID POOL_ CUR_SIZE
--------...--- -------------- ---------...------

48 APPLICATION 65536
48 OTHER 65536
48 APPL_CONTROL 65536
47 APPLICATION 65536
47 OTHER 131072
47 APPL_CONTROL 65536
46 OTHER 327680

724 Administrative Routines and Views

46 APPLICATION 262144
46 APPL_CONTROL 65536

9 record(s) selected.

SNAP_GET_AGENT_MEMORY_POOL table function

The SNAP_GET_AGENT_MEMORY_POOL table function returns the same
information as the SNAPAGENT_MEMORY_POOL administrative view, but allows
you to retrieve the information for a specific database on a specific database
partition, aggregate of all database partitions or all database partitions.

Used with the SNAP_GET_AGENT, SNAP_GET_APPL_V95,
SNAP_GET_APPL_INFO_V95, SNAP_GET_STMT and SNAP_GET_SUBSECTION
table functions, the SNAP_GET_AGENT_MEMORY_POOL table function provides
information equivalent to the GET SNAPSHOT FOR ALL APPLICATIONS CLP command.

Refer to Table 203 on page 726 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_AGENT_MEMORY_POOL (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_AGENT_MEMORY_POOL table function takes a snapshot for the
currently connected database and database partition number.

Chapter 15. Snapshot routines and views 725

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_AGENT_MEMORY_POOL table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of memory pools and their current size for all databases.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, AGENT_ID, POOL_ID, POOL_CUR_SIZE

FROM TABLE(SNAP_GET_AGENT_MEMORY_POOL(CAST (NULL AS VARCHAR(128)), -1))
AS T

The following example is a sample output from this query.
DB_NAME AGENT_ID POOL_ID POOL_CUR_SIZE
-------- --------...--- -------------- --------------------
SAMPLE 48 APPLICATION 65536
SAMPLE 48 OTHER 65536
SAMPLE 48 APPL_CONTROL 65536
SAMPLE 47 APPLICATION 65536
SAMPLE 47 OTHER 131072
SAMPLE 47 APPL_CONTROL 65536
SAMPLE 46 OTHER 327680
SAMPLE 46 APPLICATION 262144
SAMPLE 46 APPL_CONTROL 65536
TESTDB 30 APPLICATION 65536
TESTDB 30 OTHER 65536
TESTDB 30 APPL_CONTROL 65536
TESTDB 29 APPLICATION 65536
TESTDB 29 OTHER 131072
TESTDB 29 APPL_CONTROL 65536
TESTDB 28 OTHER 327680
TESTDB 28 APPLICATION 65536
TESTDB 28 APPL_CONTROL 65536

18 record(s) selected.

Information returned

Table 203. Information returned by the SNAPAGENT_MEMORY_POOL administrative view
and the SNAP_GET_AGENT_MEMORY_POOL table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

AGENT_PID BIGINT agent_pid - Engine dispatchable
unit (EDU)

726 Administrative Routines and Views

Table 203. Information returned by the SNAPAGENT_MEMORY_POOL administrative view
and the SNAP_GET_AGENT_MEMORY_POOL table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_ID VARCHAR(14) pool_id - Memory pool identifier.
This interface returns a text
identifier based on defines in
sqlmon.h, and is one of:

v APP_GROUP

v APPL_CONTROL

v APPLICATION

v BP

v CAT_CACHE

v DATABASE

v DFM

v FCMBP

v IMPORT_POOL

v LOCK_MGR

v MONITOR

v OTHER

v PACKAGE_CACHE

v QUERY

v SHARED_SORT

v SORT

v STATEMENT

v STATISTICS

v UTILITY

POOL_CUR_SIZE BIGINT pool_cur_size - Current size of
memory pool

POOL_WATERMARK BIGINT pool_watermark - Memory pool
watermark

POOL_CONFIG_SIZE BIGINT pool_config_size - Configured size
of memory pool

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPAPPL_INFO administrative view and SNAP_GET_APPL_INFO_V95
table function - Retrieve appl_info logical data group snapshot
information

The SNAPAPPL_INFO administrative view and the SNAP_GET_APPL_INFO_V95
table function return information about applications from an application snapshot,
in particular, the appl_info logical data group.

SNAPAPPL_INFO administrative view

This administrative view allows you to retrieve appl_info logical data group
snapshot information for the currently connected database.

Chapter 15. Snapshot routines and views 727

Used with the SNAPAGENT, SNAPAGENT_MEMORY_POOL, SNAPAPPL,
SNAPSTMT and SNAPSUBSECTION administrative views, the SNAPAPPL_INFO
administrative view provides information equivalent to the GET SNAPSHOT FOR
APPLICATIONS ON database-alias CLP command, but retrieves data from all
database partitions.

The schema is SYSIBMADM.

Refer to Table 176 on page 597 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPAPPL_INFO administrative view
v CONTROL privilege on the SNAPAPPL_INFO administrative view
v DATAACCESS authority

Additionally, one of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_APPL_INFO_V95 table function
v DATAACCESS authority

Also, one of the following authorities is required:
v SYSMON
v SYSMAINT
v SYSCTRL
v SYSADM

Example

Retrieve the status of the applications connected to the current database.
SELECT AGENT_ID, SUBSTR(APPL_NAME,1,10) AS APPL_NAME, APPL_STATUS

FROM SYSIBMADM.SNAPAPPL_INFO

The following example is a sample output from this query.
AGENT_ID APPL_NAME APPL_STATUS
-------------------- ---------- ----------------------

101 db2bp.exe UOWEXEC
49 db2bp.exe CONNECTED

2 record(s) selected.

SNAP_GET_APPL_INFO_V95 table function

The SNAP_GET_APPL_INFO_V95 table function returns the same information as
the SNAPAPPL_INFO administrative view, but allows you to retrieve the
information for a specific database on a specific database partition, aggregate of all
database partitions or all database partitions.

Used with the SNAP_GET_AGENT, SNAP_GET_AGENT_MEMORY_POOL,
SNAP_GET_APPL_V95, SNAP_GET_STMT and SNAP_GET_SUBSECTION table
functions, the SNAP_GET_APPL_INFO_V95 table function provides information
equivalent to the GET SNAPSHOT FOR ALL APPLICATIONS CLP command, but retrieves
data from all database partitions.

728 Administrative Routines and Views

Refer to Table 176 on page 597 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_APPL_INFO_V95 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_APPL_INFO_V95 table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_APPL_INFO_V95 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Examples

Retrieve the status of all applications on the connected database partition.

Chapter 15. Snapshot routines and views 729

SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, AGENT_ID,
SUBSTR(APPL_NAME,1,10) AS APPL_NAME, APPL_STATUS
FROM TABLE(SNAP_GET_APPL_INFO_V95(CAST(NULL AS VARCHAR(128)),-1)) AS T

The following example is a sample output from this query.
DB_NAME AGENT_ID APPL_NAME APPL_STATUS
-------- -------------------- ---------- ----------------------
TOOLSDB 14 db2bp.exe CONNECTED
SAMPLE 15 db2bp.exe UOWEXEC
SAMPLE 8 javaw.exe CONNECTED
SAMPLE 7 db2bp.exe UOWWAIT

4 record(s) selected.

The following shows what you obtain when you SELECT from the result of the
table function.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, AUTHORITY_LVL

FROM TABLE(SNAP_GET_APPL_INFO_V95(CAST(NULL AS VARCHAR(128)),-1)) AS T

The following example is a sample output from this query.
DB_NAME AUTHORITY_LVL
-------- ---....
TESTDB SYSADM(GROUP) + DBADM(USER) + CREATETAB(USER, GROUP) +

BINDADD(USER, GROUP) + CONNECT(USER, GROUP) +
CREATE_NOT_FENC(USER) + IMPLICIT_SCHEMA(USER, GROUP) +
LOAD(USER) + CREATE_EXT_RT(USER) + QUIESCE_CONN(USER)

TESTDB SYSADM(GROUP) + DBADM(USER) + CREATETAB(USER, GROUP) +
BINDADD(USER, GROUP) + CONNECT(USER, GROUP) +
CREATE_NOT_FENC(USER) + IMPLICIT_SCHEMA(USER, GROUP) +
LOAD(USER) + CREATE_EXT_RT(USER) + QUIESCE_CONN(USER)

TESTDB SYSADM(GROUP) + DBADM(USER) + CREATETAB(USER, GROUP) +
BINDADD(USER, GROUP) + CONNECT(USER, GROUP) +
CREATE_NOT_FENC(USER) + IMPLICIT_SCHEMA(USER, GROUP) +
LOAD(USER) + CREATE_EXT_RT(USER) + QUIESCE_CONN(USER)

3 record(s) selected.

Information returned

Table 204. Information returned by the SNAPAPPL_INFO administrative view and the
SNAP_GET_APPL_INFO_V95 table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

730 Administrative Routines and Views

Table 204. Information returned by the SNAPAPPL_INFO administrative view and the
SNAP_GET_APPL_INFO_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

APPL_STATUS VARCHAR(22) appl_status - Application status.
This interface returns a text
identifier based on the defines in
sqlmon.h, and is one of:

v BACKUP

v COMMIT_ACT

v COMP

v CONNECTED

v CONNECTPEND

v CREATE_DB

v DECOUPLED

v DISCONNECTPEND

v INTR

v IOERROR_WAIT

v LOAD

v LOCKWAIT

v QUIESCE_TABLESPACE

v RECOMP

v REMOTE_RQST

v RESTART

v RESTORE

v ROLLBACK_ACT

v ROLLBACK_TO_SAVEPOINT

v TEND

v THABRT

v THCOMT

v TPREP

v UNLOAD

v UOWEXEC

v UOWWAIT

v WAITFOR_REMOTE

CODEPAGE_ID BIGINT codepage_id - ID of code page
used by application

NUM_ASSOC_AGENTS BIGINT num_assoc_agents - Number of
associated agents

COORD_NODE_NUM SMALLINT coord_node - Coordinating node

Chapter 15. Snapshot routines and views 731

Table 204. Information returned by the SNAPAPPL_INFO administrative view and the
SNAP_GET_APPL_INFO_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

AUTHORITY_LVL VARCHAR(512) authority_bitmap - User
authorization level.

This interface returns a text
identifier based on the database
authorities defined in sql.h and
their source, and has the following
format: authority(source, ...) +
authority(source, ...) + ... The
source of an authority can be
multiple: either from a USER, a
GROUP, or a USER and a GROUP.

Possible values for "authority":

v ACCESSCTRL

v BINDADD

v CONNECT

v CREATE_EXT_RT

v CREATE_NOT_FENC

v CREATETAB

v DATAACCESS

v DBADM

v EXPLAIN

v IMPLICIT_SCHEMA

v LOAD

v LIBADM

v QUIESCE_CONN

v SECADM

v SQLADM

v SYSADM

v SYSCTRL

v SYSMAINT

v SYSMON

v SYSQUIESCE

v WLMADM

Possible values for "source":

v USER – authority granted to the
user or to a role granted to the
user.

v GROUP – authority granted to a
group to which the user belongs
or to a role granted to the group
to which the user belongs.

CLIENT_PID BIGINT client_pid - Client process ID

COORD_AGENT_PID BIGINT coord_agent_pid - Coordinator
agent

732 Administrative Routines and Views

Table 204. Information returned by the SNAPAPPL_INFO administrative view and the
SNAP_GET_APPL_INFO_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

STATUS_CHANGE_TIME TIMESTAMP status_change_time - Application
status change time

CLIENT_PLATFORM VARCHAR(12) client_platform - Client operating
platform. This interface returns a
text identifier based on the defines
in sqlmon.h,

v AIX

v AIX64

v AS400_DRDA

v DOS

v DYNIX

v HP

v HP64

v HPIA

v HPIA64

v LINUX

v LINUX390

v LINUXIA64

v LINUXPPC

v LINUXPPC64

v LINUXX8664

v LINUXZ64

v MAC

v MVS_DRDA

v NT

v NT64

v OS2

v OS390

v SCO

v SGI

v SNI

v SUN

v SUN64

v UNKNOWN

v UNKNOWN_DRDA

v VM_DRDA

v VSE_DRDA

v WINDOWS

Chapter 15. Snapshot routines and views 733

Table 204. Information returned by the SNAPAPPL_INFO administrative view and the
SNAP_GET_APPL_INFO_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

CLIENT_PROTOCOL VARCHAR(10) client_protocol - Client
communication protocol. This
interface returns a text identifier
based on the defines in sqlmon.h,

v CPIC

v LOCAL

v NETBIOS

v NPIPE

v TCPIP (for DB2 UDB)

v TCPIP4

v TCPIP6

TERRITORY_CODE SMALLINT territory_code - Database territory
code

APPL_NAME VARCHAR(256) appl_name - Application name

APPL_ID VARCHAR(128) appl_id - Application ID

SEQUENCE_NO VARCHAR(4) sequence_no - Sequence number

PRIMARY_AUTH_ID VARCHAR(128) auth_id - Authorization ID

SESSION_AUTH_ID VARCHAR(128) session_auth_id - Session
authorization ID

CLIENT_NNAME VARCHAR(128) The client_nname monitor element
is deprecated. The value returned
is not a valid value.

CLIENT_PRDID VARCHAR(128) client_prdid - Client
product/version ID

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input database
alias

CLIENT_DB_ALIAS VARCHAR(128) client_db_alias - Database alias
used by application

DB_NAME VARCHAR(128) db_name - Database name

DB_PATH VARCHAR(1024) db_path - Database path

EXECUTION_ID VARCHAR(128) execution_id - User login ID

CORR_TOKEN VARCHAR(128) corr_token - DRDA correlation
token

TPMON_CLIENT_USERID VARCHAR(256) tpmon_client_userid - TP monitor
client user ID

TPMON_CLIENT_WKSTN VARCHAR(256) tpmon_client_wkstn - TP monitor
client workstation name

TPMON_CLIENT_APP VARCHAR(256) tpmon_client_app - TP monitor
client application name

TPMON_ACC_STR VARCHAR(200) tpmon_acc_str - TP monitor client
accounting string

DBPARTITIONNUM SMALLINT The database partition from which
the data for the row was retrieved.

WORKLOAD_ID INTEGER Current workload ID.

734 Administrative Routines and Views

Table 204. Information returned by the SNAPAPPL_INFO administrative view and the
SNAP_GET_APPL_INFO_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

IS_SYSTEM_APPL SMALLINT The value of IS_SYSTEM_APPL
indicates whether or not the
application is a DB2 internal
system application:

0 means it is a user application

1 means it is a system application.

An example of a DB2 system
application is a DB2 event monitor.

In general, the names of DB2
system applications begin with
"db2". For example: db2stmm,
db2taskd.

SNAPAPPL administrative view and SNAP_GET_APPL_V95 table
function - Retrieve appl logical data group snapshot information

The “SNAPAPPL administrative view” on page 602 and the
“SNAP_GET_APPL_V95 table function” on page 603 return information about
applications from an application snapshot, in particular, the appl logical data
group.

SNAPAPPL administrative view

This administrative view allows you to retrieve appl logical data group snapshot
information for the currently connected database.

Used with the SNAPAGENT, SNAPAGENT_MEMORY_POOL, SNAPAPPL_INFO,
SNAPSTMT and SNAPSUBSECTION administrative views, the SNAPAPPL
administrative view provides information equivalent to the GET SNAPSHOT FOR
APPLICATIONS ON database-alias CLP command, but retrieves data from all
database partitions.

The schema is SYSIBMADM.

Refer to Table 177 on page 605 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPAPPL administrative view
v CONTROL privilege on the SNAPAPPL administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_APPL_V95 table function

Chapter 15. Snapshot routines and views 735

v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve details on rows read and written for each application in the connected
database.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, AGENT_ID, ROWS_READ, ROWS_WRITTEN

FROM SYSIBMADM.SNAPAPPL

The following example is a sample output from this query.
DB_NAME AGENT_ID ROWS_READ ROWS_WRITTEN
-------- -------------------- -------------------- --------------------
SAMPLE 7 25 0

1 record(s) selected.

SNAP_GET_APPL_V95 table function

The SNAP_GET_APPL_V95 table function returns the same information as the
SNAPAPPL administrative view, but allows you to retrieve the information for a
specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Used with the SNAP_GET_AGENT, SNAP_GET_AGENT_MEMORY_POOL,
SNAP_GET_APPL_INFO_V95, SNAP_GET_STMT and SNAP_GET_SUBSECTION
table functions, the SNAP_GET_APPL_V95 table function provides information
equivalent to the GET SNAPSHOT FOR ALL APPLICATIONS CLP command, but retrieves
data from all database partitions.

Refer to Table 177 on page 605 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_APPL_V95 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string

736 Administrative Routines and Views

to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_APPL_V95 table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_APPL_V95 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve details on rows read and written for each application for all active
databases.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, AGENT_ID, ROWS_READ, ROWS_WRITTEN

FROM TABLE (SNAP_GET_APPL_V95(CAST(NULL AS VARCHAR(128)),-1)) AS T

The following example is a sample output from this query.
DB_NAME AGENT_ID ROWS_READ ROWS_WRITTEN
-------- --------...--- ---------...-- ------------...-
WSDB 679 0 0
WSDB 461 3 0
WSDB 460 4 0
TEST 680 4 0
TEST 455 6 0
TEST 454 0 0
TEST 453 50 0

Chapter 15. Snapshot routines and views 737

Information returned

Table 205. Information returned by the SNAPAPPL administrative view and the
SNAP_GET_APPL_V95 table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

UOW_LOG_SPACE_USED BIGINT uow_log_space_used - Unit of
work log space used

ROWS_READ BIGINT rows_read - Rows read

ROWS_WRITTEN BIGINT rows_written - Rows written

INACT_STMTHIST_SZ BIGINT stmt_history_list_size - Statement
history list size

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool
data logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool
data physical reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data
writes

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool
index logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool
index physical reads

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool
index writes

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer
pool temporary data logical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer
pool temporary data physical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer
pool temporary index logical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer
pool temporary index physical
reads

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer
Pool Temporary XDA Data Logical
Reads

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer
Pool Temporary XDA Data
Physical Reads monitor element

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool
XDA Data Logical Reads

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool
XDA Data Physical Reads

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer Pool XDA
Data Writes

738 Administrative Routines and Views

Table 205. Information returned by the SNAPAPPL administrative view and the
SNAP_GET_APPL_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool
physical read time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool
physical write time

DIRECT_READS BIGINT direct_reads - Direct reads from
database

DIRECT_WRITES BIGINT direct_writes - Direct writes to
database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read
requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write
requests

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write
time

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread
prefetch pages

LOCKS_HELD BIGINT locks_held - Locks held

LOCK_WAITS BIGINT lock_waits - Lock waits

LOCK_WAIT_TIME BIGINT lock_wait_time - Time waited on
locks

LOCK_ESCALS BIGINT lock_escals - Number of lock
escalations

X_LOCK_ESCALS BIGINT x_lock_escals - Exclusive lock
escalations

DEADLOCKS BIGINT deadlocks - Deadlocks detected

TOTAL_SORTS BIGINT total_sorts - Total sorts

TOTAL_SORT_TIME BIGINT total_sort_time - Total sort time

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

COMMIT_SQL_STMTS BIGINT commit_sql_stmts - Commit
statements attempted

ROLLBACK_SQL_STMTS BIGINT rollback_sql_stmts - Rollback
statements attempted

DYNAMIC_SQL_STMTS BIGINT dynamic_sql_stmts - Dynamic SQL
statements attempted

STATIC_SQL_STMTS BIGINT static_sql_stmts - Static SQL
statements attempted

FAILED_SQL_STMTS BIGINT failed_sql_stmts - Failed statement
operations

SELECT_SQL_STMTS BIGINT select_sql_stmts - Select SQL
statements executed

DDL_SQL_STMTS BIGINT ddl_sql_stmts - Data definition
language (DDL) SQL statements

Chapter 15. Snapshot routines and views 739

Table 205. Information returned by the SNAPAPPL administrative view and the
SNAP_GET_APPL_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

UID_SQL_STMTS BIGINT uid_sql_stmts -
UPDATE/INSERT/DELETE SQL
statements executed

INT_AUTO_REBINDS BIGINT int_auto_rebinds - Internal
automatic rebinds

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal rows
deleted

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal rows
updated

INT_COMMITS BIGINT int_commits - Internal commits

INT_ROLLBACKS BIGINT int_rollbacks - Internal rollbacks

INT_DEADLOCK_ROLLBACKS BIGINT int_deadlock_rollbacks - Internal
rollbacks due to deadlock

ROWS_DELETED BIGINT rows_deleted - Rows deleted

ROWS_INSERTED BIGINT rows_inserted - Rows inserted

ROWS_UPDATED BIGINT rows_updated - Rows updated

ROWS_SELECTED BIGINT rows_selected - Rows selected

BINDS_PRECOMPILES BIGINT binds_precompiles -
Binds/precompiles attempted

OPEN_REM_CURS BIGINT open_rem_curs - Open remote
cursors

OPEN_REM_CURS_BLK BIGINT open_rem_curs_blk - Open remote
cursors with blocking

REJ_CURS_BLK BIGINT rej_curs_blk - Rejected block cursor
requests

ACC_CURS_BLK BIGINT acc_curs_blk - Accepted block
cursor requests

SQL_REQS_SINCE_COMMIT BIGINT sql_reqs_since_commit - SQL
requests since last commit

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of lock
timeouts

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal rows
inserted

OPEN_LOC_CURS BIGINT open_loc_curs - Open local cursors

OPEN_LOC_CURS_BLK BIGINT open_loc_curs_blk - Open local
cursors with blocking

PKG_CACHE_LOOKUPS BIGINT pkg_cache_lookups - Package
cache lookups

PKG_CACHE_INSERTS BIGINT pkg_cache_inserts - Package cache
inserts

CAT_CACHE_LOOKUPS BIGINT cat_cache_lookups - Catalog cache
lookups

CAT_CACHE_INSERTS BIGINT cat_cache_inserts - Catalog cache
inserts

740 Administrative Routines and Views

Table 205. Information returned by the SNAPAPPL administrative view and the
SNAP_GET_APPL_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

CAT_CACHE_OVERFLOWS BIGINT cat_cache_overflows - Catalog
cache overflows

NUM_AGENTS BIGINT num_agents - Number of agents
working on a statement

AGENTS_STOLEN BIGINT agents_stolen - Stolen agents

ASSOCIATED_AGENTS_TOP BIGINT associated_agents_top - Maximum
number of associated agents

APPL_PRIORITY BIGINT appl_priority - Application agent
priority

APPL_PRIORITY_TYPE VARCHAR(16) appl_priority_type - Application
priority type. This interface returns
a text identifier, based on defines
in sqlmon.h, and is one of:

v DYNAMIC_PRIORITY

v FIXED_PRIORITY

PREFETCH_WAIT_TIME BIGINT prefetch_wait_time - Time waited
for prefetch

APPL_SECTION_LOOKUPS BIGINT appl_section_lookups - Section
lookups

APPL_SECTION_INSERTS BIGINT appl_section_inserts - Section
inserts

LOCKS_WAITING BIGINT locks_waiting - Current agents
waiting on locks

TOTAL_HASH_JOINS BIGINT total_hash_joins - Total hash joins

TOTAL_HASH_LOOPS BIGINT total_hash_loops - Total hash loops

HASH_JOIN_OVERFLOWS BIGINT hash_join_overflows - Hash join
overflows

HASH_JOIN_SMALL_
OVERFLOWS

BIGINT hash_join_small_overflows - Hash
join small overflows

APPL_IDLE_TIME BIGINT appl_idle_time - Application idle
time

UOW_LOCK_WAIT_TIME BIGINT uow_lock_wait_time - Total time
unit of work waited on locks

UOW_COMP_STATUS VARCHAR(14) uow_comp_status - Unit of work
completion status. This interface
returns a text identifier, based on
defines in sqlmon.h, and is one of:

v APPL_END

v UOWABEND

v UOWCOMMIT

v UOWDEADLOCK

v UOWLOCKTIMEOUT

v UOWROLLBACK

v UOWUNKNOWN

Chapter 15. Snapshot routines and views 741

Table 205. Information returned by the SNAPAPPL administrative view and the
SNAP_GET_APPL_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

AGENT_USR_CPU_TIME_S BIGINT agent_usr_cpu_time - User CPU
time used by agent (in seconds)*

AGENT_USR_CPU_TIME_MS BIGINT agent_usr_cpu_time - User CPU
time used by agent (fractional, in
microseconds)*

AGENT_SYS_CPU_TIME_S BIGINT agent_sys_cpu_time - System CPU
time used by agent (in seconds)*

AGENT_SYS_CPU_TIME_MS BIGINT agent_sys_cpu_time - System CPU
time used by agent (fractional, in
microseconds)*

APPL_CON_TIME TIMESTAMP appl_con_time - Connection
request start timestamp

CONN_COMPLETE_TIME TIMESTAMP conn_complete_time - Connection
request completion timestamp

LAST_RESET TIMESTAMP last_reset - Last reset timestamp

UOW_START_TIME TIMESTAMP uow_start_time - Unit of work
start timestamp

UOW_STOP_TIME TIMESTAMP uow_stop_time - Unit of work stop
timestamp

PREV_UOW_STOP_TIME TIMESTAMP prev_uow_stop_time - Previous
unit of work completion timestamp

UOW_ELAPSED_TIME_S BIGINT uow_elapsed_time - Most recent
unit of work elapsed time (in
seconds)*

UOW_ELAPSED_TIME_MS BIGINT uow_elapsed_time - Most recent
unit of work elapsed time
(fractional, in microseconds)*

ELAPSED_EXEC_TIME_S BIGINT elapsed_exec_time - Statement
execution elapsed time (in
seconds)*

ELAPSED_EXEC_TIME_MS BIGINT elapsed_exec_time - Statement
execution elapsed time (fractional,
in microseconds)*

INBOUND_COMM_ADDRESS VARCHAR(32) inbound_comm_address - Inbound
communication address

LOCK_TIMEOUT_VAL BIGINT lock_timeout_val - Lock timeout
(seconds)

PRIV_WORKSPACE_NUM_
OVERFLOWS

BIGINT priv_workspace_num_overflows -
Private workspace overflows

PRIV_WORKSPACE_SECTION_
INSERTS

BIGINT priv_workspace_section_inserts -
Private workspace section inserts

PRIV_WORKSPACE_SECTION_
LOOKUPS

BIGINT priv_workspace_section_lookups -
Private workspace section lookups

742 Administrative Routines and Views

Table 205. Information returned by the SNAPAPPL administrative view and the
SNAP_GET_APPL_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

PRIV_WORKSPACE_SIZE_
TOP

BIGINT priv_workspace_size_top -
Maximum private workspace size

SHR_WORKSPACE_NUM_
OVERFLOWS

BIGINT shr_workspace_num_overflows -
Shared workspace overflows

SHR_WORKSPACE_SECTION_
INSERTS

BIGINT shr_workspace_section_inserts -
Shared workspace section inserts

SHR_WORKSPACE_SECTION_
LOOKUPS

BIGINT shr_workspace_section_lookups -
Shared workspace section lookups

SHR_WORKSPACE_SIZE_
TOP

BIGINT shr_workspace_size_top -
Maximum shared workspace size

DBPARTITIONNUM SMALLINT The database partition from which
the data for the row was retrieved.

CAT_CACHE_SIZE_TOP BIGINT cat_cache_size_top - Catalog cache
high water mark

TOTAL_OLAP_FUNCS BIGINT The total number of OLAP
functions executed.

OLAP_FUNC_OVERFLOWS BIGINT The number of times that OLAP
function data exceeded the
available sort heap space.

* To calculate the total time spent for the monitor element that this column is based on,
you must add the full seconds reported in the column for this monitor element that ends
with _S to the fractional seconds reported in the column for this monitor element that ends
with _MS, using the following formula: (monitor-element-name_S × 1,000,000 +
monitor-element-name_MS) ÷ 1,000,000. For example, (ELAPSED_EXEC_TIME_S × 1,000,000
+ ELAPSED_EXEC_TIME_MS) ÷ 1,000,000.

SNAPBP administrative view and SNAP_GET_BP_V95 table function -
Retrieve bufferpool logical group snapshot information

The SNAPBP administrative view and the SNAP_GET_BP_V95 table function
return information about buffer pools from a bufferpool snapshot, in particular, the
bufferpool logical data group.

SNAPBP administrative view

This administrative view allows you to retrieve bufferpool logical group snapshot
information for the currently connected database.

Used with the SNAPBP_PART administrative view, the SNAPBP administrative
view provides the data equivalent to the GET SNAPSHOT FOR BUFFERPOOLS ON
database-alias CLP command.

The schema is SYSIBMADM.

Chapter 15. Snapshot routines and views 743

Refer to Table 178 on page 613 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPBP administrative view
v CONTROL privilege on the SNAPBP administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_BP_V95 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve data and index writes for all the bufferpools of the currently connected
database.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME,SUBSTR(BP_NAME,1,15)

AS BP_NAME,POOL_DATA_WRITES,POOL_INDEX_WRITES
FROM SYSIBMADM.SNAPBP

The following example is a sample output from this query.
DB_NAME BP_NAME POOL_DATA_WRITES POOL_INDEX_WRITES
-------- --------------- -------------------- --------------------
TEST IBMDEFAULTBP 0 0
TEST IBMSYSTEMBP4K 0 0
TEST IBMSYSTEMBP8K 0 0
TEST IBMSYSTEMBP16K 0 0
TEST IBMSYSTEMBP32K 0 0

5 record(s) selected

SNAP_GET_BP_V95 table function

The SNAP_GET_BP_V95 table function returns the same information as the
SNAPBP administrative view, but allows you to retrieve the information for a
specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Used with the SNAP_GET_BP_PART table function, the SNAP_GET_BP_V95 table
function provides the data equivalent to the GET SNAPSHOT FOR ALL BUFFERPOOLS
CLP command.

Refer to Table 178 on page 613 for a complete list of information that can be
returned.

744 Administrative Routines and Views

Syntax

�� SNAP_GET_BP_V95 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_BP_V95 table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_BP_V95 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve total physical and logical reads for all bufferpools for all active databases
for the currently connected database partition.
SELECT SUBSTR(T.DB_NAME,1,10) AS DB_NAME,

SUBSTR(T.BP_NAME,1,20) AS BP_NAME,
(T.POOL_DATA_L_READS+T.POOL_INDEX_L_READS) AS TOTAL_LOGICAL_READS,

Chapter 15. Snapshot routines and views 745

(T.POOL_DATA_P_READS+T.POOL_INDEX_P_READS) AS TOTAL_PHYSICAL_READS,
T.DBPARTITIONNUM
FROM TABLE(SNAP_GET_BP_V95(CAST(NULL AS VARCHAR(128)), -1)) AS T

The following example is a sample output from this query.
DB_NAME BP_NAME TOTAL_LOGICAL_READS ...
---------- ------------...- -------------------- ...
SAMPLE IBMDEFAULTBP 0 ...
TOOLSDB IBMDEFAULTBP 0 ...
TOOLSDB BP32K0000 0 ...

3 record(s) selected.

Output from this query (continued).
... TOTAL_PHYSICAL_READS DBPARTITIONNUM
... -------------------- --------------
... 0 0
... 0 0
... 0 0

Information returned

Table 206. Information returned by the SNAPBP administrative view and the
SNAP_GET_BP_V95 table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

BP_NAME VARCHAR(128) bp_name - Buffer pool name

DB_NAME VARCHAR(128) db_name - Database name

DB_PATH VARCHAR(1024) db_path - Database path

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input database
alias

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool
data logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool
data physical reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data
writes

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool
index logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool
index physical reads

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool
index writes

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool
XDA Data Logical Reads

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool
XDA Data Physical Reads

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer Pool XDA
Data Writes

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool
physical read time

746 Administrative Routines and Views

Table 206. Information returned by the SNAPBP administrative view and the
SNAP_GET_BP_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool
physical write time

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer
pool asynchronous data reads

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer
pool asynchronous data writes

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer
pool asynchronous index reads

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer
pool asynchronous index writes

POOL_ASYNC_XDA_READS BIGINT pool_async_xda_reads - Buffer
Pool Asynchronous XDA Data
Reads

POOL_ASYNC_XDA_WRITES BIGINT pool_async_xda_writes - Buffer
Pool Asynchronous XDA Data
Writes

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer pool
asynchronous read time

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer
pool asynchronous write time

POOL_ASYNC_DATA_
READ_REQS

BIGINT pool_async_data_read_reqs - Buffer
pool asynchronous read requests

POOL_ASYNC_INDEX_
READ_REQS

BIGINT pool_async_index_read_reqs -
Buffer pool asynchronous index
read requests

POOL_ASYNC_XDA_
READ_REQS

BIGINT pool_async_xda_read_reqs - Buffer
Pool Asynchronous XDA Read
Requests

DIRECT_READS BIGINT direct_reads - Direct reads from
database

DIRECT_WRITES BIGINT direct_writes - Direct writes to
database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read
requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write
requests

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write
time

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread
prefetch pages

FILES_CLOSED BIGINT files_closed - Database files closed

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer
pool temporary data logical reads

Chapter 15. Snapshot routines and views 747

Table 206. Information returned by the SNAPBP administrative view and the
SNAP_GET_BP_V95 table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer
pool temporary data physical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer
pool temporary index logical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer
pool temporary index physical
reads

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer
Pool Temporary XDA Data Logical
Reads

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer
Pool Temporary XDA Data
Physical Reads monitor element

POOL_NO_VICTIM_BUFFER BIGINT pool_no_victim_buffer - Buffer
pool no victim buffers

PAGES_FROM_BLOCK_IOS BIGINT pages_from_block_ios - Total
number of pages read by block
I/O

PAGES_FROM_VECTORED_IOS BIGINT pages_from_vectored_ios - Total
pages read by vectored I/O

VECTORED_IOS BIGINT vectored_ios - Number of vectored
I/O requests

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPBP_PART administrative view and SNAP_GET_BP_PART table
function – Retrieve bufferpool_nodeinfo logical data group snapshot
information

The SNAPBP_PART administrative view and the SNAP_GET_BP_PART table
function return information about buffer pools from a bufferpool snapshot, in
particular, the bufferpool_nodeinfo logical data group.

SNAPBP_PART administrative view

This administrative view allows you to retrieve bufferpool_nodeinfo logical data
group snapshot information for the currently connected database.

Used with the SNAPBP administrative view, the SNAPBP_PART administrative
view provides the data equivalent to the GET SNAPSHOT FOR BUFFERPOOLS ON
database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 179 on page 618 for a complete list of information that can be
returned.

748 Administrative Routines and Views

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPBP_PART administrative view
v CONTROL privilege on the SNAPBP_PART administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_BP_PART table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve data for all bufferpools when connected to SAMPLE database.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, SUBSTR(BP_NAME,1,15) AS BP_NAME,

BP_CUR_BUFFSZ, BP_NEW_BUFFSZ, BP_PAGES_LEFT_TO_REMOVE, BP_TBSP_USE_COUNT
FROM SYSIBMADM.SNAPBP_PART

The following example is a sample output from this query.
DB_NAME BP_NAME BP_CUR_BUFFSZ BP_NEW_BUFFSZ ...
-------- --------------- -------------------- -------------------- ...
SAMPLE IBMDEFAULTBP 1000 1000 ...
SAMPLE IBMSYSTEMBP4K 16 16 ...
SAMPLE IBMSYSTEMBP8K 16 16 ...
SAMPLE IBMSYSTEMBP16K 16 16 ...

...
4 record(s) selected.

Output from this query (continued).
... BP_PAGES_LEFT_TO_REMOVE BP_TBSP_USE_COUNT
... ----------------------- --------------------
... 0 3
... 0 0
... 0 0
... 0 0
...

SNAP_GET_BP_PART table function

The SNAP_GET_BP_PART table function returns the same information as the
SNAPBP_PART administrative view, but allows you to retrieve the information for
a specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Used with the SNAP_GET_BP_V95 table function, the SNAP_GET_BP_PART table
function provides the data equivalent to the GET SNAPSHOT FOR ALL BUFFERPOOLS
CLP command.

Chapter 15. Snapshot routines and views 749

Refer to Table 179 on page 618 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_BP_PART (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot for all bufferpools in all databases within the same
instance as the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_BP_PART table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_BP_PART table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve data for all bufferpools for all active databases when connected to the
SAMPLE database.

750 Administrative Routines and Views

SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, SUBSTR(BP_NAME,1,15) AS BP_NAME,
BP_CUR_BUFFSZ, BP_NEW_BUFFSZ, BP_PAGES_LEFT_TO_REMOVE, BP_TBSP_USE_COUNT
FROM TABLE(SNAP_GET_BP_PART(CAST(NULL AS VARCHAR(128)),-1)) AS T

The following example is a sample output from this query.
DB_NAME BP_NAME BP_CUR_BUFFSZ BP_NEW_BUFFSZ ...
-------- --------------- -------------------- -------------------- ...
SAMPLE IBMDEFAULTBP 250 250 ...
SAMPLE IBMSYSTEMBP4K 16 16 ...
SAMPLE IBMSYSTEMBP8K 16 16 ...
SAMPLE IBMSYSTEMBP16K 16 16 ...
SAMPLE IBMSYSTEMBP32K 16 16 ...
TESTDB IBMDEFAULTBP 250 250 ...
TESTDB IBMSYSTEMBP4K 16 16 ...
TESTDB IBMSYSTEMBP8K 16 16 ...
TESTDB IBMSYSTEMBP16K 16 16 ...
TESTDB IBMSYSTEMBP32K 16 16 ...

...

Output from this query (continued).
... BP_PAGES_LEFT_TO_REMOVE BP_TBSP_USE_COUNT
... ----------------------- --------------------
... 0 3
... 0 0
... 0 0
... 0 0
... 0 0
... 0 3
... 0 0
... 0 0
... 0 0
... 0 0

...

Information returned

Table 207. Information returned by the SNAPBP_PART administrative view and the
SNAP_GET_BP_PART table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

BP_NAME VARCHAR(128) bp_name - Buffer pool name

DB_NAME VARCHAR(128) db_name - Database name

BP_CUR_BUFFSZ BIGINT bp_cur_buffsz - current size of
buffer pool

BP_NEW_BUFFSZ BIGINT bp_new_buffsz - New buffer pool
size

BP_PAGES_LEFT_TO_REMOVE BIGINT bp_pages_left_to_remove -
Number of pages left to remove

BP_TBSP_USE_COUNT BIGINT bp_tbsp_use_count - Number of
table spaces mapped to buffer pool

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

Chapter 15. Snapshot routines and views 751

SNAPCONTAINER administrative view and
SNAP_GET_CONTAINER_V91 table function - Retrieve
tablespace_container logical data group snapshot information

The SNAPCONTAINER administrative view and the
SNAP_GET_CONTAINER_V91 table function return table space snapshot
information from the tablespace_container logical data group.

SNAPCONTAINER administrative view

This administrative view allows you to retrieve tablespace_container logical data
group snapshot information for the currently connected database.

Used with the SNAPTBSP, SNAPTBSP_PART, SNAPTBSP_QUIESCER and
SNAPTBSP_RANGE administrative views, the SNAPCONTAINER administrative
view returns data equivalent to the GET SNAPSHOT FOR TABLESPACES ON
database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 180 on page 622 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPCONTAINER administrative view
v CONTROL privilege on the SNAPCONTAINER administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_CONTAINER_V91 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve details for the table space containers for all database partitions for the
currently connected database.
SELECT SNAPSHOT_TIMESTAMP, SUBSTR(TBSP_NAME, 1, 15) AS TBSP_NAME,

TBSP_ID, SUBSTR(CONTAINER_NAME, 1, 20) AS CONTAINER_NAME,
CONTAINER_ID, CONTAINER_TYPE, ACCESSIBLE, DBPARTITIONNUM
FROM SYSIBMADM.SNAPCONTAINER ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.

752 Administrative Routines and Views

SNAPSHOT_TIMESTAMP TBSP_NAME TBSP_ID ...
-------------------------- --------------- -------...- ...
2006-01-08-16.49.24.639945 SYSCATSPACE 0 ...
2006-01-08-16.49.24.639945 TEMPSPACE1 1 ...
2006-01-08-16.49.24.639945 USERSPACE1 2 ...
2006-01-08-16.49.24.639945 SYSTOOLSPACE 3 ...
2006-01-08-16.49.24.640747 TEMPSPACE1 1 ...
2006-01-08-16.49.24.640747 USERSPACE1 2 ...
2006-01-08-16.49.24.639981 TEMPSPACE1 1 ...
2006-01-08-16.49.24.639981 USERSPACE1 2 ...

...
8 record(s) selected.

Output from this query (continued).
... CONTAINER_NAME CONTAINER_ID CONTAINER_TYPE ...
... -------------------- ------------...- ---------------- ...
... /home/swalkty/swalkt 0 FILE_EXTENT_TAG ...
... /home/swalkty/swalkt 0 PATH ...
... /home/swalkty/swalkt 0 FILE_EXTENT_TAG ...
... /home/swalkty/swalkt 0 FILE_EXTENT_TAG ...
... /home/swalkty/swalkt 0 PATH ...
... /home/swalkty/swalkt 0 FILE_EXTENT_TAG ...
... /home/swalkty/swalkt 0 PATH ...
... /home/swalkty/swalkt 0 FILE_EXTENT_TAG ...

Output from this query (continued).
... ACCESSIBLE DBPARTITIONNUM
... ---------- --------------
... 1 0
... 1 0
... 1 0
... 1 0
... 1 1
... 1 1
... 1 2
... 1 2

SNAP_GET_CONTAINER_V91 table function

The SNAP_GET_CONTAINER_V91 table function returns the same information as
the SNAPCONTAINER administrative view, but allows you to retrieve the
information for a specific database on a specific database partition, aggregate of all
database partitions or all database partitions.

Used with the SNAP_GET_TBSP_V91, SNAP_GET_TBSP_PART_V91,
SNAP_GET_TBSP_QUIESCER and SNAP_GET_TBSP_RANGE table functions, the
SNAP_GET_CONTAINER_V91 table function returns data equivalent to the GET
SNAPSHOT FOR TABLESPACES ON database-alias CLP command.

Refer to Table 180 on page 622 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_CONTAINER_V91 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Chapter 15. Snapshot routines and views 753

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify NULL or empty
string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_CONTAINER_V91 table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_CONTAINER_V91 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve details for the table space containers on the currently connected database
on the currently connected database partition.
SELECT SNAPSHOT_TIMESTAMP, TBSP_NAME, TBSP_ID, CONTAINER_NAME,

CONTAINER_ID, CONTAINER_TYPE, ACCESSIBLE
FROM TABLE(SNAP_GET_CONTAINER_V91(’’,-1)) AS T

The following example is a sample output from this query.
SNAPSHOT_TIMESTAMP TBSP_NAME TBSP_ID ...
-------------------------- -------------------- ------- ...
2005-04-25-14.42.10.899253 SYSCATSPACE 0 ...
2005-04-25-14.42.10.899253 TEMPSPACE1 1 ...
2005-04-25-14.42.10.899253 USERSPACE1 2 ...
2005-04-25-14.42.10.899253 SYSTOOLSPACE 3 ...
2005-04-25-14.42.10.899253 MYTEMP 4 ...
2005-04-25-14.42.10.899253 WHATSNEWTEMPSPACE 5 ...

Output from this query (continued).

754 Administrative Routines and Views

... CONTAINER_NAME CONTAINER_ID ...

... -- ------------ ...

... D:\DB2\NODE0000\SQL00002\SQLT0000.0 0 ...

... D:\DB2\NODE0000\SQL00002\SQLT0001.0 0 ...

... D:\DB2\NODE0000\SQL00002\SQLT0002.0 0 ...

... D:\DB2\NODE0000\SQL00002\SYSTOOLSPACE 0 ...

... D:\DB2\NODE0000\SQL003 0 ...

... d:\DGTTsWhatsNewContainer 0 ...

Output from this query (continued).
... CONTAINER_TYPE ACCESSIBLE
... -------------- ----------
... CONT_PATH 1
... CONT_PATH 1
... CONT_PATH 1
... CONT_PATH 1
... CONT_PATH 1
... CONT_PATH 1

Information returned

NOTE: The BUFFERPOOL database manager monitor switch must be turned on in
order for the file system information to be returned.

Table 208. Information returned by the SNAPCONTAINER administrative view and the
SNAP_GET_CONTAINER_V91 table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

TBSP_ID BIGINT tablespace_id - Table space
identification

CONTAINER_NAME VARCHAR(256) container_name - Container name

CONTAINER_ID BIGINT container_id - Container
identification

CONTAINER_TYPE VARCHAR(16) container_type - Container type.
This is a text identifier based on
the defines in sqlutil.h and is one
of:

v DISK_EXTENT_TAG

v DISK_PAGE_TAG

v FILE_EXTENT_TAG

v FILE_PAGE_TAG

v PATH

TOTAL_PAGES BIGINT container_total_pages - Total pages
in container

USABLE_PAGES BIGINT container_usable_pages - Usable
pages in container

ACCESSIBLE SMALLINT container_accessible - Accessibility
of container

STRIPE_SET BIGINT container_stripe_set - Stripe set

Chapter 15. Snapshot routines and views 755

Table 208. Information returned by the SNAPCONTAINER administrative view and the
SNAP_GET_CONTAINER_V91 table function (continued)

Column name Data type
Description or corresponding
monitor element

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

FS_ID VARCHAR(22) fs_id - Unique file system
identification number

FS_TOTAL_SIZE BIGINT fs_total_size - Total size of a file
system

FS_USED_SIZE BIGINT fs_used_size - Amount of space
used on a file system

SNAPDB administrative view and SNAP_GET_DB_V95 table function -
Retrieve snapshot information from the dbase logical group

Note: The SNAP_GET_DB_V95 table function has been deprecated and replaced
by the SNAP_GET_DB_V97 table function - Retrieve snapshot information from
the dbase logical group..

The “SNAPDB administrative view” and the “SNAP_GET_DB_V95 table function”
on page 757 return snapshot information from the database (dbase) logical group.

SNAPDB administrative view

This administrative view allows you to retrieve snapshot information from the
dbase logical group for the currently connected database.

Used in conjunction with the SNAPDB_MEMORY_POOL, SNAPDETAILLOG,
SNAPHADR and SNAPSTORAGE_PATHS administrative views, the SNAPDB
administrative view provides information equivalent to the GET SNAPSHOT FOR
DATABASE on database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 209 on page 760 for a complete list of information that is returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPDB administrative view
v CONTROL privilege on the SNAPDB administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_DB_V95 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON

756 Administrative Routines and Views

v SYSCTRL
v SYSMAINT
v SYSADM

Examples

Retrieve the status, platform, location, and connect time for all database partitions
of the currently connected database.
SELECT SUBSTR(DB_NAME, 1, 20) AS DB_NAME, DB_STATUS, SERVER_PLATFORM,

DB_LOCATION, DB_CONN_TIME, DBPARTITIONNUM
FROM SYSIBMADM.SNAPDB ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
DB_NAME DB_STATUS SERVER_PLATFORM DB_LOCATION ...
-------...- ------------ --------------- ------------ ...
TEST ACTIVE AIX64 LOCAL ...
TEST ACTIVE AIX64 LOCAL ...
TEST ACTIVE AIX64 LOCAL ...

3 record(s) selected.

Output from this query (continued).
... DB_CONN_TIME DBPARTITIONNUM
... -------------------------- --------------
... 2006-01-08-16.48.30.665477 0
... 2006-01-08-16.48.34.005328 1
... 2006-01-08-16.48.34.007937 2

This routine can be used by calling the following on the command line:
SELECT TOTAL_OLAP_FUNCS, OLAP_FUNC_OVERFLOWS, ACTIVE_OLAP_FUNCS

FROM SYSIBMADM.SNAPDB

TOTAL_OLAP_FUNCS OLAP_FUNC_OVERFLOWS ACTIVE_OLAP_FUNCS
-------------------- -------------------- -----------------

7 2 1

1 record(s) selected.

After running a workload, a user can use the following query:
SELECT STATS_CACHE_SIZE, STATS_FABRICATIONS, SYNC_RUNSTATS,

ASYNC_RUNSTATS, STATS_FABRICATE_TIME, SYNC_RUNSTATS_TIME
FROM SYSIBMADM.SNAPDB

STATS_CACHE_SIZE STATS_FABRICATIONS SYNC_RUNSTATS ASYNC_RUNSTATS ...
---------------- ------------------ ------------- -------------- ...

128 2 1 0 ...

... STATS_FABRICATE_TIME SYNC_RUNSTATS_TIME

... -------------------- ------------------

... 10 100

1 record(s) selected.

SNAP_GET_DB_V95 table function

The SNAP_GET_DB_V95 table function returns the same information as the
SNAPDB administrative view.

Chapter 15. Snapshot routines and views 757

Used in conjunction with the SNAP_GET_DB_MEMORY_POOL,
SNAP_GET_DETAILLOG_V91, SNAP_GET_HADR and
SNAP_GET_STORAGE_PATHS table functions, the SNAP_GET_DB_V95 table
function provides information equivalent to the GET SNAPSHOT FOR ALL DATABASES
CLP command.

Refer to Table 209 on page 760 for a complete list of information that is returned.

Syntax

�� SNAP_GET_DB_V95 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_DB_V95 table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_DB_V95 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

758 Administrative Routines and Views

Examples

Example 1: Retrieve the status, platform, location, and connect time as an aggregate
view across all database partitions of the currently connected database.
SELECT SUBSTR(DB_NAME, 1, 20) AS DB_NAME, DB_STATUS, SERVER_PLATFORM,

DB_LOCATION, DB_CONN_TIME FROM TABLE(SNAP_GET_DB_V95(’’, -2)) AS T

The following example is a sample output from this query.
DB_NAME DB_STATUS SERVER_PLATFORM ...
-------...- ------------ --------------- ...
SAMPLE ACTIVE AIX64 ...

1 record(s) selected.

Output from this query (continued).
... DB_LOCATION DB_CONN_TIME
... ------------ --------------------------
... LOCAL 2005-07-24-22.09.22.013196

Example 2: Retrieve the status, platform, location, and connect time as an aggregate
view across all database partitions for all active databases in the same instance that
contains the currently connected database.
SELECT SUBSTR(DB_NAME, 1, 20) AS DB_NAME, DB_STATUS, SERVER_PLATFORM,

DB_LOCATION, DB_CONN_TIME
FROM TABLE(SNAP_GET_DB_V95(CAST (NULL AS VARCHAR(128)), -2)) AS T

The following example is a sample output from this query.
DB_NAME DB_STATUS SERVER_PLATFORM ...
--------...- ------------ --------------- ...
TOOLSDB ACTIVE AIX64 ...
SAMPLE ACTIVE AIX64 ...

Output from this query (continued).
... DB_LOCATION DB_CONN_TIME
... ------------ --------------------------
... LOCAL 2005-07-24-22.26.54.396335
... LOCAL 2005-07-24-22.09.22.013196

Example 3: This routine can be used by calling the following on the command line:

When connected to a database:
SELECT TOTAL_OLAP_FUNCS, OLAP_FUNC_OVERFLOWS, ACTIVE_OLAP_FUNCS

FROM TABLE (SNAP_GET_DB_V95(’’, 0)) AS T

The output will look like:

TOTAL_OLAP_FUNCS OLAP_FUNC_OVERFLOWS ACTIVE_OLAP_FUNCS
---------------- -------------------- --------------------

7 2 1

1 record(s) selected.

Example 4: After running a workload, a user can use the following query with the
table function.
SELECT STATS_CACHE_SIZE, STATS_FABRICATIONS, SYNC_RUNSTATS,

ASYNC_RUNSTATS, STATS_FABRICATE_TIME, SYNC_RUNSTATS_TIME
FROM TABLE (SNAP_GET_DB_V95(’mytestdb’, -1)) AS SNAPDB

STATS_CACHE_SIZE STATS_FABRICATIONS SYNC_RUNSTATS ASYNC_RUNSTATS ...

Chapter 15. Snapshot routines and views 759

---------------- ------------------ ------------- -------------- ...
200 1 2 0 ...

Continued

...STATS_FABRICATE_TIME SYNC_RUNSTATS_TIME

...-------------------- ------------------

... 2 32

1 record(s) selected.

SNAPDB administrative view and SNAP_GET_DB_V95 table
function metadata

Table 209. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V95 table function

Column name Data type
Description or corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the snapshot was
taken.

DB_NAME VARCHAR(128) db_name - Database name

DB_PATH VARCHAR(1024) db_path - Database path

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input database alias

DB_STATUS VARCHAR(12) db_status - Status of database. This interface
returns a text identifier based on defines in
sqlmon.h, and is one of:

v ACTIVE

v QUIESCE_PEND

v QUIESCED

v ROLLFWD

v ACTIVE_STANDBY

v STANDBY

CATALOG_PARTITION SMALLINT catalog_node - Catalog node number

CATALOG_PARTITION_NAME VARCHAR(128) catalog_node_name - Catalog node network
name

760 Administrative Routines and Views

Table 209. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V95 table
function (continued)

Column name Data type
Description or corresponding monitor
element

SERVER_PLATFORM VARCHAR(12) server_platform - Server operating system.
This interface returns a text identifier based
on defines in sqlmon.h, and is one of:

v AIX

v AIX64

v AS400_DRDA

v DOS

v DYNIX

v HP

v HP64

v HPIA

v HPIA64

v LINUX

v LINUX390

v LINUXIA64

v LINUXPPC

v LINUXPPC64

v LINUXX8664

v LINUXZ64

v MAC

v MVS_DRDA

v NT

v NT64

v OS2

v OS390

v SCO

v SGI

v SNI

v SUN

v SUN64

v UNKNOWN

v UNKNOWN_DRDA

v VM_DRDA

v VSE_DRDA

v WINDOWS

DB_LOCATION VARCHAR(12) db_location - Database location. This
interface returns a text identifier based on
defines in sqlmon.h, and is one of:

v LOCAL

v REMOTE

DB_CONN_TIME TIMESTAMP db_conn_time - Database activation
timestamp

LAST_RESET TIMESTAMP last_reset - Last reset timestamp

LAST_BACKUP TIMESTAMP last_backup - Last backup timestamp

Chapter 15. Snapshot routines and views 761

Table 209. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V95 table
function (continued)

Column name Data type
Description or corresponding monitor
element

CONNECTIONS_TOP BIGINT connections_top - Maximum number of
concurrent connections

TOTAL_CONS BIGINT total_cons - Connects since database
activation

TOTAL_SEC_CONS BIGINT total_sec_cons - Secondary connections

APPLS_CUR_CONS BIGINT appls_cur_cons - Applications connected
currently

APPLS_IN_DB2 BIGINT appls_in_db2 - Applications executing in the
database currently

NUM_ASSOC_AGENTS BIGINT num_assoc_agents - Number of associated
agents

AGENTS_TOP BIGINT agents_top - Number of agents created

COORD_AGENTS_TOP BIGINT coord_agents_top - Maximum number of
coordinating agents

LOCKS_HELD BIGINT locks_held - Locks held

LOCK_WAITS BIGINT lock_waits - Lock waits

LOCK_WAIT_TIME BIGINT lock_wait_time - Time waited on locks

LOCK_LIST_IN_USE BIGINT lock_list_in_use - Total lock list memory in
use

DEADLOCKS BIGINT deadlocks - Deadlocks detected

LOCK_ESCALS BIGINT lock_escals - Number of lock escalations

X_LOCK_ESCALS BIGINT x_lock_escals - Exclusive lock escalations

LOCKS_WAITING BIGINT locks_waiting - Current agents waiting on
locks

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of lock timeouts

NUM_INDOUBT_TRANS BIGINT num_indoubt_trans - Number of indoubt
transactions

SORT_HEAP_ALLOCATED BIGINT sort_heap_allocated - Total sort heap
allocated

SORT_SHRHEAP_ALLOCATED BIGINT sort_shrheap_allocated - Sort share heap
currently allocated

SORT_SHRHEAP_TOP BIGINT sort_shrheap_top - Sort share heap high
water mark

POST_SHRTHRESHOLD_SORTS BIGINT post_shrthreshold_sorts - Post shared
threshold sorts

TOTAL_SORTS BIGINT total_sorts - Total sorts

TOTAL_SORT_TIME BIGINT total_sort_time - Total sort time

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

ACTIVE_SORTS BIGINT active_sorts - Active sorts

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool data logical
reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool data
physical reads

762 Administrative Routines and Views

Table 209. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V95 table
function (continued)

Column name Data type
Description or corresponding monitor
element

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer pool
temporary data logical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer pool
temporary data physical reads

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer pool
asynchronous data reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data writes

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer pool
asynchronous data writes

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool index
logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool index
physical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer pool
temporary index logical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer pool
temporary index physical reads

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer pool
asynchronous index reads

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool index writes

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer pool
asynchronous index writes

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool XDA Data
Physical Reads

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool XDA Data
Logical Reads

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer Pool XDA Data
Writes

POOL_ASYNC_XDA_READS BIGINT pool_async_xda_reads - Buffer Pool
Asynchronous XDA Data Reads

POOL_ASYNC_XDA_WRITES BIGINT pool_async_xda_writes - Buffer Pool
Asynchronous XDA Data Writes

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer Pool
Temporary XDA Data Physical Reads
monitor element

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer Pool
Temporary XDA Data Logical Reads

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool physical
read time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool physical
write time

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer pool
asynchronous read time

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer pool
asynchronous write time

Chapter 15. Snapshot routines and views 763

Table 209. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V95 table
function (continued)

Column name Data type
Description or corresponding monitor
element

POOL_ASYNC_DATA_
READ_REQS

BIGINT pool_async_data_read_reqs - Buffer pool
asynchronous read requests

POOL_ASYNC_INDEX_
READ_REQS

BIGINT pool_async_index_read_reqs - Buffer pool
asynchronous index read requests

POOL_ASYNC_XDA_
READ_REQS

BIGINT pool_async_xda_read_reqs - Buffer Pool
Asynchronous XDA Read Requests

POOL_NO_VICTIM_BUFFER BIGINT pool_no_victim_buffer - Buffer pool no
victim buffers

POOL_LSN_GAP_CLNS BIGINT pool_lsn_gap_clns - Buffer pool log space
cleaners triggered

POOL_DRTY_PG_STEAL_CLNS BIGINT pool_drty_pg_steal_clns - Buffer pool victim
page cleaners triggered

POOL_DRTY_PG_THRSH_CLNS BIGINT pool_drty_pg_thrsh_clns - Buffer pool
threshold cleaners triggered

PREFETCH_WAIT_TIME BIGINT prefetch_wait_time - Time waited for
prefetch

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread prefetch
pages

DIRECT_READS BIGINT direct_reads - Direct reads from database

DIRECT_WRITES BIGINT direct_writes - Direct writes to database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write requests

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write time

FILES_CLOSED BIGINT files_closed - Database files closed

ELAPSED_EXEC_TIME_S BIGINT elapsed_exec_time - Statement execution
elapsed time (in seconds)*

ELAPSED_EXEC_TIME_MS BIGINT elapsed_exec_time - Statement execution
elapsed time (fractional, in microseconds)*

COMMIT_SQL_STMTS BIGINT commit_sql_stmts - Commit statements
attempted

ROLLBACK_SQL_STMTS BIGINT rollback_sql_stmts - Rollback statements
attempted

DYNAMIC_SQL_STMTS BIGINT dynamic_sql_stmts - Dynamic SQL
statements attempted

STATIC_SQL_STMTS BIGINT static_sql_stmts - Static SQL statements
attempted

FAILED_SQL_STMTS BIGINT failed_sql_stmts - Failed statement operations

SELECT_SQL_STMTS BIGINT select_sql_stmts - Select SQL statements
executed

764 Administrative Routines and Views

Table 209. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V95 table
function (continued)

Column name Data type
Description or corresponding monitor
element

UID_SQL_STMTS BIGINT uid_sql_stmts - UPDATE/INSERT/DELETE
SQL statements executed

DDL_SQL_STMTS BIGINT ddl_sql_stmts - Data definition language
(DDL) SQL statements

INT_AUTO_REBINDS BIGINT int_auto_rebinds - Internal automatic rebinds

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal rows deleted

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal rows inserted

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal rows updated

INT_COMMITS BIGINT int_commits - Internal commits

INT_ROLLBACKS BIGINT int_rollbacks - Internal rollbacks

INT_DEADLOCK_ROLLBACKS BIGINT int_deadlock_rollbacks - Internal rollbacks
due to deadlock

ROWS_DELETED BIGINT rows_deleted - Rows deleted

ROWS_INSERTED BIGINT rows_inserted - Rows inserted

ROWS_UPDATED BIGINT rows_updated - Rows updated

ROWS_SELECTED BIGINT rows_selected - Rows selected

ROWS_READ BIGINT rows_read - Rows read

BINDS_PRECOMPILES BIGINT binds_precompiles - Binds/precompiles
attempted

TOTAL_LOG_AVAILABLE BIGINT total_log_available - Total log available

TOTAL_LOG_USED BIGINT total_log_used - Total log space used

SEC_LOG_USED_TOP BIGINT sec_log_used_top - Maximum secondary log
space used

TOT_LOG_USED_TOP BIGINT tot_log_used_top - Maximum total log space
used

SEC_LOGS_ALLOCATED BIGINT sec_logs_allocated - Secondary logs allocated
currently

LOG_READS BIGINT log_reads - Number of log pages read

LOG_READ_TIME_S BIGINT log_read_time - Log read time (in seconds)†

LOG_READ_TIME_NS BIGINT log_read_time - Log read time (fractional, in
nanoseconds)†

LOG_WRITES BIGINT log_writes - Number of log pages written

LOG_WRITE_TIME_S BIGINT log_write_time - Log write time (in
seconds)†

LOG_WRITE_TIME_NS BIGINT log_write_time - Log write time (fractional,
in nanoseconds)†

NUM_LOG_WRITE_IO BIGINT num_log_write_io - Number of log writes

NUM_LOG_READ_IO BIGINT num_log_read_io - Number of log reads

NUM_LOG_PART_PAGE_IO BIGINT num_log_part_page_io - Number of partial
log page writes

NUM_LOG_BUFFER_FULL BIGINT num_log_buffer_full - Number of full log
buffers

Chapter 15. Snapshot routines and views 765

Table 209. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V95 table
function (continued)

Column name Data type
Description or corresponding monitor
element

NUM_LOG_DATA_FOUND_
IN_BUFFER

BIGINT num_log_data_found_in_buffer - Number of
log data found in buffer

APPL_ID_OLDEST_XACT BIGINT appl_id_oldest_xact - Application with oldest
transaction

LOG_TO_REDO_FOR_
RECOVERY

BIGINT log_to_redo_for_recovery - Amount of log to
be redone for recovery

LOG_HELD_BY_DIRTY_PAGES BIGINT log_held_by_dirty_pages - Amount of log
space accounted for by dirty pages

PKG_CACHE_LOOKUPS BIGINT pkg_cache_lookups - Package cache lookups

PKG_CACHE_INSERTS BIGINT pkg_cache_inserts - Package cache inserts

PKG_CACHE_NUM_
OVERFLOWS

BIGINT pkg_cache_num_overflows - Package cache
overflows

PKG_CACHE_SIZE_TOP BIGINT pkg_cache_size_top - Package cache high
water mark

APPL_SECTION_LOOKUPS BIGINT appl_section_lookups - Section lookups

APPL_SECTION_INSERTS BIGINT appl_section_inserts - Section inserts

CAT_CACHE_LOOKUPS BIGINT cat_cache_lookups - Catalog cache lookups

CAT_CACHE_INSERTS BIGINT cat_cache_inserts - Catalog cache inserts

CAT_CACHE_OVERFLOWS BIGINT cat_cache_overflows - Catalog cache
overflows

CAT_CACHE_SIZE_TOP BIGINT cat_cache_size_top - Catalog cache high
water mark

PRIV_WORKSPACE_SIZE_TOP BIGINT priv_workspace_size_top - Maximum private
workspace size

PRIV_WORKSPACE_NUM_
OVERFLOWS

BIGINT priv_workspace_num_overflows - Private
workspace overflows

PRIV_WORKSPACE_SECTION_
INSERTS

BIGINT priv_workspace_section_inserts - Private
workspace section inserts

PRIV_WORKSPACE_SECTION_
LOOKUPS

BIGINT priv_workspace_section_lookups - Private
workspace section lookups

SHR_WORKSPACE_SIZE_TOP BIGINT shr_workspace_size_top - Maximum shared
workspace size

SHR_WORKSPACE_NUM_
OVERFLOWS

BIGINT shr_workspace_num_overflows - Shared
workspace overflows

SHR_WORKSPACE_SECTION_
INSERTS

BIGINT shr_workspace_section_inserts - Shared
workspace section inserts

766 Administrative Routines and Views

Table 209. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V95 table
function (continued)

Column name Data type
Description or corresponding monitor
element

SHR_WORKSPACE_SECTION_
LOOKUPS

BIGINT shr_workspace_section_lookups - Shared
workspace section lookups

TOTAL_HASH_JOINS BIGINT total_hash_joins - Total hash joins

TOTAL_HASH_LOOPS BIGINT total_hash_loops - Total hash loops

HASH_JOIN_OVERFLOWS BIGINT hash_join_overflows - Hash join overflows

HASH_JOIN_SMALL_
OVERFLOWS

BIGINT hash_join_small_overflows - Hash join small
overflows

POST_SHRTHRESHOLD_
HASH_JOINS

BIGINT post_shrthreshold_hash_joins - Post
threshold hash joins

ACTIVE_HASH_JOINS BIGINT active_hash_joins - Active hash joins

NUM_DB_STORAGE_PATHS BIGINT num_db_storage_paths - Number of
automatic storage paths

DBPARTITIONNUM SMALLINT The database partition from which the data
was retrieved for this row.

SMALLEST_LOG_AVAIL_
NODE

INTEGER smallest_log_avail_node - Node with least
available log space

TOTAL_OLAP_FUNCS BIGINT total_olap_funcs - Total OLAP functions

OLAP_FUNC_OVERFLOWS BIGINT olap_func_overflows - OLAP function
overflows

ACTIVE_OLAP_FUNCS BIGINT active_olap_funcs - Active OLAP functions

STATS_CACHE_SIZE BIGINT stats_cache_size – Size of statistics cache

STATS_FABRICATIONS BIGINT stats_fabrications – Total number of statistics
fabrications

SYNC_RUNSTATS BIGINT sync_runstats – Total number of synchronous
RUNSTATS activities

ASYNC_RUNSTATS BIGINT async_runstats – Total number of
asynchronous RUNSTATS requests

STATS_FABRICATE_TIME BIGINT stats_fabricate_time – Total time spent on
statistics fabrication activities

SYNC_RUNSTATS_TIME BIGINT sync_runstats_time – Total time spent on
synchronous RUNSTATS activities

NUM_THRESHOLD_VIOLATIONS BIGINT num_threshold_violations - Number of
threshold violations

Chapter 15. Snapshot routines and views 767

Table 209. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V95 table
function (continued)

Column name Data type
Description or corresponding monitor
element

* To calculate the total time spent for the monitor element that this column is based on, you must add the full
seconds reported in the column for this monitor element that ends with _S to the fractional seconds reported in the
column for this monitor element that ends with _MS, using the following formula: (monitor-element-name_S ×
1,000,000 + monitor-element-name_MS) ÷ 1,000,000. For example, (ELAPSED_EXEC_TIME_S × 1,000,000 +
ELAPSED_EXEC_TIME_MS) ÷ 1,000,000.

†To calculate the total elapsed time for this monitor element, you must add the full seconds reported in the column
for this monitor element that ends with _S to the fractional seconds reported in the column for this monitor element
that ends with _MS, using the following formula: (monitor-element-name_S × 1,000,000,000 + monitor-element-
name_MS) ÷ 1,000,000,000. For example, (LOG_READ_TIME_S × 1,000,000,000 + LOG_READ_TIME_MS) ÷
1,000,000,000.

SNAPDBM administrative view and SNAP_GET_DBM_V95 table
function - Retrieve the dbm logical grouping snapshot information

The SNAPDBM administrative view and the SNAP_GET_DBM_V95 table function
return the snapshot monitor DB2 database manager (dbm) logical grouping
information.

SNAPDBM administrative view

Used with the SNAPDBM_MEMORY_POOL, SNAPFCM, SNAPFCM_PART and
SNAPSWITCHES administrative views, the SNAPDBM administrative view
provides the data equivalent to the GET SNAPSHOT FOR DBM command.

The schema is SYSIBMADM.

Refer to Table 182 on page 637 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPDBM administrative view
v CONTROL privilege on the SNAPDBM administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_DBM_V95 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

768 Administrative Routines and Views

Example

Retrieve database manager status and connection information for all database
partitions.
SELECT DB2_STATUS, DB2START_TIME, LAST_RESET, LOCAL_CONS, REM_CONS_IN,

(AGENTS_CREATED_EMPTY_POOL/AGENTS_FROM_POOL) AS AGENT_USAGE,
DBPARTITIONNUM FROM SYSIBMADM.SNAPDBM ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
DB2_STATUS DB2START_TIME LAST_RESET ...
------------ -------------------------- ----------...- ...
ACTIVE 2006-01-06-14.59.59.059879 - ...
ACTIVE 2006-01-06-14.59.59.097605 - ...
ACTIVE 2006-01-06-14.59.59.062798 - ...

3 record(s) selected. ...

Output from this query (continued).
... LOCAL_CONS REM_CONS_IN AGENT_USAGE DBPARTITIONNUM
... ----------...- -----------...- -----------...- --------------
... 1 1 0 0
... 0 0 0 1
... 0 0 0 2

SNAP_GET_DBM_V95 table function

The SNAP_GET_DBM_V95 table function returns the same information as the
SNAPDBM administrative view, but allows you to retrieve the information for a
specific database partition, aggregate of all database partitions or all database
partitions.

Used with the SNAP_GET_DBM_MEMORY_POOL, SNAP_GET_FCM,
SNAP_GET_FCM_PART and SNAP_GET_SWITCHES table functions, the
SNAP_GET_DBM_V95 table function provides the data equivalent to the GET
SNAPSHOT FOR DBM command.

Refer to Table 182 on page 637 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_DBM_V95 ()
dbpartitionnum

��

The schema is SYSPROC.

Table function parameter

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If this input option is not used, data
will be returned from all active database partitions. An active database
partition is a partition where the database is available for connection and use
by applications.

Chapter 15. Snapshot routines and views 769

If dbpartitionnum is set to NULL, an attempt is made to read data from the file
created by SNAP_WRITE_FILE procedure. Note that this file could have been
created at any time, which means that the data might not be current. If a file with
the corresponding snapshot API request type does not exist, then the
SNAP_GET_DBM_V95 table function calls the snapshot from memory.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_DBM_V95 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve the start time and current status of database partition number 2.
SELECT DB2START_TIME, DB2_STATUS FROM TABLE(SNAP_GET_DBM_V95(2)) AS T

The following example is a sample output from this query.
DB2START_TIME DB2_STATUS
-------------------------- ------------
2006-01-06-14.59.59.062798 ACTIVE

Information returned

Table 210. Information returned by the SNAPDBM administrative view and the SNAP_GET_DBM_V95 table function

Column name Data type
Description or corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the snapshot was
taken.

SORT_HEAP_ALLOCATED BIGINT sort_heap_allocated - Total sort heap
allocated

POST_THRESHOLD_SORTS BIGINT post_threshold_sorts - Post threshold sorts

PIPED_SORTS_REQUESTED BIGINT piped_sorts_requested - Piped sorts
requested

PIPED_SORTS_ACCEPTED BIGINT piped_sorts_accepted - Piped sorts accepted

REM_CONS_IN BIGINT rem_cons_in - Remote connections to
database manager

REM_CONS_IN_EXEC BIGINT rem_cons_in_exec - Remote Connections
Executing in the Database Manager monitor
element

LOCAL_CONS BIGINT local_cons - Local connections

LOCAL_CONS_IN_EXEC BIGINT local_cons_in_exec - Local Connections
Executing in the Database Manager monitor
element

770 Administrative Routines and Views

Table 210. Information returned by the SNAPDBM administrative view and the SNAP_GET_DBM_V95 table
function (continued)

Column name Data type
Description or corresponding monitor
element

CON_LOCAL_DBASES BIGINT con_local_dbases - Local databases with
current connects

AGENTS_REGISTERED BIGINT agents_registered - Agents registered

AGENTS_WAITING_ON_TOKEN BIGINT agents_waiting_on_token - Agents waiting
for a token

DB2_STATUS VARCHAR(12) db2_status - Status of DB2 instance

This interface returns a text identifier based
on defines in sqlmon.h, and is one of:

v ACTIVE

v QUIESCE_PEND

v QUIESCED

AGENTS_REGISTERED_TOP BIGINT agents_registered_top - Maximum number
of agents registered

AGENTS_WAITING_TOP BIGINT agents_waiting_top - Maximum number of
agents waiting

COMM_PRIVATE_MEM BIGINT comm_private_mem - Committed private
memory

IDLE_AGENTS BIGINT idle_agents - Number of idle agents

AGENTS_FROM_POOL BIGINT agents_from_pool - Agents assigned from
pool

AGENTS_CREATED_EMPTY_POOL BIGINT agents_created_empty_pool - Agents
created due to empty agent pool

COORD_AGENTS_TOP BIGINT coord_agents_top - Maximum number of
coordinating agents

MAX_AGENT_OVERFLOWS BIGINT max_agent_overflows - Maximum agent
overflows

AGENTS_STOLEN BIGINT agents_stolen - Stolen agents

GW_TOTAL_CONS BIGINT gw_total_cons - Total number of attempted
connections for DB2 Connect

GW_CUR_CONS BIGINT gw_cur_cons - Current number of
connections for DB2 Connect

GW_CONS_WAIT_HOST BIGINT gw_cons_wait_host - Number of
connections waiting for the host to reply

GW_CONS_WAIT_CLIENT BIGINT gw_cons_wait_client - Number of
connections waiting for the client to send
request

POST_THRESHOLD_ HASH_JOINS BIGINT post_threshold_hash_joins - Hash join
threshold

NUM_GW_CONN_SWITCHES BIGINT num_gw_conn_switches - Connection
switches

DB2START_TIME TIMESTAMP db2start_time - Start database manager
timestamp

LAST_RESET TIMESTAMP last_reset - Last reset timestamp

Chapter 15. Snapshot routines and views 771

Table 210. Information returned by the SNAPDBM administrative view and the SNAP_GET_DBM_V95 table
function (continued)

Column name Data type
Description or corresponding monitor
element

NUM_NODES_IN_ DB2_INSTANCE INTEGER num_nodes_in_db2_instance - Number of
nodes in database partition

PRODUCT_NAME VARCHAR(32) product_name - Product name

SERVICE_LEVEL VARCHAR(18) service_level - Service level

SORT_HEAP_TOP BIGINT sort_heap_top - Sort private heap high
water mark

DBPARTITIONNUM SMALLINT The database partition from which the data
was retrieved for this row.

POST_THRESHOLD_OLAP_FUNCS BIGINT The number of OLAP functions which have
requested a sort heap after the sort heap
threshold has been exceeded.

Sorts, hash joins, and OLAP functions are
examples of operations which use a sort
heap. Under normal conditions, the
database manager will allocate sort heap
using the value specified by the sortheap
configuration parameter. If the amount of
memory allocated to sort heaps exceeds the
sort heap threshold (sheapthres
configuration parameter), the database
manager will allocate subsequent sort heaps
using a value less than that specified by the
sortheap configuration parameter.

OLAP functions which start after the sort
heap threshold has been reached may not
receive an optimum amount of memory to
execute.

SNAPDETAILLOG administrative view and
SNAP_GET_DETAILLOG_V91 table function - Retrieve snapshot
information from the detail_log logical data group

The SNAPDETAILLOG administrative view and the SNAP_GET_DETAILLOG_V91
table function return snapshot information from the detail_log logical data group.

SNAPDETAILLOG administrative view

This administrative view allows you to retrieve snapshot information from the
detail_log logical data group for the currently connected database.

Used in conjunction with the SNAPDB, SNAPDB_MEMORY_POOL, SNAPHADR
and SNAPSTORAGE_PATHS administrative views, the SNAPDETAILLOG
administrative view provides information equivalent to the GET SNAPSHOT FOR
DATABASE on database-alias CLP command.

The schema is SYSIBMADM.

772 Administrative Routines and Views

Refer to Table 183 on page 642 for a complete list of information that is returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPDETAILLOG administrative view
v CONTROL privilege on the SNAPDETAILLOG administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_DETAILLOG_V91 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve log information for all database partitions for the currently connected
database.
SELECT SUBSTR(DB_NAME, 1, 8) AS DB_NAME, FIRST_ACTIVE_LOG,

LAST_ACTIVE_LOG, CURRENT_ACTIVE_LOG, CURRENT_ARCHIVE_LOG,
DBPARTITIONNUM
FROM SYSIBMADM.SNAPDETAILLOG ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
DB_NAME FIRST_ACTIVE_LOG LAST_ACTIVE_LOG ...
-------- -------------------- -------------------- ...
TEST 0 8 ...
TEST 0 8 ...
TEST 0 8 ...

3 record(s) selected.

Output from this query (continued).
... CURRENT_ACTIVE_LOG CURRENT_ARCHIVE_LOG DBPARTITIONNUM
... -------------------- -------------------- --------------
... 0 - 0
... 0 - 1
... 0 - 2

SNAP_GET_DETAILLOG_V91 table function

The SNAP_GET_DETAILLOG_V91 table function returns the same information as
the SNAPDETAILLOG administrative view.

Used in conjunction with the SNAP_GET_DB_V95,
SNAP_GET_DB_MEMORY_POOL, SNAP_GET_HADR and
SNAP_GET_STORAGE_PATHS table functions, the SNAP_GET_DETAILLOG table
function provides information equivalent to the GET SNAPSHOT FOR ALL DATABASES
CLP command.

Chapter 15. Snapshot routines and views 773

Refer to Table 183 on page 642 for a complete list of information that is returned.

Syntax

�� SNAP_GET_DETAILLOG_V91 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_DETAILLOG_V91 table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_DETAILLOG_V91 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve log information for database partition 1 for the currently connected
database.

774 Administrative Routines and Views

SELECT SUBSTR(DB_NAME, 1, 8) AS DB_NAME, FIRST_ACTIVE_LOG,
LAST_ACTIVE_LOG, CURRENT_ACTIVE_LOG, CURRENT_ARCHIVE_LOG
FROM TABLE(SNAP_GET_DETAILLOG_V91(’’, 1)) AS T

The following example is a sample output from this query.
DB_NAME FIRST_ACTIVE_LOG LAST_ACTIVE_LOG ...
-------- -------------------- -------------------- ...
TEST 0 8 ...

1 record(s) selected.

Output from this query (continued).
... CURRENT_ACTIVE_LOG CURRENT_ARCHIVE_LOG
... -------------------- --------------------
... 0 -

SNAPDETAILLOG administrative view and
SNAP_GET_DETAILLOG_V91 table function metadata

Table 211. Information returned by the SNAPDETAILLOG administrative view and
SNAP_GET_DETAILLOG_V91 table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

FIRST_ACTIVE_LOG BIGINT first_active_log - First active log
file number

LAST_ACTIVE_LOG BIGINT last_active_log - Last active log file
number

CURRENT_ACTIVE_LOG BIGINT current_active_log - Current active
log file number

CURRENT_ARCHIVE_LOG BIGINT current_archive_log - Current
archive log file number

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPDYN_SQL administrative view and SNAP_GET_DYN_SQL_V95
table function - Retrieve dynsql logical group snapshot information

The “SNAPDYN_SQL administrative view” on page 642 and the
“SNAP_GET_DYN_SQL_V95 table function” on page 644 return snapshot
information from the dynsql logical data group.

SNAPDYN_SQL administrative view

This administrative view allows you to retrieve dynsql logical group snapshot
information for the currently connected database.

This view returns information equivalent to the GET SNAPSHOT FOR DYNAMIC SQL ON
database-alias CLP command.

The schema is SYSIBMADM.

Chapter 15. Snapshot routines and views 775

Refer to Table 184 on page 646 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPDYN_SQL administrative view
v CONTROL privilege on the SNAPDYN_SQL administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_DYN_SQL_V95 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of dynamic SQL run on all database partitions of the currently
connected database, ordered by the number of rows read.
SELECT PREP_TIME_WORST, NUM_COMPILATIONS, SUBSTR(STMT_TEXT, 1, 60)

AS STMT_TEXT, DBPARTITIONNUM
FROM SYSIBMADM.SNAPDYN_SQL ORDER BY ROWS_READ

The following example is a sample output from this query.
PREP_TIME_WORST NUM_COMPILATIONS ...
-------------------- -------------------- ...

98 1 ...
9 1 ...
0 0 ...
0 1 ...
0 1 ...
0 1 ...
0 1 ...
0 1 ...
40 1 ...

9 record(s) selected.

Output from this query (continued).
... STMT_TEXT ...
... -- ...
... select prep_time_worst, num_compilations, substr(stmt_text, ...
... select * from dbuser.employee ...
... SET CURRENT LOCALE LC_CTYPE = ’en_US’ ...
... select prep_time_worst, num_compilations, substr(stmt_text, ...
... select prep_time_worst, num_compilations, substr(stmt_text, ...
... select * from dbuser.employee ...
... insert into dbuser.employee values(1) ...
... select * from dbuser.employee ...
... insert into dbuser.employee values(1) ...

776 Administrative Routines and Views

Output from this query (continued).
... DBPARTITIONNUM
... --------------
... 0
... 0
... 0
... 2
... 1
... 2
... 2
... 1
... 0

SNAP_GET_DYN_SQL_V95 table function

The SNAP_GET_DYN_SQL_V95 table function returns the same information as the
SNAPDYN_SQL administrative view, but allows you to retrieve the information for
a specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

This table function returns information equivalent to the GET SNAPSHOT FOR
DYNAMIC SQL ON database-alias CLP command.

Refer to Table 184 on page 646 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_DYN_SQL_V95 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify NULL or empty
string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_DYN_SQL_V95 table function takes a snapshot for the currently
connected database and database partition number.

Chapter 15. Snapshot routines and views 777

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_DYN_SQL_V95 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of dynamic SQL run on the currently connected database partition of
the currently connected database, ordered by the number of rows read.
SELECT PREP_TIME_WORST, NUM_COMPILATIONS, SUBSTR(STMT_TEXT, 1, 60)

AS STMT_TEXT FROM TABLE(SNAP_GET_DYN_SQL_V95(’’,-1)) as T
ORDER BY ROWS_READ

The following example is a sample output from this query.
PREP_TIME_WORST ...
-------------------- ...

0 ...
3 ...

...
4 ...

...
4 ...

...
4 ...

...
3 ...

...
4 ...

...

Output from this query (continued).
... NUM_COMPILATIONS STMT_TEXT
... -------------------- ---------------------------------------...-
... 0 SET CURRENT LOCALE LC_CTYPE = ’en_US’
... 1 select rows_read, rows_written,
... substr(stmt_text, 1, 40) as
... 1 select * from table
... (snap_get_dyn_sqlv9(’’,-1)) as t
... 1 select * from table
... (snap_getdetaillog9(’’,-1)) as t
... 1 select * from table
... (snap_get_hadr(’’,-1)) as t
... 1 select prep_time_worst, num_compilations,
... substr(stmt_text,
... 1 select prep_time_worst, num_compilations,
... substr(stmt_text,

After running a workload, user can use the following query with the table
function.

778 Administrative Routines and Views

SELECT STATS_FABRICATE_TIME,SYNC_RUNSTATS_TIME
FROM TABLE (SNAP_GET_DYN_SQL_V95(’mytestdb’, -1))
AS SNAPDB

STATS_FABRICATE_TIME SYNC_RUNSTATS_TIME
---------------------- ------------------

2 12
1 30

For the view based on this table function:
SELECT STATS_FABRICATE_TIME,SYNC_RUNSTATS_TIME

FROM SYSIBMADM.SNAPDYN_SQL

STATS_FABRICATE_TIME SYNC_RUNSTATS_TIME
---------------------- ------------------

5 10
3 20

2 record(s) selected.

Information returned

Table 212. Information returned by the SNAPDYN_SQL administrative view and the SNAP_GET_DYN_SQL_V95
table function

Column name Data type
Description or corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the snapshot was
taken.

NUM_EXECUTIONS BIGINT num_executions - Statement executions

NUM_COMPILATIONS BIGINT num_compilations - Statement compilations

PREP_TIME_WORST BIGINT prep_time_worst - Statement worst
preparation time

PREP_TIME_BEST BIGINT prep_time_best - Statement best preparation
time

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal rows deleted

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal rows inserted

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal rows updated

ROWS_READ BIGINT rows_read - Rows read

ROWS_WRITTEN BIGINT rows_written - Rows written

STMT_SORTS BIGINT stmt_sorts - Statement sorts

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

TOTAL_SORT_TIME BIGINT total_sort_time - Total sort time

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool data logical
reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool data
physical reads

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer pool
temporary data logical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer pool
temporary data physical reads

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool index
logical reads

Chapter 15. Snapshot routines and views 779

Table 212. Information returned by the SNAPDYN_SQL administrative view and the SNAP_GET_DYN_SQL_V95
table function (continued)

Column name Data type
Description or corresponding monitor
element

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool index
physical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer pool
temporary index logical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer pool
temporary index physical reads

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool XDA Data
Logical Reads

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool XDA Data
Physical Reads

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer Pool
Temporary XDA Data Logical Reads

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer Pool
Temporary XDA Data Physical Reads
monitor element

TOTAL_EXEC_TIME BIGINT total_exec_time - Elapsed statement
execution time (in seconds)*

TOTAL_EXEC_TIME_MS BIGINT total_exec_time - Elapsed statement
execution time (fractional, in microseconds)*

TOTAL_USR_CPU_TIME BIGINT total_usr_cpu_time - Total user CPU for a
statement (in seconds)*

TOTAL_USR_CPU_TIME_MS BIGINT total_usr_cpu_time - Total user CPU for a
statement (fractional, in microseconds)*

TOTAL_SYS_CPU_TIME BIGINT total_sys_cpu_time - Total system CPU for a
statement (in seconds)*

TOTAL_SYS_CPU_TIME_MS BIGINT total_sys_cpu_time - Total system CPU for a
statement (fractional, in microseconds)*

STMT_TEXT CLOB(2 M) stmt_text - SQL statement text

DBPARTITIONNUM SMALLINT The database partition from which the data
was retrieved for this row.

STATS_FABRICATE_TIME BIGINT The total time (in milliseconds) spent by
system to create needed statistics without
table or index scan during query compilation
for a dynamic statement.

SYNC_RUNSTATS_TIME BIGINT The total time (in milliseconds) spent on
synchronous statistics-collect activities during
query compilation for a dynamic statement.

* To calculate the total time spent for the monitor element that this column is based on, you must add the full
seconds reported in the column for this monitor element that ends with _S to the fractional seconds reported in the
column for this monitor element that ends with _MS, using the following formula: (monitor-element-name_S ×
1,000,000 + monitor-element-name_MS) ÷ 1,000,000. For example, (ELAPSED_EXEC_TIME_S × 1,000,000 +
ELAPSED_EXEC_TIME_MS) ÷ 1,000,000.

780 Administrative Routines and Views

SNAPFCM administrative view and SNAP_GET_FCM table function –
Retrieve the fcm logical data group snapshot information

The SNAPFCM administrative view and the SNAP_GET_FCM table function
return information about the fast communication manager from a database
manager snapshot, in particular, the fcm logical data group.

SNAPFCM administrative view

Used with the SNAPDBM, SNAPDBM_MEMORY_POOL, SNAPFCM_PART and
SNAPSWITCHES administrative views, the SNAPFCM administrative view
provides the data equivalent to the GET SNAPSHOT FOR DBM command.

The schema is SYSIBMADM.

Refer to Table 185 on page 650 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPFCM administrative view
v CONTROL privilege on the SNAPFCM administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_FCM table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve information about the fast communication manager's message buffers on
all database partitions.
SELECT BUFF_FREE, BUFF_FREE_BOTTOM, DBPARTITIONNUM

FROM SYSIBMADM.SNAPFCM ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
BUFF_FREE BUFF_FREE_BOTTOM DBPARTITIONNUM
---------...---- -------------------- --------------

5120 5100 0
5120 5100 1
5120 5100 2

Chapter 15. Snapshot routines and views 781

SNAP_GET_FCM table function

The SNAP_GET_FCM table function returns the same information as the
SNAPFCM administrative view, but allows you to retrieve the information for a
specific database partition, aggregate of all database partitions or all database
partitions.

Used with the SNAP_GET_DBM_V95, SNAP_GET_DBM_MEMORY_POOL,
SNAP_GET_FCM_PART and SNAP_GET_SWITCHES table functions, the
SNAP_GET_FCM table function provides the data equivalent to the GET SNAPSHOT
FOR DBM command.

Refer to Table 185 on page 650 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_FCM ()
dbpartitionnum

��

The schema is SYSPROC.

Table function parameter

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If this input option is not used, data
will be returned from all active database partitions. An active database
partition is a partition where the database is available for connection and use
by applications.

If dbpartitionnum is set to NULL, an attempt is made to read data from the file
created by SNAP_WRITE_FILE procedure. Note that this file could have been
created at any time, which means that the data might not be current. If a file with
the corresponding snapshot API request type does not exist, then the
SNAP_GET_FCM table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_FCM table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

782 Administrative Routines and Views

Example

Retrieve information about the fast communication manager's message buffers on
database partition 1.
SELECT BUFF_FREE, BUFF_FREE_BOTTOM, DBPARTITIONNUM

FROM TABLE(SYSPROC.SNAP_GET_FCM(1)) AS T

The following example is a sample output from this query.
BUFF_FREE BUFF_FREE_BOTTOM DBPARTITIONNUM
-------------------- -------------------- --------------

5120 5100 1

Information returned

Table 213. Information returned by the SNAPFCM administrative view and the
SNAP_GET_FCM table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

BUFF_FREE BIGINT buff_free - FCM buffers currently
free

BUFF_FREE_BOTTOM BIGINT buff_free_bottom - Minimum FCM
Buffers Free

CH_FREE BIGINT ch_free - Channels Currently Free

CH_FREE_BOTTOM BIGINT ch_free_bottom - Minimum
Channels Free

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPFCM_PART administrative view and SNAP_GET_FCM_PART table
function – Retrieve the fcm_node logical data group snapshot
information

The SNAPFCM_PART administrative view and the SNAP_GET_FCM_PART table
function return information about the fast communication manager from a
database manager snapshot, in particular, the fcm_node logical data group.

SNAPFCM_PART administrative view

Used with the SNAPDBM, SNAPDBM_MEMORY_POOL, SNAPFCM and
SNAPSWITCHES administrative views, the SNAPFCM_PART administrative view
provides the data equivalent to the GET SNAPSHOT FOR DBM command.

The schema is SYSIBMADM.

Refer to Table 186 on page 652 for a complete list of information that can be
returned.

Chapter 15. Snapshot routines and views 783

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPFCM_PART administrative view
v CONTROL privilege on the SNAPFCM_PART administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_FCM_PART table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve buffers sent and received information for the fast communication
manager.
SELECT CONNECTION_STATUS, TOTAL_BUFFERS_SENT, TOTAL_BUFFERS_RECEIVED

FROM SYSIBMADM.SNAPFCM_PART WHERE DBPARTITIONNUM = 0

The following example is a sample output from this query.
CONNECTION_STATUS TOTAL_BUFFERS_SENT TOTAL_BUFFERS_RCVD
-------------------- -------------------- --------------------
INACTIVE 2 1

1 record(s) selected.

SNAP_GET_FCM_PART table function

The SNAP_GET_FCM_PART table function returns the same information as the
SNAPFCM_PART administrative view, but allows you to retrieve the information
for a specific database partition, aggregate of all database partitions or all database
partitions.

Used with the SNAP_GET_DBM_V95, SNAP_GET_DBM_MEMORY_POOL,
SNAP_GET_FCM and SNAP_GET_SWITCHES table functions, the
SNAP_GET_FCM_PART table function provides the data equivalent to the GET
SNAPSHOT FOR DBM command.

Refer to Table 186 on page 652 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_FCM_PART ()
dbpartitionnum

��

The schema is SYSPROC.

784 Administrative Routines and Views

Table function parameter

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current partition. If this input option is not
used, data will be returned from all active database partitions. An active
database partition is a partition where the database is available for connection
and use by applications.

If dbpartitionnum is set to NULL, an attempt is made to read data from the file
created by SNAP_WRITE_FILE procedure. Note that this file could have been
created at any time, which means that the data might not be current. If a file with
the corresponding snapshot API request type does not exist, then the
SNAP_GET_FCM_PART table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_FCM_PART table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve buffers sent and received information for the fast communication manager
for all database partitions.
SELECT FCM_DBPARTITIONNUM, TOTAL_BUFFERS_SENT, TOTAL_BUFFERS_RCVD,

DBPARTITIONNUM FROM TABLE(SNAP_GET_FCM_PART()) AS T
ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
FCM_DBPARTITIONNUM TOTAL_BUFFERS_SENT TOTAL_BUFFERS_RCVD DBPARTITIONNUM
------------------ -------------------- -------------------- --------------

0 305 305 0
1 5647 1664 0
2 5661 1688 0
0 19 19 1
1 305 301 1
2 1688 5661 1
0 1664 5647 2
1 10 10 2
2 301 305 2

Chapter 15. Snapshot routines and views 785

Information returned

Table 214. Information returned by the SNAPFCM_PART administrative view and the
SNAP_GET_FCM_PART table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

CONNECTION_STATUS VARCHAR(10) connection_status - Connection
status. This interface returns a text
identifier based on the defines in
sqlmon.h and is one of:

v INACTIVE

v ACTIVE

v CONGESTED

TOTAL_BUFFERS_SENT BIGINT total_buffers_sent - Total FCM
buffers sent

TOTAL_BUFFERS_RCVD BIGINT total_buffers_rcvd - Total FCM
buffers received

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

FCM_DBPARTITIONNUM SMALLINT The database partition number to
which data was sent or from which
data was received (as per the
TOTAL_BUFFERS_SENT and
TOTAL_BUFFERS_RCVD
columns).

SNAPHADR administrative view and SNAP_GET_HADR table function
– Retrieve hadr logical data group snapshot information

The SNAPHADR administrative view and the SNAP_GET_HADR table function
return information about high availability disaster recovery from a database
snapshot, in particular, the hadr logical data group.

SNAPHADR administrative view

This administrative view allows you to retrieve hadr logical data group snapshot
information for the currently connected database. The data is only returned by this
view if the database is a primary or standby high availability disaster recovery
(HADR) database.

Used with the SNAPDB, SNAPDB_MEMORY_POOL, SNAPDETAILLOG and
SNAPSTORAGE_PATHS administrative views, the SNAPHADR administrative
view provides information equivalent to the GET SNAPSHOT FOR DATABASE ON
database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 187 on page 655 for a complete list of information that can be
returned.

786 Administrative Routines and Views

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPHADR administrative view
v CONTROL privilege on the SNAPHADR administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_HADR table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve the configuration and status information for HADR on the primary
HADR database.
SELECT SUBSTR(DB_NAME, 1, 8) AS DBNAME, HADR_ROLE, HADR_STATE,

HADR_SYNCMODE, HADR_CONNECT_STATUS
FROM SYSIBMADM.SNAPHADR

The following example is a sample output from this query.
DBNAME HADR_ROLE HADR_STATE HADR_SYNCMODE HADR_CONNECT_STATUS
-------- --------- -------------- ------------- -------------------
SAMPLE PRIMARY PEER SYNC CONNECTED

1 record(s) selected.

SNAP_GET_HADR table function

The SNAP_GET_HADR table function returns the same information as the
SNAPHADR administrative view, but allows you to retrieve the information for a
specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Used with the SNAP_GET_DB_V95, SNAP_GET_DB_MEMORY_POOL,
SNAP_GET_DETAILLOG_V91 and SNAP_GET_STORAGE_PATHS table functions,
the SNAP_GET_HADR table function provides information equivalent to the GET
SNAPSHOT FOR ALL DATABASES CLP command.

Refer to Table 187 on page 655 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_HADR (dbname)
, dbpartitionnum

��

Chapter 15. Snapshot routines and views 787

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_HADR table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_HADR table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve the configuration and status information for HADR for all databases.
SELECT SUBSTR(DB_NAME, 1, 8) AS DBNAME, HADR_ROLE, HADR_STATE,

HADR_SYNCMODE, HADR_CONNECT_STATUS
FROM TABLE (SNAP_GET_HADR (CAST (NULL as VARCHAR(128)), 0)) as T

The following example is a sample output from this query.
DBNAME HADR_ROLE HADR_STATE HADR_SYNCMODE HADR_CONNECT_STATUS
-------- --------- -------------- ------------- -------------------
SAMPLE PRIMARY PEER SYNC CONNECTED
TESTDB PRIMARY DISCONNECTED NEARSYNC DISCONNECTED

2 record(s) selected.

788 Administrative Routines and Views

Information returned

Table 215. Information returned by the SNAPHADR administrative view and the
SNAP_GET_HADR table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

HADR_ROLE VARCHAR(10) hadr_role - HADR role. This
interface returns a text identifier
based on the defines in sqlmon.h,
and is one of:

v PRIMARY

v STANDARD

v STANDBY

HADR_STATE VARCHAR(14) hadr_state - HADR state. This
interface returns a text identifier
based on the defines in sqlmon.h,
and is one of:

v DISCONNECTED

v LOCAL_CATCHUP

v PEER

v REM_CATCH_PEN

v REM_CATCHUP

HADR_SYNCMODE VARCHAR(10) hadr_syncmode - HADR
synchronization mode. This
interface returns a text identifier
based on the defines in sqlmon.h,
and is one of:

v ASYNC

v NEARSYNC

v SUPERASYNC

v SYNC

HADR_CONNECT_STATUS VARCHAR(12) hadr_connect_status - HADR
connection status. This interface
returns a text identifier based on
the defines in sqlmon.h, and is one
of:

v CONGESTED

v CONNECTED

v DISCONNECTED

HADR_CONNECT_TIME TIMESTAMP hadr_connect_time - HADR
connection time

HADR_HEARTBEAT INTEGER hadr_heartbeat - HADR heartbeat

HADR_LOCAL_HOST VARCHAR(255) hadr_local_host - HADR local host

HADR_LOCAL_SERVICE VARCHAR(40) hadr_local_service - HADR local
service

HADR_REMOTE_HOST VARCHAR(255) hadr_remote_host - HADR remote
host

Chapter 15. Snapshot routines and views 789

Table 215. Information returned by the SNAPHADR administrative view and the
SNAP_GET_HADR table function (continued)

Column name Data type
Description or corresponding
monitor element

HADR_REMOTE_SERVICE VARCHAR(40) hadr_remote_service - HADR
remote service

HADR_REMOTE_INSTANCE VARCHAR(128) hadr_remote_instance - HADR
remote instance

HADR_TIMEOUT BIGINT hadr_timeout - HADR timeout

HADR_PRIMARY_LOG_FILE VARCHAR(255) hadr_primary_log_file - HADR
primary log file

HADR_PRIMARY_LOG_PAGE BIGINT hadr_primary_log_page - HADR
primary log page

HADR_PRIMARY_LOG_LSN BIGINT hadr_primary_log_lsn - HADR
primary log LSN

HADR_STANDBY_LOG_FILE VARCHAR(255) hadr_standby_log_file - HADR
standby log file

HADR_STANDBY_LOG_PAGE BIGINT hadr_standby_log_page - HADR
standby log page

HADR_STANDBY_LOG_LSN BIGINT hadr_standby_log_lsn - HADR
standby log LSN

HADR_LOG_GAP BIGINT hadr_log_gap - HADR log gap

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPLOCK administrative view and SNAP_GET_LOCK table function –
Retrieve lock logical data group snapshot information

Note: This administrative view and table function have been deprecated and
replaced by the “MON_GET_APPL_LOCKWAIT - get information about locks for
which an application is waiting” on page 423, “MON_GET_LOCKS - list all locks
in the currently connected database” on page 452, and
“MON_FORMAT_LOCK_NAME - format the internal lock name and return
details” on page 389.

The SNAPLOCK administrative view and the SNAP_GET_LOCK table function
return snapshot information about locks, in particular, the lock logical data group.

SNAPLOCK administrative view

This administrative view allows you to retrieve lock logical data group snapshot
information for the currently connected database.

Used with the SNAPLOCKWAIT administrative view, the SNAPLOCK
administrative view provides information equivalent to the GET SNAPSHOT FOR
LOCKS ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 188 on page 660 for a complete list of information that can be
returned.

790 Administrative Routines and Views

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPLOCK administrative view
v CONTROL privilege on the SNAPLOCK administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_LOCK table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve lock information for the database partition 0 of the currently connected
database.
SELECT AGENT_ID, LOCK_OBJECT_TYPE, LOCK_MODE, LOCK_STATUS

FROM SYSIBMADM.SNAPLOCK WHERE DBPARTITIONNUM = 0

The following example is a sample output from this query.
AGENT_ID LOCK_OBJECT_TYPE LOCK_MODE LOCK_STATUS
-------------------- ---------------- --------- -----------

7 TABLE IX GRNT

1 record(s) selected.

SNAP_GET_LOCK table function

The SNAP_GET_LOCK table function returns the same information as the
SNAPLOCK administrative view, but allows you to retrieve the information for a
specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Used with the SNAP_GET_LOCKWAIT table function, the SNAP_GET_LOCK table
function provides information equivalent to the GET SNAPSHOT FOR LOCKS ON
database-alias CLP command.

Refer to Table 188 on page 660 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_LOCK (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Chapter 15. Snapshot routines and views 791

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify a null value or
empty string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_LOCK table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_LOCK table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve lock information for the current database partition of the currently
connected database.
SELECT AGENT_ID, LOCK_OBJECT_TYPE, LOCK_MODE, LOCK_STATUS

FROM TABLE(SNAP_GET_LOCK(’’,-1)) as T

The following example is a sample output from this query.
AGENT_ID LOCK_OBJECT_TYPE LOCK_MODE LOCK_STATUS
--------...--- ------------------ ---------- -----------

680 INTERNALV_LOCK S GRNT
680 INTERNALP_LOCK S GRNT

2 record(s) selected.

792 Administrative Routines and Views

Information returned

Table 216. Information returned by the SNAPLOCK administrative view and the
SNAP_GET_LOCK table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

TAB_FILE_ID BIGINT table_file_id - Table file
identification

LOCK_OBJECT_TYPE VARCHAR(18) lock_object_type - Lock object type
waited on. This interface returns a
text identifier based on the defines
in sqlmon.h and is one of:

v AUTORESIZE_LOCK

v AUTOSTORAGE_LOCK

v BLOCK_LOCK

v EOT_LOCK

v INPLACE_REORG_LOCK

v INTERNAL_LOCK

v INTERNALB_LOCK

v INTERNALC_LOCK

v INTERNALJ_LOCK

v INTERNALL_LOCK

v INTERNALO_LOCK

v INTERNALQ_LOCK

v INTERNALP_LOCK

v INTERNALS_LOCK

v INTERNALT_LOCK

v INTERNALV_LOCK

v KEYVALUE_LOCK

v ROW_LOCK

v SYSBOOT_LOCK

v TABLE_LOCK

v TABLE_PART_LOCK

v TABLESPACE_LOCK

v XML_PATH_LOCK

Chapter 15. Snapshot routines and views 793

Table 216. Information returned by the SNAPLOCK administrative view and the
SNAP_GET_LOCK table function (continued)

Column name Data type
Description or corresponding
monitor element

LOCK_MODE VARCHAR(10) lock_mode - Lock mode. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

LOCK_STATUS VARCHAR(10) lock_status - Lock status. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v CONV

v GRNT

LOCK_ESCALATION SMALLINT lock_escalation - Lock escalation

TABNAME VARCHAR(128) table_name - Table name

TABSCHEMA VARCHAR(128) table_schema - Table schema name

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

LOCK_ATTRIBUTES VARCHAR(128) lock_attributes - Lock attributes.
This interface returns a text
identifier based on the defines in
sqlmon.h. If there are no locks, the
text identifier is NONE, otherwise,
it is any combination of the
following separated by a '+' sign:

v ALLOW_NEW

v DELETE_IN_BLOCK

v ESCALATED

v INSERT

v NEW_REQUEST

v RR

v RR_IN_BLOCK

v UPDATE_DELETE

v WAIT_FOR_AVAIL

LOCK_COUNT BIGINT lock_count - Lock count

794 Administrative Routines and Views

Table 216. Information returned by the SNAPLOCK administrative view and the
SNAP_GET_LOCK table function (continued)

Column name Data type
Description or corresponding
monitor element

LOCK_CURRENT_MODE VARCHAR(10) lock_current_mode - Original lock
mode before conversion. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

LOCK_HOLD_COUNT BIGINT lock_hold_count - Lock hold count

LOCK_NAME VARCHAR(32) lock_name - Lock name

LOCK_RELEASE_FLAGS BIGINT lock_release_flags - Lock release
flags

DATA_PARTITION_ID INTEGER data_partition_id - Data Partition
identifier. For a non-partitioned
table, this element is NULL.

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPLOCKWAIT administrative view and SNAP_GET_LOCKWAIT table
function – Retrieve lockwait logical data group snapshot information

Note: This administrative view and table function have been deprecated and
replaced by the “MON_LOCKWAITS administrative view - Retrieve metrics for
applications that are waiting to obtain locks” on page 520 and the
“MON_GET_APPL_LOCKWAIT - get information about locks for which an
application is waiting” on page 423, “MON_GET_LOCKS - list all locks in the
currently connected database” on page 452, and “MON_FORMAT_LOCK_NAME -
format the internal lock name and return details” on page 389.

The SNAPLOCKWAIT administrative view and the SNAP_GET_LOCKWAIT table
function return snapshot information about lock waits, in particular, the lockwait
logical data group.

SNAPLOCKWAIT administrative view

This administrative view allows you to retrieve lockwait logical data group
snapshot information for the currently connected database.

Chapter 15. Snapshot routines and views 795

Used with the SNAPLOCK administrative view, the SNAPLOCKWAIT
administrative view provides information equivalent to the GET SNAPSHOT FOR
LOCKS ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 189 on page 665 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPLOCKWAIT administrative view
v CONTROL privilege on the SNAPLOCKWAIT administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_LOCKWAIT table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve lock wait information about database partition 0 for the currently
connected database.
SELECT AGENT_ID, LOCK_MODE, LOCK_OBJECT_TYPE, AGENT_ID_HOLDING_LK,

LOCK_MODE_REQUESTED FROM SYSIBMADM.SNAPLOCKWAIT
WHERE DBPARTITIONNUM = 0

The following example is a sample output from this query.
AGENT_ID LOCK_MODE LOCK_OBJECT_TYPE ...
--------...- --------- ---------------- ...

7 IX TABLE ...

1 record(s) selected.

Output from this query (continued).
... AGENT_ID_HOLDING_LK LOCK_MODE_REQUESTED
... -------------------- -------------------
... 12 IS

SNAP_GET_LOCKWAIT table function

The SNAP_GET_LOCKWAIT table function returns the same information as the
SNAPLOCKWAIT administrative view, but allows you to retrieve the information
for a specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

796 Administrative Routines and Views

Used with the SNAP_GET_LOCK table function, the SNAP_GET_LOCKWAIT table
function provides information equivalent to the GET SNAPSHOT FOR LOCKS ON
database-alias CLP command.

Refer to Table 189 on page 665 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_LOCKWAIT (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify a null value or
empty string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_LOCKWAIT table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_LOCKWAIT table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Chapter 15. Snapshot routines and views 797

Example

Retrieve lock wait information about current database partition for the currently
connected database.
SELECT AGENT_ID, LOCK_MODE, LOCK_OBJECT_TYPE, AGENT_ID_HOLDING_LK,

LOCK_MODE_REQUESTED FROM TABLE(SNAP_GET_LOCKWAIT(’’,-1)) AS T

The following example is a sample output from this query.
AGENT_ID LOCK_MODE LOCK_OBJECT_TYPE ...
--------...-- ---------- ------------------ ...

12 X ROW_LOCK ...

1 record(s) selected.

Output from this query (continued).
... AGENT_ID_HOLDING_LK LOCK_MODE_REQUESTED
... -------------------- -------------------
... 7 X

Usage note

To see lock wait information, you must first turn on the default LOCK monitor
switch in the database manager configuration. To have the change take effect
immediately explicitly attach to the instance using CLP and then issue the CLP
command:

UPDATE DATABASE MANAGER CONFIGURATION CLP USING DFT_MON_LOCK ON

The default setting can also be turned on through the ADMIN_CMD stored
procedure. For example:
CALL SYSPROC.ADMIN_CMD(’update dbm cfg using DFT_MON_LOCK ON’)

If the ADMIN_CMD stored procedure is used or if the clp command is used
without having previously attached to the instance, the instance must be recycled
before the change takes effect.

Information returned

Table 217. Information returned by the SNAPLOCKWAIT administrative view and the
SNAP_GET_LOCKWAIT table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

SUBSECTION_NUMBER BIGINT ss_number - Subsection number

798 Administrative Routines and Views

Table 217. Information returned by the SNAPLOCKWAIT administrative view and the
SNAP_GET_LOCKWAIT table function (continued)

Column name Data type
Description or corresponding
monitor element

LOCK_MODE VARCHAR(10) lock_mode - Lock mode. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

LOCK_OBJECT_TYPE VARCHAR(18) lock_object_type - Lock object type
waited on. This interface returns a
text identifier based on the defines
in sqlmon.h and is one of:

v AUTORESIZE_LOCK

v AUTOSTORAGE_LOCK

v BLOCK_LOCK

v EOT_LOCK

v INPLACE_REORG_LOCK

v INTERNAL_LOCK

v INTERNALB_LOCK

v INTERNALC_LOCK

v INTERNALJ_LOCK

v INTERNALL_LOCK

v INTERNALO_LOCK

v INTERNALQ_LOCK

v INTERNALP_LOCK

v INTERNALS_LOCK

v INTERNALT_LOCK

v INTERNALV_LOCK

v KEYVALUE_LOCK

v ROW_LOCK

v SYSBOOT_LOCK

v TABLE_LOCK

v TABLE_PART_LOCK

v TABLESPACE_LOCK

v XML_PATH_LOCK

AGENT_ID_HOLDING_LK BIGINT agent_id_holding_lock - Agent ID
holding lock

Chapter 15. Snapshot routines and views 799

Table 217. Information returned by the SNAPLOCKWAIT administrative view and the
SNAP_GET_LOCKWAIT table function (continued)

Column name Data type
Description or corresponding
monitor element

LOCK_WAIT_START_TIME TIMESTAMP lock_wait_start_time - Lock wait
start timestamp

LOCK_MODE_REQUESTED VARCHAR(10) lock_mode_requested - Lock mode
requested. This interface returns a
text identifier based on the defines
in sqlmon.h and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

LOCK_ESCALATION SMALLINT lock_escalation - Lock escalation

TABNAME VARCHAR(128) table_name - Table name

TABSCHEMA VARCHAR(128) table_schema - Table schema name

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

APPL_ID_HOLDING_LK VARCHAR(128) appl_id_holding_lk - Application
ID holding lock

LOCK_ATTRIBUTES VARCHAR(128) lock_attributes - Lock attributes.
This interface returns a text
identifier based on the defines in
sqlmon.h. If there are no locks, the
text identifier is NONE, otherwise,
it is any combination of the
following separated by a '+' sign:

v ALLOW_NEW

v DELETE_IN_BLOCK

v ESCALATED

v INSERT

v NEW_REQUEST

v RR

v RR_IN_BLOCK

v UPDATE_DELETE

v WAIT_FOR_AVAIL

800 Administrative Routines and Views

Table 217. Information returned by the SNAPLOCKWAIT administrative view and the
SNAP_GET_LOCKWAIT table function (continued)

Column name Data type
Description or corresponding
monitor element

LOCK_CURRENT_MODE VARCHAR(10) lock_current_mode - Original lock
mode before conversion. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

LOCK_NAME VARCHAR(32) lock_name - Lock name

LOCK_RELEASE_FLAGS BIGINT lock_release_flags - Lock release
flags.

DATA_PARTITION_ID INTEGER data_partition_id - Data Partition
identifier. For a non-partitioned
table, this element is NULL.

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPSTMT administrative view and SNAP_GET_STMT table function –
Retrieve statement snapshot information

The SNAPSTMT administrative view and the SNAP_GET_STMT table function
return information about SQL or XQuery statements from an application snapshot.

SNAPSTMT administrative view

This administrative view allows you to retrieve statement snapshot information for
the currently connected database.

Used with the SNAPAGENT, SNAPAGENT_MEMORY_POOL, SNAPAPPL,
SNAPAPPL_INFO and SNAPSUBSECTION administrative views, the SNAPSTMT
administrative view provides information equivalent to the GET SNAPSHOT FOR
APPLICATIONS on database-alias CLP command, but retrieves data from all
database partitions.

The schema is SYSIBMADM.

Refer to Table 190 on page 671 for a complete list of information that can be
returned.

Chapter 15. Snapshot routines and views 801

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPSTMT administrative view
v CONTROL privilege on the SNAPSTMT administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_STMT table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve rows read, written and operation performed for statements executed on
the currently connected single-partition database.
SELECT SUBSTR(STMT_TEXT,1,30) AS STMT_TEXT, ROWS_READ, ROWS_WRITTEN,

STMT_OPERATION FROM SYSIBMADM.SNAPSTMT

The following example is a sample output from this query.
STMT_TEXT ROWS_READ ROWS_WRITTEN STMT_OPERATION
---------...- ---------...- ------------...- --------------------
- 0 0 FETCH
- 0 0 STATIC_COMMIT

2 record(s) selected.

SNAP_GET_STMT table function

The SNAP_GET_STMT table function returns the same information as the
SNAPSTMT administrative view, but allows you to retrieve the information for a
specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Used with the SNAP_GET_AGENT, SNAP_GET_AGENT_MEMORY_POOL,
SNAP_GET_APPL_V95, SNAP_GET_APPL_INFO_V95 and
SNAP_GET_SUBSECTION table functions, the SNAP_GET_STMT table function
provides information equivalent to the GET SNAPSHOT FOR ALL APPLICATIONS CLP
command, but retrieves data from all database partitions.

Refer to Table 190 on page 671 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_STMT (dbname)
, dbpartitionnum

��

802 Administrative Routines and Views

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_STMT table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_STMT table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve rows read, written and operation performed for statements executed on
current database partition of currently connected database.
SELECT SUBSTR(STMT_TEXT,1,30) AS STMT_TEXT, ROWS_READ,

ROWS_WRITTEN, STMT_OPERATION FROM TABLE(SNAP_GET_STMT(’’,-1)) AS T

The following example is a sample output from this query.
STMT_TEXT ROWS_READ ...
------------------------------ ---------...- ...
update t set a=3 0 ...
SELECT SUBSTR(STMT_TEXT,1,30) 0 ...
- 0 ...
- 0 ...

Chapter 15. Snapshot routines and views 803

update t set a=2 9 ...
...

5 record(s) selected. ...

Output from this query (continued).
... ROWS_WRITTEN STMT_OPERATION
... ------------...- --------------------
... 0 EXECUTE_IMMEDIATE
... 0 FETCH
... 0 NONE
... 0 NONE
... 1 EXECUTE_IMMEDIATE
...

Information returned

Table 218. Information returned by the SNAPSTMT administrative view and the
SNAP_GET_STMT table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

ROWS_READ BIGINT rows_read - Rows read

ROWS_WRITTEN BIGINT rows_written - Rows written

NUM_AGENTS BIGINT num_agents - Number of agents
working on a statement

AGENTS_TOP BIGINT agents_top - Number of agents
created

STMT_TYPE VARCHAR(20) stmt_type - Statement type. This
interface returns a text identifier
based on defines in sqlmon.h and
is one of:

v DYNAMIC

v NON_STMT

v STATIC

v STMT_TYPE_UNKNOWN

804 Administrative Routines and Views

Table 218. Information returned by the SNAPSTMT administrative view and the
SNAP_GET_STMT table function (continued)

Column name Data type
Description or corresponding
monitor element

STMT_OPERATION VARCHAR(20) stmt_operation/operation -
Statement operation. This interface
returns a text identifier based on
defines in sqlmon.h and is one of:

v CALL

v CLOSE

v COMPILE

v DESCRIBE

v EXECUTE

v EXECUTE_IMMEDIATE

v FETCH

v FREE_LOCATOR

v GETAA

v GETNEXTCHUNK

v GETTA

v NONE

v OPEN

v PREP_COMMIT

v PREP_EXEC

v PREP_OPEN

v PREPARE

v REBIND

v REDIST

v REORG

v RUNSTATS

v SELECT

v SET

v STATIC_COMMIT

v STATIC_ROLLBACK

SECTION_NUMBER BIGINT section_number - Section number

QUERY_COST_ESTIMATE BIGINT query_cost_estimate - Query cost
estimate

QUERY_CARD_ESTIMATE BIGINT query_card_estimate - Query
number of rows estimate

DEGREE_PARALLELISM BIGINT degree_parallelism - Degree of
parallelism

STMT_SORTS BIGINT stmt_sorts - Statement sorts

TOTAL_SORT_TIME BIGINT total_sort_time - Total sort time

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal rows
deleted

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal rows
updated

Chapter 15. Snapshot routines and views 805

Table 218. Information returned by the SNAPSTMT administrative view and the
SNAP_GET_STMT table function (continued)

Column name Data type
Description or corresponding
monitor element

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal rows
inserted

FETCH_COUNT BIGINT fetch_count - Number of successful
fetches

STMT_START TIMESTAMP stmt_start - Statement operation
start timestamp

STMT_STOP TIMESTAMP stmt_stop - Statement operation
stop timestamp

STMT_USR_CPU_TIME_S BIGINT stmt_usr_cpu_time - User CPU
time used by statement (in
seconds)*

STMT_USR_CPU_TIME_MS BIGINT stmt_usr_cpu_time - User CPU
time used by statement (fractional,
in microseconds)*

STMT_SYS_CPU_TIME_S BIGINT stmt_sys_cpu_time - System CPU
time used by statement (in
seconds)*

STMT_SYS_CPU_TIME_MS BIGINT stmt_sys_cpu_time - System CPU
time used by statement (fractional,
in microseconds)*

STMT_ELAPSED_TIME_S BIGINT stmt_elapsed_time - Most recent
statement elapsed time (in
seconds)*

STMT_ELAPSED_TIME_MS BIGINT stmt_elapsed_time - Most recent
statement elapsed time (fractional,
in microseconds)*

BLOCKING_CURSOR SMALLINT blocking_cursor - Blocking cursor

STMT_NODE_NUMBER SMALLINT stmt_node_number - Statement
node

CURSOR_NAME VARCHAR(128) cursor_name - Cursor name

CREATOR VARCHAR(128) creator - Application creator

PACKAGE_NAME VARCHAR(128) package_name - Package name

STMT_TEXT CLOB(16 M) stmt_text - SQL statement text

CONSISTENCY_TOKEN VARCHAR(128) consistency_token - Package
consistency token

PACKAGE_VERSION_ID VARCHAR(128) package_version_id - Package
version

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool
data logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool
data physical reads

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool
index logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool
index physical reads

806 Administrative Routines and Views

Table 218. Information returned by the SNAPSTMT administrative view and the
SNAP_GET_STMT table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool
XDA Data Logical Reads monitor
element

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool
XDA Data Physical Reads monitor
element

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer
pool temporary data logical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer
pool temporary data physical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer
pool temporary index logical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer
pool temporary index physical
reads

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer
Pool Temporary XDA Data Logical
Reads

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer
Pool Temporary XDA Data
Physical Reads monitor element

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

* To calculate the total time spent for the monitor element that this column is based on,
you must add the full seconds reported in the column for this monitor element that ends
with _S to the fractional seconds reported in the column for this monitor element that ends
with _MS, using the following formula: (monitor-element-name_S × 1,000,000 +
monitor-element-name_MS) ÷ 1,000,000. For example, (ELAPSED_EXEC_TIME_S × 1,000,000
+ ELAPSED_EXEC_TIME_MS) ÷ 1,000,000.

SNAPSTORAGE_PATHS administrative view and
SNAP_GET_STORAGE_PATHS table function - Retrieve automatic
storage path information

Note: This table function has been deprecated and replaced by
“SNAPSTORAGE_PATHS administrative view and
SNAP_GET_STORAGE_PATHS_V97 table function - Retrieve automatic storage
path information” on page 674.

The SNAPSTORAGE_PATHS administrative view and the
SNAP_GET_STORAGE_PATHS table function return a list of automatic storage
paths for the database including file system information for each storage path,
specifically, from the db_storage_group logical data group.

Chapter 15. Snapshot routines and views 807

SNAPSTORAGE_PATHS administrative view

This administrative view allows you to retrieve automatic storage path information
for the currently connected database.

Used with the SNAPDB, SNAPDETAILLOG, SNAPHADR and
SNAPDB_MEMORY_POOL administrative views, the SNAPSTORAGE_PATHS
administrative view provides information equivalent to the GET SNAPSHOT FOR
DATABASE ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 219 on page 810 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPSTORAGE_PATHS administrative view
v CONTROL privilege on the SNAPSTORAGE_PATHS administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_STORAGE_PATHS table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve the storage path for the currently connected single-partition database.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, SUBSTR(DB_STORAGE_PATH,1,8)

AS DB_STORAGE_PATH FROM SYSIBMADM.SNAPSTORAGE_PATHS

The following example is a sample output from this query.
DB_NAME DB_STORAGE_PATH
-------- ---------------
STOPATH d:

1 record(s) selected.

SNAP_GET_STORAGE_PATHS table function

The SNAP_GET_STORAGE_PATHS table function returns the same information as
the SNAPSTORAGE_PATHS administrative view, but allows you to retrieve the
information for a specific database on a specific database partition, aggregate of all
database partitions or all database partitions.

808 Administrative Routines and Views

Used with the SNAP_GET_DB_V95, SNAP_GET_DETAILLOG_V91,
SNAP_GET_HADR and SNAP_GET_DB_MEMORY_POOL table functions, the
SNAP_GET_STORAGE_PATHS table function provides information equivalent to
the GET SNAPSHOT FOR ALL DATABASES CLP command.

Refer to Table 219 on page 810 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_STORAGE_PATHS (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL,-1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_STORAGE_PATHS table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_STORAGE_PATHS table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Chapter 15. Snapshot routines and views 809

Examples

Retrieve the storage path information for all active databases.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, DB_STORAGE_PATH

FROM TABLE(SNAP_GET_STORAGE_PATHS(CAST (NULL AS VARCHAR(128)), -1)) AS T

The following example is a sample output from this query.
DB_NAME DB_STORAGE_PATH
-------- -------------------...
STOPATH /home/jessicae/sdb
MYDB /home/jessicae/mdb

2 record(s) selected

Information returned

The BUFFERPOOL monitor switch must be turned on in order for the file system
information to be returned.

Table 219. Information returned by the SNAPSTORAGE_PATHS administrative view and the
SNAP_GET_STORAGE_PATHS table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

DB_STORAGE_PATH VARCHAR(256) db_storage_path - Automatic
storage path

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

FS_ID VARCHAR(22) fs_id - Unique file system
identification number

FS_TOTAL_SIZE BIGINT fs_total_size - Total size of a file
system

FS_USED_SIZE BIGINT fs_used_size - Amount of space
used on a file system

STO_PATH_FREE_SIZE BIGINT sto_path_free_sz - Automatic
storage path free space

SNAPSUBSECTION administrative view and SNAP_GET_SUBSECTION
table function – Retrieve subsection logical monitor group snapshot
information

The SNAPSUBSECTION administrative view and the SNAP_GET_SUBSECTION
table function return information about application subsections, namely the
subsection logical monitor grouping.

SNAPSUBSECTION administrative view

This administrative view allows you to retrieve subsection logical monitor group
snapshot information for the currently connected database.

810 Administrative Routines and Views

Used with the SNAPAGENT, SNAPAGENT_MEMORY_POOL, SNAPAPPL,
SNAPAPPL_INFO and SNAPSTMT administrative views, the SNAPSUBSECTION
administrative view provides information equivalent to the GET SNAPSHOT FOR
APPLICATIONS on database-alias CLP command, but retrieves data from all
database partitions.

The schema is SYSIBMADM.

Refer to Table 192 on page 680 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPSUBSECTION administrative view
v CONTROL privilege on the SNAPSUBSECTION administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_SUBSECTION table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Get status for subsections executing on all database partitions.
SELECT DB_NAME, STMT_TEXT, SS_STATUS, DBPARTITIONNUM

FROM SYSIBMADM.SNAPSUBSECTION
ORDER BY DB_NAME, SS_STATUS, DBPARTITIONNUM

The following example is a sample output from this query.
DB_NAME STMT_TEXT SS_STATUS DBPARTITIONNUM
-------...- ----------------------...- ---------...- --------------
SAMPLE select * from EMPLOYEE EXEC 0
SAMPLE select * from EMPLOYEE EXEC 1

SNAP_GET_SUBSECTION table function

The SNAP_GET_SUBSECTION table function returns the same information as the
SNAPSUBSECTION administrative view, but allows you to retrieve the
information for a specific database on a specific database partition, aggregate of all
database partitions or all database partitions.

Refer to Table 192 on page 680 for a complete list of information that can be
returned.

Used with the SNAP_GET_AGENT, SNAP_GET_AGENT_MEMORY_POOL,
SNAP_GET_APPL_V95, SNAP_GET_APPL_INFO_V95 and SNAP_GET_STMT

Chapter 15. Snapshot routines and views 811

table functions, the SNAP_GET_SUBSECTION table function provides information
equivalent to the GET SNAPSHOT FOR ALL APPLICATIONS CLP command, but retrieves
data from all database partitions.

Syntax

�� SNAP_GET_SUBSECTION (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_SUBSECTION table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_SUBSECTION table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Get status for subsections executing on all database partitions.

812 Administrative Routines and Views

SELECT DB_NAME, STMT_TEXT, SS_STATUS, DBPARTITIONNUM
FROM TABLE(SYSPROC.SNAP_GET_SUBSECTION(’’, 0)) as T
ORDER BY DB_NAME, SS_STATUS, DBPARTITIONNUM

The following example is a sample output from this query.
DB_NAME STMT_TEXT SS_STATUS DBPARTITIONNUM
-------...- ----------------------...- ---------...- --------------
SAMPLE select * from EMPLOYEE EXEC 0
SAMPLE select * from EMPLOYEE EXEC 1

Information returned

Table 220. Information returned by the SNAPSUBSECTION administrative view and the
SNAP_GET_SUBSECTION table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

STMT_TEXT CLOB(16 M) stmt_text - SQL statement text

SS_EXEC_TIME BIGINT ss_exec_time - Subsection
execution elapsed time

TQ_TOT_SEND_SPILLS BIGINT tq_tot_send_spills - Total number
of table queue buffers overflowed

TQ_CUR_SEND_SPILLS BIGINT tq_cur_send_spills - Current
number of table queue buffers
overflowed

TQ_MAX_SEND_SPILLS BIGINT tq_max_send_spills - Maximum
number of table queue buffers
overflows

TQ_ROWS_READ BIGINT tq_rows_read - Number of rows
read from table queues

TQ_ROWS_WRITTEN BIGINT tq_rows_written - Number of rows
written to table queues

ROWS_READ BIGINT rows_read - Rows read

ROWS_WRITTEN BIGINT rows_written - Rows written

SS_USR_CPU_TIME_S BIGINT ss_usr_cpu_time - User CPU time
used by subsection (in seconds)*

SS_USR_CPU_TIME_MS BIGINT ss_usr_cpu_time - User CPU time
used by subsection (fractional, in
microseconds)*

SS_SYS_CPU_TIME_S BIGINT ss_sys_cpu_time - System CPU
time used by subsection (in
seconds)*

SS_SYS_CPU_TIME_MS BIGINT ss_sys_cpu_time - System CPU
time used by subsection (fractional,
in microseconds)*

SS_NUMBER INTEGER ss_number - Subsection number

Chapter 15. Snapshot routines and views 813

Table 220. Information returned by the SNAPSUBSECTION administrative view and the
SNAP_GET_SUBSECTION table function (continued)

Column name Data type
Description or corresponding
monitor element

SS_STATUS VARCHAR(20) ss_status - Subsection status. This
interface returns a text identifier
based on defines in sqlmon.h and
is one of:

v EXEC

v TQ_WAIT_TO_RCV

v TQ_WAIT_TO_SEND

v COMPLETED

SS_NODE_NUMBER SMALLINT ss_node_number - Subsection node
number

TQ_NODE_WAITED_FOR SMALLINT tq_node_waited_for - Waited for
node on a table queue

TQ_WAIT_FOR_ANY INTEGER tq_wait_for_any - Waiting for any
node to send on a table queue

TQ_ID_WAITING_ON INTEGER tq_id_waiting_on - Waited on node
on a table queue

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

* To calculate the total time spent for the monitor element that this column is based on,
you must add the full seconds reported in the column for this monitor element that ends
with _S to the fractional seconds reported in the column for this monitor element that ends
with _MS, using the following formula: (monitor-element-name_S × 1,000,000 +
monitor-element-name_MS) ÷ 1,000,000. For example, (ELAPSED_EXEC_TIME_S × 1,000,000
+ ELAPSED_EXEC_TIME_MS) ÷ 1,000,000.

SNAPSWITCHES administrative view and SNAP_GET_SWITCHES table
function – Retrieve database snapshot switch state information

The SNAPSWITCHES administrative view and the SNAP_GET_SWITCHES table
function return information about the database snapshot switch state.

SNAPSWITCHES administrative view

This view provides the data equivalent to the GET DBM MONITOR SWITCHES CLP
command.

The schema is SYSIBMADM.

Refer to Table 193 on page 683 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPSWITCHES administrative view
v CONTROL privilege on the SNAPSWITCHES administrative view
v DATAACCESS authority

814 Administrative Routines and Views

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_SWITCHES table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve DBM monitor switches state information for all database partitions.
SELECT UOW_SW_STATE, STATEMENT_SW_STATE, TABLE_SW_STATE, BUFFPOOL_SW_STATE,

LOCK_SW_STATE, SORT_SW_STATE, TIMESTAMP_SW_STATE,
DBPARTITIONNUM FROM SYSIBMADM.SNAPSWITCHES

TThe following example is a sample output from this query.
UOW_SW_STATE STATEMENT_SW_STATE TABLE_SW_STATE BUFFPOOL_SW_STATE ...
------------ ------------------ -------------- ----------------- ...

0 0 0 0 ...
0 0 0 0 ...
0 0 0 0 ...

...
3 record selected.

Output from this query (continued).
... LOCK_SW_STATE SORT_SW_STATE TIMESTAMP_SW_STATE DBPARTITIONNUM
... ------------- ------------- ------------------ --------------
... 1 0 1 0
... 1 0 1 1
... 1 0 1 2

SNAP_GET_SWITCHES table function

The SNAP_GET_SWITCHES table function returns the same information as the
SNAPSWITCHES administrative view, but allows you to retrieve the information
for a specific database partition, aggregate of all database partitions or all database
partitions.

This table function provides the data equivalent to the GET DBM MONITOR SWITCHES
CLP command.

Refer to Table 193 on page 683 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_SWITCHES ()
dbpartitionnum

��

The schema is SYSPROC.

Chapter 15. Snapshot routines and views 815

Table function parameter

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If this input option is not used, data
will be returned from all active database partitions. An active database
partition is a partition where the database is available for connection and use
by applications.

If dbpartitionnum is set to NULL, an attempt is made to read data from the file
created by SNAP_WRITE_FILE procedure. Note that this file could have been
created at any time, which means that the data might not be current. If a file with
the corresponding snapshot API request type does not exist, then the
SNAP_GET_SWITCHES table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_SWITCHES table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Examples

Retrieve DBM monitor switches state information for the current database
partition.
SELECT UOW_SW_STATE, STATEMENT_SW_STATE, TABLE_SW_STATE,

BUFFPOOL_SW_STATE,LOCK_SW_STATE, SORT_SW_STATE, TIMESTAMP_SW_STATE
FROM TABLE(SNAP_GET_SWITCHES(-1)) AS T

The following example is a sample output from this query.
UOW_SW_STATE STATEMENT_SW_STATE TABLE_SW_STATE...
------------ ------------------ --------------...

1 1 1...
...

1 record(s) selected. ...

Output from this query (continued).
... BUFFPOOL_SW_STATE LOCK_SW_STATE SORT_SW_STATE TIMESTAMP_SW_STATE
... ----------------- ------------- ------------- ------------------
... 1 1 0 1

816 Administrative Routines and Views

Information returned

Table 221. Information returned by the SNAPSWITCHES administrative view and the
SNAP_GET_SWITCHES table function

Column name Data type Description

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

UOW_SW_STATE SMALLINT State of the unit of work monitor
recording switch (0 or 1).

UOW_SW_TIME TIMESTAMP If the unit of work monitor
recording switch is on, the date
and time that this switch was
turned on.

STATEMENT_SW_STATE SMALLINT State of the SQL statement monitor
recording switch (0 or 1).

STATEMENT_SW_TIME TIMESTAMP If the SQL statement monitor
recording switch is on, the date
and time that this switch was
turned on.

TABLE_SW_STATE SMALLINT State of the table activity monitor
recording switch (0 or 1).

TABLE_SW_TIME TIMESTAMP If the table activity monitor
recording switch is on, the date
and time that this switch was
turned on.

BUFFPOOL_SW_STATE SMALLINT State of the buffer pool activity
monitor recording switch (0 or 1).

BUFFPOOL_SW_TIME TIMESTAMP If the buffer pool activity monitor
recording switch is on, the date
and time that this switch was
turned on.

LOCK_SW_STATE SMALLINT State of the lock monitor recording
switch (0 or 1).

LOCK_SW_TIME TIMESTAMP If the lock monitor recording
switch is on, the date and time that
this switch was turned on.

SORT_SW_STATE SMALLINT State of the sorting monitor
recording switch (0 or 1).

SORT_SW_TIME TIMESTAMP If the sorting monitor recording
switch is on, the date and time that
this switch was turned on.

TIMESTAMP_SW_STATE SMALLINT State of the timestamp monitor
recording switch (0 or 1)

TIMESTAMP_SW_TIME TIMESTAMP If the timestamp monitor recording
switch is on, the date and time that
this switch was turned on.

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

Chapter 15. Snapshot routines and views 817

SNAPTAB administrative view and SNAP_GET_TAB_V91 table function
- Retrieve table logical data group snapshot information

The SNAPTAB administrative view and the SNAP_GET_TAB_V91 table function
return snapshot information from the table logical data group.

Note: Beginning in Version 9.7 Fix Pack 5, the SNAPTAB administrative view and
SNAP_GET_TAB_V91 table function are deprecated. You can use the table
functions MON_GET_TABLESPACE, MON_GET_BUFFERPOOL, and
MON_GET_TABLE, and the administrative view MON_BP_UTILIZATION to
retrieve the information returned by these deprecated interfaces.

SNAPTAB administrative view

This administrative view allows you to retrieve table logical data group snapshot
information for the currently connected database.

Used in conjunction with the SNAPTAB_REORG administrative view, the
SNAPTAB administrative view returns equivalent information to the GET SNAPSHOT
FOR TABLES ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 194 on page 687 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPTAB administrative view
v CONTROL privilege on the SNAPTAB administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_TAB_V91 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve the schema and name for all active tables.
SELECT SUBSTR(TABSCHEMA,1,8), SUBSTR(TABNAME,1,15) AS TABNAME, TAB_TYPE,

DBPARTITIONNUM FROM SYSIBMADM.SNAPTAB

The following example is a sample output from this query.

818 Administrative Routines and Views

TABSCHEMA TABNAME TAB_TYPE DBPARTITIONNUM
--------- --------------- ------------ --------------
SYSTOOLS HMON_ATM_INFO USER_TABLE 0

1 record selected.

SNAP_GET_TAB_V91 table function

The SNAP_GET_TAB_V91 table function returns the same information as the
SNAPTAB administrative view, but allows you to retrieve the information for a
specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Used in conjunction with the SNAP_GET_TAB_REORG table function, the
SNAP_GET_TAB_V91 table function returns equivalent information to the GET
SNAPSHOT FOR TABLES ON database-alias CLP command.

Refer to Table 194 on page 687 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_TAB_V91 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify NULL or empty
string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_TAB_V91 table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_TAB_V91 table function

Chapter 15. Snapshot routines and views 819

v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of active tables as an aggregate view for the currently connected
database.
SELECT SUBSTR(TABSCHEMA,1,8) AS TABSCHEMA, SUBSTR(TABNAME,1,15) AS TABNAME,

TAB_TYPE, DBPARTITIONNUM FROM TABLE(SNAP_GET_TAB(’’,-2)) AS T

The following example is a sample output from this query.
TABSCHEMA TABNAME TAB_TYPE DBPARTITIONNUM
--------- --------------- ------------- --------------
SYSTOOLS HMON_ATM_INFO USER_TABLE -
JESSICAE EMPLOYEE USER_TABLE -

Information returned

Table 222. Information returned by the SNAPTAB administrative view and the
SNAP_GET_TAB_V91 table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

TABSCHEMA VARCHAR(128) table_schema - Table schema name

TABNAME VARCHAR(128) table_name - Table name

TAB_FILE_ID BIGINT table_file_id - Table file
identification

TAB_TYPE VARCHAR(14) table_type - Table type. This
interface returns a text identifier
based on defines in sqlmon.h, and
is one of:

v USER_TABLE

v DROPPED_TABLE

v TEMP_TABLE

v CATALOG_TABLE

v REORG_TABLE

DATA_OBJECT_PAGES BIGINT data_object_pages - Data object
pages

INDEX_OBJECT_PAGES BIGINT index_object_pages - Index object
pages

LOB_OBJECT_PAGES BIGINT lob_object_pages - LOB object
pages

LONG_OBJECT_PAGES BIGINT long_object_pages - Long object
pages

820 Administrative Routines and Views

Table 222. Information returned by the SNAPTAB administrative view and the
SNAP_GET_TAB_V91 table function (continued)

Column name Data type
Description or corresponding
monitor element

XDA_OBJECT_PAGES BIGINT xda_object_pages - XDA Object
Pages

ROWS_READ BIGINT rows_read - Rows read

ROWS_WRITTEN BIGINT rows_written - Rows written

OVERFLOW_ACCESSES BIGINT overflow_accesses - Accesses to
overflowed records

PAGE_REORGS BIGINT page_reorgs - Page reorganizations

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

TBSP_ID BIGINT tablespace_id - Table space
identification

DATA_PARTITION_ID INTEGER data_partition_id - Data Partition
identifier. For a non-partitioned
table, this element will be NULL.

SNAPTAB_REORG administrative view and SNAP_GET_TAB_REORG
table function - Retrieve table reorganization snapshot information

The SNAPTAB_REORG administrative view and the SNAP_GET_TAB_REORG
table function return table reorganization information. If no tables have been
reorganized, 0 rows are returned. When a data partitioned table is reorganized, one
record for each data partition is returned. If only a specific data partition of a data
partitioned table is reorganized, only a record the for the partition is returned.

SNAPTAB_REORG administrative view

This administrative view allows you to retrieve table reorganization snapshot
information for the currently connected database.

Used with the SNAPTAB administrative view, the SNAPTAB_REORG
administrative view provides the data equivalent to the GET SNAPSHOT FOR TABLES
ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 195 on page 691 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPTAB_REORG administrative view
v CONTROL privilege on the SNAPTAB_REORG administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:

Chapter 15. Snapshot routines and views 821

v EXECUTE privilege on the SNAP_GET_TAB_REORG table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Select details on reorganization operations for all database partitions on the
currently connected database.
SELECT SUBSTR(TABNAME, 1, 15) AS TAB_NAME, SUBSTR(TABSCHEMA, 1, 15)

AS TAB_SCHEMA, REORG_PHASE, SUBSTR(REORG_TYPE, 1, 20) AS REORG_TYPE,
REORG_STATUS, REORG_COMPLETION, DBPARTITIONNUM
FROM SYSIBMADM.SNAPTAB_REORG ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
TAB_NAME TAB_SCHEMA REORG_PHASE ...
--------...- ----------...- ---------------- ...
EMPLOYEE DBUSER REPLACE ...
EMPLOYEE DBUSER REPLACE ...
EMPLOYEE DBUSER REPLACE ...

...
3 record(s) selected.

Output from this query (continued).
... REORG_TYPE REORG_STATUS REORG_COMPLETION DBPARTITIONNUM
... -------------------- ------------ ---------------- --------------
... RECLAIM+OFFLINE+ALLO COMPLETED SUCCESS 0
... RECLAIM+OFFLINE+ALLO COMPLETED SUCCESS 1
... RECLAIM+OFFLINE+ALLO COMPLETED SUCCESS 2

Select all information about a reorganization operation to reclaim extents from a
multidimensional clustering (MDC) table from the SNAPTAB_REORG
administrative view..
db2 -v "select * from sysibmadm.snaptab_reorg"

TABNAME REORG_PHASE REORG_MAX_PHASE REORG_TYPE
-------- ----------------- ----------------- ---------------------------
T1 RELEASE 3 RECLAIM_EXTENTS+ALLOW_WRITE

REORG_STATUS REORG_COMPLETION REORG_START REORG_END
------------ ---------------- -------------------------- --------------------------
COMPLETED SUCCESS 2008-09-24-14.35.30.734741 2008-09-24-14.35.31.460674

SNAP_GET_TAB_REORG table function

The SNAP_GET_TAB_REORG table function returns the same information as the
SNAPTAB_REORG administrative view, but allows you to retrieve the information
for a specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Used with the SNAP_GET_TAB table function, the SNAP_GET_TAB_REORG table
function provides the data equivalent to the GET SNAPSHOT FOR TABLES ON
database-alias CLP command.

822 Administrative Routines and Views

Refer to Table 195 on page 691 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_TAB_REORG (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify NULL or empty
string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_TAB_REORG table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_TAB_REORG table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Select details on reorganization operations for database partition 1 on the currently
connected database.

Chapter 15. Snapshot routines and views 823

SELECT SUBSTR(TABNAME, 1, 15) AS TAB_NAME, SUBSTR(TABSCHEMA, 1, 15)
AS TAB_SCHEMA, REORG_PHASE, SUBSTR(REORG_TYPE, 1, 20) AS REORG_TYPE,
REORG_STATUS, REORG_COMPLETION, DBPARTITIONNUM
FROM TABLE(SNAP_GET_TAB_REORG(’’, 1)) AS T

The following example is a sample output from this query.
TAB_NAME TAB_SCHEMA REORG_PHASE REORG_TYPE ...
--------...- ----------...- -----------...- -------------------- ...
EMPLOYEE DBUSER REPLACE RECLAIM+OFFLINE+ALLO ...

...
1 record(s) selected. ...

Output from this query (continued).
... REORG_STATUS REORG_COMPLETION DBPARTITIONNUM
... ------------ ---------------- --------------
... COMPLETED SUCCESS 1
...

Select all information about a reorganization operation to reclaim extents from a
multidimensional clustering (MDC) table using the SNAP_GET_TAB_REORG table
function.
db2 -v "select * from table(snap_get_tab_reorg(’’))"

TABNAME REORG_PHASE REORG_MAX_PHASE REORG_TYPE
-------- ----------------- ----------------- ---------------------------
T1 RELEASE 3 RECLAIM_EXTENTS+ALLOW_WRITE

REORG_STATUS REORG_COMPLETION REORG_START REORG_END
------------ ---------------- -------------------------- --------------------------
COMPLETED SUCCESS 2008-09-24-14.35.30.734741 2008-09-24-14.35.31.460674

Information returned

Table 223. Information returned by the SNAPTAB_REORG administrative view and the
SNAP_GET_TAB_REORG table function

Column name Data type
Description or corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the snapshot was
taken.

TABNAME VARCHAR
(128)

table_name - Table name

TABSCHEMA VARCHAR
(128)

table_schema - Table schema name

PAGE_REORGS BIGINT page_reorgs - Page reorganizations

REORG_PHASE VARCHAR
(16)

reorg_phase - Table reorganize phase. This
interface returns a text identifier based on
defines in sqlmon.h and is one of:

v BUILD

v DICT_SAMPLE

v INDEX_RECREATE

v REPLACE

v SORT

v SCAN

v DRAIN

v RELEASE

or SORT+DICT_SAMPLE.

824 Administrative Routines and Views

Table 223. Information returned by the SNAPTAB_REORG administrative view and the
SNAP_GET_TAB_REORG table function (continued)

Column name Data type
Description or corresponding monitor
element

REORG_MAX_PHASE INTEGER reorg_max_phase - Maximum table
reorganize phase

REORG_CURRENT_
COUNTER

BIGINT reorg_current_counter - Table reorganize
progress

REORG_MAX_COUNTER BIGINT reorg_max_counter - Total amount of table
reorganization

Chapter 15. Snapshot routines and views 825

Table 223. Information returned by the SNAPTAB_REORG administrative view and the
SNAP_GET_TAB_REORG table function (continued)

Column name Data type
Description or corresponding monitor
element

REORG_TYPE VARCHAR
(128)

reorg_type - Table reorganize attributes.
This interface returns a text identifier using
a combination of the following identifiers
separated by '+':

Either:

v RECLAIM

v RECLUSTER

v RECLAIM_EXTS

and either:

v +OFFLINE

v +ONLINE

If access mode is specified, it is one of:

v +ALLOW_NONE

v +ALLOW_READ

v +ALLOW_WRITE

If offline and RECLUSTER option, one of:

v +INDEXSCAN

v +TABLESCAN

If offline, one of:

v +LONGLOB

v +DATAONLY

If offline, and option is specified, any of:

v +CHOOSE_TEMP

v +KEEPDICTIONARY

v +RESETDICTIONARY

If online, and option is specified:

v +NOTRUNCATE

Example 1: If a REORG TABLE
TEST.EMPLOYEE was run, the following
would be displayed:

RECLAIM+OFFLINE+ALLOW_READ+DATAONLY
+KEEPDICTIONARY

Example 2: If a REORG TABLE
TEST.EMPLOYEE INDEX EMPIDX
INDEXSCAN was run, then the following
would be displayed:

RECLUSTER+OFFLINE+ALLOW_READ+INDEXSCAN
+DATAONLY+KEEPDICTIONARY

826 Administrative Routines and Views

Table 223. Information returned by the SNAPTAB_REORG administrative view and the
SNAP_GET_TAB_REORG table function (continued)

Column name Data type
Description or corresponding monitor
element

REORG_STATUS VARCHAR
(10)

reorg_status - Table reorganize status. This
interface returns a text identifier based on
defines in sqlmon.h and is one of:

v COMPLETED

v PAUSED

v STARTED

v STOPPED

v TRUNCATE

REORG_COMPLETION VARCHAR
(10)

reorg_completion - Table reorganization
completion flag. This interface returns a text
identifier, based on defines in sqlmon.h and
is one of:

v FAIL

v SUCCESS

REORG_START TIMESTAMP reorg_start - Table reorganize start time

REORG_END TIMESTAMP reorg_end - Table reorganize end time

REORG_PHASE_START TIMESTAMP reorg_phase_start - Table reorganize phase
start time

REORG_INDEX_ID BIGINT reorg_index_id - Index used to reorganize
the table

REORG_TBSPC_ID BIGINT reorg_tbspc_id - Table space where table is
reorganized

DBPARTITIONNUM SMALLINT The database partition from which the data
was retrieved for this row.

DATA_PARTITION_ID INTEGER data_partition_id - Data Partition identifier.
For a non-partitioned table, this element
will be NULL.

REORG_
ROWSCOMPRESSED

BIGINT reorg_rows_compressed - Rows compressed

REORG_ROWSREJECTED BIGINT reorg_rows_rejected_for_compression -
Rows rejected for compression

REORG_LONG_TBSPC_ID BIGINT reorg_long_tbspc_id - Table space where
long objects are reorganized

SNAPTBSP administrative view and SNAP_GET_TBSP_V91 table
function - Retrieve table space logical data group snapshot
information

The SNAPTBSP administrative view and the SNAP_GET_TBSP_V91 table function
return snapshot information from the table space logical data group.

Chapter 15. Snapshot routines and views 827

SNAPTBSP administrative view

This administrative view allows you to retrieve table space logical data group
snapshot information for the currently connected database.

Used in conjunction with the SNAPTBSP_PART, SNAPTBSP_QUIESCER,
SNAPTBSP_RANGE, SNAPCONTAINER administrative views, the SNAPTBSP
administrative view returns information equivalent to the GET SNAPSHOT FOR
TABLESPACES ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 196 on page 696 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPTBSP administrative view
v CONTROL privilege on the SNAPTBSP administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_TBSP_V91 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of table spaces on the catalog database partition for the currently
connected database.
SELECT SUBSTR(TBSP_NAME,1,30) AS TBSP_NAME, TBSP_ID, TBSP_TYPE,

TBSP_CONTENT_TYPE FROM SYSIBMADM.SNAPTBSP WHERE DBPARTITIONNUM = 1

The following example is a sample output from this query.
TBSP_NAME TBSP_ID TBSP_TYPE TBSP_CONTENT_TYPE
---------- -------...- ---------- -----------------
TEMPSPACE1 1 SMS SYSTEMP
USERSPACE1 2 DMS LONG

2 record(s) selected.

SNAP_GET_TBSP_V91 table function

The SNAP_GET_TBSP_V91 table function returns the same information as the
SNAPTBSP administrative view, but allows you to retrieve the information for a
specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

828 Administrative Routines and Views

Used in conjunction with the SNAP_GET_TBSP_PART_V91,
SNAP_GET_TBSP_QUIESCER, SNAP_GET_TBSP_RANGE,
SNAP_GET_CONTAINER_V91 table functions, the SNAP_GET_TBSP_V91 table
function returns information equivalent to the GET SNAPSHOT FOR TABLESPACES ON
database-alias CLP command.

Refer to Table 196 on page 696 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_TBSP_V91 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify NULL or empty
string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_TBSP_V91 table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_TBSP_V91 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Chapter 15. Snapshot routines and views 829

Example

Retrieve a list of table spaces for all database partitions for the currently connected
database.
SELECT SUBSTR(TBSP_NAME,1,10) AS TBSP_NAME, TBSP_ID, TBSP_TYPE,

TBSP_CONTENT_TYPE, DBPARTITIONNUM FROM TABLE(SNAP_GET_TBSP_V91(’’)) AS T

The following example is a sample output from this query.
TBSP_NAME TBSP_ID TBSP_TYPE TBSP_CONTENT_TYPE DBPARTITIONNUM
-----–---- -------...- ---------- ----------------- --------------
TEMPSPACE1 1 SMS SYSTEMP 1
USERSPACE1 2 DMS LONG 1
SYSCATSPAC 0 DMS ANY 0
TEMPSPACE1 1 SMS SYSTEMP 0
USERSPACE1 2 DMS LONG 0
SYSTOOLSPA 3 DMS LONG 0
TEMPSPACE1 1 SMS SYSTEMP 2
USERSPACE1 2 DMS LONG 2

8 record(s) selected.

Information returned

Table 224. Information returned by the SNAPTBSP administrative view and the
SNAP_GET_TBSP_V91 table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

TBSP_ID BIGINT tablespace_id - Table space
identification

TBSP_TYPE VARCHAR(10) tablespace_type - Table space type.
This interface returns a text
identifier based on defines in
sqlutil.h, and is one of:

v DMS

v SMS

TBSP_CONTENT_TYPE VARCHAR(10) tablespace_content_type - Table
space contents type. This interface
returns a text identifier based on
defines in sqlmon.h, and is one of:

v ANY

v LARGE

v SYSTEMP

v USRTEMP

TBSP_PAGE_SIZE BIGINT tablespace_page_size - Table space
page size

TBSP_EXTENT_SIZE BIGINT tablespace_extent_size - Table
space extent size

TBSP_PREFETCH_SIZE BIGINT tablespace_prefetch_size - Table
space prefetch size

830 Administrative Routines and Views

Table 224. Information returned by the SNAPTBSP administrative view and the
SNAP_GET_TBSP_V91 table function (continued)

Column name Data type
Description or corresponding
monitor element

TBSP_CUR_POOL_ID BIGINT tablespace_cur_pool_id - Buffer
pool currently being used

TBSP_NEXT_POOL_ID BIGINT tablespace_next_pool_id - Buffer
pool that will be used at next
startup

FS_CACHING SMALLINT fs_caching - File system caching

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool
data logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool
data physical reads

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer
pool temporary data logical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer
pool temporary data physical reads

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer
pool asynchronous data reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data
writes

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer
pool asynchronous data writes

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool
index logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool
index physical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer
pool temporary index logical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer
pool temporary index physical
reads

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer
pool asynchronous index reads

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool
index writes

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer
pool asynchronous index writes

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool
XDA Data Logical Reads

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool
XDA Data Physical Reads

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer Pool XDA
Data Writes

POOL_ASYNC_XDA_READS BIGINT pool_async_xda_reads - Buffer
Pool Asynchronous XDA Data
Reads

Chapter 15. Snapshot routines and views 831

Table 224. Information returned by the SNAPTBSP administrative view and the
SNAP_GET_TBSP_V91 table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_ASYNC_XDA_WRITES BIGINT pool_async_xda_writes - Buffer
Pool Asynchronous XDA Data
Writes

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer
Pool Temporary XDA Data Logical
Reads

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer
Pool Temporary XDA Data
Physical Reads monitor element

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool
physical read time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool
physical write time

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer pool
asynchronous read time

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer
pool asynchronous write time

POOL_ASYNC_DATA_
READ_REQS

BIGINT pool_async_data_read_reqs - Buffer
pool asynchronous read requests

POOL_ASYNC_INDEX_
READ_REQS

BIGINT pool_async_index_read_reqs -
Buffer pool asynchronous index
read requests

POOL_ASYNC_XDA_
READ_REQS

BIGINT pool_async_xda_read_reqs - Buffer
Pool Asynchronous XDA Read
Requests

POOL_NO_VICTIM_BUFFER BIGINT pool_no_victim_buffer - Buffer
pool no victim buffers

DIRECT_READS BIGINT direct_reads - Direct reads from
database

DIRECT_WRITES BIGINT direct_writes - Direct writes to
database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read
requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write
requests

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write
time

FILES_CLOSED BIGINT files_closed - Database files closed

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread
prefetch pages

832 Administrative Routines and Views

Table 224. Information returned by the SNAPTBSP administrative view and the
SNAP_GET_TBSP_V91 table function (continued)

Column name Data type
Description or corresponding
monitor element

TBSP_REBALANCER_MODE VARCHAR(10) tablespace_rebalancer_mode -
Rebalancer mode. This interface
returns a text identifier based on
defines in sqlmon.h, and is one of:

v NO_REBAL

v FWD_REBAL

v REV_REBAL

TBSP_USING_AUTO_STORAGE SMALLINT tablespace_using_auto_storage -
Table space enabled for automatic
storage

TBSP_AUTO_RESIZE_ENABLED SMALLINT tablespace_auto_resize_enabled -
Table space automatic resizing
enabled

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPTBSP_PART administrative view and
SNAP_GET_TBSP_PART_V91 table function - Retrieve
tablespace_nodeinfo logical data group snapshot information

Note: This table function has been deprecated and replaced by “SNAPTBSP_PART
administrative view and SNAP_GET_TBSP_PART_V97 table function - Retrieve
tablespace_nodeinfo logical data group snapshot information” on page 699.

The SNAPTBSP_PART administrative view and the SNAP_GET_TBSP_PART_V91
table function return snapshot information from the tablespace_nodeinfo logical
data group.

SNAPTBSP_PART administrative view

This administrative view allows you to retrieve tablespace_nodeinfo logical data
group snapshot information for the currently connected database.

Used in conjunction with the SNAPTBSP, SNAPTBSP_QUIESCER,
SNAPTBSP_RANGE, SNAPCONTAINER administrative views, the
SNAPTBSP_PART administrative view returns information equivalent to the GET
SNAPSHOT FOR TABLESPACES ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 225 on page 836 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPTBSP_PART administrative view
v CONTROL privilege on the SNAPTBSP_PART administrative view

Chapter 15. Snapshot routines and views 833

v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_TBSP_PART_V91 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of table spaces and their state for all database partitions of the
currently connected database.
SELECT SUBSTR(TBSP_NAME,1,30) AS TBSP_NAME, TBSP_ID,

SUBSTR(TBSP_STATE,1,30) AS TBSP_STATE, DBPARTITIONNUM
FROM SYSIBMADM.SNAPTBSP_PART

The following example is a sample output from this query.
TBSP_NAME TBSP_ID TBSP_STATE DBPARTITIONNUM
-----------...- -------...- ----------...- --------------
SYSCATSPACE 0 NORMAL 0
TEMPSPACE1 1 NORMAL 0
USERSPACE1 2 NORMAL 0
TEMPSPACE1 1 NORMAL 1
USERSPACE1 2 NORMAL 1

5 record(s) selected.

SNAP_GET_TBSP_PART_V91 table function

The SNAP_GET_TBSP_PART_V91 table function returns the same information as
the SNAPTBSP_PART administrative view, but allows you to retrieve the
information for a specific database on a specific database partition, aggregate of all
database partitions or all database partitions.

Used in conjunction with the SNAP_GET_TBSP_V91,
SNAP_GET_TBSP_QUIESCER, SNAP_GET_TBSP_RANGE,
SNAP_GET_CONTAINER_V91 table functions, the SNAP_GET_TBSP_PART_V91
table function returns information equivalent to the GET SNAPSHOT FOR TABLESPACES
ON database-alias CLP command.

Refer to Table 225 on page 836 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_TBSP_PART_V91 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

834 Administrative Routines and Views

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify NULL or empty
string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_TBSP_PART_V91 table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_TBSP_PART_V91 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of table spaces and their state for the connected database partition of
the connected database.
SELECT SUBSTR(TBSP_NAME,1,30) AS TBSP_NAME, TBSP_ID,

SUBSTR(TBSP_STATE,1,30) AS TBSP_STATE
FROM TABLE(SNAP_GET_TBSP_PART_V91(CAST(NULL AS VARCHAR(128)),-1)) AS T

The following example is a sample output from this query.
TBSP_NAME TBSP_ID TBSP_STATE
------------------------------ -------------------- ------------...-
SYSCATSPACE 0 NORMAL
TEMPSPACE1 1 NORMAL
USERSPACE1 2 NORMAL
SYSTOOLSPACE 3 NORMAL
SYSTOOLSTMPSPACE 4 NORMAL

5 record(s) selected.

Chapter 15. Snapshot routines and views 835

Information returned

Table 225. Information returned by the SNAPTBSP_PART administrative view and the
SNAP_GET_TBSP_PART_V91 table function

Column name Data type
Description or corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the snapshot was
taken.

TBSP_NAME VARCHAR
(128)

tablespace_name - Table space name

TBSP_ID BIGINT tablespace_id - Table space identification

TBSP_STATE VARCHAR
(256)

tablespace_state - Table space state. This
interface returns a text identifier based on
defines in sqlutil.h and is combination of
the following separated by a '+' sign:

v BACKUP_IN_PROGRESS

v BACKUP_PENDING

v DELETE_PENDING

v DISABLE_PENDING

v DROP_PENDING

v LOAD_IN_PROGRESS

v LOAD_PENDING

v NORMAL

v OFFLINE

v PSTAT_CREATION

v PSTAT_DELETION

v QUIESCED_EXCLUSIVE

v QUIESCED_SHARE

v QUIESCED_UPDATE

v REBAL_IN_PROGRESS

v REORG_IN_PROGRESS

v RESTORE_IN_PROGRESS

v RESTORE_PENDING

v ROLLFORWARD_IN_PROGRESS

v ROLLFORWARD_PENDING

v STORDEF_ALLOWED

v STORDEF_CHANGED

v STORDEF_FINAL_VERSION

v STORDEF_PENDING

v SUSPEND_WRITE

TBSP_PREFETCH_SIZE BIGINT tablespace_prefetch_size - Table space
prefetch size

TBSP_NUM_QUIESCERS BIGINT tablespace_num_quiescers - Number of
quiescers

TBSP_STATE_CHANGE_
OBJECT_ID

BIGINT tablespace_state_change_object_id - State
change object identification

TBSP_STATE_CHANGE_
TBSP_ID

BIGINT tablespace_state_change_ts_id - State
change table space identification

836 Administrative Routines and Views

Table 225. Information returned by the SNAPTBSP_PART administrative view and the
SNAP_GET_TBSP_PART_V91 table function (continued)

Column name Data type
Description or corresponding monitor
element

TBSP_MIN_RECOVERY_
TIME

TIMESTAMP tablespace_min_recovery_time - Minimum
recovery time for rollforward

TBSP_TOTAL_PAGES BIGINT tablespace_total_pages - Total pages in table
space

TBSP_USABLE_PAGES BIGINT tablespace_usable_pages - Usable pages in
table space

TBSP_USED_PAGES BIGINT tablespace_used_pages - Used pages in
table space

TBSP_FREE_PAGES BIGINT tablespace_free_pages - Free pages in table
space

TBSP_PENDING_FREE_
PAGES

BIGINT tablespace_pending_free_pages - Pending
free pages in table space

TBSP_PAGE_TOP BIGINT tablespace_page_top - Table space high
water mark

REBALANCER_MODE VARCHAR
(10)

tablespace_rebalancer_mode - Rebalancer
mode. This interface returns a text identifier
based on defines in sqlmon.h, and is one of:

v FWD_REBAL

v NO_REBAL

v REV_REBAL

REBALANCER_EXTENTS_
REMAINING

BIGINT tablespace_rebalancer_extents_remaining -
Total number of extents to be processed by
the rebalancer

REBALANCER_EXTENTS_
PROCESSED

BIGINT tablespace_rebalancer_extents_processed -
Number of extents the rebalancer has
processed

REBALANCER_PRIORITY BIGINT tablespace_rebalancer_priority - Current
rebalancer priority

REBALANCER_START_
TIME

TIMESTAMP tablespace_rebalancer_start_time -
Rebalancer start time

REBALANCER_RESTART_
TIME

TIMESTAMP tablespace_rebalancer_restart_time -
Rebalancer restart time

REBALANCER_LAST_
EXTENT_MOVED

BIGINT tablespace_rebalancer_last_extent_moved -
Last extent moved by the rebalancer

TBSP_NUM_RANGES BIGINT tablespace_num_ranges - Number of ranges
in the table space map

TBSP_NUM_CONTAINERS BIGINT tablespace_num_containers - Number of
containers in table space

TBSP_INITIAL_SIZE BIGINT tablespace_initial_size - Initial table space
size

Chapter 15. Snapshot routines and views 837

Table 225. Information returned by the SNAPTBSP_PART administrative view and the
SNAP_GET_TBSP_PART_V91 table function (continued)

Column name Data type
Description or corresponding monitor
element

TBSP_CURRENT_SIZE BIGINT tablespace_current_size - Current table
space size

TBSP_MAX_SIZE BIGINT tablespace_max_size - Maximum table
space size

TBSP_INCREASE_SIZE BIGINT tablespace_increase_size - Increase size in
bytes

TBSP_INCREASE_SIZE_
PERCENT

SMALLINT tablespace_increase_size_percent - Increase
size by percent

TBSP_LAST_RESIZE_TIME TIMESTAMP tablespace_last_resize_time - Time of last
successful resize

TBSP_LAST_RESIZE_
FAILED

SMALLINT tablespace_last_resize_failed - Last resize
attempt failed

DBPARTITIONNUM SMALLINT The database partition from which the data
was retrieved for this row.

SNAPTBSP_QUIESCER administrative view and
SNAP_GET_TBSP_QUIESCER table function - Retrieve quiescer table
space snapshot information

The SNAPTBSP_QUIESCER administrative view and the
SNAP_GET_TBSP_QUIESCER table function return information about quiescers
from a table space snapshot.

SNAPTBSP_QUIESCER administrative view

This administrative view allows you to retrieve quiescer table space snapshot
information for the currently connected database.

Used with the SNAPTBSP, SNAPTBSP_PART, SNAPTBSP_RANGE,
SNAPCONTAINER administrative views, the SNAPTBSP_QUIESCER
administrative view provides information equivalent to the GET SNAPSHOT FOR
TABLESPACES ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 198 on page 708 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPTBSP_QUIESCER administrative view
v CONTROL privilege on the SNAPTBSP_QUIESCER administrative view
v DATAACCESS authority

838 Administrative Routines and Views

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_TBSP_QUIESCER table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve information about the quiesced table spaces for all database partitions for
the currently connected database.
SELECT SUBSTR(TBSP_NAME, 1, 10) AS TBSP_NAME, QUIESCER_TS_ID,

QUIESCER_OBJ_ID, QUIESCER_AUTH_ID, QUIESCER_AGENT_ID,
QUIESCER_STATE, DBPARTITIONNUM
FROM SYSIBMADM.SNAPTBSP_QUIESCER ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
TBSP_NAME QUIESCER_TS_ID QUIESCER_OBJ_ID QUIESCER_AUTH_ID ..
---------- --------------...- ---------------...- ----------------...- ..
USERSPACE1 2 5 SWALKTY ..
USERSPACE1 2 5 SWALKTY ..

2 record(s) selected.

Output from this query (continued).
... QUIESCER_AGENT_ID QUIESCER_STATE DBPARTITIONNUM
... -------------------- -------------- --------------
... 0 EXCLUSIVE 0
... 65983 EXCLUSIVE 1

Example: Determine the range partitioned table names

If the table is range-partitioned and kept in quiesced state, the different values for
table space ID and table ID are represented than in SYSCAT.TABLES. These IDs
will appear as the unsigned short representation. In order to find the quiesced
table name, you need to find the signed short representation first by calculating the
table space ID that is subtracting 65536 (the maximum value) from
QEUIESCER_TS_ID and then use this table space ID to locate the quiesced tables.
(The actual table space ID can be found in SYSCAT.DATAPARTITIONS for each
range partition in the table).
SELECT SUBSTR(TBSP_NAME, 1, 10) AS TBSP_NAME,

CASE WHEN QUIESCER_TS_ID = 65530
THEN QUIESCER_TS_ID - 65536
ELSE QUIESCER_TS_ID END as tbspaceid,

CASE WHEN QUIESCER_TS_ID = 65530
THEN QUIESCER_OBJ_ID - 65536
ELSE QUIESCER_OBJ_ID END as tableid

FROM SYSIBMADM.SNAPTBSP_QUIESCER
ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.

Chapter 15. Snapshot routines and views 839

TBSP_NAME TBSPACEID TABLEID
------------- ------------ --------
TABDATA -6 -32768
DATAMART -6 -32765
SMALL 5 17

3 record(s) selected.

Use the given TBSPACEID and TABLEID provided from the preceding query to
find the table schema and name from SYSCAT.TABLES.
SELECT CHAR(tabschema, 10)tabschema, CHAR(tabname,15)tabname

FROM SYSCAT.TABLES
WHERE tbspaceid = -6 AND tableid in (-32768,-32765)

The following example is a sample output from this query.
TABSCHEMA TABNAME
------------ --------
TPCD ORDERS_RP
TPCD ORDERS_DMART

2 record(s) selected.

SELECT CHAR(tabschema, 10)tabschema, CHAR(tabname,15)tabname
FROM SYSCAT.TABLES
WHERE tbspaceid = 5 AND tableid = 17

The following example is a sample output from this query.
TABSCHEMA TABNAME
------------ --------
TPCD NATION

1 record(s) selected.

SNAP_GET_TBSP_QUIESCER table function

The SNAP_GET_TBSP_QUIESCER table function returns the same information as
the SNAPTBSP_QUIESCER administrative view, but allows you to retrieve the
information for a specific database on a specific database partition, aggregate of all
database partitions or all database partitions.

Used with the SNAP_GET_TBSP_V91, SNAP_GET_TBSP_PART_V91,
SNAP_GET_TBSP_RANGE, SNAP_GET_CONTAINER_V91 table functions, the
SNAP_GET_TBSP_QUIESCER table function provides information equivalent to
the GET SNAPSHOT FOR TABLESPACES ON database-alias CLP command.

Refer to Table 198 on page 708 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_TBSP_QUIESCER (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database

840 Administrative Routines and Views

name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify NULL or empty
string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_TBSP_QUIESCER table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_TBSP_QUIESCER table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve information about the quiesced table spaces for database partition 1 for
the currently connected database.
SELECT SUBSTR(TBSP_NAME, 1, 10) AS TBSP_NAME, QUIESCER_TS_ID,

QUIESCER_OBJ_ID, QUIESCER_AUTH_ID, QUIESCER_AGENT_ID,
QUIESCER_STATE, DBPARTITIONNUM
FROM TABLE(SYSPROC.SNAP_GET_TBSP_QUIESCER(’’, 1)) AS T

The following example is a sample output from this query.
TBSP_NAME QUIESCER_TS_ID QUIESCER_OBJ_ID QUIESCER_AUTH_ID ...
---------- --------------...- ---------------...- ----------------...- ...
USERSPACE1 2 5 SWALKTY ...

1 record(s) selected.

Output from this query (continued).
... QUIESCER_AGENT_ID QUIESCER_STATE DBPARTITIONNUM
... -------------------- -------------- --------------
... 65983 EXCLUSIVE 1

Chapter 15. Snapshot routines and views 841

Information returned

Table 226. Information returned by the SNAPTBSP_QUIESCER administrative view and the
SNAP_GET_TBSP_QUIESCER table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

QUIESCER_TS_ID BIGINT quiescer_ts_id - Quiescer table
space identification

QUIESCER_OBJ_ID BIGINT quiescer_obj_id - Quiescer object
identification

QUIESCER_AUTH_ID VARCHAR(128) quiescer_auth_id - Quiescer user
authorization identification

QUIESCER_AGENT_ID BIGINT quiescer_agent_id - Quiescer agent
identification

QUIESCER_STATE VARCHAR(14) quiescer_state - Quiescer state. This
interface returns a text identifier
based on defines in sqlutil.h and
is one of:

v EXCLUSIVE

v UPDATE

v SHARE

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPTBSP_RANGE administrative view and
SNAP_GET_TBSP_RANGE table function - Retrieve range snapshot
information

The SNAPTBSP_RANGE administrative view and the SNAP_GET_TBSP_RANGE
table function return information from a range snapshot.

SNAPTBSP_RANGE administrative view

This administrative view allows you to retrieve range snapshot information for the
currently connected database.

Used with the SNAPTBSP, SNAPTBSP_PART, SNAPTBSP_QUIESCER and
SNAPCONTAINER administrative views, the SNAPTBSP_RANGE administrative
view provides information equivalent to the GET SNAPSHOT FOR TABLESPACES ON
database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 199 on page 711 for a complete list of information that can be
returned.

842 Administrative Routines and Views

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPTBSP_RANGE administrative view
v CONTROL privilege on the SNAPTBSP_RANGE administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_TBSP_RANGE table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Select information about table space ranges for all database partitions for the
currently connected database.
SELECT TBSP_ID, SUBSTR(TBSP_NAME, 1, 15) AS TBSP_NAME, RANGE_NUMBER,

RANGE_STRIPE_SET_NUMBER, RANGE_OFFSET, RANGE_MAX_PAGE,
RANGE_MAX_EXTENT, RANGE_START_STRIPE, RANGE_END_STRIPE,
RANGE_ADJUSTMENT, RANGE_NUM_CONTAINER, RANGE_CONTAINER_ID,
DBPARTITIONNUM FROM SYSIBMADM.SNAPTBSP_RANGE
ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
TBSP_ID TBSP_NAME RANGE_NUMBER RANGE_STRIPE_SET_NUMBER ...
-------...- --------------- ------------...- ----------------------- ...

0 SYSCATSPACE 0 0 ...
2 USERSPACE1 0 0 ...
3 SYSTOOLSPACE 0 0 ...
2 USERSPACE1 0 0 ...
2 USERSPACE1 0 0 ...

5 record(s) selected.

Output from this query (continued).
... RANGE_OFFSET RANGE_MAX_PAGE RANGE_MAX_EXTENT ...
... ------------...- -------------------- -------------------- ...
... 0 11515 2878 ...
... 0 479 14 ...
... 0 251 62 ...
... 0 479 14 ...
... 0 479 14 ...

Output from this query (continued).
... RANGE_START_STRIPE RANGE_END_STRIPE RANGE_ADJUSTMENT ...
... -------------------- -------------------- -------------------- ...
... 0 2878 0 ...
... 0 14 0 ...
... 0 62 0 ...
... 0 14 0 ...
... 0 14 0 ...

Chapter 15. Snapshot routines and views 843

Output from this query (continued).
... RANGE_NUM_CONTAINER RANGE_CONTAINER_ID DBPARTITIONNUM
... -------------------- -------------------- --------------
... 1 0 0
... 1 0 0
... 1 0 0
... 1 0 1
... 1 0 2

SNAP_GET_TBSP_RANGE table function

The SNAP_GET_TBSP_RANGE table function returns the same information as the
SNAPTBSP_RANGE administrative view, but allows you to retrieve the
information for a specific database on a specific database partition, aggregate of all
database partitions or all database partitions.

Used with the SNAP_GET_TBSP_V91, SNAP_GET_TBSP_PART_V91,
SNAP_GET_TBSP_QUIESCER and SNAP_GET_CONTAINER_V91 table functions,
the SNAP_GET_TBSP_RANGE table function provides information equivalent to
the GET SNAPSHOT FOR TABLESPACES ON database-alias CLP command.

Refer to Table 199 on page 711 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_TBSP_RANGE (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify NULL or empty
string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_TBSP_RANGE table function takes a snapshot for the currently
connected database and database partition number.

844 Administrative Routines and Views

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_TBSP_RANGE table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Examples

Select information about the table space range for the table space with tbsp_id = 2
on the currently connected database partition.
SELECT TBSP_ID, SUBSTR(TBSP_NAME, 1, 15) AS TBSP_NAME, RANGE_NUMBER,

RANGE_STRIPE_SET_NUMBER, RANGE_OFFSET, RANGE_MAX_PAGE, RANGE_MAX_EXTENT,
RANGE_START_STRIPE, RANGE_END_STRIPE, RANGE_ADJUSTMENT,
RANGE_NUM_CONTAINER, RANGE_CONTAINER_ID
FROM TABLE(SNAP_GET_TBSP_RANGE(’’,-1)) AS T WHERE TBSP_ID = 2

The following example is a sample output from this query.
TBSP_ID TBSP_NAME RANGE_NUMBER ...
-------...- --------------- ------------...- ...

2 USERSPACE1 0 ...

1 record(s) selected.

Output from this query (continued).
... RANGE_STRIPE_SET_NUMBER RANGE_OFFSET RANGE_MAX_PAGE ...
... ----------------------- ------------...- --------------...---- ...
... 0 0 3967 ...

Output from this query (continued).
... RANGE_MAX_EXTENT RANGE_START_STRIPE RANGE_END_STRIPE ...
... -------------------- -------------------- -------------------- ...
... 123 0 123 ...

Output from this query (continued).
... RANGE_ADJUSTMENT RANGE_NUM_CONTAINER RANGE_CONTAINER_ID
... -------------------- -------------------- --------------------
... 0 1 0

Information returned

Table 227. Information returned by the SNAPTBSP_RANGE administrative view and the
SNAP_GET_TBSP_RANGE table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

TBSP_ID BIGINT tablespace_id - Table space
identification

Chapter 15. Snapshot routines and views 845

Table 227. Information returned by the SNAPTBSP_RANGE administrative view and the
SNAP_GET_TBSP_RANGE table function (continued)

Column name Data type
Description or corresponding
monitor element

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

RANGE_NUMBER BIGINT range_number - Range number

RANGE_STRIPE_SET_NUMBER BIGINT range_stripe_set_number - Stripe
set number

RANGE_OFFSET BIGINT range_offset - Range offset

RANGE_MAX_PAGE BIGINT range_max_page_number -
Maximum page in range

RANGE_MAX_EXTENT BIGINT range_max_extent - Maximum
extent in range

RANGE_START_STRIPE BIGINT range_start_stripe - Start stripe

RANGE_END_STRIPE BIGINT range_end_stripe - End stripe

RANGE_ADJUSTMENT BIGINT range_adjustment - Range
adjustment

RANGE_NUM_CONTAINER BIGINT range_num_containers - Number
of containers in range

RANGE_CONTAINER_ID BIGINT range_container_id - Range
container

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPUTIL administrative view and SNAP_GET_UTIL table function -
Retrieve utility_info logical data group snapshot information

The SNAPUTIL administrative view and the SNAP_GET_UTIL table function
return snapshot information about the utilities from the utility_info logical data
group.

SNAPUTIL administrative view

Used in conjunction with the SNAPUTIL_PROGRESS administrative view, the
SNAPUTIL administrative view provides the same information as the LIST
UTILITIES SHOW DETAIL CLP command.

The schema is SYSIBMADM.

Refer to Table 200 on page 715 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPUTIL administrative view
v CONTROL privilege on the SNAPUTIL administrative view
v DATAACCESS authority

846 Administrative Routines and Views

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_UTIL table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of utilities and their states on all database partitions for all active
databases in the instance that contains the connected database.
SELECT UTILITY_TYPE, UTILITY_PRIORITY, SUBSTR(UTILITY_DESCRIPTION, 1, 72)

AS UTILITY_DESCRIPTION, SUBSTR(UTILITY_DBNAME, 1, 17) AS
UTILITY_DBNAME, UTILITY_STATE, UTILITY_INVOKER_TYPE, DBPARTITIONNUM
FROM SYSIBMADM.SNAPUTIL ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
UTILITY_TYPE UTILITY_PRIORITY ...
------------...- ---------------- ...
LOAD - ...
LOAD - ...
LOAD - ...

3 record(s) selected.

Output from this query (continued).
... UTILITY_DESCRIPTION ...
... ---...
... ONLINE LOAD DEL AUTOMATIC INDEXING INSERT COPY NO TEST .LOADTEST ...
... ONLINE LOAD DEL AUTOMATIC INDEXING INSERT COPY NO TEST .LOADTEST ...
... ONLINE LOAD DEL AUTOMATIC INDEXING INSERT COPY NO TEST .LOADTEST ...

Output from this query (continued).
... UTILITY_DBNAME UTILITY_STATE UTILITY_INVOKER_TYPE DBPARTITIONNUM
... ----------------- ------------- -------------------- --------------
... SAMPLE EXECUTE USER 0
... SAMPLE EXECUTE USER 1
... SAMPLE EXECUTE USER 2

SNAP_GET_UTIL table function

The SNAP_GET_UTIL table function returns the same information as the
SNAPUTIL administrative view, but allows you to retrieve the information for a
specific database partition, aggregate of all database partitions or all database
partitions.

Used in conjunction with the SNAP_GET_UTIL_PROGRESS table function, the
SNAP_GET_UTIL table function provides the same information as the LIST
UTILITIES SHOW DETAIL CLP command.

Refer to Table 200 on page 715 for a complete list of information that can be
returned.

Chapter 15. Snapshot routines and views 847

Syntax

�� SNAP_GET_UTIL ()
dbpartitionnum

��

The schema is SYSPROC.

Table function parameter

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If this input option is not used, data
will be returned from all active database partitions. An active database
partition is a partition where the database is available for connection and use
by applications.

If dbpartitionnum is set to NULL, an attempt is made to read data from the file
created by SNAP_WRITE_FILE procedure. Note that this file could have been
created at any time, which means that the data might not be current. If a file with
the corresponding snapshot API request type does not exist, then the
SNAP_GET_UTIL table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_UTIL table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of utility ids with their type and state for the currently connected
database partition on database SAMPLE.
SELECT UTILITY_ID, UTILITY_TYPE, STATE

FROM TABLE(SNAP_GET_UTIL(-1)) AS T WHERE UTILITY_DBNAME=’SAMPLE’

The following example is a sample output from this query.
UTILITY_ID UTILITY_TYPE STATE
-------------------- -------------------------- --------

1 BACKUP EXECUTE

1 record(s) selected.

848 Administrative Routines and Views

Information returned

Table 228. Information returned by the SNAPUTIL administrative view and the
SNAP_GET_UTIL table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

UTILITY_ID INTEGER utility_id - Utility ID. Unique to a
database partition.

UTILITY_TYPE VARCHAR(26) utility_type - Utility type. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v ASYNC_INDEX_CLEANUP

v BACKUP

v CRASH_RECOVERY

v LOAD

v REBALANCE

v REDISTRIBUTE

v RESTART_RECREATE_INDEX

v RESTORE

v ROLLFORWARD_RECOVERY

v RUNSTATS

UTILITY_PRIORITY INTEGER utility_priority - Utility priority.
Priority if utility supports
throttling, otherwise null.

UTILITY_DESCRIPTION VARCHAR(2048) utility_description - Utility
description. Can be null.

UTILITY_DBNAME VARCHAR(128) utility_dbname - Database
operated on by utility

UTILITY_START_TIME TIMESTAMP utility_start_time - Utility start
time

UTILITY_STATE VARCHAR(10) utility_state - Utility state. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v ERROR

v EXECUTE

v WAIT

UTILITY_INVOKER_TYPE VARCHAR(10) utility_invoker_type - Utility
invoker type. This interface returns
a text identifier based on the
defines in sqlmon.h and is one of:

v AUTO

v USER

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

PROGRESS_LIST_ATTR VARCHAR(10) progress_list_attr - Current
progress list attributes

Chapter 15. Snapshot routines and views 849

Table 228. Information returned by the SNAPUTIL administrative view and the
SNAP_GET_UTIL table function (continued)

Column name Data type
Description or corresponding
monitor element

PROGRESS_LIST_CUR_SEQ_NUM INTEGER progress_list_current_seq_num -
Current progress list sequence
number

SNAPUTIL_PROGRESS administrative view and
SNAP_GET_UTIL_PROGRESS table function - Retrieve progress
logical data group snapshot information

The SNAPUTIL_PROGRESS administrative view and the
SNAP_GET_UTIL_PROGRESS table function return snapshot information about
utility progress, in particular, the progress logical data group.

SNAPUTIL_PROGRESS administrative view

Used in conjunction with the SNAPUTIL administrative view, the
SNAPUTIL_PROGRESS administrative view provides the same information as the
LIST UTILITIES SHOW DETAIL CLP command.

The schema is SYSIBMADM.

Refer to Table 201 on page 718 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPUTIL_PROGRESS administrative view
v CONTROL privilege on the SNAPUTIL_PROGRESS administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_UTIL_PROGRESS table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve details on total and completed units of progress by utility ID.
SELECT SELECT UTILITY_ID, PROGRESS_TOTAL_UNITS, PROGRESS_COMPLETED_UNITS,

DBPARTITIONNUM FROM SYSIBMADM.SNAPUTIL_PROGRESS

850 Administrative Routines and Views

The following example is a sample output from this query.
UTILITY_ID PROGRESS_TOTAL_UNITS PROGRESS_COMPLETED_UNITS DBPARTITIONNU
---------- -------------------- ------------------------ -----------–-

7 10 5 0
9 10 5 1

1 record(s) selected.

SNAP_GET_UTIL_PROGRESS table function

The SNAP_GET_UTIL_PROGRESS table function returns the same information as
the SNAPUTIL_PROGRESS administrative view, but allows you to retrieve the
information for a specific database on a specific database partition, aggregate of all
database partitions or all database partitions.

Used in conjunction with the SNAP_GET_UTIL table function, the
SNAP_GET_UTIL_PROGRESS table function provides the same information as the
LIST UTILITIES SHOW DETAIL CLP command.

Refer to Table 201 on page 718 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_UTIL_PROGRESS ()
dbpartitionnum

��

The schema is SYSPROC.

Table function parameter

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If this input option is not used, data
will be returned from all active database partitions. An active database
partition is a partition where the database is available for connection and use
by applications.

If dbpartitionnum is set to NULL, an attempt is made to read data from the file
created by SNAP_WRITE_FILE procedure. Note that this file could have been
created at any time, which means that the data might not be current. If a file with
the corresponding snapshot API request type does not exist, then the
SNAP_GET_UTIL_PROGRESS table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_UTIL_PROGRESS table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON

Chapter 15. Snapshot routines and views 851

v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve details on the progress of utilities on the currently connect partition.
SELECT UTILITY_ID, PROGRESS_TOTAL_UNITS, PROGRESS_COMPLETED_UNITS,

DBPARTITIONNUM FROM TABLE(SNAP_GET_UTIL_PROGRESS(-1)) as T

The following example is a sample output from this query.
UTILITY_ID PROGRESS_TOTAL_UNITS PROGRESS_COMPLETED_UNITS DBPARTITIONNUM
---------- -------------------- ------------------------ --------------

7 10 5 0

1 record(s) selected.

Information returned

Table 229. Information returned by the SNAPUTIL_PROGRESS administrative view and the
SNAP_GET_UTIL_PROGRESS table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

UTILITY_ID INTEGER utility_id - Utility ID. Unique to a
database partition.

PROGRESS_SEQ_NUM INTEGER progress_seq_num - Progress
sequence number. If serial, the
number of the phase. If concurrent,
then could be NULL.

UTILITY_STATE VARCHAR(16) utility_state - Utility state. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v ERROR

v EXECUTE

v WAIT

PROGRESS_DESCRIPTION VARCHAR(2048) progress_description - Progress
description

PROGRESS_START_TIME TIMESTAMP progress_start_time - Progress start
time. Start time if the phase has
started, otherwise NULL.

852 Administrative Routines and Views

Table 229. Information returned by the SNAPUTIL_PROGRESS administrative view and the
SNAP_GET_UTIL_PROGRESS table function (continued)

Column name Data type
Description or corresponding
monitor element

PROGRESS_WORK_METRIC VARCHAR(16) progress_work_metric - Progress
work metric. This interface returns
a text identifier based on the
defines in sqlmon.h and is one of:

v NOT_SUPPORT

v BYTES

v EXTENTS

v INDEXES

v PAGES

v ROWS

v TABLES

PROGRESS_TOTAL_UNITS BIGINT progress_total_units - Total
progress work units

PROGRESS_COMPLETED_UNITS BIGINT progress_completed_units -
Completed progress work units

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAP_WRITE_FILE procedure

The SNAP_WRITE_FILE procedure writes system snapshot data to a file in the tmp
subdirectory of the instance directory.

Syntax

�� SNAP_WRITE_FILE (requestType , dbname , dbpartitionnum) ��

The schema is SYSPROC.

Procedure parameters

requestType
An input argument of type VARCHAR (32) that specifies a valid snapshot
request type. The possible request types are text identifiers based on defines in
sqlmon.h, and are one of:
v APPL_ALL
v BUFFERPOOLS_ALL
v DB2
v DBASE_ALL
v DBASE_LOCKS
v DBASE_TABLES
v DBASE_TABLESPACES
v DYNAMIC_SQL

dbname
An input argument of type VARCHAR(128) that specifies a valid database

Chapter 15. Snapshot routines and views 853

name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify NULL or empty string to take the snapshot from the currently connected
database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for an aggregate of
all active database partitions. An active database partition is a partition where
the database is available for connection and use by applications.

If a null value is specified, -1 is set implicitly.

Authorization

To execute the procedure, a user must have SYSADM, SYSCTRL, SYSMAINT, or
SYSMON authority. The saved snapshot can be read by users who do not have
SYSADM, SYSCTRL, SYSMAINT, or SYSMON authority by passing null values as
the inputs to snapshot table functions.

Example

Take a snapshot of database manager information by specifying a request type of
'DB2' (which corresponds to SQLMA_DB2), and defaulting to the currently
connected database and current database partition.
CALL SYSPROC.SNAP_WRITE_FILE (’DB2’, ’’, -1)

This will result in snapshot data being written to the instance temporary directory,
which is sqllib/tmp/SQLMA_DB2.dat on UNIX operating systems, and
sqllib\DB2\tmp\SQLMA_DB2.dat on a Windows operating system.

Usage notes

If an unrecognized input parameter is provided, the following error is returned:
SQL2032N The "REQUEST_TYPE" parameter is not valid.

TBSP_UTILIZATION administrative view - Retrieve table space
configuration and utilization information

The TBSP_UTILIZATION administrative view returns table space configuration
and utilization information. It retrieve a similar report to the LIST TABLESPACES
command on a single partitioned database. Its information is based on the
SNAPTBSP, SNAPTBSP_PART administrative views and TABLESPACES catalog
view.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the TBSP_UTILIZATION administrative view
v CONTROL privilege on the TBSP_UTILIZATION administrative view
v DATAACCESS authority

854 Administrative Routines and Views

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve the same report as the LIST TABLESPACES command on a single partitioned
database.
SELECT TBSP_ID, SUBSTR(TBSP_NAME,1,20) as TBSP_NAME, TBSP_TYPE,

TBSP_CONTENT_TYPE, TBSP_STATE FROM SYSIBMADM.TBSP_UTILIZATION

The following example is a sample output for this query.
TBSP_ID TBSP_NAME TBSP_TYPE ...
-------...- -------------------- ---------- ...

0 SYSCATSPACE SMS ...
1 TEMPSPACE1 SMS ...
2 USERSPACE1 SMS ...
3 SYSTOOLSPACE SMS ...
4 SYSTOOLSTMPSPACE SMS ...

Output for this query (continued).
... TBSP_CONTENT_TYPE TBSP_STATE
... ----------------- -----------
... ANY NORMAL
... SYSTEMP NORMAL
... ANY NORMAL
... ANY NORMAL
... USRTEMP NORMAL

Information returned

Table 230. Information returned by the TBSP_UTILIZATION administrative view

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

TBSP_ID BIGINT tablespace_id - Table space
identification

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

TBSP_TYPE VARCHAR(10) tablespace_type - Table space type

TBSP_CONTENT_TYPE VARCHAR(10) tablespace_content_type - Table
space content type

TBSP_CREATE_TIME TIMESTAMP Creation time of the table space.

TBSP_STATE VARCHAR(256) tablespace_state - Table space state

TBSP_TOTAL_SIZE_KB BIGINT The total size of the table space in
KB, calculated as
total_pages*pagesize/1024.

TBSP_USABLE_SIZE_KB BIGINT The total usable size of the table
space in KB, calculated as
usable_pages*pagesize/1024.

Chapter 15. Snapshot routines and views 855

Table 230. Information returned by the TBSP_UTILIZATION administrative view (continued)

Column name Data type
Description or corresponding
monitor element

TBSP_USED_SIZE_KB BIGINT The total used size of the table
space in KB, calculated as
used_pages*pagesize/1024.

TBSP_FREE_SIZE_KB BIGINT The total available size of the table
space in KB, calculated as
free_pages*pagesize/1024.

TBSP_UTILIZATION_PERCENT BIGINT The utilization of the table space as
a percentage. Calculated as
(used_pages/usable_pages)*100, if
usable_pages is available.
Otherwise, -1 will be displayed.

TBSP_TOTAL_PAGES BIGINT tablespace_total_pages - Total
pages in table space

TBSP_USABLE_PAGES BIGINT tablespace_usable_pages - Usable
pages in table space

TBSP_USED_PAGES BIGINT tablespace_used_pages - Used
pages in table space

TBSP_FREE_PAGES BIGINT tablespace_free_pages - Free pages
in table space

TBSP_PAGE_TOP BIGINT tablespace_page_top - Table space
high water mark

TBSP_PAGE_SIZE INTEGER tablespace_page_size - Table space
page size

TBSP_EXTENT_SIZE INTEGER tablespace_extent_size - Table
space extent size

TBSP_PREFETCH_SIZE BIGINT tablespace_prefetch_size - Table
space prefetch size

TBSP_MAX_SIZE BIGINT tablespace_max_size - Maximum
table space size

TBSP_INCREASE_SIZE BIGINT tablespace_increase_size - Increase
size in bytes

TBSP_INCREASE_SIZE_PERCENT SMALLINT tablespace_increase_size_percent -
Increase size by percent

TBSP_LAST_RESIZE_TIME TIMESTAMP tablespace_last_resize_time - Time
of last successful resize

TBSP_LAST_RESIZE_FAILED SMALLINT tablespace_last_resize_failed - Last
resize attempt failed

TBSP_USING_AUTO_STORAGE SMALLINT tablespace_using_auto_storage -
Table space enabled for automatic
storage

TBSP_AUTO_RESIZE_ENABLED SMALLINT tablespace_auto_resize_enabled -
Table space automatic resizing
enabled

DBPGNAME VARCHAR(128) Name of the database partition
group for the table space.

TBSP_NUM_CONTAINERS BIGINT tablespace_num_containers -
Number of containers in table
space

856 Administrative Routines and Views

Table 230. Information returned by the TBSP_UTILIZATION administrative view (continued)

Column name Data type
Description or corresponding
monitor element

REMARKS VARCHAR(254) User-provided comment.

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

TOP_DYNAMIC_SQL administrative view - Retrieve information about
the top dynamic SQL statements

The TOP_DYNAMIC_SQL administrative view returns the top dynamic SQL
statements sortable by number of executions, average execution time, number of
sorts, or sorts per statement. These are the queries that should get focus to ensure
they are well tuned.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the TOP_DYNAMIC_SQL administrative view
v CONTROL privilege on the TOP_DYNAMIC_SQL administrative view
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Identify the top 5 most frequently run SQL.
SELECT NUM_EXECUTIONS, AVERAGE_EXECUTION_TIME_S, STMT_SORTS,

SORTS_PER_EXECUTION, SUBSTR(STMT_TEXT,1,60) AS STMT_TEXT
FROM SYSIBMADM.TOP_DYNAMIC_SQL
ORDER BY NUM_EXECUTIONS DESC FETCH FIRST 5 ROWS ONLY

The following example is a sample output for this query.
NUM_EXECUTIONS AVERAGE_EXECUTION_TIME_S STMT_SORTS ...
-------------------- ------------------------ -------------------- ...

148 0 0 ...
123 0 0 ...

2 0 0 ...
1 0 0 ...
1 0 0 ...

5 record(s) selected.

Output for this query (continued).

Chapter 15. Snapshot routines and views 857

... SORTS_PER_EXECUTION ...

... -------------------- ...

... 0 ...

... 0 ...

... 0 ...

... 0 ...

... 0 ...

Output for this query (continued).
... STMT_TEXT
... --
... SELECT A.ID, B.EMPNO, B.FIRSTNME, B.LASTNAME, A.DEPT FROM E
... SELECT A.EMPNO, A.FIRSTNME, A.LASTNAME, B.LOCATION, B.MGRNO
... SELECT A.EMPNO, A.FIRSTNME, A.LASTNAME, B.DEPTNAME FROM EMP
... SELECT ATM.SCHEMA, ATM.NAME, ATM.CREATE_TIME, ATM.LAST_WAIT,
... SELECT * FROM JESSICAE.EMP_RESUME

Information returned

Table 231. Information returned by the TOP_DYNAMIC_SQL administrative view

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP Timestamp for the report.

NUM_EXECUTIONS BIGINT num_executions - Statement
executions

AVERAGE_EXECUTION_TIME_S BIGINT Average execution time.

STMT_SORTS BIGINT stmt_sorts - Statement sorts

SORTS_PER_EXECUTION BIGINT Number of sorts per statement
execution.

STMT_TEXT CLOB(2 M) stmt_text - SQL statement text

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

858 Administrative Routines and Views

Chapter 16. SQL procedures routines

ALTER_ROUTINE_PACKAGE procedure

�� ALTER_ROUTINE_PACKAGE (type , schema , module , name , options) ��

The schema is SYSPROC.

This procedure alters values for the package associated with a compiled SQL
routine or a compiled trigger, without the need for rebinding. It is functionally
equivalent to the ALTER PACKAGE command, except that it takes an object name
instead of a package name as an argument. The ALTER_ROUTINE_PACKAGE
procedure can be invoked from the command line or called from an application.

type
An input argument of type CHAR(2) that specifies the type of routine or
compiled trigger, using one of the following values:
v 'P ' for a procedure
v 'SP' for the specific name of a procedure
v 'F' for a compiled function
v 'SF' for a specific name of a compiled function
v 'T' for a compiled trigger

schema
An optional input argument of type VARCHAR(128), which specifies the
schema of the routine or trigger. If a schema is not specified, the value will
default to the value of the CURRENT SCHEMA special register. This parameter
is case sensitive.

module
An optional input argument of type VARCHAR(128), which specifies the name
of the module where the routine resides. This parameter cannot be specified
for triggers. If this parameter is not specified, then module routines are
ignored. This parameter is case sensitive.

name
An input argument of type VARCHAR(128), which specifies the name of the
routine or trigger. This parameter is case sensitive.

options
An input argument of type VARCHAR(1024), which specifies a list of any
options supported by the ALTER PACKAGE statement. At least one ALTER
PACKAGE clause must be supplied within the options parameter.

Authorization

One of the following authorities is required to execute the procedure:
v EXECUTE privilege on the procedure
v DATAACCESS authority
v DBADM authority
v SQLADM authority

© Copyright IBM Corp. 2006, 2012 859

Examples

Alter the underlying package for an existing stored procedure by the name of
UPDATE_EMPLOYEE.
CALL SYSPROC.ALTER_ROUTINE_PACKAGE (’P’,’’,’’,’UPDATE_EMPLOYEE’,

’ACCESS PLAN REUSE YES OPTIMIZATION PROFILE AYYANG.INDEXHINTS’)

Alter the package for a compiled trigger called MIN_SALARY, in the DRICARD
schema.
CALL SYSPROC.ALTER_ROUTINE_PACKAGE (’T’,’DRICARD’,’’,’MIN_SALARY’,

’OPTIMIZATION PROFILE AYYANG.INDEXHINTS’)

Alter the package for a compiled function, using a three part name.
CALL SYSPROC.ALTER_ROUTINE_PACKAGE (’F’,’DRICARD’,’MODULE’,’FUNCTION’,’APREUSE YES’)

GET_ROUTINE_OPTS

�� GET_ROUTINE_OPTS () ��

The schema is SYSPROC.

The GET_ROUTINE_OPTS function returns a character string value of the options
that are to be used for the creation of SQL procedures in the current session.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The result of the function is a varying-length character string (VARCHAR) value
with a length attribute of 1024.

Example:

Return the options to be used for the creation of SQL procedures as the result of a
query.

SELECT GET_ROUTINE_OPTS()
FROM SYSIBM.SYSDUMMY1

GET_ROUTINE_SAR

�� GET_ROUTINE_SAR �

� (sarblob , type , routine-name-string)
, hide-body-flag

��

The schema is SYSFUN.

860 Administrative Routines and Views

The GET_ROUTINE_SAR procedure retrieves the necessary information to install
the same routine in another database server running the same level on the same
operating system. The information is retrieved into a single BLOB string
representing an SQL archive file.

Authorization

EXECUTE privilege on GET_ROUTINE_SAR procedure

sarblob
An output argument of type BLOB(3M) that contains the routine SAR file
contents.

type
An input argument of type CHAR(2) that specifies the type of routine, using
one of the following values:
v 'P ' for a procedure
v 'SP' for the specific name of a procedure

routine-name-string
An input argument of type VARCHAR(257) that specifies a qualified name of
the routine. If no schema name is specified, the default is the CURRENT
SCHEMA when the routine is processed. The routine-name-string cannot include
double quotation marks (").

hide-body-flag
An input argument of type INTEGER that specifies (using one of the following
values) whether or not the routine body should be hidden when the routine
text is extracted from the catalogs. Valid values are:

0 Leave the routine text intact. This is the default value.

1 Replace the routine body with an empty body when the routine text is
extracted from the catalogs.

The qualified name of the routine is used to determine which routine to retrieve.
The routine that is found must be an SQL routine. Not using a specific name may
result in more than one routine, and an error is raised (SQLSTATE 42725). If this
occurs, the specific name of the required routine must be used.

The SAR file must include a bind file, which may not be available at the server. If
the bind file cannot be found and stored in the SAR file, an error is raised
(SQLSTATE 55045).

PUT_ROUTINE_SAR

The PUT_ROUTINE_SAR procedure passes the necessary file to create an SQL
routine at the server and then defines the routine.

Authorization

DBADM

�� PUT_ROUTINE_SAR (sarblob
, new-owner , use-register-flag

) ��

The schema is SYSFUN.

Chapter 16. SQL procedures routines 861

sarblob
An input argument of type BLOB(3M) that contains the routine SAR file
contents.

new-owner
An input argument of type VARCHAR(128) that contains an
authorization-name used for authorization checking of the routine. The
new-owner must have the necessary privileges for the routine to be defined. If
new-owner is not specified, the authorization-name of the original routine
definer is used.

use-register-flag
An input argument of type INTEGER that indicates whether or not the
CURRENT SCHEMA and CURRENT PATH special registers are used to define
the routine. If the special registers are not used, the settings for the default
schema and SQL path are the settings used when the routine was originally
defined. Possible values for use-register-flag:

0 Do not use the special registers of the current environment

1 Use the CURRENT SCHEMA and CURRENT PATH special registers.

If the value is 1, CURRENT SCHEMA is used for unqualified object names in
the routine definition (including the name of the routine) and CURRENT
PATH is used to resolve unqualified routines and data types in the routine
definition. If the use-registers-flag is not specified, the behavior is the same as if
a value of 0 was specified.

The identification information contained in sarblob is checked to confirm that the
inputs are appropriate for the environment, otherwise an error is raised
(SQLSTATE 55046). The PUT_ROUTINE_SAR procedure then uses the contents of
the sarblob to define the routine at the server.

The contents of the sarblob argument are extracted into the separate files that make
up the SQL archive file. The shared library and bind files are written to files in a
temporary directory. The environment is set so that the routine definition statement
processing is aware that compiling and linking are not required, and that the
location of the shared library and bind files is available. The contents of the DDL
file are then used to dynamically execute the routine definition statement.

No more than one procedure can be concurrently installed under a given schema.

Processing of this statement might result in the same errors as executing the
routine definition statement using other interfaces. During routine definition
processing, the presence of the shared library and bind files is noted and the
precompile, compile and link steps are skipped. The bind file is used during bind
processing and the contents of both files are copied to the usual directory for an
SQL routine.

If a GET ROUTINE or a PUT ROUTINE operation (or their corresponding
procedure) fails to execute successfully, it will always return an error (SQLSTATE
38000), along with diagnostic text providing information about the cause of the
failure. For example, if the procedure name provided to GET ROUTINE does not
identify an SQL procedure, diagnostic "-204, 42704" text will be returned, where
"-204" and "42704" are the SQLCODE and SQLSTATE that identify the cause of the
problem. The SQLCODE and SQLSTATE in this example indicate that the
procedure name provided in the GET ROUTINE command is undefined.

862 Administrative Routines and Views

REBIND_ROUTINE_PACKAGE procedure - rebind a package
The REBIND_ROUTINE_PACKAGE procedure rebinds the package associated with
an SQL procedure, routine, compiled function, or trigger. It is functionally
equivalent to the REBIND command, except that it takes a procedure name,
instead of a package name, as an argument. The REBIND_ROUTINE_PACKAGE
procedure can be invoked from the command line or called from an application.

Syntax

There are two equally valid methods to invoke REBIND_ROUTINE_PACKAGE.
The only difference between the two invocations is the method of specifying the
routine name. In the first instance, the routine-name-string variable consists of
identifier names separated by periods. In the second method, the routine is
identified by separate values for each of the schema, module and name values.

Method 1:

�� REBIND_ROUTINE_PACKAGE (type , routine-name-string , options) ��

Method 2:

�� REBIND_ROUTINE_PACKAGE (type , �

� schema , module , name , options) ��

The schema is SYSPROC.

Procedure parameters

type
An input argument of type CHAR(2) that specifies the type of routine or
compiled trigger, using one of the following values:
v 'P ' for a procedure
v 'SP' for the specific name of a procedure
v 'F' for a compiled function
v 'SF' for a specific name of a compiled function
v 'T' for a compiled trigger

routine-name-string (method 1 only)
An input argument of type VARCHAR(386) which specifies the name of the
routine or trigger. Trigger names consist of two parts separated by a period
and are in the format schema.trigger where the schema is optional. Routine
names consist of three part names separated by periods and are in the format
schema.module.routine where schema and module are optional. If schema is
not specified, the value defaults to the value of the CURRENT SCHEMA
special register. If a two-part name is specified, the first part is initially
interpreted as a schema name; if the routine is not found under that schema,
the first part is interpreted as a module name, and an attempt is made to find
the routine in a module of that name under the CURRENT SCHEMA. The
schema, module or object names cannot include double quotation marks (") or
periods(.).

Chapter 16. SQL procedures routines 863

schema (method 2 only)
An optional input argument of type VARCHAR(128) that specifies the schema
of the routine or trigger. If a schema is not specified, the value will default to
the value of the CURRENT SCHEMA special register. This parameter is case
sensitive.

module (method 2 only)
An optional input argument of type VARCHAR(128) that specifies the name of
the module where the routine resides. Do not specify this parameter for
triggers. Module routines are ignored if this parameter is not specified. This
parameter is case sensitive.

name (method 2 only)
An input argument of type VARCHAR(128) that specifies the name of the
routine or trigger. This parameter is case sensitive.

options
An optional input argument of type VARCHAR(1024) which specifies any list
of rebind options following the REBIND command syntax. A single value of
“ANY” or “CONSERVATIVE” is also supported for backward compatibility
and is interpreted as the value for the RESOLVE rebind option.

The qualified name of the routine is used to determine which routine to retrieve.
The routine that is found must be an SQL routine; otherwise, an error is returned
(SQLSTATE 428F7). If a specific name is not used, more than one routine may be
found, and an error is returned (SQLSTATE 42725). If this occurs, the specific name
of the required routine must be used.

Authorization

One of the following authorities is required to execute the procedure:
v EXECUTE privilege on the procedure
v DATAACCESS authority
v DBADM authority
v SQLADM authority

Examples

Example 1: Rebind the package of routine UPDATE_EMPLOYEE using the
RESOLVE, REOPT and APREUSE options.
Method 1:
CALL SYSPROC.REBIND_ROUTINE_PACKAGE (

’P’,’UPDATE_EMPLOYEE’,’RESOLVE ANY REOPT ONCE APREUSE YES’)
Method 2:
CALL SYSPROC.REBIND_ROUTINE_PACKAGE (

’P’,’’,’’,’UPDATE_EMPLOYEE’,’RESOLVE ANY REOPT ONCE APREUSE YES’)

Example 2: Rebind the package of routine UPDATE_EMPLOYEE with no options.
Method 1:
CALL SYSPROC.REBIND_ROUTINE_PACKAGE (

’P’,’UPDATE_EMPLOYEE’,’’)
Method 2:
CALL SYSPROC.REBIND_ROUTINE_PACKAGE (

’P’,’’,’’,’UPDATE_EMPLOYEE’,’’)

Example 3: Rebind the package of a compiled trigger.

864 Administrative Routines and Views

Method 1:
CALL SYSPROC.REBIND_ROUTINE_PACKAGE (

’T’,’DRICARD.MIN_SALARY’,’REOPT ALWAYS’)
Method 2:
CALL SYSPROC.REBIND_ROUTINE_PACKAGE (

’T’,’DRICARD’,’’,’MIN_SALARY’,’REOPT ALWAYS’)

Example 4: Rebind the package of a compiled function using a three part name.
Method 1
CALL SYSPROC.REBIND_ROUTINE_PACKAGE (

’F’,’DRICARD.MODULE.FUNCTION’,’REOPT ALWAYS’)
Method 2
CALL SYSPROC.REBIND_ROUTINE_PACKAGE (

’F’,’DRICARD’,’MODULE’,’FUNCTION’,’REOPT ALWAYS’)

SET_ROUTINE_OPTS

�� SET_ROUTINE_OPTS (character-expression) ��

The schema is SYSPROC.

The SET_ROUTINE_OPTS procedure sets the options that are to be used for the
creation of SQL procedures in the current session. This setting overrides the
instance-wide setting specified in the DB2_SQLROUTINE_PREPOPTS registry
variable.

character-expression
An input argument of type VARCHAR(1024) that specifies the options setting
for the current session.

Specified options are valid for the duration of the session. If the null value is
specified as the argument, the value of the DB2_SQLROUTINE_PREPOPTS registry
variable is restored as the default options setting for the current session. For a list
of the allowed options, see the description of the DB2_SQLROUTINE_PREPOPTS
registry variable under “Query compiler variables”.

Authorization

One of the following authorities is required to execute the procedure:
v EXECUTE privilege on the procedure
v DATAACCESS authority
v DBADM authority
v SQLADM authority

Example 1: Set the options setting for the current session to NULL.
CALL SYSPROC.SET_ROUTINE_OPTS(CAST (NULL AS VARCHAR(1)))

Example 2: Set the options setting for the current session to EXPLAIN YES.
CALL SET_ROUTINE_OPTS(’EXPLAIN YES’)

Example 3: Set the options setting for the current session to EXPLAIN YES and
BLOCKING NO.

CALL SET_ROUTINE_OPTS(’EXPLAIN YES BLOCKING NO’)

Chapter 16. SQL procedures routines 865

866 Administrative Routines and Views

Chapter 17. Stepwise redistribute routines

ANALYZE_LOG_SPACE procedure - Retrieve log space analysis
information

The ANALYZE_LOG_SPACE procedure returns the log space analysis results for
each of the database partitions of the given database partition group.

Syntax

�� ANALYZE_LOG_SPACE (inDBPGroup , inMainTbSchema , inMainTable , �

� analysisType , inStmgTime , addDropOption , addDropList , pNumber , �

� pWeight) ��

The schema is SYSPROC.

Procedure parameters

inDBPGroup
An input argument of type VARCHAR (128) that specifies the database
partition group name.

inMainTbSchema
An input argument of type VARCHAR (128) that specifies the schema of the
main table

inMainTable
An input argument of type VARCHAR (128) that specifies the main table
within the database partition group, usually the largest table in the database
partition group.

analysisType
An input argument of type SMALLINT that specifies an indicator for analysis
type:
v SWRD_USE_STMG_TABLE (1): indicates that the information in the storage

management tables is used to find the table row count per database
partition. This type should only be used if the storage management tables
are setup, and at least one storage snapshot has been taken for the database
partition group that is to be redistributed.

v SWRD_USE_REALTIME_ANALYSIS (2): indicates that a SELECT query is
used to find the table row count per database partition.

inStmgTime
An input argument of type VARCHAR (26) that specifies the timestamp for the
storage management record. This parameter is ignored when analysisType is set
to SWRD_USE_REALTIME_ANALYSIS.

addDropOption
An input argument of type CHAR (1) that specifies database partitions are
being added or dropped:
v 'A': Adding database partitions.

© Copyright IBM Corp. 2006, 2012 867

v 'D': Dropping database partitions.
v 'N': No adding or dropping.

addDropList
An input argument of type VARCHAR (6000) that specifies the database
partitions to be added or dropped. This database partition numbers are
specified in a comma-separated string format and no spaces are allowed in the
string.

pNumber
An input argument of type VARCHAR (6000) that specifies all the database
partition numbers corresponding to the database partition weight. Each
database partition number is between 0 and 999, and the database partition
numbers are specified in a comma-separated string with no spaces in the
string.

pWeight
An input argument of type VARCHAR (6000) that specifies all the database
partition weights that the user has specified corresponding to the database
partition numbers in the pNumber string. Each database partition weight is a
number between 0 and 32767, and database partition weights are specified in a
comma-separated string with no spaces in the string.

Authorization
v SYSADM, SYSMON, SYSCTRL, or SYSMAINT
v EXECUTE privilege on the ANALYZE_LOG_SPACE procedure

Example

Analyze the effect of adding a database partition without applying the changes. In
the following case, the hypothesis is adding database partition 40, 50 and 60 to the
database partition group, and for database partitions 10,20,30,40,50,60, using a
target ratio of 1:2:1:2:1:2. Note that in this example, only partitions 10, 20 and 30
actually exist in the database partition group
CALL SYSPROC.ANALYZE_LOG_SPACE(’IBMDEFAULTGROUP’, ’TEST’,

’EMP’, 2, ’ ’, ’A’, ’40,50,60’, ’10,20,30,40,50,60’,
’1,2,1,2,1,2’)

Analyze the effect of dropping a database partition without applying the changes.
In the following case, the hypothesis is dropping database partition 30 from the
database partition group, and redistributing the data in database partitions 10 and
20 using a target ratio of 1 : 1. Note that in this example, all database partitions 10,
20 and 30 should exist in the database partition group
CALL SYSPROC.ANALYZE_LOG_SPACE(’IBMDEFAULTGROUP’, ’TEST’,

’EMP’, 2, ’ ’, ’D’, ’30’, ’10,20’,’1,1’)

Usage notes

“-1” is used as an output value for parameters when their values cannot be
obtained.

The redistribute stored procedures and functions work only in partitioned database
environments, where a distribution key has been defined for each table.

868 Administrative Routines and Views

Information returned

The ANALYZE_LOG_SPACE procedure returns a result set (an open cursor) of the
log space analysis results, containing the following fields for each of the database
partitions of the given database partition group.

Table 232. Information returned by the ANALYZE_LOG_SPACE procedure

Column name Column type Description

PARTITION_NUM SMALLINT The database partition number of the log
space analysis.

TOTAL_LOG_SIZE BIGINT Total log space allocated in bytes, -1
indicates unlimited size.

AVAIL_LOG_SPACE BIGINT The amount of log space in bytes that is
free and can be used by the redistribute
process.

DATA_SKEW BIGINT The absolute value in bytes of the size of
data which is deviated from the target level.

REQ_LOG_SPACE BIGINT The amount of space in bytes required to
reach the required data distribution.

NUM_OF_STEPS SMALLINT The number of steps needed to reduce the
data skew to zero.

MAX_STEP_SIZE BIGINT The maximum amount of data in bytes that
can be moved at a time, without causing a
log full error.

GENERATE_DISTFILE procedure - Generate a data distribution file

The GENERATE_DISTFILE procedure generates a data distribution file for the
given table and saves it under the given fileName.

Syntax

�� GENERATE_DISTFILE (inTbSchema , inTbName , fileName) ��

The schema is SYSPROC.

Procedure parameters

inTbSchema
An input argument of type VARCHAR (128) that specifies the table schema
name.

inTbName
An input argument of type VARCHAR (128) that specifies the table name.

fileName
An input or output argument of type VARCHAR (255) that specifies data
distribution file name. If the given file name is just a file name, the file will be
saved in the tmp sub-directory under the instance directory, and the full file
path name will be returned in the parameter.

Authorization
v EXECUTE privilege on the GENERATE_DISTFILE procedure.

Chapter 17. Stepwise redistribute routines 869

v SELECT privilege on SYSCAT.TABLES, SYSCAT.COLUMNS, and the specified
table.

In addition, the fenced user ID must be able to create files in the tmp sub-directory
under the instance directory.

Example

Generate a data distribution file to be used by the redistribute process.
CALL SYSPROC.GENERATE_DISTFILE(’TEST’, ’EMP’,

’$HOME/sqllib/function/SAMPLE.IBMDEFAULTGROUP_swrdData.dst’)"

Usage notes

The redistribute stored procedures and functions work only in partitioned database
environments, where a distribution key has been defined for each table.

GET_SWRD_SETTINGS procedure - Retrieve redistribute information

The GET_SWRD_SETTINGS procedure reads the existing redistribute registry
records for the given database partition group.

Syntax

�� GET_SWRD_SETTINGS (dbpgName , matchingSpec , redistMethod , �

� pMapFile , distFile , stepSize , totalSteps , stageSize , �

� nextStep , processState , pNumber , pWeight) ��

The schema is SYSPROC.

Procedure parameters

dbpgName
An input argument of type VARCHAR(128) that specifies the database
partition group name against which the redistribute process is to run.

matchingSpec
An input argument of type SMALLINT that specifies the bitwise field
identifier(s) from Table 233, indicating the target fields to be returned by the
output parameters. Those output parameters that are not required can be set to
null.

For example, if matchingSpec is set to 96, which is the integer value of
(REDIST_STAGE_SIZE | REDIST_NEXT_STEP), the caller of this function only
needs to provide stageSize and nextStep to receive the values, and the
remainder of the output parameters can be null.

Table 233. Bitwise field identifiers

Field Name Hexadecimal value Decimal value

REDIST_METHOD 0x0001<<0 1

REDIST_PMAP_FILE 0x0001<<1 2

REDIST_DIST_FILE 0x0001<<2 4

870 Administrative Routines and Views

Table 233. Bitwise field identifiers (continued)

Field Name Hexadecimal value Decimal value

REDIST_STEP_SIZE 0x0001<<3 8

REDIST_NUM_STEPS 0x0001<<4 16

REDIST_STAGE_SIZE 0x0001<<5 32

REDIST_NEXT_STEP 0x0001<<6 64

REDIST_PROCESS_STATE 0x0001<<7 128

REDIST_PWEIGHT_START_NODE 0x0001<<8 256

REDIST_PWEIGHT 0x0001<<9 512

redistMethod
An output argument of type SMALLINT that specifies whether the redistribute
is to run using the data distribution file or the target distribution map. There
are two possible return values:
v 2: indicates that the redistribute process will work with a data distribution

file as input.
v 3: indicates that the redistribute process will work with a target distribution

map as input.

pMapFile
An output argument of type VARCHAR (255) that specifies the full path file
name of the target distribution map on the database server.

distFile
An output argument of type VARCHAR (255) that specifies the full path file
name of the data distribution file on the database server.

stepSize
An output argument of type BIGINT that specifies the maximum number of
rows that can be moved before a commit must be called to prevent a log full
situation. The number can be changed in each redistribution step.

totalSteps
An output argument of type SMALLINT that specifies the number of steps it
takes to completely redistribute the given database partition group.

stageSize
An output argument of type SMALLINT that specifies the number of steps to
be run consecutively.

nextStep
An output argument of type SMALLINT that specifies the index separating
which steps have been completed, and what still needs to be run.

processState
An output argument of type SMALLINT that indicates whether or not the
redistribute process will be stopped at the next check point. A check point is
placed at beginning of each redistribute step. If this argument is set to 1, the
step will not start; if the value is 0, the step will proceed.

pNumber
An output argument of type VARCHAR (6000) that might return a list of
comma-separated database partition numbers in a string format. These
partition numbers can be either the database partitions that are currently used
by the database partition group, or the ones to be added or dropped. The

Chapter 17. Stepwise redistribute routines 871

sequence and the count of these partition numbers correspond to the target
partition weight returned by the pWeight variable.

pWeight
An output argument of type VARCHAR (6000) that might return a list of
comma-separated target database partition weight numbers. The sequence and
the count of these partition weights correspond to the partition numbers
returned by the pNumber variable.

Authorization

EXECUTE privilege on the GET_SWRD_SETTINGS procedure.

Example

Report the content of the step wise redistribution plan for the given database
partition group.
CALL SYSPROC.GET_SWRD_SETTINGS

(’IBMDEFAULTGROUP’, 255, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)

Usage note

The redistribute stored procedures and functions work only in partitioned database
environments, where a distribution key has been defined for each table.

SET_SWRD_SETTINGS procedure - Create or change redistribute
registry

The SET_SWRD_SETTINGS procedure creates or make changes to the redistribute
registry. If the registry does not exist, it creates it and add records into it. If the
registry already exists, it uses overwriteSpec to identify which of the field values
need to be overwritten. The overwriteSpec field enables this function to take NULL
inputs for the fields that do not need to be updated.

Syntax

�� SET_SWRD_SETTINGS (dbpgName , overwriteSpec , redistMethod , �

� pMapFile , distFile , stepSize , totalSteps , stageSize , �

� nextStep , processState , pNumber , pWeight) ��

The schema is SYSPROC.

Procedure parameters

dbpgName
An input argument of type VARCHAR(128) that specifies the database
partition group name against which the redistribute process is to run.

overwriteSpec
Bitwise field identifier(s) from Table 234 on page 873 indicating the target fields
to be written or overwritten into the redistribute settings registry.

872 Administrative Routines and Views

Table 234. Bitwise field identifiers

Field Name Hexadecimal value Decimal value

REDIST_METHOD 0x0001<<0 1

REDIST_PMAP_FILE 0x0001<<1 2

REDIST_DIST_FILE 0x0001<<2 4

REDIST_STEP_SIZE 0x0001<<3 8

REDIST_NUM_STEPS 0x0001<<4 16

REDIST_STAGE_SIZE 0x0001<<5 32

REDIST_NEXT_STEP 0x0001<<6 64

REDIST_PROCESS_STATE 0x0001<<7 128

REDIST_PWEIGHT_START_NODE 0x0001<<8 256

REDIST_PWEIGHT 0x0001<<9 512

redistMethod
An input argument of type SMALLINT that specifies whether the redistribute
is to run using the data distribution file or the target distribution map. The two
valid input values are:
v 2: indicate that the redistribute process will work with a data distribution

file as input.
v 3: indicate that the redistribute process will work with a target distribution

map as input.

pMapFile
An input argument of type VARCHAR (255) that specifies the full path file
name of the target distribution map on the database server.

distFile
An input argument of type VARCHAR (255) that specifies the full path file
name of the data distribution file on the database server..

stepSize
An input argument of type BIGINT that specifies the maximum number of
rows that can be moved before a commit must be called to prevent a log full
situation. The number can be changed in each redistribution step. The value
“-2” can be used for stepSize to indicate that the number is unlimited.

totalSteps
An input argument of type SMALLINT that specifies the number of steps it
takes to completely redistribute the given database partition group. The value
“-2” can be used totalSteps to indicate that the number is unlimited.

stageSize
An input argument of type SMALLINT that specifies the number of steps to be
run consecutively.

nextStep
An input argument of type SMALLINT that specifies the index separating
which steps have been completed, and what still needs to be run.

processState
An input argument of type SMALLINT that indicates whether or not the
redistribute process will be stopped at the next check point. A check point is
placed at beginning of each redistribute step. If this argument is set to 1, the
step will not start; if the value is 0, the step will proceed.

Chapter 17. Stepwise redistribute routines 873

pNumber
An input argument of type VARCHAR (6000) that can contain a list of
comma-separated database partition numbers in a string format. These
partition numbers can be either the database partitions that are currently used
by the database partition group, or the ones to be added or dropped. The
sequence and the count of these partition numbers correspond to the target
partition weight returned by the pWeight variable. Each database partition
number is between 0 and 999, and there are no spaces are allowed in the
string.

pWeight
An input argument of type VARCHAR (6000) that can contain a
comma-separated string of all the database partition weights the user has
specified, corresponding to the database partition numbers in the pNumber
string. Each database partition weight is a number between 0 and 32767, and
no spaces are allowed in the string.

Authorization

EXECUTE privilege on the SET_SWRD_SETTINGS procedure.

Example

Write a step wise redistribution plan into a registry. Setting processState to 1, might
cause a currently running step wise redistribute stored procedure to complete the
current step and stop, until this parameter is reset to 0, and the redistribute stored
procedure is called again.
CALL SYSPROC.SET_SWRD_SETTINGS(’IBMDEFAULTGROUP’, 255, 0, ’ ’,

’$HOME/sqllib/function/TEST.IBMDEFAULTGROUP_swrdData.dst’, 1000,
12, 2, 1, 0, ’10,20,30’, ’50,50,50’)

Usage notes

The redistribute stored procedures and functions work only in partitioned database
environments, where a distribution key has been defined for each table.

STEPWISE_REDISTRIBUTE_DBPG procedure - Redistribute part of
database partition group

The STEPWISE_REDISTRIBUTE_DBPG procedure redistributes part of the database
partition group according to the input specified for the procedure, and the setting
file created or updated by the SET_SWRD_SETTINGS procedure.

Syntax

�� STEPWISE_REDISTRIBUTE_DBPG (inDBPGroup , inStartingPoint , �

� inNumSteps) ��

The schema is SYSPROC.

Procedure parameters

inDBPGroup
An input argument of type VARCHAR (128) that specifies the name of the
target database partition group.

874 Administrative Routines and Views

inStartingPoint
An input argument of type SMALLINT that specifies the starting point to use.
If the parameter is set to a positive integer and is not NULL, the
STEPWISE_REDISTRIBUTE_DBPG procedure uses this value instead of using
the nextStep value specified in the setting file. This is a useful option when you
want to rerun the STEPWISE_REDISTRIBUTE_DBPG procedure from a
particular step. If the parameter is set to NULL, the nextStep value is used.

inNumSteps
An input argument of type SMALLINT that specifies the number of steps to
run. If the parameter is set to a positive integer and is not NULL, the
STEPWISE_REDISTRIBUTE_DBPG procedure uses this value instead of using
the stageSize value specified in the setting file. This is a useful option when you
want to rerun the STEPWISE_REDISTRIBUTE_DBPG procedure with a
different number of steps than what is specified in the settings. For example, if
there are five steps in a scheduled stage, and the redistribution process failed
at step 3, the STEPWISE_REDISTRIBUTE_DBPG procedure can be called to run
the remaining three steps once the error condition has been corrected. If the
parameter is set to NULL, the stageSize value is used. The value -2 can be used
in this procedure to indicate that the number is unlimited.

Note: There is no parameter for specifying the equivalent of the NOT ROLLFORWARD
RECOVERABLE option on the REDISTRIBUTE DATABASE PARTITION GROUP command.
Logging is always performed for row data redistribution performed when the
STEPWISE_REDISTRIBUTE_DBPG procedure is used.

Authorization
v EXECUTE privilege on the STEPWISE_REDISTRIBUTE_DBPG procedure
v SYSADM, SYSCTRL or DBADM

Example

Redistribute the database partition group "IBMDEFAULTGROUP" according to the
redistribution plan stored in the registry by the SET_SWRD_SETTINGS procedure.
It is starting with step 3 and redistributes the data until 2 steps in the
redistribution plan are completed.
CALL SYSPROC.STEPWISE_REDISTRIBUTE_DBPG(’IBMDEFAULTGROUP’, 3, 2)

For a full usage example of the stepwise redistribute procedures, refer to
“STEPWISE_REDISTRIBUTE_DBPG procedure” in the Partitioning and Clustering
Guide.

Usage notes

If the registry value for processState is updated to 1 using the
SET_SWRD_SETTINGS procedure after the STEPWISE_REDISTRIBUTE_DBPG
procedure execution is started, the process stops at the beginning to the next step
and a warning message is returned.

As the SQL COMMIT statement is called by the redistribute process, running the
redistribute process under a Type-2 connection is not supported.

Chapter 17. Stepwise redistribute routines 875

876 Administrative Routines and Views

Chapter 18. Storage management tool routines

CAPTURE_STORAGEMGMT_INFO procedure - Retrieve storage-related
information for a given root object

The CAPTURE_STORAGEMGMT_INFO procedure attempts to collect the
storage-related information for the given root object, as well as the storage objects
defined within its scope. All the storage objects are specified in the
SYSTOOLS.STMG_OBJECT_TYPE table.

Table 235. STMG_OBJECT_TYPE table

Column name Data type Nullable Description

OBJ_TYPE INTEGER N Integer value corresponds to a
type of storage object
v 0 - Database
v 1 - Database Partition Group
v 2 - Table Space
v 3 - Table Space Container
v 4 - Table
v 5 - Index

TYPE_NAME VARCHAR N Descriptive name of the storage
object type

v STMG_DATABASE

v STMG_DBPGROUP

v STMG_TABLESPACE

v STMG_CONTAINER

v STMG_TABLE

v STMG_INDEX

Syntax

�� CAPTURE_STORAGEMGMT_INFO (in_rootType , in_rootSchema , �

� in_rootName) ��

The schema is SYSPROC.

Procedure parameters

in_rootType
An input argument of type SMALLINT. The valid option types are:
v 0 - Database
v 1 - Database Partition Group
v 2 - Table Space
v 4 - Table
v 5 - Index

The input argument cannot be null. If a null value is specified, an SQL0443
error with SQLSTATE 38553, and token DBA7617 is returned.

© Copyright IBM Corp. 2006, 2012 877

in_rootSchema
An input argument of type VARCHAR (128) that specifies the schema name of
the storage snapshot root object. A NULL value can be specified if the
in_rootType is a database, a database partition group, or a table space.

in_rootName
An input argument of type VARCHAR (128) that specifies the name of the root
object. The input argument cannot be null. If a null value is specified, an
SQL0443 error with SQLSTATE 38553, and token DBA7617 is returned.

Authorization
v EXECUTE privilege on the CAPTURE_STORAGEMGMT_INFO procedure.
v EXECUTE privilege on the SYSPROC.DB_PARTITIONS,

SYSPROC.SNAP_GET_CONTAINER, SYSPROC.SNAPSHOT_CNTRFS table
functions.

v SELECT privilege on SYSCAT.TABLES, SYSCAT.TABLESPACES,
SYSCAT.NODEGROUPDEF, SYSCAT.DATABASEPARTITIONS,
SYSCAT.DATAPARTITIONEXPRESSION, SYSCAT.INDEXES, and
SYSCAT.COLUMNS.

Usage Notes:
1. The following stored procedure should be used to create storage management

tables:
create_storagemgmt_tables(TABLESPACE_NAME) where 'TABLESPACE' is the
name of the table space, on which storage management tables would be
created.
(In case of a problem with the existing storage management tables, it can be
dropped using the following stored procedure and can be re-created using the
previously described stored procedure.
drop_storagemgmt_tables(0 or 1) where '0' or '1 'indicates 'stop' or 'proceed'
on encountering an error.)

2. The following command should be used to run statistics for the storage object
for which details have to be obtained:
RUNSTATS ON TABLE (TABLESCHEMA.TABLENAME) ON KEY COLUMNS AND INDEXES ALL

3. The following command should be used to populate the storage management
tables:
Run 'capture_storagemgnt_info()' stored procedure to populate the storage
management tables. Sometimes it might be necessary to run the
CAPTURE_STORAGEMGMT_INFO procedure twice. The first time you run it,
use the CAPTURE_STORAGEMGMT_INFO procedure to populate the storage
tables with table space details. For example:
db2 "call capture_storagemgmt_info(0,<SCHEMA_NAME>,<DATABASE_NAME>)"

The second time, use the CAPTURE_STORAGEMGMT_INFO procedure to add
details about the storage of the actual object to the storage table. For example,
the following example adds details for an object of type index (the in_rootType
argument is set to 5):
db2 "call
capture_storagemgmt_info(5,<SCHEMA_NAME>,<SCHEMA_NAME.INDEX_NAME>)"

4. Run the select query on the required storage management table to see the
details of the storage object, for example: as follows in case of INDEX object :
db2 "SELECT * FROM SYSTOOLS.STMG_INDEX"

878 Administrative Routines and Views

CREATE_STORAGEMGMT_TABLES procedure - Create storage
management tables

The CREATE_STORAGEMGMT_TABLES procedure creates all storage
management tables under a fixed "DB2TOOLS" schema, in the table space specified
by input.

Syntax

�� CREATE_STORAGEMGMT_TABLES (in_tbspace) ��

The schema is SYSPROC.

Procedure parameters

in_tbspace
An input argument of type VARCHAR(128) that specifies the table space name.
The input argument cannot be null. If a null value is specified, an SQL0443
error with SQLSTATE 38553, and token DBA7617 is returned.

Authorization

EXECUTE privilege on the CREATE_STORAGEMGMT_TABLES procedure.

You must also have CREATETAB privilege on the database and USE privilege on
the table space, and one of:
v IMPLICIT_SCHEMA authority on the database, if the implicit or explicit schema

name DB2TOOLS does not exist.
v CREATEIN privilege on the schema, if the schema name of the table exists.
v DBADM authority

Usage notes

The following tables are created in the DB2TOOLS schema:
v STMG_CONTAINER
v STMG_CURR_THRESHOLD
v STMG_DATABASE
v STMG_DBPARTITION
v STMG_DBPGROUP
v STMG_HIST_THRESHOLD
v STMG_INDEX
v STMG_OBJECT
v STMG_OBJECT_TYPE
v STMG_ROOT_OBJECT
v STMG_TABLE
v STMG_TABLESPACE
v STMG_TBPARTITION
v STMG_THRESHOLD_REGISTRY

Chapter 18. Storage management tool routines 879

DROP_STORAGEMGMT_TABLES procedure - Drop all storage
management tables

The DROP_STORAGEMGMT_TABLES procedure attempts to drop all storage
management tables.

Syntax

�� DROP_STORAGEMGMT_TABLES (dropSpec) ��

The schema is SYSPROC.

Procedure parameters

dropSpec
An input argument of type SMALLINT. When dropSpec is set to 0, the process
stops when any error is encountered; when dropSpec is set to 1, the process
continues, ignoring any error it encounters. The input argument cannot be null.
If a null value is specified, an SQL0443 error with SQLSTATE 38553, and token
DBA7617 is returned.

Authorization

EXECUTE privilege on the DROP_STORAGEMGMT_TABLES procedure.

The user ID that establishes the database connection must either be the definer of
the storage management tables as recorded in the DEFINER column of
SYSCAT.TABLES, or have at least one of the following privileges:
v DBADM authority
v DROPIN privilege on the schema for these tables
v CONTROL privilege on these tables

880 Administrative Routines and Views

Chapter 19. Text Search routines

SYSTS_ADMIN_CMD stored procedure - Run text search
administration commands

The SYSTS_ADMIN_CMD procedure is used by applications to run text search
administrative commands using the SQL CALL statement.

Syntax

�� SYSTS_ADMIN_CMD (command-string , message-locale , message) ��

The schema is SYSPROC.

Procedure parameter

command-string
An input argument of type VARCHAR (32K) that specifies a single text search
index administration command that is to be executed. The command syntax is
the same as the DB2 Text Search command with the exception of the
connection options. Connection options are not supported through this
procedure. Commands that are run through this procedure use the current
connection.

message-locale
An input argument of type VARCHAR (33) that specifies the required
language for any error message text returned. If the argument is null or an
empty string, or the message files for the specified locale are not available on
the server, 'en_US' is used.

message
An output argument of type VARCHAR (32K) that specifies a warning or
informational message for an operation that is considered successful.

Authorization

EXECUTE privilege on the SYSTS_ADMIN_CMD procedure.

The procedure currently supports the following DB2 Text Search commands:
v ALTER INDEX
v CLEAR COMMAND LOCKS
v CLEAR EVENTS
v CREATE INDEX
v DISABLE DATABASE
v DROP INDEX
v ENABLE DATABASE
v UPDATE INDEX

© Copyright IBM Corp. 2006, 2012 881

Example

Update text search index MYTEXTINDEX in schema DB2TS and return any error
messages in English.
CALL SYSPROC.SYSTS_ADMIN_CMD
(’UPDATE INDEX DB2TS.MYTEXTINDEX FOR TEXT’,’en_US’, ?)";

The following example is a sample output from this query.
Value of output parameters

Parameter Name : MESSAGE
Parameter Value : CIE00001 Operation completed successfully.

Return Status = 0

Usage notes
v If the execution of the command is not successful, SQLCODE -20427 and

SQLSTATE 38H14 is returned with the text search specific error message. For
example, if index MYTEXTINDEX already exists and the following statement is
issued:

CALL SYSPROC.SYSTS_ADMIN_CMD (’CREATE INDEX MYTEXTINDEX FOR TEXT
ON DB2TS.TEXTBOOKS (STORY)’, ’en_US’, ?)

the index creation will fail with the following error message.
SQL20427N An error occurred during a text search administration
procedure or command. The error message is "CIE00201 Text search
index "DB2TS "."MYTEXTINDEX" already exists. ". SQLSTATE=38H14

v If an SQLCODE is returned by the procedure, the message might be truncated.
Full message information can be found in the db2diag log files.

SYSTS_ALTER procedure - Change the update characteristics of an
index

This procedure changes the update characteristics of an index.

The procedure issues an ALTER INDEX text search administration command on the
database server.

Syntax

�� SYSTS_ALTER (index_schema , index_name , update characteristics �

� options , message_locale , message) ��

update characteristics:

UPDATE FREQUENCY NONE
update frequency

�

�
UPDATE MINIMUM minchanges

882 Administrative Routines and Views

update frequency:

�

D (*)
,

integer1 �

H (*)
,

integer2

�

,

M (integer3)

options:

index configuration options
activation options

index configuration options:

INDEX CONFIGURATION (option-value)

option-value:

UPDATEAUTOCOMMIT commitcount_number

activation options:

SET ACTIVE
INACTIVE UNILATERAL

The schema is SYSPROC.

Procedure parameters

index_schema
An input argument of type VARCHAR(128) that specifies the schema of the
text search index. The index_schema must follow the naming restriction for DB2
schema names. If the argument is null or an empty string, the value of
CURRENT SCHEMA is used. The index_schema is case-sensitive.

index_name
An input argument of type VARCHAR(128) that specifies the name of the
index. Together with index_schema, it uniquely identifies a text search index in
a database. The index_name is case-sensitive.

update characteristics
An input argument of type VARCHAR(32K) that specifies the alter options.
The alter options allowed are as follows:

UPDATE FREQUENCY
Specifies the frequency with which index updates are made. The index will
be updated, if the number of changes is at least the value set for UPDATE
MINIMUM. The update frequency NONE indicates that no further index

Chapter 19. Text Search routines 883

updates will be made. This can be useful for a text column in a table with
data that will not change. It is also useful when the user intends to
manually update the index (using the UPDATE INDEX command). Automatic
updates can only be done if the START FOR TEXT command has been run
and the DB2 Text Search instance services are running.

The default frequency value is taken from the view
SYSIBMTS.TSDEFAULTS, where
DEFAULTNAME='UPDATEFREQUENCY'.

NONE
No automatic updates will be applied to the text index. Any further
index update will have to be started manually.

D The day(s) of the week when the index is updated.

* Every day of the week.

integer1
Specific days of the week, from Sunday to Saturday: 0 to 6

H The hour(s) of the specified day(s) when the index is updated.

* Every hour of the day.

integer2
Specific hours of the day, from midnight to 11 pm: 0 to 23

M The minute(s) of the specified hour(s) when the index is updated.

integer3
Specified as top of the hour (0), or in multiples of 5 minute
increments after the hour: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 or 55

If you do not specify the UPDATE FREQUENCY option, the frequency settings
are left unchanged.

UPDATE MINIMUM minchanges
Specifies the minimum number of changes to text documents that must
occur before the index is incrementally updated. Multiple changes to the
same text document are treated as separate changes. If you do not specify
the UPDATE MINIMUM option, the setting is left unchanged.

INDEX CONFIGURATION (option-value)
Starting with Version 9.7 Fix Pack 3 and later fix packs, this is an optional
input argument of type VARCHAR(32K) that allows altering text index
configuration settings. The following option is supported:

884 Administrative Routines and Views

Table 236. Specifications for option-value

Option Value Data type Description

UPDATEAUTO
COMMIT

commitcount
_number

Integer Specifies the number of index updates after which
a commit is executed to preserve the previous
work automatically for either initial or incremental
updates.

v For initial updates, the index update will
process batches of documents from a base table
after the trigger to capture data updates is
activated. After the amount of documents
updated reaches the COMMITCOUNT number, the
server will do an interim commit. Log entries
generated by unprocessed documents will be
removed from staging table. Using the
UPDATEAUTOCOMMIT option for an initial text index
update will lead to a significant increase of
execution time.

v For incremental updates, log entries which have
been processed will be removed
correspondingly from staging table with each
interim commit. COMMITCOUNT counts the number
of documents updated, not the number of
staging table entries.

activation options
Starting with Version 9.7 Fix Pack 3 and later fix packs, this input argument of
type integer sets the status of a text index.

ACTIVE
Sets the text index status to active

INACTIVE
Sets the text index status to inactive

UNILATERAL
Specifies a unilateral change which only affects the status of DB2 Text
Search indexes. If this argument is specified, only the status of a DB2 Text
Search index is changed to active or inactive. Without the UNILATERAL
argument, the activation status of the DB2 Text Search and DB2 Net Search
Extender indexes is jointly switched so that only one of the text indexes is
active.

Note: After altering the status of a text search index from active to inactive, or
vice versa, issue the FLUSH PACKAGE CACHE DYNAMIC command. This removes all
cached dynamic SQL statements from the package cache and forces the next
request for the same SQL statement to be implicitly compiled by DB2.

message_locale
An input argument of type VARCHAR(33) that specifies the locale to be used
for any error message returned. If the argument is null or an empty string, or
the message files for the specified locale are not available on the server, 'en_US'
is used.

message
An output argument of type VARCHAR(32K) that specifies a warning or
informational message for a successfully completed operation.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:

Chapter 19. Text Search routines 885

v CONTROL privilege on the table on which the text index is defined
v DBADM authority

Examples

Example 1: In the following example, the update characteristics of a text search
index are being altered. This index was originally created with index_schema
’db2ts’ and index_name ’myTextIndex’. By using 'UPDATE FREQUENCY NONE',
the intention is to make no further updates to the text search index as possibly no
changes are expected for the associated table column. Any error messages are
requested to be returned in English. When the procedure succeeds, the output
parameter message indicative of the successful operation is returned to the caller.

CALL SYSPROC.SYSTS_ALTER(’db2ts’, ’myTextIndex’,
’UPDATE FREQUENCY NONE’, ’en_US’, ?)

The following example is a sample output from this query.
Value of output parameters

Parameter Name : MESSAGE
Parameter Value : Operation completed successfully.

Return Status = 0

Example 2: In the following example, the SYSTS_ALTER stored procedure is called
to alter the update-characteristics for a text search index with index_schema ’db2ts’
and index_name ’myTextIndex’. The intention is to ensure that updates to the index
occur every hour on the hour. However, this index does not exist and results in an
error.

CALL SYSPROC.SYSTS_ALTER(’db2ts’, ’myTextIndex’,
’update frequency D(*) H(*) M(0)’, ’en_US’, ?)

The following example is a sample output from this query.
SQL20427N An error occurred during a text search administration
procedure or command. The error message is "CIE00316 Text search
index "db2ts"."myTextIndex" does not exist. ". SQLSTATE 38H14

Usage notes
v Text search administration procedures use an existing connection to the

database. The current transaction might be committed or rolled back depending
on the completion of the procedures. As such, you might want to commit all
transaction changes to avoid any unexpected impact from such a commit or
rollback. One way to achieve this is to turn on AUTOCOMMIT for the
connection.

Note: You may run into a deadlock if a transaction is not committed before
executing a text search administration operation, as the same database objects
may be affected and the operation waits for the previous step to commit. This
may occur, for example, if AUTOCOMMIT is turned off and a table is created
followed by creating a text index without an explicit commit between the two
transactions.

v Multiple procedures or commands cannot be run concurrently on a text search
index if they might conflict. Some of the conflicting procedures and commands
are:
– SYSTS_ALTER procedure or ALTER INDEX db2ts command
– SYSTS_CLEAR_EVENTS procedure or CLEAR EVENTS FOR INDEX db2ts

command

886 Administrative Routines and Views

– SYSTS_DISABLE procedure or DISABLE DATABASE FOR TEXT db2ts
command

– SYSTS_DROP procedure or DROP INDEX db2ts command
– STOP FOR TEXT db2ts command
– SYSTS_UPDATE procedure or UPDATE INDEX db2ts command

If there is a conflict, the procedure returns an SQLCODE -20426 and SQLSTATE
38H13.

v When this procedure is run,
– the content of the DB2 Text Search view SYSIBMTS.TSLOCKS is updated.
– the index entry in the Text Search Index Data file is updated. The file contains

a persistent representation of update schedules (also empty ones) for each
index in the instance.

v The result of activating indexes depends on the original index status. The
following table describes the results.

Table 237. Status changes without invalid index:

Initial DB2 Text
Search or Net
Search Extender
Status Request Active

Request Active
Unilateral Request Inactive

Request Inactive
Unilateral

Active / Inactive No change No change Inactive / Active Inactive /
Inactive

Inactive / Active Active / Inactive Error No change No change

Inactive /
Inactive

Active / Inactive Active / Inactive Inactive / Active No change

SQL20427N and CIE0379E error messages are returned for active index conflicts.

SYSTS_CLEAR_COMMANDLOCKS procedure - Remove command
locks for text search indexes

This procedure removes all command locks for a specific text search index or for
all text search indexes in the database.

A command lock is created at the beginning of a text search index command, and
is destroyed when the command has completed. It prevents undesirable conflict
between different commands.

A cleanup is done automatically of all locks associated with processes that are no
longer alive. This is done to make a text search index accessible to a new search
request. Use of this procedure is required in the rare case that locks remain in
place due to an unexpected system behavior, and need to be cleaned up explicitly.

This procedure issues the CLEAR COMMAND LOCKS text search administration
command on the database server.

Syntax

�� SYSTS_CLEAR_COMMANDLOCKS (index_schema , index_name , �

� message_locale , message) ��

Chapter 19. Text Search routines 887

The schema is SYSPROC.

Procedure parameters

index_schema
An input argument of type VARCHAR(128) that specifies the schema of the
text index. The index_schema must follow the naming restriction for DB2
schema names. If the argument is null or an empty string, the value of
CURRENT SCHEMA is used. The index_schema is case-sensitive.

index_name
An input argument of type VARCHAR(128) that specifies the name of the
index. Together with index_schema, it uniquely identifies a text search index in
a database. If the argument is null or an empty string, the procedure deletes
command locks for all text search indexes in the database. The index_name is
case-sensitive.

message_locale
An input argument of type VARCHAR(33) that specifies the locale to be used
for any error message returned. If the argument is null or an empty string, or
the message files for the specified locale are not available on the server, 'en_US'
is used.

message
An output argument of type VARCHAR(32K) that specifies a warning or
informational message for a successfully completed operation.

Authorization

The username for the database connection must have DBADM authority if an index
name is not specified. For clearing a command lock on a specific index, the
username for the database connection must have CONTROL privilege on the table
for which the text search index was created.

Examples

Example 1: In the following example, SYSTS_CLEAR_COMMANDLOCKS is issued
for a text search index with index_schema ’db2ts’ and index_name ’myTextIndex’.
Error messages are requested to be returned in English. When the procedure
succeeds, the output parameter message indicative of the successful operation is
returned to the caller.

CALL SYSPROC.SYSTS_CLEAR_COMMANDLOCKS(’db2ts’, ’myTextIndex’, ’en_US’, ?)

The following example is a sample output from this query.
Value of output parameters

Parameter Name : MESSAGE
Parameter Value : Operation completed successfully.

Return Status = 0

Example 2: In the following example, SYSTS_CLEAR_COMMANDLOCKS is called
to clear the command locks for a text search index with index_schema ’db2ts’ and
index_name ’myTextIndex’. This index does not exist and the procedure returns an
error message.

CALL SYSPROC.SYSTS_CLEAR_COMMANDLOCKS(’db2ts’, ’myTextIndex’, ’en_US’, ?)

The following example is a sample output from this query.

888 Administrative Routines and Views

SQL20427N An error occurred during a text search administration
procedure or command. The error message is "CIE00316 Text search
index "db2ts"."myTextIndex" does not exist. ". SQLSTATE 38H14

Usage notes
v Text search administration procedures use an existing connection to the

database. The current transaction might be committed or rolled back depending
on the completion of the procedures. It is therefore recommended to commit all
transaction changes before executing a text search administration procedure to
avoid any unexpected impact from a commit or rollback in the procedure. One
way to achieve this is to turn on AUTOCOMMIT.

Note: You may run into a deadlock if a transaction is not committed before
executing a text search administration operation, as the same database objects
may be affected and the operation waits for the previous step to commit. This
may occur, for example, if AUTOCOMMIT is turned off and a table is created
followed by creating a text index without an explicit commit between the two
transactions.

v The process and thread information in the view SYSIBMTS.TSLOCKS can be
used to check if the thread or process that holds the lock still exists. The locks
for existing processes belonging to running text search administration procedure
or command (for example, SYSTS_UPDATE or UPDATE INDEX) should not be
cleared.

v You would invoke this procedure because the process owning the command lock
is dead. In this case, the command (represented by the lock) may not have
completed, and the index may not be operational. You need to take appropriate
action. For example, the process executing the DROP INDEX command dies
suddenly. It has deleted some index data, but not all the catalog and collection
information. The command lock is left intact. After clearing the DROP INDEX
command lock, you may want to re-execute the SYSTS_DROP procedure. In
another example, the process executing the SYSTS_CREATE procedure dies
suddenly. It has created some index catalog and collection information, but not
all. The command lock is left intact. After clearing the command lock, you can
execute the SYSTS_DROP and SYSTS_CREATE procedures.

v When this procedure is run, the content of the DB2 Text Search view
SYSIBMTS.TSLOCKS is updated.

SYSTS_CLEAR_EVENTS procedure - Delete indexing events from an
index's event table

This procedure deletes indexing events from an index's event table used for
administration.

The name of the event table can be found in the view SYSIBMTS.TSINDEXES in
column EVENTVIEWNAME. Every index update operation that processes at least
one document produces informational and, in some cases, error entries in the event
table. For automatic updates, the event table has to be regularly inspected.
Document specific errors must be corrected by changing the document content.
After correcting the errors, the events can be cleared (and should be, in order not
to consume too much space).

The procedure issues a CLEAR EVENTS FOR INDEX text search administration
command on the database server.

Chapter 19. Text Search routines 889

Syntax

�� SYSTS_CLEAR_EVENTS (index_schema , index_name , �

� message_locale , message) ��

The schema is SYSPROC.

Procedure parameters

index_schema
An input argument of type VARCHAR(128) that specifies the schema of the
text search index. The index_schema must follow the naming restriction for DB2
schema names. If the argument is null or an empty string, the value of
CURRENT SCHEMA is used. The index_schema is case-sensitive.

index_name
An input argument of type VARCHAR(128) that specifies the name of the
index. Together with index_schema, it uniquely identifies a text search index in
a database. The index_name is case-sensitive.

message_locale
An input argument of type VARCHAR(33) that specifies the locale to be used
for any error message returned. If the argument is null or an empty string, or
the message files for the specified locale are not available on the server, 'en_US'
is used.

message
An output argument of type VARCHAR(32K) that specifies a warning or
informational message for a successfully completed operation.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v CONTROL privilege on the table on which the index is defined
v DBADM authority

Examples

Example 1: In the following example, SYSTS_CLEAR_EVENTS is being called for a
text search index that was created with index_schema ’db2ts’ and index_name
’myTextIndex’. Any error messages are requested to be returned in English. When
the procedure succeeds, the output parameter message indicative of the successful
operation is returned to the caller.

CALL SYSPROC.SYSTS_CLEAR_EVENTS(’db2ts’, ’myTextIndex’, ’en_US’, ?)

The following example is a sample output from this query.
Value of output parameters

Parameter Name : MESSAGE
Parameter Value : Operation completed successfully.

Return Status = 0

890 Administrative Routines and Views

Example 2: In the following example, SYSTS_CLEAR_EVENTS is called to clear the
event table entries for a text search index with index_schema ’db2ts’ and
index_name ’myTextIndex’. This index does not exist and results in an error.

CALL SYSPROC.SYSTS_CLEAR_EVENTS(’db2ts’, ’myTextIndex’, ’en_US’, ?)

The following example is a sample output from this query.
SQL20427N An error occurred during a text search administration
procedure or command. The error message is "CIE00316 Text search
index "db2ts"."myTextIndex" does not exist. ". SQLSTATE 38H14

Usage notes
v Text search administration procedures use an existing connection to the

database. The current transaction might be committed or rolled back depending
on the completion of the procedures. It is therefore recommended to commit all
transaction changes before executing a text search administration procedure to
avoid any unexpected impact from a commit or rollback in the procedure. One
way to achieve this is to turn on AUTOCOMMIT.

Note: You may run into a deadlock if a transaction is not committed before
executing a text search administration operation, as the same database objects
may be affected and the operation waits for the previous step to commit. This
may occur, for example, if AUTOCOMMIT is turned off and a table is created
followed by creating a text index without an explicit commit between the two
transactions.

v Multiple procedures or commands cannot be run concurrently on a text search
index if they might conflict. Some of the conflicting procedures and commands
are:
– SYSTS_ALTER procedure or ALTER INDEX db2ts command
– SYSTS_DISABLE procedure or DISABLE DATABASE FOR TEXT db2ts

command
– SYSTS_DROP procedure or DROP INDEX db2ts command
– STOP FOR TEXT db2ts command
– SYSTS_UPDATE procedure or UPDATE INDEX db2ts command

If there is a conflict, the procedure returns an SQLCODE -20426 and SQLSTATE
38H13.

v When regular updates are scheduled (see UPDATE FREQUENCY options in
SYSTS_CREATE or SYSTS_ALTER procedures), the event table should be
checked regularly.

v To clean up the DB2 Text Search event table for a text search index, use the
SYSTS_CLEAR_EVENTS procedure or CLEAR EVENTS FOR INDEX db2ts command
after you have checked the reason for the event and removed the source of the
error.

v Ensure that changes have been made to all rows referenced in the event table.
By changing the rows in the user table, you ensure that when you run the
SYSTS_UPDATE procedure or UPDATE INDEX db2ts command again, an attempt is
made to index the erroneous documents again.

v When this command is issued, the event table is cleared.

SYSTS_CREATE procedure - Create a text search index on a column
This procedure creates a text search index for a text column which allows the
column data to be searched using text search functions.

Chapter 19. Text Search routines 891

Once the text search index is created, the column can be searched using text search
functions in queries. The index will not contain any data until the text search
UPDATE INDEX command or SYSTS_UPDATE procedure is explicitly executed by the
user, or implicitly executed by the text search instance level services, according to
the defined update frequency for the index.

The procedure issues a CREATE INDEX text search administration command on the
database server.

Syntax

�� SYSTS_CREATE (index_schema , index_name , text source , �

� options , message_locale , message) ��

text source:

table-name (text column name) ,

text column name:

column-name
function-name (column-name)

options:

text default information

update characteristics

storage options

index configuration options

text default information:

CODEPAGE code-page LANGUAGE language FORMAT format

update characteristics:

UPDATE FREQUENCY NONE
update frequency

�

� incremental update characteristics

update frequency:

892 Administrative Routines and Views

�

D (*)
,

integer1 �

H (*)
,

integer2

�

,

M (integer3)

incremental update characteristics:

UPDATE MINIMUM minchanges

storage options:

COLLECTION DIRECTORY directory
�

�
ADMINISTRATION TABLES IN tablespace-name

index configuration options:

�

,

INDEX CONFIGURATION (option-value)

option-value:

COMMENT text
UPDATEAUTOCOMMIT commitcount_number

The schema is SYSPROC.

Procedure parameters

index_schema
An input argument of type VARCHAR(128) that specifies the schema of the
text search index. The index_schema must follow the naming restriction for DB2
schema names. If the argument is null or an empty string, the value of
CURRENT SCHEMA is used. The index_schema is case-sensitive.

index_name
An input argument of type VARCHAR(128) that specifies the name of the
index. Together with index_schema, it uniquely identifies a text search index in
a database. The index_name is case-sensitive.

text source
An input argument of type VARCHAR(1024) that specifies the name of the
column to be indexed. The options are:

table-name
The table name containing the text column. Text search indexes cannot be
created on the following tables:

Chapter 19. Text Search routines 893

v range-partitioned tables
v federated tables
v materialized query tables
v views

The table-name is case-sensitive.

text column name
The column name of the column to be indexed.

column-name
The column must be of one of the following data types: CHAR,
VARCHAR, LONG VARCHAR, CLOB, DBCLOB, BLOB, GRAPHIC,
VARGRAPHIC, LONG VARGRAPHIC, or XML. If the data type of the
column is not one of these, use a transformation function specified
with function-schema.function-name to convert the column type to one of
the valid types. Refer to the function-name (column-name) for syntax and
details. Alternatively, you can specify a user-defined external function
that accesses the text documents to be indexed. Only a single text
search index can be created for a column. The column-name is
case-sensitive.

function-name (column-name)
Specifies the schema qualified name, that conforms to DB2 naming
conventions, of an external scalar function that accesses text documents
in a column that is not of a supported type for text searching. Performs
a data type conversion of that value, and returns the value as one of
the supported data types for text searching. Its task is to perform a
column type conversion. This function must take only one parameter
and return only one value. The function-name (column-name) is
case-sensitive.

options
An input argument of type VARCHAR(32K) that specifies the options to be
used. If no options are needed, the argument can be null or an empty string.
The available options are:

CODEPAGE code-page
Specifies the DB2 code page (CODEPAGE) to be used when indexing text
documents. The default value is specified by the value in the view
SYSIBMTS.TSDEFAULTS, where DEFAULTNAME='CODEPAGE' (which
happens to be the database code page). This argument only applies to
binary data types, that is, the column type or return type from a
transformation function must be BLOB or character-type FOR BIT DATA.

LANGUAGE language
Specifies the language to be used by DB2 Text Search for language specific
processing of a document during indexing. If you do not specify a locale,
the database territory will be used to determine the default setting for
LANGUAGE. If you would like to have your documents automatically
scanned to determine the locale, specify locale as AUTO.

FORMAT format
Specifies the format of text documents in the column. The supported
formats include: TEXT, XML, HTML and INSO. DB2 Text Search needs this
information when indexing documents. If the format is not specified, the
default value is used. The default value is in the view
SYSIBMTS.TSDEFAULTS, where DEFAULTNAME='FORMAT'. For columns

894 Administrative Routines and Views

of data type XML, the default format 'XML' is used, regardless of the value
of DEFAULTNAME. Rich text support must be installed to use the INSO
format.

UPDATE FREQUENCY
Specifies the frequency with which index updates are made. The index will
be updated, if the number of changes is at least the value set for UPDATE
MINIMUM. The update frequency NONE indicates that no further index
updates will be made. This can be useful for a text column in a table with
data that will not change. It is also useful when the user intends to
manually update the index (using the UPDATE INDEX command). Automatic
updates can only be done if the START FOR TEXT command has been run
and the DB2 Text Search instance services are running.

The default frequency value is taken from the view
SYSIBMTS.TSDEFAULTS, where
DEFAULTNAME='UPDATEFREQUENCY'.

NONE
No further index updates are made. The update has to be started
manually.

D The day(s) of the week when the index is updated.

* Every day of the week.

integer1
Specific days of the week, from Sunday to Saturday: 0 to 6

H The hour(s) of the specified day(s) when the index is updated.

* Every hour of the day.

integer2
Specific hours of the day, from midnight to 11 pm: 0 to 23

M The minute(s) of the specified hour(s) when the index is updated.

integer3
Specified as top of the hour (0), or in multiples of 5 minute
increments after the hour: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 or 55

UPDATE MINIMUM minchanges
Specifies the minimum number of changes to text documents before the
index is updated incrementally at the time specified in UPDATE FREQUENCY.
Positive integer values only are allowed. The default value is taken from
the view SYSIBMTS.TSDEFAULTS, where
DEFAULTNAME='UPDATEMINIMUM'.

Note: This value is ignored during an UPDATE INDEX command (unless the
USING UPDATE MINIMUM option is used there). A small value increases
consistency between the table column and the text search index. However,
it also causes higher performance usage.

COLLECTION DIRECTORY directory
The directory in which the text search index is stored. By default the
collection data will be located in DBPATH/db2collections where the value
for DBPATH is the file path used for creating the database. You must specify
the absolute path. The maximum length of the absolute path name is 215
characters. Different indexes are organized in subdirectories named index
identifier under COLLECTION DIRECTORY where index identifier is a system
generated identifier.

Chapter 19. Text Search routines 895

ADMINISTRATION TABLES IN tablespace-name
Specifies the name of an existing regular table space for the administration
tables created for the index. If not specified, the table space of the base
table for which the index is being created is used.

INDEX CONFIGURATION (option-value)
Specifies additional index related values as option value string pairs. The
following values are supported:

Table 238. Specifications for option-value

Option Value Data type Description

COMMENT text String value
less than 512
bytes

Adds a string comment value to the
REMARKS column in the DB2 Text Search
catalog view TSINDEXES. It also adds the
string comment value as the description of
the collection.

UPDATEAUTO
COMMIT

commitcount
_number

Integer Starting with DB2 Version 9.7 Fix Pack 3, it
specifies the number of index updates after
which a commit is executed to preserve the
previous work automatically for either
initial or incremental updates.

v For initial updates, the index update will
process batches of documents from a
base table after the trigger to capture
data updates is activated. After the
amount of documents updated reaches
the COMMITCOUNT number, the server will
do an interim commit. Log entries
generated by unprocessed documents
will be removed from staging table.
Using the UPDATEAUTOCOMMIT option for
an initial text index update will lead to a
significant increase of execution time.

v For incremental updates, log entries
which have been processed will be
removed correspondingly from the
staging table with each interim commit.
COMMITCOUNT counts the number of
documents updated, not the number of
staging table entries.

Remember: Non-numeric values must be enclosed in single quotation
marks. A single quote character within a string value must be represented
by two consecutive single quotation marks.

Example:
INDEX CONFIGURATION (COMMENT ’Index on User’’s Guide column’)

message_locale
An input argument of type VARCHAR(33) that specifies the locale to be used
for any error message returned. If the argument is null or an empty string, or
the message files for the specified locale are not available on the server, 'en_US'
is used.

message
An output argument of type VARCHAR(32K) that specifies a warning or
informational message for a successfully completed operation.

896 Administrative Routines and Views

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v CONTROL privilege on the table on which the index is defined
v INDEX privilege on the table on which the index is defined

and one of the following authorities:
– IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the index does not exist
– CREATEIN privilege on the schema, if the schema name of the index refers to

an existing schema
v DBADM authority

Examples

Example 1: In the following example, a text search index with index_schema ’db2ts’
and index_name ’myTextIndex’ is created using the SYSTS_CREATE procedure. The
option ’UPDATE MINIMUM 10’ specifies that at least 10 changes should be made to
the text documents associated with the index before an incremental update of the
index should be performed. Any error messages are requested to be returned in
English. When the underlying text search command runs successfully, the output
parameter message is set to indicate the status of the command execution.

CALL SYSPROC.SYSTS_CREATE(’db2ts’, ’myTextIndex’,
’myUserSchema.myBaseTable (myTextColumn)’, ’UPDATE MINIMUM 10’,
’en_US’, ?)

The following example is a sample output from this query.
Value of output parameters

Parameter Name : MESSAGE
Parameter Value : Operation completed successfully.
Return Status = 0

Example 2: In the following example, SYSTS_CREATE is called to create a text
search index with index_schema ’db2ts’ and index_name ’myTextIndex’. No options
are specified. In this example, the index already exists which results in an error
message being returned to the caller.

CALL SYSPROC.SYSTS_CREATE(’db2ts’, ’myTextIndex’,
’myUserSchema.myBaseTable (myTextColumn)’, ’’, ’en_US’, ?)

The following example is a sample output from this query.
SQL20427N An error occurred during a text search administration
procedure or command. The error message is "CIE00201 Text search
index "db2ts"."myTextIndex" already exists. ".

Usage notes
v Text search administration procedures use an existing connection to the

database. The current transaction might be committed or rolled back depending
on the completion of the procedures. As such, you might want to commit all
transaction changes to avoid any unexpected impact from such a commit or
rollback. One way to achieve this is to turn on AUTOCOMMIT for the
connection.

Note: You may run into a deadlock if a transaction is not committed before
executing a text search administration operation, as the same database objects

Chapter 19. Text Search routines 897

may be affected and the operation waits for the previous step to commit. This
may occur, for example, if AUTOCOMMIT is turned off and a table is created
followed by creating a text index without an explicit commit between the two
transactions.

v Multiple procedures or commands cannot be executed concurrently on a text
search index if they might conflict. Some of the conflicting procedures and
commands are:
– SYSTS_ALTER procedure or ALTER INDEX db2ts command
– SYSTS_CLEAR_EVENTS procedure or CLEAR EVENTS FOR INDEX db2ts

command
– SYSTS_DISABLE procedure or DISABLE DATABASE FOR TEXT db2ts

command
– STOP FOR TEXT db2ts command
– SYSTS_UPDATE procedure or UPDATE INDEX db2ts command

If there is a conflict, the procedure returns an SQLCODE -20426 and SQLSTATE
38H13.

v With the successful execution of the CREATE INDEX command:
– DB2 Text Search server data is updated. A collection of name

instance_database-name_index-identifier_number is created, as in the following
example:
tigertail_MYTSDB_TS250517_0000

The collection name can be retrieved from the SYSIBMTS.TSCOLLECTIONNAMES
view (column COLLECTIONNAME).

– DB2 Text Search catalog information is updated. An index staging table is
created in the specified table space with appropriate DB2 indexes. In addition,
an index event table is created in the specified table space.

– When DB2 Text Search coexists with DB2 Net Search Extender and an active
Net Search Extender index already exists for the table column, the new text
index is set to inactive.

– The newly created text search index is not automatically populated. The
SYSTS_UPDATE procedure or UPDATE INDEX command must be executed either
manually or automatically (as a result of an update schedule having been
defined for the index through the specification of the UPDATE FREQUENCY
option) for the text search index to be populated.

– The Text Search index data file on the DB2 database server is updated.
Scheduled update information is recorded for each index in the instance.

Usage restrictions:
v A primary key must be defined for the table. In DB2 Text Search, a multicolumn

DB2 primary key can be used without type limitations. The number of primary
key columns is limited to 2 columns less than the number of primary key
columns allowed by DB2.

v The total length of all primary key columns for a table with DB2 Text Search
indexes is limited to 15 bytes less than the maximum total primary key length
allowed by DB2. Refer to the DB2 restrictions of DB2 CREATE INDEX statement.

SYSTS_DISABLE procedure - Disable current database for text search
The procedure disables DB2 Text Search for the current database.

898 Administrative Routines and Views

Once the Text Search feature has been disabled, text search indexes and commands
are no longer available for use with the database.

The procedure issues a DISABLE DATABASE FOR TEXT text search administration
command on the database server.

Syntax

�� SYSTS_DISABLE (options , message_locale , message) ��

The schema is SYSPROC.

Procedure parameters

options
An input argument of type VARCHAR(128) that specifies the options to be
used when disabling the database. The argument can be set to FORCE. When
this value is specified, all indexes are dropped and the Text Search feature is
disabled by force. No text search indexes are preserved and no error message
or warning is returned. If the argument is null or an empty string, an attempt
is made to disable the Text Search feature for the database.

message_locale
An input argument of type VARCHAR(33) that specifies the locale to be used
for any error message returned. If the argument is null or an empty string, or
the message files for the specified locale are not available on the server, 'en_US'
is used.

message
An output argument of type VARCHAR(32K) that specifies a warning or
informational message for a successfully completed operation.

Authorization

The privileges held by the authorization ID of the statement must include DBADM
authority.

Examples

Example 1: In the following example, Text Search is disabled for a database using
the SYSTS_DISABLE procedure. The FORCE option is specified to ensure that the
feature is disabled even if text search indexes still exist on tables in the database.
Error messages are specified requested to be returned in English. The message
output parameter is set to an informational message string.

CALL SYSPROC.SYSTS_DISABLE(’FORCE’, ’en_US’, ?)

The following example is a sample output from this query.
Value of output parameters

Parameter Name : MESSAGE
Parameter Value : Operation completed successfully.

Return Status = 0

Example 2: In the following example, Text Search is disabled for a database with
existing text search indexes using the SYSTS_DISABLE procedure without
specifying the FORCE option. This results in an error message to the caller. It is

Chapter 19. Text Search routines 899

preferable to drop all existing text search indexes before disabling the Text Search
feature or alternatively to specify the FORCE option for the options input parameter
value.
CALL SYSPROC.SYSTS_DISABLE(’’, ’en_US’, ?)

The following example is a sample output from this query.
SQL20427N An error occurred during a text search administration
procedure or command. The error message is "CIE00326 Text search
index active in specified or default database. ". SQLSTATE 38H14

Usage notes
v Text search administration procedures use an existing connection to the

database. The current transaction might be committed or rolled back depending
on the completion of the procedures. As such, you might want to commit all
transaction changes to avoid any unexpected impact from such a commit or
rollback. One way to achieve this is to turn on AUTOCOMMIT.

Note: You may run into a deadlock if a transaction is not committed before
executing a text search administration operation, as the same database objects
may be affected and the operation waits for the previous step to commit. This
may occur, for example, if AUTOCOMMIT is turned off and a table is created
followed by creating a text index without an explicit commit between the two
transactions.

v Multiple procedures or commands cannot be executed concurrently on a text
search index if they might conflict. Some of the conflicting procedures and
commands are:
– SYSTS_ALTER procedure or ALTER INDEX db2ts command
– SYSTS_CLEAR_EVENTS procedure or CLEAR EVENTS FOR INDEX db2ts

command
– SYSTS_DISABLE procedure or DISABLE DATABASE FOR TEXT db2ts

command
– STOP FOR TEXT db2ts command
– SYSTS_UPDATE procedure or UPDATE INDEX db2ts command

If there is a conflict, the procedure returns an SQLCODE -20426 and SQLSTATE
38H13.

v When this procedure is run,
– the DB2 Text Search catalog information is updated. The index log and event

tables are dropped. Triggers on the user text table are deleted.
– if the FORCE option is specified, all text index information is removed from the

database and all associated collections are deleted. In addition, the text service
is updated to remove any remaining update schedule information. See the
"db2ts DROP INDEX command" or "SYSTS_DROP procedure" for reference.

v This procedure does not influence the DB2 Net Search Extender enablement
status of the database. It deletes the DB2 Text Search catalog tables and views
that are created by the SYSTS_ENABLE procedure or the ENABLE FOR TEXT
command.

v Before dropping a DB2 database that has text search index definitions, run this
procedure and make sure that the text indexes and collections have been
removed successfully.

v If some indexes could not be deleted using the FORCE option, the collection
names are written to the db2diag log files. If the text search index procedure
SYSTS_DISABLE or the command DISABLE DATABASE FOR TEXT is not executed

900 Administrative Routines and Views

before the CLP command DROP DATABASE, the text search index services must
also be cleaned up using the CLEANUP FOR TEXT command. See the SYSTS_DROP
procedure or DROP INDEX command for more about dropping indexes, and the
CLEANUP FOR TEXT command for information about text search collections and
their relationship to text search indexes.

Note: The user is discouraged from usage that results in orphaned collections,
that is, collections that remain defined on the text search server but are not used
by DB2. Here are some cases that may cause orphaned collections:
– When a DROP DATABASE CLP command or DROP TABLE statement is executed

without running the SYSTS_DISABLE procedure or a DISABLE DATABASE FOR
TEXT command.

– When the SYSTS_DISABLE procedure is run or a DISABLE DATABASE FOR TEXT
command is executed using the FORCE option.

– Some other error conditions. The CLEANUP FOR TEXT command can be used in
some scenarios.

SYSTS_DROP procedure - Drop a text search index
This procedure drops an existing text search index associated with any table
column.

After successful execution of this procedure, text search queries cannot be run on
that column.

The procedure issues a DROP INDEX text search administration command on the
database server.

Syntax

�� SYSTS_DROP (index_schema , index_name , �

� message_locale , message) ��

The schema is SYSPROC.

Procedure parameters

index_schema
An input argument of type VARCHAR(128) that specifies the schema of the
text search index. The index_schema must follow the naming restriction for DB2
schema names. If the argument is null or an empty string, the value of
CURRENT SCHEMA is used. The index_schema is case-sensitive.

index_name
An input argument of type VARCHAR(128) that specifies the name of the
index. Together with index_schema, it uniquely identifies a text search index in
a database. The index_name is case-sensitive.

message_locale
An input argument of type VARCHAR(33) that specifies the locale to be used
for any error message returned. If the argument is null or an empty string, or
the message files for the specified locale are not available on the server, 'en_US'
is used.

Chapter 19. Text Search routines 901

message
An output argument of type VARCHAR(32K) that specifies a warning or
informational message for a successfully completed operation.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:
v CONTROL privilege on the table on which the index is defined
v DBADM authority

Examples

Example 1: In the following example, the text search index that was created with
index_schema ’db2ts’ and index_name ’myTextIndex’ is being dropped. Any error
messages are requested to be returned in English. When the procedure succeeds,
the output parameter message indicative of the successful operation is returned to
the caller.

CALL SYSPROC.SYSTS_DROP(’db2ts’, ’myTextIndex’, ’en_US’, ?)

The following example is a sample output from this query.
Value of output parameters

Parameter Name : MESSAGE
Parameter Value : Operation completed successfully.

Return Status = 0

Example 2: In the following example,SYSTS_DROP is called to drop a text search
index with index_schema ’db2ts’ and index_name ’myTextIndex’. This index does
not exist and results in an error.

CALL SYSPROC.SYSTS_DROP(’db2ts’, ’myTextIndex’, ’en_US’, ?)

The following example is a sample output from this query.
SQL20427N An error occurred during a text search administration
procedure or command. The error message is "CIE00316 Text search
index "db2ts"."myTextIndex" does not exist. ". SQLSTATE 38H14

Usage notes
v Text search administration procedures use an existing connection to the

database. The current transaction might be committed or rolled back depending
on the completion of the procedures. It is therefore recommended to commit all
transaction changes before executing a text search administration procedure to
avoid any unexpected impact from a commit or rollback in the procedure. One
way to achieve this is to turn on AUTOCOMMIT.

Note: You may run into a deadlock if a transaction is not committed before
executing a text search administration operation, as the same database objects
may be affected and the operation waits for the previous step to commit. This
may occur, for example, if AUTOCOMMIT is turned off and a table is created
followed by creating a text index without an explicit commit between the two
transactions.

v Multiple procedures or commands cannot be executed concurrently on a text
search index if they might conflict. Some of the conflicting procedures and
commands are:

902 Administrative Routines and Views

– SYSTS_ALTER procedure or ALTER INDEX db2ts command
– SYSTS_CLEAR_EVENTS procedure or CLEAR EVENTS FOR INDEX db2ts

command
– SYSTS_DISABLE procedure or DISABLE DATABASE FOR TEXT db2ts

command
– STOP FOR TEXT db2ts command
– SYSTS_UPDATE procedure or UPDATE INDEX db2ts command

If there is a conflict, the procedure returns an SQLCODE -20426 and SQLSTATE
38H13.

v Dropping the user table in DB2 does not trigger dropping of indexes, they must
be dropped manually before or after dropping the table.

v When this procedure is run,
– the text search catalog information is updated. The index staging and event

tables are dropped. Triggers on the user table are deleted.
– the index entry in the Text Search Index Data file is deleted. The file contains

a persistent representation of update schedules (also empty ones) for each
index in the instance.

– the collection associated with the text search index definition is removed.
v If, after dropping a text search index, you plan to create a new one on the same

text column, you must first disconnect from and then reconnect to the database
before creating the new text search index.

SYSTS_ENABLE procedure - Enable current database for text search
This procedure enables DB2 Text Search for the current database.

This procedure must be issued successfully before text search indexes on columns
in tables within the database can be created.

This procedure issues the ENABLE DATABASE FOR TEXT text search administration
command on the database server.

Syntax

�� SYSTS_ENABLE (message_locale , message) ��

The schema is SYSPROC.

Procedure parameters

message_locale
An input argument of type VARCHAR(33) that specifies the locale to be used
for any error message returned. If the argument is null or an empty string, or
the message files for the specified locale are not available on the server, 'en_US'
is used.

message
An output argument of type VARCHAR(32K) that specifies a warning or
informational message for a successfully completed operation.

Chapter 19. Text Search routines 903

Authorization

The user must have DBADM privilege to execute the ENABLE DATABASE
command.

Examples

Example 1: Enable the database for text search and return any error messages in
English.

CALL SYSPROC.SYSTS_ENABLE(’en_US’, ?)

The following example is a sample output for this query.
Value of output parameters

Parameter Name : MESSAGE
Parameter Value : Operation completed successfully.

Return Status = 0

Example 2: In the following example, SYSTS_ENABLE is called on a database that
is already enabled for text search. This results in an error message to the caller.

CALL SYSPROC.SYSTS_ENABLE(’en_US’, ?)

The following example is a sample output for this query.
SQL20427N An error occurred during a text search administration
procedure or command. The error message from the text search
product is "CIE00322 Specified or default database already
enabled for text. ". SQLSTATE 38H14

Usage notes
v Text search administration procedures use an existing connection to the

database. The current transaction might be committed or rolled back depending
on the completion of the procedures. It is therefore recommended to commit all
transaction changes before executing a text search administration procedure to
avoid any unexpected impact from a commit or rollback in the procedure. One
way to achieve this is to turn on AUTOCOMMIT.

Note: You may run into a deadlock if a transaction is not committed before
executing a text search administration operation, as the same database objects
may be affected and the operation waits for the previous step to commit. This
may occur, for example, if AUTOCOMMIT is turned off and a table is created
followed by creating a text index without an explicit commit between the two
transactions.

v When this procedure is run,
– this procedure creates database objects, such as text search administration

catalog tables and views, in the schema SYSIBMTS. These objects are placed
in the default table space of the database (IBMDEFAULTGROUP).

– the established database defaults for text search index are available in view
SYSIBMTS.TSDEFAULTS.

– and when the command has successfully completed, the text search catalog
tables and views are created and are available.

904 Administrative Routines and Views

SYSTS_UPDATE procedure - Update the text search index
This procedure updates the text search index to reflect the current contents of the
text column with which the index is associated.

While the update is being performed, a search is possible. Until completion of the
update, the search operates on a partially updated index.

The procedure issues an UPDATE INDEX text search administration command on the
database server.

Syntax

�� SYSTS_UPDATE (index_schema , index_name , �

� update_options , message_locale , message) ��

The schema is SYSPROC.

Procedure parameters

index_schema
An input argument of type VARCHAR(128) that specifies the schema of the
text search index. The index_schema must follow the naming restriction for DB2
schema names. If the argument is null or an empty string, the value of
CURRENT SCHEMA is used. The index_schema is case-sensitive.

index_name
An input argument of type VARCHAR(128) that specifies the name of the
index. Together with index_schema, it uniquely identifies a text search index in
a database. The index_name is case-sensitive.

update_options
An input argument of type VARCHAR(32K) that specifies update options. The
possible values are:
v USING UPDATE MINIMUM: this setting respects the UPDATE MINIMUM

settings from the CREATE INDEX text search administration command and the
SYSTS_CREATE procedure.

v UPDATEAUTOCOMMIT: this setting overrides the commitcount defined for
the text index for the duration of this update execution.

v NULL or an empty string ("): the update is unconditionally started when the
procedure is called.

message_locale
An input argument of type VARCHAR(33) that specifies the locale to be used
for any error message returned. If the argument is null or an empty string, or
the message files for the specified locale are not available on the server, 'en_US'
is used.

message
An output argument of type VARCHAR(32K) that specifies a warning or
informational message for a successfully completed operation.

Authorization

The privileges held by the authorization ID of the statement must include at least
one of the following authorities:

Chapter 19. Text Search routines 905

v CONTROL privilege on the table on which the text index is defined
v DATAACCESS authority

Examples

Example 1: In the following example, the text search index that was created with
index_schema ’db2ts’ and index_name ’myTextIndex’ is being updated. A NULL
value in the place of the update_options means that an update is unconditionally
started when the stored procedure is called. Any error messages are requested to
be returned in English. When the procedure succeeds, the output parameter
message indicative of the successful operation is returned to the caller.

CALL SYSPROC.SYSTS_UPDATE(’db2ts’, ’myTextIndex’, ’’, ’en_US’, ?)

The following example is a sample output from this query.
Value of output parameters

Parameter Name : MESSAGE
Parameter Value : Operation completed successfully.

Return Status = 0

Example 2: In the following example, SYSTS_UPDATE is called to update a text
search index with index_schema ’db2ts’ and index_name ’myTextIndex’. This index
does not exist and results in an error.

CALL SYSPROC.SYSTS_UPDATE(’db2ts’, ’myTextIndex’, ’USING UPDATE MINIMUM’,
’en_US’, ?)

The following example is a sample output from this query.
SQL20427N An error occurred during a text search administration
procedure or command. The error message is "CIE00316 Text search
index "db2ts"."myTextIndex" does not exist. ". SQLSTATE 38H14

Usage notes
v Text search administration procedures use an existing connection to the

database. The current transaction might be committed or rolled back depending
on the completion of the procedures. As such, you might want to commit all
transaction changes to avoid any unexpected impact from such a commit or
rollback. One way to achieve this is to turn on AUTOCOMMIT.

v Multiple procedures or commands cannot be run concurrently on a text search
index if they might conflict. Some of the conflicting procedures and commands
are:
– SYSTS_ALTER procedure or ALTER INDEX db2ts command
– SYSTS_CLEAR_EVENTS procedure or CLEAR EVENTS FOR INDEX db2ts

command
– SYSTS_DISABLE procedure or DISABLE DATABASE FOR TEXT db2ts

command
– SYSTS_DROP procedure or DROP INDEX db2ts command
– STOP FOR TEXT db2ts command
– SYSTS_UPDATE procedure or UPDATE INDEX db2ts command

If there is a conflict, the procedure returns an SQLCODE -20426 and SQLSTATE
38H13.

v This procedure does not return until all index update processing is completed.
The duration depends on the number of documents to be indexed and the

906 Administrative Routines and Views

number of documents already indexed. The collection name for the index can be
retrieved from the SYSIBMTS.TSCOLLECTIONNAMES view (column
COLLECTIONNAME).

v When there are individual document errors, the documents must be corrected.
The primary keys of the erroneous documents can be looked up in the event
table for the index. By changing the corresponding rows in the user table, the
next call to SYSTS_UPDATE will reprocess these documents.

v When this procedure is run,
– rows are inserted into the event table (including parser error information).

Information is deleted from the index staging table in case of incremental
updates. Before the first update, it creates triggers on the user table.

– the collection is updated: new or changed documents are parsed and indexed
and deleted documents are discarded from the index.

Chapter 19. Text Search routines 907

908 Administrative Routines and Views

Chapter 20. Workload Management routines

WLM_CANCEL_ACTIVITY - Cancel an activity

This procedure cancels a given activity. If the cancel takes place, an error message
will be returned to the application that submitted the activity that was cancelled.

Syntax

�� WLM_CANCEL_ACTIVITY (application_handle , uow_id , activity_id) ��

The schema is SYSPROC.

Procedure parameters

application_handle
An input argument of type BIGINT that specifies the application handle whose
activity is to be cancelled. If the argument is null, no activity will be found and
an SQL4702N with SQLSTATE 5U035 is returned.

uow_id
An input argument of type INTEGER that specifies the unit of work ID of the
activity that is to be cancelled. If the argument is null, no activity will be found
and an SQL4702N with SQLSTATE 5U035 is returned.

activity_id
An input argument of type INTEGER that specifies the activity ID which
uniquely identifies the activity within the unit of work that is to be cancelled.
If the argument is null, no activity will be found and an SQL4702N with
SQLSTATE 5U035 is returned.

Authorization

EXECUTE privilege on the WLM_CANCEL_ACTIVITY procedure.

Example

An administrator can use the
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES table function to find the
application handle, unit of work ID and activity ID of an activity. To cancel an
activity with application handle 1, unit of work ID 2 and activity ID 3:

CALL WLM_CANCEL_ACTIVITY(1, 2, 3)

Usage notes
v If no activity can be found, an SQL4702N with SQLSTATE 5U035 is returned.
v If the activity cannot be cancelled because it not in the correct state (not

initialized), an SQL4703N (reason code 1) with SQLSTATE 5U016 is returned.
v If the activity is successfully cancelled, an SQL4725N with SQLSTATE 57014 is

returned to the cancelled application.
v If, at the time of the cancel, the coordinator is processing a request for a different

activity or is idle, the activity is placed into CANCEL_PENDING state and will
be cancelled when the coordinator processes the next request.

© Copyright IBM Corp. 2006, 2012 909

WLM_CAPTURE_ACTIVITY_IN_PROGRESS - Collect activity
information for activities event monitor

The WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure gathers information
about a specified activity and writes the information to the active activities event
monitor.

When you apply this procedure to an activity with child activities, the procedure
recursively generates a record for each child activity. This information is collected
and sent when you call the procedure; the procedure does not wait until the parent
activity completes execution. The record of the activity in the event monitor is
marked as a partial record.

Syntax

�� WLM_CAPTURE_ACTIVITY_IN_PROGRESS (application_handle , �

� uow_id , activity_id) ��

The schema is SYSPROC.

Procedure parameters

If you do not specify all of the following parameters, no activity is found, and
SQL4702N with SQLSTATE 5U035 is returned.

application_handle
An input argument of type BIGINT that specifies the handle of the application
whose activity information is to be captured.

uow_id
An input argument of type INTEGER that specifies the unit of work ID of the
activity whose information is to be captured.

activity_id
An input argument of type INTEGER that specifies the activity ID that
uniquely identifies the activity within the unit of work whose information is to
be captured.

Authorization

EXECUTE privilege on the WLM_CAPTURE_ACTIVITY_IN_PROGRESS
procedure.

Example

Assume that a user complains that stored procedure MYSCHEMA.MYSLOWSTP
seems to be running more slowly than usual. The administrator wants to
investigate the cause of the slowdown. Investigating while the stored procedure is
running is not practical, so the administrator decides to capture information about
the stored procedure activity and all of the activities nested within it.

An event monitor for DB2 activities named DB2ACTIVITIES has been activated.
The administrator uses the WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES
function to obtain the application handle, unit of work ID and activity ID for the
call of this stored procedure. Assuming that the activity is identified by an

910 Administrative Routines and Views

application handle of 1, a unit of work ID of 2 and an activity ID of 3, the
administrator can now issue the call to
WLM_CAPTURE_ACTIVITY_IN_PROGRESS as follows:

CALL WLM_CAPTURE_ACTIVITY_IN_PROGRESS(1,2,3)

After the procedure is completed, the administrator can use the following table
function to find out where the activity spent its time. The function retrieves the
information from the DB2ACTIVITIES event monitor.
CREATE FUNCTION SHOWCAPTUREDACTIVITY(APPHNDL BIGINT,

UOWID INTEGER,
ACTIVITYID INTEGER)

RETURNS TABLE (UOW_ID INTEGER, ACTIVITY_ID INTEGER, STMT_TEXT VARCHAR(40),
LIFE_TIME DOUBLE)

LANGUAGE SQL
READS SQL DATA
NO EXTERNAL ACTION
DETERMINISTIC
RETURN WITH RAH (LEVEL, APPL_ID, PARENT_UOW_ID, PARENT_ACTIVITY_ID,

UOW_ID, ACTIVITY_ID, STMT_TEXT, ACT_EXEC_TIME) AS
(SELECT 1, ROOT.APPL_ID, ROOT.PARENT_UOW_ID,

ROOT.PARENT_ACTIVITY_ID, ROOT.UOW_ID, ROOT.ACTIVITY_ID,
ROOTSTMT.STMT_TEXT, ACT_EXEC_TIME

FROM ACTIVITY_DB2ACTIVITIES ROOT, ACTIVITYSTMT_DB2ACTIVITIES ROOTSTMT
WHERE ROOT.APPL_ID = ROOTSTMT.APPL_ID AND ROOT.AGENT_ID = APPHNDL

AND ROOT.UOW_ID = ROOTSTMT.UOW_ID AND ROOT.UOW_ID = UOWID
AND ROOT.ACTIVITY_ID = ROOTSTMT.ACTIVITY_ID AND ROOT.ACTIVITY_ID = ACTIVITYID

UNION ALL
SELECT PARENT.LEVEL +1, CHILD.APPL_ID, CHILD.PARENT_UOW_ID,

CHILD.PARENT_ACTIVITY_ID, CHILD.UOW_ID,
CHILD.ACTIVITY_ID, CHILDSTMT.STMT_TEXT, CHILD.ACT_EXEC_TIME

FROM RAH PARENT, ACTIVITY_DB2ACTIVITIES CHILD,
ACTIVITYSTMT_DB2ACTIVITIES CHILDSTMT

WHERE PARENT.APPL_ID = CHILD.APPL_ID AND
CHILD.APPL_ID = CHILDSTMT.APPL_ID AND
PARENT.UOW_ID = CHILD.PARENT_UOW_ID AND
CHILD.UOW_ID = CHILDSTMT.UOW_ID AND
PARENT.ACTIVITY_ID = CHILD.PARENT_ACTIVITY_ID AND
CHILD.ACTIVITY_ID = CHILDSTMT.ACTIVITY_ID AND
PARENT.LEVEL < 64

)
SELECT UOW_ID, ACTIVITY_ID, SUBSTR(STMT_TEXT,1,40),

ACT_EXEC_TIME AS
LIFE_TIME

FROM RAH

The following sample query uses the table function:
SELECT * FROM TABLE(SHOWCAPTUREDACTIVITY(1, 2, 3))

AS ACTS ORDER BY UOW_ID, ACTIVITY_ID

Usage notes

If there is no active activities event monitor, an SQL1633W with SQLSTATE 01H53
is returned.

Activity information is collected only on the coordinator partition for the activity.

Chapter 20. Workload Management routines 911

WLM_COLLECT_STATS - Collect and reset workload management
statistics

The WLM_COLLECT_STATS procedure gathers statistics for service classes,
workloads, work classes, and threshold queues and writes them to the statistics
event monitor. The procedure also resets the statistics for service classes,
workloads, work classes, and threshold queues. If there is no active statistics event
monitor, the procedure only resets the statistics.

Syntax

�� WLM_COLLECT_STATS ()
wait , statistics_timestamp

��

The schema is SYSPROC.

Procedure parameters

wait
An optional input argument of type CHAR that specifies whether this
procedure returns immediately after initiating a statistics collection and reset. If
'Y' is specified, then the procedure will not return until all statistics have been
written and flushed to the statistics event monitor tables. Otherwise, the
procedure will return immediately after initiating a statistics collection and
reset.

statistics_timestamp
An optional output argument of type TIMESTAMP that returns the timestamp
value for the beginning of the statistics collection.

Authorization

EXECUTE privilege on the WLM_COLLECT_STATS procedure.

Examples

Example 1: Call WLM_COLLECT_STATS to initiate statistics collection and reset.
CALL WLM_COLLECT_STATS()

The following example is a sample output from this query.
Return Status = 0

Example 2: Call WLM_COLLECT_STATS to collect and reset statistics, but not
return until data has been written to statistics event monitor tables.

CALL WLM_COLLECT_STATS(’Y’, ::collect_timestamp)

The following example is a sample output from this query.
Return Status = 0

Example 3: Call WLM_COLLECT_STATS to collect and reset statistics while another
call is in progress.

CALL WLM_COLLECT_STATS()

The following example is a sample output from this query.

912 Administrative Routines and Views

SQL1632W The collect and reset statistics request was ignored because
another collect and reset statistics request is already in progress.

Usage notes

The WLM_COLLECT_STATS procedure performs the same collection operation
(send statistics to the active statistics event monitor) and reset operation that occur
automatically on the interval defined by the wlm_collect_int database
configuration parameter.

If you call the procedure while another collection and reset request is in progress
(for example, while another invocation of the procedure is running or automatic
collection is occurring), SQL1632W with SQLSTATE 01H53 is returned, and your
new request is ignored.

In asynchronous mode, the WLM_COLLECT_STATS procedure only starts the
collection and reset process. It might return before the process has completed, that
is, the procedure might return to the caller before all statistics have been written to
the active statistics event monitor. Depending on how quickly the statistics
collection and reset occurs, the call to the WLM_COLLECT_STATS procedure
(which is itself an activity and will be counted in activity statistics) might be
counted in either the prior collection interval or the new collection interval that has
just started.

In synchronous mode, the WLM_COLLECT_STATS procedure does not return until
the statistics collection is complete and all statistics are written to the tables of any
active statistics event monitors. The timestamp at which the statistics collection
began is returned via the statistics_timestamp output parameter.

WLM_GET_CONN_ENV - get settings for activity data collection for a
connection

The WLM_GET_CONN_ENV table function returns for a particular connection the
values of settings that control collection of activity data and section actuals. You
can use this table function to check the current values of the settings applied by
the WLM_SET_CONN_ENV stored procedure.

Syntax

�� WLM_GET_CONN_ENV (application_handle) ��

Parameters

application_handle
An input argument of type BIGINT that specifies the application handle for the
connection for which information is to be returned. You can use a value of
NULL to indicate the connection on which the procedure was invoked.

Authorization

EXECUTE privilege on the WLM_GET_CONN_ENV table function.

Chapter 20. Workload Management routines 913

Example

The following query checks whether activities are being collected for the current
connection.
SELECT application_handle,

xmlparse(document details preserve whitespace)
FROM TABLE (

WLM_GET_CONN_ENV(
cast(NULL as bigint))

) connenv

The following example is a sample output from this query.
APPLICATION_HANDLE DETAILS
-------------------- --

7 <wlm_conn_env
xmlns=http://www.ibm.com/xmlns/prod/db2/mon
release="9070100">
<collectactdata>NONE</collectactdata>
<collectactpartition>COORDINATOR</collectactpartition>
<collectsectionactuals>NONE</collectsectionactuals>
</wlm_conn_env>

Usage notes

The WLM_GET_CONN_ENV table function provides maximum flexibility for
formatting output because it returns WLM environment information for a
connection as an XML document. The output can be parsed directly by an XML
parser, or it can be converted to relational format by the XMLTABLE function.

The schema for the XML document that is returned in the DETAILS column is
available in the file sqllib/misc/DB2MonRoutines.xsd. Further details can be found
in the file sqllib/misc/DB2MonCommon.xsd.

Information returned

Table 239. Information returned for WLM_GET_CONN_ENV

Column name Data type Description

APPLICATION_HANDLE BIGINT application_handle - Application handle

DETAILS BLOB(8M) XML document that contains connection environment
details. See Table 240 on page 915 for a description of the
elements in this document.

914 Administrative Routines and Views

Detailed settings returned

Table 240. Detailed metrics returned for WLM_GET_CONN_ENV

Element name Data type Description or corresponding monitor element

collectactdata xs:string(255) Specifies what kind of activity data is being collected, if
any. Possible values are:

v NONE

v WITHOUT DETAILS

v WITH DETAILS

v WITH DETAILS, SECTION

v WITH DETAILS, SECTION AND VALUES

v WITH DETAILS AND VALUES

See information about the WLM_SET_CONN_ENV
procedure for details about these options.

collectactpartition xs:string(255) Specifies where activity data is being collected. Possible
values are:

v COORDINATOR

v ALL

See information about the WLM_SET_CONN_ENV
procedure for details about these options.

collectsectionactuals xs:string(255) Specifies whether section actuals are being collected.
Possible values include:

v NONE

v BASE

See information about the WLM_SET_CONN_ENV
procedure for details about these options.

WLM_GET_QUEUE_STATS table function - Return threshold queue
statistics

The WLM_GET_QUEUE_STATS function returns basic statistics for one or more
threshold queues on all active partitions. This function returns one row of statistics
for each threshold queue.

Syntax

�� WLM_GET_QUEUE_STATS (threshold_predicate , threshold_domain , �

� threshold_name , threshold_id) ��

The schema is SYSPROC.

Table function parameters

threshold_predicate
An input argument of type VARCHAR(27) that specifies a threshold predicate.
The possible values are as follows:

CONCDBC
Concurrent database coordinator activities threshold

Chapter 20. Workload Management routines 915

DBCONN
Total database partition connections threshold

SCCONN
Total service class partition connections threshold

If the argument is null or an empty string, data is returned for all thresholds
that meet the other criteria.

The threshold_predicate values match those of the THRESHOLDPREDICATE
column in the SYSCAT.THRESHOLDS view.

threshold_domain
An input argument of type VARCHAR(18) that specifies a threshold domain.
The possible values are as follows:

DB Database

SB Service subclass

SP Service superclass

WA Work action set

If the argument is null or an empty string, data is returned for all thresholds
that meet the other criteria.

The threshold_domain values match those of the DOMAIN column in the
SYSCAT.THRESHOLDS view.

threshold_name
An input argument of type VARCHAR(128) that specifies a threshold name. If
the argument is null or an empty string, data is returned for all thresholds that
meet the other criteria. The threshold_name values match those of the
THRESHOLDNAME column in the SYSCAT.THRESHOLDS view.

threshold_id
An input argument of type INTEGER that specifies a threshold ID. If the
argument is null or -1, data is returned for all thresholds that meet the other
criteria. The threshold_id values match those of the THRESHOLDID column in
the SYSCAT.THRESHOLDS view.

Authorization

EXECUTE privilege on the WLM_GET_QUEUE_STATS function.

Example

The following query displays the basic statistics for all the queues on a system,
across all partitions:

SELECT substr(THRESHOLD_NAME, 1, 6) THRESHNAME,
THRESHOLD_PREDICATE,
THRESHOLD_DOMAIN,
DBPARTITIONNUM PART,
QUEUE_SIZE_TOP,
QUEUE_TIME_TOTAL,
QUEUE_ASSIGNMENTS_TOTAL QUEUE_ASSIGN

FROM table(WLM_GET_QUEUE_STATS(’’, ’’, ’’, -1)) as QSTATS

Sample output is as follows:

916 Administrative Routines and Views

THRESHNAME THRESHOLD_PREDICATE THRESHOLD_DOMAIN ...
---------- --------------------------- ------------------ ...
LIMIT1 CONCDBC DB ...
LIMIT2 SCCONN SP ...
LIMIT3 DBCONN DB ...

... PART QUEUE_SIZE_TOP QUEUE_TIME_TOTAL QUEUE_ASSIGN

... ---- -------------- ---------------- ------------

... 0 12 1238540 734

... 0 4 741249 24

... 0 7 412785 128

Usage note

The function does not aggregate data across queues (on a partition) or across
partitions (for one or more queues). However, you can use SQL queries to
aggregate data, as shown in the previous example.

Information returned

Table 241. Information returned for WLM_GET_QUEUE_STATS

Column name Data type Description

THRESHOLD_PREDICATE VARCHAR(27) Threshold predicate of the threshold
responsible for this queue. The
possible values are as follows:

CONCDBC
Concurrent database
coordinator activities
threshold

DBCONN
Total database partition
connections threshold

SCCONN
Total service class partition
connections threshold

The threshold predicate values match
those of the THRESHOLDPREDICATE
column in the SYSCAT.THRESHOLDS
view.

THRESHOLD_DOMAIN VARCHAR(18) Domain of the threshold responsible
for this queue. The possible values are
as follows:

DB Database

SB Service subclass

SP Service superclass

WA Work action set
The threshold domain values match
those of the DOMAIN column in the
SYSCAT.THRESHOLDS view.

THRESHOLD_NAME VARCHAR(128) Unique name of the threshold
responsible for this queue. The
threshold name value matches that of
the THRESHOLDNAME column in the
SYSCAT.THRESHOLDS view.

Chapter 20. Workload Management routines 917

Table 241. Information returned for WLM_GET_QUEUE_STATS (continued)

Column name Data type Description

THRESHOLD_ID INTEGER Unique ID of the threshold responsible
for this queue. The threshold ID value
matches that of the THRESHOLDID
column in the SYSCAT.THRESHOLDS
view.

DBPARTITIONNUM SMALLINT Partition number from which this
record was collected.

SERVICE_SUPERCLASS_NAME VARCHAR(128) Name of the service superclass that is
the domain for the threshold
responsible for this queue. The value
of the column is null if the domain of
the threshold is not a service
superclass or service subclass.

SERVICE_SUBCLASS_NAME VARCHAR(128) Name of the service subclass that is
the domain for the threshold
responsible for this queue. The value
of the column is null if the domain of
the threshold is not a service subclass.

WORK_ACTION_SET_NAME VARCHAR(128) Name of the work action set that is the
domain for the threshold responsible
for this queue. The value of the
column is null if the domain of the
threshold is not a work action set.

WORK_CLASS_NAME VARCHAR(128) Name of the work class whose work
action belongs to the work action set
that is the domain for the threshold
responsible for this queue. The value
of the column is null if the domain of
the threshold is not a work action set.

WORKLOAD_NAME VARCHAR(128) Name of the workload that is the
domain for the threshold responsible
for this queue. The value of the
column is null if the domain of the
threshold is not a workload.

LAST_RESET TIMESTAMP Time when statistics were last reset.
There are four events that trigger a
reset of statistics:

v You call the
WLM_COLLECT_STATS procedure.

v The wlm_collect_int configuration
parameter causes a collection and
reset.

v You reactivate the database.

v You modify the threshold for which
queue statistics are being reported
and commit the change.

The LAST_RESET time stamp is in
local time.

QUEUE_SIZE_TOP INTEGER Highest number of connections or
activities in the queue since the last
reset.

918 Administrative Routines and Views

Table 241. Information returned for WLM_GET_QUEUE_STATS (continued)

Column name Data type Description

QUEUE_TIME_TOTAL BIGINT Sum of the times spent in the queue
for all connections or activities placed
in this queue since the last reset. Units
are milliseconds.

QUEUE_ASSIGNMENTS_TOTAL BIGINT Number of connections or activities
that were assigned to this queue since
the last reset.

QUEUE_SIZE_CURRENT INTEGER Number of connections or activities in
the queue.

QUEUE_TIME_LATEST BIGINT Time spent in the queue by the last
connection or activity to leave the
queue. Units are milliseconds.

QUEUE_EXIT_TIME_LATEST TIMESTAMP Time that the last connection or
activity left the queue.

THRESHOLD_CURRENT_CONCURRENCY INTEGER Number of connections or activities
that are currently running according to
the threshold.

THRESHOLD_MAX_CONCURRENCY INTEGER Maximum number of connections or
activities that the threshold allows to
be concurrently running.

WLM_GET_SERVICE_CLASS_AGENTS_V97 table function - list agents
running in a service class

The WLM_GET_SERVICE_CLASS_AGENTS_V97 function returns the list of agents,
fenced mode processes (db2fmp processes), and system entities on a specified
partition that are running in a specified service class or on behalf of a specified
application. The system entities are non-agent threads and processes, such as page
cleaners and prefetchers.

Syntax

�� WLM_GET_SERVICE_CLASS_AGENTS_V97 (service_superclass_name , �

� service_subclass_name , application_handle , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

service_superclass_name
An input argument of type VARCHAR(128) that specifies the name of a service
superclass in the currently connected database. If the argument is null or an
empty string, data is retrieved for all the superclasses in the database.

service_subclass_name
An input argument of type VARCHAR(128) that refers to a specific subclass
within a superclass. If the argument is null or an empty string, data is
retrieved for all the subclasses in the database.

Chapter 20. Workload Management routines 919

application_handle
An input argument of type BIGINT that specifies the application handle for
which agent information is to be returned. If the argument is null, data is
retrieved for all applications in the database. An application handle of 0
returns the system entities only.

dbpartitionnum
An input argument of type INTEGER that specifies the partition number in the
same instance as the currently connected database. Specify -1 for the current
database partition, or -2 for all database partitions. If a null value is specified,
-1 is set implicitly.

Authorization

EXECUTE privilege on the WLM_GET_SERVICE_CLASS_AGENTS_V97 function.

Example

Example 1

The following query returns a list of agents that are associated with application
handle 1 for all database partitions. You can determine the application handle by
using the LIST APPLICATIONS command or the
WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES_V97 table function.

SELECT SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APPHANDLE,
SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,
SUBSTR(CHAR(AGENT_TID),1,9) AS AGENT_TID,
SUBSTR(AGENT_TYPE,1,11) AS AGENTTYPE,
SUBSTR(AGENT_STATE,1,10) AS AGENTSTATE,
SUBSTR(REQUEST_TYPE,1,12) AS REQTYPE,
SUBSTR(CHAR(UOW_ID),1,6) AS UOW_ID,
SUBSTR(CHAR(ACTIVITY_ID),1,6) AS ACT_ID

FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS_V97(CAST(NULL AS VARCHAR(128)),
CAST(NULL AS VARCHAR(128)), 1, -2)) AS SCDETAILS

ORDER BY APPHANDLE, PART, AGENT_TID

Sample output is as follows:
APPHANDLE PART AGENT_TID AGENTTYPE AGENTSTATE REQTYPE UOW_ID ACT_ID
--------- ---- --------- ----------- ---------- -------------- ------ ------
1 0 3 COORDINATOR ACTIVE FETCH 1 5
1 0 4 SUBAGENT ACTIVE SUBSECTION:1 1 5
1 1 2 SUBAGENT ACTIVE SUBSECTION:2 1 5

The output shows a coordinator agent and a subagent on partition 0 and a
subagent on partition 1 operating on behalf of an activity with UOW ID 1 and
activity ID 5. The AGENTTYPE column with a value of COORDINATOR has a value of
FETCH for the REQTYPE column (which indicates the main or initial request type).
This means that the type of request is a fetch request for the coordinator agent.

Example 2

The following query determines which lock an agent is waiting on:
db2 select event_object, event_type, event_state, varchar(event_object_name, 30)

as event_object_name
from table(wlm_get_service_class_agents_v97(’’,’’,cast(NULL as bigint), -1)) as t

Sample output is as follows:

920 Administrative Routines and Views

EVENT_OBJECT EVENT_TYPE EVENT_STATE EVENT_OBJECT_NAME
--------------- ----------------- ------------------- --------------------------
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST WAIT IDLE -
LOCK ACQUIRE IDLE 02000500000000000000000054
ROUTINE PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -

21 record(s) selected.

Using the same query at a later time shows that the WLM threshold has queued
an agent:
EVENT_OBJECT EVENT_TYPE EVENT_STATE EVENT_OBJECT_NAME
--------------- ----------------- ------------------- --------------------------
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
WLM_QUEUE WAIT IDLE MYCONCDBCOORDTH
ROUTINE PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -
REQUEST PROCESS EXECUTING -

21 record(s) selected.

Usage note

The parameters are, in effect, ANDed together. That is, if you specify conflicting
input parameters, such as a service superclass SUP_A and a subclass SUB_B such
that SUB_B is not a subclass of SUP_A, no rows are returned.

Chapter 20. Workload Management routines 921

Information returned

Table 242. Information returned by WLM_GET_SERVICE_CLASS_AGENTS_V97

Column name Data type Description

SERVICE_SUPERCLASS_NAME VARCHAR
(128)

Name of the service superclass from which this record was
collected.

SERVICE_SUBCLASS_NAME VARCHAR
(128)

Name of the service subclass from which this record was
collected.

APPLICATION_HANDLE BIGINT System-wide unique ID for the application. On a
single-partitioned database, this identifier consists of a 16-bit
counter. On a multi-partitioned database, this identifier
consists of the coordinating partition number concatenated
with a 16-bit counter. In addition, this identifier is the same
on every partition where the application makes a secondary
connection.

DBPARTITIONNUM SMALLINT Partition number from which this record was collected.

ENTITY VARCHAR (32) One of the following values:

v If the type of entity is an agent, the value is db2agent.

v If the type of entity is a fenced mode process, the value is
db2fmp (pid) where pid is the process ID of the fenced
mode process.

v Otherwise, the value is the name of the system entity.

WORKLOAD_NAME VARCHAR
(128)

Name of the workload from which this record was collected.

WORKLOAD_OCCURRENCE_ID INTEGER ID of the workload occurrence. This ID does not uniquely
identify the workload occurrence unless it is coupled with
the coordinator database partition number and the workload
name.

UOW_ID INTEGER Unique ID of the unit of work that this activity started in.

ACTIVITY_ID INTEGER Unique activity ID within a unit of work.

PARENT_UOW_ID INTEGER Unique ID of the unit of work that the parent activity of the
activity started in. The value of the column is null if this
activity has no parent.

PARENT_ACTIVITY_ID INTEGER Unique activity ID within a unit of work for the parent of
the activity whose ID is the same as activity_id. The value of
this column is null if this activity has no parent.

AGENT_TID BIGINT Thread ID of the agent or system entity. If this ID is
unavailable, the value of the column is null.

AGENT_TYPE VARCHAR (32) Agent type. The agent types are as follows:

v COORDINATOR

v OTHER

v PDBSUBAGENT

v SMPSUBAGENT

If the value is COORDINATOR, the agent ID might change
in concentrator environments.

SMP_COORDINATOR INTEGER Indication of whether the agent is an SMP coordinator: 1 for
yes and 0 for no.

922 Administrative Routines and Views

Table 242. Information returned by WLM_GET_SERVICE_CLASS_AGENTS_V97 (continued)

Column name Data type Description

AGENT_SUBTYPE VARCHAR (32) Agent subtype. The possible subtypes are as follows:

v DSS

v OTHER

v RPC

v SMP

AGENT_STATE VARCHAR (32) Indication of whether an agent is associated or active. The
possible values are:

v ASSOCIATED

v ACTIVE

EVENT_TYPE VARCHAR (32) Type of event last processed by this agent. The possible
values are as follows:

v ACQUIRE

v PROCESS

v WAIT

See Table 243 on page 926 for more information about
possible values for this column.

EVENT_OBJECT VARCHAR (32) Object of the event last processed by this agent. The possible
values are as follows:

v COMPRESSION_DICTIONARY_BUILD

v IMPLICIT_REBIND

v INDEX_RECREATE

v LOCK

v LOCK_ESCALATION

v QP_QUEUE

v REMOTE_REQUEST

v REQUEST

v ROUTINE

v WLM_QUEUE

See Table 243 on page 926 for more information about
possible values for this column.

EVENT_STATE VARCHAR (32) State of the event last processed by this agent. The possible
values are as follows:

v EXECUTING

v IDLE

See Table 243 on page 926 for more information about
possible values for this column.

REQUEST_ID VARCHAR (64) Request ID. This value is unique only in combination with
the value of application_handle. You can use this combination
to distinguish between one request that is taking a long time
and multiple requests; for example, to distinguish between
one long fetch and multiple fetches.

Chapter 20. Workload Management routines 923

Table 242. Information returned by WLM_GET_SERVICE_CLASS_AGENTS_V97 (continued)

Column name Data type Description

REQUEST_TYPE VARCHAR (32) Type of request. The possible values are as follows:

v For coordinator agents:

– CLOSE

– COMMIT

– COMPILE

– DESCRIBE

– EXCSQLSET

– EXECIMMD

– EXECUTE

– FETCH

– INTERNAL number, where number is the value of the
internal constant

– OPEN

– PREPARE

– REBIND

– REDISTRIBUTE

– REORG

– ROLLBACK

– RUNSTATS

v For subagents with an AGENT_SUBTYPE of DSS or SMP:

– If the subsection number is nonzero, the subsection
number in the form SUBSECTION:subsection number;
otherwise, returns NULL.

924 Administrative Routines and Views

Table 242. Information returned by WLM_GET_SERVICE_CLASS_AGENTS_V97 (continued)

Column name Data type Description

REQUEST_TYPE (continued) VARCHAR (32) v For subagents with an AGENT_SUBTYPE of RPC:

– ABP

– CATALOG

– INTERNAL

– REORG

– RUNSTATS

– WLM

v For subagents with a SUBTYPE of OTHER:

– ABP

– APP_RBSVPT

– APP_RELSVPT

– BACKUP

– CLOSE

– EXTERNAL_RBSVPT

– EVMON

– FORCE

– FORCE_ALL

– INTERNAL number, where number is the value of the
internal constant

– INTERRUPT

– NOOP (if there is no request)

– QP

– REDISTRIBUTE

– STMT_RBSVPT

– STOP_USING

– UPDATE_DBM_CFG

– WLM

NESTING_LEVEL INTEGER Nesting level of the activity whose ID is activity_id. Nesting
level is the depth to which this activity is nested within its
topmost parent activity.

INVOCATION_ID INTEGER An identifier that distinguishes one invocation of a routine
from others at the same nesting level within a unit of work.
It is unique within a unit of work for a specific nesting level.

ROUTINE_ID INTEGER Unique ID for a routine. The value of this column is null if
the activity is not part of a routine.

EVENT_OBJECT_NAME VARCHAR
(1024)

Event object name. If the value of EVENT_OBJECT is LOCK,
the value of this column is the name of the lock that the
agent is waiting on. If the value of EVENT_OBJECT is
WLM_QUEUE, the value of the column is the name of the
WLM threshold that the agent is queued on. Otherwise, the
value is NULL.

See Table 243 on page 926 for more information about
possible values for this column.

APPLICATION_NAME VARCHAR
(128)

appl_name - Application name

APPLICATION_ID VARCHAR
(128)

appl_id - Application ID

Chapter 20. Workload Management routines 925

Table 242. Information returned by WLM_GET_SERVICE_CLASS_AGENTS_V97 (continued)

Column name Data type Description

CLIENT_PID BIGINT client_pid - Client process ID

SESSION_AUTH_ID VARCHAR
(128)

session_auth_id - Session authorization ID

REQUEST_START_TIME TIMESTAMP Time that the agent started processing the request on which
it is currently working

AGENT_STATE_LAST
_UPDATE_TIME

TIMESTAMP The last time that the event, being processed by the agent,
was changed. The event currently processed by the agent is
identified by the EVENT_TYPE, EVENT_OBJECT, and
EVENT_STATE columns.

EXECUTABLE_ID VARCHAR (32)
FOR BIT DATA

Binary token generated on the data server that uniquely
identifies the section that an agent is working on. You can
use the executable ID as input to different monitoring
interfaces to obtain data about the section. A NULL value is
returned if the agent is not working on a section.

Note: The possible combinations of EVENT_STATE, EVENT_TYPE,
EVENT_OBJECT and EVENT_OBJECT_NAME column values are listed in the
following table.

Table 243. Possible combinations for EVENT_STATE, EVENT_TYPE, EVENT_OBJECT and
EVENT_OBJECT_NAME column values

Event description
EVENT_STATE
value

EVENT_TYPE
value

EVENT_OBJECT
value

EVENT_OBJECT_NAME
value

Acquire lock IDLE ACQUIRE LOCK Lock name

Escalate lock EXECUTING PROCESS LOCK_ESCALATION NULL

Process request EXECUTING PROCESS REQUEST NULL

Wait for a new request IDLE WAIT REQUEST NULL

Wait for a request to be
processed at a remote
partition

IDLE WAIT REMOTE_REQUEST NULL

Wait on a Query
Patroller queue

IDLE WAIT QP_QUEUE NULL

Wait on a WLM
threshold queue

IDLE WAIT WLM_QUEUE Threshold name

Process a routine EXECUTING PROCESS ROUTINE NULL

Recreate an index EXECUTING PROCESS INDEX_RECREATE NULL

Build compression
dictionary

EXECUTING PROCESS COMP_DICT_BLD NULL

Implicit rebind EXECUTING PROCESS IMPLICIT_REBIND NULL

926 Administrative Routines and Views

WLM_GET_SERVICE_CLASS_WORKLOAD _OCCURRENCES_V97 - list
workload occurrences

The WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES_V97 function
returns the list of all workload occurrences running in a specified service class on a
particular partition. A workload occurrence is a specific database connection whose
attributes match the definition of a workload and hence is associated with or
assigned to the workload.

Syntax

�� WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES_V97 (service_superclass_name , �

� service_subclass_name , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

service_superclass_name
An input argument of type VARCHAR(128) that specifies the name of a service
superclass in the currently connected database. If the argument is null or an
empty string, the data is retrieved for all the superclasses in the database that
match the values of the other parameters.

service_subclass_name
Target service subclass for the workload occurrence. Any work submitted by
this workload occurrence will run in this service subclass under the target
service superclass with the exception of activities that are mapped, or
remapped, to a different subclass.

dbpartitionnum
An input argument of type INTEGER that specifies the number of a partition
in the same instance as the currently connected database. Specify -1 for the
current database partition, or -2 for all database partitions. If the null value is
specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the
WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES_V97 function.

Example

If an administrator wants to see what workload occurrences are running on the
system as a whole, the administrator can call the
WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES_V97 function by
specifying a null value or an empty string for service_superclass_name and
service_subclass_name and -2 for dbpartitionnum:

SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,
SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,
SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,
SUBSTR(CHAR(COORD_PARTITION_NUM),1,4) AS COORDPART,
SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APPHNDL,
SUBSTR(WORKLOAD_NAME,1,22) AS WORKLOAD_NAME,
SUBSTR(CHAR(WORKLOAD_OCCURRENCE_ID),1,6) AS WLO_ID

FROM TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES_V97

Chapter 20. Workload Management routines 927

(CAST(NULL AS VARCHAR(128)), CAST(NULL AS VARCHAR(128)), -2))
AS SCINFO

ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, PART, APPHNDL,
WORKLOAD_NAME, WLO_ID

If the system has four database partitions and is currently running two workloads,
the previous query produces results such as the following ones:
SUPERCLASS_NAME SUBCLASS_NAME PART COORDPART ...
------------------- ------------------ ---- --------- ...
SYSDEFAULTMAINTENAN SYSDEFAULTSUBCLASS 0 0 ...
SYSDEFAULTSYSTEMCLA SYSDEFAULTSUBCLASS 0 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 0 ...

... APPHNDL WORKLOAD_NAME WLO_ID

... ------- ---------------------- ------

... - - -

... - - -

... 1 SYSDEFAULTUSERWORKLOAD 1

... 2 SYSDEFAULTUSERWORKLOAD 2

... 1 SYSDEFAULTUSERWORKLOAD 1

... 2 SYSDEFAULTUSERWORKLOAD 2

... 1 SYSDEFAULTUSERWORKLOAD 1

... 2 SYSDEFAULTUSERWORKLOAD 2

... 1 SYSDEFAULTUSERWORKLOAD 1

... 2 SYSDEFAULTUSERWORKLOAD 2

Usage note

The parameters are, in effect, ANDed together. That is, if you specify conflicting
input parameters, such as a service superclass SUP_A and a subclass SUB_B such
that SUB_B is not a subclass of SUP_A, no rows are returned.

Note: Statistics reported for the workload occurrence (for example,
coord_act_completed_total) are reset at the beginning of each unit of work when
they are combined with the corresponding workload statistics.

Information returned

Table 244. Information returned for WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES_V97

Column name Data type Description

SERVICE_SUPERCLASS_NAME VARCHAR(128) Name of the service superclass from which this
record was collected.

SERVICE_SUBCLASS_NAME VARCHAR(128) Name of the service subclass from which this
record was collected.

DBPARTITIONNUM SMALLINT Partition number from which this record was
collected.

COORD_PARTITION_NUM SMALLINT Partition number of the coordinator partition of
the specified workload occurrence.

928 Administrative Routines and Views

Table 244. Information returned for WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES_V97 (continued)

Column name Data type Description

APPLICATION_HANDLE BIGINT System-wide unique ID for the application. On a
single-partitioned database, this identifier
consists of a 16-bit counter. On a
multi-partitioned database, this identifier
consists of the coordinating partition number
concatenated with a 16-bit counter. In addition,
this identifier is the same on every partition
where the application makes a secondary
connection.

WORKLOAD_NAME VARCHAR(128) Name of the workload from which this record
was collected.

WORKLOAD_OCCURRENCE_ID INTEGER ID of the workload occurrence. This ID does not
uniquely identify the workload occurrence
unless it is coupled with the coordinator
database partition number and the workload
name.

WORKLOAD_OCCURRENCE_STATE VARCHAR(32) Workload occurrence state. The values are as
follows:

DECOUPLED
Workload occurrence does not have a
coordinator agent assigned
(concentrator case).

DISCONNECTPEND
Workload occurrence is disconnecting
from the database.

FORCED
Workload occurrence has been forced
off the database.

INTERRUPTED
Workload occurrence has been
interrupted.

QUEUED
Workload occurrence coordinator agent
is queued by Query Patroller or a
workload management queuing
threshold. In a partitioned database
environment, this state might indicate
that the coordinator agent has made an
RPC to the catalog partition to obtain
threshold tickets and has not yet
received a response.

TRANSIENT
Workload occurrence has not yet been
mapped to a service superclass.

UOWEXEC
Workload occurrence is processing a
request.

UOWWAIT
Workload occurrence is waiting for a
request from the client.

Chapter 20. Workload Management routines 929

Table 244. Information returned for WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES_V97 (continued)

Column name Data type Description

UOW_ID INTEGER Unique ID of the unit of work that this
workload occurrence started in.

SYSTEM_AUTH_ID VARCHAR(128) System authorization ID under which the
workload occurrence was inserted into the
system.

SESSION_AUTH_ID VARCHAR(128) Session authorization ID under which the
workload occurrence was inserted into the
system.

APPLICATION_NAME VARCHAR(128) Name of the application that created this
workload occurrence.

CLIENT_WRKSTNNAME VARCHAR(255) Current value of the CLIENT_WRKSTNNAME
special register for this workload occurrence.

CLIENT_ACCTNG VARCHAR(255) Current value of the CLIENT_ACCTNG special
register for this workload occurrence.

CLIENT_USER VARCHAR(255) Current value of the CLIENT_USERID special
register for this workload occurrence.

CLIENT_APPLNAME VARCHAR(255) Current value of the CLIENT_APPLNAME
special register for this workload occurrence.

COORD_ACT_COMPLETED_TOTAL INTEGER Number of coordinator activities at any nesting
level that were completed so far in the current
unit of work of this workload occurrence. This
statistic is updated every time that an activity in
this workload occurrence is completed and is
reset at the beginning of each unit of work.

COORD_ACT_ABORTED_TOTAL INTEGER Number of coordinator activities that were
aborted so far in the current unit of work of this
workload occurrence. This statistic is updated
every time that an activity in this workload
occurrence is aborted and is reset at the
beginning of each unit of work.

COORD_ACT_REJECTED_TOTAL INTEGER Number of coordinator activities that were
rejected so far in the current unit of work of this
workload occurrence. Activities are counted as
rejected when they are prevented from executing
by either a prevent execution work action or a
predictive threshold. This statistic is updated
every time that an activity in this workload
occurrence is rejected and is reset at the
beginning of each unit of work.

CONCURRENT_ACT_TOP INTEGER Highest number of concurrent activities at any
nesting level in either executing state (which
includes idle and waiting) or queued state that
has been reached for this workload occurrence
in the current unit of work. This statistic is reset
at the beginning of each unit of work.

ADDRESS VARCHAR(255) IP address or secure domain name that created
this workload occurrence. Secure domain names
are shown converted to IP addresses.

930 Administrative Routines and Views

WLM_GET_SERVICE_SUBCLASS_STATS_V97 table function - Return
statistics of service subclasses

The WLM_GET_SERVICE_SUBCLASS_STATS_V97 function returns basic statistics
for one or more service subclasses.

Syntax

�� WLM_GET_SERVICE_SUBCLASS_STATS_V97 (service_superclass_name , �

� service_subclass_name , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

service_superclass_name
An input argument of type VARCHAR(128) that specifies the name of a service
superclass in the currently connected database. If the argument is null or an
empty string, the data is retrieved for all of the superclasses in the database.

service_subclass_name
An input argument of type VARCHAR(128) that specifies the name of a service
subclass in the currently connected database. If the argument is null or an
empty string, the data is retrieved for all of the subclasses in the database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid partition number in
the same instance as the currently connected database. Specify -1 for the
current database partition, or -2 for all database partitions. If the null value is
specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the WLM_GET_SERVICE_SUBCLASS_STATS_V97 function.

Examples

Example 1: Because every activity must be mapped to a DB2 service class before
being run, you can monitor the global state of the system by using the service class
statistics table functions and querying all of the service classes on all partitions. In
the following example, a null value is passed for service_superclass_name and
service_subclass_name to return statistics for all service classes, and the value -2 is
specified for dbpartitionnum to return statistics for all partitions:
SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,
SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,
CAST(COORD_ACT_LIFETIME_AVG / 1000 AS DECIMAL(9,3))

AS AVGLIFETIME,
CAST(COORD_ACT_LIFETIME_STDDEV / 1000 AS DECIMAL(9,3))

AS STDDEVLIFETIME,
SUBSTR(CAST(LAST_RESET AS VARCHAR(30)),1,16) AS LAST_RESET

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS_V97(CAST(NULL AS VARCHAR(128)),
CAST(NULL AS VARCHAR(128)), -2)) AS SCSTATS

ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, PART

The statement returns service class statistics such as average activity lifetime and
standard deviation in seconds, as shown in the following sample output:

Chapter 20. Workload Management routines 931

SUPERCLASS_NAME SUBCLASS_NAME PART ...
------------------- ------------------ ---- ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 ...

... AVGLIFETIME STDDEVLIFETIME LAST_RESET

... ----------- -------------- ----------------

... 691.242 34.322 2006-07-24-11.44

... 644.740 22.124 2006-07-24-11.44

... 612.431 43.347 2006-07-24-11.44

... 593.451 28.329 2006-07-24-11.44

Example 2: The same table function can also give the highest value for average
concurrency of coordinator activities running in the service class on each partition:

SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,
SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,
SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,
CONCURRENT_ACT_TOP AS ACTTOP,
CONCURRENT_WLO_TOP AS CONNTOP

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS_V97(CAST(NULL AS VARCHAR(128)),
CAST(NULL AS VARCHAR(128)), -2)) AS SCSTATS

ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, PART

Sample output is as follows:
SUPERCLASS_NAME SUBCLASS_NAME PART ACTTOP CONNTOP
------------------- ------------------ ---- --------- ---------
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 10 7
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 0 0
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 0 0
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 0 0

By checking the average execution times and numbers of activities in the output of
this table function, you can get a good high-level view of the load on each
partition for a specific database. Any significant variations in the high-level gauges
returned by this table function might indicate a change in the load on the system.

Example 3: If an activity uses thresholds with REMAP ACTIVITY TO actions, the
activity might spend time in more than one service class during its lifetime. You
can determine how many activities have passed through a set of service classes by
looking at the ACTIVITIES_MAPPED_IN and ACTIVITIES_MAPPED_OUT
columns, as shown in the following example:
SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,
ACTIVITIES_MAPPED_IN AS MAPPED_IN,
ACTIVITIES_MAPPED_OUT AS MAPPED_OUT

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS_V97(CAST(NULL AS VARCHAR(128)),
CAST(NULL AS VARCHAR(128)), -2)) AS SCSTATS

ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME

Sample output is as follows:
SUPERCLASS_NAME SUBCLASS_NAME MAPPED_IN MAPPED_OUT
------------------- ------------------ --------- ----------
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 0
SUPERCLASS1 SYSDEFAULTSUBCLASS 0 0
SUPERCLASS1 SUBCLASS1 0 7
SUPERCLASS1 SUBCLASS2 7 0

932 Administrative Routines and Views

Usage notes

Some statistics are returned only if you set the COLLECT AGGREGATE ACTIVITY
DATA and COLLECT AGGREGATE REQUEST DATA parameters for the
corresponding service subclass to a value other than NONE.

The WLM_GET_SERVICE_SUBCLASS_STATS_V97 table function returns one row
of data per service subclass and per partition. The function does not aggregate data
across service classes (on a partition) or across partitions (for one or more service
classes). However, you can use SQL queries to aggregate data.

The parameters are, in effect, ANDed together. That is, if you specify conflicting
input parameters, such as a superclass named SUPA and a subclass named SUBB
such that SUBB is not a subclass of SUPA, no rows are returned.

Information returned

Table 245. Information returned for WLM_GET_SERVICE_SUBCLASS_STATS_V97

Column name Data type Description

SERVICE_SUPERCLASS_NAME VARCHAR(128) Name of the service superclass from which
this record was collected.

SERVICE_SUBCLASS_NAME VARCHAR(128) Name of the service subclass from which
this record was collected.

DBPARTITIONNUM SMALLINT Partition number from which this record
was collected.

LAST_RESET TIMESTAMP Time when statistics were last reset. There
are four events that trigger a reset of
statistics:

v You call the WLM_COLLECT_STATS
procedure.

v The wlm_collect_int configuration
parameter causes a collection and reset.

v You reactivate the database.

v You modify the service subclass for
which statistics are being reported and
commit the change.

The LAST_RESET time stamp is in local
time.

COORD_ACT_COMPLETED_TOTAL BIGINT The total number of coordinator activities
that were submitted since the last reset and
that were completed successfully. This
count is updated as each activity is
completed.

If you remap an activity to a different
service subclass, that activity counts only
toward the total of the subclass in which it
is completed.

Chapter 20. Workload Management routines 933

Table 245. Information returned for WLM_GET_SERVICE_SUBCLASS_STATS_V97 (continued)

Column name Data type Description

COORD_ACT_ABORTED_TOTAL BIGINT The total number of coordinator activities
that were submitted since the last reset and
that were completed with errors. This
count is updated as each activity aborts.

If you remap an activity to a different
service subclass, that activity counts only
toward the total of the subclass in which it
aborts.

COORD_ACT_REJECTED_TOTAL BIGINT The total number of coordinator activities
that were submitted since the last reset and
that were rejected before execution.
Activities are counted as rejected when
they are prevented from running by either
a prevent execution work action or a
predictive threshold. This count is updated
as each activity is rejected.

CONCURRENT_ACT_TOP INTEGER Highest number of concurrent activities at
any nesting level in executing state (which
includes idle and waiting) that has been
reached for this service subclass.

COORD_ACT_LIFETIME_TOP BIGINT High watermark for coordinator activity
lifetime, evaluated over all nesting levels. If
the COLLECT AGGREGATE ACTIVITY
DATA parameter of the service class is set
to NONE, the value of the column is null.
Units are milliseconds.

To use this statistic effectively when the
service class includes remapped subclasses,
you must aggregate the
COORD_ACT_LIFETIME_TOP high
watermark of the service subclass with that
of other subclasses affected by the same
remapping threshold or thresholds. You
must aggregate these values because an
activity can be completed after the subclass
has been remapped to a different service
subclass. The time that the activity spends
in other service subclasses before being
remapped is counted only toward the
service class in which it is completed.

934 Administrative Routines and Views

Table 245. Information returned for WLM_GET_SERVICE_SUBCLASS_STATS_V97 (continued)

Column name Data type Description

COORD_ACT_LIFETIME_AVG DOUBLE Arithmetic mean of lifetime for coordinator
activities at nesting level 0 that were
associated with this service subclass since
the last reset. If the internally tracked
average has overflowed, the value -2 is
returned. If the COLLECT AGGREGATE
ACTIVITY DATA parameter of the service
class is set to NONE, the value of the
column is null. Units are milliseconds.

The COORD_ACT_LIFETIME_AVG value
of a service subclass is unaffected by
activities that pass through the subclass but
are remapped to a different subclass before
they are completed.

COORD_ACT_LIFETIME_STDDEV DOUBLE Standard deviation of lifetime for
coordinator activities at nesting level 0 that
were associated with this service subclass
since the last reset. If the COLLECT
AGGREGATE ACTIVITY DATA parameter
of the service class is set to NONE, the
value of the column is null. Units are
milliseconds.

This standard deviation is computed from
the coordinator activity lifetime histogram
and may be inaccurate if the histogram is
not correctly sized to fit the data. The value
of -1 is returned if any values fall into the
last histogram bin.

The COORD_ACT_LIFETIME_STDDEV
value of a service subclass is unaffected by
activities that pass through the service
subclass but are remapped to a different
subclass before they are completed.

COORD_ACT_EXEC_TIME_AVG DOUBLE Arithmetic mean of the execution times for
coordinator activities at nesting level 0 that
were associated with this service subclass
since the last reset. If the internally tracked
average has overflowed, the value -2 is
returned. If the COLLECT AGGREGATE
ACTIVITY DATA parameter of the service
class is set to NONE, the value of the
column is null. Units are milliseconds.

The execution time average of a service
subclass is unaffected by activities that pass
through the subclass but are remapped to a
different subclass before they are
completed.

Chapter 20. Workload Management routines 935

Table 245. Information returned for WLM_GET_SERVICE_SUBCLASS_STATS_V97 (continued)

Column name Data type Description

COORD_ACT_EXEC_TIME_STDDEV DOUBLE Standard deviation of the execution times
for coordinator activities at nesting level 0
that were associated with this service
subclass since the last reset. Units are
milliseconds.

This standard deviation is computed from
the coordinator activity executetime
histogram and may be inaccurate if the
histogram is not correctly sized to fit the
data. The value of -1 is returned if any
values fall into the last histogram bin.

The execution time standard deviation of a
service subclass is unaffected by activities
that pass through the subclass but are
remapped to a different subclass before
they are completed.

COORD_ACT_QUEUE_TIME_AVG DOUBLE Arithmetic mean of the queue time for
coordinator activities at nesting level 0 that
were associated with this service subclass
since the last reset. If the internally tracked
average has overflowed, the value -2 is
returned. If the COLLECT AGGREGATE
ACTIVITY DATA parameter of the service
class is set to NONE, the value of the
column is null. Units are milliseconds.

The queue time average is counted only
toward the service subclass in which the
activity was queued.

COORD_ACT_QUEUE_TIME_STDDEV DOUBLE Standard deviation of the queue time for
coordinator activities at nesting level 0 that
were associated with this service subclass
since the last reset. If the COLLECT
AGGREGATE ACTIVITY DATA parameter
of the service class is set to NONE, the
value of the column is null. Units are
milliseconds.

This standard deviation is computed from
the coordinator activity queuetime
histogram and may be inaccurate if the
histogram is not correctly sized to fit the
data. The value of -1 is returned if any
values fall into the last histogram bin.

The queue time standard deviation is
counted only toward the service subclass in
which the activity was queued.

NUM_REQUESTS_ACTIVE BIGINT Number of requests that are running in the
service subclass at the time that this table
function is running.

936 Administrative Routines and Views

Table 245. Information returned for WLM_GET_SERVICE_SUBCLASS_STATS_V97 (continued)

Column name Data type Description

NUM_REQUESTS_TOTAL BIGINT Number of requests that finished running
in this service subclass since the last reset.
This finished state applies to any request
regardless of its membership in an activity.
If the COLLECT AGGREGATE ACTIVITY
DATA parameter of the service class is set
to NONE, the value of the column is null.

The NUM_REQUESTS_TOTAL value of a
service subclass is unaffected by requests
that pass through the service subclass but
are not completed in it.

REQUEST_EXEC_TIME_AVG DOUBLE Arithmetic mean of the execution times for
requests that were associated with this
service subclass since the last reset. Units
are milliseconds. If the internally tracked
average has overflowed, the value -2 is
returned. If the COLLECT AGGREGATE
REQUEST DATA parameter of this service
class is set to NONE, the value of this
column is NULL.

The execution time average of a service
subclass is unaffected by requests that pass
through the subclass but are not completed
in it.

REQUEST_EXEC_TIME_STDDEV DOUBLE Standard deviation of the execution times
for requests that were associated with this
service subclass since the last reset. Units
are milliseconds. If the COLLECT
AGGREGATE REQUEST DATA parameter
of the service class is set to NONE, the
value of this column is NULL.

This standard deviation is computed from
the request executetime histogram and may
be inaccurate if the histogram is not
correctly sized to fit the data. The value of
-1 is returned if any values fall into the last
histogram bin.

The execution time standard deviation of a
service subclass is unaffected by requests
that pass through the subclass but were not
completed in it.

Chapter 20. Workload Management routines 937

Table 245. Information returned for WLM_GET_SERVICE_SUBCLASS_STATS_V97 (continued)

Column name Data type Description

REQUEST_EXEC_TIME_TOTAL BIGINT Sum of the execution times for requests
that were associated with this service
subclass since the last reset. Units are
milliseconds. If the COLLECT
AGGREGATE REQUEST DATA parameter
of the service class is set to NONE, the
value of this column is NULL.

This total is computed from the request
execution time histogram and may be
inaccurate if the histogram is not correctly
sized to fit the data. The value of -1 is
returned if any values fall into the last
histogram bin.

The execution time total of a service
subclass is unaffected by requests that pass
through the subclass but are not completed
in it.

ACT_REMAPPED_IN BIGINT Number of activities remapped into this
service subclass by a threshold REMAP
ACTIVITY action since the last reset.

ACT_REMAPPED_OUT BIGINT Number of activities remapped out of this
service subclass by a threshold REMAP
ACTIVITY action since the last reset.

CONCURRENT_WLO_TOP INTEGER Highest number of concurrent occurrences
of the specified workload on this partition
since the last reset.

UOW_TOTAL_TIME_TOP BIGINT High watermark for unit of work lifetime,
in milliseconds.

Returns -1 when COLLECT AGGREGATE
ACTIVITY DATA for the service class is set
to NONE.
Note: Measurements for this high
watermark are computed for the service
class assigned by the workload. Any
mapping by a work action set to change
the service class of an activity does not
affect this high watermark.

WLM_GET_SERVICE_SUPERCLASS_STATS - Return statistics of
service superclasses

The WLM_GET_SERVICE_SUPERCLASS_STATS function returns basic statistics for
one or more service superclasses.

Syntax

�� WLM_GET_SERVICE_SUPERCLASS_STATS (service_superclass_name , �

� dbpartitionnum) ��

938 Administrative Routines and Views

The schema is SYSPROC.

Table function parameters

service_superclass_name
An input argument of type VARCHAR(128) that specifies the name of a service
superclass in the currently connected database. If the argument is null or an
empty string, data is retrieved for all the superclasses in the database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid partition number in
the same instance as the currently connected database. Specify -1 for the
current database partition, or -2 for all database partitions. If the null value is
specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the WLM_GET_SERVICE_SUPERCLASS_STATS function.

Example

The following query displays the basic statistics for all the service superclasses on
the system, across all database partitions:
SELECT SUBSTR(SERVICE_SUPERCLASS_NAME, 1, 26) SERVICE_SUPERCLASS_NAME,

DBPARTITIONNUM,
LAST_RESET,
CONCURRENT_CONNECTION_TOP CONCURRENT_CONN_TOP

FROM TABLE(WLM_GET_SERVICE_SUPERCLASS_STATS(’’, -2)) as SCSTATS

Sample output is as follows:
SERVICE_SUPERCLASS_NAME DBPARTITIONNUM ...
-------------------------- -------------- ...
SYSDEFAULTSYSTEMCLASS 0 ...
SYSDEFAULTMAINTENANCECLASS 0 ...
SYSDEFAULTUSERCLASS 0 ...

... LAST_RESET CONCURRENT_CONN_TOP

... -------------------------- -------------------

... 2006-09-05-09.38.44.396788 0

... 2006-09-05-09.38.44.396795 0

... 2006-09-05-09.38.44.396796 1

Usage note

The WLM_GET_SERVICE_SUPERCLASS_STATS table function returns one row of
data per service superclass and per partition. The function does not aggregate data
across service superclasses (on a partition) or across partitions (for one or more
service superclasses). However, you can use SQL queries to aggregate data, as
shown in the previous example.

Information returned

Table 246. Information returned for WLM_GET_SERVICE_SUPERCLASS_STATS

Column name Data type Description

SERVICE_SUPERCLASS_NAME VARCHAR(128) Name of the service superclass from which this
record was collected.

DBPARTITIONNUM SMALLINT Partition number from which this record was
collected.

Chapter 20. Workload Management routines 939

Table 246. Information returned for WLM_GET_SERVICE_SUPERCLASS_STATS (continued)

Column name Data type Description

LAST_RESET TIMESTAMP Time when statistics were last reset. There are four
events that trigger a reset of statistics:

v You call the WLM_COLLECT_STATS procedure.

v The wlm_collect_int configuration parameter
causes a collection and reset.

v You reactivate the database.

v You modify the service superclass for which
statistics are being reported and commit the
change.

The LAST_RESET time stamp is in local time.

CONCURRENT_CONNECTION_TOP INTEGER Highest number of concurrent coordinator
connections in this class since the last reset.

WLM_GET_WORK_ACTION_SET_STATS - Return work action set
statistics

The WLM_GET_WORK_ACTION_SET_STATS function returns the statistics for a
work action set.

Syntax

�� WLM_GET_WORK_ACTION_SET_STATS (work_action_set_name , �

� dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

work_action_set_name
An input argument of type VARCHAR(128) that specifies the work action set
to return statistics for. If the argument is null or an empty string, statistics are
returned for all work action sets.

dbpartitionnum
An input argument of type INTEGER that specifies a valid partition number in
the same instance as the currently connected database. Specify -1 for the
current database partition, or -2 for all database partitions. If the null value is
specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the WLM_GET_WORK_ACTION_SET_STATS function.

Example

Assume that there are three work classes: ReadClass, WriteClass, and LoadClass.
There is a work action associated with ReadClass and a work action associated
with LoadClass, but there is no work action associated with WriteClass. On
partition 0, the number of activities currently running or queued are as follows:
v ReadClass class: eight

940 Administrative Routines and Views

v WriteClass class: four
v LoadClass class: two
v Unassigned: three
SELECT SUBSTR(WORK_ACTION_SET_NAME,1,18) AS WORK_ACTION_SET_NAME,

SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,
SUBSTR(WORK_CLASS_NAME,1,15) AS WORK_CLASS_NAME,
LAST_RESET,
SUBSTR(CHAR(ACT_TOTAL),1,14) AS ACT_TOTAL

FROM TABLE(WLM_GET_WORK_ACTION_SET_STATS
(CAST(NULL AS VARCHAR(128)), -2)) AS WASSTATS

ORDER BY WORK_ACTION_SET_NAME, WORK_CLASS_NAME, PART

Sample output is as follows. Because there is no work action associated with the
WriteClass work class, the four activities to which it applies are counted in the
artificial class denoted by an asterisk (*) in the output. The three activities that
were not assigned to any work class are also included in the artificial class.
WORK_ACTION_SET_NAME PART WORK_CLASS_NAME LAST_RESET ACT_TOTAL
-------------------- ---- --------------- -------------------------- --------------
AdminActionSet 0 ReadClass 2005-11-25-18.52.49.343000 8
AdminActionSet 1 ReadClass 2005-11-25-18.52.50.478000 0
AdminActionSet 0 LoadClass 2005-11-25-18.52.49.343000 2
AdminActionSet 1 LoadClass 2005-11-25-18.52.50.478000 0
AdminActionSet 0 * 2005-11-25-18.52.49.343000 7
AdminActionSet 1 * 2005-11-25-18.52.50.478000 0

Information returned

Table 247. Information returned for WLM_GET_WORK_ACTION_SET_STATS

Column name Data type Description

WORK_ACTION_SET_NAME VARCHAR(128) Name of the work action set. A name is returned only if
you enable the work action set.

DBPARTITIONNUM SMALLINT Partition number from which this record was collected.

LAST_RESET TIMESTAMP Time when statistics were last reset. There are four events
that trigger a reset of statistics:

v You call the WLM_COLLECT_STATS procedure.

v The wlm_collect_int configuration parameter causes a
collection and reset.

v You reactivate the database.

v You modify the work action set for which statistics are
being reported and commit the change.

The LAST_RESET time stamp is in local time.

WORK_CLASS_NAME VARCHAR(128) Name of the work class related to the specified work
action set. A work class name is returned only if you
enable a work action associated with the work class. The
asterisk (*) represents an artificial work class created to
count all those activities that did not belong to the other
work classes for which you associated one or more work
actions.

ACT_TOTAL BIGINT Number of activities at any nesting level that were
assigned to the work class specified by
WORK_CLASS_NAME.

Chapter 20. Workload Management routines 941

WLM_GET_WORKLOAD_OCCURRENCE _ACTIVITIES_V97 - return a
list of activities

The WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES_V97 function returns
the list of all activities that were submitted by the specified application on the
specified partition and have not yet been completed.

Syntax

�� WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES_V97 (application_handle , �

� dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

application_handle
An input argument of type BIGINT that specifies an application handle for
which a list of activities is to be returned. If the argument is null, the data is
retrieved for all the applications in the database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid partition number in
the same instance as the currently connected database. Specify -1 for the
current database partition, or -2 for all database partitions. If the null value is
specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES_V97 function.

Examples

Example 1: Activities currently running with a known application handle

After you identify the application handle, you can look up all the activities
currently running in this application. For example, suppose that an administrator
wants to list the activities of an application whose application handle, determined
by using the LIST APPLICATIONS command, is 1. The administrator runs the
following query:

SELECT SUBSTR(CHAR(COORD_PARTITION_NUM),1,5) AS COORD,
SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,
SUBSTR(CHAR(UOW_ID),1,5) AS UOWID,
SUBSTR(CHAR(ACTIVITY_ID),1,5) AS ACTID,
SUBSTR(CHAR(PARENT_UOW_ID),1,8) AS PARUOWID,
SUBSTR(CHAR(PARENT_ACTIVITY_ID),1,8) AS PARACTID,

ACTIVITY_TYPE AS ACTTYPE,
SUBSTR(CHAR(NESTING_LEVEL),1,7) AS NESTING

FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES_V97(1, -2)) AS WLOACTS
ORDER BY PART, UOWID, ACTID

Sample output from the query is as follows:

942 Administrative Routines and Views

COORD PART UOWID ACTID PARUOWID PARACTID ACTTYPE NESTING
----- ---- ----- ----- -------- -------- -------- -------
0 0 2 3 - - CALL 0
0 0 2 5 2 3 READ_DML 1

Example 2: Activities currently running on the system

The following query joins the
WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES_V97 output with the
MON_GET_PKG_CACHE_STMT output on EXECUTABLE_ID to provide
statement text for all the SQL activities currently running on the system:
SELECT t.application_handle,

t.uow_id,
t.activity_id,
varchar(p.stmt_text, 256) as stmt_text

FROM table(wlm_get_workload_occurrence_activities_v97(NULL, -1)) as t,
table(mon_get_pkg_cache_stmt(NULL, NULL, NULL, -1)) as p

WHERE t.executable_id = p.executable_id

Sample output is as follows:
APPLICATION_HANDLE UOW_ID ACTIVITY_ID STMT_TEXT
------------------ ----------- -------------- ------------------------------
1 1 1 SELECT * FROM SYSCAT.TABLES
47 1 36 INSERT INTO T1 VALUES(123)

Information returned

Table 248. Information returned by WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES_V97

Column name Data type Description

APPLICATION_HANDLE BIGINT System-wide unique ID for the application.
On a single-partitioned database, this
identifier consists of a 16-bit counter. On a
multi-partitioned database, this identifier
consists of the coordinating partition number
concatenated with a 16-bit counter. In
addition, this identifier is the same on every
partition where the application makes a
secondary connection.

DBPARTITIONNUM SMALLINT Partition number from which this record
was collected.

COORD_PARTITION_NUM SMALLINT Coordinator partition number of the activity.

LOCAL_START_TIME TIMESTAMP Local time that this activity began doing
work on the partition. The value of the
column is null when an activity has entered
the system but is in a queue and has not
started running.

UOW_ID INTEGER Unique ID of the original unit of work that
the activity started in.

ACTIVITY_ID INTEGER Unique activity ID within a unit of work.

PARENT_UOW_ID INTEGER Unique ID of the original unit of work that
the parent activity of the activity started in.
The value of this column is null if the
activity has no parent activity or is at a
remote partition.

Chapter 20. Workload Management routines 943

Table 248. Information returned by WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES_V97 (continued)

Column name Data type Description

PARENT_ACTIVITY_ID INTEGER Unique activity ID within a unit of work for
the parent of the activity whose ID is
specified by ACTIVITY_ID. The value of this
column is null if the activity has no parent
activity or is at a remote partition.

ACTIVITY_STATE VARCHAR(32) Activity state. Possible values are as follows:

CANCEL_PENDING
The activity was cancelled because
there was no agent actively
working on a request for the
activity. The next time that a
request is submitted as part of the
activity, the activity will be
cancelled, and an SQL4725N error
will be generated.

EXECUTING
Agents are actively working on a
request for the activity.

IDLE There is no agent actively
processing a request for the activity.

INITIALIZING
The activity has been submitted but
has not yet started running. During
the initializing state, predictive
thresholds are applied to the
activity to determine whether the
activity will be allowed to run.

944 Administrative Routines and Views

Table 248. Information returned by WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES_V97 (continued)

Column name Data type Description

ACTIVITY_STATE (continued) VARCHAR(32) Activity state. Possible values are as follows:

QP_CANCEL_PENDING
This state is the same as the
CANCEL_PENDING state except
that the activity was cancelled by
Query Patroller rather than by the
WLM_CANCEL_ACTIVITY
procedure.

QP_QUEUED
The activity is queued by Query
Patroller.

QUEUED
The activity is queued by a
workload management queuing
threshold. In a partitioned database
environment, this state might mean
that the coordinator agent has made
an RPC to the catalog partition to
obtain threshold tickets and has not
yet received a response. This state
might indicate that the activity has
been queued by a workload
management queuing threshold or,
if not much time has elapsed, can
indicate that the activity is in the
process of obtaining its tickets. To
obtain a more accurate picture of
whether the activity is being
queued, determine what agent is
working on the activity, and find
out whether the EVENT_OBJECT
value of the object at the catalog
partition has a value of
WLM_QUEUE.

TERMINATING
The activity has finished running
and is being removed from the
system.

ACTIVITY_TYPE VARCHAR(32) Activity type. Possible values are as follows:

v CALL

v DDL

v LOAD

v OTHER

v READ_DML

v WRITE_DML

Refer to “Identify types of work with work
classes” in Workload Manager Guide and
Reference for a description of the different
types of SQL statements that are associated
with each activity type.

NESTING_LEVEL INTEGER Depth to which this activity is nested within
its topmost parent activity.

Chapter 20. Workload Management routines 945

Table 248. Information returned by WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES_V97 (continued)

Column name Data type Description

INVOCATION_ID INTEGER An identifier that distinguishes one
invocation of a routine from others at the
same nesting level within a unit of work. It
is unique within a unit of work for a specific
nesting level.

ROUTINE_ID INTEGER Unique ID of the routine.

UTILITY_ID INTEGER One of the following values:

v If the activity is a utility, the value is the
ID of the utility.

v If the activity is not a utility, the value is
null.

SERVICE_CLASS_ID INTEGER Unique ID of the service class to which this
activity belongs.

DATABASE_WORK_ACTION_SET_ID INTEGER One of the following values:

v If this activity has been categorized into a
work class of database scope, the value is
the ID of the work class set of which this
work class is a member.

v If this activity has not been categorized
into a work class of database scope, the
value is null.

DATABASE_WORK_CLASS_ID INTEGER One of the following values:

v If this activity has been categorized into a
work class of database scope, the value is
the ID of the work class.

v If this activity has not been categorized
into a work class of database scope, the
value is null.

SERVICE_CLASS_WORK_ACTION_SET_ID INTEGER One of the following values:

v If this activity has been categorized into a
work class of service class scope, the
value is the ID of the work action set
associated with the work class set to
which the work class belongs.

v If this activity has not been categorized
into a work class of service class scope,
the value is null.

SERVICE_CLASS_WORK_CLASS_ID INTEGER One of the following values:

v If this activity has been categorized into a
work class of service class scope, the
value is the ID of the work class assigned
to this activity.

v If this activity has not been categorized
into a work class of service class scope,
the value is null.

946 Administrative Routines and Views

Table 248. Information returned by WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES_V97 (continued)

Column name Data type Description

EXECUTABLE_ID VARCHAR(32) FOR
BIT DATA

An opaque binary token generated on the
data server that uniquely identifies the
section. You can use the executable ID as
input to different monitoring interfaces to
obtain data about the section. For non-SQL
activities, such as LOAD, a NULL value is
returned.

TOTAL_CPU_TIME BIGINT total_cpu_time - Total CPU time

ROWS_READ BIGINT rows_read - Rows read

ROWS_RETURNED BIGINT rows_returned - Rows returned

QUERY_COST_ESTIMATE BIGINT query_cost_estimate - Query cost estimate

DIRECT_READS BIGINT direct_reads - Direct reads from database

DIRECT_WRITES BIGINT direct_writes - Direct writes to database

WLM_GET_WORKLOAD_STATS_V97 table function - Return workload
statistics

The WLM_GET_WORKLOAD_STATS_V97 function returns one row of workload
statistics for every combination of workload name and database partition number.

Syntax

�� WLM_GET_WORKLOAD_STATS_V97 (workload_name , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

workload_name
An input argument of type VARCHAR(128) that specifies a workload for
which the statistics are to be returned. If the argument is NULL or an empty
string, statistics are returned for all workloads.

dbpartitionnum
An input argument of type INTEGER that specifies the number of a partition
in the same instance as the currently connected database. Specify -1 for the
current database partition, or -2 for all database partitions. If a null value is
specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the WLM_GET_WORKLOAD_STATS_V97 function.

Example

The following query displays statistics for workloads:
SELECT SUBSTR(WORKLOAD_NAME,1,18) AS WL_DEF_NAME,

SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,
COORD_ACT_LIFETIME_TOP,

Chapter 20. Workload Management routines 947

COORD_ACT_LIFETIME_AVG,
COORD_ACT_LIFETIME_STDDEV

FROM TABLE(WLM_GET_WORKLOAD_STATS_V97(CAST(NULL AS VARCHAR(128)), -2)) AS WLSTATS
ORDER BY WL_DEF_NAME, PART

Sample output from the query is as follows:
WL_DEF_NAME PART COORD_ACT_LIFETIME_TOP ...
------------------ ---- ---------------------- ...
SYSDEFAULTADMWORKL 0 -1 ...
SYSDEFAULTUSERWORK 0 -1 ...
WL1 0 2 ...

... COORD_ACT_LIFETIME_AVG COORD_ACT_LIFETIME_STDDEV

... ------------------------ -------------------------

... -1.00000000000000E+000 -1.00000000000000E+000

... -1.00000000000000E+000 -1.00000000000000E+000

... +2.56000000000000E+000 +6.00000000000001E-002

Usage note

The function does not aggregate data across workloads, partitions, or service
classes. However, you can use SQL queries to aggregate data.

Information returned

Table 249. Information returned by WLM_GET_WORKLOAD_STATS_V97

Column name Data type Description

WORKLOAD_NAME VARCHAR(128) Name of the workload from which this record was
collected.

DBPARTITIONNUM SMALLINT Partition number from which this record was
collected

LAST_RESET TIMESTAMP Time when statistics were last reset. There are four
events that trigger a reset of statistics:

v You call the WLM_COLLECT_STATS procedure.

v The wlm_collect_int configuration parameter
causes a collection and reset.

v You reactivate the database.

v You modify the workload for which statistics are
being reported and commit the change.

The LAST_RESET timestamp is in local time.

CONCURRENT_WLO_TOP INTEGER Highest number of concurrent occurrences of the
specified workload on this partition since the last
reset.

CONCURRENT_WLO_ACT_TOP INTEGER Highest number of concurrent activities (both
coordinator and nested) in either executing state
(which includes idle and waiting) or queued state
that has been reached in any occurrence of this
workload since the last reset. The value of the
column is updated by each workload occurrence at
the end of its unit of work.

COORD_ACT_COMPLETED_TOTAL BIGINT Total number of coordinator activities at any
nesting level that were assigned to any occurrence
of this workload that were completed since the last
reset. The value of this column is updated by each
workload occurrence at the end of its unit of work.

948 Administrative Routines and Views

Table 249. Information returned by WLM_GET_WORKLOAD_STATS_V97 (continued)

Column name Data type Description

COORD_ACT_ABORTED_TOTAL BIGINT The total number of coordinator activities at any
nesting level that were assigned to any occurrence
of this workload that were aborted before
completion since the last reset. The value of this
column is updated by each workload occurrence at
the end of its unit of work.

COORD_ACT_REJECTED_TOTAL BIGINT The total number of coordinator activities at any
nesting level that were assigned to any occurrence
of this workload that were rejected before execution
since the last reset. The value of this column is
updated by each workload occurrence at the end of
its unit of work.

Activities are counted as rejected when they are
prevented from executing by either a prevent
execution work action or a predictive threshold.
Unlike the column of the same name in the
WLM_GET_SERVICE_SUBCLASS_STATS_V97
function, this WLM_GET_WORKLOAD_STATS_V97
column also includes the number of rejections that
occur before an activity can be assigned to a service
class. For example, such a rejection occurs when an
activity violates the
ConcurrentWorkloadOccurrences threshold.

WLO_COMPLETED_TOTAL BIGINT Number of workload occurrences to be completed
since last reset.

COORD_ACT_LIFETIME_TOP BIGINT High watermark for coordinator activity lifetime,
collected over all nesting levels. Units are
milliseconds. If the COLLECT AGGREGATE
ACTIVITY DATA parameter of the service class is
set to NONE, the value of the column is null.

COORD_ACT_LIFETIME_AVG DOUBLE Arithmetic mean of lifetime for completed or
aborted coordinator activities at nesting level 0 that
are associated with this workload. Units are
milliseconds. If the internally tracked average has
overflowed, the value -2 is returned. If the
COLLECT AGGREGATE ACTIVITY DATA
parameter of the workload is set to NONE, the
value of the column is null.

COORD_ACT_LIFETIME_STDDEV DOUBLE Standard deviation of lifetime for completed or
aborted coordinator activities at nesting level 0 that
are associated with this workload. Units are
milliseconds. If the COLLECT AGGREGATE
ACTIVITY DATA parameter of the workload is set
to NONE, the value of the column is null. This
standard deviation is computed from the
coordinator activity lifetime histogram and may be
inaccurate if the histogram is not correctly sized to
fit the data. If any values fall into the last
histogram bin, the value -1 is returned.

Chapter 20. Workload Management routines 949

Table 249. Information returned by WLM_GET_WORKLOAD_STATS_V97 (continued)

Column name Data type Description

COORD_ACT_EXEC_TIME_AVG DOUBLE Arithmetic mean of the execution times for
completed or aborted coordinator activities at
nesting level 0 that are associated with this
workload. Units are milliseconds. If the internally
tracked average has overflowed, the value -2 is
returned. If the COLLECT AGGREGATE ACTIVITY
DATA parameter of the workload is set to NONE,
the value of the column is null.

COORD_ACT_EXEC_TIME_STDDEV DOUBLE Standard deviation of the execution times for
completed or aborted coordinator activities at
nesting level 0 that are associated with this
workload. Units are milliseconds. This standard
deviation is computed from the coordinator activity
executetime histogram and may be inaccurate if the
histogram is not correctly sized to fit the data. If
any values fall into the last histogram bin, the value
-1 is returned. If the COLLECT AGGREGATE
ACTIVITY DATA parameter of the workload is set
to NONE, the value of the column is null.

COORD_ACT_QUEUE_TIME_AVG DOUBLE Arithmetic mean of the queue time for completed
or aborted coordinator activities at nesting level 0
that are associated with this workload. Units are
milliseconds. If the internally tracked average has
overflowed, the value -2 is returned. If the
COLLECT AGGREGATE ACTIVITY DATA
parameter of the service class is set to NONE, the
value of the column is null.

COORD_ACT_QUEUE_TIME_STDDEV DOUBLE Standard deviation of the queue time for completed
or aborted coordinator activities at nesting level 0
that are associated with this workload. Units are
milliseconds. If the COLLECT AGGREGATE
ACTIVITY DATA parameter of the workload is set
to NONE, the value of the column is null. This
standard deviation is computed from the
coordinator activity queuetime histogram and may
be inaccurate if the histogram is not correctly sized
to fit the data. If any values fall into the last
histogram bin, the value -1 is returned.

UOW_TOTAL_TIME_TOP BIGINT High watermark for unit of work lifetime, in
milliseconds.

Returns -1 when COLLECT AGGREGATE
ACTIVITY DATA for the workload is set to NONE.

WLM_SET_CLIENT_INFO procedure - Set client information
The WLM_SET_CLIENT_INFO procedure sets client information associated with
the current connection at the DB2 server.

By using this procedure, you can set the client's user ID, application name,
workstation name, accounting information, or workload information at the DB2
server. Calling this procedure changes the stored values of the relevant transaction
processor (TP) monitor client information fields and special register settings for
this connection.

950 Administrative Routines and Views

The client information fields are used at the DB2 server for determining the
identity of the application or user currently using the connection. The client
information fields for a connection are considered during DB2 workload evaluation
and also displayed in any DB2 audit records or application snapshots generated for
this connection.

Unlike the sqleseti API, this procedure does not set client information at the client
but instead sets the corresponding client attributes on the DB2 server. Therefore,
you cannot use the sqleqry API to query the client information that is set at the
DB2 server using this procedure. If an application uses the sqleseti API to change
the client information, the new values will change the setting at the DB2 server. If
the sqleseti API is used to change either the user ID or the application name
without changing the accounting information, the accounting information at the
DB2 server will also be reset to the value of the accounting information at the
client.

The data values provided with the procedure are converted to the appropriate
database code page before being stored in the related TP monitor fields or special
registers. Any data value which exceeds the maximum supported size after
conversion to the database code page is truncated before being stored at the server.
The truncated values are returned by both the TP monitor fields and the special
registers when those stored values are queried.

The WLM_SET_CLIENT_INFO procedure is not under transaction control, and
client information changes made by the procedure are independent of committing
or rolling back units of work. However, because workload reevaluation occurs at
the beginning of the next unit of work for each application, you must issue either a
COMMIT or a ROLLBACK statement to make client information changes effective.

Syntax

�� WLM_SET_CLIENT_INFO (client_userid , client_wrkstnname , �

� client_applname , client_acctstr , client_workload) ��

The schema is SYSPROC.

Procedure parameters

client_userid
An input argument of type VARCHAR(255) that specifies the user ID for the
client. If you specify NULL, the value remains unchanged. If you specify an
empty string, which is the default value, the user ID for the client is reset to
the default value, which is blank.

client_wrkstnname
An input argument of type VARCHAR(255) that specifies the workstation
name for the client. If you specify NULL, the value remains unchanged. If you
specify an empty string, which is the default value, the workstation name for
the client is reset to the default value, which is blank.

client_applname
An input argument of type VARCHAR(255) that specifies the application name
for the client. If you specify NULL, the value remains unchanged. If you
specify an empty string, which is the default value, the application name for
the client is reset to the default value, which is blank.

Chapter 20. Workload Management routines 951

client_acctstr
An input argument of type VARCHAR(255) that specifies the accounting string
for the client. If you specify NULL, the value remains unchanged. If you
specify an empty string, which is the default value, the accounting string for
the client is reset to the default value, which is blank.

client_workload
An input argument of type VARCHAR(255) that specifies the workload
assignment mode for the client. If you specify NULL, the value remains
unchanged. The values are as follows:

SYSDEFAULTADMWORKLOAD
Specifies that the database connection will be assigned to
SYSDEFAULTADMWORKLOAD, enabling users with ACCESSCTRL,
DATAACCESS, DBADM, SECADM, or WLMADM authority to bypass
the normal workload evaluation.

AUTOMATIC
Specifies that the database connection will be assigned to a workload
chosen by the workload evaluation that is performed automatically by
the server.

Note: The client_workload argument is case sensitive.

Authorization

EXECUTE privilege on the WLM_SET_CLIENT_INFO procedure.

Examples

The following procedure call sets the user ID, workstation name, application name,
accounting string, and workload assignment mode for the client:

CALL SYSPROC.WLM_SET_CLIENT_INFO(’db2user’, ’machine.torolab.ibm.com’,
’auditor’, ’Accounting department’, ’AUTOMATIC’)

The following procedure call sets the user ID to db2user2 for the client without
setting the other client attributes:

CALL SYSPROC.WLM_SET_CLIENT_INFO(’db2user2’, NULL, NULL, NULL, NULL)

The following procedure call resets the user ID for the client to blank without
modifying the values of the other client attributes:

CALL SYSPROC.WLM_SET_CLIENT_INFO(’’, NULL, NULL, NULL, NULL)

Usage Notes

If the input that you specify for any procedure parameter exceeds its specified field
length, the input field is truncated and the procedure runs using the truncated
inputs.

Input fields containing single quotations are not supported and result in an error.

WLM_SET_CONN_ENV - enable collection of activity data and
measurement of section actuals

The WLM_SET_CONN_ENV procedure enables for a particular connection the
collection of activity data and measurement of section actuals (runtime statistics
measured during section execution).

952 Administrative Routines and Views

Once applied, the settings made by the WLM_SET_CONN_ENV procedure
continue to apply until explicitly overwritten by another call to the
WLM_SET_CONN_ENV procedure, or until the connection is closed. After the
connection is closed, any new connection that reuses the same application handle
does not inherit the settings of the previous connection to use that application
handle.

Note: If your database was created in Version 9.7 before Fix Pack 2, to run this
routine you must have already run the db2updv97 command. If your database was
created before Version 9.7, it is not necessary to run the db2updv97 command
(because the catalog update is automatically taken care of by the database
upgrade). If you downgrade to Version 9.7, this routine will no longer work.

�� WLM_SET_CONN_ENV (application_handle , settings) ��

The schema is SYSPROC.

Authorization

EXECUTE privilege on the WLM_SET_CONN_ENV procedure.

Parameters

application_handle
An input argument of type BIGINT that specifies the application handle whose
connection environment is to be modified. The application handle specified
must refer to an existing application (otherwise, SQLSTATE 5U002 is returned).
You can use a value of NULL to indicate that the connection whose
environment is to be changed is the connection on which the procedure was
invoked.

settings

An input argument of type CLOB(8K) that enables you to specify one or more
monitor settings. Settings are specified as name value pairs using the format:
<setting name tag>value</setting name tag>

Each setting can be specified a maximum of one time. Setting names are case
sensitive. A change to a setting takes effect on the next statement executed; it
has no effect on statements already in progress.

The available setting name tags are as follows.
v '<collectactdata>value</collectactdata>'

Specifies what activity data should be collected by the activity event
monitor. The possible values are (variations in spaces between words are
supported):

Value Description

NONE Activity data should not be collected

WITHOUT DETAILS Data about each activity is sent to any active
activities event monitor when the activity
completes execution. Details about
statement, compilation environment, and
section environment data are not sent.

Chapter 20. Workload Management routines 953

Value Description

WITH DETAILS Statement and compilation environment data
is sent to any active activities event monitor,
for those activities that have them. Section
environment data is not sent.

WITH DETAILS, SECTION Statement, compilation environment, section
environment data, and section actuals are
sent to any active activities event monitor,
for those activities that have them.

For section actuals to be collected, either
collectsectionactuals must be set to BASE or
the section_actuals database configuration
parameter must be set to BASE. Section
actuals are collected on any partition where
the activity data is collected.

WITH DETAILS, SECTION AND VALUES Statement, compilation environment, section
environment data, section actuals, and input
data values are sent to any active activities
event monitor, for those activities that have
them.

For section actuals to be collected, either
collectsectionactuals must be set to BASE or
the section_actuals database configuration
parameter must be set to BASE. Section
actuals are collected on any partition where
the activity data is collected.

WITH DETAILS AND VALUES Statement, compilation environment, and
input data values are sent to any active
activities event monitor, for those activities
that have them. Section environment data is
not sent.

v '<collectactpartition>COORDINATOR</collectactpartition>' or
'<collectactpartition>ALL</collectactpartition>'
Specifies where activity data is collected, either just at the coordinator
partition or at all partitions. If collectactpartition is not specified, the
connection maintains its previous value for collectactpartition which by
default is COORDINATOR.

v '<collectsectionactuals>NONE</collectsectionactuals>' or
'<collectsectionactuals>BASE</collectsectionactuals>'
Section actuals are collected if collectsectionactuals is set to BASE.

Example

The following examples both enable activity collection, without details, on the
coordinator partition for the current connection:
CALL WLM_SET_CONN_ENV(NULL,’<collectactdata>WITHOUT DETAILS</collectactdata>’)

CALL WLM_SET_CONN_ENV(NULL,’<collectactdata>WITHOUT
DETAILS</collectactdata><collectactpartition>COORDINATOR
</collectactpartition>’)

The next example enables collection of activity data with section environment data
and section actuals , but no data values, on all partitions for the current
connection:

954 Administrative Routines and Views

CALL WLM_SET_CONN_ENV(NULL, ’<collectactdata>WITH DETAILS, SECTION
</collectactdata><collectactpartition>ALL</collectactpartition>’)

The following example disables collection of activity data for the current
connection.
CALL WLM_SET_CONN_ENV(NULL, ’<collectactdata>NONE</collectactdata>’)

Usage notes

The collectactdata setting only controls activity data collection at the connection
level . An activity might have multiple activity data collection controls applied to
it, for example, the connection might be mapped to a service class where the
COLLECT ACTIVITY DATA clause has been applied. In a situation where multiple
activity data collection controls are applied, the effective setting is the combination
of all the settings. For example:
1. The connection level control is activity data without details.
2. The workload control is none.
3. The service class control is activity data with details and values.
4. When the activity completes execution, detailed information about the activity

plus data values is sent to any active event monitors.

If a setting is not specified in the input of the WLM_SET_CONN_ENV procedure,
it is not altered in the connection environment.

The effective setting for the collection of section actuals is the combination of the
collectsectionactuals setting and the section_actuals database configuration
parameter. For example, if collectsectionactuals is set to BASE and the
section_actuals database configuration parameter value is NONE, the effective
setting for the collection of section actuals is BASE (and vice versa). Do not use
automatic statistics profiling (enabled using the auto_stats_prof database
configuration parameter) if collectsectionactuals is set to BASE (otherwise, the
warning SQLSTATE 01HN2 is returned).

Automatic client rerouting cannot be performed for a connection when activity
data and section actuals are being collected (when collectactdata is set to any value
other than NONE).

Chapter 20. Workload Management routines 955

956 Administrative Routines and Views

Chapter 21. Miscellaneous routines and views

ADMIN_COPY_SCHEMA procedure - Copy a specific schema and its
objects

The ADMIN_COPY_SCHEMA procedure is used to copy a specific schema and all
objects contained in it. The new target schema objects will be created using the
same object names as the objects in the source schema, but with the target schema
qualifier. The ADMIN_COPY_SCHEMA procedure can be used to copy tables with
or without the data of the original tables.

Syntax

�� ADMIN_COPY_SCHEMA (sourceschema , targetschema , copymode , �

� objectowner , sourcetbsp , targettbsp , errortabschema , errortab) ��

The schema is SYSPROC.

Procedure parameters

sourceschema
An input argument of type VARCHAR(128) that specifies the name of the
schema whose objects are being copied. The name is case-sensitive.

targetschema
An input argument of type VARCHAR(128) that specifies a unique schema
name to create the copied objects into. The name is case-sensitive. If the
schema name already exists, the procedure call will fail and return a message
indicating that the schema must be removed before invoking the procedure.

copymode
An input argument of type VARCHAR(128) that specifies the mode of copy
operation. Valid options are:
v 'DDL': create empty copies of all supported objects from the source schema.
v 'COPY': create empty copies of all objects from the source schema, then load

each target schema table with data. Load is done in 'NONRECOVERABLE'
mode. A backup must be taken after calling the ADMIN_COPY_SCHEMA,
otherwise the copied tables will be inaccessible following recovery.

v 'COPYNO': create empty copies of all objects from the source schema, then
load each target schema table with data. Load is done in 'COPYNO' mode.

Note: If copymode is 'COPY' or 'COPYNO', a fully qualified filename, for
example 'COPYNO /home/mckeough/loadoutput', can be specified along
with the copymode parameter value. When a path is passed in, load messages
will be logged to the file indicated. The file name must be writable by the user
ID used for fenced routine invocations on the instance. If no path is specified,
then load message files will be discarded (default behavior).

objectowner
An input argument of type VARCHAR(128) that specifies the authorization ID

© Copyright IBM Corp. 2006, 2012 957

to be used as the owner of the copied objects. If NULL, then the owner will be
the authorization ID of the user performing the copy operation.

sourcetbsp
An input argument of type CLOB(2 M) that specifies a list of source table
spaces for the copy, separated by commas. Delimited table space names are
supported. For each table being created, any table space found in this list, and
the tables definition, will be converted to the nth entry in the targettbsp list. If
NULL is specified for this parameter, new objects will be created using the
same table spaces as the source objects use.

targettbsp
An input argument of type CLOB(2 M) that specifies a list of target table
spaces for the copy, separated by commas. Delimited table space names are
supported. One table space must be specified for each entry in the sourcetbsp
list of table spaces. The nth table space in the sourcetbsp list will be mapped to
the nth table space in the targettbsp list during DDL replay. It is possible to
specify 'SYS_ANY' as the final table space (an additional table space name, that
does not correspond to any name in the source list). When 'SYS_ANY' is
encountered, the default table space selection algorithm will be used when
creating objects (refer to the IN tablespace-name1 option of the CREATE TABLE
statement documentation for further information about the selection
algorithm). If NULL is specified for this parameter, new objects will be created
using the same table spaces as the source objects use.

errortabschema
An input and output argument of type VARCHAR(128) that specifies the
schema name of a table containing error information for objects that could not
be copied. This table is created for the user by the ADMIN_COPY_SCHEMA
procedure in the SYSTOOLSPACE table space. If no errors occurred, then this
parameter is NULL on output.

errortab
An input and output argument of type VARCHAR(128) that specifies the name
of a table containing error information for objects that could not be copied.
This table is created for the user by the ADMIN_COPY_SCHEMA procedure in
the SYSTOOLSPACE table space. This table is owned by the user ID that
invoked the procedure. If no errors occurred, then this parameter is NULL on
output. If the table cannot be created or already exists, the procedure operation
fails and an error message is returned. The table must be cleaned up by the
user following any call to the ADMIN_COPY_SCHEMA procedure; that is, the
table must be dropped in order to reclaim the space it is consuming in
SYSTOOLSPACE.

Table 250. ADMIN_COPY_SCHEMA errortab format

Column name Data type Description

OBJECT_SCHEMA VARCHAR(128) Schema name of the object
for which the copy command
failed.

OBJECT_NAME VARCHAR(128) Name of the object for which
the copy command failed.

OBJECT_TYPE VARCHAR(30) Type of object.

SQLCODE INTEGER The error SQLCODE.

SQLSTATE CHAR(5) The error SQLSTATE.

ERROR_TIMESTAMP TIMESTAMP Time of failure for the
operation that failed.

958 Administrative Routines and Views

Table 250. ADMIN_COPY_SCHEMA errortab format (continued)

Column name Data type Description

STATEMENT CLOB(2 M) DDL for the failing object. If
the failure occurred when
data was being loaded into a
target table, this field
contains text corresponding
to the load command that
failed.

DIAGTEXT CLOB(2 K) Error message text for the
failed operation.

Authorization

In order for the schema copy to be successful, the user must have the
CREATE_SCHEMA privilege as well as DB2 object-specific privileges.

Example: CREATE_TABLE privilege is needed to copy a table and CREATE_INDEX
privilege is needed to copy an index under the ADMIN_COPY_SCHEMA
command.

If a table in the source schema is protected by label based access control (LBAC),
the user ID must have LBAC credentials that allow creating that same protection
on the target table. If copying with data, the user ID must also have LBAC
credentials that allow both reading the data from the source table and writing that
data to the target table.

EXECUTE privilege on the ADMIN_COPY_SCHEMA procedure is also needed.

Example
CALL SYSPROC.ADMIN_COPY_SCHEMA(’SOURCE_SCHEMA’, ’TARGET_SCHEMA’,

’COPY’, NULL, ’SOURCETS1 , SOURCETS2’, ’TARGETTS1, TARGETTS2,
SYS_ANY’, ’ERRORSCHEMA’, ’ERRORNAME’)

Restrictions
v Only DDL copymode is supported for HADR databases.
v XML with COPY or COPY NO is not supported.
v Using the ADMIN_COPY_SCHEMA procedure with the COPYNO option places

the table spaces in which the target database object resides in backup pending
state. After the load operation completes, target schema tables are in set integrity
pending state, and the ADMIN_COPY_SCHEMA procedure issues a SET
INTEGRITY statement to get the tables out of this state. Because the table spaces
are already in backup pending state, the SET INTEGRITY statement fails. For
information about how to resolve this problem, see “Copying a schema”.

Usage notes
v References to fully qualified objects within the objects being copied will not be

modified. The ADMIN_COPY_SCHEMA procedure only changes the qualifying
schema of the object being created, not any schema names that appear within
SQL expressions for those objects. This includes objects such as generated
columns and trigger bodies.

v This procedure does not support copying the following objects:
– index extensions

Chapter 21. Miscellaneous routines and views 959

– nicknames
– packages
– typed tables
– array types
– user-defined structured types (and their transform functions)
– typed views
– jars (Java routine archives)
– staging tables
– aliases with base objects that do not belong to the same source schema

v If one of the previously listed objects exists in the schema being copied, the
object is not copied but an entry is added to the error table indicating that the
object has not been copied.

v When a replicated table is copied, the new copy of the table does not have
subscriptions enabled. The table is re-created as a basic table only.

v The operation of this procedure requires the existence of the SYSTOOLSPACE
table space. This table space is used to hold metadata used by the
ADMIN_COPY_SCHEMA procedure as well as error tables returned by this
procedure. If the table space does not exist, an error is returned.

v Statistics for the objects in the target schema are set to default.
v If a table has a generated identity column, and copymode is either 'COPY' or

'COPYNO', the data values from the source table are preserved during the load.
v A new catalog entry is created for each external routine, referencing the binary

of the original source routine.
v If a table is in set integrity pending state at the beginning of the copy operation,

the data is not loaded into the target table and an entry is logged in errortab
indicating that the data was not loaded for that table.

v If a Load or DDL operation fails, an entry is logged in errortab for any object that
was not created. All objects that are successfully created remain. To recover, a
manual load can be initiated, or the new schema can be dropped using the
ADMIN_DROP_SCHEMA procedure and the ADMIN_COPY_SCHEMA
procedure can be called again.

v During DDL replay, the default schema is overridden to the target schema if it
matches the source schema.

v The function path used to compile a trigger, view or SQL function is the path
used to create the source object, with the following exception: if the object's
function path contains the source schema name, this entry in the path is
modified to the target schema name during DDL replay.

v Running multiple ADMIN_COPY_SCHEMA procedures will result in deadlocks.
Only one ADMIN_COPY_SCHEMA procedure call should be issued at a time.
Changes to tables in the source schema during copy processing might mean that
the data in the target schema is not identical following a copy operation.

v Careful consideration should be taken when copying a schema with tables from
a table space in a single-partition database partition group to a table space in a
multiple-partition database partition group. Unless automatic distribution key
selection is preferred, the distribution key should be defined on the tables before
the copy schema operation is undertaken. Altering the distribution key can only
be done to a table whose table space is associated with a single-partition
database partition group.

960 Administrative Routines and Views

Transactional considerations
v If the ADMIN_COPY_SCHEMA procedure is forced to rollback due to a

deadlock or lock timeout during its processing, any work performed in the unit
of work that called the ADMIN_COPY_SCHEMA procedure is also rolled back.

v If a failure occurs during the DDL phase of the copy, all the changes that were
made to the target schema are rolled back to a savepoint.

v If copymode is set to 'COPY' or 'COPYNO', the ADMIN_COPY_SCHEMA
procedure commits once the DDL phase of the copy is complete, also
committing any work done in the unit of work that called the procedure.

ADMIN_DROP_SCHEMA procedure - Drop a specific schema and its
objects

The ADMIN_DROP_SCHEMA procedure is used to drop a specific schema and all
objects contained in it.

Syntax

�� ADMIN_DROP_SCHEMA (schema , dropmode , errortabschema , �

� errortab) ��

The schema is SYSPROC.

Procedure parameters

schema
An input argument of type VARCHAR(128) that specifies the name of the
schema being dropped. The name must be specified in uppercase characters.

dropmode
Reserved for future use and should be set to NULL.

errortabschema
An input and output argument of type VARCHAR(128) that specifies the
schema name of a table containing error information for objects that could not
be dropped. The name is case-sensitive. This table is created for the user by the
ADMIN_DROP_SCHEMA procedure in the SYSTOOLSPACE table space. If no
errors occurred, then this parameter is NULL on output.

errortab
An input and output argument of type VARCHAR(128) that specifies the name
of a table containing error information for objects that could not be dropped.
The name is case-sensitive. This table is created for the user by the
ADMIN_DROP_SCHEMA procedure in the SYSTOOLSPACE table space. This
table is owned by the user ID that invoked the procedure. If no errors
occurred, then this parameter is NULL on output. If the table cannot be created
or already exists, the procedure operation fails and an error message is
returned. The table must be cleaned up by the user following any call to
ADMIN_DROP_SCHEMA; that is, the table must be dropped in order to
reclaim the space it is consuming in SYSTOOLSPACE.

Chapter 21. Miscellaneous routines and views 961

Table 251. ADMIN_DROP_SCHEMA errortab format

Column name Data type Description

OBJECT_SCHEMA VARCHAR(128) Schema name of the object
for which the drop command
failed.

OBJECT_NAME VARCHAR(128) Name of the object for which
the drop command failed.

OBJECT_TYPE VARCHAR(30) Type of object.

SQLCODE INTEGER The error SQLCODE.

SQLSTATE CHAR(5) The error SQLSTATE.

ERROR_TIMESTAMP TIMESTAMP Time that the drop command
failed.

STATEMENT CLOB(2 M) DDL for the failing object.

DIAGTEXT CLOB(2 K) Error message text for the
failed drop command.

Authorization

Drop authority is needed on all objects being removed for the user calling this
procedure.

EXECUTE privilege on the ADMIN_DROP_SCHEMA procedure is also needed.

Example
CALL SYSPROC.ADMIN_DROP_SCHEMA(’SCHNAME’, NULL, ’ERRORSCHEMA’, ’ERRORTABLE’)

The following example is a sample output for this procedure.
Value of output parameters

Parameter Name : ERRORTABSCHEMA
Parameter Value : ERRORSCHEMA <-- error!

Parameter Name : ERRORTAB
Parameter Value : ERRORTABLE <-- error!

Return Status = 0

The return status is not zero only when an internal error has been detected (for
example, if SYSTOOLSPACE does not exist).

Errors can be checked by querying the error table:
SELECT * FROM ERRORSCHEMA.ERRORTABLE

Usage notes
v If objects in another schema depend on an object being dropped, the default

DROP statement semantics apply.
v This procedure does not support dropping the following objects:

– index extensions
– nicknames
– packages
– typed tables

962 Administrative Routines and Views

– array types
– user-defined structured types (and their transform functions)
– typed views
– jars (Java routine archives)
– staging tables

v If one of the previously listed objects exists in the schema being dropped,
neither the object nor the schema is dropped, and an entry is added to the error
table indicating that the object was not dropped.

v The operation of this procedure requires the existence of the SYSTOOLSPACE
table space. This table space is used to hold metadata used by the
ADMIN_DROP_SCHEMA procedure as well as error tables returned by this
procedure. If the table space does not exist, an error is returned.

ADMIN_MOVE_TABLE procedure - Move tables online
The ADMIN_MOVE_TABLE stored procedure moves the data in an active table
into a new table object with the same name, while the data remains online and
available for access.

This stored procedure creates a protocol table composed of rows containing status
information and configuration options related to the table to be moved. The return
set from this procedure are the rows from that protocol table related to the table to
be moved.

The ADMIN_MOVE_TABLE stored procedure uses the following terminology:

Source table
The original table name that is passed in as a parameter into the stored
procedure. This is the table to be moved.

Target table
A table created by the stored procedure using the table definition passed in
through the stored procedure. All of the data from the source table is
copied into this table and then it is renamed to the same name as the
source table.

Staging table
A table created by the stored procedure. The staging table stores any
update, delete or insert changes that occur on the source table during the
execution of the table move. This table is dropped when the move is
complete.

Syntax

There are two equally valid methods to invoke ADMIN_MOVE_TABLE. The first
method allows you to modify only certain parts of the table definition for the
target table. For instance, if you had a table definition that is quite large (several
KB), and all you want to do is modify the table spaces for the table, you can do so
without having to determine the entire CREATE TABLE statement needed to
recreate the source table. All you need to do is to fill out the data_tbsp, index_tbsp,
and lob_tbsp parameters, leaving the other optional parameters blank.

The second method provides you with more control and flexibility by allowing
you to create the target table beforehand, rather than having the stored procedure
create the target table. This enables you to create a target table that would not be
possible using the first method.

Chapter 21. Miscellaneous routines and views 963

Method 1:

�� ADMIN_MOVE_TABLE (tabschema , tabname , data_tbsp , index_tbsp , �

� lob_tbsp , mdc_cols , partkey_cols , data_part , coldef , �

� �

,

options , operation) ��

Method 2:

�� ADMIN_MOVE_TABLE (tabschema , tabname , target_tabname , �

� �

,

options , operation) ��

The schema for both methods is SYSPROC.

Procedure parameters

tabschema
This input parameter specifies the name of the schema which contains the table
to be moved. This parameter is case sensitive and has a data type of
VARCHAR(128).

tabname
This input parameter specifies the name of the table to be moved. This
parameter is case sensitive and has a data type of VARCHAR(128)

data_tbsp
This input parameter specifies the new data table space for the target table. If a
value is provided, the index_tbsp and lob_tbsp parameters are required. If a
value is not provided, the data table space of the source table is used. This
parameter is case sensitive and has a data type of VARCHAR(128). This
parameter can be NULL or the empty string.

index_tbsp
This input parameter specifies the new index table space for the target table. If
a value is provided, the data_tbsp and lob_tbsp parameters are required. If a
value is not provided, the index table space of the source table is used. This
parameter is case sensitive and has a data type of VARCHAR(128). This
parameter can be NULL or the empty string.

lob_tbsp
This input parameter specifies the new LOB table space for the target table. If a
value is provided, the data_tbsp and index_tbsp parameters are required. If a
value is not provided, the LOB table space of the source table is used. This
parameter is case sensitive and has a data type of VARCHAR(128). This
parameter can be NULL or the empty string.

964 Administrative Routines and Views

mdc_cols
This input parameter provides the multi-dimensional clustering (MDC)
specification for the target table. The values are entered as a comma separated
list of the columns used to cluster data in the target table along multiple
dimensions. If a value of NULL or "-" is given, the ORGANIZE BY
DIMENSIONS clause is not used. If an empty string or a single blank is given,
the procedure checks whether there is an MDC specification on the source
table, and uses that specification if located. This parameter has a data type of
VARCHAR(32672) and has the same format as the ORGANIZE BY
DIMENSIONS clause of the CREATE TABLE statement. This parameter can be
NULL, the empty string, or a single blank.

Example: 'C1, C4, (C3,C1), C2'

partkey_cols
This input parameter provides the partitioning key columns specification for
the target table. The values are entered as a comma separated list of the key
columns that specify how the data is distributed across multiple database
partitions. If a value of NULL or "-" is given, the PARTITIONING KEY clause
is not used. If an empty string or a single blank is given, the procedure checks
whether there is a partitioning key columns specification on the source table,
and uses that specification if located. This parameter has a data type of
VARCHAR(32672) and has the same format as the DISTRIBUTE BY HASH
clause of the CREATE TABLE statement.

Example: 'C1, C3'

data_part
This input parameter provides the data partitioning specification for the target
table. This statement defines how to divide table data across multiple storage
objects (called data partitions), according to the values in one or more of the
table columns. If a value of NULL or "-" is given, the PARTITION BY RANGE
clause is not used. If an empty string or a single blank is given, the procedure
checks whether there is a data partition scheme on the source table, and uses
that information (including partition name) if located. This parameter has a
data type of VARCHAR(32672) and has the same format as the PARTITION BY
RANGE clause of the CREATE TABLE statement.

Example: '(C1) (STARTING FROM (1) EXCLUSIVE ENDING AT (1000) EVERY
(100))'

coldef
This input parameter specifies a new column definition for the target table,
allowing you to change the column types as long as they are compatible;
however, the column names must remain the same.

This also provides the ability to add new columns and drop existing columns.
When adding a column, it must be defined as either nullable or have a default
value set. Also, a column can only be dropped if there is a unique or primary
index on the table and the column to be dropped is not a part of that unique
or primary index. This parameter has a data type of VARCHAR(32672). This
parameter can be NULL or the empty string.

Example: 'C1 INT, C2 INT DEFAULT 0'

target_tabname
This input parameter provides the name of an existing table to use as the
target table during the move. The following changes can be made to the target
table being passed in:
v The data, index and LOB table spaces can be changed

Chapter 21. Miscellaneous routines and views 965

v The multi dimensional column (MDC) specification can be added or
changed

v The partitioning key columns specification can be added or changed
v The data partitioning specification can be added or changed
v Data compression can be added or removed
v A new column definition can be specified; however the same restrictions as

when specifying the coldef parameter apply here.

The following restrictions apply to the named table:
v The table must exist in the same schema as the source table
v The table must be empty
v No typed tables, materialized query tables (MQT), staging tables, remote

tables or clustered tables are permitted

If this parameter is set to NULL or the empty string, the stored procedure uses
the same definition as the source table. This parameter is case sensitive and
has a data type of VARCHAR(128).

options
This set of comma separated input parameters defines any options used by the
stored procedure.
v KEEP: This option keeps a copy of the original source table under a different

name. If the source table name is T1, then after the move that table will be
automatically renamed to something such as T1AAAAVxo. You can retrieve
the exact name of the source table in the returned protocol table, under the
ORIGINAL key. You may set this option at any point up to and including
the SWAP phase.

v COPY_USE_LOAD “<load options>”:

��

�

NONRECOVERABLE

MESSAGES ON SERVER COPY YES USE TSM
OPEN num-sess SESSIONS

,

TO device/directory
LOAD lib-name

OPEN num-sess SESSIONS

��

If you specify any load options for COPY_USE_LOAD,
ADMIN_MOVE_TABLE uses an ADMIN_CMD load to copy the data from
the source table to the target table. If you do not specify any options for
COPY_USE_LOAD, then the NONRECOVERABLE option of the db2Load API is
used to copy the data from the source table to the target table. In releases
earlier than DB2 Version 9.7 Fix Pack 2, the FORCE option must be specified
if COPY_USE_LOAD is used.

MESSAGES ON SERVER
Specifies that the message file created on the server by the LOAD
command is to be retained in case of load failures. The WARNINGS
entry in the protocol table contain the message retrieval SQL statement
that is required to retrieve all the warnings and error messages that
occur during load, and the message removal SQL statement that is
required to clean up the messages. Note that with or without the clause,
the fenced user ID must have the authority to create files under the
directory indicated by the DB2_UTIL_MSGPATH registry variable.

966 Administrative Routines and Views

COPY YES
Specifies that a copy of the loaded data will be saved. This option is
invalid if forward recovery is disabled.

USE TSM
Specifies that the copy will be stored using Tivoli Storage Manager
(TSM).

OPEN num-sess SESSIONS
The number of I/O sessions to be used with TSM or the vendor
product. The default value is 1.

TO device or directory
Specifies the device or directory on which the copy image will be
created.

LOAD lib-name
The name of the shared library (DLL on Windows operating
systems) containing the vendor backup and restore I/O functions to
be used. It can contain the full path. If the full path is not given, it
will default to the path where the user exit programs reside.

NONRECOVERABLE
Specifies that the load transaction is to be marked as nonrecoverable and
that it will not be possible to recover it by a subsequent roll forward
action. If COPY YES is not used, NONRECOVERABLE is the default.

v COPY_WITH_INDEXES: This option creates indexes before copying the
source table; however, the default is to create the indexes after copying the
source table. The advantages of this option are that index creation after
copying requires a whole table scan per index and that the index creation is
a transaction that requires active log space. If the LOGINDEXREBUILD
database configuration parameter is on, significant log space is required for
building the indexes in a short time frame. One disadvantage of this option
is that copy performance is reduced because indexes need to be maintained
on the target table. Also, the resulting indexes many contain "pseudo"
deleted keys, and the indexes are not as well balanced as if the indexes were
created after the copy. You may set the COPY_WITH_INDEXES option at
any point up to and including the COPY phase.

v FORCE: If the force option is set, the SWAP phase does not check to see if
the source table has changed its table definition. In releases lower than DB2
Version 9.7 Fix Pack 2, the FORCE option must be specified if the
COPY_USE_LOAD is used. You may set this option at any point up to and
including the SWAP phase.

v NO_STATS: This option does not start RUNSTATS or any statistic copying
on the target table. If you use the AUTO_RUNSTATS or
AUTO_STMT_STATS database configuration parameters, DB2 will
automatically create new statistics afterwards. For backwards compatibility,
STATS_NO is also accepted. You may set the NO_STATS option at any point
up to and including the SWAP phase.

v COPY_STATS: This option copies the statistics from the source table to the
target table before performing the swap. This may cause inaccurate physical
statistics, especially if the page size is changed. However, setting this option
saves computing time as RUNSTATS is not called to compute new statistics.
Also, the optimizer may choose the same access plans, because the statistics
are the same. For backwards compatibility, STATS_COPY is also accepted.
You may set the STATS_COPY option at any point up to and including the
SWAP phase.

Chapter 21. Miscellaneous routines and views 967

v NO_AUTO_REVAL: This option prevents automatic revalidation on the
table, and instead, recreates all triggers and views. The NO_AUTO_REVAL
option can be set only in the INIT phase.

v REORG: This option sets up an extra offline REORG on the target table
before performing the swap. If you use this option to improve your
compression dictionary, be advised that using the default sampling approach
is a better method to create an optimal compression dictionary. However, if
you require an optimal XML compression dictionary, then REORG is the
only method. You may set the REORG option at any point up to and
including the SWAP phase.

v NO_TARGET_LOCKSIZE_TABLE: This option does not keep locksize table
on the target table during the REPLAY phase. The default is to have locksize
table on the target table to prevent locking overhead, when no unique index
is specified on the source table. This option is available starting in Version
9.7 Fix Pack 1 and later fix packs. Prior toVersion 9.7 Fix Pack 6, this option
had to be specified on COPY operations only, but now it also needs to be
specified on REPLAY and SWAP operations.

v CLUSTER: This option reads the data from the source table with an ORDER
BY clause when a cluster index exists on the source table or a copy index
has been specified. This option is available starting in Version 9.7 Fix Pack 1
and later fix packs.

v NON_CLUSTER: This option reads the data from the source table without
an ORDER BY clause regardless if a cluster index or copy index has been
specified. Note: When neither CLUSTER or NON_CLUSTER options are
specified, it will read the data from the source table with an ORDER BY
clause only when a cluster index exists on the source table. This option is
available starting in Version 9.7 Fix Pack 1 and later fix packs.

v LOAD_MSGPATH <path>: This option can be used to define the load
message file path when the COPY_USE_LOAD option specified. If the
LOAD_MSGPATH option is not specified, then diagpath will be used as the
default path. This option is available starting in DB2 Version 9.7 Fix Pack 2.
LOAD_MSGPATH cannot be used together with COPY_USE_LOAD
<load-options>.

This list of options is not case sensitive and has a data type of
VARCHAR(32672). The list value can be NULL or the empty string.

operation
This input parameter specifies which operation the stored procedure is to
execute. There are two ways of calling the stored procedure: using the MOVE
command to execute all the operations at one time; or by using the individual
commands to execute the table move one step at a time. The main advantage
of this second method is that you control when the SWAP phase actually
occurs, thereby determining when the table is briefly taken offline. This allows
you to make the move during a period of low system activity. If you use the
individual commands, they must be called in the following order: INIT, COPY,
REPLAY, VERIFY (optional), and SWAP.
v MOVE: Performs the entire table move (INIT, COPY, REPLAY, and SWAP

operations) in one step.
v INIT: Verifies that a table move can take place, and initializes all of the data

needed during the table move process (the target table, staging table, and
the triggers on the source table).

v COPY: Copies the content from the source table to the target table. Any
updates, deletes, or inserts occurring on the source table during this time are
captured and stored in the staging table. New indexes are created at the end

968 Administrative Routines and Views

of the COPY phase, unless the COPY_WITH_INDEXES option is selected.
Also, if needed, secondary indexes are created on the source and target
tables to improve performance during the REPLAY phase. COPY can be
used only after the INIT phase has completed.

v REDIRECT: Forwards changes directly to the target table instead of
capturing the changes in the staging table.

v REVERT: Reverts to the original behavior wherein the staging table captures
the changes.

v REPLAY: Copies into the target table any rows that have changed in the
source table since the COPY phase began. REPLAY can be used only after
the COPY phase has completed.

v VERIFY: Optionally checks if the table contents of the source and target
tables are identical. This process involves obtaining a shared lock on the
source and target tables, replaying any changes that have occurred on the
source table, and then performing a comparison. If the table has a unique
index, this command compares all values between columns that are in both
tables. Otherwise, this command compares all values between columns that
are in both tables (except for LONG, LOB or XML columns). This is an
expensive operation and caution should be taken to decide if it is useful for
your move. VERIFY can be used only after the COPY or REPLAY phases
have completed.

v SWAP: Executes the REPLAY phase until the number of changes applied
during the last scan of the staging table is less than the
REPLAY_THRESHOLD value stored in the protocol table. The source table is
then taken offline briefly to finish the final REPLAY, and then this command
swaps the source table with target table and brings the table back online.
SWAP can be used after the COPY phase has completed, but ideally after the
REPLAY phase has been called.

v CLEANUP: Drops the staging table, any non-unique indexes or triggers
created on the source table by the stored procedure, and the source table if
the KEEP option has not been set. CLEANUP can be called if the command
failed during the SWAP phase.

v CANCEL: Cancels a multi-step table move while between phases, or cancels
a failed table move operation. Executing this command requires that the
operation status is not in COMPLETED or CLEANUP state. CANCEL clears
up all intermediate data (the indexes, the staging table, the target table, and
the triggers on the source table).

This parameter is not case sensitive and has a data type of VARCHAR(128).

Authorization

You must either be the table owner or have SQLADM or DBADM authority to
invoke the ADMIN_MOVE_TABLE stored procedure. You must also have the
appropriate object creation authorities, including authorities to issue the SELECT
statement on the source table, and to issue the INSERT statement on the target
table.

Examples

This example calls the stored procedure using the first method, where the target
table is defined within the procedure, to move a table named T1 which is located
in the schema "SVALENTI".

Chapter 21. Miscellaneous routines and views 969

CALL SYSPROC.ADMIN_MOVE_TABLE(
’SVALENTI’,
’T1’,
’ACCOUNTING’,
’ACCOUNT_IDX’,
’ACCOUNT_LONG’,
’’,
’’,
’’,
’CUSTOMER VARCHAR(80), REGION CHAR(5), YEAR INTEGER, CONTENTS CLOB’,
’’,
’MOVE’)

The following example is a sample output from this query
Result set 1

KEY VALUE
------------------------ -------------------------------------
AUTHID SVALENTI
CLEANUP_END 2009-02-13-11.34.07.609575
CLEANUP_START 2009-02-13-11.34.07.369331
COPY_END 2009-02-13-11.34.05.148018
COPY_OPTS BY_KEY,OVER_INDEX
COPY_START 2009-02-13-11.34.04.841292
COPY_TOTAL_ROWS 100
INDEXNAME T1_INDEX
INDEXSCHEMA SVALENTI
INDEX_CREATION_TOTAL_TIME 0
INIT_END 2009-02-13-11.34.04.552875
INIT_START 2009-02-13-11.34.03.013563
PAR_COLDEF CUSTOMER VARCHAR(80), REGION CHAR(5),

YEAR INTEGER, CONTENTS CLOB
REPLAY_END 2009-02-13-11.34.06.198369
REPLAY_START 2009-02-13-11.34.05.164582
REPLAY_TOTAL_ROWS 100
REPLAY_TOTAL_TIME 5
STATUS COMPLETE
SWAP_END 2009-02-12-11.34.07.214447
SWAP_RETRIES 0
SWAP_START 2009-02-13-11.34.06.244506
VERSION 09.07.0000

22 record(s) selected.

Return Status = 0

This example calls the stored procedure using the second method , where the
target table is created outside the procedure and is then named within the
target_tabname parameter, to move the same table as above.

The first step is to create the table manually:
CREATE TABLE SVALENTI.T1_TARGET (

CUSTOMER VARCHAR(80),
REGION CHAR(5),
YEAR INTEGER,
CONTENTS CLOB)

IN ACCOUNTING
INDEX IN ACCOUNT_IDX
LONG IN ACCOUNT_LONG’

Then call the stored procedure and pass in the name of the target table:

970 Administrative Routines and Views

CALL SYSPROC.ADMIN_MOVE_TABLE(
’SVALENTI’,
’T1’,
’T1_TARGET’,
’’,
’MOVE’)

The following example is a sample output from this query
Result set 1

KEY VALUE
------------------------ ---
AUTHID SVALENTI
CLEANUP_END 2009-02-13-11.37.49.283090
CLEANUP_START 2009-02-13-11.37.49.125786
COPY_END 2009-02-13-11.37.47.806060
COPY_OPTS BY_KEY,OVER_INDEX
COPY_START 2009-02-13-11.37.47.446616
COPY_TOTAL_ROWS 0
INDEXNAME T1_INDEX
INDEXSCHEMA SVALENTI
INDEX_CREATION_TOTAL_TIME 1
INIT_END 2009-02-13-11.37.47.287703
INIT_START 2009-02-13-11.37.46.052952
PAR_COLDEF using a supplied target table so COLDEF

could be different
REPLAY_END 2009-02-13-11.37.48.785503
REPLAY_START 2009-02-13-11.37.47.822109
REPLAY_TOTAL_ROWS 0
REPLAY_TOTAL_TIME 0
STATUS COMPLETE
SWAP_END 2009-02-13-11.37.48.977745
SWAP_RETRIES 0
SWAP_START 2009-02-13-11.37.48.825228
VERSION 09.07.0000
22 record(s) selected.

Return Status = 0

Usage notes

Suggestions for best results when using this procedure:
v Avoid making multiple moves into same table space at the same time. This

prevents fragmentation on the target table space.
v Run this procedure when activity on the table is low. Avoid mass data loads or

deletes so that parallel read access is not a problem.
v Use a multi-step move operation. The INIT and COPY phases can be called at

any time. Execute the REPLAY phase multiple times in order to keep the staging
table size small, and then issue the SWAP during a time of low activity on the
table.

v Check if offline methods are a better choice for your table move, especially when
considering tables without unique indexes and for tables with no index.

Operations that are restricted on the source table

The stored procedure relies on triggers to capture any changes made to the source
table. There are some operations that could affect the source table but which do
not fire triggers. This could result in inconsistencies between the source and target
table that cannot easily be detected by the stored procedures. These operations
include:

Chapter 21. Miscellaneous routines and views 971

v TRUNCATE TABLE (without restrict when delete triggers)
v IMPORT ... REPLACE INTO ...
v LOAD TABLE
v ALTER TABLE
v REORG (both online and offline)

These operations will be restricted on the source table using a new table-level state
flag. The flag is set during the INIT phase and cleared during the CLEANUP or
CANCEL phase. Restricted operations will fail with SQL0668N reason code 10
(sqlstate 57016).

Operations that will affect the table move operation

There are operations that can cause the stored procedure to fail while a move is in
progress. These operations include:
v Dropping the SYSTOOLSPACE table space
v Dropping/Renaming the source table
v Dropping/Renaming any of the temporary objects created by OTM in the INIT

phase (target table, staging table, triggers on source table, protocol table)
v Altering values in the protocol table that are not listed as user configurable

Naming convention for temporary objects

To avoid naming conflicts when creating temporary objects, the following naming
convention is used:
v Postfix

– "t" for target
– "s" for staging
– "o" for original
– "g" for generated
– "i" for insert trigger
– "d" for delete trigger
– "u" for before update trigger
– "v" for after update trigger

v Names are built consisting of <characters from name of object><base64
encoded hash key over name of object><postfix>.

v If length of name would exceed object length (128 bytes) <characters from name
of object> gets shorter.

v Hash value gets calculated from the object name and is encoded similar to
base64 encoding.

Sample:
Name of object: T1
Staging object: T1AAAAVxs
Target object: T1AAAAVxt
Original object: T1AAAAVxo
Generated index: T1AAAAVxg (if table has no index)
Insert trigger: T1AAAAVxi
Delete trigger: T1AAAAVxd
Before update trigger: T1AAAAVxu
After update trigger: T1AAAAVxv

Online table move with compression and dictionary creation

972 Administrative Routines and Views

There are several methods to create a data compression dictionary using Online
Table Move. Compression must either be enabled on the source table or specified
to be active in the new table definition if provided.

Create dictionary with sampling is the default method of Dictionary creation
through Online Table Move. If compression is turned on for the table, then before
performing the COPY operation, a Bernoulli sampling of the data from the source
table is inserted into the target table, where the amount of data sampled is
specified in the DEEPCOMPRESSION_SAMPLE field in the protocol table. The
compression dictionary is then created based off of this random sample, and
therefore results in an optimal compression dictionary.

Please note, that an XML compression dictionary will not be created through the
sampling method. This is due to the fact that db2Inspect is used to create the
compression dictionary, and db2Inspect currently does not have the ability to
create an XML compression dictionary. The XML compression dictionary will be
created through automatic dictionary creation (ADC).

Create dictionary with automatic dictionary creation (ADC) is the standard method
of Dictionary creation with tables in DB2. By simply turning on compression for
the table, DB2 will automatically create the dictionary as data is inserted into the
table. This will result in a non-optimal compression dictionary. Please note that the
DEEPCOMPRESSION_SAMPLE field in the protocol table will have to be set to 0
to avoid having the stored procedure attempt to create a better compression
dictionary.

The create dictionary with REORG method of Dictionary creation results in a
dictionary being created that reflects any activity on the source table that occurred
while the COPY phase was in process. This is done by performing a REORG
before the SWAP phase with the RESETDICTIONARY option set. An optimal
dictionary will be created, however depending on the size of the table the REORG
could take a long time. Also, if an optimal XML dictionary is required, REORG is
the only method that will produce one. It is advised to use the sampling method of
dictionary creation.

Online table move and statistics on the table

The default behavior when performing a table move on a table where statistics are
collected is to perform RUNSTATS on the table during the SWAP phase. If a statistics
profile is found, RUNSTATS will be called using the statistics profile. Otherwise,
RUNSTATS will be called with the options "WITH DISTRIBUTION ON COLUMNS
(...) AND SAMPLE DETAILED INDEXES ALL".

If the COPY_STATS option has been set, the statistics from the source table are copied
to the target table before performing the swap. Copying statistics may cause
inaccurate physical statistics especially if changing page size. However, it will save
on computing time as RUNSTATS does not have to be called to compute new
statistics. Also, the optimizer may choose the same access plans, because the
statistics are the same (plan stability). The statistics that are copied are in the
SYSSTAT.TABLES, SYSSTAT.COLUMNS, SYSSTAT.COLDIST, SYSSTAT.INDEXES, and
SYSSTAT.COLGROUPS catalog views.

If the NO_STATS option has been set, the stored procedure does not perform
RUNSTATS or any statistic copying on the target table. If you use AUTO_RUNSTATS
or AUTO_STMT_STATS, DB2 will automatically create new statistics

Chapter 21. Miscellaneous routines and views 973

Online table move with LOAD used for COPY

If you are using the COPY_USE_LOAD option, and if you do not specify a sub-option
or you choose NONRECOVERABLE, then it is necessary to perform a backup of the
target table space or table spaces before the SWAP phase in order to ensure
recoverability. A backup can be created by issuing the following statement:
BACKUP DB dbname TABLESPACE targetDataTablespace, targetIndexTablespace,

targetLongTablespace ONLINE TO <destination>

Online table move with recoverable LOAD in HADR environment

If the destination for a recoverable LOAD in an HADR environment cannot be
found from the standby, the tablespace will be inaccessible. The primary is not
informed about this situation, so you might assume that the standby is up to date,
but if there is a failover to the standby the table will not accessible.

In releases lower than DB2 Version 9.7 Fix Pack 2, the FORCE option must be
specified if the COPY_USE_LOAD is used. Else, the SWAP phase will not execute
and you will receive an error.

Online table move with generated columns

The Table Move stored procedure treats any generated columns in the source table
specially. Below is a description of how the different types of generated columns
are handled.

A row change timestamp column is a column that holds a timestamp representing
the time when a row was last changed.

If a row change timestamp column is found in the source table, the values of this
column after the Table Move operation is complete will not be the same as they
where before the Table Move operation. The values of the column after the Table
Move will represent the time at which the rows where inserted/updated in the
new table object. This is done because the actual rows are being changed and the
row change timestamp column values should therefore reflect these changes.

If a new table definition is supplied, and a column is defined as a row change
timestamp column in the source table but not in the new table definition, then the
column will not be a row change timestamp column.

An identity column is a column that automatically generates a value for the
column when a row is inserted into the table.

If an identity column is found in the source table, the values of this column after
the Table Move operation is complete will be identical to the values that were
present before the Table Move operation. However, there is no way to determine
the "last/next" value for the identity column in the source table. Therefore, when
creating the identity column on the target table the value generation will be set to
begin from the next "uncached" value. This is the same behavior that happens
when the database restarts (stop/start). This behavior is documented in the
information center, in the "ALTER TABLE" entry, under the "SET NO CACHE or
CACHE integer-constant" heading of the "identity-alteration" section which can be
found here.

The column will initially be created as a regular column in the target table, and
then be altered to be an identity column during the brief offline period of the

974 Administrative Routines and Views

SWAP phase. This is done because the column may have been created as
"GENERATED ALWAYS", and that would block the stored procedure from being
able to insert the exact values from the source table into the column in the target
table.

If a new table definition is specified, and a column is specified to be an identity
column in the new table definition, then the stored procedure will check to see if
the definition of the identity column matches the definition of the column in the
source table. If they are a match, the stored procedure will continue as previously
described. If they are not a match, the stored procedure will use the new identity
column definition. Please note that this will restart the identity column counter
with whatever the start value is specified as, however the current values of the
rows in the column will remain the same.

If a new table definition is specified, and a column that is specified as an identity
column in the source table is not specified as an identity column in the new table
definition, then the stored procedure will still create the column as an identity
column in the target table using the same specification found in the source table.
This is done so that users do not need to look up the definition of the existing
identity column and re-enter it into the new table definition. If the user does not
want to keep the column as an Identity column, then they can alter the target table
after the call to the stored procedure to remove the identity specification from the
column.

An expression column is a column that automatically generates a value for the
column based on an expression when a row is inserted into the table.

If an expression column is found in the source table, the values of this column
after the Table move operation is complete will be identical to the values that were
present before the Table Move operation.

The column will originally be created as a regular column in the target table, and
then be altered to be an expression column during the brief offline period of the
SWAP phase. This is done because expression columns are created as
"GENERATED ALWAYS", and do not allow inserts into that column. However, In
order to alter the column in the target table to be an expression column, set
integrity will briefly be turned off on the target table. The ALTER statement is
performed, and then integrity is set back on with the "GENERATED COLUMN
IMMEDIATE UNCHECKED" option.

The stored procedure will not support column expressions that include the table
name (i.e. table 'T1' with expression (T1.C *5)) in either the source table or the
target table. To remedy this, the user can alter the column to change the expression
to not include the table name.

If a new table definition is specified, and a column is specified to be an expression
column in the new table definition, then the stored procedure will check to see if
the definition of the expression column matches the definition of the column in the
source table by performing a basic string to string comparison. If they are a match,
the stored procedure will continue as previously described. If they are not a match,
the stored procedure will use the new expression column definition. Please note
that the current values of the rows in the column will remain the same.

If a new table definition is specified, and a column that is specified as an
expression column in the source table is not specified as an expression column in
the new table definition, then the stored procedure will still create the column as

Chapter 21. Miscellaneous routines and views 975

an expression column in the target table using the same specification found in the
source table. This is done so that users do not need to look up the definition of the
existing expression column and re-enter it into the new table definition. If the user
does not want to keep the column as an Expression column, then they can alter the
target table after the call to the stored procedure to remove the Expression
Specification from the column.

Online table move and objects and privileges that are preserved

The stored procedure will preserve the following objects when a Table Move is
performed:

Views During the brief offline period during the SWAP phase, the views are
dropped from the source table and are recreated on the target table.

Transfer of ownership is also performed to change the ownership of the
view back to the original owner.

Triggers
During the brief offline period during the SWAP phase, the triggers are
dropped from the source table and are recreated on the target table.

Transfer of ownership is also performed to change the ownership of the
trigger back to the original owner.

Indexes
Indexes are created onto the target table at several times during the table
move procedure. Indexes are first created at the end of the COPY phase,
unless the COPY_WITH_INDEXES option is set then the indexes will first be
created at the beginning of the COPY phase. The store procedure will then
also look for any newly created indexes, judging by index name alone, at
the beginning of the REPLAY and SWAP phases. If new indexes are found,
they will be created. However, the stored procedure will not look to see if
any indexes have been deleted on the source table.

The index names will be the same as they were on the source table for user
created indexes. However, system created indexes can not be guaranteed to
have the same name.

The indexes that will be preserved are of the following type:
'REG','CLUST', and 'XVIL'.

Any user created indexes that reference a column that is being dropped in
the target table will not be preserved.

When moving from a source partitioned table to a target partitioned table,
the partitioned attribute of the index will be preserved. When moving from
a source partitioned table to a target non-partitioned table, or vice-versa,
the partitioned attribute will be decided by the default behavior of the
database.

Constraints
Constraints (other than referential constraints) are recreated on the target
table using the same constraint names. However, for unique and primary
constraints the underlying index name may be different than the index
name on the source table.

Table flags
The table flags of the source table are created on the target table as soon as
the target table is created in the INIT phase. These flags are:
'append_mode', 'locksize', 'volatile', 'compression', 'datacapture', 'pctfree',

976 Administrative Routines and Views

'logindexbuild', 'owner', and 'droprule'. These flags are then checked at the
end of the COPY phase and during the SWAP phase. If there are any
changes in the flags they will be updated in the target table.

To keep the database recoverable and compatible with HADR setups,
ADMIN_MOVE_TABLE does not copy the NOT LOGGED INITIALLY
information from the source to the target table.

Grant/Revoke
During the SWAP phase, the stored procedure will go through the entries
in SYSCAT.TABAUTH and reproduce the granting of privileges on the table to
users/groups/roles.

If the caller of the stored procedure does not have ACCESSCTRL or
SECADM authority then the CONTROL privilege cannot be granted. A list
of all users/groups/roles that were not granted the CONTROL privilege
can be found in the protocol table where the key is WARNINGS.

Please note that if auto_revalidation is enabled on the database, and the
USE_AUTO_REVAL option is set (which is the default if auto_revalidation is enabled),
then the views will not be dropped as outlined above. Instead, the views will
remain and be re-validated with auto_revalidation. Triggers will be dropped and
recreated by the stored procedure as there is currently a limitation with renaming a
table with a trigger defined as the subject.

Online table move with clustering over an index

It is possible to cluster the target table by an index. If a cluster index is present on
the source table, it will be clustered by that index by default. The default can be
changed after the INIT phase (This implies phase wise execution of Online Table
Move). Calling Online Table Move in one MOVE phase with no cluster index
present will result in the stored procedure clustering the target table with the
unique/primary index. If a cluster index exists, the stored procedure will cluster
the target table using the cluster index.

If there is a cluster index on the source table, it is possible to not cluster the target
table on the cluster index by performing a multi-step move and deleting the key
entries "COPY_INDEXSCHEMA" and "COPY_INDEXNAME" from the protocol
table after the INIT phase.

It is possible to cluster the target table by any secondary index by performing a
multi-step move and inserting/updating the key entries "COPY_INDEXSCHEMA"
and "COPY_INDEXNAME" in the protocol table with the desired index to cluster
the target table.

Changing index attributes

If a user wants to modify the attributes of any existing attributes (i.e. index
clustering, index compression, change global to local indexes and vice versa) they
can manually make these changes during a multi-step move operation.

This can be done by performing the INIT and COPY phases of the move via a
multi-step move. Then manually make any changes to the indexes on the target
table. The name of the target table can be found in the protocol table. After the
modifications have finished, resume with the REPLAY and SWAP phases..

Chapter 21. Miscellaneous routines and views 977

Restrictions

The following restrictions apply to the ADMIN_MOVE_TABLE stored procedure:
v Only simple tables are supported as the source table. No materialized query

tables, typed tables, clustered tables, system tables, views, nicknames, or aliases
are permitted.

v A table cannot be moved if an event monitor is currently active on the table.
v Foreign keys (referential constraints) are not supported, either parent or child. To

move a table with foreign keys, you can capture the foreign keys using the
db2look command, then drop the foreign keys, perform the move operation, and
then recreate the keys.

v Tables without a unique index are subject to a complex and potentially
expensive replay phase.

v A unique index is required if the table contains LOB, XML, or LONG columns.
v A generated column cannot be part of the MDC specification.
v There is no support for text search indexes.
v Be aware of the large disk space requirements, as the procedure creates two

copies of the table and indexes, plus a staging table and log space.
v Copy performance may be an issue as most of the data is moved to the new

table using “insert from select” form.
v The VERIFY operation for tables without a unique index does not work on

tables with LOBs.
v In releases lower than DB2 Version 9.7 Fix Pack 2, the DB2_SKIPDELETED

registry variable cannot be set to ON.
v The SYSTOOLSPACE table space must be created and accessible to 'PUBLIC'.
v Lock timeouts are possible during the COPY phase because of long running

transactions on the source table.
v Deadlocks can occur during the SWAP phase.
v Deadlocks can occur on a source table with non-unique indexes and several

update processes.
v With VARCHAR2 support enabled, the database treats the empty string and

NULL as equivalent values, but the single blank is a distinct value. With
VARCHAR2 support enabled, the mdc_cols, partkey_cols, and data_part parameters
can use a single blank as distinct from the empty string and NULL.

v A table cannot be moved if it is in the Set Integrity Pending state.
v A table cannot be moved if there are any XSR objects dependent on it.

Information returned

Table 252. Information returned by the ADMIN_MOVE_TABLE stored procedure

Column name Data type Description

TABSCHEMA VARCHAR(128) Schema of the table to be moved.
Empty string for system wide
defaults.

TABNAME VARCHAR(128) Table name of the table to be moved.
Empty string for system wide
defaults.

KEY VARCHAR(32) Name of the attribute.

VALUE CLOB(10M) Value of the attribute.

978 Administrative Routines and Views

The key and value pairs that are returned in the result set can be found in
Table 253. To modify the user configurable keys in the result set, use the
ADMIN_MOVE_TABLE_UTIL stored procedure.

Table 253. Key and value pairs returned by the ADMIN_MOVE_TABLE stored procedure

Key Return Value User Configurable

VERSION Displays the version of the stored procedure. No

AUTHID Displays the authorization ID of the user who called
the stored procedure.

No

LOCK Displays the LOCK start time if another online table
move stored procedure call is active, otherwise it is
empty.

No

STATUS Displays the current status of the online table move:

v INIT: INIT is in progress

v COPY: COPY is in progress or is possible

v REPLAY: REPLAY is in progress or REPLAY and
SWAP are possible

v CLEANUP: MOVE is complete, but cleanup has
not finished or CLEANUP is possible

v COMPLETE: MOVE and CLEANUP are complete

v COMPLETE_WITH_WARNINGS: MOVE and
CLEANUP are complete, however there are
warnings (listed under the WARNINGS key).

No

STAGING Displays the name of the staging table. No

TARGET Displays the name of the target table. No

ORIGINAL Displays the name of original table after the swap. No

INDEXSCHEMA Displays the schema of the index or the empty string
if the table does not have an index.

No

INDEXNAME Displays the name of the index or the empty string if
the table does not have an index.

No

COMMIT_AFTER_N_ROWS During the COPY phase, a commit is executed after
this many rows are copied. 0 means no commits
during COPY. Default value is 10000.

Yes

DEEPCOMPRESSION_SAMPLE If the source table has compression enabled, this field
specifies how much data (in KB) is sampled when
creating a dictionary for compression. 0 means no
sampling is done. Default value is 20MB (20480 KB).

Yes

COPY_ARRAY_SIZE Specifies the ARRAY size for COPY_ARRAY_INSERT.
A value less than or equal to 0 means do not use
COPY_ARRAY_INSERT. Default value is 100.

Yes

COPY_OPTS The copy options used during the COPY phase. No

COPY_INDEXSCHEMA The schema of the index used to cluster the data on
the target table during the COPY phase. This value
must be set before the COPY phase. The default
schema is the schema name of a cluster index on the
source table, if it exists; otherwise the schema name
of the unique or primary index on the source table.

Yes

Chapter 21. Miscellaneous routines and views 979

Table 253. Key and value pairs returned by the ADMIN_MOVE_TABLE stored procedure (continued)

Key Return Value User Configurable

COPY_INDEXNAME The name of the index used to cluster the data on the
target table during the COPY phase. This value must
be set before the COPY phase. The default name is
the name of a cluster index on the source table, if it
exists; otherwise the name of the unique or primary
index on the source table.

Yes

INDEX_CREATION_TOTAL_TIME Displays the total time required for creating
secondary indexes.

No

INIT_START Displays the INIT phase start time. No

INIT_END Displays the INIT phase end time. No

COPY_START Displays the COPY phase start time. No

COPY_END Displays the COPY phase end time. No

COPY_TOTAL_ROWS Displays the total number of rows copied during the
COPY phase.

No

REPLAY_START Displays the REPLAY phase start time. No

REPLAY_END Displays the REPLAY phase end time. No

REPLAY_TOTAL_ROWS Displays the accumulated number of replayed rows. No

REPLAY_TOTAL_TIME Displays the accumulated time in seconds used for
replaying rows.

No

REPLAY_MAX_ERR_RETRIES Specifies the maximum retry count for errors (lock
timeouts or deadlocks) that may occur during the
REPLAY phase. Default value is 100.

Yes

REPLAY_THRESHOLD For a single iteration of the REPLAY phase, if the
number of rows applied to the staging table is less
than this value, then REPLAY stops, even if new
entries are made in the meantime. Default value is
100.

Yes

REORG_USE_TEMPSPACE If you call the REORG option, you can also specify a
temporary table space for the USE clause of the
REORG command. If a value is not specified here,
the REORG command uses the same table space as
the table being reorganized.

Yes

VERIFY_START Displays the verification start time. No

VERIFY_END Displays the verification end time. No

SWAP_START Displays the SWAP phase start time. No

SWAP_END Displays the SWAP phase end time. No

SWAP_MAX_RETRIES Specifies the maximum number of retries allowed
during the SWAP phase (if lock timeouts or
deadlocks occur). Default value is 10.

Yes

SWAP_RETRIES Displays the number of retries performed during
SWAP phase.

No

CLEANUP_START Displays the CLEANUP phase start time. No

CLEANUP_END Displays the CLEANUP phase end time. No

980 Administrative Routines and Views

Table 253. Key and value pairs returned by the ADMIN_MOVE_TABLE stored procedure (continued)

Key Return Value User Configurable

WARNINGS Displays warnings to pass on to the user. These
warnings include:

v Revalidation of all failed objects

v Control could not be granted to a user, group, or
role

v An index was not created because a column it
references no longer exists

No

ADMIN_MOVE_TABLE_UTIL procedure - Modify the online move table
procedure

The ADMIN_MOVE_TABLE_UTIL procedure works in conjunction with the
SYSPROC.ADMIN_MOVE_TABLE stored procedure when moving active table
data. This stored procedure provides a mechanism to alter the user definable
values in the ADMIN_MOVE_TABLE protocol table, which is created and used by
the ADMIN_MOVE_TABLE procedure.

This procedure will only modify a value in the ADMIN_MOVE_TABLE protocol
table if a table move for the table referenced by the TABSCHEMA and TABNAME
parameters is already in progress, and the authorization ID of the caller of the
procedure is the same as the user executing the table move.

Syntax

�� ADMIN_MOVE_TABLE_UTIL (tabschema , tabname , action , key , value) ��

The schema for this stored procedure is SYSPROC.

Procedure parameters

tabschema
This input parameter specifies the name of the schema containing the table
being moved. This name is case sensitive. and has a data type of
VARCHAR(128).

tabname
This input parameter specifies the name of the table being moved. This
parameter is case sensitive and has a data type of VARCHAR(128)

action
This input parameter specifies the action for the procedure to execute.

Valid values are:
v UPSERT: If the specified TABSCHEMA.TABNAME.KEY exists in the

ADMIN_MOVE_TABLE protocol table, this updates the corresponding
VALUE with the new value parameter. Otherwise, this inserts the KEY and
VALUE pair into the ADMIN_MOVE_TABLE protocol table.

v DELETE: If the specified TABSCHEMA.TABNAME. KEY exists in the
ADMIN_MOVE_TABLE protocol table, this deletes the specified KEY and
VALUE pair from the ADMIN_MOVE_TABLE protocol table.

This parameter has a datatype of VARCHAR(128).

Chapter 21. Miscellaneous routines and views 981

key
This input parameter specifies the key that to "upsert" or delete in the
ADMIN_MOVE_TABLE protocol table.

Valid values are:
v COMMIT_AFTER_N_ROWS: During the COPY phase, a commit is executed

after this many rows are copied. A value of 0 means no commits are
executed during COPY.

v DEEPCOMPRESSION_SAMPLE: If the source table has compression
enabled, this field specifies how much data (in KB) is sampled when
creating a dictionary for compression. A value of 0 means no sampling is
done.

v COPY_ARRAY_SIZE: Specifies the ARRAY size for COPY_ARRAY_INSERT,
a value less than or equal to 0 means do not use COPY_ARRAY_INSERT.

v COPY_INDEXSCHEMA: The schema of the index used to cluster the data
on the target table during the COPY phase.

v COPY_INDEXNAME: The name of the index used to cluster the data on the
target table during the COPY phase.

v REPLAY_MAX_ERR_RETRIES: Specifies the maximum retry count for errors
(lock timeouts or deadlocks) that may occur during the REPLAY phase.

v REPLAY_THRESHOLD: For a single iteration of the REPLAY phase, if the
number of rows applied to the staging table is less than this value, then
REPLAY stops, even if new entries are made in the meantime.

v REORG_USE_TEMPSPACE: If you call the REORG option in the table move,
you can also specify a temporary table space for the USE clause of the
REORG command. If a value is not specified here, the REORG command
uses the same table space as the table being reorganized.

v SWAP_MAX_RETRIES: Specifies the maximum number of retries allowed
during the SWAP phase (if lock timeouts or deadlocks occur).

This parameter has a data type of VARCHAR(128).

value
This input parameter specifies the value to "upsert" into the
ADMIN_MOVE_TABLE protocol table. This parameter has a data type of
CLOB(10M). The parameter can be NULL or the empty string.

Authorization

No explicit authorization is required to invoke the stored procedure; however, the
authorization ID used must be the same as the one used to call the
ADMIN_MOVE_TABLE stored procedure.

Examples

This example covers a basic call to the stored procedure in order to update the
compression value and remove the specific index information used for the target
table copying.

First, the ADMIN_MOVE_TABLE procedure is called to start the table move
process before calling the ADMIN_MOVE_TABLE_UTIL procedure in order to
update or delete a value in the ADMIN_MOVE_TABLE protocol table:
CALL SYSPROC.ADMIN_MOVE_TABLE(’SVALENTI’,’T1’,’’,’’,’’,’’,’’,’’,’’,’’,’INIT’)

Next, update the DEEP_COMPRESSION_SAMPLE value to 30720 KB:

982 Administrative Routines and Views

CALL SYSPROC.ADMIN_MOVE_TABLE_UTIL(’SVALENTI’,’T1’,’UPSERT’,
’DEEPCOMPRESSION_SAMPLE’,’30720’)

Now, delete the COPY_INDEXSCHEMA and COPY_INDEXNAME values:
CALL SYSPROC.ADMIN_MOVE_TABLE_UTIL(’SVALENTI’,’T1’,’DELETE’,’COPY_INDEXSCHEMA’,’’)
CALL SYSPROC.ADMIN_MOVE_TABLE_UTIL(’SVALENTI’,’T1’,’DELETE’,’COPY_INDEXNAME’,’’)

After these changes, continue the ADMIN_MOVE_TABLE procedure using the new
values in the meta table:
CALL SYSPROC.ADMIN_MOVE_TABLE(’SVALENTI’,’T1’,’’,’’,’’,’’,’’,’’,’’,’’,’COPY’)
CALL SYSPROC.ADMIN_MOVE_TABLE(’SVALENTI’,’T1’,’’,’’,’’,’’,’’,’’,’’,’’,’REPLAY’)
CALL SYSPROC.ADMIN_MOVE_TABLE(’SVALENTI’,’T1’,’’,’’,’’,’’,’’,’’,’’,’’,’SWAP’)

Usage notes

More information regarding the changeable KEY values in the
ADMIN_MOVE_TABLE protocol table is available in the Usage notes section of the
ADMIN_MOVE_TABLE procedure.

ALTOBJ

The ALTOBJ procedure parses an input CREATE TABLE statement that serves as
the target data definition language (DDL) for an existing table that is to be altered.
The procedure backs up the data of the table being altered, then drops the original
table and creates a new version using the DDL statement; the final step loads the
stored data back into the new table.

This procedure supports the following alter table operations and maintains
recoverable dependencies:
v Renaming a column
v Increasing or decreasing the size of a column
v Altering a column type and transforming existing data using DB2 scalar

functions
v Changing the precision or the scale of decimal values
v Changing the default value of a column
v Changing the nullability attribute of a column to nullable
v Dropping a column

Syntax

�� ALTOBJ (exec-mode , sql-stmt , alter-id , msg) ��

The schema is SYSPROC.

Procedure parameters

exec-mode
An input argument of type VARCHAR(30) that specifies one of the following
execution modes:

'GENERATE'
Specifies that all the scripts required by the VALIDATE, APPLY, and
UNDO modes are to be generated.

Chapter 21. Miscellaneous routines and views 983

'VALIDATE'
Specifies that the statement syntax is to be validated. This option also
generates a script to manage the processing of related objects and
relationships for the table that is to be altered.

'APPLY_CONTINUE_ON_ERROR' or 'APPLY_STOP_ON_ERROR'
Specifies that a script to manage the processing of related objects and
relationships for the table that is to be altered is to be generated. Data from
the original table is to be exported, transformed, and used to populate the
new table.

'UNDO'
Specifies that any changes made by the alter table operation are to be
undone, in case a rollback operation cannot recover errors that might have
occurred. This mode is only possible if the original table and any
generated scripts have not been deleted.

'FINISH'
Specifies that the renamed original table is to be dropped.

sql-stmt
An input argument of type VARCHAR(2048) that specifies a CREATE TABLE
statement that will be used as a template for altering an existing table. When
exec-mode is 'GENERATE', sql-stmt must not be the null value. Otherwise,
sql-stmt can be the null value, but only if alter-id is not -1.

alter-id
An input and output argument of type INTEGER that identifies all of the
statements that are generated by this call. If -1 is specified, a new identifier
will be generated and returned to the caller. Any existing statements identified
by the specified integer are overwritten.

msg
An output argument of type VARCHAR(2048) containing an SQL query that
you can execute to display all of the SQL statements generated for or used by
the alter table process under the specified execution mode.

Authorization

EXECUTE privilege on the ALTOBJ procedure.

DBADM authority, and SETSESSIONUSER are also required.

Examples

Example 1: Run the ALTOBJ procedure to alter column CL2 in table T1 from type
INTEGER to BIGINT. The original data definition language for table T1 is:
CREATE TABLE T1 (CL1 VARCHAR(5), CL2 INTEGER)

The ALTOBJ procedure call to alter the column data type is:
CALL SYSPROC.ALTOBJ(’APPLY_CONTINUE_ON_ERROR’,

’CREATE TABLE T1 (CL1 VARCHAR(5), CL2 BIGINT)’, -1, ?)

Note: If you see the following error, try to increase the APPLHEAPSZ parameter
value:
SQL0443N Routine "SYSPROC.ALTOBJ" (specific name "ALTOBJ") has returned an
error SQLSTATE with diagnostic text "SQL0954 ". SQLSTATE=38553

Example 2: Run the ALTOBJ procedure in VALIDATE mode with alter-id input.

984 Administrative Routines and Views

CALL SYSPROC.ALTOBJ(’VALIDATE’, CAST (NULL AS VARCHAR(2048)), 123, ?)

Usage notes

Although the procedure drops and recreates the table, the user who created the
original table will remain as the table definer. However, an audit will show that
the table has been dropped and recreated by the user running the procedure.

This procedure does not support the following alter table operations:
v Altering materialized query tables (MQTs) is not supported. Altering a table

which contains an MQT is supported.
v Altering typed tables is not supported.
v Altering a remote table using a nickname is not supported.
v Column sequence cannot be reordered.
v Adding and removing, or renaming and removing columns in one call to the

procedure is not supported, but adding and renaming columns is supported.
This is because the only way to indicate how the table is to be altered is by the
use of the target DDL, rather than column matching information. The following
rules are followed by the ALTOBJ procedure when transforming data from the
existing table to the altered table:
1. If the number of columns in the existing table is the same as the altered

table, it is assumed that no columns are being added or removed. The
columns in this case can only be renamed, and are matched by column
index.

2. If the number of columns in the existing table is less than in the altered table,
it is assumed that columns are being added. The columns can be renamed,
and the new columns are added at the end. The existing columns are
matched by index.

3. If the number of columns in the existing table is greater than in the altered
table, it is assumed that columns are being removed. The columns cannot be
renamed and matched by name. The column that is being dropped can be
any existing column in the table.

v Structured type UDTs and Reference type UDTs are not supported.
v MQTs defined on a base table which is altered are not populated during the

alter table process.

If a table is altered using the ALTOBJ procedure, and the table has an MQT
defined, the MQT will be created, but it will not be populated with data.

If a table is altered using the ALTOBJ procedure, and the table has an MQT
defined, any columns that are not part of the select result from the table being
altered are lost because the MQT content is rebuilt from the new base table.

The definition of the objects might change between ALTOBJ procedure calls
because there are no object locks that persist through different sessions.

The table profiles (such as runstats profile) that are associated with the table are
lost after going through this extensive alter process.

The SYSTOOLSPACE is used for the routine's operation tables to store metadata;
that is, data used to describe database objects and their operation.

Chapter 21. Miscellaneous routines and views 985

APPLICATION_ID

The APPLICATION_ID function returns the application ID of the current
connection. The data type of the result is VARCHAR(128).

The value returned by the function is unique within a 100-year interval and valid
only for the duration of the connection established before calling the function.

Syntax

�� APPLICATION_ID () ��

The schema is SYSFUN.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

Example
SELECT APPLICATION_ID() AS APPL_ID FROM SYSIBM.SYSDUMMY1

COMPILATION_ENV table function - Retrieve compilation environment
elements

The COMPILATION_ENV table function returns the elements of a compilation
environment.

Syntax

�� COMPILATION_ENV (compilation-env) ��

The schema is SYSPROC.

Table function parameter

compilation-env
An input argument of type BLOB(2M) that contains a compilation environment
obtained from the comp_env_desc (compilation environment) monitor element.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

986 Administrative Routines and Views

The function returns a table of two columns (see Table 254 on page 988): NAME
VARCHAR(256) and VALUE VARCHAR(1024). The possible values for the
compilation environment element names are described in Table 255 on page 988.

The origin of the element values depends primarily on whether the SQL statement
is issued dynamically or bound as part of a package.

The number and types of entries in a compilation environment can change over
time as capabilities are added to the DB2 database manager. If the compilation
environment is from a different DB2 database manager level than the level on
which this function is executing, only those elements that are recognized by the
level of the function are returned. The descriptions of the elements might also vary
from release to release.

Examples

Example 1: Request all the elements of a specific compilation environment that was
previously captured by a deadlock event monitor. A deadlock event monitor that is
created specifying the WITH DETAILS HISTORY option will capture the
compilation environment for dynamic SQL statements. This captured environment
is what is accepted as input to the table function.

SELECT NAME, VALUE
FROM TABLE(SYSPROC.COMPILATION_ENV(:hv1)) AS t

Example 2: Request a specific element (the default schema) of a compilation
environment.

SELECT NAME, VALUE
FROM TABLE(SYSPROC.COMPILATION_ENV(:hv1)) AS t
WHERE NAME = ’SCHEMA’

Example 3: Display the compilation environment for a specific statement in the
package cache.
1. Obtain the executable ID, which is used to identify the statement of interest,

using the following statement:
SELECT EXECUTABLE_ID, VARCHAR{STMT_TEXT, 100)

FROM TABLE(MON_GET_PKG_CACHE_STMT(NULL,NULL,NULL,-1)) AS t

The following example is a sample output after executing the preceding
statement:

EXECUTABLE_ID 2
--- --
x’0100000000000000010000000000000000000000020020090914151405241700’ select count(*) from syscat.tables
...

2. Investigate the compilation environment for the statement (identified using the
executable ID) and format the compilation environment using the
COMPILATION_ENV table function. The following statement is an example of
how this can be done:
SELECT VARCHAR(NAME, 30), VARCHAR(VALUE, 50)

FROM TABLE(COMPILATION_ENV((SELECT COMP_ENV_DESC FROM TABLE
(MON_GET_PKG_CACHE_STMT(NULL,
x’0100000000000000010000000000000000000000020020090914151405241700’,
NULL, -1)) AS t))) AS s

The following example is a sample output after executing the preceding
statement:
1 2
------------------------------ --
ISOLATION CS
QUERY_OPTIMIZATION 5

Chapter 21. Miscellaneous routines and views 987

MIN_DEC_DIV_3 NO
DEGREE 1
SQLRULES DB2
REFRESH_AGE +00000000000000.000000
RESOLUTION_TIMESTAMP 2009-09-14-15.14.05.000000
FEDERATED_ASYNCHRONY 0
PATH "SYSIBM","SYSFUN","SYSPROC","SYSIBMADM","SWALKTY"
MAINTAINED_TABLE_TYPE SYSTEM

10 record(s) selected.

Information returned

Table 254. Information returned by the COMPILATION_ENV table function

Column name Data type Description

NAME VARCHAR(256) Element of compilation
environment. See Table 255
for more details.

VALUE VARCHAR(1024) Value of the element.

Table 255. Elements of a compilation environment returned by the COMPILATION_ENV
table function

Element name Description

ISOLATION The isolation level passed to the SQL compiler. The value is
obtained from either the CURRENT ISOLATION special
register or the ISOLATION bind option of the current
package.

QUERY_OPTIMIZATION The query optimization level passed to the SQL compiler.
The value is obtained from either the CURRENT QUERY
OPTIMIZATION special register or the QUERYOPT bind
option of the current package.

MIN_DEC_DIV_3 The requested decimal computational scale passed to the
SQL compiler. The value is obtained from the min_dec_div_3
database configuration parameter.

DEGREE The requested degree of intra-parallelism passed to the SQL
compiler. The value is obtained from either the CURRENT
DEGREE special register or the DEGREE bind option of the
current package.

SQLRULES The requested SQL statement behaviors passed to the SQL
compiler. The value is derived from the setting of the
LANGLVL bind option of the current package. The possible
values are 'DB2' or 'SQL92'.

REFRESH_AGE The allowable data latency passed to the SQL compiler. The
value is obtained from either the CURRENT REFRESH
AGE special register or the REFRESHAGE bind option of
the current package.

SCHEMA The default schema passed to the SQL compiler. The value
is obtained from either the CURRENT SCHEMA special
register or the QUALIFIER bind option of the current
package.

PATH The function path passed to the SQL compiler. The value is
obtained from either the CURRENT PATH special register
or the FUNC_PATH bind option of the current package.

988 Administrative Routines and Views

Table 255. Elements of a compilation environment returned by the COMPILATION_ENV
table function (continued)

Element name Description

TRANSFORM_GROUP The transform group information passed to the SQL
compiler. The value is obtained from either the CURRENT
DEFAULT TRANSFORM GROUP special register or the
TRANSFORMGROUP package bind option.

MAINTAINED_TABLE
_TYPE

An indicator of what table types can be considered for
optimization, passed to the SQL compiler. The value is
obtained from the CURRENT MAINTAINED TABLE
TYPES FOR OPTIMIZATION special register.

RESOLUTION
_TIMESTAMP

The timestamp that is to be used by the SQL compiler for
resolving items such as function and data type references in
an SQL statement. This timestamp is either the current
timestamp or the timestamp of the last explicit bind
operation for the current package.

FEDERATED
_ASYNCHRONY

The requested degree of federated asynchrony parallelism
passed to the SQL compiler. The value is obtained from
either the CURRENT FEDERATED ASYNCHRONY special
register or the FEDERATED_ASYNCHRONY bind option of
the current package.

CONTACTGROUPS administrative view - Retrieve the list of contact
groups

The CONTACTGROUPS administrative view returns the list of contact groups,
which can be defined locally on the system or in a global list. The setting of the
Database Administration Server (DAS) CONTACT_HOST configuration parameter
determines whether the list is local or global.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the CONTACTGROUPS administrative view
v CONTROL privilege on the CONTACTGROUPS administrative view
v DATAACCESS authority

Example

Retrieve all contact group lists.
SELECT * FROM SYSIBMADM.CONTACTGROUPS

The following example is a sample output for this query.
NAME DESCRIPTION MEMBERNAME MEMBERTYPE
-------...--- ------------------------...--- -----------...--- ----------
group1 DBA Group1 Contact List name1 CONTACT
group1 DBA Group1 Contact List name9 CONTACT
group2 DBA Group2 List name2 CONTACT
group3 group2 GROUP
group5 DBA Group5 group2 GROUP

Chapter 21. Miscellaneous routines and views 989

group6 DBA Group6 group3 GROUP
group7 name1 CONTACT

7 record(s) selected.

Usage note

The DAS must have been created and be running.

Information returned

Table 256. Information returned by the CONTACTGROUPS administrative view

Column name Data type Description

NAME VARCHAR(128) Name of the contact group.

DESCRIPTION VARCHAR(128) Description of the contact
group.

MEMBERNAME VARCHAR(128) Name of the member in the
contact group. This name can
refer to a contact or another
contact group.

MEMBERTYPE VARCHAR(7) Type of member in the
contact group. The type is
either CONTACT or GROUP.

CONTACTS administrative view - Retrieve list of contacts

The CONTACTS administrative view returns the list of contacts defined on the
database server. The setting of the Database Administration Server (DAS)
CONTACT_HOST configuration parameter determines whether the list is local or
global.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the CONTACTS administrative view
v CONTROL privilege on the CONTACTS administrative view
v DATAACCESS authority

Example

Retrieve all contacts.
SELECT * FROM SYSIBMADM.CONTACTS

The following example is a sample output for this query.
NAME TYPE ADDRESS MAX_PAGE_LENGTH DESCRIPTION
-----...- ----- ----------------...- --------------- ------------------...-
user1 EMAIL user3@ca.ibm.com - DBA Extraordinaire
user2 EMAIL user2@ca.ibm.com - DBA on Email
user3 PAGE user3@ca.ibm.com 128 DBA on Page
user5 EMAIL user2@ca.ibm.com - DBA Extraordinaire

4 record(s) selected.

990 Administrative Routines and Views

Usage note

The DAS must have been created and be running.

Information returned

Table 257. Information returned by the CONTACTS administrative view

Column name Data type Description

NAME VARCHAR(128) Name of contact.

TYPE VARCHAR(5) Type of contact:

v 'EMAIL'

v 'PAGE'

ADDRESS VARCHAR(128) SMTP mailbox address of the
recipient. For example,
joe@somewhere.org.

MAX_PAGE_LENGTH INTEGER Maximum message length.
Used for example, if the
paging service has a
message-length restriction.

DESCRIPTION VARCHAR(128) Description of contact.

DB_HISTORY administrative view - Retrieve history file information
The DB_HISTORY administrative view returns information from the history files
from all database partitions.

You can use the PRUNE HISTORY command on database partitions to reduce the
amount of information returned by the DB_HISTORY view. You can also use the
LIST HISTORY command to retrieve history information for select database
partitions.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the DB_HISTORY administrative view
v CONTROL privilege on the DB_HISTORY administrative view
v DATAACCESS authority

Usage note

When a data partitioned table is reorganized, one record for each reorganized data
partition is returned. If only a specific data partition of a data partitioned table is
reorganized, only a record the for the partition is returned.

Example

Select the database partition number, entry ID, operation, start time, and status
information from the database history files for all the database partitions of the
database to which the client is currently connected.
SELECT DBPARTITIONNUM, EID, OPERATION, START_TIME, ENTRY_STATUS

FROM SYSIBMADM.DB_HISTORY

Chapter 21. Miscellaneous routines and views 991

The following example is a sample output for this query.
DBPARTITIONNUM EID OPERATION START_TIME ENTRY_STATUS
-------------- -------------------- --------- -------------- ------------

0 1 A 20051109185510 A

1 record(s) selected.

Information returned

Table 258. Information returned by the DB_HISTORY administrative view

Column name Data type Description

DBPARTITIONNUM SMALLINT Database partition number.

EID BIGINT Number that uniquely
identifies an entry in the
history file.

START_TIME VARCHAR(14) Timestamp marking the start
of a logged event.

SEQNUM SMALLINT Sequence number.

END_TIME VARCHAR(14) Timestamp marking the end
of a logged event.

FIRSTLOG VARCHAR(254) Name of the earliest
transaction log associated
with an event.

LASTLOG VARCHAR(254) Name of the latest
transaction log associated
with an event.

BACKUP_ID VARCHAR(24) Backup identifier or unique
table identifier.

TABSCHEMA VARCHAR(128) Table schema.

TABNAME VARCHAR(128) Table name.

COMMENT VARCHAR(254) System-generated comment
text associated with a logged
event.

CMD_TEXT CLOB(2 M) Data definition language
associated with a logged
event.

NUM_TBSPS INTEGER Number of table spaces
associated with a logged
event.

TBSPNAMES CLOB(5 M) Names of the table spaces
associated with a logged
event.

OPERATION CHAR(1) Operation identifier. See
Table 259 on page 994 for
possible values.

OPERATIONTYPE CHAR(1) Action identifier for an
operation. See Table 259 on
page 994 for possible values.

992 Administrative Routines and Views

Table 258. Information returned by the DB_HISTORY administrative view (continued)

Column name Data type Description

OBJECTTYPE CHAR(1) Identifier for the target object
of an operation. The possible
values are: D for full
database, I for index, P for
table space, R for range
partition table, and T for
table.

LOCATION VARCHAR(255) Full path name for files, such
as backup images or load
input file, that are associated
with logged events.

DEVICETYPE CHAR(1) Identifier for the device type
associated with a logged
event. This field determines
how the LOCATION field is
interpreted. The possible
values are: A for TSM, C for
client, D for disk, F for
snapshot backup, K for
diskette, L for local, N
(generated internally by
DB2), O for other (for other
vendor device support), P for
pipe, Q for cursor, R for
remote fetch data, S for
server, T for tape, U for user
exit, and X for X/Open
XBSA interface.

ENTRY_STATUS CHAR(1) Identifier for the status of an
entry in the history file. The
possible values are: A for
active, D for deleted (future
use), E for expired, I for
inactive, N for not yet
committed, Y for committed
or active.

SQLCAID VARCHAR(8) An "eye catcher" for storage
dumps containing 'SQLCA',
as it appears in the
SQLCAID field of the SQL
communications area
(SQLCA).

SQLCABC INTEGER Length of the SQLCA, as it
appears in the SQLCABC
field of the SQLCA.

SQLCODE INTEGER SQL return code, as it
appears in the SQLCODE
field of the SQLCA.

SQLERRML SMALLINT Length indicator for
SQLERRMC, as it appears in
the SQLERRML field of the
SQLCA.

Chapter 21. Miscellaneous routines and views 993

Table 258. Information returned by the DB_HISTORY administrative view (continued)

Column name Data type Description

SQLERRMC VARCHAR(70) Contains one or more tokens,
separated by X'FF', as they
appear in the SQLERRMC
field of the SQLCA. These
tokens are substituted for
variables in the descriptions
of error conditions.

SQLERRP VARCHAR(8) A three-letter identifier
indicating the product,
followed by five
alphanumeric characters
indicating the version,
release, and modification
level of the product, as they
appear in the SQLERRP field
of the SQLCA.

SQLERRD1 INTEGER See “SQLCA (SQL
communications area)” in
SQL Reference, Volume 1.

SQLERRD2 INTEGER See “SQLCA (SQL
communications area)” in
SQL Reference, Volume 1.

SQLERRD3 INTEGER See “SQLCA (SQL
communications area)” in
SQL Reference, Volume 1.

SQLERRD4 INTEGER See “SQLCA (SQL
communications area)” in
SQL Reference, Volume 1.

SQLERRD5 INTEGER See “SQLCA (SQL
communications area)” in
SQL Reference, Volume 1.

SQLERRD6 INTEGER See “SQLCA (SQL
communications area)” in
SQL Reference, Volume 1.

SQLWARN VARCHAR(11) A set of warning indicators,
each containing a blank or
'W'. See “SQLCA (SQL
communications area)” in
SQL Reference, Volume 1.

SQLSTATE VARCHAR(5) A return code that indicates
the outcome of the most
recently executed SQL
statement, as it appears in
the SQLSTATE field of the
SQLCA.

Table 259. OPERATION and OPERATIONTYPE values

Operation value Operation value description Operation type

A Add table space None

994 Administrative Routines and Views

Table 259. OPERATION and OPERATIONTYPE values (continued)

Operation value Operation value description Operation type

B Backup Operation types are:

v D = delta offline

v E = delta online

v F = offline

v I = incremental offline

v N = online

v O = incremental online

C Load copy None

D Dropped table None

F Rollforward Operation types are:

v E = end of logs

v P = point in time

G Reorganize table Operation types are:

v F = offline

v N = online

L Load Operation types are:

v I = insert

v R = replace

N Rename table space None

O Drop table space None

Q Quiesce Operation types are:

v S = quiesce share

v U = quiesce update

v X = quiesce exclusive

v Z = quiesce reset

R Restore Operation types are:

v F = offline

v I = incremental offline

v N = online

v O = incremental online

v R = rebuild

T Alter table space Operation types are:

v C = add containers

v R = rebalance

U Unload None

X Archive logs Operation types are:

v F = fail archive path

v M = mirror log path

v N = forced truncation via
ARCHIVE LOG command

v P = primary log path

v 1 = first log archive method

v 2 = second log archive method

Chapter 21. Miscellaneous routines and views 995

DBPATHS administrative view - Retrieve database paths

The DBPATHS administrative view returns the values for database paths required
for tasks such as split mirror backups.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the DBPATHS administrative view
v CONTROL privilege on the DBPATHS administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the ADMIN_LIST_DB_PATHS table function
v DATAACCESS authority

Example

Retrieve all database paths.
SELECT * FROM SYSIBMADM.DBPATHS

The following example is a sample output for this query.
DBPARTITIONNUM TYPE ...
-------------- ------------------------...

0 LOGPATH ...
0 MIRRORLOGPATH ...
0 DB_STORAGE_PATH ...
0 DB_STORAGE_PATH ...
0 TBSP_CONTAINER ...
0 TBSP_CONTAINER ...
0 TBSP_CONTAINER ...
0 TBSP_DIRECTORY ...
0 TBSP_DIRECTORY ...
0 LOCAL_DB_DIRECTORY ...
0 DBPATH ...

11 record(s) selected.

Output for this query (continued).
... PATH
... --
... S:\dbfiles\INST5\NODE0000\SQL00001\SQLOGDIR\
... S:\mirrorlogs\NODE0000\
... S:\dbfiles\
... S:\dbfile2\
... S:\dbfiles\INST5\NODE0000\SQL00001\TS3
... S:\dbfiles\INST5\NODE0000\SQL00001\long3
... S:\dbfiles\INST5\NODE0000\SQL00001\regular05
... S:\dbfiles\INST5\NODE0000\SQL00001\usertemp3\
... S:\dbfiles\INST5\NODE0000\SQL00001\systemp3\
... S:\dbfiles\INST5\NODE0000\SQLDBDIR\
... S:\dbfiles\INST5\NODE0000\SQL00001\

996 Administrative Routines and Views

ADMIN_LIST_DB_PATHS table function

The ADMIN_LIST_DB_PATHS table function returns the list of files required for
backup mechanisms such as split mirror backup.

Syntax

�� ADMIN_LIST_DB_PATHS () ��

The schema is SYSPROC.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the ADMIN_LIST_DB_PATHS table function
v DATAACCESS authority

In addition, one of the following authorities is also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

The ADMIN_LIST_DB_PATHS table function can be invoked as follows:
SELECT DBPARTITIONNUM, TYPE, PATH FROM TABLE(ADMIN_LIST_DB_PATHS()) AS FILES

The following example is a sample output from this query.
DBPARTITIONNUM TYPE PATH

0 TBSP_CONTAINER C:\tablespaces\dms\dms1
0 TBSP_CONTAINER C:\tablespaces\dms\dms2
1 TBSP_CONTAINER C:\tablespaces\dms\dms3
1 TBSP_DIRECTORY D:\tablespaces\sms\sms1\
2 TBSP_DIRECTORY D:\tablespaces\sms\sms2\
2 TBSP_DIRECTORY D:\tablespaces\sms\sms3\
0 LOGPATH C:\DB2\NODE0000\SQL00004\SQLOGDIR\
0 DBPATH C:\DB2\NODE0000\SQL00004\
1 LOGPATH C:\DB2\NODE0001\SQL00004\SQLOGDIR\
1 DBPATH C:\DB2\NODE0001\SQL00004\
2 LOGPATH C:\DB2\NODE0002\SQL00004\SQLOGDIR\
2 DBPATH C:\DB2\NODE0002\SQL00004\

If the storage library performing the split mirror operation treats files and
directories on RAW devices differently than on normal file systems, you can use
the following two queries to obtain, first, the list for all locations on RAW devices:
SELECT DBPARTITIONNUM, TYPE, PATH

FROM TABLE(ADMIN_LIST_DB_PATHS()) AS FILES
WHERE TYPE LIKE ’%_DEVICE%’

Second, the list of files and directories on regular file systems:
SELECT DBPARTITIONNUM, TYPE, PATH

FROM TABLE(ADMIN_LIST_DB_PATHS()) AS FILES
WHERE TYPE NOT LIKE ’%_DEVICE%’

Chapter 21. Miscellaneous routines and views 997

Information returned

Table 260. Information returned by the DBPATHS administrative view and the
ADMIN_LIST_DB_PATHS table function

Column name Data type Description

DBPARTITIONNUM SMALLINT Database partition number.

TYPE VARCHAR(64) Describes the type of
database object that the path
belongs to. For example the
path to the log directory
indicated by the LOGPATH
database configuration
parameter would be shown
in this column as LOGPATH.
See Table 261 for a list of
possible return values.

PATH VARCHAR(5000) Path to location where the
database manager has a file
or directory located. If the
path ends with the file
system delimiter ('/' on
UNIX environments, '\' on
Windows environments), the
path points to a directory.

Table 261. TYPE column values

Type value Description

TBSP_DEVICE Raw device for a database managed space
(DMS) table space.

TBSP_CONTAINER File container for a DMS table space.

TBSP_DIRECTORY Directory for a system managed space (SMS)
table space.

LOGPATH Primary log path.

LOGPATH_DEVICE Raw device for primary log path.

MIRRORLOGPATH Database configuration mirror log path.

DB_STORAGE_PATH Automatic storage path.

DBPATH Database directory path.

LOCAL_DB_DIRECTORY Path to the local database directory.

v For table spaces using automatic storage, both used and unused storage paths
are returned. The unused automatic storage paths are needed in case the split
mirror backup is restored. Consider the following example: A split mirror
backup is taken on a production system. After the backup completes, the
automatic storage paths that were not in use before the backup are now in use
in production. Assume that there is now a need to restore the split mirror
backup. At this point, it is necessary to roll forward the logs from the production
database. In order to roll forward the logs, all of the automatic storage paths are
required, because all automatic storage paths are now in use.

v Table space containers managed by automatic storage are not returned
individually. Instead, they are reflected in the automatic storage path column.

v The automatic storage paths are returned once per database partition.

998 Administrative Routines and Views

v The values returned for LOGPATH and MIRRORLOGPATH are the values
stored in memory. Changed values stored on disk, which are only applicable
after a database restart, are not returned.

v If output from SELECT * FROM SYSIBMADM.DBPATHS is being used to create a
db2relocatedb configuration file (a file containing the configuration information
necessary for relocating a database), the DBPATH output must be modified
appropriately before it can be used in the configuration file.
For example, the following DBPATH output:
/storage/svtdbm3/svtdbm3/NODE0000/SQL00001/

can be used to specify the DB_PATH parameter in a db2relocatedb configuration
file as follows:
DB_PATH=/storage/svtdbm3,/storage_copy2/svtdbm3

v The LOCAL_DB_DIRECTORY path might contain information belonging to
multiple databases. Because the sqldbdir is not separated for multiple databases
created in the same directory, ensure that the target system to which files will be
copied does not have any databases already existing in that path.

v If two or more databases share at least one automatic storage path, the split
mirror operation for one of these databases might affect more than one database,
causing I/O problems for the databases that were not intended to be split.

Restriction

This administrative view cannot be called when the database is in WRITE
SUSPEND mode. The database administrator must ensure that the physical layout
of the database does not change in the time between the invocation of the view
and the activation of the WRITE SUSPEND mode, which is needed to perform the
split mirror operation. The split mirror backup image might not be restored
successfully if, for example, the table space layout changed in that time.

GET_DBSIZE_INFO

The GET_DBSIZE_INFO procedure calculates the database size and maximum
capacity.

Syntax

�� GET_DBSIZE_INFO (snapshot-timestamp , dbsize , dbcapacity , �

� refresh-window) ��

The schema is SYSPROC.

Procedure parameters

snapshot-timestamp
An output parameter of type TIMESTAMP that returns the time at which dbsize
and dbcapacity were calculated. This timestamp, along with the value of
refresh-window, is used to determine when the cached values in the
SYSTOOLS.STMG_DBSIZE_INFO table need to be refreshed.

dbsize
An output parameter of type BIGINT that returns the size of the database (in

Chapter 21. Miscellaneous routines and views 999

bytes). The database size is calculated as follows: dbsize = sum (used_pages *
page_size) for each table space (SMS & DMS).

dbcapacity
An output parameter of type BIGINT that returns the database capacity (in
bytes). This value is not available on partitioned database systems. The
database capacity is calculated as follows: dbcapacity = SUM (DMS
usable_pages * page size) + SUM (SMS container size + file system free size
per container). If multiple SMS containers are defined on the same file system,
the file system free size is included only once in the calculation of capacity.

refresh-window
An input argument of type INTEGER that specifies the number of minutes
until the cached values for database size and capacity are to be refreshed.
Specify -1 for the default refresh window of 30 minutes. A refresh window of 0
forces an immediate refreshing of the cached values.

Authorization
v SYSMON authority
v EXECUTE privilege on the GET_DBSIZE_INFO procedure

Examples

Example 1: Get the database size and capacity using a default refresh window of 30
minutes. The database size and capacity will be recalculated when the cached data
is older than 30 minutes.
CALL GET_DBSIZE_INFO(?, ?, ?, -1)

The procedure returns:
Value of output parameters

Parameter Name : SNAPSHOTTIMESTAMP
Parameter Value : 2004-02-29-18.31.55.178000

Parameter Name : DATABASESIZE
Parameter Value : 22302720

Parameter Name : DATABASECAPACITY
Parameter Value : 4684793856

Return Status = 0

Example 2: Get the database size and capacity using a refresh window of 0 minutes.
The database size and capacity will be recalculated immediately.
CALL GET_DBSIZE_INFO(?, ?, ?, 0)

The procedure returns:
Value of output parameters

Parameter Name : SNAPSHOTTIMESTAMP
Parameter Value : 2004-02-29-18.33.34.561000

Parameter Name : DATABASESIZE
Parameter Value : 22302720

Parameter Name : DATABASECAPACITY
Parameter Value : 4684859392

Return Status = 0

1000 Administrative Routines and Views

Example 3: Get the database size and capacity using a refresh window of 24 hours.
The database size and capacity will be recalculated when the cached data is older
than 1440 minutes.
CALL GET_DBSIZE_INFO(?, ?, ?, 1440)

The procedure returns:
Value of output parameters

Parameter Name : SNAPSHOTTIMESTAMP
Parameter Value : 2004-02-29-18.33.34.561000

Parameter Name : DATABASESIZE
Parameter Value : 22302720

Parameter Name : DATABASECAPACITY
Parameter Value : 4684859392

Return Status = 0

Usage notes

The calculated values are returned as procedure output parameters and are cached
in the SYSTOOLS.STMG_DBSIZE_INFO table. The procedure caches these values
because the calculations are costly. The SYSTOOLS.STMG_DBSIZE_INFO table is
created automatically the first time the procedure executes. If there are values
cached in the SYSTOOLS.STMG_DBSIZE_INFO table and they are current enough,
as determined by the snapshot-timestamp and refresh-window values, these cached
values are returned. If the cached values are not current enough, new cached
values are calculated, inserted into the SYSTOOLS.STMG_DBSIZE_INFO table and
returned, and the snapshot-timestamp value is updated.

To ensure that the data is returned by all partitions for a global table space
snapshot, the database must be activated.

The SYSTOOLSPACE is used for the routine's operation tables to store metadata;
that is, data used to describe database objects and their operation.

NOTIFICATIONLIST administrative view - Retrieve contact list for
health notification

The NOTIFICATIONLIST administrative view returns the list of contacts and
contact groups that are notified about the health of an instance.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the NOTIFICATIONLIST administrative view
v CONTROL privilege on the NOTIFICATIONLIST administrative view
v DATAACCESS authority

Example

Retrieve all contacts that will receive notification of health alerts.

Chapter 21. Miscellaneous routines and views 1001

SELECT * FROM SYSIBMADM.NOTIFICATIONLIST

The following example is a sample output for this query.
NAME TYPE
------------...------- -------
group3 GROUP
user4 CONTACT
group3 GROUP

3 record(s) selected.

Information returned

Table 262. Information returned by the NOTIFICATIONLIST administrative view

Column name Data type Description

NAME VARCHAR(128) Name of contact.

TYPE VARCHAR(7) Type of contact:

v 'CONTACT'

v 'GROUP'

PD_GET_DIAG_HIST - Return records from a given facility

The PD_GET_DIAG_HIST table function returns log records, event records and
notification records from a given facility. Options are also supported to filter based
on the type of record, customer impact value of the record and from-until
timestamps.

Syntax

�� PD_GET_DIAG_HIST (facility , rectype , impact , start_time , end_time) ��

The schema is SYSPROC.

Table function parameters

facility
An optional input argument of type VARCHAR(20) that specifies the facility
from which records are to be returned. A facility is a logical grouping that
records relate to. The possible values are:
v ALL: Returns records from all facilities
v MAIN: Returns records from the DB2 general diagnostic logs. This currently

means the db2diag log files, the admin notification log, and the rotating
event logs.

v OPTSTATS: Return records related to optimizer statistics

If this parameter is null or an empty string (''), 'ALL' is the default.

rectype
An optional input argument of type VARCHAR(30) that specifies which record
type to return. A combination of types separated by '+' are supported, for
example: 'D + EI'. The possible values are:
v 'ALL': Return all record types.
v 'D': Return all diagnostic records.
v 'E': Return all event records.

1002 Administrative Routines and Views

v 'DI': Internal diagnostic records. These are non-translated diagnostic record
that are used by IBM support in a diagnostic situation.

v 'DX': External diagnostic records. These are translated diagnostic that are of
use to the user. These records are the notification records.

v 'EI': Internal event record. These are event record that are used by IBM
support in a diagnostic situation.

v 'EX': External event record. These are diagnostic record that are of use to the
user.

If this parameter is null or an empty string (''), all records are returned.

impact
An optional input argument of type VARCHAR(18) that specifies the minimum
customer impact level of the record returned. The possible values are:
v 'NONE'
v 'UNLIKELY'
v 'POTENTIAL'
v 'IMMEDIATE'
v 'CRITICAL'

If this parameter is null or an empty string (''), all records are returned.

start_time
An optional input argument of type TIMESTAMP that specifies a valid
timestamp. Entries are returned if their timestamp is more recent than this
value. If this parameter is null, records are returned regardless of how old they
are.

end_time
An optional input argument of type TIMESTAMP that specifies a valid
timestamp. Entries are returned if their timestamp is older than this value. If
this parameter is null, records are returned regardless of how recent they are.

Authorization

EXECUTE privilege on the PD_GET_DIAG_HIST table function.

Example
SELECT FACILITY, RECTYPE, TIMESTAMP, IMPACT, SUBSTR(MSG,1, 50) AS MSG
FROM TABLE (PD_GET_DIAG_HIST(’MAIN’, ’E’, ’’, NULL,

NULL)) AS T
WHERE T.PROCESS_NAME = ’db2star2’ OR T.PROCESS_NAME = ’db2stop2’

The following example is a sample output from this query.
FACILITY RECTYPE TIMESTAMP ...
-------------------- ------- -------------------------- ...
MAIN EX 2007-06-25-11.34.05.756171 ...
MAIN EX 2007-06-25-11.34.25.946646 ...

2 record(s) selected.

Output from this query (continued).
... IMPACT MSG
... ------------------ --
... - ADM7514W Database manager has stopped.
... - ADM7513W Database manager has started.

Chapter 21. Miscellaneous routines and views 1003

Usage note

The PD_GET_DIAG_HIST table function requires that the associated database has
a temporary table space with minimum page size of 8K. If the page size is less
than 8K, the function will return an SQL1585N error message.

Information returned

Table 263. Information returned by the PD_GET_DIAG_HIST table function

Column Name Data Type Description

FACILITY VARCHAR(20) A facility is a logical grouping which records relate to.
The possible values are:

v ALL: Returns records from all facilities

v MAIN: Returns records from the DB2 general
diagnostic logs. This currently means the db2diag log
files, the admin notification log, and the rotating event
logs.

v OPTSTATS: Return records related to optimizer
statistics

RECTYPE VARCHAR(3) The type of record. The possible values are:

v 'DI': Internal diagnostic record

v 'DX': External diagnostic record

v 'EI': Internal event record

v 'EX': External event record

TIMESTAMP TIMESTAMP The time that the message was created.

TIMEZONE INTEGER The time difference (in minutes) from the Universal
Coordinated Time (UCT). For example, -300 is EST.

INSTANCENAME VARCHAR(128) The name of the instance where the message was
created.

DBPARTITIONNUM SMALLINT The partition number where the message was created.
For non-partitioned database, 0 is returned.

LEVEL CHAR(1) The severity level of the record. The possible values are:

v 'C': Critical

v 'E': Error

v ' I': Informational

v 'S': Severe

v 'W': Warning

IMPACT VARCHAR(18) Qualifies the impact of this message from a user's
perspective. This clarifies the impact of the message on
the business process DB2 is part of. The possible values
are:

v 'CRITICAL'

v 'IMMEDIATE'

v 'NONE'

v 'POTENTIAL'

v 'UNLIKELY'

DBNAME VARCHAR(128) The name of the database being accessed while this
message was created.

EDU_ID BIGINT The Engine Dispatched Unit identifier that created this
message.

1004 Administrative Routines and Views

Table 263. Information returned by the PD_GET_DIAG_HIST table function (continued)

Column Name Data Type Description

EDUNAME VARCHAR(64) The name of the engine Dispatched Unit that created this
message.

PID BIGINT The operating system process identifier that created this
message.

PROCESS_NAME VARCHAR(255) The operating system process name that created this
message.

TID BIGINT The thread numeric identifier that created this message.

APPLNAME VARCHAR(255) The name of the client application that initiated the
connection, if it is available.

APPL_ID VARCHAR(64) The application identifier that initiated the connection if
available. For example: 'G91A3955.F33A.02DD18143340'

APPLHANDLE VARCHAR(9) A system-wide unique identifier for the application that
initiated the connection when available. This is
synonymous to agent ID. The identifier consists of the
coordinating partition number and a 16-bit counter
separated by a '-'. The format is as follows: 'nnn-xxxxx'

AUTH_ID VARCHAR(30) The system authorization identifier of the process.

PRODUCT VARCHAR(50) The name of the product that created the message. For
example 'DB2 Common'.

COMPONENT VARCHAR(255) The name of the component that created the message.

FUNCTION VARCHAR(255) The name of the function that generated the message.

PROBE INTEGER Probe point number used to identify where the message
was generated in the function.

CALLEDPRODUCT VARCHAR(50) The name of the product at the source of the error. This
is used when the source of an error is not where the
message was created.

CALLEDCOMPONENT VARCHAR(255) The name of the component at the source of the error.
This is used when the source of an error is not where the
message was created.

CALLEDFUNCTION VARCHAR(255) The name of the function at the source of the error. This
is used when the source of an error is not where the
message was created.

OSERR INTEGER The operating system error number.

RETCODE INTEGER The product specific return code.

MSGNUM INTEGER The numeric message number for the associated
message, if it is available. For example, this is the
numeric portion of ADM7513W.

MSGTYPE CHAR(3) The type related to the message identifier, if it is
available. For example, ADM is used for administration
notification log messages.

MSG CLOB(16KB) The short description text for this record. This is the
translated message text corresponding to the MSGNUM,
and MSGTYPE for translated messages. For
non-translated messages, this is the short description. For
example : 'Bringing down all db2fmp processes as part
of db2stop'.

Chapter 21. Miscellaneous routines and views 1005

Table 263. Information returned by the PD_GET_DIAG_HIST table function (continued)

Column Name Data Type Description

OBJTYPE VARCHAR(64) The type of object the event applies to, if it is available.
The possible values are:

v 'APM'

v 'CATALOG CACHE ENTRY'

v 'CFG'

v 'CLI'

v 'CLP'

v 'CONTAINER'

v 'COUNTER'

v 'DAS'

v 'DB2AGENT'

v 'DB PART MAP ID'

v 'DB PART NUM'

v 'DBA'

v 'DBM'

v 'DMS'

v 'DPS'

v 'EDU'

v 'EVALUATION'

v 'EXTENDER'

v 'FCM'

v 'HISTOGRAM TEMPLATE'

v 'INDEX STATS'

v 'INITIAL SAMPLING'

v 'REDIST DB PART GROUP'

v 'REDIST TABLE'

v 'RDS'

v 'SAMPLING TEST'

v 'SERVICE CLASS'

v 'STATS'

v 'STATS DAEMON'

v 'TABLE'

v 'TABLE STATS'

v 'TABLE AND INDEX STATS'

v 'THRESHOLD'

v 'UDF'

v 'WORK ACTION SET'

v 'WORK CLASS SET'

v 'WORKLOAD'

OBJNAME VARCHAR(255) The name of the object the event relates to, if it is
available.

OBJNAME_QUALIFIER VARCHAR(255) Additional information about the object, if it is available.

1006 Administrative Routines and Views

Table 263. Information returned by the PD_GET_DIAG_HIST table function (continued)

Column Name Data Type Description

EVENTTYPE VARCHAR(24) The event type is the action or verb associated with this
event. The possible values are:

v 'ACCEPT'

v 'ACCESS'

v 'ADD'

v 'ALTER'

v 'ASSOCIATE'

v 'AVAILABLE'

v 'BRINGDOWN'

v 'CHANGE'

v 'CHANGECFG'

v 'CLOSE'

v 'COLLECT'

v 'CONNECT'

v 'CREATE'

v 'DEPENDENCY'

v 'DESTROY'

v 'DISASSOCIATE'

v 'DISCONNECT'

v 'DISPATCH'

v 'DROP'

v 'FINI'

v 'FREE'

v 'GET'

v 'INIT'

v 'INTERRUPT'

v 'OPEN','READ'

v 'RECV'

v 'REPLY'

v 'REPORT'

v 'REQUEST'

v 'RESET'

v 'SEND'

v 'START'

v 'STARTUP'

v 'STOP'

v 'SWITCH'

v 'TERMINATE'

v 'TRANSFER'

v 'WAIT'

v 'WORK'

v 'WRITE'

EVENTDESC VARCHAR(256) A short representation of the key fields for this event.

Chapter 21. Miscellaneous routines and views 1007

Table 263. Information returned by the PD_GET_DIAG_HIST table function (continued)

Column Name Data Type Description

FIRST_EVENTQUALIFIERTYPE VARCHAR(64) The type of the first event qualifier. Event qualifiers are
used to describe what was affected by the event. The
possible values are:

v 'AT'

v 'BY'

v 'CONTEXT'

v 'DUE TO'

v 'FOR'

v 'FROM'

v 'ON'

v 'TO'

If facility is OPTSTATS, the only value is 'AT'.

FIRST_EVENTQUALIFIER CLOB(16K) The first qualifier for the event. If facility is OPTSTATS,
this will be a timestamp indicating when the statistics
collection occurred.

SECOND_EVENTQUALIFIERTYPE VARCHAR(64) The type of the second event qualifier. If facility is
OPTSTATS, the value is 'BY'.

SECOND_EVENTQUALIFIER CLOB(16K) The second qualifier for the event. If facility is
OPTSTATS, the possible values are:

v Asynchronous

v FABRICATE

v FABRICATE PARTIAL

v SYNCHRONOUS

v SYNCHRONOUS SAMPLED

v USER

THIRD_EVENTQUALIFIERTYPE VARCHAR(64) The type of the third event qualifier. If facility is
OPTSTATS, the value is 'DUE TO'.

THIRD_EVENTQUALIFIER CLOB(16K) The third qualifier for the event. If facility is OPTSTATS,
the possible values are:

v Conflict

v Error

v Object unavailable

v RUNSTATS error

v Timeout

EVENTSTATE VARCHAR(255) State of the object or action as a result of the event. This
can also contain a percentage indicating the progression
of the event.

1008 Administrative Routines and Views

Table 263. Information returned by the PD_GET_DIAG_HIST table function (continued)

Column Name Data Type Description

EVENTATTRIBUTE VARCHAR(255) The event attributes. This is a list of attributes associated
with the event. when more than one attribute is used,
the list is separated by '+' characters. For example
'CACHED + LOGICAL + AUTO'. The possible values
are:

v 'ASYNC'

v 'AUTO'

v 'CACHED'

v 'DIRECT'

v 'EXTERNAL'

v 'INDIRECT'

v 'INTERNAL'

v 'LOGICAL'

v 'PERMANENT'

v 'PHYSICAL'

v 'SYNC'

v 'TEMPORARY'

EVENTSTACK CLOB(16K) The logical event stack at the point the record was
logged when applicable.

CALLSTACK CLOB(16K) The operating system stack dump for the thread that
generated this record when applicable.

DUMPFILE CLOB(5000) The name of the secondary dump file associated with the
log record when applicable. This is a fully qualified path
to a file or directory where additional information
related to the message can be retrieved.

FULLREC CLOB(16K) Formatted text version of the entire record. This section
also contains additional DATA fields.

PDLOGMSGS_LAST24HOURS administrative view and
PD_GET_LOG_MSGS table function – Retrieve problem determination
messages

The PDLOGMSGS_LAST24HOURS administrative view and the
PD_GET_LOG_MSGS table function return problem determination log messages
that were logged in the DB2 notification log. The information is intended for use
by database and system administrators.

PDLOGMSGS_LAST24HOURS administrative view

The PDLOGMSGS_LAST24HOURS administrative view returns problem
determination log messages that were logged in the DB2 notification log in the last
24 hours.

The schema is SYSIBMADM.

Refer to Table 264 on page 1015 for a complete list of information that can be
returned.

Chapter 21. Miscellaneous routines and views 1009

Authorization

One of the following authorizations is required:
v SELECT privilege on the PDLOGMSGS_LAST24HOURS administrative view
v CONTROL privilege on the PDLOGMSGS_LAST24HOURS administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the PD_GET_LOG_MSGS table function
v DATAACCESS authority

Example

Get all critical log messages logged in the last 24 hours, ordered by most recent.
SELECT * FROM SYSIBMADM.PDLOGMSGS_LAST24HOURS

WHERE MSGSEVERITY = ’C’ ORDER BY TIMESTAMP DESC

The following example is a sample output from this query.
TIMESTAMP TIMEZONE INSTANCENAME ...
-------------------------- ----------- ----------------- ...
2005-11-23-21.56.41.240066 -300 svtdbm4 ...

...

...

...

...

...

...
2005-11-23-21.56.39.150597 -300 svtdbm4 ...
2005-11-23-21.56.37.363384 -300 svtdbm4 ...

...

...

...
2005-11-23-21.56.35.880314 -300 svtdbm4 ...

...

4 record(s) selected.

Output from this query (continued).
... DBPARTITIONNUM DBNAME PID PROCESSNAME ...
... -------------- ------------- ---...----- -------------------- ...
... 0 CAPTAIN 4239374 db2agent (CAPTAIN) 0 ...
... ...
... ...
... ...
... ...
... ...
... ...
... 0 CAPTAIN 4239374 db2agent (CAPTAIN) 0 ...
... 0 CAPTAIN 4239374 db2agent (CAPTAIN) 0 ...
... ...
... ...
... ...
... 0 CAPTAIN 4239374 db2agent (CAPTAIN) 0 ...
... ...
... ...

Output from this query (continued).

1010 Administrative Routines and Views

...TID APPL_ID COMPONENT ...

...--- ------------------------------- --------------------- ...

... 1 9.26.15.148.36942.051124025612 oper system services ...

... ...

... ...

... ...

... ...

... ...

... ...

... 1 9.26.15.148.36942.051124025612 base sys utilities ...

... 1 9.26.15.148.36942.051124025612 relation data serv ...

... ...

... ...

... ...

... 1 9.26.15.148.36942.051124025612 relation data serv ...

... ...

... ...

Output from this query (continued).
... FUNCTION PROBE MSGNUM MSGTYPE ...
... ------------------ ------ ----------- ------- ...
... sqloSleepInstance 38 504 ADM ...
... ...
... ...
... ...
... ...
... ...
... ...
... sqleMarkDBad 10 7518 ADM ...
... sqlrr_dump_ffdc 10 1 ADM ...
... ...
... ...
... ...
... sqlrr_dump_ffdc 10 1 ADM ...
... ...

Output from this query (continued).
... MSGSEVERITY MSG
... ----------- -------------------------------------
... C ADM0504C An unexpected internal
... processing error has occurred. ALL
... DB2 PROCESSES ASSOCIATED WITH THIS
... INSTANCE HAVE BEEN SUSPENDED.
... Diagnostic information has been
... recorded. Contact IBM Support
... for further assistance.
... C ADM7518C "CAPTAIN " marked bad.
... C ADM0001C A severe error has occurred.
... Examine the administration notification
... log and contact IBM Support if
... necessary.
... C ADM0001C A severe error has occurred.
... Examine the administration notification
... log and contact IBM Support if necessary.

PD_GET_LOG_MSGS table function

The PD_GET_LOG_MSGS table function returns the same information as the
PDLOGMSGS_LAST24HOURS administrative view, but allows you to specify a
specific time period that is not limited to the last 24 hours.

Refer to Table 264 on page 1015 for a complete list of information that can be
returned.

Chapter 21. Miscellaneous routines and views 1011

Syntax

�� PD_GET_LOG_MSGS (oldest_timestamp) ��

The schema is SYSPROC.

Table function parameter

oldest_timestamp
An input argument of type TIMESTAMP that specifies a valid timestamp.
Entries are returned starting with the most current timestamp and ending with
the log entry with the timestamp specified by this input argument. If a null
value is specified, all log entries are returned.

Authorization

EXECUTE privilege on the PD_GET_LOG_MSGS table function.

Examples

Example 1: Retrieve all notification messages logged for database SAMPLE on
instance DB2 in the last week for all database partitions. Report messages in
chronological order.
SELECT TIMESTAMP, APPL_ID, DBPARTITIONNUM, MSG

FROM TABLE (PD_GET_LOG_MSGS(CURRENT_TIMESTAMP - 7 DAYS)) AS T
WHERE INSTANCENAME = ’DB2’ AND DBNAME = ’SAMPLE’
ORDER BY TIMESTAMP ASC

The following example is a sample output from this query.
TIMESTAMP APPL_ID DBPARTITIONNUM ...
-------------------------- -------------------------- -------------- ...
2005-11-13-12.51.37.772000 *LOCAL.DB2.050324175005 0 ...

...
2005-11-13-12.51.37.772001 *LOCAL.DB2.050324175005 0 ...

...
2005-11-13-12.51.37.781000 *LOCAL.DB2.050324175005 0 ...

...
2005-11-13-12.51.37.781001 *LOCAL.DB2.050324175005 0 ...

...

...
2005-11-17-14.12.39.036001 *LOCAL.DB2.041117191249 0 ...
2005-11-17-14.12.39.056000 *LOCAL.DB2.041117191249 0 ...
2005-11-17-14.13.04.450000 *LOCAL.DB2.041117191307 0 ...
2005-11-17-14.13.04.460000 *LOCAL.DB2.041117191307 0 ...
2005-11-17-14.18.29.042000 *LOCAL.DB2.041117190824 0 ...
...
...
...

Output from this query (continued).
... MSG
... --...--
... ADM5502W The escalation of "143" locks on table
... "SYSIBM .SYSINDEXAUTH" to lock intent "X" was successful.
... ADM5502W The escalation of "144" locks on table
... "SYSIBM .SYSINDEXES" to lock intent "X" was successful.
... ADM5502W The escalation of "416" locks on table
... "SYSIBM .SYSINDEXCOLUSE" tolock intent "X" was successful.
... ADM5500W DB2 is performing lock escalation. The total
... number of locks currently held is "1129", and the target

1012 Administrative Routines and Views

... number of locks to hold is "564".

... ADM7506W Database quiesce has been requested.

... ADM7507W Database quiesce request has completed successfully.

... ADM7510W Database unquiesce has been requested.

... ADM7509W Database unquiesce request has completed successfully.

... ADM4500W A package cache overflow condition has occurred. There

... is no error but this indicates that the package cache has

... exceeded the configured maximum size. If this condition persists,

... you may want to adjust the PCKCACHESZ DB configuration parameter.

Example 2: Retrieve all critical errors logged on instance DB2 for database partition
0 in the last day, sorted by most recent.
SELECT TIMESTAMP, DBNAME, MSG

FROM TABLE (PD_GET_LOG_MSGS(CURRENT_TIMESTAMP - 1 DAYS)) AS T
WHERE MSGSEVERITY = ’C’ AND INSTANCENAME = ’DB2’ AND
DBPARTITIONNUM = 0
ORDER BY TIMESTAMP DESC

The following example is a sample output from this query.
TIMESTAMP DBNAME MSG
-------------------------- ----------- -------------------------
2004-11-04-13.49.17.022000 TESTSBCS ADM0503C An unexpected

internal processing error
has occurred. ALL DB2
PROCESSES ASSOCIATED WITH
THIS INSTANCE HAVE BEEN
SHUTDOWN. Diagnostic
information has been
recorded. Contact IBM
Support for further
assistance.

2004-11-04-11.32.26.760000 SAMPLE ADM0503C An unexpected
internal processing error
has occurred. ALL DB2
PROCESSES ASSOCIATED WITH
THIS INSTANCE HAVE BEEN
SHUTDOWN. Diagnostic
information has been
recorded. Contact IBM
Support for further
assistance.

2 record(s) selected.

Example 3: Retrieve messages written by DB2 processes servicing application with
application ID of *LOCAL.DB2.050927195337, over the last day.
SELECT TIMESTAMP, MSG

FROM TABLE (PD_GET_LOG_MSGS(CURRENT_TIMESTAMP - 1 DAYS)) AS T
WHERE APPL_ID = ’*LOCAL.DB2.050927195337’

The following example is a sample output from this query.
TIMESTAMP MSG
-------------------------- --

2005-06-27-21.17.12.389000 ADM4500W A package cache overflow
condition has occurred. There is no error
but this indicates that the package cache
has exceeded the configured maximum
size. If this condition persists, you
may want to adjust the PCKCACHESZ DB
configuration parameter.

2005-06-27-18.41.22.248000 ADM4500W A package cache overflow
condition has occurred. There is no error
but this indicates that the package cache

Chapter 21. Miscellaneous routines and views 1013

has exceeded the configured maximum
size. If this condition persists, you
may want to adjust the PCKCACHESZ DB
configuration parameter.

2005-06-27-12.51.37.772001 ADM5502W The escalation of "143" locks
on table "SYSIBM .SYSINDEXAUTH" to
lock intent "X" was successful.

2005-06-27-12.51.37.772000 ADM5502W The escalation of "144" locks
on table "SYSIBM .SYSINDEXES" to lock
intent "X" was successful.

2005-06-27-12.51.37.761001 ADM5502W The escalation of "416" locks
on table "SYSIBM .SYSINDEXCOLUSE" to
lock intent "X" was successful.

...

Example 4: Find all instances of message ADM0504C in the notification log. Note
that the messages considered are not limited by a timestamp. This could be an
expensive operation if the notification logfile is very large.
SELECT TIMESTAMP, DBPARTITIONNUM, DBNAME, MSG

FROM TABLE (PD_GET_LOG_MSGS(CAST(NULL AS TIMESTAMP))) AS T
WHERE MSGNUM = 504 AND MSGTYPE = ’ADM’ AND MSGSEVERITY = ’C’

The following example is a sample output from this query.
TIMESTAMP DBPARTITIONNUM DBNAME ...
-------------------------- -------------- -------------...
2005-11-23-21.56.41.240066 0 CAPTAIN ...
...
...
...
...
...
...
...
...
...

Output from this query (continued).
... APPL_ID MSG
... --------------------------------- -------------------------
... 9.26.15.148.36942.051124025612 ADM0504C An unexpected
... internal processing error
... has occurred. ALL DB2
... PROCESSES ASSOCIATED WITH
... THIS INSTANCE HAVE BEEN
... SUSPENDED. Diagnostic
... information has been
... recorded. Contact IBM
... Support for further
... assistance.

Information returned

Note: In a partitioned database environment, the order in which log messages are
returned cannot be guaranteed. If the order of log records is important, the results
should be sorted by timestamp.

1014 Administrative Routines and Views

Table 264. Information returned by the PDLOGMSGS_LAST24HOURS administrative view
and the PD_GET_LOG_MSGS table function

Column name Data type Description

TIMESTAMP TIMESTAMP The time when the entry was
logged.

TIMEZONE INTEGER Time difference (in minutes)
from Universal Coordinated
Time (UCT). For example,
-300 is EST.

INSTANCENAME VARCHAR(128) Name of the instance that
generated the message.

DBPARTITIONNUM SMALLINT The database partition that
generated the message. For a
non partitioned database
environment, 0 is returned.

DBNAME VARCHAR(128) The database on which the
error or event occurred.

PID BIGINT Process ID of the process that
generated the message.

PROCESSNAME VARCHAR(255) Name of process that
generated the message.

TID BIGINT ID of the thread within the
process that generated the
message.

APPL_ID VARCHAR(64) ID of the application for
which the process is
working.

COMPONENT VARCHAR(255) The name of the DB2
component that is providing
the message. For messages
written by user applications
using the
db2AdminMsgWrite API,
"User Application" is
returned.

FUNCTION VARCHAR(255) The name of the DB2
function that is providing the
message. For messages
written by user applications
using the
db2AdminMsgWrite API,
"User Function" is returned.

PROBE INTEGER Unique internal identifier
that allows DB2 Customer
Support and Development to
locate the point in the DB2
source code that generated
the message.

MSGNUM INTEGER The numeric message
number for the error or
event.

Chapter 21. Miscellaneous routines and views 1015

Table 264. Information returned by the PDLOGMSGS_LAST24HOURS administrative view
and the PD_GET_LOG_MSGS table function (continued)

Column name Data type Description

MSGTYPE CHAR(3) Indicates the message type:
ADM (for messages written
to the administration
notification log) or NULL if
the message type cannot be
determined.

MSGSEVERITY CHAR(1) Message severity: C (critical),
E (error), W (warning), I
(informational) or NULL (if
the message severity could
not be determined).

MSG CLOB(16K) Notification log message text.

REORGCHK_IX_STATS procedure – Retrieve index statistics for
reorganization evaluation

The REORGCHK_IX_STATS procedure returns a result set containing index
statistics that indicate whether or not there is a need for reorganization.

Syntax

�� REORGCHK_IX_STATS (scope , criteria) ��

The schema is SYSPROC.

Procedure parameters

scope
An input argument of type CHAR(1) that specifies the scope of the tables that
are to be evaluated, using one of the following values:

'T'
Table

'S'
Schema

criteria
An input argument of type VARCHAR(259). If scope has a value of 'T', specifies
a fully qualified table name, or accepts one of the following values: ALL,
USER, or SYSTEM. If scope has a value of 'S', specifies a schema name.

Authorization
v SELECT privilege on catalog tables.
v EXECUTE privilege on the REORGCHK_IX_STATS procedure.

Example
CALL SYSPROC.REORGCHK_IX_STATS(’T’,’JESCOTT.EMPLOYEE’)

1016 Administrative Routines and Views

Usage note

The procedure uses the SYSTOOLSTMPSPACE table space. If
SYSTOOLSTMPSPACE does not already exist, the procedure will create this table
space.

Information returned

Table 265. Information returned by the REORGCHK_IX_STATS procedure

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema name.

TABLE_NAME VARCHAR(128) Table name.

INDEX_SCHEMA VARCHAR(128) Index schema name.

INDEX_NAME VARCHAR(128) Index name.

DATAPARTITIONNAME VARCHAR(128) Name of the data partition. NULL
for nonpartitioned tables.

INDCARD BIGINT Number of index entries in the
index. This can be different than
table cardinality for some indexes.
For example, the index cardinality
on XML columns might be greater
than the table cardinality.

NLEAF BIGINT Total number of index leaf pages.

NUM_EMPTY_LEAFS BIGINT Number of pseudo-empty index
leaf pages.

NLEVELS INTEGER Number of index levels.

NUMRIDS_DELETED BIGINT Number of pseudo-deleted RIDs.

FULLKEYCARD BIGINT Number of unique index entries
that are not marked deleted.

LEAF_RECSIZE BIGINT Record size of the index entry on a
leaf page. This is the average size
of the index entry excluding any
overhead and is calculated from
the average column length of all
columns participating in the index.

NONLEAF_RECSIZE BIGINT Record size of the index entry on a
non-leaf page. This is the average
size of the index entry excluding
any overhead and is calculated
from the average column length of
all columns participating in the
index except any INCLUDE
columns.

LEAF_PAGE_OVERHEAD BIGINT Reserved space on the index leaf
page for internal use.

NONLEAF_PAGE_OVERHEAD BIGINT Reserved space on the index
non-leaf page for internal use

PCT_PAGES_SAVED SMALLINT Percent of pages saved using Index
Compression. A non-zero number
indicates the index is compressed.

F4 INTEGER F4 formula value.

F5 INTEGER F5 formula value.

Chapter 21. Miscellaneous routines and views 1017

Table 265. Information returned by the REORGCHK_IX_STATS procedure (continued)

Column name Data type Description

F6 INTEGER F6 formula value.

F7 INTEGER F7 formula value.

F8 INTEGER F8 formula value.

REORG CHAR(5) A 5-character field, each character
mapping to one of the five
formulas: F4, F5, F6, F7, and F8; a
dash means that the formula value
is in the recommended range; an
asterisk means that the formula
value is out of the recommended
range, indicating a need for
reorganization.

REORGCHK_TB_STATS procedure – Retrieve table statistics for
reorganization evaluation

The REORGCHK_TB_STATS procedure returns a result set containing table
statistics that indicate whether or not there is a need for reorganization.

Syntax

�� REORGCHK_TB_STATS (scope , criteria) ��

The schema is SYSPROC.

Procedure parameters

scope
An input argument of type CHAR(1) that specifies the scope of the tables that
are to be evaluated, using one of the following values:

'T'
Table

'S'
Schema

criteria
An input argument of type VARCHAR(259). If scope has a value of 'T', specifies
a fully qualified table name, or accepts one of the following values: ALL,
USER, or SYSTEM. If scope has a value of 'S', specifies a schema name.

Authorization
v SELECT privilege on catalog tables.
v EXECUTE privilege on the REORGCHK_TB_STATS procedure.

Example
CALL SYSPROC.REORGCHK_TB_STATS(’T’,’JESCOTT.EMPLOYEE’)

1018 Administrative Routines and Views

Usage note

The procedure uses the SYSTOOLSTMPSPACE table space. If
SYSTOOLSTMPSPACE does not already exist, the procedure will create this table
space.

Information returned

Table 266. Information returned by the REORGCHK_TB_STATS procedure

Column name Data type Description

TABLE_SCHEMA VARCHAR(128) Schema name.

TABLE_NAME VARCHAR(128) Table name.

DATAPARTITIONNAME VARCHAR(128) Name of the data partition. NULL
for nonpartitioned tables.

CARD BIGINT Cardinality (number of rows in the
table).

OVERFLOW BIGINT Number of overflow rows.

NPAGES BIGINT Total number of pages on which
the rows of the table exist; -1 for a
view or alias, or if statistics are not
collected; -2 for a subtable or
hierarchy table.

FPAGES BIGINT Total number of pages; -1 for a
view or alias, or if statistics are not
collected; -2 for a subtable or
hierarchy table.

ACTIVE_BLOCKS BIGINT Total number of active blocks for a
multidimensional clustering (MDC)
table. This field is only applicable
to tables defined using the
ORGANIZE BY clause. It indicates
the number of blocks of the table
that contains data.

TSIZE BIGINT Size of the table.

F1 INTEGER F1 formula value.

F2 INTEGER F2 formula value.

F3 INTEGER F3 formula value.

REORG CHAR(3) A 3-character field, each character
mapping to one of the three
formulas: F1, F2, and F3; a dash
means that the formula value is in
the recommended range; an
asterisk means that the formula
value is out of the recommended
range, indicating a need for
reorganization

Chapter 21. Miscellaneous routines and views 1019

SQLERRM scalar functions - Retrieves error message information

There are two versions of the SQLERRM scalar function. The first allows for full
flexibility of message retrieval including using message tokens and language
selection. The second takes only an SQLCODE as an input parameter and returns
the short message in English.

SQLERRM scalar function

This SQLERRM scalar function takes a message identifier, locale and token input
and returns the short or long message of type VARCHAR(32672) in the specified
locale. If the input locale is not supported by the server, the message is returned in
English.

Syntax

�� SQLERRM (msgid , tokens , token_delimiter , locale , shortmsg �

�) ��

The schema is SYSPROC.

Scalar function parameters

msgid
An input argument of type VARCHAR(9) that represents the message number
for which the information should be retrieved. The message number is the
application return code prefixed with 'SQL', 'DBA' or 'CLI'. For example,
'SQL551', 'CLI0001'. The message number can also be an SQLSTATE, for
example, '42829'.

tokens
An input argument of type VARCHAR(70) that represents the error message
token list. Some messages might not have tokens. If this parameter is null, then
no token replacement occurs in the returned message. Token replacement only
occurs when returning the default short messages. If the long message option
is selected, no token replacement occurs.

token_delimiter
An input argument of type VARCHAR(1) that represents the token delimiter.
This delimiter must be unique and not contained in any tokens passed to the
scalar function. If no delimiter is supplied, the default delimiter used is the
semicolon.

locale
An input argument of type VARCHAR(33) that represents the locale to pass to
the server in order to have the error message retrieved in that language. If no
locale is specified, or the server does not support the locale, the message is
returned in English and a warning is returned.

shortmsg
An input argument of type INTEGER that is used to indicate if the long
message should be returned instead of the default short message. To return
long messages, this value must be set to 0 or CAST(NULL as INTEGER).

1020 Administrative Routines and Views

Authorization

EXECUTE privilege on the SQLERRM scalar function.

Examples

Example 1: Retrieve the English short message for SQL0551N with tokens
"AYYANG", "UPDATE" and "SYSCAT.TABLES".
VALUES (SYSPROC.SQLERRM

(’SQL551’, ’AYYANG;UPDATE;SYSCAT.TABLES’, ’;’, ’en_US’, 1))

The following example is a sample output returned.
1
--...--
SQL0551N "AYYANG" does not have the privilege to perform operation

"UPDATE" on object "SYSCAT.TABLES"

Example 2: Retrieve the English error message associated with SQLSTATE 42501.
VALUES (SYSPROC.SQLERRM (’42501’, ’’, ’’, ’en_US’, 1))

The following example is a sample output returned.
1
---...--
SQLSTATE 42501: The authorization ID does not have the privilege to

perform the specified operation on the identified object.

Example 3: Retrieve the English long error message for SQL1001N.
VALUES (SYSPROC.SQLERRM (’SQL1001’, ’’, ’’, ’en_US’, 0))

The following example is a sample output returned.
1
--...--
SQL1001N "<name>" is not a valid database name.

Explanation:

The syntax of the database name specified in the command is not
valid. The database name must contain 1 to 8 characters and all
the characters must be from the database manager base character
set.

The command cannot be processed.

User Response:

Resubmit the command with the correct database name.

sqlcode : -1001

sqlstate : 2E000

SQLERRM scalar function

This SQLERRM scalar function takes an SQLCODE as the only input and returns
the short message of type VARCHAR(32672) for the specified SQLCODE in
English.

Chapter 21. Miscellaneous routines and views 1021

Syntax

�� SQLERRM (sqlcode) ��

The schema is SYSPROC.

Scalar function parameter

sqlcode
An input argument of type INTEGER that represents an SQLCODE.

Authorization

EXECUTE privilege on the SQLERRM scalar function.

Example

Retrieve the short message for SQLCODE SQL0551N.
VALUES (SYSPROC.SQLERRM (551))

The following example is a sample output returned.
1
--...--
SQL0551N "" does not have the privilege to perform operation

"" on object "".

SYSINSTALLOBJECTS

The SYSINSTALLOBJECTS procedure creates or drops the database objects that are
required for a specific tool.

Syntax

�� SYSINSTALLOBJECTS (tool-name , action , tablespace-name , �

� schema-name) ��

The schema is SYSPROC.

Procedure parameters

tool-name
An input argument of type VARCHAR(128) that specifies the name of the tool
that is to be loaded, using one of the following values:
v 'AM' for creating activity monitor objects
v 'DB2AC' for autonomous computing (health monitor)
v 'STMG_DBSIZE_INFO' for storage management
v 'OPT_PROFILES' for creating the optimization profile table
v 'POLICY' for policy (tables and triggers)
v 'EXPLAIN' for creating or migrating explain tables
v 'ASP' for automatically generating statistics profiles

1022 Administrative Routines and Views

action
An input argument of type CHAR(1) that specifies the action that is to be
taken. Valid values are:

C Create objects.

D Drop objects.

V Verify objects.

M Migrate objects. The M option is only valid when used with the tool
name EXPLAIN. This option migrates explain tables that were created
in Version 9.5 through Version 9.7 to be compatible with Version 9.7 Fix
Pack 1. Explain tables you created in Version 9.7 Fix Pack 1, or later,
are not modified.

tablespace-name
An input argument of type VARCHAR(128) that specifies the name of the table
space in which the objects are to be created. If a value is not specified, or the
value is an empty or blank string, the default user space is used if the tool
name is AM. If the tool name is EXPLAIN and the action is M, the input table
space name is ignored and the table space is used where the explain tables that
are being migrated were created. Otherwise, the SYSTOOLSPACE table space is
used. If SYSTOOLSPACE does not already exist, it will be created.

schema-name
Except for 'EXPLAIN' tool-name option, SYSTOOLS is always used as the
schema regardless of the schema-name passed as the input parameter.

For 'EXPLAIN' tool-name option, an input schema-name can be passed and the
tables are created under the specified schema-name. If no schema-name is
passed as the input parameter, SYSTOOLS schema is used.

Authorization

One of the following authorities is required to execute the procedure:
v EXECUTE privilege on the procedure
v DATAACCESS authority
v DBADM authority
v SQLADM authority

Example
CALL SYSPROC.SYSINSTALLOBJECTS(’AM’, ’C’, CAST (NULL AS VARCHAR(128)),

CAST (NULL AS VARCHAR(128)))

Chapter 21. Miscellaneous routines and views 1023

1024 Administrative Routines and Views

Chapter 22. Deprecated SQL administrative routines and their
replacement routines or views

To provide expanded support in DB2 for Linux, UNIX, and Windows Version 9.7
for the existing administrative routines, some of the DB2 Version 9.5 routines have
been replaced with new, more comprehensive routines or views.

Applications that use the DB2 for Linux, UNIX, and Windows Version 9.7 table
functions should be modified to use the new functions or administrative views.
The new table functions have the same base names as the original functions but
are suffixed with '_Vxx' for the version of the product in which they were added
(for example, _V97). In most cases, the new table functions and administrative
views return additional information. The administrative views will always be
based on the most current version of the table functions, and therefore allow for
more application portability. As the columns may vary from one release to the next
(that is, some are added and some are deleted), it is recommended that specific
columns be selected from the administrative views, or that the result set be
described if a SELECT * statement is used by an application.

Table 267. Deprecated SQL administrative routines or views and their replacement routines or views for DB2 Version
9.7 Fix Pack 1 or later fix packs

DB2 Version 9.7 deprecated function
Deprecated
since

New Version 9.7 function or view in Fix Pack 1 or later
fix packs

“ENV_SYS_RESOURCES
administrative view - Return system
information” on page 1040

Version 9.7 Fix
Pack 6

v “ENV_GET_SYSTEM_RESOURCES table function -
Return system information” on page 334

“LOCKS_HELD administrative view -
Retrieve information about the locks
held” on page 579

Version 9.7 Fix
Pack 1

v “MON_GET_APPL_LOCKWAIT - get information
about locks for which an application is waiting” on
page 423

v “MON_GET_LOCKS - list all locks in the currently
connected database” on page 452

v “MON_FORMAT_LOCK_NAME - format the internal
lock name and return details” on page 389

v “MON_LOCKWAITS administrative view - Retrieve
metrics for applications that are waiting to obtain
locks” on page 520

“LOCKWAITS administrative view -
Retrieve current lockwaits information”
on page 582

Version 9.7 Fix
Pack 1

v “MON_GET_APPL_LOCKWAIT - get information
about locks for which an application is waiting” on
page 423

v “MON_GET_LOCKS - list all locks in the currently
connected database” on page 452

v “MON_FORMAT_LOCK_NAME - format the internal
lock name and return details” on page 389

v “MON_LOCKWAITS administrative view - Retrieve
metrics for applications that are waiting to obtain
locks” on page 520

“SNAPDB administrative view and
SNAP_GET_DB_V95 table function -
Retrieve snapshot information from the
dbase logical group” on page 756

Version 9.7 Fix
Pack 1

v “SNAPDB administrative view and
SNAP_GET_DB_V97 table function - Retrieve
snapshot information from the dbase logical group”
on page 623

© Copyright IBM Corp. 2006, 2012 1025

Table 267. Deprecated SQL administrative routines or views and their replacement routines or views for DB2 Version
9.7 Fix Pack 1 or later fix packs (continued)

DB2 Version 9.7 deprecated function
Deprecated
since

New Version 9.7 function or view in Fix Pack 1 or later
fix packs

“SNAPDB_MEMORY_POOL
administrative view and
SNAP_GET_DB_MEMORY_POOL table
function – Retrieve database level
memory usage information” on page
1116

Version 9.7 Fix
Pack 5

v “MON_GET_MEMORY_SET - get memory set
information” on page 459

v “MON_GET_MEMORY_POOL - get memory pool
information” on page 456

“SNAPDBM_MEMORY_POOL
administrative view and
SNAP_GET_DBM_MEMORY_POOL
table function – Retrieve database
manager level memory usage
information” on page 1123

Version 9.7 Fix
Pack 5

v “MON_GET_MEMORY_SET - get memory set
information” on page 459

v “MON_GET_MEMORY_POOL - get memory pool
information” on page 456

“SNAPLOCK administrative view and
SNAP_GET_LOCK table function –
Retrieve lock logical data group
snapshot information” on page 657

Version 9.7 Fix
Pack 1

v “MON_GET_APPL_LOCKWAIT - get information
about locks for which an application is waiting” on
page 423

v “MON_GET_LOCKS - list all locks in the currently
connected database” on page 452

v “MON_FORMAT_LOCK_NAME - format the internal
lock name and return details” on page 389

v “MON_LOCKWAITS administrative view - Retrieve
metrics for applications that are waiting to obtain
locks” on page 520

“SNAPLOCKWAIT administrative view
and SNAP_GET_LOCKWAIT table
function – Retrieve lockwait logical
data group snapshot information” on
page 662

Version 9.7 Fix
Pack 1

v “MON_GET_APPL_LOCKWAIT - get information
about locks for which an application is waiting” on
page 423

v “MON_GET_LOCKS - list all locks in the currently
connected database” on page 452

v “MON_FORMAT_LOCK_NAME - format the internal
lock name and return details” on page 389

v “MON_LOCKWAITS administrative view - Retrieve
metrics for applications that are waiting to obtain
locks” on page 520

Table 268. Deprecated SQL administrative routines and their replacement routines or views for DB2 Version 9.7

DB2 Version 9.5 deprecated function New Version 9.7 function or view

“ADMINTABCOMPRESSINFO view and
ADMIN_GET_TAB_COMPRESS_INFO” on page
1035

“ADMINTABCOMPRESSINFO administrative view and
ADMIN_GET_TAB_COMPRESS_INFO_V97 table function -
returns compressed information” on page 225

“ADMIN_GET_TAB_INFO table function -
Retrieve size and state information for tables” on
page 1028

“ADMINTABINFO administrative view and
ADMIN_GET_TAB_INFO_V97 table function - retrieve table size
and state information” on page 232

“SNAPSTORAGE_PATHS administrative view
and SNAP_GET_STORAGE_PATHS table
function - Retrieve automatic storage path
information” on page 807

“SNAPSTORAGE_PATHS administrative view and
SNAP_GET_STORAGE_PATHS_V97 table function - Retrieve
automatic storage path information” on page 674

“SNAPTBSP_PART administrative view and
SNAP_GET_TBSP_PART_V91 table function -
Retrieve tablespace_nodeinfo logical data group
snapshot information” on page 833

“SNAPTBSP_PART administrative view and
SNAP_GET_TBSP_PART_V97 table function - Retrieve
tablespace_nodeinfo logical data group snapshot information” on
page 699

1026 Administrative Routines and Views

Table 268. Deprecated SQL administrative routines and their replacement routines or views for DB2 Version
9.7 (continued)

DB2 Version 9.5 deprecated function New Version 9.7 function or view

“WLM_GET_ACTIVITY_DETAILS - Return
detailed information about a specific activity” on
page 1230

“MON_GET_ACTIVITY_DETAILS table function - Get complete
activity details” on page 413

“WLM_GET_SERVICE_SUBCLASS_STATS -
return statistics of service subclasses” on page
1247

“WLM_GET_SERVICE_SUBCLASS_STATS_V97 table function -
Return statistics of service subclasses” on page 931

“WLM_GET_WORKLOAD_STATS - return
workload statistics” on page 1258

“WLM_GET_WORKLOAD_STATS_V97 table function - Return
workload statistics” on page 947

“WLM_GET_WORKLOAD_OCCURRENCE_
ACTIVITIES - Return a list of activities” on page
1253

“WLM_GET_WORKLOAD_OCCURRENCE _ACTIVITIES_V97 -
return a list of activities” on page 942

“WLM_GET_SERVICE_CLASS_WORKLOAD_
OCCURRENCES - List of workload occurrences”
on page 1243

“WLM_GET_SERVICE_CLASS_WORKLOAD
_OCCURRENCES_V97 - list workload occurrences” on page 927

“WLM_GET_SERVICE_CLASS_AGENTS - List
agents running in a service class” on page 1237

“WLM_GET_SERVICE_CLASS_AGENTS_V97 table function - list
agents running in a service class” on page 919

The health monitor has been deprecated in DB2 for Linux, UNIX, and Windows
Version 9.7 . The deprecated health monitor interfaces are still supported in Version
9.7. A new suite of GUI tools for managing DB2 for Linux, UNIX, and Windows
data and data-centric applications is available and can be used instead of the
Control Center tools. For more information, see Database management and
application development tools.

Table 269. Deprecated Health Monitor routines

“HEALTH_CONT_HI” on page 1045

“HEALTH_CONT_HI_HIS” on page 1047

“HEALTH_CONT_INFO” on page 1049

“HEALTH_DB_HI” on page 1051

“HEALTH_DB_HI_HIS” on page 1054

“HEALTH_DB_HIC” on page 1058

“HEALTH_DB_HIC_HIS” on page 1060

“HEALTH_DB_INFO” on page 1062

“HEALTH_DBM_HI” on page 1064

“HEALTH_DBM_HI_HIS” on page 1065

“HEALTH_DBM_INFO” on page 1068

“HEALTH_GET_ALERT_ACTION_CFG” on page 1069

“HEALTH_GET_ALERT_CFG” on page 1072

“HEALTH_GET_IND_DEFINITION” on page 1075

“HEALTH_HI_REC” on page 1077

“HEALTH_TBS_HI” on page 1079

“HEALTH_TBS_HI_HIS” on page 1082

“HEALTH_TBS_INFO” on page 1086

Chapter 22. Deprecated routines 1027

In the previous release, DB2 Version 9.5, there were also new functions that
replaced DB2 Version 9.1 functions.

Table 270. Deprecated SQL administrative routines and their replacement routines or views for DB2 Version 9.5

DB2 Version 9.1 deprecated function New DB2 Version 9.5 function or view

“SNAP_GET_APPL table function –
Retrieve appl logical data group
snapshot information” on page 1091

“SNAPAPPL administrative view and SNAP_GET_APPL_V95 table
function - Retrieve appl logical data group snapshot information” on page
602

“SNAP_GET_APPL_INFO table
function – Retrieve appl_info logical
data group snapshot information” on
page 1098

“SNAPAPPL_INFO administrative view and
SNAP_GET_APPL_INFO_V95 table function - Retrieve appl_info logical
data group snapshot information” on page 594

“SNAP_GET_BP table function –
Retrieve bufferpool logical group
snapshot information” on page 1104

“SNAPBP administrative view and SNAP_GET_BP_V95 table function -
Retrieve bufferpool logical group snapshot information” on page 610

“SNAP_GET_DB_V91 table function -
Retrieve snapshot information from the
dbase logical group” on page 1126

“SNAPDB administrative view and SNAP_GET_DB_V95 table function -
Retrieve snapshot information from the dbase logical group” on page 756

“SNAP_GET_DBM table function –
Retrieve the dbm logical grouping
snapshot information” on page 1120

“SNAPDBM administrative view and SNAP_GET_DBM_V95 table
function - Retrieve the dbm logical grouping snapshot information” on
page 634

“SNAP_GET_DYN_SQL_V91 table
function - Retrieve dynsql logical group
snapshot information” on page 1148

“SNAPDYN_SQL administrative view and SNAP_GET_DYN_SQL_V95
table function - Retrieve dynsql logical group snapshot information” on
page 642

ADMIN_GET_TAB_INFO table function - Retrieve size and state
information for tables

Note: This table function has been deprecated and replaced by the
“ADMINTABINFO administrative view and ADMIN_GET_TAB_INFO_V97 table
function - retrieve table size and state information” on page 232.

The ADMIN_GET_TAB_INFO table function provides methods to retrieve table
size and state information that is not currently available in the catalog views.

Refer to the ADMIN_GET_TAB_INFO table function metadata table for a complete
list of information that can be returned.

Syntax

�� ADMIN_GET_TAB_INFO (tabschema , tabname) ��

The schema is SYSPROC.

Table function parameters

tabschema
An input argument of type VARCHAR(128) that specifies a schema name.

tabname
An input argument of type VARCHAR(128) that specifies a table name, a
materialized query table name or a hierarchy table name.

1028 Administrative Routines and Views

Authorization

EXECUTE privilege on the ADMIN_GET_TAB_INFO table function.

Example

Example 1: Retrieve size and state information for the table DBUSER1.EMPLOYEE.
SELECT * FROM TABLE (SYSPROC.ADMIN_GET_TAB_INFO(’DBUSER1’, ’EMPLOYEE’))

AS T

Example 2: Suppose there exists a non-partitioned table (DBUSER1.EMPLOYEE),
with all associated objects (for example, indexes and LOBs) stored in a single table
space. Calculate how much physical space the table is using in the table space:
SELECT (data_object_p_size + index_object_p_size + long_object_p_size +

lob_object_p_size + xml_object_p_size) as total_p_size
FROM TABLE(SYSPROC.ADMIN_GET_TAB_INFO(’DBUSER1’, ’EMPLOYEE’)) AS T

Calculate how much space would be required if the table were moved to another
table space, where the new table space has the same page size and extent size as
the original table space:
SELECT (data_object_l_size + index_object_l_size + long_object_l_size +

lob_object_l_size + xml_object_l_size) as total_l_size
FROM TABLE(SYSPROC.ADMIN_GET_TAB_INFO(’DBUSER1’, ’EMPLOYEE’)) AS T

Usage notes
v If both the tabschema and tabname are specified, information is returned for that

specific table only.
v If the tabschema is specified but tabname is empty (") or NULL, information is

returned for all tables in the given schema.
v If the tabschema is empty (") or NULL and tabname is specified, an error is

returned. To retrieve information for a specific table, the table must be identified
by both schema and table name.

v If both tabschema and tabname are empty (") or NULL, information is returned for
all tables.

v If tabschema or tabname do not exist, or tabname does not correspond to a table
name (type T), a materialized query table name (type S) or a hierarchy table
name (type H), an empty result set is returned.

v When the ADMIN_GET_TAB_INFO table function is retrieving data for a given
table, it will acquire a shared lock on the corresponding row of SYSTABLES to
ensure consistency of the data that is returned (for example, to ensure that the
table is not dropped while information is being retrieved for it). The lock will
only be held for as long as it takes to retrieve the size and state information for
the table, not for the duration of the table function call.

v Physical size reported for tables in SMS table spaces is the same as logical size.
v When an inplace reorg is active on a table, the physical size for the data object

(DATA_OBJECT_P_SIZE) will not be calculated. Only the logical size will be
returned. You can tell if an inplace reorg is active on the table by looking at the
INPLACE_REORG_STATUS output column.

v The logical size reported for LOB objects created before DB2 UDB Version 8
might be larger than the physical size if the objects have not yet been
reorganized.

Chapter 22. Deprecated routines 1029

ADMIN_GET_TAB_INFO table function metadata

Table 271. ADMIN_GET_TAB_INFO table function metadata

Column name Data type Description

TABSCHEMA VARCHAR(128) Schema name.

TABNAME VARCHAR(128) Table name.

TABTYPE CHAR(1) Table type:

v 'H' = hierarchy table

v 'S' = materialized query table

v 'T' = table

DBPARTITIONNUM SMALLINT Database partition number.

DATA_PARTITION_ID INTEGER Data partition number.

AVAILABLE CHAR(1) State of the table:

v 'N' = the table is unavailable. If the
table is unavailable, all other
output columns relating to the size
and state will be NULL.

v 'Y' = the table is available.

Note: Rollforward through an
unrecoverable load will put a table
into the unavailable state.

DATA_OBJECT_L_SIZE BIGINT Data object logical size. Amount of
disk space logically allocated for the
table, reported in kilobytes. The
logical size is the amount of space
that the table knows about. It might
be less than the amount of space
physically allocated for the table (for
example, in the case of a logical table
truncation). For multi-dimensional
clustering (MDC) tables, this size
includes the logical size of the block
map object. The size returned takes
into account full extents that are
logically allocated for the table and,
for objects created in DMS table
spaces, an estimate of the Extent Map
Page (EMP) extents. This size
represents the logical size of the base
table only. Space consumed by LOB
data, Long Data, Indexes and XML
objects are reported by other
columns.

1030 Administrative Routines and Views

Table 271. ADMIN_GET_TAB_INFO table function metadata (continued)

Column name Data type Description

DATA_OBJECT_P_SIZE BIGINT Data object physical size. Amount of
disk space physically allocated for
the table, reported in kilobytes. For
MDC tables, this size includes the
size of the block map object. The size
returned takes into account full
extents allocated for the table and
includes the EMP extents for objects
created in DMS table spaces. This
size represents the physical size of
the base table only. Space consumed
by LOB data, Long Data, Indexes and
XML objects are reported by other
columns.

INDEX_OBJECT_L_SIZE BIGINT Index object logical size. Amount of
disk space logically allocated for the
indexes defined on the table,
reported in kilobytes. The logical size
is the amount of space that the table
knows about. It might be less than
the amount of space physically
allocated to hold index data for the
table (for example, in the case of a
logical table truncation). The size
returned takes into account full
extents that are logically allocated for
the indexes and, for indexes created
in DMS table spaces, an estimate of
the EMP extents. This value is only
reported for non-partitioned tables.
For partitioned tables, this value will
be 0.

INDEX_OBJECT_P_SIZE BIGINT Index object physical size. Amount of
disk space physically allocated for
the indexes defined on the table,
reported in kilobytes. The size
returned takes into account full
extents allocated for the indexes and
includes the EMP extents for indexes
created in DMS table spaces. This
value is only reported for
non-partitioned tables. For
partitioned tables this value will be 0.

Chapter 22. Deprecated routines 1031

Table 271. ADMIN_GET_TAB_INFO table function metadata (continued)

Column name Data type Description

LONG_OBJECT_L_SIZE BIGINT Long object logical size. Amount of
disk space logically allocated for long
field data in a table, reported in
kilobytes. The logical size is the
amount of space that the table knows
about. It might be less than the
amount of space physically allocated
to hold long field data for the table
(for example, in the case of a logical
table truncation). The size returned
takes into account full extents that
are logically allocated for long field
data and, for long field data created
in DMS table spaces, an estimate of
the EMP extents.

LONG_OBJECT_P_SIZE BIGINT Long object physical size. Amount of
disk space physically allocated for
long field data in a table, reported in
kilobytes. The size returned takes
into account full extents allocated for
long field data and includes the EMP
extents for long field data created in
DMS table spaces.

LOB_OBJECT_L_SIZE BIGINT LOB object logical size. Amount of
disk space logically allocated for LOB
data in a table, reported in kilobytes.
The logical size is the amount of
space that the table knows about. It
might be less than the amount of
space physically allocated to hold
LOB data for the table (for example,
in the case of a logical table
truncation). The size includes space
logically allocated for the LOB
allocation object. The size returned
takes into account full extents that
are logically allocated for LOB data
and, for LOB data created in DMS
table spaces, an estimate of the EMP
extents.

LOB_OBJECT_P_SIZE BIGINT LOB object physical size. Amount of
disk space physically allocated for
LOB data in a table, reported in
kilobytes. The size includes space
allocated for the LOB allocation
object. The size returned takes into
account full extents allocated for LOB
data and includes the EMP extents
for LOB data created in DMS table
spaces.

1032 Administrative Routines and Views

Table 271. ADMIN_GET_TAB_INFO table function metadata (continued)

Column name Data type Description

XML_OBJECT_L_SIZE BIGINT XML object logical size. Amount of
disk space logically allocated for
XML data in a table, reported in
kilobytes. The logical size is the
amount of space that the table knows
about. It might be less than the
amount of space physically allocated
to hold XML data for the table (for
example, in the case of a logical table
truncation). The size returned takes
into account full extents that are
logically allocated for XML data and,
for XML data created in DMS table
spaces, an estimate of the EMP
extents.

XML_OBJECT_P_SIZE BIGINT XML object physical size. Amount of
disk space physically allocated for
XML data in a table, reported in
kilobytes. The size returned takes
into account full extents allocated for
XML data and includes the EMP
extents for XML data created in DMS
table spaces.

INDEX_TYPE SMALLINT Indicates the type of indexes
currently in use for the table.
Returns:

v 1 if type-1 indexes are being used.

v 2 if type-2 indexes are being used.

REORG_PENDING CHAR(1) A value of 'Y' indicates that a reorg
recommended alter has been applied
to the table and a classic (offline)
reorg is required. Otherwise 'N' is
returned.

INPLACE_REORG_STATUS VARCHAR(10) Current status of an inplace table
reorganization on the table. The
status can be one of the following
values:

v ABORTED (in a PAUSED state, but
unable to RESUME; STOP is
required)

v EXECUTING

v NULL (if no inplace reorg has been
performed on the table)

v PAUSED

LOAD_STATUS VARCHAR(12) Current status of a load operation
against the table. The status can be
one of the following values:

v IN_PROGRESS

v NULL (if there is no load in
progress for the table and the table
is not in load pending state)

v PENDING

Chapter 22. Deprecated routines 1033

Table 271. ADMIN_GET_TAB_INFO table function metadata (continued)

Column name Data type Description

READ_ACCESS_ONLY CHAR(1) 'Y' if the table is in Read Access Only
state, 'N' otherwise. A value of 'N'
should not be interpreted as meaning
that the table is fully accessible. If a
load is in progress or pending, a
value of 'Y' means the table data is
available for read access, and a value
of 'N' means the table is inaccessible.
Similarly, if the table status is set
integrity pending (refer to
SYSCAT.TABLES STATUS column),
then a value of 'N' means the table is
inaccessible.

NO_LOAD_RESTART CHAR(1) A value of 'Y' indicates the table is in
a partially loaded state that will not
allow a load restart. A value of 'N' is
returned otherwise.

NUM_REORG_REC_ALTERS SMALLINT Number of reorg recommend alter
operations (for example, alter
operations after which a
reorganization is required) that have
been performed against this table
since the last reorganization.

INDEXES_REQUIRE_
REBUILD

CHAR(1) 'Y' if any of the indexes defined on
the table require a rebuild, and 'N'
otherwise. If no indexes are defined
on the table, 'N' will also be returned,
as there are no indexes that require a
rebuild.

LARGE_RIDS CHAR(1) Indicates whether or not the table is
using large row IDs (RIDs) (4 byte
page number, 2 byte slot number). A
value of 'Y' indicates that the table is
using large RIDs and 'N' indicates
that it is not using large RIDs. A
value of 'P' (pending) will be
returned if the table supports large
RIDs (that is, the table is in a large
table space), but at least one of the
indexes for the table has not been
reorganized or rebuilt yet, so the
table is still using 4 byte RIDs (which
means that action must be taken to
convert the table or indexes).

1034 Administrative Routines and Views

Table 271. ADMIN_GET_TAB_INFO table function metadata (continued)

Column name Data type Description

LARGE_SLOTS CHAR(1) Indicates whether or not the table is
using large slots (which allows more
than 255 rows per page). A value of
'Y' indicates that the table is using
large slots and 'N' indicates that it is
not using large slots. A value of 'P'
(pending) will be returned if the table
supports large slots (that is, the table
is in a large table space), but there
has been no offline table
reorganization or table truncation
operation performed on the table yet,
so it is still using a maximum of 255
rows per page.

DICTIONARY_SIZE BIGINT Size of the dictionary, in bytes, used
for row compression if a row
compression dictionary exists for the
table.

ADMINTABCOMPRESSINFO view and
ADMIN_GET_TAB_COMPRESS_INFO

Note: This table function has been deprecated and replaced by the
“ADMINTABCOMPRESSINFO administrative view and
ADMIN_GET_TAB_COMPRESS_INFO_V97 table function - returns compressed
information” on page 225.

The ADMINTABCOMPRESSINFO administrative view and the
ADMIN_GET_TAB_COMPRESS_INFO table function return compression
information for tables, materialized query tables (MQT) and hierarchy tables.

ADMINTABCOMPRESSINFO administrative view

The ADMINTABCOMPRESSINFO administrative view returns compression
information for tables, materialized query tables (MQT) and hierarchy tables only.
These table types are reported as T for table, S for materialized query tables and H
for hierarchy tables in the SYSCAT.TABLES catalog view. The information is
returned at both the data partition level and the database partition level for a table.

The schema is SYSIBMADM.

Refer to the ADMINTABCOMPRESSINFO administrative view and
ADMIN_GET_TAB_COMPRESS_INFO table function metadata table for a complete
list of information that can be returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the ADMINTABCOMPRESSINFO administrative view
v CONTROL privilege on the ADMINTABCOMPRESSINFO administrative view
v DATAACCESS authority

Chapter 22. Deprecated routines 1035

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the ADMIN_GET_TAB_COMPRESS_INFO table function
v DATAACCESS authority

Examples

Example 1: Retrieve all compression information for all tables
SELECT * FROM SYSIBMADM.ADMINTABCOMPRESSINFO

The following example is a sample output from this query:
TABSCHEMA TABNAME DBPARTITIONNUM DATA_PARTITION_ID COMPRESS_ATTR DICT_BUILDER DICT_BUILD_TIMESTAMP
---------...- -----------...- -------------- ----------------- ------------- -------------...- --------------------------
SYSIBM SYSTABLES 0 0 N NOT BUILT -
SYSIBM SYSCOLUMNS 0 0 N NOT BUILT -
...
SIMAP2 STAFF 0 0 Y REORG 2006-08-27-19.07.36.000000
SIMAP2 PARTTAB 0 0 Y REORG 2006-08-27-22.07.17.000000
...

156 record(s) selected.

Output from this query (continued):
COMPRESS_DICT_SIZE EXPAND_DICT_SIZE ROWS_SAMPLED PAGES_SAVED_PERCENT BYTES_SAVED_PERCENT AVG_COMPRESS_REC_LENGTH
-------------------- -------------------- ------------ ------------------- ------------------- -----------------------

0 0 0 0 0 0
0 0 0 0 0 0

...
13312 5312 35 65 84 100
5760 4248 45 76 79 98

...

Example 2: Determine the dictionary building action and time of dictionary
creation for all tables.
SELECT TABSCHEMA, TABNAME, DBPARTITIONNUM, DATA_PARTITION_ID, DICT_BUILDER, DICT_BUILD_TIMESTAMP
FROM SYSIBMADM.ADMINTABCOMPRESSINFO

The following example is a sample output from this query:
TABSCHEMA TABNAME DBPARTITIONNUM DATA_PARTITION_ID DICT_BUILDER DICT_BUILD_TIMESTAMP
--------------- --------------- -------------- ----------------- --------------------------- --------------------------
SYSIBM SYSTABLES 0 0 NOT BUILT -
SYSIBM SYSCOLUMNS 0 0 NOT BUILT -
...
SIMAP2 STAFF 0 0 REORG 2006-08-27-19.07.36.000000
SIMAP2 SALES 0 0 NOT BUILT -
SIMAP2 CATALOG 0 0 NOT BUILT -
...

156 record(s) selected.

ADMIN_GET_TAB_COMPRESS_INFO table function

The ADMIN_GET_TAB_COMPRESS_INFO table function returns the same
information as the ADMINTABCOMPRESSINFO administrative view, but allows
you to specify a schema, table name and an execution mode.

Refer to the ADMINTABCOMPRESSINFO administrative view and
ADMIN_GET_TAB_COMPRESS_INFO table function metadata table for a complete
list of information that can be returned.

Note: This table function has been deprecated and replaced by the
“ADMINTABCOMPRESSINFO administrative view and
ADMIN_GET_TAB_COMPRESS_INFO_V97 table function - returns compressed
information” on page 225.

1036 Administrative Routines and Views

Syntax

�� ADMIN_GET_TAB_COMPRESS_INFO (tabschema , tabname , execmode) ��

The schema is SYSPROC.

Table function parameters

tabschema
An input argument of type VARCHAR(128) that specifies a schema name.

tabname
An input argument of type VARCHAR(128) that specifies a table name, a
materialized query table name or a hierarchy table name.

execmode
An input argument of type VARCHAR(30) that specifies the execution mode.
The execution mode can be one of the following values:
v 'REPORT' -- Reports compression information as of last generation. This is

the default value.
v 'ESTIMATE' -- Generates new compression information based on the current

table.

Authorization

EXECUTE privilege on the ADMIN_GET_TAB_COMPRESS_INFO function.

Examples

Example 1: Retrieve existing compression information for table SIMAP2.STAFF
SELECT * FROM TABLE (SYSPROC.ADMIN_GET_TAB_COMPRESS_INFO(’SIMAP2’, ’STAFF’, ’REPORT’))
AS T

The following example is a sample output of this query:
TABSCHEMA TABNAME DBPARTITIONNUM DATA_PARTITION_ID COMPRESS_ATTR DICT_BUILDER DICT_BUILD_TIMESTAMP
----------...- -------...- -------------- ----------------- ------------- ------------...- --------------------------
SIMAP2 STAFF 0 0 Y REORG 2006-08-27-19.07.36.000000

1 record(s) selected.

Output from this query (continued):
COMPRESS_DICT_SIZE EXPAND_DICT_SIZE ROWS_SAMPLED PAGES_SAVED_PERCENT BYTES_SAVED_PERCENT AVG_COMPRESS_REC_LENGTH
-------------------- -------------------- ------------ ------------------- ------------------- -----------------------

13312 5312 35 65 84 100

Example 2: Retrieve estimated compression information for table SIMAP2.STAFF as
of now.
SELECT * FROM TABLE (SYSPROC.ADMIN_GET_TAB_COMPRESS_INFO(’SIMAP2’, ’STAFF’, ’ESTIMATE’))
AS T

The following example is a sample output of this query:
TABSCHEMA TABNAME DBPARTITIONNUM DATA_PARTITION_ID COMPRESS_ATTR DICT_BUILDER DICT_BUILD_TIMESTAMP
----------...- -------...- -------------- ----------------- ------------- ----------------...- --------------------------
SIMAP2 STAFF 0 0 Y TABLE FUNCTION 2006-08-28-19.18.13.000000

1 record(s) selected.

Output from this query (continued):

Chapter 22. Deprecated routines 1037

COMPRESS_DICT_SIZE EXPAND_DICT_SIZE ROWS_SAMPLED PAGES_SAVED_PERCENT BYTES_SAVED_PERCENT AVG_COMPRESS_REC_LENGTH
-------------------- -------------------- ------------ ------------------- ------------------- -----------------------

13508 6314 68 72 89 98

Example 3: Determine the total dictionary size for all tables in the schema SIMAP2
SELECT TABSCHEMA, TABNAME, DICT_BUILDER,
(COMPRESS_DICT_SIZE+EXPAND_DICT_SIZE) AS TOTAL_DICT_SIZE,
DBPARTITIONNUM, DATA_PARTITION_ID
FROM TABLE (SYSPROC.ADMIN_GET_TAB_COMPRESS_INFO(’SIMAP2’, ’’, ’REPORT’)) AS T

Output from this query:
TABSCHEMA TABNAME DICT_BUILDER TOTAL_DICT_SIZE DBPARTITIONNUM DATA_PARTITION_ID
--------------- --------------- ------------------------------ -------------------- -------------- -----------------
SIMAP2 ACT NOT BUILT 0 0 0
SIMAP2 ADEFUSR NOT BUILT 0 0 0
...
SIMAP2 INVENTORY NOT BUILT 0 0 0
SIMAP2 ORG NOT BUILT 0 0 0
SIMAP2 PARTTAB REORG 10008 0 0
SIMAP2 PARTTAB REORG 5464 0 1
SIMAP2 PARTTAB REORG 8456 0 2
SIMAP2 PARTTAB REORG 6960 0 3
SIMAP2 PARTTAB REORG 7136 0 4
...
SIMAP2 STAFF REORG 18624 0 0
SIMAP2 SUPPLIERS NOT BUILT 0 0 0
SIMAP2 TESTTABLE NOT BUILT 0 0 0

28 record(s) selected.

Example 4: View a report of the dictionary information of tables in the SIMAP2
schema.
SELECT * FROM TABLE (SYSPROC.ADMIN_GET_TAB_COMPRESS_INFO(’SIMAP2’, ’’, ’REPORT’))
AS T

Output from this query:
TABSCHEMA TABNAME DBPARTITIONNUM DATA_PARTITION_ID COMPRESS_ATTR DICT_BUILDER DICT_BUILD_TIMESTAMP
----------...- -------...- -------------- ----------------- ------------- ----------------...- --------------------------
SIMAP2 T1 0 0 Y NOT BUILT -
SIMAP2 T2 0 0 N REORG 2007-02-03-17.35.28.000000
SIMAP2 T3 0 0 Y INSPECT 2007-02-03-17.35.44.000000
SIMAP2 T4 0 0 N NOT BUILT -

4 record(s) selected.

Output from this query (continued):
COMPRESS_DICT_SIZE EXPAND_DICT_SIZE ROWS_SAMPLED PAGES_SAVED_PERCENT BYTES_SAVED_PERCENT AVG_COMPRESS_REC_LENGTH
-------------------- -------------------- ------------ ------------------- ------------------- -----------------------

0 0 0 0 0 0
1280 2562 - - - -
1340 2232 - - - -

0 0 0 0 0 0

Usage notes
v If both the tabschema and tabname are specified, information is returned for that

specific table only.
v If the tabschema is specified but tabname is empty (") or NULL, information is

returned for all tables in the given schema.
v If the tabschema is empty (") or NULL and tabname is specified, an error is

returned. To retrieve information for a specific table, the table must be identified
by both schema and table name.

v If both tabschema and tabname are empty (") or NULL, information is returned for
all tables.

1038 Administrative Routines and Views

v If tabschema or tabname do not exist, or tabname does not correspond to a table
name (type T), a materialized query table name (type S) or a hierarchy table
name (type H), an empty result set is returned.

v When the ADMIN_GET_TAB_COMPRESS_INFO table function is retrieving data
for a given table, it will acquire a shared lock on the corresponding row of
SYSTABLES to ensure consistency of the data that is returned (for example, to
ensure that the table is not altered while information is being retrieved for it).
The lock will only be held for as long as it takes to retrieve the compression
information for the table, and not for the duration of the table function call.

ADMINTABCOMPRESSINFO administrative view and the
ADMIN_GET_TAB_COMPRESS_INFO table function metadata

Table 272. ADMINTABCOMPRESSINFO administrative view and the ADMIN_GET_TAB_COMPRESS_INFO table
function metadata

Column Name Data Type Description

TABSCHEMA VARCHAR(128) Schema name

TABNAME VARCHAR(128) Table name

DBPARTITIONNUM SMALLINT Database partition number

DATA_PARTITION_ID INTEGER Data partition number

COMPRESS_ATTR CHAR(1) The state of the COMPRESS attribute on the table which
can be one of the following values:

v 'Y' = Row compression is set to yes

v 'N' = Row compression is set to no

DICT_BUILDER VARCHAR(30) Code path taken to build the dictionary which can be one
of the following values:

v 'INSPECT' = INSPECT ROWCOMPESTIMATE

v 'LOAD' = LOAD INSERT/REPLACE

v 'NOT BUILT' = no dictionary available

v 'REDISTRIBUTE' = REDISTRIBUTE

v 'REORG' = REORG RESETDICTIONARY

v 'TABLE GROWTH' = INSERT

v 'TABLE FUNCTION' = built by table function for the
'ESTIMATE' option

DICT_BUILD_TIMESTAMP TIMESTAMP Timestamp of when the dictionary was built. Timestamp
granularity is to the second. If no dictionary is available,
then the timestamp is NULL.

COMPRESS_DICT_SIZE BIGINT Size of compression dictionary measured in bytes.

EXPAND_DICT_SIZE BIGINT Size of the expansion dictionary measured in bytes. If a
historical dictionary exists, this value is the sum of the
current and historical dictionary sizes.

ROWS_SAMPLED INTEGER Number of records that contributed to building the
dictionary. Migrated tables with compression dictionaries
will return NULL in this column.

PAGES_SAVED_PERCENT SMALLINT Percentage of pages saved from compression. This
information is based on the record data in the sample
buffer only. Migrated tables with compression dictionaries
will return NULL in this column.

Chapter 22. Deprecated routines 1039

Table 272. ADMINTABCOMPRESSINFO administrative view and the ADMIN_GET_TAB_COMPRESS_INFO table
function metadata (continued)

Column Name Data Type Description

BYTES_SAVED_PERCENT SMALLINT Percentage of bytes saved from compression. This
information is based on the record data in the sample
buffer only. Migrated tables with compression dictionaries
will return NULL in this column.

AVG_COMPRESS_REC_LENGTH SMALLINT Average compressed record length of the records
contributing to building the dictionary. Migrated tables
with compression dictionaries will return NULL in this
column.

ENV_SYS_RESOURCES administrative view - Return system
information

Important: Starting with Version 9.7 Fix Pack 6, the ENV_SYS_RESOURCES
administrative view has been deprecated and replaced by the
“ENV_GET_SYSTEM_RESOURCES table function - Return system information” on
page 334.

The ENV_SYS_RESOURCES administrative view returns operating system, CPU,
memory and other information related to the system.

The schema is SYSIBMADM.

Authorization

One of the following authorizations is required:
v SELECT privilege on the ENV_SYS_RESOURCES administrative view
v CONTROL privilege on the ENV_SYS_RESOURCES administrative view
v DATAACCESS authority

Example
SELECT SUBSTR(NAME,1,20) AS NAME, SUBSTR(VALUE,1,10) AS VALUE,

SUBSTR(DATATYPE,1,10) AS DATATYPE, DBPARTITIONNUM
FROM SYSIBMADM.ENV_SYS_RESOURCES
WHERE SUBSTR(NAME,1,8)=’CPU_LOAD’ OR NAME=’CPU_USAGE_TOTAL’

The following example is a sample output from this query.
NAME VALUE DATATYPE DBPARTITIONNUM
----------------------- ---------- ---------- --------------
CPU_LOAD_SHORT 0.044052 DECIMAL 0
CPU_LOAD_MEDIUM 0.087250 DECIMAL 0
CPU_LOAD_LONG 0.142059 DECIMAL 0
CPU_USAGE_TOTAL 7 SMALLINT 0

4 record(s) selected.

1040 Administrative Routines and Views

ENV_SYS_RESOURCES administrative view metadata

Table 273. ENV_SYS_RESOURCES administrative view metadata

Column name Data type Description

NAME VARCHAR(128) Name of the attribute. See Table 274 for possible values.
Note: Some attributes might not be available depending
on the operating system and hardware configuration at
the server.

VALUE VARCHAR(1024) The value of the attribute.

DATATYPE VARCHAR(128) Attribute data type.

UNIT VARCHAR(128) Unit used for the VALUE column if applicable. NULL is
returned if not applicable.

DBPARTITIONNUM SMALLINT The database partition from which the data was retrieved
for this row.

Table 274. Possible values for the NAME column

Information
type Name Data Types Description

Platforms
that return
this
information UNIT

Operating
system

OS_NAME VARCHAR(256) Name of the
operating system
software.

All NULL

HOST_NAME VARCHAR(256) Host name of the
system.

All NULL

OS_VERSION VARCHAR(256) Version of the
operating system.
For example, AIX:
4.3 version = 4.

All NULL

OS_RELEASE VARCHAR(256) Release of the
operating system.
For example, AIX:
4.3 release = 3.

All NULL

MACHINE_IDENTIFICATION VARCHAR(256) Machine hardware
identification.

All NULL

OS_LEVEL VARCHAR(256) Maintenance level of
the current version
and release. For
example, LINUX:
2.4.9, level = 9.

Linux NULL

Chapter 22. Deprecated routines 1041

Table 274. Possible values for the NAME column (continued)

Information
type Name Data Types Description

Platforms
that return
this
information UNIT

CPU CPU_TOTAL BIGINT Total number of
CPUs.

All NULL

CPU_ONLINE BIGINT Number of CPUs
online.

All NULL

CPU_CONFIGURED BIGINT Number of CPUs
configured.

All NULL

CPU_SPEED BIGINT Speed of CPUs. All MHz

CPU_TIMEBASE BIGINT Frequency of
timebase register
increment.

Linux
running on
PowerPC®

Hz

CPU_HMT_DEGREE BIGINT On systems that
support hardware
multithreading
(HMT), this is the
number of
processors that a
physical processor
will appear to the
operating system as.
On non-HMT
systems, this value
is 1. On HMT
systems, "total" will
reflect the number
of logical CPUs. To
get the number of
physical CPUs,
divide the "total" by
"threadingDegree".

All NULL

CPU_CORES_PER_SOCKET BIGINT Number of CPU
cores per socket. On
single core systems
this value is 1.

All NULL

Physical
memory

MEMORY_TOTAL BIGINT Total size of physical
memory.

All MB

MEMORY_FREE BIGINT Amount of free
physical memory.

All MB

MEMORY_SWAP_TOTAL BIGINT Total amount of
swap space.

All MB

MEMORY_SWAP_FREE BIGINT Amount of free
swap space.

All MB

Virtual memory VIRTUAL_MEM_TOTAL BIGINT Total amount of
virtual memory on
the system.

All MB

VIRTUAL_MEM_RESERVED BIGINT Amount of reserved
virtual memory.

All MB

VIRTUAL_MEM_FREE BIGINT Amount of virtual
memory free.

All MB

1042 Administrative Routines and Views

Table 274. Possible values for the NAME column (continued)

Information
type Name Data Types Description

Platforms
that return
this
information UNIT

CPU load CPU_LOAD_SHORT DECIMAL Shortest period
duration. For
example, load
samples over last 5
minutes.

All except
Windows
operating
systems

NULL

CPU_LOAD_MEDIUM DECIMAL Medium period
duration. For
example, load
samples over last 10
minutes.

All except
Windows
operating
systems

NULL

CPU_LOAD_LONG DECIMAL Long period
duration. For
example, load
samples over last 15
minutes.

All except
Windows
operating
systems

NULL

CPU_USAGE_TOTAL SMALLINT Percentage of overall
CPU usage of the
machine.

All Percent

GET_DB_CONFIG

Note: This procedure has been deprecated and replaced by the “DBCFG
administrative view - Retrieve database configuration parameter information” on
page 324.

�� GET_DB_CONFIG () ��

The schema is SYSPROC.

The GET_DB_CONFIG procedure returns database configuration information. The
procedure does not take any arguments.

The procedure returns a single result set with two rows containing a column for
each parameter. The first column is named DBCONFIG_TYPE, as shown in next
table.

Table 275. Information returned by the GET_DB_CONFIG procedure

Column name Data type Description

DBCONFIG_TYPE INTEGER The row with a value of 0 in this column
contains the values of the database
configuration parameters stored on disk.
The row with a value of 1 in this column
contains the current values of the database
configuration parameters stored in memory.

This procedure requires a user temporary table space that is used to create a global
temporary table named DB_CONFIG to store the result set.

Chapter 22. Deprecated routines 1043

Authorization

One of the following authorities is required to execute the procedure:
v EXECUTE privilege on the procedure
v DATAACCESS authority
v DBADM authority
v SQLADM authority

Example

Using the command line processor (CLP), change the value of the logretain and the
userexit database configuration parameters. Retrieve the original (on disk) and
updated (in memory) values by calling the GET_DB_CONFIG procedure and then
querying the resulting global temporary table (DB_CONFIG).
CONNECT TO SAMPLE

CREATE BUFFERPOOL MY8KPOOL SIZE 250 PAGESIZE 8K

CREATE USER TEMPORARY TABLESPACE MYTSP2 PAGESIZE
8K MANAGED BY SYSTEM USING (’TSC2’) BUFFERPOOL MY8KPOOL

UPDATE DB CFG USING LOGRETAIN RECOVERY USEREXIT ON

CALL SYSPROC.GET_DB_CONFIG()

SELECT DBCONFIG_TYPE, LOGRETAIN, USEREXIT
FROM SESSION.DB_CONFIG

CONNECT RESET

The following example is a sample output from this query.
DBCONFIG_TYPE LOGRETAIN USEREXIT
------------- ----------- -----------

0 1 1
1 0 0

2 record(s) selected.

GET_DBM_CONFIG

Note: This table function has been deprecated and replaced by the “DBMCFG
administrative view - Retrieve database manager configuration parameter
information” on page 326.

�� GET_DBM_CONFIG () ��

The schema is SYSFUN.

The GET_DBM_CONFIG table function returns database manager configuration
information. The function does not take any arguments.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority

1044 Administrative Routines and Views

v DBADM authority
v SQLADM authority

The function returns a table with two rows containing a column for each
parameter. The first column is named DBMCONFIG_TYPE, as shown in the
following section.

Table 276. Information returned by the GET_DBM_CONFIG table function

Column name Data type Description

DBMCONFIG_TYPE INTEGER The row with a value of 0 in this column
contains the values of the database manager
configuration parameters stored on disk.
The row with a value of 1 in this column
contains the current values of the database
manager configuration parameters stored in
memory.

Example

Using the command line processor (CLP), change the value of the numdb and the
diaglevel database manager configuration parameters, and then retrieve the original
(on disk) and updated (in memory) values.

UPDATE DBM CFG USING NUMDB 32 DIAGLEVEL 4

CONNECT TO SAMPLE

SELECT DBMCONFIG_TYPE, NUMDB, DIAGLEVEL
FROM TABLE(SYSFUN.GET_DBM_CONFIG()) AS DBMCFG

CONNECT RESET

The following example is a sample output from this query.
DBMCONFIG_TYPE NUMDB DIAGLEVEL
-------------- ----------- -----------

0 32 4
1 8 3

2 record(s) selected.

Health snapshot routines

HEALTH_CONT_HI
The HEALTH_CONT_HI table function returns health indicator information for
table space containers from a health snapshot of table spaces in a database.

Important: This table function has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Syntax

�� HEALTH_CONT_HI (dbname , dbpartitionnum) ��

Chapter 22. Deprecated routines 1045

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from the currently connected
database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for an aggregate of
all active database partitions. An active database partition is a partition where
the database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the HEALTH_CONT_HI table function.

Example
SELECT * FROM TABLE(HEALTH_CONT_HI(’’,-1)) AS T

The following example is a sample output from this query.
SNAPSHOT_TIMESTAMP CONTAINER_NAME ...
-------------------------- ---...- ...
2006-02-13-12.30.40.759542 D:\DB2\NODE0000\SAMPLE\T0000000\C0000000.CAT ...
2006-02-13-12.30.40.759542 D:\DB2\NODE0000\SAMPLE\T0000003\C0000000.LRG ...
2006-02-13-12.30.40.759542 D:\DB2\NODE0000\SAMPLE\T0000004\C0000000.UTM ...
2006-02-13-12.30.40.759542 D:\DB2\NODE0000\SAMPLE\T0000001\C0000000.TMP ...
2006-02-13-12.30.40.759542 D:\DB2\NODE0000\SAMPLE\T0000002\C0000000.LRG ...

5 record(s) selected.

Output from this query (continued).
... NODE_NUMBER HI_ID HI_VALUE HI_TIMESTAMP ...
... ----------- -------------------- -------- -------------------------- ...
... - 3001 1 2006-02-13-12.26.26.158000 ...
... - 3001 1 2006-02-13-12.26.26.158000 ...
... - 3001 1 2006-02-13-12.26.26.158000 ...
... - 3001 1 2006-02-13-12.26.26.158000 ...
... - 3001 1 2006-02-13-12.26.26.158000 ...

Output from this query (continued).
... HI_ALERT_STATE HI_ALERT_STATE_DETAIL HI_FORMULA HI_ADDITIONAL_INFO
... -------------------- --------------------- -----------...- ------------------
... 1 Normal 1 -
... 1 Normal 1 -
... 1 Normal 1 -
... 1 Normal 1 -
... 1 Normal 1 -

Information returned

1046 Administrative Routines and Views

Table 277. Information returned by the HEALTH_CONT_HI table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

CONTAINER_NAME VARCHAR(256) container_name - Container
name

NODE_NUMBER INTEGER node_number - Node
number

HI_ID BIGINT A number that uniquely
identifies the health indicator
in the snapshot data stream.

HI_VALUE SMALLINT The value of the health
indicator.

HI_TIMESTAMP TIMESTAMP The date and time that the
alert was generated.

HI_ALERT_STATE BIGINT The severity of the alert.

HI_ALERT_STATE_DETAIL VARCHAR(20) The text description of the
HI_ALERT_STATE column.

HI_FORMULA VARCHAR(2048) The formula used to
calculate the health indicator.

HI_ADDITIONAL_INFO VARCHAR(4096) Additional information about
the health indicator.

HEALTH_CONT_HI_HIS
Returns health indicator history information for containers from a health snapshot
of a database.

Important: This table function has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Syntax

�� HEALTH_CONT_HI_HIS (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from the currently connected
database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition

Chapter 22. Deprecated routines 1047

number. Specify -1 for the current database partition, or -2 for an aggregate of
all active database partitions. An active database partition is a partition where
the database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the HEALTH_CONT_HI_HIS table function.

Example
SELECT * FROM TABLE(HEALTH_CONT_HI_HIS(’’,-1)) AS T

The following example is a sample output from this query.
SNAPSHOT_TIMESTAMP CONTAINER_NAME ...
-------------------------- --...- ...
2006-02-13-12.30.41.915646 D:\DB2\NODE0000\SAMPLE\T0000000\C0000000.CAT ...
2006-02-13-12.30.41.915646 D:\DB2\NODE0000\SAMPLE\T0000000\C0000000.CAT ...
2006-02-13-12.30.41.915646 D:\DB2\NODE0000\SAMPLE\T0000003\C0000000.LRG ...
2006-02-13-12.30.41.915646 D:\DB2\NODE0000\SAMPLE\T0000003\C0000000.LRG ...
2006-02-13-12.30.41.915646 D:\DB2\NODE0000\SAMPLE\T0000004\C0000000.UTM ...
2006-02-13-12.30.41.915646 D:\DB2\NODE0000\SAMPLE\T0000004\C0000000.UTM ...
2006-02-13-12.30.41.915646 D:\DB2\NODE0000\SAMPLE\T0000001\C0000000.TMP ...
2006-02-13-12.30.41.915646 D:\DB2\NODE0000\SAMPLE\T0000001\C0000000.TMP ...
2006-02-13-12.30.41.915646 D:\DB2\NODE0000\SAMPLE\T0000002\C0000000.LRG ...
2006-02-13-12.30.41.915646 D:\DB2\NODE0000\SAMPLE\T0000002\C0000000.LRG ...

10 record(s) selected.

Output from this query (continued).
... NODE_NUMBER HI_ID HI_TIMESTAMP HI_VALUE HI_ALERT_STATE ...
... ----------- -----...- -------------------------- -------- -------------- ...
... - 3001 2006-02-13-12.16.25.911000 1 1 ...
... - 3001 2006-02-13-12.06.26.168000 1 1 ...
... - 3001 2006-02-13-12.16.25.911000 1 1 ...
... - 3001 2006-02-13-12.06.26.168000 1 1 ...
... - 3001 2006-02-13-12.16.25.911000 1 1 ...
... - 3001 2006-02-13-12.06.26.168000 1 1 ...
... - 3001 2006-02-13-12.16.25.911000 1 1 ...
... - 3001 2006-02-13-12.06.26.168000 1 1 ...
... - 3001 2006-02-13-12.16.25.911000 1 1 ...
... - 3001 2006-02-13-12.06.26.168000 1 1 ...

Output from this query (continued).
... HI_ALERT_STATE_DETAIL HI_FORMULA HI_ADDITIONAL_INFO
... --------------------- -----------...- ------------------
... Normal 1 -
... Normal 1 -
... Normal 1 -
... Normal 1 -
... Normal 1 -
... Normal 1 -
... Normal 1 -
... Normal 1 -
... Normal 1 -
... Normal 1 -

1048 Administrative Routines and Views

Information returned

Table 278. Information returned by the HEALTH_CONT_HI_HIS table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

CONTAINER_NAME VARCHAR(256) container_name - Container
name

NODE_NUMBER INTEGER node_number - Node number

HI_ID BIGINT A number that uniquely
identifies the health indicator
in the snapshot data stream.

HI_TIMESTAMP TIMESTAMP The date and time that the
alert was generated.

HI_VALUE SMALLINT The value of the health
indicator.

HI_ALERT_STATE BIGINT The severity of the alert.

HI_ALERT_STATE_DETAIL VARCHAR(20) The text description of the
HI_ALERT_STATE column.

HI_FORMULA VARCHAR(2048) The formula used to
calculate the health indicator.

HI_ADDITIONAL_INFO VARCHAR(4096) Additional information about
the health indicator.

HEALTH_CONT_INFO
The HEALTH_CONT_INFO table function returns container information from a
health snapshot of a database.

Important: This table function has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Syntax

�� HEALTH_CONT_INFO (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from the currently connected
database.

Chapter 22. Deprecated routines 1049

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for an aggregate of
all active database partitions. An active database partition is a partition where
the database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the HEALTH_CONT_INFO table function.

Example
SELECT * FROM TABLE(HEALTH_CONT_INFO(’’,-1)) AS T

The following example is a sample output from this query.
SNAPSHOT_TIMESTAMP CONTAINER_NAME ...
-------------------------- ---...- ...
2006-02-13-12.30.40.541209 D:\DB2\NODE0000\SAMPLE\T0000000\C0000000.CAT ...
2006-02-13-12.30.40.541209 D:\DB2\NODE0000\SAMPLE\T0000003\C0000000.LRG ...
2006-02-13-12.30.40.541209 D:\DB2\NODE0000\SAMPLE\T0000004\C0000000.UTM ...
2006-02-13-12.30.40.541209 D:\DB2\NODE0000\SAMPLE\T0000001\C0000000.TMP ...
2006-02-13-12.30.40.541209 D:\DB2\NODE0000\SAMPLE\T0000002\C0000000.LRG ...

5 record(s) selected.

Output from this query (continued).
... TABLESPACE_NAME NODE_NUMBER ...
... ---------------...- ----------- ...
... SYSCATSPACE - ...
... SYSTOOLSPACE - ...
... SYSTOOLSTMPSPACE - ...
... TEMPSPACE1 - ...
... USERSPACE1 - ...

Output from this query (continued).
... ROLLED_UP_ALERT_STATE ROLLED_UP_ALERT_STATE_DETAIL
... --------------------- ----------------------------
... 1 Normal
... 1 Normal
... 1 Normal
... 1 Normal
... 1 Normal

Information returned

Table 279. Information returned by the HEALTH_CONT_INFO table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

CONTAINER_NAME VARCHAR(256) container_name - Container
name

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table
space name

NODE_NUMBER INTEGER node_number - Node
number

1050 Administrative Routines and Views

Table 279. Information returned by the HEALTH_CONT_INFO table function (continued)

Column name Data type

Description or
corresponding monitor
element

ROLLED_UP_ALERT_STATE BIGINT The most severe alert state
captured by this snapshot.

ROLLED_UP_ALERT_
STATE_DETAIL

VARCHAR(20) The text description of the
ROLLED_UP_ALERT_STATE
column.

HEALTH_DB_HI
The HEALTH_DB_HI table function returns health indicator information from a
health snapshot of a database.

Important: This table function has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Syntax

�� HEALTH_DB_HI (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from all databases under the
database instance.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for an aggregate of
all active database partitions. An active database partition is a partition where
the database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the HEALTH_DB_HI table function.

Example
SELECT * FROM TABLE(HEALTH_DB_HI(’’,-1)) AS T

The following example is a sample output from this query.
SNAPSHOT_TIMESTAMP HI_ID DB_NAME HI_VALUE ...
-------------------------- -----...- -------...- -------- ...
2006-02-13-12.30.23.949888 1001 SAMPLE 0 ...

Chapter 22. Deprecated routines 1051

2006-02-13-12.30.23.949888 1002 SAMPLE 0 ...
2006-02-13-12.30.23.949888 1003 SAMPLE 0 ...
2006-02-13-12.30.23.949888 1005 SAMPLE 6 ...
2006-02-13-12.30.23.949888 1006 SAMPLE 53 ...
2006-02-13-12.30.23.949888 1008 SAMPLE 3 ...
2006-02-13-12.30.23.949888 1010 SAMPLE 0 ...
2006-02-13-12.30.23.949888 1014 SAMPLE 74 ...
2006-02-13-12.30.23.949888 1015 SAMPLE 1 ...
2006-02-13-12.30.23.949888 1018 SAMPLE 1 ...
2006-02-13-12.30.23.949888 1022 SAMPLE 1 ...

11 record(s) selected.

Output from this query (continued).
... HI_TIMESTAMP HI_ALERT_STATE HI_ALERT_STATE_DETAIL ...
... -------------------------- -------------- --------------------- ...
... 2006-02-13-12.26.26.158000 1 Normal ...
... 2006-02-13-12.26.26.158000 1 Normal ...
... 2006-02-13-12.26.26.158000 1 Normal ...
... 2006-02-13-12.26.26.158000 1 Normal ...
... 2006-02-13-12.26.26.158000 1 Normal ...
... 2006-02-13-12.26.26.158000 1 Normal ...
... 2006-02-13-12.26.26.158000 1 Normal ...
... 2006-02-13-12.26.26.158000 1 Normal ...
... 2006-02-13-12.30.25.640000 2 Attention ...
... 2006-02-13-12.30.25.640000 2 Attention ...
... 2006-02-13-12.29.25.281000 2 Attention ...

Output from this query (continued).
... HI_FORMULA ...
... --...- ...
... 0 ...
... ((0 / 5000) * 100) ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... (((0 - 0) / ((118 - 0) + 1)) * 100) ...
... ...
... ...
... ...
... ...
... ...
... ((1170384 / (1170384 + 19229616)) * 100) ...
... ...
... ...
... ...
... ...
... ...
... ((11155116032 / 21138935808) * 100) ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
... ((5264 / (50 * 4096)) * 100) ...
... ((0 / 5) * 100) ...
... ((4587520 / 6160384) * 100) ...
... - ...
... ...
... ...

1052 Administrative Routines and Views

... ...

... ...

... ...

... - ...

... ...

... ...

... ...

... ...

... ...

... ...

... ...

... - ...

... ...

... ...

Output from this query (continued).
... HI_ADDITIONAL_INFO
... --
... -
... The high watermark for shared sort
... memory is "57". "99"% of the time
... the sort heap allocation is less
... than or equal to "246". The sort
... heap (sortheap) database
... configuration parameter is set
... to "256". The high watermark for
... private sort memory is "0".
... The sort heap (sortheap) database
... configuration parameter is set to
... "256". The high watermark for
... private sort memory is "57". The
... high watermark for shared sort
... memory is "0"
... The following are the related
... database configuration parameter
... settings: logprimary is "3",
... logsecond is "2", and logfilsiz
... is "1000". The application with
... the oldest transaction is "712".
... The following are the related
... database configuration parameter
... settings: logprimary is "3",
... logsecond is "2", and logfilsiz
... is "1000", blk_log_dsk_ful is
... "NO", userexit is "NO",
... logarchmeth1 is "OFF" and
... logarchmeth2 is "OFF".
... -
... -
... -
... The scope setting in the reorganization
... policy is "TABSCHEMA NOT LIKE ’SYS%’".
... Automatic reorganization (AUTO_REORG)
... for this database is set to "OFF".
... The longest estimated reorganization
... time is "N/A".
... The last successful backup was taken
... at "N/A". The log space consumed since
... this last backup has been "N/A" 4KB
... pages. Automation for database backup
... is set to "OFF". The last automated
... backup returned with SQLCODE = "N/A".
... The longest estimated backup time

Chapter 22. Deprecated routines 1053

... is "N/A".

... The scope is "N\A". Automatic

... statistics collection (AUTO_RUNSTATS)

... is set to "OFF".

Information returned

Table 280. Information returned by the HEALTH_DB_HI table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

HI_ID BIGINT A number that uniquely
identifies the health indicator
in the snapshot data stream.

DB_NAME VARCHAR(128) db_name - Database name

HI_VALUE SMALLINT The value of the health
indicator.

HI_TIMESTAMP TIMESTAMP The date and time that the
alert was generated.

HI_ALERT_STATE BIGINT The severity of the alert.

HI_ALERT_STATE_DETAIL VARCHAR(20) The text description of the
HI_ALERT_STATE column.

HI_FORMULA VARCHAR(2048) The formula used to
calculate the health indicator.

HI_ADDITIONAL_INFO VARCHAR(4096) Additional information about
the health indicator.

HEALTH_DB_HI_HIS
The HEALTH_DB_HI_HIS table function returns health indicator history
information from a health snapshot of a database.

Important: This table function has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Syntax

�� HEALTH_DB_HI_HIS (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either

1054 Administrative Routines and Views

"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from all databases under the
database instance.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for an aggregate of
all active database partitions. An active database partition is a partition where
the database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the HEALTH_DB_HI_HIS table function.

Example
SELECT * FROM TABLE(HEALTH_DB_HI_HIS(’’,-1)) AS T

The following example is a sample output from this query.
SNAPSHOT_TIMESTAMP HI_ID DB_NAME HI_VALUE ...
-------------------------- -----...- -------...- -------- ...
2006-02-13-12.30.26.325627 1001 SAMPLE 0 ...
... ...
2006-02-13-12.30.26.325627 1002 SAMPLE 0 ...
... ...
2006-02-13-12.30.26.325627 1003 SAMPLE 0 ...
... ...
2006-02-13-12.30.26.325627 1005 SAMPLE 3 ...
... ...
2006-02-13-12.30.26.325627 1008 SAMPLE 2 ...
... ...
2006-02-13-12.30.26.325627 1010 SAMPLE 0 ...
... ...
2006-02-13-12.30.26.325627 1014 SAMPLE 73 ...
... ...
2006-02-13-12.30.26.325627 1015 SAMPLE 1 ...
... ...
2006-02-13-12.30.26.325627 1018 SAMPLE 1 ...
... ...
2006-02-13-12.30.26.325627 1022 SAMPLE 1 ...
...

Output from this query (continued).
... HI_TIMESTAMP HI_ALERT_STATE HI_ALERT_STATE_DETAIL ...
... -------------------------- -------------------- --------------------- ...
... 2006-02-13-12.21.25.649000 1 Normal ...
...
... 2006-02-13-12.21.25.649000 1 Normal ...
...
... 2006-02-13-12.20.25.182000 1 Normal ...
...
... 2006-02-13-12.16.25.911000 1 Normal ...
...
... 2006-02-13-12.16.25.911000 1 Normal ...
...
... 2006-02-13-12.16.25.911000 1 Normal ...
...
... 2006-02-13-12.21.25.649000 1 Normal ...
...
... 2006-02-13-12.29.55.461000 2 Attention ...
...

Chapter 22. Deprecated routines 1055

... 2006-02-13-12.29.25.281000 2 Attention ...

...

... 2006-02-13-12.27.55.743000 2 Attention ...

... ...

Output from this query (continued).
... HI_FORMULA ...
... --- ...
... 0 ...
...
... ((0 / 5000) * 100) ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
...
... (((0 - 0) / ((68 - 0) + 1)) * 100) ...
... ...
... ...
... ...
... ...
... ...
...
... ((698410 / (698410 + 19701590)) * 100) ...
... ...
... ...
... ...
... ...
... ...
...
... ((3920 / (50 * 4096)) * 100) ...
...
... ((0 / 4) * 100) ...
...
... ((4521984 / 6160384) * 100) ...
...
... - ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
...
... - ...
... ...
... ...
... ...
... ...
... ...
... ...
... ...
...
... - ...
... ...
... ...
...

Output from this query (continued).
... HI_ADDITIONAL_INFO
... ---------------------------------------
... -

1056 Administrative Routines and Views

...

... The high watermark for shared sort

... memory is "15". "99"% of the time

... the sort heap allocation is less

... than or equal to "246". The sort

... heap (sortheap) database

... configuration parameter is set

... to "256". The high watermark

... for private sort memory is "0".

...

... The sort heap (sortheap) database

... configuration parameter is set

... to "256". The high watermark for

... private sort memory is "15". The

... high watermark for shared sort

... memory is "0"

...

... The following are the related

... database configuration parameter

... settings: logprimary is "3",

... logsecond is "2", and logfilsiz

... is "1000". The application with

... the oldest transaction is "712".

...

... -

...

... -

...

... -

...

... The scope setting in the

... reorganization policy is

... "TABSCHEMA NOT LIKE ’SYS%’".

... Automatic reorganization

... (AUTO_REORG) for this database

... is set to "OFF". The longest

... estimated reorganization time

... is "N/A".

...

... The last successful backup was taken

... at "N/A". The log space consumed

... since this last backup has been

... "N/A" 4KB pages. Automation for

... database backup is set to "OFF". The

... last automated backup returned with

... SQLCODE = "N/A". The longest

... estimated backup time is "N/A".

...

... The scope is "N\A". Automatic

... statistics collection

... (AUTO_RUNSTATS) is set to "OFF".

...

Information returned

Table 281. Information returned by the HEALTH_DB_HI_HIS table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

HI_ID BIGINT A number that uniquely
identifies the health indicator
in the snapshot data stream.

Chapter 22. Deprecated routines 1057

Table 281. Information returned by the HEALTH_DB_HI_HIS table function (continued)

Column name Data type

Description or
corresponding monitor
element

DB_NAME VARCHAR(128) db_name - Database name

HI_VALUE SMALLINT The value of the health
indicator.

HI_TIMESTAMP TIMESTAMP The date and time that the
alert was generated.

HI_ALERT_STATE BIGINT The severity of the alert.

HI_ALERT_STATE_DETAIL VARCHAR(20) The text description of the
HI_ALERT_STATE column.

HI_FORMULA VARCHAR(2048) The formula used to
calculate the health indicator.

HI_ADDITIONAL_INFO VARCHAR(4096) Additional information about
the health indicator.

HEALTH_DB_HIC
The HEALTH_DB_HIC function returns collection health indicator information
from a health snapshot of a database.

Important: This table function has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Syntax

�� HEALTH_DB_HIC (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from all databases under the
database instance.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the HEALTH_DB_HIC table function.

1058 Administrative Routines and Views

Example
SELECT * FROM TABLE(HEALTH_DB_HIC(’’,-1)) AS T

The following example is a sample output from this query.
SNAPSHOT_TIMESTAMP HI_ID DB_NAME ...
-------------------------- -----...- -------...- ...
2006-02-13-12.30.33.870959 1015 SAMPLE ...
2006-02-13-12.30.33.870959 1022 SAMPLE ...

2 record(s) selected.

Output from this query (continued).
... HI_OBJ_NAME HI_OBJ_DETAIL ...
... ---------------------------------...-- -------------...- ...
... "JESSICAE"."EMPLOYEE" REORG TABLE ...
... "SYSIBM"."SYSDATAPARTITIONEXPRESSION" RUNSTATS ...

Output from this query (continued).
... HI_OBJ_STATE HI_OBJ_STATE_DETAIL HI_TIMESTAMP
... ------------ -------------------- --------------------------
... 2 Attention 2006-02-13-12.24.27.000000
... 2 Attention 2006-02-13-12.29.26.000000

Information returned

Table 282. Information returned by the HEALTH_DB_HIC table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

HI_ID BIGINT A number that uniquely
identifies the health indicator
in the snapshot data stream.

DB_NAME VARCHAR(128) db_name - Database name

HI_OBJ_NAME VARCHAR(512) A name that uniquely
identifies an object in the
collection.

HI_OBJ_DETAIL VARCHAR(512) Text that describes why the
object was added to the
collection.

Chapter 22. Deprecated routines 1059

Table 282. Information returned by the HEALTH_DB_HIC table function (continued)

Column name Data type

Description or
corresponding monitor
element

HI_OBJ_STATE SMALLINT The state of the object. Valid
states (defined in sqlmon.h)
include:
v NORMAL (1). Action is

not required on this object.
v ATTENTION (2).

Automation is not enabled
for this health indicator;
action must be taken
manually.

v AUTOMATED (5).
Automation is enabled for
this health indicator;
action will be started
automatically.

v AUTOMATE_FAILED (6).
Automation is enabled for
this health indicator;
action was started, but
could not complete
successfully. Manual
intervention is now
required.

HI_OBJ_STATE_DETAIL VARCHAR(20) A translated string version of
the value in the
HI_OBJ_STATE column.

HI_TIMESTAMP TIMESTAMP The date and time that the
alert was generated.

HEALTH_DB_HIC_HIS
Returns collection health indicator history information from a health snapshot of a
database.

Important: This table function has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Syntax

�� HEALTH_DB_HIC_HIS (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either

1060 Administrative Routines and Views

"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from all databases under the
database instance.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the HEALTH_DB_HIC_HIS table function.

Example
SELECT * FROM TABLE(HEALTH_DB_HIC_HIS(’’,-1)) AS T

The following example is a sample output from this query.
HI_HIS_ENTRY_NUM SNAPSHOT_TIMESTAMP HI_ID ...
---------------- -------------------------- -------------------- ...

1 2006-02-13-12.30.34.496720 1015 ...
2 2006-02-13-12.30.34.496720 1022 ...
3 2006-02-13-12.30.34.496720 1022 ...
4 2006-02-13-12.30.34.496720 1022 ...
5 2006-02-13-12.30.34.496720 1022 ...
6 2006-02-13-12.30.34.496720 1022 ...
7 2006-02-13-12.30.34.496720 1022 ...
8 2006-02-13-12.30.34.496720 1022 ...
9 2006-02-13-12.30.34.496720 1022 ...
10 2006-02-13-12.30.34.496720 1022 ...

10 record(s) selected.

Output from this query (continued).
... DB_NAME HI_OBJ_NAME HI_OBJ_STATE ...
... -------...- ----------------------------------...- ------------ ...
... SAMPLE "JESSICAE"."EMPLOYEE" 2 ...
... SAMPLE "SYSIBM"."SYSDATAPARTITIONEXPRESSION" 2 ...
... SAMPLE "SYSIBM"."SYSDATAPARTITIONEXPRESSION" 2 ...
... SAMPLE "SYSIBM"."SYSDATAPARTITIONEXPRESSION" 2 ...
... SAMPLE "SYSIBM"."SYSDATAPARTITIONEXPRESSION" 1 ...
... SAMPLE "SYSIBM"."SYSDATAPARTITIONEXPRESSION" 1 ...
... SAMPLE "SYSIBM"."SYSDATAPARTITIONEXPRESSION" 1 ...
... SAMPLE "SYSIBM"."SYSDATAPARTITIONEXPRESSION" 1 ...
... SAMPLE "SYSIBM"."SYSDATAPARTITIONEXPRESSION" 1 ...
... SAMPLE "SYSIBM"."SYSDATAPARTITIONEXPRESSION" 1 ...

Output from this query (continued).
... HI_OBJ_STATE_DETAIL HI_TIMESTAMP
... -------------------- --------------------------
... Attention 2006-02-10-09.04.57.000000
... Attention 2006-02-13-12.27.56.000000
... Attention 2006-02-13-12.26.27.000000
... Attention 2006-02-13-12.24.56.000000
... Normal 2006-02-13-12.23.28.000000
... Normal 2006-02-13-12.21.56.000000
... Normal 2006-02-13-12.20.26.000000
... Normal 2006-02-13-12.18.57.000000
... Normal 2006-02-13-12.17.27.000000
... Normal 2006-02-13-12.15.56.000000

Chapter 22. Deprecated routines 1061

Information returned

Table 283. Information returned by the HEALTH_DB_HIC_HIS table function

Column name Data type

Description or
corresponding monitor
element

HI_HIS_ENTRY_NUM SMALLINT A number that uniquely
identifies the history entry.

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

HI_ID BIGINT A number that uniquely
identifies the health indicator
in the snapshot data stream.

DB_NAME VARCHAR(128) db_name - Database name

HI_OBJ_NAME VARCHAR(512) A name that uniquely
identifies an object in the
collection.

HI_OBJ_STATE SMALLINT The state of the object. Valid
states (defined in sqlmon.h)
include:

v NORMAL (1). Action is
not required on this object.

v ATTENTION (2).
Automation is not enabled
for this health indicator;
action must be taken
manually.

v AUTOMATED (5).
Automation is enabled for
this health indicator;
action will be started
automatically.

v AUTOMATE_FAILED (6).
Automation is enabled for
this health indicator;
action was started, but
could not complete
successfully. Manual
intervention is now
required.

HI_OBJ_STATE_DETAIL VARCHAR(20) A translated string version of
the value in the
HI_OBJ_STATE column.

HI_TIMESTAMP TIMESTAMP The date and time that the
alert was generated.

HEALTH_DB_INFO
The HEALTH_DB_INFO table function returns information from a health snapshot
of a database.

Important: This table function has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

1062 Administrative Routines and Views

Syntax

�� HEALTH_DB_INFO (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from all databases under the
database instance.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for an aggregate of
all active database partitions. An active database partition is a partition where
the database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the HEALTH_DB_INFO table function.

Example
SELECT * FROM TABLE(HEALTH_DB_INFO(’’,-1)) AS T

The following example is a sample output from this query.
SNAPSHOT_TIMESTAMP DB_NAME INPUT_DB_ALIAS ...
-------------------------- -------...- ---------------...- ...
2006-02-13-12.30.23.340081 SAMPLE SAMPLE ...

1 record(s) selected.

Output from this query (continued).
... DB_PATH DB_LOCATION SERVER_PLATFORM ...
... ------------------------...- ----------- --------------- ...
... D:\DB2\NODE0000\SQL00003\ 1 5 ...

Output from this query (continued).
... ROLLED_UP_ALERT_STATE ROLLED_UP_ALERT_STATE_DETAIL
... --------------------- ----------------------------
... 4 Alarm

Information returned

Table 284. Information returned by the HEALTH_DB_INFO table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

Chapter 22. Deprecated routines 1063

Table 284. Information returned by the HEALTH_DB_INFO table function (continued)

Column name Data type

Description or
corresponding monitor
element

DB_NAME VARCHAR(128) db_name - Database name

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input
database alias

DB_PATH VARCHAR(1024) db_path - Database path

DB_LOCATION INTEGER db_location - Database
location

SERVER_PLATFORM INTEGER server_platform - Server
operating system

ROLLED_UP_ALERT_STATE BIGINT The most severe alert state
captured by this snapshot.

ROLLED_UP_ALERT_
STATE_DETAIL

VARCHAR(20) The text description of the
ROLLED_UP_ALERT_STATE
column.

HEALTH_DBM_HI
The HEALTH_DBM_HI table function returns health indicator information from a
health snapshot of the DB2 database manager.

Important: This table function has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Syntax

�� HEALTH_DBM_HI (dbpartitionnum) ��

The schema is SYSPROC.

Table function parameter

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for an aggregate of
all active database partitions. An active database partition is a partition where
the database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the HEALTH_DBM_HI table function.

Example
SELECT * FROM TABLE(HEALTH_DBM_HI(-1)) AS T

The following example is a sample output from this query.

1064 Administrative Routines and Views

SNAPSHOT_TIMESTAMP HI_ID SERVER_INSTANCE_NAME ...
-------------------------- -----...- --------------------...- ...
2006-02-13-12.30.19.773632 1 DB2 ...
2006-02-13-12.30.19.773632 4 DB2 ...

2 record(s) selected.

Output from this query (continued).
... HI_VALUE HI_TIMESTAMP HI_ALERT_STATE HI_ALERT_STATE_DETAIL ...
... -------- -------------------------- -------------- --------------------- ...
... 0 2006-02-13-12.26.26.158000 1 Normal ...
... 100 2006-02-13-12.26.26.158000 4 Alarm ...

Output from this query (continued).
... HI_FORMULA HI_ADDITIONAL_INFO
... ---------------------...- ------------------
... 0 -
... ((327680 / 327680) * 100) -

Table 285. Information returned by the HEALTH_DBM_HI table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

HI_ID BIGINT A number that uniquely
identifies the health indicator
in the snapshot data stream.

SERVER_INSTANCE_NAME VARCHAR(128) server_instance_name -
Server instance name

HI_VALUE SMALLINT The value of the health
indicator.

HI_TIMESTAMP TIMESTAMP The date and time that the
alert was generated.

HI_ALERT_STATE BIGINT The severity of the alert.

HI_ALERT_STATE_DETAIL VARCHAR(20) The text description of the
HI_ALERT_STATE column.

HI_FORMULA VARCHAR(2048) The formula used to
calculate the health indicator.

HI_ADDITIONAL_INFO VARCHAR(4096) Additional information about
the health indicator.

HEALTH_DBM_HI_HIS
The HEALTH_DBM_HI_HIS table function returns health indicator history
information from a health snapshot of the DB2 database manager.

Important: This table function has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Chapter 22. Deprecated routines 1065

Syntax

�� HEALTH_DBM_HI_HIS (dbpartitionnum) ��

The schema is SYSPROC.

Table function parameter

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for an aggregate of
all active database partitions. An active database partition is a partition where
the database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the HEALTH_DBM_HI_HIS table function.

Example
SELECT * FROM TABLE(HEALTH_DBM_HI_HIS(-1)) AS T

The following example is a sample output from this query.
SNAPSHOT_TIMESTAMP HI_ID SERVER_INSTANCE_NAME HI_VALUE ...
-------------------------- -----...- --------------------...- -------- ...
2006-02-13-12.30.20.460905 1 DB2 0 ...
2006-02-13-12.30.20.460905 1 DB2 0 ...
2006-02-13-12.30.20.460905 1 DB2 0 ...
2006-02-13-12.30.20.460905 1 DB2 0 ...
2006-02-13-12.30.20.460905 1 DB2 0 ...
2006-02-13-12.30.20.460905 1 DB2 0 ...
2006-02-13-12.30.20.460905 1 DB2 0 ...
2006-02-13-12.30.20.460905 1 DB2 0 ...
2006-02-13-12.30.20.460905 1 DB2 0 ...
2006-02-13-12.30.20.460905 4 DB2 100 ...
2006-02-13-12.30.20.460905 4 DB2 100 ...
2006-02-13-12.30.20.460905 4 DB2 100 ...
2006-02-13-12.30.20.460905 4 DB2 100 ...
2006-02-13-12.30.20.460905 4 DB2 60 ...
2006-02-13-12.30.20.460905 4 DB2 60 ...
2006-02-13-12.30.20.460905 4 DB2 60 ...
2006-02-13-12.30.20.460905 4 DB2 60 ...
2006-02-13-12.30.20.460905 4 DB2 60 ...

18 record(s) selected.

Output for this query (continued).
... HI_TIMESTAMP HI_ALERT_STATE HI_ALERT_STATE_DETAIL ...
... -------------------------- -------------- --------------------- ...
... 2006-02-13-12.21.25.649000 1 Normal ...
... 2006-02-13-12.16.25.911000 1 Normal ...
... 2006-02-13-12.11.25.377000 1 Normal ...
... 2006-02-13-12.06.26.168000 1 Normal ...
... 2006-02-13-12.01.25.165000 1 Normal ...
... 2006-02-13-11.56.25.927000 1 Normal ...
... 2006-02-13-11.51.25.452000 1 Normal ...
... 2006-02-13-11.46.25.211000 1 Normal ...
... 2006-02-13-11.41.25.972000 1 Normal ...
... 2006-02-13-12.21.25.649000 4 Alarm ...
... 2006-02-13-12.16.25.911000 4 Alarm ...

1066 Administrative Routines and Views

... 2006-02-13-12.11.25.377000 4 Alarm ...

... 2006-02-13-12.06.26.168000 4 Alarm ...

... 2006-02-13-12.01.25.165000 1 Normal ...

... 2006-02-13-11.56.25.927000 1 Normal ...

... 2006-02-13-11.51.25.452000 1 Normal ...

... 2006-02-13-11.46.25.211000 1 Normal ...

... 2006-02-13-11.41.25.972000 1 Normal ...

Output for this query (continued).
... HI_FORMULA HI_ADDITIONAL_INFO
... -------------------------...- ------------------
... 0 -
... 0 -
... 0 -
... 0 -
... 0 -
... 0 -
... 0 -
... 0 -
... 0 -
... ((327680 / 327680) * 100) -
... ((327680 / 327680) * 100) -
... ((327680 / 327680) * 100) -
... ((327680 / 327680) * 100) -
... ((196608 / 327680) * 100) -
... ((196608 / 327680) * 100) -
... ((196608 / 327680) * 100) -
... ((196608 / 327680) * 100) -
... ((196608 / 327680) * 100) -

Information returned

Table 286. Information returned by the HEALTH_DBM_HI_HIS table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

HI_ID BIGINT A number that uniquely
identifies the health indicator
in the snapshot data stream.

SERVER_INSTANCE_NAME VARCHAR(128) server_instance_name -
Server instance name

HI_VALUE SMALLINT The value of the health
indicator.

HI_TIMESTAMP TIMESTAMP The date and time that the
alert was generated.

HI_ALERT_STATE BIGINT The severity of the alert.

HI_ALERT_STATE_DETAIL VARCHAR(20) The text description of the
HI_ALERT_STATE column.

HI_FORMULA VARCHAR(2048) The formula used to
calculate the health indicator.

HI_ADDITIONAL_INFO VARCHAR(4096) Additional information about
the health indicator.

Chapter 22. Deprecated routines 1067

HEALTH_DBM_INFO
The HEALTH_DBM_INFO function returns information from a health snapshot of
the DB2 database manager.

Important: This table function has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Syntax

�� HEALTH_DBM_INFO (dbpartitionnum) ��

The schema is SYSPROC.

Table function parameter

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for an aggregate of
all active database partitions. An active database partition is a partition where
the database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the HEALTH_DBM_INFO table function.

Example
SELECT * FROM TABLE(HEALTH_DBM_INFO(-1)) AS T

The following example is a sample output from this query.
SNAPSHOT_TIMESTAMP SERVER_INSTANCE_NAME ROLLED_UP_ALERT_STATE ...
-------------------------- --------------------...--- --------------------- ...
2006-02-13-12.30.19.663924 DB2 4 ...

1 record(s) selected.

Output from this query (continued).
... ROLLED_UP_ALERT_STATE_DETAIL DB2START_TIME ...
... ---------------------------- -------------------------- ...
... Alarm 2006-02-09-10.56.18.126182 ...

Output from this query (continued).
... LAST_RESET NUM_NODES_IN_DB2_INSTANCE
... -----------...--- -------------------------
... - 1

1068 Administrative Routines and Views

Information returned

Table 287. Information returned by the HEALTH_DBM_INFO table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

SERVER_INSTANCE_NAME VARCHAR(128) server_instance_name -
Server instance name

ROLLED_UP_ALERT_STATE BIGINT The most severe alert state
captured by this snapshot.

ROLLED_UP_ALERT_
STATE_DETAIL

VARCHAR(20) The text description of the
ROLLED_UP_ALERT_STATE
column.

DB2START_TIME TIMESTAMP db2start_time - Start
database manager timestamp

LAST_RESET TIMESTAMP last_reset - Last reset
timestamp

NUM_NODES_IN_DB2_
INSTANCE

INTEGER num_nodes_in_db2_instance
- Number of nodes in
database partition

HEALTH_GET_ALERT_ACTION_CFG
Returns health alert action configuration settings for various object types (database
manager, database, table space, and table space container) and for various
configuration levels (install default, instance, global, and object).

Important: This table function has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Syntax

�� HEALTH_GET_ALERT_ACTION_CFG (objecttype , cfg_level , dbname , �

� objectname) ��

The schema is SYSPROC.

Table function parameters

objecttype
An input argument of type VARCHAR(3) that indicates the object type. The
value must be one of the following case-insensitive values:
v 'DBM' for database manager
v 'DB' for database
v 'TS' for table space
v 'TSC' for table space container

Note: Leading and trailing spaces will be ignored.

Chapter 22. Deprecated routines 1069

cfg_level
An input argument of type VARCHAR(1) that indicates the configuration level.
The value must be one of the following case-insensitive values:
v For objecttype 'DBM': 'D' for install default; 'G' or 'O' for instance level.
v For objecttype that is not 'DBM': 'D' for install default; 'G' for global level; 'O'

for object level.

dbname
An input argument of type VARCHAR(128) that indicates the database name.
The database name must be provided if objecttype is 'DB', 'TS', or 'TSC', and
cfg_level is 'O'. For all other combinations of objecttype and cfg_level, the dbname
parameter should be NULL (or an empty string).

objectname
An input argument of type VARCHAR(1024) that indicates the object name, for
example, <table space name> or <table space name>.<container name>. The
object name must be provided if objecttype is 'TS' or 'TSC', and cfg_level is 'O'.
For all other combinations of objecttype and cfg_level, the objectname parameter
should be NULL (or an empty string).

Authorization

EXECUTE privilege on the HEALTH_GET_ALERT_ACTION_CFG table function.

Examples

Example 1: Retrieve object level alert action configuration settings for database
SAMPLE for health indicator ID 1004.
SELECT OBJECTTYPE, CFG_LEVEL, SUBSTR(DBNAME,1,8) AS DBNAME,

SUBSTR(OBJECTNAME,1,8) AS OBJECTNAME, ID, IS_DEFAULT,
SUBSTR(CONDITION,1,10) AS CONDITION, ACTIONTYPE,
SUBSTR(ACTIONNAME,1,30) AS ACTIONNAME, SUBSTR(USERID,1,8) AS USERID,
SUBSTR(HOSTNAME,1,10) AS HOSTNAME, SCRIPT_TYPE,
SUBSTR(WORKING_DIR,1,10) AS WORKING_DIR, TERMINATION_CHAR,
SUBSTR(PARAMETERS,1,10) AS PARAMETERS

FROM TABLE(HEALTH_GET_ALERT_ACTION_CFG(’DB’,’O’,’SAMPLE’,’’)) AS ACTION_CFG
WHERE ID = 1004

The following example is a sample output for this query.
OBJECTTYPE CFG_LEVEL DBNAME OBJECTNAME ID IS_DEFAULT CONDITION
---------- --------- -------- ---------- --...---- ---------- ----------
DB O SAMPLE 1004 1 ALARM
DB O SAMPLE 1004 1 ALARM

2 record(s) selected.

Output for this query (continued).
... ACTIONTYPE ACTIONNAME USERID HOSTNAME
... ---------- ------------------------------ -------- ----------
... S ~/health_center/script/scrpn6 uid1 -
... T 00.0005 uid1 HOST3

Output for this query (continued).
... SCRIPT_TYPE WORKING_DIR TERMINATION_CHAR PARAMETERS
... ----------- ----------- ---------------- ----------
... O ~/health_c - -
... - - - -

1070 Administrative Routines and Views

Example 2: Retrieve the condition, action type, action name, hostname, and script
type for database SAMPLE for health indicator ID 1004.
SELECT CONDITION, ACTIONTYPE, SUBSTR(ACTIONNAME,1,35) AS ACTIONNAME,

SUBSTR(USERID,1,8) AS USERID, SUBSTR(HOSTNAME,1,10) AS HOSTNAME, SCRIPT_TYPE
FROM TABLE(HEALTH_GET_ALERT_ACTION_CFG(’DB’,’O’,’SAMPLE’,’’)) AS ALERT_ACTION_CFG
WHERE ID=1004

The following example is a sample output for this query.
CONDITION ACTIONTYPE ACTIONNAME ...
---------...--- ---------- -------------------------------- ...
ALARM S ~/health_center/script/scrpn6 ...
ALARM T 00.0005 ...

2 record(s) selected.

Output for this query (continued).
... USERID HOSTNAME SCRIPT_TYPE
... -------- ---------- -----------
... uid1 - O
... uid1 HOST3 -

Usage notes

The HEALTH_GET_IND_DEFINITION table function can be used to map health
indicator IDs to the health indicator names.

Information returned

Table 288. Information returned by the HEALTH_GET_ALERT_ACTION_CFG table function

Column name Data type Description

OBJECTTYPE VARCHAR(3) Object type.

CFG_LEVEL CHAR(1) Configuration level.

DBNAME VARCHAR(128) Database name.

OBJECTNAME VARCHAR(512) Object name.

ID BIGINT Health indicator ID.

IS_DEFAULT SMALLINT Whether the settings is the
default: 1 if it is the default,
0 if it is not the default, Null
if it is not applicable.

CONDITION VARCHAR(32) Alert condition upon which
the action is triggered.

ACTIONTYPE CHAR(1) Action type: 'S' for script
action or 'T' for task action.

ACTIONNAME VARCHAR(5000) If ACTIONTYPE is 'S', this is
the script path name. If
ACTIONTYPE is 'T', this is
the task ID.

USERID VARCHAR(1024) User name under which the
action will be executed.

HOSTNAME VARCHAR(255) Host system name.

Chapter 22. Deprecated routines 1071

Table 288. Information returned by the HEALTH_GET_ALERT_ACTION_CFG table
function (continued)

Column name Data type Description

SCRIPT_TYPE CHAR(1) Script type: If ACTIONTYPE
is 'S', 'O' for operating
system command script or
'D' for DB2 command script;
If ACTIONTYPE is 'T', Null.

WORKING_DIR VARCHAR(5000) The working directory for
the script if ACTIONTYPE is
'S' or Null if ACTIONTYPE
is 'T'.

TERMINATION_CHAR VARCHAR(4) The statement termination
character if it is a DB2
command script action,
otherwise Null.

PARAMETERS VARCHAR(200) The command line
parameters if it is an
operating system command
script action.

HEALTH_GET_ALERT_CFG
Returns health alert configuration settings for various object types (database
manager, database, table space, table space container) and for various configuration
levels (install default, global, and object).

Important: This table function has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Syntax

�� HEALTH_GET_ALERT_CFG (objecttype , cfg_level , dbname , �

� objectname) ��

The schema is SYSPROC.

Table function parameters

objecttype
An input argument of type VARCHAR(3) that indicates the object type. The
value must be one of the following case-insensitive values:
v 'DBM' for database manager
v 'DB' for database
v 'TS' for table space
v 'TSC' for table space container

Note: Leading and trailing spaces will be ignored.

1072 Administrative Routines and Views

cfg_level
An input argument of type VARCHAR(1) that indicates the configuration level.
The value must be one of the following case-insensitive values:
v For objecttype 'DBM': 'D' for install default; 'G' or 'O' for instance level.
v For objecttype that is not 'DBM': 'D' for install default; 'G' for global level; 'O'

for object level.

dbname
An input argument of type VARCHAR(128) that indicates the database name.
The database name must be provided if objecttype is 'DB', 'TS', or 'TSC', and
cfg_level is 'O'. For all other combinations of objecttype and cfg_level, the dbname
parameter should be NULL (or an empty string).

objectname
An input argument of type VARCHAR(1024) that indicates the object name, for
example, <table space name> or <table space name>.<container name>. The
object name must be provided if objecttype is 'TS' or 'TSC', and cfg_level is 'O'.
For all other combinations of objecttype and cfg_level, the objectname parameter
should be NULL (or an empty string).

Authorization

EXECUTE privilege on the HEALTH_GET_ALERT_CFG table function.

Examples

Example 1: Retrieve the object level alert configuration settings for database
SAMPLE.
SELECT * FROM TABLE(SYSPROC.HEALTH_GET_ALERT_CFG(’DB’,’O’,’SAMPLE’,’’))

AS ALERT_CFG

The following example is a sample output for this query.
OBJECTTYPE CFG_LEVEL DBNAME OBJECTNAME ...
---------- --------- --------...----- -------------...------ ...
DB O SAMPLE ...
DB O SAMPLE ...
DB O SAMPLE ...
DB O SAMPLE ...
DB O SAMPLE ...
DB O SAMPLE ...
DB O SAMPLE ...
DB O SAMPLE ...
DB O SAMPLE ...
DB O SAMPLE ...
DB O SAMPLE ...
DB O SAMPLE ...
DB O SAMPLE ...
DB O SAMPLE ...
... ...

Output for this query (continued).
... ID IS_DEFAULT WARNING_THRESHOLD ...
... -------------------- ---------- -------------------- ...
... 1001 0 0 ...
... 1018 0 0 ...
... 1015 0 0 ...
... 1022 0 0 ...
... 1002 1 95 ...
... 1003 1 30 ...
... 1004 1 60 ...

Chapter 22. Deprecated routines 1073

... 1005 1 75 ...

... 1006 1 75 ...

... 1007 1 5 ...

... 1008 1 75 ...

... 1009 1 5 ...

... 1010 1 50 ...

... 1011 1 80 ...

Output for this query (continued).
... ALARM_THRESHOLD SENSITIVITY EVALUATE ACTION_ENABLED
... -------------------- -------------------- -------- --------------
... 0 0 0 0
... 0 0 1 0
... 0 0 1 0
... 0 0 1 0
... 100 0 0 0
... 50 0 1 0
... 30 0 1 0
... 85 0 1 0
... 85 0 1 0
... 10 0 1 0
... 85 0 1 0
... 10 0 1 0
... 70 0 1 0
... 70 0 0 0

Example 2: Retrieve the warning and alarm thresholds for the health indicator ID
'2002' for table space USERSPACE1 in database SAMPLE.
SELECT WARNING_THRESHOLD, ALARM_THRESHOLD

FROM TABLE(SYSPROC.HEALTH_GET_ALERT_CFG(’TS’,’O’,’SAMPLE’,’USERSPACE1’))
AS T WHERE ID = 2002

The following example is a sample output for this query.
WARNING_THRESHOLD ALARM_THRESHOLD
-------------------- --------------------

80 90
SQL22004N Cannot find the requested configuration for the given object.
Returning default configuration for "tablespaces".

1 record(s) selected with 1 warning messages printed.

Usage notes

The HEALTH_GET_IND_DEFINITION table function can be used to map health
indicator IDs to the health indicator names.

Example: Retrieve the warning and alarm thresholds for the health indicator
Tablespace Utilization (ts.ts_util) for table space USERSPACE1 in database
SAMPLE.
WITH HINAME(ID) AS (SELECT ID FROM TABLE(SYSPROC.HEALTH_GET_IND_DEFINITION(’’)) AS W

WHERE NAME = ’ts.ts_util’)
SELECT WARNING_THRESHOLD, ALARM_THRESHOLD

FROM TABLE(SYSPROC.HEALTH_GET_ALERT_CFG(’TS’,’O’,’SAMPLE’,’USERSPACE1’)) AS T,
HINAME AS H
WHERE T.ID = H.ID

The following example is a sample output for this query.
WARNING_THRESHOLD ALARM_THRESHOLD
-------------------- --------------------

80 90
SQL22004N Cannot find the requested configuration for the given object.

1074 Administrative Routines and Views

Returning default configuration for "tablespaces".

1 record(s) selected with 1 warning messages printed.

Information returned

Table 289. Information returned by the HEALTH_GET_ALERT_CFG table function

Column name Data type Description

OBJECTTYPE VARCHAR(3) Object type.

CFG_LEVEL CHAR(1) Configuration level.

DBNAME VARCHAR(128) Database name.

OBJECTNAME VARCHAR(512) Object name.

ID BIGINT Health indicator ID.

IS_DEFAULT SMALLINT Whether the settings is the
default: 1 if it is the default,
0 if it is not the default or
Null if not applicable.

WARNING_THRESHOLD BIGINT Warning threshold. Null if
not applicable.

ALARM_THRESHOLD BIGINT Alarm threshold. Null if not
applicable.

SENSITIVITY BIGINT Health indicator sensitivity.

EVALUATE SMALLINT 1 if this health indicator is
being evaluated or 0 if it is
not being evaluated.

ACTION_ENABLED SMALLINT 1 if an action is enabled to
run upon an alert occurrence
or 0 if no action is enabled to
run upon an alert occurrence.

HEALTH_GET_IND_DEFINITION
Returns the health indicator definitions.

Important: This table function has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Syntax

�� HEALTH_GET_IND_DEFINITION (locale) ��

The schema is SYSPROC.

Table function parameter

locale
An input argument of type VARCHAR(33) that indicates the locale in which
the translatable output is to be returned. If the input locale is not supported by
the database server, an SQL warning message is issued, and the default

Chapter 22. Deprecated routines 1075

language (English) is used. If the input locale is not provided, that is, its value
is NULL (or an empty string), the default language is used.

Authorization

EXECUTE privilege on the HEALTH_GET_IND_DEFINITION table function.

Examples

Example 1: Retrieve the type and short description for health indicator
db.db_op_status in French.
SELECT TYPE, SHORT_DESCRIPTION

FROM TABLE(SYSPROC.HEALTH_GET_IND_DEFINITION(’fr_FR’))
AS IND_DEFINITION WHERE NAME = ’db.db_op_status’

The following example is a sample output for this query.
TYPE SHORT_DESCRIPTION
---------------- --...---------
STATE Etat opérationnel de la base de données

1 record(s) selected.

Example 2: Retrieve the short description for health indicator ID 1001 in English.
SELECT SHORT_DESCRIPTION FROM TABLE(SYSPROC.HEALTH_GET_IND_DEFINITION(’en_US’)

AS IND_DEFINITION WHERE ID = 1001

The following example is a sample output for this query.
SHORT_DESCRIPTION
-----------------------------...-------------
Database Operational State

Example 3: Retrieve all health indicator IDs and names.
SELECT ID, NAME FROM TABLE(HEALTH_GET_IND_DEFINITION(’’)) AS T

The following example is a sample output for this query.
ID NAME
-------------------- ----------------------------

1 db2.db2_op_status
2 db2.sort_privmem_util
4 db2.mon_heap_util

1001 db.db_op_status
1002 db.sort_shrmem_util

...
2001 ts.ts_op_status
2002 ts.ts_util

...
3002 tsc.tscont_util
1015 db.tb_reorg_req

...

Information returned

Table 290. Information returned by the HEALTH_GET_IND_DEFINITION table function

Column name Data type Description

ID BIGINT Health indicator ID.

NAME VARCHAR(128) Health indicator name.

1076 Administrative Routines and Views

Table 290. Information returned by the HEALTH_GET_IND_DEFINITION table
function (continued)

Column name Data type Description

SHORT_DESCRIPTION VARCHAR(1024) Health indicator short
description.

LONG_DESCRIPTION VARCHAR(32672) Health indicator long
description.

TYPE VARCHAR(16) Health indicator type.
Possible values are:

v 'THRESHOLD_UPPER':
upper-bounded
threshold-based health
indicators.

v 'THRESHOLD_LOWER':
lower-bounded
threshold-based health
indicators.

v 'STATE': state-based health
indicators.

v 'COLLECTION_STATE':
collection state-based
health indicators.

UNIT VARCHAR(1024) Unit of the health indicator
values and thresholds or
Null if not applicable.

CATEGORY VARCHAR(1024) Health indicator category.

FORMULA VARCHAR(512) Health indicator formula.

REFRESH_INTERVAL BIGINT Health indicator evaluation
interval in seconds.

HEALTH_HI_REC
Retrieves a set of recommendations that address a health indicator in alert state on
a particular DB2 object. Recommendations are returned in an XML document that
contains information about actions that can be taken (for example, scripts that can
be run) to resolve the alert state.

Important: This procedure has been deprecated and might be removed in a future
release because the health monitor has been deprecated in Version 9.7. For more
information, see the “Health monitor has been deprecated” topic in the What's New
in Version 9.7 book.

Syntax

�� HEALTH_HI_REC (schema-version , indicator-id , dbname , �

� object-type , object-name , dbpartitionnum , client-locale , �

� recommendation-doc) ��

The schema is SYSPROC.

Chapter 22. Deprecated routines 1077

Any scripts that are returned by this procedure must be invoked from the instance
on which the health indicator entered the alert state.

If the specified health indicator on the identified object is not in an alert state, an
error is returned (SQLSTATE 5U0ZZ).

Procedure parameters

schema-version
An input argument of type INTEGER that specifies the version ID of the
schema used to represent the XML document. The recommendation document
will only contain elements and attributes that were defined for that schema
version. Valid schema versions are defined in db2ApiDf.h, located in the
include subdirectory of the sqllib directory.

indicator-id
An input argument of type INTEGER that specifies the numeric identifier of
the health indicator for which recommendations are being requested. Valid
health indicator IDs are defined in sqlmon.h, located in the include
subdirectory of the sqllib directory.

dbname
An input argument of type VARCHAR(255) that specifies an alias name for the
database against which the health indicator entered an alert state, and when
object type is either DB2HEALTH_OBJTYPE_TS_CONTAINER,
DB2HEALTH_OBJTYPE_TABLESPACE, or DB2HEALTH_OBJTYPE_DATABASE. Specify NULL
otherwise.

object-type
An input argument of type INTEGER that specifies the type of object on which
the health indicator entered an alert state. Valid object types are defined in
sqlmon.h, located in the include subdirectory of the sqllib directory.

object-name
An input argument of type VARCHAR(255) that specifies the name of a table
space or table space container when the object type is set to
DB2HEALTH_OBJTYPE_TABLESPACE or DB2HEALTH_OBJTYPE_TS_CONTAINER. Specify
NULL if the object type is DB2HEALTH_OBJTYPE_DATABASE or
DB2HEALTH_OBJTYPE_DATABASE_MANAGER. In the case of a table space container,
the object name is specified as table_space_name.container_name.

dbpartitionnum
An input argument of type INTEGER that specifies the number of the database
partition on which the health indicator entered an alert state. Valid values are 0
to 999, -1 (which specifies the currently connected database partition), and -2
(which specifies all active database partitions). An active database partition is a
partition where the database is available for connection and use by
applications.

client-locale
An input argument of type VARCHAR(33) that specifies a client language
identifier. Use this parameter to specify the language in which
recommendations are to be returned. If no value is specified, 'En_US' (English)
will be used. Note that if the message files for the specified locale are not
available on the server, 'En_US' will be used as the default.

recommendation-doc
An output argument of type BLOB(2M) that contains the recommendation
document (XML), formatted according to the DB2 Health Recommendation
schema definition (see the XML schema DB2RecommendationSchema.xsd, located

1078 Administrative Routines and Views

in the misc subdirectory of the sqllib directory). The XML document is
encoded in UTF-8, and text in the document is in the locale of the caller, or
English, if messages are not available in the caller's locale at the target instance.

Authorization

One of the following authorities is required to execute the procedure:
v EXECUTE privilege on the procedure
v DATAACCESS authority
v DBADM authority
v SQLADM authority

HEALTH_TBS_HI
Returns health indicator information for table spaces from a health snapshot of
table spaces in a database.

Important: This table function has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Syntax

�� HEALTH_TBS_HI (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from the currently connected
database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for an aggregate of
all active database partitions. An active database partition is a partition where
the database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the HEALTH_TBS_HI table function.

Example
SELECT * FROM TABLE(HEALTH_TBS_HI(’’,-1)) AS T

The following example is a sample output from this query.

Chapter 22. Deprecated routines 1079

SNAPSHOT_TIMESTAMP TABLESPACE_NAME HI_ID HI_VALUE ...
-------------------------- ---------------...- -----...- -------- ...
2006-02-13-12.30.35.229196 SYSCATSPACE 2001 0 ...
2006-02-13-12.30.35.229196 SYSCATSPACE 2002 99 ...
2006-02-13-12.30.35.229196 SYSCATSPACE 2003 0 ...
2006-02-13-12.30.35.229196 SYSTOOLSPACE 2001 0 ...
2006-02-13-12.30.35.229196 SYSTOOLSPACE 2002 62 ...
2006-02-13-12.30.35.229196 SYSTOOLSPACE 2003 0 ...
2006-02-13-12.30.35.229196 SYSTOOLSTMPSPACE 2001 0 ...
2006-02-13-12.30.35.229196 TEMPSPACE1 2001 0 ...
2006-02-13-12.30.35.229196 USERSPACE1 2001 0 ...
2006-02-13-12.30.35.229196 USERSPACE1 2002 100 ...
2006-02-13-12.30.35.229196 USERSPACE1 2003 0 ...

11 record(s) selected.

Output from this query (continued).
... HI_TIMESTAMP HI_ALERT_STATE HI_ALERT_STATE_DETAIL ...
... -------------------------- --------------- --------------------- ...
... 2006-02-13-12.26.26.158000 1 Normal ...
... 2006-02-13-12.26.26.158000 4 Alarm ...
... 2006-02-13-12.26.26.158000 1 Normal ...
... 2006-02-13-12.26.26.158000 1 Normal ...
... 2006-02-13-12.26.26.158000 1 Normal ...
... 2006-02-13-12.26.26.158000 1 Normal ...
... 2006-02-13-12.26.26.158000 1 Normal ...
... 2006-02-13-12.26.26.158000 1 Normal ...
... 2006-02-13-12.26.26.158000 1 Normal ...
... 2006-02-13-12.26.26.158000 4 Alarm ...
... 2006-02-13-12.26.26.158000 1 Normal ...

Output from this query (continued).
... HI_FORMULA HI_ADDITIONAL_INFO
... ---------------------...- --
... 0 -
... ((9376 / 9468) * 100) The short term table space growth rate

from "02/13/2006 11:26:26.000158" to
"02/13/2006 12:26:26.000158" is "N/A"
bytes per second and the long term growth
rate from "02/12/2006 12:26:26.000158"
to "02/13/2006 12:26:26.000158" is "N/A"
bytes per second. Time to fullness is
projected to be "N/A" and "N/A"
respectively. The table space is defined
with automatic storage set to "YES" and
automatic resize enabled set to "YES".

... 0 The table space is defined with automatic
storage set to "YES" and automatic resize
enabled set to "YES". The following are
the automatic resize settings: increase
size (bytes) "-1", increase size (percent)
"N/A", maximum size (bytes) "-1". The
current table space size (bytes) is
"38797312".

... 0 -

... ((156 / 252) * 100) The short term table space growth rate
from "02/13/2006 11:26:26.000158" to
"02/13/2006 12:26:26.000158" is "N/A"
bytes per second and the long term growth
rate from "02/12/2006 12:26:26.000158"
to "02/13/2006 12:26:26.000158" is "N/A"
bytes per second. Time to fullness is
projected to be "N/A" and "N/A"
respectively. The table space is defined
with automatic storage set to "YES" and
automatic resize enabled set to "YES".

1080 Administrative Routines and Views

... 0 The table space is defined with automatic
storage set to "YES" and automatic resize
enabled set to "YES". The following are
the automatic resize settings: increase
size (bytes) "-1", increase size (percent)
"N/A", maximum size (bytes) "-1". The
current table space size (bytes) is
"1048576".

... 0 -

... 0 -

... 0 -

... ((1504 / 1504) * 100) The short term table space growth rate from
"02/13/2006 11:26:26.000158" to
"02/13/2006 12:26:26.000158" is "N/A"
bytes per second and the long term growth
rate from "02/12/2006 12:26:26.000158" to
"02/13/2006 12:26:26.000158" is "N/A" bytes
per second. Time to fullness is projected
to be "N/A" and "N/A" respectively. The
table space is defined with automatic storage
set to "YES" and automatic resize enabled
set to "YES".

... 0 The table space is defined with automatic
storage set to "YES" and automatic resize
enabled set to "YES". The following are
the automatic resize settings: increase
size (bytes) "-1", increase size (percent)
"N/A", maximum size (bytes) "-1". The
current table space size (bytes) is
"6291456".

Information returned

Table 291. Information returned by the HEALTH_TBS_HI table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table
space name

HI_ID BIGINT A number that uniquely
identifies the health indicator
in the snapshot data stream.

HI_VALUE SMALLINT The value of the health
indicator.

HI_TIMESTAMP TIMESTAMP The date and time that the
alert was generated.

HI_ALERT_STATE BIGINT The severity of the alert.

HI_ALERT_STATE_DETAIL VARCHAR(20) The text description of the
HI_ALERT_STATE column.

HI_FORMULA VARCHAR(2048) The formula used to
calculate the health indicator.

HI_ADDITIONAL_INFO VARCHAR(4096) Additional information about
the health indicator.

Chapter 22. Deprecated routines 1081

HEALTH_TBS_HI_HIS
The HEALTH_TBS_HI_HIS table function returns health indicator history
information for table spaces from a health snapshot of a database.

Important: This table function has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Syntax

�� HEALTH_TBS_HI_HIS (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from the currently connected
database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for an aggregate of
all active database partitions. An active database partition is a partition where
the database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the HEALTH_TBS_HI_HIS table function.

Example
SELECT * FROM TABLE(HEALTH_TBS_HI_HIS(’’,-1)) AS T

The following example is a sample output from this query.
SNAPSHOT_TIMESTAMP TABLESPACE_NAME HI_ID ...
-------------------------- ---------------...- -----...- ...
2006-02-13-12.30.37.181478 SYSCATSPACE 2001 ...
2006-02-13-12.30.37.181478 SYSCATSPACE 2001 ...
2006-02-13-12.30.37.181478 SYSCATSPACE 2002 ...
2006-02-13-12.30.37.181478 SYSCATSPACE 2002 ...
2006-02-13-12.30.37.181478 SYSCATSPACE 2003 ...
2006-02-13-12.30.37.181478 SYSCATSPACE 2003 ...
2006-02-13-12.30.37.181478 SYSTOOLSPACE 2001 ...
2006-02-13-12.30.37.181478 SYSTOOLSPACE 2001 ...
2006-02-13-12.30.37.181478 SYSTOOLSPACE 2002 ...
2006-02-13-12.30.37.181478 SYSTOOLSPACE 2002 ...
2006-02-13-12.30.37.181478 SYSTOOLSPACE 2003 ...
2006-02-13-12.30.37.181478 SYSTOOLSPACE 2003 ...
2006-02-13-12.30.37.181478 SYSTOOLSTMPSPACE 2001 ...
2006-02-13-12.30.37.181478 SYSTOOLSTMPSPACE 2001 ...
2006-02-13-12.30.37.181478 TEMPSPACE1 2001 ...

1082 Administrative Routines and Views

2006-02-13-12.30.37.181478 TEMPSPACE1 2001 ...
2006-02-13-12.30.37.181478 USERSPACE1 2001 ...
2006-02-13-12.30.37.181478 USERSPACE1 2001 ...
2006-02-13-12.30.37.181478 USERSPACE1 2002 ...
2006-02-13-12.30.37.181478 USERSPACE1 2002 ...
2006-02-13-12.30.37.181478 USERSPACE1 2003 ...
2006-02-13-12.30.37.181478 USERSPACE1 2003 ...

22 record(s) selected.

Output from this query (continued).
... HI_TIMESTAMP HI_VALUE HI_ALERT_STATE HI_ALERT_STATE_DETAIL ...
... -------------------------- -------- -------------- --------------------- ...
... 2006-02-13-12.16.25.911000 0 1 Normal ...
... 2006-02-13-12.06.26.168000 0 1 Normal ...
... 2006-02-13-12.16.25.911000 99 4 Alarm ...
... 2006-02-13-12.06.26.168000 99 4 Alarm ...
... 2006-02-13-12.16.25.911000 0 1 Normal ...
... 2006-02-13-12.06.26.168000 0 1 Normal ...
... 2006-02-13-12.16.25.911000 0 1 Normal ...
... 2006-02-13-12.06.26.168000 0 1 Normal ...
... 2006-02-13-12.16.25.911000 62 1 Normal ...
... 2006-02-13-12.06.26.168000 62 1 Normal ...
... 2006-02-13-12.16.25.911000 0 1 Normal ...
... 2006-02-13-12.06.26.168000 0 1 Normal ...
... 2006-02-13-12.16.25.911000 0 1 Normal ...
... 2006-02-13-12.06.26.168000 0 1 Normal ...
... 2006-02-13-12.16.25.911000 0 1 Normal ...
... 2006-02-13-12.06.26.168000 0 1 Normal ...
... 2006-02-13-12.16.25.911000 0 1 Normal ...
... 2006-02-13-12.06.26.168000 0 1 Normal ...
... 2006-02-13-12.16.25.911000 100 4 Alarm ...
... 2006-02-13-12.06.26.168000 100 4 Alarm ...
... 2006-02-13-12.16.25.911000 0 1 Normal ...
... 2006-02-13-12.06.26.168000 0 1 Normal ...

Output from this query (continued).
... HI_FORMULA HI_ADDITIONAL_INFO
... --------------------...- -------------------...---
... 0 -
... 0 -
... ((9376 / 9468) * 100) The short term table space growth rate from

"02/13/2006 11:16:25.000911" to
"02/13/2006 12:16:25.000911" is "N/A" bytes
per second and the long term growth rate
from "02/12/2006 12:16:25.000911" to
"02/13/2006 12:16:25.000911" is "N/A" bytes
per second. Time to fullness is projected
to be "N/A" and "N/A" respectively. The
table space is defined with automatic
storage set to "YES" and automatic resize
enabled set to "YES".

... ((9376 / 9468) * 100) The short term table space growth rate from
"02/13/2006 11:06:26.000168" to
"02/13/2006 12:06:26.000168" is "N/A" bytes
per second and the long term growth rate
from "02/12/2006 12:06:26.000168" to
"02/13/2006 12:06:26.000168" is "N/A" bytes
per second. Time to fullness is projected
to be "N/A" and "N/A" respectively. The
table space is defined with automatic
storage set to "YES" and automatic resize
enabled set to "YES".

... 0 The table space is defined with automatic
storage set to "YES" and automatic resize
enabled set to "YES". The following are

Chapter 22. Deprecated routines 1083

the automatic resize settings: increase
size (bytes) "-1", increase size (percent)
"N/A", maximum size (bytes) "-1". The
current table space size (bytes) is
"38797312".

... 0 The table space is defined with automatic
storage set to "YES" and automatic resize
enabled set to "YES". The following are
the automatic resize settings: increase
size (bytes) "-1", increase size (percent)
"N/A", maximum size (bytes) "-1". The
current table space size (bytes) is
"38797312".

... 0 -

... 0 -

... ((156 / 252) * 100) The short term table space growth rate from
"02/13/2006 11:16:25.000911" to
"02/13/2006 12:16:25.000911" is "N/A"
bytes per second and the long term growth
rate from "02/12/2006 12:16:25.000911" to
"02/13/2006 12:16:25.000911" is "N/A" bytes
per second. Time to fullness is projected
to be "N/A" and "N/A" respectively. The
table space is defined with automatic
storage set to "YES" and automatic resize
enabled set to "YES".

... ((156 / 252) * 100) The short term table space growth rate from
"02/13/2006 11:06:26.000168" to
"02/13/2006 12:06:26.000168" is "N/A"
bytes per second and the long term growth
rate from "02/12/2006 12:06:26.000168" to
"02/13/2006 12:06:26.000168" is "N/A" bytes
per second. Time to fullness is projected
to be "N/A" and "N/A" respectively. The
table space is defined with automatic
storage set to "YES" and automatic resize
enabled set to "YES".

... 0 The table space is defined with automatic
storage set to "YES" and automatic resize
enabled set to "YES". The following are
the automatic resize settings: increase
size (bytes) "-1", increase size (percent)
"N/A", maximum size (bytes) "-1". The
current table space size (bytes) is
"1048576".

... 0 The table space is defined with automatic
storage set to "YES" and automatic resize
enabled set to "YES". The following are
the automatic resize settings: increase
size (bytes) "-1", increase size (percent)
"N/A", maximum size (bytes) "-1". The
current table space size (bytes) is
"1048576".

... 0 -

... 0 -

... 0 -

... 0 -

... 0 -

... 0 -

... ((1504 / 1504) * 100) The short term table space growth rate
from "02/13/2006 11:16:25.000911" to
"02/13/2006 12:16:25.000911" is "N/A"
bytes per second and the long term growth
rate from "02/12/2006 12:16:25.000911"
to "02/13/2006 12:16:25.000911" is "N/A"
bytes per second. Time to fullness is
projected to be "N/A" and "N/A"

1084 Administrative Routines and Views

respectively. The table space is defined
with automatic storage set to "YES" and
automatic resize enabled set to "YES".

... ((1504 / 1504) * 100) The short term table space growth rate
from "02/13/2006 11:06:26.000168" to
"02/13/2006 12:06:26.000168" is "N/A"
bytes per second and the long term growth
rate from "02/12/2006 12:06:26.000168"
to "02/13/2006 12:06:26.000168" is "N/A"
bytes per second. Time to fullness is
projected to be "N/A" and "N/A"
respectively. The table space is defined
with automatic storage set to "YES" and
automatic resize enabled set to "YES".

... 0 The table space is defined with automatic
storage set to "YES" and automatic
resize enabled set to "YES". The
following are the automatic resize
settings: increase size (bytes) "-1",
increase size (percent) "N/A", maximum
size (bytes) "-1". The current table
space size (bytes) is "6291456".

... 0 The table space is defined with automatic
storage set to "YES" and automatic
resize enabled set to "YES". The
following are the automatic resize
settings: increase size (bytes) "-1",
increase size (percent) "N/A", maximum
size (bytes) "-1". The current table
space size (bytes) is "6291456".

Information returned

Table 292. Information returned by the HEALTH_TBS_HI_HIS table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table
space name

HI_ID BIGINT A number that uniquely
identifies the health indicator
in the snapshot data stream.

HI_TIMESTAMP TIMESTAMP The date and time that the
alert was generated.

HI_VALUE SMALLINT The value of the health
indicator.

HI_ALERT_STATE BIGINT The severity of the alert.

HI_ALERT_STATE_DETAIL VARCHAR(20) The text description of the
HI_ALERT_STATE column.

HI_FORMULA VARCHAR(2048) The formula used to
calculate the health indicator.

HI_ADDITIONAL_INFO VARCHAR(4096) Additional information about
the health indicator.

Chapter 22. Deprecated routines 1085

HEALTH_TBS_INFO
Returns table space information from a health snapshot of a database.

Important: This table function has been deprecated and might be removed in a
future release because the health monitor has been deprecated in Version 9.7. For
more information, see the “Health monitor has been deprecated” topic in the
What's New for DB2 Version 9.7 book.

Syntax

�� HEALTH_TBS_INFO (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from the currently connected
database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for an aggregate of
all active database partitions. An active database partition is a partition where
the database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the HEALTH_TBS_INFO table function.

Example
SELECT * FROM TABLE(HEALTH_TBS_INFO(’’,-1)) AS T

The following example is a sample output from this query.
SNAPSHOT_TIMESTAMP TABLESPACE_NAME ...
-------------------------- ----------------...- ...
2006-02-13-12.30.35.027383 SYSCATSPACE ...
2006-02-13-12.30.35.027383 SYSTOOLSPACE ...
2006-02-13-12.30.35.027383 SYSTOOLSTMPSPACE ...
2006-02-13-12.30.35.027383 TEMPSPACE1 ...
2006-02-13-12.30.35.027383 USERSPACE1 ...

5 record(s) selected.

Output from this query (continued).
... ROLLED_UP_ALERT_STATE ROLLED_UP_ALERT_STATE_DETAIL
... --------------------- ----------------------------
... 4 Alarm
... 1 Normal
... 1 Normal
... 1 Normal
... 4 Alarm

1086 Administrative Routines and Views

Information returned

Table 293. Information returned by the HEALTH_TBS_INFO table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table
space name

ROLLED_UP_ALERT_STATE BIGINT The most severe alert state
captured by this snapshot.

ROLLED_UP_ALERT_
STATE_DETAIL

VARCHAR(20) The text description of the
ROLLED_UP_ALERT_STATE
column.

SNAPAGENT_MEMORY_POOL administrative view and
SNAP_GET_AGENT_MEMORY_POOL table function – Retrieve
memory_pool logical data group snapshot information

The SNAPAGENT_MEMORY_POOL administrative view and the
SNAP_GET_AGENT_MEMORY_POOL table function return information about
memory usage at the agent level.

Note: Starting in Version 9.7 Fix Pack 5, the SNAPAGENT_MEMORY_POOL
administrative view and SNAP_GET_AGENT_MEMORY_POOL table function
have been deprecated and replaced by the “MON_GET_MEMORY_POOL - get
memory pool information” on page 456 and “MON_GET_MEMORY_SET - get
memory set information” on page 459.

SNAPAGENT_MEMORY_POOL administrative view

This administrative view allows you to retrieve the memory_pool logical data
group snapshot information about memory usage at the agent level for the
currently connected database.

Used with the SNAPAGENT, SNAPAPPL, SNAPAPPL_INFO, SNAPSTMT and
SNAPSUBSECTION administrative views, the SNAPAGENT_MEMORY_POOL
administrative view provides information equivalent to the GET SNAPSHOT FOR
APPLICATIONS ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 203 on page 726 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPAGENT_MEMORY_POOL administrative view
v CONTROL privilege on the SNAPAGENT_MEMORY_POOL administrative view
v DATAACCESS authority

Chapter 22. Deprecated routines 1087

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_AGENT_MEMORY_POOL table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of memory pools and their current size.
SELECT AGENT_ID, POOL_ID, POOL_CUR_SIZE FROM SYSIBMADM.SNAPAGENT_MEMORY_POOL

The following example is a sample output from this query.
AGENT_ID POOL_ID POOL_ CUR_SIZE
--------...--- -------------- ---------...------

48 APPLICATION 65536
48 OTHER 65536
48 APPL_CONTROL 65536
47 APPLICATION 65536
47 OTHER 131072
47 APPL_CONTROL 65536
46 OTHER 327680
46 APPLICATION 262144
46 APPL_CONTROL 65536

9 record(s) selected.

SNAP_GET_AGENT_MEMORY_POOL table function

The SNAP_GET_AGENT_MEMORY_POOL table function returns the same
information as the SNAPAGENT_MEMORY_POOL administrative view, but allows
you to retrieve the information for a specific database on a specific database
partition, aggregate of all database partitions or all database partitions.

Used with the SNAP_GET_AGENT, SNAP_GET_APPL_V95,
SNAP_GET_APPL_INFO_V95, SNAP_GET_STMT and SNAP_GET_SUBSECTION
table functions, the SNAP_GET_AGENT_MEMORY_POOL table function provides
information equivalent to the GET SNAPSHOT FOR ALL APPLICATIONS CLP command.

Refer to Table 203 on page 726 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_AGENT_MEMORY_POOL (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

1088 Administrative Routines and Views

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_AGENT_MEMORY_POOL table function takes a snapshot for the
currently connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_AGENT_MEMORY_POOL table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of memory pools and their current size for all databases.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, AGENT_ID, POOL_ID, POOL_CUR_SIZE

FROM TABLE(SNAP_GET_AGENT_MEMORY_POOL(CAST (NULL AS VARCHAR(128)), -1))
AS T

The following example is a sample output from this query.
DB_NAME AGENT_ID POOL_ID POOL_CUR_SIZE
-------- --------...--- -------------- --------------------
SAMPLE 48 APPLICATION 65536
SAMPLE 48 OTHER 65536
SAMPLE 48 APPL_CONTROL 65536
SAMPLE 47 APPLICATION 65536
SAMPLE 47 OTHER 131072
SAMPLE 47 APPL_CONTROL 65536
SAMPLE 46 OTHER 327680

Chapter 22. Deprecated routines 1089

SAMPLE 46 APPLICATION 262144
SAMPLE 46 APPL_CONTROL 65536
TESTDB 30 APPLICATION 65536
TESTDB 30 OTHER 65536
TESTDB 30 APPL_CONTROL 65536
TESTDB 29 APPLICATION 65536
TESTDB 29 OTHER 131072
TESTDB 29 APPL_CONTROL 65536
TESTDB 28 OTHER 327680
TESTDB 28 APPLICATION 65536
TESTDB 28 APPL_CONTROL 65536

18 record(s) selected.

Information returned

Table 294. Information returned by the SNAPAGENT_MEMORY_POOL administrative view
and the SNAP_GET_AGENT_MEMORY_POOL table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

AGENT_PID BIGINT agent_pid - Engine dispatchable
unit (EDU)

POOL_ID VARCHAR(14) pool_id - Memory pool identifier.
This interface returns a text
identifier based on defines in
sqlmon.h, and is one of:

v APP_GROUP

v APPL_CONTROL

v APPLICATION

v BP

v CAT_CACHE

v DATABASE

v DFM

v FCMBP

v IMPORT_POOL

v LOCK_MGR

v MONITOR

v OTHER

v PACKAGE_CACHE

v QUERY

v SHARED_SORT

v SORT

v STATEMENT

v STATISTICS

v UTILITY

POOL_CUR_SIZE BIGINT pool_cur_size - Current size of
memory pool

1090 Administrative Routines and Views

Table 294. Information returned by the SNAPAGENT_MEMORY_POOL administrative view
and the SNAP_GET_AGENT_MEMORY_POOL table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_WATERMARK BIGINT pool_watermark - Memory pool
watermark

POOL_CONFIG_SIZE BIGINT pool_config_size - Configured size
of memory pool

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAP_GET_APPL table function – Retrieve appl logical data group
snapshot information

Note: This table function has been deprecated and replaced by the “SNAPAPPL
administrative view and SNAP_GET_APPL_V95 table function - Retrieve appl
logical data group snapshot information” on page 602.

The SNAP_GET_APPL table function returns information about applications from
an application snapshot, in particular, the appl logical data group.

Used with the SNAP_GET_AGENT, SNAP_GET_AGENT_MEMORY_POOL,
SNAP_GET_APPL_INFO, SNAP_GET_STMT and SNAP_GET_SUBSECTION table
functions, the SNAP_GET_APPL table function provides information equivalent to
the GET SNAPSHOT FOR ALL APPLICATIONS CLP command, but retrieves data from all
database partitions.

Refer to Table 295 on page 1092 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_APPL (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input

Chapter 22. Deprecated routines 1091

option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_APPL table function takes a snapshot for the currently connected
database and database partition number.

Authorization
v SYSMON authority
v EXECUTE privilege on the SNAP_GET_APPL table function.

Example

Retrieve details on rows read and written for each application for all active
databases.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, AGENT_ID, ROWS_READ, ROWS_WRITTEN

FROM TABLE (SNAP_GET_APPL(CAST(NULL AS VARCHAR(128)),-1)) AS T

The following example is a sample output from this query.
DB_NAME AGENT_ID ROWS_READ ROWS_WRITTEN
-------- --------...--- ---------...-- ------------...-
WSDB 679 0 0
WSDB 461 3 0
WSDB 460 4 0
TEST 680 4 0
TEST 455 6 0
TEST 454 0 0
TEST 453 50 0

Information returned

Table 295. Information returned by the SNAP_GET_APPL table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

UOW_LOG_SPACE_USED BIGINT uow_log_space_used - Unit of
work log space used

ROWS_READ BIGINT rows_read - Rows read

ROWS_WRITTEN BIGINT rows_written - Rows written

INACT_STMTHIST_SZ BIGINT stmt_history_list_size - Statement
history list size

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool
data logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool
data physical reads

1092 Administrative Routines and Views

Table 295. Information returned by the SNAP_GET_APPL table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data
writes

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool
index logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool
index physical reads

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool
index writes

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer
pool temporary data logical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer
pool temporary data physical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer
pool temporary index logical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer
pool temporary index physical
reads

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer
Pool Temporary XDA Data Logical
Reads

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer
Pool Temporary XDA Data
Physical Reads monitor element

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool
XDA Data Logical Reads

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool
XDA Data Physical Reads

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer Pool XDA
Data Writes

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool
physical read time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool
physical write time

DIRECT_READS BIGINT direct_reads - Direct reads from
database

DIRECT_WRITES BIGINT direct_writes - Direct writes to
database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read
requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write
requests

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write
time

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread
prefetch pages

LOCKS_HELD BIGINT locks_held - Locks held

Chapter 22. Deprecated routines 1093

Table 295. Information returned by the SNAP_GET_APPL table function (continued)

Column name Data type
Description or corresponding
monitor element

LOCK_WAITS BIGINT lock_waits - Lock waits

LOCK_WAIT_TIME BIGINT lock_wait_time - Time waited on
locks

LOCK_ESCALS BIGINT lock_escals - Number of lock
escalations

X_LOCK_ESCALS BIGINT x_lock_escals - Exclusive lock
escalations

DEADLOCKS BIGINT deadlocks - Deadlocks detected

TOTAL_SORTS BIGINT total_sorts - Total sorts

TOTAL_SORT_TIME BIGINT total_sort_time - Total sort time

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

COMMIT_SQL_STMTS BIGINT commit_sql_stmts - Commit
statements attempted

ROLLBACK_SQL_STMTS BIGINT rollback_sql_stmts - Rollback
statements attempted

DYNAMIC_SQL_STMTS BIGINT dynamic_sql_stmts - Dynamic SQL
statements attempted

STATIC_SQL_STMTS BIGINT static_sql_stmts - Static SQL
statements attempted

FAILED_SQL_STMTS BIGINT failed_sql_stmts - Failed statement
operations

SELECT_SQL_STMTS BIGINT select_sql_stmts - Select SQL
statements executed

DDL_SQL_STMTS BIGINT ddl_sql_stmts - Data definition
language (DDL) SQL statements

UID_SQL_STMTS BIGINT uid_sql_stmts -
UPDATE/INSERT/DELETE SQL
statements executed

INT_AUTO_REBINDS BIGINT int_auto_rebinds - Internal
automatic rebinds

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal rows
deleted

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal rows
updated

INT_COMMITS BIGINT int_commits - Internal commits

INT_ROLLBACKS BIGINT int_rollbacks - Internal rollbacks

INT_DEADLOCK_ROLLBACKS BIGINT int_deadlock_rollbacks - Internal
rollbacks due to deadlock

ROWS_DELETED BIGINT rows_deleted - Rows deleted

ROWS_INSERTED BIGINT rows_inserted - Rows inserted

ROWS_UPDATED BIGINT rows_updated - Rows updated

ROWS_SELECTED BIGINT rows_selected - Rows selected

BINDS_PRECOMPILES BIGINT binds_precompiles -
Binds/precompiles attempted

1094 Administrative Routines and Views

Table 295. Information returned by the SNAP_GET_APPL table function (continued)

Column name Data type
Description or corresponding
monitor element

OPEN_REM_CURS BIGINT open_rem_curs - Open remote
cursors

OPEN_REM_CURS_BLK BIGINT open_rem_curs_blk - Open remote
cursors with blocking

REJ_CURS_BLK BIGINT rej_curs_blk - Rejected block cursor
requests

ACC_CURS_BLK BIGINT acc_curs_blk - Accepted block
cursor requests

SQL_REQS_SINCE_COMMIT BIGINT sql_reqs_since_commit - SQL
requests since last commit

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of lock
timeouts

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal rows
inserted

OPEN_LOC_CURS BIGINT open_loc_curs - Open local cursors

OPEN_LOC_CURS_BLK BIGINT open_loc_curs_blk - Open local
cursors with blocking

PKG_CACHE_LOOKUPS BIGINT pkg_cache_lookups - Package
cache lookups

PKG_CACHE_INSERTS BIGINT pkg_cache_inserts - Package cache
inserts

CAT_CACHE_LOOKUPS BIGINT cat_cache_lookups - Catalog cache
lookups

CAT_CACHE_INSERTS BIGINT cat_cache_inserts - Catalog cache
inserts

CAT_CACHE_OVERFLOWS BIGINT cat_cache_overflows - Catalog
cache overflows

NUM_AGENTS BIGINT num_agents - Number of agents
working on a statement

AGENTS_STOLEN BIGINT agents_stolen - Stolen agents

ASSOCIATED_AGENTS_TOP BIGINT associated_agents_top - Maximum
number of associated agents

APPL_PRIORITY BIGINT appl_priority - Application agent
priority

APPL_PRIORITY_TYPE VARCHAR(16) appl_priority_type - Application
priority type. This interface returns
a text identifier, based on defines
in sqlmon.h, and is one of:

v DYNAMIC_PRIORITY

v FIXED_PRIORITY

PREFETCH_WAIT_TIME BIGINT prefetch_wait_time - Time waited
for prefetch

APPL_SECTION_LOOKUPS BIGINT appl_section_lookups - Section
lookups

APPL_SECTION_INSERTS BIGINT appl_section_inserts - Section
inserts

Chapter 22. Deprecated routines 1095

Table 295. Information returned by the SNAP_GET_APPL table function (continued)

Column name Data type
Description or corresponding
monitor element

LOCKS_WAITING BIGINT locks_waiting - Current agents
waiting on locks

TOTAL_HASH_JOINS BIGINT total_hash_joins - Total hash joins

TOTAL_HASH_LOOPS BIGINT total_hash_loops - Total hash loops

HASH_JOIN_OVERFLOWS BIGINT hash_join_overflows - Hash join
overflows

HASH_JOIN_SMALL_
OVERFLOWS

BIGINT hash_join_small_overflows - Hash
join small overflows

APPL_IDLE_TIME BIGINT appl_idle_time - Application idle
time

UOW_LOCK_WAIT_TIME BIGINT uow_lock_wait_time - Total time
unit of work waited on locks

UOW_COMP_STATUS VARCHAR(14) uow_comp_status - Unit of work
completion status. This interface
returns a text identifier, based on
defines in sqlmon.h, and is one of:

v APPL_END

v UOWABEND

v UOWCOMMIT

v UOWDEADLOCK

v UOWLOCKTIMEOUT

v UOWROLLBACK

v UOWUNKNOWN

AGENT_USR_CPU_TIME_S BIGINT agent_usr_cpu_time - User CPU
time used by agent (in seconds)*

AGENT_USR_CPU_TIME_MS BIGINT agent_usr_cpu_time - User CPU
time used by agent (fractional, in
microseconds)*

AGENT_SYS_CPU_TIME_S BIGINT agent_sys_cpu_time - System CPU
time used by agent (in seconds)*

AGENT_SYS_CPU_TIME_MS BIGINT agent_sys_cpu_time - System CPU
time used by agent (fractional, in
microseconds)*

APPL_CON_TIME TIMESTAMP appl_con_time - Connection
request start timestamp

CONN_COMPLETE_TIME TIMESTAMP conn_complete_time - Connection
request completion timestamp

LAST_RESET TIMESTAMP last_reset - Last reset timestamp

UOW_START_TIME TIMESTAMP uow_start_time - Unit of work
start timestamp

UOW_STOP_TIME TIMESTAMP uow_stop_time - Unit of work stop
timestamp

PREV_UOW_STOP_TIME TIMESTAMP prev_uow_stop_time - Previous
unit of work completion timestamp

1096 Administrative Routines and Views

Table 295. Information returned by the SNAP_GET_APPL table function (continued)

Column name Data type
Description or corresponding
monitor element

UOW_ELAPSED_TIME_S BIGINT uow_elapsed_time - Most recent
unit of work elapsed time (in
seconds)*

UOW_ELAPSED_TIME_MS BIGINT uow_elapsed_time - Most recent
unit of work elapsed time
(fractional, in microseconds)*

ELAPSED_EXEC_TIME_S BIGINT elapsed_exec_time - Statement
execution elapsed time (in
seconds)*

ELAPSED_EXEC_TIME_MS BIGINT elapsed_exec_time - Statement
execution elapsed time (fractional,
in microseconds)*

INBOUND_COMM_ADDRESS VARCHAR(32) inbound_comm_address - Inbound
communication address

LOCK_TIMEOUT_VAL BIGINT lock_timeout_val - Lock timeout
(seconds)

PRIV_WORKSPACE_NUM_
OVERFLOWS

BIGINT priv_workspace_num_overflows -
Private workspace overflows

PRIV_WORKSPACE_SECTION_
INSERTS

BIGINT priv_workspace_section_inserts -
Private workspace section inserts

PRIV_WORKSPACE_SECTION_
LOOKUPS

BIGINT priv_workspace_section_lookups -
Private workspace section lookups

PRIV_WORKSPACE_SIZE_
TOP

BIGINT priv_workspace_size_top -
Maximum private workspace size

SHR_WORKSPACE_NUM_
OVERFLOWS

BIGINT shr_workspace_num_overflows -
Shared workspace overflows

SHR_WORKSPACE_SECTION_
INSERTS

BIGINT shr_workspace_section_inserts -
Shared workspace section inserts

SHR_WORKSPACE_SECTION_
LOOKUPS

BIGINT shr_workspace_section_lookups -
Shared workspace section lookups

SHR_WORKSPACE_SIZE_
TOP

BIGINT shr_workspace_size_top -
Maximum shared workspace size

DBPARTITIONNUM SMALLINT The database partition from which
the data for the row was retrieved.

CAT_CACHE_SIZE_TOP BIGINT cat_cache_size_top - Catalog cache
high water mark

Chapter 22. Deprecated routines 1097

Table 295. Information returned by the SNAP_GET_APPL table function (continued)

Column name Data type
Description or corresponding
monitor element

* To calculate the total time spent for the monitor element that this column is based on,
you must add the full seconds reported in the column for this monitor element that ends
with _S to the fractional seconds reported in the column for this monitor element that ends
with _MS, using the following formula: (monitor-element-name_S × 1,000,000 +
monitor-element-name_MS) ÷ 1,000,000. For example, (ELAPSED_EXEC_TIME_S × 1,000,000
+ ELAPSED_EXEC_TIME_MS) ÷ 1,000,000.

SNAP_GET_APPL_INFO table function – Retrieve appl_info logical
data group snapshot information

Note: This table function has been deprecated and replaced by the
“SNAPAPPL_INFO administrative view and SNAP_GET_APPL_INFO_V95 table
function - Retrieve appl_info logical data group snapshot information” on page
594.

The SNAP_GET_APPL_INFO table function returns information about applications
from an application snapshot, in particular, the appl_info logical data group.

Used with the SNAP_GET_AGENT, SNAP_GET_AGENT_MEMORY_POOL,
SNAP_GET_APPL, SNAP_GET_APPL_INFO, SNAP_GET_STMT and
SNAP_GET_SUBSECTION table functions, the SNAP_GET_APPL_INFO table
function provides information equivalent to the GET SNAPSHOT FOR ALL
APPLICATIONS CLP command, but retrieves data from all database partitions.

Refer to Table 296 on page 1100 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_APPL_INFO (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all

1098 Administrative Routines and Views

active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_APPL_INFO table function takes a snapshot for the currently
connected database and database partition number.

Authorization
v SYSMON authority
v EXECUTE privilege on the SNAP_GET_APPL_INFO table function.

Examples

Retrieve the status of all applications on the connected database partition.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, AGENT_ID,

SUBSTR(APPL_NAME,1,10) AS APPL_NAME, APPL_STATUS
FROM TABLE(SNAP_GET_APPL_INFO(CAST(NULL AS VARCHAR(128)),-1)) AS T

The following example is a sample output from this query.
DB_NAME AGENT_ID APPL_NAME APPL_STATUS
-------- -------------------- ---------- ----------------------
TOOLSDB 14 db2bp.exe CONNECTED
SAMPLE 15 db2bp.exe UOWEXEC
SAMPLE 8 javaw.exe CONNECTED
SAMPLE 7 db2bp.exe UOWWAIT

4 record(s) selected.

The following shows what you obtain when you SELECT from the result of the
table function.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, AUTHORITY_LVL

FROM TABLE(SNAP_GET_APPL_INFO_V95(CAST(NULL AS VARCHAR(128)),-1)) AS T

The following example is a sample output from this query.
DB_NAME AUTHORITY_LVL
-------- ---....
TESTDB SYSADM(GROUP) + DBADM(USER) + CREATETAB(USER, GROUP) +

BINDADD(USER, GROUP) + CONNECT(USER, GROUP) +
CREATE_NOT_FENC(USER) + IMPLICIT_SCHEMA(USER, GROUP) +
LOAD(USER) + CREATE_EXT_RT(USER) + QUIESCE_CONN(USER)

TESTDB SYSADM(GROUP) + DBADM(USER) + CREATETAB(USER, GROUP) +
BINDADD(USER, GROUP) + CONNECT(USER, GROUP) +
CREATE_NOT_FENC(USER) + IMPLICIT_SCHEMA(USER, GROUP) +
LOAD(USER) + CREATE_EXT_RT(USER) + QUIESCE_CONN(USER)

TESTDB SYSADM(GROUP) + DBADM(USER) + CREATETAB(USER, GROUP) +
BINDADD(USER, GROUP) + CONNECT(USER, GROUP) +
CREATE_NOT_FENC(USER) + IMPLICIT_SCHEMA(USER, GROUP) +
LOAD(USER) + CREATE_EXT_RT(USER) + QUIESCE_CONN(USER)

3 record(s) selected.

Chapter 22. Deprecated routines 1099

Information returned

Table 296. Information returned by the SNAP_GET_APPL_INFO table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

APPL_STATUS VARCHAR(22) appl_status - Application status.
This interface returns a text
identifier based on the defines in
sqlmon.h, and is one of:

v BACKUP

v COMMIT_ACT

v COMP

v CONNECTED

v CONNECTPEND

v CREATE_DB

v DECOUPLED

v DISCONNECTPEND

v INTR

v IOERROR_WAIT

v LOAD

v LOCKWAIT

v QUIESCE_TABLESPACE

v RECOMP

v REMOTE_RQST

v RESTART

v RESTORE

v ROLLBACK_ACT

v ROLLBACK_TO_SAVEPOINT

v TEND

v THABRT

v THCOMT

v TPREP

v UNLOAD

v UOWEXEC

v UOWWAIT

v WAITFOR_REMOTE

CODEPAGE_ID BIGINT codepage_id - ID of code page
used by application

NUM_ASSOC_AGENTS BIGINT num_assoc_agents - Number of
associated agents

COORD_NODE_NUM SMALLINT coord_node - Coordinating node

1100 Administrative Routines and Views

Table 296. Information returned by the SNAP_GET_APPL_INFO table function (continued)

Column name Data type
Description or corresponding
monitor element

AUTHORITY_LVL VARCHAR(512) authority_lvl - User authorization
level.

This interface returns a text
identifier based on the database
authorities defined in sql.h and
their source, and has the following
format: authority(source, ...) +
authority(source, ...) + ... The
source of an authority can be
multiple: either from a USER, a
GROUP, or a USER and a GROUP.

Possible values for “authority”:

v BINDADD

v CONNECT

v CREATE_EXT_RT

v CREATE_NOT_FENC

v CREATETAB

v DBADM

v IMPLICIT_SCHEMA

v LOAD

v LIBADM

v QUIESCE_CONN

v SECADM

v SYSADM

v SYSCTRL

v SYSMAINT

v SYSMON

v SYSQUIESCE

Possible values for “source”:

v USER – authority granted to the
user or to a role granted to the
user.

v GROUP – authority granted to a
group to which the user belongs
or to a role granted to the group
to which the user belongs.

CLIENT_PID BIGINT client_pid - Client process ID

COORD_AGENT_PID BIGINT coord_agent_pid - Coordinator
agent

STATUS_CHANGE_TIME TIMESTAMP status_change_time - Application
status change time

Chapter 22. Deprecated routines 1101

Table 296. Information returned by the SNAP_GET_APPL_INFO table function (continued)

Column name Data type
Description or corresponding
monitor element

CLIENT_PLATFORM VARCHAR(12) client_platform - Client operating
platform. This interface returns a
text identifier based on the defines
in sqlmon.h,

v AIX

v AIX64

v AS400_DRDA

v DOS

v DYNIX

v HP

v HP64

v HPIA

v HPIA64

v LINUX

v LINUX390

v LINUXIA64

v LINUXPPC

v LINUXPPC64

v LINUXX8664

v LINUXZ64

v MAC

v MVS_DRDA

v NT

v NT64

v OS2

v OS390

v SCO

v SGI

v SNI

v SUN

v SUN64

v UNKNOWN

v UNKNOWN_DRDA

v VM_DRDA

v VSE_DRDA

v WINDOWS

v WINDOWS95

1102 Administrative Routines and Views

Table 296. Information returned by the SNAP_GET_APPL_INFO table function (continued)

Column name Data type
Description or corresponding
monitor element

CLIENT_PROTOCOL VARCHAR(10) client_protocol - Client
communication protocol. This
interface returns a text identifier
based on the defines in sqlmon.h,

v CPIC

v LOCAL

v NETBIOS

v NPIPE

v TCPIP (for DB2 UDB)

v TCPIP4

v TCPIP6

TERRITORY_CODE SMALLINT territory_code - Database territory
code

APPL_NAME VARCHAR(256) appl_name - Application name

APPL_ID VARCHAR(128) appl_id - Application ID

SEQUENCE_NO VARCHAR(4) sequence_no - Sequence number

PRIMARY_AUTH_ID VARCHAR(128) auth_id - Authorization ID

SESSION_AUTH_ID VARCHAR(128) session_auth_id - Session
authorization ID

CLIENT_NNAME VARCHAR(128) The client_nname monitor element
is deprecated. The value returned
is not a valid value.

CLIENT_PRDID VARCHAR(128) client_prdid - Client
product/version ID

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input database
alias

CLIENT_DB_ALIAS VARCHAR(128) client_db_alias - Database alias
used by application

DB_NAME VARCHAR(128) db_name - Database name

DB_PATH VARCHAR(1024) db_path - Database path

EXECUTION_ID VARCHAR(128) execution_id - User login ID

CORR_TOKEN VARCHAR(128) corr_token - DRDA correlation
token

TPMON_CLIENT_USERID VARCHAR(256) tpmon_client_userid - TP monitor
client user ID

TPMON_CLIENT_WKSTN VARCHAR(256) tpmon_client_wkstn - TP monitor
client workstation name

TPMON_CLIENT_APP VARCHAR(256) tpmon_client_app - TP monitor
client application name

TPMON_ACC_STR VARCHAR(200) tpmon_acc_str - TP monitor client
accounting string

DBPARTITIONNUM SMALLINT The database partition from which
the data for the row was retrieved.

Chapter 22. Deprecated routines 1103

SNAP_GET_BP table function – Retrieve bufferpool logical group
snapshot information

Note: This table function has been deprecated and replaced by the “SNAPBP
administrative view and SNAP_GET_BP_V95 table function - Retrieve bufferpool
logical group snapshot information” on page 610.

The SNAP_GET_BP table function returns information about buffer pools from a
bufferpool snapshot, in particular, the bufferpool logical data group.

Used with the SNAP_GET_BP_PART table function, the SNAP_GET_BP table
function provides the data equivalent to the GET SNAPSHOT FOR ALL BUFFERPOOLS
CLP command.

Refer to Table 297 on page 1105 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_BP (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_BP table function takes a snapshot for the currently connected
database and database partition number.

Authorization
v SYSMON authority
v EXECUTE privilege on the SNAP_GET_BP table function.

1104 Administrative Routines and Views

Example

Retrieve total physical and logical reads for all bufferpools for all active databases
for the currently connected database partition.
SELECT SUBSTR(T.DB_NAME,1,10) AS DB_NAME,

SUBSTR(T.BP_NAME,1,20) AS BP_NAME,
(T.POOL_DATA_L_READS+T.POOL_INDEX_L_READS) AS TOTAL_LOGICAL_READS,
(T.POOL_DATA_P_READS+T.POOL_INDEX_P_READS) AS TOTAL_PHYSICAL_READS,
T.DBPARTITIONNUM
FROM TABLE(SNAP_GET_BP(CAST(NULL AS VARCHAR(128)), -1)) AS T

The following example is a sample output from this query.
DB_NAME BP_NAME TOTAL_LOGICAL_READS ...
---------- ------------...- -------------------- ...
SAMPLE IBMDEFAULTBP 0 ...
TOOLSDB IBMDEFAULTBP 0 ...
TOOLSDB BP32K0000 0 ...

3 record(s) selected.

Output from this query (continued).
... TOTAL_PHYSICAL_READS DBPARTITIONNUM
... -------------------- --------------
... 0 0
... 0 0
... 0 0

Information returned

Table 297. Information returned by the SNAP_GET_BP table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

BP_NAME VARCHAR(128) bp_name - Buffer pool name

DB_NAME VARCHAR(128) db_name - Database name

DB_PATH VARCHAR(1024) db_path - Database path

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input database
alias

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool
data logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool
data physical reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data
writes

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool
index logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool
index physical reads

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool
index writes

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool
XDA Data Logical Reads

Chapter 22. Deprecated routines 1105

Table 297. Information returned by the SNAP_GET_BP table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool
XDA Data Physical Reads

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer Pool XDA
Data Writes

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool
physical read time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool
physical write time

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer
pool asynchronous data reads

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer
pool asynchronous data writes

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer
pool asynchronous index reads

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer
pool asynchronous index writes

POOL_ASYNC_XDA_READS BIGINT pool_async_xda_reads - Buffer
Pool Asynchronous XDA Data
Reads

POOL_ASYNC_XDA_WRITES BIGINT pool_async_xda_writes - Buffer
Pool Asynchronous XDA Data
Writes

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer pool
asynchronous read time

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer
pool asynchronous write time

POOL_ASYNC_DATA_
READ_REQS

BIGINT pool_async_data_read_reqs - Buffer
pool asynchronous read requests

POOL_ASYNC_INDEX_
READ_REQS

BIGINT pool_async_index_read_reqs -
Buffer pool asynchronous index
read requests

POOL_ASYNC_XDA_
READ_REQS

BIGINT pool_async_xda_read_reqs - Buffer
Pool Asynchronous XDA Read
Requests

DIRECT_READS BIGINT direct_reads - Direct reads from
database

DIRECT_WRITES BIGINT direct_writes - Direct writes to
database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read
requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write
requests

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write
time

1106 Administrative Routines and Views

Table 297. Information returned by the SNAP_GET_BP table function (continued)

Column name Data type
Description or corresponding
monitor element

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread
prefetch pages

FILES_CLOSED BIGINT files_closed - Database files closed

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer
pool temporary data logical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer
pool temporary data physical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer
pool temporary index logical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer
pool temporary index physical
reads

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer
Pool Temporary XDA Data Logical
Reads

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer
Pool Temporary XDA Data
Physical Reads monitor element

POOL_NO_VICTIM_BUFFER BIGINT pool_no_victim_buffer - Buffer
pool no victim buffers

PAGES_FROM_BLOCK_IOS BIGINT pages_from_block_ios - Total
number of pages read by block
I/O

PAGES_FROM_VECTORED_IOS
BIGINT pages_from_vectored_ios - Total

pages read by vectored I/O

PHYSICAL_PAGE_MAPS BIGINT The physical_page_maps monitor
element is discontinued. A NULL
value is returned for the
discontinued monitor element.

VECTORED_IOS BIGINT vectored_ios - Number of vectored
I/O requests

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAP_GET_CONTAINER

Note: This table function has been deprecated and replaced by the
“SNAPCONTAINER administrative view and SNAP_GET_CONTAINER_V91 table
function - Retrieve tablespace_container logical data group snapshot information”
on page 619

�� SNAP_GET_CONTAINER (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAP_GET_CONTAINER table function returns snapshot information from
the tablespace_container logical data group.

Chapter 22. Deprecated routines 1107

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY
command. Specify the null value to take the snapshot from the currently
connected database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition. If the null value is
specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file has
not previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

The function returns a table as shown in the following section.

Table 298. Information returned by the SNAP_GET_CONTAINER table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

TBSP_NAME VARCHAR(128) tablespace_name - Table
space name

TBSP_ID BIGINT tablespace_id - Table space
identification

CONTAINER_NAME VARCHAR(256) container_name - Container
name

CONTAINER_ID BIGINT container_id - Container
identification

CONTAINER_TYPE SMALLINT container_type - Container
type

TOTAL_PAGES BIGINT container_total_pages - Total
pages in container

USABLE_PAGES BIGINT container_usable_pages -
Usable pages in container

ACCESSIBLE SMALLINT container_accessible -
Accessibility of container

STRIPE_SET BIGINT container_stripe_set - Stripe
set

DBPARTITIONNUM SMALLINT node_number - Node
number

1108 Administrative Routines and Views

SNAP_GET_DB

Note: This table function has been deprecated and replaced by the
“SNAP_GET_DB_V91 table function - Retrieve snapshot information from the
dbase logical group” on page 1126

�� SNAP_GET_DB (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAP_GET_DB table function returns snapshot information from the database.

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from the currently connected
database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for an aggregate of
all active database partitions. An active database partition is a partition where
the database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

The function returns a table as shown in the following section.

Table 299. Information returned by the SNAP_GET_DB table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp - Snapshot
timestamp

DB_NAME VARCHAR(128) db_name - Database name

DB_PATH VARCHAR(1024) db_path - Database path

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input database
alias

DB_STATUS BIGINT db_status - Status of database

CATALOG_PARTITION SMALLINT catalog_node - Catalog node
number

CATALOG_PARTITION_NAME VARCHAR(128) catalog_node_name - Catalog node
network name

SERVER_PLATFORM INTEGER server_platform - Server operating
system

DB_LOCATION INTEGER db_location - Database location

DB_CONN_TIME TIMESTAMP db_conn_time - Database activation
timestamp

Chapter 22. Deprecated routines 1109

Table 299. Information returned by the SNAP_GET_DB table function (continued)

Column name Data type
Description or corresponding
monitor element

LAST_RESET TIMESTAMP last_reset - Last reset timestamp

LAST_BACKUP TIMESTAMP last_backup - Last backup
timestamp

CONNECTIONS_TOP BIGINT connections_top - Maximum
number of concurrent connections

TOTAL_CONS BIGINT total_cons - Connects since
database activation

TOTAL_SEC_CONS BIGINT total_sec_cons - Secondary
connections

APPLS_CUR_CONS BIGINT appls_cur_cons - Applications
connected currently

APPLS_IN_DB2 BIGINT appls_in_db2 - Applications
executing in the database currently

NUM_ASSOC_AGENTS BIGINT num_assoc_agents - Number of
associated agents

AGENTS_TOP BIGINT agents_top - Number of agents
created

COORD_AGENTS_TOP BIGINT coord_agents_top - Maximum
number of coordinating agents

LOCKS_HELD BIGINT locks_held - Locks held

LOCK_WAITS BIGINT lock_waits - Lock waits

LOCK_WAIT_TIME BIGINT lock_wait_time - Time waited on
locks

LOCK_LIST_IN_USE BIGINT lock_list_in_use - Total lock list
memory in use

DEADLOCKS BIGINT deadlocks - Deadlocks detected

LOCK_ESCALS BIGINT lock_escals - Number of lock
escalations

X_LOCK_ESCALS BIGINT x_lock_escals - Exclusive lock
escalations

LOCKS_WAITING BIGINT locks_waiting - Current agents
waiting on locks

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of lock
timeouts

NUM_INDOUBT_TRANS BIGINT num_indoubt_trans - Number of
indoubt transactions

SORT_HEAP_ALLOCATED BIGINT sort_heap_allocated - Total sort
heap allocated

SORT_SHRHEAP_ALLOCATED BIGINT sort_shrheap_allocated - Sort
share heap currently allocated

SORT_SHRHEAP_TOP BIGINT sort_shrheap_top - Sort share heap
high water mark

TOTAL_SORTS BIGINT total_sorts - Total sorts

TOTAL_SORT_TIME BIGINT total_sort_time - Total sort time

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

1110 Administrative Routines and Views

Table 299. Information returned by the SNAP_GET_DB table function (continued)

Column name Data type
Description or corresponding
monitor element

ACTIVE_SORTS BIGINT active_sorts - Active sorts

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool
data logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool
data physical reads

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer
pool temporary data logical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer
pool temporary data physical reads

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer
pool asynchronous data reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool
data writes

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer
pool asynchronous data writes

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool
index logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool
index physical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer
pool temporary index logical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer
pool temporary index physical
reads

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool
index writes

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer
pool asynchronous index reads

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer
pool asynchronous index writes

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool
physical read time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool
physical write time

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer
pool asynchronous read time

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer
pool asynchronous write time

POOL_ASYNC_DATA_
READ_REQS

BIGINT pool_async_data_read_reqs -
Buffer pool asynchronous read
requests

POOL_ASYNC_INDEX_
READ_REQS

BIGINT pool_async_index_read_reqs -
Buffer pool asynchronous index
read requests

POOL_NO_VICTIM_BUFFER BIGINT pool_no_victim_buffer - Buffer
pool no victim buffers

Chapter 22. Deprecated routines 1111

Table 299. Information returned by the SNAP_GET_DB table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_LSN_GAP_CLNS BIGINT pool_lsn_gap_clns - Buffer pool
log space cleaners triggered

POOL_DRTY_PG_STEAL_CLNS BIGINT pool_drty_pg_steal_clns - Buffer
pool victim page cleaners triggered

POOL_DRTY_PG_THRSH_CLNS BIGINT pool_drty_pg_thrsh_clns - Buffer
pool threshold cleaners triggered

PREFETCH_WAIT_TIME BIGINT prefetch_wait_time - Time waited
for prefetch

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread
prefetch pages

DIRECT_READS BIGINT direct_reads - Direct reads from
database

DIRECT_WRITES BIGINT direct_writes - Direct writes to
database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read
requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write
requests

DIRECT_READ_TIME BIGINT direct_read_time - Direct read
time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write
time

FILES_CLOSED BIGINT files_closed - Database files
closed

POOL_DATA_TO_ESTORE BIGINT The pool_data_to_estore ESTORE
monitor element is discontinued. A
NULL value is returned for the
discontinued monitor element.

POOL_INDEX_TO_ESTORE BIGINT The pool_index_to_estore
ESTORE monitor element is
discontinued. A NULL value is
returned for the discontinued
monitor element.

POOL_INDEX_FROM_ESTORE BIGINT The pool_index_from_estore
ESTORE monitor element is
discontinued. A NULL value is
returned for the discontinued
monitor element.

POOL_DATA_FROM_ESTORE BIGINT The pool_data_from_estore
ESTORE monitor element is
discontinued. A NULL value is
returned for the discontinued
monitor element.

ELAPSED_EXEC_TIME_S BIGINT elapsed_exec_time - Statement
execution elapsed time (in
seconds)*

ELAPSED_EXEC_TIME_MS BIGINT elapsed_exec_time - Statement
execution elapsed time (fractional,
in microseconds)*

1112 Administrative Routines and Views

Table 299. Information returned by the SNAP_GET_DB table function (continued)

Column name Data type
Description or corresponding
monitor element

COMMIT_SQL_STMTS BIGINT commit_sql_stmts - Commit
statements attempted

ROLLBACK_SQL_STMTS BIGINT rollback_sql_stmts - Rollback
statements attempted

DYNAMIC_SQL_STMTS BIGINT dynamic_sql_stmts - Dynamic SQL
statements attempted

STATIC_SQL_STMTS BIGINT static_sql_stmts - Static SQL
statements attempted

FAILED_SQL_STMTS BIGINT failed_sql_stmts - Failed
statement operations

SELECT_SQL_STMTS BIGINT select_sql_stmts - Select SQL
statements executed

UID_SQL_STMTS BIGINT uid_sql_stmts -
UPDATE/INSERT/DELETE SQL
statements executed

DDL_SQL_STMTS BIGINT ddl_sql_stmts - Data definition
language (DDL) SQL statements

INT_AUTO_REBINDS BIGINT int_auto_rebinds - Internal
automatic rebinds

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal rows
deleted

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal rows
inserted

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal rows
updated

INT_COMMITS BIGINT int_commits - Internal commits

INT_ROLLBACKS BIGINT int_rollbacks - Internal rollbacks

INT_DEADLOCK_ROLLBACKS BIGINT int_deadlock_rollbacks - Internal
rollbacks due to deadlock

ROWS_DELETED BIGINT rows_deleted - Rows deleted

ROWS_INSERTED BIGINT rows_inserted - Rows inserted

ROWS_UPDATED BIGINT rows_updated - Rows updated

ROWS_SELECTED BIGINT rows_selected - Rows selected

ROWS_READ BIGINT rows_read - Rows read

BINDS_PRECOMPILES BIGINT binds_precompiles -
Binds/precompiles attempted

TOTAL_LOG_AVAILABLE BIGINT total_log_available - Total log
available

TOTAL_LOG_USED BIGINT total_log_used - Total log space
used

SEC_LOG_USED_TOP BIGINT sec_log_used_top - Maximum
secondary log space used

TOT_LOG_USED_TOP BIGINT tot_log_used_top - Maximum total
log space used

Chapter 22. Deprecated routines 1113

Table 299. Information returned by the SNAP_GET_DB table function (continued)

Column name Data type
Description or corresponding
monitor element

SEC_LOGS_ALLOCATED BIGINT sec_logs_allocated - Secondary
logs allocated currently

LOG_READS BIGINT log_reads - Number of log pages
read

LOG_READ_TIME_S BIGINT log_read_time - Log read time (in
seconds)†

LOG_READ_TIME_NS BIGINT log_read_time - Log read time
(fractional, in nanoseconds)†

LOG_WRITES BIGINT log_writes - Number of log pages
written

LOG_WRITE_TIME_S BIGINT log_write_time - Log write time
(in seconds)†

LOG_WRITE_TIME_NS BIGINT log_write_time - Log write
time(fractional, in nanoseconds)†

NUM_LOG_WRITE_IO BIGINT num_log_write_io - Number of log
writes

NUM_LOG_READ_IO BIGINT num_log_read_io - Number of log
reads

NUM_LOG_PART_PAGE_IO BIGINT num_log_part_page_io - Number of
partial log page writes

NUM_LOG_BUFFER_FULL BIGINT num_log_buffer_full - Number of
full log buffers

NUM_LOG_DATA_FOUND_
IN_BUFFER

BIGINT num_log_data_found_in_buffer -
Number of log data found in
buffer

APPL_ID_OLDEST_XACT BIGINT appl_id_oldest_xact - Application
with oldest transaction

LOG_TO_REDO_FOR_RECOVERY BIGINT log_to_redo_for_recovery -
Amount of log to be redone for
recovery

LOG_HELD_BY_DIRTY_PAGES BIGINT log_held_by_dirty_pages -
Amount of log space accounted for
by dirty pages

PKG_CACHE_LOOKUPS BIGINT pkg_cache_lookups - Package cache
lookups

PKG_CACHE_INSERTS BIGINT pkg_cache_inserts - Package cache
inserts

PKG_CACHE_NUM_
OVERFLOWS

BIGINT pkg_cache_num_overflows -
Package cache overflows

PKG_CACHE_SIZE_TOP BIGINT pkg_cache_size_top - Package
cache high water mark

APPL_SECTION_LOOKUPS BIGINT appl_section_lookups - Section
lookups

APPL_SECTION_INSERTS BIGINT appl_section_inserts - Section
inserts

1114 Administrative Routines and Views

Table 299. Information returned by the SNAP_GET_DB table function (continued)

Column name Data type
Description or corresponding
monitor element

CAT_CACHE_LOOKUPS BIGINT cat_cache_lookups - Catalog cache
lookups

CAT_CACHE_INSERTS BIGINT cat_cache_inserts - Catalog cache
inserts

CAT_CACHE_OVERFLOWS BIGINT cat_cache_overflows - Catalog
cache overflows

CAT_CACHE_SIZE_TOP BIGINT cat_cache_size_top - Catalog
cache high water mark

PRIV_WORKSPACE_SIZE_TOP BIGINT priv_workspace_size_top -
Maximum private workspace size

PRIV_WORKSPACE_NUM_
OVERFLOWS

BIGINT priv_workspace_num_overflows -
Private workspace overflows

PRIV_WORKSPACE_SECTION_
INSERTS

BIGINT priv_workspace_section_inserts -
Private workspace section inserts

PRIV_WORKSPACE_SECTION_
LOOKUPS

BIGINT priv_workspace_section_lookups -
Private workspace section lookups

SHR_WORKSPACE_SIZE_TOP BIGINT shr_workspace_size_top -
Maximum shared workspace size

SHR_WORKSPACE_NUM_
OVERFLOWS

BIGINT shr_workspace_num_overflows -
Shared workspace overflows

SHR_WORKSPACE_SECTION_
INSERTS

BIGINT shr_workspace_section_inserts -
Shared workspace section inserts

SHR_WORKSPACE_SECTION_
LOOKUPS

BIGINT shr_workspace_section_lookups -
Shared workspace section lookups

TOTAL_HASH_JOINS BIGINT total_hash_joins - Total hash joins

TOTAL_HASH_LOOPS BIGINT total_hash_loops - Total hash
loops

HASH_JOIN_OVERFLOWS BIGINT hash_join_overflows - Hash join
overflows

HASH_JOIN_SMALL_
OVERFLOWS

BIGINT hash_join_small_overflows - Hash
join small overflows

NUM_DB_STORAGE_PATHS BIGINT num_db_storage_paths - Number of
automatic storage paths

DBPARTITIONNUM SMALLINT node_number - Node number

Chapter 22. Deprecated routines 1115

Table 299. Information returned by the SNAP_GET_DB table function (continued)

Column name Data type
Description or corresponding
monitor element

* To calculate the total time spent for the monitor element that this column is based on,
you must add the full seconds reported in the column for this monitor element that ends
with _S to the fractional seconds reported in the column for this monitor element that ends
with _MS, using the following formula: (monitor-element-name_S × 1,000,000 +
monitor-element-name_MS) ÷ 1,000,000. For example, (ELAPSED_EXEC_TIME_S × 1,000,000
+ ELAPSED_EXEC_TIME_MS) ÷ 1,000,000.

†To calculate the total elapsed time for this monitor element, you must add the full
seconds reported in the column for this monitor element that ends with _S to the fractional
seconds reported in the column for this monitor element that ends with _MS, using the
following formula: (monitor-element-name_S × 1,000,000,000 + monitor-element-name_MS) ÷
1,000,000,000. For example, (LOG_READ_TIME_S × 1,000,000,000 + LOG_READ_TIME_MS)
÷ 1,000,000,000.

SNAPDB_MEMORY_POOL administrative view and
SNAP_GET_DB_MEMORY_POOL table function – Retrieve database
level memory usage information

The SNAPDB_MEMORY_POOL administrative view and the
SNAP_GET_DB_MEMORY_POOL table function return information about memory
usage at the database level for UNIX platforms only.

Note: Starting in Version 9.7 Fix Pack 5, the SNAPDB_MEMORY_POOL
administrative view and SNAP_GET_DB_MEMORY_POOL table function have
been deprecated and replaced by the “MON_GET_MEMORY_POOL - get memory
pool information” on page 456 and “MON_GET_MEMORY_SET - get memory set
information” on page 459.

SNAPDB_MEMORY_POOL administrative view

This administrative view allows you to retrieve database level memory usage
information for the currently connected database.

Used with the SNAPDB, SNAPDETAILLOG, SNAPHADR and
SNAPSTORAGE_PATHS administrative views, the SNAPDB_MEMORY_POOL
administrative view provides information equivalent to the GET SNAPSHOT FOR
DATABASE ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 300 on page 1119 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPDB_MEMORY_POOL administrative view
v CONTROL privilege on the SNAPDB_MEMORY_POOL administrative view
v DATAACCESS authority

1116 Administrative Routines and Views

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_DB_MEMORY_POOL table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of memory pools and their current size for the currently connected
database, SAMPLE.
SELECT POOL_ID, POOL_CUR_SIZE FROM SYSIBMADM.SNAPDB_MEMORY_POOL

The following example is a sample output from this query.
POOL_ID POOL_CUR_SIZE
------------- --------------------
UTILITY 32768
PACKAGE_CACHE 475136
CAT_CACHE 65536
BP 2097152
BP 1081344
BP 540672
BP 278528
BP 147456
BP 81920
LOCK_MGR 294912
DATABASE 3833856
OTHER 0

12 record(s) selected.

SNAP_GET_DB_MEMORY_POOL table function

The SNAP_GET_DB_MEMORY_POOL table function returns the same information
as the SNAPDB_MEMORY_POOL administrative view, but allows you to retrieve
the information for a specific database on a specific database partition, aggregate of
all database partitions or all database partitions.

Used with the SNAP_GET_DB_V95, SNAP_GET_DETAILLOG_V91,
SNAP_GET_HADR and SNAP_GET_STORAGE_PATHS table functions, the
SNAP_GET_DB_MEMORY_POOL table function provides information equivalent
to the GET SNAPSHOT FOR ALL DATABASES CLP command.

Refer to Table 300 on page 1119 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_DB_MEMORY_POOL (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Chapter 22. Deprecated routines 1117

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_DB_MEMORY_POOL table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_DB_MEMORY_POOL table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of memory pools and their current size for all databases.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, POOL_ID, POOL_CUR_SIZE

FROM TABLE(SNAPSHOT_GET_DB_MEMORY_POOL
(CAST(NULL AS VARCHAR(128)), -1)) AS T

The following example is a sample output from this query.
DB_NAME POOL_ID POOL_CUR_SIZE
-------- -------------- --------------------
TESTDB UTILITY 65536
TESTDB PACKAGE_CACHE 851968
TESTDB CAT_CACHE 65536
TESTDB BP 35913728
TESTDB BP 589824
TESTDB BP 327680
TESTDB BP 196608

1118 Administrative Routines and Views

TESTDB BP 131072
TESTDB SHARED_SORT 65536
TESTDB LOCK_MGR 10092544
TESTDB DATABASE 4980736
TESTDB OTHER 196608
SAMPLE UTILITY 65536
SAMPLE PACKAGE_CACHE 655360
SAMPLE CAT_CACHE 131072
SAMPLE BP 4325376
SAMPLE BP 589824
SAMPLE BP 327680
SAMPLE BP 196608
SAMPLE BP 131072
SAMPLE SHARED_SORT 0
SAMPLE LOCK_MGR 655360
SAMPLE DATABASE 4653056
SAMPLE OTHER 196608

24 record(s) selected.

Information returned

Table 300. Information returned by the SNAPDB_MEMORY_POOL administrative view and
the SNAP_GET_DB_MEMORY_POOL table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

POOL_ID VARCHAR(14) pool_id - Memory pool identifier.
This interface returns a text
identifier based on defines in
sqlmon.h, and is one of:

v APP_GROUP

v APPL_CONTROL

v APPLICATION

v BP

v CAT_CACHE

v DATABASE

v DFM

v FCMBP

v IMPORT_POOL

v LOCK_MGR

v MONITOR

v OTHER

v PACKAGE_CACHE

v QUERY

v SHARED_SORT

v SORT

v STATEMENT

v STATISTICS

v UTILITY

POOL_SECONDARY_ID VARCHAR(32) pool_secondary_id - Memory pool
secondary identifier

Chapter 22. Deprecated routines 1119

Table 300. Information returned by the SNAPDB_MEMORY_POOL administrative view and
the SNAP_GET_DB_MEMORY_POOL table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_CUR_SIZE BIGINT pool_cur_size - Current size of
memory pool

POOL_WATERMARK BIGINT pool_watermark - Memory pool
watermark

POOL_CONFIG_SIZE BIGINT pool_config_size - Configured size
of memory pool

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAP_GET_DBM table function – Retrieve the dbm logical grouping
snapshot information

Note: This table function has been deprecated and replaced by the “SNAPDBM
administrative view and SNAP_GET_DBM_V95 table function - Retrieve the dbm
logical grouping snapshot information” on page 634.

The SNAP_GET_DBM table function returns the snapshot monitor DB2 database
manager (dbm) logical grouping information.

Used with the SNAP_GET_DBM_MEMORY_POOL, SNAP_GET_FCM,
SNAP_GET_FCM_PART and SNAP_GET_SWITCHES table functions, the
SNAP_GET_DBM table function provides the data equivalent to the GET SNAPSHOT
FOR DBM command.

Refer to Table 301 on page 1121 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_DBM ()
dbpartitionnum

��

The schema is SYSPROC.

Table function parameter

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If this input option is not used, data
will be returned from all active database partitions. An active database
partition is a partition where the database is available for connection and use
by applications.

If dbpartitionnum is set to NULL, an attempt is made to read data from the file
created by SNAP_WRITE_FILE procedure. Note that this file could have been
created at any time, which means that the data might not be current. If a file with
the corresponding snapshot API request type does not exist, then the

1120 Administrative Routines and Views

SNAP_GET_DBM table function calls the snapshot from memory.

Authorization
v SYSMON authority
v EXECUTE privilege on the SNAP_GET_DBM table function.

Example

Retrieve the start time and current status of database partition number 2.
SELECT DB2START_TIME, DB2_STATUS FROM TABLE(SNAP_GET_DBM(2)) AS T

The following example is a sample output from this query.
DB2START_TIME DB2_STATUS
-------------------------- ------------
2006-01-06-14.59.59.062798 ACTIVE

Information returned

Table 301. Information returned by the SNAP_GET_DBM table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

SORT_HEAP_ALLOCATED BIGINT sort_heap_allocated - Total sort
heap allocated

POST_THRESHOLD_SORTS BIGINT post_threshold_sorts - Post
threshold sorts

PIPED_SORTS_REQUESTED BIGINT piped_sorts_requested - Piped
sorts requested

PIPED_SORTS_ACCEPTED BIGINT piped_sorts_accepted - Piped sorts
accepted

REM_CONS_IN BIGINT rem_cons_in - Remote connections
to database manager

REM_CONS_IN_EXEC BIGINT rem_cons_in_exec - Remote
Connections Executing in the
Database Manager monitor
element

LOCAL_CONS BIGINT local_cons - Local connections

LOCAL_CONS_IN_EXEC BIGINT local_cons_in_exec - Local
Connections Executing in the
Database Manager monitor
element

CON_LOCAL_DBASES BIGINT con_local_dbases - Local databases
with current connects

AGENTS_REGISTERED BIGINT agents_registered - Agents
registered

AGENTS_WAITING_ON_TOKEN BIGINT agents_waiting_on_token - Agents
waiting for a token

Chapter 22. Deprecated routines 1121

Table 301. Information returned by the SNAP_GET_DBM table function (continued)

Column name Data type
Description or corresponding
monitor element

DB2_STATUS VARCHAR(12) db2_status - Status of DB2
instance. This interface returns a
text identifier based on defines in
sqlmon.h, and is one of:

v ACTIVE

v QUIESCE_PEND

v QUIESCED

AGENTS_REGISTERED_TOP BIGINT agents_registered_top - Maximum
number of agents registered

AGENTS_WAITING_TOP BIGINT agents_waiting_top - Maximum
number of agents waiting

COMM_PRIVATE_MEM BIGINT comm_private_mem - Committed
private memory

IDLE_AGENTS BIGINT idle_agents - Number of idle
agents

AGENTS_FROM_POOL BIGINT agents_from_pool - Agents
assigned from pool

AGENTS_CREATED_
EMPTY_POOL

BIGINT agents_created_empty_pool -
Agents created due to empty agent
pool

COORD_AGENTS_TOP BIGINT coord_agents_top - Maximum
number of coordinating agents

MAX_AGENT_OVERFLOWS BIGINT max_agent_overflows - Maximum
agent overflows

AGENTS_STOLEN BIGINT agents_stolen - Stolen agents

GW_TOTAL_CONS BIGINT gw_total_cons - Total number of
attempted connections for DB2
Connect

GW_CUR_CONS BIGINT gw_cur_cons - Current number of
connections for DB2 Connect

GW_CONS_WAIT_HOST BIGINT gw_cons_wait_host - Number of
connections waiting for the host to
reply

GW_CONS_WAIT_CLIENT BIGINT gw_cons_wait_client - Number of
connections waiting for the client
to send request

POST_THRESHOLD_
HASH_JOINS

BIGINT post_threshold_hash_joins - Hash
join threshold

NUM_GW_CONN_SWITCHES BIGINT num_gw_conn_switches -
Connection switches

DB2START_TIME TIMESTAMP db2start_time - Start database
manager timestamp

LAST_RESET TIMESTAMP last_reset - Last reset timestamp

NUM_NODES_IN_
DB2_INSTANCE

INTEGER num_nodes_in_db2_instance -
Number of nodes in database
partition

1122 Administrative Routines and Views

Table 301. Information returned by the SNAP_GET_DBM table function (continued)

Column name Data type
Description or corresponding
monitor element

PRODUCT_NAME VARCHAR(32) product_name - Product name

SERVICE_LEVEL VARCHAR(18) service_level - Service level

SORT_HEAP_TOP BIGINT sort_heap_top - Sort private heap
high water mark

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPDBM_MEMORY_POOL administrative view and
SNAP_GET_DBM_MEMORY_POOL table function – Retrieve database
manager level memory usage information

The SNAPDBM_MEMORY_POOL administrative view and the
SNAP_GET_DBM_MEMORY_POOL table function return information about
memory usage at the database manager.

Note: Starting in Version 9.7 Fix Pack 5, the SNAPDBM_MEMORY_POOL
administrative view and SNAP_GET_DBM_MEMORY_POOL table function have
been deprecated and replaced by the “MON_GET_MEMORY_POOL - get memory
pool information” on page 456 and “MON_GET_MEMORY_SET - get memory set
information” on page 459.

SNAPDBM_MEMORY_POOL administrative view

Used with the SNAPDBM, SNAPFCM, SNAPFCM_PART and SNAPSWITCHES
administrative views, the SNAPDBM_MEMORY_POOL administrative view
provides the data equivalent to the GET SNAPSHOT FOR DBM command.

The schema is SYSIBMADM.

Refer to Table 302 on page 1125 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPDBM_MEMORY_POOL administrative view
v CONTROL privilege on the SNAPDBM_MEMORY_POOL administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_DBM_MEMORY_POOL table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL

Chapter 22. Deprecated routines 1123

v SYSMAINT
v SYSADM

Example

Retrieve a list of the memory pools and their current size for the database manager
of the connected database.
SELECT POOL_ID, POOL_CUR_SIZE FROM SNAPDBM_MEMORY_POOL

The following example is a sample output from this query.
POOL_ID POOL_CUR_SIZE
-------------- --------------------
MONITOR 65536
OTHER 29622272
FCMBP 57606144
...

SNAP_GET_DBM_MEMORY_POOL table function

The SNAP_GET_DBM_MEMORY_POOL table function returns the same
information as the SNAPDBM_MEMORY_POOL administrative view, but allows
you to retrieve the information for a specific database partition, aggregate of all
database partitions or all database partitions.

Used with the SNAP_GET_DBM_V95, SNAP_GET_FCM, SNAP_GET_FCM_PART
and SNAP_GET_SWITCHES table functions, the
SNAP_GET_DBM_MEMORY_POOL table function provides the data equivalent to
the GET SNAPSHOT FOR DBM command.

Refer to Table 302 on page 1125 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_DBM_MEMORY_POOL ()
dbpartitionnum

��

The schema is SYSPROC.

Table function parameter

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If this input option is not used, data
will be returned from all active database partitions. An active database
partition is a partition where the database is available for connection and use
by applications.

If dbpartitionnum is set to NULL, an attempt is made to read data from the file
created by SNAP_WRITE_FILE procedure. Note that this file could have been
created at any time, which means that the data might not be current. If a file with
the corresponding snapshot API request type does not exist, then the
SNAP_GET_DBM_MEMORY_POOL table function takes a snapshot for the
currently connected database and database partition number.

1124 Administrative Routines and Views

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_DBM_MEMORY_POOL table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of the memory pools and their current size for all database partitions
of the database manager of the connected database.
SELECT POOL_ID, POOL_CUR_SIZE, DBPARTITIONNUM

FROM TABLE(SYSPROC.SNAP_GET_DBM_MEMORY_POOL())
AS T ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
POOL_ID POOL_CUR_SIZE DBPARTITIONNUM
-------------- -------------------- --------------
MONITOR 65536 0
OTHER 29622272 0
FCMBP 57606144 0
MONITOR 65536 1
OTHER 29425664 1
FCMBP 57606144 1
MONITOR 65536 2
OTHER 29425664 2
FCMBP 57606144 2

Information returned

Table 302. Information returned by the SNAPDBM_MEMORY_POOL administrative view
and the SNAP_GET_DBM_MEMORY_POOL table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

Chapter 22. Deprecated routines 1125

Table 302. Information returned by the SNAPDBM_MEMORY_POOL administrative view
and the SNAP_GET_DBM_MEMORY_POOL table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_ID VARCHAR(14) pool_id - Memory pool identifier.
This interface returns a text
identifier based on defines in
sqlmon.h, and is one of:

v APP_GROUP

v APPL_CONTROL

v APPLICATION

v BP

v CAT_CACHE

v DATABASE

v DFM

v FCMBP

v IMPORT_POOL

v LOCK_MGR

v MONITOR

v OTHER

v PACKAGE_CACHE

v QUERY

v SHARED_SORT

v SORT

v STATEMENT

v STATISTICS

v UTILITY

POOL_CUR_SIZE BIGINT pool_cur_size - Current size of
memory pool

POOL_WATERMARK BIGINT pool_watermark - Memory pool
watermark

POOL_CONFIG_SIZE BIGINT pool_config_size - Configured size
of memory pool

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAP_GET_DB_V91 table function - Retrieve snapshot information
from the dbase logical group

Note: This table function has been deprecated and replaced by the “SNAPDB
administrative view and SNAP_GET_DB_V95 table function - Retrieve snapshot
information from the dbase logical group” on page 756.

The SNAP_GET_DB_V91 table function returns snapshot information from the
database (dbase) logical group.

Used in conjunction with the SNAP_GET_DB_MEMORY_POOL,
SNAP_GET_DETAILLOG_V91, SNAP_GET_HADR and

1126 Administrative Routines and Views

SNAP_GET_STORAGE_PATHS table functions, the SNAP_GET_DB_V91 table
function provides information equivalent to the GET SNAPSHOT FOR ALL DATABASES
CLP command.

Refer to Table 303 on page 1128 for a complete list of information that is returned.

Syntax

�� SNAP_GET_DB_V91 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_DB_V91 table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorities or privilege is required:
v EXECUTE privilege on the SNAP_GET_DB_V91 table function.
v DATAACCESS authority
v SYSMON authority
v SYSMAINT authority
v SYSCTRL authority
v SYSADM authority

Examples

Example 1: Retrieve the status, platform, location, and connect time as an aggregate
view across all database partitions of the currently connected database.

Chapter 22. Deprecated routines 1127

SELECT SUBSTR(DB_NAME, 1, 20) AS DB_NAME, DB_STATUS, SERVER_PLATFORM,
DB_LOCATION, DB_CONN_TIME FROM TABLE(SNAP_GET_DB_V91(’’, -2)) AS T

The following example is a sample output from this query.
DB_NAME DB_STATUS SERVER_PLATFORM ...
-------...- ------------ --------------- ...
SAMPLE ACTIVE AIX64 ...

1 record(s) selected.

Output from this query (continued).
... DB_LOCATION DB_CONN_TIME
... ------------ --------------------------
... LOCAL 2005-07-24-22.09.22.013196

Example 2: Retrieve the status, platform, location, and connect time as an aggregate
view across all database partitions for all active databases in the same instance that
contains the currently connected database.
SELECT SUBSTR(DB_NAME, 1, 20) AS DB_NAME, DB_STATUS, SERVER_PLATFORM,

DB_LOCATION, DB_CONN_TIME
FROM TABLE(SNAP_GET_DB_V91(CAST (NULL AS VARCHAR(128)), -2)) AS T

The following example is a sample output from this query.
DB_NAME DB_STATUS SERVER_PLATFORM ...
--------...- ------------ --------------- ...
TOOLSDB ACTIVE AIX64 ...
SAMPLE ACTIVE AIX64 ...

Output from this query (continued).
... DB_LOCATION DB_CONN_TIME
... ------------ --------------------------
... LOCAL 2005-07-24-22.26.54.396335
... LOCAL 2005-07-24-22.09.22.013196

SNAP_GET_DB_V91 table function metadata

Table 303. Information returned by the SNAP_GET_DB_V91 table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

DB_PATH VARCHAR(1024) db_path - Database path

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input database
alias

DB_STATUS VARCHAR(12) db_status - Status of database. This
interface returns a text identifier
based on defines in sqlmon.h, and
is one of:

v ACTIVE

v QUIESCE_PEND

v QUIESCED

v ROLLFWD

CATALOG_PARTITION SMALLINT catalog_node - Catalog node
number

1128 Administrative Routines and Views

Table 303. Information returned by the SNAP_GET_DB_V91 table function (continued)

Column name Data type
Description or corresponding
monitor element

CATALOG_PARTITION_NAME VARCHAR(128) catalog_node_name - Catalog node
network name

SERVER_PLATFORM VARCHAR(12) server_platform - Server operating
system. This interface returns a
text identifier based on defines in
sqlmon.h, and is one of:

v AIX

v AIX64

v AS400_DRDA

v DOS

v DYNIX

v HP

v HP64

v HPIA

v HPIA64

v LINUX

v LINUX390

v LINUXIA64

v LINUXPPC

v LINUXPPC64

v LINUXX8664

v LINUXZ64

v MAC

v MVS_DRDA

v NT

v NT64

v OS2

v OS390

v SCO

v SGI

v SNI

v SUN

v SUN64

v UNKNOWN

v UNKNOWN_DRDA

v VM_DRDA

v VSE_DRDA

v WINDOWS

v WINDOWS95

DB_LOCATION VARCHAR(12) db_location - Database location.
This interface returns a text
identifier based on defines in
sqlmon.h, and is one of:

v LOCAL

v REMOTE

Chapter 22. Deprecated routines 1129

Table 303. Information returned by the SNAP_GET_DB_V91 table function (continued)

Column name Data type
Description or corresponding
monitor element

DB_CONN_TIME TIMESTAMP db_conn_time - Database
activation timestamp

LAST_RESET TIMESTAMP last_reset - Last reset timestamp

LAST_BACKUP TIMESTAMP last_backup - Last backup
timestamp

CONNECTIONS_TOP BIGINT connections_top - Maximum
number of concurrent connections

TOTAL_CONS BIGINT total_cons - Connects since
database activation

TOTAL_SEC_CONS BIGINT total_sec_cons - Secondary
connections

APPLS_CUR_CONS BIGINT appls_cur_cons - Applications
connected currently

APPLS_IN_DB2 BIGINT appls_in_db2 - Applications
executing in the database currently

NUM_ASSOC_AGENTS BIGINT num_assoc_agents - Number of
associated agents

AGENTS_TOP BIGINT agents_top - Number of agents
created

COORD_AGENTS_TOP BIGINT coord_agents_top - Maximum
number of coordinating agents

LOCKS_HELD BIGINT locks_held - Locks held

LOCK_WAITS BIGINT lock_waits - Lock waits

LOCK_WAIT_TIME BIGINT lock_wait_time - Time waited on
locks

LOCK_LIST_IN_USE BIGINT lock_list_in_use - Total lock list
memory in use

DEADLOCKS BIGINT deadlocks - Deadlocks detected

LOCK_ESCALS BIGINT lock_escals - Number of lock
escalations

X_LOCK_ESCALS BIGINT x_lock_escals - Exclusive lock
escalations

LOCKS_WAITING BIGINT locks_waiting - Current agents
waiting on locks

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of lock
timeouts

NUM_INDOUBT_TRANS BIGINT num_indoubt_trans - Number of
indoubt transactions

SORT_HEAP_ALLOCATED BIGINT sort_heap_allocated - Total sort
heap allocated

SORT_SHRHEAP_ALLOCATED BIGINT sort_shrheap_allocated - Sort share
heap currently allocated

SORT_SHRHEAP_TOP BIGINT sort_shrheap_top - Sort share heap
high water mark

POST_SHRTHRESHOLD_SORTS BIGINT post_shrthreshold_sorts - Post
shared threshold sorts

1130 Administrative Routines and Views

Table 303. Information returned by the SNAP_GET_DB_V91 table function (continued)

Column name Data type
Description or corresponding
monitor element

TOTAL_SORTS BIGINT total_sorts - Total sorts

TOTAL_SORT_TIME BIGINT total_sort_time - Total sort time

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

ACTIVE_SORTS BIGINT active_sorts - Active sorts

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool
data logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool
data physical reads

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer
pool temporary data logical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer
pool temporary data physical reads

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer
pool asynchronous data reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data
writes

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer
pool asynchronous data writes

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool
index logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool
index physical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer
pool temporary index logical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer
pool temporary index physical
reads

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer
pool asynchronous index reads

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool
index writes

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer
pool asynchronous index writes

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool
XDA Data Physical Reads

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool
XDA Data Logical Reads

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer Pool XDA
Data Writes

POOL_ASYNC_XDA_READS BIGINT pool_async_xda_reads - Buffer
Pool Asynchronous XDA Data
Reads

POOL_ASYNC_XDA_WRITES BIGINT pool_async_xda_writes - Buffer
Pool Asynchronous XDA Data
Writes

Chapter 22. Deprecated routines 1131

Table 303. Information returned by the SNAP_GET_DB_V91 table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer
Pool Temporary XDA Data
Physical Reads monitor element

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer
Pool Temporary XDA Data Logical
Reads

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool
physical read time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool
physical write time

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer pool
asynchronous read time

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer
pool asynchronous write time

POOL_ASYNC_DATA_
READ_REQS

BIGINT pool_async_data_read_reqs - Buffer
pool asynchronous read requests

POOL_ASYNC_INDEX_
READ_REQS

BIGINT pool_async_index_read_reqs -
Buffer pool asynchronous index
read requests

POOL_ASYNC_XDA_
READ_REQS

BIGINT pool_async_xda_read_reqs - Buffer
Pool Asynchronous XDA Read
Requests

POOL_NO_VICTIM_BUFFER BIGINT pool_no_victim_buffer - Buffer
pool no victim buffers

POOL_LSN_GAP_CLNS BIGINT pool_lsn_gap_clns - Buffer pool log
space cleaners triggered

POOL_DRTY_PG_STEAL_CLNS BIGINT pool_drty_pg_steal_clns - Buffer
pool victim page cleaners triggered

POOL_DRTY_PG_THRSH_CLNS BIGINT pool_drty_pg_thrsh_clns - Buffer
pool threshold cleaners triggered

PREFETCH_WAIT_TIME BIGINT prefetch_wait_time - Time waited
for prefetch

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread
prefetch pages

DIRECT_READS BIGINT direct_reads - Direct reads from
database

DIRECT_WRITES BIGINT direct_writes - Direct writes to
database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read
requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write
requests

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write
time

FILES_CLOSED BIGINT files_closed - Database files closed

1132 Administrative Routines and Views

Table 303. Information returned by the SNAP_GET_DB_V91 table function (continued)

Column name Data type
Description or corresponding
monitor element

ELAPSED_EXEC_TIME_S BIGINT elapsed_exec_time - Statement
execution elapsed time (in
seconds)*

ELAPSED_EXEC_TIME_MS BIGINT elapsed_exec_time - Statement
execution elapsed time (fractional,
in microseconds)*

COMMIT_SQL_STMTS BIGINT commit_sql_stmts - Commit
statements attempted

ROLLBACK_SQL_STMTS BIGINT rollback_sql_stmts - Rollback
statements attempted

DYNAMIC_SQL_STMTS BIGINT dynamic_sql_stmts - Dynamic SQL
statements attempted

STATIC_SQL_STMTS BIGINT static_sql_stmts - Static SQL
statements attempted

FAILED_SQL_STMTS BIGINT failed_sql_stmts - Failed statement
operations

SELECT_SQL_STMTS BIGINT select_sql_stmts - Select SQL
statements executed

UID_SQL_STMTS BIGINT uid_sql_stmts -
UPDATE/INSERT/DELETE SQL
statements executed

DDL_SQL_STMTS BIGINT ddl_sql_stmts - Data definition
language (DDL) SQL statements

INT_AUTO_REBINDS BIGINT int_auto_rebinds - Internal
automatic rebinds

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal rows
deleted

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal rows
inserted

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal rows
updated

INT_COMMITS BIGINT int_commits - Internal commits

INT_ROLLBACKS BIGINT int_rollbacks - Internal rollbacks

INT_DEADLOCK_ROLLBACKS BIGINT int_deadlock_rollbacks - Internal
rollbacks due to deadlock

ROWS_DELETED BIGINT rows_deleted - Rows deleted

ROWS_INSERTED BIGINT rows_inserted - Rows inserted

ROWS_UPDATED BIGINT rows_updated - Rows updated

ROWS_SELECTED BIGINT rows_selected - Rows selected

ROWS_READ BIGINT rows_read - Rows read

BINDS_PRECOMPILES BIGINT binds_precompiles -
Binds/precompiles attempted

TOTAL_LOG_AVAILABLE BIGINT total_log_available - Total log
available

TOTAL_LOG_USED BIGINT total_log_used - Total log space
used

Chapter 22. Deprecated routines 1133

Table 303. Information returned by the SNAP_GET_DB_V91 table function (continued)

Column name Data type
Description or corresponding
monitor element

SEC_LOG_USED_TOP BIGINT sec_log_used_top - Maximum
secondary log space used

TOT_LOG_USED_TOP BIGINT tot_log_used_top - Maximum total
log space used

SEC_LOGS_ALLOCATED BIGINT sec_logs_allocated - Secondary logs
allocated currently

LOG_READS BIGINT log_reads - Number of log pages
read

LOG_READ_TIME_S BIGINT log_read_time - Log read time (in
seconds)†

LOG_READ_TIME_NS BIGINT log_read_time - Log read time
(fractional, in nanoseconds)†

LOG_WRITES BIGINT log_writes - Number of log pages
written

LOG_WRITE_TIME_S BIGINT log_write_time - Log write time (in
seconds)†

LOG_WRITE_TIME_NS BIGINT log_write_time - Log write time
(fractional, in nanoseconds)†

NUM_LOG_WRITE_IO BIGINT num_log_write_io - Number of log
writes

NUM_LOG_READ_IO BIGINT num_log_read_io - Number of log
reads

NUM_LOG_PART_PAGE_IO BIGINT num_log_part_page_io - Number
of partial log page writes

NUM_LOG_BUFFER_FULL BIGINT num_log_buffer_full - Number of
full log buffers

NUM_LOG_DATA_FOUND_
IN_BUFFER

BIGINT num_log_data_found_in_buffer -
Number of log data found in
buffer

APPL_ID_OLDEST_XACT BIGINT appl_id_oldest_xact - Application
with oldest transaction

LOG_TO_REDO_FOR_
RECOVERY

BIGINT log_to_redo_for_recovery -
Amount of log to be redone for
recovery

LOG_HELD_BY_DIRTY_PAGES BIGINT log_held_by_dirty_pages - Amount
of log space accounted for by dirty
pages

PKG_CACHE_LOOKUPS BIGINT pkg_cache_lookups - Package
cache lookups

PKG_CACHE_INSERTS BIGINT pkg_cache_inserts - Package cache
inserts

PKG_CACHE_NUM_
OVERFLOWS

BIGINT pkg_cache_num_overflows -
Package cache overflows

PKG_CACHE_SIZE_TOP BIGINT pkg_cache_size_top - Package
cache high water mark

1134 Administrative Routines and Views

Table 303. Information returned by the SNAP_GET_DB_V91 table function (continued)

Column name Data type
Description or corresponding
monitor element

APPL_SECTION_LOOKUPS BIGINT appl_section_lookups - Section
lookups

APPL_SECTION_INSERTS BIGINT appl_section_inserts - Section
inserts

CAT_CACHE_LOOKUPS BIGINT cat_cache_lookups - Catalog cache
lookups

CAT_CACHE_INSERTS BIGINT cat_cache_inserts - Catalog cache
inserts

CAT_CACHE_OVERFLOWS BIGINT cat_cache_overflows - Catalog
cache overflows

CAT_CACHE_SIZE_TOP BIGINT cat_cache_size_top - Catalog cache
high water mark

PRIV_WORKSPACE_SIZE_TOP BIGINT priv_workspace_size_top -
Maximum private workspace size

PRIV_WORKSPACE_NUM_
OVERFLOWS

BIGINT priv_workspace_num_overflows -
Private workspace overflows

PRIV_WORKSPACE_SECTION_
INSERTS

BIGINT priv_workspace_section_inserts -
Private workspace section inserts

PRIV_WORKSPACE_SECTION_
LOOKUPS

BIGINT priv_workspace_section_lookups -
Private workspace section lookups

SHR_WORKSPACE_SIZE_TOP BIGINT shr_workspace_size_top -
Maximum shared workspace size

SHR_WORKSPACE_NUM_
OVERFLOWS

BIGINT shr_workspace_num_overflows -
Shared workspace overflows

SHR_WORKSPACE_SECTION_
INSERTS

BIGINT shr_workspace_section_inserts -
Shared workspace section inserts

SHR_WORKSPACE_SECTION_
LOOKUPS

BIGINT shr_workspace_section_lookups -
Shared workspace section lookups

TOTAL_HASH_JOINS BIGINT total_hash_joins - Total hash joins

TOTAL_HASH_LOOPS BIGINT total_hash_loops - Total hash loops

HASH_JOIN_OVERFLOWS BIGINT hash_join_overflows - Hash join
overflows

HASH_JOIN_SMALL_
OVERFLOWS

BIGINT hash_join_small_overflows - Hash
join small overflows

POST_SHRTHRESHOLD_
HASH_JOINS

BIGINT post_shrthreshold_hash_joins -
Post threshold hash joins

ACTIVE_HASH_JOINS BIGINT active_hash_joins - Active hash
joins

Chapter 22. Deprecated routines 1135

Table 303. Information returned by the SNAP_GET_DB_V91 table function (continued)

Column name Data type
Description or corresponding
monitor element

NUM_DB_STORAGE_PATHS BIGINT num_db_storage_paths - Number
of automatic storage paths

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SMALLEST_LOG_AVAIL_
NODE

INTEGER smallest_log_avail_node - Node
with least available log space

* To calculate the total time spent for the monitor element that this column is based on,
you must add the full seconds reported in the column for this monitor element that ends
with _S to the fractional seconds reported in the column for this monitor element that ends
with _MS, using the following formula: (monitor-element-name_S × 1,000,000 +
monitor-element-name_MS) ÷ 1,000,000. For example, (ELAPSED_EXEC_TIME_S × 1,000,000
+ ELAPSED_EXEC_TIME_MS) ÷ 1,000,000.

†To calculate the total elapsed time for this monitor element, you must add the full
seconds reported in the column for this monitor element that ends with _S to the fractional
seconds reported in the column for this monitor element that ends with _MS, using the
following formula: (monitor-element-name_S × 1,000,000,000 + monitor-element-name_MS) ÷
1,000,000,000. For example, (LOG_READ_TIME_S × 1,000,000,000 + LOG_READ_TIME_MS)
÷ 1,000,000,000.

SNAPDB administrative view and SNAP_GET_DB_V95 table function -
Retrieve snapshot information from the dbase logical group

Note: The SNAP_GET_DB_V95 table function has been deprecated and replaced
by the SNAP_GET_DB_V97 table function - Retrieve snapshot information from
the dbase logical group..

The “SNAPDB administrative view” on page 756 and the “SNAP_GET_DB_V95
table function” on page 757 return snapshot information from the database (dbase)
logical group.

SNAPDB administrative view

This administrative view allows you to retrieve snapshot information from the
dbase logical group for the currently connected database.

Used in conjunction with the SNAPDB_MEMORY_POOL, SNAPDETAILLOG,
SNAPHADR and SNAPSTORAGE_PATHS administrative views, the SNAPDB
administrative view provides information equivalent to the GET SNAPSHOT FOR
DATABASE on database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 209 on page 760 for a complete list of information that is returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPDB administrative view

1136 Administrative Routines and Views

v CONTROL privilege on the SNAPDB administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_DB_V95 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Examples

Retrieve the status, platform, location, and connect time for all database partitions
of the currently connected database.
SELECT SUBSTR(DB_NAME, 1, 20) AS DB_NAME, DB_STATUS, SERVER_PLATFORM,

DB_LOCATION, DB_CONN_TIME, DBPARTITIONNUM
FROM SYSIBMADM.SNAPDB ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
DB_NAME DB_STATUS SERVER_PLATFORM DB_LOCATION ...
-------...- ------------ --------------- ------------ ...
TEST ACTIVE AIX64 LOCAL ...
TEST ACTIVE AIX64 LOCAL ...
TEST ACTIVE AIX64 LOCAL ...

3 record(s) selected.

Output from this query (continued).
... DB_CONN_TIME DBPARTITIONNUM
... -------------------------- --------------
... 2006-01-08-16.48.30.665477 0
... 2006-01-08-16.48.34.005328 1
... 2006-01-08-16.48.34.007937 2

This routine can be used by calling the following on the command line:
SELECT TOTAL_OLAP_FUNCS, OLAP_FUNC_OVERFLOWS, ACTIVE_OLAP_FUNCS

FROM SYSIBMADM.SNAPDB

TOTAL_OLAP_FUNCS OLAP_FUNC_OVERFLOWS ACTIVE_OLAP_FUNCS
-------------------- -------------------- -----------------

7 2 1

1 record(s) selected.

After running a workload, a user can use the following query:
SELECT STATS_CACHE_SIZE, STATS_FABRICATIONS, SYNC_RUNSTATS,

ASYNC_RUNSTATS, STATS_FABRICATE_TIME, SYNC_RUNSTATS_TIME
FROM SYSIBMADM.SNAPDB

STATS_CACHE_SIZE STATS_FABRICATIONS SYNC_RUNSTATS ASYNC_RUNSTATS ...
---------------- ------------------ ------------- -------------- ...

128 2 1 0 ...

Chapter 22. Deprecated routines 1137

... STATS_FABRICATE_TIME SYNC_RUNSTATS_TIME

... -------------------- ------------------

... 10 100

1 record(s) selected.

SNAP_GET_DB_V95 table function

The SNAP_GET_DB_V95 table function returns the same information as the
SNAPDB administrative view.

Used in conjunction with the SNAP_GET_DB_MEMORY_POOL,
SNAP_GET_DETAILLOG_V91, SNAP_GET_HADR and
SNAP_GET_STORAGE_PATHS table functions, the SNAP_GET_DB_V95 table
function provides information equivalent to the GET SNAPSHOT FOR ALL DATABASES
CLP command.

Refer to Table 209 on page 760 for a complete list of information that is returned.

Syntax

�� SNAP_GET_DB_V95 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_DB_V95 table function takes a snapshot for the currently connected
database and database partition number.

1138 Administrative Routines and Views

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_DB_V95 table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Examples

Example 1: Retrieve the status, platform, location, and connect time as an aggregate
view across all database partitions of the currently connected database.
SELECT SUBSTR(DB_NAME, 1, 20) AS DB_NAME, DB_STATUS, SERVER_PLATFORM,

DB_LOCATION, DB_CONN_TIME FROM TABLE(SNAP_GET_DB_V95(’’, -2)) AS T

The following example is a sample output from this query.
DB_NAME DB_STATUS SERVER_PLATFORM ...
-------...- ------------ --------------- ...
SAMPLE ACTIVE AIX64 ...

1 record(s) selected.

Output from this query (continued).
... DB_LOCATION DB_CONN_TIME
... ------------ --------------------------
... LOCAL 2005-07-24-22.09.22.013196

Example 2: Retrieve the status, platform, location, and connect time as an aggregate
view across all database partitions for all active databases in the same instance that
contains the currently connected database.
SELECT SUBSTR(DB_NAME, 1, 20) AS DB_NAME, DB_STATUS, SERVER_PLATFORM,

DB_LOCATION, DB_CONN_TIME
FROM TABLE(SNAP_GET_DB_V95(CAST (NULL AS VARCHAR(128)), -2)) AS T

The following example is a sample output from this query.
DB_NAME DB_STATUS SERVER_PLATFORM ...
--------...- ------------ --------------- ...
TOOLSDB ACTIVE AIX64 ...
SAMPLE ACTIVE AIX64 ...

Output from this query (continued).
... DB_LOCATION DB_CONN_TIME
... ------------ --------------------------
... LOCAL 2005-07-24-22.26.54.396335
... LOCAL 2005-07-24-22.09.22.013196

Example 3: This routine can be used by calling the following on the command line:

When connected to a database:

Chapter 22. Deprecated routines 1139

SELECT TOTAL_OLAP_FUNCS, OLAP_FUNC_OVERFLOWS, ACTIVE_OLAP_FUNCS
FROM TABLE (SNAP_GET_DB_V95(’’, 0)) AS T

The output will look like:

TOTAL_OLAP_FUNCS OLAP_FUNC_OVERFLOWS ACTIVE_OLAP_FUNCS
---------------- -------------------- --------------------

7 2 1

1 record(s) selected.

Example 4: After running a workload, a user can use the following query with the
table function.
SELECT STATS_CACHE_SIZE, STATS_FABRICATIONS, SYNC_RUNSTATS,

ASYNC_RUNSTATS, STATS_FABRICATE_TIME, SYNC_RUNSTATS_TIME
FROM TABLE (SNAP_GET_DB_V95(’mytestdb’, -1)) AS SNAPDB

STATS_CACHE_SIZE STATS_FABRICATIONS SYNC_RUNSTATS ASYNC_RUNSTATS ...
---------------- ------------------ ------------- -------------- ...

200 1 2 0 ...

Continued

...STATS_FABRICATE_TIME SYNC_RUNSTATS_TIME

...-------------------- ------------------

... 2 32

1 record(s) selected.

SNAPDB administrative view and SNAP_GET_DB_V95 table
function metadata

Table 304. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V95 table function

Column name Data type
Description or corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the snapshot was
taken.

DB_NAME VARCHAR(128) db_name - Database name

DB_PATH VARCHAR(1024) db_path - Database path

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input database alias

DB_STATUS VARCHAR(12) db_status - Status of database. This interface
returns a text identifier based on defines in
sqlmon.h, and is one of:

v ACTIVE

v QUIESCE_PEND

v QUIESCED

v ROLLFWD

v ACTIVE_STANDBY

v STANDBY

CATALOG_PARTITION SMALLINT catalog_node - Catalog node number

CATALOG_PARTITION_NAME VARCHAR(128) catalog_node_name - Catalog node network
name

1140 Administrative Routines and Views

Table 304. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V95 table
function (continued)

Column name Data type
Description or corresponding monitor
element

SERVER_PLATFORM VARCHAR(12) server_platform - Server operating system.
This interface returns a text identifier based
on defines in sqlmon.h, and is one of:

v AIX

v AIX64

v AS400_DRDA

v DOS

v DYNIX

v HP

v HP64

v HPIA

v HPIA64

v LINUX

v LINUX390

v LINUXIA64

v LINUXPPC

v LINUXPPC64

v LINUXX8664

v LINUXZ64

v MAC

v MVS_DRDA

v NT

v NT64

v OS2

v OS390

v SCO

v SGI

v SNI

v SUN

v SUN64

v UNKNOWN

v UNKNOWN_DRDA

v VM_DRDA

v VSE_DRDA

v WINDOWS

DB_LOCATION VARCHAR(12) db_location - Database location. This
interface returns a text identifier based on
defines in sqlmon.h, and is one of:

v LOCAL

v REMOTE

DB_CONN_TIME TIMESTAMP db_conn_time - Database activation
timestamp

LAST_RESET TIMESTAMP last_reset - Last reset timestamp

LAST_BACKUP TIMESTAMP last_backup - Last backup timestamp

Chapter 22. Deprecated routines 1141

Table 304. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V95 table
function (continued)

Column name Data type
Description or corresponding monitor
element

CONNECTIONS_TOP BIGINT connections_top - Maximum number of
concurrent connections

TOTAL_CONS BIGINT total_cons - Connects since database
activation

TOTAL_SEC_CONS BIGINT total_sec_cons - Secondary connections

APPLS_CUR_CONS BIGINT appls_cur_cons - Applications connected
currently

APPLS_IN_DB2 BIGINT appls_in_db2 - Applications executing in the
database currently

NUM_ASSOC_AGENTS BIGINT num_assoc_agents - Number of associated
agents

AGENTS_TOP BIGINT agents_top - Number of agents created

COORD_AGENTS_TOP BIGINT coord_agents_top - Maximum number of
coordinating agents

LOCKS_HELD BIGINT locks_held - Locks held

LOCK_WAITS BIGINT lock_waits - Lock waits

LOCK_WAIT_TIME BIGINT lock_wait_time - Time waited on locks

LOCK_LIST_IN_USE BIGINT lock_list_in_use - Total lock list memory in
use

DEADLOCKS BIGINT deadlocks - Deadlocks detected

LOCK_ESCALS BIGINT lock_escals - Number of lock escalations

X_LOCK_ESCALS BIGINT x_lock_escals - Exclusive lock escalations

LOCKS_WAITING BIGINT locks_waiting - Current agents waiting on
locks

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of lock timeouts

NUM_INDOUBT_TRANS BIGINT num_indoubt_trans - Number of indoubt
transactions

SORT_HEAP_ALLOCATED BIGINT sort_heap_allocated - Total sort heap
allocated

SORT_SHRHEAP_ALLOCATED BIGINT sort_shrheap_allocated - Sort share heap
currently allocated

SORT_SHRHEAP_TOP BIGINT sort_shrheap_top - Sort share heap high
water mark

POST_SHRTHRESHOLD_SORTS BIGINT post_shrthreshold_sorts - Post shared
threshold sorts

TOTAL_SORTS BIGINT total_sorts - Total sorts

TOTAL_SORT_TIME BIGINT total_sort_time - Total sort time

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

ACTIVE_SORTS BIGINT active_sorts - Active sorts

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool data logical
reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool data
physical reads

1142 Administrative Routines and Views

Table 304. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V95 table
function (continued)

Column name Data type
Description or corresponding monitor
element

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer pool
temporary data logical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer pool
temporary data physical reads

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer pool
asynchronous data reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data writes

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer pool
asynchronous data writes

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool index
logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool index
physical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer pool
temporary index logical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer pool
temporary index physical reads

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer pool
asynchronous index reads

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool index writes

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer pool
asynchronous index writes

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool XDA Data
Physical Reads

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool XDA Data
Logical Reads

POOL_XDA_WRITES BIGINT pool_xda_writes - Buffer Pool XDA Data
Writes

POOL_ASYNC_XDA_READS BIGINT pool_async_xda_reads - Buffer Pool
Asynchronous XDA Data Reads

POOL_ASYNC_XDA_WRITES BIGINT pool_async_xda_writes - Buffer Pool
Asynchronous XDA Data Writes

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer Pool
Temporary XDA Data Physical Reads
monitor element

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer Pool
Temporary XDA Data Logical Reads

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool physical
read time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool physical
write time

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer pool
asynchronous read time

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer pool
asynchronous write time

Chapter 22. Deprecated routines 1143

Table 304. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V95 table
function (continued)

Column name Data type
Description or corresponding monitor
element

POOL_ASYNC_DATA_
READ_REQS

BIGINT pool_async_data_read_reqs - Buffer pool
asynchronous read requests

POOL_ASYNC_INDEX_
READ_REQS

BIGINT pool_async_index_read_reqs - Buffer pool
asynchronous index read requests

POOL_ASYNC_XDA_
READ_REQS

BIGINT pool_async_xda_read_reqs - Buffer Pool
Asynchronous XDA Read Requests

POOL_NO_VICTIM_BUFFER BIGINT pool_no_victim_buffer - Buffer pool no
victim buffers

POOL_LSN_GAP_CLNS BIGINT pool_lsn_gap_clns - Buffer pool log space
cleaners triggered

POOL_DRTY_PG_STEAL_CLNS BIGINT pool_drty_pg_steal_clns - Buffer pool victim
page cleaners triggered

POOL_DRTY_PG_THRSH_CLNS BIGINT pool_drty_pg_thrsh_clns - Buffer pool
threshold cleaners triggered

PREFETCH_WAIT_TIME BIGINT prefetch_wait_time - Time waited for
prefetch

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread prefetch
pages

DIRECT_READS BIGINT direct_reads - Direct reads from database

DIRECT_WRITES BIGINT direct_writes - Direct writes to database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write requests

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write time

FILES_CLOSED BIGINT files_closed - Database files closed

ELAPSED_EXEC_TIME_S BIGINT elapsed_exec_time - Statement execution
elapsed time (in seconds)*

ELAPSED_EXEC_TIME_MS BIGINT elapsed_exec_time - Statement execution
elapsed time (fractional, in microseconds)*

COMMIT_SQL_STMTS BIGINT commit_sql_stmts - Commit statements
attempted

ROLLBACK_SQL_STMTS BIGINT rollback_sql_stmts - Rollback statements
attempted

DYNAMIC_SQL_STMTS BIGINT dynamic_sql_stmts - Dynamic SQL
statements attempted

STATIC_SQL_STMTS BIGINT static_sql_stmts - Static SQL statements
attempted

FAILED_SQL_STMTS BIGINT failed_sql_stmts - Failed statement operations

SELECT_SQL_STMTS BIGINT select_sql_stmts - Select SQL statements
executed

1144 Administrative Routines and Views

Table 304. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V95 table
function (continued)

Column name Data type
Description or corresponding monitor
element

UID_SQL_STMTS BIGINT uid_sql_stmts - UPDATE/INSERT/DELETE
SQL statements executed

DDL_SQL_STMTS BIGINT ddl_sql_stmts - Data definition language
(DDL) SQL statements

INT_AUTO_REBINDS BIGINT int_auto_rebinds - Internal automatic rebinds

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal rows deleted

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal rows inserted

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal rows updated

INT_COMMITS BIGINT int_commits - Internal commits

INT_ROLLBACKS BIGINT int_rollbacks - Internal rollbacks

INT_DEADLOCK_ROLLBACKS BIGINT int_deadlock_rollbacks - Internal rollbacks
due to deadlock

ROWS_DELETED BIGINT rows_deleted - Rows deleted

ROWS_INSERTED BIGINT rows_inserted - Rows inserted

ROWS_UPDATED BIGINT rows_updated - Rows updated

ROWS_SELECTED BIGINT rows_selected - Rows selected

ROWS_READ BIGINT rows_read - Rows read

BINDS_PRECOMPILES BIGINT binds_precompiles - Binds/precompiles
attempted

TOTAL_LOG_AVAILABLE BIGINT total_log_available - Total log available

TOTAL_LOG_USED BIGINT total_log_used - Total log space used

SEC_LOG_USED_TOP BIGINT sec_log_used_top - Maximum secondary log
space used

TOT_LOG_USED_TOP BIGINT tot_log_used_top - Maximum total log space
used

SEC_LOGS_ALLOCATED BIGINT sec_logs_allocated - Secondary logs allocated
currently

LOG_READS BIGINT log_reads - Number of log pages read

LOG_READ_TIME_S BIGINT log_read_time - Log read time (in seconds)†

LOG_READ_TIME_NS BIGINT log_read_time - Log read time (fractional, in
nanoseconds)†

LOG_WRITES BIGINT log_writes - Number of log pages written

LOG_WRITE_TIME_S BIGINT log_write_time - Log write time (in
seconds)†

LOG_WRITE_TIME_NS BIGINT log_write_time - Log write time (fractional,
in nanoseconds)†

NUM_LOG_WRITE_IO BIGINT num_log_write_io - Number of log writes

NUM_LOG_READ_IO BIGINT num_log_read_io - Number of log reads

NUM_LOG_PART_PAGE_IO BIGINT num_log_part_page_io - Number of partial
log page writes

NUM_LOG_BUFFER_FULL BIGINT num_log_buffer_full - Number of full log
buffers

Chapter 22. Deprecated routines 1145

Table 304. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V95 table
function (continued)

Column name Data type
Description or corresponding monitor
element

NUM_LOG_DATA_FOUND_
IN_BUFFER

BIGINT num_log_data_found_in_buffer - Number of
log data found in buffer

APPL_ID_OLDEST_XACT BIGINT appl_id_oldest_xact - Application with oldest
transaction

LOG_TO_REDO_FOR_
RECOVERY

BIGINT log_to_redo_for_recovery - Amount of log to
be redone for recovery

LOG_HELD_BY_DIRTY_PAGES BIGINT log_held_by_dirty_pages - Amount of log
space accounted for by dirty pages

PKG_CACHE_LOOKUPS BIGINT pkg_cache_lookups - Package cache lookups

PKG_CACHE_INSERTS BIGINT pkg_cache_inserts - Package cache inserts

PKG_CACHE_NUM_
OVERFLOWS

BIGINT pkg_cache_num_overflows - Package cache
overflows

PKG_CACHE_SIZE_TOP BIGINT pkg_cache_size_top - Package cache high
water mark

APPL_SECTION_LOOKUPS BIGINT appl_section_lookups - Section lookups

APPL_SECTION_INSERTS BIGINT appl_section_inserts - Section inserts

CAT_CACHE_LOOKUPS BIGINT cat_cache_lookups - Catalog cache lookups

CAT_CACHE_INSERTS BIGINT cat_cache_inserts - Catalog cache inserts

CAT_CACHE_OVERFLOWS BIGINT cat_cache_overflows - Catalog cache
overflows

CAT_CACHE_SIZE_TOP BIGINT cat_cache_size_top - Catalog cache high
water mark

PRIV_WORKSPACE_SIZE_TOP BIGINT priv_workspace_size_top - Maximum private
workspace size

PRIV_WORKSPACE_NUM_
OVERFLOWS

BIGINT priv_workspace_num_overflows - Private
workspace overflows

PRIV_WORKSPACE_SECTION_
INSERTS

BIGINT priv_workspace_section_inserts - Private
workspace section inserts

PRIV_WORKSPACE_SECTION_
LOOKUPS

BIGINT priv_workspace_section_lookups - Private
workspace section lookups

SHR_WORKSPACE_SIZE_TOP BIGINT shr_workspace_size_top - Maximum shared
workspace size

SHR_WORKSPACE_NUM_
OVERFLOWS

BIGINT shr_workspace_num_overflows - Shared
workspace overflows

SHR_WORKSPACE_SECTION_
INSERTS

BIGINT shr_workspace_section_inserts - Shared
workspace section inserts

1146 Administrative Routines and Views

Table 304. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V95 table
function (continued)

Column name Data type
Description or corresponding monitor
element

SHR_WORKSPACE_SECTION_
LOOKUPS

BIGINT shr_workspace_section_lookups - Shared
workspace section lookups

TOTAL_HASH_JOINS BIGINT total_hash_joins - Total hash joins

TOTAL_HASH_LOOPS BIGINT total_hash_loops - Total hash loops

HASH_JOIN_OVERFLOWS BIGINT hash_join_overflows - Hash join overflows

HASH_JOIN_SMALL_
OVERFLOWS

BIGINT hash_join_small_overflows - Hash join small
overflows

POST_SHRTHRESHOLD_
HASH_JOINS

BIGINT post_shrthreshold_hash_joins - Post
threshold hash joins

ACTIVE_HASH_JOINS BIGINT active_hash_joins - Active hash joins

NUM_DB_STORAGE_PATHS BIGINT num_db_storage_paths - Number of
automatic storage paths

DBPARTITIONNUM SMALLINT The database partition from which the data
was retrieved for this row.

SMALLEST_LOG_AVAIL_
NODE

INTEGER smallest_log_avail_node - Node with least
available log space

TOTAL_OLAP_FUNCS BIGINT total_olap_funcs - Total OLAP functions

OLAP_FUNC_OVERFLOWS BIGINT olap_func_overflows - OLAP function
overflows

ACTIVE_OLAP_FUNCS BIGINT active_olap_funcs - Active OLAP functions

STATS_CACHE_SIZE BIGINT stats_cache_size – Size of statistics cache

STATS_FABRICATIONS BIGINT stats_fabrications – Total number of statistics
fabrications

SYNC_RUNSTATS BIGINT sync_runstats – Total number of synchronous
RUNSTATS activities

ASYNC_RUNSTATS BIGINT async_runstats – Total number of
asynchronous RUNSTATS requests

STATS_FABRICATE_TIME BIGINT stats_fabricate_time – Total time spent on
statistics fabrication activities

SYNC_RUNSTATS_TIME BIGINT sync_runstats_time – Total time spent on
synchronous RUNSTATS activities

NUM_THRESHOLD_VIOLATIONS BIGINT num_threshold_violations - Number of
threshold violations

Chapter 22. Deprecated routines 1147

Table 304. Information returned by the SNAPDB administrative view and SNAP_GET_DB_V95 table
function (continued)

Column name Data type
Description or corresponding monitor
element

* To calculate the total time spent for the monitor element that this column is based on, you must add the full
seconds reported in the column for this monitor element that ends with _S to the fractional seconds reported in the
column for this monitor element that ends with _MS, using the following formula: (monitor-element-name_S ×
1,000,000 + monitor-element-name_MS) ÷ 1,000,000. For example, (ELAPSED_EXEC_TIME_S × 1,000,000 +
ELAPSED_EXEC_TIME_MS) ÷ 1,000,000.

†To calculate the total elapsed time for this monitor element, you must add the full seconds reported in the column
for this monitor element that ends with _S to the fractional seconds reported in the column for this monitor element
that ends with _MS, using the following formula: (monitor-element-name_S × 1,000,000,000 + monitor-element-
name_MS) ÷ 1,000,000,000. For example, (LOG_READ_TIME_S × 1,000,000,000 + LOG_READ_TIME_MS) ÷
1,000,000,000.

SNAP_GET_DYN_SQL_V91 table function - Retrieve dynsql logical
group snapshot information

Note: This table function has been deprecated and replaced by the
“SNAPDYN_SQL administrative view and SNAP_GET_DYN_SQL_V95 table
function - Retrieve dynsql logical group snapshot information” on page 642.

The SNAP_GET_DYN_SQL_V91 table function returns snapshot information from
the dynsql logical data group.

This table function returns information equivalent to the GET SNAPSHOT FOR
DYNAMIC SQL ON database-alias CLP command.

Refer to Table 305 on page 1150 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_DYN_SQL_V91 (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify NULL or empty
string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all

1148 Administrative Routines and Views

active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_DYN_SQL_V91 table function takes a snapshot for the currently
connected database and database partition number.

Authorization
v SYSMON authority
v EXECUTE privilege on the SNAP_GET_DYN_SQL_V91 table function.

Example

Retrieve a list of dynamic SQL run on the currently connected database partition of
the currently connected database, ordered by the number of rows read.
SELECT PREP_TIME_WORST, NUM_COMPILATIONS, SUBSTR(STMT_TEXT, 1, 60)

AS STMT_TEXT FROM TABLE(SNAP_GET_DYN_SQL_V91(’’,-1)) as T
ORDER BY ROWS_READ

The following example is a sample output from this query.
PREP_TIME_WORST ...
-------------------- ...

0 ...
3 ...

...
4 ...

...
4 ...

...
4 ...

...
3 ...

...
4 ...

...

Output from this query (continued).
... NUM_COMPILATIONS STMT_TEXT
... -------------------- ---------------------------------------...-
... 0 SET CURRENT LOCALE LC_CTYPE = ’en_US’
... 1 select rows_read, rows_written,
... substr(stmt_text, 1, 40) as
... 1 select * from table
... (snap_get_dyn_sqlv9(’’,-1)) as t
... 1 select * from table
... (snap_getdetaillog9(’’,-1)) as t
... 1 select * from table
... (snap_get_hadr(’’,-1)) as t
... 1 select prep_time_worst, num_compilations,
... substr(stmt_text,
... 1 select prep_time_worst, num_compilations,
... substr(stmt_text,

Chapter 22. Deprecated routines 1149

Information returned

Table 305. Information returned by the SNAP_GET_DYN_SQL_V91 table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

NUM_EXECUTIONS BIGINT num_executions - Statement
executions

NUM_COMPILATIONS BIGINT num_compilations - Statement
compilations

PREP_TIME_WORST BIGINT prep_time_worst - Statement worst
preparation time

PREP_TIME_BEST BIGINT prep_time_best - Statement best
preparation time

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal rows
deleted

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal rows
inserted

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal rows
updated

ROWS_READ BIGINT rows_read - Rows read

ROWS_WRITTEN BIGINT rows_written - Rows written

STMT_SORTS BIGINT stmt_sorts - Statement sorts

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

TOTAL_SORT_TIME BIGINT total_sort_time - Total sort time

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool
data logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool
data physical reads

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer
pool temporary data logical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer
pool temporary data physical reads

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool
index logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool
index physical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer
pool temporary index logical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer
pool temporary index physical
reads

POOL_XDA_L_READS BIGINT pool_xda_l_reads - Buffer Pool
XDA Data Logical Reads

POOL_XDA_P_READS BIGINT pool_xda_p_reads - Buffer Pool
XDA Data Physical Reads

1150 Administrative Routines and Views

Table 305. Information returned by the SNAP_GET_DYN_SQL_V91 table
function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_TEMP_XDA_L_READS BIGINT pool_temp_xda_l_reads - Buffer
Pool Temporary XDA Data Logical
Reads

POOL_TEMP_XDA_P_READS BIGINT pool_temp_xda_p_reads - Buffer
Pool Temporary XDA Data
Physical Reads monitor element

TOTAL_EXEC_TIME BIGINT total_exec_time - Elapsed
statement execution time (in
seconds)*

TOTAL_EXEC_TIME_MS BIGINT total_exec_time - Elapsed
statement execution time
(fractional, in microseconds)*

TOTAL_USR_CPU_TIME BIGINT total_usr_cpu_time - Total user
CPU for a statement (in seconds)*

TOTAL_USR_CPU_TIME_MS BIGINT total_usr_cpu_time - Total user
CPU for a statement (fractional, in
microseconds)*

TOTAL_SYS_CPU_TIME BIGINT total_sys_cpu_time - Total system
CPU for a statement (in seconds)*

TOTAL_SYS_CPU_TIME_MS BIGINT total_sys_cpu_time - Total system
CPU for a statement (fractional, in
microseconds)*

STMT_TEXT CLOB(2 M) stmt_text - SQL statement text

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

* To calculate the total time spent for the monitor element that this column is based on,
you must add the full seconds reported in the column for this monitor element that ends
with _S to the fractional seconds reported in the column for this monitor element that ends
with _MS, using the following formula: (monitor-element-name_S × 1,000,000 +
monitor-element-name_MS) ÷ 1,000,000. For example, (ELAPSED_EXEC_TIME_S × 1,000,000
+ ELAPSED_EXEC_TIME_MS) ÷ 1,000,000.

SNAP_GET_DYN_SQL

Note: This table function has been deprecated and replaced by the
“SNAP_GET_DYN_SQL_V91 table function - Retrieve dynsql logical group
snapshot information” on page 1148

�� SNAP_GET_DYN_SQL (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAP_GET_DYN_SQL table function returns snapshot information from the
dynsql logical data group.

dbname
An input argument of type VARCHAR(255) that specifies a valid database

Chapter 22. Deprecated routines 1151

name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from the currently connected
database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

The function returns a table as shown in the following section.

Table 306. Information returned by the SNAP_GET_DYN_SQL table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp - Snapshot
timestamp

NUM_EXECUTIONS BIGINT num_executions - Statement
executions

NUM_COMPILATIONS BIGINT num_compilations - Statement
compilations

PREP_TIME_WORST BIGINT prep_time_worst - Statement worst
preparation time

PREP_TIME_BEST BIGINT prep_time_best - Statement best
preparation time

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal rows
deleted

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal rows
inserted

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal rows
updated

ROWS_READ BIGINT rows_read - Rows read

ROWS_WRITTEN BIGINT rows_written - Rows written

STMT_SORTS BIGINT stmt_sorts - Statement sorts

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

TOTAL_SORT_TIME BIGINT total_sort_time - Total sort time

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool
data logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool
data physical reads

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer
pool temporary data logical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer
pool temporary data physical reads

1152 Administrative Routines and Views

Table 306. Information returned by the SNAP_GET_DYN_SQL table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool
index logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool
index physical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer
pool temporary index logical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer
pool temporary index physical
reads

TOTAL_EXEC_TIME BIGINT total_exec_time - Elapsed
statement execution time (in
seconds)*

TOTAL_EXEC_TIME_MS BIGINT total_exec_time - Elapsed
statement execution time
(fractional, in microseconds)*

TOTAL_USR_TIME BIGINT total_usr_cpu_time - Total user
CPU for a statement (in seconds)*

TOTAL_USR_TIME_MS BIGINT total_usr_cpu_time - Total user
CPU for a statement (fractional, in
microseconds)*

TOTAL_SYS_TIME BIGINT total_sys_cpu_time - Total system
CPU for a statement (in seconds)*

TOTAL_SYS_TIME_MS BIGINT total_sys_cpu_time - Total system
CPU for a statement (fractional, in
microseconds)*

STMT_TEXT CLOB stmt_text - SQL statement text

* To calculate the total time spent for the monitor element that this column is based on,
you must add the full seconds reported in the column for this monitor element that ends
with _S to the fractional seconds reported in the column for this monitor element that ends
with _MS, using the following formula: (monitor-element-name_S × 1,000,000 +
monitor-element-name_MS) ÷ 1,000,000. For example, (ELAPSED_EXEC_TIME_S × 1,000,000
+ ELAPSED_EXEC_TIME_MS) ÷ 1,000,000.

SNAP_GET_STO_PATHS

Note: This table function has been deprecated and replaced by the
“SNAPSTORAGE_PATHS administrative view and SNAP_GET_STORAGE_PATHS
table function - Retrieve automatic storage path information” on page 807

�� SNAP_GET_STO_PATHS (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAP_GET_STO_PATHS table function returns snapshot information from the
storage_paths logical data group.

Chapter 22. Deprecated routines 1153

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the NULL value to take the snapshot from the currently connected
database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

Table 307. Information returned by the SNAP_GET_STO_PATHS table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

DB_NAME VARCHAR(128) db_name - Database name

DB_STORAGE_PATH VARCHAR(256) db_storage_path - Automatic
storage path

SNAP_GET_TAB

Note: This table function has been deprecated and replaced by the “SNAPTAB
administrative view and SNAP_GET_TAB_V91 table function - Retrieve table
logical data group snapshot information” on page 684

�� SNAP_GET_TAB (dbname , dbpartitionnum) ��

The schema is SYSPROC.

1154 Administrative Routines and Views

The SNAP_GET_TAB table function returns snapshot information from the table
logical data group.

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the NULL value to take the snapshot from the currently connected
database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

The function returns a table as shown in the following section.

Table 308. Information returned by the SNAP_GET_TAB table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

TABSCHEMA VARCHAR(128) table_schema - Table schema
name

TABNAME VARCHAR(128) table_name - Table name

TAB_FILE_ID BIGINT table_file_id - Table file
identification

TAB_TYPE BIGINT table_type - Table type

DATA_OBJECT_PAGES BIGINT data_object_pages - Data
object pages

INDEX_OBJECT_PAGES BIGINT index_object_pages - Index
object pages

LOB_OBJECT_PAGES BIGINT lob_object_pages - LOB
object pages

LONG_OBJECT_PAGES BIGINT long_object_pages - Long
object pages

ROWS_READ BIGINT rows_read - Rows read

ROWS_WRITTEN BIGINT rows_written - Rows written

OVERFLOW_ACCESSES BIGINT overflow_accesses - Accesses
to overflowed records

PAGE_REORGS BIGINT page_reorgs - Page
reorganizations

DBPARTITIONNUM SMALLINT node_number - Node
number

Chapter 22. Deprecated routines 1155

SNAP_GET_TBSP

Note: This table function has been deprecated and replaced by the “SNAPTBSP
administrative view and SNAP_GET_TBSP_V91 table function - Retrieve table
space logical data group snapshot information” on page 693

�� SNAP_GET_TBSP (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAP_GET_TBSP table function returns snapshot information from the table
space logical data group.

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY
command. Specify the null value to take the snapshot from the currently
connected database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition. If the null value is
specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file has
not previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

The function returns a table as shown in the following section.

Table 309. Information returned by the SNAP_GET_TBSP table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp - Snapshot
timestamp

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

TBSP_ID BIGINT tablespace_id - Table space
identification

TBSP_TYPE SMALLINT tablespace_type - Table space type

TBSP_CONTENT_TYPE SMALLINT tablespace_content_type - Table
space content type

TBSP_PAGE_SIZE BIGINT tablespace_page_size - Table space
page size

TBSP_EXTENT_SIZE BIGINT tablespace_extent_size - Table
space extent size

TBSP_PREFETCH_SIZE BIGINT tablespace_prefetch_size - Table
space prefetch size

TBSP_CUR_POOL_ID BIGINT tablespace_cur_pool_id - Buffer
pool currently being used

1156 Administrative Routines and Views

Table 309. Information returned by the SNAP_GET_TBSP table function (continued)

Column name Data type
Description or corresponding
monitor element

TBSP_NEXT_POOL_ID BIGINT tablespace_next_pool_id - Buffer
pool that will be used at next
startup

FS_CACHING1 SMALLINT fs_caching - File system caching

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool
data logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool
data physical reads

POOL_TEMP_DATA_L_READS BIGINT pool_temp_data_l_reads - Buffer
pool temporary data logical reads

POOL_TEMP_DATA_P_READS BIGINT pool_temp_data_p_reads - Buffer
pool temporary data physical reads

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer
pool asynchronous data reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool data
writes

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer
pool asynchronous data writes

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool
index logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool
index physical reads

POOL_TEMP_INDEX_L_READS BIGINT pool_temp_index_l_reads - Buffer
pool temporary index logical reads

POOL_TEMP_INDEX_P_READS BIGINT pool_temp_index_p_reads - Buffer
pool temporary index physical
reads

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer
pool asynchronous index reads

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool
index writes

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer
pool asynchronous index writes

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool
physical read time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool
physical write time

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer pool
asynchronous read time

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer
pool asynchronous write time

POOL_ASYNC_DATA_
READ_REQS

BIGINT pool_async_data_read_reqs - Buffer
pool asynchronous read requests

POOL_ASYNC_INDEX_
READ_REQS

BIGINT pool_async_index_read_reqs -
Buffer pool asynchronous index
read requests

Chapter 22. Deprecated routines 1157

Table 309. Information returned by the SNAP_GET_TBSP table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_NO_VICTIM_BUFFER BIGINT pool_no_victim_buffer - Buffer
pool no victim buffers

DIRECT_READS BIGINT direct_reads - Direct reads from
database

DIRECT_WRITES BIGINT direct_writes - Direct writes to
database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read
requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write
requests

DIRECT_READ_TIME BIGINT direct_read_time - Direct read time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write
time

FILES_CLOSED BIGINT files_closed - Database files closed

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread
prefetch pages

POOL_DATA_TO_ESTORE BIGINT The pool_data_to_estore ESTORE
monitor element is discontinued. A
NULL value is returned for the
discontinued monitor element.

POOL_INDEX_TO_ESTORE BIGINT The pool_index_to_estore ESTORE
monitor element is discontinued. A
NULL value is returned for the
discontinued monitor element.

POOL_INDEX_FROM_ESTORE BIGINT The pool_index_from_estore
ESTORE monitor element is
discontinued. A NULL value is
returned for the discontinued
monitor element.

POOL_DATA_FROM_ESTORE BIGINT The pool_data_from_estore
ESTORE monitor element is
discontinued. A NULL value is
returned for the discontinued
monitor element.

TBSP_REBALANCER_MODE BIGINT tablespace_rebalancer_mode -
Rebalancer mode

TBSP_USING_AUTO_STORAGE SMALLINT tablespace_using_auto_storage -
Table space enabled for automatic
storage

TBSP_AUTO_RESIZE_ENABLED SMALLINT tablespace_auto_resize_enabled -
Table space automatic resizing
enabled

1 If FS_CACHING is 0, file system caching is enabled, and if FS_CACHING is 1, file system
caching is disabled.

1158 Administrative Routines and Views

SNAP_GET_TBSP_PART

Note: This table function has been deprecated and replaced by the
“SNAPTBSP_PART administrative view and SNAP_GET_TBSP_PART_V91 table
function - Retrieve tablespace_nodeinfo logical data group snapshot information”
on page 833

�� SNAP_GET_TBSP_PART (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAP_GET_TBSP_PART table function returns snapshot information from the
tablespace_nodeinfo logical data group.

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY
command. Specify the null value to take the snapshot from the currently
connected database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition. If the null value is
specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file has
not previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

The function returns a table as shown in the following section.

Table 310. Information returned by the SNAP_GET_TBSP_PART table function

Column name Data type
Description or corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp - Snapshot timestamp

TBSP_NAME VARCHAR
(128)

tablespace_name - Table space name

TBSP_ID BIGINT tablespace_id - Table space identification

TBSP_STATE BIGINT tablespace_state - Table space state

TBSP_PREFETCH_SIZE BIGINT tablespace_prefetch_size - Table space
prefetch size

TBSP_NUM_QUIESCERS BIGINT tablespace_num_quiescers - Number of
quiescers

TBSP_STATE_CHANGE_
OBJECT_ID

BIGINT tablespace_state_change_object_id - State
change object identification

TBSP_STATE_CHANGE_
TBSP_ID

BIGINT tablespace_state_change_ts_id - State
change table space identification

Chapter 22. Deprecated routines 1159

Table 310. Information returned by the SNAP_GET_TBSP_PART table function (continued)

Column name Data type
Description or corresponding monitor
element

TBSP_MIN_RECOVERY_
TIME

TIMESTAMP tablespace_min_recovery_time - Minimum
recovery time for rollforward

TBSP_TOTAL_PAGES BIGINT tablespace_total_pages - Total pages in table
space

TBSP_USABLE_PAGES BIGINT tablespace_usable_pages - Usable pages in
table space

TBSP_USED_PAGES BIGINT tablespace_used_pages - Used pages in
table space

TBSP_FREE_PAGES BIGINT tablespace_free_pages - Free pages in table
space

TBSP_PENDING_FREE_
PAGES

BIGINT tablespace_pending_free_pages - Pending
free pages in table space

TBSP_PAGE_TOP BIGINT tablespace_page_top - Table space high
water mark

REBALANCER_MODE BIGINT tablespace_rebalancer_mode - Rebalancer
mode

REBALANCER_EXTENTS_
REMAINING

BIGINT tablespace_rebalancer_extents_remaining -
Total number of extents to be processed by
the rebalancer

REBALANCER_EXTENTS_
PROCESSED

BIGINT tablespace_rebalancer_extents_processed -
Number of extents the rebalancer has
processed

REBALANCER_PRIORITY BIGINT tablespace_rebalancer_priority - Current
rebalancer priority

REBALANCER_START_
TIME

TIMESTAMP tablespace_rebalancer_start_time -
Rebalancer start time

REBALANCER_RESTART_
TIME

TIMESTAMP tablespace_rebalancer_restart_time -
Rebalancer restart time

REBALANCER_LAST_
EXTENT_MOVED

BIGINT tablespace_rebalancer_last_extent_moved -
Last extent moved by the rebalancer

TBSP_NUM_RANGES BIGINT tablespace_num_ranges - Number of ranges
in the table space map

TBSP_NUM_CONTAINERS BIGINT tablespace_num_containers - Number of
containers in table space

TBSP_INITIAL_SIZE BIGINT tablespace_initial_size - Initial table space
size

TBSP_CURRENT_SIZE BIGINT tablespace_current_size - Current table
space size

TBSP_MAX_SIZE BIGINT tablespace_max_size - Maximum table
space size

TBSP_INCREASE_SIZE BIGINT tablespace_increase_size - Increase size in
bytes

1160 Administrative Routines and Views

Table 310. Information returned by the SNAP_GET_TBSP_PART table function (continued)

Column name Data type
Description or corresponding monitor
element

TBSP_INCREASE_SIZE_
PERCENT

SMALLINT tablespace_increase_size_percent - Increase
size by percent

TBSP_LAST_RESIZE_
TIME

TIMESTAMP tablespace_last_resize_time - Time of last
successful resize

TBSP_LAST_RESIZE_
FAILED

SMALLINT tablespace_last_resize_failed - Last resize
attempt failed

DBPARTITIONNUM SMALLINT node_number - Node number

SNAPAGENT_MEMORY_POOL administrative view and
SNAP_GET_AGENT_MEMORY_POOL table function – Retrieve
memory_pool logical data group snapshot information

The SNAPAGENT_MEMORY_POOL administrative view and the
SNAP_GET_AGENT_MEMORY_POOL table function return information about
memory usage at the agent level.

Note: Starting in Version 9.7 Fix Pack 5, the SNAPAGENT_MEMORY_POOL
administrative view and SNAP_GET_AGENT_MEMORY_POOL table function
have been deprecated and replaced by the “MON_GET_MEMORY_POOL - get
memory pool information” on page 456 and “MON_GET_MEMORY_SET - get
memory set information” on page 459.

SNAPAGENT_MEMORY_POOL administrative view

This administrative view allows you to retrieve the memory_pool logical data
group snapshot information about memory usage at the agent level for the
currently connected database.

Used with the SNAPAGENT, SNAPAPPL, SNAPAPPL_INFO, SNAPSTMT and
SNAPSUBSECTION administrative views, the SNAPAGENT_MEMORY_POOL
administrative view provides information equivalent to the GET SNAPSHOT FOR
APPLICATIONS ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 203 on page 726 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPAGENT_MEMORY_POOL administrative view
v CONTROL privilege on the SNAPAGENT_MEMORY_POOL administrative view
v DATAACCESS authority

Chapter 22. Deprecated routines 1161

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_AGENT_MEMORY_POOL table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of memory pools and their current size.
SELECT AGENT_ID, POOL_ID, POOL_CUR_SIZE FROM SYSIBMADM.SNAPAGENT_MEMORY_POOL

The following example is a sample output from this query.
AGENT_ID POOL_ID POOL_ CUR_SIZE
--------...--- -------------- ---------...------

48 APPLICATION 65536
48 OTHER 65536
48 APPL_CONTROL 65536
47 APPLICATION 65536
47 OTHER 131072
47 APPL_CONTROL 65536
46 OTHER 327680
46 APPLICATION 262144
46 APPL_CONTROL 65536

9 record(s) selected.

SNAP_GET_AGENT_MEMORY_POOL table function

The SNAP_GET_AGENT_MEMORY_POOL table function returns the same
information as the SNAPAGENT_MEMORY_POOL administrative view, but allows
you to retrieve the information for a specific database on a specific database
partition, aggregate of all database partitions or all database partitions.

Used with the SNAP_GET_AGENT, SNAP_GET_APPL_V95,
SNAP_GET_APPL_INFO_V95, SNAP_GET_STMT and SNAP_GET_SUBSECTION
table functions, the SNAP_GET_AGENT_MEMORY_POOL table function provides
information equivalent to the GET SNAPSHOT FOR ALL APPLICATIONS CLP command.

Refer to Table 203 on page 726 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_AGENT_MEMORY_POOL (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

1162 Administrative Routines and Views

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_AGENT_MEMORY_POOL table function takes a snapshot for the
currently connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_AGENT_MEMORY_POOL table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of memory pools and their current size for all databases.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, AGENT_ID, POOL_ID, POOL_CUR_SIZE

FROM TABLE(SNAP_GET_AGENT_MEMORY_POOL(CAST (NULL AS VARCHAR(128)), -1))
AS T

The following example is a sample output from this query.
DB_NAME AGENT_ID POOL_ID POOL_CUR_SIZE
-------- --------...--- -------------- --------------------
SAMPLE 48 APPLICATION 65536
SAMPLE 48 OTHER 65536
SAMPLE 48 APPL_CONTROL 65536
SAMPLE 47 APPLICATION 65536
SAMPLE 47 OTHER 131072
SAMPLE 47 APPL_CONTROL 65536
SAMPLE 46 OTHER 327680

Chapter 22. Deprecated routines 1163

SAMPLE 46 APPLICATION 262144
SAMPLE 46 APPL_CONTROL 65536
TESTDB 30 APPLICATION 65536
TESTDB 30 OTHER 65536
TESTDB 30 APPL_CONTROL 65536
TESTDB 29 APPLICATION 65536
TESTDB 29 OTHER 131072
TESTDB 29 APPL_CONTROL 65536
TESTDB 28 OTHER 327680
TESTDB 28 APPLICATION 65536
TESTDB 28 APPL_CONTROL 65536

18 record(s) selected.

Information returned

Table 311. Information returned by the SNAPAGENT_MEMORY_POOL administrative view
and the SNAP_GET_AGENT_MEMORY_POOL table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

AGENT_PID BIGINT agent_pid - Engine dispatchable
unit (EDU)

POOL_ID VARCHAR(14) pool_id - Memory pool identifier.
This interface returns a text
identifier based on defines in
sqlmon.h, and is one of:

v APP_GROUP

v APPL_CONTROL

v APPLICATION

v BP

v CAT_CACHE

v DATABASE

v DFM

v FCMBP

v IMPORT_POOL

v LOCK_MGR

v MONITOR

v OTHER

v PACKAGE_CACHE

v QUERY

v SHARED_SORT

v SORT

v STATEMENT

v STATISTICS

v UTILITY

POOL_CUR_SIZE BIGINT pool_cur_size - Current size of
memory pool

1164 Administrative Routines and Views

Table 311. Information returned by the SNAPAGENT_MEMORY_POOL administrative view
and the SNAP_GET_AGENT_MEMORY_POOL table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_WATERMARK BIGINT pool_watermark - Memory pool
watermark

POOL_CONFIG_SIZE BIGINT pool_config_size - Configured size
of memory pool

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPDB_MEMORY_POOL administrative view and
SNAP_GET_DB_MEMORY_POOL table function – Retrieve database
level memory usage information

The SNAPDB_MEMORY_POOL administrative view and the
SNAP_GET_DB_MEMORY_POOL table function return information about memory
usage at the database level for UNIX platforms only.

Note: Starting in Version 9.7 Fix Pack 5, the SNAPDB_MEMORY_POOL
administrative view and SNAP_GET_DB_MEMORY_POOL table function have
been deprecated and replaced by the “MON_GET_MEMORY_POOL - get memory
pool information” on page 456 and “MON_GET_MEMORY_SET - get memory set
information” on page 459.

SNAPDB_MEMORY_POOL administrative view

This administrative view allows you to retrieve database level memory usage
information for the currently connected database.

Used with the SNAPDB, SNAPDETAILLOG, SNAPHADR and
SNAPSTORAGE_PATHS administrative views, the SNAPDB_MEMORY_POOL
administrative view provides information equivalent to the GET SNAPSHOT FOR
DATABASE ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 300 on page 1119 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPDB_MEMORY_POOL administrative view
v CONTROL privilege on the SNAPDB_MEMORY_POOL administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_DB_MEMORY_POOL table function
v DATAACCESS authority

Chapter 22. Deprecated routines 1165

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of memory pools and their current size for the currently connected
database, SAMPLE.
SELECT POOL_ID, POOL_CUR_SIZE FROM SYSIBMADM.SNAPDB_MEMORY_POOL

The following example is a sample output from this query.
POOL_ID POOL_CUR_SIZE
------------- --------------------
UTILITY 32768
PACKAGE_CACHE 475136
CAT_CACHE 65536
BP 2097152
BP 1081344
BP 540672
BP 278528
BP 147456
BP 81920
LOCK_MGR 294912
DATABASE 3833856
OTHER 0

12 record(s) selected.

SNAP_GET_DB_MEMORY_POOL table function

The SNAP_GET_DB_MEMORY_POOL table function returns the same information
as the SNAPDB_MEMORY_POOL administrative view, but allows you to retrieve
the information for a specific database on a specific database partition, aggregate of
all database partitions or all database partitions.

Used with the SNAP_GET_DB_V95, SNAP_GET_DETAILLOG_V91,
SNAP_GET_HADR and SNAP_GET_STORAGE_PATHS table functions, the
SNAP_GET_DB_MEMORY_POOL table function provides information equivalent
to the GET SNAPSHOT FOR ALL DATABASES CLP command.

Refer to Table 300 on page 1119 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_DB_MEMORY_POOL (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database

1166 Administrative Routines and Views

name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify an empty string
to take the snapshot from the currently connected database. Specify a NULL
value to take the snapshot from all databases within the same instance as the
currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_DB_MEMORY_POOL table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_DB_MEMORY_POOL table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of memory pools and their current size for all databases.
SELECT SUBSTR(DB_NAME,1,8) AS DB_NAME, POOL_ID, POOL_CUR_SIZE

FROM TABLE(SNAPSHOT_GET_DB_MEMORY_POOL
(CAST(NULL AS VARCHAR(128)), -1)) AS T

The following example is a sample output from this query.
DB_NAME POOL_ID POOL_CUR_SIZE
-------- -------------- --------------------
TESTDB UTILITY 65536
TESTDB PACKAGE_CACHE 851968
TESTDB CAT_CACHE 65536
TESTDB BP 35913728
TESTDB BP 589824
TESTDB BP 327680
TESTDB BP 196608
TESTDB BP 131072
TESTDB SHARED_SORT 65536
TESTDB LOCK_MGR 10092544
TESTDB DATABASE 4980736

Chapter 22. Deprecated routines 1167

TESTDB OTHER 196608
SAMPLE UTILITY 65536
SAMPLE PACKAGE_CACHE 655360
SAMPLE CAT_CACHE 131072
SAMPLE BP 4325376
SAMPLE BP 589824
SAMPLE BP 327680
SAMPLE BP 196608
SAMPLE BP 131072
SAMPLE SHARED_SORT 0
SAMPLE LOCK_MGR 655360
SAMPLE DATABASE 4653056
SAMPLE OTHER 196608

24 record(s) selected.

Information returned

Table 312. Information returned by the SNAPDB_MEMORY_POOL administrative view and
the SNAP_GET_DB_MEMORY_POOL table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

DB_NAME VARCHAR(128) db_name - Database name

POOL_ID VARCHAR(14) pool_id - Memory pool identifier.
This interface returns a text
identifier based on defines in
sqlmon.h, and is one of:

v APP_GROUP

v APPL_CONTROL

v APPLICATION

v BP

v CAT_CACHE

v DATABASE

v DFM

v FCMBP

v IMPORT_POOL

v LOCK_MGR

v MONITOR

v OTHER

v PACKAGE_CACHE

v QUERY

v SHARED_SORT

v SORT

v STATEMENT

v STATISTICS

v UTILITY

POOL_SECONDARY_ID VARCHAR(32) pool_secondary_id - Memory pool
secondary identifier

POOL_CUR_SIZE BIGINT pool_cur_size - Current size of
memory pool

POOL_WATERMARK BIGINT pool_watermark - Memory pool
watermark

1168 Administrative Routines and Views

Table 312. Information returned by the SNAPDB_MEMORY_POOL administrative view and
the SNAP_GET_DB_MEMORY_POOL table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_CONFIG_SIZE BIGINT pool_config_size - Configured size
of memory pool

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPDBM_MEMORY_POOL administrative view and
SNAP_GET_DBM_MEMORY_POOL table function – Retrieve database
manager level memory usage information

The SNAPDBM_MEMORY_POOL administrative view and the
SNAP_GET_DBM_MEMORY_POOL table function return information about
memory usage at the database manager.

Note: Starting in Version 9.7 Fix Pack 5, the SNAPDBM_MEMORY_POOL
administrative view and SNAP_GET_DBM_MEMORY_POOL table function have
been deprecated and replaced by the “MON_GET_MEMORY_POOL - get memory
pool information” on page 456 and “MON_GET_MEMORY_SET - get memory set
information” on page 459.

SNAPDBM_MEMORY_POOL administrative view

Used with the SNAPDBM, SNAPFCM, SNAPFCM_PART and SNAPSWITCHES
administrative views, the SNAPDBM_MEMORY_POOL administrative view
provides the data equivalent to the GET SNAPSHOT FOR DBM command.

The schema is SYSIBMADM.

Refer to Table 302 on page 1125 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPDBM_MEMORY_POOL administrative view
v CONTROL privilege on the SNAPDBM_MEMORY_POOL administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_DBM_MEMORY_POOL table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT

Chapter 22. Deprecated routines 1169

v SYSADM

Example

Retrieve a list of the memory pools and their current size for the database manager
of the connected database.
SELECT POOL_ID, POOL_CUR_SIZE FROM SNAPDBM_MEMORY_POOL

The following example is a sample output from this query.
POOL_ID POOL_CUR_SIZE
-------------- --------------------
MONITOR 65536
OTHER 29622272
FCMBP 57606144
...

SNAP_GET_DBM_MEMORY_POOL table function

The SNAP_GET_DBM_MEMORY_POOL table function returns the same
information as the SNAPDBM_MEMORY_POOL administrative view, but allows
you to retrieve the information for a specific database partition, aggregate of all
database partitions or all database partitions.

Used with the SNAP_GET_DBM_V95, SNAP_GET_FCM, SNAP_GET_FCM_PART
and SNAP_GET_SWITCHES table functions, the
SNAP_GET_DBM_MEMORY_POOL table function provides the data equivalent to
the GET SNAPSHOT FOR DBM command.

Refer to Table 302 on page 1125 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_DBM_MEMORY_POOL ()
dbpartitionnum

��

The schema is SYSPROC.

Table function parameter

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If this input option is not used, data
will be returned from all active database partitions. An active database
partition is a partition where the database is available for connection and use
by applications.

If dbpartitionnum is set to NULL, an attempt is made to read data from the file
created by SNAP_WRITE_FILE procedure. Note that this file could have been
created at any time, which means that the data might not be current. If a file with
the corresponding snapshot API request type does not exist, then the
SNAP_GET_DBM_MEMORY_POOL table function takes a snapshot for the
currently connected database and database partition number.

1170 Administrative Routines and Views

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_DBM_MEMORY_POOL table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve a list of the memory pools and their current size for all database partitions
of the database manager of the connected database.
SELECT POOL_ID, POOL_CUR_SIZE, DBPARTITIONNUM

FROM TABLE(SYSPROC.SNAP_GET_DBM_MEMORY_POOL())
AS T ORDER BY DBPARTITIONNUM

The following example is a sample output from this query.
POOL_ID POOL_CUR_SIZE DBPARTITIONNUM
-------------- -------------------- --------------
MONITOR 65536 0
OTHER 29622272 0
FCMBP 57606144 0
MONITOR 65536 1
OTHER 29425664 1
FCMBP 57606144 1
MONITOR 65536 2
OTHER 29425664 2
FCMBP 57606144 2

Information returned

Table 313. Information returned by the SNAPDBM_MEMORY_POOL administrative view
and the SNAP_GET_DBM_MEMORY_POOL table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

Chapter 22. Deprecated routines 1171

Table 313. Information returned by the SNAPDBM_MEMORY_POOL administrative view
and the SNAP_GET_DBM_MEMORY_POOL table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_ID VARCHAR(14) pool_id - Memory pool identifier.
This interface returns a text
identifier based on defines in
sqlmon.h, and is one of:

v APP_GROUP

v APPL_CONTROL

v APPLICATION

v BP

v CAT_CACHE

v DATABASE

v DFM

v FCMBP

v IMPORT_POOL

v LOCK_MGR

v MONITOR

v OTHER

v PACKAGE_CACHE

v QUERY

v SHARED_SORT

v SORT

v STATEMENT

v STATISTICS

v UTILITY

POOL_CUR_SIZE BIGINT pool_cur_size - Current size of
memory pool

POOL_WATERMARK BIGINT pool_watermark - Memory pool
watermark

POOL_CONFIG_SIZE BIGINT pool_config_size - Configured size
of memory pool

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPLOCK administrative view and SNAP_GET_LOCK table function –
Retrieve lock logical data group snapshot information

Note: This administrative view and table function have been deprecated and
replaced by the “MON_GET_APPL_LOCKWAIT - get information about locks for
which an application is waiting” on page 423, “MON_GET_LOCKS - list all locks
in the currently connected database” on page 452, and
“MON_FORMAT_LOCK_NAME - format the internal lock name and return
details” on page 389.

The SNAPLOCK administrative view and the SNAP_GET_LOCK table function
return snapshot information about locks, in particular, the lock logical data group.

1172 Administrative Routines and Views

SNAPLOCK administrative view

This administrative view allows you to retrieve lock logical data group snapshot
information for the currently connected database.

Used with the SNAPLOCKWAIT administrative view, the SNAPLOCK
administrative view provides information equivalent to the GET SNAPSHOT FOR
LOCKS ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 188 on page 660 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPLOCK administrative view
v CONTROL privilege on the SNAPLOCK administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_LOCK table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve lock information for the database partition 0 of the currently connected
database.
SELECT AGENT_ID, LOCK_OBJECT_TYPE, LOCK_MODE, LOCK_STATUS

FROM SYSIBMADM.SNAPLOCK WHERE DBPARTITIONNUM = 0

The following example is a sample output from this query.
AGENT_ID LOCK_OBJECT_TYPE LOCK_MODE LOCK_STATUS
-------------------- ---------------- --------- -----------

7 TABLE IX GRNT

1 record(s) selected.

SNAP_GET_LOCK table function

The SNAP_GET_LOCK table function returns the same information as the
SNAPLOCK administrative view, but allows you to retrieve the information for a
specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Chapter 22. Deprecated routines 1173

Used with the SNAP_GET_LOCKWAIT table function, the SNAP_GET_LOCK table
function provides information equivalent to the GET SNAPSHOT FOR LOCKS ON
database-alias CLP command.

Refer to Table 188 on page 660 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_LOCK (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a
database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify a null value or
empty string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_LOCK table function takes a snapshot for the currently connected
database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_LOCK table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

1174 Administrative Routines and Views

Example

Retrieve lock information for the current database partition of the currently
connected database.
SELECT AGENT_ID, LOCK_OBJECT_TYPE, LOCK_MODE, LOCK_STATUS

FROM TABLE(SNAP_GET_LOCK(’’,-1)) as T

The following example is a sample output from this query.
AGENT_ID LOCK_OBJECT_TYPE LOCK_MODE LOCK_STATUS
--------...--- ------------------ ---------- -----------

680 INTERNALV_LOCK S GRNT
680 INTERNALP_LOCK S GRNT

2 record(s) selected.

Information returned

Table 314. Information returned by the SNAPLOCK administrative view and the
SNAP_GET_LOCK table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

TAB_FILE_ID BIGINT table_file_id - Table file
identification

Chapter 22. Deprecated routines 1175

Table 314. Information returned by the SNAPLOCK administrative view and the
SNAP_GET_LOCK table function (continued)

Column name Data type
Description or corresponding
monitor element

LOCK_OBJECT_TYPE VARCHAR(18) lock_object_type - Lock object type
waited on. This interface returns a
text identifier based on the defines
in sqlmon.h and is one of:

v AUTORESIZE_LOCK

v AUTOSTORAGE_LOCK

v BLOCK_LOCK

v EOT_LOCK

v INPLACE_REORG_LOCK

v INTERNAL_LOCK

v INTERNALB_LOCK

v INTERNALC_LOCK

v INTERNALJ_LOCK

v INTERNALL_LOCK

v INTERNALO_LOCK

v INTERNALQ_LOCK

v INTERNALP_LOCK

v INTERNALS_LOCK

v INTERNALT_LOCK

v INTERNALV_LOCK

v KEYVALUE_LOCK

v ROW_LOCK

v SYSBOOT_LOCK

v TABLE_LOCK

v TABLE_PART_LOCK

v TABLESPACE_LOCK

v XML_PATH_LOCK

LOCK_MODE VARCHAR(10) lock_mode - Lock mode. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

1176 Administrative Routines and Views

Table 314. Information returned by the SNAPLOCK administrative view and the
SNAP_GET_LOCK table function (continued)

Column name Data type
Description or corresponding
monitor element

LOCK_STATUS VARCHAR(10) lock_status - Lock status. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v CONV

v GRNT

LOCK_ESCALATION SMALLINT lock_escalation - Lock escalation

TABNAME VARCHAR(128) table_name - Table name

TABSCHEMA VARCHAR(128) table_schema - Table schema name

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

LOCK_ATTRIBUTES VARCHAR(128) lock_attributes - Lock attributes.
This interface returns a text
identifier based on the defines in
sqlmon.h. If there are no locks, the
text identifier is NONE, otherwise,
it is any combination of the
following separated by a '+' sign:

v ALLOW_NEW

v DELETE_IN_BLOCK

v ESCALATED

v INSERT

v NEW_REQUEST

v RR

v RR_IN_BLOCK

v UPDATE_DELETE

v WAIT_FOR_AVAIL

LOCK_COUNT BIGINT lock_count - Lock count

LOCK_CURRENT_MODE VARCHAR(10) lock_current_mode - Original lock
mode before conversion. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

LOCK_HOLD_COUNT BIGINT lock_hold_count - Lock hold count

Chapter 22. Deprecated routines 1177

Table 314. Information returned by the SNAPLOCK administrative view and the
SNAP_GET_LOCK table function (continued)

Column name Data type
Description or corresponding
monitor element

LOCK_NAME VARCHAR(32) lock_name - Lock name

LOCK_RELEASE_FLAGS BIGINT lock_release_flags - Lock release
flags

DATA_PARTITION_ID INTEGER data_partition_id - Data Partition
identifier. For a non-partitioned
table, this element is NULL.

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPLOCKWAIT administrative view and SNAP_GET_LOCKWAIT table
function – Retrieve lockwait logical data group snapshot information

Note: This administrative view and table function have been deprecated and
replaced by the “MON_LOCKWAITS administrative view - Retrieve metrics for
applications that are waiting to obtain locks” on page 520 and the
“MON_GET_APPL_LOCKWAIT - get information about locks for which an
application is waiting” on page 423, “MON_GET_LOCKS - list all locks in the
currently connected database” on page 452, and “MON_FORMAT_LOCK_NAME -
format the internal lock name and return details” on page 389.

The SNAPLOCKWAIT administrative view and the SNAP_GET_LOCKWAIT table
function return snapshot information about lock waits, in particular, the lockwait
logical data group.

SNAPLOCKWAIT administrative view

This administrative view allows you to retrieve lockwait logical data group
snapshot information for the currently connected database.

Used with the SNAPLOCK administrative view, the SNAPLOCKWAIT
administrative view provides information equivalent to the GET SNAPSHOT FOR
LOCKS ON database-alias CLP command.

The schema is SYSIBMADM.

Refer to Table 189 on page 665 for a complete list of information that can be
returned.

Authorization

One of the following authorizations is required:
v SELECT privilege on the SNAPLOCKWAIT administrative view
v CONTROL privilege on the SNAPLOCKWAIT administrative view
v DATAACCESS authority

In addition, one of the following privileges or authorities is also required:
v EXECUTE privilege on the SNAP_GET_LOCKWAIT table function

1178 Administrative Routines and Views

v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve lock wait information about database partition 0 for the currently
connected database.
SELECT AGENT_ID, LOCK_MODE, LOCK_OBJECT_TYPE, AGENT_ID_HOLDING_LK,

LOCK_MODE_REQUESTED FROM SYSIBMADM.SNAPLOCKWAIT
WHERE DBPARTITIONNUM = 0

The following example is a sample output from this query.
AGENT_ID LOCK_MODE LOCK_OBJECT_TYPE ...
--------...- --------- ---------------- ...

7 IX TABLE ...

1 record(s) selected.

Output from this query (continued).
... AGENT_ID_HOLDING_LK LOCK_MODE_REQUESTED
... -------------------- -------------------
... 12 IS

SNAP_GET_LOCKWAIT table function

The SNAP_GET_LOCKWAIT table function returns the same information as the
SNAPLOCKWAIT administrative view, but allows you to retrieve the information
for a specific database on a specific database partition, aggregate of all database
partitions or all database partitions.

Used with the SNAP_GET_LOCK table function, the SNAP_GET_LOCKWAIT table
function provides information equivalent to the GET SNAPSHOT FOR LOCKS ON
database-alias CLP command.

Refer to Table 189 on page 665 for a complete list of information that can be
returned.

Syntax

�� SNAP_GET_LOCKWAIT (dbname)
, dbpartitionnum

��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database. Specify a

Chapter 22. Deprecated routines 1179

database name that has a directory entry type of either "Indirect" or "Home", as
returned by the LIST DATABASE DIRECTORY command. Specify a null value or
empty string to take the snapshot from the currently connected database.

dbpartitionnum
An optional input argument of type INTEGER that specifies a valid database
partition number. Specify -1 for the current database partition, or -2 for an
aggregate of all active database partitions. If dbname is not set to NULL and
dbpartitionnum is set to NULL, -1 is set implicitly for dbpartitionnum. If this input
option is not used, that is, only dbname is provided, data is returned from all
active database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If both dbname and dbpartitionnum are set to NULL, an attempt is made to read data
from the file created by SNAP_WRITE_FILE procedure. Note that this file could
have been created at any time, which means that the data might not be current. If
a file with the corresponding snapshot API request type does not exist, then the
SNAP_GET_LOCKWAIT table function takes a snapshot for the currently
connected database and database partition number.

Authorization

One of the following authorizations is required:
v EXECUTE privilege on the SNAP_GET_LOCKWAIT table function
v DATAACCESS authority

In addition, to access snapshot monitor data, one of the following authorities is
also required:
v SYSMON
v SYSCTRL
v SYSMAINT
v SYSADM

Example

Retrieve lock wait information about current database partition for the currently
connected database.
SELECT AGENT_ID, LOCK_MODE, LOCK_OBJECT_TYPE, AGENT_ID_HOLDING_LK,

LOCK_MODE_REQUESTED FROM TABLE(SNAP_GET_LOCKWAIT(’’,-1)) AS T

The following example is a sample output from this query.
AGENT_ID LOCK_MODE LOCK_OBJECT_TYPE ...
--------...-- ---------- ------------------ ...

12 X ROW_LOCK ...

1 record(s) selected.

Output from this query (continued).
... AGENT_ID_HOLDING_LK LOCK_MODE_REQUESTED
... -------------------- -------------------
... 7 X

1180 Administrative Routines and Views

Usage note

To see lock wait information, you must first turn on the default LOCK monitor
switch in the database manager configuration. To have the change take effect
immediately explicitly attach to the instance using CLP and then issue the CLP
command:

UPDATE DATABASE MANAGER CONFIGURATION CLP USING DFT_MON_LOCK ON

The default setting can also be turned on through the ADMIN_CMD stored
procedure. For example:
CALL SYSPROC.ADMIN_CMD(’update dbm cfg using DFT_MON_LOCK ON’)

If the ADMIN_CMD stored procedure is used or if the clp command is used
without having previously attached to the instance, the instance must be recycled
before the change takes effect.

Information returned

Table 315. Information returned by the SNAPLOCKWAIT administrative view and the
SNAP_GET_LOCKWAIT table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP The date and time that the
snapshot was taken.

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

SUBSECTION_NUMBER BIGINT ss_number - Subsection number

LOCK_MODE VARCHAR(10) lock_mode - Lock mode. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

Chapter 22. Deprecated routines 1181

Table 315. Information returned by the SNAPLOCKWAIT administrative view and the
SNAP_GET_LOCKWAIT table function (continued)

Column name Data type
Description or corresponding
monitor element

LOCK_OBJECT_TYPE VARCHAR(18) lock_object_type - Lock object type
waited on. This interface returns a
text identifier based on the defines
in sqlmon.h and is one of:

v AUTORESIZE_LOCK

v AUTOSTORAGE_LOCK

v BLOCK_LOCK

v EOT_LOCK

v INPLACE_REORG_LOCK

v INTERNAL_LOCK

v INTERNALB_LOCK

v INTERNALC_LOCK

v INTERNALJ_LOCK

v INTERNALL_LOCK

v INTERNALO_LOCK

v INTERNALQ_LOCK

v INTERNALP_LOCK

v INTERNALS_LOCK

v INTERNALT_LOCK

v INTERNALV_LOCK

v KEYVALUE_LOCK

v ROW_LOCK

v SYSBOOT_LOCK

v TABLE_LOCK

v TABLE_PART_LOCK

v TABLESPACE_LOCK

v XML_PATH_LOCK

AGENT_ID_HOLDING_LK BIGINT agent_id_holding_lock - Agent ID
holding lock

LOCK_WAIT_START_TIME TIMESTAMP lock_wait_start_time - Lock wait
start timestamp

1182 Administrative Routines and Views

Table 315. Information returned by the SNAPLOCKWAIT administrative view and the
SNAP_GET_LOCKWAIT table function (continued)

Column name Data type
Description or corresponding
monitor element

LOCK_MODE_REQUESTED VARCHAR(10) lock_mode_requested - Lock mode
requested. This interface returns a
text identifier based on the defines
in sqlmon.h and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

LOCK_ESCALATION SMALLINT lock_escalation - Lock escalation

TABNAME VARCHAR(128) table_name - Table name

TABSCHEMA VARCHAR(128) table_schema - Table schema name

TBSP_NAME VARCHAR(128) tablespace_name - Table space
name

APPL_ID_HOLDING_LK VARCHAR(128) appl_id_holding_lk - Application
ID holding lock

LOCK_ATTRIBUTES VARCHAR(128) lock_attributes - Lock attributes.
This interface returns a text
identifier based on the defines in
sqlmon.h. If there are no locks, the
text identifier is NONE, otherwise,
it is any combination of the
following separated by a '+' sign:

v ALLOW_NEW

v DELETE_IN_BLOCK

v ESCALATED

v INSERT

v NEW_REQUEST

v RR

v RR_IN_BLOCK

v UPDATE_DELETE

v WAIT_FOR_AVAIL

Chapter 22. Deprecated routines 1183

Table 315. Information returned by the SNAPLOCKWAIT administrative view and the
SNAP_GET_LOCKWAIT table function (continued)

Column name Data type
Description or corresponding
monitor element

LOCK_CURRENT_MODE VARCHAR(10) lock_current_mode - Original lock
mode before conversion. This
interface returns a text identifier
based on the defines in sqlmon.h
and is one of:

v IN

v IS

v IX

v NON (if no lock)

v NS

v NW

v S

v SIX

v U

v X

v Z

LOCK_NAME VARCHAR(32) lock_name - Lock name

LOCK_RELEASE_FLAGS BIGINT lock_release_flags - Lock release
flags.

DATA_PARTITION_ID INTEGER data_partition_id - Data Partition
identifier. For a non-partitioned
table, this element is NULL.

DBPARTITIONNUM SMALLINT The database partition from which
the data was retrieved for this row.

SNAPSHOT_AGENT

Note: This table function has been deprecated and replaced by the “SNAPAGENT
administrative view and SNAP_GET_AGENT table function – Retrieve agent
logical data group application snapshot information” on page 591.

�� SNAPSHOT_AGENT (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_AGENT function returns information about agents from an
application snapshot.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from all databases under the
database instance.

1184 Administrative Routines and Views

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

Table 316. Information returned by the SNAPSHOT_AGENT table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

AGENT_ID BIGINT agent_id - Application
handle (agent ID)

AGENT_PID BIGINT agent_pid - Engine
dispatchable unit (EDU)

SNAPSHOT_APPL
Returns general information from an application snapshot.

Note: This table function has been deprecated and replaced by the
“SNAP_GET_APPL table function – Retrieve appl logical data group snapshot
information” on page 1091.

�� SNAPSHOT_APPL (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either

Chapter 22. Deprecated routines 1185

"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from all databases under the
database instance.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

Table 317. Information returned by the SNAPSHOT_APPL table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp - Snapshot
timestamp

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

UOW_LOG_SPACE_USED BIGINT uow_log_space_used - Unit of work
log space used

ROWS_READ BIGINT rows_read - Rows read

ROWS_WRITTEN BIGINT rows_written - Rows written

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool
data logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool
data physical reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool
data writes

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool
index logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool
index physical reads

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool
index writes

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool
physical read time

1186 Administrative Routines and Views

Table 317. Information returned by the SNAPSHOT_APPL table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool
physical write time

DIRECT_READS BIGINT direct_reads - Direct reads from
database

DIRECT_WRITES BIGINT direct_writes - Direct writes to
database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read
requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write
requests

DIRECT_READ_TIME BIGINT direct_read_time - Direct read
time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write
time

POOL_DATA_TO_ESTORE BIGINT The pool_data_to_estore ESTORE
monitor element is discontinued. A
NULL value is returned for the
discontinued monitor element.

POOL_INDEX_TO_ESTORE BIGINT The pool_index_to_estore
ESTORE monitor element is
discontinued. A NULL value is
returned for the discontinued
monitor element.

POOL_INDEX_FROM_ESTORE BIGINT The pool_index_from_estore
ESTORE monitor element is
discontinued. A NULL value is
returned for the discontinued
monitor element.

POOL_DATA_FROM_ESTORE BIGINT The pool_data_from_estore
ESTORE monitor element is
discontinued. A NULL value is
returned for the discontinued
monitor element.

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread
prefetch pages

LOCKS_HELD BIGINT locks_held - Locks held

LOCK_WAITS BIGINT lock_waits - Lock waits

LOCK_WAIT_TIME BIGINT lock_wait_time - Time waited on
locks

LOCK_ESCALS BIGINT lock_escals - Number of lock
escalations

X_LOCK_ESCALS BIGINT x_lock_escals - Exclusive lock
escalations

DEADLOCKS BIGINT deadlocks - Deadlocks detected

TOTAL_SORTS BIGINT total_sorts - Total sorts

TOTAL_SORT_TIME BIGINT total_sort_time - Total sort time

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

Chapter 22. Deprecated routines 1187

Table 317. Information returned by the SNAPSHOT_APPL table function (continued)

Column name Data type
Description or corresponding
monitor element

COMMIT_SQL_STMTS BIGINT commit_sql_stmts - Commit
statements attempted

ROLLBACK_SQL_STMTS BIGINT rollback_sql_stmts - Rollback
statements attempted

DYNAMIC_SQL_STMTS BIGINT dynamic_sql_stmts - Dynamic SQL
statements attempted

STATIC_SQL_STMTS BIGINT static_sql_stmts - Static SQL
statements attempted

FAILED_SQL_STMTS BIGINT failed_sql_stmts - Failed
statement operations

SELECT_SQL_STMTS BIGINT select_sql_stmts - Select SQL
statements executed

DDL_SQL_STMTS BIGINT ddl_sql_stmts - Data definition
language (DDL) SQL statements

UID_SQL_STMTS BIGINT uid_sql_stmts -
UPDATE/INSERT/DELETE SQL
statements executed

INT_AUTO_REBINDS BIGINT int_auto_rebinds - Internal
automatic rebinds

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal rows
deleted

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal rows
updated

INT_COMMITS BIGINT int_commits - Internal commits

INT_ROLLBACKS BIGINT int_rollbacks - Internal rollbacks

INT_DEADLOCK_ROLLBACKS BIGINT int_deadlock_rollbacks - Internal
rollbacks due to deadlock

ROWS_DELETED BIGINT rows_deleted - Rows deleted

ROWS_INSERTED BIGINT rows_inserted - Rows inserted

ROWS_UPDATED BIGINT rows_updated - Rows updated

ROWS_SELECTED BIGINT rows_selected - Rows selected

BINDS_PRECOMPILES BIGINT binds_precompiles -
Binds/precompiles attempted

OPEN_REM_CURS BIGINT open_rem_curs - Open remote
cursors

OPEN_REM_CURS_BLK BIGINT open_rem_curs_blk - Open remote
cursors with blocking

REJ_CURS_BLK BIGINT rej_curs_blk - Rejected block
cursor requests

ACC_CURS_BLK BIGINT acc_curs_blk - Accepted block
cursor requests

SQL_REQS_SINCE_COMMIT BIGINT sql_reqs_since_commit - SQL
requests since last commit

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of lock
timeouts

1188 Administrative Routines and Views

Table 317. Information returned by the SNAPSHOT_APPL table function (continued)

Column name Data type
Description or corresponding
monitor element

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal rows
inserted

OPEN_LOC_CURS BIGINT open_loc_curs - Open local cursors

OPEN_LOC_CURS_BLK BIGINT open_loc_curs_blk - Open local
cursors with blocking

PKG_CACHE_LOOKUPS BIGINT pkg_cache_lookups - Package cache
lookups

PKG_CACHE_INSERTS BIGINT pkg_cache_inserts - Package cache
inserts

CAT_CACHE_LOOKUPS BIGINT cat_cache_lookups - Catalog cache
lookups

CAT_CACHE_INSERTS BIGINT cat_cache_inserts - Catalog cache
inserts

CAT_CACHE_OVERFLOWS BIGINT cat_cache_overflows - Catalog
cache overflows

CAT_CACHE_HEAP_FULL BIGINT cat_cache_overflows - Catalog
cache overflows

NUM_AGENTS BIGINT num_agents - Number of agents
working on a statement

AGENTS_STOLEN BIGINT agents_stolen - Stolen agents

ASSOCIATED_AGENTS_TOP BIGINT associated_agents_top -
Maximum number of associated
agents

APPL_PRIORITY BIGINT appl_priority - Application agent
priority

APPL_PRIORITY_TYPE BIGINT appl_priority_type - Application
priority type

PREFETCH_WAIT_TIME BIGINT prefetch_wait_time - Time waited
for prefetch

APPL_SECTION_LOOKUPS BIGINT appl_section_lookups - Section
lookups

APPL_SECTION_INSERTS BIGINT appl_section_inserts - Section
inserts

LOCKS_WAITING BIGINT locks_waiting - agents waiting on
locks

TOTAL_HASH_JOINS BIGINT total_hash_joins - Total hash joins

TOTAL_HASH_LOOPS BIGINT total_hash_loops - Total hash
loops

HASH_JOIN_OVERFLOWS BIGINT hash_join_overflows - Hash join
overflows

HASH_JOIN_SMALL_
OVERFLOWS

BIGINT hash_join_small_overflows - Hash
join small overflows

APPL_IDLE_TIME BIGINT appl_idle_time - Application idle
time

Chapter 22. Deprecated routines 1189

Table 317. Information returned by the SNAPSHOT_APPL table function (continued)

Column name Data type
Description or corresponding
monitor element

UOW_LOCK_WAIT_TIME BIGINT uow_lock_wait_time - Total time
unit of work waited on locks

UOW_COMP_STATUS BIGINT uow_comp_status - Unit of work
completion status

AGENT_USR_CPU_TIME_S BIGINT agent_usr_cpu_time - User CPU
time used by agent (in seconds)*

AGENT_USR_CPU_TIME_MS BIGINT agent_usr_cpu_time - User CPU
time used by agent (fractional, in
microseconds)*

AGENT_SYS_CPU_TIME_S BIGINT agent_sys_cpu_time - System CPU
time used by agent (in seconds)*

AGENT_SYS_CPU_TIME_MS BIGINT agent_sys_cpu_time - System CPU
time used by agent (fractional, in
microseconds)*

APPL_CON_TIME TIMESTAMP appl_con_time - Connection
request start timestamp

CONN_COMPLETE_TIME TIMESTAMP conn_complete_time - Connection
request completion timestamp

LAST_RESET TIMESTAMP last_reset - Last reset timestamp

UOW_START_TIME TIMESTAMP uow_start_time - Unit of work
start timestamp

UOW_STOP_TIME TIMESTAMP uow_stop_time - Unit of work stop
timestamp

PREV_UOW_STOP_TIME TIMESTAMP prev_uow_stop_time - Previous unit
of work completion timestamp

UOW_ELAPSED_TIME_S BIGINT uow_elapsed_time - Most recent
unit of work elapsed time (in
seconds)*

UOW_ELAPSED_TIME_MS BIGINT uow_elapsed_time - Most recent
unit of work elapsed time
(fractional, in microseconds)*

ELAPSED_EXEC_TIME_S BIGINT elapsed_exec_time - Statement
execution elapsed time (in
seconds)*

ELAPSED_EXEC_TIME_MS BIGINT elapsed_exec_time - Statement
execution elapsed time (fractional,
in microseconds)*

INBOUND_COMM_ADDRESS VARCHAR(32) inbound_comm_address - Inbound
communication address

* To calculate the total time spent for the monitor element that this column is based on,
you must add the full seconds reported in the column for this monitor element that ends
with _S to the fractional seconds reported in the column for this monitor element that ends
with _MS, using the following formula: (monitor-element-name_S × 1,000,000 +
monitor-element-name_MS) ÷ 1,000,000. For example, (ELAPSED_EXEC_TIME_S × 1,000,000
+ ELAPSED_EXEC_TIME_MS) ÷ 1,000,000.

1190 Administrative Routines and Views

SNAPSHOT_APPL_INFO
Returns general information from an application snapshot.

Note: This table function has been deprecated and replaced by the
“SNAP_GET_APPL_INFO table function – Retrieve appl_info logical data group
snapshot information” on page 1098.

�� SNAPSHOT_APPL_INFO (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from all databases under the
database instance.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

Table 318. Information returned by the SNAPSHOT_APPL_INFO table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

AGENT_ID BIGINT agent_id - Application
handle (agent ID)

APPL_STATUS BIGINT appl_status - Application
status

Chapter 22. Deprecated routines 1191

Table 318. Information returned by the SNAPSHOT_APPL_INFO table function (continued)

Column name Data type

Description or
corresponding monitor
element

CODEPAGE_ID BIGINT codepage_id - ID of code
page used by application

NUM_ASSOC_AGENTS BIGINT num_assoc_agents - Number
of associated agents

COORD_PARTITION_NUM SMALLINT coord_node - Coordinating
node

AUTHORITY_LVL BIGINT authority_lvl - User
authorization level

CLIENT_PID BIGINT client_pid - Client process
ID

COORD_AGENT_PID BIGINT coord_agent_pid -
Coordinator agent

STATUS_CHANGE_TIME TIMESTAMP status_change_time -
Application status change
time

CLIENT_PLATFORM SMALLINT client_platform - Client
operating platform

CLIENT_PROTOCOL SMALLINT client_protocol - Client
communication protocol

COUNTRY_CODE SMALLINT territory_code - Database
territory code

APPL_NAME VARCHAR(256) appl_name - Application
name

APPL_ID VARCHAR(128) appl_id - Application ID

SEQUENCE_NO VARCHAR(4) sequence_no - Sequence
number

AUTH_ID VARCHAR(128) auth_id - Authorization ID

CLIENT_NNAME VARCHAR(128) The client_nname monitor
element is deprecated. The
value returned is not a valid
value.

CLIENT_PRDID VARCHAR(128) client_prdid - Client
product/version ID

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input
database alias

CLIENT_DB_ALIAS VARCHAR(128) client_db_alias - Database
alias used by application

DB_NAME VARCHAR(128) db_name - Database name

DB_PATH VARCHAR(1024) db_path - Database path

EXECUTION_ID VARCHAR(128) execution_id - User login ID

CORR_TOKEN VARCHAR(128) corr_token - DRDA
correlation token

TPMON_CLIENT_USERID VARCHAR(256) tpmon_client_userid - TP
monitor client user ID

1192 Administrative Routines and Views

Table 318. Information returned by the SNAPSHOT_APPL_INFO table function (continued)

Column name Data type

Description or
corresponding monitor
element

TPMON_CLIENT_WKSTN VARCHAR(256) tpmon_client_wkstn - TP
monitor client workstation
name

TPMON_CLIENT_APP VARCHAR(256) tpmon_client_app - TP
monitor client application
name

TPMON_ACC_STR VARCHAR(200) tpmon_acc_str - TP monitor
client accounting string

SNAPSHOT_BP
Returns information from a buffer pool snapshot.

Note: This table function has been deprecated and replaced by the
“SNAP_GET_BP table function – Retrieve bufferpool logical group snapshot
information” on page 1104.

�� SNAPSHOT_BP (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from all databases under the
database instance.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

Chapter 22. Deprecated routines 1193

The function returns a table as shown in the following section.

Table 319. Information returned by the SNAPSHOT_BP table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp - Snapshot
timestamp

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool
data logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool
data physical reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool
data writes

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool
index logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool
index physical reads

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool
index writes

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool
physical read time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer
pool physical write time

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer
pool asynchronous data reads

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer
pool asynchronous data writes

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer
pool asynchronous index writes

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer
pool asynchronous read time

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer
pool asynchronous write time

POOL_ASYNC_DATA_
READ_REQS

BIGINT pool_async_data_read_reqs -
Buffer pool asynchronous read
requests

DIRECT_READS BIGINT direct_reads - Direct reads from
database

DIRECT_WRITES BIGINT direct_writes - Direct writes to
database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read
requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write
requests

DIRECT_READ_TIME BIGINT direct_read_time - Direct read
time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write
time

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer
pool asynchronous index reads

1194 Administrative Routines and Views

Table 319. Information returned by the SNAPSHOT_BP table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_DATA_TO_ESTORE BIGINT The pool_data_to_estore ESTORE
monitor element is discontinued. A
NULL value is returned for the
discontinued monitor element.

POOL_INDEX_TO_ESTORE BIGINT The pool_index_to_estore
ESTORE monitor element is
discontinued. A NULL value is
returned for the discontinued
monitor element.

POOL_INDEX_FROM_ESTORE BIGINT The pool_index_from_estore
ESTORE monitor element is
discontinued. A NULL value is
returned for the discontinued
monitor element.

POOL_DATA_FROM_ESTORE BIGINT The pool_data_from_estore
ESTORE monitor element is
discontinued. A NULL value is
returned for the discontinued
monitor element.

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread
prefetch pages

FILES_CLOSED BIGINT files_closed - Database files
closed

BP_NAME VARCHAR(128) bp_name - Buffer pool name

DB_NAME VARCHAR(128) db_name - Database name

DB_PATH VARCHAR(1024) db_path - Database path

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input database
alias

SNAPSHOT_CONTAINER
Returns container configuration information from a table space snapshot.

Note: This table function has been deprecated and replaced by the
“SNAPCONTAINER administrative view and SNAP_GET_CONTAINER_V91 table
function - Retrieve tablespace_container logical data group snapshot information”
on page 619

�� SNAPSHOT_CONTAINER (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either

Chapter 22. Deprecated routines 1195

"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from the currently connected
database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

Table 320. Information returned by the SNAPSHOT_CONTAINER table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

TABLESPACE_ID BIGINT tablespace_id - Table space
identification

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table
space name

CONTAINER_ID BIGINT container_id - Container
identification

CONTAINER_NAME VARCHAR(256) container_name - Container
name

CONTAINER_TYPE SMALLINT container_type - Container
type

TOTAL_PAGES BIGINT container_total_pages -
Total pages in container

USABLE_PAGES BIGINT container_usable_pages -
Usable pages in container

ACCESSIBLE BIGINT container_accessible -
Accessibility of container

STRIPE_SET BIGINT container_stripe_set -
Stripe set

1196 Administrative Routines and Views

SNAPSHOT_DATABASE
Returns information from a database snapshot.

Note: This table function has been deprecated and replaced by the
“SNAP_GET_DB_V91 table function - Retrieve snapshot information from the
dbase logical group” on page 1126

�� SNAPSHOT_DATABASE (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from all databases under the
database instance.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

Table 321. Information returned by the SNAPSHOT_DATABASE table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp - Snapshot
timestamp

SEC_LOG_USED_TOP BIGINT sec_log_used_top - Maximum
secondary log space used

TOT_LOG_USED_TOP BIGINT tot_log_used_top - Maximum total
log space used

Chapter 22. Deprecated routines 1197

Table 321. Information returned by the SNAPSHOT_DATABASE table function (continued)

Column name Data type
Description or corresponding
monitor element

TOTAL_LOG_USED BIGINT total_log_used - Total log space
used

TOTAL_LOG_AVAILABLE BIGINT total_log_available - Total log
available

ROWS_READ BIGINT rows_read - Rows read

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool
data logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool
data physical reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool
data writes

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool
index logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool
index physical reads

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool
index writes

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool
physical read time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool
physical write time

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer
pool asynchronous index reads

POOL_DATA_TO_ESTORE BIGINT The pool_data_to_estore ESTORE
monitor element is discontinued. A
NULL value is returned for the
discontinued monitor element.

POOL_INDEX_TO_ESTORE BIGINT The pool_index_to_estore
ESTORE monitor element is
discontinued. A NULL value is
returned for the discontinued
monitor element.

POOL_INDEX_FROM_ESTORE BIGINT The pool_index_from_estore
ESTORE monitor element is
discontinued. A NULL value is
returned for the discontinued
monitor element.

POOL_DATA_FROM_ESTORE BIGINT The pool_data_from_estore
ESTORE monitor element is
discontinued. A NULL value is
returned for the discontinued
monitor element.

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer
pool asynchronous data reads

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer
pool asynchronous data writes

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer
pool asynchronous index writes

1198 Administrative Routines and Views

Table 321. Information returned by the SNAPSHOT_DATABASE table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer
pool asynchronous read time

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer
pool asynchronous write time

POOL_ASYNC_DATA_
READ_REQS

BIGINT pool_async_data_read_reqs -
Buffer pool asynchronous read
requests

DIRECT_READS BIGINT direct_reads - Direct reads from
database

DIRECT_WRITES BIGINT direct_writes - Direct writes to
database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read
requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write
requests

DIRECT_READ_TIME BIGINT direct_read_time - Direct read
time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write
time

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread
prefetch pages

FILES_CLOSED BIGINT files_closed - Database files
closed

POOL_LSN_GAP_CLNS BIGINT pool_lsn_gap_clns - Buffer pool
log space cleaners triggered

POOL_DRTY_PG_STEAL_CLNS BIGINT pool_drty_pg_steal_clns - Buffer
pool victim page cleaners triggered

POOL_DRTY_PG_THRSH_CLNS BIGINT pool_drty_pg_thrsh_clns - Buffer
pool threshold cleaners triggered

LOCKS_HELD BIGINT locks_held - Locks held

LOCK_WAITS BIGINT lock_waits - Lock waits

LOCK_WAIT_TIME BIGINT lock_wait_time - Time waited on
locks

LOCK_LIST_IN_USE BIGINT lock_list_in_use - Total lock list
memory in use

DEADLOCKS BIGINT deadlocks - Deadlocks detected

LOCK_ESCALS BIGINT lock_escals - Number of lock
escalations

X_LOCK_ESCALS BIGINT x_lock_escals - Exclusive lock
escalations

LOCKS_WAITING BIGINT locks_waiting - agents waiting on
locks

SORT_HEAP_ALLOCATED BIGINT sort_heap_allocated - Total sort
heap allocated

TOTAL_SORTS BIGINT total_sorts - Total sorts

TOTAL_SORT_TIME BIGINT total_sort_time - Total sort time

Chapter 22. Deprecated routines 1199

Table 321. Information returned by the SNAPSHOT_DATABASE table function (continued)

Column name Data type
Description or corresponding
monitor element

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

ACTIVE_SORTS BIGINT active_sorts - Active sorts

COMMIT_SQL_STMTS BIGINT commit_sql_stmts - Commit
statements attempted

ROLLBACK_SQL_STMTS BIGINT rollback_sql_stmts - Rollback
statements attempted

DYNAMIC_SQL_STMTS BIGINT dynamic_sql_stmts - Dynamic SQL
statements attempted

STATIC_SQL_STMTS BIGINT static_sql_stmts - Static SQL
statements attempted

FAILED_SQL_STMTS BIGINT failed_sql_stmts - Failed
statement operations

SELECT_SQL_STMTS BIGINT select_sql_stmts - Select SQL
statements executed

DDL_SQL_STMTS BIGINT ddl_sql_stmts - Data definition
language (DDL) SQL statements

UID_SQL_STMTS BIGINT uid_sql_stmts -
UPDATE/INSERT/DELETE SQL
statements executed

INT_AUTO_REBINDS BIGINT int_auto_rebinds - Internal
automatic rebinds

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal rows
deleted

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal rows
updated

INT_COMMITS BIGINT int_commits - Internal commits

INT_ROLLBACKS BIGINT int_rollbacks - Internal rollbacks

INT_DEADLOCK_ROLLBACKS BIGINT int_deadlock_rollbacks - Internal
rollbacks due to deadlock

ROWS_DELETED BIGINT rows_deleted - Rows deleted

ROWS_INSERTED BIGINT rows_inserted - Rows inserted

ROWS_UPDATED BIGINT rows_updated - Rows updated

ROWS_SELECTED BIGINT rows_selected - Rows selected

BINDS_PRECOMPILES BIGINT binds_precompiles -
Binds/precompiles attempted

TOTAL_CONS BIGINT total_cons - Connects since
database activation

APPLS_CUR_CONS BIGINT appls_cur_cons - Applications
connected currently

APPLS_IN_DB2 BIGINT appls_in_db2 - Applications
executing in the database currently

SEC_LOGS_ALLOCATED BIGINT sec_logs_allocated - Secondary
logs allocated currently

DB_STATUS BIGINT db_status - Status of database

1200 Administrative Routines and Views

Table 321. Information returned by the SNAPSHOT_DATABASE table function (continued)

Column name Data type
Description or corresponding
monitor element

LOCK_TIMEOUTS BIGINT lock_timeouts - Number of lock
timeouts

CONNECTIONS_TOP BIGINT connections_top - Maximum
number of concurrent connections

DB_HEAP_TOP BIGINT db_heap_top - Maximum database
heap allocated

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal rows
inserted

LOG_READS BIGINT log_reads - Number of log pages
read

LOG_WRITES BIGINT log_writes - Number of log pages
written

PKG_CACHE_LOOKUPS BIGINT pkg_cache_lookups - Package cache
lookups

PKG_CACHE_INSERTS BIGINT pkg_cache_inserts - Package cache
inserts

CAT_CACHE_LOOKUPS BIGINT cat_cache_lookups - Catalog cache
lookups

CAT_CACHE_INSERTS BIGINT cat_cache_inserts - Catalog cache
inserts

CAT_CACHE_OVERFLOWS BIGINT cat_cache_overflows - Catalog
cache overflows

CAT_CACHE_HEAP_FULL BIGINT cat_cache_overflows - Catalog
cache overflows

CATALOG_PARTITION SMALLINT catalog_node - Catalog node
number

TOTAL_SEC_CONS BIGINT total_sec_cons - Secondary
connections

NUM_ASSOC_AGENTS BIGINT num_assoc_agents - Number of
associated agents

AGENTS_TOP BIGINT agents_top - Number of agents
created

COORD_AGENTS_TOP BIGINT coord_agents_top - Maximum
number of coordinating agents

PREFETCH_WAIT_TIME BIGINT prefetch_wait_time - Time waited
for prefetch

APPL_SECTION_LOOKUPS BIGINT appl_section_lookups - Section
lookups

APPL_SECTION_INSERTS BIGINT appl_section_inserts - Section
inserts

TOTAL_HASH_JOINS BIGINT total_hash_joins - Total hash joins

TOTAL_HASH_LOOPS BIGINT total_hash_loops - Total hash loops

HASH_JOIN_OVERFLOWS BIGINT hash_join_overflows - Hash join
overflows

Chapter 22. Deprecated routines 1201

Table 321. Information returned by the SNAPSHOT_DATABASE table function (continued)

Column name Data type
Description or corresponding
monitor element

HASH_JOIN_SMALL_
OVERFLOWS

BIGINT hash_join_small_overflows - Hash
join small overflows

PKG_CACHE_NUM_
OVERFLOWS

BIGINT pkg_cache_num_overflows -
Package cache overflows

PKG_CACHE_SIZE_TOP BIGINT pkg_cache_size_top - Package
cache high water mark

DB_CONN_TIME TIMESTAMP db_conn_time - Database activation
timestamp

SQLM_ELM_LAST_RESET TIMESTAMP last_reset - Last reset timestamp

SQLM_ELM_LAST_BACKUP TIMESTAMP last_backup - Last backup
timestamp

APPL_CON_TIME TIMESTAMP appl_con_time - Connection
request start timestamp

ELAPSED_EXEC_TIME_S BIGINT elapsed_exec_time - Statement
execution elapsed time (in
seconds)*

ELAPSED_EXEC_TIME_MS BIGINT elapsed_exec_time - Statement
execution elapsed time (fractional,
in microseconds)*

DB_LOCATION INTEGER db_location - Database location

SERVER_PLATFORM INTEGER server_platform - Server operating
system

APPL_ID_OLDEST_XACT BIGINT appl_id_oldest_xact - Application
with oldest transaction

CATALOG_PARTITION_NAME VARCHAR(128) catalog_node_name - Catalog node
network name

INPUT_DB_ALIAS VARCHAR(128) input_db_alias - Input database
alias

DB_NAME VARCHAR(128) db_name - Database name

DB_PATH VARCHAR(1024) db_path - Database path

* To calculate the total time spent for the monitor element that this column is based on,
you must add the full seconds reported in the column for this monitor element that ends
with _S to the fractional seconds reported in the column for this monitor element that ends
with _MS, using the following formula: (monitor-element-name_S × 1,000,000 +
monitor-element-name_MS) ÷ 1,000,000. For example, (ELAPSED_EXEC_TIME_S × 1,000,000
+ ELAPSED_EXEC_TIME_MS) ÷ 1,000,000.

SNAPSHOT_DBM
Returns information from a snapshot of the DB2 database manager.

Note: This table function has been deprecated and replaced by the
“SNAP_GET_DBM table function – Retrieve the dbm logical grouping snapshot
information” on page 1120.

1202 Administrative Routines and Views

�� SNAPSHOT_DBM (dbpartitionnum) ��

The schema is SYSPROC.

Table function parameter

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

If the null value is specified, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

Table 322. Information returned by the SNAPSHOT_DBM table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp - Snapshot
timestamp

SORT_HEAP_ALLOCATED BIGINT sort_heap_allocated - Total sort
heap allocated

POST_THRESHOLD_SORTS BIGINT post_threshold_sorts - Post
threshold sorts

PIPED_SORTS_REQUESTED BIGINT piped_sorts_requested - Piped
sorts requested

PIPED_SORTS_ACCEPTED BIGINT piped_sorts_accepted - Piped sorts
accepted

REM_CONS_IN BIGINT rem_cons_in - Remote connections
to database manager

REM_CONS_IN_EXEC BIGINT rem_cons_in_exec - Remote
Connections Executing in the
Database Manager monitor
element

LOCAL_CONS BIGINT local_cons - Local connections

LOCAL_CONS_IN_EXEC BIGINT local_cons_in_exec - Local
Connections Executing in the
Database Manager monitor
element

Chapter 22. Deprecated routines 1203

Table 322. Information returned by the SNAPSHOT_DBM table function (continued)

Column name Data type
Description or corresponding
monitor element

CON_LOCAL_DBASES BIGINT con_local_dbases - Local databases
with current connects

AGENTS_REGISTERED BIGINT agents_registered - Agents
registered

AGENTS_WAITING_ON_TOKEN BIGINT agents_waiting_on_token - Agents
waiting for a token

DB2_STATUS BIGINT db_status - Status of database

AGENTS_REGISTERED_TOP BIGINT agents_registered_top -
Maximum number of agents
registered

AGENTS_WAITING_TOP BIGINT agents_waiting_top - Maximum
number of agents waiting

COMM_PRIVATE_MEM BIGINT comm_private_mem - Committed
private memory

IDLE_AGENTS BIGINT idle_agents - Number of idle
agents

AGENTS_FROM_POOL BIGINT agents_from_pool - Agents
assigned from pool

AGENTS_CREATED_
EMPTY_POOL

BIGINT agents_created_empty_pool -
Agents created due to empty agent
pool

COORD_AGENTS_TOP BIGINT coord_agents_top - Maximum
number of coordinating agents

MAX_AGENT_OVERFLOWS BIGINT max_agent_overflows - Maximum
agent overflows

AGENTS_STOLEN BIGINT agents_stolen - Stolen agents

GW_TOTAL_CONS BIGINT gw_total_cons - Total number of
attempted connections for DB2
Connect

GW_CUR_CONS BIGINT gw_cur_cons - Current number of
connections for DB2 Connect

GW_CONS_WAIT_HOST BIGINT gw_cons_wait_host - Number of
connections waiting for the host to
reply

GW_CONS_WAIT_CLIENT BIGINT gw_cons_wait_client - Number of
connections waiting for the client
to send request

POST_THRESHOLD_
HASH_JOINS

BIGINT post_threshold_hash_joins - Hash
join threshold

INACTIVE_GW_AGENTS BIGINT idle_agents - Number of idle
agents

NUM_GW_CONN_SWITCHES BIGINT num_gw_conn_switches -
Connection switches

DB2START_TIME TIMESTAMP db2start_time - Start database
manager timestamp

LAST_RESET TIMESTAMP last_reset - Last reset timestamp

1204 Administrative Routines and Views

SNAPSHOT_DYN_SQL
Returns information from a dynamic SQL snapshot. It replaces the
SQLCACHE_SNAPSHOT function, which is still available for compatibility
reasons.

Note: This table function has been deprecated and replaced by the
“SNAP_GET_DYN_SQL_V91 table function - Retrieve dynsql logical group
snapshot information” on page 1148

�� SNAPSHOT_DYN_SQL (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from the currently connected
database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

Table 323. Information returned by the SNAPSHOT_DYN_SQL table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

ROWS_READ BIGINT rows_read - Rows read

Chapter 22. Deprecated routines 1205

Table 323. Information returned by the SNAPSHOT_DYN_SQL table function (continued)

Column name Data type

Description or
corresponding monitor
element

ROWS_WRITTEN BIGINT rows_written - Rows written

NUM_EXECUTIONS BIGINT num_executions - Statement
executions

NUM_COMPILATIONS BIGINT num_compilations -
Statement compilations

PREP_TIME_WORST BIGINT prep_time_worst - Statement
worst preparation time

PREP_TIME_BEST BIGINT prep_time_best - Statement
best preparation time

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal
rows deleted

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal
rows inserted

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal
rows updated

STMT_SORTS BIGINT stmt_sorts - Statement sorts

TOTAL_EXEC_TIME BIGINT total_exec_time - Elapsed
statement execution time

TOTAL_SYS_CPU_TIME BIGINT total_sys_cpu_time - Total
system CPU for a statement

TOTAL_USR_CPU_TIME BIGINT total_usr_cpu_time - Total
user CPU for a statement

STMT_TEXT CLOB(16M)1 stmt_text - SQL statement
text

1 STMT_TEXT is defined as CLOB(16M) to allow for future expansion only. Actual output
of the statement text is truncated at 64K.

SNAPSHOT_FCM

Note: This table function has been deprecated and replaced by the “SNAPFCM
administrative view and SNAP_GET_FCM table function – Retrieve the fcm logical
data group snapshot information” on page 647.

�� SNAPSHOT_FCM (dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_FCM function returns database manager level information
regarding the fast communication manager (FCM).

Table function parameter

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active

1206 Administrative Routines and Views

database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

Table 324. Information returned by the SNAPSHOT_FCM table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

BUFF_FREE BIGINT buff_free - FCM buffers
currently free

BUFF_FREE_BOTTOM BIGINT buff_free_bottom -
Minimum FCM Buffers Free

MA_FREE BIGINT The ma_free monitor
element is discontinued. A
null value is returned for the
discontinued monitor
element.

MA_FREE_BOTTOM BIGINT The ma_free_bottom monitor
element is discontinued. A
null value is returned for the
discontinued monitor
element.

CE_FREE BIGINT The ce_free monitor element
is discontinued. A null value
is returned for the
discontinued monitor
element.

CE_FREE_BOTTOM BIGINT The ce_free_bottom monitor
element is discontinued. A
null value is returned for the
discontinued monitor
element.

RB_FREE BIGINT The rb_free monitor element
is discontinued. A null value
is returned for the
discontinued monitor
element.

RB_FREE_BOTTOM BIGINT The rb_free_bottom monitor
element is discontinued. A
null value is returned for the
discontinued monitor
element.

Chapter 22. Deprecated routines 1207

Table 324. Information returned by the SNAPSHOT_FCM table function (continued)

Column name Data type

Description or
corresponding monitor
element

PARTITION_NUMBER SMALLINT node_number - Node number

SNAPSHOT_FCMNODE
Returns information from a snapshot of the fast communication manager in the
database manager.

Note: This table function has been deprecated and replaced by the
“SNAPFCM_PART administrative view and SNAP_GET_FCM_PART table function
– Retrieve the fcm_node logical data group snapshot information” on page 650.

�� SNAPSHOT_FCMNODE (dbpartitionnum) ��

The schema is SYSPROC.

Table function parameter

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

If the null value is specified, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

Table 325. Information returned by the SNAPSHOT_FCMNODE table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

CONNECTION_STATUS BIGINT connection_status -
Connection status

1208 Administrative Routines and Views

Table 325. Information returned by the SNAPSHOT_FCMNODE table function (continued)

Column name Data type

Description or
corresponding monitor
element

TOTAL_BUFFERS_SENT BIGINT total_buffers_sent - Total
FCM buffers sent

TOTAL_BUFFERS_RCVD BIGINT total_buffers_rcvd - Total
FCM buffers received

PARTITION_NUMBER SMALLINT node_number - Node number

SNAPSHOT_FILEW

Note: This procedure has been deprecated and replaced by the
“SNAP_WRITE_FILE procedure” on page 719.

�� SNAPSHOT_FILEW (requestType , dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_FILEW procedure writes system snapshot data to a file located in
the tmp subdirectory of the instance directory. To execute the SNAPSHOT_FILEW
procedure, a user must have SYSADM, SYSCTRL, or SYSMAINT authority. The
saved snapshot can be read by users who do not have SYSADM, SYSCTRL, or
SYSMAINT authority by passing null values as the inputs to snapshot functions.

requestType
An input argument of type SMALLINT that specifies a valid snapshot request
type, as defined in sqlmon.h.

dbname
An input argument of type VARCHAR(128) that specifies a valid database
name in the same instance as the currently connected database when calling
this procedure. Specify the null value to take the snapshot from the currently
connected database.

dbpartitionnum
An input argument of type SMALLINT that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

Authorization

One of the following authorities is required to execute the procedure:
v EXECUTE privilege on the procedure
v DATAACCESS authority
v DBADM authority
v SQLADM authority

Chapter 22. Deprecated routines 1209

Example: Take a snapshot of database manager information by specifying a request
type of 1 (which corresponds to SQLMA_DB2), and defaulting to the currently
connected database and current database partition.

CALL SNAPSHOT_FILEW (1, CAST (NULL AS VARCHAR(128)), CAST (NULL AS SMALLINT))

This will result in snapshot data being written to /tmp/SQLMA_DB2.dat in the
instance directory on UNIX operating systems or to \tmp\SQLMA_DB2.dat in the
instance directory on a Windows operating system.

SNAPSHOT_LOCK
Returns information from a lock snapshot.

Note: This table function has been deprecated and replaced by the “SNAPLOCK
administrative view and SNAP_GET_LOCK table function – Retrieve lock logical
data group snapshot information” on page 657.

�� SNAPSHOT_LOCK (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from the currently connected
database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

1210 Administrative Routines and Views

Table 326. Information returned by the SNAPSHOT_LOCK table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

AGENT_ID BIGINT agent_id - Application
handle (agent ID)

TABLE_FILE_ID BIGINT table_file_id - Table file
identification

LOCK_OBJECT_TYPE BIGINT lock_object_type - Lock
object type waited on

LOCK_MODE BIGINT lock_mode - Lock mode

LOCK_STATUS BIGINT lock_status - Lock status

LOCK_OBJECT_NAME BIGINT lock_object_name - Lock
object name

PARTITION_NUMBER SMALLINT node_number - Node number

LOCK_ESCALATION SMALLINT lock_escalation - Lock
escalation

TABLE_NAME VARCHAR(128) table_name - Table name

TABLE_SCHEMA VARCHAR(128) table_schema - Table schema
name

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table
space name

SNAPSHOT_LOCKWAIT
Returns lock waits information from an application snapshot.

Note: This table function has been deprecated and replaced by the
“SNAPLOCKWAIT administrative view and SNAP_GET_LOCKWAIT table
function – Retrieve lockwait logical data group snapshot information” on page 662.

�� SNAPSHOT_LOCKWAIT (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from all databases under the
database instance.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active

Chapter 22. Deprecated routines 1211

database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

Table 327. Information returned by the SNAPSHOT_LOCKWAIT table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

AGENT_ID BIGINT agent_id - Application
handle (agent ID)

SUBSECTION_NUMBER BIGINT ss_number - Subsection
number

LOCK_MODE BIGINT lock_mode - Lock mode

LOCK_OBJECT_TYPE BIGINT lock_object_type - Lock
object type waited on

AGENT_ID_HOLDING_LK BIGINT agent_id_holding_lock -
Agent ID holding lock

LOCK_WAIT_START_TIME TIMESTAMP lock_wait_start_time - Lock
wait start timestamp

LOCK_MODE_REQUESTED BIGINT lock_mode_requested - Lock
mode requested

PARTITION_NUMBER SMALLINT node_number - Node number

LOCK_ESCALATION SMALLINT lock_escalation - Lock
escalation

TABLE_NAME VARCHAR(128) table_name - Table name

TABLE_SCHEMA VARCHAR(128) table_schema - Table schema
name

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table
space name

APPL_ID_HOLDING_LK VARCHAR(128) appl_id_holding_lk -
Application ID holding lock

1212 Administrative Routines and Views

SNAPSHOT_QUIESCERS

Note: This table function has been deprecated and replaced by the
“SNAPTBSP_QUIESCER administrative view and SNAP_GET_TBSP_QUIESCER
table function - Retrieve quiescer table space snapshot information” on page 704.

�� SNAPSHOT_QUIESCERS (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_QUIESCERS function returns information about quiescers from a
table space snapshot.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from the currently connected
database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

Table 328. Information returned by the SNAPSHOT_QUIESCERS table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table
space name

QUIESCER_TBS_ID BIGINT quiescer_ts_id - Quiescer
table space identification

QUIESCER_OBJ_ID BIGINT quiescer_obj_id - Quiescer
object identification

Chapter 22. Deprecated routines 1213

Table 328. Information returned by the SNAPSHOT_QUIESCERS table function (continued)

Column name Data type

Description or
corresponding monitor
element

QUIESCER_AUTH_ID BIGINT quiescer_auth_id - Quiescer
user authorization
identification

QUIESCER_AGENT_ID BIGINT quiescer_agent_id -
Quiescer agent identification

QUIESCER_STATE BIGINT quiescer_state - Quiescer
state

SNAPSHOT_RANGES

Note: This table function has been deprecated and replaced by the
“SNAPTBSP_RANGE administrative view and SNAP_GET_TBSP_RANGE table
function - Retrieve range snapshot information” on page 708.

�� SNAPSHOT_RANGES (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_RANGES function returns information from a range snapshot.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from the currently connected
database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

1214 Administrative Routines and Views

Table 329. Information returned by the SNAPSHOT_RANGES table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp - Snapshot
timestamp

TABLESPACE_ID BIGINT tablespace_id - Table space
identification

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table space
name

RANGE_NUMBER BIGINT range_number - Range number

RANGE_STRIPE_SET_NUMBER BIGINT range_stripe_set_number - Stripe
set number

RANGE_OFFSET BIGINT range_offset - Range offset

RANGE_MAX_PAGE BIGINT range_max_page_number -
Maximum page in range

RANGE_MAX_EXTENT BIGINT range_max_extent - Maximum
extent in range

RANGE_START_STRIPE BIGINT range_start_stripe - Start stripe

RANGE_END_STRIPE BIGINT range_end_stripe - End stripe

RANGE_ADJUSTMENT BIGINT range_adjustment - Range
adjustment

RANGE_NUM_CONTAINER BIGINT range_num_containers - Number of
containers in range

RANGE_CONTAINER_ID BIGINT range_container_id - Range
container

SNAPSHOT_STATEMENT
Returns information about statements from an application snapshot.

Note: This table function has been deprecated and replaced by the “SNAPSTMT
administrative view and SNAP_GET_STMT table function – Retrieve statement
snapshot information” on page 668.

�� SNAPSHOT_STATEMENT (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from all databases under the
database instance.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active

Chapter 22. Deprecated routines 1215

database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

Table 330. Information returned by the SNAPSHOT_STATEMENT table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp - Snapshot
timestamp

AGENT_ID BIGINT agent_id - Application handle
(agent ID)

ROWS_READ BIGINT rows_read - Rows read

ROWS_WRITTEN BIGINT rows_written - Rows written

NUM_AGENTS BIGINT num_agents - Number of agents
working on a statement

AGENTS_TOP BIGINT agents_top - Number of agents
created

STMT_TYPE BIGINT stmt_type - Statement type

STMT_OPERATION BIGINT stmt_operation/operation -
Statement operation

SECTION_NUMBER BIGINT section_number - Section number

QUERY_COST_ESTIMATE BIGINT query_cost_estimate - Query cost
estimate

QUERY_CARD_ESTIMATE BIGINT query_card_estimate - Query
number of rows estimate

DEGREE_PARALLELISM BIGINT degree_parallelism - Degree of
parallelism

STMT_SORTS BIGINT stmt_sorts - Statement sorts

TOTAL_SORT_TIME BIGINT total_sort_time - Total sort time

SORT_OVERFLOWS BIGINT sort_overflows - Sort overflows

INT_ROWS_DELETED BIGINT int_rows_deleted - Internal rows
deleted

INT_ROWS_UPDATED BIGINT int_rows_updated - Internal rows
updated

1216 Administrative Routines and Views

Table 330. Information returned by the SNAPSHOT_STATEMENT table function (continued)

Column name Data type
Description or corresponding
monitor element

INT_ROWS_INSERTED BIGINT int_rows_inserted - Internal rows
inserted

FETCH_COUNT BIGINT fetch_count - Number of
successful fetches

STMT_START TIMESTAMP stmt_start - Statement operation
start timestamp

STMT_STOP TIMESTAMP stmt_stop - Statement operation
stop timestamp

STMT_USR_CPU_TIME_S BIGINT stmt_usr_cpu_time - User CPU
time used by statement (in
seconds)*

STMT_USR_CPU_TIME_MS BIGINT stmt_usr_cpu_time - User CPU
time used by statement (fractional,
in microseconds)*

STMT_SYS_CPU_TIME_S BIGINT stmt_sys_cpu_time - System CPU
time used by statement (in
seconds)*

STMT_SYS_CPU_TIME_MS BIGINT stmt_sys_cpu_time - System CPU
time used by statement (fractional,
in microseconds)*

STMT_ELAPSED_TIME_S BIGINT stmt_elapsed_time - Most recent
statement elapsed time (in
seconds)*

STMT_ELAPSED_TIME_MS BIGINT stmt_elapsed_time - Most recent
statement elapsed time (fractional,
in microseconds)*

BLOCKING_CURSOR SMALLINT blocking_cursor - Blocking cursor

STMT_PARTITION_NUMBER SMALLINT stmt_node_number - Statement node

CURSOR_NAME VARCHAR(128) cursor_name - Cursor name

CREATOR VARCHAR(128) creator - Application creator

PACKAGE_NAME VARCHAR(128) package_name - Package name

STMT_TEXT CLOB(16M)1 stmt_text - SQL statement text
1 STMT_TEXT is defined as CLOB(16M) to allow for future expansion only. Actual output
of the statement text is truncated at 64K.

* To calculate the total time spent for the monitor element that this column is based on,
you must add the full seconds reported in the column for this monitor element that ends
with _S to the fractional seconds reported in the column for this monitor element that ends
with _MS, using the following formula: (monitor-element-name_S × 1,000,000 +
monitor-element-name_MS) ÷ 1,000,000. For example, (ELAPSED_EXEC_TIME_S × 1,000,000
+ ELAPSED_EXEC_TIME_MS) ÷ 1,000,000.

SNAPSHOT_SUBSECT
Returns information about subsections of access plans from an application
snapshot.

Chapter 22. Deprecated routines 1217

Note: This table function has been deprecated and replaced by the
“SNAPSUBSECTION administrative view and SNAP_GET_SUBSECTION table
function – Retrieve subsection logical monitor group snapshot information” on
page 677.

�� SNAPSHOT_SUBSECT (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from all databases under the
database instance.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

Table 331. Information returned by the SNAPSHOT_SUBSECT table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp - Snapshot
timestamp

STMT_TEXT CLOB(16M)1 stmt_text - SQL statement text

SS_EXEC_TIME BIGINT ss_exec_time - Subsection
execution elapsed time

TQ_TOT_SEND_SPILLS BIGINT tq_tot_send_spills - Total number
of table queue buffers overflowed

TQ_CUR_SEND_SPILLS BIGINT tq_cur_send_spills - Current
number of table queue buffers
overflowed

1218 Administrative Routines and Views

Table 331. Information returned by the SNAPSHOT_SUBSECT table function (continued)

Column name Data type
Description or corresponding
monitor element

TQ_MAX_SEND_SPILLS BIGINT tq_max_send_spills - Maximum
number of table queue buffers
overflows

TQ_ROWS_READ BIGINT tq_rows_read - Number of rows
read from table queues

TQ_ROWS_WRITTEN BIGINT tq_rows_written - Number of rows
written to table queues

ROWS_READ BIGINT rows_read - Rows read

ROWS_WRITTEN BIGINT rows_written - Rows written

SS_USR_CPU_TIME BIGINT ss_usr_cpu_time - User CPU time
used by subsection

SS_SYS_CPU_TIME BIGINT ss_sys_cpu_time - System CPU
time used by subsection

SS_NUMBER INTEGER ss_number - Subsection number

SS_STATUS INTEGER ss_status - Subsection status

SS_PARTITION_NUMBER SMALLINT ss_node_number - Subsection node
number

TQ_PARTITION_WAITED_FOR SMALLINT tq_node_waited_for - Waited for
node on a table queue

TQ_WAIT_FOR_ANY INTEGER tq_wait_for_any - Waiting for any
node to send on a table queue

TQ_ID_WAITING_ON INTEGER tq_id_waiting_on - Waited on
node on a table queue

1 STMT_TEXT is defined as CLOB(16M) to allow for future expansion only. Actual output
of the statement text is truncated at 64K.

SNAPSHOT_SWITCHES
Returns information about the database snapshot switch state.

Note: This table function has been deprecated and replaced by the
“SNAPSWITCHES administrative view and SNAP_GET_SWITCHES table function
– Retrieve database snapshot switch state information” on page 681.

�� SNAPSHOT_SWITCHES (dbpartitionnum) ��

The schema is SYSPROC.

Table function parameter

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

Chapter 22. Deprecated routines 1219

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

Table 332. Information returned by the SNAPSHOT_SWITCHES table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

UOW_SW_STATE SMALLINT State of the unit of work
monitor recording switch (0
or 1).

UOW_SW_TIME TIMESTAMP If the unit of work monitor
recording switch is on, the
date and time that this
switch was turned on.

STATEMENT_SW_STATE SMALLINT State of the SQL statement
monitor recording switch (0
or 1).

STATEMENT_SW_TIME TIMESTAMP If the SQL statement monitor
recording switch is on, the
date and time that this
switch was turned on.

TABLE_SW_STATE SMALLINT State of the table activity
monitor recording switch (0
or 1).

TABLE_SW_TIME TIMESTAMP If the table activity monitor
recording switch is on, the
date and time that this
switch was turned on.

BUFFPOOL_SW_STATE SMALLINT State of the buffer pool
activity monitor recording
switch (0 or 1).

BUFFPOOL_SW_TIME TIMESTAMP If the buffer pool activity
monitor recording switch is
on, the date and time that
this switch was turned on.

LOCK_SW_STATE SMALLINT State of the lock monitor
recording switch (0 or 1).

LOCK_SW_TIME TIMESTAMP If the lock monitor recording
switch is on, the date and
time that this switch was
turned on.

SORT_SW_STATE SMALLINT State of the sorting monitor
recording switch (0 or 1).

1220 Administrative Routines and Views

Table 332. Information returned by the SNAPSHOT_SWITCHES table function (continued)

Column name Data type

Description or
corresponding monitor
element

SORT_SW_TIME TIMESTAMP If the sorting monitor
recording switch is on, the
date and time that this
switch was turned on.

PARTITION_NUMBER SMALLINT node_number - Node number

SNAPSHOT_TABLE
Returns activity information from a table snapshot.

Note: This table function has been deprecated and replaced by the “SNAPTAB
administrative view and SNAP_GET_TAB_V91 table function - Retrieve table
logical data group snapshot information” on page 684

�� SNAPSHOT_TABLE (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from the currently connected
database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

Chapter 22. Deprecated routines 1221

Table 333. Information returned by the SNAPSHOT_TABLE table function

Column name Data type

Description or
corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp -
Snapshot timestamp

ROWS_WRITTEN BIGINT rows_written - Rows written

ROWS_READ BIGINT rows_read - Rows read

OVERFLOW_ACCESSES BIGINT overflow_accesses - Accesses
to overflowed records

TABLE_FILE_ID BIGINT table_file_id - Table file
identification

TABLE_TYPE BIGINT table_type - Table type

PAGE_REORGS BIGINT page_reorgs - Page
reorganizations

TABLE_NAME VARCHAR(128) table_name - Table name

TABLE_SCHEMA VARCHAR(128) table_schema - Table schema
name

SNAPSHOT_TBREORG

Note: This table function has been deprecated and replaced by the
“SNAPTAB_REORG administrative view and SNAP_GET_TAB_REORG table
function - Retrieve table reorganization snapshot information” on page 688.

�� SNAPSHOT_TBREORG (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_TBREORG function returns table reorganization information in
the form of a result set. If no tables have been reorganized, 0 rows are returned. To
obtain real-time snapshot information, the user must have SYSADM, SYSCTRL, or
SYSMAINT authority.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from the currently connected
database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

1222 Administrative Routines and Views

If both parameters are set to NULL, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

Table 334. Information returned by the SNAPSHOT_TBREORG table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp - Snapshot
timestamp

TABLE_NAME VARCHAR(128) table_name - Table name

TABLE_SCHEMA VARCHAR(128) table_schema - Table schema name

PAGE_REORGS BIGINT page_reorgs - Page reorganizations

REORG_PHASE BIGINT reorg_phase - Table reorganize
phase

REORG_MAX_PHASE INTEGER reorg_max_phase - Maximum table
reorganize phase

REORG_CURRENT_COUNTER BIGINT reorg_current_counter - Table
reorganize progress

REORG_MAX_COUNTER BIGINT reorg_max_counter - Total amount
of table reorganization

REORG_TYPE INTEGER reorg_type - Table reorganize
attributes

REORG_STATUS SMALLINT reorg_status - Table reorganize
status

REORG_COMPLETION INTEGER reorg_completion - Table
reorganization completion flag

REORG_START TIMESTAMP reorg_start - Table reorganize
start time

REORG_END TIMESTAMP reorg_end - Table reorganize end
time

REORG_PHASE_START TIMESTAMP reorg_phase_start - Table
reorganize phase start time

REORG_INDEX_ID BIGINT reorg_index_id - Index used to
reorganize the table

REORG_TBSPC_ID BIGINT reorg_tbspc_id - Table space
where table is reorganized

PARTITION_NUMBER SMALLINT node_number - Node number

Chapter 22. Deprecated routines 1223

SNAPSHOT_TBS
Returns activity information from a table space snapshot.

Note: This table function has been deprecated and replaced by the “SNAPTBSP
administrative view and SNAP_GET_TBSP_V91 table function - Retrieve table
space logical data group snapshot information” on page 693

�� SNAPSHOT_TBS (dbname , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from the currently connected
database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

If both parameters are set to NULL, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

Table 335. Information returned by the SNAPSHOT_TBS table function

Column name Data type
Description or corresponding
monitor element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp - Snapshot
timestamp

POOL_DATA_L_READS BIGINT pool_data_l_reads - Buffer pool
data logical reads

POOL_DATA_P_READS BIGINT pool_data_p_reads - Buffer pool
data physical reads

1224 Administrative Routines and Views

Table 335. Information returned by the SNAPSHOT_TBS table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_ASYNC_DATA_READS BIGINT pool_async_data_reads - Buffer
pool asynchronous data reads

POOL_DATA_WRITES BIGINT pool_data_writes - Buffer pool
data writes

POOL_ASYNC_DATA_WRITES BIGINT pool_async_data_writes - Buffer
pool asynchronous data writes

POOL_INDEX_L_READS BIGINT pool_index_l_reads - Buffer pool
index logical reads

POOL_INDEX_P_READS BIGINT pool_index_p_reads - Buffer pool
index physical reads

POOL_INDEX_WRITES BIGINT pool_index_writes - Buffer pool
index writes

POOL_ASYNC_INDEX_WRITES BIGINT pool_async_index_writes - Buffer
pool asynchronous index writes

POOL_READ_TIME BIGINT pool_read_time - Total buffer pool
physical read time

POOL_WRITE_TIME BIGINT pool_write_time - Total buffer pool
physical write time

POOL_ASYNC_READ_TIME BIGINT pool_async_read_time - Buffer
pool asynchronous read time

POOL_ASYNC_WRITE_TIME BIGINT pool_async_write_time - Buffer
pool asynchronous write time

POOL_ASYNC_DATA_
READ_REQS

BIGINT pool_async_data_read_reqs -
Buffer pool asynchronous read
requests

DIRECT_READS BIGINT direct_reads - Direct reads from
database

DIRECT_WRITES BIGINT direct_writes - Direct writes to
database

DIRECT_READ_REQS BIGINT direct_read_reqs - Direct read
requests

DIRECT_WRITE_REQS BIGINT direct_write_reqs - Direct write
requests

DIRECT_READ_TIME BIGINT direct_read_time - Direct read
time

DIRECT_WRITE_TIME BIGINT direct_write_time - Direct write
time

UNREAD_PREFETCH_PAGES BIGINT unread_prefetch_pages - Unread
prefetch pages

POOL_ASYNC_INDEX_READS BIGINT pool_async_index_reads - Buffer
pool asynchronous index reads

POOL_DATA_TO_ESTORE BIGINT The pool_data_to_estore ESTORE
monitor element is discontinued. A
NULL value is returned for the
discontinued monitor element.

Chapter 22. Deprecated routines 1225

Table 335. Information returned by the SNAPSHOT_TBS table function (continued)

Column name Data type
Description or corresponding
monitor element

POOL_INDEX_TO_ESTORE BIGINT The pool_index_to_estore
ESTORE monitor element is
discontinued. A NULL value is
returned for the discontinued
monitor element.

POOL_INDEX_FROM_ESTORE BIGINT The pool_index_from_estore
ESTORE monitor element is
discontinued. A NULL value is
returned for the discontinued
monitor element.

POOL_DATA_FROM_ESTORE BIGINT The pool_data_from_estore
ESTORE monitor element is
discontinued. A NULL value is
returned for the discontinued
monitor element.

FILES_CLOSED BIGINT files_closed - Database files
closed

TABLESPACE_NAME VARCHAR(128) tablespace_name - Table space
name

SNAPSHOT_TBS_CFG

Note: This table function has been deprecated and replaced by the
“SNAPTBSP_PART administrative view and SNAP_GET_TBSP_PART_V91 table
function - Retrieve tablespace_nodeinfo logical data group snapshot information”
on page 833

�� SNAPSHOT_TBS_CFG (dbname , dbpartitionnum) ��

The schema is SYSPROC.

The SNAPSHOT_TBS_CFG function returns configuration information from a table
space snapshot.

Table function parameters

dbname
An input argument of type VARCHAR(255) that specifies a valid database
name in the same instance as the currently connected database when calling
this function. Specify a database name that has a directory entry type of either
"Indirect" or "Home", as returned by the LIST DATABASE DIRECTORY command.
Specify the null value to take the snapshot from the currently connected
database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid database partition
number. Specify -1 for the current database partition, or -2 for all active
database partitions. An active database partition is a partition where the
database is available for connection and use by applications.

If the null value is specified, -1 is set implicitly.

1226 Administrative Routines and Views

If both parameters are set to NULL, the snapshot will be taken only if a file has not
previously been created by the SNAPSHOT_FILEW stored procedure for the
corresponding snapshot API request type.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority
v SQLADM authority

The function returns a table as shown in the following section.

Table 336. Information returned by the SNAPSHOT_TBS_CFG table function

Column name Data type
Description or corresponding monitor
element

SNAPSHOT_TIMESTAMP TIMESTAMP snapshot_timestamp - Snapshot timestamp

TABLESPACE_ID BIGINT tablespace_id - Table space identification

TABLESPACE_NAME VARCHAR
(128)

tablespace_name - Table space name

TABLESPACE_TYPE SMALLINT tablespace_type - Table space type

TABLESPACE_STATE BIGINT tablespace_state - Table space state

NUM_QUIESCERS BIGINT tablespace_num_quiescers - Number of
quiescers

STATE_CHANGE_OBJ_ID BIGINT tablespace_state_change_object_id - State
change object identification

STATE_CHANGE_TBS_ID BIGINT tablespace_state_change_ts_id - State
change table space identification

MIN_RECOVERY_TIME TIMESTAMP tablespace_min_recovery_time - Minimum
recovery time for rollforward

TBS_CONTENTS_TYPE SMALLINT tablespace_content_type - Table space
content type

BUFFERPOOL_ID BIGINT tablespace_cur_pool_id - Buffer pool
currently being used

NEXT_BUFFERPOOL_ID BIGINT tablespace_next_pool_id - Buffer pool that
will be used at next startup

PAGE_SIZE BIGINT tablespace_page_size - Table space page
size

EXTENT_SIZE BIGINT tablespace_extent_size - Table space
extent size

PREFETCH_SIZE BIGINT tablespace_prefetch_size - Table space
prefetch size

TOTAL_PAGES BIGINT tablespace_total_pages - Total pages in
table space

USABLE_PAGES BIGINT tablespace_usable_pages - Usable pages in
table space

USED_PAGES BIGINT tablespace_used_pages - Used pages in
table space

Chapter 22. Deprecated routines 1227

Table 336. Information returned by the SNAPSHOT_TBS_CFG table function (continued)

Column name Data type
Description or corresponding monitor
element

FREE_PAGES BIGINT tablespace_free_pages - Free pages in table
space

PENDING_FREE_PAGES BIGINT tablespace_pending_free_pages - Pending
free pages in table space

HIGH_WATER_MARK BIGINT pool_watermark - Memory pool watermark

REBALANCER_MODE BIGINT tablespace_rebalancer_mode - Rebalancer
mode

REBALANCER_EXTENTS_
REMAINING

BIGINT tablespace_rebalancer_extents_remaining
- Total number of extents to be processed
by the rebalancer

REBALANCER_EXTENTS_
PROCESSED

BIGINT tablespace_rebalancer_extents_processed
- Number of extents the rebalancer has
processed

REBALANCER_PRIORITY BIGINT tablespace_rebalancer_priority - Current
rebalancer priority

REBALANCER_START_
TIME

TIMESTAMP tablespace_rebalancer_start_time -
Rebalancer start time

REBALANCER_RESTART_
TIME

TIMESTAMP tablespace_rebalancer_restart_time -
Rebalancer restart time

LAST_EXTENT_MOVED BIGINT tablespace_rebalancer_last_extent_moved
- Last extent moved by the rebalancer

NUM_RANGES BIGINT tablespace_num_ranges - Number of ranges
in the table space map

NUM_CONTAINERS BIGINT tablespace_num_containers - Number of
containers in table space

SQLCACHE_SNAPSHOT
The SQLCACHE_SNAPSHOT function returns the results of a snapshot of the DB2
dynamic SQL statement cache.

Note: This table function has been deprecated and replaced by the
“SNAP_GET_DYN_SQL_V91 table function - Retrieve dynsql logical group
snapshot information” on page 1148

�� SQLCACHE_SNAPSHOT () ��

The schema is SYSFUN.

Authorization

One of the following authorities is required to execute the function:
v EXECUTE privilege on the function
v DATAACCESS authority
v DBADM authority

1228 Administrative Routines and Views

v SQLADM authority

The function does not take any arguments. It returns the following table.

Table 337. Information returned by SQLCACHE_SNAPSHOT table function

Column name Data type

Description or
corresponding monitor
element

NUM_EXECUTIONS INTEGER num_executions - Statement
executions

NUM_COMPILATIONS INTEGER num_compilations -
Statement compilations

PREP_TIME_WORST INTEGER prep_time_worst - Statement
worst preparation time

PREP_TIME_BEST INTEGER prep_time_best - Statement
best preparation time

INT_ROWS_DELETED INTEGER int_rows_deleted - Internal
rows deleted

INT_ROWS_INSERTED INTEGER int_rows_inserted - Internal
rows inserted

ROWS_READ INTEGER rows_read - Rows read

INT_ROWS_UPDATED INTEGER int_rows_updated - Internal
rows updated

ROWS_WRITTEN INTEGER rows_written - Rows written

STMT_SORTS INTEGER stmt_sorts - Statement sorts

TOTAL_EXEC_TIME_S INTEGER total_exec_time - Elapsed
statement execution time (in
seconds)*

TOTAL_EXEC_TIME_MS INTEGER total_exec_time - Elapsed
statement execution time
(fractional, in microseconds)*

TOT_U_CPU_TIME_S INTEGER total_usr_cpu_time - Total
user CPU for a statement (in
seconds)*

TOT_U_CPU_TIME_MS INTEGER total_usr_cpu_time - Total
user CPU for a statement
(fractional, in microseconds)*

TOT_S_CPU_TIME_S INTEGER total_sys_cpu_time - Total
system CPU for a statement
(in seconds)*

TOT_S_CPU_TIME_MS INTEGER total_sys_cpu_time - Total
system CPU for a statement
(fractional, in microseconds)*

DB_NAME VARCHAR(128) db_name - Database name

STMT_TEXT CLOB(16M)1 stmt_text - SQL statement
text

Chapter 22. Deprecated routines 1229

Table 337. Information returned by SQLCACHE_SNAPSHOT table function (continued)

Column name Data type

Description or
corresponding monitor
element

1 STMT_TEXT is defined as CLOB(16M) to allow for future expansion only. Actual output
of the statement text is truncated at 64K.

* To calculate the total time spent for the monitor element that this column is based on,
you must add the full seconds reported in the column for this monitor element that ends
with _S to the fractional seconds reported in the column for this monitor element that ends
with _MS, using the following formula: (monitor-element-name_S × 1,000,000 +
monitor-element-name_MS) ÷ 1,000,000. For example, (ELAPSED_EXEC_TIME_S × 1,000,000
+ ELAPSED_EXEC_TIME_MS) ÷ 1,000,000.

SYSINSTALLROUTINES

Note: This procedure has been deprecated. The procedure was used to create new
procedures and functions in DB2 UDB for Linux, UNIX, and Windows Version 8.

�� SYSINSTALLROUTINES () ��

The schema is SYSPROC.

Authorization

One of the following authorities is required to execute the procedure:
v EXECUTE privilege on the procedure
v DATAACCESS authority
v DBADM authority
v SQLADM authority

WLM_GET_ACTIVITY_DETAILS - Return detailed information about a
specific activity

Note: This table function has been deprecated and replaced by the
MON_GET_ACTIVITY_DETAILS table function.

This function returns basic statistics of one or more service subclasses.

This function returns detailed information about a specific activity identified by its
application handle, unit of work ID, and activity ID. This information includes
details about any thresholds that the activity has violated.

Syntax

�� WLM_GET_ACTIVITY_DETAILS (application_handle , uow_id , �

� activity_id , dbpartitionnum) ��

The schema is SYSPROC.

1230 Administrative Routines and Views

Table function parameters

application_handle
An input argument of type BIGINT that specifies a valid application handle. If
the argument is null, no rows are returned from this function. If the argument
is null, an SQL171N error is returned.

uow_id
An input argument of type INTEGER that specifies a valid unit of work
identifier unique within the application. If the argument is null, no rows are
returned from this function. If the argument is null, an SQL171N error is
returned.

activity_id
An input argument of type INTEGER that specifies a valid activity ID unique
within the unit of work. If the argument is null, no rows are returned from this
function. If the argument is null, an SQL171N error is returned.

dbpartitionnum
An input argument of type INTEGER that specifies a valid partition number in
the same instance as the currently connected database when calling this
function. Specify -1 for the current database partition, or -2 for all database
partitions. If a null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the WLM_GET_ACTIVITY_DETAILS function.

Example

Detailed information about an individual activity can be obtained by using the
WLM_GET_ACTIVITY_DETAILS table function. This table function returns activity
information as name-value pairs for each partition. This example is restricted to
showing only an eleven member subset of the name-value pairs for each partition
for an activity identified by an application handle of 1, a unit of work ID of 1 and
an activity ID of 5. For a complete list of name-value pairs, see Table 339 on page
1232 and Table 340 on page 1235.

SELECT SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,
SUBSTR(NAME, 1, 20) AS NAME,
SUBSTR(VALUE, 1, 30) AS VALUE

FROM TABLE(WLM_GET_ACTIVITY_DETAILS(1, 1, 5, -2)) AS ACTDETAIL
WHERE NAME IN (’APPLICATION_HANDLE’,

’COORD_PARTITION_NUM’,
’LOCAL_START_TIME’,
’UOW_ID’,
’ACTIVITY_ID’,
’PARENT_UOW_ID’,
’PARENT_ACTIVITY_ID’,
’ACTIVITY_TYPE’,
’NESTING_LEVEL’,
’INVOCATION_ID’,
’ROUTINE_ID’)

ORDER BY PART

The following example is a sample output from this query.
PART NAME VALUE
---- -------------------- ------------------------------
0 APPLICATION_HANDLE 1
0 COORD_PARTITION_NUM 0
0 LOCAL_START_TIME 2005-11-25-18.52.49.343000
0 UOW_ID 1

Chapter 22. Deprecated routines 1231

0 ACTIVITY_ID 5
0 PARENT_UOW_ID 1
0 PARENT_ACTIVITY_ID 3
0 ACTIVITY_TYPE READ_DML
0 NESTING_LEVEL 0
0 INVOCATION_ID 1
0 ROUTINE_ID 0
1 APPLICATION_HANDLE 1
1 COORD_PARTITION_NUM 0
1 LOCAL_START_TIME 2005-11-25-18.52.49.598000
1 UOW_ID 1
1 ACTIVITY_ID 5
1 PARENT_UOW_ID
1 PARENT_ACTIVITY_ID
1 ACTIVITY_TYPE READ_DML
1 NESTING_LEVEL 0
1 INVOCATION_ID 1
1 ROUTINE_ID 0

Usage note

An ACTIVITY_STATE of QUEUED means that the coordinator activity has made a
RPC to the catalog partition to obtain threshold tickets and has not yet received a
response. Seeing this state might indicate that the activity has been queued by
WLM or, over short periods of time, might just indicate that the activity is in the
process of obtaining its tickets. To obtain a more accurate picture of whether or not
the activity is really being queued, one can determine which agent is working on
the activity (using the WLM_GET_SERVICE_CLASS_AGENTS table function) and
find out whether this agent's event_object at the catalog partition has a value of
WLM_QUEUE.

Information returned

Table 338. Information returned for WLM_GET_ACTIVITY_DETAILS

Column Name Data Type Description

DBPARTITIONNUM SMALLINT Partition number from which this record was collected.

NAME VARCHAR(256) Element name. See Table 339 and Table 340 on page 1235
for possible values.

VALUE VARCHAR(1024) Element values. See Table 339 and Table 340 on page
1235 for possible values.

Table 339. Elements returned

Element Name Description

ACTIVITY_ID Unique activity identifier within an application.

ACTIVITY_STATE Possible values include:

v CANCEL_PENDING

v EXECUTING

v IDLE

v INITIALIZING

v QP_CANCEL_PENDING

v QP_QUEUED

v QUEUED

v TERMINATING

v UNKNOWN

1232 Administrative Routines and Views

Table 339. Elements returned (continued)

Element Name Description

ACTIVITY_TYPE Possible values include:

v CALL

v DDL

v LOAD

v OTHER

v READ_DML

v WRITE_DML

APPLICATION_HANDLE A system-wide unique ID for the application. On a
single-partitioned database, this identifier consists of a 16
bit counter. On a multi-partitioned database, this
identifier consists of the coordinating partition number
concatenated with a 16 bit counter. In addition, this
identifier will be the same on every partition where the
application may make a secondary connection.

COORD_PARTITION_NUM The coordinator partition of the activity.

DATABASE_WORK_ACTION_SET_ID If this activity has been mapped to a work action set that
has been applied to the database, this column contains
the ID of the work action set. This column contains 0 if
the activity has not been mapped to a work action set
that has been applied to the database.

DATABASE_WORK_CLASS_ID If this activity has been mapped to a work action set that
has been applied to the database, this column contains
the ID of the work class of this activity. This column
contains 0 if the activity has not been mapped to a work
action set that has been applied to the database.

EFFECTIVE_ISOLATION The effective isolation level for this activity.

EFFECTIVE_LOCK_TIMEOUT The effective lock timeout value for this activity.

EFFECTIVE_QUERY_DEGREE The effective value of query degree for this activity.

ENTRY_TIME The time that this activity arrived into the system.

INVOCATION_ID An identifier that distinguishes one invocation of a
routine from others at the same nesting level within a
unit of work. It is unique within a unit of work for a
specific nesting level.

LAST_REFERENCE_TIME Every time a request occurs in this activity, this field is
updated.

LOCAL_START_TIME The time that this activity began doing work on the
partition. It is in local time. This field can be an empty
string when an activity has entered the system but is in a
queue and has not started executing.

NESTING_LEVEL This represents the nesting level of this activity. Nesting
level is the depth to which this activity is nested within
its top-most parent activity.

PACKAGE_NAME If the activity is a SQL statement, this represents the
name of its package.

PACKAGE_SCHEMA If the activity is a SQL statement, this represents the
schema name of its package.

PACKAGE_VERSION_ID If the activity is a SQL statement, this represents the
version of its package.

Chapter 22. Deprecated routines 1233

Table 339. Elements returned (continued)

Element Name Description

PARENT_ACTIVITY_ID Unique activity identifier within a unit of work for the
parent of the activity whose ID is ACTIVITY_ID. Returns
an empty string if the activity has no parent activity.

PARENT_UOW_ID Unique unit of work identifier within an application.
Refers to the original unit of work this activity's parent
activity started in. Returns an empty string if the activity
has no parent activity or when at a remote partition.

QP_QUERY_ID The query ID assigned to this activity by Query Patroller
if the activity is a query. A query ID of 0 indicates that
Query Patroller did not assign a query ID to this activity.

QUERY_COST_ESTIMATE Estimated cost, in timerons, for a query, as determined
by the SQL compiler.

ROUTINE_ID Routine unique identifier. Returns zero if the activity is
not part of a routine.

ROWS_FETCHED This is the number of rows read from the table. This
reports only those values for the database partition for
which this record is recorded. In a partitioned database
environment, these values may not reflect the correct
totals for the whole activity. When the statement monitor
switch is not turned on, this element is not collected and
-1 is written instead.

ROWS_MODIFIED This is the number of rows inserted, updated, or deleted.
This reports only those values for the database partition
for which this record is recorded. In a partitioned
database environment, these values may not reflect the
correct totals for the whole activity. When the statement
monitor switch is not turned on, this element is not
collected and -1 is written instead.

SECTION_NUMBER If the activity is a SQL statement, this represents its
section number.

SERVICE_CLASS_ID Unique identifier of the service class to which this
activity belongs.

SERVICE_CLASS_WORK_ACTION_SET_ID If this activity has been mapped to a work action set that
has been applied to a service class, this column contains
the ID of the work action set. This column contains 0 if
the activity has not been mapped to a work action set
that has been applied to a service class.

SERVICE_CLASS_WORK_CLASS_ID If this activity has been mapped to a work action set that
has been applied to a service class, this column contains
the ID of the work class of this activity. This column
contains 0 if the activity has not been mapped to a work
action set that has been applied to a service class.

STMT_PKG_CACHE_ID Statement package cache identifier.

STMT_TEXT If the activity is dynamic SQL or it is static SQL for
which the statement text is available, this field contains
the first 1024 characters of the statement text. It is an
empty string otherwise.

1234 Administrative Routines and Views

Table 339. Elements returned (continued)

Element Name Description

SYSTEM_CPU_TIME The total system CPU time (in seconds and
microseconds) used by the database manager agent
process, the unit of work, or the statement. When either
the statement monitor switch or the timestamp switch is
not turned on, this element is not collected and -1 is
written instead.

UOW_ID Unique unit of work identifier within an application.
Refers to the original unit of work this activity started in.

USER_CPU_TIME The total user CPU time (in seconds and microseconds)
used by the database manager agent process, the unit of
work, or the statement. When either the statement
monitor switch or the timestamp switch is not turned on,
this element is not collected and -1 is written instead.

UTILITY_ID If the activity is a utility, this is its utility ID. Otherwise,
this field is 0.

Important: The WLM_GET_ACTIVITY_DETAILS table function shows only the
thresholds that are currently being applied to an activity.

The following elements are returned only if the corresponding thresholds apply to
the activity.

Table 340. Elements returned if applicable

Element Name Description

ACTIVITYTOTALTIME_THRESHOLD_ID The ID of the ACTIVITYTOTALTIME threshold that
was applied to the activity.

ACTIVITYTOTALTIME_THRESHOLD_VALUE A timestamp that is computed by adding the
ACTIVITYTOTALTIME threshold duration to the
activity entry time. If the activity is still executing
when this timestamp is reached, the threshold will
be violated.

ACTIVITYTOTALTIME_THRESHOLD_VIOLATED 'Yes' indicates that the activity violated the
ACTIVITYTOTALTIME threshold. 'No' indicates
that the activity has not yet violated the threshold.

CONCURRENTDBCOORDACTIVITIES_DB
_THRESHOLD_ID

The ID of the
CONCURRENTDBCOORDACTIVITIES_DB
threshold that was applied to the activity.

CONCURRENTDBCOORDACTIVITIES_DB
_THRESHOLD_QUEUED

'Yes' indicates that the activity was queued by the
CONCURRENTDBCOORDACTIVITIES_DB
threshold. 'No' indicates that the activity was not
queued.

CONCURRENTDBCOORDACTIVITIES_DB
_THRESHOLD_VALUE

The upper bound of the
CONCURRENTDBCOORDACTIVITIES_DB
threshold that was applied to the activity.

CONCURRENTDBCOORDACTIVITIES_DB
_THRESHOLD_VIOLATED

'Yes' indicates that the activity violated the
CONCURRENTDBCOORDACTIVITIES_DB
threshold. 'No' indicates that the activity has not yet
violated the threshold.

CONCURRENTDBCOORDACTIVITIES_SUBCLASS
_THRESHOLD_ID

The ID of the
CONCURRENTDBCOORDACTIVITIES_SUBCLASS
threshold that was applied to the activity.

Chapter 22. Deprecated routines 1235

Table 340. Elements returned if applicable (continued)

Element Name Description

CONCURRENTDBCOORDACTIVITIES_SUBCLASS
_THRESHOLD_QUEUED

'Yes' indicates that the activity was queued by the
CONCURRENTDBCOORDACTIVITIES_SUBCLASS
threshold. 'No' indicates that the activity was not
queued.

CONCURRENTDBCOORDACTIVITIES_SUBCLASS
_THRESHOLD_VALUE

The upper bound of the
CONCURRENTDBCOORDACTIVITIES_SUBCLASS
threshold that was applied to the activity.

CONCURRENTDBCOORDACTIVITIES_SUBCLASS
_THRESHOLD_VIOLATED

'Yes' indicates that the activity violated the
CONCURRENTDBCOORDACTIVITIES_SUBCLASS
threshold. 'No' indicates that the activity has not yet
violated the threshold.

CONCURRENTDBCOORDACTIVITIES_SUPERCLASS
_THRESHOLD_ID

The ID of the
CONCURRENTDBCOORDACTIVITIES
_SUPERCLASS threshold that was applied to the
activity.

CONCURRENTDBCOORDACTIVITIES_SUPERCLASS
_THRESHOLD_QUEUED

'Yes' indicates that the activity was queued by
the CONCURRENTDBCOORDACTIVITIES
_SUPERCLASS threshold. 'No' indicates that the
activity was not queued.

CONCURRENTDBCOORDACTIVITIES_SUPERCLASS
_THRESHOLD_VALUE

The upper bound of the
CONCURRENTDBCOORDACTIVITIES
_SUPERCLASS threshold that was applied to the
activity.

CONCURRENTDBCOORDACTIVITIES_SUPERCLASS
_THRESHOLD_VIOLATED

'Yes' indicates that the activity violated the
CONCURRENTDBCOORDACTIVITIES
_SUPERCLASS threshold. 'No' indicates that the
activity has not yet violated the threshold.

CONCURRENTDBCOORDACTIVITIES_WORK_ACTION_SET
_THRESHOLD_ID

The ID of the
CONCURRENTDBCOORDACTIVITIES_WORK
_ACTION_SET threshold that was applied to the
activity.

CONCURRENTDBCOORDACTIVITIES_WORK_ACTION_SET
_THRESHOLD_QUEUED

'Yes' indicates that the activity was queued by
the CONCURRENTDBCOORDACTIVITIES
_WORK_ACTION_SET threshold. 'No' indicates
that the activity was not queued.

CONCURRENTDBCOORDACTIVITIES_WORK_ACTION_SET
_THRESHOLD_VALUE

The upper bound of the
CONCURRENTDBCOORDACTIVITIES_WORK
_ACTION_SET threshold that was applied to the
activity.

CONCURRENTDBCOORDACTIVITIES_WORK_ACTION_SET
_THRESHOLD_VIOLATED

'Yes' indicates that the activity violated the
CONCURRENTDBCOORDACTIVITIES_WORK
_ACTION_SET threshold. 'No' indicates that the
activity has not yet violated the threshold.

CONCURRENTWORKLOADACTIVITIES
_THRESHOLD_ID

The ID of the
CONCURRENTWORKLOADACTIVITIES threshold
that was applied to the activity.

CONCURRENTWORKLOADACTIVITIES
_THRESHOLD_VALUE

The upper bound of the
CONCURRENTWORKLOADACTIVITIES threshold
that was applied to the activity.

1236 Administrative Routines and Views

Table 340. Elements returned if applicable (continued)

Element Name Description

CONCURRENTWORKLOADACTIVITIES
_THRESHOLD_VIOLATED

'Yes' indicates that the activity violated the
CONCURRENTWORKLOADACTIVITIES
threshold. 'No' indicates that the activity has not yet
violated the threshold.

ESTIMATEDSQLCOST_THRESHOLD_ID The ID of the ESTIMATEDSQLCOST threshold that
was applied to the activity.

ESTIMATEDSQLCOST_THRESHOLD_VALUE The upper bound of the ESTIMATEDSQLCOST
threshold that was applied to the activity.

ESTIMATEDSQLCOST_THRESHOLD_VIOLATED '1' indicates that the activity violated the
ESTIMATEDSQLCOST threshold. '0' indicates that
the activity has not yet violated the threshold.

SQLROWSRETURNED_THRESHOLD_ID The ID of the SQLROWSRETURNED threshold that
was applied to the activity

SQLROWSRETURNED_THRESHOLD_VALUE The upper bound of the SQLROWSRETURNED
threshold that was applied to the activity.

SQLROWSRETURNED_THRESHOLD_VIOLATED 'Yes' indicates that the activity violated the
SQLROWSRETURNED threshold. 'No' indicates
that the activity has not yet violated the threshold.

SQLTEMPSPACE_THRESHOLD_ID The ID of the SQLTEMPSPACE threshold that was
applied to the activity.

SQLTEMPSPACE_THRESHOLD_VALUE The upper bound of the SQLTEMPSPACE threshold
that was applied to the activity.

SQLTEMPSPACE_THRESHOLD_VIOLATED 'Yes' indicates that the activity violated the
SQLTEMPSPACE threshold. 'No' indicates that the
activity has not yet violated the threshold.

WLM_GET_SERVICE_CLASS_AGENTS - List agents running in a
service class

The WLM_GET_SERVICE_CLASS_AGENTS function returns the list of agents,
fenced mode processes (db2fmp processes), and system entities on a specified
partition that are running in a specified service class or on behalf of a specified
application. The system entities are non-agent threads and processes, such as page
cleaners and prefetchers.

Note: This table function has been deprecated and replaced by the
“WLM_GET_SERVICE_CLASS_AGENTS_V97 table function - list agents running
in a service class” on page 919.

Syntax

�� WLM_GET_SERVICE_CLASS_AGENTS (service_superclass_name , �

� service_subclass_name , application_handle , dbpartitionnum) ��

The schema is SYSPROC.

Chapter 22. Deprecated routines 1237

Table function parameters

service_superclass_name
An input argument of type VARCHAR(128) that specifies the name of a service
superclass in the currently connected database. If the argument is null or an
empty string, data is retrieved for all the superclasses in the database that
match the values of the other parameters .

service_subclass_name
An input argument of type VARCHAR(128) that refers to a specific subclass
within a superclass. If the argument is null or an empty string, data is
retrieved for all the subclasses in the database that match the values of the
other parameters.

application_handle
An input argument of type BIGINT that specifies the application handle for
which agent information is returned. If the argument is null, data is retrieved
for all applications in the database that match the values of the other
parameters. If you specify 0, only system entities are returned.

dbpartitionnum
An input argument of type INTEGER that specifies a valid partition number in
the same instance as the currently connected database. Specify -1 for the
current database partition, or -2 for all database partitions. If a null value is
specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the WLM_GET_SERVICE_CLASS_AGENTS function.

Example

The following query returns a list of agents that are associated with application
handle 1 for all database partitions. The application handle could have been
determined by using the LIST APPLICATIONS command or the
WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES table function.
SELECT SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APPHANDLE,

SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,
SUBSTR(CHAR(AGENT_TID),1,9) AS AGENT_TID,
SUBSTR(AGENT_TYPE,1,11) AS AGENTTYPE,
SUBSTR(AGENT_STATE,1,10) AS AGENTSTATE,
SUBSTR(REQUEST_TYPE,1,12) AS REQTYPE,
SUBSTR(CHAR(UOW_ID),1,6) AS UOW_ID,
SUBSTR(CHAR(ACTIVITY_ID),1,6) AS ACT_ID

FROM TABLE(WLM_GET_SERVICE_CLASS_AGENTS(CAST(NULL AS VARCHAR(128)),
CAST(NULL AS VARCHAR(128)), 1, -2)) AS SCDETAILS

ORDER BY APPHANDLE, PART, AGENT_TID

Sample output is as follows:
APPHANDLE PART AGENT_TID AGENTTYPE AGENTSTATE REQTYPE UOW_ID ACT_ID
--------- ---- --------- ----------- ---------- -------------- ------ ------
1 0 3 COORDINATOR ACTIVE FETCH 1 5
1 0 4 SUBAGENT ACTIVE SUBSECTION:1 1 5
1 1 2 SUBAGENT ACTIVE SUBSECTION:2 1 5

The output shows a coordinator agent and a subagent on partition 0 and a
subagent on partition 1 operating on behalf of an activity with UOW ID 1 and
activity ID 5. The coordinator agent reports that the request is a fetch request.

1238 Administrative Routines and Views

Usage note

The parameters are, in effect, ANDed together. That is, if you specify conflicting
input parameters, such as a service superclass SUP_A and a subclass SUB_B such
that SUB_B is not a subclass of SUP_A, no rows are returned.

Information returned

Table 341. Information returned by WLM_GET_SERVICE_CLASS_AGENTS

Column name Data type Description

SERVICE_SUPERCLASS_NAME VARCHAR(128) Name of the service superclass from which this record was
collected.

SERVICE_SUBCLASS_NAME VARCHAR(128) Name of the service subclass from which this record was
collected.

APPLICATION_HANDLE BIGINT A system-wide unique ID for the application. On a
single-partitioned database, this identifier consists of a 16-bit
counter. On a multi-partitioned database, this identifier
consists of the coordinating partition number concatenated
with a 16-bit counter. In addition, this identifier is the same
on every partition where the application makes a secondary
connection.

DBPARTITIONNUM SMALLINT Partition number from which this record was collected.

ENTITY VARCHAR(32) One of the following values:

v db2agent, which indicates that the type of entity is an
agent

v db2fmp (pid), which indicates that the entity is a fenced
mode process, where pid is the process ID of the fenced
mode process

v The name of a system entity

WORKLOAD_NAME VARCHAR(128) Name of the workload from which this record was collected.

WORKLOAD_OCCURRENCE_ID INTEGER ID of the workload occurrence. This ID does not uniquely
identify the workload occurrence unless it is coupled with
the coordinator database partition number and the workload
name.

UOW_ID INTEGER Unique ID of the unit of work that this activity started in.

ACTIVITY_ID INTEGER Unique activity ID within a unit of work.

PARENT_UOW_ID INTEGER Unique ID of the unit of work that the parent activity of the
activity started in. If the activity has no parent, the value of
the column is null.

PARENT_ACTIVITY_ID INTEGER Unique activity ID within a unit of work for the parent of
the activity whose ID is activity_id. If the activity has no
parent, the value of the column is null.

AGENT_TID BIGINT Thread ID of the agent or system entity. If this ID is
unavailable, the value of the column is null.

AGENT_TYPE VARCHAR(32) Agent type. The possible values are as follows:

v COORDINATOR

v OTHER

v PDBSUBAGENT

v SMPSUBAGENT

If the agent type is COORDINATOR, the agent ID might
change in concentrator environments.

Chapter 22. Deprecated routines 1239

Table 341. Information returned by WLM_GET_SERVICE_CLASS_AGENTS (continued)

Column name Data type Description

SMP_COORDINATOR INTEGER Indication of whether the agent is an SMP coordinator. If
yes, the value is 1; if no, the value is 0.

AGENT_SUBTYPE VARCHAR(32) Agent subtype. The possible values are as follows:

v DSS

v OTHER

v RPC

v SMP

AGENT_STATE VARCHAR(32) Agent state. The possible values are as follows:

v ACTIVE

v ASSOCIATED

EVENT_TYPE VARCHAR(32) Type of event last processed by this agent. The possible
values are as follows:

v ACQUIRE

v PROCESS

v WAIT

See Table 342 on page 1242 for more information about
possible values for this column.

EVENT_OBJECT VARCHAR(32) Object of the event last processed by this agent. The possible
values are as follows:

v COMPRESSION_DICTIONARY_BUILD

v IMPLICIT_REBIND

v INDEX_RECREATE

v LOCK

v LOCK_ESCALATION

v QP_QUEUE

v REMOTE_REQUEST

v REQUEST

v ROUTINE

v WLM_QUEUE

See Table 342 on page 1242 for more information about
possible values for this column.

EVENT_STATE VARCHAR(32) State of the event last processed by this agent. The possible
values are as follows:

v EXECUTING

v IDLE

See Table 342 on page 1242 for more information about
possible values for this column.

REQUEST_ID VARCHAR(64) Request ID. This value is unique only in combination with
the value of application_handle. You can use this to
distinguish between one request that is taking a long time
and multiple requests; for example, one long fetch and
multiple fetches.

1240 Administrative Routines and Views

Table 341. Information returned by WLM_GET_SERVICE_CLASS_AGENTS (continued)

Column name Data type Description

REQUEST_TYPE VARCHAR(32) Type of request. The possible values are as follows:

v For coordinator agents:

– CLOSE

– COMMIT

– COMPILE

– DESCRIBE

– EXCSQLSET

– EXECIMMD

– EXECUTE

– FETCH

– INTERNAL number, where number is the value of the
internal constant

– OPEN

– PREPARE

– REBIND

– REDISTRIBUTE

– REORG

– ROLLBACK

– RUNSTATS

v For subagents with an AGENT_SUBTYPE of DSS or SMP

– If the subsection number is nonzero, the subsection
number in the form SUBSECTION:subsection number;
otherwise, NULL

Chapter 22. Deprecated routines 1241

Table 341. Information returned by WLM_GET_SERVICE_CLASS_AGENTS (continued)

Column name Data type Description

REQUEST_TYPE (continued) VARCHAR(32) v For subagents with an AGENT_SUBTYPE of RPC

– ABP

– CATALOG

– INTERNAL

– REORG

– RUNSTATS

– WLM

v For subagents with an AGENT_SUBTYPE of OTHER"

– ABP

– APP_RBSVPT

– APP_RELSVPT

– BACKUP

– CLOSE

– EXTERNAL_RBSVPT

– EVMON

– FORCE

– FORCE_ALL

– INTERNAL number, where number is the value of the
internal constant

– INTERRUPT

– NOOP (if there is no request)

– QP

– REDISTRIBUTE

– STMT_RBSVPT

– STOP_USING

– UPDATE_DBM_CFG

– WLM

NESTING_LEVEL INTEGER Nesting level of the activity whose ID is activity_id. Nesting
level is the depth to which this activity is nested within its
topmost parent activity.

INVOCATION_ID INTEGER An identifier that distinguishes one invocation of a routine
from others at the same nesting level within a unit of work.
It is unique within a unit of work for a specific nesting level.

ROUTINE_ID INTEGER Unique ID of a routine. The value of the column is null if
the column is not part of a routine.

Note: The possible combinations of EVENT_STATE, EVENT_TYPE, and
EVENT_OBJECT column values are listed in the following table.

Table 342. Possible combinations for EVENT_STATE, EVENT_TYPE, and EVENT_OBJECT
column values

Event description
EVENT_STATE
value EVENT_TYPE value

EVENT_OBJECT
value

Acquire lock IDLE ACQUIRE LOCK

Escalate lock EXECUTING PROCESS LOCK_ESCALATION

Process request EXECUTING PROCESS REQUEST

1242 Administrative Routines and Views

Table 342. Possible combinations for EVENT_STATE, EVENT_TYPE, and EVENT_OBJECT
column values (continued)

Event description
EVENT_STATE
value EVENT_TYPE value

EVENT_OBJECT
value

Wait for a new
request

IDLE WAIT REQUEST

Wait for a request to
be processed at a
remote partition

IDLE WAIT REMOTE_REQUEST

Wait on a Query
Patroller queue

IDLE WAIT QP_QUEUE

Wait on a WLM
threshold queue

IDLE WAIT WLM_QUEUE

Process a routine EXECUTING PROCESS ROUTINE

Recreate an index EXECUTING PROCESS INDEX_RECREATE

Build compression
dictionary

EXECUTING PROCESS COMP_DICT_BLD

Implicit rebind EXECUTING PROCESS IMPLICIT_REBIND

WLM_GET_SERVICE_CLASS_WORKLOAD_
OCCURRENCES - List of workload occurrences

Returns the list of all workload occurrences executing in a given service class on a
particular partition.

Note: This table function has been deprecated and replaced by the
“WLM_GET_SERVICE_CLASS_WORKLOAD _OCCURRENCES_V97 - list
workload occurrences” on page 927.

A workload occurrence is a specific database connection whose attributes match
with the definition of a workload and hence is associated with or assigned to the
workload.

Syntax

�� WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES (service_superclass_name , �

� service_subclass_name , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

service_superclass_name
An input argument of type VARCHAR(128) that specifies a valid service
superclass name in the currently connected database. If the argument is null or
an empty string, the data is retrieved for all the superclasses in the database
for which the other parameters match.

service_subclass_name
Target service subclass for the workload occurrence. Any work submitted by

Chapter 22. Deprecated routines 1243

this workload occurrence will run in this service subclass under the target
service superclass with the exception of activities that are mapped, or
remapped, to a different subclass.

dbpartitionnum
An input argument of type INTEGER that specifies a valid partition number in
the same instance as the currently connected database. Indicate -1 for the
current database partition, or -2 for all database partitions. If the null value is
specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the
WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES function.

Example

If an administrator would like to see what workload occurrences are running on
the system as a whole, the
WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES function can be
called with a null value or an empty string for service_superclass_name and
service_subclass_name, and -2 for dbpartitionnum.

SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,
SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,
SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,
SUBSTR(CHAR(COORD_PARTITION_NUM),1,4) AS COORDPART,
SUBSTR(CHAR(APPLICATION_HANDLE),1,7) AS APPHNDL,
SUBSTR(WORKLOAD_NAME,1,22) AS WORKLOAD_NAME,
SUBSTR(CHAR(WORKLOAD_OCCURRENCE_ID),1,6) AS WLO_ID

FROM TABLE(WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES
(CAST(NULL AS VARCHAR(128)), CAST(NULL AS VARCHAR(128)), -2))
AS SCINFO

ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, PART, APPHNDL,
WORKLOAD_NAME, WLO_ID

Assuming that the system has four database partitions and is running two
workloads at this time, the preceding query would produce a result like the
following output:
SUPERCLASS_NAME SUBCLASS_NAME PART COORDPART ...
------------------- ------------------ ---- --------- ...
SYSDEFAULTMAINTENAN SYSDEFAULTSUBCLASS 0 0 ...
SYSDEFAULTSYSTEMCLA SYSDEFAULTSUBCLASS 0 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 0 ...

Output from this query (continued).
... APPHNDL WORKLOAD_NAME WLO_ID
... ------- ---------------------- ------
... - - -
... - - -
... 1 SYSDEFAULTUSERWORKLOAD 1
... 2 SYSDEFAULTUSERWORKLOAD 2
... 1 SYSDEFAULTUSERWORKLOAD 1
... 2 SYSDEFAULTUSERWORKLOAD 2

1244 Administrative Routines and Views

... 1 SYSDEFAULTUSERWORKLOAD 1

... 2 SYSDEFAULTUSERWORKLOAD 2

... 1 SYSDEFAULTUSERWORKLOAD 1

... 2 SYSDEFAULTUSERWORKLOAD 2

Usage note

The parameters have the effect of being ANDed together. That is, if one were to
specify conflicting input parameters such as a service superclass SUP_A and
subclass SUB_B such that SUB_B is not a subclass of SUP_A, no rows would be
returned.

Note: Statistics reported for the workload occurrence (for example
coord_act_completed_total) are reset at the beginning of each unit of work when
they are combined with the corresponding workload statistics.

Information returned

Table 343. Information returned for WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES

Column Name Data Type Description

SERVICE_SUPERCLASS_NAME VARCHAR(128) Name of the service superclass from which this
record was collected.

SERVICE_SUBCLASS_NAME VARCHAR(128) Name of the service subclass from which this
record was collected.

DBPARTITIONNUM SMALLINT Partition number from which this record was
collected.

COORD_PARTITION_NUM SMALLINT Partition number of the coordinator partition of
the given workload occurrence.

APPLICATION_HANDLE BIGINT A system-wide unique ID for the application.
On a single-partitioned database, this identifier
consists of a 16 bit counter. On a
multi-partitioned database, this identifier
consists of the coordinating partition number
concatenated with a 16 bit counter. In addition,
this identifier will be the same on every
partition where the application may make a
secondary connection.

WORKLOAD_NAME VARCHAR(128) Name of the workload from which this record
was collected.

WORKLOAD_OCCURRENCE_ID INTEGER The ID of the workload occurrence. This does
not uniquely identify the workload occurrence
unless it is coupled with the coordinator
database partition number and the workload
name.

Chapter 22. Deprecated routines 1245

Table 343. Information returned for WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES (continued)

Column Name Data Type Description

WORKLOAD_OCCURRENCE_STATE VARCHAR(32) Possible values include:

v DECOUPLED - Workload occurrence does not
have a coordinator agent assigned
(concentrator case).

v DISCONNECTPEND - Workload occurrence is
disconnecting from the database

v FORCED - Workload occurrence has been
forced.

v INTERRUPTED - Workload occurrence has been
interrupted.

v QUEUED - Workload occurrence coordinator
agent is queued by Query Patroller or a
workload management queuing threshold. In
a partitioned database environment, this state
may indicate that the coordinator agent has
made an RPC to the catalog partition to
obtain threshold tickets and has not yet
received a response.

v TRANSIENT - Workload occurrence has not yet
been mapped to a service superclass.

v UOWEXEC - Workload occurrence is processing a
request.

v UOWWAIT - Workload occurrence is waiting for
a request from the client.

UOW_ID INTEGER Unique unit of work identifier within an
application.

SYSTEM_AUTH_ID VARCHAR(128) System authorization ID under which the
workload occurrence was injected into the
system.

SESSION_AUTH_ID VARCHAR(128) Session authorization ID under which the
workload occurrence was injected into the
system.

APPLICATION_NAME VARCHAR(128) The name of the application that created this
workload occurrence.

CLIENT_WRKSTNNAME VARCHAR(255) The current value of the
CLIENT_WRKSTNNAME special register for
this workload occurrence.

CLIENT_ACCTNG VARCHAR(255) The current value of the CLIENT_ACCTNG
special register for this workload occurrence.

CLIENT_USER VARCHAR(255) The current value of the CLIENT_USERID
special register for this workload occurrence.

CLIENT_APPLNAME VARCHAR(255) The current value of the CLIENT_APPLNAME
special register for this workload occurrence.

COORD_ACT_COMPLETED_TOTAL INTEGER The number of coordinator activities at any
nesting level completed so far in the current
unit of work of this workload occurrence. This
statistic is updated every time an activity in this
workload occurrence completes and is reset at
the beginning of each unit of work.

1246 Administrative Routines and Views

Table 343. Information returned for WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES (continued)

Column Name Data Type Description

COORD_ACT_ABORTED_TOTAL INTEGER The number of coordinator activities aborted so
far in the current unit of work of this workload
occurrence. This statistic is updated every time
an activity in this workload occurrence is
aborted and is reset at the beginning of each
unit of work.

COORD_ACT_REJECTED_TOTAL INTEGER The number of coordinator activities rejected so
far in the current unit of work of this workload
occurrence. Activities are counted as rejected
when they are prevented from executing by
either a prevent execution work action, or a
predictive threshold. This statistic is updated
every time an activity in this workload
occurrence is rejected and is reset at the
beginning of each unit of work.

CONCURRENT_ACT_TOP INTEGER Highest number of concurrent activities at any
nesting level in either executing (which includes
idle and waiting) or queued state that has been
reached for this workload occurrence in the
current unit of work. This statistic is reset at the
beginning of each unit of work.

WLM_GET_SERVICE_SUBCLASS_STATS - return statistics of service
subclasses

Note: This table function has been deprecated and replaced by the
“WLM_GET_SERVICE_SUBCLASS_STATS_V97 table function - Return statistics of
service subclasses” on page 931.

This function returns basic statistics of one or more service subclasses.

Syntax

�� WLM_GET_SERVICE_SUBCLASS_STATS (service_superclass_name , �

� service_subclass_name , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

service_superclass_name
An input argument of type VARCHAR(128) that specifies a valid service
superclass name in the same database as the one currently connected to when
calling this function. If the argument is null or an empty string, the data is
retrieved for all the superclasses in the database.

service_subclass_name
An input argument of type VARCHAR(128) that specifies a valid service
subclass name in the same database as the one currently connected to when
calling this function. If the argument is null or an empty string, the data is
retrieved for all the subclasses in the database.

Chapter 22. Deprecated routines 1247

dbpartitionnum
An input argument of type INTEGER that specifies a valid partition number in
the same instance as the currently connected database when calling this
function. Specify -1 for the current database partition, or -2 for all database
partitions. If the null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the WLM_GET_SERVICE_SUBCLASS_STATS function.

Examples

Example 1: As every activity has to be mapped to a DB2 Service Class before being
executed, the global state of the system can be regularly monitored using the
service class statistics table functions query all the service classes on all the
partitions. Note that passing a null value for an argument indicates that the result
should not be restricted by that argument, except for the final argument,
dbpartitionnum, where a value of -2 indicates that data from all database partitions
is returned. This example returns service class statistics, such as average activity
lifetime and standard deviation in seconds:
SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,

SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,
SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,
CAST(COORD_ACT_LIFETIME_AVG / 1000 AS DECIMAL(9,3))

AS AVGLIFETIME,
CAST(COORD_ACT_LIFETIME_STDDEV / 1000 AS DECIMAL(9,3))

AS STDDEVLIFETIME,
SUBSTR(CAST(LAST_RESET AS VARCHAR(30)),1,16) AS LAST_RESET

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(CAST(NULL AS VARCHAR(128)),
CAST(NULL AS VARCHAR(128)), -2)) AS SCSTATS

ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, PART

This is an example of output from this query.
SUPERCLASS_NAME SUBCLASS_NAME PART ...
------------------- ------------------ ---- ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 ...
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 ...

Output from this query (continued).
... AVGLIFETIME STDDEVLIFETIME LAST_RESET
... ----------- -------------- ----------------
... 691.242 34.322 2006-07-24-11.44
... 644.740 22.124 2006-07-24-11.44
... 612.431 43.347 2006-07-24-11.44
... 593.451 28.329 2006-07-24-11.44

Example 2: The same table function also gives the highest value for average
concurrency of coordinator activities running in the service class for each partition.

SELECT SUBSTR(SERVICE_SUPERCLASS_NAME,1,19) AS SUPERCLASS_NAME,
SUBSTR(SERVICE_SUBCLASS_NAME,1,18) AS SUBCLASS_NAME,
SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,
CONCURRENT_ACT_TOP AS ACTTOP

FROM TABLE(WLM_GET_SERVICE_SUBCLASS_STATS(CAST(NULL AS VARCHAR(128)),
CAST(NULL AS VARCHAR(128)), -2)) AS SCSTATS

ORDER BY SUPERCLASS_NAME, SUBCLASS_NAME, PART

This is an example of output from this query.

1248 Administrative Routines and Views

SUPERCLASS_NAME SUBCLASS_NAME PART ACTTOP
------------------- ------------------ ---- ---------
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 0 10
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 1 0
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 2 0
SYSDEFAULTUSERCLASS SYSDEFAULTSUBCLASS 3 0

The output of this table function gives you a good high-level view of the "load" on
each partition for a specific database. The output comes from checking the average
execution times and numbers of activities. Any significant variations of the high
level values returned by these table functions may indicate a change in the load on
the system.

Usage notes

Some statistics are returned only if the COLLECT AGGREGATE ACTIVITY DATA
and COLLECT AGGREGATE REQUEST DATA settings for the corresponding
service subclass are set to a value other than "NONE".

The WLM_GET_SERVICE_SUBCLASS_STATS table function returns one row of
data per service subclass and per partition. There is no aggregation across service
classes (on a partition) or across partitions (for a service class or more). However,
aggregation can be achieved through SQL queries, as shown in the preceding
examples.

The parameters have the effect of being logically united as "AND" clauses. That is,
if you specify conflicting input parameters such as a superclass named SUPA and a
subclass named SUBB, such that SUBB is not a subclass of SUPA, no rows would
be returned.

Information returned

Table 344. Information returned for WLM_GET_SERVICE_SUBCLASS_STATS

Column Name Data Type Description

SERVICE_SUPERCLASS_NAME VARCHAR(128) Name of the service superclass from which
this record was collected.

SERVICE_SUBCLASS_NAME VARCHAR(128) Name of the service subclass from which this
record was collected.

DBPARTITIONNUM SMALLINT Partition number from which this record was
collected.

LAST_RESET TIMESTAMP Time when statistics were last reset. There are
four events that can occur that will trigger a
reset of statistics, which will update this
timestamp:

v The WLM_COLLECT_STATS procedure is
called.

v The periodic collection and reset process
controlled by the WLM_COLLECT_INT
configuration parameter causes a collection
and reset.

v The database is reactivated.

v The service subclass for which statistics are
being reported was modified and the
change was committed.

The LAST_RESET timestamp is in local time.

Chapter 22. Deprecated routines 1249

Table 344. Information returned for WLM_GET_SERVICE_SUBCLASS_STATS (continued)

Column Name Data Type Description

COORD_ACT_COMPLETED_TOTAL BIGINT The total number of coordinator activities that
users have submitted since the last reset and
completed successfully. This count is updated
as each activity completes.

If you remap an activity to a different service
subclass, then that activity counts only
toward the total of the subclass in which it
completes.

COORD_ACT_ABORTED_TOTAL BIGINT The total number of coordinator activities that
users have submitted since the last reset and
completed with errors. This count is updated
as each activity aborts.

If you remap an activity to a different service
subclass, then that activity counts only
toward the total of the subclass in which it
aborts.

COORD_ACT_REJECTED_TOTAL BIGINT The total number of coordinator activities that
users have submitted since the last reset and
were rejected before execution instead of
being allowed to execute. Activities are
counted as rejected when they are prevented
from executing by either a prevent execution
work action, or a predictive threshold. This
count is updated as each activity gets
rejected.

CONCURRENT_ACT_TOP INTEGER Highest number of concurrent activities at
any nesting level in either executing (which
includes idle and waiting) or queued state
that has been reached for this service
subclass.

COORD_ACT_LIFETIME_TOP BIGINT High watermark for coordinator activity
lifetime, counted at all nesting levels. Null
when COLLECT AGGREGATE ACTIVITY
DATA of service class is NONE. Units are
milliseconds.

To use this statistic effectively when the
service class includes subclasses that are
remapped, you must aggregate the
COORD_ACT_LIFETIME_TOP high
watermark of the service subclass with that of
other subclasses affected by the same
remapping threshold or thresholds. You must
aggregate these values because an activity can
complete after it has been remapped to a
different service subclass, but the time the
activity spends in other service subclasses
before being remapped is counted only
toward the service class in which it
completes.

1250 Administrative Routines and Views

Table 344. Information returned for WLM_GET_SERVICE_SUBCLASS_STATS (continued)

Column Name Data Type Description

COORD_ACT_LIFETIME_AVG DOUBLE Arithmetic mean of lifetime for coordinator
activities at nesting level 0 associated with
this service subclass since the last reset. If the
internally tracked average has overflowed,
the value -2 is returned. Null when
COLLECT AGGREGATE ACTIVITY DATA of
service class is NONE. Units are milliseconds.

The COORD_ACT_LIFETIME_AVG of a
service subclass is unaffected by activities that
pass through the subclass but are remapped
to a different subclass before they complete.

COORD_ACT_LIFETIME_STDDEV DOUBLE Standard deviation of lifetime for coordinator
activities at nesting level 0 associated with
this service subclass since the last reset. Null
when COLLECT AGGREGATE ACTIVITY
DATA of service class is NONE. Units are
milliseconds. This standard deviation is
computed from the coordinator activity
lifetime histogram and may be inaccurate if
the histogram has not been properly sized to
fit the data. The value of -1 will be returned if
any values fall into the last histogram bin.

The COORD_ACT_LIFETIME_STDDEV of a
service subclass is unaffected by activities that
pass through the service subclass but are
remapped to a different subclass before they
complete.

COORD_ACT_EXEC_TIME_AVG DOUBLE Arithmetic mean of the execution times for
coordinator activities at nesting level 0
associated with this service subclass since the
last reset. If the internally tracked average has
overflowed, the value -2 is returned. Null
when COLLECT AGGREGATE ACTIVITY
DATA of service class is NONE. Units are
milliseconds.

The execution time average of a service
subclass is unaffected by activities that pass
through the subclass but are remapped to a
different subclass before they complete.

COORD_ACT_EXEC_TIME_STDDEV DOUBLE Standard deviation of the execution times for
coordinator activities at nesting level 0
associated with this service subclass since the
last reset. Units are milliseconds. This
standard deviation is computed from the
coordinator activity executetime histogram
and might be inaccurate if the histogram has
not been properly sized to fit the data. The
value of -1 will be returned if any values fall
into the last histogram bin.

The execution time standard deviation of a
service subclass is unaffected by activities that
pass through the subclass but are remapped
to a different subclass before they complete.

Chapter 22. Deprecated routines 1251

Table 344. Information returned for WLM_GET_SERVICE_SUBCLASS_STATS (continued)

Column Name Data Type Description

COORD_ACT_QUEUE_TIME_AVG DOUBLE Arithmetic mean of the queue time for
coordinator activities at nesting level 0
associated with this service subclass since the
last reset. If the internally tracked average has
overflowed, the value -2 is returned. Null
when COLLECT AGGREGATE ACTIVITY
DATA of service class is NONE. Units are
milliseconds.

The queue time average is counted only
toward the service subclass in which the
activity was queued.

COORD_ACT_QUEUE_TIME_STDDEV DOUBLE Standard deviation of the queue time for
coordinator activities at nesting level 0
associated with this service subclass since the
last reset. Null when COLLECT
AGGREGATE ACTIVITY DATA of service
class is NONE. Units are milliseconds. This
standard deviation is computed from the
coordinator activity queuetime histogram and
may be inaccurate if the histogram has not
been properly sized to fit the data. The value
of -1 will be returned if any values fall into
the last histogram bin.

The queue time standard deviation is counted
only toward the service subclass in which the
activity was queued.

NUM_REQUESTS_ACTIVE BIGINT The number of requests that are executing in
the service subclass at the time this table
function is executed.

NUM_REQUESTS_TOTAL BIGINT The number of requests to finish executing in
this service subclass since the last reset. This
applies to any request regardless of its
membership in an activity. If COLLECT
AGGREGATE REQUEST DATA on this
service subclass is set to NONE, the value of
this column is NULL.

The NUM_REQUESTS_TOTAL of a service
subclass is unaffected by requests that pass
through the service subclass, but do not
complete in it.

REQUEST_EXEC_TIME_AVG DOUBLE Arithmetic mean of the execution times for
requests associated with this service subclass
since the last reset. Units are milliseconds. If
the internally tracked average has
overflowed, the value -2 is returned. If
COLLECT AGGREGATE REQUEST DATA on
this service class is set to NONE, the value of
this column is NULL.

The execution time average of a service
subclass is unaffected by requests that pass
through the subclass, but do not complete in
it.

1252 Administrative Routines and Views

Table 344. Information returned for WLM_GET_SERVICE_SUBCLASS_STATS (continued)

Column Name Data Type Description

REQUEST_EXEC_TIME_STDDEV DOUBLE Standard deviation of the execution times for
requests associated with this service subclass
since the last reset. Units are milliseconds. If
COLLECT AGGREGATE REQUEST DATA on
this service class is set to NONE, the value of
this column is NULL. This standard deviation
is computed from the request executetime
histogram and may be inaccurate if the
histogram has not been properly sized to fit
the data. The value of -1 will be returned if
any values fall into the last histogram bin.

The execution time standard deviation of a
service subclass is unaffected by requests that
pass through the subclass, but do not
complete in it.

REQUEST_EXEC_TIME_TOTAL BIGINT Sum of the execution times for requests
associated with this service subclass since the
last reset. Units are milliseconds. If COLLECT
AGGREGATE REQUEST DATA on this
service class is set to NONE, the value of this
column is NULL. This total is computed from
the request execution time histogram and
may be inaccurate if the histogram has not
been properly sized to fit the data. The value
of -1 will be returned if any values fall into
the last histogram bin.

The execution time total of a service subclass
is unaffected by requests that pass through
the subclass, but do not complete in it.

WLM_GET_WORKLOAD_OCCURRENCE_
ACTIVITIES - Return a list of activities

The WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES function returns the
list of all activities that were submitted by a specified application on a specified
partition and have not yet been completed.

Note: This table function has been deprecated and replaced by the
“WLM_GET_WORKLOAD_OCCURRENCE _ACTIVITIES_V97 - return a list of
activities” on page 942.

Syntax

�� WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES (application_handle , �

� dbpartitionnum) ��

The schema is SYSPROC.

Chapter 22. Deprecated routines 1253

Table function parameters

application_handle
An input argument of type BIGINT that specifies an application handle for
which a list of activities is to be returned. If the argument is null, the data is
retrieved for all the applications in the database.

dbpartitionnum
An input argument of type INTEGER that specifies a valid partition number in
the same instance as the currently connected database. Specify -1 for the
current database partition, or -2 for all database partitions. If the null value is
specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES
function.

Example

After you identify the application handle, you can look up all the activities
currently running in this application. For example, suppose that an administrator
wants to list the activities of an application whose application handle, determined
by using the LIST APPLICATIONS command, is 1. The administrator runs the
following query:
SELECT SUBSTR(CHAR(COORD_PARTITION_NUM),1,5) AS COORD,

SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,
SUBSTR(CHAR(UOW_ID),1,5) AS UOWID,
SUBSTR(CHAR(ACTIVITY_ID),1,5) AS ACTID,
SUBSTR(CHAR(PARENT_UOW_ID),1,8) AS PARUOWID,
SUBSTR(CHAR(PARENT_ACTIVITY_ID),1,8) AS PARACTID,

ACTIVITY_TYPE AS ACTTYPE,
SUBSTR(CHAR(NESTING_LEVEL),1,7) AS NESTING

FROM TABLE(WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES(1, -2)) AS WLOACTS
ORDER BY PART, UOWID, ACTID

Sample output from the query is as follows:
COORD PART UOWID ACTID PARUOWID PARACTID ACTTYPE NESTING
----- ---- ----- ----- -------- -------- -------- -------
0 0 2 3 - - CALL 0
0 0 2 5 2 3 READ_DML 1

Information returned

Table 345. Information returned by WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES

Column name Data type Description

APPLICATION_HANDLE BIGINT System-wide unique ID for the application.
On a single-partitioned database, this ID
consists of a 16-bit counter. On a
multi-partitioned database, this ID consists
of the coordinating partition number
concatenated with a 16-bit counter. In
addition, this ID is the same on every
partition where the application makes a
secondary connection.

DBPARTITIONNUM SMALLINT Partition number from which this record
was collected.

COORD_PARTITION_NUM SMALLINT Coordinator partition of the activity.

1254 Administrative Routines and Views

Table 345. Information returned by WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES (continued)

Column name Data type Description

LOCAL_START_TIME TIMESTAMP Local time that this activity began doing
work on the partition. The value of the
column is null when an activity has entered
the system but is in a queue and has not
started running.

UOW_ID INTEGER Unique ID for the unit of work that the
activity started in.

ACTIVITY_ID INTEGER Unique activity ID within a unit of work.

PARENT_UOW_ID INTEGER Unique ID for the unit of work that the
parent activity of the activity started in. If
the activity has no parent activity or is at a
remote partition, the value of this column is
null.

PARENT_ACTIVITY_ID INTEGER Unique activity ID within a unit of work for
the parent of the activity whose ID is the
value of the ACTIVITY_ID column. If the
activity has no parent activity or is at a
remote partition, the value of this column is
null.

ACTIVITY_STATE VARCHAR(32) Activity state. Possible values are as follows:

CANCEL_PENDING
The activity was cancelled because
there was no agent actively
working on a request for the
activity. The next time that a
request is submitted as part of the
activity, the activity will be
cancelled, and an SQL4725N error
will be generated.

EXECUTING
Agents are actively working on a
request for the activity.

IDLE There is no agent actively
processing a request for the activity.

INITIALIZING
The activity has been submitted but
has not yet started running. During
the initializing state, predictive
thresholds are applied to the
activity to determine whether the
activity will be allowed to run.

Chapter 22. Deprecated routines 1255

Table 345. Information returned by WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES (continued)

Column name Data type Description

ACTIVITY_STATE (continued) VARCHAR(32) Activity state. Possible values are as follows:

QP_CANCEL_PENDING
This state is the same as the
CANCEL_PENDING state except
that the activity was cancelled by
Query Patroller rather than by the
WLM_CANCEL_ACTIVITY
procedure.

QP_QUEUED
The activity is queued by Query
Patroller.

QUEUED The activity is queued by a
workload management queuing
threshold. In a partitioned database
environment, this state might mean
that the coordinator agent has made
an RPC to the catalog partition to
obtain threshold tickets and has not
yet received a response. This state
might indicate that the activity has
been queued by a workload
management queuing threshold or,
if not much time has elapsed, can
indicate that the activity is in the
process of obtaining its tickets. To
obtain a more accurate picture of
whether the activity is being
queued, determine what agent is
working on the activity, and find
out whether the value of the
EVENT_OBJECT of the agent at the
catalog partition is WLM_QUEUE.

TERMINATING
The activity has completed running
and is being removed from the
system.

ACTIVITY_TYPE VARCHAR(32) Activity type. Possible values are as follows:

v CALL

v DDL

v LOAD

v OTHER

v READ_DML

v WRITE_DML

Refer to “Identify types of work with work
classes” in Workload Manager Guide and
Reference for a description of the different
types of SQL statements that are associated
with each activity type.

NESTING_LEVEL INTEGER Depth to which this activity is nested within
its topmost parent activity.

1256 Administrative Routines and Views

Table 345. Information returned by WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES (continued)

Column name Data type Description

INVOCATION_ID INTEGER An identifier that distinguishes one
invocation of a routine from others at the
same nesting level within a unit of work. It
is unique within a unit of work for a specific
nesting level.

ROUTINE_ID INTEGER Unique ID of the routine.

UTILITY_ID INTEGER One of the following values:

v If the activity is a utility, the value is the
ID of the utility.

v If the activity is not a utility, the value is
null.

SERVICE_CLASS_ID INTEGER Unique ID of the service class to which this
activity belongs.

DATABASE_WORK_ACTION_SET_ID INTEGER One of the following values:

v If this activity has been categorized into a
work class of database scope, the value is
the ID of the work class set of which this
work class is a member.

v If this activity has not been categorized
into a work class of database scope, the
value is null.

DATABASE_WORK_CLASS_ID INTEGER One of the following values:

v If this activity has been categorized into a
work class of database scope, the value is
the ID of the work class.

v If this activity has not been categorized
into a work class of database scope, the
value is null.

SERVICE_CLASS_WORK_ACTION_SET_ID INTEGER One of the following values:

v If this activity has been categorized into a
work class of service class scope, the
value is the ID of the work action set
associated with the work class set to
which the work class belongs.

v If this activity has not been categorized
into a work class of service class scope,
the value is null.

SERVICE_CLASS_WORK_CLASS_ID INTEGER One of the following values:

v If this activity has been categorized into a
work class of service class scope, the
value is the ID of the work class assigned
to this activity.

v If this activity has not been categorized
into a work class of service class scope,
the value is null.

Chapter 22. Deprecated routines 1257

WLM_GET_WORKLOAD_STATS - return workload statistics

Note: This table function has been deprecated and replaced by the
“WLM_GET_WORKLOAD_STATS_V97 table function - Return workload statistics”
on page 947.

This function returns workload statistics for every combination of workload name
and database partition number.

Syntax

�� WLM_GET_WORKLOAD_STATS (workload_name , dbpartitionnum) ��

The schema is SYSPROC.

Table function parameters

workload_name
An input argument of type VARCHAR(128) that specifies a specific workload
for which the statistics are to be returned. If the argument is NULL or an
empty string, statistics are returned for all workloads.

dbpartitionnum
An input argument of type INTEGER that specifies a valid partition number in
the same instance as the currently connected database when calling this
function. Specify -1 for the current database partition, or -2 for all database
partitions. If a null value is specified, -1 is set implicitly.

Authorization

EXECUTE privilege on the WLM_GET_WORKLOAD_STATS function.

Example

An administrator may want to look at the statistics for workloads. She could do so
using the following query:

SELECT SUBSTR(WORKLOAD_NAME,1,22) AS WL_DEF_NAME,
SUBSTR(CHAR(DBPARTITIONNUM),1,4) AS PART,
CONCURRENT_WLO_TOP AS WLO_TOP,
CONCURRENT_WLO_ACT_TOP AS WLO_ACT_TOP

FROM TABLE(WLM_GET_WORKLOAD_STATS(CAST(NULL AS VARCHAR(128)), -2))
AS WLSTATS

ORDER BY WL_DEF_NAME, PART

The following example is a sample output from this query.
WL_DEF_NAME PART WLO_TOP WLO_ACT_TOP
---------------------- ---- --------------- -------------------
MYUSERWORKLOAD 0 2 8
MYUSERWORKLOAD 1 0 0
SYSDEFAULTUSERWORKLOAD 0 1 1
SYSDEFAULTUSERWORKLOAD 1 0 0

Here we see that on partition 0, the highest number of concurrent occurrences of
the MYUSERWORKLOAD workload was 2 and that the highest number of
concurrent activities in either of these workload occurrences was 8.

1258 Administrative Routines and Views

Usage note

This function returns one row for every combination of workload name and
database partition number. No aggregation across workloads or across partitions or
across service classes is performed. However, aggregation can be achieved through
SQL queries.

Information returned

Table 346. Information returned by WLM_GET_WORKLOAD_STATS

Column Name Data Type Description

WORKLOAD_NAME VARCHAR(128) Name of the workload from which this record was
collected.

DBPARTITIONNUM SMALLINT Partition number from which this record was
collected

LAST_RESET TIMESTAMP Time when statistics were last reset. There are four
events that can occur that will trigger a reset of
statistics, which will update this timestamp:

v The WLM_COLLECT_STATS procedure is called.

v The periodic collection and reset process controlled
by the WLM_COLLECT_INT configuration
parameter causes a collection and reset.

v The database is reactivated.

v The workload for which statistics are being
reported was modified and the change was
committed.

The LAST_RESET timestamp is in local time.

CONCURRENT_WLO_TOP INTEGER Highest number of concurrent occurrences of the
given workload on this partition since the last reset.

CONCURRENT_WLO_ACT_TOP INTEGER Highest number of concurrent activities (including
both coordinator and nested) in either executing
(which includes idle and waiting) or queued state that
has been reached in any occurrence of this workload
since last reset. Updated by each workload occurrence
at the end of its unit of work.

COORD_ACT_COMPLETED_TOTAL BIGINT The total number of coordinator activities at any
nesting level assigned to any occurrence of this
workload that completed since the last reset. Updated
by each workload occurrence at the end of its unit of
work.

COORD_ACT_ABORTED_TOTAL BIGINT The total number of coordinator activities at any
nesting level assigned to any occurrence of this
workload that were aborted before completion since
the last reset. Updated by each workload occurrence
at the end of its unit of work.

Chapter 22. Deprecated routines 1259

Table 346. Information returned by WLM_GET_WORKLOAD_STATS (continued)

Column Name Data Type Description

COORD_ACT_REJECTED_TOTAL BIGINT The total number of coordinator activities at any
nesting level assigned to any occurrence of this
workload that were rejected before execution since the
last reset. Updated by each workload occurrence at
the end of its unit of work. Activities are counted as
rejected when they are prevented from executing by
either a prevent execution work action, or a predictive
threshold. Note that unlike the column of the same
name in the WLM_GET_SERVICE_SUBCLASS_STATS
function, this also counts rejections that occur before
an activity can be assigned to a service class. An
example of such a rejection occurs when an activity
violates the ConcurrentWorkloadOccurrences
threshold.

WLO_COMPLETED_TOTAL BIGINT The number of workload occurrences to complete
since last reset.

1260 Administrative Routines and Views

Appendix A. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:
v DB2 Information Center

– Topics (Task, concept and reference topics)
– Help for DB2 tools
– Sample programs
– Tutorials

v DB2 books
– PDF files (downloadable)
– PDF files (from the DB2 PDF DVD)
– printed books

v Command line help
– Command help
– Message help

Note: The DB2 Information Center topics are updated more frequently than either
the PDF or the hardcopy books. To get the most current information, install the
documentation updates as they become available, or refer to the DB2 Information
Center at ibm.com.

You can access additional DB2 technical information such as technotes, white
papers, and IBM Redbooks® publications online at ibm.com. Access the DB2
Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for
how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.
The DB2 documentation team reads all of your feedback, but cannot respond to
you directly. Provide specific examples wherever possible so that we can better
understand your concerns. If you are providing feedback on a specific topic or
help file, include the topic title and URL.

Do not use this e-mail address to contact DB2 Customer Support. If you have a
DB2 technical issue that the documentation does not resolve, contact your local
IBM service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications
Center at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.
English Version 9.7 manuals in PDF format can be downloaded from
www.ibm.com/support/docview.wss?uid=swg27015148 and translated DB2
manuals in PDF format can be downloaded from www.ibm.com/support/
docview.wss?uid=swg27015149.

© Copyright IBM Corp. 2006, 2012 1261

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27015148
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27015149
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27015149

Although the tables identify books available in print, the books might not be
available in your country or region.

The form number increases each time a manual is updated. Ensure that you are
reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF
or the hard-copy books.

Table 347. DB2 technical information

Name Form Number Available in print Last updated

Administrative API
Reference

SC27-2435-03 Yes July, 2012

Administrative Routines
and Views

SC27-2436-03 No July, 2012

Call Level Interface
Guide and Reference,
Volume 1

SC27-2437-03 Yes July, 2012

Call Level Interface
Guide and Reference,
Volume 2

SC27-2438-03 Yes July, 2012

Command Reference SC27-2439-03 Yes July, 2012

Data Movement Utilities
Guide and Reference

SC27-2440-01 Yes July, 2012

Data Recovery and High
Availability Guide and
Reference

SC27-2441-03 Yes July, 2012

Database Administration
Concepts and
Configuration Reference

SC27-2442-03 Yes July, 2012

Database Monitoring
Guide and Reference

SC27-2458-03 Yes July, 2012

Database Security Guide SC27-2443-02 Yes July, 2012

DB2 Text Search Guide SC27-2459-03 Yes July, 2012

Developing ADO.NET
and OLE DB
Applications

SC27-2444-02 Yes July, 2012

Developing Embedded
SQL Applications

SC27-2445-02 Yes July, 2012

Developing Java
Applications

SC27-2446-03 Yes July, 2012

Developing Perl, PHP,
Python, and Ruby on
Rails Applications

SC27-2447-02 No July, 2012

Developing User-defined
Routines (SQL and
External)

SC27-2448-02 Yes July, 2012

Getting Started with
Database Application
Development

GI11-9410-02 Yes July, 2012

1262 Administrative Routines and Views

Table 347. DB2 technical information (continued)

Name Form Number Available in print Last updated

Getting Started with
DB2 Installation and
Administration on Linux
and Windows

GI11-9411-00 Yes August, 2009

Globalization Guide SC27-2449-00 Yes August, 2009

Installing DB2 Servers GC27-2455-03 Yes July, 2012

Installing IBM Data
Server Clients

GC27-2454-02 No July, 2012

Message Reference
Volume 1

SC27-2450-01 No August, 2009

Message Reference
Volume 2

SC27-2451-01 No August, 2009

Net Search Extender
Administration and
User's Guide

SC27-2469-02 No September, 2010

Partitioning and
Clustering Guide

SC27-2453-02 Yes July, 2012

pureXML Guide SC27-2465-02 Yes July, 2012

Query Patroller
Administration and
User's Guide

SC27-2467-00 No August, 2009

Spatial Extender and
Geodetic Data
Management Feature
User's Guide and
Reference

SC27-2468-02 No July, 2012

SQL Procedural
Languages: Application
Enablement and Support

SC27-2470-03 Yes July, 2012

SQL Reference, Volume 1 SC27-2456-03 Yes July, 2012

SQL Reference, Volume 2 SC27-2457-03 Yes July, 2012

Troubleshooting and
Tuning Database
Performance

SC27-2461-03 Yes July, 2012

Upgrading to DB2
Version 9.7

SC27-2452-03 Yes July, 2012

Visual Explain Tutorial SC27-2462-00 No August, 2009

What's New for DB2
Version 9.7

SC27-2463-03 Yes July, 2012

Workload Manager
Guide and Reference

SC27-2464-03 Yes July, 2012

XQuery Reference SC27-2466-01 No November, 2009

Appendix A. Overview of the DB2 technical information 1263

Table 348. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

Installing and
Configuring DB2
Connect Personal Edition

SC27-2432-03 Yes July, 2012

Installing and
Configuring DB2
Connect Servers

SC27-2433-03 Yes July, 2012

DB2 Connect User's
Guide

SC27-2434-02 Yes September, 2010

Table 349. Information Integration technical information

Name Form Number Available in print Last updated

Information Integration:
Administration Guide for
Federated Systems

SC19-1020-02 Yes August, 2009

Information Integration:
ASNCLP Program
Reference for Replication
and Event Publishing

SC19-1018-04 Yes August, 2009

Information Integration:
Configuration Guide for
Federated Data Sources

SC19-1034-02 No August, 2009

Information Integration:
SQL Replication Guide
and Reference

SC19-1030-02 Yes August, 2009

Information Integration:
Introduction to
Replication and Event
Publishing

GC19-1028-02 Yes August, 2009

Ordering printed DB2 books

About this task

If you require printed DB2 books, you can buy them online in many but not all
countries or regions. You can always order printed DB2 books from your local IBM
representative. Keep in mind that some softcopy books on the DB2 PDF
Documentation DVD are unavailable in print. For example, neither volume of the
DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF
Documentation DVD can be ordered for a fee from IBM. Depending on where you
are placing your order from, you may be able to order books online, from the IBM
Publications Center. If online ordering is not available in your country or region,
you can always order printed DB2 books from your local IBM representative. Note
that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the
DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r7.

1264 Administrative Routines and Views

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7

To order printed DB2 books:

Procedure
v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access
publication ordering information and then follow the ordering instructions for
your location.

v To order printed DB2 books from your local IBM representative:
1. Locate the contact information for your local representative from one of the

following websites:
– The IBM directory of world wide contacts at www.ibm.com/planetwide
– The IBM Publications website at http://www.ibm.com/shop/

publications/order. You will need to select your country, region, or
language to the access appropriate publications home page for your
location. From this page, follow the "About this site" link.

2. When you call, specify that you want to order a DB2 publication.
3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical
library in hardcopy or PDF format” on page 1261.

Displaying SQL state help from the command line processor
DB2 products return an SQLSTATE value for conditions that can be the result of an
SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state
class codes.

Procedure

To start SQL state help, open the command line processor and enter:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the
first two digits of the SQL state.
For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help
for the 08 class code.

Accessing different versions of the DB2 Information Center
About this task

For DB2 Version 9.8 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r8/.

For DB2 Version 9.7 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r7/.

For DB2 Version 9.5 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r5.

For DB2 Version 9.1 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

Appendix A. Overview of the DB2 technical information 1265

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the DB2 Information Center URL at:
http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

Displaying topics in your preferred language in the DB2 Information
Center

About this task

The DB2 Information Center attempts to display topics in the language specified in
your browser preferences. If a topic has not been translated into your preferred
language, the DB2 Information Center displays the topic in English.

Procedure
v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...
button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of
languages.
– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the
fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the
Move Up button until the language is first in the list of languages.

3. Refresh the page to display the DB2 Information Center in your preferred
language.

v To display topics in your preferred language in a Firefox or Mozilla browser:
1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences
window.

2. Ensure your preferred language is specified as the first entry in the list of
languages.
– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.
– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Refresh the page to display the DB2 Information Center in your preferred

language.

Results

On some browser and operating system combinations, you must also change the
regional settings of your operating system to the locale and language of your
choice.

Updating the DB2 Information Center installed on your computer or
intranet server

A locally installed DB2 Information Center must be updated periodically.

1266 Administrative Routines and Views

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Before you begin

A DB2 Version 9.7 Information Center must already be installed. For details, see
the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in
Installing DB2 Servers. All prerequisites and restrictions that applied to installing
the Information Center also apply to updating the Information Center.

About this task

An existing DB2 Information Center can be updated automatically or manually:
v Automatic updates - updates existing Information Center features and

languages. An additional benefit of automatic updates is that the Information
Center is unavailable for a minimal period of time during the update. In
addition, automatic updates can be set to run as part of other batch jobs that run
periodically.

v Manual updates - should be used when you want to add features or languages
during the update process. For example, a local Information Center was
originally installed with both English and French languages, and now you want
to also install the German language; a manual update will install German, as
well as, update the existing Information Center features and languages.
However, a manual update requires you to manually stop, update, and restart
the Information Center. The Information Center is unavailable during the entire
update process.

This topic details the process for automatic updates. For manual update
instructions, see the “Manually updating the DB2 Information Center installed on
your computer or intranet server” topic.

Procedure

To automatically update the DB2 Information Center installed on your computer or
intranet server:
1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,
the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the update-ic script:

update-ic

2. On Windows operating systems,
a. Open a command window.
b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2
Information Center\Version 9.7 directory, where <Program Files>
represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the update-ic.bat file:

update-ic.bat

Results

The DB2 Information Center restarts automatically. If updates were available, the
Information Center displays the new and updated topics. If Information Center

Appendix A. Overview of the DB2 technical information 1267

updates were not available, a message is added to the log. The log file is located in
doc\eclipse\configuration directory. The log file name is a randomly generated
number. For example, 1239053440785.log.

Manually updating the DB2 Information Center installed on your
computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install
documentation updates from IBM.

About this task

Updating your locally-installed DB2 Information Center manually requires that you:
1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone
mode prevents other users on your network from accessing the Information
Center, and allows you to apply updates. The Workstation version of the DB2
Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates
that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center
updates on a machine that is not connected to the internet, mirror the update
site to a local file system using a machine that is connected to the internet and
has the DB2 Information Center installed. If many users on your network will be
installing the documentation updates, you can reduce the time required for
individuals to perform the updates by also mirroring the update site locally
and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.
However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information Center
on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later
in this section must be run as an administrator. To open a command prompt or
graphical tool with full administrator privileges, right-click the shortcut and then
select Run as administrator.

Procedure

To update the DB2 Information Center installed on your computer or intranet server:
1. Stop the DB2 Information Center.

v On Windows, click Start > Control Panel > Administrative Tools > Services.
Then right-click DB2 Information Center service and select Stop.

v On Linux, enter the following command:
/etc/init.d/db2icdv97 stop

2. Start the Information Center in stand-alone mode.
v On Windows:

a. Open a command window.
b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

1268 Administrative Routines and Views

Program_Files\IBM\DB2 Information Center\Version 9.7 directory,
where Program_Files represents the location of the Program Files
directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the help_start.bat file:

help_start.bat

v On Linux:
a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information
Center.

3. Click the Update button (). (JavaScript must be enabled in your browser.)
On the right panel of the Information Center, click Find Updates. A list of
updates for existing documentation displays.

4. To initiate the installation process, check the selections you want to install, then
click Install Updates.

5. After the installation process has completed, click Finish.
6. Stop the stand-alone Information Center:

v On Windows, navigate to the installation directory's doc\bin directory, and
run the help_end.bat file:
help_end.bat

Note: The help_end batch file contains the commands required to safely stop
the processes that were started with the help_start batch file. Do not use
Ctrl-C or any other method to stop help_start.bat.

v On Linux, navigate to the installation directory's doc/bin directory, and run
the help_end script:
help_end

Note: The help_end script contains the commands required to safely stop the
processes that were started with the help_start script. Do not use any other
method to stop the help_start script.

7. Restart the DB2 Information Center.
v On Windows, click Start > Control Panel > Administrative Tools > Services.

Then right-click DB2 Information Center service and select Start.
v On Linux, enter the following command:

/etc/init.d/db2icdv97 start

Results

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials
The DB2 tutorials help you learn about various aspects of DB2 products. Lessons
provide step-by-step instructions.

Appendix A. Overview of the DB2 technical information 1269

Before you begin

You can view the XHTML version of the tutorial from the Information Center at
http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any
prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML” in pureXML Guide
Set up a DB2 database to store XML data and to perform basic operations
with the native XML data store.

“Visual Explain” in Visual Explain Tutorial
Analyze, optimize, and tune SQL statements for better performance using
Visual Explain.

DB2 troubleshooting information
A wide variety of troubleshooting and problem determination information is
available to assist you with using DB2 database products.

DB2 documentation
Troubleshooting information can be found in the Troubleshooting and Tuning
Database Performance or the Database fundamentals section of the DB2
Information Center. The troubleshooting information contains topics that can
help you isolate and identify problems with DB2 diagnostic tools and
utilities. There are also solutions to some of the most common problems
and advice on how to solve problems you might encounter with your DB2
database products.

IBM Support Portal
See the IBM Support Portal if you are experiencing problems and want
help finding possible causes and solutions. The Technical Support site has
links to the latest DB2 publications, TechNotes, Authorized Program
Analysis Reports (APARs or bug fixes), fix packs, and other resources. You
can search through this knowledge base to find possible solutions to your
problems.

Access the IBM Support Portal at http://www.ibm.com/support/entry/
portal/Overview/Software/Information_Management/
DB2_for_Linux,_UNIX_and_Windows.

Terms and Conditions
Permissions for the use of these publications is granted subject to the following
terms and conditions.

Personal use: You may reproduce these Publications for your personal, non
commercial use provided that all proprietary notices are preserved. You may not
distribute, display or make derivative work of these Publications, or any portion
thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications
solely within your enterprise provided that all proprietary notices are preserved.

1270 Administrative Routines and Views

http://publib.boulder.ibm.com/infocenter/db2luw/v9
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows

You may not make derivative works of these Publications, or reproduce, distribute
or display these Publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the Publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the Publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Appendix A. Overview of the DB2 technical information 1271

1272 Administrative Routines and Views

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
Information about non-IBM products is based on information available at the time
of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information about the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements,
changes, or both in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2006, 2012 1273

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Canada Limited
U59/3600
3600 Steeles Avenue East
Markham, Ontario L3R 9Z7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems, and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

1274 Administrative Routines and Views

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies
v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.
v Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Oracle, its affiliates, or both.
v UNIX is a registered trademark of The Open Group in the United States and

other countries.
v Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

v Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix B. Notices 1275

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

1276 Administrative Routines and Views

Index

A
ADD CONTACT command

using ADMIN_CMD 37
ADD CONTACTGROUP command

using ADMIN_CMD 38
ADMIN_CMD procedure

commands
ADD CONTACT 37
ADD CONTACTGROUP 38
AUTOCONFIGURE 40
BACKUP DATABASE 43
DESCRIBE 51
DROP CONTACT 64
DROP CONTACTGROUP 65
EXPORT 66
FORCE APPLICATION 76
GET STMM TUNING DBPARTITIONNUM 77
IMPORT 79
INITIALIZE TAPE 103
LOAD 104
PRUNE HISTORY/LOGFILE 142
QUIESCE DATABASE 144
QUIESCE TABLESPACES FOR TABLE 145
REDISTRIBUTE DATABASE PARTITION GROUP 148
REORG INDEXES/TABLE 157
RESET ALERT CONFIGURATION 173
RESET DATABASE CONFIGURATION 174
RESET DATABASE MANAGER

CONFIGURATION 176
REWIND TAPE 177
RUNSTATS 178
SET TAPE POSITION 190
UNQUIESCE DATABASE 191
UPDATE ALERT CONFIGURATION 192
UPDATE CONTACT 197
UPDATE CONTACTGROUP 198
UPDATE DATABASE CONFIGURATION 199
UPDATE DATABASE MANAGER

CONFIGURATION 202
UPDATE HEALTH NOTIFICATION CONTACT

LIST 204
UPDATE HISTORY 205
UPDATE STMM TUNING DBPARTITIONNUM 207

details 35
messages

removing 221
retrieving 219

ADMIN_COPY_SCHEMA procedure
details 957

ADMIN_DROP_SCHEMA procedure
details 961

ADMIN_EST_INLINE_LENGTH function
details 208

admin_get_dbp_mem_usage table function 210
ADMIN_GET_INDEX_COMPRESS_INFO table function 212
ADMIN_GET_INDEX_INFO table function 215
ADMIN_GET_MSGS table function 219
ADMIN_GET_TAB_COMPRESS_INFO table function

details 1035
ADMIN_GET_TAB_COMPRESS_INFO_V97 table

function 225

ADMIN_GET_TAB_INFO table function
details 1028

ADMIN_GET_TAB_INFO_V97 table function 232
ADMIN_GET_TEMP_COLUMNS table function 241
ADMIN_GET_TEMP_TABLES table function 244
ADMIN_IS_INLINED function

details 220
ADMIN_MOVE_TABLE procedure

details 963
ADMIN_MOVE_TABLE_UTIL procedure 981
ADMIN_REMOVE_MSGS procedure 221
ADMIN_REVALIDATE_DB_OBJECTS procedure 222
ADMIN_TASK_ADD procedure 249
ADMIN_TASK_LIST administrative view 254
ADMIN_TASK_REMOVE procedure 255
ADMIN_TASK_STATUS administrative view 257
ADMIN_TASK_UPDATE procedure 258
administrative SQL routines

summary 5
administrative task scheduler

defining task schedules 252
administrative views

ADMIN_TASK_LIST 254
ADMIN_TASK_STATUS 257
ADMINTABCOMPRESSINFO 225
ADMINTABINFO 232
ADMINTEMPCOLUMNS 241
ADMINTEMPTABLES 244
APPL_PERFORMANCE

details 567
APPLICATIONS 568
authorization 2
AUTHORIZATIONIDS

details 563
BP_HITRATIO

details 572
BP_READ_IO

details 574
BP_WRITE_IO

details 576
comparison to table functions 3
CONTACTGROUPS 989
CONTACTS 990
CONTAINER_UTILIZATION 577
DB_HISTORY

details 991
DBCFG 324
DBMCFG 326
DBPATHS 996
ENV_FEATURE_INFO 331
ENV_INST_INFO 336
ENV_PROD_INFO 338
ENV_SYS_INFO 339
ENV_SYS_RESOURCES 1040
LOCKS_HELD 579
LOCKWAIT 582
LOG_UTILIZATION 585
LONG_RUNNING_SQL

details 587
MON_BP_UTILIZATION 373
MON_CONNECTION_SUMMARY 379

© Copyright IBM Corp. 2006, 2012 1277

administrative views (continued)
MON_CURRENT_SQL 383
MON_CURRENT_UOW 384
MON_DB_SUMMARY 386
MON_LOCKWAITS 520
MON_PKG_CACHE_SUMMARY 522
MON_SERVICE_SUBCLASS_SUMMARY 524
MON_TBSP_UTILIZATION 527
MON_WORKLOAD_SUMMARY 531
NOTIFICATIONLIST 1001
OBJECTOWNERS

details 564
overview 1
PDLOGMSGS_LAST24HOURS 1009
PRIVILEGES

details 565
QUERY_PREP_COST

details 590
REG_VARIABLES 328
SNAPAGENT 591, 720
SNAPAGENT_MEMORY

_POOL 724, 1087, 1162
SNAPAPPL 602, 735
SNAPAPPL_INFO 594, 728
SNAPBP 610, 743
SNAPBP_PART 615, 748
SNAPCONTAINER 619, 752
SNAPDB 623, 756, 1137
SNAPDB_MEMORY_POOL 1117, 1166
SNAPDBM 634, 768
SNAPDBM_MEMORY_POOL 1124, 1170
SNAPDETAILLOG 639, 772
SNAPDYN_SQL 642, 775
SNAPFCM 647, 781
SNAPFCM_PART 650, 783
SNAPHADR 653, 786
SNAPLOCK 657, 790, 1174
SNAPLOCKWAIT 662, 795, 1179
SNAPSTMT 668, 801
SNAPSTORAGE_PATHS 674, 807
SNAPSUBSECTION 677, 810
SNAPSWITCHES 681, 814
SNAPTAB 684, 818
SNAPTAB_REORG 688, 821
SNAPTBSP 693, 827
SNAPTBSP_QUIESCER 704, 838
SNAPTBSP_RANGE 708, 842
SNAPTBSPPART 699, 833
SNAPUTIL 712, 846
SNAPUTIL_PROGRESS 716, 850
summary 5
TBSP_UTILIZATION 854
TOP_DYNAMIC_SQL

details 857
ADMINTABCOMPRESSINFO administrative view 225, 1035
ADMINTABINFO administrative view 232
ADMINTEMPCOLUMNS administrative view 241
ADMINTEMPTABLES administrative view 244
ALTER_ROUTINE_PACKAGE procedure 859
ALTOBJ procedure 983
AM_BASE_RPT_RECOMS table function 21
AM_BASE_RPTS table function 22
AM_DROP_TASK procedure 23
AM_GET_LOCK_CHN_TB procedure 23
AM_GET_LOCK_CHNS procedure 24
AM_GET_LOCK_RPT procedure 25
AM_GET_RPT procedure 32

AM_SAVE_TASK procedure 33
ANALYZE_LOG_SPACE procedure 867
APPL_PERFORMANCE administrative view 567
APPLICATION_ID scalar function 986
APPLICATIONS administrative view 568
AUDIT_ARCHIVE stored procedure and table function

details 261
AUDIT_DELIM_EXTRACT stored procedure

details 262
AUDIT_LIST_LOGS table function

details 263
AUTH_GET_INSTANCE_AUTHID scalar function 555
AUTH_LIST_AUTHORITIES_FOR_AUTHID table

function 556
AUTH_LIST_GROUPS_FOR_AUTHID table function 560
AUTH_LIST_ROLES_FOR_AUTHID function 561
authorization IDs

instance owner 555
AUTHORIZATIONIDS administrative view 563
authorizations

administrative views 2
authorization IDs

retrieving 563
group membership

retrieving 560
AUTOCONFIGURE command

using ADMIN_CMD 40
AUTOMAINT_GET_POLICY stored procedure 265
AUTOMAINT_GET_POLICYFILE stored procedure 266
AUTOMAINT_SET_POLICY stored procedure 267
AUTOMAINT_SET_POLICYFILE stored procedure 268

B
BACKUP DATABASE command

using ADMIN_CMD 43
books

ordering 1266
BP_HITRATIO administrative view 572
BP_READ_IO administrative view 574
BP_WRITE_IO administrative view 576
built-in routines

coding practices 1

C
CANCEL_WORK stored procedure 277
CAPTURE_STORAGEMGMT_INFO procedure 877
commands

ADD CONTACT 37
ADD CONTACTGROUP 38
AUTOCONFIGURE 40
BACKUP DATABASE 43
calling from procedure 35, 881
DESCRIBE

details 51
DROP CONTACT 64
DROP CONTACTGROUP 65
EXPORT 66
FORCE APPLICATION 76
GET STMM TUNING DBPARTITIONNUM 77
IMPORT 79
INITIALIZE TAPE 103
LOAD 104
PRUNE HISTORY/LOGFILE 142
QUIESCE DATABASE 144

1278 Administrative Routines and Views

commands (continued)
QUIESCE TABLESPACES FOR TABLE 145
REDISTRIBUTE DATABASE PARTITION GROUP 148
REORG INDEXES/TABLE 157
RESET ALERT CONFIGURATION 173
RESET DATABASE CONFIGURATION 174
RESET DATABASE MANAGER CONFIGURATION 176
REWIND TAPE 177
RUNSTATS

details 178
SET TAPE POSITION 190
UNQUIESCE DATABASE 191
UPDATE ALERT CONFIGURATION 192
UPDATE CONTACT 197
UPDATE CONTACTGROUP 198
UPDATE DATABASE CONFIGURATION 199
UPDATE DATABASE MANAGER CONFIGURATION 202
UPDATE HEALTH NOTIFICATION CONTACT LIST 204
UPDATE HISTORY 205
UPDATE STMM TUNING DBPARTITIONNUM 207

common SQL API stored procedures
complete mode 273
filtering output 275
overview 271
signature 271
stored procedures 272
XML input documents 273
XML message documents 276
XML output files 274

COMPILATION_ENV table function 986
complete mode 273
configuration parameters

database
retrieving 324

getting 290
setting with SET_CONFIG procedure 311

CONTACTGROUPS administrative view 989
contacts

retrieving contact group lists 989
retrieving contact lists 990

CONTACTS administrative view 990
CONTAINER_UTILIZATION administrative view 577
CREATE_STORAGEMGMT_TABLES procedure 879

D
database manager configuration parameters

retrieving values 326
database paths

retrieving 996
DB_HISTORY administrative view

details 991
DB_PARTITIONS table function 323
DB2 Information Center

languages 1268
updating 1269, 1270
versions 1267

DBCFG administrative view 324
DBMCFG administrative view 326
DBPATHS administrative view 996
deprecated functionality

administrative views
SNAPAGENT_MEMORY

_POOL 724, 1087, 1162
SNAPDB_MEMORY_POOL 1117, 1166
SNAPDBM_MEMORY_POOL 1124, 1170
SNAPTAB 684, 818

deprecated functionality (continued)
procedures

GET_DB_CONFIG 1043
HEALTH_CONT_HI 1045
HEALTH_CONT_HI_HIS 1047
HEALTH_CONT_INFO 1049
HEALTH_DB_HI 1051
HEALTH_DB_HI_HIS 1054
HEALTH_DB_HIC 1058
HEALTH_DB_HIC_HIS 1060
HEALTH_DB_INFO 1062
HEALTH_DBM_HI 1064
HEALTH_DBM_HI_HIS 1065
HEALTH_DBM_INFO 1068
HEALTH_GET_ALERT_ACTION_CFG 1069
HEALTH_GET_ALERT_CFG 1072
HEALTH_GET_IND_DEFINITION 1075
HEALTH_HI_REC 1077
HEALTH_TBS_HI 1079
HEALTH_TBS_HI_HIS 1082
HEALTH_TBS_INFO 1086
SNAPSHOT_FILEW 1210
SYSINSTALLROUTINES 1231
WLM_GET_SERVICE_SUBCLASS_STATS 1248
WLM_GET_WORKLOAD_STATS 1259

SQL administrative routines 1025
table functions

GET_DBM_CONFIG 1044
SNAP_GET_AGENT_MEMORY_POOL 724, 1087, 1162
SNAP_GET_APP 1091
SNAP_GET_BP 1105
SNAP_GET_CONTAINER 1108
SNAP_GET_DB 1110
SNAP_GET_DB_MEMORY_POOL 1117, 1166
SNAP_GET_DB_V91 1127
SNAP_GET_DBM 1121
SNAP_GET_DBM_MEMORY_POOL 1124, 1170
SNAP_GET_DYN_SQL 1152
SNAP_GET_STO_PATHS 1154
SNAP_GET_TAB 1155
SNAP_GET_TAB_V91 684, 818
SNAP_GET_TBSP 1157
SNAP_GET_TBSP_PART 1160
SNAP_GET_TBSP_PART_V91 833
SNAPSHOT_AGENT 1185
SNAPSHOT_APPL 1186
SNAPSHOT_APPL_INFO 1192
SNAPSHOT_BP 1194
SNAPSHOT_CONTAINER 1196
SNAPSHOT_DATABASE 1198
SNAPSHOT_DBM 1203
SNAPSHOT_DYN_SQL 1206
SNAPSHOT_FCM 1207
SNAPSHOT_FCMNODE 1209
SNAPSHOT_LOCK 1211
SNAPSHOT_LOCKWAIT 1212
SNAPSHOT_QUIESCERS 1214
SNAPSHOT_RANGES 1215
SNAPSHOT_STATEMENT 1216
SNAPSHOT_SUBSECT 1219
SNAPSHOT_SWITCHES 1220
SNAPSHOT_TABLE 1222
SNAPSHOT_TBREORG 1223
SNAPSHOT_TBS 1225
SNAPSHOT_TBS_CFG 1227
SNAPSTORAGE_PATHS 807
SQLCACHE_SNAPSHOT 1229

Index 1279

DESCRIBE command
details 51

Design Advisor
details

DESIGN_ADVISOR stored procedure 283
DESIGN_ADVISOR procedure 283
documentation

overview 1263
PDF files 1263
printed 1263
terms and conditions of use 1272

DROP CONTACT command
details

using ADMIN_CMD 64
DROP CONTACTGROUP command

details
using ADMIN_CMD 65

DROP_STORAGEMGMT_TABLES procedure 880
dropping

schemas and their objects 961

E
ENV_FEATURE_INFO administrative view 331
ENV_GET_DB2_SYSTEM_RESOURCES 332
ENV_GET_NETWORK_RESOURCES 333
ENV_GET_SYSTEM_RESOURCES table function 334
ENV_INST_INFO administrative view 336
ENV_PROD_INFO administrative view 338
ENV_SYS_INFO administrative view 339
ENV_SYS_RESOURCES administrative view 1040
error messages

retrieving
SQLERRM scalar functions 1020

EVMON_FORMAT_UE_TO_TABLES procedure 361
EVMON_FORMAT_UE_TO_XML table function 369
EXPLAIN_FORMAT_STATS scalar function 343
EXPLAIN_FROM_ACTIVITY procedure 348
EXPLAIN_FROM_CATALOG procedure 351
EXPLAIN_FROM_DATA procedure 353
EXPLAIN_FROM_SECTION procedure 355
EXPLAIN_GET_MSGS table function 341
EXPORT command

details
using ADMIN_CMD 66

extents
movement status 446

F
FORCE APPLICATION command

using ADMIN_CMD 76
functions

scalar
APPLICATION_ID 986
AUTH_GET_INSTANCE_AUTHID 555
EXPLAIN_FORMAT_STATS 343
GET_ROUTINE_OPTS 860
MQPUBLISH 535
MQREAD 536
MQREADCLOB 542
MQRECEIVE 543
MQRECEIVECLOB 549
MQSEND 550
MQSUBSCRIBE 552
MQUNSUBSCRIBE 553

functions (continued)
scalar (continued)

SQLERRM 1020
stored procedures

SYSTS_ALTER 882
SYSTS_CLEAR_COMMANDLOCKS 887
SYSTS_CLEAR_EVENTS 889
SYSTS_DROP 901
SYSTS_ENABLE 903
SYSTS_UPDATE 905

summary 5
table

ADMIN_GET_MSGS 219
ADMIN_GET_TAB_COMPRESS_INFO 1035
ADMIN_GET_TAB_COMPRESS_INFO_V97 225
ADMIN_GET_TAB_INFO 1028
ADMIN_GET_TAB_INFO_V97 232
ADMIN_GET_TEMP_COLUMNS 241
ADMIN_GET_TEMP_TABLES 244
ADMIN_IS_INLINED 220
ADMIN_IS_INLINED_LENGTH 208
AM_BASE_RPT_RECOMS 21
AM_BASE_RPTS 22
AUDIT_ARCHIVE 261
AUDIT_LIST_LOGS 263
AUTH_LIST_AUTHORITIES_FOR_AUTHID 556
AUTH_LIST_GROUPS_FOR_AUTHID 560
AUTH_LIST_ROLES_FOR_AUTHID 561
COMPILATION_ENV 986
DB_PARTITIONS 323
deprecated 1025
ENV_GET_DB2_SYSTEM_RESOURCES 332
ENV_GET_NETWORK_RESOURCES 333
ENV_GET_SYSTEM_RESOURCES 334
EVMON_FORMAT_UE_TO_XML 369
EXPLAIN_GET_MSGS 341
GET_DB_CONFIG 1043
GET_DBM_CONFIG 1044
HEALTH_CONT_HI 1045
HEALTH_CONT_HI_HIS 1047
HEALTH_CONT_INFO 1049
HEALTH_DB_HI 1051
HEALTH_DB_HI_HIS 1054
HEALTH_DB_HIC 1058
HEALTH_DB_HIC_HIS 1060
HEALTH_DB_INFO 1062
HEALTH_DBM_HI 1064
HEALTH_DBM_HI_HIS 1065
HEALTH_DBM_INFO 1068
HEALTH_GET_ALERT_ACTION_CFG 1069
HEALTH_GET_ALERT_CFG 1072
HEALTH_GET_IND_DEFINITION 1075
HEALTH_TBS_HI 1079
HEALTH_TBS_HI_HIS 1082
HEALTH_TBS_INFO 1086
MON_GET_ACTIVITY_DETAILS 413
MON_GET_BUFFERPOOL 426
MON_GET_CONNECTION 430
MON_GET_CONNECTION_DETAILS 436
MON_GET_CONTAINER 443
MON_GET_EXTENT_MOVEMENT_STATUS 446
MON_GET_FCM 447
MON_GET_FCM_CONNECTION_LIST 449
MON_GET_INDEX 450
MON_GET_PKG_CACHE_STMT 461
MON_GET_SERVICE_SUBCLASS 474
MON_GET_SERVICE_SUBCLASS_DETAILS 480

1280 Administrative Routines and Views

functions (continued)
table (continued)

MON_GET_TABLE 487
MON_GET_TABLESPACE 490
MON_GET_UNIT_OF_WORK 494
MON_GET_UNIT_OF_WORK_DETAILS 500
MON_GET_WORKLOAD 508
MON_GET_WORKLOAD_DETAILS 513
MQREADALL 538
MQREADALLCLOB 540
MQRECEIVEALL 544
MQRECEIVEALLCLOB 546
overview 1
PD_GET_DIAG_HIST 1002
PD_GET_LOG_MSGS 1009
SNAP_GET_AGENT 591, 720
SNAP_GET_AGENT_MEMORY

_POOL 724, 1087, 1162
SNAP_GET_APPL 1091
SNAP_GET_APPL_INFO 1098
SNAP_GET_APPL_INFO_V95 594, 728
SNAP_GET_APPL_V95 602, 735
SNAP_GET_BP 1105
SNAP_GET_BP_PART 615, 748
SNAP_GET_BP_V95 610, 743
SNAP_GET_CONTAINER (deprecated) 1108
SNAP_GET_CONTAINER_V91 619, 752
SNAP_GET_DB (deprecated) 1110
SNAP_GET_DB_MEMORY_POOL 1117, 1166
SNAP_GET_DB_V91 1127
SNAP_GET_DB_V95 756, 1137
SNAP_GET_DBM 1121
SNAP_GET_DBM_MEMORY_POOL 1124, 1170
SNAP_GET_DBM_V95 634, 768
SNAP_GET_DETAIL_LOG_V91 639, 772
SNAP_GET_DYN_SQL (deprecated) 1152
SNAP_GET_DYN_SQL_V91 1149
SNAP_GET_DYN_SQL_V95 642, 775
SNAP_GET_FCM 647, 781
SNAP_GET_FCM_PART 650, 783
SNAP_GET_HADR 653, 786
SNAP_GET_LOCK 657, 790, 1174
SNAP_GET_LOCKWAIT 662, 795, 1179
SNAP_GET_STMT 668, 801
SNAP_GET_STO_PATHS (deprecated) 1154
SNAP_GET_STORAGE_PATHS 807
SNAP_GET_STORAGE_PATHS_V97 674
SNAP_GET_SUBSECTION 677, 810
SNAP_GET_SWITCHES 681, 814
SNAP_GET_TAB (deprecated) 1155
SNAP_GET_TAB_REORG 688, 821
SNAP_GET_TAB_V91 684, 818
SNAP_GET_TBSP (deprecated) 1157
SNAP_GET_TBSP_PART (deprecated) 1160
SNAP_GET_TBSP_PART_V91 833
SNAP_GET_TBSP_PART_V97 699
SNAP_GET_TBSP_QUIESCER 704, 838
SNAP_GET_TBSP_RANGE 708, 842
SNAP_GET_TBSP_V91 693, 827
SNAP_GET_UTIL 712, 846
SNAP_GET_UTIL_PROGRESS 716, 850
SNAPSHOT_AGENT (deprecated) 1185
SNAPSHOT_APPL (deprecated) 1186
SNAPSHOT_APPL_INFO (deprecated) 1192
SNAPSHOT_BP (deprecated) 1194
SNAPSHOT_CONTAINER (deprecated) 1196
SNAPSHOT_DATABASE (deprecated) 1198

functions (continued)
table (continued)

SNAPSHOT_DBM (deprecated) 1203
SNAPSHOT_DYN_SQL (deprecated) 1206
SNAPSHOT_FCM (deprecated) 1207
SNAPSHOT_FCMNODE (deprecated) 1209
SNAPSHOT_LOCK (deprecated) 1211
SNAPSHOT_LOCKWAIT (deprecated) 1212
SNAPSHOT_QUIESCERS (deprecated) 1214
SNAPSHOT_RANGES (deprecated) 1215
SNAPSHOT_STATEMENT (deprecated) 1216
SNAPSHOT_SUBSECT (deprecated) 1219
SNAPSHOT_SWITCHES (deprecated) 1220
SNAPSHOT_TABLE (deprecated) 1222
SNAPSHOT_TBREORG (deprecated) 1223
SNAPSHOT_TBS (deprecated) 1225
SNAPSHOT_TBS_CFG (deprecated) 1227
SQLCACHE_SNAPSHOT (deprecated) 1229
summary 5
versus administrative views 3
WLM_GET_ACTIVITY_DETAILS 1231
WLM_GET_CONN_ENV 913
WLM_GET_QUEUE_STATS 915
WLM_GET_SERVICE_CLASS_AGENTS 1238
WLM_GET_SERVICE_CLASS_AGENTS_V97 919
WLM_GET_SERVICE_CLASS_WORKLOAD

_OCCURRENCES_V97 927
WLM_GET_SERVICE_CLASS_WORKLOAD_

OCCURRENCES 1244
WLM_GET_SERVICE_SUBCLASS_STATS 1248
WLM_GET_SERVICE_SUBCLASS_STATS_V97 931
WLM_GET_SERVICE_SUPERCLASS_STATS 938
WLM_GET_WORK_ACTION_SET_STATS 940
WLM_GET_WORKLOAD_OCCURRENCE

_ACTIVITIES_V97 942
WLM_GET_WORKLOAD_OCCURRENCE_

ACTIVITIES 1254
WLM_GET_WORKLOAD_STATS 1259
WLM_GET_WORKLOAD_STATS_V97 947

table functions
MON_FORMAT_XML_COMPONENT_TIMES

_BY_ROW 392
MON_FORMAT_XML_METRICS_BY_ROW 396
MON_FORMAT_XML_TIMES_BY_ROW 404
MON_FORMAT_XML_WAIT_TIMES_BY_ROW 409
MON_GET_PKG_CACHE_STMT_DETAILS 467
SNAP_GET_DB_V97 623

G
GENERATE_DISTFILE procedure 869
GET STMM TUNING DBPARTITIONNUM command 77
GET_CONFIG stored procedure 290
GET_DB_CONFIG table function 1043
GET_DBM_CONFIG table function 1044
GET_DBSIZE_INFO procedure 999
GET_MESSAGE stored procedure 297
GET_ROUTINE_OPTS scalar function 860
GET_ROUTINE_SAR procedure 860
GET_SWRD_SETTINGS procedure 870
GET_SYSTEM_INFO stored procedure 304
groups

retrieving group membership 560

Index 1281

H
health alerts

alert action configuration 1069
alert configuration 1072

health indicators
retrieving definitions 1075

HEALTH_CONT_HI table function 1045
HEALTH_CONT_HI_HIS table function 1047
HEALTH_CONT_INFO table function 1049
HEALTH_DB_HI table function 1051
HEALTH_DB_HI_HIS table function 1054
HEALTH_DB_HIC table function 1058
HEALTH_DB_HIC_HIS table function 1060
HEALTH_DB_INFO table function 1062
HEALTH_DBM_HI table function 1064
HEALTH_DBM_HI_HIS table function 1065
HEALTH_DBM_INFO table function 1068
HEALTH_GET_ALERT_ACTION_CFG table function 1069
HEALTH_GET_ALERT_CFG table function 1072
HEALTH_GET_IND_DEFINITION table function 1075
HEALTH_HI_REC procedure 1077
HEALTH_TBS_HI table function 1079
HEALTH_TBS_HI_HIS table function 1082
HEALTH_TBS_INFO table function 1086
help

configuring language 1268
SQL statements 1267

history file
retrieving information 991

I
IMPORT command

details
using ADMIN_CMD 79

INITIALIZE TAPE command
using ADMIN_CMD 103

installation
retrieving DB2 product information 338
returning DB2 product license information 331, 1040

instance owner authorization ID
obtaining 555

instances
retrieving current instance information 336

L
LOAD command

details
using ADMIN_CMD 104

LOCKS_HELD administrative view 579
LOCKWAIT administrative view 582
LOG_UTILIZATION administrative view 585
LONG_RUNNING_SQL administrative view 587

M
MON_BP_UTILIZATION administrative view 373
MON_CONNECTION_SUMMARY administrative view 379
MON_CURRENT_SQL administrative view 383
MON_CURRENT_UOW administrative view 384
MON_DB_SUMMARY administrative view 386
MON_FORMAT_LOCK_NAME table function 389

MON_FORMAT_XML_COMPONENT_TIMES
_BY_ROW table function

description 392
MON_FORMAT_XML_METRICS_BY_ROW table function

description 396
MON_FORMAT_XML_TIMES_BY_ROW table function

description 404
MON_FORMAT_XML_WAIT_TIMES_BY_ROW table function

description 409
MON_GET_ACTIVITY_DETAILS table function 413
MON_GET_APPL_LOCKWAIT table function 423
MON_GET_BUFFERPOOL table function 426
MON_GET_CONNECTION table function 430
MON_GET_CONNECTION_DETAILS table function 436
MON_GET_CONTAINER table function 443
MON_GET_EXTENT_MOVEMENT_STATUS table

function 446
MON_GET_FCM table function 447
MON_GET_FCM_CONNECTION_LIST table function 449
MON_GET_INDEX table function 450
MON_GET_LOCKS table function 452
MON_GET_MEMORY_POOL table function 456
MON_GET_MEMORY_SET table function 459
MON_GET_PKG_CACHE_STMT table function 461
MON_GET_PKG_CACHE_STMT_DETAILS table function

description 467
MON_GET_SERVICE_SUBCLASS table function 474
MON_GET_SERVICE_SUBCLASS_DETAILS table

function 480
MON_GET_TABLE table function 487
MON_GET_TABLESPACE table function 490
MON_GET_UNIT_OF_WORK table function 494
MON_GET_UNIT_OF_WORK_DETAILS table function 500
MON_GET_WORKLOAD table function 508
MON_GET_WORKLOAD_DETAILS table function 513
MON_LOCKWAITS administrative view 520
MON_PKG_CACHE_SUMMARY administrative view 522
MON_SERVICE_SUBCLASS_SUMMARY administrative

view 524
MON_TBSP_UTILIZATION administrative view 527
MON_WORKLOAD_SUMMARY administrative view 531
monitoring

routines 359
MQPUBLISH scalar function 535
MQREAD scalar function 536
MQREADALL table function 538
MQREADALLCLOB table function 540
MQREADCLOB scalar function 542
MQRECEIVE scalar function 543
MQRECEIVEALL table function 544
MQRECEIVEALLCLOB table function 546
MQRECEIVECLOB scalar function 549
MQSEND scalar function 550
MQSUBSCRIBE scalar function 552
MQUNSUBSCRIBE scalar function 553

N
n 756, 1137
notices 1275
notification lists

retrieving contact list 1001
notification log messages

retrieving 1009
NOTIFICATIONLIST administrative view 1001

1282 Administrative Routines and Views

O
OBJECTOWNERS administrative view 564
objects

retrieving ownership 564
online table moves

ADMIN_MOVE_TABLE procedure
details 963

ADMIN_MOVE_TABLE_UTIL procedure 981
ordering DB2 books 1266

P
packages

rebinding
REBIND_ROUTINE_PACKAGE procedure 863

PD_GET_DIAG_HIST table function 1002
PD_GET_LOG_MSGS table function 1009
PDLOGMSGS_LAST24HOURS administrative view 1009
privileges

information about granted
PRIVILEGES administrative view 565

PRIVILEGES administrative view 565
problem determination

information available 1272
notification log messages 1009
tutorials 1272

procedures
ADMIN_CMD

details 35
ADMIN_COPY_SCHEMA 957
ADMIN_DROP_SCHEMA 961
ADMIN_MOVE_TABLE 963
ADMIN_MOVE_TABLE_UTIL 981
ADMIN_REMOVE_MSGS 221
ADMIN_REVALIDATE_DB_OBJECTS 222
ADMIN_TASK_ADD 249
ADMIN_TASK_REMOVE 255
ADMIN_TASK_UPDATE 258
ALTER_ROUTINE_PACKAGE 859
ALTOBJ 983
AM_DROP_TASK 23
AM_GET_LOCK_CHN_TB 23
AM_GET_LOCK_CHNS 24
AM_GET_LOCK_RPT 25
AM_GET_RPT 32
AM_SAVE_TASK 33
ANALYZE_LOG_SPACE 867
AUDIT_ARCHIVE 261
AUDIT_DELIM_EXTRACT 262
AUTOMAINT_GET_POLICY 265
AUTOMAINT_GET_POLICYFILE 266
AUTOMAINT_SET_POLICY 267
AUTOMAINT_SET_POLICYFILE 268
CANCEL_WORK 277
CAPTURE_STORAGEMGMT_INFO 877
common SQL API

overview 271
XPath expressions for filtering output 275

CREATE_STORAGEMGMT_TABLES 879
deprecated functionality 1025
DESIGN_ADVISOR 283
DROP_STORAGEMGMT_TABLES 880
EVMON_FORMAT_UE_TO_TABLES 361
EXPLAIN_FROM_ACTIVITY 348
EXPLAIN_FROM_CATALOG 351
EXPLAIN_FROM_DATA 353

procedures (continued)
EXPLAIN_FROM_SECTION 355
GENERATE_DISTFILE 869
GET_CONFIG 290
GET_DBSIZE_INFO 999
GET_MESSAGE 297
GET_ROUTINE_SAR 860
GET_SWRD_SETTINGS 870
GET_SYSTEM_INFO 304
HEALTH_HI_REC 1077
PUT_ROUTINE_SAR 861
REBIND_ROUTINE_PACKAGE 863
REORGCHK_IX_STATS 1016
REORGCHK_TB_STATS 1018
SET_CONFIG 311
SET_ROUTINE_OPTS 865
SET_SWRD_SETTINGS 872
SNAP_WRITE_FILE 719, 853
SNAPSHOT_FILEW 1210
STEPWISE_REDISTRIBUTE_DBPG 874
summary 5
SYSINSTALLOBJECTS 1022
SYSINSTALLROUTINES 1231
SYSTS_ADMIN_CMD 881
WLM_CANCEL_ACTIVITY 909
WLM_CAPTURE_ACTIVITY_IN_PROGRESS 910
WLM_COLLECT_STATS 912
WLM_SET_CLIENT_INFO 950
WLM_SET_CONN_ENV 953

PRUNE HISTORY/LOGFILE command
using ADMIN_CMD 142

PUT_ROUTINE_SAR procedure 861

Q
QUERY_PREP_COST administrative view 590
QUIESCE DATABASE command 144
QUIESCE TABLESPACES FOR TABLE command

using ADMIN_CMD 145

R
REBIND_ROUTINE_PACKAGE procedure 863
REDISTRIBUTE DATABASE PARTITION GROUP command

using ADMIN_CMD 148
redistribution of data

procedures 867, 869, 870, 872, 874
REG_VARIABLES administrative view 328
registry variables

retrieving settings in use 328
REORG INDEXES command

using ADMIN_CMD 157
REORG TABLE command

using ADMIN_CMD 157
REORGCHK_IX_STATS procedure 1016
REORGCHK_TB_STATS procedure 1018
RESET ALERT CONFIGURATION command

using ADMIN_CMD 173
RESET DATABASE CONFIGURATION command

using ADMIN_CMD 174
RESET DATABASE MANAGER CONFIGURATION command

using ADMIN_CMD 176
revalidation

procedures 222
REWIND TAPE command

using ADMIN_CMD 177

Index 1283

routines
monitor 359
SQL

administrative (deprecated) 1025
administrative (summary) 5

RUNSTATS command
details

using ADMIN_CMD 178

S
scalar functions

AUTH_GET_INSTANCE_AUTHID 555
SQLERRM 1020

schemas
copying 957
dropping 961
objects 957

SET TAPE POSITION command
using ADMIN_CMD 190

SET_CONFIG stored procedure 311
SET_ROUTINE_OPTS procedure 865
SET_SWRD_SETTINGS procedure 872
SNAP_GET_AGENT table function 591, 720
SNAP_GET_AGENT_MEMORY_POOL table function 724,

1087, 1162
SNAP_GET_APPL_INFO table function 1098
SNAP_GET_APPL_INFO_V95 table function 594, 728
SNAP_GET_APPL_V95 table function 602, 735
SNAP_GET_BP_PART table function 615, 748
SNAP_GET_BP_V95 table function 610, 743
SNAP_GET_CONTAINER deprecated table function 1108
SNAP_GET_CONTAINER_V91 table function 619, 752
SNAP_GET_DB deprecated table function 1110
SNAP_GET_DB_MEMORY_POOL table function 1117, 1166
SNAP_GET_DB_V95 table functio 756, 1137
SNAP_GET_DB_V97 table function 623
SNAP_GET_DBM_MEMORY_POOL table function 1124, 1170
SNAP_GET_DBM_V95 table function 634, 768
SNAP_GET_DETAIL_LOG_V91 table function 639, 772
SNAP_GET_DYN_SQL deprecated table function 1152
SNAP_GET_DYN_SQL_V91 table function 1149
SNAP_GET_DYN_SQL_V95 table function 642, 775
SNAP_GET_FCM table function 647, 781
SNAP_GET_FCM_PART table function 650, 783
SNAP_GET_HADR table function 653, 786
SNAP_GET_LOCK table function 657, 790, 1174
SNAP_GET_LOCKWAIT table function 662, 795, 1179
SNAP_GET_STMT table function 668, 801
SNAP_GET_STO_PATHS deprecated table function 1154
SNAP_GET_STORAGE_PATHS table function 807
SNAP_GET_STORAGE_PATHS_V97 table function 674
SNAP_GET_SUBSECTION table function 677, 810
SNAP_GET_SWITCHES table function 681, 814
SNAP_GET_TAB deprecated table function 1155
SNAP_GET_TAB_REORG table function 688, 821
SNAP_GET_TAB_V91 table function 684, 818
SNAP_GET_TBSP deprecated table function 1157
SNAP_GET_TBSP_PART deprecated table function 1160
SNAP_GET_TBSP_PART_V91 table function 833
SNAP_GET_TBSP_PART_V97 table function 699
SNAP_GET_TBSP_QUIESCER table function 704, 838
SNAP_GET_TBSP_RANGE table function 708, 842
SNAP_GET_TBSP_V91 table function 693, 827
SNAP_GET_UTIL table function 712, 846
SNAP_GET_UTIL_PROGRESS table function 716, 850
SNAP_WRITE_FILE procedure 719, 853

SNAPAGENT administrative view 591, 720
SNAPAGENT_MEMORY_POOL administrative view 724,

1087, 1162
SNAPAPPL administrative view 602, 735
SNAPAPPL_INFO administrative view 594, 728
SNAPBP administrative view 610, 743
SNAPBP_PART administrative view 615, 748
SNAPCONTAINER administrative view 619, 752
SNAPDB administrative view 623, 756, 1137
SNAPDB_MEMORY_POOL administrative view 1117, 1166
SNAPDBM administrative view 634, 768
SNAPDBM_MEMORY_POOL administrative view 1124, 1170
SNAPDETAILLOG administrative view 639, 772
SNAPDYN_SQL administrative view 642, 775
SNAPFCM administrative view 647, 781
SNAPFCM_PART administrative view 650, 783
SNAPHADR administrative view 653, 786
SNAPLOCK administrative view 657, 790, 1174
SNAPLOCKWAIT administrative view 662, 795, 1179
SNAPSHOT_AGENT deprecated table function 1185
SNAPSHOT_APPL deprecated table function 1186
SNAPSHOT_APPL_INFO deprecated table function 1192
SNAPSHOT_BP deprecated table function 1194
SNAPSHOT_CONTAINER deprecated table function 1196
SNAPSHOT_DATABASE deprecated table function 1198
SNAPSHOT_DBM deprecated table function 1203
SNAPSHOT_DYN_SQL deprecated table function 1206
SNAPSHOT_FCM deprecated table function 1207
SNAPSHOT_FCMNODE deprecated table function 1209
SNAPSHOT_FILEW deprecated procedure 1210
SNAPSHOT_LOCK deprecated table function 1211
SNAPSHOT_LOCKWAIT deprecated table function 1212
SNAPSHOT_QUIESCERS deprecated table function 1214
SNAPSHOT_RANGES deprecated table function 1215
SNAPSHOT_STATEMENT deprecated table function 1216
SNAPSHOT_SUBSECT deprecated table function 1219
SNAPSHOT_SWITCHES deprecated table function 1220
SNAPSHOT_TABLE deprecated table function 1222
SNAPSHOT_TBREORG deprecated table function 1223
SNAPSHOT_TBS deprecated table function 1225
SNAPSHOT_TBS_CFG deprecated table function 1227
SNAPSTMT administrative view 668, 801
SNAPSTORAGE_PATHS administrative view 674, 807
SNAPSUBSECTION administrative view 677, 810
SNAPSWITCHES administrative view 681, 814
SNAPTAB administrative view 684, 818
SNAPTAB_REORG administrative view 688, 821
SNAPTBSP administrative view 693, 827
SNAPTBSP_QUIESCER administrative view 704, 838
SNAPTBSP_RANGE administrative view 708, 842
SNAPTBSPPART administrative view 699, 833
SNAPUTIL administrative view 712, 846
SNAPUTIL_PROGRESS administrative view 716, 850
split mirrors

retrieving database paths 996
SQL

administrative routines
deprecated 1025

SQL statements
help

displaying 1267
SQLCACHE_SNAPSHOT deprecated table function 1229
SQLCODE

returning message information 297
SQLERRM scalar function 1020
STEPWISE_REDISTRIBUTE_DBPG procedure

details 874

1284 Administrative Routines and Views

storage management tool
stored procedures 877, 879, 880

stored procedures
AUDIT_ARCHIVE 261
AUDIT_DELIM_EXTRACT 262

SYSINSTALLOBJECTS procedure 1022
SYSINSTALLROUTINES deprecated procedure 1231
system information

retrieving 304, 339
SYSTS_ADMIN_CMD procedure 881
SYSTS_ALTER stored procedure 882
SYSTS_CLEAR_COMMANDLOCKS stored procedure 887
SYSTS_CLEAR_EVENTS stored procedure 889
SYSTS_CREATE procedure 892
SYSTS_DISABLE procedure 899
SYSTS_DROP stored procedure 901
SYSTS_ENABLE stored procedure 903
SYSTS_UPDATE stored procedure 905

T
table compression

information 225
table functions

admin_get_dbp_mem_usage 210
ADMIN_GET_INDEX_COMPRESS_INFO 212
ADMIN_GET_INDEX_INFO 215
ADMIN_GET_MSGS 219
ADMIN_GET_TAB_COMPRESS_INFO_V97 225
ADMIN_GET_TAB_INFO_V97 232
ADMIN_GET_TEMP_COLUMNS 241
ADMIN_GET_TEMP_TABLES 244
administrative routines 5
AUDIT_ARCHIVE 261
AUTH_LIST_GROUPS_FOR_AUTHID 560
deprecated functionality

ADMIN_GET_TAB_INFO 1028
SNAP_GET_APPL_INFO 1098
SNAP_GET_BP 1105
SNAP_GET_DB_V91 1127
SNAP_GET_DBM 1121
SNAP_GET_DYN_SQL_V91 1149
summary 1025

ENV_GET_DB2_SYSTEM_RESOURCES 332
ENV_GET_NETWORK_RESOURCES 333
ENV_GET_SYSTEM_RESOURCES 334
HEALTH_GET_ALERT_ACTION_CFG 1069
HEALTH_GET_ALERT_CFG 1072
HEALTH_GET_IND_DEFINITION 1075
MON_FORMAT_LOCK_NAME 389
MON_GET_APPL_LOCKWAIT 423
MON_GET_LOCKS 452
MON_GET_MEMORY_POOL 456
MON_GET_MEMORY_SET 459
PD_GET_DIAG_HIST 1002
PD_GET_LOG_MSGS 1009
SNAP_GET_AGENT 591, 720
SNAP_GET_AGENT_MEMORY

_POOL 724, 1087, 1162
SNAP_GET_APPL_INFO_V95 594, 728
SNAP_GET_APPL_V95 602, 735
SNAP_GET_BP_PART 615, 748
SNAP_GET_BP_V95 610, 743
SNAP_GET_CONTAINER_V91 619, 752
SNAP_GET_DB_MEMORY_POOL 1117, 1166
SNAP_GET_DB_V95 756, 1137
SNAP_GET_DB_V97 623

table functions (continued)
SNAP_GET_DBM_MEMORY_POOL 1124, 1170
SNAP_GET_DBM_V95 634, 768
SNAP_GET_DETAIL_LOG_V91 639, 772
SNAP_GET_DYN_SQL_V95 642, 775
SNAP_GET_FCM 647, 781
SNAP_GET_FCM_PART 650, 783
SNAP_GET_HADR 653, 786
SNAP_GET_LOCK 657, 790, 1174
SNAP_GET_LOCKWAIT 662, 795, 1179
SNAP_GET_STMT 668, 801
SNAP_GET_STORAGE_PATHS 807
SNAP_GET_STORAGE_PATHS_V97 674
SNAP_GET_SUBSECTION 677, 810
SNAP_GET_SWITCHES 681, 814
SNAP_GET_TAB_REORG 688, 821
SNAP_GET_TAB_V91 684, 818
SNAP_GET_TBSP_PART_V91 833
SNAP_GET_TBSP_PART_V97 699
SNAP_GET_TBSP_QUIESCER 704, 838
SNAP_GET_TBSP_RANGE 708, 842
SNAP_GET_TBSP_V91 693, 827
SNAP_GET_UTIL 712, 846
SNAP_GET_UTIL_PROGRESS 716, 850
versus administrative views 3

tables
moving online

ADMIN_MOVE_TABLE procedure 963
ADMIN_MOVE_TABLE_UTIL procedure 981

retrieving information
column information for temporary tables 241
size 232, 1028
state 232, 1028
temporary tables 244

TBSP_UTILIZATION administrative view 854
terms and conditions

publications 1272
TOP_DYNAMIC_SQL administrative view 857
troubleshooting

online information 1272
tutorials 1272

tutorials
list 1271
problem determination 1272
troubleshooting 1272
Visual Explain 1271

U
UNQUIESCE DATABASE command

using ADMIN_CMD 191
UPDATE ALERT CONFIGURATION command

using ADMIN_CMD 192
UPDATE CONTACT command

using ADMIN_CMD 197
UPDATE CONTACTGROUP command

using ADMIN_CMD 198
UPDATE DATABASE CONFIGURATION command

using ADMIN_CMD 199
UPDATE DATABASE MANAGER CONFIGURATION

command
using ADMIN_CMD 202

UPDATE HEALTH NOTIFICATION CONTACT LIST
command

using ADMIN_CMD 204
UPDATE HISTORY command

using ADMIN_CMD 205

Index 1285

UPDATE STMM TUNING DBPARTITIONNUM command
using ADMIN_CMD 207

updates
DB2 Information Center 1269, 1270

V
views

administrative views
ADMIN_TASK_LIST 254
ADMIN_TASK_STATUS 257
ADMINTABCOMPRESSINFO 225, 1035
ADMINTABINFO 232
ADMINTEMPCOLUMNS 241
ADMINTEMPTABLES 244
APPL_PERFORMANCE 567
APPLICATIONS 568
AUTHORIZATIONIDS 563
BP_HITRATIO 572
BP_READ_IO 574
BP_WRITE_IO 576
CONTACTGROUPS 989
CONTACTS 990
CONTAINER_UTILIZATION 577
DB_HISTORY 991
DBCFG 324
DBMCFG 326
DBPATHS 996
ENV_FEATURE_INFO 331
ENV_INST_INFO 336
ENV_PROD_INFO 338
ENV_SYS_INFO 339
ENV_SYS_RESOURCES 1040
LOCKS_HELD 579
LOCKWAIT 582
LOG_UTILIZATION 585
LONG_RUNNING_SQL 587
MON_BP_UTILIZATION 373
MON_CONNECTION_SUMMARY 379
MON_CURRENT_SQL 383
MON_CURRENT_UOW 384
MON_DB_SUMMARY 386
MON_LOCKWAITS 520
MON_PKG_CACHE_SUMMARY 522
MON_SERVICE_SUBCLASS_SUMMARY 524
MON_TBSP_UTILIZATION 527
MON_WORKLOAD_SUMMARY 531
NOTIFICATIONLIST 1001
OBJECTOWNERS 564
PDLOGMSGS_LAST24HOURS 1009
PRIVILEGES 565
QUERY_PREP_COST 590
REG_VARIABLES 328
SNAPAGENT 591, 720
SNAPAGENT_MEMORY

_POOL 724, 1087, 1162
SNAPAPPL 602, 735
SNAPAPPL_INFO 594, 728
SNAPBP 610, 743
SNAPBP_PART 615, 748
SNAPCONTAINER 619, 752
SNAPDB 623, 756, 1137
SNAPDB_MEMORY_POOL 1117, 1166
SNAPDBM 634, 768
SNAPDBM_MEMORY_POOL 1124, 1170
SNAPDETAILLOG 639, 772
SNAPDYN_SQL 642, 775

views (continued)
administrative views (continued)

SNAPFCM 647, 781
SNAPFCM_PART 650, 783
SNAPHADR 653, 786
SNAPLOCK 657, 790, 1174
SNAPLOCKWAIT 662, 795, 1179
SNAPSTMT 668, 801
SNAPSTORAGE_PATHS 674, 807
SNAPSUBSECTION 677, 810
SNAPSWITCHES 681, 814
SNAPTAB 684, 818
SNAPTAB_REORG 688, 821
SNAPTBSP 693, 827
SNAPTBSP_QUIESCER 704, 838
SNAPTBSP_RANGE 708, 842
SNAPTBSPPART 699, 833
SNAPUTIL 712, 846
SNAPUTIL_PROGRESS 716, 850
TBSP_UTILIZATION 854
TOP_DYNAMIC_SQL 857

W
WLM_CANCEL_ACTIVITY procedure 909
WLM_CAPTURE_ACTIVITY_IN_PROGRESS procedure 910
WLM_COLLECT_STATS procedure

details 912
WLM_GET_ACTIVITY_DETAILS table function 1231
WLM_GET_CONN_ENV table function 913
WLM_GET_QUEUE_STATS table function 915
WLM_GET_SERVICE_CLASS_AGENTS table function 1238
WLM_GET_SERVICE_CLASS_AGENTS_V97 table function

details 919
WLM_GET_SERVICE_CLASS_WORKLOAD

_OCCURRENCES_V97 table function
details 927

WLM_GET_SERVICE_CLASS_WORKLOAD_
OCCURRENCES table function 1244

WLM_GET_SERVICE_SUBCLASS_STATS table function 1248
WLM_GET_SERVICE_SUBCLASS_STATS_V97 table function

details 931
WLM_GET_SERVICE_SUPERCLASS_STATS table

function 938
WLM_GET_WORK_ACTION_SET_STATS table function

details 940
WLM_GET_WORKLOAD_OCCURRENCE _ACTIVITIES_V97

table function
description 942

WLM_GET_WORKLOAD_OCCURRENCE_
ACTIVITIES table function 1254

WLM_GET_WORKLOAD_STATS table function 1259
WLM_GET_WORKLOAD_STATS_V97 table function 947
WLM_SET_CLIENT_INFO procedure 950
WLM_SET_CONN_ENV procedure 953

X
XML

common SQL API input 273
XML documents

output documents
versioning for common SQL API 272

1286 Administrative Routines and Views

����

Printed in USA

SC27-2436-03

Sp
in
e
in
fo
rm
at
io
n:

DB
2

fo
rL

in
ux

,U
NI

X,
an

d
W

in
do

w
s

Ve
rs

io
n

9
Re

le
as

e
7

Ad
m

in
is

tra
tiv

e
Ro

ut
in

es
an

d
Vi

ew
s

�
�

�

	Contents
	Chapter 1. System-defined routines and views
	Best practices for calling built-in routines and views in applications
	Authorization for administrative views
	Administrative views versus table functions

	Chapter 2. Supported system-defined SQL routines and views
	Chapter 3. Activity monitor routines
	AM_BASE_RPT_RECOMS – Recommendations for activity reports
	AM_BASE_RPTS – Activity monitor reports
	AM_DROP_TASK – Delete a monitoring task
	AM_GET_LOCK_CHN_TB – Retrieve application lock chain data in a tabular format
	AM_GET_LOCK_CHNS – Retrieve lock chain information for a specific application
	AM_GET_LOCK_RPT – Retrieve application lock details
	AM_GET_RPT – Retrieve activity monitor data
	AM_SAVE_TASK – Create or modify a monitoring task

	Chapter 4. ADMIN_CMD procedure and associated routines
	ADMIN_CMD – Run administrative commands
	ADD CONTACT command using the ADMIN_CMD procedure
	ADD CONTACTGROUP command using the ADMIN_CMD procedure
	AUTOCONFIGURE command using the ADMIN_CMD procedure
	BACKUP DATABASE command using the ADMIN_CMD procedure
	DESCRIBE command using the ADMIN_CMD procedure
	DROP CONTACT command using the ADMIN_CMD procedure
	DROP CONTACTGROUP command using the ADMIN_CMD procedure
	EXPORT command using the ADMIN_CMD procedure
	FORCE APPLICATION command using the ADMIN_CMD procedure
	GET STMM TUNING DBPARTITIONNUM command using the ADMIN_CMD procedure
	IMPORT command using the ADMIN_CMD procedure
	INITIALIZE TAPE command using the ADMIN_CMD procedure
	LOAD command using the ADMIN_CMD procedure
	PRUNE HISTORY/LOGFILE command using the ADMIN_CMD procedure
	QUIESCE DATABASE command using the ADMIN_CMD procedure
	QUIESCE TABLESPACES FOR TABLE command using the ADMIN_CMD procedure
	REDISTRIBUTE DATABASE PARTITION GROUP command using the ADMIN_CMD procedure
	REORG INDEXES/TABLE command using the ADMIN_CMD procedure
	RESET ALERT CONFIGURATION command using the ADMIN_CMD procedure
	RESET DATABASE CONFIGURATION command using the ADMIN_CMD procedure
	RESET DATABASE MANAGER CONFIGURATION command using the ADMIN_CMD procedure
	REWIND TAPE command using the ADMIN_CMD procedure
	RUNSTATS command using the ADMIN_CMD procedure
	SET TAPE POSITION command using the ADMIN_CMD procedure
	UNQUIESCE DATABASE command using the ADMIN_CMD procedure
	UPDATE ALERT CONFIGURATION command using the ADMIN_CMD procedure
	UPDATE CONTACT command using the ADMIN_CMD procedure
	UPDATE CONTACTGROUP command using the ADMIN_CMD procedure
	UPDATE DATABASE CONFIGURATION command using the ADMIN_CMD procedure
	UPDATE DATABASE MANAGER CONFIGURATION command using the ADMIN_CMD procedure
	UPDATE HEALTH NOTIFICATION CONTACT LIST command using the ADMIN_CMD procedure
	UPDATE HISTORY command using the ADMIN_CMD procedure
	UPDATE STMM TUNING DBPARTITIONNUM command using the ADMIN_CMD procedure

	ADMIN_EST_INLINE_LENGTH function - Estimate length required to inline data
	ADMIN_GET_DBP_MEM_USAGE table function - Get total memory consumption for instance
	ADMIN_GET_INDEX_COMPRESS_INFO table function - returns compressed index information
	ADMIN_GET_INDEX_INFO table function - returns index information
	ADMIN_GET_MSGS table function - Retrieve messages generated by a data movement utility that is executed through the ADMIN_CMD
	ADMIN_IS_INLINED function - Determine if data is inlined
	ADMIN_REMOVE_MSGS procedure - Clean up messages generated by a data movement utility that is executed through the ADMIN_CMD p
	ADMIN_REVALIDATE_DB_OBJECTS procedure - Revalidate invalid database objects
	ADMINTABCOMPRESSINFO administrative view and ADMIN_GET_TAB_COMPRESS_INFO_V97 table function - returns compressed information
	ADMINTABINFO administrative view and ADMIN_GET_TAB_INFO_V97 table function - retrieve table size and state information
	ADMINTEMPCOLUMNS administrative view and ADMIN_GET_TEMP_COLUMNS table function - Retrieve column information for temporary ta
	ADMINTEMPTABLES administrative view and ADMIN_GET_TEMP_TABLES table function - Retrieve information for temporary tables

	Chapter 5. Administrative Task Scheduler routines and views
	ADMIN_TASK_ADD procedure - Schedule a new task
	UNIX cron format

	ADMIN_TASK_LIST administrative view - Retrieve information about tasks in the scheduler
	ADMIN_TASK_REMOVE procedure - Remove scheduled tasks or task status records
	ADMIN_TASK_STATUS administrative view - Retrieve task status information
	ADMIN_TASK_UPDATE procedure - Update an existing task

	Chapter 6. Audit routines and procedures
	AUDIT_ARCHIVE procedure and table function - Archive audit log file
	AUDIT_DELIM_EXTRACT - performs extract to delimited file
	AUDIT_LIST_LOGS table function - Lists archived audit log files

	Chapter 7. Automatic maintenance routines
	AUTOMAINT_GET_POLICY procedure - retrieve automatic maintenance policy
	AUTOMAINT_GET_POLICYFILE procedure - retrieve automatic maintenance policy
	AUTOMAINT_SET_POLICY procedure - configure automatic maintenance policy
	AUTOMAINT_SET_POLICYFILE procedure - configure automatic maintenance policy

	Chapter 8. Common SQL API procedures
	Common input and output parameters
	Versioning of XML documents
	XML input documents
	Complete mode for returning valid XML input documents

	XML output documents
	XPath expressions for filtering output

	XML message documents
	CANCEL_WORK procedure - Cancel work
	DESIGN_ADVISOR - retrieve design advisor recommendations
	GET_CONFIG procedure - Get configuration data
	GET_MESSAGE procedure - Get message text
	GET_SYSTEM_INFO procedure - Get system information
	SET_CONFIG procedure - Set configuration parameters

	Chapter 9. Configuration routines and views
	DB_PARTITIONS
	DBCFG administrative view - Retrieve database configuration parameter information
	DBMCFG administrative view - Retrieve database manager configuration parameter information
	REG_VARIABLES administrative view - Retrieve DB2 registry settings in use

	Chapter 10. Environment views
	ENV_FEATURE_INFO administrative view - Return license information for DB2 features
	ENV_GET_DB2_SYSTEM_RESOURCES table function - Return DB2 system information
	ENV_GET_NETWORK_RESOURCES table function - Return network information
	ENV_GET_SYSTEM_RESOURCES table function - Return system information
	ENV_INST_INFO administrative view - Retrieve information about the current instance
	ENV_PROD_INFO administrative view - Retrieve information about installed DB2 products
	ENV_SYS_INFO administrative view - Retrieve information about the system

	Chapter 11. Explain routines
	EXPLAIN_GET_MSGS
	EXPLAIN_FORMAT_STATS
	EXPLAIN_FROM_ACTIVITY procedure - Explain statement using activity event monitor information
	EXPLAIN_FROM_CATALOG procedure - Explain a statement using section information from catalogs
	EXPLAIN_FROM_DATA procedure - Explain a statement using the input section
	EXPLAIN_FROM_SECTION procedure - Explain a statement using package cache or package cache event monitor information

	Chapter 12. Monitor routines and views
	EVMON_FORMAT_UE_TO_TABLES procedure - move an XML document to relational tables
	EVMON_FORMAT_UE_TO_XML table function - convert unformatted events to XML
	MON_BP_UTILIZATION - Retrieve metrics for bufferpools
	MON_CONNECTION_SUMMARY - Retrieve metrics for all connections
	MON_CURRENT_SQL - Retrieve key metrics for all activities on all members
	MON_CURRENT_UOW - Retrieve metrics for all units of work
	MON_DB_SUMMARY - Retrieve accumulated metrics across all members of the database
	MON_FORMAT_LOCK_NAME - format the internal lock name and return details
	MON_FORMAT_XML_COMPONENT_TIMES_BY_ROW - Get formatted row-based component times
	MON_FORMAT_XML_METRICS_BY_ROW - Get formatted row-based output for all metrics
	MON_FORMAT_XML_TIMES_BY_ROW - Get formatted row-based combined hierarchy wait and processing times
	MON_FORMAT_XML_WAIT_TIMES_BY_ROW - Get formatted row-based output for wait times
	MON_GET_ACTIVITY_DETAILS table function - Get complete activity details
	MON_GET_APPL_LOCKWAIT - get information about locks for which an application is waiting
	MON_GET_BUFFERPOOL table function - Get buffer pool metrics
	MON_GET_CONNECTION table function - Get connection metrics
	MON_GET_CONNECTION_DETAILS table function - Get detailed connection metrics
	MON_GET_CONTAINER table function - Get table space container metrics
	MON_GET_EXTENT_MOVEMENT_STATUS - get extent movement progress
	MON_GET_FCM - Get FCM metrics
	MON_GET_FCM_CONNECTION_LIST - Get details for all FCM connections
	MON_GET_INDEX table function - get index metrics
	MON_GET_LOCKS - list all locks in the currently connected database
	MON_GET_MEMORY_POOL - get memory pool information
	MON_GET_MEMORY_SET - get memory set information
	MON_GET_PKG_CACHE_STMT table function - Get SQL statement activity metrics in the package cache
	MON_GET_PKG_CACHE_STMT_DETAILS - get detailed metrics for package cache entries
	MON_GET_SERVICE_SUBCLASS table function - Get service subclass metrics
	MON_GET_SERVICE_SUBCLASS_DETAILS table function - Get detailed service subclass metrics
	MON_GET_TABLE table function - get table metrics
	MON_GET_TABLESPACE table function - Get table space metrics
	MON_GET_UNIT_OF_WORK table function - Get unit of work metrics
	MON_GET_UNIT_OF_WORK_DETAILS table function - Get detailed unit of work metrics
	MON_GET_WORKLOAD table function - Get workload metrics
	MON_GET_WORKLOAD_DETAILS table function - Get detailed workload metrics
	MON_LOCKWAITS administrative view - Retrieve metrics for applications that are waiting to obtain locks
	MON_PKG_CACHE_SUMMARY - Retrieve a high-level summary of the database package cache
	MON_SERVICE_SUBCLASS_SUMMARY - Retrieve metrics for all service subclasses
	MON_TBSP_UTILIZATION - Retrieve monitoring metrics for all table spaces and all database partitions
	MON_WORKLOAD_SUMMARY - Retrieves metrics for all workloads

	Chapter 13. MQSeries routines
	MQPUBLISH
	MQREAD
	MQREADALL
	MQREADALLCLOB
	MQREADCLOB
	MQRECEIVE
	MQRECEIVEALL
	MQRECEIVEALLCLOB
	MQRECEIVECLOB
	MQSEND
	MQSUBSCRIBE
	MQUNSUBSCRIBE

	Chapter 14. Security routines and views
	AUTH_GET_INSTANCE_AUTHID - Get the instance owner authorization ID
	AUTH_LIST_AUTHORITIES_FOR_AUTHID
	AUTH_LIST_GROUPS_FOR_AUTHID table function - Retrieve group membership list for a given authorization ID
	AUTH_LIST_ROLES_FOR_AUTHID function - Returns the list of roles
	AUTHORIZATIONIDS administrative view - Retrieve authorization IDs and types
	OBJECTOWNERS administrative view – Retrieve object ownership information
	PRIVILEGES administrative view – Retrieve privilege information

	Chapter 15. Snapshot routines and views
	APPL_PERFORMANCE administrative view - Retrieve percentage of rows selected for an application
	APPLICATIONS administrative view - Retrieve connected database application information
	BP_HITRATIO administrative view - Retrieve bufferpool hit ratio information
	BP_READ_IO administrative view - Retrieve bufferpool read performance information
	BP_WRITE_IO administrative view - Retrieve bufferpool write performance information
	CONTAINER_UTILIZATION administrative view - Retrieve table space container and utilization information
	LOCKS_HELD administrative view - Retrieve information about the locks held
	LOCKWAITS administrative view - Retrieve current lockwaits information
	LOG_UTILIZATION administrative view - Retrieve log utilization information
	LONG_RUNNING_SQL administrative view
	QUERY_PREP_COST administrative view - Retrieve statement prepare time information
	SNAPAGENT administrative view and SNAP_GET_AGENT table function – Retrieve agent logical data group application snapshot info
	SNAPAPPL_INFO administrative view and SNAP_GET_APPL_INFO_V95 table function - Retrieve appl_info logical data group snapshot
	SNAPAPPL administrative view and SNAP_GET_APPL_V95 table function - Retrieve appl logical data group snapshot information
	SNAPBP administrative view and SNAP_GET_BP_V95 table function - Retrieve bufferpool logical group snapshot information
	SNAPBP_PART administrative view and SNAP_GET_BP_PART table function – Retrieve bufferpool_nodeinfo logical data group snapsho
	SNAPCONTAINER administrative view and SNAP_GET_CONTAINER_V91 table function - Retrieve tablespace_container logical data grou
	SNAPDB administrative view and SNAP_GET_DB_V97 table function - Retrieve snapshot information from the dbase logical group
	SNAPDBM administrative view and SNAP_GET_DBM_V95 table function - Retrieve the dbm logical grouping snapshot information
	SNAPDETAILLOG administrative view and SNAP_GET_DETAILLOG_V91 table function - Retrieve snapshot information from the detail_l
	SNAPDYN_SQL administrative view and SNAP_GET_DYN_SQL_V95 table function - Retrieve dynsql logical group snapshot information
	SNAPFCM administrative view and SNAP_GET_FCM table function – Retrieve the fcm logical data group snapshot information
	SNAPFCM_PART administrative view and SNAP_GET_FCM_PART table function – Retrieve the fcm_node logical data group snapshot inf
	SNAPHADR administrative view and SNAP_GET_HADR table function – Retrieve hadr logical data group snapshot information
	SNAPLOCK administrative view and SNAP_GET_LOCK table function – Retrieve lock logical data group snapshot information
	SNAPLOCKWAIT administrative view and SNAP_GET_LOCKWAIT table function – Retrieve lockwait logical data group snapshot informa
	SNAPSTMT administrative view and SNAP_GET_STMT table function – Retrieve statement snapshot information
	SNAPSTORAGE_PATHS administrative view and SNAP_GET_STORAGE_PATHS_V97 table function - Retrieve automatic storage path informa
	SNAPSUBSECTION administrative view and SNAP_GET_SUBSECTION table function – Retrieve subsection logical monitor group snapsho
	SNAPSWITCHES administrative view and SNAP_GET_SWITCHES table function – Retrieve database snapshot switch state information
	SNAPTAB administrative view and SNAP_GET_TAB_V91 table function - Retrieve table logical data group snapshot information
	SNAPTAB_REORG administrative view and SNAP_GET_TAB_REORG table function - Retrieve table reorganization snapshot information
	SNAPTBSP administrative view and SNAP_GET_TBSP_V91 table function - Retrieve table space logical data group snapshot informat
	SNAPTBSP_PART administrative view and SNAP_GET_TBSP_PART_V97 table function - Retrieve tablespace_nodeinfo logical data group
	SNAPTBSP_QUIESCER administrative view and SNAP_GET_TBSP_QUIESCER table function - Retrieve quiescer table space snapshot info
	SNAPTBSP_RANGE administrative view and SNAP_GET_TBSP_RANGE table function - Retrieve range snapshot information
	SNAPUTIL administrative view and SNAP_GET_UTIL table function - Retrieve utility_info logical data group snapshot information
	SNAPUTIL_PROGRESS administrative view and SNAP_GET_UTIL_PROGRESS table function - Retrieve progress logical data group snapsh
	SNAP_WRITE_FILE procedure
	SNAPAGENT administrative view and SNAP_GET_AGENT table function – Retrieve agent logical data group application snapshot info
	SNAPAGENT_MEMORY_POOL administrative view and SNAP_GET_AGENT_MEMORY_POOL table function – Retrieve memory_pool logical data g
	SNAPAPPL_INFO administrative view and SNAP_GET_APPL_INFO_V95 table function - Retrieve appl_info logical data group snapshot
	SNAPAPPL administrative view and SNAP_GET_APPL_V95 table function - Retrieve appl logical data group snapshot information
	SNAPBP administrative view and SNAP_GET_BP_V95 table function - Retrieve bufferpool logical group snapshot information
	SNAPBP_PART administrative view and SNAP_GET_BP_PART table function – Retrieve bufferpool_nodeinfo logical data group snapsho
	SNAPCONTAINER administrative view and SNAP_GET_CONTAINER_V91 table function - Retrieve tablespace_container logical data grou
	SNAPDB administrative view and SNAP_GET_DB_V95 table function - Retrieve snapshot information from the dbase logical group
	SNAPDBM administrative view and SNAP_GET_DBM_V95 table function - Retrieve the dbm logical grouping snapshot information
	SNAPDETAILLOG administrative view and SNAP_GET_DETAILLOG_V91 table function - Retrieve snapshot information from the detail_l
	SNAPDYN_SQL administrative view and SNAP_GET_DYN_SQL_V95 table function - Retrieve dynsql logical group snapshot information
	SNAPFCM administrative view and SNAP_GET_FCM table function – Retrieve the fcm logical data group snapshot information
	SNAPFCM_PART administrative view and SNAP_GET_FCM_PART table function – Retrieve the fcm_node logical data group snapshot inf
	SNAPHADR administrative view and SNAP_GET_HADR table function – Retrieve hadr logical data group snapshot information
	SNAPLOCK administrative view and SNAP_GET_LOCK table function – Retrieve lock logical data group snapshot information
	SNAPLOCKWAIT administrative view and SNAP_GET_LOCKWAIT table function – Retrieve lockwait logical data group snapshot informa
	SNAPSTMT administrative view and SNAP_GET_STMT table function – Retrieve statement snapshot information
	SNAPSTORAGE_PATHS administrative view and SNAP_GET_STORAGE_PATHS table function - Retrieve automatic storage path information
	SNAPSUBSECTION administrative view and SNAP_GET_SUBSECTION table function – Retrieve subsection logical monitor group snapsho
	SNAPSWITCHES administrative view and SNAP_GET_SWITCHES table function – Retrieve database snapshot switch state information
	SNAPTAB administrative view and SNAP_GET_TAB_V91 table function - Retrieve table logical data group snapshot information
	SNAPTAB_REORG administrative view and SNAP_GET_TAB_REORG table function - Retrieve table reorganization snapshot information
	SNAPTBSP administrative view and SNAP_GET_TBSP_V91 table function - Retrieve table space logical data group snapshot informat
	SNAPTBSP_PART administrative view and SNAP_GET_TBSP_PART_V91 table function - Retrieve tablespace_nodeinfo logical data group
	SNAPTBSP_QUIESCER administrative view and SNAP_GET_TBSP_QUIESCER table function - Retrieve quiescer table space snapshot info
	SNAPTBSP_RANGE administrative view and SNAP_GET_TBSP_RANGE table function - Retrieve range snapshot information
	SNAPUTIL administrative view and SNAP_GET_UTIL table function - Retrieve utility_info logical data group snapshot information
	SNAPUTIL_PROGRESS administrative view and SNAP_GET_UTIL_PROGRESS table function - Retrieve progress logical data group snapsh
	SNAP_WRITE_FILE procedure
	TBSP_UTILIZATION administrative view - Retrieve table space configuration and utilization information
	TOP_DYNAMIC_SQL administrative view - Retrieve information about the top dynamic SQL statements

	Chapter 16. SQL procedures routines
	ALTER_ROUTINE_PACKAGE procedure
	GET_ROUTINE_OPTS
	GET_ROUTINE_SAR
	PUT_ROUTINE_SAR
	REBIND_ROUTINE_PACKAGE procedure - rebind a package
	SET_ROUTINE_OPTS

	Chapter 17. Stepwise redistribute routines
	ANALYZE_LOG_SPACE procedure - Retrieve log space analysis information
	GENERATE_DISTFILE procedure - Generate a data distribution file
	GET_SWRD_SETTINGS procedure - Retrieve redistribute information
	SET_SWRD_SETTINGS procedure - Create or change redistribute registry
	STEPWISE_REDISTRIBUTE_DBPG procedure - Redistribute part of database partition group

	Chapter 18. Storage management tool routines
	CAPTURE_STORAGEMGMT_INFO procedure - Retrieve storage-related information for a given root object
	CREATE_STORAGEMGMT_TABLES procedure - Create storage management tables
	DROP_STORAGEMGMT_TABLES procedure - Drop all storage management tables

	Chapter 19. Text Search routines
	SYSTS_ADMIN_CMD stored procedure - Run text search administration commands
	SYSTS_ALTER procedure - Change the update characteristics of an index
	SYSTS_CLEAR_COMMANDLOCKS procedure - Remove command locks for text search indexes
	SYSTS_CLEAR_EVENTS procedure - Delete indexing events from an index's event table
	SYSTS_CREATE procedure - Create a text search index on a column
	SYSTS_DISABLE procedure - Disable current database for text search
	SYSTS_DROP procedure - Drop a text search index
	SYSTS_ENABLE procedure - Enable current database for text search
	SYSTS_UPDATE procedure - Update the text search index

	Chapter 20. Workload Management routines
	WLM_CANCEL_ACTIVITY - Cancel an activity
	WLM_CAPTURE_ACTIVITY_IN_PROGRESS - Collect activity information for activities event monitor
	WLM_COLLECT_STATS - Collect and reset workload management statistics
	WLM_GET_CONN_ENV - get settings for activity data collection for a connection
	WLM_GET_QUEUE_STATS table function - Return threshold queue statistics
	WLM_GET_SERVICE_CLASS_AGENTS_V97 table function - list agents running in a service class
	WLM_GET_SERVICE_CLASS_WORKLOAD _OCCURRENCES_V97 - list workload occurrences
	WLM_GET_SERVICE_SUBCLASS_STATS_V97 table function - Return statistics of service subclasses
	WLM_GET_SERVICE_SUPERCLASS_STATS - Return statistics of service superclasses
	WLM_GET_WORK_ACTION_SET_STATS - Return work action set statistics
	WLM_GET_WORKLOAD_OCCURRENCE _ACTIVITIES_V97 - return a list of activities
	WLM_GET_WORKLOAD_STATS_V97 table function - Return workload statistics
	WLM_SET_CLIENT_INFO procedure - Set client information
	WLM_SET_CONN_ENV - enable collection of activity data and measurement of section actuals

	Chapter 21. Miscellaneous routines and views
	ADMIN_COPY_SCHEMA procedure - Copy a specific schema and its objects
	ADMIN_DROP_SCHEMA procedure - Drop a specific schema and its objects
	ADMIN_MOVE_TABLE procedure - Move tables online
	ADMIN_MOVE_TABLE_UTIL procedure - Modify the online move table procedure
	ALTOBJ
	APPLICATION_ID
	COMPILATION_ENV table function - Retrieve compilation environment elements
	CONTACTGROUPS administrative view - Retrieve the list of contact groups
	CONTACTS administrative view - Retrieve list of contacts
	DB_HISTORY administrative view - Retrieve history file information
	DBPATHS administrative view - Retrieve database paths
	GET_DBSIZE_INFO
	NOTIFICATIONLIST administrative view - Retrieve contact list for health notification
	PD_GET_DIAG_HIST - Return records from a given facility
	PDLOGMSGS_LAST24HOURS administrative view and PD_GET_LOG_MSGS table function – Retrieve problem determination messages
	REORGCHK_IX_STATS procedure – Retrieve index statistics for reorganization evaluation
	REORGCHK_TB_STATS procedure – Retrieve table statistics for reorganization evaluation
	SQLERRM scalar functions - Retrieves error message information
	SYSINSTALLOBJECTS

	Chapter 22. Deprecated SQL administrative routines and their replacement routines or views
	ADMIN_GET_TAB_INFO table function - Retrieve size and state information for tables
	ADMINTABCOMPRESSINFO view and ADMIN_GET_TAB_COMPRESS_INFO
	ENV_SYS_RESOURCES administrative view - Return system information
	GET_DB_CONFIG
	GET_DBM_CONFIG
	Health snapshot routines
	HEALTH_CONT_HI
	HEALTH_CONT_HI_HIS
	HEALTH_CONT_INFO
	HEALTH_DB_HI
	HEALTH_DB_HI_HIS
	HEALTH_DB_HIC
	HEALTH_DB_HIC_HIS
	HEALTH_DB_INFO
	HEALTH_DBM_HI
	HEALTH_DBM_HI_HIS
	HEALTH_DBM_INFO
	HEALTH_GET_ALERT_ACTION_CFG
	HEALTH_GET_ALERT_CFG
	HEALTH_GET_IND_DEFINITION
	HEALTH_HI_REC
	HEALTH_TBS_HI
	HEALTH_TBS_HI_HIS
	HEALTH_TBS_INFO

	SNAPAGENT_MEMORY_POOL administrative view and SNAP_GET_AGENT_MEMORY_POOL table function – Retrieve memory_pool logical data g
	SNAP_GET_APPL table function – Retrieve appl logical data group snapshot information
	SNAP_GET_APPL_INFO table function – Retrieve appl_info logical data group snapshot information
	SNAP_GET_BP table function – Retrieve bufferpool logical group snapshot information
	SNAP_GET_CONTAINER
	SNAP_GET_DB
	SNAPDB_MEMORY_POOL administrative view and SNAP_GET_DB_MEMORY_POOL table function – Retrieve database level memory usage info
	SNAP_GET_DBM table function – Retrieve the dbm logical grouping snapshot information
	SNAPDBM_MEMORY_POOL administrative view and SNAP_GET_DBM_MEMORY_POOL table function – Retrieve database manager level memory
	SNAP_GET_DB_V91 table function - Retrieve snapshot information from the dbase logical group
	SNAPDB administrative view and SNAP_GET_DB_V95 table function - Retrieve snapshot information from the dbase logical group
	SNAP_GET_DYN_SQL_V91 table function - Retrieve dynsql logical group snapshot information
	SNAP_GET_DYN_SQL
	SNAP_GET_STO_PATHS
	SNAP_GET_TAB
	SNAP_GET_TBSP
	SNAP_GET_TBSP_PART
	SNAPAGENT_MEMORY_POOL administrative view and SNAP_GET_AGENT_MEMORY_POOL table function – Retrieve memory_pool logical data g
	SNAPDB_MEMORY_POOL administrative view and SNAP_GET_DB_MEMORY_POOL table function – Retrieve database level memory usage info
	SNAPDBM_MEMORY_POOL administrative view and SNAP_GET_DBM_MEMORY_POOL table function – Retrieve database manager level memory
	SNAPLOCK administrative view and SNAP_GET_LOCK table function – Retrieve lock logical data group snapshot information
	SNAPLOCKWAIT administrative view and SNAP_GET_LOCKWAIT table function – Retrieve lockwait logical data group snapshot informa
	SNAPSHOT_AGENT
	SNAPSHOT_APPL
	SNAPSHOT_APPL_INFO
	SNAPSHOT_BP
	SNAPSHOT_CONTAINER
	SNAPSHOT_DATABASE
	SNAPSHOT_DBM
	SNAPSHOT_DYN_SQL
	SNAPSHOT_FCM
	SNAPSHOT_FCMNODE
	SNAPSHOT_FILEW
	SNAPSHOT_LOCK
	SNAPSHOT_LOCKWAIT
	SNAPSHOT_QUIESCERS
	SNAPSHOT_RANGES
	SNAPSHOT_STATEMENT
	SNAPSHOT_SUBSECT
	SNAPSHOT_SWITCHES
	SNAPSHOT_TABLE
	SNAPSHOT_TBREORG
	SNAPSHOT_TBS
	SNAPSHOT_TBS_CFG
	SQLCACHE_SNAPSHOT
	SYSINSTALLROUTINES
	WLM_GET_ACTIVITY_DETAILS - Return detailed information about a specific activity
	WLM_GET_SERVICE_CLASS_AGENTS - List agents running in a service class
	WLM_GET_SERVICE_CLASS_WORKLOAD_OCCURRENCES - List of workload occurrences
	WLM_GET_SERVICE_SUBCLASS_STATS - return statistics of service subclasses
	WLM_GET_WORKLOAD_OCCURRENCE_ACTIVITIES - Return a list of activities
	WLM_GET_WORKLOAD_STATS - return workload statistics

	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

