
IBM DB2 9.7

for Linux, UNIX, and Windows

Data Movement Utilities Guide and Reference

SC27-2440-00

���

IBM DB2 9.7

for Linux, UNIX, and Windows

Data Movement Utilities Guide and Reference

SC27-2440-00

���

Note

Before using this information and the product it supports, read the general information under Appendix F, “Notices,” on

page 469.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2009.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book v

Part 1. Data movement utilities and

reference 1

Chapter 1. Data movement options . . . 3

Chapter 2. Export utility 7

Export utility overview 7

Privileges and authorities required to use the export

utility 8

Exporting data 8

Exporting XML data 9

LBAC-protected data export considerations . . . 12

Table export considerations 13

Typed table export considerations 14

Identity column export considerations 16

LOB export considerations 16

Reference - Export 18

EXPORT 18

EXPORT command using the ADMIN_CMD

procedure 27

db2Export - Export data from a database . . . 36

Export sessions - CLP examples 42

Chapter 3. Import utility 45

Import overview 45

Privileges and authorities required to use import . . 47

Importing data 48

Importing XML data 50

Imported table re-creation 51

Typed table import considerations 52

LBAC-protected data import considerations . . 55

Buffered-insert imports 57

Identity column import considerations 58

Generated column import considerations . . . 59

LOB import considerations 60

User-defined distinct types import considerations 61

Additional considerations for import 61

Client/server environments and import 61

Table locking modes supported by the import

utility 62

Reference - Import 63

IMPORT 63

IMPORT command using the ADMIN_CMD

procedure 86

db2Import - Import data into a table, hierarchy,

nickname or view 109

Import sessions - CLP examples 122

Chapter 4. Load utility 125

Load overview 125

Privileges and authorities required to use load . . 128

LOAD authority 129

Loading data 129

Loading XML data 131

Load considerations for partitioned tables . . . 132

LBAC-protected data load considerations . . . 135

Identity column load considerations 137

Generated column load considerations 139

Moving data using the CURSOR file type . . . 141

Propagating dependent immediate staging

tables 144

Refreshing dependent immediate materialized

query tables 145

Multidimensional clustering considerations . . 146

Moving data using a customized application

(user exit) 147

Additional considerations for load 153

Parallelism and loading 153

Index creation during load operations 154

Compression dictionary creation during load

operations 163

Options for improving load performance . . . 165

Load features for maintaining referential integrity 169

Checking for integrity violations following a

load operation 169

Checking for constraint violations using SET

INTEGRITY 172

Table locking during load operations 174

Read access load operations 175

Table space states during and after load

operations 178

Table states during and after load operations 179

Load exception tables 181

Failed or incomplete loads 182

Restarting an interrupted load operation . . . 182

Restarting or terminating an ALLOW READ

ACCESS load operation 183

Recovering data with the load copy location file 184

Load dump file 186

Load temporary files 186

Load utility log records 186

Load overview–partitioned database environments 187

Loading data in a partitioned database

environment 189

Monitoring a load operation in a partitioned

database environment using the LOAD QUERY

command 196

Resuming, restarting, or terminating load

operations in a partitioned database

environment 197

Migration and version compatibility 199

Reference - Load in a partitioned environment 200

Reference - Load 207

LOAD 207

LOAD command using the ADMIN_CMD

procedure 240

db2Load - Load data into a table 273

Load sessions - CLP examples 293

© Copyright IBM Corp. 1993, 2009 iii

SET INTEGRITY 296

LOAD QUERY 314

LIST TABLESPACES 319

Chapter 5. Other data movement

options 335

Moving tables online by using the

ADMIN_MOVE_TABLE procedure 335

Moving data with DB2 Connect 337

The IBM Replication Tools by Component 339

Copying schemas 340

Examples of schema copy using the db2move

utility 342

db2move - Database movement tool 343

Performing a redirected restore using an

automatically generated script 352

RESTORE DATABASE 352

High availability through suspended I/O and

online split mirror support 370

db2inidb - Initialize a mirrored database . . . 371

db2relocatedb - Relocate database 373

db2look - DB2 statistics and DDL extraction tool 377

Chapter 6. File formats and data types 387

Export/Import/Load utility file formats 387

Moving data across platforms - file format

considerations 387

Delimited ASCII (DEL) file format 389

Non-delimited ASCII (ASC) file format 395

PC version of IXF file format 399

Worksheet File Format (WSF) 437

Unicode considerations for data movement . . . 438

Character set and national language support . . . 440

XML data movement 440

Important considerations for XML data

movement 441

LOB and XML file behavior when importing

and exporting 442

XML data specifier 444

Query and XPath Data Model 445

Part 2. Appendixes 447

Appendix A. Differences between the

import and load utility 449

Appendix B. Bind files used by the

export, import, and load utilities . . . 451

Appendix C. How to read the syntax

diagrams 453

Appendix D. Collecting data for data

movement problems 457

Appendix E. Overview of the DB2

technical information 459

DB2 technical library in hardcopy or PDF format 459

Ordering printed DB2 books 462

Displaying SQL state help from the command line

processor 463

Accessing different versions of the DB2

Information Center 463

Displaying topics in your preferred language in the

DB2 Information Center 463

Updating the DB2 Information Center installed on

your computer or intranet server 464

Manually updating the DB2 Information Center

installed on your computer or intranet server . . 465

DB2 tutorials 467

DB2 troubleshooting information 467

Terms and Conditions 468

Appendix F. Notices 469

Index 473

iv Data Movement Utilities Guide and Reference

About this book

This book provides information about and shows you how to use the following

DB2® Database for Linux®, UNIX®, and Windows® data movement utilities:

v Export and Import

The export and import utilities move data between a table or view and another

database or spreadsheet program; between DB2 databases; and between DB2

databases and host databases using DB2® Connect™. The export utility moves

data from a database into operating system files; you can then use those files to

import or load that data into another database.

v Load

The load utility moves data into tables, extends existing indexes, and generates

statistics. The load utility moves data much faster than the import utility when

large amounts of data are involved. Data exported using the export utility can

be loaded using the load utility.

When the load utility is used in a partitioned database environment, large

amounts of data can be distributed and loaded into different database partitions.

For a complete listing of data movement options, see Data movement options

available in DB2 V9.5

© Copyright IBM Corp. 1993, 2009 v

vi Data Movement Utilities Guide and Reference

Part 1. Data movement utilities and reference

© Copyright IBM Corp. 1993, 2009 1

2 Data Movement Utilities Guide and Reference

Chapter 1. Data movement options

There are various data movement options available. The following table provides

an overview of the data movement tools and utilities available to you. Use this

table as a guide to help you determine which data movement options might best

suit your needs.

 Table 1. Data movement options

Utility name Load utility

Purpose

To efficiently move large quantities of data

into newly created tables, or into tables that

already contain data.

Cross platform compatible Yes

Best practice usage

This utility is best suited to situations where

performance is your primary concern. This

utility can be used as an alternative to the

import utility. It is faster then the import

utility because it writes formatted pages

directly into the database rather than using

SQL INSERTS. In addition, the load utility

allows you the option to not log the data or

use the COPY option to save a copy of the

loaded data. Load operations can fully

exploit resources, such as CPUs and memory

on SMP and MPP environments.

References Loading data

 Utility name db2move

Purpose

Using the db2move utility with the COPY

option, allows you to copy schema templates

(with or without data) from a source

database to a target database or move an

entire schema from a source database to a

target database. Using the db2move utility

with the IMPORT or EXPORT option

facilitates the movement of a large numbers

of tables between DB2 databases.

Cross platform compatible Yes

Best practice usage

When used with the COPY option, the

source and the target database must be

different. The COPY option is useful in

making schema templates. Use the IMPORT

or EXPORT option for cloning databases

when there is no support for cross-platform

backup and restore operations. The IMPORT

and EXPORT options are used in

conjunction with the db2look command.

References

v “Copying a schema” in Database

Administration Concepts and Configuration

Reference

v Imported table re-creation

© Copyright IBM Corp. 1993, 2009 3

Utility name Import utility

Purpose

To insert data from an external file into a

table, hierarchy, view, or nickname

Cross platform compatible Yes

Best practice usage

The import utility can be a good alternative

to the load utility in the following situations:

v where the target table is a view

v the target table has constraints and you

don’t want the target table to be put in

the Set Integrity Pending state

v the target table has triggers and you want

them fired

References Importing data

 Utility name Export utility

Purpose

To export data from a database to one of

several external file formats. The data can

then be imported or loaded at a later time.

Cross platform compatible Yes

Best practice usage

This utility is best suited in situations where

you want to store data in an external file, to

either process it further or move data to

another table. High Performance Unload

(HPU) is an alternative, however, it must be

purchased separately. Export supports XML

columns.

References Exporting data

 Utility name ADMIN_COPY_SCHEMA procedure

Purpose

Allows you to make a copy of all the objects

in a single schema and re-create those

objects in a new schema. This copy

operation can be performed with or without

data, within a database.

Cross platform compatible Yes

4 Data Movement Utilities Guide and Reference

Utility name ADMIN_COPY_SCHEMA procedure

Best practice usage

This utility is useful for making schema

templates. It is also useful if you want to

experiment with a schema (for example, try

out new indexes) without impacting the

source schema’s behavior. The key

differences between the

ADMIN_COPY_SCHEMA procedure and the

db2move utility are:

v The ADMIN_COPY_SCHEMA procedure

is used on a single database while the

db2move utility is used across databases

v The db2move utility fails when invoked if

it cannot create a physical object such as a

table or index. The

ADMIN_COPY_SCHEMA procedure logs

errors and continues.

v The ADMIN_COPY_SCHEMA procedure

uses load from cursor to move data from

one schema to the other. The db2move

utility uses a remote load, similar to a

load from cursor, which pulls in the data

from the source database.

References

“Copying a schema” in Database

Administration Concepts and Configuration

Reference

Utility name

Restore utility with the REDIRECT option

and the GENERATE SCRIPT option

Purpose

To copy an entire database from one system

to another using a script from an existing

backup image.

Cross platform compatible Limited. See References

Best practice usage

This utility is best suited in situations where

a backup image exists.

References

v “Performing a redirected restore using an

automatically generated script” in Data

Recovery and High Availability Guide and

Reference

v “Backup and restore operations between

different operating systems and hardware

platforms” in Data Recovery and High

Availability Guide and Reference

Utility name

db2relocatedb - Relocate database

command

Purpose

To rename a database, or relocate a database

or part of a database to the same system or

a different system.

Cross platform compatible No

Chapter 1. Data movement options 5

Utility name

db2relocatedb - Relocate database

command

Best practice usage

v This utility can be used for situations

where a backup and restore could be time

consuming.

v This utility is an alternative to using

backup and restore to move or create

copies of databases.

v It also provides a quick method of cloning

a database for alternative environments

such as testing.

v It can be used to move table space

containers to a new set of storage devices

References

“db2relocatedb - Relocate database

command” in Command Reference

 Utility name Split mirror

Purpose

To create a clone, standby, or backup

database.

Cross platform compatible No

Best practice usage

v create a standby system in case of a

primary failure to reduce down time

v move backup operations away from a live

production machine onto a split database

v provides a quick method of cloning a

database for alternate environments, such

as testing

Considerations

v only DMS table spaces can be backed up

on the split version of the database

v usually used in conjunction with some

flashcopy technology provided with

storage systems

v an alternative is to issue a file copy once

the database is suspended, however this

duplicates the amount of storage for the

database

References

“High availability through online split

mirror and suspended I/O support” in Data

Recovery and High Availability Guide and

Reference

6 Data Movement Utilities Guide and Reference

Chapter 2. Export utility

Export utility overview

The export utility extracts data using an SQL select or an XQuery statement, and

places that information into a file. You can use the output file to move data for a

future import or load operation or to make the data accessible for analysis.

The export utility is a relatively simple, yet flexible data movement utility. You can

activate it through the Control Center, by issuing the EXPORT command in the

CLP, by calling the ADMIN_CMD stored procedure, or by calling the db2Export

API through a user application.

The following items are mandatory for a basic export operation:

v The path and name of the operating system file in which you want to store the

exported data

v The format of the data in the input file

Export supports IXF, WSF, and DEL data formats for the output files.

v A specification of the data that is to be exported

For the majority of export operations, you need to provide a SELECT statement

that specifies the data to be retrieved for export. When exporting typed tables,

you don’t need to issue the SELECT statement explicitly; you only need to

specify the subtable traverse order within the hierarchy

You can use the export utility with DB2 Connect if you need to move data in IXF

format.

Additional options

There are a number of parameters that allow you to customize an export operation.

File type modifiers offer many options such as allowing you to change the format

of the data, date and time stamps, or code page, or have certain data types written

to separate files. Using the METHOD parameters, you can specify different

column names to be used for the exported data.

You can export from tables that include one or more columns with an XML data

type. Use the XMLFILE, XML TO, and XMLSAVESCHEMA parameters to specify

details about how those exported documents are stored.

There are a few ways to improve the export utility’s performance. As the export

utility is an embedded SQL application and does SQL fetches internally,

optimizations that apply to SQL operations apply to the export utility as well.

Consider taking advantage of large buffer pools, indexing, and sort heaps. In

addition, try to minimize device contention on the output files by placing them

away from the containers and log devices.

The messages file

The export utility writes error, warning, and informational messages to standard

ASCII text message files. For all interfaces except the CLP, you must specify the

name of these files in advance with the MESSAGES parameter. If you are using

the CLP and do not specify a messages file, the export utility writes the messages

to standard output.

© Copyright IBM Corp. 1993, 2009 7

Privileges and authorities required to use the export utility

Privileges enable you to create, update, delete, or access database resources.

Authority levels provide a method of mapping privileges to higher-level database

manager maintenance and utility operations.

Together, privileges and authorities control access to the database manager and its

database objects. You can access only those objects for which you have the

appropriate authorization: that is, the required privilege or authority.

You must have DATAACCESS authority or the CONTROL or SELECT privilege for

each table or view participating in the export operation.

When you are exporting LBAC-protected data, the session authorization ID must

be allowed to read the rows or columns that you are trying to export. Protected

rows that the session authorization ID is not authorized to read are not exported. If

the SELECT statement includes any protected columns that the session

authorization ID is not allowed to read, the export utility fails, and an error

(SQLSTATE 42512) is returned.

Exporting data

Use the export utility to export data from a database to a file. The file can have

one of several external file formats. You can specify the data to be exported by

supplying an SQL SELECT statement or by providing hierarchical information for

typed tables.

You need DATAACCESS authority, the CONTROL privilege, or the SELECT

privilege on each participating table or view to export data from a database

Before running the export utility, you must be connected (or be able to implicitly

connect) to the database from which you will export the data. If implicit connect is

enabled, a connection to the default database is established. Utility access to Linux,

UNIX, or Windows database servers from Linux, UNIX, or Windows clients must

be through a direct connection through the engine and not through a DB2 Connect

gateway or loop back environment.

Because the utility issues a COMMIT statement, you should complete all

transactions and release all locks by issuing a COMMIT or a ROLLBACK statement

before running the export utility. There is no requirement for applications accessing

the table and using separate connections to disconnect.

You cannot export tables with structured type columns.

You can run the export utility by using the Export Table notebook in the Control

Center or the application programming interface (API) db2Export, or by specifying

the EXPORT command in the command line processor (CLP).

Using the Export Table notebook

To export data by using the Export Table notebook:

1. From the Control Center, expand the object tree until you find the Tables or

Views folder.

2. Click on the folder that you want to work with. Any existing tables or views

are displayed in the pane on the right side of the window (the contents pane).

8 Data Movement Utilities Guide and Reference

3. In the contents pane, right-click the table or view that you want, and select

Export from the pop-up menu. The Export Table notebook opens.

Detailed information about the Export Table notebook is provided in the Control

Center online help facility.

Issuing an EXPORT command by using the CLP

A very simple export operation requires you to specify only a target file, a file

format, and a source file for the SELECT statement.

To export data from the CLP, enter the EXPORT command:

db2 export to filename of ixf select * from table

where filename is the name of the output file that you want to create and export,

ixf is the file format, and table is the name of the table that contains the data you

want to copy.

However, you might also want to specify a messages file to which warning and

error messages will be written. To do that, add the MESSAGES parameter and a

message file name (in this case, msg.txt) so the command is:

db2 export to filename of ixf messages msgs.txt select * from table

For complete syntax and usage information, see ″EXPORT command.″

Exporting XML data

When exporting XML data, the resulting QDM (XQuery Data Model) instances are

written to a file or files separate from the main data file containing exported

relational data. This is true even if neither the XMLFILE nor the XML TO option is

specified. By default, exported QDM instances are all concatenated to the same

XML file. You can use the XMLINSEPFILES file type modifier to specify that each

QDM instance be written to a separate file.

The XML data, however, is represented in the main data file with an XML data

specifier (XDS). The XDS is a string represented as an XML tag named ″XDS″,

which has attributes that describe information about the actual XML data in the

column; such information includes the name of the file that contains the actual

XML data, and the offset and length of the XML data within that file.

The destination paths and base names of the exported XML files can be specified

with the XML TO and XMLFILE options. If the XML TO or XMLFILE option is

specified, the format of the exported XML file names, stored in the FIL attribute of

the XDS, is xmlfilespec.xxx.xml, where xmlfilespec is the value specified for the

XMLFILE option, and xxx is a sequence number for xml files produced by the

export utility. Otherwise, the format of the exported XML file names is:

exportfilename.xxx.xml, where exportfilename is the name of the exported output

file specified for the EXPORT command, and xxx is a sequence number for xml

files produced by the export utility.

By default, exported XML files are written to the path of the exported data file.

The default base name for exported XML files is the name of the exported data file,

with an appending 3-digit sequence number, and the .xml extension.

Chapter 2. Export utility 9

Examples

For the following examples, imagine a table USER.T1 containing four columns and

two rows:

 C1 INTEGER

 C2 XML

 C3 VARCHAR(10)

 C4 XML

 Table 2. USER.T1

C1 C2 C3 C4

2 <?xml version=″1.0″

encoding=″UTF-8″ ?><note

time=″12:00:00″><to>You</
to><from> Me</
from><heading>note1</heading>

<body>Hello World!</body></
note>

’char1’ <?xml version=″1.0″

encoding=″UTF-8″ ?><note

time=″13:00:00″><to>Him</
to><from> Her</
from><heading>note2</heading><

body>Hello World!</body></note>

4 NULL ’char2’ ?xml version=″1.0″

encoding=″UTF-8″ ?><note

time=″14:00:00″>to>Us</to><from>

Them</from><heading>note3</
heading> <body>Hello

World!</body></note>

Example 1

The following command exports the contents of USER.T1 in Delimited ASCII

(DEL) format to the file ″/mypath/t1export.del″. Because the XML TO and

XMLFILE options are not specified, the XML documents contained in columns C2

and C4 are written to the same path as the main exported file ″/mypath″. The base

name for these files is ″t1export.del.xml″. The XMLSAVESCHEMA option indicates

that XML schema information is saved during the export procedure.

 EXPORT TO /mypath/t1export.del OF DEL XMLSAVESCHEMA SELECT * FROM USER.T1

The exported file ″/mypath/t1export.del″ contains:

 2,"<XDS FIL=’t1export.del.001.xml’ OFF=’0’ LEN=’144’ />","char1",

 "<XDS FIL=’t1export.del.001.xml’ OFF=’144’ LEN=’145’ />"

 4,,"char2","<XDS FIL=’t1export.del.001.xml’ OFF=’289’

 LEN=’145’ SCH=’S1.SCHEMA_A’ />"

The exported XML file ″/mypath/t1export.del.001.xml″ contains:

 <?xml version="1.0" encoding="UTF-8" ?><note time="12:00:00"><to>You</to>

 <from>Me</from><heading>note1</heading><body>Hello World!</body>

 </note><?xml version="1.0" encoding="UTF-8" ?><note time="13:00:00"><to>Him

 </to><from>Her</from><heading>note2</heading><body>Hello World!

 </body></note><?xml version="1.0" encoding="UTF-8" ?><note time="14:00:00">

 <to>Us</to><from>Them</from>heading>note3</heading><body>

 Hello World!</body></note>

Example 2

The following command exports the contents of USER.T1 in DEL format to the file

″t1export.del″. XML documents contained in columns C2 and C4 are written to the

path ″/home/user/xmlpath″. The XML files are named with the base name

10 Data Movement Utilities Guide and Reference

″xmldocs″, with multiple exported XML documents written to the same XML file.

The XMLSAVESCHEMA option indicates that XML schema information is saved

during the export procedure.

 EXPORT TO /mypath/t1export.del OF DEL XML TO /home/user/xmlpath

 XMLFILE xmldocs XMLSAVESCHEMA SELECT * FROM USER.T1

The exported DEL file ″/home/user/t1export.del″ contains:

 2,"<XDS FIL=’xmldocs.001.xml’ OFF=’0’ LEN=’144’ />","char1",

 "<XDS FIL=’xmldocs.001.xml’ OFF=’144’ LEN=’145’ />"

 4,,"char2","<XDS FIL=’xmldocs.001.xml’ OFF=’289’

 LEN=’145’ SCH=’S1.SCHEMA_A’ />"

The exported XML file ″/home/user/xmlpath/xmldocs.001.xml″ contains:

 <?xml version="1.0" encoding="UTF-8" ?><note time="12:00:00"><to>You</to>

 <from>Me</from><heading>note1</heading><body>Hello World!</body>

 </note><?xml version="1.0" encoding="UTF-8" ?><note time="13:00:00">

 <to>Him</to><from>Her</from><heading>note2</heading><body>

 Hello World!</body></note><?xml version="1.0" encoding="UTF-8" ?>

 <note time="14:00:00"><to>Us</to><from>Them</from><heading>

 note3</heading><body>Hello World!</body></note>

Example 3

The following command is similar to Example 2, except that each exported XML

document is written to a separate XML file.

 EXPORT TO /mypath/t1export.del OF DEL XML TO /home/user/xmlpath

 XMLFILE xmldocs MODIFIED BY XMLINSEPFILES XMLSAVESCHEMA

 SELECT * FROM USER.T1

The exported file ″/mypath/t1export.del″ contains:

 2,"<XDS FIL=’xmldocs.001.xml’ />","char1","XDS FIL=’xmldocs.002.xml’ />"

 4,,"char2","<XDS FIL=’xmldocs.004.xml’ SCH=’S1.SCHEMA_A’ />"

The exported XML file ″/home/user/xmlpath/xmldocs.001.xml″ contains:

 <?xml version="1.0" encoding="UTF-8" ?><note time="12:00:00"><to>You</to>

 <from>Me</from><heading>note1</heading><body>Hello World!</body>

 </note>

The exported XML file ″/home/user/xmlpath/xmldocs.002.xml″ contains:

 ?xml version="1.0" encoding="UTF-8" ?>note time="13:00:00">to>Him/to>

 from>Her/from>heading>note2/heading>body>Hello World!/body>

 /note>

The exported XML file ″/home/user/xmlpath/xmldocs.004.xml″ contains:

 <?xml version="1.0" encoding="UTF-8" ?><note time="14:00:00"><to>Us</to>

 <from>Them</from><heading>note3</heading><body>Hello World!</body>

 </note>

Example 4

The following command writes the result of an XQuery to an XML file.

 EXPORT TO /mypath/t1export.del OF DEL XML TO /home/user/xmlpath

 XMLFILE xmldocs MODIFIED BY XMLNODECLARATION select

 xmlquery(’$m/note/from/text()’ passing by ref c4 as "m" returning sequence)

 from USER.T1

The exported DEL file ″/mypath/t1export.del″ contains:

Chapter 2. Export utility 11

"<XDS FIL=’xmldocs.001.xml’ OFF=’0’ LEN=’3’ />"

 "<XDS FIL=’xmldocs.001.xml’ OFF=’3’ LEN=’4’ />"

The exported XML file ″/home/user/xmlpath/xmldocs.001.xml″ contains:

 HerThem

Note: The result of this particular XQuery does not produce well-formed XML

documents. Therefore, the file exported above could not be directly imported into

an XML column.

LBAC-protected data export considerations

When you export data that is protected by label-based access control (LBAC), the

data that is exported is limited to the data that your LBAC credentials allow you to

read.

If your LBAC credentials do not allow you to read a row, that row is not exported,

but no error is returned. If your LBAC credentials do not allow you to read a

column, the export utility fails, and an error (SQLSTATE 42512) is returned.

A value from a column with a data type of DB2SECURITYLABEL is exported as

raw data enclosed in character delimiters. If a character delimiter is included in the

original data, it is doubled. No other changes are made to the bytes that make up

the exported value. This means that a data file that contains DB2SECURITYLABEL

data can contain newlines, formfeeds, or other non-printable ASCII characters.

If you want the values of columns with a data type of DB2SECURITYLABEL to be

exported in a human-readable form, you can use the SECLABEL_TO_CHAR scalar

function in the SELECT statement to convert the values to the security label string

format.

Examples

In the following examples, output is in DEL format and is written to the file

myfile.del. The data is exported from a table named REPS, which was created with

the following statement:

create table reps (row_label db2securitylabel,

id integer,

name char(30))

security policy data_access_policy

This example exports the values of the row_label column in the default format:

db2 export to myfile.del of del select * from reps

The data file is not very readable in most text editors because the values for the

row_label column are likely to contain several ASCII control characters.

The following example exports the values of the row_label column in the security

label string format:

db2 export to myfile.del of del select SECLABEL_TO_CHAR

(row_label,’DATA_ACCESS_POLICY’), id, name from reps

Here is an excerpt of the data file created by the previous example. Notice that the

format of the security label is readable:

12 Data Movement Utilities Guide and Reference

...

"Secret:():Epsilon 37", 2005, "Susan Liu"

"Secret:():(Epsilon 37,Megaphone,Cloverleaf)", 2006, "Johnny Cogent"

"Secret:():(Megaphone,Cloverleaf)", 2007, "Ron Imron"

...

Table export considerations

A typical export operation involves the outputting of selected data that is inserted

or loaded into existing tables. However, it is also possible to export an entire table

for subsequent re-creation using the import utility.

To export a table, you must specify the PC/IXF file format. You can then re-create

your saved table (including its indexes) using the import utility in CREATE mode.

However, some information is not saved to the exported IXF file if any of the

following conditions exist:

v The index column names contain hexadecimal values of 0x2B or 0x2D.

v The table contains XML columns.

v The table is multidimensional clustered (MDC).

v The table contains a table partitioning key.

v The index name is longer than 128 bytes due to code page conversion.

v The table is protected.

v The EXPORT command contains action strings other than SELECT * FROM

tablename

v You specify the METHOD N parameter for the export utility.

For a list of table attributes that are lost, see ″Table import considerations.″ If any

information is not saved, warning SQL27984W is returned when the table is

re-created.

Note: Import’s CREATE mode is being deprecated. Use the db2look utility to

capture and re-create your tables.

Index information
If the column names specified in the index contain either - or + characters, the

index information is not collected, and warning SQL27984W is returned. The

export utility completes its processing, and the data exported is unaffected.

However, the index information is not saved in the IXF file. As a result, you must

create the indexes separately using the db2look utility.

Space limitations

The export operation fails if the data that you are exporting exceeds the space

available on the file system on which the exported file is created. In this case, you

should limit the amount of data selected by specifying conditions on the WHERE

clause so that the exported file fits on the target file system. You can run the export

utility multiple times to export all of the data.

Tables with other file formats

If you do not export using the IXF file format, the output files do not contain

descriptions of the target table, but they contain the record data. To re-create a

table and its data, create the target table, then use the load or import utility to

populate the table. You can use the db2look utility to capture the original table

definitions and to generate the corresponding data definition language (DDL).

Chapter 2. Export utility 13

Typed table export considerations

You can use the DB2 export utility can be used to move data out of typed tables

for a later import. Export moves data from one hierarchical structure of typed

tables to another by following a specific order and creating an intermediate flat

file.

When working with typed tables, the export utility controls what is placed in the

output file; specify only the target table name and, optionally, the WHERE clause.

You can express subselect statements only by specifying the target table name and

the WHERE clause. You cannot specify a fullselect or select-statement when

exporting a hierarchy.

Preservation of hierarchies using traverse order
Typed tables can be in a hierarchy. There are several ways you can move data

across hierarchies:

v Movement from one hierarchy to an identical hierarchy

v Movement from one hierarchy to a subsection of a larger hierarchy

v Movement from a subsection of a large hierarchy to a separate hierarchy

Identification of types in a hierarchy is database dependent, meaning that in

different databases, the same type has a different identifier. Therefore, when

moving data between these databases, a mapping of the same types must be done

to ensure that the data is moved correctly.

The mapping used for typed tables is known as the traverse order, the order of

proceeding top-to-bottom, left-to-right through all of the supertables and subtables

in the hierarchy. Before each typed row is written out during an export operation,

an identifier is translated into an index value. This index value can be any number

from one to the number of relevant types in the hierarchy. Index values are

generated by numbering each type when moving through the hierarchy in a

specific order—the traverse order. Figure 1 shows a hierarchy with four valid

traverse orders:

v Person, Employee, Manager, Architect, Student

v Person, Student, Employee, Manager, Architect

v Person, Employee, Architect, Manager, Student

v Person, Student, Employee, Architect, Manager

14 Data Movement Utilities Guide and Reference

The traverse order is important when moving data between table hierarchies

because it determines where the data is moved in relation to other data. There are

two types of traverse order: default and user specified.

Default traverse order
With the default traverse order, all relevant types refer to all reachable types in the

hierarchy from a given starting point in the hierarchy. The default order includes

all tables in the hierarchy, and each table is ordered by the scheme used in the

OUTER order predicate. For instance, the default traverse order of Figure 1,

indicated by the dotted line, would be Person, Student, Employee, Manager,

Architect.

The default traverse order behaves differently when used with different file

formats. Exporting data to the PC/IXF file format creates a record of all relevant

types, their definitions, and relevant tables. The export utility also completes the

mapping of an index value to each table. When working with the PC/IXF file

format, you should use the default traverse order.

With the ASC, DEL, or WSF file format, the order in which the typed rows and the

typed tables are created could be different, even though the source and target

hierarchies might be structurally identical. This results in time differences that the

default traverse order identifies when proceeding through the hierarchies. The

creation time of each type determines the order used to move through the

hierarchy at both the source and the target when using the default traverse order.

Ensure that the creation order of each type in both the source and the target

hierarchies is identical and that there is structural identity between the source and

the target. If these conditions cannot be met, select a user-specified traverse order.

User-specified traverse order

With the user-specified traverse order, you define (in a traverse order list) the

relevant types to be used. This order outlines how to traverse the hierarchy and

what sub-tables to export, whereas with the default traverse order, all tables in the

hierarchy are exported.

Although you determine the starting point and the path down the hierarchy when

defining the traverse order, remember that the subtables must be traversed in

Person

Person_t

(Oid, Name, Age)

Employee

Employee_t

(SerialNum, Salary, REF

(Department_t))

Manager

Manager_t

(Bonus)

Student

Student_t

(SerialNum, Marks)

Architect

Architect_t

(StockOption)

8

5

4 7

6

3 2

1

Figure 1. An example of a hierarchy

Chapter 2. Export utility 15

pre-order fashion. Each branch in the hierarchy must be traversed to the bottom

before a new branch can be started. The export utility looks for violations of this

condition within the specified traverse order. One method of ensuring that the

condition is met is to proceed from the top of the hierarchy (or the root table),

down the hierarchy (subtables) to the bottom subtable, then back up to its

supertable, down to the next ″right-most″ subtable, then back up to next higher

supertable, down to its subtables, and so on.

If you want to control the traverse order through the hierarchies, ensure that the

same traverse order is used for both the export and the import utilities.

Example 1

The following examples are based on the hierarchical structure in Figure 1. To

export the entire hierarchy, enter the following commands:

 DB2 CONNECT TO Source_db

 DB2 EXPORT TO entire_hierarchy.ixf OF IXF HIERARCHY STARTING Person

Note that setting the parameter HIERARCHY STARTING to Person indicates that

the default traverse order starting from the table PERSON.

Example 2

To export the entire hierarchy, but only the data for those people over the age of

20, you would enter the following commands:

DB2 CONNECT TO Source_db

 DB2 EXPORT TO entire_hierarchy.del OF DEL HIERARCHY (Person,

 Employee, Manager, Architect, Student) WHERE Age>=20

Note that setting the parameter HIERARCHY to Person, Employee, Manager,

Architect, Student indicates a user-specified traverse order.

Identity column export considerations

You can use the export utility to export data from a table containing an identity

column. However, the identity column limits your choice of output file format.

If the SELECT statement that you specify for the export operation is of the form

SELECT * FROM tablename and you do not use the METHOD option, exporting

identity column properties to IXF files is supported. You can then use the

REPLACE_CREATE and the CREATE options of the IMPORT command to

re-create the table, including its identity column properties. If you create the

exported IXF file from a table containing an identity column of type GENERATED

ALWAYS, the only way that you can successfully import the data file is to specify

the identityignore file type modifier during the import operation. Otherwise, all

rows are rejected (SQL3550W is issued).

Note: The CREATE and REPLACE_CREATE options of the IMPORT command are

deprecated and might be removed in a future release.

LOB export considerations

When exporting tables with large object (LOB) columns, the default action is to

export a maximum of 32 KB per LOB value and to place it in the same file as the

rest of the column data. If you are exporting LOB values that exceed 32 KB, you

should have the LOB data written to a separate file to avoid truncation.

16 Data Movement Utilities Guide and Reference

To specify that LOB should be written to its own file, use the lobsinfile file type

modifier. This modifier instructs the export utility to place the LOB data in the

directories specified by the LOBS TO clause. Using LOBS TO or LOBFILE

implicitly activates the lobsinfile file type modifier. By default, LOB values are

written to the same path to which the exported relational data is written. If one or

more paths are specified with the LOBS TO option, the export utility cycles

between the paths to write each successful LOB value to the appropriate LOB file.

You can also specify names for the output LOB files using the LOBFILE option. If

the LOBFILE option is specified, the format of lobfilename is lobfilespec.xxx.lob,

where lobfilespec is the value specified for the LOBFILE option, and xxx is a

sequence number for LOB files produced by the export utility. Otherwise,

lobfilename is of the format: exportfilename.xxx.lob, where exportfilename is the

name of the exported output file specified for the EXPORT command, and xxx is a

sequence number for LOB files produced by the export utility.

By default, LOBs are written to a single file, but you can also specify that the

individual LOBs are to be stored in separate files. The export utility generates a

LOB Location Specifier (LLS) to enable the storage of multiple LOBs in one file.

The LLS, which is written to the export output file, is a string that indicates where

the LOB data is stored within the file. The format of the LLS is

lobfilename.ext.nnn.mmm/, where lobfilename.ext is the name of the file that

contains the LOB, nnn is the offset of the LOB within the file (measured in bytes),

and mmm is the length of the LOB (measured in bytes). For example, an LLS of

db2exp.001.123.456/ indicates that the LOB is located in the file db2exp.001,

begins at an offset of 123 bytes into the file, and is 456 bytes long. If the indicated

size in the LLS is 0, the LOB is considered to have a length of 0. If the length is -1,

the LOB is considered to be NULL and the offset and file name are ignored.

If you don’t want individual LOB data concatenated to the same file, use the

lobsinsepfiles file type modifier to write each LOB to a separate file.

Note: The IXF file format does not store the LOB options of the column, such as

whether or not the LOB column is logged. This means that the import utility

cannot re-create a table containing a LOB column that is defined to be 1 GB or

larger.

Example 1The following example shows how to export LOBs (where the exported

LOB files have the specified base name lobs1) to a DEL file:

 db2 export to myfile.del of del lobs to mylobs/

 lobfile lobs1 modified by lobsinfile

 select * from emp_photo

Example 2The following example shows how to export LOBs to a DEL file, where

each LOB value is written to a separate file and lobfiles are written to two

directories:

db2 export to myfile.del of del

lobs to /db2exp1/, /db2exp2/ modified by lobsinfile

select * from emp_photo

Chapter 2. Export utility 17

Reference - Export

EXPORT

Exports data from a database to one of several external file formats. The user

specifies the data to be exported by supplying an SQL SELECT statement, or by

providing hierarchical information for typed tables.

Quick link to “File type modifiers for the export utility” on page 22.

Authorization

One of the following:

v dataaccess authority

v CONTROL or SELECT privilege on each participating table or view

Required connection

Command syntax

�� EXPORT TO filename OF filetype

�

,

LOBS TO

lob-path

 �

�

�

,

LOBFILE

filename

�

,

XML TO

xml-path

 �

�

�

,

XMLFILE

filename

�

MODIFIED BY

filetype-mod

 �

�
XMLSAVESCHEMA

�

,

METHOD N

(

column-name

)

 �

�

�

 select-statement

XQUERY

xquery-statement

HIERARCHY

STARTING

sub-table-name

traversal-order-list

WHERE

 ��

traversal-order-list:

�

 ,

(

sub-table-name

)

18 Data Movement Utilities Guide and Reference

Command parameters

HIERARCHY traversal-order-list

Export a sub-hierarchy using the specified traverse order. All sub-tables

must be listed in PRE-ORDER fashion. The first sub-table name is used as

the target table name for the SELECT statement.

HIERARCHY STARTING sub-table-name

Using the default traverse order (OUTER order for ASC, DEL, or WSF files,

or the order stored in PC/IXF data files), export a sub-hierarchy starting

from sub-table-name.

LOBFILE filename

Specifies one or more base file names for the LOB files. When name space

is exhausted for the first name, the second name is used, and so on. This

will implicitly activate the LOBSINFILE behavior.

 When creating LOB files during an export operation, file names are

constructed by appending the current base name from this list to the

current path (from lob-path), and then appending a 3-digit sequence

number to start and the three character identifier lob. For example, if the

current LOB path is the directory /u/foo/lob/path/, and the current LOB

file name is bar, the LOB files created will be /u/foo/lob/path/
bar.001.lob, /u/foo/lob/path/bar.002.lob, and so on. The 3-digit

sequence number in the LOB file name will grow to 4-digits once 999 is

used, 4-digits will grow to 5-digits once 9999 is used, and so on.

LOBS TO lob-path

Specifies one or more paths to directories in which the LOB files are to be

stored. There will be at least one file per LOB path, and each file will

contain at least one LOB. The maximum number of paths that can be

specified is 999. This will implicitly activate the LOBSINFILE behavior.

METHOD N column-name

Specifies one or more column names to be used in the output file. If this

parameter is not specified, the column names in the table are used. This

parameter is valid only for WSF and IXF files, but is not valid when

exporting hierarchical data.

MODIFIED BY filetype-mod

Specifies file type modifier options. See “File type modifiers for the export

utility” on page 22.

OF filetype

Specifies the format of the data in the output file:

v DEL (delimited ASCII format), which is used by a variety of database

manager and file manager programs.

v WSF (work sheet format), which is used by programs such as:

– Lotus® 1-2-3®

– Lotus Symphony

When exporting BIGINT or DECIMAL data, only values that fall within

the range of type DOUBLE can be exported accurately. Although values

that do not fall within this range are also exported, importing or loading

these values back might result in incorrect data, depending on the

operating system.

Chapter 2. Export utility 19

Note: Support for the WSF file format is deprecated and might be

removed in a future release. It is recommended that you start using a

supported file format instead of WSF files before support is removed.

v IXF (Integration Exchange Format, PC version) is a proprietary binary

format.

select-statement

Specifies the SELECT or XQUERY statement that will return the data to be

exported. If the statement causes an error, a message is written to the

message file (or to standard output). If the error code is one of SQL0012W,

SQL0347W, SQL0360W, SQL0437W, or SQL1824W, the export operation

continues; otherwise, it stops.

TO filename

 If the name of a file that already exists is specified, the export utility

overwrites the contents of the file; it does not append the information.

XMLFILE filename

Specifies one or more base file names for the XML files. When name space

is exhausted for the first name, the second name is used, and so on.

 When creating XML files during an export operation, file names are

constructed by appending the current base name from this list to the

current path (from xml-path), appending a 3-digit sequence number, and

appending the three character identifier xml. For example, if the current

XML path is the directory /u/foo/xml/path/, and the current XML file

name is bar, the XML files created will be /u/foo/xml/path/bar.001.xml,

/u/foo/xml/path/bar.002.xml, and so on.

XML TO xml-path

Specifies one or more paths to directories in which the XML files are to be

stored. There will be at least one file per XML path, and each file will

contain at least one XQuery Data Model (XDM) instance. If more than one

path is specified, then XDM instances are distributed evenly among the

paths.

XMLSAVESCHEMA

Specifies that XML schema information should be saved for all XML

columns. For each exported XML document that was validated against an

XML schema when it was inserted, the fully qualified SQL identifier of that

schema will be stored as an (SCH) attribute inside the corresponding XML

Data Specifier (XDS). If the exported document was not validated against

an XML schema or the schema object no longer exists in the database, an

SCH attribute will not be included in the corresponding XDS.

 The schema and name portions of the SQL identifier are stored as the

″OBJECTSCHEMA″ and ″OBJECTNAME″ values in the row of the

SYSCAT.XSROBJECTS catalog table corresponding to the XML schema.

The XMLSAVESCHEMA option is not compatible with XQuery sequences

that do not produce well-formed XML documents.

Usage notes

v Be sure to complete all table operations and release all locks before starting an

export operation. This can be done by issuing a COMMIT after closing all

cursors opened WITH HOLD, or by issuing a ROLLBACK.

v Table aliases can be used in the SELECT statement.

20 Data Movement Utilities Guide and Reference

v The messages placed in the message file include the information returned from

the message retrieval service. Each message begins on a new line.

v The export utility produces a warning message whenever a character column

with a length greater than 254 is selected for export to DEL format files.

v PC/IXF import should be used to move data between databases. If character

data containing row separators is exported to a delimited ASCII (DEL) file and

processed by a text transfer program, fields containing the row separators will

shrink or expand.

v The file copying step is not necessary if the source and the target databases are

both accessible from the same client.

v DB2 Connect can be used to export tables from DRDA® servers such as DB2 for

OS/390®, DB2 for VM and VSE, and DB2 for OS/400®. Only PC/IXF export is

supported.

v When exporting to the IXF format, if identifiers exceed the maximum size

supported by the IXF format, the export will succeed but the resulting datafile

cannot be used by a subsequent import operation using the CREATE mode.

SQL27984W will be returned.

v When exporting to a diskette on Windows, and the table that has more data

than the capacity of a single diskette, the system will prompt for another

diskette, and multiple-part PC/IXF files (also known as multi-volume PC/IXF

files, or logically split PC/IXF files), are generated and stored in separate

diskettes. In each file, with the exception of the last, there is a DB2

CONTINUATION RECORD (or ″AC″ Record in short) written to indicate the

files are logically split and where to look for the next file. The files can then be

transferred to an AIX® system, to be read by the import and load utilities. The

export utility will not create multiple-part PC/IXF files when invoked from an

AIX system. For detailed usage, see the IMPORT command or LOAD command.

v The export utility will store the NOT NULL WITH DEFAULT attribute of the

table in an IXF file if the SELECT statement provided is in the form SELECT *

FROM tablename.

v When exporting typed tables, subselect statements can only be expressed by

specifying the target table name and the WHERE clause. Fullselect and

select-statement cannot be specified when exporting a hierarchy.

v For file formats other than IXF, it is recommended that the traversal order list be

specified, because it tells DB2 how to traverse the hierarchy, and what sub-tables

to export. If this list is not specified, all tables in the hierarchy are exported, and

the default order is the OUTER order. The alternative is to use the default order,

which is the order given by the OUTER function.

v Use the same traverse order during an import operation. The load utility does

not support loading hierarchies or sub-hierarchies.

v When exporting data from a table that has protected rows, the LBAC credentials

held by the session authorization id might limit the rows that are exported.

Rows that the session authorization ID does not have read access to will not be

exported. No error or warning is given.

v If the LBAC credentials held by the session authorization id do not allow

reading from one or more protected columns included in the export then the

export fails and an error (SQLSTATE 42512) is returned.

v Export packages are bound using DATETIME ISO format, thus, all

date/time/timestamp values are converted into ISO format when cast to a string

representation. Since the CLP packages are bound using DATETIME LOC format

(locale specific format), you may see inconsistent behavior between CLP and

export if the CLP DATETIME format is different from ISO. For instance, the

following SELECT statement may return expected results:

Chapter 2. Export utility 21

db2 select col2 from tab1 where char(col2)=’05/10/2005’;

 COL2

 05/10/2005

 05/10/2005

 05/10/2005

 3 record(s) selected.

But an export command using the same select clause will not:

 db2 export to test.del of del select col2 from test

 where char(col2)=’05/10/2005’;

 Number of rows exported: 0

Now, replacing the LOCALE date format with ISO format gives the expected

results:

 db2 export to test.del of del select col2 from test

 where char(col2)=’2005-05-10’;

 Number of rows exported: 3

File type modifiers for the export utility

 Table 3. Valid file type modifiers for the export utility: All file formats

Modifier Description

lobsinfile lob-path specifies the path to the files containing LOB data.

Each path contains at least one file that contains at least one LOB pointed to by a

Lob Location Specifier (LLS) in the data file. The LLS is a string representation of

the location of a LOB in a file stored in the LOB file path. The format of an LLS is

filename.ext.nnn.mmm/, where filename.ext is the name of the file that contains the

LOB, nnn is the offset in bytes of the LOB within the file, and mmm is the length

of the LOB in bytes. For example, if the string db2exp.001.123.456/ is stored in

the data file, the LOB is located at offset 123 in the file db2exp.001, and is 456

bytes long.

If you specify the “lobsinfile” modifier when using EXPORT, the LOB data is

placed in the locations specified by the LOBS TO clause. Otherwise the LOB data

is sent to the data file directory. The LOBS TO clause specifies one or more paths

to directories in which the LOB files are to be stored. There will be at least one

file per LOB path, and each file will contain at least one LOB. The LOBS TO or

LOBFILE options will implicitly activate the LOBSINFILE behavior.

To indicate a null LOB , enter the size as -1. If the size is specified as 0, it is

treated as a 0 length LOB. For null LOBS with length of -1, the offset and the file

name are ignored. For example, the LLS of a null LOB might be db2exp.001.7.-1/.

xmlinsepfiles Each XQuery Data Model (XDM) instance is written to a separate file. By default,

multiple values are concatenated together in the same file.

lobsinsepfiles Each LOB value is written to a separate file. By default, multiple values are

concatenated together in the same file.

xmlnodeclaration XDM instances are written without an XML declaration tag. By default, XDM

instances are exported with an XML declaration tag at the beginning that includes

an encoding attribute.

xmlchar XDM instances are written in the character codepage. Note that the character

codepage is the value specified by the codepage file type modifier, or the

application codepage if it is not specified. By default, XDM instances are written

out in Unicode.

xmlgraphic If the xmlgraphic modifier is specified with the EXPORT command, the exported

XML document will be encoded in the UTF-16 code page regardless of the

application code page or the codepage file type modifier.

22 Data Movement Utilities Guide and Reference

Table 4. Valid file type modifiers for the export utility: DEL (delimited ASCII) file format

Modifier Description

chardelx x is a single character string delimiter. The default value is a double quotation

mark (″). The specified character is used in place of double quotation marks to

enclose a character string.2 If you want to explicitly specify the double quotation

mark as the character string delimiter, it should be specified as follows:

 modified by chardel""

The single quotation mark (’) can also be specified as a character string delimiter

as follows:

 modified by chardel’’

codepage=x x is an ASCII character string. The value is interpreted as the code page of the

data in the output data set. Converts character data to this code page from the

application code page during the export operation.

For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to the

range of x00 to x3F, inclusive. The codepage modifier cannot be used with the

lobsinfile modifier.

coldelx x is a single character column delimiter. The default value is a comma (,). The

specified character is used in place of a comma to signal the end of a column.2

In the following example, coldel; causes the export utility to use the semicolon

character (;) as a column delimiter for the exported data:

 db2 "export to temp of del modified by coldel;

 select * from staff where dept = 20"

decplusblank Plus sign character. Causes positive decimal values to be prefixed with a blank

space instead of a plus sign (+). The default action is to prefix positive decimal

values with a plus sign.

decptx x is a single character substitute for the period as a decimal point character. The

default value is a period (.). The specified character is used in place of a period as

a decimal point character.2

nochardel Column data will not be surrounded by character delimiters. This option should

not be specified if the data is intended to be imported or loaded using DB2. It is

provided to support vendor data files that do not have character delimiters.

Improper usage might result in data loss or corruption.

This option cannot be specified with chardelx or nodoubledel. These are mutually

exclusive options.

nodoubledel Suppresses recognition of double character delimiters.2

striplzeros Removes the leading zeros from all exported decimal columns.

Consider the following example:

 db2 create table decimalTable (c1 decimal(31, 2))

 db2 insert into decimalTable values (1.1)

 db2 export to data of del select * from decimalTable

 db2 export to data of del modified by STRIPLZEROS

 select * from decimalTable

In the first export operation, the content of the exported file data will be

+00000000000000000000000000001.10. In the second operation, which is identical

to the first except for the striplzeros modifier, the content of the exported file

data will be +1.10.

Chapter 2. Export utility 23

Table 4. Valid file type modifiers for the export utility: DEL (delimited ASCII) file format (continued)

Modifier Description

timestampformat=″x″ x is the format of the time stamp in the source file.4 Valid time stamp elements

are:

 YYYY - Year (four digits ranging from 0000 - 9999)

 M - Month (one or two digits ranging from 1 - 12)

 MM - Month (two digits ranging from 01 - 12;

 mutually exclusive with M and MMM)

 MMM - Month (three-letter case-insensitive abbreviation for

 the month name; mutually exclusive with M and MM)

 D - Day (one or two digits ranging from 1 - 31)

 DD - Day (two digits ranging from 1 - 31; mutually exclusive with D)

 DDD - Day of the year (three digits ranging from 001 - 366;

 mutually exclusive with other day or month elements)

 H - Hour (one or two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24 for a 24 hour system)

 HH - Hour (two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24 for a 24 hour system;

 mutually exclusive with H)

 M - Minute (one or two digits ranging from 0 - 59)

 MM - Minute (two digits ranging from 0 - 59;

 mutually exclusive with M, minute)

 S - Second (one or two digits ranging from 0 - 59)

 SS - Second (two digits ranging from 0 - 59;

 mutually exclusive with S)

 SSSSS - Second of the day after midnight (5 digits

 ranging from 00000 - 86399; mutually

 exclusive with other time elements)

 U (1 to 12 times)

 - Fractional seconds(number of occurrences of U represent the

 number of digits with each digit ranging from 0 to 9

 TT - Meridian indicator (AM or PM)

Following is an example of a time stamp format:

 "YYYY/MM/DD HH:MM:SS.UUUUUU"

The MMM element will produce the following values: ’Jan’, ’Feb’, ’Mar’, ’Apr’,

’May’, ’Jun’, ’Jul’, ’Aug’, ’Sep’, ’Oct’, ’Nov’, and ’Dec’. ’Jan’ is equal to month 1,

and ’Dec’ is equal to month 12.

The following example illustrates how to export data containing user-defined

time stamp formats from a table called ’schedule’:

 db2 export to delfile2 of del

 modified by timestampformat="yyyy.mm.dd hh:mm tt"

 select * from schedule

 Table 5. Valid file type modifiers for the export utility: IXF file format

Modifier Description

codepage=x x is an ASCII character string. The value is interpreted as the code page of the

data in the output data set. Converts character data from this code page to the

application code page during the export operation.

For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to the

range of x00 to x3F, inclusive. The codepage modifier cannot be used with the

lobsinfile modifier.

24 Data Movement Utilities Guide and Reference

Table 6. Valid file type modifiers for the export utility: WSF file format6

Modifier Description

1 Creates a WSF file that is compatible with Lotus 1-2-3 Release 1, or Lotus 1-2-3

Release 1a.5 This is the default.

2 Creates a WSF file that is compatible with Lotus Symphony Release 1.0.5

3 Creates a WSF file that is compatible with Lotus 1-2-3 Version 2, or Lotus

Symphony Release 1.1.5

4 Creates a WSF file containing DBCS characters.

Note:

 1. The export utility does not issue a warning if an attempt is made to use

unsupported file types with the MODIFIED BY option. If this is attempted, the

export operation fails, and an error code is returned.

 2. Delimiter considerations for moving data lists restrictions that apply to the

characters that can be used as delimiter overrides.

 3. The export utility normally writes

v date data in YYYYMMDD format

v char(date) data in ″YYYY-MM-DD″ format

v time data in ″HH.MM.SS″ format

v time stamp data in ″YYYY-MM-DD-HH. MM.SS.uuuuuu″ format

Data contained in any datetime columns specified in the SELECT statement

for the export operation will also be in these formats.

 4. For time stamp formats, care must be taken to avoid ambiguity between the

month and the minute descriptors, since they both use the letter M. A month

field must be adjacent to other date fields. A minute field must be adjacent to

other time fields. Following are some ambiguous time stamp formats:

 "M" (could be a month, or a minute)

 "M:M" (Which is which?)

 "M:YYYY:M" (Both are interpreted as month.)

 "S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation

will fail.

Following are some unambiguous time stamp formats:

 "M:YYYY" (Month)

 "S:M" (Minute)

 "M:YYYY:S:M" (Month....Minute)

 "M:H:YYYY:M:D" (Minute....Month)

 5. These files can also be directed to a specific product by specifying an L for

Lotus 1-2-3, or an S for Symphony in the filetype-mod parameter string. Only

one value or product designator can be specified. Support for the WSF file

format is deprecated and might be removed in a future release. It is

recommended that you start using a supported file format instead of WSF

files before support is removed.

 6. The WSF file format is not supported for XML columns. Support for this file

format is deprecated and might be removed in a future release. It is

recommended that you start using a supported file format instead of WSF

files before support is removed.

 7. All XDM instances are written to XML files that are separate from the main

data file, even if neither the XMLFILE nor the XML TO clause is specified. By

Chapter 2. Export utility 25

default, XML files are written to the path of the exported data file. The default

base name for XML files is the name of the exported data file with the

extension ″.xml″ appended to it.

 8. All XDM instances are written with an XML declaration at the beginning that

includes an encoding attribute, unless the XMLNODECLARATION file type

modifier is specified.

 9. By default, all XDM instances are written in Unicode unless the XMLCHAR or

XMLGRAPHIC file type modifier is specified.

10. The default path for XML data and LOB data is the path of the main data file.

The default XML file base name is the main data file. The default LOB file

base name is the main data file. For example, if the main data file is:

/mypath/myfile.del

the default path for XML data and LOB data is:

/mypath"

the default XML file base name is:

myfile.del

and the default LOB file base name is:

myfile.del

The LOBSINFILE file type modifier must be specified in order to have LOB

files generated.

11. The export utility appends a numeric identifier to each LOB file or XML file.

The identifier starts as a 3 digit, 0 padded sequence value, starting at:

.001

After the 999th LOB file or XML file, the identifier will no longer be padded

with zeroes (for example, the 1000th LOG file or XML file will have an

extension of:

.1000

Following the numeric identifier is a three character type identifier

representing the data type, either:

.lob

or

.xml

For example, a generated LOB file would have a name in the format:

myfile.del.001.lob

and a generated XML file would be have a name in the format:

myfile.del.001.xml

12. It is possible to have the export utility export XDM instances that are not

well-formed documents by specifying an XQuery. However, you will not be

able to import or load these exported documents directly into an XML

column, since XML columns can only contain complete documents.

26 Data Movement Utilities Guide and Reference

EXPORT command using the ADMIN_CMD procedure

Exports data from a database to one of several external file formats. The user

specifies the data to be exported by supplying an SQL SELECT statement, or by

providing hierarchical information for typed tables.

Quick link to “File type modifiers for the export utility” on page 31.

Authorization

One of the following:

v dataaccess authority

v CONTROL or SELECT privilege on each participating table or view

Required connection

Command syntax

�� EXPORT TO filename OF filetype

�

,

LOBS TO

lob-path

 �

�

�

,

LOBFILE

filename

�

,

XML TO

xml-path

 �

�

�

,

XMLFILE

filename

�

MODIFIED BY

filetype-mod

 �

�
XMLSAVESCHEMA

�

,

METHOD N

(

column-name

)

 �

�

�

 select-statement

XQUERY

xquery-statement

HIERARCHY

STARTING

sub-table-name

traversal-order-list

WHERE

 ��

traversal-order-list:

�

 ,

(

sub-table-name

)

Command parameters

HIERARCHY traversal-order-list

Export a sub-hierarchy using the specified traverse order. All sub-tables

Chapter 2. Export utility 27

must be listed in PRE-ORDER fashion. The first sub-table name is used as

the target table name for the SELECT statement.

HIERARCHY STARTING sub-table-name

Using the default traverse order (OUTER order for ASC, DEL, or WSF files,

or the order stored in PC/IXF data files), export a sub-hierarchy starting

from sub-table-name.

LOBFILE filename

Specifies one or more base file names for the LOB files. When name space

is exhausted for the first name, the second name is used, and so on. This

will implicitly activate the LOBSINFILE behavior.

 When creating LOB files during an export operation, file names are

constructed by appending the current base name from this list to the

current path (from lob-path), and then appending a 3-digit sequence

number to start and the three character identifier lob. For example, if the

current LOB path is the directory /u/foo/lob/path/, and the current LOB

file name is bar, the LOB files created will be /u/foo/lob/path/
bar.001.lob, /u/foo/lob/path/bar.002.lob, and so on. The 3-digit

sequence number in the LOB file name will grow to 4-digits once 999 is

used, 4-digits will grow to 5-digits once 9999 is used, and so on.

LOBS TO lob-path

Specifies one or more paths to directories in which the LOB files are to be

stored. There will be at least one file per LOB path, and each file will

contain at least one LOB. The maximum number of paths that can be

specified is 999. This will implicitly activate the LOBSINFILE behavior.

METHOD N column-name

Specifies one or more column names to be used in the output file. If this

parameter is not specified, the column names in the table are used. This

parameter is valid only for WSF and IXF files, but is not valid when

exporting hierarchical data.

MODIFIED BY filetype-mod

Specifies file type modifier options. See “File type modifiers for the export

utility” on page 31.

OF filetype

Specifies the format of the data in the output file:

v DEL (delimited ASCII format), which is used by a variety of database

manager and file manager programs.

v WSF (work sheet format), which is used by programs such as:

– Lotus 1-2-3

– Lotus Symphony

When exporting BIGINT or DECIMAL data, only values that fall within

the range of type DOUBLE can be exported accurately. Although values

that do not fall within this range are also exported, importing or loading

these values back might result in incorrect data, depending on the

operating system.

Note: Support for the WSF file format is deprecated and might be

removed in a future release. It is recommended that you start using a

supported file format instead of WSF files before support is removed.

v IXF (Integration Exchange Format, PC version) is a proprietary binary

format.

28 Data Movement Utilities Guide and Reference

select-statement

Specifies the SELECT or XQUERY statement that will return the data to be

exported. If the statement causes an error, a message is written to the

message file (or to standard output). If the error code is one of SQL0012W,

SQL0347W, SQL0360W, SQL0437W, or SQL1824W, the export operation

continues; otherwise, it stops.

TO filename

 If the name of a file that already exists is specified, the export utility

overwrites the contents of the file; it does not append the information.

XMLFILE filename

Specifies one or more base file names for the XML files. When name space

is exhausted for the first name, the second name is used, and so on.

 When creating XML files during an export operation, file names are

constructed by appending the current base name from this list to the

current path (from xml-path), appending a 3-digit sequence number, and

appending the three character identifier xml. For example, if the current

XML path is the directory /u/foo/xml/path/, and the current XML file

name is bar, the XML files created will be /u/foo/xml/path/bar.001.xml,

/u/foo/xml/path/bar.002.xml, and so on.

XML TO xml-path

Specifies one or more paths to directories in which the XML files are to be

stored. There will be at least one file per XML path, and each file will

contain at least one XQuery Data Model (XDM) instance. If more than one

path is specified, then XDM instances are distributed evenly among the

paths.

XMLSAVESCHEMA

Specifies that XML schema information should be saved for all XML

columns. For each exported XML document that was validated against an

XML schema when it was inserted, the fully qualified SQL identifier of that

schema will be stored as an (SCH) attribute inside the corresponding XML

Data Specifier (XDS). If the exported document was not validated against

an XML schema or the schema object no longer exists in the database, an

SCH attribute will not be included in the corresponding XDS.

 The schema and name portions of the SQL identifier are stored as the

″OBJECTSCHEMA″ and ″OBJECTNAME″ values in the row of the

SYSCAT.XSROBJECTS catalog table corresponding to the XML schema.

The XMLSAVESCHEMA option is not compatible with XQuery sequences

that do not produce well-formed XML documents.

Usage notes

v Be sure to complete all table operations and release all locks before starting an

export operation. This can be done by issuing a COMMIT after closing all

cursors opened WITH HOLD, or by issuing a ROLLBACK.

v Table aliases can be used in the SELECT statement.

v The messages placed in the message file include the information returned from

the message retrieval service. Each message begins on a new line.

v The export utility produces a warning message whenever a character column

with a length greater than 254 is selected for export to DEL format files.

Chapter 2. Export utility 29

v PC/IXF import should be used to move data between databases. If character

data containing row separators is exported to a delimited ASCII (DEL) file and

processed by a text transfer program, fields containing the row separators will

shrink or expand.

v The file copying step is not necessary if the source and the target databases are

both accessible from the same client.

v DB2 Connect can be used to export tables from DRDA servers such as DB2 for

OS/390, DB2 for VM and VSE, and DB2 for OS/400. Only PC/IXF export is

supported.

v When exporting to the IXF format, if identifiers exceed the maximum size

supported by the IXF format, the export will succeed but the resulting datafile

cannot be used by a subsequent import operation using the CREATE mode.

SQL27984W will be returned.

v When exporting to a diskette on Windows, and the table that has more data

than the capacity of a single diskette, the system will prompt for another

diskette, and multiple-part PC/IXF files (also known as multi-volume PC/IXF

files, or logically split PC/IXF files), are generated and stored in separate

diskettes. In each file, with the exception of the last, there is a DB2

CONTINUATION RECORD (or ″AC″ Record in short) written to indicate the

files are logically split and where to look for the next file. The files can then be

transferred to an AIX system, to be read by the import and load utilities. The

export utility will not create multiple-part PC/IXF files when invoked from an

AIX system. For detailed usage, see the IMPORT command or LOAD command.

v The export utility will store the NOT NULL WITH DEFAULT attribute of the

table in an IXF file if the SELECT statement provided is in the form SELECT *

FROM tablename.

v When exporting typed tables, subselect statements can only be expressed by

specifying the target table name and the WHERE clause. Fullselect and

select-statement cannot be specified when exporting a hierarchy.

v For file formats other than IXF, it is recommended that the traversal order list be

specified, because it tells DB2 how to traverse the hierarchy, and what sub-tables

to export. If this list is not specified, all tables in the hierarchy are exported, and

the default order is the OUTER order. The alternative is to use the default order,

which is the order given by the OUTER function.

v Use the same traverse order during an import operation. The load utility does

not support loading hierarchies or sub-hierarchies.

v When exporting data from a table that has protected rows, the LBAC credentials

held by the session authorization id might limit the rows that are exported.

Rows that the session authorization ID does not have read access to will not be

exported. No error or warning is given.

v If the LBAC credentials held by the session authorization id do not allow

reading from one or more protected columns included in the export then the

export fails and an error (SQLSTATE 42512) is returned.

v Export packages are bound using DATETIME ISO format, thus, all

date/time/timestamp values are converted into ISO format when cast to a string

representation. Since the CLP packages are bound using DATETIME LOC format

(locale specific format), you may see inconsistent behavior between CLP and

export if the CLP DATETIME format is different from ISO. For instance, the

following SELECT statement may return expected results:

 db2 select col2 from tab1 where char(col2)=’05/10/2005’;

 COL2

30 Data Movement Utilities Guide and Reference

05/10/2005

 05/10/2005

 05/10/2005

 3 record(s) selected.

But an export command using the same select clause will not:

 db2 export to test.del of del select col2 from test

 where char(col2)=’05/10/2005’;

 Number of rows exported: 0

Now, replacing the LOCALE date format with ISO format gives the expected

results:

 db2 export to test.del of del select col2 from test

 where char(col2)=’2005-05-10’;

 Number of rows exported: 3

File type modifiers for the export utility

 Table 7. Valid file type modifiers for the export utility: All file formats

Modifier Description

lobsinfile lob-path specifies the path to the files containing LOB data.

Each path contains at least one file that contains at least one LOB pointed to by a

Lob Location Specifier (LLS) in the data file. The LLS is a string representation of

the location of a LOB in a file stored in the LOB file path. The format of an LLS is

filename.ext.nnn.mmm/, where filename.ext is the name of the file that contains the

LOB, nnn is the offset in bytes of the LOB within the file, and mmm is the length

of the LOB in bytes. For example, if the string db2exp.001.123.456/ is stored in

the data file, the LOB is located at offset 123 in the file db2exp.001, and is 456

bytes long.

If you specify the “lobsinfile” modifier when using EXPORT, the LOB data is

placed in the locations specified by the LOBS TO clause. Otherwise the LOB data

is sent to the data file directory. The LOBS TO clause specifies one or more paths

to directories in which the LOB files are to be stored. There will be at least one

file per LOB path, and each file will contain at least one LOB. The LOBS TO or

LOBFILE options will implicitly activate the LOBSINFILE behavior.

To indicate a null LOB , enter the size as -1. If the size is specified as 0, it is

treated as a 0 length LOB. For null LOBS with length of -1, the offset and the file

name are ignored. For example, the LLS of a null LOB might be db2exp.001.7.-1/.

xmlinsepfiles Each XQuery Data Model (XDM) instance is written to a separate file. By default,

multiple values are concatenated together in the same file.

lobsinsepfiles Each LOB value is written to a separate file. By default, multiple values are

concatenated together in the same file.

xmlnodeclaration XDM instances are written without an XML declaration tag. By default, XDM

instances are exported with an XML declaration tag at the beginning that includes

an encoding attribute.

xmlchar XDM instances are written in the character codepage. Note that the character

codepage is the value specified by the codepage file type modifier, or the

application codepage if it is not specified. By default, XDM instances are written

out in Unicode.

xmlgraphic If the xmlgraphic modifier is specified with the EXPORT command, the exported

XML document will be encoded in the UTF-16 code page regardless of the

application code page or the codepage file type modifier.

Chapter 2. Export utility 31

Table 8. Valid file type modifiers for the export utility: DEL (delimited ASCII) file format

Modifier Description

chardelx x is a single character string delimiter. The default value is a double quotation

mark (″). The specified character is used in place of double quotation marks to

enclose a character string.2 If you want to explicitly specify the double quotation

mark as the character string delimiter, it should be specified as follows:

 modified by chardel""

The single quotation mark (’) can also be specified as a character string delimiter

as follows:

 modified by chardel’’

codepage=x x is an ASCII character string. The value is interpreted as the code page of the

data in the output data set. Converts character data to this code page from the

application code page during the export operation.

For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to the

range of x00 to x3F, inclusive. The codepage modifier cannot be used with the

lobsinfile modifier.

coldelx x is a single character column delimiter. The default value is a comma (,). The

specified character is used in place of a comma to signal the end of a column.2

In the following example, coldel; causes the export utility to use the semicolon

character (;) as a column delimiter for the exported data:

 db2 "export to temp of del modified by coldel;

 select * from staff where dept = 20"

decplusblank Plus sign character. Causes positive decimal values to be prefixed with a blank

space instead of a plus sign (+). The default action is to prefix positive decimal

values with a plus sign.

decptx x is a single character substitute for the period as a decimal point character. The

default value is a period (.). The specified character is used in place of a period as

a decimal point character.2

nochardel Column data will not be surrounded by character delimiters. This option should

not be specified if the data is intended to be imported or loaded using DB2. It is

provided to support vendor data files that do not have character delimiters.

Improper usage might result in data loss or corruption.

This option cannot be specified with chardelx or nodoubledel. These are mutually

exclusive options.

nodoubledel Suppresses recognition of double character delimiters.2

striplzeros Removes the leading zeros from all exported decimal columns.

Consider the following example:

 db2 create table decimalTable (c1 decimal(31, 2))

 db2 insert into decimalTable values (1.1)

 db2 export to data of del select * from decimalTable

 db2 export to data of del modified by STRIPLZEROS

 select * from decimalTable

In the first export operation, the content of the exported file data will be

+00000000000000000000000000001.10. In the second operation, which is identical

to the first except for the striplzeros modifier, the content of the exported file

data will be +1.10.

32 Data Movement Utilities Guide and Reference

Table 8. Valid file type modifiers for the export utility: DEL (delimited ASCII) file format (continued)

Modifier Description

timestampformat=″x″ x is the format of the time stamp in the source file.4 Valid time stamp elements

are:

 YYYY - Year (four digits ranging from 0000 - 9999)

 M - Month (one or two digits ranging from 1 - 12)

 MM - Month (two digits ranging from 01 - 12;

 mutually exclusive with M and MMM)

 MMM - Month (three-letter case-insensitive abbreviation for

 the month name; mutually exclusive with M and MM)

 D - Day (one or two digits ranging from 1 - 31)

 DD - Day (two digits ranging from 1 - 31; mutually exclusive with D)

 DDD - Day of the year (three digits ranging from 001 - 366;

 mutually exclusive with other day or month elements)

 H - Hour (one or two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24 for a 24 hour system)

 HH - Hour (two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24 for a 24 hour system;

 mutually exclusive with H)

 M - Minute (one or two digits ranging from 0 - 59)

 MM - Minute (two digits ranging from 0 - 59;

 mutually exclusive with M, minute)

 S - Second (one or two digits ranging from 0 - 59)

 SS - Second (two digits ranging from 0 - 59;

 mutually exclusive with S)

 SSSSS - Second of the day after midnight (5 digits

 ranging from 00000 - 86399; mutually

 exclusive with other time elements)

 U (1 to 12 times)

 - Fractional seconds(number of occurrences of U represent the

 number of digits with each digit ranging from 0 to 9

 TT - Meridian indicator (AM or PM)

Following is an example of a time stamp format:

 "YYYY/MM/DD HH:MM:SS.UUUUUU"

The MMM element will produce the following values: ’Jan’, ’Feb’, ’Mar’, ’Apr’,

’May’, ’Jun’, ’Jul’, ’Aug’, ’Sep’, ’Oct’, ’Nov’, and ’Dec’. ’Jan’ is equal to month 1,

and ’Dec’ is equal to month 12.

The following example illustrates how to export data containing user-defined

time stamp formats from a table called ’schedule’:

 db2 export to delfile2 of del

 modified by timestampformat="yyyy.mm.dd hh:mm tt"

 select * from schedule

 Table 9. Valid file type modifiers for the export utility: IXF file format

Modifier Description

codepage=x x is an ASCII character string. The value is interpreted as the code page of the

data in the output data set. Converts character data from this code page to the

application code page during the export operation.

For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to the

range of x00 to x3F, inclusive. The codepage modifier cannot be used with the

lobsinfile modifier.

Chapter 2. Export utility 33

Table 10. Valid file type modifiers for the export utility: WSF file format6

Modifier Description

1 Creates a WSF file that is compatible with Lotus 1-2-3 Release 1, or Lotus 1-2-3

Release 1a.5 This is the default.

2 Creates a WSF file that is compatible with Lotus Symphony Release 1.0.5

3 Creates a WSF file that is compatible with Lotus 1-2-3 Version 2, or Lotus

Symphony Release 1.1.5

4 Creates a WSF file containing DBCS characters.

Note:

 1. The export utility does not issue a warning if an attempt is made to use

unsupported file types with the MODIFIED BY option. If this is attempted, the

export operation fails, and an error code is returned.

 2. Delimiter considerations for moving data lists restrictions that apply to the

characters that can be used as delimiter overrides.

 3. The export utility normally writes

v date data in YYYYMMDD format

v char(date) data in ″YYYY-MM-DD″ format

v time data in ″HH.MM.SS″ format

v time stamp data in ″YYYY-MM-DD-HH. MM.SS.uuuuuu″ format

Data contained in any datetime columns specified in the SELECT statement

for the export operation will also be in these formats.

 4. For time stamp formats, care must be taken to avoid ambiguity between the

month and the minute descriptors, since they both use the letter M. A month

field must be adjacent to other date fields. A minute field must be adjacent to

other time fields. Following are some ambiguous time stamp formats:

 "M" (could be a month, or a minute)

 "M:M" (Which is which?)

 "M:YYYY:M" (Both are interpreted as month.)

 "S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation

will fail.

Following are some unambiguous time stamp formats:

 "M:YYYY" (Month)

 "S:M" (Minute)

 "M:YYYY:S:M" (Month....Minute)

 "M:H:YYYY:M:D" (Minute....Month)

 5. These files can also be directed to a specific product by specifying an L for

Lotus 1-2-3, or an S for Symphony in the filetype-mod parameter string. Only

one value or product designator can be specified. Support for the WSF file

format is deprecated and might be removed in a future release. It is

recommended that you start using a supported file format instead of WSF

files before support is removed.

 6. The WSF file format is not supported for XML columns. Support for this file

format is deprecated and might be removed in a future release. It is

recommended that you start using a supported file format instead of WSF

files before support is removed.

 7. All XDM instances are written to XML files that are separate from the main

data file, even if neither the XMLFILE nor the XML TO clause is specified. By

34 Data Movement Utilities Guide and Reference

default, XML files are written to the path of the exported data file. The default

base name for XML files is the name of the exported data file with the

extension ″.xml″ appended to it.

 8. All XDM instances are written with an XML declaration at the beginning that

includes an encoding attribute, unless the XMLNODECLARATION file type

modifier is specified.

 9. By default, all XDM instances are written in Unicode unless the XMLCHAR or

XMLGRAPHIC file type modifier is specified.

10. The default path for XML data and LOB data is the path of the main data file.

The default XML file base name is the main data file. The default LOB file

base name is the main data file. For example, if the main data file is:

/mypath/myfile.del

the default path for XML data and LOB data is:

/mypath"

the default XML file base name is:

myfile.del

and the default LOB file base name is:

myfile.del

The LOBSINFILE file type modifier must be specified in order to have LOB

files generated.

11. The export utility appends a numeric identifier to each LOB file or XML file.

The identifier starts as a 3 digit, 0 padded sequence value, starting at:

.001

After the 999th LOB file or XML file, the identifier will no longer be padded

with zeroes (for example, the 1000th LOG file or XML file will have an

extension of:

.1000

Following the numeric identifier is a three character type identifier

representing the data type, either:

.lob

or

.xml

For example, a generated LOB file would have a name in the format:

myfile.del.001.lob

and a generated XML file would be have a name in the format:

myfile.del.001.xml

12. It is possible to have the export utility export XDM instances that are not

well-formed documents by specifying an XQuery. However, you will not be

able to import or load these exported documents directly into an XML

column, since XML columns can only contain complete documents.

Chapter 2. Export utility 35

db2Export - Export data from a database

Exports data from a database to one of several external file formats. The user

specifies the data to be exported by supplying an SQL SELECT statement, or by

providing hierarchical information for typed tables.

Authorization

One of the following:

v dataaccess authority

v CONTROL or SELECT privilege on each participating table or view

Label-based access control (LBAC) is enforced for this function. The data that is

exported may be limited by the LBAC credentials of the caller if the data is

protected by LBAC.

Required connection

Database. If implicit connect is enabled, a connection to the default database is

established.

API include file

db2ApiDf.h

API and data structure syntax

SQL_API_RC SQL_API_FN

 db2Export (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ExportStruct

{

 char *piDataFileName;

 struct sqlu_media_list *piLobPathList;

 struct sqlu_media_list *piLobFileList;

 struct sqldcol *piDataDescriptor;

 struct sqllob *piActionString;

 char *piFileType;

 struct sqlchar *piFileTypeMod;

 char *piMsgFileName;

 db2int16 iCallerAction;

 struct db2ExportOut *poExportInfoOut;

 struct db2ExportIn *piExportInfoIn;

 struct sqlu_media_list *piXmlPathList;

 struct sqlu_media_list *piXmlFileList;

} db2ExportStruct;

typedef SQL_STRUCTURE db2ExportIn

{

 db2Uint16 *piXmlSaveSchema;

} db2ExportIn;

typedef SQL_STRUCTURE db2ExportOut

{

 db2Uint64 oRowsExported;

} db2ExportOut;

SQL_API_RC SQL_API_FN

 db2gExport (

 db2Uint32 versionNumber,

36 Data Movement Utilities Guide and Reference

void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gExportStruct

{

 char *piDataFileName;

 struct sqlu_media_list *piLobPathList;

 struct sqlu_media_list *piLobFileList;

 struct sqldcol *piDataDescriptor;

 struct sqllob *piActionString;

 char *piFileType;

 struct sqlchar *piFileTypeMod;

 char *piMsgFileName;

 db2int16 iCallerAction;

 struct db2ExportOut *poExportInfoOut;

 db2Uint16 iDataFileNameLen;

 db2Uint16 iFileTypeLen;

 db2Uint16 iMsgFileNameLen;

 struct db2ExportIn *piExportInfoIn;

 struct sqlu_media_list *piXmlPathList;

 struct sqlu_media_list *piXmlFileList;

} db2gExportStruct;

db2Export API parameters

versionNumber

Input. Specifies the version and release level of the structure passed as the

second parameter pParmStruct.

pParmStruct

Input. A pointer to the db2ExportStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

db2ExportStruct data structure parameters

piDataFileName

Input. A string containing the path and the name of the external file into

which the data is to be exported.

piLobPathList

Input. Pointer to an sqlu_media_list structure with its media_type field set

to SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths

on the client where the LOB files are to be stored. Exported LOB data will

be distributed evenly among all the paths listed in the sqlu_media_entry

structure.

piLobFileList

Input. Pointer to an sqlu_media_list structure with its media_type field set

to SQLU_CLIENT_LOCATION, and its sqlu_location_entry structure

containing base file names.

 When the name space is exhausted using the first name in this list, the API

will use the second name, and so on. When creating LOB files during an

export operation, file names are constructed by appending the current base

name from this list to the current path (from piLobPathList), and then

appending a 3-digit sequence number and the .lob extension. For example,

if the current LOB path is the directory /u/foo/lob/path, the current LOB

file name is bar, and the LOBSINSEPFILES file type modifier is set, then

the created LOB files will be /u/foo/LOB/path/bar.001.lob,

/u/foo/LOB/path/bar.002.lob, and so on. If the LOBSINSEPFILES file

Chapter 2. Export utility 37

type modifier is not set, then all the LOB documents will be concatenated

and put into one file /u/foo/lob/path/bar.001.lob

piDataDescriptor

Input. Pointer to an sqldcol structure specifying the column names for the

output file. The value of the dcolmeth field determines how the remainder

of the information provided in this parameter is interpreted by the export

utility. Valid values for this parameter (defined in sqlutil header file,

located in the include directory) are:

SQL_METH_N

Names. Specify column names to be used in the output file.

SQL_METH_D

Default. Existing column names from the table are to be used in

the output file. In this case, the number of columns and the

column specification array are both ignored. The column names are

derived from the output of the SELECT statement specified in

piActionString.

piActionString

Input. Pointer to an sqllob structure containing a valid dynamic SQL

SELECT statement. The structure contains a 4-byte long field, followed by

the characters that make up the SELECT statement. The SELECT statement

specifies the data to be extracted from the database and written to the

external file.

 The columns for the external file (from piDataDescriptor), and the database

columns from the SELECT statement, are matched according to their

respective list/structure positions. The first column of data selected from

the database is placed in the first column of the external file, and its

column name is taken from the first element of the external column array.

piFileType

Input. A string that indicates the format of the data within the external file.

Supported external file formats (defined in sqlutil header file) are:

SQL_DEL

Delimited ASCII, for exchange with dBase, BASIC, and the IBM®

Personal Decision Series programs, and many other database

managers and file managers.

SQL_WSF

Worksheet formats (WSF) for exchange with Lotus Symphony and

1-2-3 programs. Support for this file format is deprecated and

might be removed in a future release. It is recommended that you

start using a supported file format instead of WSF files before

support is removed.

SQL_IXF

PC version of the Integration Exchange Format, the preferred

method for exporting data from a table. Data exported to this file

format can later be imported or loaded into the same table or into

another database manager table.

piFileTypeMod

Input. A pointer to an sqldcol structure containing a 2-byte long field,

followed by an array of characters that specify one or more processing

options. If this pointer is NULL, or the structure pointed to has zero

characters, this action is interpreted as selection of a default specification.

38 Data Movement Utilities Guide and Reference

Not all options can be used with all of the supported file types. See related

link below: ″File type modifiers for the export utility.″

piMsgFileName

Input. A string containing the destination for error, warning, and

informational messages returned by the utility. It can be the path and the

name of an operating system file or a standard device. If the file already

exists, the information is appended . If it does not exist, a file is created.

iCallerAction

Input. An action requested by the caller. Valid values (defined in sqlutil

header file, located in the include directory) are:

SQLU_INITIAL

Initial call. This value must be used on the first call to the API. If

the initial call or any subsequent call returns and requires the

calling application to perform some action prior to completing the

requested export operation, the caller action must be set to one of

the following:

SQLU_CONTINUE

Continue processing. This value can only be used on subsequent

calls to the API, after the initial call has returned with the utility

requesting user input (for example, to respond to an end of tape

condition). It specifies that the user action requested by the utility

has completed, and the utility can continue processing the initial

request.

SQLU_TERMINATE

Terminate processing. This value can only be used on subsequent

calls to the API, after the initial call has returned with the utility

requesting user input (for example, to respond to an end of tape

condition). It specifies that the user action requested by the utility

was not performed, and the utility is to terminate processing the

initial request.

poExportInfoOut

A pointer to the db2ExportOut structure.

piExportInfoIn

Input. Pointer to the db2ExportIn structure.

piXmlPathList

Input. Pointer to an sqlu_media_list structure with its media_type field set

to SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths

on the client where the XML files are to be stored. Exported XML data will

be distributed evenly among all the paths listed in the sqlu_media_entry

structure.

piXmlFileList

Input. Pointer to an sqlu_media_list structure with its media_type field set

to SQLU_CLIENT_LOCATION, and its sqlu_location_entry structure

containing base file names.

 When the name space is exhausted using the first name in this list, the API

will use the second name, and so on. When creating XML files during an

export operation, file names are constructed by appending the current base

name from this list to the current path (from piXmlFileList), and then

appending a 3-digit sequence number and the .xml extension. For example,

if the current XML path is the directory /u/foo/xml/path, the current

XML file name is bar, and the XMLINSEPFILES file type modifier is set,

Chapter 2. Export utility 39

then the created XML files will be /u/foo/xml/path/bar.001.xml,

/u/foo/xml/path/bar.002.xml, and so on. If the XMLINSEPFILES file type

modifier is not set, then all the XML documents will be concatenated and

put into one file /u/foo/xml/path/bar.001.xml

db2ExportIn data structure parameters

piXmlSaveSchema

Input. Indicates that the SQL identifier of the XML schema used to validate

each exported XML document should be saved in the exported data file.

Possible values are TRUE and FALSE.

db2ExportOut data structure parameters

oRowsExported

Output. Returns the number of records exported to the target file.

db2gExportStruct data structure specific parameters

iDataFileNameLen

Input. A 2-byte unsigned integer representing the length in bytes of the

data file name.

iFileTypeLen

Input. A 2-byte unsigned integer representing the length in bytes of the file

type.

iMsgFileNameLen

Input. A 2-byte unsigned integer representing the length in bytes of the

message file name.

Usage notes

Before starting an export operation, you must complete all table operations and

release all locks in one of two ways:

v Close all open cursors that were defined with the WITH HOLD clause, and

commit the data changes by executing the COMMIT statement.

v Roll back the data changes by executing the ROLLBACK statement.

Table aliases can be used in the SELECT statement.

The messages placed in the message file include the information returned from the

message retrieval service. Each message begins on a new line.

If the export utility produces warnings, the message will be written out to a

message file, or standard output if one is not specified.

A warning message is issued if the number of columns (dcolnum field of sqldcol

structure) in the external column name array, piDataDescriptor, is not equal to the

number of columns generated by the SELECT statement. In this case, the number

of columns written to the external file is the lesser of the two numbers. Excess

database columns or external column names are not used to generate the output

file.

If the db2uexpm.bnd module or any other shipped .bnd files are bound manually,

the format option on the binder must not be used.

40 Data Movement Utilities Guide and Reference

DB2 Connect can be used to export tables from DRDA servers such as DB2 for

z/OS® and OS/390, DB2 for VM and VSE, and DB2 for System i®. Only PC/IXF

export is supported.

PC/IXF import should be used to move data between databases. If character data

containing row separators is exported to a delimited ASCII (DEL) file and

processed by a text transfer program, fields containing the row separators will

shrink or expand.

The export utility will not create multiple-part PC/IXF files when invoked from an

AIX system.

Index definitions for a table are included in the PC/IXF file when the contents of a

single database table are exported to a PC/IXF file with a piActionString

parameter beginning with SELECT * FROM tablename, and the piDataDescriptor

parameter specifying default names. Indexes are not saved for views, or if the

SELECT clause of the piActionString includes a join. A WHERE clause, a GROUP

BY clause, or a HAVING clause in the piActionString parameter will not prevent

the saving of indexes. In all of these cases, when exporting from typed tables, the

entire hierarchy must be exported.

The export utility will store the NOT NULL WITH DEFAULT attribute of the table

in an IXF file if the SELECT statement provided is in the form: SELECT * FROM

tablename.

When exporting typed tables, subselect statements can only be expressed by

specifying the target table name and the WHERE clause. Fullselect and

select-statement cannot be specified when exporting a hierarchy.

For file formats other than IXF, it is recommended that the traversal order list be

specified, because it tells DB2 how to traverse the hierarchy, and what sub-tables to

export. If this list is not specified, all tables in the hierarchy are exported, and the

default order is the OUTER order. The alternative is to use the default order, which

is the order given by the OUTER function.

Note: Use the same traverse order during an import operation. The load utility

does not support loading hierarchies or sub-hierarchies.

REXX™ API syntax

EXPORT :stmt TO datafile OF filetype

[MODIFIED BY :filetmod] [USING :dcoldata]

MESSAGES msgfile [ROWS EXPORTED :number]

CONTINUE EXPORT

STOP EXPORT

REXX API parameters

stmt A REXX host variable containing a valid dynamic SQL SELECT statement.

The statement specifies the data to be extracted from the database.

datafile

Name of the file into which the data is to be exported.

filetype

The format of the data in the export file. The supported file formats are:

Chapter 2. Export utility 41

DEL Delimited ASCII.

WSF Worksheet format. Support for this file format is deprecated and

might be removed in a future release. It is recommended that you

start using a supported file format instead of WSF files before

support is removed.

IXF PC version of Integration Exchange Format.

filetmod

A host variable containing additional processing options.

dcoldata

A compound REXX host variable containing the column names to be used

in the export file. In the following, XXX represents the name of the host

variable:

XXX.0 Number of columns (number of elements in the remainder of the

variable).

XXX.1 First column name.

XXX.2 Second column name.

XXX.3 and so on.

If this parameter is NULL, or a value for dcoldata has not been specified,

the utility uses the column names from the database table.

msgfile

File, path, or device name where error and warning messages are to be

sent.

number

A host variable that will contain the number of exported rows.

Export sessions - CLP examples

Example 1

The following example shows how to export information from the STAFF table in

the SAMPLE database (to which the user must be connected) to myfile.ixf, with the

output in IXF format. If the database connection is not through DB2 Connect, the

index definitions (if any) will be stored in the output file; otherwise, only the data

will be stored:

 db2 export to myfile.ixf of ixf messages msgs.txt select * from staff

Example 2
The following example shows how to export the information about employees in

Department 20 from the STAFF table in the SAMPLE database (to which the user

must be connected) to awards.ixf, with the output in IXF format:

 db2 export to awards.ixf of ixf messages msgs.txt select * from staff

 where dept = 20

Example 3The following example shows how to export LOBs to a DEL file:

 db2 export to myfile.del of del lobs to mylobs/

 lobfile lobs1, lobs2 modified by lobsinfile

 select * from emp_photo

Example 4
The following example shows how to export LOBs to a DEL file, specifying a

second directory for files that might not fit into the first directory:

42 Data Movement Utilities Guide and Reference

db2 export to myfile.del of del

 lobs to /db2exp1/, /db2exp2/ modified by lobsinfile

 select * from emp_photo

Example 5The following example shows how to export data to a DEL file, using a

single quotation mark as the string delimiter, a semicolon as the column delimiter,

and a comma as the decimal point. The same convention should be used when

importing data back into the database:

 db2 export to myfile.del of del

 modified by chardel’’ coldel; decpt,

 select * from staff

Chapter 2. Export utility 43

44 Data Movement Utilities Guide and Reference

Chapter 3. Import utility

Import overview

The import utility populates a table, typed table, or view with data using an SQL

INSERT statement. If the table or view receiving the imported data already

contains data, the input data can either replace or be appended to the existing

data.

Like export, import is a relatively simple data movement utility. It can be activated

through the Control Center, by issuing CLP commands, by calling the

ADMIN_CMD stored procedure, or by calling its API, db2Import, through a user

application.

There are a number of data formats that import supports, as well as features that

can be used with import:

v Import supports IXF, WSF, ASC, and DEL data formats.

v Import can be used with file type modifiers to customize the import operation.

v Import can be used to move hierarchical data and typed tables.

v Import logs all activity, updates indexes, verifies constraints, and fires triggers.

v Import allows you to specify the names of the columns within the table or view

into which the data is to be inserted.

v Import can be used with DB2 Connect.

Important: Support for the WSF file format is deprecated and might be removed

in a future release. It is recommended that you start using a supported file format

instead of WSF files before support is removed.

Import modes

Import has five modes which determine the method in which the data is imported.

The first three, INSERT, INSERT_UPDATE, and REPLACE are used when the

target tables already exist. All three support IXF, WSF, ASC, and DEL data formats.

However, only INSERT and INSERT_UPDATE can be used with nicknames.

 Table 11. Overview of INSERT, INSERT_UPDATE, and REPLACE import modes

Mode Best practice usage

INSERT Inserts input data into target table without

changing existing data

INSERT_UPDATE Updates rows with matching primary key

values with values of input rows

Where there’s no matching row, inserts

imported row into the table

REPLACE Deletes all existing data and inserts

imported data, while keeping table and

index definitions

The other two modes, REPLACE_CREATE and CREATE, are used when the target

tables do not exist. They can only be used with input files in the PC/IXF format,

© Copyright IBM Corp. 1993, 2009 45

which contains a structured description of the table that is to be created. Imports

cannot be performed in these modes if the object table has any dependents other

than itself.

Note: Import’s CREATE and REPLACE_CREATE modes are being deprecated. Use

the db2look utility instead.

 Table 12. Overview of REPLACE_CREATE and CREATE import modes

Mode Best practice usage

REPLACE_CREATE Deletes all existing data and inserts

imported data, while keeping table and

index definitions

Creates target table and index if they don’t

exist

CREATE Creates target table and index

Can specify the name of the table space

where the new table is created

How import works

The number of steps and the amount of time required for an import depend on the

amount of data being moved and the options that you specify. An import

operation follows these steps:

1. Locking tables

Import acquires either an exclusive (X) lock or a nonexclusive (IX) lock on

existing target tables, depending on whether you allow concurrent access to the

table.

2. Locating and retrieving data

Import uses the FROM clause to locate the input data. If your command

indicates that XML or LOB data is present, import will locate this data.

3. Inserting data

Import either replaces existing data or adds new rows of data to the table.

4. Checking constraints and firing triggers

As the data is written, import ensures that each inserted row complies with the

constraints defined on the target table. Information about rejected rows is

written to the messages file. Import also fires existing triggers.

5. Committing the operation

Import saves the changes made and releases the locks on the target table. You

can also specify that periodic take place during the import.

The following items are mandatory for a basic import operation:

v The path and the name of the input file

v The name or alias of the target table or view

v The format of the data in the input file

v The method by which the data is to be imported

v The traverse order, when importing hierarchical data

v The subtable list, when importing typed tables

Additional options

There are a number of options that allow you to customize an import operation.

46 Data Movement Utilities Guide and Reference

You can specify file type modifiers in the MODIFIED BY clause to change the

format of the data, tell the import utility what to do with the data, and to improve

performance.

The import utility, by default, does not perform commits until the end of a

successful import, except in the case of some ALLOW WRITE ACCESS imports.

This improves the speed of an import, but for the sake of concurrency,

restartability, and active log space considerations, it might be preferable to specify

that commits take place during the import. One way of doing so is to set the

COMMITCOUNT parameter to “automatic,” which instructs import to internally

determine when it should perform a commit. Alternatively, you can set

COMMITCOUNT to a specific number, which instructs import to perform a

commit once that specified number of records has been imported.

There are a few ways to improve import’s performance. As the import utility is an

embedded SQL application and does SQL fetches internally, optimizations that

apply to SQL operations apply to import as well. You can use the compound file

type modifier to perform a specified number of rows to insert at a time, rather

than the default row-by-row insertion. If you anticipate that a large number of

warnings will be generated (and, therefore, slow down the operation) during the

import, you can also specify the norowwarnings file type modifier to suppress

warnings about rejected rows.

Messages file

During an import, standard ASCII text message files are written to contain the

error, warning, and informational messages associated with that operation. If the

utility is invoked through the application programming interface (API) db2Import,

you must specify the name of these files in advance with the MESSAGES

parameter, otherwise it is optional. The messages file is a convenient way of

monitoring the progress of an import, as you can access is while the import is in

progress. In the event of a failed import operation, message files can be used to

determine a restarting point by indicating the last row that was successfully

imported.

Note: If the volume of output messages generated by an import operation against

a remote database exceeds 60 KB, the utility will keep the first 30 KB and the last

30 KB.

Privileges and authorities required to use import

Privileges enable users to create or access database resources. Authority levels

provide a method of grouping privileges and higher-level database manager

maintenance and utility operations. Together, these act to control access to the

database manager and its database objects.

Users can access only those objects for which they have the appropriate

authorization; that is, the required privilege or authority.

With DATAACCESS authority, you can perform any type of import operation. The

table below lists the other authorities on each participating table, view or nickname

that enable you to perform the corresponding type of import.

Chapter 3. Import utility 47

Table 13. Authorities required to perform import operations

Mode Required authority

INSERT CONTROL or

INSERT and SELECT

INSERT_UPDATE CONTROL or

INSERT, SELECT, UPDATE, and DELETE

REPLACE CONTROL or

INSERT, SELECT, and DELETE

REPLACE_CREATE When the target table exists: CONTROL or

INSERT, SELECT, and DELETE

When the target table doesn’t exist: CREATETAB (on the

database), USE (on the table space), and

when the schema does not exist: IMPLICIT_SCHEMA (on

the database), or

when the schema exists: CREATEIN (on the schema)

CREATE CREATETAB (on the database), USE (on the table space),

and

when the schema does not exist: IMPLICIT_SCHEMA (on

the database), or

when the schema exists: CREATEIN (on the schema)

Note: The CREATE and REPLACE_CREATE options of the IMPORT command

are deprecated and might be removed in a future release.
As well, to use the REPLACE or REPLACE_CREATE option on a table, the session

authorization ID must have the authority to drop the table.

If you want to import to a hierarchy, the required authority also depends on the

mode. For existing hierarchies, CONTROL privilege on every subtable in the

hierarchy is sufficient for a REPLACE operation. For hierarchies that don’t exist,

CONTROL privilege on every subtable in the hierarchy, along with CREATETAB

and USE, is sufficient for a REPLACE_CREATE operation.

In addition, there a few considerations for importing into tables with label-based

access control (LBAC) security labels defined on them. To import data into a table

that has protected columns, the session authorization ID must have LBAC

credentials that allow write access to all protected columns in the table. To import

data into a table that has protected rows, the session authorization ID must have

been granted a security label for write access that is part of the security policy

protecting the table.

Importing data

The import utility inserts data from an external file with a supported file format

into a table, hierarchy, view or nickname. The load utility is a faster alternative, but

the load utility does not support loading data at the hierarchy level.

Before invoking the import utility, you must be connected to (or be able to

implicitly connect to) the database into which the data will be imported. If implicit

connect is enabled, a connection to the default database is established. Utility

access to DB2 for Linux, UNIX, or Windows database servers from DB2 for Linux,

UNIX, or Windows clients must be a direct connection through the engine and not

through a DB2 Connect gateway or loop back environment. Since the utility will

48 Data Movement Utilities Guide and Reference

issue a COMMIT or a ROLLBACK statement, you should complete all transactions

and release all locks by issuing a COMMIT statement or a ROLLBACK operation

before invoking import.

Note: The CREATE and REPLACE_CREATE options of the IMPORT command are

deprecated and might be removed in a future release.

The following restrictions apply to the import utility:

v If the existing table is a parent table containing a primary key that is referenced

by a foreign key in a dependent table, its data cannot be replaced, only

appended to.

v You cannot perform an import replace operation into an underlying table of a

materialized query table defined in refresh immediate mode.

v You cannot import data into a system table, a summary table, or a table with a

structured type column.

v You cannot import data into declared temporary tables.

v Views cannot be created through the import utility.

v Referential constraints and foreign key definitions are not preserved when

creating tables from PC/IXF files. (Primary key definitions are preserved if the

data was previously exported using SELECT *.)

v Because the import utility generates its own SQL statements, the maximum

statement size of 2 MB might, in some cases, be exceeded.

v You cannot re-create a partitioned table or an multidimensional clustered table

(MDC) using the CREATE or REPLACE_CREATE import options.

v You cannot re-create tables containing XML columns.

v You cannot import encrypted data.

v The import replace operation does not honor the Not Logged Initially clause.

The IMPORT command’s REPLACE option does not honor the CREATE TABLE

statement’s NOT LOGGED INITIALLY (NLI) clause or the ALTER TABLE

statement’s ACTIVATE NOT LOGGED INITIALLY clause. If an import with the

REPLACE action is performed within the same transaction as a CREATE TABLE

or ALTER TABLE statement where the NLI clause is invoked, the import will

not honor the NLI clause. All inserts will be logged.

Workaround 1: Delete the contents of the table using the DELETE statement,

then invoke the import with INSERT statement.

Workaround 2: Drop the table and re-create it, then invoke the import with

INSERT statement.

The following limitation applies to the import utility: If the volume of output

messages generated by an import operation against a remote database exceeds 60

KB, the utility will keep the first 30 KB and the last 30 KB.

The import utility can be invoked through the command line processor (CLP), the

Import Table notebook in the Control Center, or by calling the application

programming interface (API) db2Import from a client application.

Using the Import Table notebook

1. From the Control Center, expand the object tree until you find the Tables folder.

2. Click on the Tables folder. Any existing tables are displayed in the pane on the

right side of the window (the contents pane).

3. Right-click on the table you want in the contents pane, and select Import from

the pop-up menu. The Import Table notebook opens.

Chapter 3. Import utility 49

Detailed information about the Import Table notebook is provided through the

Control Center online help facility.

Issuing IMPORT commands through the CLP

A very simple import operation requires you to specify only an input file, a file

format, an import mode, and a target table (or the name of the table that is to be

created).

For example, to import data from the CLP, enter the IMPORT command:

db2 import from filename of fileformat import_mode into table

where filename is the name of the input file that contains the data you want to

import, ixf is the file format, insert is the mode, and table is the name of the

table that you want to insert the data into.

However, you might also want to specify a messages file to which warning and

error messages will be written. To do that, add the MESSAGES parameter and a

message file name so the command is:

db2 import from filename of fileformat messages messagefile import_mode into table

For complete syntax and usage information, see ″IMPORT command.″

Importing XML data

The import utility can be used to import XML data into an XML table column

using either the table name or a nickname for a DB2 Database for Linux, UNIX,

and Windows source data object.

When importing data into an XML table column, you can use the XML FROM

option to specify the paths of the input XML data file or files. For example, for an

XML file ″/home/user/xmlpath/xmldocs.001.xml″ that had previously been

exported, the following command could be used to import the data back into the

table.

 IMPORT FROM t1export.del OF DEL XML FROM /home/user/xmlpath INSERT INTO USER.T1

Validating inserted documents against schemas

The XMLVALIDATE option allows XML documents to be validated against XML

schemas as they are imported. In the following example, incoming XML

documents are validated against schema information that was saved when the

XML documents were exported:

 IMPORT FROM t1export.del OF DEL XML FROM /home/user/xmlpath XMLVALIDATE

 USING XDS INSERT INTO USER.T1

Specifying parse options

You can use the XMLPARSE option to specify whether whitespace in the imported

XML documents is preserved or stripped. In the following example, all imported

XML documents are validated against XML schema information that was saved

when the XML documents were exported, and these documents are parsed with

whitespace preserved.

 IMPORT FROM t1export.del OF DEL XML FROM /home/user/xmlpath XMLPARSE PRESERVE

 WHITESPACE XMLVALIDATE USING XDS INSERT INTO USER.T1

50 Data Movement Utilities Guide and Reference

Imported table re-creation

You can use the import utility’s CREATE mode to re-create a table that was saved

through the export utility. However, there are a number of limitations on the

process, as many of the input table’s attributes are not retained.

For import to be able to re-create the table, the export operation must meet some

requirements. The original table must have been exported to an IXF file. If you

export files with DEL or ASC file formats, the output files do not contain

descriptions of the target table, but they contain the record data. To re-create a

table with data stored in these file formats, create the target table, then use the

load or import utility to populate the table from these files. You can use the

db2look utility to capture the original table definitions and to generate the

corresponding data definition language (DDL). As well, the SELECT statement

used during the export can only contain certain action strings. For example, no

column names can be used in the SELECT clause and only SELECT * is permitted.

Note: Import’s CREATE mode is being deprecated. Use the db2look utility to

capture and re-create your tables.

Retained attributes
The re-created table will retain the following attributes of the original table:

v The primary key name, and definition

v Column information, including:

– Column name

– Column data type, including user-defined distinct types, which are preserved

as their base type

– Identity properties

– Lengths (except for lob_file types)

– Code page (if applicable)

– Identity options

– Whether the column is defined as nullable or not nullable

– Default values for constants, if any, but not other types of default values
v Index information, including:

– Index name

– Index creator name

– Column names, and whether each column is sorted in ascending or

descending order

– Whether the index is defined as unique

– Whether the index is clustered

– Whether the index allows reverse scans

– PCTFREE values

– MINPCTUSED values

Note: No index information is retained if the column names in the index contain

the characters - or +, in which case SQL27984W is returned.

Lost attributes

The re-created table does not retain several attributes of the original table,

including:

Chapter 3. Import utility 51

v Whether the source was a normal table, a materialized query table (MQT), a

view, or a set of columns from any or all of these sources

v Unique constraints and other types of constraints or triggers (not including

primary key constraints)

v Table information, including:

– MQT definition (if applicable)

– MQT options (if applicable)

– Table space options; however, this information can be specified through the

IMPORT command

– Multidimensional clustering (MDC) dimensions

– Partitioned table dimensions

– Table partitioning key

– NOT LOGGED INITIALLY property

– Check constraints

– Table code page

– Protected table properties

– Table or value compression options
v Column information, including:

– Any default value except constant values

– LOB options (if any)

– XML properties

– References clause of the CREATE TABLE statement (if any)

– Referential constraints (if any)

– Check constraints (if any)

– Generated column options (if any)

– Columns dependent on database scope sequences
v Index information, including:

– INCLUDE columns (if any)

– Index name, if the index is a primary key index

– Descending order of keys, if the index is a primary key index (ascending is

the default)

– Index column names that contain hexadecimal values of 0x2B or 0x2D

– Index names that contain more than 128 bytes after code page conversion

– PCTFREE2 value

– Unique constraints

Note: This list is not exhaustive, use with care.

If the import fails and SQL3311N is returned, you can still re-create the table using

the file type modifier forcecreate. This modifier allows you to create the table

with missing or limited information.

Typed table import considerations

The import utility can be used to move data both from and into typed tables while

preserving the data’s preexisting hierarchy. If desired, import can also be used to

create the table hierarchy and the type hierarchy.

52 Data Movement Utilities Guide and Reference

The movement of data from one hierarchical structure of typed tables to another is

done through a specific traverse order and the creation of an intermediate flat file

during an export operation. In turn, the import utility controls the size and the

placement of the hierarchy being moved, using the CREATE, INTO table-name,

UNDER, and AS ROOT TABLE parameters. As well, import determines what is

placed in the target database. For example, it can specify an attributes list at the

end of each subtable name to restrict the attributes that are moved to the target

database. If no attributes list is used, all of the columns in each subtable are

moved.

Table re-creation

The type of import you are able to perform depends on the file format of the input

file. When working with ASC, DEL, or WSF data, the target table or hierarchy

must exist before the data can be imported. However, data from a PC/IXF file can

be imported even if the table or hierarchy does not already exist if you specify an

import CREATE operation. It must be noted that if the CREATE option is specified,

import cannot alter subtable definitions.

Traverse order

The traverse order contained in the input file enables the hierarchies in the data to

be maintained. Therefore, the same traverse order must be used when invoking the

export utility and the import utility.

For the PC/IXF file format, one need only specify the target subtable name, and

use the default traverse order stored in the file.

When using options other than CREATE with typed tables, the traverse order list

enables one to specify the traverse order. This user-specified traverse order must

match the one used during the export operation. The import utility guarantees the

accurate movement of data to the target database given the following:

v An identical definition of subtables in both the source and the target databases

v An identical hierarchical relationship among the subtables in both the source

and target databases

v An identical traverse order

Although you determine the starting point and the path down the hierarchy when

defining the traverse order, each branch must be traversed to the end before the

next branch in the hierarchy can be started. The import utility looks for violations

of this condition within the specified traverse order.

Examples

Examples in this section are based on the following hierarchical structure with four

valid traverse orders:

v Person, Employee, Manager, Architect, Student

v Person, Student, Employee, Manager, Architect

v Person, Employee, Architect, Manager, Student

v Person, Student, Employee, Architect, Manager

Chapter 3. Import utility 53

Example 1

To re-create an entire hierarchy (contained in the data file entire_hierarchy.ixf

created by a prior export operation) using import, you would enter the following

commands:

 DB2 CONNECT TO Target_db

 DB2 IMPORT FROM entire_hierarchy.ixf OF IXF CREATE INTO

 HIERARCHY STARTING Person AS ROOT TABLE

Each type in the hierarchy is created if it does not exist. If these types already

exist, they must have the same definition in the target database as in the source

database. An SQL error (SQL20013N) is returned if they are not the same. Since a

new hierarchy is being created, none of the subtables defined in the data file being

moved to the target database (Target_db) can exist. Each of the tables in the source

database hierarchy is created. Data from the source database is imported into the

correct subtables of the target database.

Example 2

To re-create the entire hierarchy of the source database and import it to the target

database, while only keeping selected data, you would enter the following

commands:

 DB2 CONNECT TO Target_db

 DB2 IMPORT FROM entire_hierarchy.del OF DEL INSERT INTO (Person,

 Employee(Salary), Architect) IN HIERARCHY (Person, Employee,

 Manager, Architect, Student)

The target tables PERSON, EMPLOYEE, and ARCHITECT must all exist. Data is

imported into the PERSON, EMPLOYEE, and ARCHITECT subtables. That is, the

following will be imported:

v All columns in PERSON into PERSON

v All columns in PERSON plus SALARY in EMPLOYEE into EMPLOYEE

v All columns in PERSON plus SALARY in EMPLOYEE, plus all columns in

ARCHITECT into ARCHITECT

Person

Person_t

(Oid, Name, Age)

Employee

Employee_t

(SerialNum, Salary, REF

(Department_t))

Manager

Manager_t

(Bonus)

Student

Student_t

(SerialNum, Marks)

Architect

Architect_t

(StockOption)

8

5

4 7

6

3 2

1

Figure 2. An example of a hierarchy

54 Data Movement Utilities Guide and Reference

Columns SerialNum and REF(Employee_t) are not imported into EMPLOYEE or its

subtables (that is, ARCHITECT, which is the only subtable having data imported

into it).

Note: Because ARCHITECT is a subtable of EMPLOYEE, and the only import

column specified for EMPLOYEE is SALARY, SALARY is also the only

Employee-specific column imported into ARCHITECT. That is, neither SerialNum

nor REF(Employee_t) columns are imported into either EMPLOYEE or

ARCHITECT rows.
Data for the MANAGER and the STUDENT tables is not imported.

Example 3

This example shows how to export from a regular table, and import as a single

subtable in a hierarchy. The EXPORT command operates on regular (non-typed)

tables, so there is no Type_id column in the data file. The file type modifier

no_type_id is used to indicate this, so that the import utility does not expect the

first column to be the Type_id column.

 DB2 CONNECT TO Source_db

 DB2 EXPORT TO Student_sub_table.del OF DEL SELECT * FROM

 Regular_Student

 DB2 CONNECT TO Target_db

 DB2 IMPORT FROM Student_sub_table.del OF DEL METHOD P(1,2,3,5,4)

 MODIFIED BY NO_TYPE_ID INSERT INTO HIERARCHY (Student)

In this example, the target table STUDENT must exist. Since STUDENT is a

subtable, the modifier no_type_id is used to indicate that there is no Type_id in the

first column. However, you must ensure that there is an existing Object_id column,

in addition to all of the other attributes that exist in the STUDENT table. Object-id

is expected to be the first column in each row imported into the STUDENT table.

The METHOD clause reverses the order of the last two attributes.

LBAC-protected data import considerations

For a successful import operation into a table with protected rows, you must have

LBAC (label-based access control) credentials. You must also provide a valid

security label, or a security label that can be converted to a valid label, for the

security policy currently associated with the target table.

If you do not have valid LBAC credentials, the import fails and an error

(SQLSTATE 42512) is returned. In cases where the input data does not contain a

security label or that security label is not in its internal binary format, you can use

several file type modifiers to allow your import to proceed.

When you import data into a table with protected rows, the target table has one

column with a data type of DB2SECURITYLABEL. If the input row of data does

not contain a value for that column, that row is rejected unless the usedefaults file

type modifier is specified in the import command, in which case the security label

you hold for write access from the security policy protecting the table is used. If

you do not hold a security label for write access, the row is rejected and processing

continues on to the next row.

When you import data into a table that has protected rows and the input data does

include a value for the column with a data type of DB2SECURITYLABEL, the

same rules are followed as when you insert data into that table. If the security

label protecting the row being imported (the one in that row of the data file) is one

that you are able to write to, then that security label is used to protect the row. (In

other words, it is written to the column that has a data type of

Chapter 3. Import utility 55

DB2SECURITYLABEL.) If you are not able to write to a row protected by that

security label, what happens depends on how the security policy protecting the

source table was created:

v If the CREATE SECURITY POLICY statement that created the policy included

the option RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL, the insert

fails and an error is returned.

v If the CREATE SECURITY POLICY statement did not include the option or if it

instead included the OVERRIDE NOT AUTHORIZED WRITE SECURITY

LABEL option, the security label in the data file for that row is ignored and the

security label you hold for write access is used to protect that row. No error or

warning is issued in this case. If you do not hold a security label for write

access, the row is rejected and processing continues on to the next row.

Delimiter considerations

When importing data into a column with a data type of DB2SECURITYLABEL, the

value in the data file is assumed by default to be the actual bytes that make up the

internal representation of that security label. However, some raw data might

contain newline characters which could be misinterpreted by the IMPORT

command as delimiting the row. If you have this problem, use the delprioritychar

file type modifier to ensure that the character delimiter takes precedence over the

row delimiter. When you use delprioritychar, any record or column delimiters

that are contained within character delimiters are not recognized as being

delimiters. Using the delprioritychar file type modifier is safe to do even if none

of the values contain a newline character, but it does slow the import down

slightly.

If the data being imported is in ASC format, you might want to take an extra step

in order to prevent any trailing white space from being included in the imported

security labels and security label names. ASCII format uses column positions as

delimiters, so this might occur when importing into variable-length fields. Use the

striptblanks file type modifier to truncate any trailing blank spaces.

Nonstandard security label values

You can also import data files in which the values for the security labels are strings

containing the values of the components in the security label, for example,

S:(ALPHA,BETA). To do so you must use the file type modifier seclabelchar.

When you use seclabelchar, a value for a column with a data type of

DB2SECURITYLABEL is assumed to be a string constant containing the security

label in the string format for security labels. If a string is not in the proper format,

the row is not inserted and a warning (SQLSTATE 01H53) is returned. If the string

does not represent a valid security label that is part of the security policy

protecting the table, the row is not inserted and a warning (SQLSTATE 01H53) is

returned.

You can also import a data file in which the values of the security label column are

security label names. To import this sort of file you must use the file type modifier

seclabelname. When you use seclabelname, all values for columns with a data type

of DB2SECURITYLABEL are assumed to be string constants containing the names

of existing security labels. If no security label exists with the indicated name for

the security policy protecting the table, the row is not inserted and a warning

(SQLSTATE 01H53) is returned.

56 Data Movement Utilities Guide and Reference

Examples

For all examples, the input data file myfile.del is in DEL format. All are importing

data into a table named REPS, which was created with this statement:

create table reps (row_label db2securitylabel,

id integer,

name char(30))

security policy data_access_policy

For this example, the input file is assumed to contain security labels in the default

format:

db2 import from myfile.del of del modified by delprioritychar insert into reps

For this example, the input file is assumed to contain security labels in the security

label string format:

db2 import from myfile.del of del modified by seclabelchar insert into reps

For this example, the input file is assumed to contain security labels names for the

security label column:

db2 import from myfile.del of del modified by seclabelname insert into reps

Buffered-insert imports

In a partitioned database environment, the import utility can be enabled to use

buffered inserts. This reduces the messaging that occurs when data is imported,

resulting in better performance.

The buffered inserts option should only be enabled if you are not concerned about

error reporting, since details about a failed buffered insert are not returned.

When buffered inserts are used, import sets a default WARNINGCOUNT value to

1. As a result, the operation will fail if any rows are rejected. If a record is rejected,

the utility will roll back the current transaction. The number of committed records

can be used to determine which records were successfully inserted into the

database. The number of committed records can be non zero only if the

COMMITCOUNT option was specified.

If a different WARNINGCOUNT value is explicitly specified on the import

command, and some rows are rejected, the row summary output by the utility can

be incorrect. This is due to a combination of the asynchronous error reporting used

with buffered inserts and the fact that an error detected during the insertion of a

group of rows causes all the rows of that group to be backed out. Since the utility

would not reliably report which input records were rejected, it would be difficult

to determine which records were committed and which records need to be

re-inserted into the database.

Use the DB2 bind utility to request buffered inserts. The import package,

db2uimpm.bnd, must be rebound against the database using the INSERT BUF

option. For example:

 db2 connect to your_database

 db2 bind db2uimpm.bnd insert buf

Buffered inserts feature cannot be used in conjunction with import operations in

the INSERT_UPDATE mode. The bind file db2uImpInsUpdate.bnd enforces this

restriction. This file should never be bound with the INSERT BUF option. This

Chapter 3. Import utility 57

causes the import operations in the INSERT_UPDATE mode to fail. Import

operations in the INSERT, REPLACE, or REPLACE_CREATE modes are not

affected by the binding of the new file.

Identity column import considerations

The import utility can be used to import data into a table containing an identity

column whether or not the input data has identity column values.

If no identity-related file type modifiers are used, the utility works according to the

following rules:

v If the identity column is GENERATED ALWAYS, an identity value is generated

for a table row whenever the corresponding row in the input file is missing a

value for the identity column, or a NULL value is explicitly given. If a

non-NULL value is specified for the identity column, the row is rejected

(SQL3550W).

v If the identity column is GENERATED BY DEFAULT, the import utility makes

use of user-supplied values, if they are provided; if the data is missing or

explicitly NULL, a value is generated.

The import utility does not perform any extra validation of user-supplied identity

values beyond what is normally done for values of the identity column’s data type

(that is, SMALLINT, INT, BIGINT, or DECIMAL). Duplicate values will not be

reported. In addition, the compound=x modifier cannot be used when importing

data into a table with an identity column.

There are two ways you can simplify the import of data into tables that contain an

identity column: the identitymissing and the identityignore file type modifiers.

Importing data without an identity column
The identitymissing modifier makes importing a table with an identity column

more convenient if the input data file does not contain any values (not even

NULLS) for the identity column. For example, consider a table defined with the

following SQL statement:

 create table table1 (c1 char(30),

 c2 int generated by default as identity,

 c3 real,

 c4 char(1))

A user might want to import data from a file (import.del) into TABLE1, and this

data might have been exported from a table that does not have an identity column.

The following is an example of such a file:

 Robert, 45.2, J

 Mike, 76.9, K

 Leo, 23.4, I

One way to import this file would be to explicitly list the columns to be imported

through the IMPORT command as follows:

 db2 import from import.del of del replace into table1 (c1, c3, c4)

For a table with many columns, however, this syntax might be cumbersome and

prone to error. An alternate method of importing the file is to use the

identitymissing file type modifier as follows:

 db2 import from import.del of del modified by identitymissing

 replace into table1

58 Data Movement Utilities Guide and Reference

Importing data with an identity column
The identityignore modifier is in some ways the opposite of the identitymissing

modifier: it indicates to the import utility that even though the input data file

contains data for the identity column, the data should be ignored, and an identity

value should be generated for each row. For example, a user might want to import

the following data from a file (import.del) into TABLE1, as defined above:

 Robert, 1, 45.2, J

 Mike, 2, 76.9, K

 Leo, 3, 23.4, I

If the user-supplied values of 1, 2, and 3 are not to be used for the identity

column, the user could issue the following IMPORT command:

 db2 import from import.del of del method P(1, 3, 4)

 replace into table1 (c1, c3, c4)

Again, this approach might be cumbersome and prone to error if the table has

many columns. The identityignore modifier simplifies the syntax as follows:

 db2 import from import.del of del modified by identityignore

 replace into table1

When a table with an identity column is exported to an IXF file, the

REPLACE_CREATE and the CREATE options of the IMPORT command can be

used to re-create the table, including its identity column properties. If such an IXF

file is created from a table containing an identity column of type GENERATED

ALWAYS, the only way that the data file can be successfully imported is to specify

the identityignore modifier. Otherwise, all rows will be rejected (SQL3550W).

Note: The CREATE and REPLACE_CREATE options of the IMPORT command are

deprecated and might be removed in a future release.

Generated column import considerations

The import utility can be used to import data into a table containing (nonidentity)

generated columns whether or not the input data has generated column values.

If no generated column-related file type modifiers are used, the import utility

works according to the following rules:

v A value is generated for a generated column whenever the corresponding row in

the input file is missing a value for the column, or a NULL value is explicitly

given. If a non-NULL value is supplied for a generated column, the row is

rejected (SQL3550W).

v If the server generates a NULL value for a generated column that is not nullable,

the row of data to which this field belongs is rejected (SQL0407N). This could

happen, for example, if a non-nullable generated column were defined as the

sum of two table columns that have NULL values supplied to them in the input

file.

There are two ways you can simplify the import of data into tables that contain a

generated column: the generatedmissing and the generatedignore file type

modifiers.

Importing data without generated columns
The generatedmissing modifier makes importing data into a table with generated

columns more convenient if the input data file does not contain any values (not

even NULLS) for all generated columns present in the table. For example, consider

a table defined with the following SQL statement:

Chapter 3. Import utility 59

create table table1 (c1 int,

 c2 int,

 g1 int generated always as (c1 + c2),

 g2 int generated always as (2 * c1),

 c3 char(1))

A user might want to import data from a file (load.del) into TABLE1, and this data

might have been exported from a table that does not have any generated columns.

The following is an example of such a file:

 1, 5, J

 2, 6, K

 3, 7, I

One way to import this file would be to explicitly list the columns to be imported

through the IMPORT command as follows:

 db2 import from import.del of del replace into table1 (c1, c2, c3)

For a table with many columns, however, this syntax might be cumbersome and

prone to error. An alternate method of importing the file is to use the

generatedmissing file type modifier as follows:

 db2 import from import.del of del modified by generatedmissing

 replace into table1

Importing data with generated columns
The generatedignore modifier is in some ways the opposite of the

generatedmissing modifier: it indicates to the import utility that even though the

input data file contains data for all generated columns, the data should be ignored,

and values should be generated for each row. For example, a user might want to

import the following data from a file (import.del) into TABLE1, as defined above:

 1, 5, 10, 15, J

 2, 6, 11, 16, K

 3, 7, 12, 17, I

The user-supplied, non-NULL values of 10, 11, and 12 (for g1), and 15, 16, and 17

(for g2) result in the row being rejected (SQL3550W). To avoid this, the user could

issue the following IMPORT command:

 db2 import from import.del of del method P(1, 2, 5)

 replace into table1 (c1, c2, c3)

Again, this approach might be cumbersome and prone to error if the table has

many columns. The generatedignore modifier simplifies the syntax as follows:

 db2 import from import.del of del modified by generatedignore

 replace into table1

For an INSERT_UPDATE, if the generated column is also a primary key and the

generatedignore modifier is specified, the IMPORT command honors the

generatedignore modifier. The IMPORT command does not substitute the

user-supplied value for this column in the WHERE clause of the UPDATE

statement.

LOB import considerations

Since the import utility restricts the size of a single column value to 32 KB, extra

considerations need to be taken when importing LOBs.

The import utility, by default, treats data in the input file as data to load into the

column. However, when large object (LOB) data is stored in the main input data

60 Data Movement Utilities Guide and Reference

file, the size of the data is limited to 32 KB. Therefore, to prevent loss of data, LOB

data should be stored separate from the main datafile and the lobsinfile file type

modifier should be specified when importing LOBs.

The LOBS FROM clause implicitly activates lobsinfile. The LOBS FROM clause

conveys to the import utility the list of paths to search for the LOB files while

importing the data. If LOBS FROM option is not specified, the LOB files to import

are assumed to reside in the same path as the input relational data file.

Indicating where LOB data is stored
The LOB Location Specifier (LLS) can be used to store multiple LOBs in a single

file when importing the LOB information. The export utility generates and stores it

in the export output file when lobsinfile is specified, and it indicates where LOB

data can be found. When data with the modified by lobsinfile option specified is

being imported, the database will expect an LLS for each of the corresponding

LOB columns. If something other than an LLS is encountered for a LOB column,

the database will treat it as a LOB file and will load the entire file as the LOB.

For an import in CREATE mode, you can specify that the LOB data be created and

stored in a separate table space by using the LONG IN clause.

The following example shows how you would import an DEL file which has its

LOBs stored in separate files:

IMPORT FROM inputfile.del OF DEL

 LOBS FROM /tmp/data

 MODIFIED BY lobsinfile

 INSERT INTO newtable

User-defined distinct types import considerations

The import utility casts user-defined distinct types (UDTs) to similar base data

types automatically. This saves you from having to explicitly cast UDTs to the base

data types. Casting allows for comparisons between UDTs and the base data types

in SQL.

Additional considerations for import

Client/server environments and import

When you import a file to a remote database, a stored procedure can be called to

perform the import on the server.

A stored procedure cannot be called when:

v The application and database code pages are different.

v The file being imported is a multiple-part PC/IXF file.

v The method used for importing the data is either column name or relative

column position.

v The target column list provided is longer than 4 KB.

v The LOBS FROM clause or the lobsinfile modifier is specified.

v The NULL INDICATORS clause is specified for ASC files.

When import uses a stored procedure, messages are created in the message file

using the default language installed on the server. The messages are in the

language of the application if the language at the client and the server are the

same.

Chapter 3. Import utility 61

The import utility creates two temporary files in the tmp subdirectory of the sqllib

directory (or the directory indicated by the DB2INSTPROF registry variable, if

specified). One file is for data, and the other file is for messages generated by the

import utility.

If you receive an error about writing or opening data on the server, ensure that:

v The directory exists.

v There is sufficient disk space for the files.

v The instance owner has write permission in the directory.

Table locking modes supported by the import utility

The import utility supports two table locking modes: offline, or ALLOW NO

ACCESS, mode; and online, or ALLOW WRITE ACCESS mode.

ALLOW NO ACCESS mode prevents concurrent applications from accessing table

data. ALLOW WRITE ACCESS mode allows concurrent applications both read and

write access to the import target table. If no mode is explicitly specified, import

runs in the default mode, ALLOW NO ACCESS. As well, the import utility is, by

default, bound to the database with isolation level RS (read stability).

Offline import (ALLOW NO ACCESS)

In ALLOW NO ACCESS mode, import acquires an exclusive (X) lock on the target

table is before inserting any rows. Holding a lock on a table has two implications:

v First, if there are other applications holding a table lock or row locks on the

import target table, the import utility waits for those applications to commit or

roll back their changes.

v Second, while import is running, any other application requesting locks waits for

the import operation to complete.

Note: You can specify a locktimeout value, which prevents applications (including

the import utility) from waiting indefinitely for a lock.
By requesting an exclusive lock at the beginning of the operation, import prevents

deadlocks from occurring as a result of other applications working and holding

row locks on the same target table.

Online import (ALLOW WRITE ACCESS)

In ALLOW WRITE ACCESS mode, the import utility acquires a nonexclusive (IX)

lock on the target table. Holding this lock on the table has the following

implications:

v If there are other applications holding an incompatible table lock, the import

utility does not start inserting data until all of these applications commit or roll

back their changes.

v While import is running, any other application requesting an incompatible table

lock waits until the import commits or rolls back the current transaction. Note

that import’s table lock does not persist across a transaction boundary. As a

result, online import has to request and potentially wait for a table lock after

every commit.

v If there are other applications holding an incompatible row lock, the import

utility stops inserting data until all of these applications commit or roll back

their changes.

62 Data Movement Utilities Guide and Reference

v While import is running, any other application requesting an incompatible row

lock waits until the import operation commits or rolls back the current

transaction.

To preserve the online properties, and to reduce the chance of a deadlock, an

ALLOW WRITE ACCESS import periodically commits the current transaction and

releases all row locks before escalating to an exclusive table lock. If you have not

explicitly set a commit frequency, import performs commits as if COMMITCOUNT

AUTOMATIC has been specified. No commits are performed if COMMITCOUNT

is set to 0.

ALLOW WRITE ACCESS mode is not compatible with the following:

v Imports in REPLACE, CREATE, or REPLACE_CREATE mode

v Imports with buffered inserts

v Imports into a target view

v Imports into a hierarchy table

v Imports into a table with its lock granularity is set at the table level (set by using

the LOCKSIZE parameter of the ALTER TABLE statement)

Reference - Import

IMPORT

Inserts data from an external file with a supported file format into a table,

hierarchy, view or nickname. LOAD is a faster alternative, but the load utility does

not support loading data at the hierarchy level.

Quick link to “File type modifiers for the import utility” on page 76.

Authorization

v IMPORT using the INSERT option requires one of the following:

– dataaccess authority

– CONTROL privilege on each participating table, view, or nickname

– INSERT and SELECT privilege on each participating table or view
v IMPORT to an existing table using the INSERT_UPDATE option, requires one of

the following:

– dataaccess authority

– CONTROL privilege on each participating table, view, or nickname

– INSERT, SELECT, UPDATE and DELETE privilege on each participating table

or view
v IMPORT to an existing table using the REPLACE or REPLACE_CREATE option,

requires one of the following:

– dataaccess authority

– CONTROL privilege on the table or view

– INSERT, SELECT, and DELETE privilege on the table or view
v IMPORT to a new table using the CREATE or REPLACE_CREATE option,

requires one of the following:

– dbadm authority

– CREATETAB authority on the database and USE privilege on the table space,

as well as one of:

Chapter 3. Import utility 63

- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist

- CREATEIN privilege on the schema, if the schema name of the table refers

to an existing schema
v IMPORT to a hierarchy that does not exist using the CREATE, or the

REPLACE_CREATE option, requires one of the following:

– dbadm authority

– CREATETAB authority on the database and USE privilege on the table space

and one of:

- IMPLICIT_SCHEMA authority on the database, if the schema name of the

table does not exist

- CREATEIN privilege on the schema, if the schema of the table exists

- CONTROL privilege on every sub-table in the hierarchy, if the

REPLACE_CREATE option on the entire hierarchy is used
v IMPORT to an existing hierarchy using the REPLACE option requires one of the

following:

– dataaccess authority

– CONTROL privilege on every sub-table in the hierarchy
v To import data into a table that has protected columns, the session authorization

ID must have LBAC credentials that allow write access to all protected columns

in the table. Otherwise the import fails and an error (SQLSTATE 42512) is

returned.

v To import data into a table that has protected rows, the session authorization ID

must hold LBAC credentials that meet these criteria:

– It is part of the security policy protecting the table

– It was granted to the session authorization ID for write access

The label on the row to insert, the user’s LBAC credentials, the security policy

definition, and the LBAC rules determine the label on the row.

v If the REPLACE or REPLACE_CREATE option is specified, the session

authorization ID must have the authority to drop the table.

v To import data into a nickname, the session authorization ID must have the

privilege to access and use a specified data source in pass-through mode.

Required connection

Command syntax

�� IMPORT FROM filename OF filetype

�

,

LOBS FROM

lob-path

�

,

XML FROM

xml-path

 �

�

�

MODIFIED BY

filetype-mod

 �

64 Data Movement Utilities Guide and Reference

�

�

�

�

�

,

METHOD

L

(

column-start

column-end

)

,

NULL INDICATORS

(

null-indicator-list

)

,

N

(

column-name

)

,

P

(

column-position

)

 �

�
XMLPARSE

STRIP

WHITESPACE

PRESERVE

 �

�

XMLVALIDATE USING

XDS

Ignore

and

Map

parameters

DEFAULT

schema-sqlid

SCHEMA

schema-sqlid

SCHEMALOCATION HINTS

 ALLOW NO ACCESS

ALLOW WRITE ACCESS

�

�
COMMITCOUNT

n

AUTOMATIC

RESTARTCOUNT

n

SKIPCOUNT

ROWCOUNT

n

WARNINGCOUNT

n

NOTIMEOUT
 �

�

�

�

 INSERT INTO table-name

INSERT_UPDATE

,

REPLACE

REPLACE_CREATE

(

insert-column

)

hierarchy

description

CREATE

INTO

table-name

tblspace-specs

,

(

insert-column

)

hierarchy

description

AS ROOT TABLE

UNDER

sub-table-name

 ��

Ignore and Map parameters:

�

,

IGNORE

(

schema-sqlid

)

 �

�

�

,

MAP

(

(

schema-sqlid

,

schema-sqlid

)

)

hierarchy description:

 ALL TABLES

sub-table-list

IN

HIERARCHY

STARTING

sub-table-name

traversal-order-list

sub-table-list:

�

�

 ,

(

sub-table-name

)

,

(

insert-column

)

Chapter 3. Import utility 65

traversal-order-list:

�

 ,

(

sub-table-name

)

tblspace-specs:

IN

tablespace-name

INDEX IN

tablespace-name

LONG IN

tablespace-name

Command parameters

ALL TABLES

An implicit keyword for hierarchy only. When importing a hierarchy, the

default is to import all tables specified in the traversal order.

ALLOW NO ACCESS

Runs import in the offline mode. An exclusive (X) lock on the target table

is acquired before any rows are inserted. This prevents concurrent

applications from accessing table data. This is the default import behavior.

ALLOW WRITE ACCESS

Runs import in the online mode. An intent exclusive (IX) lock on the target

table is acquired when the first row is inserted. This allows concurrent

readers and writers to access table data. Online mode is not compatible

with the REPLACE, CREATE, or REPLACE_CREATE import options.

Online mode is not supported in conjunction with buffered inserts. The

import operation will periodically commit inserted data to prevent lock

escalation to a table lock and to avoid running out of active log space.

These commits will be performed even if the COMMITCOUNT option

was not used. During each commit, import will lose its IX table lock, and

will attempt to reacquire it after the commit. This parameter is required

when you import to a nickname and COMMITCOUNT must be specified

with a valid number (AUTOMATIC is not considered a valid option).

AS ROOT TABLE

Creates one or more sub-tables as a stand-alone table hierarchy.

COMMITCOUNT n | AUTOMATIC

Performs a COMMIT after every n records are imported. When a number n

is specified, import performs a COMMIT after every n records are

imported. When compound inserts are used, a user-specified commit

frequency of n is rounded up to the first integer multiple of the compound

count value. When AUTOMATIC is specified, import internally determines

when a commit needs to be performed. The utility will commit for either

one of two reasons:

v to avoid running out of active log space

v to avoid lock escalation from row level to table level

If the ALLOW WRITE ACCESS option is specified, and the

COMMITCOUNT option is not specified, the import utility will perform

commits as if COMMITCOUNT AUTOMATIC had been specified.

 The ability of the import operation to avoid running out of active log space

is affected by the DB2 registry variable

DB2_FORCE_APP_ON_MAX_LOG:

66 Data Movement Utilities Guide and Reference

v If DB2_FORCE_APP_ON_MAX_LOG is set to FALSE and the

COMMITCOUNT AUTOMATIC command option is specified, the

import utility will be able to automatically avoid running out of active

log space.

v If DB2_FORCE_APP_ON_MAX_LOG is set to FALSE and the

COMMITCOUNT n command option is specified, the import utility will

attempt to resolve the log full condition if it encounters an SQL0964C

(Transaction Log Full) while inserting or updating a record. It will

perform an unconditional commit and then will reattempt to insert or

update the record. If this does not help resolve the issue (which would

be the case when the log full is attributed to other activity on the

database), then the IMPORT command will fail as expected, however the

number of rows committed may not be a multiple of the

COMMITCOUNT n value. To avoid processing the rows that were

already committed when you retry the import operation, use the

RESTARTCOUNT or SKIPCOUNT command parameters.

v If DB2_FORCE_APP_ON_MAX_LOG is set to TRUE (which is the

default), the import operation will fail if it encounters an SQL0964C

while inserting or updating a record. This can occur irrespective of

whether you specify COMMITCOUNT AUTOMATIC or

COMMITCOUNT n.

The application is forced off the database and the current unit of work is

rolled back. To avoid processing the rows that were already committed

when you retry the import operation, use the RESTARTCOUNT or

SKIPCOUNT command parameters.

CREATE

Note: The CREATE parameter is deprecated and may be removed in a

future release. For additional details, see “IMPORT command options

CREATE and REPLACE_CREATE are deprecated”.

Creates the table definition and row contents in the code page of the

database. If the data was exported from a DB2 table, sub-table, or

hierarchy, indexes are created. If this option operates on a hierarchy, and

data was exported from DB2, a type hierarchy will also be created. This

option can only be used with IXF files.

This parameter is not valid when you import to a nickname.

Note: If the data was exported from an MVS™ host database, and it

contains LONGVAR fields whose lengths, calculated on the page size, are

more than 254, CREATE might fail because the rows are too long. See

“Imported table re-creation” for a list of restrictions. In this case, the table

should be created manually, and IMPORT with INSERT should be

invoked, or, alternatively, the LOAD command should be used.

DEFAULT schema-sqlid

This option can only be used when the USING XDS parameter is

specified. The schema specified through the DEFAULT clause identifies a

schema to use for validation when the XML Data Specifier (XDS) of an

imported XML document does not contain an SCH attribute identifying an

XML Schema.

 The DEFAULT clause takes precedence over the IGNORE and MAP

clauses. If an XDS satisfies the DEFAULT clause, the IGNORE and MAP

specifications will be ignored.

Chapter 3. Import utility 67

FROM filename

HIERARCHY

Specifies that hierarchical data is to be imported.

IGNORE schema-sqlid

This option can only be used when the USING XDS parameter is

specified. The IGNORE clause specifies a list of one or more schemas to

ignore if they are identified by an SCH attribute. If an SCH attribute exists

in the XML Data Specifier for an imported XML document, and the schema

identified by the SCH attribute is included in the list of schemas to ignore,

then no schema validation will occur for the imported XML document.

 If a schema is specified in the IGNORE clause, it cannot also be present in

the left side of a schema pair in the MAP clause.

The IGNORE clause applies only to the XDS. A schema that is mapped by

the MAP clause will not be subsequently ignored if specified by the

IGNORE clause.

IN tablespace-name

Identifies the table space in which the table will be created. The table space

must exist, and must be a REGULAR table space. If no other table space is

specified, all table parts are stored in this table space. If this clause is not

specified, the table is created in a table space created by the authorization

ID. If none is found, the table is placed into the default table space

USERSPACE1. If USERSPACE1 has been dropped, table creation fails.

INDEX IN tablespace-name

Identifies the table space in which any indexes on the table will be created.

This option is allowed only when the primary table space specified in the

IN clause is a DMS table space. The specified table space must exist, and

must be a REGULAR or LARGE DMS table space.

Note: Specifying which table space will contain an index can only be done

when the table is created.

insert-column

Specifies the name of a column in the table or the view into which data is

to be inserted.

INSERT

Adds the imported data to the table without changing the existing table

data.

INSERT_UPDATE

Adds rows of imported data to the target table, or updates existing rows

(of the target table) with matching primary keys.

INTO table-name

Specifies the database table into which the data is to be imported. This

table cannot be a system table, a created temporary table, a declared

temporary table, or a summary table.

 One can use an alias for INSERT, INSERT_UPDATE, or REPLACE, except

in the case of an earlier server, when the fully qualified or the unqualified

table name should be used. A qualified table name is in the form:

schema.tablename. The schema is the user name under which the table was

created.

LOBS FROM lob-path

The names of the LOB data files are stored in the main data file (ASC,

68 Data Movement Utilities Guide and Reference

DEL, or IXF), in the column that will be loaded into the LOB column. The

maximum number of paths that can be specified is 999. This will implicitly

activate the LOBSINFILE behavior.

 This parameter is not valid when you import to a nickname.

LONG IN tablespace-name

Identifies the table space in which the values of any long columns (LONG

VARCHAR, LONG VARGRAPHIC, LOB data types, or distinct types with

any of these as source types) will be stored. This option is allowed only if

the primary table space specified in the IN clause is a DMS table space.

The table space must exist, and must be a LARGE DMS table space.

MAP schema-sqlid

This option can only be used when the USING XDS parameter is

specified. Use the MAP clause to specify alternate schemas to use in place

of those specified by the SCH attribute of an XML Data Specifier (XDS) for

each imported XML document. The MAP clause specifies a list of one or

more schema pairs, where each pair represents a mapping of one schema

to another. The first schema in the pair represents a schema that is referred

to by an SCH attribute in an XDS. The second schema in the pair

represents the schema that should be used to perform schema validation.

 If a schema is present in the left side of a schema pair in the MAP clause,

it cannot also be specified in the IGNORE clause.

Once a schema pair mapping is applied, the result is final. The mapping

operation is non-transitive, and therefore the schema chosen will not be

subsequently applied to another schema pair mapping.

A schema cannot be mapped more than once, meaning that it cannot

appear on the left side of more than one pair.

METHOD

L Specifies the start and end column numbers from which to import

data. A column number is a byte offset from the beginning of a

row of data. It is numbered starting from 1.

Note: This method can only be used with ASC files, and is the

only valid option for that file type.

N Specifies the names of the columns in the data file to be imported.

The case of these column names must match the case of the

corresponding names in the system catalogs. Each table column

that is not nullable should have a corresponding entry in the

METHOD N list. For example, given data fields F1, F2, F3, F4, F5,

and F6, and table columns C1 INT, C2 INT NOT NULL, C3 INT

NOT NULL, and C4 INT, method N (F2, F1, F4, F3) is a valid

request, while method N (F2, F1) is not valid.

Note: This method can only be used with IXF files.

P Specifies the field numbers of the input data fields to be imported.

Note: This method can only be used with IXF or DEL files, and is

the only valid option for the DEL file type.

MODIFIED BY filetype-mod

Specifies file type modifier options. See “File type modifiers for the import

utility” on page 76.

Chapter 3. Import utility 69

NOTIMEOUT

Specifies that the import utility will not time out while waiting for locks.

This option supersedes the locktimeout database configuration parameter.

Other applications are not affected.

NULL INDICATORS null-indicator-list

This option can only be used when the METHOD L parameter is specified.

That is, the input file is an ASC file. The null indicator list is a

comma-separated list of positive integers specifying the column number of

each null indicator field. The column number is the byte offset of the null

indicator field from the beginning of a row of data. There must be one

entry in the null indicator list for each data field defined in the METHOD

L parameter. A column number of zero indicates that the corresponding

data field always contains data.

 A value of Y in the NULL indicator column specifies that the column data

is NULL. Any character other than Y in the NULL indicator column

specifies that the column data is not NULL, and that column data specified

by the METHOD L option will be imported.

The NULL indicator character can be changed using the MODIFIED BY

option, with the nullindchar file type modifier.

OF filetype

Specifies the format of the data in the input file:

v ASC (non-delimited ASCII format)

v DEL (delimited ASCII format), which is used by a variety of database

manager and file manager programs

v WSF (work sheet format), which is used by programs such as:

– Lotus 1-2-3

– Lotus Symphony
v IXF (Integration Exchange Format, PC version) is a binary format that is

used exclusively by DB2.

Important: Support for the WSF file format is deprecated and might be

removed in a future release. It is recommended that you start using a

supported file format instead of WSF files before support is removed.

The WSF file type is not supported when you import to a nickname.

REPLACE

Deletes all existing data from the table by truncating the data object, and

inserts the imported data. The table definition and the index definitions are

not changed. This option can only be used if the table exists. If this option

is used when moving data between hierarchies, only the data for an entire

hierarchy, not individual subtables, can be replaced.

 This parameter is not valid when you import to a nickname.

This option does not honor the CREATE TABLE statement’s NOT

LOGGED INITIALLY (NLI) clause or the ALTER TABLE statement’s

ACTIVE NOT LOGGED INITIALLY clause.

If an import with the REPLACE option is performed within the same

transaction as a CREATE TABLE or ALTER TABLE statement where the

NLI clause is invoked, the import will not honor the NLI clause. All inserts

will be logged.

70 Data Movement Utilities Guide and Reference

Workaround 1

Delete the contents of the table using the DELETE statement, then

invoke the import with INSERT statement

Workaround 2

Drop the table and recreate it, then invoke the import with INSERT

statement.

This limitation applies to DB2® Universal Database™ Version 7 and DB2

UDB Version 8

REPLACE_CREATE

Note: The REPLACE_CREATE parameter is deprecated and may be

removed in a future release. For additional details, see “IMPORT command

options CREATE and REPLACE_CREATE are deprecated”.

If the table exists, deletes all existing data from the table by truncating the

data object, and inserts the imported data without changing the table

definition or the index definitions.

If the table does not exist, creates the table and index definitions, as well as

the row contents, in the code page of the database. See Imported table

re-creation for a list of restrictions.

This option can only be used with IXF files. If this option is used when

moving data between hierarchies, only the data for an entire hierarchy, not

individual subtables, can be replaced.

This parameter is not valid when you import to a nickname.

RESTARTCOUNT n

Specifies that an import operation is to be started at record n+1. The first n

records are skipped. This option is functionally equivalent to

SKIPCOUNT. RESTARTCOUNT and SKIPCOUNT are mutually

exclusive.

ROWCOUNT n

Specifies the number n of physical records in the file to be imported

(inserted or updated). Allows a user to import only n rows from a file,

starting from the record determined by the SKIPCOUNT or

RESTARTCOUNT options. If the SKIPCOUNT or RESTARTCOUNT

options are not specified, the first n rows are imported. If SKIPCOUNT m

or RESTARTCOUNT m is specified, rows m+1 to m+n are imported. When

compound inserts are used, user specified ROWCOUNT n is rounded up

to the first integer multiple of the compound count value.

SKIPCOUNT n

Specifies that an import operation is to be started at record n+1. The first n

records are skipped. This option is functionally equivalent to

RESTARTCOUNT. SKIPCOUNT and RESTARTCOUNT are mutually

exclusive.

STARTING sub-table-name

A keyword for hierarchy only, requesting the default order, starting from

sub-table-name. For PC/IXF files, the default order is the order stored in the

input file. The default order is the only valid order for the PC/IXF file

format.

Chapter 3. Import utility 71

sub-table-list

For typed tables with the INSERT or the INSERT_UPDATE option, a list

of sub-table names is used to indicate the sub-tables into which data is to

be imported.

traversal-order-list

For typed tables with the INSERT, INSERT_UPDATE, or the REPLACE

option, a list of sub-table names is used to indicate the traversal order of

the importing sub-tables in the hierarchy.

UNDER sub-table-name

Specifies a parent table for creating one or more sub-tables.

WARNINGCOUNT n

Stops the import operation after n warnings. Set this parameter if no

warnings are expected, but verification that the correct file and table are

being used is desired. If the import file or the target table is specified

incorrectly, the import utility will generate a warning for each row that it

attempts to import, which will cause the import to fail. If n is zero, or this

option is not specified, the import operation will continue regardless of the

number of warnings issued.

XML FROM xml-path

Specifies one or more paths that contain the XML files.

XMLPARSE

Specifies how XML documents are parsed. If this option is not specified,

the parsing behavior for XML documents will be determined by the value

of the CURRENT XMLPARSE OPTION special register.

STRIP WHITESPACE

Specifies to remove whitespace when the XML document is parsed.

PRESERVE WHITESPACE

Specifies not to remove whitespace when the XML document is

parsed.

XMLVALIDATE

Specifies that XML documents are validated against a schema, when

applicable.

USING XDS

XML documents are validated against the XML schema identified

by the XML Data Specifier (XDS) in the main data file. By default,

if the XMLVALIDATE option is invoked with the USING XDS

clause, the schema used to perform validation will be determined

by the SCH attribute of the XDS. If an SCH attribute is not present

in the XDS, no schema validation will occur unless a default

schema is specified by the DEFAULT clause.

 The DEFAULT, IGNORE, and MAP clauses can be used to modify

the schema determination behavior. These three optional clauses

apply directly to the specifications of the XDS, and not to each

other. For example, if a schema is selected because it is specified by

the DEFAULT clause, it will not be ignored if also specified by the

IGNORE clause. Similarly, if a schema is selected because it is

specified as the first part of a pair in the MAP clause, it will not be

re-mapped if also specified in the second part of another MAP

clause pair.

72 Data Movement Utilities Guide and Reference

USING SCHEMA schema-sqlid

XML documents are validated against the XML schema with the

specified SQL identifier. In this case, the SCH attribute of the XML

Data Specifier (XDS) will be ignored for all XML columns.

USING SCHEMALOCATION HINTS

XML documents are validated against the schemas identified by

XML schema location hints in the source XML documents. If a

schemaLocation attribute is not found in the XML document, no

validation will occur. When the USING SCHEMALOCATION

HINTS clause is specified, the SCH attribute of the XML Data

Specifier (XDS) will be ignored for all XML columns.

See examples of the XMLVALIDATE option below.

Usage notes

Be sure to complete all table operations and release all locks before starting an

import operation. This can be done by issuing a COMMIT after closing all cursors

opened WITH HOLD, or by issuing a ROLLBACK.

The import utility adds rows to the target table using the SQL INSERT statement.

The utility issues one INSERT statement for each row of data in the input file. If an

INSERT statement fails, one of two actions result:

v If it is likely that subsequent INSERT statements can be successful, a warning

message is written to the message file, and processing continues.

v If it is likely that subsequent INSERT statements will fail, and there is potential

for database damage, an error message is written to the message file, and

processing halts.

The utility performs an automatic COMMIT after the old rows are deleted during a

REPLACE or a REPLACE_CREATE operation. Therefore, if the system fails, or the

application interrupts the database manager after the table object is truncated, all

of the old data is lost. Ensure that the old data is no longer needed before using

these options.

If the log becomes full during a CREATE, REPLACE, or REPLACE_CREATE

operation, the utility performs an automatic COMMIT on inserted records. If the

system fails, or the application interrupts the database manager after an automatic

COMMIT, a table with partial data remains in the database. Use the REPLACE or

the REPLACE_CREATE option to rerun the whole import operation, or use

INSERT with the RESTARTCOUNT parameter set to the number of rows

successfully imported.

By default, automatic COMMITs are not performed for the INSERT or the

INSERT_UPDATE option. They are, however, performed if the COMMITCOUNT

parameter is not zero. If automatic COMMITs are not performed, a full log results

in a ROLLBACK.

Offline import does not perform automatic COMMITs if any of the following

conditions is true:

v the target is a view, not a table

v compound inserts are used

v buffered inserts are used

Chapter 3. Import utility 73

By default, online import performs automatic COMMITs to free both the active log

space and the lock list. Automatic COMMITs are not performed only if a

COMMITCOUNT value of zero is specified.

Whenever the import utility performs a COMMIT, two messages are written to the

message file: one indicates the number of records to be committed, and the other is

written after a successful COMMIT. When restarting the import operation after a

failure, specify the number of records to skip, as determined from the last

successful COMMIT.

The import utility accepts input data with minor incompatibility problems (for

example, character data can be imported using padding or truncation, and numeric

data can be imported with a different numeric data type), but data with major

incompatibility problems is not accepted.

You cannot REPLACE or REPLACE_CREATE an object table if it has any

dependents other than itself, or an object view if its base table has any dependents

(including itself). To replace such a table or a view, do the following:

1. Drop all foreign keys in which the table is a parent.

2. Run the import utility.

3. Alter the table to recreate the foreign keys.

If an error occurs while recreating the foreign keys, modify the data to maintain

referential integrity.

Referential constraints and foreign key definitions are not preserved when

recreating tables from PC/IXF files. (Primary key definitions are preserved if the

data was previously exported using SELECT *.)

Importing to a remote database requires enough disk space on the server for a

copy of the input data file, the output message file, and potential growth in the

size of the database.

If an import operation is run against a remote database, and the output message

file is very long (more than 60 KB), the message file returned to the user on the

client might be missing messages from the middle of the import operation. The

first 30 KB of message information and the last 30 KB of message information are

always retained.

Importing PC/IXF files to a remote database is much faster if the PC/IXF file is on

a hard drive rather than on diskettes.

The database table or hierarchy must exist before data in the ASC, DEL, or WSF

file formats can be imported; however, if the table does not already exist, IMPORT

CREATE or IMPORT REPLACE_CREATE creates the table when it imports data

from a PC/IXF file. For typed tables, IMPORT CREATE can create the type

hierarchy and the table hierarchy as well.

PC/IXF import should be used to move data (including hierarchical data) between

databases. If character data containing row separators is exported to a delimited

ASCII (DEL) file and processed by a text transfer program, fields containing the

row separators will shrink or expand. The file copying step is not necessary if the

source and the target databases are both accessible from the same client.

74 Data Movement Utilities Guide and Reference

The data in ASC and DEL files is assumed to be in the code page of the client

application performing the import. PC/IXF files, which allow for different code

pages, are recommended when importing data in different code pages. If the

PC/IXF file and the import utility are in the same code page, processing occurs as

for a regular application. If the two differ, and the FORCEIN option is specified,

the import utility assumes that data in the PC/IXF file has the same code page as

the application performing the import. This occurs even if there is a conversion

table for the two code pages. If the two differ, the FORCEIN option is not

specified, and there is a conversion table, all data in the PC/IXF file will be

converted from the file code page to the application code page. If the two differ,

the FORCEIN option is not specified, and there is no conversion table, the import

operation will fail. This applies only to PC/IXF files on DB2 clients on the AIX

operating system.

For table objects on an 8 KB page that are close to the limit of 1012 columns,

import of PC/IXF data files might cause DB2 to return an error, because the

maximum size of an SQL statement was exceeded. This situation can occur only if

the columns are of type CHAR, VARCHAR, or CLOB. The restriction does not

apply to import of DEL or ASC files. If PC/IXF files are being used to create a

new table, an alternative is use db2look to dump the DDL statement that created

the table, and then to issue that statement through the CLP.

DB2 Connect can be used to import data to DRDA servers such as DB2 for

OS/390, DB2 for VM and VSE, and DB2 for OS/400. Only PC/IXF import

(INSERT option) is supported. The RESTARTCOUNT parameter, but not the

COMMITCOUNT parameter, is also supported.

When using the CREATE option with typed tables, create every sub-table defined

in the PC/IXF file; sub-table definitions cannot be altered. When using options

other than CREATE with typed tables, the traversal order list enables one to

specify the traverse order; therefore, the traversal order list must match the one

used during the export operation. For the PC/IXF file format, one need only

specify the target sub-table name, and use the traverse order stored in the file.

The import utility can be used to recover a table previously exported to a PC/IXF

file. The table returns to the state it was in when exported.

Data cannot be imported to a system table, a created temporary table, a declared

temporary table, or a summary table.

Views cannot be created through the import utility.

Importing a multiple-part PC/IXF file whose individual parts are copied from a

Windows system to an AIX system is supported. Only the name of the first file

must be specified in the IMPORT command. For example, IMPORT FROM data.ixf

OF IXF INSERT INTO TABLE1. The file data.002, etc should be available in the same

directory as data.ixf.

On the Windows operating system:

v Importing logically split PC/IXF files is not supported.

v Importing bad format PC/IXF or WSF files is not supported.

Security labels in their internal format might contain newline characters. If you

import the file using the DEL file format, those newline characters can be mistaken

for delimiters. If you have this problem use the older default priority for delimiters

Chapter 3. Import utility 75

by specifying the delprioritychar file type modifier in the IMPORT command.

Federated considerations

When using the IMPORT command and the INSERT, UPDATE, or

INSERT_UPDATE command parameters, you must ensure that you have

CONTROL privilege on the participating nickname. You must ensure that the

nickname you want to use when doing an import operation already exists. There

are also several restrictions you should be aware of as shown in the IMPORT

command parameters section.

Some data sources, such as ODBC, do not support importing into nicknames.

File type modifiers for the import utility

 Table 14. Valid file type modifiers for the import utility: All file formats

Modifier Description

compound=x x is a number between 1 and 100 inclusive. Uses nonatomic compound SQL to

insert the data, and x statements will be attempted each time.

If this modifier is specified, and the transaction log is not sufficiently large, the

import operation will fail. The transaction log must be large enough to

accommodate either the number of rows specified by COMMITCOUNT, or the

number of rows in the data file if COMMITCOUNT is not specified. It is

therefore recommended that the COMMITCOUNT option be specified to avoid

transaction log overflow.

This modifier is incompatible with INSERT_UPDATE mode, hierarchical tables,

and the following modifiers: usedefaults, identitymissing, identityignore,

generatedmissing, and generatedignore.

generatedignore This modifier informs the import utility that data for all generated columns is

present in the data file but should be ignored. This results in all values for the

generated columns being generated by the utility. This modifier cannot be used

with the generatedmissing modifier.

generatedmissing If this modifier is specified, the utility assumes that the input data file contains no

data for the generated columns (not even NULLs), and will therefore generate a

value for each row. This modifier cannot be used with the generatedignore

modifier.

identityignore This modifier informs the import utility that data for the identity column is

present in the data file but should be ignored. This results in all identity values

being generated by the utility. The behavior will be the same for both

GENERATED ALWAYS and GENERATED BY DEFAULT identity columns. This

means that for GENERATED ALWAYS columns, no rows will be rejected. This

modifier cannot be used with the identitymissing modifier.

identitymissing If this modifier is specified, the utility assumes that the input data file contains no

data for the identity column (not even NULLs), and will therefore generate a

value for each row. The behavior will be the same for both GENERATED

ALWAYS and GENERATED BY DEFAULT identity columns. This modifier cannot

be used with the identityignore modifier.

76 Data Movement Utilities Guide and Reference

Table 14. Valid file type modifiers for the import utility: All file formats (continued)

Modifier Description

lobsinfile lob-path specifies the path to the files containing LOB data.

Each path contains at least one file that contains at least one LOB pointed to by a

Lob Location Specifier (LLS) in the data file. The LLS is a string representation of

the location of a LOB in a file stored in the LOB file path. The format of an LLS is

filename.ext.nnn.mmm/, where filename.ext is the name of the file that contains the

LOB, nnn is the offset in bytes of the LOB within the file, and mmm is the length

of the LOB in bytes. For example, if the string db2exp.001.123.456/ is stored in

the data file, the LOB is located at offset 123 in the file db2exp.001, and is 456

bytes long.

The LOBS FROM clause specifies where the LOB files are located when the

“lobsinfile” modifier is used. The LOBS FROM clause will implicitly activate the

LOBSINFILE behavior. The LOBS FROM clause conveys to the IMPORT utility

the list of paths to search for the LOB files while importing the data.

To indicate a null LOB, enter the size as -1. If the size is specified as 0, it is

treated as a 0 length LOB. For null LOBS with length of -1, the offset and the file

name are ignored. For example, the LLS of a null LOB might be db2exp.001.7.-1/.

no_type_id Valid only when importing into a single sub-table. Typical usage is to export data

from a regular table, and then to invoke an import operation (using this modifier)

to convert the data into a single sub-table.

nodefaults If a source column for a target table column is not explicitly specified, and the

table column is not nullable, default values are not loaded. Without this option, if

a source column for one of the target table columns is not explicitly specified, one

of the following occurs:

v If a default value can be specified for a column, the default value is loaded

v If the column is nullable, and a default value cannot be specified for that

column, a NULL is loaded

v If the column is not nullable, and a default value cannot be specified, an error

is returned, and the utility stops processing.

norowwarnings Suppresses all warnings about rejected rows.

rowchangetimestampignore This modifier informs the import utility that data for the row change timestamp

column is present in the data file but should be ignored. This results in all ROW

CHANGE TIMESTAMP being generated by the utility. The behavior will be the

same for both GENERATED ALWAYS and GENERATED BY DEFAULT columns.

This means that for GENERATED ALWAYS columns, no rows will be rejected.

This modifier cannot be used with the rowchangetimestampmissing modifier.

rowchangetimestampmissing If this modifier is specified, the utility assumes that the input data file contains no

data for the row change timestamp column (not even NULLs), and will therefore

generate a value for each row. The behavior will be the same for both

GENERATED ALWAYS and GENERATED BY DEFAULT columns. This modifier

cannot be used with the rowchangetimestampignore modifier.

seclabelchar Indicates that security labels in the input source file are in the string format for

security label values rather than in the default encoded numeric format. IMPORT

converts each security label into the internal format as it is loaded. If a string is

not in the proper format the row is not loaded and a warning (SQLSTATE 01H53)

is returned. If the string does not represent a valid security label that is part of

the security policy protecting the table then the row is not loaded and a warning

(SQLSTATE 01H53, SQLCODE SQL3243W)) is returned.

This modifier cannot be specified if the seclabelname modifier is specified,

otherwise the import fails and an error (SQLCODE SQL3525N) is returned.

Chapter 3. Import utility 77

Table 14. Valid file type modifiers for the import utility: All file formats (continued)

Modifier Description

seclabelname Indicates that security labels in the input source file are indicated by their name

rather than the default encoded numeric format. IMPORT will convert the name

to the appropriate security label if it exists. If no security label exists with the

indicated name for the security policy protecting the table the row is not loaded

and a warning (SQLSTATE 01H53, SQLCODE SQL3244W) is returned.

This modifier cannot be specified if the seclabelchar modifier is specified,

otherwise the import fails and an error (SQLCODE SQL3525N) is returned.

Note: If the file type is ASC, any spaces following the name of the security label

will be interpreted as being part of the name. To avoid this use the striptblanks

file type modifier to make sure the spaces are removed.

usedefaults If a source column for a target table column has been specified, but it contains no

data for one or more row instances, default values are loaded. Examples of

missing data are:

v For DEL files: two adjacent column delimiters (″,,″) or two adjacent column

delimiters separated by an arbitrary number of spaces (″, ,″) are specified for a

column value.

v For DEL/ASC/WSF files: A row that does not have enough columns, or is not

long enough for the original specification.

Note: For ASC files, NULL column values are not considered explicitly

missing, and a default will not be substituted for NULL column values. NULL

column values are represented by all space characters for numeric, date, time,

and /timestamp columns, or by using the NULL INDICATOR for a column of

any type to indicate the column is NULL.

Without this option, if a source column contains no data for a row instance, one

of the following occurs:

v For DEL/ASC/WSF files: If the column is nullable, a NULL is loaded. If the

column is not nullable, the utility rejects the row.

 Table 15. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL)

Modifier Description

codepage=x x is an ASCII character string. The value is interpreted as the code page of the

data in the input data set. Converts character data from this code page to the

application code page during the import operation.

The following rules apply:

v For pure DBCS (graphic) mixed DBCS, and EUC, delimiters are restricted to the

range of x00 to x3F, inclusive.

v nullindchar must specify symbols included in the standard ASCII set between

code points x20 and x7F, inclusive. This refers to ASCII symbols and code

points.

Note:

1. The codepage modifier cannot be used with the lobsinfile modifier.

2. If data expansion occurs when the code page is converted from the

application code page to the database code page, the data might be truncated

and loss of data can occur.

78 Data Movement Utilities Guide and Reference

Table 15. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

dateformat=″x″ x is the format of the date in the source file.2 Valid date elements are:

 YYYY - Year (four digits ranging from 0000 - 9999)

 M - Month (one or two digits ranging from 1 - 12)

 MM - Month (two digits ranging from 1 - 12;

 mutually exclusive with M)

 D - Day (one or two digits ranging from 1 - 31)

 DD - Day (two digits ranging from 1 - 31;

 mutually exclusive with D)

 DDD - Day of the year (three digits ranging

 from 001 - 366; mutually exclusive

 with other day or month elements)

A default value of 1 is assigned for each element that is not specified. Some

examples of date formats are:

 "D-M-YYYY"

 "MM.DD.YYYY"

 "YYYYDDD"

implieddecimal The location of an implied decimal point is determined by the column definition;

it is no longer assumed to be at the end of the value. For example, the value

12345 is loaded into a DECIMAL(8,2) column as 123.45, not 12345.00.

timeformat=″x″ x is the format of the time in the source file.2 Valid time elements are:

 H - Hour (one or two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24

 for a 24 hour system)

 HH - Hour (two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24

 for a 24 hour system; mutually exclusive

 with H)

 M - Minute (one or two digits ranging

 from 0 - 59)

 MM - Minute (two digits ranging from 0 - 59;

 mutually exclusive with M)

 S - Second (one or two digits ranging

 from 0 - 59)

 SS - Second (two digits ranging from 0 - 59;

 mutually exclusive with S)

 SSSSS - Second of the day after midnight (5 digits

 ranging from 00000 - 86399; mutually

 exclusive with other time elements)

 TT - Meridian indicator (AM or PM)

A default value of 0 is assigned for each element that is not specified. Some

examples of time formats are:

 "HH:MM:SS"

 "HH.MM TT"

 "SSSSS"

Chapter 3. Import utility 79

Table 15. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

timestampformat=″x″ x is the format of the time stamp in the source file.2 Valid time stamp elements

are:

 YYYY - Year (four digits ranging from 0000 - 9999)

 M - Month (one or two digits ranging from 1 - 12)

 MM - Month (two digits ranging from 01 - 12;

 mutually exclusive with M and MMM)

 MMM - Month (three-letter case-insensitive abbreviation for

 the month name; mutually exclusive with M and MM)

 D - Day (one or two digits ranging from 1 - 31)

 DD - Day (two digits ranging from 1 - 31; mutually exclusive with D)

 DDD - Day of the year (three digits ranging from 001 - 366;

 mutually exclusive with other day or month elements)

 H - Hour (one or two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24 for a 24 hour system)

 HH - Hour (two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24 for a 24 hour system;

 mutually exclusive with H)

 M - Minute (one or two digits ranging from 0 - 59)

 MM - Minute (two digits ranging from 0 - 59;

 mutually exclusive with M, minute)

 S - Second (one or two digits ranging from 0 - 59)

 SS - Second (two digits ranging from 0 - 59;

 mutually exclusive with S)

 SSSSS - Second of the day after midnight (5 digits

 ranging from 00000 - 86399; mutually

 exclusive with other time elements)

 U (1 to 12 times)

 - Fractional seconds(number of occurrences of U represent the

 number of digits with each digit ranging from 0 to 9

 TT - Meridian indicator (AM or PM)

A default value of 1 is assigned for unspecified YYYY, M, MM, D, DD, or DDD

elements. A default value of ’Jan’ is assigned to an unspecified MMM element. A

default value of 0 is assigned for all other unspecified elements. Following is an

example of a time stamp format:

 "YYYY/MM/DD HH:MM:SS.UUUUUU"

The valid values for the MMM element include: ’jan’, ’feb’, ’mar’, ’apr’, ’may’,

’jun’, ’jul’, ’aug’, ’sep’, ’oct’, ’nov’ and ’dec’. These values are case insensitive.

The following example illustrates how to import data containing user defined

date and time formats into a table called schedule:

 db2 import from delfile2 of del

 modified by timestampformat="yyyy.mm.dd hh:mm tt"

 insert into schedule

80 Data Movement Utilities Guide and Reference

Table 15. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

usegraphiccodepage If usegraphiccodepage is given, the assumption is made that data being imported

into graphic or double-byte character large object (DBCLOB) data fields is in the

graphic code page. The rest of the data is assumed to be in the character code

page. The graphic code page is associated with the character code page. IMPORT

determines the character code page through either the codepage modifier, if it is

specified, or through the code page of the application if the codepage modifier is

not specified.

This modifier should be used in conjunction with the delimited data file

generated by drop table recovery only if the table being recovered has graphic

data.

Restrictions

The usegraphiccodepage modifier MUST NOT be specified with DEL files created

by the EXPORT utility, as these files contain data encoded in only one code page.

The usegraphiccodepage modifier is also ignored by the double-byte character

large objects (DBCLOBs) in files.

xmlchar Specifies that XML documents are encoded in the character code page.

This option is useful for processing XML documents that are encoded in the

specified character code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,

the encoding must match the character code page, otherwise the row containing

the document will be rejected. Note that the character codepage is the value

specified by the codepage file type modifier, or the application codepage if it is

not specified. By default, either the documents are encoded in Unicode, or they

contain a declaration tag with an encoding attribute.

xmlgraphic Specifies that XML documents are encoded in the specified graphic code page.

This option is useful for processing XML documents that are encoded in a specific

graphic code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,

the encoding must match the graphic code page, otherwise the row containing

the document will be rejected. Note that the graphic code page is the graphic

component of the value specified by the codepage file type modifier, or the

graphic component of the application code page if it is not specified. By default,

documents are either encoded in Unicode, or they contain a declaration tag with

an encoding attribute.

Note: If the xmlgraphic modifier is specified with the IMPORT command, the

XML document to be imported must be encoded in the UTF-16 code page.

Otherwise, the XML document may be rejected with a parsing error, or it may be

imported into the table with data corruption.

 Table 16. Valid file type modifiers for the import utility: ASC (non-delimited ASCII) file format

Modifier Description

nochecklengths If nochecklengths is specified, an attempt is made to import each row, even if the

source data has a column definition that exceeds the size of the target table

column. Such rows can be successfully imported if code page conversion causes

the source data to shrink; for example, 4-byte EUC data in the source could

shrink to 2-byte DBCS data in the target, and require half the space. This option

is particularly useful if it is known that the source data will fit in all cases despite

mismatched column definitions.

Chapter 3. Import utility 81

Table 16. Valid file type modifiers for the import utility: ASC (non-delimited ASCII) file format (continued)

Modifier Description

nullindchar=x x is a single character. Changes the character denoting a null value to x. The

default value of x is Y.3

This modifier is case sensitive for EBCDIC data files, except when the character is

an English letter. For example, if the null indicator character is specified to be the

letter N, then n is also recognized as a null indicator.

reclen=x x is an integer with a maximum value of 32 767. x characters are read for each

row, and a new-line character is not used to indicate the end of the row.

striptblanks Truncates any trailing blank spaces when loading data into a variable-length field.

If this option is not specified, blank spaces are kept.

In the following example, striptblanks causes the import utility to truncate

trailing blank spaces:

 db2 import from myfile.asc of asc

 modified by striptblanks

 method l (1 10, 12 15) messages msgs.txt

 insert into staff

This option cannot be specified together with striptnulls. These are mutually

exclusive options. This option replaces the obsolete t option, which is supported

for earlier compatibility only.

striptnulls Truncates any trailing NULLs (0x00 characters) when loading data into a

variable-length field. If this option is not specified, NULLs are kept.

This option cannot be specified together with striptblanks. These are mutually

exclusive options. This option replaces the obsolete padwithzero option, which is

supported for earlier compatibility only.

 Table 17. Valid file type modifiers for the import utility: DEL (delimited ASCII) file format

Modifier Description

chardelx x is a single character string delimiter. The default value is a double quotation

mark (″). The specified character is used in place of double quotation marks to

enclose a character string.34 If you want to explicitly specify the double quotation

mark as the character string delimiter, it should be specified as follows:

 modified by chardel""

The single quotation mark (’) can also be specified as a character string delimiter.

In the following example, chardel’’ causes the import utility to interpret any

single quotation mark (’) it encounters as a character string delimiter:

 db2 "import from myfile.del of del

 modified by chardel’’

 method p (1, 4) insert into staff (id, years)"

coldelx x is a single character column delimiter. The default value is a comma (,). The

specified character is used in place of a comma to signal the end of a column.34

In the following example, coldel; causes the import utility to interpret any

semicolon (;) it encounters as a column delimiter:

 db2 import from myfile.del of del

 modified by coldel;

 messages msgs.txt insert into staff

decplusblank Plus sign character. Causes positive decimal values to be prefixed with a blank

space instead of a plus sign (+). The default action is to prefix positive decimal

values with a plus sign.

82 Data Movement Utilities Guide and Reference

Table 17. Valid file type modifiers for the import utility: DEL (delimited ASCII) file format (continued)

Modifier Description

decptx x is a single character substitute for the period as a decimal point character. The

default value is a period (.). The specified character is used in place of a period as

a decimal point character.34

In the following example, decpt; causes the import utility to interpret any

semicolon (;) it encounters as a decimal point:

 db2 "import from myfile.del of del

 modified by chardel’’

 decpt; messages msgs.txt insert into staff"

delprioritychar The current default priority for delimiters is: record delimiter, character delimiter,

column delimiter. This modifier protects existing applications that depend on the

older priority by reverting the delimiter priorities to: character delimiter, record

delimiter, column delimiter. Syntax:

 db2 import ... modified by delprioritychar ...

For example, given the following DEL data file:

 "Smith, Joshua",4000,34.98<row delimiter>

 "Vincent,<row delimiter>, is a manager", ...

 ... 4005,44.37<row delimiter>

With the delprioritychar modifier specified, there will be only two rows in this

data file. The second <row delimiter> will be interpreted as part of the first data

column of the second row, while the first and the third <row delimiter> are

interpreted as actual record delimiters. If this modifier is not specified, there will

be three rows in this data file, each delimited by a <row delimiter>.

keepblanks Preserves the leading and trailing blanks in each field of type CHAR, VARCHAR,

LONG VARCHAR, or CLOB. Without this option, all leading and trailing blanks

that are not inside character delimiters are removed, and a NULL is inserted into

the table for all blank fields.

nochardel The import utility will assume all bytes found between the column delimiters to

be part of the column’s data. Character delimiters will be parsed as part of

column data. This option should not be specified if the data was exported using

DB2 (unless nochardel was specified at export time). It is provided to support

vendor data files that do not have character delimiters. Improper usage might

result in data loss or corruption.

This option cannot be specified with chardelx, delprioritychar or nodoubledel.

These are mutually exclusive options.

nodoubledel Suppresses recognition of double character delimiters.

 Table 18. Valid file type modifiers for the import utility: IXF file format

Modifier Description

forcein Directs the utility to accept data despite code page mismatches, and to suppress

translation between code pages.

Fixed length target fields are checked to verify that they are large enough for the

data. If nochecklengths is specified, no checking is done, and an attempt is made

to import each row.

indexixf Directs the utility to drop all indexes currently defined on the existing table, and

to create new ones from the index definitions in the PC/IXF file. This option can

only be used when the contents of a table are being replaced. It cannot be used

with a view, or when a insert-column is specified.

Chapter 3. Import utility 83

Table 18. Valid file type modifiers for the import utility: IXF file format (continued)

Modifier Description

indexschema=schema Uses the specified schema for the index name during index creation. If schema is

not specified (but the keyword indexschema is specified), uses the connection user

ID. If the keyword is not specified, uses the schema in the IXF file.

nochecklengths If nochecklengths is specified, an attempt is made to import each row, even if the

source data has a column definition that exceeds the size of the target table

column. Such rows can be successfully imported if code page conversion causes

the source data to shrink; for example, 4-byte EUC data in the source could

shrink to 2-byte DBCS data in the target, and require half the space. This option

is particularly useful if it is known that the source data will fit in all cases despite

mismatched column definitions.

forcecreate Specifies that the table should be created with possible missing or limited

information after returning SQL3311N during an import operation.

 Table 19. IMPORT behavior when using codepage and usegraphiccodepage

codepage=N usegraphiccodepage IMPORT behavior

Absent Absent All data in the file is assumed to be in the application

code page.

Present Absent All data in the file is assumed to be in code page N.

Warning: Graphic data will be corrupted when

imported into the database if N is a single-byte code

page.

Absent Present Character data in the file is assumed to be in the

application code page. Graphic data is assumed to be in

the code page of the application graphic data.

If the application code page is single-byte, then all data

is assumed to be in the application code page.

Warning: If the application code page is single-byte,

graphic data will be corrupted when imported into the

database, even if the database contains graphic columns.

Present Present Character data is assumed to be in code page N. Graphic

data is assumed to be in the graphic code page of N.

If N is a single-byte or double-byte code page, then all

data is assumed to be in code page N.

Warning: Graphic data will be corrupted when

imported into the database if N is a single-byte code

page.

Note:

 1. The import utility does not issue a warning if an attempt is made to use

unsupported file types with the MODIFIED BY option. If this is attempted,

the import operation fails, and an error code is returned.

 2. Double quotation marks around the date format string are mandatory. Field

separators cannot contain any of the following: a-z, A-Z, and 0-9. The field

separator should not be the same as the character delimiter or field delimiter

in the DEL file format. A field separator is optional if the start and end

84 Data Movement Utilities Guide and Reference

positions of an element are unambiguous. Ambiguity can exist if (depending

on the modifier) elements such as D, H, M, or S are used, because of the

variable length of the entries.

For time stamp formats, care must be taken to avoid ambiguity between the

month and the minute descriptors, since they both use the letter M. A month

field must be adjacent to other date fields. A minute field must be adjacent to

other time fields. Following are some ambiguous time stamp formats:

 "M" (could be a month, or a minute)

 "M:M" (Which is which?)

 "M:YYYY:M" (Both are interpreted as month.)

 "S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation

will fail.

Following are some unambiguous time stamp formats:

 "M:YYYY" (Month)

 "S:M" (Minute)

 "M:YYYY:S:M" (Month....Minute)

 "M:H:YYYY:M:D" (Minute....Month)

Some characters, such as double quotation marks and back slashes, must be

preceded by an escape character (for example, \).

 3. Character values provided for the chardel, coldel, or decpt file type modifiers

must be specified in the code page of the source data.

The character code point (instead of the character symbol), can be specified

using the syntax xJJ or 0xJJ, where JJ is the hexadecimal representation of the

code point. For example, to specify the # character as a column delimiter, use

one of the following:

 ... modified by coldel# ...

 ... modified by coldel0x23 ...

 ... modified by coldelX23 ...

 4. Delimiter considerations for moving data lists restrictions that apply to the

characters that can be used as delimiter overrides.

 5. The following file type modifiers are not allowed when importing into a

nickname:

v indexixf

v indexschema

v dldelfiletype

v nodefaults

v usedefaults

v no_type_idfiletype

v generatedignore

v generatedmissing

v identityignore

v identitymissing

v lobsinfile

 6. The WSF file format is not supported for XML columns. Support for this file

format is also deprecated and might be removed in a future release. It is

recommended that you start using a supported file format instead of WSF

files before support is removed

 7. The CREATE mode is not supported for XML columns.

Chapter 3. Import utility 85

8. All XML data must reside in XML files that are separate from the main data

file. An XML Data Specifier (XDS) (or a NULL value) must exist for each XML

column in the main data file.

 9. XML documents are assumed to be in Unicode format or to contain a

declaration tag that includes an encoding attribute, unless the XMLCHAR or

XMLGRAPHIC file type modifier is specified.

10. Rows containing documents that are not well-formed will be rejected.

11. If the XMLVALIDATE option is specified, documents that successfully

validate against their matching schema will be annotated with the schema

information as they are inserted. Rows containing documents that fail to

validate against their matching schema will be rejected. To successfully

perform the validation, the privileges held by the user invoking the import

must include at least one of the following:

v DBADM authority

v USAGE privilege on the XML schema to be used in the validation
12. When importing into a table containing an implicitly hidden row change

timestamp column, the implicitly hidden property of the column is not

honoured. Therefore, the rowchangetimestampmissing file type modifier must

be specified in the import command if data for the column is not present in

the data to be imported and there is no explicit column list present.

IMPORT command using the ADMIN_CMD procedure

Inserts data from an external file with a supported file format into a table,

hierarchy, view or nickname. LOAD is a faster alternative, but the load utility does

not support loading data at the hierarchy level.

Quick link to “File type modifiers for the import utility” on page 99.

Authorization

v IMPORT using the INSERT option requires one of the following:

– dataaccess authority

– CONTROL privilege on each participating table, view, or nickname

– INSERT and SELECT privilege on each participating table or view
v IMPORT to an existing table using the INSERT_UPDATE option, requires one of

the following:

– dataaccess authority

– CONTROL privilege on each participating table, view, or nickname

– INSERT, SELECT, UPDATE and DELETE privilege on each participating table

or view
v IMPORT to an existing table using the REPLACE or REPLACE_CREATE option,

requires one of the following:

– dataaccess authority

– CONTROL privilege on the table or view

– INSERT, SELECT, and DELETE privilege on the table or view
v IMPORT to a new table using the CREATE or REPLACE_CREATE option,

requires one of the following:

– dbadm authority

– CREATETAB authority on the database and USE privilege on the table space,

as well as one of:

86 Data Movement Utilities Guide and Reference

- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist

- CREATEIN privilege on the schema, if the schema name of the table refers

to an existing schema
v IMPORT to a hierarchy that does not exist using the CREATE, or the

REPLACE_CREATE option, requires one of the following:

– dbadm authority

– CREATETAB authority on the database and USE privilege on the table space

and one of:

- IMPLICIT_SCHEMA authority on the database, if the schema name of the

table does not exist

- CREATEIN privilege on the schema, if the schema of the table exists

- CONTROL privilege on every sub-table in the hierarchy, if the

REPLACE_CREATE option on the entire hierarchy is used
v IMPORT to an existing hierarchy using the REPLACE option requires one of the

following:

– dataaccess authority

– CONTROL privilege on every sub-table in the hierarchy
v To import data into a table that has protected columns, the session authorization

ID must have LBAC credentials that allow write access to all protected columns

in the table. Otherwise the import fails and an error (SQLSTATE 42512) is

returned.

v To import data into a table that has protected rows, the session authorization ID

must hold LBAC credentials that meet these criteria:

– It is part of the security policy protecting the table

– It was granted to the session authorization ID for write access

The label on the row to insert, the user’s LBAC credentials, the security policy

definition, and the LBAC rules determine the label on the row.

v If the REPLACE or REPLACE_CREATE option is specified, the session

authorization ID must have the authority to drop the table.

v To import data into a nickname, the session authorization ID must have the

privilege to access and use a specified data source in pass-through mode.

Required connection

Command syntax

�� IMPORT FROM filename OF filetype

�

,

LOBS FROM

lob-path

�

,

XML FROM

xml-path

 �

�

�

MODIFIED BY

filetype-mod

 �

Chapter 3. Import utility 87

�

�

�

�

�

,

METHOD

L

(

column-start

column-end

)

,

NULL INDICATORS

(

null-indicator-list

)

,

N

(

column-name

)

,

P

(

column-position

)

 �

�
XMLPARSE

STRIP

WHITESPACE

PRESERVE

 �

�

XMLVALIDATE USING

XDS

Ignore

and

Map

parameters

DEFAULT

schema-sqlid

SCHEMA

schema-sqlid

SCHEMALOCATION HINTS

 ALLOW NO ACCESS

ALLOW WRITE ACCESS

�

�
COMMITCOUNT

n

AUTOMATIC

RESTARTCOUNT

n

SKIPCOUNT

ROWCOUNT

n

WARNINGCOUNT

n

NOTIMEOUT
 �

�

�

�

 INSERT INTO table-name

INSERT_UPDATE

,

REPLACE

REPLACE_CREATE

(

insert-column

)

hierarchy

description

CREATE

INTO

table-name

tblspace-specs

,

(

insert-column

)

hierarchy

description

AS ROOT TABLE

UNDER

sub-table-name

 ��

Ignore and Map parameters:

�

,

IGNORE

(

schema-sqlid

)

 �

�

�

,

MAP

(

(

schema-sqlid

,

schema-sqlid

)

)

hierarchy description:

 ALL TABLES

sub-table-list

IN

HIERARCHY

STARTING

sub-table-name

traversal-order-list

sub-table-list:

�

�

 ,

(

sub-table-name

)

,

(

insert-column

)

88 Data Movement Utilities Guide and Reference

traversal-order-list:

�

 ,

(

sub-table-name

)

tblspace-specs:

IN

tablespace-name

INDEX IN

tablespace-name

LONG IN

tablespace-name

Command parameters

ALL TABLES

An implicit keyword for hierarchy only. When importing a hierarchy, the

default is to import all tables specified in the traversal order.

ALLOW NO ACCESS

Runs import in the offline mode. An exclusive (X) lock on the target table

is acquired before any rows are inserted. This prevents concurrent

applications from accessing table data. This is the default import behavior.

ALLOW WRITE ACCESS

Runs import in the online mode. An intent exclusive (IX) lock on the target

table is acquired when the first row is inserted. This allows concurrent

readers and writers to access table data. Online mode is not compatible

with the REPLACE, CREATE, or REPLACE_CREATE import options.

Online mode is not supported in conjunction with buffered inserts. The

import operation will periodically commit inserted data to prevent lock

escalation to a table lock and to avoid running out of active log space.

These commits will be performed even if the COMMITCOUNT option

was not used. During each commit, import will lose its IX table lock, and

will attempt to reacquire it after the commit. This parameter is required

when you import to a nickname and COMMITCOUNT must be specified

with a valid number (AUTOMATIC is not considered a valid option).

AS ROOT TABLE

Creates one or more sub-tables as a stand-alone table hierarchy.

COMMITCOUNT n | AUTOMATIC

Performs a COMMIT after every n records are imported. When a number n

is specified, import performs a COMMIT after every n records are

imported. When compound inserts are used, a user-specified commit

frequency of n is rounded up to the first integer multiple of the compound

count value. When AUTOMATIC is specified, import internally determines

when a commit needs to be performed. The utility will commit for either

one of two reasons:

v to avoid running out of active log space

v to avoid lock escalation from row level to table level

If the ALLOW WRITE ACCESS option is specified, and the

COMMITCOUNT option is not specified, the import utility will perform

commits as if COMMITCOUNT AUTOMATIC had been specified.

 The ability of the import operation to avoid running out of active log space

is affected by the DB2 registry variable

DB2_FORCE_APP_ON_MAX_LOG:

Chapter 3. Import utility 89

v If DB2_FORCE_APP_ON_MAX_LOG is set to FALSE and the

COMMITCOUNT AUTOMATIC command option is specified, the

import utility will be able to automatically avoid running out of active

log space.

v If DB2_FORCE_APP_ON_MAX_LOG is set to FALSE and the

COMMITCOUNT n command option is specified, the import utility will

attempt to resolve the log full condition if it encounters an SQL0964C

(Transaction Log Full) while inserting or updating a record. It will

perform an unconditional commit and then will reattempt to insert or

update the record. If this does not help resolve the issue (which would

be the case when the log full is attributed to other activity on the

database), then the IMPORT command will fail as expected, however the

number of rows committed may not be a multiple of the

COMMITCOUNT n value. To avoid processing the rows that were

already committed when you retry the import operation, use the

RESTARTCOUNT or SKIPCOUNT command parameters.

v If DB2_FORCE_APP_ON_MAX_LOG is set to TRUE (which is the

default), the import operation will fail if it encounters an SQL0964C

while inserting or updating a record. This can occur irrespective of

whether you specify COMMITCOUNT AUTOMATIC or

COMMITCOUNT n.

The application is forced off the database and the current unit of work is

rolled back. To avoid processing the rows that were already committed

when you retry the import operation, use the RESTARTCOUNT or

SKIPCOUNT command parameters.

CREATE

Note: The CREATE parameter is deprecated and may be removed in a

future release. For additional details, see “IMPORT command options

CREATE and REPLACE_CREATE are deprecated”.

Creates the table definition and row contents in the code page of the

database. If the data was exported from a DB2 table, sub-table, or

hierarchy, indexes are created. If this option operates on a hierarchy, and

data was exported from DB2, a type hierarchy will also be created. This

option can only be used with IXF files.

This parameter is not valid when you import to a nickname.

Note: If the data was exported from an MVS host database, and it contains

LONGVAR fields whose lengths, calculated on the page size, are more

than 254, CREATE might fail because the rows are too long. See “Imported

table re-creation” for a list of restrictions. In this case, the table should be

created manually, and IMPORT with INSERT should be invoked, or,

alternatively, the LOAD command should be used.

DEFAULT schema-sqlid

This option can only be used when the USING XDS parameter is

specified. The schema specified through the DEFAULT clause identifies a

schema to use for validation when the XML Data Specifier (XDS) of an

imported XML document does not contain an SCH attribute identifying an

XML Schema.

 The DEFAULT clause takes precedence over the IGNORE and MAP

clauses. If an XDS satisfies the DEFAULT clause, the IGNORE and MAP

specifications will be ignored.

90 Data Movement Utilities Guide and Reference

FROM filename

HIERARCHY

Specifies that hierarchical data is to be imported.

IGNORE schema-sqlid

This option can only be used when the USING XDS parameter is

specified. The IGNORE clause specifies a list of one or more schemas to

ignore if they are identified by an SCH attribute. If an SCH attribute exists

in the XML Data Specifier for an imported XML document, and the schema

identified by the SCH attribute is included in the list of schemas to ignore,

then no schema validation will occur for the imported XML document.

 If a schema is specified in the IGNORE clause, it cannot also be present in

the left side of a schema pair in the MAP clause.

The IGNORE clause applies only to the XDS. A schema that is mapped by

the MAP clause will not be subsequently ignored if specified by the

IGNORE clause.

IN tablespace-name

Identifies the table space in which the table will be created. The table space

must exist, and must be a REGULAR table space. If no other table space is

specified, all table parts are stored in this table space. If this clause is not

specified, the table is created in a table space created by the authorization

ID. If none is found, the table is placed into the default table space

USERSPACE1. If USERSPACE1 has been dropped, table creation fails.

INDEX IN tablespace-name

Identifies the table space in which any indexes on the table will be created.

This option is allowed only when the primary table space specified in the

IN clause is a DMS table space. The specified table space must exist, and

must be a REGULAR or LARGE DMS table space.

Note: Specifying which table space will contain an index can only be done

when the table is created.

insert-column

Specifies the name of a column in the table or the view into which data is

to be inserted.

INSERT

Adds the imported data to the table without changing the existing table

data.

INSERT_UPDATE

Adds rows of imported data to the target table, or updates existing rows

(of the target table) with matching primary keys.

INTO table-name

Specifies the database table into which the data is to be imported. This

table cannot be a system table, a created temporary table, a declared

temporary table, or a summary table.

 One can use an alias for INSERT, INSERT_UPDATE, or REPLACE, except

in the case of an earlier server, when the fully qualified or the unqualified

table name should be used. A qualified table name is in the form:

schema.tablename. The schema is the user name under which the table was

created.

LOBS FROM lob-path

The names of the LOB data files are stored in the main data file (ASC,

Chapter 3. Import utility 91

DEL, or IXF), in the column that will be loaded into the LOB column. The

maximum number of paths that can be specified is 999. This will implicitly

activate the LOBSINFILE behavior.

 This parameter is not valid when you import to a nickname.

LONG IN tablespace-name

Identifies the table space in which the values of any long columns (LONG

VARCHAR, LONG VARGRAPHIC, LOB data types, or distinct types with

any of these as source types) will be stored. This option is allowed only if

the primary table space specified in the IN clause is a DMS table space.

The table space must exist, and must be a LARGE DMS table space.

MAP schema-sqlid

This option can only be used when the USING XDS parameter is

specified. Use the MAP clause to specify alternate schemas to use in place

of those specified by the SCH attribute of an XML Data Specifier (XDS) for

each imported XML document. The MAP clause specifies a list of one or

more schema pairs, where each pair represents a mapping of one schema

to another. The first schema in the pair represents a schema that is referred

to by an SCH attribute in an XDS. The second schema in the pair

represents the schema that should be used to perform schema validation.

 If a schema is present in the left side of a schema pair in the MAP clause,

it cannot also be specified in the IGNORE clause.

Once a schema pair mapping is applied, the result is final. The mapping

operation is non-transitive, and therefore the schema chosen will not be

subsequently applied to another schema pair mapping.

A schema cannot be mapped more than once, meaning that it cannot

appear on the left side of more than one pair.

METHOD

L Specifies the start and end column numbers from which to import

data. A column number is a byte offset from the beginning of a

row of data. It is numbered starting from 1.

Note: This method can only be used with ASC files, and is the

only valid option for that file type.

N Specifies the names of the columns in the data file to be imported.

The case of these column names must match the case of the

corresponding names in the system catalogs. Each table column

that is not nullable should have a corresponding entry in the

METHOD N list. For example, given data fields F1, F2, F3, F4, F5,

and F6, and table columns C1 INT, C2 INT NOT NULL, C3 INT

NOT NULL, and C4 INT, method N (F2, F1, F4, F3) is a valid

request, while method N (F2, F1) is not valid.

Note: This method can only be used with IXF files.

P Specifies the field numbers of the input data fields to be imported.

Note: This method can only be used with IXF or DEL files, and is

the only valid option for the DEL file type.

MODIFIED BY filetype-mod

Specifies file type modifier options. See “File type modifiers for the import

utility” on page 99.

92 Data Movement Utilities Guide and Reference

NOTIMEOUT

Specifies that the import utility will not time out while waiting for locks.

This option supersedes the locktimeout database configuration parameter.

Other applications are not affected.

NULL INDICATORS null-indicator-list

This option can only be used when the METHOD L parameter is specified.

That is, the input file is an ASC file. The null indicator list is a

comma-separated list of positive integers specifying the column number of

each null indicator field. The column number is the byte offset of the null

indicator field from the beginning of a row of data. There must be one

entry in the null indicator list for each data field defined in the METHOD

L parameter. A column number of zero indicates that the corresponding

data field always contains data.

 A value of Y in the NULL indicator column specifies that the column data

is NULL. Any character other than Y in the NULL indicator column

specifies that the column data is not NULL, and that column data specified

by the METHOD L option will be imported.

The NULL indicator character can be changed using the MODIFIED BY

option, with the nullindchar file type modifier.

OF filetype

Specifies the format of the data in the input file:

v ASC (non-delimited ASCII format)

v DEL (delimited ASCII format), which is used by a variety of database

manager and file manager programs

v WSF (work sheet format), which is used by programs such as:

– Lotus 1-2-3

– Lotus Symphony
v IXF (Integration Exchange Format, PC version) is a binary format that is

used exclusively by DB2.

Important: Support for the WSF file format is deprecated and might be

removed in a future release. It is recommended that you start using a

supported file format instead of WSF files before support is removed.

The WSF file type is not supported when you import to a nickname.

REPLACE

Deletes all existing data from the table by truncating the data object, and

inserts the imported data. The table definition and the index definitions are

not changed. This option can only be used if the table exists. If this option

is used when moving data between hierarchies, only the data for an entire

hierarchy, not individual subtables, can be replaced.

 This parameter is not valid when you import to a nickname.

This option does not honor the CREATE TABLE statement’s NOT

LOGGED INITIALLY (NLI) clause or the ALTER TABLE statement’s

ACTIVE NOT LOGGED INITIALLY clause.

If an import with the REPLACE option is performed within the same

transaction as a CREATE TABLE or ALTER TABLE statement where the

NLI clause is invoked, the import will not honor the NLI clause. All inserts

will be logged.

Chapter 3. Import utility 93

Workaround 1

Delete the contents of the table using the DELETE statement, then

invoke the import with INSERT statement

Workaround 2

Drop the table and recreate it, then invoke the import with INSERT

statement.

This limitation applies to DB2 Universal Database Version 7 and DB2 UDB

Version 8

REPLACE_CREATE

Note: The REPLACE_CREATE parameter is deprecated and may be

removed in a future release. For additional details, see “IMPORT command

options CREATE and REPLACE_CREATE are deprecated”.

If the table exists, deletes all existing data from the table by truncating the

data object, and inserts the imported data without changing the table

definition or the index definitions.

If the table does not exist, creates the table and index definitions, as well as

the row contents, in the code page of the database. See Imported table

re-creation for a list of restrictions.

This option can only be used with IXF files. If this option is used when

moving data between hierarchies, only the data for an entire hierarchy, not

individual subtables, can be replaced.

This parameter is not valid when you import to a nickname.

RESTARTCOUNT n

Specifies that an import operation is to be started at record n+1. The first n

records are skipped. This option is functionally equivalent to

SKIPCOUNT. RESTARTCOUNT and SKIPCOUNT are mutually

exclusive.

ROWCOUNT n

Specifies the number n of physical records in the file to be imported

(inserted or updated). Allows a user to import only n rows from a file,

starting from the record determined by the SKIPCOUNT or

RESTARTCOUNT options. If the SKIPCOUNT or RESTARTCOUNT

options are not specified, the first n rows are imported. If SKIPCOUNT m

or RESTARTCOUNT m is specified, rows m+1 to m+n are imported. When

compound inserts are used, user specified ROWCOUNT n is rounded up

to the first integer multiple of the compound count value.

SKIPCOUNT n

Specifies that an import operation is to be started at record n+1. The first n

records are skipped. This option is functionally equivalent to

RESTARTCOUNT. SKIPCOUNT and RESTARTCOUNT are mutually

exclusive.

STARTING sub-table-name

A keyword for hierarchy only, requesting the default order, starting from

sub-table-name. For PC/IXF files, the default order is the order stored in the

input file. The default order is the only valid order for the PC/IXF file

format.

94 Data Movement Utilities Guide and Reference

sub-table-list

For typed tables with the INSERT or the INSERT_UPDATE option, a list

of sub-table names is used to indicate the sub-tables into which data is to

be imported.

traversal-order-list

For typed tables with the INSERT, INSERT_UPDATE, or the REPLACE

option, a list of sub-table names is used to indicate the traversal order of

the importing sub-tables in the hierarchy.

UNDER sub-table-name

Specifies a parent table for creating one or more sub-tables.

WARNINGCOUNT n

Stops the import operation after n warnings. Set this parameter if no

warnings are expected, but verification that the correct file and table are

being used is desired. If the import file or the target table is specified

incorrectly, the import utility will generate a warning for each row that it

attempts to import, which will cause the import to fail. If n is zero, or this

option is not specified, the import operation will continue regardless of the

number of warnings issued.

XML FROM xml-path

Specifies one or more paths that contain the XML files.

XMLPARSE

Specifies how XML documents are parsed. If this option is not specified,

the parsing behavior for XML documents will be determined by the value

of the CURRENT XMLPARSE OPTION special register.

STRIP WHITESPACE

Specifies to remove whitespace when the XML document is parsed.

PRESERVE WHITESPACE

Specifies not to remove whitespace when the XML document is

parsed.

XMLVALIDATE

Specifies that XML documents are validated against a schema, when

applicable.

USING XDS

XML documents are validated against the XML schema identified

by the XML Data Specifier (XDS) in the main data file. By default,

if the XMLVALIDATE option is invoked with the USING XDS

clause, the schema used to perform validation will be determined

by the SCH attribute of the XDS. If an SCH attribute is not present

in the XDS, no schema validation will occur unless a default

schema is specified by the DEFAULT clause.

 The DEFAULT, IGNORE, and MAP clauses can be used to modify

the schema determination behavior. These three optional clauses

apply directly to the specifications of the XDS, and not to each

other. For example, if a schema is selected because it is specified by

the DEFAULT clause, it will not be ignored if also specified by the

IGNORE clause. Similarly, if a schema is selected because it is

specified as the first part of a pair in the MAP clause, it will not be

re-mapped if also specified in the second part of another MAP

clause pair.

Chapter 3. Import utility 95

USING SCHEMA schema-sqlid

XML documents are validated against the XML schema with the

specified SQL identifier. In this case, the SCH attribute of the XML

Data Specifier (XDS) will be ignored for all XML columns.

USING SCHEMALOCATION HINTS

XML documents are validated against the schemas identified by

XML schema location hints in the source XML documents. If a

schemaLocation attribute is not found in the XML document, no

validation will occur. When the USING SCHEMALOCATION

HINTS clause is specified, the SCH attribute of the XML Data

Specifier (XDS) will be ignored for all XML columns.

See examples of the XMLVALIDATE option below.

Usage notes

Be sure to complete all table operations and release all locks before starting an

import operation. This can be done by issuing a COMMIT after closing all cursors

opened WITH HOLD, or by issuing a ROLLBACK.

The import utility adds rows to the target table using the SQL INSERT statement.

The utility issues one INSERT statement for each row of data in the input file. If an

INSERT statement fails, one of two actions result:

v If it is likely that subsequent INSERT statements can be successful, a warning

message is written to the message file, and processing continues.

v If it is likely that subsequent INSERT statements will fail, and there is potential

for database damage, an error message is written to the message file, and

processing halts.

The utility performs an automatic COMMIT after the old rows are deleted during a

REPLACE or a REPLACE_CREATE operation. Therefore, if the system fails, or the

application interrupts the database manager after the table object is truncated, all

of the old data is lost. Ensure that the old data is no longer needed before using

these options.

If the log becomes full during a CREATE, REPLACE, or REPLACE_CREATE

operation, the utility performs an automatic COMMIT on inserted records. If the

system fails, or the application interrupts the database manager after an automatic

COMMIT, a table with partial data remains in the database. Use the REPLACE or

the REPLACE_CREATE option to rerun the whole import operation, or use

INSERT with the RESTARTCOUNT parameter set to the number of rows

successfully imported.

By default, automatic COMMITs are not performed for the INSERT or the

INSERT_UPDATE option. They are, however, performed if the COMMITCOUNT

parameter is not zero. If automatic COMMITs are not performed, a full log results

in a ROLLBACK.

Offline import does not perform automatic COMMITs if any of the following

conditions is true:

v the target is a view, not a table

v compound inserts are used

v buffered inserts are used

96 Data Movement Utilities Guide and Reference

By default, online import performs automatic COMMITs to free both the active log

space and the lock list. Automatic COMMITs are not performed only if a

COMMITCOUNT value of zero is specified.

Whenever the import utility performs a COMMIT, two messages are written to the

message file: one indicates the number of records to be committed, and the other is

written after a successful COMMIT. When restarting the import operation after a

failure, specify the number of records to skip, as determined from the last

successful COMMIT.

The import utility accepts input data with minor incompatibility problems (for

example, character data can be imported using padding or truncation, and numeric

data can be imported with a different numeric data type), but data with major

incompatibility problems is not accepted.

You cannot REPLACE or REPLACE_CREATE an object table if it has any

dependents other than itself, or an object view if its base table has any dependents

(including itself). To replace such a table or a view, do the following:

1. Drop all foreign keys in which the table is a parent.

2. Run the import utility.

3. Alter the table to recreate the foreign keys.

If an error occurs while recreating the foreign keys, modify the data to maintain

referential integrity.

Referential constraints and foreign key definitions are not preserved when

recreating tables from PC/IXF files. (Primary key definitions are preserved if the

data was previously exported using SELECT *.)

Importing to a remote database requires enough disk space on the server for a

copy of the input data file, the output message file, and potential growth in the

size of the database.

If an import operation is run against a remote database, and the output message

file is very long (more than 60 KB), the message file returned to the user on the

client might be missing messages from the middle of the import operation. The

first 30 KB of message information and the last 30 KB of message information are

always retained.

Importing PC/IXF files to a remote database is much faster if the PC/IXF file is on

a hard drive rather than on diskettes.

The database table or hierarchy must exist before data in the ASC, DEL, or WSF

file formats can be imported; however, if the table does not already exist, IMPORT

CREATE or IMPORT REPLACE_CREATE creates the table when it imports data

from a PC/IXF file. For typed tables, IMPORT CREATE can create the type

hierarchy and the table hierarchy as well.

PC/IXF import should be used to move data (including hierarchical data) between

databases. If character data containing row separators is exported to a delimited

ASCII (DEL) file and processed by a text transfer program, fields containing the

row separators will shrink or expand. The file copying step is not necessary if the

source and the target databases are both accessible from the same client.

Chapter 3. Import utility 97

The data in ASC and DEL files is assumed to be in the code page of the client

application performing the import. PC/IXF files, which allow for different code

pages, are recommended when importing data in different code pages. If the

PC/IXF file and the import utility are in the same code page, processing occurs as

for a regular application. If the two differ, and the FORCEIN option is specified,

the import utility assumes that data in the PC/IXF file has the same code page as

the application performing the import. This occurs even if there is a conversion

table for the two code pages. If the two differ, the FORCEIN option is not

specified, and there is a conversion table, all data in the PC/IXF file will be

converted from the file code page to the application code page. If the two differ,

the FORCEIN option is not specified, and there is no conversion table, the import

operation will fail. This applies only to PC/IXF files on DB2 clients on the AIX

operating system.

For table objects on an 8 KB page that are close to the limit of 1012 columns,

import of PC/IXF data files might cause DB2 to return an error, because the

maximum size of an SQL statement was exceeded. This situation can occur only if

the columns are of type CHAR, VARCHAR, or CLOB. The restriction does not

apply to import of DEL or ASC files. If PC/IXF files are being used to create a

new table, an alternative is use db2look to dump the DDL statement that created

the table, and then to issue that statement through the CLP.

DB2 Connect can be used to import data to DRDA servers such as DB2 for

OS/390, DB2 for VM and VSE, and DB2 for OS/400. Only PC/IXF import

(INSERT option) is supported. The RESTARTCOUNT parameter, but not the

COMMITCOUNT parameter, is also supported.

When using the CREATE option with typed tables, create every sub-table defined

in the PC/IXF file; sub-table definitions cannot be altered. When using options

other than CREATE with typed tables, the traversal order list enables one to

specify the traverse order; therefore, the traversal order list must match the one

used during the export operation. For the PC/IXF file format, one need only

specify the target sub-table name, and use the traverse order stored in the file.

The import utility can be used to recover a table previously exported to a PC/IXF

file. The table returns to the state it was in when exported.

Data cannot be imported to a system table, a created temporary table, a declared

temporary table, or a summary table.

Views cannot be created through the import utility.

Importing a multiple-part PC/IXF file whose individual parts are copied from a

Windows system to an AIX system is supported. Only the name of the first file

must be specified in the IMPORT command. For example, IMPORT FROM data.ixf

OF IXF INSERT INTO TABLE1. The file data.002, etc should be available in the same

directory as data.ixf.

On the Windows operating system:

v Importing logically split PC/IXF files is not supported.

v Importing bad format PC/IXF or WSF files is not supported.

Security labels in their internal format might contain newline characters. If you

import the file using the DEL file format, those newline characters can be mistaken

for delimiters. If you have this problem use the older default priority for delimiters

98 Data Movement Utilities Guide and Reference

by specifying the delprioritychar file type modifier in the IMPORT command.

Federated considerations

When using the IMPORT command and the INSERT, UPDATE, or

INSERT_UPDATE command parameters, you must ensure that you have

CONTROL privilege on the participating nickname. You must ensure that the

nickname you want to use when doing an import operation already exists. There

are also several restrictions you should be aware of as shown in the IMPORT

command parameters section.

Some data sources, such as ODBC, do not support importing into nicknames.

File type modifiers for the import utility

 Table 20. Valid file type modifiers for the import utility: All file formats

Modifier Description

compound=x x is a number between 1 and 100 inclusive. Uses nonatomic compound SQL to

insert the data, and x statements will be attempted each time.

If this modifier is specified, and the transaction log is not sufficiently large, the

import operation will fail. The transaction log must be large enough to

accommodate either the number of rows specified by COMMITCOUNT, or the

number of rows in the data file if COMMITCOUNT is not specified. It is

therefore recommended that the COMMITCOUNT option be specified to avoid

transaction log overflow.

This modifier is incompatible with INSERT_UPDATE mode, hierarchical tables,

and the following modifiers: usedefaults, identitymissing, identityignore,

generatedmissing, and generatedignore.

generatedignore This modifier informs the import utility that data for all generated columns is

present in the data file but should be ignored. This results in all values for the

generated columns being generated by the utility. This modifier cannot be used

with the generatedmissing modifier.

generatedmissing If this modifier is specified, the utility assumes that the input data file contains no

data for the generated columns (not even NULLs), and will therefore generate a

value for each row. This modifier cannot be used with the generatedignore

modifier.

identityignore This modifier informs the import utility that data for the identity column is

present in the data file but should be ignored. This results in all identity values

being generated by the utility. The behavior will be the same for both

GENERATED ALWAYS and GENERATED BY DEFAULT identity columns. This

means that for GENERATED ALWAYS columns, no rows will be rejected. This

modifier cannot be used with the identitymissing modifier.

identitymissing If this modifier is specified, the utility assumes that the input data file contains no

data for the identity column (not even NULLs), and will therefore generate a

value for each row. The behavior will be the same for both GENERATED

ALWAYS and GENERATED BY DEFAULT identity columns. This modifier cannot

be used with the identityignore modifier.

Chapter 3. Import utility 99

Table 20. Valid file type modifiers for the import utility: All file formats (continued)

Modifier Description

lobsinfile lob-path specifies the path to the files containing LOB data.

Each path contains at least one file that contains at least one LOB pointed to by a

Lob Location Specifier (LLS) in the data file. The LLS is a string representation of

the location of a LOB in a file stored in the LOB file path. The format of an LLS is

filename.ext.nnn.mmm/, where filename.ext is the name of the file that contains the

LOB, nnn is the offset in bytes of the LOB within the file, and mmm is the length

of the LOB in bytes. For example, if the string db2exp.001.123.456/ is stored in

the data file, the LOB is located at offset 123 in the file db2exp.001, and is 456

bytes long.

The LOBS FROM clause specifies where the LOB files are located when the

“lobsinfile” modifier is used. The LOBS FROM clause will implicitly activate the

LOBSINFILE behavior. The LOBS FROM clause conveys to the IMPORT utility

the list of paths to search for the LOB files while importing the data.

To indicate a null LOB, enter the size as -1. If the size is specified as 0, it is

treated as a 0 length LOB. For null LOBS with length of -1, the offset and the file

name are ignored. For example, the LLS of a null LOB might be db2exp.001.7.-1/.

no_type_id Valid only when importing into a single sub-table. Typical usage is to export data

from a regular table, and then to invoke an import operation (using this modifier)

to convert the data into a single sub-table.

nodefaults If a source column for a target table column is not explicitly specified, and the

table column is not nullable, default values are not loaded. Without this option, if

a source column for one of the target table columns is not explicitly specified, one

of the following occurs:

v If a default value can be specified for a column, the default value is loaded

v If the column is nullable, and a default value cannot be specified for that

column, a NULL is loaded

v If the column is not nullable, and a default value cannot be specified, an error

is returned, and the utility stops processing.

norowwarnings Suppresses all warnings about rejected rows.

rowchangetimestampignore This modifier informs the import utility that data for the row change timestamp

column is present in the data file but should be ignored. This results in all ROW

CHANGE TIMESTAMP being generated by the utility. The behavior will be the

same for both GENERATED ALWAYS and GENERATED BY DEFAULT columns.

This means that for GENERATED ALWAYS columns, no rows will be rejected.

This modifier cannot be used with the rowchangetimestampmissing modifier.

rowchangetimestampmissing If this modifier is specified, the utility assumes that the input data file contains no

data for the row change timestamp column (not even NULLs), and will therefore

generate a value for each row. The behavior will be the same for both

GENERATED ALWAYS and GENERATED BY DEFAULT columns. This modifier

cannot be used with the rowchangetimestampignore modifier.

seclabelchar Indicates that security labels in the input source file are in the string format for

security label values rather than in the default encoded numeric format. IMPORT

converts each security label into the internal format as it is loaded. If a string is

not in the proper format the row is not loaded and a warning (SQLSTATE 01H53)

is returned. If the string does not represent a valid security label that is part of

the security policy protecting the table then the row is not loaded and a warning

(SQLSTATE 01H53, SQLCODE SQL3243W)) is returned.

This modifier cannot be specified if the seclabelname modifier is specified,

otherwise the import fails and an error (SQLCODE SQL3525N) is returned.

100 Data Movement Utilities Guide and Reference

Table 20. Valid file type modifiers for the import utility: All file formats (continued)

Modifier Description

seclabelname Indicates that security labels in the input source file are indicated by their name

rather than the default encoded numeric format. IMPORT will convert the name

to the appropriate security label if it exists. If no security label exists with the

indicated name for the security policy protecting the table the row is not loaded

and a warning (SQLSTATE 01H53, SQLCODE SQL3244W) is returned.

This modifier cannot be specified if the seclabelchar modifier is specified,

otherwise the import fails and an error (SQLCODE SQL3525N) is returned.

Note: If the file type is ASC, any spaces following the name of the security label

will be interpreted as being part of the name. To avoid this use the striptblanks

file type modifier to make sure the spaces are removed.

usedefaults If a source column for a target table column has been specified, but it contains no

data for one or more row instances, default values are loaded. Examples of

missing data are:

v For DEL files: two adjacent column delimiters (″,,″) or two adjacent column

delimiters separated by an arbitrary number of spaces (″, ,″) are specified for a

column value.

v For DEL/ASC/WSF files: A row that does not have enough columns, or is not

long enough for the original specification.

Note: For ASC files, NULL column values are not considered explicitly

missing, and a default will not be substituted for NULL column values. NULL

column values are represented by all space characters for numeric, date, time,

and /timestamp columns, or by using the NULL INDICATOR for a column of

any type to indicate the column is NULL.

Without this option, if a source column contains no data for a row instance, one

of the following occurs:

v For DEL/ASC/WSF files: If the column is nullable, a NULL is loaded. If the

column is not nullable, the utility rejects the row.

 Table 21. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL)

Modifier Description

codepage=x x is an ASCII character string. The value is interpreted as the code page of the

data in the input data set. Converts character data from this code page to the

application code page during the import operation.

The following rules apply:

v For pure DBCS (graphic) mixed DBCS, and EUC, delimiters are restricted to the

range of x00 to x3F, inclusive.

v nullindchar must specify symbols included in the standard ASCII set between

code points x20 and x7F, inclusive. This refers to ASCII symbols and code

points.

Note:

1. The codepage modifier cannot be used with the lobsinfile modifier.

2. If data expansion occurs when the code page is converted from the

application code page to the database code page, the data might be truncated

and loss of data can occur.

Chapter 3. Import utility 101

Table 21. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

dateformat=″x″ x is the format of the date in the source file.2 Valid date elements are:

 YYYY - Year (four digits ranging from 0000 - 9999)

 M - Month (one or two digits ranging from 1 - 12)

 MM - Month (two digits ranging from 1 - 12;

 mutually exclusive with M)

 D - Day (one or two digits ranging from 1 - 31)

 DD - Day (two digits ranging from 1 - 31;

 mutually exclusive with D)

 DDD - Day of the year (three digits ranging

 from 001 - 366; mutually exclusive

 with other day or month elements)

A default value of 1 is assigned for each element that is not specified. Some

examples of date formats are:

 "D-M-YYYY"

 "MM.DD.YYYY"

 "YYYYDDD"

implieddecimal The location of an implied decimal point is determined by the column definition;

it is no longer assumed to be at the end of the value. For example, the value

12345 is loaded into a DECIMAL(8,2) column as 123.45, not 12345.00.

timeformat=″x″ x is the format of the time in the source file.2 Valid time elements are:

 H - Hour (one or two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24

 for a 24 hour system)

 HH - Hour (two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24

 for a 24 hour system; mutually exclusive

 with H)

 M - Minute (one or two digits ranging

 from 0 - 59)

 MM - Minute (two digits ranging from 0 - 59;

 mutually exclusive with M)

 S - Second (one or two digits ranging

 from 0 - 59)

 SS - Second (two digits ranging from 0 - 59;

 mutually exclusive with S)

 SSSSS - Second of the day after midnight (5 digits

 ranging from 00000 - 86399; mutually

 exclusive with other time elements)

 TT - Meridian indicator (AM or PM)

A default value of 0 is assigned for each element that is not specified. Some

examples of time formats are:

 "HH:MM:SS"

 "HH.MM TT"

 "SSSSS"

102 Data Movement Utilities Guide and Reference

Table 21. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

timestampformat=″x″ x is the format of the time stamp in the source file.2 Valid time stamp elements

are:

 YYYY - Year (four digits ranging from 0000 - 9999)

 M - Month (one or two digits ranging from 1 - 12)

 MM - Month (two digits ranging from 01 - 12;

 mutually exclusive with M and MMM)

 MMM - Month (three-letter case-insensitive abbreviation for

 the month name; mutually exclusive with M and MM)

 D - Day (one or two digits ranging from 1 - 31)

 DD - Day (two digits ranging from 1 - 31; mutually exclusive with D)

 DDD - Day of the year (three digits ranging from 001 - 366;

 mutually exclusive with other day or month elements)

 H - Hour (one or two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24 for a 24 hour system)

 HH - Hour (two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24 for a 24 hour system;

 mutually exclusive with H)

 M - Minute (one or two digits ranging from 0 - 59)

 MM - Minute (two digits ranging from 0 - 59;

 mutually exclusive with M, minute)

 S - Second (one or two digits ranging from 0 - 59)

 SS - Second (two digits ranging from 0 - 59;

 mutually exclusive with S)

 SSSSS - Second of the day after midnight (5 digits

 ranging from 00000 - 86399; mutually

 exclusive with other time elements)

 U (1 to 12 times)

 - Fractional seconds(number of occurrences of U represent the

 number of digits with each digit ranging from 0 to 9

 TT - Meridian indicator (AM or PM)

A default value of 1 is assigned for unspecified YYYY, M, MM, D, DD, or DDD

elements. A default value of ’Jan’ is assigned to an unspecified MMM element. A

default value of 0 is assigned for all other unspecified elements. Following is an

example of a time stamp format:

 "YYYY/MM/DD HH:MM:SS.UUUUUU"

The valid values for the MMM element include: ’jan’, ’feb’, ’mar’, ’apr’, ’may’,

’jun’, ’jul’, ’aug’, ’sep’, ’oct’, ’nov’ and ’dec’. These values are case insensitive.

The following example illustrates how to import data containing user defined

date and time formats into a table called schedule:

 db2 import from delfile2 of del

 modified by timestampformat="yyyy.mm.dd hh:mm tt"

 insert into schedule

Chapter 3. Import utility 103

Table 21. Valid file type modifiers for the import utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

usegraphiccodepage If usegraphiccodepage is given, the assumption is made that data being imported

into graphic or double-byte character large object (DBCLOB) data fields is in the

graphic code page. The rest of the data is assumed to be in the character code

page. The graphic code page is associated with the character code page. IMPORT

determines the character code page through either the codepage modifier, if it is

specified, or through the code page of the application if the codepage modifier is

not specified.

This modifier should be used in conjunction with the delimited data file

generated by drop table recovery only if the table being recovered has graphic

data.

Restrictions

The usegraphiccodepage modifier MUST NOT be specified with DEL files created

by the EXPORT utility, as these files contain data encoded in only one code page.

The usegraphiccodepage modifier is also ignored by the double-byte character

large objects (DBCLOBs) in files.

xmlchar Specifies that XML documents are encoded in the character code page.

This option is useful for processing XML documents that are encoded in the

specified character code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,

the encoding must match the character code page, otherwise the row containing

the document will be rejected. Note that the character codepage is the value

specified by the codepage file type modifier, or the application codepage if it is

not specified. By default, either the documents are encoded in Unicode, or they

contain a declaration tag with an encoding attribute.

xmlgraphic Specifies that XML documents are encoded in the specified graphic code page.

This option is useful for processing XML documents that are encoded in a specific

graphic code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,

the encoding must match the graphic code page, otherwise the row containing

the document will be rejected. Note that the graphic code page is the graphic

component of the value specified by the codepage file type modifier, or the

graphic component of the application code page if it is not specified. By default,

documents are either encoded in Unicode, or they contain a declaration tag with

an encoding attribute.

Note: If the xmlgraphic modifier is specified with the IMPORT command, the

XML document to be imported must be encoded in the UTF-16 code page.

Otherwise, the XML document may be rejected with a parsing error, or it may be

imported into the table with data corruption.

 Table 22. Valid file type modifiers for the import utility: ASC (non-delimited ASCII) file format

Modifier Description

nochecklengths If nochecklengths is specified, an attempt is made to import each row, even if the

source data has a column definition that exceeds the size of the target table

column. Such rows can be successfully imported if code page conversion causes

the source data to shrink; for example, 4-byte EUC data in the source could

shrink to 2-byte DBCS data in the target, and require half the space. This option

is particularly useful if it is known that the source data will fit in all cases despite

mismatched column definitions.

104 Data Movement Utilities Guide and Reference

Table 22. Valid file type modifiers for the import utility: ASC (non-delimited ASCII) file format (continued)

Modifier Description

nullindchar=x x is a single character. Changes the character denoting a null value to x. The

default value of x is Y.3

This modifier is case sensitive for EBCDIC data files, except when the character is

an English letter. For example, if the null indicator character is specified to be the

letter N, then n is also recognized as a null indicator.

reclen=x x is an integer with a maximum value of 32 767. x characters are read for each

row, and a new-line character is not used to indicate the end of the row.

striptblanks Truncates any trailing blank spaces when loading data into a variable-length field.

If this option is not specified, blank spaces are kept.

In the following example, striptblanks causes the import utility to truncate

trailing blank spaces:

 db2 import from myfile.asc of asc

 modified by striptblanks

 method l (1 10, 12 15) messages msgs.txt

 insert into staff

This option cannot be specified together with striptnulls. These are mutually

exclusive options. This option replaces the obsolete t option, which is supported

for earlier compatibility only.

striptnulls Truncates any trailing NULLs (0x00 characters) when loading data into a

variable-length field. If this option is not specified, NULLs are kept.

This option cannot be specified together with striptblanks. These are mutually

exclusive options. This option replaces the obsolete padwithzero option, which is

supported for earlier compatibility only.

 Table 23. Valid file type modifiers for the import utility: DEL (delimited ASCII) file format

Modifier Description

chardelx x is a single character string delimiter. The default value is a double quotation

mark (″). The specified character is used in place of double quotation marks to

enclose a character string.34 If you want to explicitly specify the double quotation

mark as the character string delimiter, it should be specified as follows:

 modified by chardel""

The single quotation mark (’) can also be specified as a character string delimiter.

In the following example, chardel’’ causes the import utility to interpret any

single quotation mark (’) it encounters as a character string delimiter:

 db2 "import from myfile.del of del

 modified by chardel’’

 method p (1, 4) insert into staff (id, years)"

coldelx x is a single character column delimiter. The default value is a comma (,). The

specified character is used in place of a comma to signal the end of a column.34

In the following example, coldel; causes the import utility to interpret any

semicolon (;) it encounters as a column delimiter:

 db2 import from myfile.del of del

 modified by coldel;

 messages msgs.txt insert into staff

decplusblank Plus sign character. Causes positive decimal values to be prefixed with a blank

space instead of a plus sign (+). The default action is to prefix positive decimal

values with a plus sign.

Chapter 3. Import utility 105

Table 23. Valid file type modifiers for the import utility: DEL (delimited ASCII) file format (continued)

Modifier Description

decptx x is a single character substitute for the period as a decimal point character. The

default value is a period (.). The specified character is used in place of a period as

a decimal point character.34

In the following example, decpt; causes the import utility to interpret any

semicolon (;) it encounters as a decimal point:

 db2 "import from myfile.del of del

 modified by chardel’’

 decpt; messages msgs.txt insert into staff"

delprioritychar The current default priority for delimiters is: record delimiter, character delimiter,

column delimiter. This modifier protects existing applications that depend on the

older priority by reverting the delimiter priorities to: character delimiter, record

delimiter, column delimiter. Syntax:

 db2 import ... modified by delprioritychar ...

For example, given the following DEL data file:

 "Smith, Joshua",4000,34.98<row delimiter>

 "Vincent,<row delimiter>, is a manager", ...

 ... 4005,44.37<row delimiter>

With the delprioritychar modifier specified, there will be only two rows in this

data file. The second <row delimiter> will be interpreted as part of the first data

column of the second row, while the first and the third <row delimiter> are

interpreted as actual record delimiters. If this modifier is not specified, there will

be three rows in this data file, each delimited by a <row delimiter>.

keepblanks Preserves the leading and trailing blanks in each field of type CHAR, VARCHAR,

LONG VARCHAR, or CLOB. Without this option, all leading and trailing blanks

that are not inside character delimiters are removed, and a NULL is inserted into

the table for all blank fields.

nochardel The import utility will assume all bytes found between the column delimiters to

be part of the column’s data. Character delimiters will be parsed as part of

column data. This option should not be specified if the data was exported using

DB2 (unless nochardel was specified at export time). It is provided to support

vendor data files that do not have character delimiters. Improper usage might

result in data loss or corruption.

This option cannot be specified with chardelx, delprioritychar or nodoubledel.

These are mutually exclusive options.

nodoubledel Suppresses recognition of double character delimiters.

 Table 24. Valid file type modifiers for the import utility: IXF file format

Modifier Description

forcein Directs the utility to accept data despite code page mismatches, and to suppress

translation between code pages.

Fixed length target fields are checked to verify that they are large enough for the

data. If nochecklengths is specified, no checking is done, and an attempt is made

to import each row.

indexixf Directs the utility to drop all indexes currently defined on the existing table, and

to create new ones from the index definitions in the PC/IXF file. This option can

only be used when the contents of a table are being replaced. It cannot be used

with a view, or when a insert-column is specified.

106 Data Movement Utilities Guide and Reference

Table 24. Valid file type modifiers for the import utility: IXF file format (continued)

Modifier Description

indexschema=schema Uses the specified schema for the index name during index creation. If schema is

not specified (but the keyword indexschema is specified), uses the connection user

ID. If the keyword is not specified, uses the schema in the IXF file.

nochecklengths If nochecklengths is specified, an attempt is made to import each row, even if the

source data has a column definition that exceeds the size of the target table

column. Such rows can be successfully imported if code page conversion causes

the source data to shrink; for example, 4-byte EUC data in the source could

shrink to 2-byte DBCS data in the target, and require half the space. This option

is particularly useful if it is known that the source data will fit in all cases despite

mismatched column definitions.

forcecreate Specifies that the table should be created with possible missing or limited

information after returning SQL3311N during an import operation.

 Table 25. IMPORT behavior when using codepage and usegraphiccodepage

codepage=N usegraphiccodepage IMPORT behavior

Absent Absent All data in the file is assumed to be in the application

code page.

Present Absent All data in the file is assumed to be in code page N.

Warning: Graphic data will be corrupted when

imported into the database if N is a single-byte code

page.

Absent Present Character data in the file is assumed to be in the

application code page. Graphic data is assumed to be in

the code page of the application graphic data.

If the application code page is single-byte, then all data

is assumed to be in the application code page.

Warning: If the application code page is single-byte,

graphic data will be corrupted when imported into the

database, even if the database contains graphic columns.

Present Present Character data is assumed to be in code page N. Graphic

data is assumed to be in the graphic code page of N.

If N is a single-byte or double-byte code page, then all

data is assumed to be in code page N.

Warning: Graphic data will be corrupted when

imported into the database if N is a single-byte code

page.

Note:

 1. The import utility does not issue a warning if an attempt is made to use

unsupported file types with the MODIFIED BY option. If this is attempted,

the import operation fails, and an error code is returned.

 2. Double quotation marks around the date format string are mandatory. Field

separators cannot contain any of the following: a-z, A-Z, and 0-9. The field

separator should not be the same as the character delimiter or field delimiter

in the DEL file format. A field separator is optional if the start and end

Chapter 3. Import utility 107

positions of an element are unambiguous. Ambiguity can exist if (depending

on the modifier) elements such as D, H, M, or S are used, because of the

variable length of the entries.

For time stamp formats, care must be taken to avoid ambiguity between the

month and the minute descriptors, since they both use the letter M. A month

field must be adjacent to other date fields. A minute field must be adjacent to

other time fields. Following are some ambiguous time stamp formats:

 "M" (could be a month, or a minute)

 "M:M" (Which is which?)

 "M:YYYY:M" (Both are interpreted as month.)

 "S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation

will fail.

Following are some unambiguous time stamp formats:

 "M:YYYY" (Month)

 "S:M" (Minute)

 "M:YYYY:S:M" (Month....Minute)

 "M:H:YYYY:M:D" (Minute....Month)

Some characters, such as double quotation marks and back slashes, must be

preceded by an escape character (for example, \).

 3. Character values provided for the chardel, coldel, or decpt file type modifiers

must be specified in the code page of the source data.

The character code point (instead of the character symbol), can be specified

using the syntax xJJ or 0xJJ, where JJ is the hexadecimal representation of the

code point. For example, to specify the # character as a column delimiter, use

one of the following:

 ... modified by coldel# ...

 ... modified by coldel0x23 ...

 ... modified by coldelX23 ...

 4. Delimiter considerations for moving data lists restrictions that apply to the

characters that can be used as delimiter overrides.

 5. The following file type modifiers are not allowed when importing into a

nickname:

v indexixf

v indexschema

v dldelfiletype

v nodefaults

v usedefaults

v no_type_idfiletype

v generatedignore

v generatedmissing

v identityignore

v identitymissing

v lobsinfile

 6. The WSF file format is not supported for XML columns. Support for this file

format is also deprecated and might be removed in a future release. It is

recommended that you start using a supported file format instead of WSF

files before support is removed

 7. The CREATE mode is not supported for XML columns.

108 Data Movement Utilities Guide and Reference

8. All XML data must reside in XML files that are separate from the main data

file. An XML Data Specifier (XDS) (or a NULL value) must exist for each XML

column in the main data file.

 9. XML documents are assumed to be in Unicode format or to contain a

declaration tag that includes an encoding attribute, unless the XMLCHAR or

XMLGRAPHIC file type modifier is specified.

10. Rows containing documents that are not well-formed will be rejected.

11. If the XMLVALIDATE option is specified, documents that successfully

validate against their matching schema will be annotated with the schema

information as they are inserted. Rows containing documents that fail to

validate against their matching schema will be rejected. To successfully

perform the validation, the privileges held by the user invoking the import

must include at least one of the following:

v DBADM authority

v USAGE privilege on the XML schema to be used in the validation
12. When importing into a table containing an implicitly hidden row change

timestamp column, the implicitly hidden property of the column is not

honoured. Therefore, the rowchangetimestampmissing file type modifier must

be specified in the import command if data for the column is not present in

the data to be imported and there is no explicit column list present.

db2Import - Import data into a table, hierarchy, nickname or

view

Inserts data from an external file with a supported file format into a table,

hierarchy, nickname or view. The load utility is faster than this function. The load

utility, however, does not support loading data at the hierarchy level or loading

into a nickname.

Authorization

v IMPORT using the INSERT option requires one of the following:

– dataaccess

– CONTROL privilege on each participating table, view or nickname

– INSERT and SELECT privilege on each participating table or view
v IMPORT to an existing table using the INSERT_UPDATE option, requires one of

the following:

– dataaccess

– CONTROL privilege on the table, view or nickname

– INSERT, SELECT, UPDATE and DELETE privilege on each participating table

or view
v IMPORT to an existing table using the REPLACE or REPLACE_CREATE option,

requires one of the following:

– dataaccess

– CONTROL privilege on the table or view

– INSERT, SELECT, and DELETE privilege on the table or view
v IMPORT to a new table using the CREATE or REPLACE_CREATE option,

requires one of the following:

– dbadm

– CREATETAB authority on the database and USE privilege on the table space,

as well as one of:

Chapter 3. Import utility 109

- IMPLICIT_SCHEMA authority on the database, if the implicit or explicit

schema name of the table does not exist

- CREATEIN privilege on the schema, if the schema name of the table refers

to an existing schema
v IMPORT to a table or a hierarchy that does not exist using the CREATE, or the

REPLACE_CREATE option, requires one of the following:

– dbadm

– CREATETAB authority on the database, and one of:

- IMPLICIT_SCHEMA authority on the database, if the schema name of the

table does not exist

- CREATEIN privilege on the schema, if the schema of the table exists

- CONTROL privilege on every sub-table in the hierarchy, if the

REPLACE_CREATE option on the entire hierarchy is used
v IMPORT to an existing hierarchy using the REPLACE option requires one of the

following:

– dataaccess

– CONTROL privilege on every sub-table in the hierarchy

Required connection

Database. If implicit connect is enabled, a connection to the default database is

established.

API include file

db2ApiDf.h

API and data structure syntax

SQL_API_RC SQL_API_FN

 db2Import (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2ImportStruct

{

 char *piDataFileName;

 struct sqlu_media_list *piLobPathList;

 struct sqldcol *piDataDescriptor;

 struct sqlchar *piActionString;

 char *piFileType;

 struct sqlchar *piFileTypeMod;

 char *piMsgFileName;

 db2int16 iCallerAction;

 struct db2ImportIn *piImportInfoIn;

 struct db2ImportOut *poImportInfoOut;

 db2int32 *piNullIndicators;

 struct sqllob *piLongActionString;

} db2ImportStruct;

typedef SQL_STRUCTURE db2ImportIn

{

 db2Uint64 iRowcount;

 db2Uint64 iRestartcount;

 db2Uint64 iSkipcount;

 db2int32 *piCommitcount;

 db2Uint32 iWarningcount;

 db2Uint16 iNoTimeout;

 db2Uint16 iAccessLevel;

110 Data Movement Utilities Guide and Reference

db2Uint16 *piXmlParse;

 struct db2DMUXmlValidate *piXmlValidate;

} db2ImportIn;

typedef SQL_STRUCTURE db2ImportOut

{

 db2Uint64 oRowsRead;

 db2Uint64 oRowsSkipped;

 db2Uint64 oRowsInserted;

 db2Uint64 oRowsUpdated;

 db2Uint64 oRowsRejected;

 db2Uint64 oRowsCommitted;

} db2ImportOut;

typedef SQL_STRUCTURE db2DMUXmlMapSchema

{

 struct db2Char iMapFromSchema;

 struct db2Char iMapToSchema;

} db2DMUXmlMapSchema;

typedef SQL_STRUCTURE db2DMUXmlValidateXds

{

 struct db2Char *piDefaultSchema;

 db2Uint32 iNumIgnoreSchemas;

 struct db2Char *piIgnoreSchemas;

 db2Uint32 iNumMapSchemas;

 struct db2DMUXmlMapSchema *piMapSchemas;

} db2DMUXmlValidateXds;

typedef SQL_STRUCTURE db2DMUXmlValidateSchema

{

 struct db2Char *piSchema;

} db2DMUXmlValidateSchema;

typedef SQL_STRUCTURE db2DMUXmlValidate

{

 db2Uint16 iUsing;

 struct db2DMUXmlValidateXds *piXdsArgs;

 struct db2DMUXmlValidateSchema *piSchemaArgs;

} db2DMUXmlValidate;

SQL_API_RC SQL_API_FN

 db2gImport (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gImportStruct

{

 char *piDataFileName;

 struct sqlu_media_list *piLobPathList;

 struct sqldcol *piDataDescriptor;

 struct sqlchar *piActionString;

 char *piFileType;

 struct sqlchar *piFileTypeMod;

 char *piMsgFileName;

 db2int16 iCallerAction;

 struct db2gImportIn *piImportInfoIn;

 struct dbg2ImportOut *poImportInfoOut;

 db2int32 *piNullIndicators;

 db2Uint16 iDataFileNameLen;

 db2Uint16 iFileTypeLen;

 db2Uint16 iMsgFileNameLen;

 struct sqllob *piLongActionString;

} db2gImportStruct;

typedef SQL_STRUCTURE db2gImportIn

Chapter 3. Import utility 111

{

 db2Uint64 iRowcount;

 db2Uint64 iRestartcount;

 db2Uint64 iSkipcount;

 db2int32 *piCommitcount;

 db2Uint32 iWarningcount;

 db2Uint16 iNoTimeout;

 db2Uint16 iAccessLevel;

 db2Uint16 *piXmlParse;

 struct db2DMUXmlValidate *piXmlValidate;

} db2gImportIn;

typedef SQL_STRUCTURE db2gImportOut

{

 db2Uint64 oRowsRead;

 db2Uint64 oRowsSkipped;

 db2Uint64 oRowsInserted;

 db2Uint64 oRowsUpdated;

 db2Uint64 oRowsRejected;

 db2Uint64 oRowsCommitted;

} db2gImportOut;

db2Import API parameters

versionNumber

Input. Specifies the version and release level of the structure passed in as

the second parameter pParmStruct.

pParmStruct

Input/Output. A pointer to the db2ImportStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

db2ImportStruct data structure parameters

piDataFileName

Input. A string containing the path and the name of the external input file

from which the data is to be imported.

piLobPathList

Input. Pointer to an sqlu_media_list with its media_type field set to

SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths

on the client where the LOB files can be found. This parameter is not valid

when you import to a nickname.

piDataDescriptor

Input. Pointer to an sqldcol structure containing information about the

columns being selected for import from the external file. The value of the

dcolmeth field determines how the remainder of the information provided

in this parameter is interpreted by the import utility. Valid values for this

parameter are:

SQL_METH_N

Names. Selection of columns from the external input file is by

column name.

SQL_METH_P

Positions. Selection of columns from the external input file is by

column position.

SQL_METH_L

Locations. Selection of columns from the external input file is by

112 Data Movement Utilities Guide and Reference

column location. The database manager rejects an import call with

a location pair that is invalid because of any one of the following

conditions:

v Either the beginning or the ending location is not in the range

from 1 to the largest signed 2-byte integer.

v The ending location is smaller than the beginning location.

v The input column width defined by the location pair is not

compatible with the type and the length of the target column.

A location pair with both locations equal to zero indicates that a

nullable column is to be filled with NULLs.

SQL_METH_D

Default. If piDataDescriptor is NULL, or is set to SQL_METH_D,

default selection of columns from the external input file is done. In

this case, the number of columns and the column specification

array are both ignored. For DEL, IXF, or WSF files, the first n

columns of data in the external input file are taken in their natural

order, where n is the number of database columns into which the

data is to be imported.

piActionString

Deprecated. Replaced by piLongActionString.

piLongActionString

Input. Pointer to an sqllob structure containing a 4-byte long field, followed

by an array of characters specifying an action that affects the table.

 The character array is of the form:

{INSERT | INSERT_UPDATE | REPLACE | CREATE | REPLACE_CREATE}

INTO {tname[(tcolumn-list)] |

[{ALL TABLES | (tname[(tcolumn-list)][, tname[(tcolumn-list)]])}]

[IN] HIERARCHY {STARTING tname | (tname[, tname])}

[UNDER sub-table-name | AS ROOT TABLE]}

INSERT

Adds the imported data to the table without changing the existing

table data.

INSERT_UPDATE

Adds the imported rows if their primary key values are not in the

table, and uses them for update if their primary key values are

found. This option is only valid if the target table has a primary

key, and the specified (or implied) list of target columns being

imported includes all columns for the primary key. This option

cannot be applied to views.

REPLACE

Deletes all existing data from the table by truncating the table

object, and inserts the imported data. The table definition and the

index definitions are not changed. (Indexes are deleted and

replaced if indexixf is in FileTypeMod, and FileType is SQL_IXF.) If

the table is not already defined, an error is returned.

Note: If an error occurs after the existing data is deleted, that data

is lost.

This parameter is not valid when you import to a nickname.

CREATE

Chapter 3. Import utility 113

Note: The CREATE parameter is deprecated and may be removed

in a future release. For additional details, see “IMPORT command

options CREATE and REPLACE_CREATE are deprecated”.

Creates the table definition and the row contents using the

information in the specified PC/IXF file, if the specified table is not

defined. If the file was previously exported by DB2, indexes are

also created. If the specified table is already defined, an error is

returned. This option is valid for the PC/IXF file format only. This

parameter is not valid when you import to a nickname.

REPLACE_CREATE

Note: The REPLACE_CREATE parameter is deprecated and may

be removed in a future release. For additional details, see

“IMPORT command options CREATE and REPLACE_CREATE are

deprecated”.

Replaces the table contents using the PC/IXF row information in

the PC/IXF file, if the specified table is defined. If the table is not

already defined, the table definition and row contents are created

using the information in the specified PC/IXF file. If the PC/IXF

file was previously exported by DB2, indexes are also created. This

option is valid for the PC/IXF file format only.

Note: If an error occurs after the existing data is deleted, that data

is lost.

This parameter is not valid when you import to a nickname.

tname The name of the table, typed table, view, or object view into which

the data is to be inserted. An alias for REPLACE,

INSERT_UPDATE, or INSERT can be specified, except in the case

of a server with a previous version of the DB2 product installed,

when a qualified or unqualified name should be specified. If it is a

view, it cannot be a read-only view.

tcolumn-list

A list of table or view column names into which the data is to be

inserted. The column names must be separated by commas. If

column names are not specified, column names as defined in the

CREATE TABLE or the ALTER TABLE statement are used. If no

column list is specified for typed tables, data is inserted into all

columns within each sub-table.

sub-table-name

Specifies a parent table when creating one or more sub-tables

under the CREATE option.

ALL TABLES

An implicit keyword for hierarchy only. When importing a

hierarchy, the default is to import all tables specified in the

traversal-order-list.

HIERARCHY

Specifies that hierarchical data is to be imported.

STARTING

Keyword for hierarchy only. Specifies that the default order,

starting from a given sub-table name, is to be used.

114 Data Movement Utilities Guide and Reference

UNDER

Keyword for hierarchy and CREATE only. Specifies that the new

hierarchy, sub-hierarchy, or sub-table is to be created under a given

sub-table.

AS ROOT TABLE

Keyword for hierarchy and CREATE only. Specifies that the new

hierarchy, sub-hierarchy, or sub-table is to be created as a

stand-alone hierarchy.

The tname and the tcolumn-list parameters correspond to the tablename

and the colname lists of SQL INSERT statements, and have the same

restrictions.

The columns in tcolumn-list and the external columns (either specified or

implied) are matched according to their position in the list or the structure

(data from the first column specified in the sqldcol structure is inserted

into the table or view field corresponding to the first element of the

tcolumn-list).

If unequal numbers of columns are specified, the number of columns

actually processed is the lesser of the two numbers. This could result in an

error (because there are no values to place in some non-nullable table

fields) or an informational message (because some external file columns are

ignored).

This parameter is not valid when you import to a nickname.

piFileType

Input. A string that indicates the format of the data within the external file.

Supported external file formats are:

SQL_ASC

Non-delimited ASCII.

SQL_DEL

Delimited ASCII, for exchange with dBase, BASIC, and the IBM

Personal Decision Series programs, and many other database

managers and file managers.

SQL_IXF

PC version of the Integration Exchange Format, the preferred

method for exporting data from a table so that it can be imported

later into the same table or into another database manager table.

SQL_WSF

Worksheet formats for exchange with Lotus Symphony and 1-2-3

programs. The WSF file type is not supported when you import to

a nickname.

piFileTypeMod

Input. A pointer to a structure containing a 2-byte long field, followed by

an array of characters that specify one or more processing options. If this

pointer is NULL, or the structure pointed to has zero characters, this action

is interpreted as selection of a default specification.

 Not all options can be used with all of the supported file types. See related

link ″File type modifiers for the import utility″.

piMsgFileName

Input. A string containing the destination for error, warning, and

informational messages returned by the utility. It can be the path and the

Chapter 3. Import utility 115

name of an operating system file or a standard device. If the file already

exists, it is appended to. If it does not exist, a file is created.

iCallerAction

Input. An action requested by the caller. Valid values are:

SQLU_INITIAL

Initial call. This value must be used on the first call to the API. If

the initial call or any subsequent call returns and requires the

calling application to perform some action prior to completing the

requested import operation, the caller action must be set to one of

the following:

SQLU_CONTINUE

Continue processing. This value can only be used on subsequent

calls to the API, after the initial call has returned with the utility

requesting user input (for example, to respond to an end of tape

condition). It specifies that the user action requested by the utility

has completed, and the utility can continue processing the initial

request.

SQLU_TERMINATE

Terminate processing. This value can only be used on subsequent

calls to the API, after the initial call has returned with the utility

requesting user input (for example, to respond to an end of tape

condition). It specifies that the user action requested by the utility

was not performed, and the utility is to terminate processing the

initial request.

piImportInfoIn

Input. Pointer to the db2ImportIn structure.

poImportInfoOut

Output. Pointer to the db2ImportOut structure.

piNullIndicators

Input. For ASC files only. An array of integers that indicate whether or not

the column data is nullable. The number of elements in this array must

match the number of columns in the input file; there is a one-to-one

ordered correspondence between the elements of this array and the

columns being imported from the data file. Therefore, the number of

elements must equal the dcolnum field of the piDataDescriptor parameter.

Each element of the array contains a number identifying a column in the

data file that is to be used as a null indicator field, or a zero indicating that

the table column is not nullable. If the element is not zero, the identified

column in the data file must contain a Y or an N. A Y indicates that the

table column data is NULL, and N indicates that the table column data is

not NULL.

piXmlPathList

Input. Pointer to an sqlu_media_list with its media_type field set to

SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths

on the client where the XML files can be found.

db2ImportIn data structure parameters

iRowcount

Input. The number of physical records to be loaded. Allows a user to load

only the first iRowcount rows in a file. If iRowcount is 0, import will

attempt to process all the rows from the file.

116 Data Movement Utilities Guide and Reference

iRestartcount

Input. The number of records to skip before starting to insert or update

records. Functionally equivalent to iSkipcount parameter. iRestartcount and

iSkipcount parameters are mutually exclusive.

iSkipcount

Input. The number of records to skip before starting to insert or update

records. Functionally equivalent to iRestartcount.

piCommitcount

Input. The number of records to import before committing them to the

database. A commit is performed whenever piCommitcount records are

imported. A NULL value specifies the default commit count value, which

is zero for offline import and AUTOMATIC for online import.

Commitcount AUTOMATIC is specified by passing in the value

DB2IMPORT_COMMIT_AUTO.

iWarningcount

Input. Stops the import operation after iWarningcount warnings. Set this

parameter if no warnings are expected, but verification that the correct file

and table are being used is desired. If the import file or the target table is

specified incorrectly, the import utility will generate a warning for each

row that it attempts to import, which will cause the import to fail.

 If iWarningcount is 0, or this option is not specified, the import operation

will continue regardless of the number of warnings issued.

iNoTimeout

Input. Specifies that the import utility will not time out while waiting for

locks. This option supersedes the locktimeout database configuration

parameter. Other applications are not affected. Valid values are:

DB2IMPORT_LOCKTIMEOUT

Indicates that the value of the locktimeout configuration parameter

is respected.

DB2IMPORT_NO_LOCKTIMEOUT

Indicates there is no timeout.

iAccessLevel

Input. Specifies the access level. Valid values are:

- SQLU_ALLOW_NO_ACCESS

Specifies that the import utility locks the table exclusively.

- SQLU_ALLOW_WRITE_ACCESS

Specifies that the data in the table should still be accessible to

readers and writers while the import is in progress.

An intent exclusive (IX) lock on the target table is acquired when the first

row is inserted. This allows concurrent readers and writers to access table

data. Online mode is not compatible with the REPLACE, CREATE, or

REPLACE_CREATE import options. Online mode is not supported in

conjunction with buffered inserts. The import operation will periodically

commit inserted data to prevent lock escalation to a table lock and to avoid

running out of active log space. These commits will be performed even if

the piCommitCount parameter was not used. During each commit, import

will lose its IX table lock, and will attempt to reacquire it after the commit.

This parameter is required when you import to a nickname and

piCommitCount parameter must be specified with a valid number

(AUTOMATIC is not considered a valid option).

Chapter 3. Import utility 117

piXmlParse

Input. Type of parsing that should occur for XML documents. Valid values

found in the db2ApiDf header file in the include directory, are:

DB2DMU_XMLPARSE_PRESERVE_WS

Whitespace should be preserved.

DB2DMU_XMLPARSE_STRIP_WS

Whitespace should be stripped.

piXmlValidate

Input. Pointer to the db2DMUXmlValidate structure. Indicates that XML

schema validation should occur for XML documents.

db2ImportOut data structure parameters

oRowsRead

Output. Number of records read from the file during import.

oRowsSkipped

Output. Number of records skipped before inserting or updating begins.

oRowsInserted

Output. Number of rows inserted into the target table.

oRowsUpdated

Output. Number of rows in the target table updated with information from

the imported records (records whose primary key value already exists in

the table).

oRowsRejected

Output. Number of records that could not be imported.

oRowsCommitted

Output. Number of records imported successfully and committed to the

database.

db2DMUXmlMapSchema data structure parameters

iMapFromSchema

Input. The SQL identifier of the XML schema to map from.

iMapToSchema

Input. The SQL identifier of the XML schema to map to.

db2DMUXmlValidateXds data structure parameters

piDefaultSchema

Input. The SQL identifier of the XML schema that should be used for

validation when an XDS does not contain an SCH attribute.

iNumIgnoreSchemas

Input. The number of XML schemas that will be ignored during XML

schema validation if they are referred to by an SCH attribute in XDS.

piIgnoreSchemas

Input. The list of XML schemas that will be ignored during XML schema

validation if they are referred to by an SCH attribute in XDS.

iNumMapSchemas

Input. The number of XML schemas that will be mapped during XML

schema validation. The first schema in the schema map pair represents a

118 Data Movement Utilities Guide and Reference

schema that is referred to by an SCH attribute in an XDS. The second

schema in the pair represents the schema that should be used to perform

schema validation.

piMapSchemas

Input. The list of XML schema pairs, where each pair represents a mapping

of one schema to a different one. The first schema in the pair represents a

schema that is referred to by an SCH attribute in an XDS. The second

schema in the pair represents the schema that should be used to perform

schema validation.

db2DMUXmlValidateSchema data structure parameters

piSchema

Input. The SQL identifier of the XML schema to use.

db2DMUXmlValidate data structure parameters

iUsing

Input. A specification of what to use to perform XML schema validation.

Valid values found in the db2ApiDf header file in the include directory,

are:

- DB2DMU_XMLVAL_XDS

Validation should occur according to the XDS. This corresponds to

the CLP ″XMLVALIDATE USING XDS″ clause.

- DB2DMU_XMLVAL_SCHEMA

Validation should occur according to a specified schema. This

corresponds to the CLP ″XMLVALIDATE USING SCHEMA″ clause.

- DB2DMU_XMLVAL_SCHEMALOC_HINTS

Validation should occur according to schemaLocation hints found

within the XML document. This corresponds to the

″XMLVALIDATE USING SCHEMALOCATION HINTS″ clause.

piXdsArgs

Input. Pointer to a db2DMUXmlValidateXds structure, representing

arguments that correspond to the CLP ″XMLVALIDATE USING XDS″

clause.

 This parameter applies only when the iUsing parameter in the same

structure is set to DB2DMU_XMLVAL_XDS.

piSchemaArgs

Input. Pointer to a db2DMUXmlValidateSchema structure, representing

arguments that correspond to the CLP ″XMLVALIDATE USING SCHEMA″

clause.

 This parameter applies only when the iUsing parameter in the same

structure is set to DB2DMU_XMLVAL_SCHEMA.

db2gImportStruct data structure specific parameters

iDataFileNameLen

Input. Specifies the length in bytes of piDataFileName parameter.

iFileTypeLen

Input. Specifies the length in bytes of piFileType parameter.

iMsgFileNameLen

Input. Specifies the length in bytes of piMsgFileName parameter.

Chapter 3. Import utility 119

Usage notes

Before starting an import operation, you must complete all table operations and

release all locks in one of two ways:

v Close all open cursors that were defined with the WITH HOLD clause, and

commit the data changes by executing the COMMIT statement.

v Roll back the data changes by executing the ROLLBACK statement.

The import utility adds rows to the target table using the SQL INSERT statement.

The utility issues one INSERT statement for each row of data in the input file. If an

INSERT statement fails, one of two actions result:

v If it is likely that subsequent INSERT statements can be successful, a warning

message is written to the message file, and processing continues.

v If it is likely that subsequent INSERT statements will fail, and there is potential

for database damage, an error message is written to the message file, and

processing halts.

The utility performs an automatic COMMIT after the old rows are deleted during a

REPLACE or a REPLACE_CREATE operation. Therefore, if the system fails, or the

application interrupts the database manager after the table object is truncated, all

of the old data is lost. Ensure that the old data is no longer needed before using

these options.

If the log becomes full during a CREATE, REPLACE, or REPLACE_CREATE

operation, the utility performs an automatic COMMIT on inserted records. If the

system fails, or the application interrupts the database manager after an automatic

COMMIT, a table with partial data remains in the database. Use the REPLACE or

the REPLACE_CREATE option to rerun the whole import operation, or use

INSERT with the iRestartcount parameter set to the number of rows successfully

imported.

By default, automatic COMMITs are not performed for the INSERT or the

INSERT_UPDATE option. They are, however, performed if the *piCommitcount

parameter is not zero. A full log results in a ROLLBACK.

Whenever the import utility performs a COMMIT, two messages are written to the

message file: one indicates the number of records to be committed, and the other is

written after a successful COMMIT. When restarting the import operation after a

failure, specify the number of records to skip, as determined from the last

successful COMMIT.

The import utility accepts input data with minor incompatibility problems (for

example, character data can be imported using padding or truncation, and numeric

data can be imported with a different numeric data type), but data with major

incompatibility problems is not accepted.

One cannot REPLACE or REPLACE_CREATE an object table if it has any

dependents other than itself, or an object view if its base table has any dependents

(including itself). To replace such a table or a view, do the following:

1. Drop all foreign keys in which the table is a parent.

2. Run the import utility.

3. Alter the table to recreate the foreign keys.

120 Data Movement Utilities Guide and Reference

If an error occurs while recreating the foreign keys, modify the data to maintain

referential integrity.

Referential constraints and foreign key definitions are not preserved when creating

tables from PC/IXF files. (Primary key definitions are preserved if the data was

previously exported using SELECT *.)

Importing to a remote database requires enough disk space on the server for a

copy of the input data file, the output message file, and potential growth in the

size of the database.

If an import operation is run against a remote database, and the output message

file is very long (more than 60 KB), the message file returned to the user on the

client may be missing messages from the middle of the import operation. The first

30 KB of message information and the last 30 KB of message information are

always retained.

Non-default values for piDataDescriptor, or specifying an explicit list of table

columns in piLongActionString, makes importing to a remote database slower.

The database table or hierarchy must exist before data in the ASC, DEL, or WSF

file formats can be imported; however, if the table does not already exist, IMPORT

CREATE or IMPORT REPLACE_CREATE creates the table when it imports data

from a PC/IXF file. For typed tables, IMPORT CREATE can create the type

hierarchy and the table hierarchy as well.

PC/IXF import should be used to move data (including hierarchical data) between

databases. If character data containing row separators is exported to a delimited

ASCII (DEL) file and processed by a text transfer program, fields containing the

row separators will shrink or expand.

The data in ASC and DEL files is assumed to be in the code page of the client

application performing the import. PC/IXF files, which allow for different code

pages, are recommended when importing data in different code pages. If the

PC/IXF file and the import utility are in the same code page, processing occurs as

for a regular application. If the two differ, and the FORCEIN option is specified,

the import utility assumes that data in the PC/IXF file has the same code page as

the application performing the import. This occurs even if there is a conversion

table for the two code pages. If the two differ, the FORCEIN option is not

specified, and there is a conversion table, all data in the PC/IXF file will be

converted from the file code page to the application code page. If the two differ,

the FORCEIN option is not specified, and there is no conversion table, the import

operation will fail. This applies only to PC/IXF files on DB2 for AIX clients.

For table objects on an 8KB page that are close to the limit of 1012 columns, import

of PC/IXF data files may cause DB2 to return an error, because the maximum size

of an SQL statement was exceeded. This situation can occur only if the columns

are of type CHAR, VARCHAR, or CLOB. The restriction does not apply to import

of DEL or ASC files.

DB2 Connect can be used to import data to DRDA servers such as DB2 for

OS/390, DB2 for VM and VSE, and DB2 for OS/400. Only PC/IXF import (INSERT

option) is supported. The restartcnt parameter, but not the commitcnt parameter, is

also supported.

Chapter 3. Import utility 121

When using the CREATE option with typed tables, create every sub-table defined

in the PC/IXF file; sub-table definitions cannot be altered. When using options

other than CREATE with typed tables, the traversal order list enables one to

specify the traverse order; therefore, the traversal order list must match the one

used during the export operation. For the PC/IXF file format, one need only

specify the target sub-table name, and use the traverse order stored in the file. The

import utility can be used to recover a table previously exported to a PC/IXF file.

The table returns to the state it was in when exported.

Data cannot be imported to a system table, a declared temporary table, a created

temporary table, or a summary table.

Views cannot be created through the import utility.

On the Windows operating system:

v Importing logically split PC/IXF files is not supported.

v Importing bad format PC/IXF or WSF files is not supported.

Federated considerations

When using the db2Import API and the INSERT, UPDATE, or INSERT_UPDATE

parameters, you must ensure that you have CONTROL privilege on the

participating nickname. You must ensure that the nickname you wish to use when

doing an import operation already exists.

Import sessions - CLP examples

Example 1
The following example shows how to import information frommyfile.ixf to the

STAFF table:

 db2 import from myfile.ixf of ixf messages msg.txt insert into staff

SQL3150N The H record in the PC/IXF file has product "DB2 01.00", date

"19970220", and time "140848".

SQL3153N The T record in the PC/IXF file has name "myfile",

qualifier " ", and source " ".

SQL3109N The utility is beginning to load data from file "myfile".

SQL3110N The utility has completed processing. "58" rows were read from the

input file.

SQL3221W ...Begin COMMIT WORK. Input Record Count = "58".

SQL3222W ...COMMIT of any database changes was successful.

SQL3149N "58" rows were processed from the input file. "58" rows were

successfully inserted into the table. "0" rows were rejected.

Example 2
The following example shows how to import into a table that has identity

columns:

TABLE1 has 4 columns:

v C1 VARCHAR(30)

v C2 INT GENERATED BY DEFAULT AS IDENTITY

122 Data Movement Utilities Guide and Reference

v C3 DECIMAL(7,2)

v C4 CHAR(1)

TABLE2 is the same as TABLE1, except that C2 is a GENERATED ALWAYS

identity column.

Data records in DATAFILE1 (DEL format):

 "Liszt"

 "Hummel",,187.43, H

 "Grieg",100, 66.34, G

 "Satie",101, 818.23, I

Data records in DATAFILE2 (DEL format):

 "Liszt", 74.49, A

 "Hummel", 0.01, H

 "Grieg", 66.34, G

 "Satie", 818.23, I

The following command generates identity values for rows 1 and 2, since no

identity values are supplied in DATAFILE1 for those rows. Rows 3 and 4, however,

are assigned the user-supplied identity values of 100 and 101, respectively.

 db2 import from datafile1.del of del replace into table1

To import DATAFILE1 into TABLE1 so that identity values are generated for all

rows, issue one of the following commands:

 db2 import from datafile1.del of del method P(1, 3, 4)

 replace into table1 (c1, c3, c4)

 db2 import from datafile1.del of del modified by identityignore

 replace into table1

To import DATAFILE2 into TABLE1 so that identity values are generated for each

row, issue one of the following commands:

 db2 import from datafile2.del of del replace into table1 (c1, c3, c4)

 db2 import from datafile2.del of del modified by identitymissing

 replace into table1

If DATAFILE1 is imported into TABLE2 without using any of the identity-related

file type modifiers, rows 1 and 2 will be inserted, but rows 3 and 4 will be rejected,

because they supply their own non-NULL values, and the identity column is

GENERATED ALWAYS.

Example 3

The following example shows how to import into a table that has null indicators:

TABLE1 has 5 columns:

v COL1 VARCHAR 20 NOT NULL WITH DEFAULT

v COL2 SMALLINT

v COL3 CHAR 4

v COL4 CHAR 2 NOT NULL WITH DEFAULT

v COL5 CHAR 2 NOT NULL

ASCFILE1 has 6 elements:

v ELE1 positions 01 to 20

v ELE2 positions 21 to 22

v ELE5 positions 23 to 23

Chapter 3. Import utility 123

v ELE3 positions 24 to 27

v ELE4 positions 28 to 31

v ELE6 positions 32 to 32

v ELE6 positions 33 to 40

Data Records:

 1...5....10...15...20...25...30...35...40

 Test data 1 XXN 123abcdN

 Test data 2 and 3 QQY wxyzN

 Test data 4,5 and 6 WWN6789 Y

The following command imports records from ASCFILE1 into TABLE1:

 db2 import from ascfile1 of asc

 method L (1 20, 21 22, 24 27, 28 31)

 null indicators (0, 0, 23, 32)

 insert into table1 (col1, col5, col2, col3)

Note:

1. Since COL4 is not provided in the input file, it will be inserted into TABLE1

with its default value (it is defined NOT NULL WITH DEFAULT).

2. Positions 23 and 32 are used to indicate whether COL2 and COL3 of TABLE1

will be loaded NULL for a given row. If there is a Y in the column’s null

indicator position for a given record, the column will be NULL. If there is an N,

the data values in the column’s data positions of the input record (as defined in

L(........)) are used as the source of column data for the row. In this example,

neither column in row 1 is NULL; COL2 in row 2 is NULL; and COL3 in row 3

is NULL.

3. In this example, the NULL INDICATORS for COL1 and COL5 are specified as

0 (zero), indicating that the data is not nullable.

4. The NULL INDICATOR for a given column can be anywhere in the input

record, but the position must be specified, and the Y or N values must be

supplied.

124 Data Movement Utilities Guide and Reference

Chapter 4. Load utility

Load overview

The load utility is capable of efficiently moving large quantities of data into newly

created tables, or into tables that already contain data. The utility can handle most

data types, including XML, large objects (LOBs), and user-defined types (UDTs).

The load utility is faster than the import utility, because it writes formatted pages

directly into the database, while the import utility performs SQL INSERTs. The

load utility does not fire triggers, and does not perform referential or table

constraints checking (other than validating the uniqueness of the indexes).

The load process consists of four distinct phases (see Figure 3):

1. Load

During the load phase, data is loaded into the table, and index keys and table

statistics are collected, if necessary. Save points, or points of consistency, are

established at intervals specified through the SAVECOUNT parameter in the

LOAD command. Messages are generated, indicating how many input rows

were successfully loaded at the time of the save point.

2. Build

During the build phase, indexes are produced based on the index keys

collected during the load phase. The index keys are sorted during the load

phase, and index statistics are collected (if the STATISTICS USE PROFILE

option was specified, and profile indicates collecting index statistics). The

statistics are similar to those collected through the RUNSTATS command.

3. Delete

During the delete phase, the rows that caused a unique or primary key

violation are removed from the table. These deleted rows are stored in the load

exception table, if one was specified.

4. Index copy

During the index copy phase, the index data is copied from a system

temporary table space to the original table space. This will only occur if a

system temporary table space was specified for index creation during a load

operation with the READ ACCESS option specified.

Note: After you invoke the load utility, you can use the LIST UTILITIES command

to monitor the progress of the load operation.

The following information is required when loading data:

v The path and the name of the input file, named pipe, or device.

v The name or alias of the target table.

v The format of the input source. This format can be DEL, ASC, PC/IXF, or

CURSOR.

Load
Phase
Starts

Load
Phase
Ends

Build
Phase
Starts

Delete
Phase
Starts

Build
Phase
Ends

Phase
Ends

Delete Index Copy
Phase
Starts

Index Copy
Phase
Ends

Figure 3. The Four Phases of the Load Process: Load, Build, Delete, and Index Copy

© Copyright IBM Corp. 1993, 2009 125

v Whether the input data is to be appended to the table, or is to replace the

existing data in the table.

v A message file name, if the utility is invoked through the application

programming interface (API), db2Load.

Load modes

v INSERT
In this mode, load appends input data to the table without making any changes

to the existing data.

v REPLACE
In this mode, load deletes existing data from the table and populates it with the

input data.

v RESTART
In this mode, an interrupted load is resumed. In most cases, the load is resumed

from the phase it failed in. If that phase was the load phase, the load is resumed

from the last successful consistency point.

v TERMINATE
In this mode, a failed load operation is rolled back.

The options you can specify include:

v That the data to be loaded resides on the client, if the load utility is invoked

from a remotely connected client. Note that XML and LOB data are always read

from the server, even you specify the CLIENT option.

v The method to use for loading the data: column location, column name, or

relative column position.

v How often the utility is to establish consistency points.

v The names of the table columns into which the data is to be inserted.

v Whether or not preexisting data in the table can be queried while the load

operation is in progress.

v Whether the load operation should wait for other utilities or applications to

finish using the table or force the other applications off before proceeding.

v An alternate system temporary table space in which to build the index.

v The paths and the names of the input files in which LOBs are stored.

Note: The load utility does not honor the COMPACT lob option.

v A message file name. During load operations, you can specify that message files

be created to contain the error, warning, and informational messages associated

with those operations. Specify the name of these files with the MESSAGES

parameter.

Note:

1. You can only view the contents of a message file after the operation is

finished. If you wish to view load messages while a load operation is

running, you can use the LOAD QUERY command.

2. Each message in a message file begins on a new line and contains

information provided by the DB2 message retrieval facility.
v Whether column values being loaded have implied decimal points.

v Whether the utility should modify the amount of free space available after a

table is loaded.

v Whether statistics are to be gathered during the load process. This option is only

supported if the load operation is running in REPLACE mode. Statistics are

126 Data Movement Utilities Guide and Reference

collected according to the profile defined for the table. The profile must be

created by the RUNSTATS command before the LOAD command is executed. If

the profile does not exist and the load operation is instructed to collect statistics

according to the profile, the load will fail, and an error message will be returned.

If data is appended to a table, statistics are not collected. To collect current

statistics on an appended table, invoke the RUNSTATS utility following

completion of the load process. If gathering statistics on a table with a unique

index, and duplicate keys are deleted during the delete phase, statistics are not

updated to account for the deleted records. If you expect to have a significant

number of duplicate records, do not collect statistics during the load operation.

Instead, invoke the RUNSTATS utility following completion of the load process.

v Whether to keep a copy of the changes made. This is done to enable rollforward

recovery of the database. This option is not supported if rollforward recovery is

disabled for the database; that is, if the database configuration parameters

logarchmeth1 and logarchmeth2 are set to OFF. If no copy is made, and rollforward

recovery is enabled, the table space is left in Backup Pending state at the

completion of the load operation.

Logging is required for fully recoverable databases. The load utility almost

completely eliminates the logging associated with the loading of data. In place of

logging, you have the option of making a copy of the loaded portion of the

table. If you have a database environment that allows for database recovery

following a failure, you can do one of the following:

– Explicitly request that a copy of the loaded portion of the table be made.

– Take a backup of the table spaces in which the table resides immediately after

the completion of the load operation.

If the database configuration parameter logindexbuild is set, and if the load

operation is invoked with the COPY YES recoverability option and the

INCREMENTAL indexing option, the load logs all index modifications. The

benefit of using these options is that when you roll forward through the log

records for this load, you also recover the indexes (whereas normally the indexes

are not recovered unless the load uses the REBUILD indexing mode).

If you are loading a table that already contains data, and the database is

non-recoverable, ensure that you have a backed-up copy of the database, or the

table spaces for the table being loaded, before invoking the load utility, so that

you can recover from errors.

If you want to perform a sequence of multiple load operations on a recoverable

database, the sequence of operations will be faster if you specify that each load

operation is non-recoverable, and take a backup at the end of the load sequence,

than if you invoke each of the load operations with the COPY YES option. You

can use the NONRECOVERABLE option to specify that a load transaction is to

be marked as non-recoverable, and that it will not be possible to recover it by a

subsequent rollforward operation. The rollforward utility will skip the

transaction, and will mark the table into which data was being loaded as

″invalid″. The utility will also ignore any subsequent transactions against that

table. After the rollforward operation is completed, such a table can only be

dropped (see Figure 4 on page 128). With this option, table spaces are not put in

backup pending state following the load operation, and a copy of the loaded

data does not have to be made during the load operation.

Chapter 4. Load utility 127

v The fully qualified path to be used when creating temporary files during a load

operation. The name is specified by the TEMPFILES PATH parameter of the

LOAD command. The default value is the database path. The path resides on

the server machine, and is accessed by the DB2 instance exclusively. Therefore,

any path name qualification given to this parameter must reflect the directory

structure of the server, not the client, and the DB2 instance owner must have

read and write permission on the path.

Privileges and authorities required to use load

Privileges enable users to create or access database resources. Authority levels

provide a method of grouping privileges and higher-level database manager

maintenance and utility operations. Together, these act to control access to the

database manager and its database objects. Users can access only those objects for

which they have the appropriate authorization; that is, the required privilege or

authority.

To load data into a table, you must have one of the following:

v DATAACCESS authority

v LOAD or DBADM authority on the database and

– INSERT privilege on the table when the load utility is invoked in INSERT

mode, TERMINATE mode (to terminate a previous load insert operation), or

RESTART mode (to restart a previous load insert operation)

– INSERT and DELETE privilege on the table when the load utility is invoked

in REPLACE mode, TERMINATE mode (to terminate a previous load replace

operation), or RESTART mode (to restart a previous load replace operation)

– INSERT privilege on the exception table, if such a table is used as part of the

load operation.

– SELECT privilege on SYSCAT.TABLES is required in some cases where LOAD

queries the catalog tables.

Since all load processes (and all DB2 server processes, in general), are owned by

the instance owner, and all of these processes use the identification of the instance

owner to access needed files, the instance owner must have read access to input

data files. These input data files must be readable by the instance owner, regardless

of who invokes the command.

If the REPLACE option is specified, the session authorization ID must have the

authority to drop the table.

On Windows, and Windows.NET operating systems where DB2 is running as a

Windows service, if you are loading data from files that reside on a network drive,

you must configure the DB2 service to run under a user account that has read

access to these files.

full DB
restore

rollforward
begins

load to table X
ignored

transaction to
table X ignored

rollforward
ends

table X
dropped

(recovery time-line)

Figure 4. Non-recoverable Processing During a Roll Forward Operation

128 Data Movement Utilities Guide and Reference

Note:

v To load data into a table that has protected columns, the session authorization

ID must have LBAC credentials that allow write access to all protected columns

in the table.

v To load data into a table that has protected rows, the session authorization ID

must have been granted a security label for write access that is part of the

security policy protecting the table.

LOAD authority

Users having LOAD authority at the database level, as well as INSERT privilege on

a table, can use the LOAD command to load data into a table.

Note: Having DATAACCESS authority gives a user full access to the LOAD

command.

Users having LOAD authority at the database level, as well as INSERT privilege on

a table, can LOAD RESTART or LOAD TERMINATE if the previous load operation

is a load to insert data.

Users having LOAD authority at the database level, as well as the INSERT and

DELETE privileges on a table, can use the LOAD REPLACE command.

If the previous load operation was a load replace, the DELETE privilege must also

have been granted to that user before the user can LOAD RESTART or LOAD

TERMINATE.

If the exception tables are used as part of a load operation, the user must have

INSERT privilege on the exception tables.

The user with this authority can perform QUIESCE TABLESPACES FOR TABLE,

RUNSTATS, and LIST TABLESPACES commands.

Loading data

The load utility is capable of efficiently moving large quantities of data into newly

created tables, or into tables that already contain data.

Before invoking the load utility, you must be connected to (or be able to implicitly

connect to) the database into which the data will be loaded. Since the utility will

issue a COMMIT statement, you should complete all transactions and release all

locks by issuing either a COMMIT or a ROLLBACK statement before invoking the

load utility. Data is loaded in the sequence that appears in the input file, except

when using multidimensional clustering (MDC) tables, partitioned tables, or the

anyorder file type modifier. If a particular sequence is desired, sort the data before

attempting a load operation. If clustering is required, the data should be sorted on

the clustering index prior to loading. When loading data into multidimensional

clustered tables (MDC), sorting is not required prior to the load operation, and

data is clustered according to the MDC table definition. When loading data into

partitioned tables, sorting is not required prior to the load operation, and data is

partitioned according to the table definition.

These are some of the restrictions that apply to the load utility (i.e., this list is not

exhaustive):

v Loading data into nicknames is not supported.

Chapter 4. Load utility 129

v Loading data into typed tables, or tables with structured type columns, is not

supported.

v Loading data into declared temporary tables and created temporary tables is not

supported.

v XML data can only be read from the server side; if you want to have the XML

files read from the client, use the import utility.

v You cannot create or drop tables in a table space that is in Backup Pending state.

v You cannot load data into a database accessed through DB2 Connect or a server

level prior to DB2 Version 2. Options that are only available with the current

cannot be used with a server from the previous release.

v If an error occurs during a LOAD REPLACE operation, the original data in the

table is lost. Retain a copy of the input data to allow the load operation to be

restarted.

v Triggers are not activated on newly loaded rows. Business rules associated with

triggers are not enforced by the load utility.

v Loading encrypted data is not supported.

These are some of the restrictions that apply to the load utility when loading into a

partitioned table (i.e., this list is not exhaustive):

v Consistency points are not supported when the number of partitioning agents is

greater than one.

v Loading data into a subset of data partitions while keeping the remaining data

partitions fully online is not supported.

v The exception table used by a load operation or a set integrity pending

operation cannot be partitioned.

v A unique index cannot be rebuilt when the load utility is running in insert mode

or restart mode, and the load target table has any detached dependents.

The load utility can be invoked through the command line processor (CLP), the

Load wizard in the Control Center, or an application programming interface (API)

db2Load.

Using the Load wizard

1. From the Control Center, expand the object tree until you find the Tables folder.

2. Click on the Tables folder. Any existing tables are displayed in the pane on the

right side of the window (the contents pane).

3. In the contents pane, right-click on the table you want, and select Load from

the pop-up menu. The Load wizard opens.

4. Specify the required information on each page of the wizard to successfully

load your data.

Detailed information about the Load wizard is provided through its online help

facility.

Issuing a LOAD command by using the CLP

The following is an example of a LOAD command issued through the CLP:

 db2 load from stafftab.ixf of ixf messages staff.msgs

 insert into userid.staff copy yes use tsm data buffer 4000

In this example:

v Any warning or error messages are placed in the staff.msgs file.

130 Data Movement Utilities Guide and Reference

v A copy of the changes made is stored in Tivoli® Storage Manager (TSM).

v Four thousand pages of buffer space are to be used during the load operation.

The following is another example of a LOAD command issued through the CLP:

 db2 load from stafftab.ixf of ixf messages staff.msgs

 tempfiles path /u/myuser replace into staff

In this example:

v The table data is being replaced.

v The TEMPFILES PATH parameter is used to specify /u/myuser as the server path

into which temporary files will be written.

Note: These examples use relative path names for the load input file. Relative path

names are only allowed on calls from a client on the same database partition as the

database. The use of fully qualified path names is recommended.

After you invoke the load utility, you can use the LIST UTILITIES command to

monitor the progress of the load operation. In the case of a load operation

performed in either INSERT mode, REPLACE mode, or RESTART mode, detailed

progress monitoring support is available. Issue the LIST UTILITIES command with

the SHOW DETAILS option to view detailed information about the current load

phase. Details are not available for a load operation performed in TERMINATE

mode. The LIST UTILITIES command will simply show that a load terminate

utility is currently running.

A load operation maintains unique constraints, range constraints for partitioned

tables, generated columns, and LBAC security rules. For all other constraints, the

table is placed in the Set Integrity Pending state at the beginning of a load

operation. After the load operation is complete, the SET INTEGRITY statement

must be used to take the table out of Set Integrity Pending state.

Loading XML data

The load utility can be used for the efficient movement of large volumes of XML

data into tables.

When loading data into an XML table column, you can use the XML FROM option

to specify the paths of the input XML data file or files. For example, to load data

from an XML file /home/user/xmlpath/xmlfile1.xml you could use the following

command:

 LOAD FROM data1.del OF DEL XML FROM /home/user/xmlpath INSERT INTO USER.T1

The delimited ASCII input file data1.del contains an XML data specifier (XDS) that

describes the location of the XML data to load. For example, the following XDS

describes an XML document at offset 123 bytes in file xmldata.ext that is 456 bytes

in length:

<XDS FIL=’xmldata.ext’ OFF=’123’ LEN=’456’ />

Loading XML data using a declared cursor is supported. The following example

declares a cursor and uses the cursor and the LOAD command to add data from

the table CUSTOMERS into the table LEVEL1_CUSTOMERS:

DECLARE cursor_income_level1 CURSOR FOR

 SELECT * FROM customers

 WHERE XMLEXISTS(’$DOC/customer[income_level=1]’);

LOAD FROM cursor_income_level1 OF CURSOR INSERT INTO level1_customers;

Chapter 4. Load utility 131

The ANYORDER file type modifier of the LOAD command is supported for

loading XML data into an XML column.

Loading XML data in a partitioned database environment

For tables that are distributed among database partitions, you can load XML data

from XML data files into the tables in parallel. When loading XML data from files

into tables, the XML data files must be read-accessible to all the database partitions

where loading is taking place

Validating inserted documents against schemas

The XMLVALIDATE option allows XML documents to be validated against XML

schemas as they are loaded. In the following example, incoming XML documents

are validated against the schema identified by the XDS in the delimited ASCII

input file data2.del:

 LOAD FROM data2.del OF DEL XML FROM /home/user/xmlpath XMLVALIDATE

 USING XDS INSERT INTO USER.T2

In this case, the XDS contains an SCH attribute with the fully qualified SQL

identifier of the XML schema to use for validation, ″S1.SCHEMA_A″:

<XDS FIL=’xmldata.ext’ OFF=’123’ LEN=’456’ SCH=’S1.SCHEMA_A’ />

Specifying parse options

You can use the XMLPARSE option to specify whether whitespace in the loaded

XML documents is preserved or stripped. In the following example, all loaded

XML documents are validated against the schema with SQL identifier

″S2.SCHEMA_A″ and these documents are parsed with whitespace preserved:

 LOAD FROM data2.del OF DEL XML FROM /home/user/xmlpath XMLPARSE PRESERVE

 WHITESPACE XMLVALIDATE USING SCHEMA S2.SCHEMA_A INSERT INTO USER.T1

Load considerations for partitioned tables

All of the existing load features are supported when the target table is partitioned

with the exception of the following general restrictions:

v Consistency points are not supported when the number of partitioning agents is

greater than one.

v Loading data into a subset of data partitions while the remaining data partitions

remain fully online is not supported.

v The exception table used by a load operation cannot be partitioned.

v An exception table cannot be specified if the target table contains an XML

column.

v A unique index cannot be rebuilt when the load utility is running in insert mode

or restart mode, and the load target table has any detached dependents.

v Similar to loading MDC tables, exact ordering of input data records is not

preserved when loading partitioned tables. Ordering is only maintained within

the cell or data partition.

v Load operations utilizing multiple formatters on each database partition only

preserve approximate ordering of input records. Running a single formatter on

each database partition, groups the input records by cell or table partitioning

key. To run a single formatter on each database partition, explicitly request

CPU_PARALLELISM of 1.

132 Data Movement Utilities Guide and Reference

General load behavior
The load utility inserts data records into the correct data partition. There is no

requirement to use an external utility, such as a splitter, to partition the input data

before loading.

The load utility does not access any detached or attached data partitions. Data is

inserted into visible data partitions only. Visible data partitions are neither attached

nor detached. In addition, a load replace operation does not truncate detached or

attached data partitions. Since the load utility acquires locks on the catalog system

tables, the load utility waits for any uncommitted ALTER TABLE transactions.

Such transactions acquire an exclusive lock on the relevant rows in the catalog

tables, and the exclusive lock must terminate before the load operation can

proceed. This means that there can be no uncommitted ALTER TABLE ...ATTACH,

DETACH, or ADD PARTITION transactions while load operation is running. Any

input source records destined for an attached or detached data partition are

rejected, and can be retrieved from the exception table if one is specified. An

informational message is written to the message file to indicate some of the target

table data partitions were in an attached or detached state. Locks on the relevant

catalog table rows corresponding to the target table prevent users from changing

the partitioning of the target table by issuing any ALTER TABLE ...ATTACH,

DETACH, or ADD PARTITION operations while the load utility is running.

Handling of invalid rows
When the load utility encounters a record that does not belong to any of the visible

data partitions the record is rejected and the load utility continues processing. The

number of records rejected because of the range constraint violation is not

explicitly displayed, but is included in the overall number of rejected records.

Rejecting a record because of the range violation does not increase the number of

row warnings. A single message (SQL0327N) is written to the load utility message

file indicating that range violations are found, but no per-record messages are

logged. In addition to all columns of the target table, the exception table includes

columns describing the type of violation that had occurred for a particular row.

Rows containing invalid data, including data that cannot be partitioned, are

written to the dump file.

Because exception table inserts are expensive, you can control which constraint

violations are inserted into the exception table. For instance, the default behavior of

the load utility is to insert rows that were rejected because of a range constraint or

unique constraint violation, but were otherwise valid, into the exception table. You

can turn off this behavior by specifying, respectively, NORANGEEXC or

NOUNIQUEEXC with the FOR EXCEPTION clause. If you specify that these

constraint violations should not be inserted into the exception table, or you do not

specify an exception table, information about rows violating the range constraint or

unique constraint is lost.

History file
If the target table is partitioned, the corresponding history file entry does not

include a list of the table spaces spanned by the target table. A different operation

granularity identifier (’R’ instead of ’T’) indicates that a load operation ran against

a partitioned table.

Terminating a load operation
Terminating a load replace completely truncates all visible data partitions,

terminating a load insert truncates all visible data partitions to their lengths before

the load. Indexes are invalidated during a termination of an ALLOW READ

ACCESS load operation that failed in the load copy phase. Indexes are also

Chapter 4. Load utility 133

invalidated when terminating an ALLOW NO ACCESS load operation that

touched the index (It is invalidated because the indexing mode is rebuild, or a key

was inserted during incremental maintenance leaving the index in an inconsistent

state). Loading data into multiple targets does not have any effect on load recovery

operations except for the inability to restart the load operation from a consistency

point taken during the load phase In this case, the SAVECOUNT load option is

ignored if the target table is partitioned. This behavior is consistent with loading

data into a MDC target table.

Generated columns
If a generated column is in any of the partitioning, dimension, or distribution keys,

the generatedoverride file type modifier is ignored and the load utility generates

values as if the generatedignore file type modifier is specified. Loading an

incorrect generated column value in this case can place the record in the wrong

physical location, such as the wrong data partition, MDC block or database

partition. For example, once a record is on a wrong data partition, set integrity has

to move it to a different physical location, which cannot be accomplished during

online set integrity operations.

Data availability
The current ALLOW READ ACCESS load algorithm extends to partitioned tables.

An ALLOW READ ACCESS load operation allows concurrent readers to access the

whole table, including both loading and non-loading data partitions.

Data partition states
After a successful load, visible data partitions might change to either or both Set

Integrity Pending or Read Access Only table state, under certain conditions. Data

partitions might be placed in these states if there are constraints on the table which

the load operation cannot maintain. Such constraints might include check

constraints and detached materialized query tables. A failed load operation leaves

all visible data partitions in the Load Pending table state.

Error isolation
Error isolation at the data partition level is not supported. Isolating the errors

means continuing a load on data partitions that did not run into an error and

stopping on data partitions that did run into an error. Errors can be isolated

between different database partitions, but the load utility cannot commit

transactions on a subset of visible data partitions and roll back the remaining

visible data partitions.

Other considerations

v Incremental indexing is not supported if any of the indexes are marked invalid.

An index is considered invalid if it requires a rebuild or if detached dependents

require validation with the SET INTEGRITY statement.

v Loading into tables partitioned using any combination of partitioned by range,

distributed by hash, or organized by dimension algorithms is also supported.

v For log records which include the list of object and table space IDs affected by

the load, the size of these log records (LOAD START and COMMIT (PENDING

LIST)) could grow considerably and hence reduce the amount of active log space

available to other applications.

v When a table is both partitioned and distributed, a partitioned database load

might not affect all database partitions. Only the objects on the output database

partitions are changed.

134 Data Movement Utilities Guide and Reference

v During a load operation, memory consumption for partitioned tables increases

with the number of tables. Note, that the total increase is not linear as only a

small percentage of the overall memory requirement is proportional to the

number of data partitions.

LBAC-protected data load considerations

For a successful load operation into a table with protected rows, you must have

LBAC (label-based access control) credentials. You must also provide a valid

security label, or a security label that can be converted to a valid label, for the

security policy currently associated with the target table.

If you do not have valid LBAC credentials, the load fails and an error (SQLSTATE

42512) is returned. In cases where the input data does not contain a security label

or that security label is not in its internal binary format, you can use several file

type modifiers to allow your load to proceed.

When you load data into a table with protected rows, the target table has one

column with a data type of DB2SECURITYLABEL. If the input row of data does

not contain a value for that column, that row is rejected unless the usedefaults file

type modifier is specified in the load command, in which case the security label

you hold for write access from the security policy protecting the table is used. If

you do not hold a security label for write access, the row is rejected and processing

continues on to the next row.

When you load data into a table that has protected rows and the input data does

include a value for the column with a data type of DB2SECURITYLABEL, the

same rules are followed as when you insert data into that table. If the security

label protecting the row being loaded (the one in that row of the data file) is one

that you are able to write to, then that security label is used to protect the row. (In

other words, it is written to the column that has a data type of

DB2SECURITYLABEL.) If you are not able to write to a row protected by that

security label, what happens depends on how the security policy protecting the

source table was created:

v If the CREATE SECURITY POLICY statement that created the policy included

the option RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL, the row

is rejected.

v If the CREATE SECURITY POLICY statement did not include the option or if it

instead included the OVERRIDE NOT AUTHORIZED WRITE SECURITY

LABEL option, the security label in the data file for that row is ignored and the

security label you hold for write access is used to protect that row. No error or

warning is issued in this case. If you do not hold a security label for write

access, the row is rejected and processing continues on to the next row.

Delimiter considerations

When loading data into a column with a data type of DB2SECURITYLABEL, the

value in the data file is assumed by default to be the actual bytes that make up the

internal representation of that security label. However, some raw data might

contain newline characters which could be misinterpreted by the LOAD command

as delimiting the row. If you have this problem, use the delprioritychar file type

modifier to ensure that the character delimiter takes precedence over the row

delimiter. When you use delprioritychar, any record or column delimiters that

are contained within character delimiters are not recognized as being delimiters.

Using the delprioritychar file type modifier is safe to do even if none of the

values contain a newline character, but it does slow the load down slightly.

Chapter 4. Load utility 135

If the data being loaded is in ASC format, you might have to take an extra step in

order to prevent any trailing white space from being included in the loaded

security labels and security label names. ASCII format uses column positions as

delimiters, so this might occur when loading into variable-length fields. Use the

striptblanks file type modifier to truncate any trailing blank spaces.

Nonstandard security label values

You can also load data files in which the values for the security labels are strings

containing the values of the components in the security label, for example,

S:(ALPHA,BETA). To do so you must use the file type modifier seclabelchar.

When you use seclabelchar, a value for a column with a data type of

DB2SECURITYLABEL is assumed to be a string constant containing the security

label in the string format for security labels. If a string is not in the proper format,

the row is not inserted and a warning (SQLSTATE 01H53) is returned. If the string

does not represent a valid security label that is part of the security policy

protecting the table, the row is not inserted and a warning (SQLSTATE 01H53) is

returned.

You can also load a data file in which the values of the security label column are

security label names. To load this sort of file you must use the file type modifier

seclabelname. When you use seclabelname, all values for columns with a data type

of DB2SECURITYLABEL are assumed to be string constants containing the names

of existing security labels. If no security label exists with the indicated name for

the security policy protecting the table, the row is not loaded and a warning

(SQLSTATE 01H53) is returned.

Rejected rows

Rows that are rejected during the load are sent to either a dumpfile or an

exception table (if they are specified in the LOAD command), depending on the

reason why the rows were rejected. Rows that are rejected due to parsing errors

are sent to the dumpfile. Rows that violate security policies are sent to the

exception table.

Note: You cannot specify an exception table if the target table contains an XML

column.

Examples

For all examples, the input data file myfile.del is in DEL format. All are loading

data into a table named REPS, which was created with this statement:

create table reps (row_label db2securitylabel,

id integer,

name char(30))

security policy data_access_policy

For this example, the input file is assumed to contain security labels in the default

format:

db2 load from myfile.del of del modified by delprioritychar insert into reps

For this example, the input file is assumed to contain security labels in the security

label string format:

db2 load from myfile.del of del modified by seclabelchar insert into reps

For this example, the input file is assumed to contain security labels names for the

security label column:

db2 load from myfile.del of del modified by seclabelname insert into reps

136 Data Movement Utilities Guide and Reference

Identity column load considerations

The load utility can be used to load data into a table containing an identity column

whether or not the input data has identity column values.

If no identity-related file type modifiers are used, the utility works according to the

following rules:

v If the identity column is GENERATED ALWAYS, an identity value is generated

for a table row whenever the corresponding row in the input file is missing a

value for the identity column, or a NULL value is explicitly given. If a

non-NULL value is specified for the identity column, the row is rejected

(SQL3550W).

v If the identity column is GENERATED BY DEFAULT, the load utility makes use

of user-supplied values, if they are provided; if the data is missing or explicitly

NULL, a value is generated.

The load utility does not perform any extra validation of user-supplied identity

values beyond what is normally done for values of the identity column’s data type

(that is, SMALLINT, INT, BIGINT, or DECIMAL). Duplicate values are not

reported.

In most cases the load utility cannot guarantee that identity column values are

assigned to rows in the same order that these rows appear in the data file. Because

the assignment of identity column values is managed in parallel by the load utility,

those values are assigned in arbitrary order. The exceptions to this are as follows:

v In single-partition databases, rows are not processed in parallel when

CPU_PARALLELISM is set to 1. In this case, identity column values are

implicitly assigned in the same order that rows appear in the data file

parameter.

v In multi-partition databases, identity column values are assigned in the same

order that the rows appear in the data file if the identity column is in the

distribution key and if there is a single partitioning agent (that is, if you do not

specify multiple partitioning agents or the anyorder file type modifier).

When loading a table in a partitioned database where the table has an identity

column in the partitioning key and the identityoverride modifier is not specified,

the SAVECOUNT option cannot be specified. When there is an identity column in

the partitioning key and identity values are being generated, restarting a load from

the load phase on at least one database partition requires restarting the whole load

from the beginning of the load phase, which means that there can’t be any

consistency points.

Note: A load RESTART operation is not permitted if all of the following criteria

are met:

v The table being loaded is in a partitioned database environment, and it contains

at least one identity column that is either in the distribution key or is referenced

by a generated column that is part of the distribution key.

v The identityoverride modifier is not specified.

v The previous load operation that failed included loading database partitions that

failed after the load phase.

A load TERMINATE or REPLACE operation should be issued instead.

Chapter 4. Load utility 137

There are three mutually exclusive ways you can simplify the loading of data into

tables that contain an identity column: the identitymissing, the identityignore,

and the identityoverride file type modifiers.

Loading data without identity columns
The identitymissing modifier makes loading a table with an identity column more

convenient if the input data file does not contain any values (not even NULLS) for

the identity column. For example, consider a table defined with the following SQL

statement:

 create table table1 (c1 varchar(30),

 c2 int generated by default as identity,

 c3 decimal(7,2),

 c4 char(1))

If you want to load TABLE1 with data from a file (load.del) that has been

exported from a table that does not have an identity column, see the following

example:

 Robert, 45.2, J

 Mike, 76.9, K

 Leo, 23.4, I

One way to load this file would be to explicitly list the columns to be loaded

through the LOAD command as follows:

 db2 load from load.del of del replace into table1 (c1, c3, c4)

For a table with many columns, however, this syntax might be cumbersome and

prone to error. An alternate method of loading the file is to use the

identitymissing file type modifier as follows:

 db2 load from load.del of del modified by identitymissing

 replace into table1

This command would result in the three columns in the data file being loaded into

c1, c3, and c4 of TABLE1. A value will be generated for each row in c2.

Loading data with identity columns
The identityignore modifier indicates to the load utility that even though the

input data file contains data for the identity column, the data should be ignored,

and an identity value should be generated for each row. For example, a user might

want to load TABLE1, as defined above, from a data file (load.del) containing the

following data:

 Robert, 1, 45.2, J

 Mike, 2, 76.9, K

 Leo, 3, 23.4, I

If the user-supplied values of 1, 2, and 3 are not used for the identity column, you

can issue the following LOAD command:

 db2 load from load.del of del method P(1, 3, 4)

 replace into table1 (c1, c3, c4)

Again, this approach might be cumbersome and prone to error if the table has

many columns. The identityignore modifier simplifies the syntax as follows:

 db2 load from load.del of del modified by identityignore

 replace into table1

Loading data with user-supplied values
The identityoverride modifier is used for loading user-supplied values into a

138 Data Movement Utilities Guide and Reference

table with a GENERATED ALWAYS identity column. This can be quite useful

when migrating data from another database system, and the table must be defined

as GENERATED ALWAYS, or when loading a table from data that was recovered

using the DROPPED TABLE RECOVERY option on the ROLLFORWARD

DATABASE command. When this modifier is used, any rows with no data (or

NULL data) for the identity column are rejected (SQL3116W). You should also note

that when using this modifier, it is possible to violate the uniqueness property of

GENERATED ALWAYS columns.In this situation, perform a load TERMINATE

operation, followed by a subsequent load INSERT or REPLACE operation.

Generated column load considerations

You can load data into a table containing (nonidentity) generated columns whether

or not the input data has generated column values. The load utility generates the

column values.

If no generated column-related file type modifiers are used, the load utility works

according to the following rules:

v Values are created for generated columns when the corresponding row of the

data file is missing a value for the column or a NULL value is supplied. If a

non-NULL value is supplied for a generated column, the row is rejected

(SQL3550W).

v If a NULL value is created for a generated column that is not nullable, the entire

row of data is rejected (SQL0407N). This could occur if, for example, a

non-nullable generated column is defined as the sum of two table columns that

include NULL values in the data file.

There are three mutually exclusive ways you can simplify the loading of data into

tables that contain a generated column: the generatedmissing, the

generatedignore, and the generatedoverride file type modifiers.

Loading data without generated columns
The generatedmissing modifier makes loading a table with generated columns

more convenient if the input data file does not contain any values (not even

NULLS) for all generated columns present in the table. For example, consider a

table defined with the following SQL statement:

 CREATE TABLE table1 (c1 INT,

 c2 INT,

 g1 INT GENERATED ALWAYS AS (c1 + c2),

 g2 INT GENERATED ALWAYS AS (2 * c1),

 c3 CHAR(1))

If you want to load TABLE1 with data from a file (load.del) that has been

exported from a table that does not have any generated columns, see the following

example:

 1, 5, J

 2, 6, K

 3, 7, I

One way to load this file would be to explicitly list the columns to be loaded

through the LOAD command as follows:

 DB2 LOAD FROM load.del of del REPLACE INTO table1 (c1, c2, c3)

For a table with many columns, however, this syntax might be cumbersome and

prone to error. An alternate method of loading the file is to use the

generatedmissing file type modifier as follows:

Chapter 4. Load utility 139

DB2 LOAD FROM load.del of del MODIFIED BY generatedmissing

 REPLACE INTO table1

This command will result in the three columns of data file being loaded into c1, c2,

and c3 of TABLE1. Due to the generatedmissing modifier, values for columns g1

and g2 of TABLE1 will be generated automatically and will not map to any of the

data file columns.

Loading data with generated columns
The generatedignore modifier indicates to the load utility that even though the

input data file contains data for all generated columns present in the target table,

the data should be ignored, and the computed values should be loaded into each

generated column. For example, if you want to load TABLE1, as defined above,

from a data file (load.del) containing the following data:

 1, 5, 10, 15, J

 2, 6, 11, 16, K

 3, 7, 12, 17, I

The user-supplied, non-NULL values of 10, 11, and 12 (for g1), and 15, 16, and 17

(for g2) result in the row being rejected (SQL3550W) if no generated-column

related file type modifiers are used. To avoid this, the user could issue the

following LOAD command:

 DB2 LOAD FROM load.del of del method P(1, 2, 5)

 REPLACE INTO table1 (c1, c2, c3)

Again, this approach might be cumbersome and prone to error if the table has

many columns. The generatedignore modifier simplifies the syntax as follows:

 DB2 LOAD FROM load.del of del MODIFIED BY generatedignore

 REPLACE INTO table1

This command will result in the columns of data file being loaded into c1 (with the

data 1, 2, 3), c2 (with the data 5,6,7), and c3 (with the data J, K, I) of TABLE1. Due

to the generatedignore modifier, values for columns g1 and g2 of TABLE1 will be

generated automatically and the data file columns (10, 11, 12 and 15, 16, 17) will be

ignored.

Loading data with user-supplied values
The generatedoverride modifier is used for loading user-supplied values into a

table with generated columns. This can be useful when migrating data from

another database system, or when loading a table from data that was recovered

using the RECOVER DROPPED TABLE option of the ROLLFORWARD

DATABASE command. When this modifier is used, any rows with no data (or

NULL data) for non-nullable generated columns are rejected (SQL3116W).

When this modifier is used, the table is placed in the Set Integrity Pending state

after the load operation. To take the table out of Set Integrity Pending state

without verifying the user-supplied values, issue the following command:

 SET INTEGRITY FOR table-name GENERATED COLUMN IMMEDIATE

 UNCHECKED

To take the table out of the Set Integrity Pending state and force verification of the

user-supplied values, issue the following command:

 SET INTEGRITY FOR table-name IMMEDIATE CHECKED

If a generated column is in any of the partitioning, dimension, or distribution keys,

the generatedoverride modifier is ignored and the load utility generates values as

140 Data Movement Utilities Guide and Reference

if the generatedignore modifier is specified. This is done to avoid a scenario where

a user-supplied generated column value conflicts with its generated column

definition, which would place the resulting record in the wrong physical location,

such as the wrong data partition, MDC block, or database partition.

Note: There is one case where load does NOT support generating column values:

when one of the generated column expressions contains a user-defined function

that is FENCED. If you attempt to load into such a table the load operation fails.

However, you can provide your own values for these types of generated columns

by using the generatedoverride file type modifier.

Considerations for using a Version 7 or earlier client with a Version 8 or later

server
If you initiate a load operation between a Version 7 or earlier client and a Version 8

or later server, the load utility places tables with generated columns in the Set

Integrity Pending state. If a table has been placed in Set Integrity Pending state

because a Version 7 or earlier client was used to load data into a table with

generated columns, issue the following statement to remove that state and force

the generation of values:

 SET INTEGRITY FOR table-name IMMEDIATE CHECKED FORCE GENERATED;

Moving data using the CURSOR file type

By specifying the CURSOR file type when using the LOAD command, you can

load the results of an SQL query directly into a target table without creating an

intermediate exported file.

Additionally, you can load data from another database by referencing a nickname

within the SQL query, by using the DATABASE option within the DECLARE

CURSOR statement, or by using the sqlu_remotefetch_entry media entry when

using the API interface.

There are three approaches for moving data using the CURSOR file type. The first

approach uses the Command Line Processor (CLP), the second the API, and the

third uses the ADMIN_CMD procedure. The key differences between the CLP and

the ADMIN_CMD procedure are outlined in the following table.

 Table 26. Differences between the CLP and ADMIN_CMD procedure.

Differences CLP ADMIN_CMD_procedure

Syntax The query statement as well

as the source database used

by the cursor are defined

outside of the LOAD

command using a DECLARE

CURSOR statement.

The query statement as well

as the source database used

by the cursor is defined

within the LOAD command

using the LOAD from

(DATABASE database-alias

query-statement)

Chapter 4. Load utility 141

Table 26. Differences between the CLP and ADMIN_CMD procedure. (continued)

Differences CLP ADMIN_CMD_procedure

User authorization for

accessing a different database

If the data is in a different

database than the one you

currently connect to, the

DATABASE keyword must

be used in the DECLARE

CURSOR statement. You can

specify the user id and

password in the same

statement as well. If the user

id and password are not

specified in the DECLARE

CURSOR statement, the user

id and password explicitly

specified for the source

database connection are used

to access the target database.

If the data is in a different

database than the one you

are currently connected to,

the DATABASE keyword

must be used in the LOAD

command before the query

statement. The user id and

password explicitly specified

for the source database

connection are required to

access the target database.

You cannot specify a userid

or password for the source

database. Therefore, if no

userid and password were

specified when the

connection to the target

database was made, or the

userid and password

specified cannot be used to

authenticate against the

source database, the

ADMIN_CMD procedure

cannot be used to perform

the load.

To execute a LOAD FROM CURSOR operation from the CLP, a cursor must first be

declared against an SQL query. Once this is declared, you can issue the LOAD

command using the declared cursor’s name as the cursorname and CURSOR as the

file type.

For example:

1. Suppose a source and target table both reside in the same database with the

following definitions:

Table ABC.TABLE1 has 3 columns:

v ONE INT

v TWO CHAR(10)

v THREE DATE
Table ABC.TABLE2 has 3 columns:

v ONE VARCHAR

v TWO INT

v THREE DATE
Executing the following CLP commands will load all the data from

ABC.TABLE1 into ABC.TABLE2:

DECLARE mycurs CURSOR FOR SELECT TWO, ONE, THREE FROM abc.table1

 LOAD FROM mycurs OF cursor INSERT INTO abc.table2

Note: The above example shows how to load from an SQL query through the

CLP. However, loading from an SQL query can also be accomplished through

the db2Load API. Define the piSourceList of the sqlu_media_list structure to use

the sqlu_statement_entry structure and SQLU_SQL_STMT media type and define

the piFileType value as SQL_CURSOR.

142 Data Movement Utilities Guide and Reference

2. Suppose the source and target tables reside in different databases with the

following definitions:

Table ABC.TABLE1 in database ’dbsource’ has 3 columns:

v ONE INT

v TWO CHAR(10)

v THREE DATE

Table ABC.TABLE2 in database ’dbtarget’ has 3 columns:

v ONE VARCHAR

v TWO INT

v THREE DATE

Provided that you have enabled federation and cataloged the data source

(’dsdbsource’), you can declare a nickname against the source database, then

declare a cursor against this nickname, and invoke the LOAD command with the

FROM CURSOR option, as demonstrated in the following example:

CREATE NICKNAME myschema1.table1 FOR dsdbsource.abc.table1

DECLARE mycurs CURSOR FOR SELECT TWO,ONE,THREE FROM myschema1.table1

LOAD FROM mycurs OF cursor INSERT INTO abc.table2

Or, you can use the DATABASE option of the DECLARE CURSOR statement, as

demonstrated in the following example:

DECLARE mycurs CURSOR DATABASE dbsource USER dsciaraf USING mypasswd

FOR SELECT TWO,ONE,THREE FROM abc.table1

LOAD FROM mycurs OF cursor INSERT INTO abc.table2

Using the DATABASE option of the DECLARE CURSOR statement (also known as

the remotefetch media type when using the Load API) has some benefits over the

nickname approach:

Performance

Fetching of data using the remotefetch media type is tightly integrated within a

load operation. There are fewer layers of transition to fetch a record compared to

the nickname approach. Additionally, when source and target tables are distributed

identically in a multi-partition database, the load utility can parallelize the fetching

of data, which can further improve performance.

Ease of use

There is no need to enable federation, define a remote datasource, or declare a

nickname. Specifying the DATABASE option (and the USER and USING options if

necessary) is all that is required.

While this method can be used with cataloged databases, the use of nicknames

provides a robust facility for fetching from various data sources which cannot

simply be cataloged.

To support this remotefetch functionality, the load utility makes use of

infrastructure which supports the SOURCEUSEREXIT facility. The load utility

spawns a process which executes as an application to manage the connection to the

source database and perform the fetch. This application is associated with its own

transaction and is not associated with the transaction under which the load utility

is running.

Chapter 4. Load utility 143

Note:

1. The previous example shows how to load from an SQL query against a

cataloged database through the CLP using the DATABASE option of the

DECLARE CURSOR statement. However, loading from an SQL query against a

cataloged database can also be done through the db2Load API, by defining the

piSourceList and piFileTypevalues of the db2LoadStruct structure to use the

sqlu_remotefetch_entry media entry and SQLU_REMOTEFETCH media type

respectively.

2. As demonstrated in the previous example, the source column types of the SQL

query do not need to be identical to their target column types, although they

do have to be compatible.

Restrictions

When loading from a cursor defined using the DATABASE option (or equivalently

when using the sqlu_remotefetch_entry media entry with the db2Load API), the

following restrictions apply:

1. The SOURCEUSEREXIT option cannot be specified concurrently.

2. The METHOD N option is not supported.

3. The usedefaults file type modifier is not supported.

Propagating dependent immediate staging tables

If the table being loaded is an underlying table of a staging table with the

immediate propagate attribute, and if the load operation is done in insert mode,

the subsequent propagation into the dependent immediate staging tables is

incremental.

During incremental propagation, the rows corresponding to the appended rows in

the underlying tables are appended into the staging tables. Incremental

propagation is faster in the case of large underlying tables with small amounts of

appended data. Performance is also improved if the staging table is used to refresh

its dependent deferred materialized query table. There are cases in which

incremental propagation is not allowed, and the staging table is marked

incomplete. That is, the staging byte of the CONST_CHECKED column has a value

of F. In this state, the staging table can not be used to refresh its dependent

deferred materialized query table, and a full refresh is required in the materialized

query table maintenance process.

If a table is in incomplete state and the INCREMENTAL option has been specified,

but incremental propagation of the table is not possible, an error is returned. If any

of the following have taken place, the system turns off immediate data propagation

and sets the table state to incomplete:

v A load replace operation has taken place on an underlying table of the staging

table, or the NOT LOGGED INITIALLY WITH EMPTY TABLE option has been

activated after the last integrity check on the underlying table.

v The dependent materialized query table of the staging table, or the staging table

has been loaded in REPLACE or INSERT mode.

v An underlying table has been taken out of Set Integrity Pending state before the

staging table has been propagated by using the FULL ACCESS option during

integrity checking.

v An underlying table of the staging table has been checked for integrity

non-incrementally.

144 Data Movement Utilities Guide and Reference

v The table space containing the staging table or its underlying table has been

rolled forward to a point in time, and the staging table and its underlying table

reside in different table spaces.

If the staging table has a W value in the CONST_CHECKED column of the

SYSCAT.TABLES catalog, and the NOT INCREMENTAL option is not specified,

incremental propagation to the staging table takes place and the

CONST_CHECKED column of SYSCAT.TABLES is marked as U to indicate that not

all data has been verified by the system.

The following example illustrates a load insert operation into the underlying table

UT1 of staging table G1 and its dependent deferred materialized query table AST1.

In this scenario, both the integrity checking for UT1 and the refreshing of AST1 are

processed incrementally:

 LOAD FROM IMTFILE1.IXF of IXF INSERT INTO UT1;

 LOAD FROM IMTFILE2.IXF of IXF INSERT INTO UT1;

 SET INTEGRITY FOR UT1,G1 IMMEDIATE CHECKED;

 REFRESH TABLE AST1 INCREMENTAL;

Refreshing dependent immediate materialized query tables

If the underlying table of an immediate refresh materialized query table is loaded

using the INSERT option, executing the SET INTEGRITY statement on the

dependent materialized query tables defined with REFRESH IMMEDIATE results

in an incremental refresh of the materialized query table.

During an incremental refresh, the rows corresponding to the appended rows in

the underlying tables are updated and inserted into the materialized query tables.

Incremental refresh is faster in the case of large underlying tables with small

amounts of appended data. There are cases in which incremental refresh is not

allowed, and full refresh (that is, recomputation of the materialized query table

definition query) is used.

When the INCREMENTAL option is specified, but incremental processing of the

materialized query table is not possible, an error is returned if:

v A load replace operation has taken place into an underlying table of the

materialized query table or the NOT LOGGED INITIALLY WITH EMPTY

TABLE option has been activated since the last integrity check on the underlying

table.

v The materialized query table has been loaded (in either REPLACE or INSERT

mode).

v An underlying table has been taken out of Set Integrity Pending state before the

materialized query table is refreshed by using the FULL ACCESS option during

integrity checking.

v An underlying table of the materialized query table has been checked for

integrity non-incrementally.

v The materialized query table was in Set Integrity Pending state before an

upgrade.

v The table space containing the materialized query table or its underlying table

has been rolled forward to a point in time, and the materialized query table and

its underlying table reside in different table spaces.

If the materialized query table has one or more W values in the CONST_CHECKED

column of the SYSCAT.TABLES catalog, and if the NOT INCREMENTAL option is

Chapter 4. Load utility 145

not specified in the SET INTEGRITY statement, the table is incrementally refreshed

and the CONST_CHECKED column of SYSCAT.TABLES is marked U to indicate

that not all data has been verified by the system.

The following example illustrates a load insert operation into the underlying table

UTI of the materialized query table AST1. UT1 is checked for data integrity and is

placed in the no data movement mode. UT1 is put back into full access state once

the incremental refresh of AST1 is complete. In this scenario, both the integrity

checking for UT1 and the refreshing of AST1 are processed incrementally.

 LOAD FROM IMTFILE1.IXF of IXF INSERT INTO UT1;

 LOAD FROM IMTFILE2.IXF of IXF INSERT INTO UT1;

 SET INTEGRITY FOR UT1 IMMEDIATE CHECKED;

 REFRESH TABLE AST1;

Multidimensional clustering considerations

The following restrictions apply when loading data into multidimensional

clustering (MDC) tables:

v The SAVECOUNT option of the LOAD command is not supported.

v The totalfreespace file type modifier is not supported since these tables

manage their own free space.

v The anyorder file type modifier is required for MDC tables. If a load is executed

into an MDC table without the anyorder modifier, it will be explicitly enabled by

the utility.

When using the LOAD command with an MDC table, violations of unique

constraints are be handled as follows:

v If the table included a unique key prior to the load operation and duplicate

records are loaded into the table, the original record remains and the new

records are deleted during the delete phase.

v If the table did not include a unique key prior to the load operation and both a

unique key and duplicate records are loaded into the table, only one of the

records with the unique key is loaded and the others are deleted during the

delete phase.

Note: There is no explicit technique for determining which record is loaded and

which is deleted.

Performance Considerations

To improve the performance of the load utility when loading MDC tables, the

util_heap_sz database configuration parameter value should be increased. The

mdc-load algorithm performs significantly better when more memory is available

to the utility. This reduces disk I/O during the clustering of data that is performed

during the load phase. When the DATA BUFFER option of the LOAD command is

specified, its value should also be increased. If the LOAD command is being used

to load several MDC tables concurrently, util_heap_sz should be increased

accordingly.

MDC load operations always have a build phase since all MDC tables have block

indexes.

During the load phase, extra logging for the maintenance of the block map is

performed. There are approximately two extra log records per extent allocated. To

ensure good performance, the logbufsz database configuration parameter should be

set to a value that takes this into account.

146 Data Movement Utilities Guide and Reference

A system temporary table with an index is used to load data into MDC tables. The

size of the table is proportional to the number of distinct cells loaded. The size of

each row in the table is proportional to the size of the MDC dimension key. To

minimize disk I/O caused by the manipulation of this table during a load

operation, ensure that the buffer pool for the temporary table space is large

enough.

Moving data using a customized application (user exit)

The load SOURCEUSEREXIT option provides a facility through which the load

utility can execute a customized script or executable, referred to herein as a user

exit.

The purpose of the user exit is to populate one or more named pipes with data

that is simultaneously read from by the load utility. In a multi-partition database,

multiple instances of the user exit can be invoked concurrently to achieve

parallelism of the input data.

As Figure 5 shows, the load utility creates a one or more named pipes and spawns

a process to execute your customized executable. Your user exit feeds data into the

named pipe(s) while the load utility simultaneously reads.

 The data fed into the pipe must reflect the load options specified, including the file

type and any file type modifiers. The load utility does not directly read the data

files specified. Instead, the data files specified are passed as arguments to your

user exit when it is executed.

Figure 5. The load utility reads from the pipe and processes the incoming data.

Chapter 4. Load utility 147

Invoking your user exit

The user exit must reside in the bin subdirectory of the DB2 installation directory

(often known as sqllib). The load utility invokes the user exit executable with the

following command line arguments:

<base pipename> <number of source media>

<source media 1> <source media 2> ... <user exit ID>

<number of user exits> <database partition number>

Where:

<base pipename >

Is the base name for named-pipes that the load utility creates and reads

data from. The utility creates one pipe for every source file provided to the

LOAD command, and each of these pipes is appended with .xxx, where

xxx is the index of the source file provided. For example, if there are 2

source files provided to the LOAD command, and the <base pipename>

argument passed to the user exit is pipe123, then the two named pipes that

your user exit should feed with data are pipe123.000 and pipe123.001. In

a partitioned database environment, the load utility appends the database

partition (DBPARTITION) number .yyy to the base pipe name, resulting in

the pipe name pipe123.xxx.yyy..

<number of source media>

Is the number of media arguments which follow.

<source media 1> <source media 2> ...

Is the list of one or more source files specified in the LOAD command.

Each source file is placed inside double quotation marks.

<user exit ID>

Is a special value useful when the PARALLELIZE option is enabled. This

integer value (from 1 to N, where N is the total number of user exits being

spawned) identifies a particular instance of a running user exit. When the

PARALLELIZE option is not enabled, this value defaults to 1.

<number of user exits>

Is a special value useful when the PARALLELIZE option is enabled. This

value represents the total number of concurrently running user exits. When

the PARALLELIZE option is not enabled, this value defaults to 1.

<database partition number>

Is a special value useful when the PARALLELIZE option is enabled. This is

the database partition (DBPARTITION) number on which the user exit is

executing. When the PARALLELIZE option is not enabled, this value

defaults to 0.

Additional options and features

The following section describes additional SOURCEUSEREXIT facility options:

REDIRECT

This option allows you to pass data into the STDIN handle or capture data

from the STDOUT and STDERR handles of the user exit process.

INPUT FROM BUFFER <buffer>

Allows you to pass information directly into the STDIN input stream of

your user exit. After spawning the process which executes the user exit, the

load utility acquires the file-descriptor to the STDIN of this new process

and passes in the buffer provided. The user exit reads from STDIN to

148 Data Movement Utilities Guide and Reference

acquire the information. The load utility simply sends the contents of

<buffer> to the user exit using STDIN and does not interpret or modify its

contents. For example, if your user exit is designed to read two values

from STDIN, an eight-byte userid and an eight-byte password, your user

exit executable written in C might contain the following lines:

rc = read (stdin, pUserID, 8);

rc = read (stdin, pPasswd, 8);

A user could pass this information using the INPUT FROM BUFFER

option as shown in the following LOAD command:

LOAD FROM myfile1 OF DEL INSERT INTO table1

SOURCEUSEREXIT myuserexit1 REDIRECT INPUT FROM BUFFER myuseridmypasswd

Note: The load utility limits the size of <buffer> to the maximum size of a

LOB value. However, from within the command line processor (CLP), the

size of <buffer> is restricted to the maximum size of a CLP statement.

From within CLP, it is also recommended that <buffer> contain only

traditional ASCII characters. These issues can be avoided if the load utility

is invoked using the db2Load API, or if the INPUT FROM FILE option is

used instead.

INPUT FROM FILE <filename>

Allows you to pass the contents of a client side file directly into the STDIN

input stream of your user exit. This option is almost identical to the INPUT

FROM BUFFER option, however this option avoids the potential CLP

limitation. The filename must be a fully qualified client side file and must

not be larger than the maximum size of a LOB value.

OUTPUT TO FILE <filename>

Allows you to capture the STDOUT and STDERR streams from your user

exit process into a server side file. After spawning the process which

executes the user exit executable, the load utility redirects the STDOUT

and STDERR handles from this new process into the filename specified.

This option is useful for debugging and logging errors and activity within

your user exit. The filename must be a fully qualified server side file.

When the PARALLELIZE option is enabled, one file exists per user exit

and each file appends a three-digit numeric identifier, such as filename.000.

PARALLELIZE

This option can increase the throughput of data coming into the load

utility by invoking multiple user exit processes simultaneously. This option

is only applicable to a multi-partition database. The number of user exit

instances invoked is equal to the number of partitioning agents if data is to

be distributed across multiple database partitions during the load

operation, otherwise it is equal to the number of loading agents.

The <user exit ID>, <number of user exits>, and <database partition number>

arguments passed into each user exit reflect the unique identifier (1 to N), the total

number of user exits (N), and the database partition (DBPARTITION) number on

which the user exit instance is running, respectively. You should ensure that any

data written to the named pipe by each user exit process is not duplicated by the

other concurrent processes. While there are many ways your user exit application

might accomplish this, these values could be helpful to ensure data is not

duplicated. For example, if each record of data contains a unique integer column

value, your user exit application could use the <user exit ID> and <number of user

Chapter 4. Load utility 149

exits> values to ensure that each user exit instance returns a unique result set into

its named pipe. Your user exit application might use the MODULUS property in

the following way:

i = <user exit ID>

N = <number of user exits>

foreach record

{

 if ((unique-integer MOD N) == i)

 {

 write this record to my named-pipe

 }

}

The number of user exit processes spawned depends on the distribution mode

specified for database partitioning:

1. As Figure 6 on page 151 shows, one user exit process is spawned for every

pre-partitioning agent when PARTITION_AND_LOAD (default) or

PARTITION_ONLY without PARALLEL is specified. .

150 Data Movement Utilities Guide and Reference

2. As Figure 7 on page 152 shows, one user exit process is spawned for every

partitioning agent when PARTITION_AND_LOAD (default) or

PARTITION_ONLY with PARALLEL is specified.

Figure 6. The various tasks performed when PARTITION_AND_LOAD (default) or PARTITION_ONLY without

PARALLEL is specified.

Chapter 4. Load utility 151

3. As Figure 8 on page 153 shows, one user exit process is spawned for every load

agent when LOAD_ONLY or LOAD_ONLY_VERIFY_PART is specified.

Figure 7. The various tasks performed when PARTITION_AND_LOAD (default) or PARTITION_ONLY with PARALLEL

is specified.

152 Data Movement Utilities Guide and Reference

Restrictions

v The LOAD_ONLY and LOAD_ONLY_VERIFY_PART partitioned-db-cfg mode

options are not supported when the SOURCEUSEREXIT PARALLELIZE option

is not specified.

Additional considerations for load

Parallelism and loading

The load utility takes advantage of a hardware configuration in which multiple

processors or multiple storage devices are used, such as in a symmetric

multiprocessor (SMP) environment.

There are several ways in which parallel processing of large amounts of data can

take place using the load utility. One way is through the use of multiple storage

devices, which allows for I/O parallelism during the load operation (see Figure 9

on page 154). Another way involves the use of multiple processors in an SMP

environment, which allows for intra-partition parallelism (see Figure 10 on page

154). Both can be used together to provide even faster loading of data.

Figure 8. The various tasks performed when LOAD_ONLY or LOAD_ONLY_VERIFY_PART is specified.

Chapter 4. Load utility 153

Index creation during load operations

Indexes are built during the build phase of a load operation. There are four

indexing modes that can be specified in the LOAD command:

1. REBUILD. All indexes are rebuilt.

2. INCREMENTAL. Indexes are extended with new data.

3. AUTOSELECT. The load utility automatically decides between REBUILD or

INCREMENTAL mode. AUTOSELECT is the default. If a load REPLACE

operation is taking place, the REBUILD indexing mode is used. Otherwise, the

indexing mode chosen is based on the ratio of the amount of existing data in

the table to the amount of newly loaded data. If the ratio is sufficiently large,

the INCREMENTAL indexing mode is chosen. Otherwise, the REBUILD

indexing mode is chosen.

4. DEFERRED. The load utility does not attempt index creation if this mode is

specified. Indexes are marked as needing a refresh, and a rebuild might be

forced the first time they are accessed. The DEFERRED option is not allowed in

any of the following situations:

v If the ALLOW READ ACCESS option is specified (it does not maintain the

indexes and index scanners require a valid index)

v If any unique indexes are defined against the table

v If XML data is being loaded (the XML Paths index is unique and is created

by default whenever an XML column is added to a table)

Load operations that specify the ALLOW READ ACCESS option require special

consideration in terms of space usage and logging depending on the type of

Disk Disk Disk

I/O
Subagent

I/O
Subagent

I/O
Subagent

Figure 9. Taking Advantage of I/O Parallelism When Loading Data

parse,
convert fields,
build record,
insert into table

parse,
convert fields,
build record,
insert into table

Source data (DEL, ASC, IXF, CURSOR)

Database

parse,
convert fields,
build record,
insert into table

parse,
convert fields,
build record,
insert into table

Figure 10. Taking Advantage of Intra-partition Parallelism When Loading Data

154 Data Movement Utilities Guide and Reference

indexing mode chosen. When the ALLOW READ ACCESS option is specified, the

load utility keeps indexes available for queries even while they are being rebuilt.

When a load operation in ALLOW READ ACCESS mode specifies the INDEXING

MODE INCREMENTAL option, the load utility writes some log records that

protect the integrity of the index tree. The number of log records written is a

fraction of the number of inserted keys and is a number considerably less than

would be needed by a similar SQL insert operation. A load operation in ALLOW

NO ACCESS mode with the INDEXING MODE INCREMENTAL option specified

writes only a small log record beyond the normal space allocation logs.

Note: This is only true if you did not specify COPY YES and have the

logindexrebuild configuration parameter set to ON.

When a load operation in ALLOW READ ACCESS mode specifies the INDEXING

MODE REBUILD option, new indexes are built as a shadow either in the same table

space as the original index or in a system temporary table space. The original

indexes remain intact and are available during the load operation and are only

replaced by the new indexes at the end of the load operation while the table is

exclusively locked. If the load operation fails and the transaction is rolled back, the

original indexes remain intact.

By default, the shadow index is built in the same table space as the original index.

Since both the original index and the new index are maintained simultaneously,

there must be sufficient table space to hold both indexes at the same time. If the

load operation is aborted, the extra space used to build the new index is released.

If the load operation commits, the space used for the original index is released and

the new index becomes the current index. When the new indexes are built in the

same table space as the original indexes, replacing the original indexes takes place

almost instantaneously.

If the indexes are built within an SMS table space, you can see index files in the

table space directory with the .IN1 suffix and the .INX suffix. These suffixes do not

indicate which is the original index and which is the shadow index. However, if

the indexes are built in a DMS table space, you cannot see the new shadow index.

Improving index creation performance

Building new indexes in a system temporary table space
The new index can be built in a system temporary table space to avoid running

out of space in the original table space. The USE <tablespace-name> option allows

the indexes to be rebuilt in a system temporary table space when using INDEXING

MODE REBUILD and ALLOW READ ACCESS options. The system temporary

table can be an SMS or a DMS table space, but the page size of the system

temporary table space must match the page size of the original index table space.

The USE <tablespace-name> option is ignored if the load operation is not in

ALLOW READ ACCESS mode, or if the indexing mode is incompatible. The USE

<tablespace-name> option is only supported for the INDEXING MODE REBUILD

or INDEXING MODE AUTOSELECT options. If the INDEXING MODE

AUTOSELECT option is specified and the load utility selects incremental

maintenance of the indexes, the USE <tablespace-name> is ignored.

A load restart operation can use an alternate table space for building an index,

even if the original load operation did not use an alternate table space. A load

restart operation cannot be issued in ALLOW READ ACCESS mode if the original

Chapter 4. Load utility 155

load operation was not issued in ALLOW READ ACCESS mode. Load terminate

operations do not rebuild indexes, so the USE <tablespace-name> is ignored.

During the build phase of the load operation, the indexes are built in the system

temporary table space. Then, during the index copy phase, the index is copied

from the system temporary table space to the original index table space. To make

sure that there is sufficient space in the original index table space for the new

index, space is allocated in the original table space during the build phase. So, if

the load operation runs out of index space, it will do so during the build phase. If

this happens, the original index is not lost.

The index copy phase occurs after the build and delete phases. Before the index

copy phase begins, the table is locked exclusively. That is, it is unavailable for read

access throughout the index copy phase. Since the index copy phase is a physical

copy, the table might be unavailable for a significant amount of time.

Note: If either the system temporary table space or the index table space are DMS

table spaces, the read from the system temporary table space can cause random

I/O on the system temporary table space and can cause a delay. The write to the

index table space is still optimized and the DISK_PARALLELISM values are used.

Considerations for large indexes

In order to improve performance when building large indexes during a load, it can

be useful to tune the sortheap database configuration parameter. sortheap allocates

the amount of memory dedicated to the sorting of index keys during a load

operation. For example, to direct the load utility to use 4000 pages of main

memory per index for key sorting, set sortheap to 4000 pages, disconnect all

applications from the database, and then issue the LOAD command.

If an index is so large that it cannot be sorted in memory, a sort spill, or an

overflow, occurs. That is, the data is divided among several ″sort runs″ and stored

in a temporary table space that is merged later. Use the sort_overflows monitor

element to determine whether or not a sort spill has occurred. If there is no way to

avoid a sort spill by increasing the size of the sortheap parameter, ensure that the

buffer pool for temporary table spaces be large enough to minimize the amount of

disk I/O that spilling causes. Furthermore, to achieve I/O parallelism during the

merging of sort runs, it is recommended that temporary table spaces be declared

with multiple containers, each residing on a different disk device. If there is more

than one index defined on a table, memory consumption increases proportionally

because the load operation keeps all keys in memory.

Deferring index creation
Generally speaking, it is more efficient to allow indexes to be created during the

load operation by specifying either REBUILD or INCREMENTAL mode than it is

to have index creation deferred. As Figure 11 on page 157 indicates, tables are

normally built in three steps: data loading, index building, and statistics collection.

This causes multiple data I/O during the load operation, index creation (there can

be several indexes for each table), and statistics collection (which causes I/O on the

table data and on all of the indexes). A much faster alternative is to let the load

utility complete all of these tasks in one pass through the data. It should be noted,

however, that unique indexes reduce load performance if duplicates are

encountered.

156 Data Movement Utilities Guide and Reference

At certain times, deferring index creation and invoking the CREATE INDEX

statement can improve performance. Sorting during index rebuild uses up to

sortheap pages. If more space is required, TEMP buffer pool is used and

(eventually) spilled to disk. If load spills, and thus decreases performance, it might

be advisable to run LOAD with INDEXING MODE DEFERRED and re-create the

index later. CREATE INDEX creates one index at a time, reducing memory usage

while scanning the table multiple times to collect keys.

Another advantage of building indexes with a CREATE INDEX statement instead

of concurrently with the load operation is that the CREATE INDEX statement can

use multiple processes, or threads, to sort keys if INTRA PARALLEL is on. The

actual building of the index is not executed in parallel.

Resolving indexing errors when loading XML data

Load operations that fail due to indexing errors can be resolved using the db2diag

log file and the import utility together to identify and correct problem values in

the XML data.

If a load operation returns the error message SQL20305N (sqlcode -20305), this

indicates that one or more XML node values could not be indexed. The error

message will output the reason code for the error. Enter ? SQL20305N in the

command line processor to look up the explanation and user response for the

corresponding reason code.

For indexing problems during insert operations, a generated XQuery statement is

output to the db2diag log file to help locate the failing XML node values within

the document. See ″Common XML indexing issues″ for details about how to use

the XQuery statement to locate the failing XML node values.

For indexing problems during load operations, however, the generated XQuery

statements are not output to the db2diag log file. To generate these XQuery

statements the import utility must be run on the failing rows that were not loaded.

Because the rejected rows do not exist in the table, the XQuery statements cannot

be run on the failing documents. To solve this problem, a new table with the same

definition must be created without any indexes. The failing rows can then be

loaded into the new table, and the XQuery statements can then be run on the new

table to locate the failing XML node values within the documents.

Perform the following steps to resolve the indexing errors:

1. Determine which rows were rejected during the load operation using the record

numbers in the output information.

create
table

load
table

create
index A

create
index B

collect
stats

table available
for queries

Time

create
table

create
index A
(empty)

create
index B
(empty)

load, with
indexing

and statistics

table available
for queries

Time

Figure 11. Increasing load performance through concurrent indexing and statistics collection. Tables are normally built

in three steps: data loading, index building, and statistics collection. This causes multiple data I/O during the load

operation, during index creation (there can be several indexes for each table), and during statistics collection (which

causes I/O on the table data and on all of the indexes). A much faster alternative is to let the load utility complete all of

these tasks in one pass through the data.

Chapter 4. Load utility 157

2. Create a .del file containing only the rejected rows.

3. Create a new table (for example, T2) with the same columns as the original

table (T1). Do not create any indexes on the new table.

4. Load the rejected rows into the new table T2.

5. For each rejected row in the original table T1:

a. Import the rejected rows to T1 to get the SQL20305N message. The import

will stop on the first error that it encounters.

b. Look in the db2diag log file and get the generated XQuery statement. To

find the failing node values in the input document, search for the string

’SQL20305N’ in the db2diag log file and match the reason code number.

Following the reason code, you will find a set of instructions and then a

generated XQuery statement that you can use to locate the problem value in

the document that caused the error.

c. Modify the XQuery statement to use the new table T2.

d. Run the XQuery statement on T2 to locate the problem value in the

document.

e. Fix the problem value in the .xml file containing the document.

f. Return to Step a and import the rejected rows to T1 again. The row that

caused the import to stop should now be inserted successfully. If there is

another rejected row in the .del file, the import utility will stop on the next

error and output another SQL20305N message. Continue these steps until

the import runs successfully.

Example

In the following example, the index BirthdateIndex has been created on the date

data type. The REJECT INVALID VALUES option is specified, so the XML pattern

values for /Person/Confidential/Birthdate must all be valid for the date data type. If

any XML pattern value cannot be cast to this data type, an error is returned.

Using the XML documents below, five rows are supposed to be loaded but the first

and the fourth rows will be rejected because the Birthdate values cannot be

indexed. In the file person1.xml, the value March 16, 2002 is not in the correct date

format. In the file person4.xml, the value 20000-12-09 has an extra zero for the

year, so it is a valid XML date value but it is outside of the range that DB2 allows

for a year (0001 to 9999). Some of the sample output has been edited to make the

example more concise.

The five XML files to load are as follows:

person1.xml (Birthdate value is not valid)

<?xml version="1.0"?>

<Person gender="Male">

 <Name>

 <Last>Cool</Last>

 <First>Joe</First>

 </Name>

 <Confidential>

 <Age unit="years">5</Age>

 <Birthdate>March 16, 2002</Birthdate>

 <SS>111-22-3333</SS>

 </Confidential>

 <Address>5224 Rose St. San Jose, CA 95123</Address>

</Person>

person2.xml (Birthdate value is valid)

158 Data Movement Utilities Guide and Reference

<?xml version="1.0"?>

<Person gender="Male">

 <Name>

 <Last>Cool</Last>

 <First>Joe</First>

 </Name>

 <Confidential>

 <Age unit="years">5</Age>

 <Birthdate>2002-03-16</Birthdate>

 <SS>111-22-3333</SS>

 </Confidential>

 <Address>5224 Rose St. San Jose, CA 95123</Address>

</Person>

person3.xml (Birthdate value is valid)

<?xml version="1.0"?>

<Person gender="Female">

 <Name>

 <Last>McCarthy</Last>

 <First>Laura</First>

 </Name>

 <Confidential>

 <Age unit="years">6</Age>

 <Birthdate>2001-03-12</Birthdate>

 <SS>444-55-6666</SS>

 </Confidential>

 <Address>5960 Daffodil Lane, San Jose, CA 95120</Address>

</Person>

person4.xml (Birthdate value is not valid)

<?xml version="1.0"?>

<Person gender="Female">

 <Name>

 <Last>Wong</Last>

 <First>Teresa</First>

 </Name>

 <Confidential>

 <Age unit="years">7</Age>

 <Birthdate>20000-12-09</Birthdate>

 <SS>555-66-7777</SS>

 </Confidential>

 <Address>5960 Tulip Court, San Jose, CA 95120</Address>

</Person>

person5.xml (Birthdate value is valid)

<?xml version="1.0"?>

<Person gender="Male">

 <Name>

 <Last>Smith</Last>

 <First>Chris</First>

 </Name>

 <Confidential>

 <Age unit="years">10</Age>

 <Birthdate>1997-04-23</Birthdate>

 <SS>666-77-8888</SS>

 </Confidential>

 <Address>5960 Dahlia Street, San Jose, CA 95120</Address>

</Person>

The input file person.del contains:

Chapter 4. Load utility 159

1, <XDS FIL=’person1.xml’/>

2, <XDS FIL=’person2.xml’/>

3, <XDS FIL=’person3.xml’/>

4, <XDS FIL=’person4.xml’/>

5, <XDS FIL=’person5.xml’/>

The DDL and LOAD statements are as follows:

CREATE TABLE T1 (docID INT, XMLDoc XML);

CREATE INDEX BirthdateIndex ON T1(xmlDoc)

 GENERATE KEY USING XMLPATTERN ’/Person/Confidential/Birthdate’ AS SQL DATE

 REJECT INVALID VALUES;

LOAD FROM person.del OF DEL INSERT INTO T1

To resolve the indexing errors that would occur when you attempt to load the set

of XML files above, you would perform the following steps:

1. Determine which rows were rejected during the load operation using the record

numbers in the output information. In the following output, record number 1

and record number 4 were rejected.

SQL20305N An XML value cannot be inserted or updated because of an error

detected when inserting or updating the index identified by "IID = 3" on table

"LEECM.T1". Reason code = "5". For reason codes related to an XML schema the

XML schema identifier = "*N" and XML schema data type = "*N". SQLSTATE=23525

SQL3185W The previous error occurred while processing data from row "F0-1" of

the input file.

SQL20305N An XML value cannot be inserted or updated because of an error

detected when inserting or updating the index identified by "IID = 3" on table

"LEECM.T1". Reason code = "4". For reason codes related to an XML schema the

XML schema identifier = "*N" and XML schema data type = "*N". SQLSTATE=23525

SQL3185W The previous error occurred while processing data from row "F0-4" of

the input file.

SQL3227W Record token "F0-1" refers to user record number "1".

SQL3227W Record token "F0-4" refers to user record number "4".

SQL3107W There is at least one warning message in the message file.

Number of rows read = 5

Number of rows skipped = 0

Number of rows loaded = 3

Number of rows rejected = 2

Number of rows deleted = 0

Number of rows committed = 5

2. Create a new file reject.del with the rejected rows.

1, <XDS FIL=’person1.xml’/>

4, <XDS FIL=’person4.xml’/>

3. Create a new table T2 with the same columns as the original table T1. Do not

create any indexes on the new table.

CREATE TABLE T2 LIKE T1

4. Load the rejected rows into the new table T2.

LOAD FROM reject.del OF DEL INSERT INTO T2;

5. For rejected row 1 in the original table T1:

a. Import the rejected rows to T1 to get the -20305 message

160 Data Movement Utilities Guide and Reference

IMPORT FROM reject.del OF DEL INSERT INTO T1

SQL3109N The utility is beginning to load data from file "reject.del".

SQL3306N An SQL error "-20305" occurred while inserting a row into the

 table.

SQL20305N An XML value cannot be inserted or updated because of an error

detected when inserting or updating the index identified by "IID = 3" on

table "LEECM.T1". Reason code = "5". For reason codes related to an XML

schema the XML schema identifier = "*N" and XML schema data type = "*N".

SQLSTATE=23525

SQL3110N The utility has completed processing. "1" rows were read from

the input file.

b. Look in the db2diag log file and get the generated XQuery statement.

FUNCTION: DB2 UDB, Xml Storage and Index Manager, xmlsDumpXQuery, probe:608

DATA #1 : String, 36 bytes

SQL Code: SQL20305N ; Reason Code: 5

DATA #2 : String, 265 bytes

To locate the value in the document that caused the error, create a

table with one XML column and insert the failing document in the table.

Replace the table and column name in the query below with the created

table and column name and execute the following XQuery.

DATA #3 : String, 247 bytes

xquery for $i in db2-fn:xmlcolumn(

 "LEECM.T1.XMLDOC")[/*:Person/*:Confidential/*:Birthdate="March 16, 2002"]

return

<Result>

 <ProblemDocument> {$i} </ProblemDocument>

 <ProblemValue>{$i/*:Person/*:Confidential/*:Birthdate/..} </ProblemValue>

</Result>;

c. Modify the XQuery statement to use the new table T2.

xquery for $i in db2-fn:xmlcolumn(

 "LEECM.T2.XMLDOC")[/*:Person/*:Confidential/*:Birthdate="March 16, 2002"]

return

<Result>

 <ProblemDocument> {$i} </ProblemDocument>

 <ProblemValue>{$i/*:Person/*:Confidential/*:Birthdate/..} </ProblemValue>

</Result>;

d. Run the XQuery statement on table T2 to locate the problem value in the

document.

<Result><ProblemDocument><Person gender="Male">

 <Name>

 <Last>Cool</Last>

 <First>Joe</First>

 </Name>

 <Confidential>

 <Age unit="years">5</Age>

 <Birthdate>March 16, 2002</Birthdate>

 <SS>111-22-3333</SS>

 </Confidential>

 <Address>5224 Rose St. San Jose, CA 95123</Address>

</Person></ProblemDocument><ProblemValue><Confidential>

 <Age unit="years">5</Age>

 <Birthdate>March 16, 2002</Birthdate>

 <SS>111-22-3333</SS>

 </Confidential></ProblemValue></Result>

e. Fix the problem value in the file person1.xml containing the document.

March 16, 2002 is not in the correct date format so it is changed to

2002-03-16.

<?xml version="1.0"?>

<Person gender="Male">

 <Name>

Chapter 4. Load utility 161

<Last>Cool</Last>

 <First>Joe</First>

 </Name>

 <Confidential>

 <Age unit="years">5</Age>

 <Birthdate>2002-03-16</Birthdate>

 <SS>111-22-3333</SS>

 </Confidential>

 <Address>5224 Rose St. San Jose, CA 95123</Address>

</Person>

f. Go back to step a. to import the rejected rows to table T1 again.
6. (First repetition of Step 5)

a. Import the rejected rows to table T1. The first row is now imported

successfully because two rows were read from the import file. A new error

occurs on the second row.

IMPORT FROM reject.del OF DEL INSERT INTO T1

SQL3109N The utility is beginning to load data from file "reject.del".

SQL3306N An SQL error "-20305" occurred while inserting a row into the

 table.

SQL20305N An XML value cannot be inserted or updated because of an error

detected when inserting or updating the index identified by "IID = 3" on

table "LEECM.T1". Reason code = "4". For reason codes related to an XML

schema the XML schema identifier = "*N" and XML schema data type = "*N".

SQLSTATE=23525

SQL3110N The utility has completed processing. "2" rows were read from

the input file.

b. Look in the db2diag log file and get the generated XQuery statement.

FUNCTION: DB2 UDB, Xml Storage and Index Manager, xmlsDumpXQuery, probe:608

DATA #1 : String, 36 bytes

SQL Code: SQL20305N ; Reason Code: 4

DATA #2 : String, 265 bytes

To locate the value in the document that caused the error, create a

table with one XML column and insert the failing document in the table.

Replace the table and column name in the query below with the created

table and column name and execute the following XQuery.

DATA #3 : String, 244 bytes

xquery for $i in db2-fn:xmlcolumn("LEECM.T1.XMLDOC")

 [/*:Person/*:Confidential/*:Birthdate="20000-12-09"]

return

<Result>

 <ProblemDocument> {$i} </ProblemDocument>

 <ProblemValue>{$i/*:Person/*:Confidential/*:Birthdate/..} </ProblemValue>

</Result>;

c. Modify the XQuery statement to use table T2.

xquery for $i in db2-fn:xmlcolumn("LEECM.T2.XMLDOC")

 [/*:Person/*:Confidential/*:Birthdate="20000-12-09"]

return

<Result>

 <ProblemDocument> {$i} </ProblemDocument>

 <ProblemValue>{$i/*:Person/*:Confidential/*:Birthdate/..} </ProblemValue>

</Result>;

d. Run the XQuery statement to locate the problem value in the document.

<Result><ProblemDocument><Person gender="Female">

 <Name>

 <Last>Wong</Last>

 <First>Teresa</First>

 </Name>

 <Confidential>

 <Age unit="years">7</Age>

162 Data Movement Utilities Guide and Reference

<Birthdate>20000-12-09</Birthdate>

 <SS>555-66-7777</SS>

 </Confidential>

 <Address>5960 Tulip Court, San Jose, CA 95120</Address>

</Person></ProblemDocument><ProblemValue><Confidential>

 <Age unit="years">7</Age>

 <Birthdate>20000-12-09</Birthdate>

 <SS>555-66-7777</SS>

 </Confidential></ProblemValue></Result>

e. Fix the problem value in the file person4.xml containing the document. The

value 20000-12-09 has an extra zero for the year so it is outside of the range

that DB2 allows for a year (0001 to 9999).. The value is changed to

2000-12-09.

<?xml version="1.0"?>

<Person gender="Female">

 <Name>

 <Last>Wong</Last>

 <First>Teresa</First>

 </Name>

 <Confidential>

 <Age unit="years">7</Age>

 <Birthdate>2000-12-09</Birthdate>

 <SS>555-66-7777</SS>

 </Confidential>

 <Address>5960 Tulip Court, San Jose, CA 95120</Address>

</Person>

f. Go back to step a to import the rejected rows to T1 again.
7. (Second repetition of Step 5)

a. Import the rejected rows to T1.

IMPORT FROM reject.del OF DEL INSERT INTO T1

SQL3109N The utility is beginning to load data from file "reject.del".

SQL3110N The utility has completed processing. "2" rows were read from

the input file.

SQL3221W ...Begin COMMIT WORK. Input Record Count = "2".

SQL3222W ...COMMIT of any database changes was successful.

SQL3149N "2" rows were processed from the input file. "2" rows were

successfully inserted into the table. "0" rows were rejected.

Number of rows read = 2

Number of rows skipped = 0

Number of rows inserted = 2

Number of rows updated = 0

Number of rows rejected = 0

Number of rows committed = 2

The problem is now resolved. All of the rows of person.del are successfully

inserted into table T1.

Compression dictionary creation during load operations

Load INSERT and load REPLACE operations that meet certain criteria trigger

automatic dictionary creation (ADC). Once enough data has been processed, ADC

occurs if the load is performed on a table that has the COMPRESS attribute

enabled and a compression dictionary is not present.

Data row compression uses a static dictionary-based compression algorithm to

compress data. Up to two separate dictionaries are used, one for compression of

the table rows, and another one for compression of XML documents stored in the

Chapter 4. Load utility 163

default XML storage object, if the table contains at least one XML column. A

dictionary must first exist in the table for compression to occur. During a load

operation, the default behavior (indicated by the KEEPDICTIONARY option) is to

either abide by the existing dictionaries or, if dictionaries are not present, to

generate them once a certain threshold of data has been scanned. Note that the

dictionaries are created independently once the individual thresholds are crossed.

This generally does not happen at the same time.

For non-XML data, the load utility uses the data that exists in the target table to

build the dictionaries, under the assumption that this preexisting data is

representative of the kind of data that will be stored in that table. In cases where

there is insufficient preexisting data in the target table, the load utility, once it has

sampled enough input data, uses both the input data and preexisting data to build

the dictionaries. For XML data, the load utility samples incoming data only.

When ADC occurs on range partitioned tables, each partition is treated like an

individual table. There will not be any cross-partition dictionaries and ADC does

not occur on partitions already containing dictionaries. For table data, the

dictionary generated for each partition is based on the preexisting table data (and,

if necessary, the loaded data) in that partition only. For XML data, the dictionary

generated for each partition is based the data being loaded into that partition.

Any load performed in the INSERT mode implicitly follows the

KEEPDICTIONARY behavior. For load REPLACE operations, this is also the

default, but you have an additional choice: the RESETDICTIONARY option.

Load REPLACE using the KEEPDICTIONARY option

A load REPLACE that uses the KEEPDICTIONARY option keeps the existing

dictionaries and uses them to compress the loaded data, as long as the target table

has the COMPRESS attribute enabled. If dictionaries do not exist, the load utility

generates new ones (provided the data that is being loaded into the table surpasses

a predetermined threshold for table rows or XML documents stored in the default

XML storage object) for tables with the COMPRESS attribute enabled. Since the

target table’s data is being replaced, the load utility uses only the input data to

build the dictionaries. After a dictionary has been created, it is inserted into the

table and the load operation continues.

Load REPLACE using the RESETDICTIONARY option

There are two key implications of using the RESETDICTIONARY option when

loading into a table with the COMPRESS attribute on. First, dictionary creation

occurs as long as any amount of data will exist in the target table once the load

REPLACE has completed. In other words, the new compression dictionaries can be

based on a single row of data or a single XML document. The other implication is

that the existing dictionaries are deleted but are not replaced (the target table will

no longer have compression dictionaries) if any of the following situations are true:

v The operation is performed on a table with the COMPRESS attribute off

v Nothing was loaded (zero rows), in which case ADM5591W is printed to the

notification log

Note: If you issue a load TERMINATE operation after a load REPLACE with the

RESETDICTIONARY option, any existing compression dictionaries will be deleted

and not replaced.

Performance impact
Dictionary creation affects the performance of a load operation in two ways:

164 Data Movement Utilities Guide and Reference

v For load INSERTs, all of the preexisting table data, not just the minimum

threshold for ADC, is scanned prior to building the compression dictionary.

Therefore, the time used for this scan increases with table size. This impact does

not apply to XML dictionaries.

v The additional processing to build the compression dictionaries. The time

actually used for building the dictionaries is minimal. Moreover, once the

dictionaries have been built, ADC is turned off, by default.

Options for improving load performance

There are various command parameters that you can use to optimize load

performance. There are also a number of file type modifiers unique to load which

can, in some cases, significantly improve that utility’s performance.

Command parameters

The load utility attempts to deliver the best performance possible by determining

optimal values for DISK_PARALLELISM, CPU_PARALLELISM, and DATA

BUFFER, if these parameters have not be specified by the user. Optimization is

done based on the size and the free space available in the utility heap. Consider

using the autonomic DISK_PARALLELISM and CPU_PARALLELISM settings

before attempting to tune these parameters for your particular needs.

Following is information about the performance implications of various options

available through the load utility:

ALLOW READ ACCESS

This option allows you to query a table while a load operation is in

progress. You can only view data that existed in the table prior to the load

operation. If the INDEXING MODE INCREMENTAL option is also

specified, and the load operation fails, the subsequent load terminate

operation might have to correct inconsistencies in the index. This requires

an index scan which involves considerable I/O. If the ALLOW READ

ACCESS option is also specified for the load terminate operation, the

buffer pool is used for I/O.

COPY YES or NO

Use this parameter to specify whether a copy of the input data is to be

made during a load operation. COPY YES, which is only applicable when

forward recovery is enabled, reduces load performance because all of the

loading data is copied during the load operation. The increased I/O

activity might increase the load time on an I/O-bound system. Specifying

multiple devices or directories (on different disks) can offset some of the

performance penalty resulting from this operation. COPY NO, which is

only applicable when forward recovery is enabled, does not affect load

performance. However, all table spaces related to the loaded table will be

placed in a Backup Pending state, and those table spaces must be backed

up before the table can be accessed.

CPU_PARALLELISM

Use this parameter to exploit the number of processes running per

database partition (if this is part of your machine’s capability), and

significantly improve load performance. The parameter specifies the

number of processes or threads used by the load utility to parse, convert,

and format data records. The maximum number allowed is 30. If there is

insufficient memory to support the specified value, the utility adjusts the

value. If this parameter is not specified, the load utility selects a default

value that is based on the number of CPUs on the system.

Chapter 4. Load utility 165

Record order in the source data is preserved (see Figure 12) regardless of

the value of this parameter, provided that:

v the anyorder file type modifier is not specified

v the PARTITIONING_DBPARTNUMS option (and more than one

partition is to be used for partitioning) is not specified

If tables include either LOB or LONG VARCHAR data,

CPU_PARALLELISM is set to 1. Parallelism is not supported in this case.

Although use of this parameter is not restricted to symmetric

multiprocessor (SMP) hardware, you might not obtain any discernible

performance benefit from using it in non-SMP environments.

DATA BUFFER

The DATA BUFFER parameter specifies the total amount of memory, in 4

KB units, allocated to the load utility as a buffer. It is recommended that

this buffer be several extents in size. The data buffer is allocated from the

utility heap. Depending on the amount of storage available on your

system, you should consider allocating more memory for use by the DB2

utilities. The database configuration parameter util_heap_sz (utility heap

size) can be modified accordingly. The default value for the util_heap_sz is

5 000 4 KB pages. Because load is only one of several utilities that use

memory from the utility heap, it is recommended that no more than fifty

percent of the pages defined by this parameter be available for the load

utility, and that the utility heap be defined large enough.

DISK_PARALLELISM

The DISK_PARALLELISM parameter specifies the number of processes or

threads used by the load utility to write data records to disk. Use this

parameter to exploit available containers when loading data, and

significantly improve load performance. The maximum number allowed is

the greater of four times the CPU_PARALLELISM value (actually used by

the load utility), or 50. By default, DISK_PARALLELISM is equal to the

sum of the table space containers on all table spaces containing objects for

the table being loaded, except where this value exceeds the maximum

number allowed.

NONRECOVERABLE

If forward recovery is enabled, use this parameter if you do not need to be

able to recover load transactions against a table upon rollforward. A

NONRECOVERABLE load and a COPY NO load have identical

performance. However, there is a significant difference in terms of potential

data loss. A NONRECOVERABLE load marks a table as not rollforward

recoverable while leaving the table fully accessible. This can create a

problematic situation in which if you need to rollforward through the load

operation, then the loaded data as well as all subsequent updates to the

table will be lost. A COPY NO load places all dependent table spaces in

the Backup Pending state which renders the table inaccessible until a

backup is performed. Because you are forced to take a backup after that

User
records:
A,B,C,D

DB2 LOAD
(with SMP exploitation)

Table
records:
A,B,C,D

Figure 12. Record Order in the Source Data is Preserved When the Number of Processes Running Per Database

Partition is Exploited During a Load Operation

166 Data Movement Utilities Guide and Reference

type of load, you will not risk losing the loaded data or subsequent

updates to the table. That is to say, a COPY NO load is totally recoverable.

Note: When these load transactions are encountered during subsequent

restore and rollforward recovery operations, the table is not updated, and

is marked invalid. Further actions against this table are ignored. After the

rollforward operation is complete, the table can only be dropped.

SAVECOUNT

Use this parameter to set an interval for the establishment of consistency

points during the load phase of a load operation. The synchronization of

activities performed to establish a consistency point takes time. If done too

frequently, there is a noticeable reduction in load performance. If a very

large number of rows is to be loaded, it is recommended that a large

SAVECOUNT value be specified (for example, a value of 10 million in the

case of a load operation involving 100 million records).

 A load restart operation automatically continues from the last consistency

point, provided that the load restart operation resumes from the load

phase.

STATISTICS USE PROFILE

Collect statistics specified in table statistics profile. Use this parameter to

collect data distribution and index statistics more efficiently than through

invocation of the RUNSTATS utility following completion of the load

operation, even though performance of the load operation itself decreases

(particularly when DETAILED INDEXES ALL is specified).

 For optimal performance, applications require the best data distribution

and index statistics possible. Once the statistics are updated, applications

can use new access paths to the table data based on the latest statistics.

New access paths to a table can be created by rebinding the application

packages using the BIND command. The table statistics profile is created

by running the RUNSTATS command with the SET PROFILE options.

When loading data into large tables, it is recommended that a larger value

for the stat_heap_sz (statistics heap size) database configuration parameter

be specified.

USE <tablespace-name>

When an ALLOW READ ACCESS load is taking place and the indexing

mode is REBUILD, this parameter allows an index to be rebuilt in a system

temporary table space and copied back to the index table space during the

index copy phase of a load operation.

 By default, the fully rebuilt index (also known as the shadow index) is built

in the same table space as the original index. This might cause resource

problems as both the original and the shadow index reside in the same

table space simultaneously. If the shadow index is built in the same table

space as the original index, the original index is instantaneously replaced

by the shadow. However, if the shadow index is built in a system

temporary table space, the load operation requires an index copy phase

which copies the index from a system temporary table space to the index

table space. There is considerable I/O involved in the copy. If either of the

table spaces is a DMS table space, the I/O on the system temporary table

space might not be sequential. The values specified by the

DISK_PARALLELISM option are respected during the index copy phase.

WARNINGCOUNT

Use this parameter to specify the number of warnings that can be returned

Chapter 4. Load utility 167

by the utility before a load operation is forced to terminate. Set the

WARNINGCOUNT parameter to a relatively low number if you are

expecting only a few or no warnings. The load operation stops after the

WARNINGCOUNT number is reached. This gives you the opportunity to

correct problems before attempting to complete the load operation.

File type modifiers

ANYORDER
By default, the load utility preserves record order of source data. When load is

operating under an SMP environment, synchronization between parallel processing

is required to ensure that order is preserved.

In an SMP environment, specifying the anyorder file type modifier instructs the

load utility to not preserve the order, which improves efficiency by avoiding the

synchronization necessary to preserve that order. However, if the data to be loaded

is presorted, anyorder might corrupt the presorted order, and the benefits of

presorting are lost for subsequent queries.

Note: The anyorder file type modifier has no effect if CPU_PARALLELISM is 1,

and it is not compatible with the SAVECOUNT option.

BINARYNUMERICS, ZONEDDECIMAL and PACKEDDECIMAL
For fixed length non-delimited ASCII (ASC) source data, representing numeric data

in binary can result in improved performance when loading. If the packeddecimal

file type modifier is specified, decimal data is interpreted by the load utility to be

in packed decimal format (two digits per byte). If the zoneddecimal file type

modifier is specified, decimal data is interpreted by the load utility to be in zoned

decimal format (one digit per byte). For all other numeric types, if the

binarynumerics file type modifier is specified, data is interpreted by the load

utility to be in binary format.

Note:

v When the binarynumerics, packeddecimal, or zoneddecimal file type modifiers

are specified, numeric data is interpreted in big-endian (high byte first) format,

regardless of platform.

v The packeddecimal and zoneddecimal file type modifiers are mutually exclusive.

v The packeddecimal and zoneddecimal file type modifiers only apply to the

decimal target columns, and the binary data must match the target column

definitions.

v The reclen file type modifier must be specified when the binarynumerics,

packeddecimal, or zoneddecimal file type modifiers are specified.

FASTPARSE
Use with caution. In situations where the data being loaded is known to be valid,

it can be unnecessary to have load perform the same amount of syntax checking as

with more suspect data. In fact, decreasing the scope of this step can improve

load’s performance by about 10 or 20 percent. This can be done by using the

fastparse file type modifier, which reduces the data checking that is performed on

user-supplied column values from ASC and DEL files.

NOROWWARNINGS
During a load operation, warning messages about rejected rows are written to a

specified file. However, if the load utility has to process a large volume of rejected,

invalid or truncated records, it can adversely affect load’s performance. In cases

168 Data Movement Utilities Guide and Reference

where many warnings are anticipated, it is useful to use the norowwarnings file

type modifier to suppress the recording of these warnings.

PAGEFREESPACE, INDEXFREESPACE, and TOTALFREESPACE

As data is inserted and updated in tables over time, the need for table and index

reorganization grows. One solution is to increase the amount of free space for

tables and indexes using pagefreespace, indexfreespace, and totalfreespace. The

first two modifiers, which take precedence over the PCTFREE value, specify the

percentage of data and index pages that is to be left as free space, while

totalfreespace specifies the percentage of the total number of pages that is to be

appended to the table as free space.

Load features for maintaining referential integrity

Although the load utility is typically more efficient than the import utility, it

requires a number of features to ensure the referential integrity of the information

being loaded:

v Table locks, which provide concurrency control and prevent uncontrolled data

access during a load operation

v Table states and table space states, which can either control access to data or

elicit specific user actions

v Load exception tables, which ensure that rows of invalid data are not simply

deleted without your knowledge

Checking for integrity violations following a load operation

Following a load operation, the loaded table might be in set integrity pending state

in either READ or NO ACCESS mode if any of the following conditions exist:

v The table has table check constraints or referential integrity constraints defined

on it.

v The table has generated columns and a V7 or earlier client was used to initiate

the load operation.

v The table has descendent immediate materialized query tables or descendent

immediate staging tables referencing it.

v The table is a staging table or a materialized query table.

The STATUS flag of the SYSCAT.TABLES entry corresponding to the loaded table

indicates the set integrity pending state of the table. For the loaded table to be

fully usable, the STATUS must have a value of N and the ACCESS MODE must have a

value of F, indicating that the table is fully accessible and in normal state.

If the loaded table has descendent tables, the SET INTEGRITY PENDING

CASCADE parameter can be specified to indicate whether or not the set integrity

pending state of the loaded table should be immediately cascaded to the

descendent tables.

If the loaded table has constraints as well as descendent foreign key tables,

dependent materialized query tables and dependent staging tables, and if all of the

tables are in normal state prior to the load operation, the following will result

based on the load parameters specified:

INSERT, ALLOW READ ACCESS, and SET INTEGRITY PENDING CASCADE

IMMEDIATE

The loaded table, its dependent materialized query tables and dependent

staging tables are placed in set integrity pending state with read access.

Chapter 4. Load utility 169

INSERT, ALLOW READ ACCESS, and SET INTEGRITY PENDING CASCADE

DEFERRED

Only the loaded table is placed in set integrity pending with read access.

Descendent foreign key tables, descendent materialized query tables and

descendent staging tables remain in their original states.

INSERT, ALLOW NO ACCESS, and SET INTEGRITY PENDING CASCADE

IMMEDIATE

The loaded table, its dependent materialized query tables and dependent

staging tables are placed in set integrity pending state with no access.

INSERT or REPLACE, ALLOW NO ACCESS, and SET INTEGRITY PENDING

CASCADE DEFERRED

Only the loaded table is placed in set integrity pending state with no

access. Descendent foreign key tables, descendent immediate materialized

query tables and descendent immediate staging tables remain in their

original states.

REPLACE, ALLOW NO ACCESS, and SET INTEGRITY PENDING CASCADE

IMMEDIATE

The table and all its descendent foreign key tables, descendent immediate

materialized query tables, and descendent immediate staging tables are

placed in set integrity pending state with no access.

Note: Specifying the ALLOW READ ACCESS option in a load replace operation

results in an error.

To remove the set integrity pending state, use the SET INTEGRITY statement. The

SET INTEGRITY statement checks a table for constraints violations, and takes the

table out of set integrity pending state. If all the load operations are performed in

INSERT mode, the SET INTEGRITY statement can be used to incrementally process

the constraints (that is, it checks only the appended portion of the table for

constraints violations). For example:

 db2 load from infile1.ixf of ixf insert into table1

 db2 set integrity for table1 immediate checked

Only the appended portion of TABLE1 is checked for constraint violations.

Checking only the appended portion for constraints violations is faster than

checking the entire table, especially in the case of a large table with small amounts

of appended data.

If a table is loaded with the SET INTEGRITY PENDING CASCADE DEFERRED

option specified, and the SET INTEGRITY statement is used to check for integrity

violations, the descendent tables are placed in set integrity pending state with no

access. To take the tables out of this state, you must issue an explicit request.

If a table with dependent materialized query tables or dependent staging tables is

loaded using the INSERT option, and the SET INTEGRITY statement is used to

check for integrity violations, the table is taken out of set integrity pending state

and placed in No Data Movement state. This is done to facilitate the subsequent

incremental refreshes of the dependent materialized query tables and the

incremental propagation of the dependent staging tables. In the No Data

Movement state, operations that might cause the movement of rows within the

table are not allowed.

You can override the No Data Movement state by specifying the FULL ACCESS

option when you issue the SET INTEGRITY statement. The table is fully accessible,

170 Data Movement Utilities Guide and Reference

however a full re-computation of the dependent materialized query tables takes

place in subsequent REFRESH TABLE statements and the dependent staging tables

are forced into an incomplete state.

If the ALLOW READ ACCESS option is specified for a load operation, the table

remains in read access state until the SET INTEGRITY statement is used to check

for constraints violations. Applications can query the table for data that existed

prior to the load operation once it has been committed, but will not be able to

view the newly loaded data until the SET INTEGRITY statement is issued.

Several load operations can take place on a table before checking for constraints

violations. If all of the load operations are completed in ALLOW READ ACCESS

mode, only the data that existed in the table prior to the first load operation is

available for queries.

One or more tables can be checked in a single invocation of this statement. If a

dependent table is to be checked on its own, the parent table can not be in set

integrity pending state. Otherwise, both the parent table and the dependent table

must be checked at the same time. In the case of a referential integrity cycle, all the

tables involved in the cycle must be included in a single invocation of the SET

INTEGRITY statement. It might be convenient to check the parent table for

constraints violations while a dependent table is being loaded. This can only occur

if the two tables are not in the same table space.

When issuing the SET INTEGRITY statement, you can specify the INCREMENTAL

option to explicitly request incremental processing. In most cases, this option is not

needed, because the DB2 database selects incremental processing. If incremental

processing is not possible, full processing is used automatically. When the

INCREMENTAL option is specified, but incremental processing is not possible, an

error is returned if:

v New constraints are added to the table while it is in set integrity pending state.

v A load replace operation takes place, or the NOT LOGGED INITIALLY WITH

EMPTY TABLE option is activated, after the last integrity check on the table.

v A parent table is load replaced or checked for integrity non-incrementally.

v The table is in set integrity pending state before an upgrade. Full processing is

required the first time the table is checked for integrity after an upgrade.

v The table space containing the table or its parent is rolled forward to a point in

time and the table and its parent reside in different table spaces.

If a table has one or more W values in the CONST_CHECKED column of the

SYSCAT.TABLES catalog, and if the NOT INCREMENTAL option is not specified

in the SET INTEGRITY statement, the table is incrementally processed and the

CONST_CHECKED column of SYSCAT.TABLES is marked as U to indicate that not

all data has been verified by the system.

The SET INTEGRITY statement does not activate any DELETE triggers as a result

of deleting rows that violate constraints, but once the table is removed from set

integrity pending state, triggers are active. Thus, if you correct data and insert

rows from the exception table into the loaded table, any INSERT triggers defined

on the table are activated. The implications of this should be considered. One

option is to drop the INSERT trigger, insert rows from the exception table, and

then recreate the INSERT trigger.

Chapter 4. Load utility 171

Checking for constraint violations using SET INTEGRITY

Typically, you need to manually perform integrity processing for a table in three

situations: After loading data into a table; when altering a table by adding

constraints on the table; and when altering a table to add a generated column.

v To turn on constraint checking for a table and performing integrity processing

on the table, you need one of the following:

– CONTROL privileges on the tables being checked, and if exceptions are being

posted to one or more tables, INSERT privilege on the exception tables

– CONTROL privilege on all descendent foreign key tables, descendent

immediate materialized query tables, and descendent immediate staging

tables that will implicitly be placed in the Set Integrity Pending state by the

statement

– LOAD authority, and if exceptions are being posted to one or more tables:

- SELECT and DELETE privilege on each table being checked

- INSERT privilege on the exception tables
v To turn on constraint checking for a table without performing integrity

processing on the table, you need one of the following:

– CONTROL privileges on the tables being checked

– CONTROL privilege on each descendent foreign key table, descendent

immediate materialized query table, and descendent immediate staging table

that will implicitly be placed in the Set Integrity Pending state by the

statement

– LOAD authority

– DATAACCESS authority

– DBADM authority
v To turn off constraint checking, immediate refreshing, or immediate propagation

for tables, you need one of the following:

– CONTROL privilege on the table, and on all descendent foreign key tables,

descendent immediate materialized query tables, and descendent immediate

staging tables that will have their integrity checking turned off by the

statement

– LOAD authority

The load operation causes a table to be put into Set Integrity Pending state

automatically if the table has constraints defined on it or if it has dependent

foreign key tables, dependent materialized query tables, or dependent staging

tables. When the load operation is completed, you can verify the integrity of the

loaded data and you can turn on constraint checking for the table. If the table has

dependent foreign key tables, dependent materialized query tables, or dependent

staging tables, they will be automatically put into Set Integrity Pending state. You

will need to use the Set Integrity window to perform separate integrity processing

on each of these tables.

If you are altering a table by adding a foreign key, a check constraint or a

generated column, you need to turn off constraint checking before you alter the

table. After you add the constraint, you need to check the existing data for

violations to the newly added constraint and you need to turn constraint checking

back on. In addition, if you are loading data into the table, you cannot activate

constraint checking on the table until you complete loading data into it. If you are

importing data into the table, you should activate constraint checking on the table

before you import data into it.

172 Data Movement Utilities Guide and Reference

Constraints checking refers to checking for constraints violations, foreign key

violations, and generated columns violations. Integrity processing refers to

populating identity and generated columns, refreshing materialized query tables,

and propagating to staging tables, in addition to performing constraints checking.

Normally, referential integrity and check constraints on a table are automatically

enforced, materialized query tables are automatically refreshed immediately, and

staging tables are automatically propagated. In some situations, you might need to

manually change this behavior.

To check for constraint violations using the Control Center:

1. Open the Set Integrity window: From the Control Center, expand the object tree

until you find the Tables folder. Click on the Tables folder. Any existing tables

are displayed in the pane on the right side of the window. Right-click the table

you want and select Set Integrity from the pop-up menu. The Set Integrity

window opens.

2. Review the Current Integrity Status of the table you are working with.

3. To turn on constraint checking for a table and not check the table data:

a. Select the Immediate and unchecked radio button.

b. Specify the type of integrity processing that you are turning on.

c. Select the Full Access radio button to immediately perform data movement

operations against the table (such as reorganize or redistribute). However,

note that subsequent refreshes of dependent materialized query tables will

take longer. If the table has an associated materialized query table, it is

recommended that you do not select this radio button in order to reduce the

time needed to refresh the materialized query table.
4. To turn on constraint checking for a table and check the existing table data:

a. Select the Immediate and checked radio button.

b. Select which type of integrity processing that you want to perform. If the

Current integrity status shows that the constraints checked value for the

materialized query table is incomplete, you cannot incrementally refresh the

materialized query table.

c. Optional: If you want identity or generated columns to be populated during

integrity processing, select the Force generated check box.

d. If the table is not a staging table, make sure that the Prune check box is

unchecked.

e. Select the Full Access radio button to immediately perform data movement

operations against the table.

f. Optional: Specify an exception table. Any row that is in violation of a

referential or check constraint will be deleted from your table and copied to

the exception table. If you do not specify an exception table, when a

constraint is violated, only the first violation detected is returned to you and

the table is left in the Set Integrity Pending state.
5. To turn off constraint checking, immediate refreshing, or immediate

propagation for a table:

a. Select the Off radio button. The table will be put in Set Integrity Pending

state.

b. Use the Cascade option to specify whether you want to cascade

immediately or defer cascading. If you are cascading immediately, use the

Materialized Query Tables, Foreign Key Tables, and Staging Tables check

boxes to indicate the tables to which you want to cascade.

Chapter 4. Load utility 173

Note: If you turn off constraint checking for a parent table and specify that

you want to cascade the changes to foreign key tables, the foreign key

constraints of all of its descendent foreign key tables are also turned off. If

you turn off constraint checking for a underlying table and specify that you

want to cascade the check pending state to materialized query tables, the

refresh immediate properties of all its dependent materialized query tables

are also turned off. If you turn off constraint checking for a underlying table

and specify that you want to cascade the Set Integrity Pending state to

staging tables the propagate immediate properties of all its dependent

staging tables are also turned off.

To check for constraint violations using the command line, use the SET

INTEGRITY statement.

Troubleshooting tip

Symptom

You receive the following error message when you try to turn on

constraints checking, immediate refresh, or immediate propagation for a

table:

DB2 Message

Cannot check a dependent table TABLE1 using the SET

INTEGRITY statement while the parent table or underlying table

TABLE2 is in the Set Integrity Pending state or if it will be put into

the Set Integrity Pending state by the SET INTEGRITY statement.

 Where TABLE1 is the table for which you are trying to turn on

constraints checking, immediate refresh, or immediate propagation

and it is dependent on TABLE2.

Possible cause

Constraint checking, immediate refresh, or immediate propagation cannot

be turned on for a table that has a parent or underlying table in Set

Integrity Pending.

Action

Bring the parent or underlying table out of Set Integrity Pending by

turning on constraint checking for the table. Begin with the table identified

as the parent or underlying table in the DB2 message. If that table is

dependent on another table, you need to turn on constraint checking in a

top-down approach from the table at the top of the dependency chain.

Attention: If the selected table has a cyclical referential constraint

relationship with one or more tables, you cannot use the Set Integrity

window to turn on constraint checking. In this case, you must use the

Command Editor to issue the SQL SET INTEGRITY command.

Table locking during load operations

In most cases, the load utility uses table level locking to restrict access to tables.

The level of locking depends on the stage of the load operation and whether it was

specified to allow read access.

A load operation in ALLOW NO ACCESS mode uses a super exclusive lock

(Z-lock) on the table for the duration of the load.

Before a load operation in ALLOW READ ACCESS mode begins, the load utility

waits for all applications that began before the load operation to release their locks

174 Data Movement Utilities Guide and Reference

on the target table. At the beginning of the load operation, the load utility acquires

an update lock (U-lock) on the table. It holds this lock until the data is being

committed. When the load utility acquires the U-lock on the table, it waits for all

applications that hold locks on the table prior to the start of the load operation to

release them, even if they have compatible locks. This is achieved by temporarily

upgrading the U-lock to a Z-lock which does not conflict with new table lock

requests on the target table as long as the requested locks are compatible with the

load operation’s U-lock. When data is being committed, the load utility upgrades

the lock to a Z-lock, so there can be some delay in commit time while the load

utility waits for applications with conflicting locks to finish.

Note: The load operation can time out while it waits for the applications to release

their locks on the table prior to loading. However, the load operation does not time

out while waiting for the Z-lock needed to commit the data.

Applications with conflicting locks
Use the LOCK WITH FORCE option of the LOAD command to force off

applications holding conflicting locks on a target table so that the load operation

can proceed. Before a load operation in ALLOW READ ACCESS mode can

proceed, applications holding the following locks are forced off:

v Table locks that conflict with a table update lock (for example, import or insert).

v All table locks that exist at the commit phase of the load operation.

Applications holding conflicting locks on the system catalog tables are not forced

off by the load utility. If an application is forced off the system by the load utility,

the application loses its database connection, and an error is returned (SQL1224N).

When you specify the COPY NO option for a load operation on a recoverable

database, all objects in the target table space are locked in share mode before the

table space is placed in the Backup Pending state. This occurs regardless of the

access mode. If you specify the LOCK WITH FORCE option, all applications

holding locks on objects in the table space that conflict with a share lock are forced

off.

Read access load operations

The load utility provides two options that control the amount of access other

applications have to a table being loaded. The ALLOW NO ACCESS option locks

the table exclusively and allows no access to the table data while the table is being

loaded.

The ALLOW NO ACCESS option is the default behavior. The ALLOW READ

ACCESS option prevents all write access to the table by other applications, but

allows read access to preexisting data. This section deals with the ALLOW READ

ACCESS option.

Table data and index data that exist prior to the start of a load operation are visible

to queries while the load operation is in progress. Consider the following example:

1. Create a table with one integer column:

 create table ED (ed int)

2. Load three rows:

 load from File1 of del insert into ED

 ...

 Number of rows read = 3

 Number of rows skipped = 0

Chapter 4. Load utility 175

Number of rows loaded = 3

 Number of rows rejected = 0

 Number of rows deleted = 0

 Number of rows committed = 3

3. Query the table:

 select * from ED

 ED

 1

 2

 3

 3 record(s) selected.

4. Perform a load operation with the ALLOW READ ACCESS option specified

and load two more rows of data:

 load from File2 of del insert into ED allow read access

5. At the same time, on another connection query the table while the load

operation is in progress:

 select * from ED

 ED

 1

 2

 3

 3 record(s) selected.

6. Wait for the load operation to finish and then query the table:

 select * from ED

 ED

 1

 2

 3

 4

 5

 5 record(s) selected.

The ALLOW READ ACCESS option is very useful when loading large amounts of

data because it gives users access to table data at all times, even when the load

operation is in progress or after a load operation has failed. The behavior of a load

operation in ALLOW READ ACCESS mode is independent of the isolation level of

the application. That is, readers with any isolation level can always read the

preexisting data, but they are not be able to read the newly loaded data until the

load operation has finished.

Read access is provided throughout the load operation except for two instances: at

the beginning and at the end of the operation.

Firstly, the load operation acquires a special Z-lock for a short duration of time

near the end of its setup phase. If an application holds an incompatible lock on the

table prior to the load operation requesting this special Z-lock, then the load

operation waits a finite amount of time for this incompatible lock to be released

before timing out and failing. The amount of time is determined by the locktimeout

database configuration parameter. If the LOCK WITH FORCE option is specified

then the load operation forces other applications off to avoid timing out. The load

176 Data Movement Utilities Guide and Reference

operation acquires the special Z-lock, commits the phase, releases the lock, and

then continues onto the load phase. Any application that requests a lock on the

table for reading after the start of the load operation in ALLOW READ ACCESS

mode is granted the lock, and it does not conflict with this special Z-lock. New

applications attempting to read existing data from the target table are able to do

so.

Secondly, before data is committed at the end of the load operation, the load utility

acquires an exclusive lock (Z-lock) on the table. The load utility waits until all

applications that hold locks on the table release them. This can cause a delay

before the data is committed. The LOCK WITH FORCE option is used to force off

conflicting applications, and allow the load operation to proceed without having to

wait. Usually, a load operation in ALLOW READ ACCESS mode acquires an

exclusive lock for a short amount of time; however, if the USE <tablespace-name>

option is specified, the exclusive lock lasts for the entire period of the index copy

phase.

When the load utility is running against a table defined on multiple database

partitions, the load process model executes on each individual database partition,

meaning that locks are acquired and released independently of other db-partitions.

Thus, if a query or other operation is executed concurrently and is competing for

the same locks, there is a chance for deadlocks. For example, suppose that

operation A is granted a table lock on db-partition 0 and the load operation is

granted a table lock on db-partition 1. A deadlock can occur because operation A is

waiting to be granted a table lock on db-partition 1, while the load operation is

waiting for a table lock on db-partition 0. In this case, the deadlock detector will

arbitrarily roll back one of the operations.

Note:

1. If a load operation is interrupted or fails, it remains at the same access level

that was specified when the load operation was issued. That is, if a load

operation in ALLOW NO ACCESS mode fails, the table data is inaccessible

until a load terminate or a load restart is issued. If a load operation in ALLOW

READ ACCESS mode aborts, the preexisting table data is still accessible for

read access.

2. If the ALLOW READ ACCESS option was specified for an interrupted or failed

load operation, it can also be specified for the load restart or load terminate

operation. However, if the interrupted or failed load operation specified the

ALLOW NO ACCESS option, the ALLOW READ ACCESS option cannot be

specified for the load restart or load terminate operation.

The ALLOW READ ACCESS option is not supported if:

v The REPLACE option is specified. Since a load replace operation truncates the

existing table data before loading the new data, there is no preexisting data to

query until after the load operation is complete.

v The indexes have been marked invalid and are waiting to be rebuilt. Indexes can

be marked invalid in some rollforward scenarios or through the use of the

db2dart command.

v The INDEXING MODE DEFERRED option is specified. This mode marks the

indexes as requiring a rebuild.

v An ALLOW NO ACCESS load operation is being restarted or terminated. Until

it is brought fully online, a load operation in ALLOW READ ACCESS mode

cannot take place on the table.

Chapter 4. Load utility 177

v A load operation is taking place to a table that is in Set Integrity Pending No

Access state. This is also the case for multiple load operations on tables with

constraints. A table is not brought online until the SET INTEGRITY statement is

issued.

Generally, if table data is taken offline, read access is not available during a load

operation until the table data is back online.

Table space states during and after load operations

The load utility uses table space states to preserve database consistency during a

load operation. These states work by controlling access to data or eliciting user

actions.

The load utility does not quiesce (put persistent locks on) the table spaces involved

in the load operation and uses table space states only for load operations for which

you specify the COPY NO parameter.

You can check table space states by using the LIST TABLESPACES command. Table

spaces can be in multiple states simultaneously. The states returned by LIST

TABLESPACES are as follows:

Normal
The Normal state is the initial state of a table space after it is created, indicating

that no (abnormal) states currently affect it.

Load in Progress
The Load in Progress state indicates that there is a load in progress on the table

space. This state prevents the backup of dependent tables during the load. The

table space state is distinct from the Load in Progress table state (which is used in

all load operations) because the load utility places table spaces in the Load in

Progress state only when you specify the COPY NO parameter for a recoverable

database. The table spaces remain in this state for the duration of the load

operation.

Backup Pending
If you perform a load operation for a recoverable database and specify the COPY

NO parameter, table spaces are placed in the Backup Pending table space state

after the first commit. You cannot update a table space in the Backup Pending

state. You can remove the table space from the Backup Pending state only by

backing up the table space. Even if you cancel the load operation, the table space

remains in the Backup Pending state because the table space state is changed at the

beginning of the load operation and cannot be rolled back.

Restore Pending
If you perform a successful load operation with the COPY NO option, restore the

database, and then rollforward through that operation, the associated table spaces

are placed in the Restore Pending state. To remove the table spaces from the

Restore Pending state, you must perform a restore operation.

Example of a table space state

If you load an input file (staffdata.del) into a table NEWSTAFF, as follows:

178 Data Movement Utilities Guide and Reference

update db cfg for sample using logretain recovery;

backup db sample;

connect to sample;

create table newstaff like staff;

load from staffdata.del of del insert into newstaff copy no;

connect reset;

and you open another session and issue the following commands,

connect to sample;

list tablespaces;

connect reset;

USERSPACE1 (the default table space for the sample database) is in the Load in

Progress state and, after the first commit, the Backup Pending state as well. After

the load operation finishes, the LIST TABLESPACES command reveals that

USERSPACE1 is now in the Backup Pending state:

Tablespace ID = 2

Name = USERSPACE1

Type = Database managed space

Contents = All permanent data. Large table space.

State = 0x0020

 Detailed explanation:

 Backup pending

Table states during and after load operations

The load utility uses table states to preserve database consistency during a load

operation. These states work by controlling access to data or eliciting user actions.

To determine the state of a table, issue the LOAD QUERY command, which also

checks the status of a load operation. Tables can be in a number of states

simultaneously. The states returned by LOAD QUERY are as follows:

Normal State

The Normal state is the initial state of a table after it is created, indicating that no

(abnormal) states currently affect the table.

Read Access Only

If you specify the ALLOW READ ACCESS option, the table is in the Read Access

Only state. The data in the table that existed prior to the invocation of the load

command is available in read-only mode during the load operation. If you specify

the ALLOW READ ACCESS option and the load operation fails, the data that

existed in the table prior to the load operation continues to be available in

read-only mode after the failure.

Load in Progress
The Load in Progress table state indicates that there is a load in progress on the

table. The load utility removes this transient state after the load is successfully

completed. However, if the load operation fails or is interrupted, the table state

will change to Load Pending.

Redistribute in Progress
The Redistribute in Progress table state indicates that there is a redistribute in

progress on the table. The redistribute utility removes this transient state after it

has successfully completed processing the table. However, if the redistribute

operation fails or is interrupted, the table state will change to Redistribute Pending.

Chapter 4. Load utility 179

Load Pending

The Load Pending table state indicates that a load operation failed or was

interrupted. You can take one of the following steps to remove the Load Pending

state:

v Address the cause of the failure. For example, if the load utility ran out of disk

space, add containers to the table space. Then, restart the load operation.

v Terminate the load operation.

v Run a load REPLACE operation against the same table on which the load

operation failed.

v Recover table spaces for the loading table by using the RESTORE DATABASE

command with the most recent table space or database backup, then carry out

further recovery actions.

Redistribute Pending
The Redistribute Pending table state indicates that a redistribute operation failed or

was interrupted. You can perform a REDISTRIBUTE CONTINUE or

REDISTRIBUTE ABORT operation to remove the Redistribute Pending state.

Not Load Restartable

In the Not Load Restartable state, a table is partially loaded and does not allow a

load restart operation. There are two situations in which a table is placed in the

Not Load Restartable state:

v If you perform a rollforward operation after a failed load operation that you

could not successfully restart or terminate

v If you perform a restore operation from an online backup that you took while

the table was in the Load in Progress or Load Pending state

The table is also in the Load Pending state. To remove the table from the Not Load

Restartable state, issue the LOAD TERMINATE or the LOAD REPLACE command.

Set Integrity Pending

The Set Integrity Pending state indicates that the loaded table has constraints

which have not yet been verified. The load utility places a table in this state when

it begins a load operation on a table with constraints. Use the SET INTEGRITY

statement to take the table out of Set Integrity Pending state.

Type-1 Indexes
The Type-1 Indexes state indicates that the table currently uses type-1 indexes.

Type-1 indexes are no longer supported and must be converted to type-2 indexes.

You can convert indexes to type-2 indexes using the CONVERT option of the

REORG INDEXES/TABLE command or using the output of the db2IdentifyType1

command. The db2IdentifyType1 command generates the appropriate commands

for the conversion of any type-1 indexes found in tables or schemas for a specified

database. For more information, see the “Converting type-1 indexes to type-2

indexes” topic.

Unavailable

Rolling forward through an unrecoverable load operation places a table in the

Unavailable state. In this state, the table is unavailable; you must drop it or restore

it from a backup.

Example of a table in multiple states

If you load an input file (staffdata.del) with a substantial amount of data into a

table NEWSTAFF, as follows:

180 Data Movement Utilities Guide and Reference

connect to sample;

create table newstaff like staff;

load from staffdata.del of del insert into newstaff allow read access;

connect reset;

and you open another session and issue the following commands,

connect to sample;

load query table newstaff;

connect reset;

the LOAD QUERY command reveals that the NEWSTAFF table is in the Read

Access Only and Load in Progress table states:

Tablestate:

 Load in Progress

 Read Access Only

Load exception tables

A load exception table is a consolidated report of all of the rows that violated

unique index rules, range constraints, and security policies during a load

operation. You specify a load exception table by using the FOR EXCEPTION clause

of the LOAD command.

Restriction: An exception table can not contain an identity column or any other

type of generated column. If an identity column is present in the primary table, the

corresponding column in the exception table should only contain the column’s

type, length, and nullability attributes. In addition, the exception table cannot be

partitioned or have a unique index. Also, you cannot specify an exception table if:

v the target table uses LBAC security and has at least one XML column.

v the target table is range partitioned and has at least one XML column.

The exception table used with the load utility is identical to the exception tables

used by the SET INTEGRITY statement. It is a user-created table that reflects the

definition of the table being loaded and includes some additional columns.

You can assign a load exception table to the table space where the table being

loaded resides or to another table space. In either case, assign the load exception

table and the table being loaded to the same database partition group, and ensure

that both tables use the same distribution key.

When to use an exception table
Use an exception table when loading data that has a unique index and could have

duplicate records. If you do not specify an exception table and duplicate records

are found, the load operation continues, and only a warning message is issued

about the deleted duplicate records. The duplicate records are not logged.

After the load operation is completed, you can use information in the exception

table to correct data that is in error. You can then insert the corrected data into the

table.

Rows are appended to existing information in the exception table. Because there is

no checking done to ensure that the table is empty, new information is simply

added to the invalid rows from previous load operations. If you want only the

invalid rows from the current load operation, you can remove the existing rows

before invoking the utility. Alternatively, when you define a load operation, you

can specify that the exception table record the time when a violation is discovered

and the name of the constraint violated.

Chapter 4. Load utility 181

Because each deletion event is logged, the log could fill up during the delete phase

of the load if there are a large number of records that violate a uniqueness

condition.

Any rows rejected because of invalid data before the building of an index are not

inserted into the exception table.

Failed or incomplete loads

Restarting an interrupted load operation

If a failure or interruption occurs during a load operation, you can use the load

utility to terminate the operation, reload the table, or restart the load operation.

If the load utility does not even start because of a user error such as a nonexistent

data file or invalid column names, the operation terminates and leaves the target

table in a normal state.

When the load operation begins, the target table is placed in the Load in Progress

table state. In the event of a failure, the table state will change to Load Pending. To

remove the table from this state, you can issue a LOAD TERMINATE to roll back

the operation, issue a LOAD REPLACE to reload the entire table, or issue a LOAD

RESTART.

Typically, restarting the load operation is the best choice in this situation. It saves

time because the load utility restarts the load operation from the last successfully

reached point in its progress, rather than from the beginning of the operation.

Where exactly the operation restarts from depends upon the parameters specified

in the original command. If the SAVECOUNT option was specified, and the

previous load operation failed in the load phase, the load operation restarts at the

last consistency point it reached. Otherwise, the load operation restarts at the

beginning of the last phase successfully reached (the load, build, or delete phase).

If you are loading XML documents, the behavior is slightly different. Because the

SAVECOUNT option is not supported with loading XML data, load operations that

fail during the load phase restart from the beginning of the operation. Just as with

other data types, if the load fails during the build phase, indexes are built in

REBUILD mode, so the table is scanned to pick up all index keys from each row;

however, each XML document must also be scanned to pick up the index keys.

This process of scanning XML documents for keys requires them to be reparsed,

which is an expensive operation. Furthermore, the internal XML indexes, such as

the regions and paths indexes, need to be rebuilt first, which also requires a scan of

the XDA object.

Once you have fixed the situation that caused the load operation to fail, reissue the

load command. Ensure that you specify exactly the same parameters as in the

original command, so that the load utility can find the necessary temporary files.

An exception to this is if you want to disallow read access. A load operation that

specified the ALLOW READ ACCESS option can also be restarted as an ALLOW

NO ACCESS option.

Note: Do not delete or modify any temporary files created by the load utility.

If the load operation resulting from the following command fails,

182 Data Movement Utilities Guide and Reference

LOAD FROM file_name OF file_type

SAVECOUNT n

MESSAGES message_file

load_method

INTO target_tablename

you would restart it by replacing the specified load method (load_method) with

the RESTART method:

LOAD FROM file_name OF file_type

SAVECOUNT n

MESSAGES message_file

RESTART

INTO target_tablename

Failed loads that cannot be restarted

You cannot restart failed or interrupted load operations if the table involved in the

operation is in the Not Load Restartable table state. Tables are put in that state for

the following reasons:

v A rollforward operation is performed after a failed load operation that has not

been successfully restarted or terminated

v A restore operation is performed from an online backup that was taken while

the table was in the Load in Progress or Load Pending table state

You should issue either a LOAD TERMINATE or a LOAD REPLACE command.

Restarting or terminating an ALLOW READ ACCESS load

operation

An interrupted or cancelled load operation that specifies the ALLOW READ

ACCESS option can also be restarted or terminated using the ALLOW READ

ACCESS option. Using the ALLOW READ ACCESS option allows other

applications to query the table data while the terminate or restart operation is in

progress. As with a load operation in ALLOW READ ACCESS mode, the table is

locked exclusively prior to the data being committed.

If the index object is unavailable or marked invalid, a load restart or terminate

operation in ALLOW READ ACCESS mode is not permitted.

If the original load operation is interrupted or cancelled in the index copy phase, a

restart operation in the ALLOW READ ACCESS mode is not permitted because the

index might be corrupted.

If a load operation in ALLOW READ ACCESS mode is interrupted or cancelled in

the load phase, it restarts in the load phase. If it is interrupted or cancelled in any

phase other than the load phase, it restarts in the build phase. If the original load

operation is in ALLOW NO ACCESS mode, a restart operation occurs in the delete

phase if the original load operation reaches that point and the index is valid. If the

index is marked invalid, the load utility restarts the load operation from the build

phase.

Note: All load restart operations choose the REBUILD indexing mode even if the

INDEXING MODE INCREMENTAL option is specified.

Issuing a LOAD TERMINATE command generally causes the interrupted or

cancelled load operation to be rolled back with minimal delay. However, when

issuing a LOAD TERMINATE command for a load operation where ALLOW

Chapter 4. Load utility 183

READ ACCESS and INDEXING MODE INCREMENTAL are specified, there might

be a delay while the load utility scans the indexes and corrects any inconsistencies.

The length of this delay depends on the size of the indexes and occurs whether or

not the ALLOW READ ACCESS option is specified for the load terminate

operation. The delay does not occur if the original load operation failed prior to

the build phase.

Note: The delay resulting from corrections to inconsistencies in the index is

considerably less than the delay caused by marking the indexes as invalid and

rebuilding them.

A load restart operation cannot be undertaken on a table that is in the Not Load

Restartable table state. A table can be placed in the Not Load Restartable table state

during a rollforward operation. This can occur if you roll forward to a point in

time that is prior to the end of a load operation, or if you roll forward through an

interrupted or cancelled load operation but do not roll forward to the end of the

load terminate or load restart operation.

Recovering data with the load copy location file

The DB2LOADREC registry variable is used to identify the file with the load copy

location information. This file is used during rollforward recovery to locate the

load copy.

DB2LOADREC has information about:

v Media type

v Number of media devices to be used

v Location of the load copy generated during a table load operation

v File name of the load copy, if applicable

If the location file does not exist, or no matching entry is found in the file, the

information from the log record is used.

The information in the file might be overwritten before rollforward recovery takes

place.

Note:

1. In a multi-partition database, the DB2LOADREC registry variable must be set

for all the database partition servers using the db2set command.

2. In a multi-partition database, the load copy file must exist at each database

partition server, and the file name (including the path) must be the same.

3. If an entry in the file identified by the DB2LOADREC registry variable is not

valid, the old load copy location file is used to provide information to replace

the invalid entry.

The following information is provided in the location file. The first five parameters

must have valid values, and are used to identify the load copy. The entire structure

is repeated for each load copy recorded. For example:

TIMestamp 19950725182542 * Time stamp generated at load time

DBPartition 0 * DB Partition number (OPTIONAL)

SCHema PAYROLL * Schema of table loaded

TABlename EMPLOYEES * Table name

DATabasename DBT * Database name

DB2instance toronto * DB2INSTANCE

BUFfernumber NULL * Number of buffers to be used for

 recovery

184 Data Movement Utilities Guide and Reference

SESsionnumber NULL * Number of sessions to be used for

 recovery

TYPeofmedia L * Type of media - L for local device

 A for TSM

 O for other vendors

LOCationnumber 3 * Number of locations

 ENTry /u/toronto/dbt.payroll.employes.001

 ENT /u/toronto/dbt.payroll.employes.002

 ENT /dev/rmt0

TIM 19950725192054

DBP 18

SCH PAYROLL

TAB DEPT

DAT DBT

DB2 toronto

BUF NULL

SES NULL

TYP A

TIM 19940325192054

SCH PAYROLL

TAB DEPT

DAT DBT

DB2 toronto

BUF NULL

SES NULL

TYP O

SHRlib /@sys/lib/backup_vendor.a

Note:

1. The first three characters in each keyword are significant. All keywords are

required in the specified order. Blank lines are not accepted.

2. The time stamp is in the form yyyymmddhhmmss.

3. All fields are mandatory, except for BUF and SES (which can be NULL), and

DBP (which can be missing from the list). If SES is NULL, the value specified

by the dft_loadrec_ses configuration parameter is used. If BUF is NULL, the

default value is SES+2.

4. If even one of the entries in the location file is invalid, the previous load copy

location file is used to provide those values.

5. The media type can be local device (L for tape, disk or diskettes), TSM (A), or

other vendor (O). If the type is L, the number of locations, followed by the

location entries, is required. If the type is A, no further input is required. If the

type is O, the shared library name is required.

6. The SHRlib parameter points to a library that has a function to store the load

copy data.

7. If you invoke a load operation, specifying the COPY NO or the

NONRECOVERABLE option, and do not take a backup copy of the database or

affected table spaces after the operation completes, you cannot restore the

database or table spaces to a point in time that follows the load operation. That

is, you cannot use rollforward recovery to recreate the database or table spaces

to the state they were in following the load operation. You can only restore the

database or table spaces to a point in time that precedes the load operation.

If you want to use a particular load copy, you can use the recovery history file for

the database to determine the time stamp for that specific load operation. In a

multi-partition database, the recovery history file is local to each database partition.

Chapter 4. Load utility 185

Load dump file

Specifying the dumpfile file type modifier tells the load utility the name and the

location of the exception file to which rejected rows are written.

When running in a partitioned database environment, rows can be rejected either

by the partitioning subagents or by the loading subagents. Because of this, the

dump file name is given an extension that identifies the subagent type, as well as

the database partition number where the exceptions were generated. For example,

if you specified the following dump file value:

 dumpfile = "/u/usrname/dumpit"

Then rows that are rejected by the load subagent on database partition five will be

stored in a file named /u/usrname/dumpit.load.005, rows that are rejected by the

load Subagent on database partition two will be stored in a file named

/u/usrname/dumpit.load.002, and rows that are rejected by the partitioning

subagent on database partition two will be stored in a file named

/u/usrname/dumpit.part.002, and so on.

For rows rejected by the load subagent, if the row is less than 32 768 bytes in

length, the record is copied to the dump file in its entirety; if it is longer, a row

fragment (including the final bytes of the record) is written to the file.

For rows rejected by the partitioning subagent, the entire row is copied to the

dump file regardless of the record size.

Load temporary files

DB2 creates temporary binary files during load processing. These files are used for

load crash recovery, load terminate operations, warning and error messages, and

runtime control data.

Load temporary files are removed when the load operation completes without

error. The temporary files are written to a path that can be specified through the

temp-pathname parameter of the LOAD command, or in the piTempFilesPath

parameter of the db2Load API. The default path is a subdirectory of the database

directory.

The temporary files path resides on the server machine and is accessed by the DB2

instance exclusively. Therefore, it is imperative that any path name qualification

given to the temp-pathname parameter reflects the directory structure of the server,

not the client, and that the DB2 instance owner has read and write permission on

the path.

Note: In an MPP system, the temporary files path should reside on a local disk,

not on an NFS mount. If the path is on an NFS mount, there is significant

performance degradation during the load operation.
 Attention: The temporary files written to this path must not be tampered with

under any circumstances. Doing so causes the load operation to malfunction and

places your database in jeopardy.

Load utility log records

The utility manager produces log records associated with a number of DB2

utilities, including the load utility.

186 Data Movement Utilities Guide and Reference

The following log records mark the beginning or end of a specific activity during a

load operation:

v Setup phase

– Load Start. This log record signifies the beginning of a load operation’s setup

phase.

– Commit log record. This log record signifies the successful completion of the

setup phase.

– Abort log record. This log record signifies the failure of the setup phase.

(Alternately, in a single partition database, if the Load setup phase fails prior

to physically modifying the table, it will generate a Local Pending commit log

record).
v Load phase

– Load Start. This log record signifies the beginning of a load operation’s load

phase.

– Local Pending commit log record. This log record signifies the successful

completion of the load phase.

– Abort log record. This log record signifies the failure of the load phase.
v Delete phase

– Load Delete Start. This log record is associated with the beginning of the

delete phase in a load operation. The delete phase is started only if there are

duplicate primary key values. During the delete phase, each delete operation

on a table record, or an index key, is logged.

– Load Delete End. This log record is associated with the end of the delete

phase in a load operation. This delete phase is repeated during the

rollforward recovery of a successful load operation.

The following list outlines the log records that the load utility creates depending

on the size of the input data:

v Two log records are created for every table space extent allocated or deleted by

the utility in a DMS table space.

v One log record is created for every chunk of identity values consumed.

v Log records are created for every data row or index key deleted during the

delete phase of a load operation.

v Log records are created that maintain the integrity of the index tree when

performing a load operation with the ALLOW READ ACCESS and INDEXING

MODE INCREMENTAL options specified. The number of records logged is

considerably less than a fully logged insertion into the index.

Load overview–partitioned database environments

In a multi-partition database, large amounts of data are located across many

database partitions. Distribution keys are used to determine on which database

partition each portion of the data resides. The data must be distributed before it can

be loaded at the correct database partition.

When loading tables in a multi-partition database, the load utility can:

v Distribute input data in parallel

v Load data simultaneously on corresponding database partitions

v Transfer data from one system to another system

Chapter 4. Load utility 187

Loading data into a multi-partition database takes place in two phases: the setup

phase, during which database partition resources such as table locks are acquired,

and the load phase, during which the data is loaded into the database partitions.

You can use the ISOLATE_PART_ERRS option of the LOAD command to select

how errors are handled during either of these phases, and how errors on one or

more of the database partitions affect the load operation on the database partitions

that are not experiencing errors.

When loading data into a multi-partition database you can use one of the

following modes:

PARTITION_AND_LOAD

Data is distributed (perhaps in parallel) and loaded simultaneously on the

corresponding database partitions.

PARTITION_ONLY

Data is distributed (perhaps in parallel) and the output is written to files in

a specified location on each loading database partition. Each file includes a

partition header that specifies how the data was distributed across the

database partitions, and that the file can be loaded into the database using

the LOAD_ONLY mode.

LOAD_ONLY

Data is assumed to be already distributed across the database partitions;

the distribution process is skipped, and the data is loaded simultaneously

on the corresponding database partitions.

LOAD_ONLY_VERIFY_PART

Data is assumed to be already distributed across the database partitions,

but the data file does not contain a partition header. The distribution

process is skipped, and the data is loaded simultaneously on the

corresponding database partitions. During the load operation, each row is

checked to verify that it is on the correct database partition. Rows

containing database partition violations are placed in a dump file if the

dumpfile file type modifier is specified. Otherwise, the rows are discarded.

If database partition violations exist on a particular loading database

partition, a single warning is written to the load message file for that

database partition.

ANALYZE

An optimal distribution map with even distribution across all database

partitions is generated.

Concepts and terminology

The following terminology is used when discussing the behavior and operation of

the load utility in a partitioned database environment with multiple database

partitions:

v The coordinator partition is the database partition to which the user connects in

order to perform the load operation. In the PARTITION_AND_LOAD,

PARTITION_ONLY, and ANALYZE modes, it is assumed that the data file

resides on this database partition unless the CLIENT option of the LOAD

command is specified. Specifying CLIENT indicates that the data to be loaded

resides on a remotely connected client.

v In the PARTITION_AND_LOAD, PARTITION_ONLY, and ANALYZE modes, the

pre-partitioning agent reads the user data and distributes it in round-robin fashion

to the partitioning agents which then distribute the data. This process is always

188 Data Movement Utilities Guide and Reference

performed on the coordinator partition. A maximum of one partitioning agent is

allowed per database partition for any load operation.

v In the PARTITION_AND_LOAD, LOAD_ONLY, and

LOAD_ONLY_VERIFY_PART modes, load agents run on each output database

partition and coordinate the loading of data to that database partition.

v Load to file agents run on each output database partition during a

PARTITION_ONLY load operation. They receive data from partitioning agents

and write it to a file on their database partition.

v The SOURCEUSEREXIT option provides a facility through which the load utility

can execute a customized script or executable, referred to herein as the user exit.

Loading data in a partitioned database environment

Using the load utility to load data into a partitioned database environment.

Before loading a table in a multi-partition database:

1. Ensure that the svcename database manager configuration parameter and the

DB2COMM profile registry variable are set correctly. This is important because

the load utility uses TCP/IP to transfer data from the pre-partitioning agent to

the partitioning agents, and from the partitioning agents to the loading

database partitions.

2. Before invoking the load utility, you must be connected to (or be able to

implicitly connect to) the database into which the data will be loaded. Since the

load utility will issue a COMMIT statement, you should complete all

transactions and release any locks by issuing either a COMMIT or a

ROLLBACK statement before beginning the load operation. If the

PARTITION_AND_LOAD, PARTITION_ONLY, or ANALYZE mode is being

used, the data file that is being loaded must reside on this database partition

unless:

Partitioning
agent

Partitioning
agent

Pre-partitioning
agent

Load agent

Load agent

Load agent

Figure 13. Partitioned Database Load Overview. The source data is read by the pre-partitioning agent, and

approximately half of the data is sent to each of two partitioning agents which distribute the data and send it to one of

three database partitions. The load agent at each database partition loads the data.

Chapter 4. Load utility 189

a. The CLIENT option has been specified, in which case the data must reside

on the client machine;

b. The input source type is CURSOR, in which case there is no input file.
3. Run the Design Advisor to determine the best database partition for each table.

For more information, see “The Design Advisor” in Troubleshooting and Tuning

Database Performance.

The following restrictions apply when using the load utility to load data in a

multi-partition database:

v The location of the input files to the load operation cannot be a tape device.

v The ROWCOUNT option is not supported unless the ANALYZE mode is being

used.

v If the target table has an identity column that is needed for distributing and the

identityoverride file type modifier is not specified, or if you are using multiple

database partitions to distribute and then load the data, the use of a

SAVECOUNT greater than 0 on the LOAD command is not supported.

v If an identity column forms part of the distribution key, only the

PARTITION_AND_LOAD mode is supported.

v The LOAD_ONLY and LOAD_ONLY_VERIFY_PART modes cannot be used with

the CLIENT option of the LOAD command.

v The LOAD_ONLY_VERIFY_PART mode cannot be used with the CURSOR input

source type.

v The distribution error isolation modes LOAD_ERRS_ONLY and

SETUP_AND_LOAD_ERRS cannot be used with the ALLOW READ ACCESS

and COPY YES options of the LOAD command.

v Multiple load operations can load data into the same table concurrently if the

database partitions specified by the OUTPUT_DBPARTNUMS and

PARTITIONING_DBPARTNUMS options do not overlap. For example, if a table

is defined on database partitions 0 through 3, one load operation can load data

into database partitions 0 and 1 while a second load operation can load data into

database partitions 2 and 3.

v Only Non-delimited ASCII (ASC) and Delimited ASCII (DEL) files can be

distributed across tables spanning multiple database partitions. PC/IXF files

cannot be distributed, however, you can load a PC/IXF file into a table that is

distributed over multiple database partitions using the load operation in the

LOAD_ONLY_VERIFY_PART mode.

The following examples illustrate how to use the LOAD command to initiate

various types of load operations. The database used in the following examples has

five database partitions: 0, 1, 2, 3 and 4. Each database partition has a local

directory /db2/data/. Two tables, TABLE1 and TABLE2, are defined on database

partitions 0, 1, 3 and 4. When loading from a client, the user has access to a remote

client that is not one of the database partitions.

Loading from a server partition

Distribute and load example

In this scenario you are connected to a database partition that might or might not

be a database partition where TABLE1 is defined. The data file load.del resides in

the current working directory of this database partition. To load the data from

load.del into all of the database partitions where TABLE1 is defined, issue the

following command:

190 Data Movement Utilities Guide and Reference

LOAD FROM LOAD.DEL of DEL REPLACE INTO TABLE1

Note: In this example, default values are used for all of the configuration

parameters for partitioned database environments: The MODE parameter default

to PARTITION_AND_LOAD, the OUTPUT_DBPARTNUMS options default to all

database partitions on which TABLE1 is defined, and the

PARTITIONING_DBPARTNUMS defaults to the set of database partitions selected

according to the LOAD command rules for choosing database partitions when

none are specified.

To perform a load operation where data is distributed over database partitions 3

and 4, issue the following command:

 LOAD FROM LOAD.DEL of DEL REPLACE INTO TABLE1

 PARTITIONED DB CONFIG PARTITIONING_DBPARTNUMS (3,4)

Distribute only example

In this scenario you are connected to a database partition that might or might not

be a database partition where TABLE1 is defined. The data file load.del resides in

the current working directory of this database partition. To distribute (but not load)

load.del to all the database partitions on which TABLE1 is defined, using database

partitions 3 and 4 issue the following command:

Figure 14. Loading data into database partitions 3 and 4.. This diagram illustrates the behavior resulting when the

previous command is issued. Data is loaded into database partitions 3 and 4.

Chapter 4. Load utility 191

LOAD FROM LOAD.DEL of DEL REPLACE INTO TABLE1

 PARTITIONED DB CONFIG MODE PARTITION_ONLY

 PART_FILE_LOCATION /db2/data

 PARTITIONING_DBPARTNUMS (3,4)

This results in a file load.del.xxx being stored in the /db2/data directory on each

database partition, where xxx is a three-digit representation of the database

partition number.

To distribute the load.del file to database partitions 1 and 3, using only 1

partitioning agent running on database partition 0 (which is the default for

PARTITIONING_DBPARTNUMS), issue the following command:

 LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1

 PARTITIONED DB CONFIG MODE PARTITION_ONLY

 PART_FILE_LOCATION /db2/data

 OUTPUT_DBPARTNUMS (1,3)

Load only example

Figure 15. Loading data into database partitions 1 and 3 using one partitioning agent.. This diagram illustrates the

behavior that results when the previous command is issued. Data is loaded into database partitions 1 and 3, using 1

partitioning agent running on database partition 0.

192 Data Movement Utilities Guide and Reference

If you have already performed a load operation in the PARTITION_ONLY mode

and want to load the partitioned files in the /db2/data directory of each loading

database partition to all the database partitions on which TABLE1 is defined, issue

the following command:

 LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1

 PARTITIONED DB CONFIG MODE LOAD_ONLY

 PART_FILE_LOCATION /db2/data

To load into database partition 4 only, issue the following command:

 LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1

 PARTITIONED DB CONFIG MODE LOAD_ONLY

 PART_FILE_LOCATION /db2/data

 OUTPUT_DBPARTNUMS (4)

Loading pre-distributed files without distribution map headers

The LOAD command can be used to load data files without distribution headers

directly into several database partitions. If the data files exist in the /db2/data

directory on each database partition where TABLE1 is defined and have the name

load.del.xxx, where xxx is the database partition number, the files can be loaded

by issuing the following command:

 LOAD FROM LOAD.DEL OF DEL modified by dumpfile=rejected.rows

 REPLACE INTO TABLE1

 PARTITIONED DB CONFIG MODE LOAD_ONLY_VERIFY_PART

 PART_FILE_LOCATION /db2/data

Figure 16. Loading data into all database partitions where a specific table is defined.. This diagram illustrates the

behavior resulting when the previous command is issued. Distributed data is loaded to all database partitions where

TABLE1 is defined.

Chapter 4. Load utility 193

To load the data into database partition 1 only, issue the following command:

 LOAD FROM LOAD.DEL OF DEL modified by dumpfile=rejected.rows

 REPLACE INTO TABLE1

 PARTITIONED DB CONFIG MODE LOAD_ONLY_VERIFY_PART

 PART_FILE_LOCATION /db2/data

 OUTPUT_DBPARTNUMS (1)

Note: Rows that do not belong on the database partition from which they were

loaded are rejected and put into the dumpfile, if one has been specified.

Loading from a remote client to a multi-partition database

To load data into a multi-partition database from a file that is on a remote client,

you must specify the CLIENT option of the LOAD command to indicate that the

data file is not on a server partition. For example:

 LOAD CLIENT FROM LOAD.DEL OF DEL REPLACE INTO TABLE1

Note: You cannot use the LOAD_ONLY or LOAD_ONLY_VERIFY_PART modes

with the CLIENT option.

Loading from a cursor

As in a single-partition database, you can load from a cursor into a multi-partition

database. In this example, for the PARTITION_ONLY and LOAD_ONLY modes,

the PART_FILE_LOCATION option must specify a fully qualified file name. This

name is the fully qualified base file name of the distributed files that are created or

loaded on each output database partition. Multiple files can be created with the

specified base name if there are LOB columns in the target table.

To distribute all the rows in the answer set of the statement SELECT * FROM TABLE1

to a file on each database partition named /db2/data/select.out.xxx (where xxx is

the database partition number), for future loading into TABLE2, issue the following

commands:

 DECLARE C1 CURSOR FOR SELECT * FROM TABLE1

 LOAD FROM C1 OF CURSOR REPLACE INTO TABLE2

 PARTITIONED DB CONFIG MODE PARTITION_ONLY

 PART_FILE_LOCATION /db2/data/select.out

The data files produced by the above operation can then be loaded by issuing the

following LOAD command:

 LOAD FROM C1 OF CURSOR REPLACE INTO TABLE2

 PARTITIONED CB CONFIG MODE LOAD_ONLY

 PART_FILE_LOCATION /db2/data/select.out

Loading data in a partitioned database environment–hints and

tips

The following is some information to consider before loading a table in a

multi-partition database:

v Familiarize yourself with the load configuration options by using the utility with

small amounts of data.

v If the input data is already sorted, or in some chosen order, and you want to

maintain that order during the loading process, only one database partition

should be used for distributing. Parallel distribution cannot guarantee that the

data is loaded in the same order it was received. The load utility chooses a

single partitioning agent by default if the anyorder modifier is not specified on

the LOAD command.

194 Data Movement Utilities Guide and Reference

v If large objects (LOBs) are being loaded from separate files (that is, if you are

using the lobsinfile modifier through the load utility), all directories containing

the LOB files must be read-accessible to all the database partitions where

loading is taking place. The LOAD lob-path parameter must be fully qualified

when working with LOBs.

v You can force a job running in a multi-partition database to continue even if the

load operation detects (at startup time) that some loading database partitions or

associated table spaces or tables are offline, by setting the ISOLATE_PART_ERRS

option to SETUP_ERRS_ONLY or SETUP_AND_LOAD_ERRS.

v Use the STATUS_INTERVAL load configuration option to monitor the progress

of a job running in a multi-partition database. The load operation produces

messages at specified intervals indicating how many megabytes of data have

been read by the pre-partitioning agent. These messages are dumped to the

pre-partitioning agent message file. To view the contents of this file during the

load operation, connect to the coordinator partition and issue a LOAD QUERY

command against the target table.

v Better performance can be expected if the database partitions participating in the

distribution process (as defined by the PARTITIONING_DBPARTNUMS option)

are different from the loading database partitions (as defined by the

OUTPUT_DBPARTNUMS option), since there is less contention for CPU cycles.

When loading data into a multi-partition database, invoke the load utility on a

database partition that is not participating in either the distributing or the

loading operation.

v Specifying the MESSAGES parameter in the LOAD command saves the

messages files from the pre-partitioning, partitioning, and load agents for

reference at the end of the load operation. To view the contents of these files

during a load operation, connect to the desired database partition and issue a

LOAD QUERY command against the target table.

v The load utility chooses only one output database partition on which to collect

statistics. The RUN_STAT_DBPARTNUM database configuration option can be

used to specify the database partition.

v Before loading data in a multi-partition database, run the Design Advisor to

determine the best partition for each table. For more information, see “The

Design Advisor” in Troubleshooting and Tuning Database Performance.

Troubleshooting

If the load utility is hanging, you can:

v Use the STATUS_INTERVAL parameter to monitor the progress of a

multi-partition database load operation. The status interval information is

dumped to the pre-partitioning agent message file on the coordinator partition.

v Check the partitioning agent messages file to see the status of the partitioning

agent processes on each database partition. If the load is proceeding with no

errors, and the TRACE option has been set, there should be trace messages for a

number of records in these message files.

v Check the load messages file to see if there are any load error messages.

Note: You must specify the MESSAGES option of the LOAD command in order

for these files to exist.

v Interrupt the current load operation if you find errors suggesting that one of the

load processes encountered errors.

Chapter 4. Load utility 195

Monitoring a load operation in a partitioned database

environment using the LOAD QUERY command

During a load operation in a partitioned database environment, message files are

created by some of the load processes on the database partitions where they are

being executed.

The message files store all information, warning, and error messages produced

during the execution of the load operation. The load processes that produce

message files that can be viewed by the user are the load agent, pre-partitioning

agent, and partitioning agent. The content of the message file is only available after

the load operation is finished.

You can connect to individual database partitions during a load operation and

issue the LOAD QUERY command against the target table. When issued from the

CLP, this command displays the contents of all the message files that currently

reside on that database partition for the table that is specified in the LOAD

QUERY command.

For example, table TABLE1 is defined on database partitions 0 through 3 in

database WSDB. You are connected to database partition 0 and issue the following

LOAD command:

 load from load.del of del replace into table1 partitioned db config

 partitioning_dbpartnums (1)

This command initiates a load operation that includes load agents running on

database partitions 0, 1, 2, and 3; a partitioning agent running on database

partition 1; and a pre-partitioning agent running on database partition 0.

Database partition 0 contains one message file for the pre-partitioning agent and

one for the load agent on that database partition. To view the contents of these

files at the same time, start a new session and issue the following commands from

the CLP:

 set client connect_node 0

 connect to wsdb

 load query table table1

Database partition 1 contains one file for the load agent and one for the

partitioning agent. To view the contents of these files, start a new session and issue

the following commands from the CLP:

 set client connect_node 1

 connect to wsdb

 load query table table1

Note: The messages generated by the STATUS_INTERVAL load configuration

option appear in the pre-partitioning agent message file. To view these message

during a load operation, you must connect to the coordinator partition and issue

the LOAD QUERY command.

Saving the contents of message files

If a load operation is initiated through the db2Load API, the messages option

(piLocalMsgFileName) must be specified and the message files are brought from

the server to the client and stored for you to view.

196 Data Movement Utilities Guide and Reference

For multi-partition database load operations initiated from the CLP, the message

files are not displayed to the console or retained. To save or view the contents of

these files after a multi-partition database load is complete, the MESSAGES option

of the LOAD command must be specified. If this option is used, once the load

operation is complete the message files on each database partition are transferred

to the client machine and stored in files using the base name indicated by the

MESSAGES option. For multi-partition database load operations, the name of the

file corresponding to the load process that produced it is listed below:

 Process Type File Name

Load Agent <message-file-name>.LOAD.<dbpartition-
number>

Partitioning Agent <message-file-name>.PART.<dbpartition-
number>

Pre-partitioning Agent <message-file-name>.PREP.<dbpartition-
number>

For example, if the MESSAGES option specifies /wsdb/messages/load, the load

agent message file for database partition 2 is /wsdb/messages/load.LOAD.002.

Note: It is strongly recommended that the MESSAGES option be used for

multi-partition database load operations initiated from the CLP.

Resuming, restarting, or terminating load operations in a

partitioned database environment

The steps you need to take following failed load operations in a partitioned

database environment depend on when the failure occurred.

The load process in a multi-partition database consists of two stages:

1. The setup stage, during which database partition-level resources such as table

locks on output database partitions are acquired

In general, if a failure occurs during the setup stage, restart and terminate

operations are not necessary. What you need to do depends on the error

isolation mode that was specified for the failed load operation.

If the load operation specified that setup stage errors were not to be isolated,

the entire load operation is cancelled and the state of the table on each database

partition is rolled back to the state it was in prior to the load operation.

If the load operation specified that setup stage errors were to be isolated, the

load operation continues on the database partitions where the setup stage was

successful, but the table on each of the failing database partitions is rolled back

to the state it was in prior to the load operation. This means that a single load

operation can fail at different stages if some partitions fail during the setup

stage and others fail during the load stage

2. The load stage, during which data is formatted and loaded into tables on the

database partitions

If a load operation fails on at least one database partition during the load stage

of a multi-partition database load operation, a load RESTART or load

TERMINATE command must be issued. This is necessary because loading data

in a multi-partition database is done through a single transaction.

Chapter 4. Load utility 197

You should choose a load RESTART if you can fix the problems that caused the

failed load to occur. This saves time because if a load restart operation is

initiated, the load operation continues from where it left off on all database

partitions.

You should choose a load TERMINATE if you want the table returned to the

state it was in prior to the initial load operation.

Procedure:

Determining when a load failed

The first thing you need to do if your load operation in a partitioned environment

fails is to determine on which partitions it failed and at what stage each of them

failed. This is done by looking at the partition summary. If the load command was

issued from the CLP, the partition summary is displayed at the end of the load (see

example below). If the load command was issued from the db2Load API, the

partition summary is contained in the poAgentInfoList field of the

db2PartLoadOut structure.

If there is an entry of ″LOAD″ for ″Agent Type″, for a given partition, then that

partition reached the load stage, otherwise a failure occurred during the setup

stage. A negative SQL Code indicates that it failed. In the following example, the

load failed on partition 1 during the load stage.

 Agent Type Node SQL Code Result

 __

 LOAD 000 +00000000 Success.

 __

 LOAD 001 -00000289 Error. May require RESTART.

 __

 LOAD 002 +00000000 Success.

 __

 LOAD 003 +00000000 Success.

.

.

.

Resuming, restarting, or terminating a failed load

Only loads with the ISOLATE_PART_ERRS option specifying SETUP_ERRS_ONLY

or SETUP_AND_LOAD_ERRS should fail during the setup stage. For loads that

fail on at least one output database partition fail during this stage, you can issue a

LOAD REPLACE or LOAD INSERT command. Use the OUTPUT_DBPARTNUMS

option to specify only those database partitions on which it failed.

For loads that fail on at least one output database partition during the load stage,

issue a load RESTART or load TERMINATE command.

For loads that fail on at least one output database partition during the setup stage

and at least one output database partition during the load stage, you need to

perform two load operations to resume the failed load–one for the setup stage

failures and one for the load stage failures, as previously described. To effectively

undo this type of failed load operation, issue a load TERMINATE command.

However, after issuing the command, you have to account for all partitions

because no changes were made to the table on the partitions that failed during the

setup stage, and all the changes have been undone for the partitions that failed

during the load stage.

198 Data Movement Utilities Guide and Reference

For example, TABLE1 is defined on database partitions 0 through 3 in database

WSDB. The following command is issued:

load from load.del of del insert into table1 partitioned db config

isolate_part_errs setup_and_load_errs

There is a failure on output database partition 1 during the setup stage. Since

setup stage errors are isolated, the load operation continues, but there is a failure

on partition 3 during the load stage. To resume the load operation, you would

issue the following commands:

load from load.del of del replace into table1 partitioned db config

output_dbpartnums (1)

load from load.del of del restart into table1 partitioned db config

isolate_part_errs setup_and_load_errs

Note: For load restart operations, the options specified in the LOAD RESTART

command will be honored, so it is important that they are identical to the ones

specified in the original LOAD command.

Migration and version compatibility

The DB2_PARTITIONEDLOAD_DEFAULT registry variable can be used to revert

to pre- DB2 Universal Database Version 8 load behavior in a multi-partition

database.

Note: The DB2_PARTITIONEDLOAD_DEFAULT registry variable is deprecated

and may be removed in a later release.

Reverting to the pre- DB2 UDB Version 8 behavior of the LOAD command in a

multi-partition database, allows you to load a file with a valid distribution header

into a single database partition without specifying any extra partitioned database

configuration options. You can do this by setting the value of

DB2_PARTITIONEDLOAD_DEFAULT to NO. You may choose to use this option

if you want to avoid modifying existing scripts that issue the LOAD command

against single database partitions. For example, to load a distribution file into

database partition 3 of a table that resides in a database partition group with four

database partitions, issue the following command:

 db2set DB2_PARTITIONEDLOAD_DEFAULT=NO

Then issue the following commands from the DB2 Command Line Processor:

 CONNECT RESET

 SET CLIENT CONNECT_NODE 3

 CONNECT TO DB MYDB

 LOAD FROM LOAD.DEL OF DEL REPLACE INTO TABLE1

In a multi-partition database, when no multi-partition database load configuration

options are specified, the load operation takes place on all the database partitions

on which the table is defined. The input file does not require a distribution header,

and the MODE option defaults to PARTITION_AND_LOAD. To load a single

database partition, the OUTPUT_DBPARTNUMS option must be specified.

Chapter 4. Load utility 199

Reference - Load in a partitioned environment

Load sessions in a partitioned database environment - CLP

examples

The following examples demonstrate loading data in a multi-partition database.

The database has four database partitions numbered 0 through 3. Database WSDB

is defined on all of the database partitions, and table TABLE1 resides in the default

database partition group which is also defined on all of the database partitions.

Example 1

To load data into TABLE1 from the user data file load.del which resides on

database partition 0, connect to database partition 0 and then issue the following

command:

 load from load.del of del replace into table1

If the load operation is successful, the output will be as follows:

 Agent Type Node SQL Code Result

 LOAD 000 +00000000 Success.

 LOAD 001 +00000000 Success.

 LOAD 002 +00000000 Success.

 LOAD 003 +00000000 Success.

 PARTITION 001 +00000000 Success.

 PRE_PARTITION 000 +00000000 Success.

 RESULTS: 4 of 4 LOADs completed successfully.

 Summary of Partitioning Agents:

 Rows Read = 100000

 Rows Rejected = 0

 Rows Partitioned = 100000

 Summary of LOAD Agents:

 Number of rows read = 100000

 Number of rows skipped = 0

 Number of rows loaded = 100000

 Number of rows rejected = 0

 Number of rows deleted = 0

 Number of rows committed = 100000

The output indicates that there was one load agent on each database partition and

each ran successfully. It also shows that there was one pre-partitioning agent

running on the coordinator partition and one partitioning agent running on

database partition 1. These processes completed successfully with a normal SQL

return code of 0. The statistical summary shows that the pre-partitioning agent

read 100,000 rows, the partitioning agent distributed 100,000 rows, and the sum of

all rows loaded by the load agents is 100,000.

Example 2

200 Data Movement Utilities Guide and Reference

In the following example, data is loaded into TABLE1 in the PARTITION_ONLY

mode. The distributed output files is stored on each of the output database

partitions in the directory /db/data:

 load from load.del of del replace into table1 partitioned db config mode

 partition_only part_file_location /db/data

The output from the load command is as follows:

 Agent Type Node SQL Code Result

 LOAD_TO_FILE 000 +00000000 Success.

 LOAD_TO_FILE 001 +00000000 Success.

 LOAD_TO_FILE 002 +00000000 Success.

 LOAD_TO_FILE 003 +00000000 Success.

 PARTITION 001 +00000000 Success.

 PRE_PARTITION 000 +00000000 Success.

 Summary of Partitioning Agents:

 Rows Read = 100000

 Rows Rejected = 0

 Rows Partitioned = 100000

The output indicates that there was a load-to-file agent running on each output

database partition, and these agents ran successfully. There was a pre-partitioning

agent on the coordinator partition, and a partitioning agent running on database

partition 1. The statistical summary indicates that 100,000 rows were successfully

read by the pre-partitioning agent and 100,000 rows were successfully distributed

by the partitioning agent. Since no rows were loaded into the table, no summary of

the number of rows loaded appears.

Example 3

To load the files that were generated during the PARTITION_ONLY load operation

above, issue the following command:

 load from load.del of del replace into table1 partitioned db config mode

 load_only part_file_location /db/data

The output from the load command will be as follows:

 Agent Type Node SQL Code Result

 LOAD 000 +00000000 Success.

 LOAD 001 +00000000 Success.

 LOAD 002 +00000000 Success.

 LOAD 003 +00000000 Success.

 RESULTS: 4 of 4 LOADs completed successfully.

 Summary of LOAD Agents:

 Number of rows read = 100000

 Number of rows skipped = 0

Chapter 4. Load utility 201

Number of rows loaded = 100000

 Number of rows rejected = 0

 Number of rows deleted = 0

 Number of rows committed = 100000

The output indicates that the load agents on each output database partition ran

successfully and that the sum of the number of rows loaded by all load agents is

100,000. No summary of rows distributed is indicated since distribution was not

performed.

Example 4 - Failed Load Operation

If the following LOAD command is issued:

 load from load.del of del replace into table1

and one of the loading database partitions runs out of space in the table space

during the load operation, the following output might be returned:

 SQL0289N Unable to allocate new pages in table space "DMS4KT".

 SQLSTATE=57011

 Agent Type Node SQL Code Result

 __

 LOAD 000 +00000000 Success.

 __

 LOAD 001 -00000289 Error. May require RESTART.

 __

 LOAD 002 +00000000 Success.

 __

 LOAD 003 +00000000 Success.

 __

 PARTITION 001 +00000000 Success.

 __

 PRE_PARTITION 000 +00000000 Success.

 __

 RESULTS: 3 of 4 LOADs completed successfully.

 __

 Summary of Partitioning Agents:

 Rows Read = 0

 Rows Rejected = 0

 Rows Partitioned = 0

 Summary of LOAD Agents:

 Number of rows read = 0

 Number of rows skipped = 0

 Number of rows loaded = 0

 Number of rows rejected = 0

 Number of rows deleted = 0

 Number of rows committed = 0

The output indicates that the load operation returned error SQL0289. The database

partition summary indicates that database partition 1 ran out of space. If additional

space is added to the containers of the table space on database partition 1, the load

operation can be restarted as follows:

 load from load.del of del restart into table1

202 Data Movement Utilities Guide and Reference

Load configuration options for partitioned database

environments

MODE X

Specifies the mode in which the load operation occurs when loading a

multi-partition database. PARTITION_AND_LOAD is the default. Valid

values are:

v PARTITION_AND_LOAD. Data is distributed (perhaps in parallel) and

loaded simultaneously on the corresponding database partitions.

v PARTITION_ONLY. Data is distributed (perhaps in parallel) and the

output is written to files in a specified location on each loading database

partition. For file types other than CURSOR, the format of the output file

name on each database partition is filename.xxx, where filename is the

input file name specified in the LOAD command and xxx is the 3-digit

database partition number. For the CURSOR file type, the name of the

output file on each database partition is determined by the

PART_FILE_LOCATION option. See the PART_FILE_LOCATION option

for details on how to specify the location of the distribution file for each

database partition.

Note:

1. This mode cannot be used for a CLI load operation.

2. If the table contains an identity column that is needed for

distribution, then this mode is not supported, unless the

identityoverride file type modifier is specified.

3. Distribution files generated for file type CURSOR are not compatible

between DB2 releases. This means that distribution files of file type

CURSOR that were generated in a previous release cannot be loaded

using the LOAD_ONLY mode. Similarly, distribution files of file type

CURSOR that were generated in the current release cannot be loaded

in a future release using the LOAD_ONLY mode.
v LOAD_ONLY. Data is assumed to be already distributed; the

distribution process is skipped, and the data is loaded simultaneously on

the corresponding database partitions. For file types other than

CURSOR, the format of the input file name for each database partition

should be filename.xxx, where filename is the name of the file specified

in the LOAD command and xxx is the 3-digit database partition number.

For the CURSOR file type, the name of the input file on each database

partition is determined by the PART_FILE_LOCATION option. See the

PART_FILE_LOCATION option for details on how to specify the location

of the distribution file for each database partition.

Note:

1. This mode cannot be used for a CLI load operation, or when the

CLIENT option of LOAD command is specified.

2. If the table contains an identity column that is needed for

distribution, then this mode is not supported, unless the

identityoverride file type modifier is specified.
v LOAD_ONLY_VERIFY_PART. Data is assumed to be already distributed,

but the data file does not contain a partition header. The distributing

process is skipped, and the data is loaded simultaneously on the

corresponding database partitions. During the load operation, each row

is checked to verify that it is on the correct database partition. Rows

containing database partition violations are placed in a dumpfile if the

Chapter 4. Load utility 203

dumpfile file type modifier is specified. Otherwise, the rows are

discarded. If database partition violations exist on a particular loading

database partition, a single warning is written to the load message file

for that database partition. The format of the input file name for each

database partition should be filename.xxx, where filename is the name

of the file specified in the LOAD command and xxx is the 3-digit

database partition number. See the PART_FILE_LOCATION option for

details on how to specify the location of the distribution file for each

database partition.

Note:

1. This mode cannot be used for a CLI load operation, or when the

CLIENT option of LOAD command is specified.

2. If the table contains an identity column that is needed for

distribution, then this mode is not supported, unless the

identityoverride file type modifier is specified.
v ANALYZE. An optimal distribution map with even distribution across

all database partitions is generated.

PART_FILE_LOCATION X

In the PARTITION_ONLY, LOAD_ONLY, and

LOAD_ONLY_VERIFY_PART modes, this parameter can be used to specify

the location of the distributed files. This location must exist on each

database partition specified by the OUTPUT_DBPARTNUMS option. If the

location specified is a relative path name, the path is appended to the

current directory to create the location for the distributed files.

 For the CURSOR file type, this option must be specified, and the location

must refer to a fully qualified file name. This name is the fully qualified

base file name of the distributed files that are created on each output

database partition in the PARTITION_ONLY mode, or the location of the

files to be read from for each database partition in the LOAD_ONLY mode.

When using the PARTITION_ONLY mode, multiple files can be created

with the specified base name if the target table contains LOB columns.

For file types other than CURSOR, if this option is not specified, the

current directory is used for the distributed files.

OUTPUT_DBPARTNUMS X

X represents a list of database partition numbers. The database partition

numbers represent the database partitions on which the load operation is

to be performed. The database partition numbers must be a subset of the

database partitions on which the table is defined. All database partitions

are selected by default. The list must be enclosed in parentheses and the

items in the list must be separated by commas. Ranges are permitted (for

example, (0, 2 to 10, 15)).

PARTITIONING_DBPARTNUMS X

X represents a list of database partition numbers that are used in the

distribution process. The list must be enclosed in parentheses and the items

in the list must be separated by commas. Ranges are permitted (for

example, (0, 2 to 10, 15)). The database partitions specified for the

distribution process can be different from the database partitions being

loaded. If PARTITIONING_DBPARTNUMS is not specified, the load utility

determines how many database partitions are needed and which database

partitions to use in order to achieve optimal performance.

204 Data Movement Utilities Guide and Reference

If the anyorder file type modifier is not specified in the LOAD command,

only one partitioning agent is used in the load session. Furthermore, if

there is only one database partition specified for the

OUTPUT_DBPARTNUMS option, or the coordinator partition of the load

operation is not an element of OUTPUT_DBPARTNUMS, the coordinator

partition of the load operation is used in the distribution process.

Otherwise, the first database partition (not the coordinator partition) in

OUTPUT_DBPARTNUMS is used in the distribution process.

If the anyorder file type modifier is specified, the number of database

partitions used in the distribution process is determined as follows:

(number of partitions in OUTPUT_DBPARTNUMS/4 + 1).

MAX_NUM_PART_AGENTS X

Specifies the maximum numbers of partitioning agents to be used in a load

session. The default is 25.

ISOLATE_PART_ERRS X

Indicates how the load operation reacts to errors that occur on individual

database partitions. The default is LOAD_ERRS_ONLY, unless both the

ALLOW READ ACCESS and COPY YES options of the LOAD command

are specified, in which case the default is NO_ISOLATION. Valid values

are:

v SETUP_ERRS_ONLY. Errors that occur on a database partition during

setup, such as problems accessing a database partition, or problems

accessing a table space or table on a database partition, cause the load

operation to stop on the failing database partitions but to continue on

the remaining database partitions. Errors that occur on a database

partition while data is being loaded cause the entire operation to fail.

v LOAD_ERRS_ONLY. Errors that occur on a database partition during

setup cause the entire load operation to fail. If an error occurs while data

is being loaded, the load operation will stop on the database partition

where the error occurred. The load operation continues on the remaining

database partitions until a failure occurs or until all the data is loaded.

The newly loaded data will not be visible until a load restart operation

is performed and completes successfully.

Note: This mode cannot be used when both the ALLOW READ

ACCESS and the COPY YES options of the LOAD command are

specified.

v SETUP_AND_LOAD_ERRS. In this mode, database partition-level errors

during setup or loading data cause processing to stop only on the

affected database partitions. As with the LOAD_ERRS_ONLY mode,

when partition errors do occur while data is loaded, newly loaded data

will not be visible until a load restart operation is performed and

completes successfully.

Note: This mode cannot be used when both the ALLOW READ

ACCESS and the COPY YES options of the LOAD command are

specified.

v NO_ISOLATION. Any error during the load operation causes the load

operation to fail.

STATUS_INTERVAL X

X represents how often you are notified of the volume of data that has

been read. The unit of measurement is megabytes (MB). The default is 100

MB. Valid values are whole numbers from 1 to 4000.

Chapter 4. Load utility 205

PORT_RANGE X

X represents the range of TCP ports used to create sockets for internal

communications. The default range is from 6000 to 6063. If defined at the

time of invocation, the value of the DB2ATLD_PORTS registry variable

replaces the value of the PORT_RANGE load configuration option. For the

DB2ATLD_PORTS registry variable, the range should be provided in the

following format:

 <lower-port-number:higher-port-number>

From the CLP, the format is:

 (lower-port-number, higher-port-number)

CHECK_TRUNCATION

Specifies that the program should check for truncation of data records at

input/output. The default behavior is that data is not checked for

truncation at input/output.

MAP_FILE_INPUT X

X specifies the input file name for the distribution map. This parameter

must be specified if the distribution map is customized, as it points to the

file containing the customized distribution map. A customized distribution

map can be created by using the db2gpmap program to extract the map

from the database system catalog table, or by using the ANALYZE mode of

the LOAD command to generate an optimal map. The map generated by

using the ANALYZE mode must be moved to each database partition in

your database before the load operation can proceed.

MAP_FILE_OUTPUT X

X represents the output filename for the distribution map. The output file

is created on the database partition issuing the LOAD command assuming

that database partition is participating in the database partition group

where partitioning is performed. If the LOAD command is invoked on a

database partition that is not participating in partitioning (as defined by

PARTITIONING_DBPARTNUMS), the output file is created at the first

database partition defined with the PARTITIONING_DBPARTNUMS

parameter. Consider the following partitioned database environment setup:

 1 serv1 0

 2 serv1 1

 3 serv2 0

 4 serv2 1

 5 serv3 0

 Running the following LOAD command on serv3, creates the distribution

map on serv1.

LOAD FROM file OF ASC METHOD L (...) INSERT INTO table CONFIG

MODE ANALYZE PARTITIONING_DBPARTNUMS(1,2,3,4)

MAP_FILE_OUTPUT ’/home/db2user/distribution.map’

This parameter should be used when the ANALYZE mode is specified. An

optimal distribution map with even distribution across all database

partitions is generated. If this parameter is not specified and the ANALYZE

mode is specified, the program exits with an error.

TRACE X

Specifies the number of records to trace when you require a review of a

dump of the data conversion process and the output of the hashing values.

The default is 0.

206 Data Movement Utilities Guide and Reference

NEWLINE

Used when the input data file is an ASC file with each record delimited by

a new line character and the reclen file type modifier is specified in the

LOAD command. When this option is specified, each record is checked for

a new line character. The record length, as specified in the reclen file type

modifier, is also checked.

DISTFILE X

If this option is specified, the load utility generates a database partition

distribution file with the given name. The database partition distribution

file contains 32 768 integers: one for each entry in the target table’s

distribution map. Each integer in the file represents the number of rows in

the input files being loaded that hashed to the corresponding distribution

map entry. This information can help you identify skew in your data and

also help you decide whether a new distribution map should be generated

for the table using the ANALYZE mode of the utility. If this option is not

specified, the default behavior of the load utility is to not generate the

distribution file.

Note: When this option is specified, a maximum of one partitioning agent

is used for the load operation. Even if you explicitly request multiple

partitioning agents, only one is used.

OMIT_HEADER

Specifies that a distribution map header should not be included in the

distribution file. If not specified, a header is generated.

RUN_STAT_DBPARTNUM X

If the STATISTICS YES parameter is specified in the LOAD command,

statistics are collected only on one database partition. This parameter

specifies on which database partition to collect statistics. If the value is -1

or not specified at all, statistics are collected on the first database partition

in the output database partition list.

Reference - Load

LOAD

Loads data into a DB2 table. Data residing on the server can be in the form of a

file, tape, or named pipe. If the COMPRESS attribute for the table is set to YES, the

data loaded will be subject to compression on every data and database partition

for which a dictionary already exists in the table, including data in the XML

storage object of the table.

Quick link to “File type modifiers for the load utility” on page 227.

Restrictions

The load utility does not support loading data at the hierarchy level. The load

utility is not compatible with range-clustered tables.

Scope

This command can be issued against multiple database partitions in a single

request.

Chapter 4. Load utility 207

Authorization

One of the following:

v dataaccess

v LOAD authority on the database and

– INSERT privilege on the table when the load utility is invoked in INSERT

mode, TERMINATE mode (to terminate a previous load insert operation), or

RESTART mode (to restart a previous load insert operation)

– INSERT and DELETE privilege on the table when the load utility is invoked

in REPLACE mode, TERMINATE mode (to terminate a previous load replace

operation), or RESTART mode (to restart a previous load replace operation)

– INSERT privilege on the exception table, if such a table is used as part of the

load operation.
v To load data into a table that has protected columns, the session authorization

ID must have LBAC credentials that allow write access to all protected columns

in the table. Otherwise the load fails and an error (SQLSTATE 5U014) is

returned.

v To load data into a table that has protected rows, the session authorization id

must hold a security label that meets these criteria:

– It is part of the security policy protecting the table

– It was granted to the session authorization ID for write access or for all access

If the session authorization id does not hold such a security label then the load

fails and an error (SQLSTATE 5U014) is returned. This security label is used to

protect a loaded row if the session authorization ID’s LBAC credentials do not

allow it to write to the security label that protects that row in the data. This does

not happen, however, when the security policy protecting the table was created

with the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option of

the CREATE SECURITY POLICY statement. In this case the load fails and an

error (SQLSTATE 42519) is returned.

v If the REPLACE option is specified, the session authorization ID must have the

authority to drop the table.

v If the LOCK WITH FORCE option is specified, SYSADM authority is required.

Since all load processes (and all DB2 server processes, in general) are owned by the

instance owner, and all of these processes use the identification of the instance

owner to access needed files, the instance owner must have read access to input

data files. These input data files must be readable by the instance owner, regardless

of who invokes the command.

Required connection

Instance. An explicit attachment is not required. If a connection to the database has

been established, an implicit attachment to the local instance is attempted.

Command syntax

��

LOAD

FROM

�

 ,

filename

pipename

device

OF

filetype

�

,

LOBS FROM

lob-path

�

,

XML FROM

xml-path

�

208 Data Movement Utilities Guide and Reference

�

�

MODIFIED BY

file-type-mod

 �

�

�

�

�

�

,

METHOD

L

(

column-start

column-end

)

,

NULL INDICATORS

(

null-indicator-list

)

,

N

(

column-name

)

,

P

(

column-position

)

 �

�
XMLPARSE

STRIP

WHITESPACE

PRESERVE

 �

�
XMLVALIDATE USING

XDS

Ignore

and

Map

parameters

DEFAULT

schema-sqlid

SCHEMA

schema-sqlid

SCHEMALOCATION HINTS

SAVECOUNT

n
 �

�
ROWCOUNT

n

WARNINGCOUNT

n

TEMPFILES PATH

temp-pathname
 INSERT

KEEPDICTIONARY

REPLACE

RESETDICTIONARY

RESTART

TERMINATE

 �

�

�

 INTO table-name

,

(

insert-column

)

�

,

(1)

(2)

FOR EXCEPTION

table-name

NORANGEEXC

NOUNIQUEEXC

 �

�
STATISTICS

USE PROFILE

NO

�

NO

COPY

YES

USE TSM

OPEN

num-sess

SESSIONS

,

TO

device/directory

LOAD

lib-name

OPEN

num-sess

SESSIONS

NONRECOVERABLE

 �

�
DATA BUFFER

buffer-size

SORT BUFFER

buffer-size

CPU_PARALLELISM

n

DISK_PARALLELISM

n
 �

�
YES

FETCH_PARALLELISM

NO

INDEXING MODE

AUTOSELECT

REBUILD

INCREMENTAL

DEFERRED

 �

�
 ALLOW NO ACCESS

ALLOW READ ACCESS

USE

tablespace-name

SET INTEGRITY PENDING CASCADE

IMMEDIATE

DEFERRED

�

Chapter 4. Load utility 209

�
LOCK WITH FORCE

SOURCEUSEREXIT

executable

Redirect

Input/Output

parameters

PARALLELIZE

 �

�

�

PARTITIONED DB CONFIG

partitioned-db-option

 ��

Ignore and Map parameters:

�

,

IGNORE

(

schema-sqlid

)

 �

�

�

,

MAP

(

(

schema-sqlid

,

schema-sqlid

)

)

Redirect Input/Output parameters:

REDIRECT

INPUT FROM

BUFFER

input-buffer

FILE

input-file

OUTPUT TO FILE

output-file

OUTPUT TO FILE

output-file

Notes:

1 These keywords can appear in any order.

2 Each of these keywords can only appear once.

Command parameters

FROM filename | pipename | device

Note:

1. If data is exported into a file using the EXPORT command using the

ADMIN_CMD procedure, the data file is owned by the fenced user ID.

This file is not usually accessible by the instance owner. To run the

LOAD from CLP or the ADMIN_CMD procedure, the data file must be

accessible by the instance owner ID, so read access to the data file must

be granted to the instance owner.

2. Loading data from multiple IXF files is supported if the files are

physically separate, but logically one file. It is not supported if the files

are both logically and physically separate. (Multiple physical files

would be considered logically one if they were all created with one

invocation of the EXPORT command.)

3. When loading XML data from files into tables in a partitioned database

environment, the XML data files must be read-accessible to all the

database partitions where loading is taking place.

OF filetype

Specifies the format of the data:

v ASC (non-delimited ASCII format).

v DEL (delimited ASCII format).

210 Data Movement Utilities Guide and Reference

v IXF (Integration Exchange Format, PC version) is a binary format that is

used exclusively by DB2.

v CURSOR (a cursor declared against a SELECT or VALUES statement).

Note: When using a CURSOR file type to load XML data into a table in a

distributed database environment, the PARTITION_ONLY and

LOAD_ONLY modes are not supported.

LOBS FROM lob-path

The path to the data files containing LOB values to be loaded. The path

must end with a slash. The names of the LOB data files are stored in the

main data file (ASC, DEL, or IXF), in the column that will be loaded into

the LOB column. The maximum number of paths that can be specified is

999. This will implicitly activate the LOBSINFILE behavior.

 This option is ignored when specified in conjunction with the CURSOR file

type.

MODIFIED BY file-type-mod

Specifies file type modifier options. See “File type modifiers for the load

utility” on page 227.

METHOD

L Specifies the start and end column numbers from which to load

data. A column number is a byte offset from the beginning of a

row of data. It is numbered starting from 1. This method can only

be used with ASC files, and is the only valid method for that file

type.

NULL INDICATORS null-indicator-list

This option can only be used when the METHOD L

parameter is specified; that is, the input file is an ASC file).

The null indicator list is a comma-separated list of positive

integers specifying the column number of each null

indicator field. The column number is the byte offset of the

null indicator field from the beginning of a row of data.

There must be one entry in the null indicator list for each

data field defined in the METHOD L parameter. A column

number of zero indicates that the corresponding data field

always contains data.

 A value of Y in the NULL indicator column specifies that

the column data is NULL. Any character other than Y in

the NULL indicator column specifies that the column data

is not NULL, and that column data specified by the

METHOD L option will be loaded.

The NULL indicator character can be changed using the

MODIFIED BY option.

N Specifies the names of the columns in the data file to be loaded.

The case of these column names must match the case of the

corresponding names in the system catalogs. Each table column

that is not nullable should have a corresponding entry in the

METHOD N list. For example, given data fields F1, F2, F3, F4, F5,

and F6, and table columns C1 INT, C2 INT NOT NULL, C3 INT

NOT NULL, and C4 INT, method N (F2, F1, F4, F3) is a valid

request, while method N (F2, F1) is not valid. This method can

only be used with file types IXF or CURSOR.

Chapter 4. Load utility 211

P Specifies the field numbers (numbered from 1) of the input data

fields to be loaded. Each table column that is not nullable should

have a corresponding entry in the METHOD P list. For example,

given data fields F1, F2, F3, F4, F5, and F6, and table columns C1

INT, C2 INT NOT NULL, C3 INT NOT NULL, and C4 INT, method

P (2, 1, 4, 3) is a valid request, while method P (2, 1) is not

valid. This method can only be used with file types IXF, DEL, or

CURSOR, and is the only valid method for the DEL file type.

XML FROM xml-path

Specifies one or more paths that contain the XML files. XDSs are contained

in the main data file (ASC, DEL, or IXF), in the column that will be loaded

into the XML column.

XMLPARSE

Specifies how XML documents are parsed. If this option is not specified,

the parsing behavior for XML documents will be determined by the value

of the CURRENT XMLPARSE OPTION special register.

STRIP WHITESPACE

Specifies to remove whitespace when the XML document is parsed.

PRESERVE WHITESPACE

Specifies not to remove whitespace when the XML document is

parsed.

XMLVALIDATE

Specifies that XML documents are validated against a schema, when

applicable.

USING XDS

XML documents are validated against the XML schema identified

by the XML Data Specifier (XDS) in the main data file. By default,

if the XMLVALIDATE option is invoked with the USING XDS

clause, the schema used to perform validation will be determined

by the SCH attribute of the XDS. If an SCH attribute is not present

in the XDS, no schema validation will occur unless a default

schema is specified by the DEFAULT clause.

 The DEFAULT, IGNORE, and MAP clauses can be used to modify

the schema determination behavior. These three optional clauses

apply directly to the specifications of the XDS, and not to each

other. For example, if a schema is selected because it is specified by

the DEFAULT clause, it will not be ignored if also specified by the

IGNORE clause. Similarly, if a schema is selected because it is

specified as the first part of a pair in the MAP clause, it will not be

re-mapped if also specified in the second part of another MAP

clause pair.

USING SCHEMA schema-sqlid

XML documents are validated against the XML schema with the

specified SQL identifier. In this case, the SCH attribute of the XML

Data Specifier (XDS) will be ignored for all XML columns.

USING SCHEMALOCATION HINTS

XML documents are validated against the schemas identified by

XML schema location hints in the source XML documents. If a

schemaLocation attribute is not found in the XML document, no

validation will occur. When the USING SCHEMALOCATION

212 Data Movement Utilities Guide and Reference

HINTS clause is specified, the SCH attribute of the XML Data

Specifier (XDS) will be ignored for all XML columns.

See examples of the XMLVALIDATE option below.

IGNORE schema-sqlid

This option can only be used when the USING XDS parameter is specified.

The IGNORE clause specifies a list of one or more schemas to ignore if

they are identified by an SCH attribute. If an SCH attribute exists in the

XML Data Specifier for a loaded XML document, and the schema identified

by the SCH attribute is included in the list of schemas to IGNORE, then no

schema validation will occur for the loaded XML document.

Note:

If a schema is specified in the IGNORE clause, it cannot also be present in

the left side of a schema pair in the MAP clause.

The IGNORE clause applies only to the XDS. A schema that is mapped by

the MAP clause will not be subsequently ignored if specified by the

IGNORE clause.

DEFAULT schema-sqlid

This option can only be used when the USING XDS parameter is specified.

The schema specified through the DEFAULT clause identifies a schema to

use for validation when the XML Data Specifier (XDS) of a loaded XML

document does not contain an SCH attribute identifying an XML Schema.

 The DEFAULT clause takes precedence over the IGNORE and MAP

clauses. If an XDS satisfies the DEFAULT clause, the IGNORE and MAP

specifications will be ignored.

MAP schema-sqlid

This option can only be used when the USING XDS parameter is specified.

Use the MAP clause to specify alternate schemas to use in place of those

specified by the SCH attribute of an XML Data Specifier (XDS) for each

loaded XML document. The MAP clause specifies a list of one or more

schema pairs, where each pair represents a mapping of one schema to

another. The first schema in the pair represents a schema that is referred to

by an SCH attribute in an XDS. The second schema in the pair represents

the schema that should be used to perform schema validation.

 If a schema is present in the left side of a schema pair in the MAP clause,

it cannot also be specified in the IGNORE clause.

Once a schema pair mapping is applied, the result is final. The mapping

operation is non-transitive, and therefore the schema chosen will not be

subsequently applied to another schema pair mapping.

A schema cannot be mapped more than once, meaning that it cannot

appear on the left side of more than one pair.

SAVECOUNT n

Specifies that the load utility is to establish consistency points after every n

rows. This value is converted to a page count, and rounded up to intervals

of the extent size. Since a message is issued at each consistency point, this

option should be selected if the load operation will be monitored using

LOAD QUERY. If the value of n is not sufficiently high, the

synchronization of activities performed at each consistency point will

impact performance.

Chapter 4. Load utility 213

The default value is zero, meaning that no consistency points will be

established, unless necessary.

This option is ignored when specified in conjunction with the CURSOR file

type or when loading a table containing an XML column.

ROWCOUNT n

Specifies the number of n physical records in the file to be loaded. Allows

a user to load only the first n rows in a file.

WARNINGCOUNT n

Stops the load operation after n warnings. Set this parameter if no

warnings are expected, but verification that the correct file and table are

being used is desired. If the load file or the target table is specified

incorrectly, the load utility will generate a warning for each row that it

attempts to load, which will cause the load to fail. If n is zero, or this

option is not specified, the load operation will continue regardless of the

number of warnings issued. If the load operation is stopped because the

threshold of warnings was encountered, another load operation can be

started in RESTART mode. The load operation will automatically continue

from the last consistency point. Alternatively, another load operation can

be initiated in REPLACE mode, starting at the beginning of the input file.

TEMPFILES PATH temp-pathname

Specifies the name of the path to be used when creating temporary files

during a load operation, and should be fully qualified according to the

server database partition.

 Temporary files take up file system space. Sometimes, this space

requirement is quite substantial. Following is an estimate of how much file

system space should be allocated for all temporary files:

v 136 bytes for each message that the load utility generates

v 15 KB overhead if the data file contains long field data or LOBs. This

quantity can grow significantly if the INSERT option is specified, and

there is a large amount of long field or LOB data already in the table.

INSERT

One of four modes under which the load utility can execute. Adds the

loaded data to the table without changing the existing table data.

REPLACE

One of four modes under which the load utility can execute. Deletes all

existing data from the table, and inserts the loaded data. The table

definition and index definitions are not changed. If this option is used

when moving data between hierarchies, only the data for an entire

hierarchy, not individual subtables, can be replaced.

KEEPDICTIONARY

An existing compression dictionary is preserved across the LOAD

REPLACE operation. Provided the table COMPRESS attribute is

YES, the newly replaced data is subject to being compressed using

the dictionary that existed prior to the invocation of the load. If no

dictionary previously existed in the table, a new dictionary is built

using the data that is being replaced into the table as long as the

table COMPRESS attribute is YES. The amount of data that is

required to build the compression dictionary in this case is subject

to the policies of ADC. This data is populated into the table as

uncompressed. Once the dictionary is inserted into the table, the

214 Data Movement Utilities Guide and Reference

remaining data to be loaded is subject to being compressed with

this dictionary. This is the default parameter. For summary, see

Table 1 below.

 Table 27. LOAD REPLACE KEEPDICTIONARY

Compress

Table row data

dictionary exists

XML storage

object dictionary

exists1 Compression dictionary Data compression

YES YES YES Preserve table row data

and XML dictionaries.

Data to be loaded is subject to

compression.

YES YES NO Preserve table row data

dictionary and build a

new XML dictionary.

Table row data to be loaded is

subject to compression. After

XML dictionary is built,

remaining XML data to be

loaded is subject to

compression.

YES NO YES Build table row data

dictionary and preserve

XML dictionary.

After table row data

dictionary is built, remaining

table row data to be loaded is

subject to compression. XML

data to be loaded is subject to

compression.

YES NO NO Build new table row data

and XML dictionaries.

After dictionaries are built,

remaining data to be loaded

is subject to compression.

NO YES YES Preserve table row data

and XML dictionaries.

Data to be loaded is not

compressed.

NO YES NO Preserve table row data

dictionary.

Data to be loaded is not

compressed.

NO NO YES No effect on table row

dictionary. Preserve XML

dictionary.

Data to be loaded is not

compressed.

NO NO NO No effect. Data to be loaded is not

compressed.

Note:

1. A compression dictionary can be created for the XML storage

object of a table only if the XML columns are added to the table

in DB2 Version 9.7 or later, or if the table is migrated using an

online table move.

RESETDICTIONARY

This directive instructs LOAD REPLACE processing to build a new

dictionary for the table data object provided that the table

COMPRESS attribute is YES. If the COMPRESS attribute is NO and

a dictionary was already present in the table it will be removed

and no new dictionary will be inserted into the table. A

compression dictionary can be built with just one user record. If

the loaded data set size is zero and if there is a pre-existing

dictionary, the dictionary will not be preserved. The amount of

data required to build a dictionary with this directive is not subject

to the policies of ADC. For summary, see Table 2 below.

Chapter 4. Load utility 215

Table 28. LOAD REPLACE RESETDICTIONARY

Compress

Table row data

dictionary exists

XML storage object

dictionary exists1 Compression dictionary Data compression

YES YES YES Build new dictionaries2.

If the DATA CAPTURE

CHANGES option is

enabled on the CREATE

TABLE or ALTER TABLE

statements, the current

table row data dictionary

is kept (and referred to

as the historical

compression dictionary).

After dictionaries are built,

remaining data to be loaded is

subject to compression.

YES YES NO Build new dictionaries2.

If the DATA CAPTURE

CHANGES option is

enabled on the CREATE

TABLE or ALTER TABLE

statements, the current

table row data dictionary

is kept (and referred to

as the historical

compression dictionary).

After dictionaries are built,

remaining data to be loaded is

subject to compression.

YES NO YES Build new dictionaries. After dictionaries are built,

remaining data to be loaded is

subject to compression.

YES NO NO Build new dictionaries. After dictionaries are built,

remaining data to be loaded is

subject to compression.

NO YES YES Remove dictionaries. Data to be loaded is not

compressed.

NO YES NO Remove table row data

dictionary.

Data to be loaded is not

compressed.

NO NO YES Remove XML storage

object dictionary.

Data to be loaded is not

compressed.

NO NO NO No effect. All table data is not

compressed.

Notes:

1. A compression dictionary can be created for the XML storage

object of a table only if the XML columns are added to the table

in DB2 Version 9.7 or later, or if the table is migrated using an

online table move.

2. If a dictionary exists and the compression attribute is enabled,

but there are no records to load into the table partition, a new

dictionary cannot be built and the RESETDICTIONARY

operation will not keep the existing dictionary.

TERMINATE

One of four modes under which the load utility can execute. Terminates a

previously interrupted load operation, and rolls back the operation to the

point in time at which it started, even if consistency points were passed.

The states of any table spaces involved in the operation return to normal,

and all table objects are made consistent (index objects might be marked as

216 Data Movement Utilities Guide and Reference

invalid, in which case index rebuild will automatically take place at next

access). If the load operation being terminated is a LOAD REPLACE, the

table will be truncated to an empty table after the LOAD TERMINATE

operation. If the load operation being terminated is a LOAD INSERT, the

table will retain all of its original records after the LOAD TERMINATE

operation. For summary of dictionary management, see Table 3 below.

 The LOAD TERMINATE option will not remove a backup pending state

from table spaces.

RESTART

One of four modes under which the load utility can execute. Restarts a

previously interrupted load operation. The load operation will

automatically continue from the last consistency point in the load, build, or

delete phase. For summary of dictionary management, see Table 4 below.

INTO table-name

Specifies the database table into which the data is to be loaded. This table

cannot be a system table, a declared temporary table, or a created

temporary table. An alias, or the fully qualified or unqualified table name

can be specified. A qualified table name is in the form schema.tablename. If

an unqualified table name is specified, the table will be qualified with the

CURRENT SCHEMA.

insert-column

Specifies the table column into which the data is to be inserted.

 The load utility cannot parse columns whose names contain one or more

spaces. For example,

will fail because of the Int 4 column. The solution is to enclose such

column names with double quotation marks:

FOR EXCEPTION table-name

Specifies the exception table into which rows in error will be copied. Any

row that is in violation of a unique index or a primary key index is copied.

If an unqualified table name is specified, the table will be qualified with

the CURRENT SCHEMA.

 Information that is written to the exception table is not written to the

dump file. In a partitioned database environment, an exception table must

be defined for those database partitions on which the loading table is

defined. The dump file, otherwise, contains rows that cannot be loaded

because they are invalid or have syntax errors.

When loading XML data, using the FOR EXCEPTION clause to specify

load exception table is not supported in the following cases:

v When using Label-based access control (LBAC).

v When loading a data into a data partitioned table.

NORANGEEXC

Indicates that if a row is rejected because of a range violation it will not be

inserted into the exception table.

NOUNIQUEEXC

Indicates that if a row is rejected because it violates a unique constraint it

will not be inserted into the exception table.

STATISTICS USE PROFILE

Instructs load to collect statistics during the load according to the profile

defined for this table. This profile must be created before load is executed.

Chapter 4. Load utility 217

The profile is created by the RUNSTATS command. If the profile does not

exist and load is instructed to collect statistics according to the profile, a

warning is returned and no statistics are collected.

STATISTICS NO

Specifies that no statistics are to be collected, and that the statistics in the

catalogs are not to be altered. This is the default.

COPY NO

Specifies that the table space in which the table resides will be placed in

backup pending state if forward recovery is enabled (that is, logretain or

userexit is on). The COPY NO option will also put the table space state into

the Load in Progress table space state. This is a transient state that will

disappear when the load completes or aborts. The data in any table in the

table space cannot be updated or deleted until a table space backup or a

full database backup is made. However, it is possible to access the data in

any table by using the SELECT statement.

 LOAD with COPY NO on a recoverable database leaves the table spaces in

a backup pending state. For example, performing a LOAD with COPY NO

and INDEXING MODE DEFERRED will leave indexes needing a refresh.

Certain queries on the table might require an index scan and will not

succeed until the indexes are refreshed. The index cannot be refreshed if it

resides in a table space which is in the backup pending state. In that case,

access to the table will not be allowed until a backup is taken. Index

refresh is done automatically by the database when the index is accessed

by a query. If one of COPY NO, COPY YES, or NONRECOVERABLE is not

specified, and the database is recoverable (logretain or logarchmeth1 is

enabled), then COPY NO is the default.

COPY YES

Specifies that a copy of the loaded data will be saved. This option is

invalid if forward recovery is disabled.

USE TSM

Specifies that the copy will be stored using Tivoli Storage Manager

(TSM).

OPEN num-sess SESSIONS

The number of I/O sessions to be used with TSM or the vendor

product. The default value is 1.

TO device/directory

Specifies the device or directory on which the copy image will be

created.

LOAD lib-name

The name of the shared library (DLL on Windows operating

systems) containing the vendor backup and restore I/O functions

to be used. It can contain the full path. If the full path is not given,

it will default to the path where the user exit programs reside.

NONRECOVERABLE

Specifies that the load transaction is to be marked as non-recoverable and

that it will not be possible to recover it by a subsequent roll forward

action. The roll forward utility will skip the transaction and will mark the

table into which data was being loaded as ″invalid″. The utility will also

ignore any subsequent transactions against that table. After the roll

forward operation is completed, such a table can only be dropped or

218 Data Movement Utilities Guide and Reference

restored from a backup (full or table space) taken after a commit point

following the completion of the non-recoverable load operation.

 With this option, table spaces are not put in backup pending state

following the load operation, and a copy of the loaded data does not have

to be made during the load operation. If one of COPY NO, COPY YES, or

NONRECOVERABLE is not specified, and the database is not recoverable

(logretain or logarchmeth1 is not enabled), then NONRECOVERABLE is

the default.

WITHOUT PROMPTING

Specifies that the list of data files contains all the files that are to be

loaded, and that the devices or directories listed are sufficient for the entire

load operation. If a continuation input file is not found, or the copy targets

are filled before the load operation finishes, the load operation will fail,

and the table will remain in load pending state.

DATA BUFFER buffer-size

Specifies the number of 4 KB pages (regardless of the degree of

parallelism) to use as buffered space for transferring data within the utility.

If the value specified is less than the algorithmic minimum, the minimum

required resource is used, and no warning is returned.

 This memory is allocated directly from the utility heap, whose size can be

modified through the util_heap_sz database configuration parameter.

If a value is not specified, an intelligent default is calculated by the utility

at run time. The default is based on a percentage of the free space available

in the utility heap at the instantiation time of the loader, as well as some

characteristics of the table.

SORT BUFFER buffer-size

This option specifies a value that overrides the SORTHEAP database

configuration parameter during a load operation. It is relevant only when

loading tables with indexes and only when the INDEXING MODE

parameter is not specified as DEFERRED. The value that is specified

cannot exceed the value of SORTHEAP. This parameter is useful for

throttling the sort memory that is used when loading tables with many

indexes without changing the value of SORTHEAP, which would also

affect general query processing.

CPU_PARALLELISM n

Specifies the number of processes or threads that the load utility will create

for parsing, converting, and formatting records when building table

objects. This parameter is designed to exploit the number of processes

running per database partition. It is particularly useful when loading

presorted data, because record order in the source data is preserved. If the

value of this parameter is zero, or has not been specified, the load utility

uses an intelligent default value (usually based on the number of CPUs

available) at run time.

Note:

1. If this parameter is used with tables containing either LOB or LONG

VARCHAR fields, its value becomes one, regardless of the number of

system CPUs or the value specified by the user.

2. Specifying a small value for the SAVECOUNT parameter causes the

loader to perform many more I/O operations to flush both data and

table metadata. When CPU_PARALLELISM is greater than one, the

flushing operations are asynchronous, permitting the loader to exploit

Chapter 4. Load utility 219

the CPU. When CPU_PARALLELISM is set to one, the loader waits on

I/O during consistency points. A load operation with

CPU_PARALLELISM set to two, and SAVECOUNT set to 10 000,

completes faster than the same operation with CPU_PARALLELISM set

to one, even though there is only one CPU.

DISK_PARALLELISM n

Specifies the number of processes or threads that the load utility will create

for writing data to the table space containers. If a value is not specified, the

utility selects an intelligent default based on the number of table space

containers and the characteristics of the table.

FETCH_PARALLELISM YES | NO

When performing a load from a cursor where the cursor is declared using

the DATABASE keyword, or when using the API sqlu_remotefetch_entry

media entry, and this option is set to YES, the load utility attempts to

parallelize fetching from the remote data source if possible. If set to NO,

no parallel fetching is performed. The default value is YES. For more

information, see Moving data using the CURSOR file type.

INDEXING MODE

Specifies whether the load utility is to rebuild indexes or to extend them

incrementally. Valid values are:

AUTOSELECT

The load utility will automatically decide between REBUILD or

INCREMENTAL mode. The decision is based on the amount of

data being loaded and the depth of the index tree. Information

relating to the depth of the index tree is stored in the index object.

RUNSTATS is not required to populate this information.

AUTOSELECT is the default indexing mode.

REBUILD

All indexes will be rebuilt. The utility must have sufficient

resources to sort all index key parts for both old and appended

table data.

INCREMENTAL

Indexes will be extended with new data. This approach consumes

index free space. It only requires enough sort space to append

index keys for the inserted records. This method is only supported

in cases where the index object is valid and accessible at the start

of a load operation (it is, for example, not valid immediately

following a load operation in which the DEFERRED mode was

specified). If this mode is specified, but not supported due to the

state of the index, a warning is returned, and the load operation

continues in REBUILD mode. Similarly, if a load restart operation

is begun in the load build phase, INCREMENTAL mode is not

supported.

 Incremental indexing is not supported when all of the following

conditions are true:

v The LOAD COPY option is specified (logarchmeth1 with the

USEREXIT or LOGRETAIN option).

v The table resides in a DMS table space.

v The index object resides in a table space that is shared by other

table objects belonging to the table being loaded.

220 Data Movement Utilities Guide and Reference

To bypass this restriction, it is recommended that indexes be placed

in a separate table space.

DEFERRED

The load utility will not attempt index creation if this mode is

specified. Indexes will be marked as needing a refresh. The first

access to such indexes that is unrelated to a load operation might

force a rebuild, or indexes might be rebuilt when the database is

restarted. This approach requires enough sort space for all key

parts for the largest index. The total time subsequently taken for

index construction is longer than that required in REBUILD mode.

Therefore, when performing multiple load operations with deferred

indexing, it is advisable (from a performance viewpoint) to let the

last load operation in the sequence perform an index rebuild,

rather than allow indexes to be rebuilt at first non-load access.

 Deferred indexing is only supported for tables with non-unique

indexes, so that duplicate keys inserted during the load phase are

not persistent after the load operation.

ALLOW NO ACCESS

Load will lock the target table for exclusive access during the load. The

table state will be set to Load In Progress during the load. ALLOW NO

ACCESS is the default behavior. It is the only valid option for LOAD

REPLACE.

 When there are constraints on the table, the table state will be set to Set

Integrity Pending as well as Load In Progress. The SET INTEGRITY

statement must be used to take the table out of Set Integrity Pending state.

ALLOW READ ACCESS

Load will lock the target table in a share mode. The table state will be set

to both Load In Progress and Read Access. Readers can access the

non-delta portion of the data while the table is being load. In other words,

data that existed before the start of the load will be accessible by readers to

the table, data that is being loaded is not available until the load is

complete. LOAD TERMINATE or LOAD RESTART of an ALLOW READ

ACCESS load can use this option; LOAD TERMINATE or LOAD RESTART

of an ALLOW NO ACCESS load cannot use this option. Furthermore, this

option is not valid if the indexes on the target table are marked as

requiring a rebuild.

 When there are constraints on the table, the table state will be set to Set

Integrity Pending as well as Load In Progress, and Read Access. At the end

of the load, the table state Load In Progress will be removed but the table

states Set Integrity Pending and Read Access will remain. The SET

INTEGRITY statement must be used to take the table out of Set Integrity

Pending. While the table is in Set Integrity Pending and Read Access

states, the non-delta portion of the data is still accessible to readers, the

new (delta) portion of the data will remain inaccessible until the SET

INTEGRITY statement has completed. A user can perform multiple loads

on the same table without issuing a SET INTEGRITY statement. Only the

original (checked) data will remain visible, however, until the SET

INTEGRITY statement is issued.

ALLOW READ ACCESS also supports the following modifiers:

USE tablespace-name

If the indexes are being rebuilt, a shadow copy of the index is built

in table space tablespace-name and copied over to the original table

Chapter 4. Load utility 221

space at the end of the load during an INDEX COPY PHASE. Only

system temporary table spaces can be used with this option. If not

specified then the shadow index will be created in the same table

space as the index object. If the shadow copy is created in the same

table space as the index object, the copy of the shadow index object

over the old index object is instantaneous. If the shadow copy is in

a different table space from the index object a physical copy is

performed. This could involve considerable I/O and time. The

copy happens while the table is offline at the end of a load during

the INDEX COPY PHASE.

 Without this option the shadow index is built in the same table

space as the original. Since both the original index and shadow

index by default reside in the same table space simultaneously,

there might be insufficient space to hold both indexes within one

table space. Using this option ensures that you retain enough table

space for the indexes.

This option is ignored if the user does not specify INDEXING

MODE REBUILD or INDEXING MODE AUTOSELECT. This option

will also be ignored if INDEXING MODE AUTOSELECT is chosen

and load chooses to incrementally update the index.

SET INTEGRITY PENDING CASCADE

If LOAD puts the table into Set Integrity Pending state, the SET

INTEGRITY PENDING CASCADE option allows the user to specify

whether or not Set Integrity Pending state of the loaded table is

immediately cascaded to all descendents (including descendent foreign key

tables, descendent immediate materialized query tables and descendent

immediate staging tables).

IMMEDIATE

Indicates that Set Integrity Pending state is immediately extended

to all descendent foreign key tables, descendent immediate

materialized query tables and descendent staging tables. For a

LOAD INSERT operation, Set Integrity Pending state is not

extended to descendent foreign key tables even if the IMMEDIATE

option is specified.

 When the loaded table is later checked for constraint violations

(using the IMMEDIATE CHECKED option of the SET INTEGRITY

statement), descendent foreign key tables that were placed in Set

Integrity Pending Read Access state will be put into Set Integrity

Pending No Access state.

DEFERRED

Indicates that only the loaded table will be placed in the Set

Integrity Pending state. The states of the descendent foreign key

tables, descendent immediate materialized query tables and

descendent immediate staging tables will remain unchanged.

 Descendent foreign key tables might later be implicitly placed in

Set Integrity Pending state when their parent tables are checked for

constraint violations (using the IMMEDIATE CHECKED option of

the SET INTEGRITY statement). Descendent immediate

materialized query tables and descendent immediate staging tables

will be implicitly placed in Set Integrity Pending state when one of

its underlying tables is checked for integrity violations. A warning

(SQLSTATE 01586) will be issued to indicate that dependent tables

222 Data Movement Utilities Guide and Reference

have been placed in Set Integrity Pending state. See the Notes

section of the SET INTEGRITY statement in the SQL Reference for

when these descendent tables will be put into Set Integrity Pending

state.

If the SET INTEGRITY PENDING CASCADE option is not specified:

v Only the loaded table will be placed in Set Integrity Pending state. The

state of descendent foreign key tables, descendent immediate

materialized query tables and descendent immediate staging tables will

remain unchanged, and can later be implicitly put into Set Integrity

Pending state when the loaded table is checked for constraint violations.

If LOAD does not put the target table into Set Integrity Pending state, the

SET INTEGRITY PENDING CASCADE option is ignored.

LOCK WITH FORCE

The utility acquires various locks including table locks in the process of

loading. Rather than wait, and possibly timeout, when acquiring a lock,

this option allows load to force off other applications that hold conflicting

locks on the target table. Applications holding conflicting locks on the

system catalog tables will not be forced off by the load utility. Forced

applications will roll back and release the locks the load utility needs. The

load utility can then proceed. This option requires the same authority as

the FORCE APPLICATIONS command (SYSADM or SYSCTRL).

 ALLOW NO ACCESS loads might force applications holding conflicting

locks at the start of the load operation. At the start of the load the utility

can force applications that are attempting to either query or modify the

table.

ALLOW READ ACCESS loads can force applications holding conflicting

locks at the start or end of the load operation. At the start of the load the

load utility can force applications that are attempting to modify the table.

At the end of the load operation, the load utility can force applications that

are attempting to either query or modify the table.

SOURCEUSEREXIT executable

Specifies an executable filename which will be called to feed data into the

utility.

REDIRECT

INPUT FROM

BUFFER input-buffer

The stream of bytes specified in input-buffer is

passed into the STDIN file descriptor of the process

executing the given executable.

FILE input-file

The contents of this client-side file are passed into

the STDIN file descriptor of the process executing

the given executable.

OUTPUT TO

FILE output-file

The STDOUT and STDERR file descriptors are

captured to the fully qualified server-side file

specified.

Chapter 4. Load utility 223

PARALLELIZE

Increases the throughput of data coming into the load utility by

invoking multiple user exit processes simultaneously. This option is

only applicable in multi-partition database environments and is

ignored in single-partition database environments.

For more information, see Moving data using a customized application (user

exit).

PARTITIONED DB CONFIG partitioned-db-option

Allows you to execute a load into a table distributed across multiple

database partitions. The PARTITIONED DB CONFIG parameter allows you

to specify partitioned database-specific configuration options. The

partitioned-db-option values can be any of the following:

PART_FILE_LOCATION x

OUTPUT_DBPARTNUMS x

PARTITIONING_DBPARTNUMS x

MODE x

MAX_NUM_PART_AGENTS x

ISOLATE_PART_ERRS x

STATUS_INTERVAL x

PORT_RANGE x

CHECK_TRUNCATION

MAP_FILE_INPUT x

MAP_FILE_OUTPUT x

TRACE x

NEWLINE

DISTFILE x

OMIT_HEADER

RUN_STAT_DBPARTNUM x

Detailed descriptions of these options are provided in Load configuration

options for partitioned database environments.

RESTARTCOUNT

Reserved.

USING directory

Reserved.

Examples of loading data from XML documents

Loading XML data

Example 1

The user has constructed a data file with XDS fields to describe the documents that

are to be inserted into the table. It might appear like this :

1, "<XDS FIL=""file1.xml"" />"

2, "<XDS FIL=’file2.xml’ OFF=’23’ LEN=’45’ />"

For the first row, the XML document is identified by the file named file1.xml.

Note that since the character delimiter is the double quote character, and double

quotation marks exist inside the XDS, the double quotation marks contained within

the XDS are doubled. For the second row, the XML document is identified by the

file named file2.xml, and starts at byte offset 23, and is 45 bytes in length.

Example 2

224 Data Movement Utilities Guide and Reference

The user issues a load command without any parsing or validation options for the

XML column, and the data is loaded successfully:

LOAD FROM data.del of DEL INSERT INTO mytable

Loading XML data from CURSOR

Loading data from cursor is the same as with a regular relational column type. The

user has two tables, T1 and T2, each of which consist of a single XML column

named C1. To LOAD from T1 into T2, the user will first declare a cursor:

DECLARE X1 CURSOR FOR SELECT C1 FROM T1;

Next, the user may issue a LOAD using the cursor type :

LOAD FROM X1 of CURSOR INSERT INTO T2

Applying the XML specific LOAD options to the cursor type is the same as loading

from a file.

Usage notes

v Data is loaded in the sequence that appears in the input file. If a particular

sequence is desired, the data should be sorted before a load is attempted. If

preservation of the source data order is not required, consider using the

ANYORDER file type modifier, described below in the File type modifiers for the

load utility section.

v The load utility builds indexes based on existing definitions. The exception

tables are used to handle duplicates on unique keys. The utility does not enforce

referential integrity, perform constraints checking, or update materialized query

tables that are dependent on the tables being loaded. Tables that include

referential or check constraints are placed in Set Integrity Pending state.

Summary tables that are defined with REFRESH IMMEDIATE, and that are

dependent on tables being loaded, are also placed in Set Integrity Pending state.

Issue the SET INTEGRITY statement to take the tables out of Set Integrity

Pending state. Load operations cannot be carried out on replicated materialized

query tables.

v If a clustering index exists on the table, the data should be sorted on the

clustering index prior to loading. Data does not need to be sorted prior to

loading into a multidimensional clustering (MDC) table, however.

v If you specify an exception table when loading into a protected table, any rows

that are protected by invalid security labels will be sent to that table. This might

allow users that have access to the exception table to access to data that they

would not normally be authorized to access. For better security be careful who

you grant exception table access to, delete each row as soon as it is repaired and

copied to the table being loaded, and drop the exception table as soon as you

are done with it.

v Security labels in their internal format might contain newline characters. If you

load the file using the DEL file format, those newline characters can be mistaken

for delimiters. If you have this problem use the older default priority for

delimiters by specifying the delprioritychar file type modifier in the LOAD

command.

v For performing a load using the CURSOR file type where the DATABASE keyword

was specified during the DECLARE CURSOR command, the user ID and

password used to authenticate against the database currently connected to (for

Chapter 4. Load utility 225

the load) will be used to authenticate against the source database (specified by

the DATABASE option of the DECLARE CURSOR command). If no user ID or

password was specified for the connection to the loading database, a user ID

and password for the source database must be specified during the DECLARE

CURSOR command.

v Loading a multiple-part PC/IXF file whose individual parts are copied from a

Windows system to an AIX system is supported. The names of all the files must

be specified in the LOAD command. For example, LOAD FROM DATA.IXF,

DATA.002 OF IXF INSERT INTO TABLE1. Loading to the Windows operating

system from logically split PC/IXF files is not supported.

v When restarting a failed LOAD, the behavior will follow the existing behavior in

that the BUILD phase will be forced to use the REBUILD mode for indexes.

v Loading XML documents between databases is not supported and returns error

message SQL1407N.

Summary of LOAD TERMINATE and LOAD RESTART dictionary

management

The following chart summarizes the compression dictionary management behavior

for LOAD processing under the TERMINATE directive.

 Table 29. LOAD TERMINATE dictionary management

Table

COMPRESS

attribute

Does table row

data dictionary

exist prior to

LOAD?

XML storage object

dictionary exists

prior to LOAD1

TERMINATE: LOAD

REPLACE

KEEPDICTIONARY or

LOAD INSERT

TERMINATE: LOAD

REPLACE

RESETDICTIONARY

YES YES YES Keep existing dictionaries. Neither dictionary is

kept.

2

YES YES NO Keep existing dictionary. Nothing is kept.

2

YES NO YES Keep existing dictionary. Nothing is kept.

YES NO NO Nothing is kept. Nothing is kept.

NO YES YES Keep existing dictionaries. Nothing is kept.

NO YES NO Keep existing dictionary. Nothing is kept.

NO NO YES Keep existing dictionary. Nothing is kept.

NO NO NO Do nothing. Do nothing.

Note:

1. A compression dictionary can be created for the XML storage object of a table

only if the XML columns are added to the table in DB2 Version 9.7 or later, or if

the table is migrated using an online table move.

2. In the special case that the table has data capture enabled, the table row data

dictionary is kept.

LOAD RESTART truncates a table up to the last consistency point reached. As part

of LOAD RESTART processing, a compression dictionary will exist in the table if it

was present in the table at the time the last LOAD consistency point was taken. In

that case, LOAD RESTART will not create a new dictionary. For a summary of the

possible conditions, see Table 4 below.

226 Data Movement Utilities Guide and Reference

Table 30. LOAD RESTART dictionary management

Table

COMPRESS

Attribute

Table row data

dictionary exist

prior to LOAD

consistency

point?1

XML Storage object

dictionary existed

prior to last LOAD?2

RESTART: LOAD

REPLACE

KEEPDICTIONARY or

LOAD INSERT

RESTART: LOAD

REPLACE

RESETDICTIONARY

YES YES YES Keep existing dictionaries. Keep existing

dictionaries.

YES YES NO Keep existing table row

data dictionary and build

XML dictionary subject to

ADC.

Keep existing table row

data dictionary and

build XML dictionary.

YES NO YES Build table row data

dictionary subject to ADC.

Keep existing XML

dictionary.

Build table row data

dictionary. Keep existing

XML dictionary.

YES NO NO Build table row data and

XML dictionaries subject to

ADC.

Build table row data and

XML dictionaries.

NO YES YES Keep existing dictionaries. Remove existing

dictionaries.

NO YES NO Keep existing table row

data dictionary.

Remove existing table

row data dictionary.

NO NO YES Keep existing XML

dictionary.

Remove existing XML

dictionary.

NO NO NO Do nothing. Do nothing.

Notes:

1. The SAVECOUNT option is ignored when loading XML data, load operations

that fail during the load phase restart from the beginning of the operation.

2. A compression dictionary can be created for the XML storage object of a table

only if the XML columns are added to the table in DB2 Version 9.7 or later, or if

the table is migrated using an online table move.

File type modifiers for the load utility

 Table 31. Valid file type modifiers for the load utility: All file formats

Modifier Description

anyorder This modifier is used in conjunction with the cpu_parallelism parameter. Specifies

that the preservation of source data order is not required, yielding significant

additional performance benefit on SMP systems. If the value of cpu_parallelism is

1, this option is ignored. This option is not supported if SAVECOUNT > 0, since

crash recovery after a consistency point requires that data be loaded in sequence.

generatedignore This modifier informs the load utility that data for all generated columns is

present in the data file but should be ignored. This results in all generated

column values being generated by the utility. This modifier cannot be used with

either the generatedmissing or the generatedoverride modifier.

generatedmissing If this modifier is specified, the utility assumes that the input data file contains no

data for the generated column (not even NULLs). This results in all generated

column values being generated by the utility. This modifier cannot be used with

either the generatedignore or the generatedoverride modifier.

Chapter 4. Load utility 227

Table 31. Valid file type modifiers for the load utility: All file formats (continued)

Modifier Description

generatedoverride This modifier instructs the load utility to accept user-supplied data for all

generated columns in the table (contrary to the normal rules for these types of

columns). This is useful when migrating data from another database system, or

when loading a table from data that was recovered using the RECOVER

DROPPED TABLE option on the ROLLFORWARD DATABASE command. When

this modifier is used, any rows with no data or NULL data for a non-nullable

generated column will be rejected (SQL3116W). When this modifier is used, the

table will be placed in Set Integrity Pending state. To take the table out of Set

Integrity Pending state without verifying the user-supplied values, issue the

following command after the load operation:

SET INTEGRITY FOR < table-name > GENERATED COLUMN

 IMMEDIATE UNCHECKED

To take the table out of Set Integrity Pending state and force verification of the

user-supplied values, issue the following command after the load operation:

SET INTEGRITY FOR < table-name > IMMEDIATE CHECKED.

When this modifier is specified and there is a generated column in any of the

partitioning keys, dimension keys or distribution keys, then the LOAD command

will automatically convert the modifier to generatedignore and proceed with the

load. This will have the effect of regenerating all of the generated column values.

This modifier cannot be used with either the generatedmissing or the

generatedignore modifier.

identityignore This modifier informs the load utility that data for the identity column is present

in the data file but should be ignored. This results in all identity values being

generated by the utility. The behavior will be the same for both GENERATED

ALWAYS and GENERATED BY DEFAULT identity columns. This means that for

GENERATED ALWAYS columns, no rows will be rejected. This modifier cannot

be used with either the identitymissing or the identityoverride modifier.

identitymissing If this modifier is specified, the utility assumes that the input data file contains no

data for the identity column (not even NULLs), and will therefore generate a

value for each row. The behavior will be the same for both GENERATED

ALWAYS and GENERATED BY DEFAULT identity columns. This modifier cannot

be used with either the identityignore or the identityoverride modifier.

identityoverride This modifier should be used only when an identity column defined as

GENERATED ALWAYS is present in the table to be loaded. It instructs the utility

to accept explicit, non-NULL data for such a column (contrary to the normal rules

for these types of identity columns). This is useful when migrating data from

another database system when the table must be defined as GENERATED

ALWAYS, or when loading a table from data that was recovered using the

DROPPED TABLE RECOVERY option on the ROLLFORWARD DATABASE

command. When this modifier is used, any rows with no data or NULL data for

the identity column will be rejected (SQL3116W). This modifier cannot be used

with either the identitymissing or the identityignore modifier. The load utility

will not attempt to maintain or verify the uniqueness of values in the table’s

identity column when this option is used.

indexfreespace=x x is an integer between 0 and 99 inclusive. The value is interpreted as the

percentage of each index page that is to be left as free space when load rebuilds

the index. Load with INDEXING MODE INCREMENTAL ignores this option. The

first entry in a page is added without restriction; subsequent entries are added to

maintain the percent free space threshold. The default value is the one used at

CREATE INDEX time.

This value takes precedence over the PCTFREE value specified in the CREATE

INDEX statement. The indexfreespace option affects index leaf pages only.

228 Data Movement Utilities Guide and Reference

Table 31. Valid file type modifiers for the load utility: All file formats (continued)

Modifier Description

lobsinfile lob-path specifies the path to the files containing LOB data. The ASC, DEL, or IXF

load input files contain the names of the files having LOB data in the LOB

column.

This option is not supported in conjunction with the CURSOR filetype.

The LOBS FROM clause specifies where the LOB files are located when the

“lobsinfile” modifier is used. The LOBS FROM clause will implicitly activate the

LOBSINFILE behavior. The LOBS FROM clause conveys to the LOAD utility the

list of paths to search for the LOB files while loading the data.

Each path contains at least one file that contains at least one LOB pointed to by a

Lob Location Specifier (LLS) in the data file. The LLS is a string representation of

the location of a LOB in a file stored in the LOB file path. The format of an LLS is

filename.ext.nnn.mmm/, where filename.ext is the name of the file that contains the

LOB, nnn is the offset in bytes of the LOB within the file, and mmm is the length

of the LOB in bytes. For example, if the string db2exp.001.123.456/ is stored in

the data file, the LOB is located at offset 123 in the file db2exp.001, and is 456

bytes long.

To indicate a null LOB , enter the size as -1. If the size is specified as 0, it is

treated as a 0 length LOB. For null LOBS with length of -1, the offset and the file

name are ignored. For example, the LLS of a null LOB might be db2exp.001.7.-1/.

noheader Skips the header verification code (applicable only to load operations into tables

that reside in a single-partition database partition group).

If the default MPP load (mode PARTITION_AND_LOAD) is used against a table

residing in a single-partition database partition group, the file is not expected to

have a header. Thus the noheader modifier is not needed. If the LOAD_ONLY

mode is used, the file is expected to have a header. The only circumstance in

which you should need to use the noheader modifier is if you wanted to perform

LOAD_ONLY operation using a file that does not have a header.

norowwarnings Suppresses all warnings about rejected rows.

pagefreespace=x x is an integer between 0 and 100 inclusive. The value is interpreted as the

percentage of each data page that is to be left as free space. If the specified value

is invalid because of the minimum row size, (for example, a row that is at least

3 000 bytes long, and an x value of 50), the row will be placed on a new page. If

a value of 100 is specified, each row will reside on a new page. The PCTFREE

value of a table determines the amount of free space designated per page. If a

pagefreespace value on the load operation or a PCTFREE value on a table have

not been set, the utility will fill up as much space as possible on each page. The

value set by pagefreespace overrides the PCTFREE value specified for the table.

rowchangetimestampignore This modifier informs the load utility that data for the row change timestamp

column is present in the data file but should be ignored. This results in all ROW

CHANGE TIMESTAMPs being generated by the utility. The behavior will be the

same for both GENERATED ALWAYS and GENERATED BY DEFAULT columns.

This means that for GENERATED ALWAYS columns, no rows will be rejected.

This modifier cannot be used with either the rowchangetimestampmissing or the

rowchangetimestampoverride modifier.

rowchangetimestampmissing If this modifier is specified, the utility assumes that the input data file contains no

data for the row change timestamp column (not even NULLs), and will therefore

generate a value for each row. The behavior will be the same for both

GENERATED ALWAYS and GENERATED BY DEFAULT columns. This modifier

cannot be used with either the rowchangetimestampignore or the

rowchangetimestampoverride modifier.

Chapter 4. Load utility 229

Table 31. Valid file type modifiers for the load utility: All file formats (continued)

Modifier Description

rowchangetimestampoverride This modifier should be used only when a row change timestamp column

defined as GENERATED ALWAYS is present in the table to be loaded. It instructs

the utility to accept explicit, non-NULL data for such a column (contrary to the

normal rules for these types of row change timestamp columns). This is useful

when migrating data from another database system when the table must be

defined as GENERATED ALWAYS, or when loading a table from data that was

recovered using the DROPPED TABLE RECOVERY option on the

ROLLFORWARD DATABASE command. When this modifier is used, any rows

with no data or NULL data for the ROW CHANGE TIMESTAMP column will be

rejected (SQL3116W). This modifier cannot be used with either the

rowchangetimestampmissing or the rowchangetimestampignore modifier. The load

utility will not attempt to maintain or verify the uniqueness of values in the

table’s row change timestamp column when this option is used.

seclabelchar Indicates that security labels in the input source file are in the string format for

security label values rather than in the default encoded numeric format. LOAD

converts each security label into the internal format as it is loaded. If a string is

not in the proper format the row is not loaded and a warning (SQLSTATE 01H53,

SQLCODE SQL3242W) is returned. If the string does not represent a valid

security label that is part of the security policy protecting the table then the row

is not loaded and a warning (SQLSTATE 01H53, SQLCODE SQL3243W) is

returned.

This modifier cannot be specified if the seclabelname modifier is specified,

otherwise the load fails and an error (SQLCODE SQL3525N) is returned.

If you have a table consisting of a single DB2SECURITYLABEL column, the data file

might look like this:

 "CONFIDENTIAL:ALPHA:G2"

 "CONFIDENTIAL;SIGMA:G2"

 "TOP SECRET:ALPHA:G2"

To load or import this data, the SECLABELCHAR file type modifier must be

used:

LOAD FROM input.del OF DEL MODIFIED BY SECLABELCHAR INSERT INTO t1

seclabelname Indicates that security labels in the input source file are indicated by their name

rather than the default encoded numeric format. LOAD will convert the name to

the appropriate security label if it exists. If no security label exists with the

indicated name for the security policy protecting the table the row is not loaded

and a warning (SQLSTATE 01H53, SQLCODE SQL3244W) is returned.

This modifier cannot be specified if the seclabelchar modifier is specified,

otherwise the load fails and an error (SQLCODE SQL3525N) is returned.

If you have a table consisting of a single DB2SECURITYLABEL column, the data file

might consist of security label names similar to:

 "LABEL1"

 "LABEL1"

 "LABEL2"

To load or import this data, the SECLABELNAME file type modifier must be used:

 LOAD FROM input.del OF DEL MODIFIED BY SECLABELNAME INSERT INTO t1

Note: If the file type is ASC, any spaces following the name of the security label

will be interpreted as being part of the name. To avoid this use the striptblanks

file type modifier to make sure the spaces are removed.

230 Data Movement Utilities Guide and Reference

Table 31. Valid file type modifiers for the load utility: All file formats (continued)

Modifier Description

totalfreespace=x x is an integer greater than or equal to 0 . The value is interpreted as the

percentage of the total pages in the table that is to be appended to the end of the

table as free space. For example, if x is 20, and the table has 100 data pages after

the data has been loaded, 20 additional empty pages will be appended. The total

number of data pages for the table will be 120. The data pages total does not

factor in the number of index pages in the table. This option does not affect the

index object. If two loads are done with this option specified, the second load will

not reuse the extra space appended to the end by the first load.

usedefaults If a source column for a target table column has been specified, but it contains no

data for one or more row instances, default values are loaded. Examples of

missing data are:

v For DEL files: two adjacent column delimiters (″,,″) or two adjacent column

delimiters separated by an arbitrary number of spaces (″, ,″) are specified for a

column value.

v For DEL/ASC/WSF files: A row that does not have enough columns, or is not

long enough for the original specification. For ASC files, NULL column values

are not considered explicitly missing, and a default will not be substituted for

NULL column values. NULL column values are represented by all space

characters for numeric, date, time, and /timestamp columns, or by using the

NULL INDICATOR for a column of any type to indicate the column is NULL.

Without this option, if a source column contains no data for a row instance, one

of the following occurs:

v For DEL/ASC/WSF files: If the column is nullable, a NULL is loaded. If the

column is not nullable, the utility rejects the row.

 Table 32. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL)

Modifier Description

codepage=x x is an ASCII character string. The value is interpreted as the code page of the

data in the input data set. Converts character data (and numeric data specified in

characters) from this code page to the database code page during the load

operation.

The following rules apply:

v For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to

the range of x00 to x3F, inclusive.

v For DEL data specified in an EBCDIC code page, the delimiters might not

coincide with the shift-in and shift-out DBCS characters.

v nullindchar must specify symbols included in the standard ASCII set between

code points x20 and x7F, inclusive. This refers to ASCII symbols and code

points. EBCDIC data can use the corresponding symbols, even though the code

points will be different.

This option is not supported in conjunction with the CURSOR filetype.

Chapter 4. Load utility 231

Table 32. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

dateformat=″x″ x is the format of the date in the source file.1 Valid date elements are:

 YYYY - Year (four digits ranging from 0000 - 9999)

 M - Month (one or two digits ranging from 1 - 12)

 MM - Month (two digits ranging from 1 - 12;

 mutually exclusive with M)

 D - Day (one or two digits ranging from 1 - 31)

 DD - Day (two digits ranging from 1 - 31;

 mutually exclusive with D)

 DDD - Day of the year (three digits ranging

 from 001 - 366; mutually exclusive

 with other day or month elements)

A default value of 1 is assigned for each element that is not specified. Some

examples of date formats are:

 "D-M-YYYY"

 "MM.DD.YYYY"

 "YYYYDDD"

dumpfile = x x is the fully qualified (according to the server database partition) name of an

exception file to which rejected rows are written. A maximum of 32 KB of data is

written per record. Following is an example that shows how to specify a dump

file:

 db2 load from data of del

 modified by dumpfile = /u/user/filename

 insert into table_name

The file will be created and owned by the instance owner. To override the default

file permissions, use the dumpfileaccessall file type modifier.

Note:

1. In a partitioned database environment, the path should be local to the loading

database partition, so that concurrently running load operations do not

attempt to write to the same file.

2. The contents of the file are written to disk in an asynchronous buffered mode.

In the event of a failed or an interrupted load operation, the number of

records committed to disk cannot be known with certainty, and consistency

cannot be guaranteed after a LOAD RESTART. The file can only be assumed

to be complete for a load operation that starts and completes in a single pass.

3. If the specified file already exists, it will not be recreated, but it will be

appended.

dumpfileaccessall Grants read access to ’OTHERS’ when a dump file is created.

This file type modifier is only valid when:

1. it is used in conjunction with dumpfile file type modifier

2. the user has SELECT privilege on the load target table

3. it is issued on a DB2 server database partition that resides on a UNIX

operating system

If the specified file already exists, its permissions will not be changed.

fastparse Use with caution. Reduces syntax checking on user-supplied column values, and

enhances performance. Tables are guaranteed to be architecturally correct (the

utility performs sufficient data checking to prevent a segmentation violation or

trap), however, the coherence of the data is not validated. Only use this option if

you are certain that your data is coherent and correct. For example, if the

user-supplied data contains an invalid timestamp column value of

:1>0-00-20-07.11.12.000000, this value is inserted into the table if FASTPARSE is

specified, and rejected if FASTPARSE is not specified.

232 Data Movement Utilities Guide and Reference

Table 32. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

implieddecimal The location of an implied decimal point is determined by the column definition;

it is no longer assumed to be at the end of the value. For example, the value

12345 is loaded into a DECIMAL(8,2) column as 123.45, not 12345.00.

This modifier cannot be used with the packeddecimal modifier.

timeformat=″x″ x is the format of the time in the source file.1 Valid time elements are:

 H - Hour (one or two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24

 for a 24 hour system)

 HH - Hour (two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24

 for a 24 hour system; mutually exclusive

 with H)

 M - Minute (one or two digits ranging

 from 0 - 59)

 MM - Minute (two digits ranging from 0 - 59;

 mutually exclusive with M)

 S - Second (one or two digits ranging

 from 0 - 59)

 SS - Second (two digits ranging from 0 - 59;

 mutually exclusive with S)

 SSSSS - Second of the day after midnight (5 digits

 ranging from 00000 - 86399; mutually

 exclusive with other time elements)

 TT - Meridian indicator (AM or PM)

A default value of 0 is assigned for each element that is not specified. Some

examples of time formats are:

 "HH:MM:SS"

 "HH.MM TT"

 "SSSSS"

Chapter 4. Load utility 233

Table 32. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

timestampformat=″x″ x is the format of the time stamp in the source file.1 Valid time stamp elements

are:

 YYYY - Year (four digits ranging from 0000 - 9999)

 M - Month (one or two digits ranging from 1 - 12)

 MM - Month (two digits ranging from 01 - 12;

 mutually exclusive with M and MMM)

 MMM - Month (three-letter case-insensitive abbreviation for

 the month name; mutually exclusive with M and MM)

 D - Day (one or two digits ranging from 1 - 31)

 DD - Day (two digits ranging from 1 - 31; mutually exclusive with D)

 DDD - Day of the year (three digits ranging from 001 - 366;

 mutually exclusive with other day or month elements)

 H - Hour (one or two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24 for a 24 hour system)

 HH - Hour (two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24 for a 24 hour system;

 mutually exclusive with H)

 M - Minute (one or two digits ranging from 0 - 59)

 MM - Minute (two digits ranging from 0 - 59;

 mutually exclusive with M, minute)

 S - Second (one or two digits ranging from 0 - 59)

 SS - Second (two digits ranging from 0 - 59;

 mutually exclusive with S)

 SSSSS - Second of the day after midnight (5 digits

 ranging from 00000 - 86399; mutually

 exclusive with other time elements)

 U (1 to 12 times)

 - Fractional seconds(number of occurrences of U represent the

 number of digits with each digit ranging from 0 to 9

 TT - Meridian indicator (AM or PM)

timestampformat=″x″

(Continued)

A default value of 1 is assigned for unspecified YYYY, M, MM, D, DD, or DDD

elements. A default value of ’Jan’ is assigned to an unspecified MMM element. A

default value of 0 is assigned for all other unspecified elements. Following is an

example of a time stamp format:

 "YYYY/MM/DD HH:MM:SS.UUUUUU"

The valid values for the MMM element include: ’jan’, ’feb’, ’mar’, ’apr’, ’may’,

’jun’, ’jul’, ’aug’, ’sep’, ’oct’, ’nov’ and ’dec’. These values are case insensitive.

If the TIMESTAMPFORMAT modifier is not specified, the load utility formats the

timestamp field using one of two possible formats:

YYYY-MM-DD-HH.MM.SS

YYYY-MM-DD HH:MM:SS

The load utility chooses the format by looking at the separator between the DD

and HH. If it is a dash ’-’, the load utility uses the regular dashes and dots format

(YYYY-MM-DD-HH.MM.SS). If it is a blank space, then the load utility expects a

colon ’:’ to separate the HH, MM and SS.

In either format, if you include the microseconds field (UUUUUU), the load

utility expects the dot ’.’ as the separator. Either YYYY-MM-DD-
HH.MM.SS.UUUUUU or YYYY-MM-DD HH:MM:SS.UUUUUU are acceptable.

The following example illustrates how to load data containing user defined date

and time formats into a table called schedule:

 db2 load from delfile2 of del

 modified by timestampformat="yyyy.mm.dd hh:mm tt"

 insert into schedule

234 Data Movement Utilities Guide and Reference

Table 32. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

usegraphiccodepage If usegraphiccodepage is given, the assumption is made that data being loaded

into graphic or double-byte character large object (DBCLOB) data field(s) is in the

graphic code page. The rest of the data is assumed to be in the character code

page. The graphic codepage is associated with the character code page. LOAD

determines the character code page through either the codepage modifier, if it is

specified, or through the code page of the database if the codepage modifier is not

specified.

This modifier should be used in conjunction with the delimited data file

generated by drop table recovery only if the table being recovered has graphic

data.

Restrictions

The usegraphiccodepage modifier MUST NOT be specified with DEL files created

by the EXPORT utility, as these files contain data encoded in only one code page.

The usegraphiccodepage modifier is also ignored by the double-byte character

large objects (DBCLOBs) in files.

xmlchar Specifies that XML documents are encoded in the character code page.

This option is useful for processing XML documents that are encoded in the

specified character code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,

the encoding must match the character code page, otherwise the row containing

the document will be rejected. Note that the character codepage is the value

specified by the codepage file type modifier, or the application codepage if it is

not specified. By default, either the documents are encoded in Unicode, or they

contain a declaration tag with an encoding attribute.

xmlgraphic Specifies that XML documents are encoded in the specified graphic code page.

This option is useful for processing XML documents that are encoded in a specific

graphic code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,

the encoding must match the graphic code page, otherwise the row containing

the document will be rejected. Note that the graphic code page is the graphic

component of the value specified by the codepage file type modifier, or the

graphic component of the application code page if it is not specified. By default,

documents are either encoded in Unicode, or they contain a declaration tag with

an encoding attribute.

Chapter 4. Load utility 235

Table 33. Valid file type modifiers for the load utility: ASC file formats (Non-delimited ASCII)

Modifier Description

binarynumerics Numeric (but not DECIMAL) data must be in binary form, not the character

representation. This avoids costly conversions.

This option is supported only with positional ASC, using fixed length records

specified by the reclen option.

The following rules apply:

v No conversion between data types is performed, with the exception of BIGINT,

INTEGER, and SMALLINT.

v Data lengths must match their target column definitions.

v FLOATs must be in IEEE Floating Point format.

v Binary data in the load source file is assumed to be big-endian, regardless of

the platform on which the load operation is running.

NULLs cannot be present in the data for columns affected by this modifier.

Blanks (normally interpreted as NULL) are interpreted as a binary value when

this modifier is used.

nochecklengths If nochecklengths is specified, an attempt is made to load each row, even if the

source data has a column definition that exceeds the size of the target table

column. Such rows can be successfully loaded if code page conversion causes the

source data to shrink; for example, 4-byte EUC data in the source could shrink to

2-byte DBCS data in the target, and require half the space. This option is

particularly useful if it is known that the source data will fit in all cases despite

mismatched column definitions.

nullindchar=x x is a single character. Changes the character denoting a NULL value to x. The

default value of x is Y.2

This modifier is case sensitive for EBCDIC data files, except when the character is

an English letter. For example, if the NULL indicator character is specified to be

the letter N, then n is also recognized as a NULL indicator.

packeddecimal Loads packed-decimal data directly, since the binarynumerics modifier does not

include the DECIMAL field type.

This option is supported only with positional ASC, using fixed length records

specified by the reclen option.

Supported values for the sign nibble are:

 + = 0xC 0xA 0xE 0xF

 - = 0xD 0xB

NULLs cannot be present in the data for columns affected by this modifier.

Blanks (normally interpreted as NULL) are interpreted as a binary value when

this modifier is used.

Regardless of the server platform, the byte order of binary data in the load source

file is assumed to be big-endian; that is, when using this modifier on Windows

operating systems, the byte order must not be reversed.

This modifier cannot be used with the implieddecimal modifier.

reclen=x x is an integer with a maximum value of 32 767. x characters are read for each

row, and a new-line character is not used to indicate the end of the row.

236 Data Movement Utilities Guide and Reference

Table 33. Valid file type modifiers for the load utility: ASC file formats (Non-delimited ASCII) (continued)

Modifier Description

striptblanks Truncates any trailing blank spaces when loading data into a variable-length field.

If this option is not specified, blank spaces are kept.

This option cannot be specified together with striptnulls. These are mutually

exclusive options. This option replaces the obsolete t option, which is supported

for earlier compatibility only.

striptnulls Truncates any trailing NULLs (0x00 characters) when loading data into a

variable-length field. If this option is not specified, NULLs are kept.

This option cannot be specified together with striptblanks. These are mutually

exclusive options. This option replaces the obsolete padwithzero option, which is

supported for earlier compatibility only.

zoneddecimal Loads zoned decimal data, since the BINARYNUMERICS modifier does not

include the DECIMAL field type. This option is supported only with positional

ASC, using fixed length records specified by the RECLEN option.

Half-byte sign values can be one of the following:

 + = 0xC 0xA 0xE 0xF

 - = 0xD 0xB

Supported values for digits are 0x0 to 0x9.

Supported values for zones are 0x3 and 0xF.

 Table 34. Valid file type modifiers for the load utility: DEL file formats (Delimited ASCII)

Modifier Description

chardelx x is a single character string delimiter. The default value is a double quotation

mark (″). The specified character is used in place of double quotation marks to

enclose a character string.23 If you want to explicitly specify the double quotation

mark (″) as the character string delimiter, you should specify it as follows:

 modified by chardel""

The single quotation mark (’) can also be specified as a character string delimiter

as follows:

 modified by chardel’’

coldelx x is a single character column delimiter. The default value is a comma (,). The

specified character is used in place of a comma to signal the end of a column.23

decplusblank Plus sign character. Causes positive decimal values to be prefixed with a blank

space instead of a plus sign (+). The default action is to prefix positive decimal

values with a plus sign.

decptx x is a single character substitute for the period as a decimal point character. The

default value is a period (.). The specified character is used in place of a period as

a decimal point character.23

Chapter 4. Load utility 237

Table 34. Valid file type modifiers for the load utility: DEL file formats (Delimited ASCII) (continued)

Modifier Description

delprioritychar The current default priority for delimiters is: record delimiter, character delimiter,

column delimiter. This modifier protects existing applications that depend on the

older priority by reverting the delimiter priorities to: character delimiter, record

delimiter, column delimiter. Syntax:

 db2 load ... modified by delprioritychar ...

For example, given the following DEL data file:

 "Smith, Joshua",4000,34.98<row delimiter>

 "Vincent,<row delimiter>, is a manager", ...

 ... 4005,44.37<row delimiter>

With the delprioritychar modifier specified, there will be only two rows in this

data file. The second <row delimiter> will be interpreted as part of the first data

column of the second row, while the first and the third <row delimiter> are

interpreted as actual record delimiters. If this modifier is not specified, there will

be three rows in this data file, each delimited by a <row delimiter>.

keepblanks Preserves the leading and trailing blanks in each field of type CHAR, VARCHAR,

LONG VARCHAR, or CLOB. Without this option, all leading and trailing blanks

that are not inside character delimiters are removed, and a NULL is inserted into

the table for all blank fields.

The following example illustrates how to load data into a table called TABLE1,

while preserving all leading and trailing spaces in the data file:

 db2 load from delfile3 of del

 modified by keepblanks

 insert into table1

nochardel The load utility will assume all bytes found between the column delimiters to be

part of the column’s data. Character delimiters will be parsed as part of column

data. This option should not be specified if the data was exported using DB2

(unless nochardel was specified at export time). It is provided to support vendor

data files that do not have character delimiters. Improper usage might result in

data loss or corruption.

This option cannot be specified with chardelx, delprioritychar or nodoubledel.

These are mutually exclusive options.

nodoubledel Suppresses recognition of double character delimiters.

 Table 35. Valid file type modifiers for the load utility: IXF file format

Modifier Description

forcein Directs the utility to accept data despite code page mismatches, and to suppress

translation between code pages.

Fixed length target fields are checked to verify that they are large enough for the

data. If nochecklengths is specified, no checking is done, and an attempt is made

to load each row.

nochecklengths If nochecklengths is specified, an attempt is made to load each row, even if the

source data has a column definition that exceeds the size of the target table

column. Such rows can be successfully loaded if code page conversion causes the

source data to shrink; for example, 4-byte EUC data in the source could shrink to

2-byte DBCS data in the target, and require half the space. This option is

particularly useful if it is known that the source data will fit in all cases despite

mismatched column definitions.

Note:

238 Data Movement Utilities Guide and Reference

1. Double quotation marks around the date format string are mandatory. Field

separators cannot contain any of the following: a-z, A-Z, and 0-9. The field

separator should not be the same as the character delimiter or field delimiter in

the DEL file format. A field separator is optional if the start and end positions

of an element are unambiguous. Ambiguity can exist if (depending on the

modifier) elements such as D, H, M, or S are used, because of the variable

length of the entries.

For time stamp formats, care must be taken to avoid ambiguity between the

month and the minute descriptors, since they both use the letter M. A month

field must be adjacent to other date fields. A minute field must be adjacent to

other time fields. Following are some ambiguous time stamp formats:

 "M" (could be a month, or a minute)

 "M:M" (Which is which?)

 "M:YYYY:M" (Both are interpreted as month.)

 "S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation

will fail.

Following are some unambiguous time stamp formats:

 "M:YYYY" (Month)

 "S:M" (Minute)

 "M:YYYY:S:M" (Month....Minute)

 "M:H:YYYY:M:D" (Minute....Month)

Some characters, such as double quotation marks and back slashes, must be

preceded by an escape character (for example, \).

2. Character values provided for the chardel, coldel, or decpt file type modifiers

must be specified in the code page of the source data.

The character code point (instead of the character symbol), can be specified

using the syntax xJJ or 0xJJ, where JJ is the hexadecimal representation of the

code point. For example, to specify the # character as a column delimiter, use

one of the following:

 ... modified by coldel# ...

 ... modified by coldel0x23 ...

 ... modified by coldelX23 ...

3. Delimiter considerations for moving data lists restrictions that apply to the

characters that can be used as delimiter overrides.

4. The load utility does not issue a warning if an attempt is made to use

unsupported file types with the MODIFIED BY option. If this is attempted, the

load operation fails, and an error code is returned.

5. When importing into a table containing an implicitly hidden row change

timestamp column, the implicitly hidden property of the column is not

honoured. Therefore, the rowchangetimestampmissing file type modifier must

be specified in the import command if data for the column is not present in the

data to be imported and there is no explicit column list present.

 Table 36. LOAD behavior when using codepage and usegraphiccodepage

codepage=N usegraphiccodepage LOAD behavior

Absent Absent All data in the file is assumed to be in the database code

page, not the application code page, even if the CLIENT

option is specified.

Present Absent All data in the file is assumed to be in code page N.

Warning: Graphic data will be corrupted when loaded

into the database if N is a single-byte code page.

Chapter 4. Load utility 239

Table 36. LOAD behavior when using codepage and usegraphiccodepage (continued)

codepage=N usegraphiccodepage LOAD behavior

Absent Present Character data in the file is assumed to be in the

database code page, even if the CLIENT option is

specified. Graphic data is assumed to be in the code

page of the database graphic data, even if the CLIENT

option is specified.

If the database code page is single-byte, then all data is

assumed to be in the database code page.

Warning: Graphic data will be corrupted when loaded

into a single-byte database.

Present Present Character data is assumed to be in code page N. Graphic

data is assumed to be in the graphic code page of N.

If N is a single-byte or double-byte code page, then all

data is assumed to be in code page N.

Warning: Graphic data will be corrupted when loaded

into the database if N is a single-byte code page.

LOAD command using the ADMIN_CMD procedure

Loads data into a DB2 table. Data residing on the server can be in the form of a

file, tape, or named pipe. If the COMPRESS attribute for the table is set to YES, the

data loaded will be subject to compression on every data and database partition

for which a dictionary already exists in the table, including data in the XML

storage object of the table.

Quick link to “File type modifiers for the load utility” on page 260.

Restrictions

The load utility does not support loading data at the hierarchy level. The load

utility is not compatible with range-clustered tables.

Scope

This command can be issued against multiple database partitions in a single

request.

Authorization

One of the following:

v dataaccess

v LOAD authority on the database and

– INSERT privilege on the table when the load utility is invoked in INSERT

mode, TERMINATE mode (to terminate a previous load insert operation), or

RESTART mode (to restart a previous load insert operation)

– INSERT and DELETE privilege on the table when the load utility is invoked

in REPLACE mode, TERMINATE mode (to terminate a previous load replace

operation), or RESTART mode (to restart a previous load replace operation)

240 Data Movement Utilities Guide and Reference

– INSERT privilege on the exception table, if such a table is used as part of the

load operation.
v To load data into a table that has protected columns, the session authorization

ID must have LBAC credentials that allow write access to all protected columns

in the table. Otherwise the load fails and an error (SQLSTATE 5U014) is

returned.

v To load data into a table that has protected rows, the session authorization id

must hold a security label that meets these criteria:

– It is part of the security policy protecting the table

– It was granted to the session authorization ID for write access or for all access

If the session authorization id does not hold such a security label then the load

fails and an error (SQLSTATE 5U014) is returned. This security label is used to

protect a loaded row if the session authorization ID’s LBAC credentials do not

allow it to write to the security label that protects that row in the data. This does

not happen, however, when the security policy protecting the table was created

with the RESTRICT NOT AUTHORIZED WRITE SECURITY LABEL option of

the CREATE SECURITY POLICY statement. In this case the load fails and an

error (SQLSTATE 42519) is returned.

v If the REPLACE option is specified, the session authorization ID must have the

authority to drop the table.

v If the LOCK WITH FORCE option is specified, SYSADM authority is required.

Since all load processes (and all DB2 server processes, in general) are owned by the

instance owner, and all of these processes use the identification of the instance

owner to access needed files, the instance owner must have read access to input

data files. These input data files must be readable by the instance owner, regardless

of who invokes the command.

Required connection

Instance. An explicit attachment is not required. If a connection to the database has

been established, an implicit attachment to the local instance is attempted.

Command syntax

��

LOAD

FROM

�

 ,

filename

pipename

device

OF

filetype

�

,

LOBS FROM

lob-path

�

,

XML FROM

xml-path

�

�

�

MODIFIED BY

file-type-mod

 �

�

�

�

�

�

,

METHOD

L

(

column-start

column-end

)

,

NULL INDICATORS

(

null-indicator-list

)

,

N

(

column-name

)

,

P

(

column-position

)

 �

Chapter 4. Load utility 241

�
XMLPARSE

STRIP

WHITESPACE

PRESERVE

 �

�
XMLVALIDATE USING

XDS

Ignore

and

Map

parameters

DEFAULT

schema-sqlid

SCHEMA

schema-sqlid

SCHEMALOCATION HINTS

SAVECOUNT

n
 �

�
ROWCOUNT

n

WARNINGCOUNT

n

TEMPFILES PATH

temp-pathname
 INSERT

KEEPDICTIONARY

REPLACE

RESETDICTIONARY

RESTART

TERMINATE

 �

�

�

 INTO table-name

,

(

insert-column

)

�

,

(1)

(2)

FOR EXCEPTION

table-name

NORANGEEXC

NOUNIQUEEXC

 �

�
STATISTICS

USE PROFILE

NO

�

NO

COPY

YES

USE TSM

OPEN

num-sess

SESSIONS

,

TO

device/directory

LOAD

lib-name

OPEN

num-sess

SESSIONS

NONRECOVERABLE

 �

�
DATA BUFFER

buffer-size

SORT BUFFER

buffer-size

CPU_PARALLELISM

n

DISK_PARALLELISM

n
 �

�
YES

FETCH_PARALLELISM

NO

INDEXING MODE

AUTOSELECT

REBUILD

INCREMENTAL

DEFERRED

 �

�
 ALLOW NO ACCESS

ALLOW READ ACCESS

USE

tablespace-name

SET INTEGRITY PENDING CASCADE

IMMEDIATE

DEFERRED

�

�
LOCK WITH FORCE

SOURCEUSEREXIT

executable

Redirect

Input/Output

parameters

PARALLELIZE

 �

�

�

PARTITIONED DB CONFIG

partitioned-db-option

 ��

Ignore and Map parameters:

�

,

IGNORE

(

schema-sqlid

)

 �

242 Data Movement Utilities Guide and Reference

�

�

,

MAP

(

(

schema-sqlid

,

schema-sqlid

)

)

Redirect Input/Output parameters:

REDIRECT

INPUT FROM

BUFFER

input-buffer

FILE

input-file

OUTPUT TO FILE

output-file

OUTPUT TO FILE

output-file

Notes:

1 These keywords can appear in any order.

2 Each of these keywords can only appear once.

Command parameters

FROM filename | pipename | device

Note:

1. If data is exported into a file using the EXPORT command using the

ADMIN_CMD procedure, the data file is owned by the fenced user ID.

This file is not usually accessible by the instance owner. To run the

LOAD from CLP or the ADMIN_CMD procedure, the data file must be

accessible by the instance owner ID, so read access to the data file must

be granted to the instance owner.

2. Loading data from multiple IXF files is supported if the files are

physically separate, but logically one file. It is not supported if the files

are both logically and physically separate. (Multiple physical files

would be considered logically one if they were all created with one

invocation of the EXPORT command.)

3. When loading XML data from files into tables in a partitioned database

environment, the XML data files must be read-accessible to all the

database partitions where loading is taking place.

OF filetype

Specifies the format of the data:

v ASC (non-delimited ASCII format).

v DEL (delimited ASCII format).

v IXF (Integration Exchange Format, PC version) is a binary format that is

used exclusively by DB2.

v CURSOR (a cursor declared against a SELECT or VALUES statement).

Note: When using a CURSOR file type to load XML data into a table in a

distributed database environment, the PARTITION_ONLY and

LOAD_ONLY modes are not supported.

LOBS FROM lob-path

The path to the data files containing LOB values to be loaded. The path

must end with a slash. The names of the LOB data files are stored in the

main data file (ASC, DEL, or IXF), in the column that will be loaded into

the LOB column. The maximum number of paths that can be specified is

999. This will implicitly activate the LOBSINFILE behavior.

Chapter 4. Load utility 243

This option is ignored when specified in conjunction with the CURSOR file

type.

MODIFIED BY file-type-mod

Specifies file type modifier options. See “File type modifiers for the load

utility” on page 260.

METHOD

L Specifies the start and end column numbers from which to load

data. A column number is a byte offset from the beginning of a

row of data. It is numbered starting from 1. This method can only

be used with ASC files, and is the only valid method for that file

type.

NULL INDICATORS null-indicator-list

This option can only be used when the METHOD L

parameter is specified; that is, the input file is an ASC file).

The null indicator list is a comma-separated list of positive

integers specifying the column number of each null

indicator field. The column number is the byte offset of the

null indicator field from the beginning of a row of data.

There must be one entry in the null indicator list for each

data field defined in the METHOD L parameter. A column

number of zero indicates that the corresponding data field

always contains data.

 A value of Y in the NULL indicator column specifies that

the column data is NULL. Any character other than Y in

the NULL indicator column specifies that the column data

is not NULL, and that column data specified by the

METHOD L option will be loaded.

The NULL indicator character can be changed using the

MODIFIED BY option.

N Specifies the names of the columns in the data file to be loaded.

The case of these column names must match the case of the

corresponding names in the system catalogs. Each table column

that is not nullable should have a corresponding entry in the

METHOD N list. For example, given data fields F1, F2, F3, F4, F5,

and F6, and table columns C1 INT, C2 INT NOT NULL, C3 INT

NOT NULL, and C4 INT, method N (F2, F1, F4, F3) is a valid

request, while method N (F2, F1) is not valid. This method can

only be used with file types IXF or CURSOR.

P Specifies the field numbers (numbered from 1) of the input data

fields to be loaded. Each table column that is not nullable should

have a corresponding entry in the METHOD P list. For example,

given data fields F1, F2, F3, F4, F5, and F6, and table columns C1

INT, C2 INT NOT NULL, C3 INT NOT NULL, and C4 INT, method

P (2, 1, 4, 3) is a valid request, while method P (2, 1) is not

valid. This method can only be used with file types IXF, DEL, or

CURSOR, and is the only valid method for the DEL file type.

XML FROM xml-path

Specifies one or more paths that contain the XML files. XDSs are contained

in the main data file (ASC, DEL, or IXF), in the column that will be loaded

into the XML column.

244 Data Movement Utilities Guide and Reference

XMLPARSE

Specifies how XML documents are parsed. If this option is not specified,

the parsing behavior for XML documents will be determined by the value

of the CURRENT XMLPARSE OPTION special register.

STRIP WHITESPACE

Specifies to remove whitespace when the XML document is parsed.

PRESERVE WHITESPACE

Specifies not to remove whitespace when the XML document is

parsed.

XMLVALIDATE

Specifies that XML documents are validated against a schema, when

applicable.

USING XDS

XML documents are validated against the XML schema identified

by the XML Data Specifier (XDS) in the main data file. By default,

if the XMLVALIDATE option is invoked with the USING XDS

clause, the schema used to perform validation will be determined

by the SCH attribute of the XDS. If an SCH attribute is not present

in the XDS, no schema validation will occur unless a default

schema is specified by the DEFAULT clause.

 The DEFAULT, IGNORE, and MAP clauses can be used to modify

the schema determination behavior. These three optional clauses

apply directly to the specifications of the XDS, and not to each

other. For example, if a schema is selected because it is specified by

the DEFAULT clause, it will not be ignored if also specified by the

IGNORE clause. Similarly, if a schema is selected because it is

specified as the first part of a pair in the MAP clause, it will not be

re-mapped if also specified in the second part of another MAP

clause pair.

USING SCHEMA schema-sqlid

XML documents are validated against the XML schema with the

specified SQL identifier. In this case, the SCH attribute of the XML

Data Specifier (XDS) will be ignored for all XML columns.

USING SCHEMALOCATION HINTS

XML documents are validated against the schemas identified by

XML schema location hints in the source XML documents. If a

schemaLocation attribute is not found in the XML document, no

validation will occur. When the USING SCHEMALOCATION

HINTS clause is specified, the SCH attribute of the XML Data

Specifier (XDS) will be ignored for all XML columns.

See examples of the XMLVALIDATE option below.

IGNORE schema-sqlid

This option can only be used when the USING XDS parameter is specified.

The IGNORE clause specifies a list of one or more schemas to ignore if

they are identified by an SCH attribute. If an SCH attribute exists in the

XML Data Specifier for a loaded XML document, and the schema identified

by the SCH attribute is included in the list of schemas to IGNORE, then no

schema validation will occur for the loaded XML document.

Note:

Chapter 4. Load utility 245

If a schema is specified in the IGNORE clause, it cannot also be present in

the left side of a schema pair in the MAP clause.

The IGNORE clause applies only to the XDS. A schema that is mapped by

the MAP clause will not be subsequently ignored if specified by the

IGNORE clause.

DEFAULT schema-sqlid

This option can only be used when the USING XDS parameter is specified.

The schema specified through the DEFAULT clause identifies a schema to

use for validation when the XML Data Specifier (XDS) of a loaded XML

document does not contain an SCH attribute identifying an XML Schema.

 The DEFAULT clause takes precedence over the IGNORE and MAP

clauses. If an XDS satisfies the DEFAULT clause, the IGNORE and MAP

specifications will be ignored.

MAP schema-sqlid

This option can only be used when the USING XDS parameter is specified.

Use the MAP clause to specify alternate schemas to use in place of those

specified by the SCH attribute of an XML Data Specifier (XDS) for each

loaded XML document. The MAP clause specifies a list of one or more

schema pairs, where each pair represents a mapping of one schema to

another. The first schema in the pair represents a schema that is referred to

by an SCH attribute in an XDS. The second schema in the pair represents

the schema that should be used to perform schema validation.

 If a schema is present in the left side of a schema pair in the MAP clause,

it cannot also be specified in the IGNORE clause.

Once a schema pair mapping is applied, the result is final. The mapping

operation is non-transitive, and therefore the schema chosen will not be

subsequently applied to another schema pair mapping.

A schema cannot be mapped more than once, meaning that it cannot

appear on the left side of more than one pair.

SAVECOUNT n

Specifies that the load utility is to establish consistency points after every n

rows. This value is converted to a page count, and rounded up to intervals

of the extent size. Since a message is issued at each consistency point, this

option should be selected if the load operation will be monitored using

LOAD QUERY. If the value of n is not sufficiently high, the

synchronization of activities performed at each consistency point will

impact performance.

 The default value is zero, meaning that no consistency points will be

established, unless necessary.

This option is ignored when specified in conjunction with the CURSOR file

type or when loading a table containing an XML column.

ROWCOUNT n

Specifies the number of n physical records in the file to be loaded. Allows

a user to load only the first n rows in a file.

WARNINGCOUNT n

Stops the load operation after n warnings. Set this parameter if no

warnings are expected, but verification that the correct file and table are

being used is desired. If the load file or the target table is specified

incorrectly, the load utility will generate a warning for each row that it

246 Data Movement Utilities Guide and Reference

attempts to load, which will cause the load to fail. If n is zero, or this

option is not specified, the load operation will continue regardless of the

number of warnings issued. If the load operation is stopped because the

threshold of warnings was encountered, another load operation can be

started in RESTART mode. The load operation will automatically continue

from the last consistency point. Alternatively, another load operation can

be initiated in REPLACE mode, starting at the beginning of the input file.

TEMPFILES PATH temp-pathname

Specifies the name of the path to be used when creating temporary files

during a load operation, and should be fully qualified according to the

server database partition.

 Temporary files take up file system space. Sometimes, this space

requirement is quite substantial. Following is an estimate of how much file

system space should be allocated for all temporary files:

v 136 bytes for each message that the load utility generates

v 15 KB overhead if the data file contains long field data or LOBs. This

quantity can grow significantly if the INSERT option is specified, and

there is a large amount of long field or LOB data already in the table.

INSERT

One of four modes under which the load utility can execute. Adds the

loaded data to the table without changing the existing table data.

REPLACE

One of four modes under which the load utility can execute. Deletes all

existing data from the table, and inserts the loaded data. The table

definition and index definitions are not changed. If this option is used

when moving data between hierarchies, only the data for an entire

hierarchy, not individual subtables, can be replaced.

KEEPDICTIONARY

An existing compression dictionary is preserved across the LOAD

REPLACE operation. Provided the table COMPRESS attribute is

YES, the newly replaced data is subject to being compressed using

the dictionary that existed prior to the invocation of the load. If no

dictionary previously existed in the table, a new dictionary is built

using the data that is being replaced into the table as long as the

table COMPRESS attribute is YES. The amount of data that is

required to build the compression dictionary in this case is subject

to the policies of ADC. This data is populated into the table as

uncompressed. Once the dictionary is inserted into the table, the

remaining data to be loaded is subject to being compressed with

this dictionary. This is the default parameter. For summary, see

Table 1 below.

 Table 37. LOAD REPLACE KEEPDICTIONARY

Compress

Table row data

dictionary exists

XML storage

object dictionary

exists1 Compression dictionary Data compression

YES YES YES Preserve table row data

and XML dictionaries.

Data to be loaded is subject to

compression.

Chapter 4. Load utility 247

Table 37. LOAD REPLACE KEEPDICTIONARY (continued)

Compress

Table row data

dictionary exists

XML storage

object dictionary

exists1 Compression dictionary Data compression

YES YES NO Preserve table row data

dictionary and build a

new XML dictionary.

Table row data to be loaded is

subject to compression. After

XML dictionary is built,

remaining XML data to be

loaded is subject to

compression.

YES NO YES Build table row data

dictionary and preserve

XML dictionary.

After table row data

dictionary is built, remaining

table row data to be loaded is

subject to compression. XML

data to be loaded is subject to

compression.

YES NO NO Build new table row data

and XML dictionaries.

After dictionaries are built,

remaining data to be loaded

is subject to compression.

NO YES YES Preserve table row data

and XML dictionaries.

Data to be loaded is not

compressed.

NO YES NO Preserve table row data

dictionary.

Data to be loaded is not

compressed.

NO NO YES No effect on table row

dictionary. Preserve XML

dictionary.

Data to be loaded is not

compressed.

NO NO NO No effect. Data to be loaded is not

compressed.

Note:

1. A compression dictionary can be created for the XML storage

object of a table only if the XML columns are added to the table

in DB2 Version 9.7 or later, or if the table is migrated using an

online table move.

RESETDICTIONARY

This directive instructs LOAD REPLACE processing to build a new

dictionary for the table data object provided that the table

COMPRESS attribute is YES. If the COMPRESS attribute is NO and

a dictionary was already present in the table it will be removed

and no new dictionary will be inserted into the table. A

compression dictionary can be built with just one user record. If

the loaded data set size is zero and if there is a pre-existing

dictionary, the dictionary will not be preserved. The amount of

data required to build a dictionary with this directive is not subject

to the policies of ADC. For summary, see Table 2 below.

248 Data Movement Utilities Guide and Reference

Table 38. LOAD REPLACE RESETDICTIONARY

Compress

Table row data

dictionary exists

XML storage object

dictionary exists1 Compression dictionary Data compression

YES YES YES Build new dictionaries2.

If the DATA CAPTURE

CHANGES option is

enabled on the CREATE

TABLE or ALTER TABLE

statements, the current

table row data dictionary

is kept (and referred to

as the historical

compression dictionary).

After dictionaries are built,

remaining data to be loaded is

subject to compression.

YES YES NO Build new dictionaries2.

If the DATA CAPTURE

CHANGES option is

enabled on the CREATE

TABLE or ALTER TABLE

statements, the current

table row data dictionary

is kept (and referred to

as the historical

compression dictionary).

After dictionaries are built,

remaining data to be loaded is

subject to compression.

YES NO YES Build new dictionaries. After dictionaries are built,

remaining data to be loaded is

subject to compression.

YES NO NO Build new dictionaries. After dictionaries are built,

remaining data to be loaded is

subject to compression.

NO YES YES Remove dictionaries. Data to be loaded is not

compressed.

NO YES NO Remove table row data

dictionary.

Data to be loaded is not

compressed.

NO NO YES Remove XML storage

object dictionary.

Data to be loaded is not

compressed.

NO NO NO No effect. All table data is not

compressed.

Notes:

1. A compression dictionary can be created for the XML storage

object of a table only if the XML columns are added to the table

in DB2 Version 9.7 or later, or if the table is migrated using an

online table move.

2. If a dictionary exists and the compression attribute is enabled,

but there are no records to load into the table partition, a new

dictionary cannot be built and the RESETDICTIONARY

operation will not keep the existing dictionary.

TERMINATE

One of four modes under which the load utility can execute. Terminates a

previously interrupted load operation, and rolls back the operation to the

point in time at which it started, even if consistency points were passed.

The states of any table spaces involved in the operation return to normal,

and all table objects are made consistent (index objects might be marked as

Chapter 4. Load utility 249

invalid, in which case index rebuild will automatically take place at next

access). If the load operation being terminated is a LOAD REPLACE, the

table will be truncated to an empty table after the LOAD TERMINATE

operation. If the load operation being terminated is a LOAD INSERT, the

table will retain all of its original records after the LOAD TERMINATE

operation. For summary of dictionary management, see Table 3 below.

 The LOAD TERMINATE option will not remove a backup pending state

from table spaces.

RESTART

One of four modes under which the load utility can execute. Restarts a

previously interrupted load operation. The load operation will

automatically continue from the last consistency point in the load, build, or

delete phase. For summary of dictionary management, see Table 4 below.

INTO table-name

Specifies the database table into which the data is to be loaded. This table

cannot be a system table, a declared temporary table, or a created

temporary table. An alias, or the fully qualified or unqualified table name

can be specified. A qualified table name is in the form schema.tablename. If

an unqualified table name is specified, the table will be qualified with the

CURRENT SCHEMA.

insert-column

Specifies the table column into which the data is to be inserted.

 The load utility cannot parse columns whose names contain one or more

spaces. For example,

will fail because of the Int 4 column. The solution is to enclose such

column names with double quotation marks:

FOR EXCEPTION table-name

Specifies the exception table into which rows in error will be copied. Any

row that is in violation of a unique index or a primary key index is copied.

If an unqualified table name is specified, the table will be qualified with

the CURRENT SCHEMA.

 Information that is written to the exception table is not written to the

dump file. In a partitioned database environment, an exception table must

be defined for those database partitions on which the loading table is

defined. The dump file, otherwise, contains rows that cannot be loaded

because they are invalid or have syntax errors.

When loading XML data, using the FOR EXCEPTION clause to specify

load exception table is not supported in the following cases:

v When using Label-based access control (LBAC).

v When loading a data into a data partitioned table.

NORANGEEXC

Indicates that if a row is rejected because of a range violation it will not be

inserted into the exception table.

NOUNIQUEEXC

Indicates that if a row is rejected because it violates a unique constraint it

will not be inserted into the exception table.

STATISTICS USE PROFILE

Instructs load to collect statistics during the load according to the profile

defined for this table. This profile must be created before load is executed.

250 Data Movement Utilities Guide and Reference

The profile is created by the RUNSTATS command. If the profile does not

exist and load is instructed to collect statistics according to the profile, a

warning is returned and no statistics are collected.

STATISTICS NO

Specifies that no statistics are to be collected, and that the statistics in the

catalogs are not to be altered. This is the default.

COPY NO

Specifies that the table space in which the table resides will be placed in

backup pending state if forward recovery is enabled (that is, logretain or

userexit is on). The COPY NO option will also put the table space state into

the Load in Progress table space state. This is a transient state that will

disappear when the load completes or aborts. The data in any table in the

table space cannot be updated or deleted until a table space backup or a

full database backup is made. However, it is possible to access the data in

any table by using the SELECT statement.

 LOAD with COPY NO on a recoverable database leaves the table spaces in

a backup pending state. For example, performing a LOAD with COPY NO

and INDEXING MODE DEFERRED will leave indexes needing a refresh.

Certain queries on the table might require an index scan and will not

succeed until the indexes are refreshed. The index cannot be refreshed if it

resides in a table space which is in the backup pending state. In that case,

access to the table will not be allowed until a backup is taken. Index

refresh is done automatically by the database when the index is accessed

by a query. If one of COPY NO, COPY YES, or NONRECOVERABLE is not

specified, and the database is recoverable (logretain or logarchmeth1 is

enabled), then COPY NO is the default.

COPY YES

Specifies that a copy of the loaded data will be saved. This option is

invalid if forward recovery is disabled.

USE TSM

Specifies that the copy will be stored using Tivoli Storage Manager

(TSM).

OPEN num-sess SESSIONS

The number of I/O sessions to be used with TSM or the vendor

product. The default value is 1.

TO device/directory

Specifies the device or directory on which the copy image will be

created.

LOAD lib-name

The name of the shared library (DLL on Windows operating

systems) containing the vendor backup and restore I/O functions

to be used. It can contain the full path. If the full path is not given,

it will default to the path where the user exit programs reside.

NONRECOVERABLE

Specifies that the load transaction is to be marked as non-recoverable and

that it will not be possible to recover it by a subsequent roll forward

action. The roll forward utility will skip the transaction and will mark the

table into which data was being loaded as ″invalid″. The utility will also

ignore any subsequent transactions against that table. After the roll

forward operation is completed, such a table can only be dropped or

Chapter 4. Load utility 251

restored from a backup (full or table space) taken after a commit point

following the completion of the non-recoverable load operation.

 With this option, table spaces are not put in backup pending state

following the load operation, and a copy of the loaded data does not have

to be made during the load operation. If one of COPY NO, COPY YES, or

NONRECOVERABLE is not specified, and the database is not recoverable

(logretain or logarchmeth1 is not enabled), then NONRECOVERABLE is

the default.

WITHOUT PROMPTING

Specifies that the list of data files contains all the files that are to be

loaded, and that the devices or directories listed are sufficient for the entire

load operation. If a continuation input file is not found, or the copy targets

are filled before the load operation finishes, the load operation will fail,

and the table will remain in load pending state.

DATA BUFFER buffer-size

Specifies the number of 4 KB pages (regardless of the degree of

parallelism) to use as buffered space for transferring data within the utility.

If the value specified is less than the algorithmic minimum, the minimum

required resource is used, and no warning is returned.

 This memory is allocated directly from the utility heap, whose size can be

modified through the util_heap_sz database configuration parameter.

If a value is not specified, an intelligent default is calculated by the utility

at run time. The default is based on a percentage of the free space available

in the utility heap at the instantiation time of the loader, as well as some

characteristics of the table.

SORT BUFFER buffer-size

This option specifies a value that overrides the SORTHEAP database

configuration parameter during a load operation. It is relevant only when

loading tables with indexes and only when the INDEXING MODE

parameter is not specified as DEFERRED. The value that is specified

cannot exceed the value of SORTHEAP. This parameter is useful for

throttling the sort memory that is used when loading tables with many

indexes without changing the value of SORTHEAP, which would also

affect general query processing.

CPU_PARALLELISM n

Specifies the number of processes or threads that the load utility will create

for parsing, converting, and formatting records when building table

objects. This parameter is designed to exploit the number of processes

running per database partition. It is particularly useful when loading

presorted data, because record order in the source data is preserved. If the

value of this parameter is zero, or has not been specified, the load utility

uses an intelligent default value (usually based on the number of CPUs

available) at run time.

Note:

1. If this parameter is used with tables containing either LOB or LONG

VARCHAR fields, its value becomes one, regardless of the number of

system CPUs or the value specified by the user.

2. Specifying a small value for the SAVECOUNT parameter causes the

loader to perform many more I/O operations to flush both data and

table metadata. When CPU_PARALLELISM is greater than one, the

flushing operations are asynchronous, permitting the loader to exploit

252 Data Movement Utilities Guide and Reference

the CPU. When CPU_PARALLELISM is set to one, the loader waits on

I/O during consistency points. A load operation with

CPU_PARALLELISM set to two, and SAVECOUNT set to 10 000,

completes faster than the same operation with CPU_PARALLELISM set

to one, even though there is only one CPU.

DISK_PARALLELISM n

Specifies the number of processes or threads that the load utility will create

for writing data to the table space containers. If a value is not specified, the

utility selects an intelligent default based on the number of table space

containers and the characteristics of the table.

FETCH_PARALLELISM YES | NO

When performing a load from a cursor where the cursor is declared using

the DATABASE keyword, or when using the API sqlu_remotefetch_entry

media entry, and this option is set to YES, the load utility attempts to

parallelize fetching from the remote data source if possible. If set to NO,

no parallel fetching is performed. The default value is YES. For more

information, see Moving data using the CURSOR file type.

INDEXING MODE

Specifies whether the load utility is to rebuild indexes or to extend them

incrementally. Valid values are:

AUTOSELECT

The load utility will automatically decide between REBUILD or

INCREMENTAL mode. The decision is based on the amount of

data being loaded and the depth of the index tree. Information

relating to the depth of the index tree is stored in the index object.

RUNSTATS is not required to populate this information.

AUTOSELECT is the default indexing mode.

REBUILD

All indexes will be rebuilt. The utility must have sufficient

resources to sort all index key parts for both old and appended

table data.

INCREMENTAL

Indexes will be extended with new data. This approach consumes

index free space. It only requires enough sort space to append

index keys for the inserted records. This method is only supported

in cases where the index object is valid and accessible at the start

of a load operation (it is, for example, not valid immediately

following a load operation in which the DEFERRED mode was

specified). If this mode is specified, but not supported due to the

state of the index, a warning is returned, and the load operation

continues in REBUILD mode. Similarly, if a load restart operation

is begun in the load build phase, INCREMENTAL mode is not

supported.

 Incremental indexing is not supported when all of the following

conditions are true:

v The LOAD COPY option is specified (logarchmeth1 with the

USEREXIT or LOGRETAIN option).

v The table resides in a DMS table space.

v The index object resides in a table space that is shared by other

table objects belonging to the table being loaded.

Chapter 4. Load utility 253

To bypass this restriction, it is recommended that indexes be placed

in a separate table space.

DEFERRED

The load utility will not attempt index creation if this mode is

specified. Indexes will be marked as needing a refresh. The first

access to such indexes that is unrelated to a load operation might

force a rebuild, or indexes might be rebuilt when the database is

restarted. This approach requires enough sort space for all key

parts for the largest index. The total time subsequently taken for

index construction is longer than that required in REBUILD mode.

Therefore, when performing multiple load operations with deferred

indexing, it is advisable (from a performance viewpoint) to let the

last load operation in the sequence perform an index rebuild,

rather than allow indexes to be rebuilt at first non-load access.

 Deferred indexing is only supported for tables with non-unique

indexes, so that duplicate keys inserted during the load phase are

not persistent after the load operation.

ALLOW NO ACCESS

Load will lock the target table for exclusive access during the load. The

table state will be set to Load In Progress during the load. ALLOW NO

ACCESS is the default behavior. It is the only valid option for LOAD

REPLACE.

 When there are constraints on the table, the table state will be set to Set

Integrity Pending as well as Load In Progress. The SET INTEGRITY

statement must be used to take the table out of Set Integrity Pending state.

ALLOW READ ACCESS

Load will lock the target table in a share mode. The table state will be set

to both Load In Progress and Read Access. Readers can access the

non-delta portion of the data while the table is being load. In other words,

data that existed before the start of the load will be accessible by readers to

the table, data that is being loaded is not available until the load is

complete. LOAD TERMINATE or LOAD RESTART of an ALLOW READ

ACCESS load can use this option; LOAD TERMINATE or LOAD RESTART

of an ALLOW NO ACCESS load cannot use this option. Furthermore, this

option is not valid if the indexes on the target table are marked as

requiring a rebuild.

 When there are constraints on the table, the table state will be set to Set

Integrity Pending as well as Load In Progress, and Read Access. At the end

of the load, the table state Load In Progress will be removed but the table

states Set Integrity Pending and Read Access will remain. The SET

INTEGRITY statement must be used to take the table out of Set Integrity

Pending. While the table is in Set Integrity Pending and Read Access

states, the non-delta portion of the data is still accessible to readers, the

new (delta) portion of the data will remain inaccessible until the SET

INTEGRITY statement has completed. A user can perform multiple loads

on the same table without issuing a SET INTEGRITY statement. Only the

original (checked) data will remain visible, however, until the SET

INTEGRITY statement is issued.

ALLOW READ ACCESS also supports the following modifiers:

USE tablespace-name

If the indexes are being rebuilt, a shadow copy of the index is built

in table space tablespace-name and copied over to the original table

254 Data Movement Utilities Guide and Reference

space at the end of the load during an INDEX COPY PHASE. Only

system temporary table spaces can be used with this option. If not

specified then the shadow index will be created in the same table

space as the index object. If the shadow copy is created in the same

table space as the index object, the copy of the shadow index object

over the old index object is instantaneous. If the shadow copy is in

a different table space from the index object a physical copy is

performed. This could involve considerable I/O and time. The

copy happens while the table is offline at the end of a load during

the INDEX COPY PHASE.

 Without this option the shadow index is built in the same table

space as the original. Since both the original index and shadow

index by default reside in the same table space simultaneously,

there might be insufficient space to hold both indexes within one

table space. Using this option ensures that you retain enough table

space for the indexes.

This option is ignored if the user does not specify INDEXING

MODE REBUILD or INDEXING MODE AUTOSELECT. This option

will also be ignored if INDEXING MODE AUTOSELECT is chosen

and load chooses to incrementally update the index.

SET INTEGRITY PENDING CASCADE

If LOAD puts the table into Set Integrity Pending state, the SET

INTEGRITY PENDING CASCADE option allows the user to specify

whether or not Set Integrity Pending state of the loaded table is

immediately cascaded to all descendents (including descendent foreign key

tables, descendent immediate materialized query tables and descendent

immediate staging tables).

IMMEDIATE

Indicates that Set Integrity Pending state is immediately extended

to all descendent foreign key tables, descendent immediate

materialized query tables and descendent staging tables. For a

LOAD INSERT operation, Set Integrity Pending state is not

extended to descendent foreign key tables even if the IMMEDIATE

option is specified.

 When the loaded table is later checked for constraint violations

(using the IMMEDIATE CHECKED option of the SET INTEGRITY

statement), descendent foreign key tables that were placed in Set

Integrity Pending Read Access state will be put into Set Integrity

Pending No Access state.

DEFERRED

Indicates that only the loaded table will be placed in the Set

Integrity Pending state. The states of the descendent foreign key

tables, descendent immediate materialized query tables and

descendent immediate staging tables will remain unchanged.

 Descendent foreign key tables might later be implicitly placed in

Set Integrity Pending state when their parent tables are checked for

constraint violations (using the IMMEDIATE CHECKED option of

the SET INTEGRITY statement). Descendent immediate

materialized query tables and descendent immediate staging tables

will be implicitly placed in Set Integrity Pending state when one of

its underlying tables is checked for integrity violations. A warning

(SQLSTATE 01586) will be issued to indicate that dependent tables

Chapter 4. Load utility 255

have been placed in Set Integrity Pending state. See the Notes

section of the SET INTEGRITY statement in the SQL Reference for

when these descendent tables will be put into Set Integrity Pending

state.

If the SET INTEGRITY PENDING CASCADE option is not specified:

v Only the loaded table will be placed in Set Integrity Pending state. The

state of descendent foreign key tables, descendent immediate

materialized query tables and descendent immediate staging tables will

remain unchanged, and can later be implicitly put into Set Integrity

Pending state when the loaded table is checked for constraint violations.

If LOAD does not put the target table into Set Integrity Pending state, the

SET INTEGRITY PENDING CASCADE option is ignored.

LOCK WITH FORCE

The utility acquires various locks including table locks in the process of

loading. Rather than wait, and possibly timeout, when acquiring a lock,

this option allows load to force off other applications that hold conflicting

locks on the target table. Applications holding conflicting locks on the

system catalog tables will not be forced off by the load utility. Forced

applications will roll back and release the locks the load utility needs. The

load utility can then proceed. This option requires the same authority as

the FORCE APPLICATIONS command (SYSADM or SYSCTRL).

 ALLOW NO ACCESS loads might force applications holding conflicting

locks at the start of the load operation. At the start of the load the utility

can force applications that are attempting to either query or modify the

table.

ALLOW READ ACCESS loads can force applications holding conflicting

locks at the start or end of the load operation. At the start of the load the

load utility can force applications that are attempting to modify the table.

At the end of the load operation, the load utility can force applications that

are attempting to either query or modify the table.

SOURCEUSEREXIT executable

Specifies an executable filename which will be called to feed data into the

utility.

REDIRECT

INPUT FROM

BUFFER input-buffer

The stream of bytes specified in input-buffer is

passed into the STDIN file descriptor of the process

executing the given executable.

FILE input-file

The contents of this client-side file are passed into

the STDIN file descriptor of the process executing

the given executable.

OUTPUT TO

FILE output-file

The STDOUT and STDERR file descriptors are

captured to the fully qualified server-side file

specified.

256 Data Movement Utilities Guide and Reference

PARALLELIZE

Increases the throughput of data coming into the load utility by

invoking multiple user exit processes simultaneously. This option is

only applicable in multi-partition database environments and is

ignored in single-partition database environments.

For more information, see Moving data using a customized application (user

exit).

PARTITIONED DB CONFIG partitioned-db-option

Allows you to execute a load into a table distributed across multiple

database partitions. The PARTITIONED DB CONFIG parameter allows you

to specify partitioned database-specific configuration options. The

partitioned-db-option values can be any of the following:

PART_FILE_LOCATION x

OUTPUT_DBPARTNUMS x

PARTITIONING_DBPARTNUMS x

MODE x

MAX_NUM_PART_AGENTS x

ISOLATE_PART_ERRS x

STATUS_INTERVAL x

PORT_RANGE x

CHECK_TRUNCATION

MAP_FILE_INPUT x

MAP_FILE_OUTPUT x

TRACE x

NEWLINE

DISTFILE x

OMIT_HEADER

RUN_STAT_DBPARTNUM x

Detailed descriptions of these options are provided in Load configuration

options for partitioned database environments.

RESTARTCOUNT

Reserved.

USING directory

Reserved.

Examples of loading data from XML documents

Loading XML data

Example 1

The user has constructed a data file with XDS fields to describe the documents that

are to be inserted into the table. It might appear like this :

1, "<XDS FIL=""file1.xml"" />"

2, "<XDS FIL=’file2.xml’ OFF=’23’ LEN=’45’ />"

For the first row, the XML document is identified by the file named file1.xml.

Note that since the character delimiter is the double quote character, and double

quotation marks exist inside the XDS, the double quotation marks contained within

the XDS are doubled. For the second row, the XML document is identified by the

file named file2.xml, and starts at byte offset 23, and is 45 bytes in length.

Example 2

Chapter 4. Load utility 257

The user issues a load command without any parsing or validation options for the

XML column, and the data is loaded successfully:

LOAD FROM data.del of DEL INSERT INTO mytable

Loading XML data from CURSOR

Loading data from cursor is the same as with a regular relational column type. The

user has two tables, T1 and T2, each of which consist of a single XML column

named C1. To LOAD from T1 into T2, the user will first declare a cursor:

DECLARE X1 CURSOR FOR SELECT C1 FROM T1;

Next, the user may issue a LOAD using the cursor type :

LOAD FROM X1 of CURSOR INSERT INTO T2

Applying the XML specific LOAD options to the cursor type is the same as loading

from a file.

Usage notes

v Data is loaded in the sequence that appears in the input file. If a particular

sequence is desired, the data should be sorted before a load is attempted. If

preservation of the source data order is not required, consider using the

ANYORDER file type modifier, described below in the File type modifiers for the

load utility section.

v The load utility builds indexes based on existing definitions. The exception

tables are used to handle duplicates on unique keys. The utility does not enforce

referential integrity, perform constraints checking, or update materialized query

tables that are dependent on the tables being loaded. Tables that include

referential or check constraints are placed in Set Integrity Pending state.

Summary tables that are defined with REFRESH IMMEDIATE, and that are

dependent on tables being loaded, are also placed in Set Integrity Pending state.

Issue the SET INTEGRITY statement to take the tables out of Set Integrity

Pending state. Load operations cannot be carried out on replicated materialized

query tables.

v If a clustering index exists on the table, the data should be sorted on the

clustering index prior to loading. Data does not need to be sorted prior to

loading into a multidimensional clustering (MDC) table, however.

v If you specify an exception table when loading into a protected table, any rows

that are protected by invalid security labels will be sent to that table. This might

allow users that have access to the exception table to access to data that they

would not normally be authorized to access. For better security be careful who

you grant exception table access to, delete each row as soon as it is repaired and

copied to the table being loaded, and drop the exception table as soon as you

are done with it.

v Security labels in their internal format might contain newline characters. If you

load the file using the DEL file format, those newline characters can be mistaken

for delimiters. If you have this problem use the older default priority for

delimiters by specifying the delprioritychar file type modifier in the LOAD

command.

v For performing a load using the CURSOR file type where the DATABASE keyword

was specified during the DECLARE CURSOR command, the user ID and

password used to authenticate against the database currently connected to (for

258 Data Movement Utilities Guide and Reference

the load) will be used to authenticate against the source database (specified by

the DATABASE option of the DECLARE CURSOR command). If no user ID or

password was specified for the connection to the loading database, a user ID

and password for the source database must be specified during the DECLARE

CURSOR command.

v Loading a multiple-part PC/IXF file whose individual parts are copied from a

Windows system to an AIX system is supported. The names of all the files must

be specified in the LOAD command. For example, LOAD FROM DATA.IXF,

DATA.002 OF IXF INSERT INTO TABLE1. Loading to the Windows operating

system from logically split PC/IXF files is not supported.

v When restarting a failed LOAD, the behavior will follow the existing behavior in

that the BUILD phase will be forced to use the REBUILD mode for indexes.

v Loading XML documents between databases is not supported and returns error

message SQL1407N.

Summary of LOAD TERMINATE and LOAD RESTART dictionary

management

The following chart summarizes the compression dictionary management behavior

for LOAD processing under the TERMINATE directive.

 Table 39. LOAD TERMINATE dictionary management

Table

COMPRESS

attribute

Does table row

data dictionary

exist prior to

LOAD?

XML storage object

dictionary exists

prior to LOAD1

TERMINATE: LOAD

REPLACE

KEEPDICTIONARY or

LOAD INSERT

TERMINATE: LOAD

REPLACE

RESETDICTIONARY

YES YES YES Keep existing dictionaries. Neither dictionary is

kept.

2

YES YES NO Keep existing dictionary. Nothing is kept.

2

YES NO YES Keep existing dictionary. Nothing is kept.

YES NO NO Nothing is kept. Nothing is kept.

NO YES YES Keep existing dictionaries. Nothing is kept.

NO YES NO Keep existing dictionary. Nothing is kept.

NO NO YES Keep existing dictionary. Nothing is kept.

NO NO NO Do nothing. Do nothing.

Note:

1. A compression dictionary can be created for the XML storage object of a table

only if the XML columns are added to the table in DB2 Version 9.7 or later, or if

the table is migrated using an online table move.

2. In the special case that the table has data capture enabled, the table row data

dictionary is kept.

LOAD RESTART truncates a table up to the last consistency point reached. As part

of LOAD RESTART processing, a compression dictionary will exist in the table if it

was present in the table at the time the last LOAD consistency point was taken. In

that case, LOAD RESTART will not create a new dictionary. For a summary of the

possible conditions, see Table 4 below.

Chapter 4. Load utility 259

Table 40. LOAD RESTART dictionary management

Table

COMPRESS

Attribute

Table row data

dictionary exist

prior to LOAD

consistency

point?1

XML Storage object

dictionary existed

prior to last LOAD?2

RESTART: LOAD

REPLACE

KEEPDICTIONARY or

LOAD INSERT

RESTART: LOAD

REPLACE

RESETDICTIONARY

YES YES YES Keep existing dictionaries. Keep existing

dictionaries.

YES YES NO Keep existing table row

data dictionary and build

XML dictionary subject to

ADC.

Keep existing table row

data dictionary and

build XML dictionary.

YES NO YES Build table row data

dictionary subject to ADC.

Keep existing XML

dictionary.

Build table row data

dictionary. Keep existing

XML dictionary.

YES NO NO Build table row data and

XML dictionaries subject to

ADC.

Build table row data and

XML dictionaries.

NO YES YES Keep existing dictionaries. Remove existing

dictionaries.

NO YES NO Keep existing table row

data dictionary.

Remove existing table

row data dictionary.

NO NO YES Keep existing XML

dictionary.

Remove existing XML

dictionary.

NO NO NO Do nothing. Do nothing.

Notes:

1. The SAVECOUNT option is ignored when loading XML data, load operations

that fail during the load phase restart from the beginning of the operation.

2. A compression dictionary can be created for the XML storage object of a table

only if the XML columns are added to the table in DB2 Version 9.7 or later, or if

the table is migrated using an online table move.

File type modifiers for the load utility

 Table 41. Valid file type modifiers for the load utility: All file formats

Modifier Description

anyorder This modifier is used in conjunction with the cpu_parallelism parameter. Specifies

that the preservation of source data order is not required, yielding significant

additional performance benefit on SMP systems. If the value of cpu_parallelism is

1, this option is ignored. This option is not supported if SAVECOUNT > 0, since

crash recovery after a consistency point requires that data be loaded in sequence.

generatedignore This modifier informs the load utility that data for all generated columns is

present in the data file but should be ignored. This results in all generated

column values being generated by the utility. This modifier cannot be used with

either the generatedmissing or the generatedoverride modifier.

generatedmissing If this modifier is specified, the utility assumes that the input data file contains no

data for the generated column (not even NULLs). This results in all generated

column values being generated by the utility. This modifier cannot be used with

either the generatedignore or the generatedoverride modifier.

260 Data Movement Utilities Guide and Reference

Table 41. Valid file type modifiers for the load utility: All file formats (continued)

Modifier Description

generatedoverride This modifier instructs the load utility to accept user-supplied data for all

generated columns in the table (contrary to the normal rules for these types of

columns). This is useful when migrating data from another database system, or

when loading a table from data that was recovered using the RECOVER

DROPPED TABLE option on the ROLLFORWARD DATABASE command. When

this modifier is used, any rows with no data or NULL data for a non-nullable

generated column will be rejected (SQL3116W). When this modifier is used, the

table will be placed in Set Integrity Pending state. To take the table out of Set

Integrity Pending state without verifying the user-supplied values, issue the

following command after the load operation:

SET INTEGRITY FOR < table-name > GENERATED COLUMN

 IMMEDIATE UNCHECKED

To take the table out of Set Integrity Pending state and force verification of the

user-supplied values, issue the following command after the load operation:

SET INTEGRITY FOR < table-name > IMMEDIATE CHECKED.

When this modifier is specified and there is a generated column in any of the

partitioning keys, dimension keys or distribution keys, then the LOAD command

will automatically convert the modifier to generatedignore and proceed with the

load. This will have the effect of regenerating all of the generated column values.

This modifier cannot be used with either the generatedmissing or the

generatedignore modifier.

identityignore This modifier informs the load utility that data for the identity column is present

in the data file but should be ignored. This results in all identity values being

generated by the utility. The behavior will be the same for both GENERATED

ALWAYS and GENERATED BY DEFAULT identity columns. This means that for

GENERATED ALWAYS columns, no rows will be rejected. This modifier cannot

be used with either the identitymissing or the identityoverride modifier.

identitymissing If this modifier is specified, the utility assumes that the input data file contains no

data for the identity column (not even NULLs), and will therefore generate a

value for each row. The behavior will be the same for both GENERATED

ALWAYS and GENERATED BY DEFAULT identity columns. This modifier cannot

be used with either the identityignore or the identityoverride modifier.

identityoverride This modifier should be used only when an identity column defined as

GENERATED ALWAYS is present in the table to be loaded. It instructs the utility

to accept explicit, non-NULL data for such a column (contrary to the normal rules

for these types of identity columns). This is useful when migrating data from

another database system when the table must be defined as GENERATED

ALWAYS, or when loading a table from data that was recovered using the

DROPPED TABLE RECOVERY option on the ROLLFORWARD DATABASE

command. When this modifier is used, any rows with no data or NULL data for

the identity column will be rejected (SQL3116W). This modifier cannot be used

with either the identitymissing or the identityignore modifier. The load utility

will not attempt to maintain or verify the uniqueness of values in the table’s

identity column when this option is used.

indexfreespace=x x is an integer between 0 and 99 inclusive. The value is interpreted as the

percentage of each index page that is to be left as free space when load rebuilds

the index. Load with INDEXING MODE INCREMENTAL ignores this option. The

first entry in a page is added without restriction; subsequent entries are added to

maintain the percent free space threshold. The default value is the one used at

CREATE INDEX time.

This value takes precedence over the PCTFREE value specified in the CREATE

INDEX statement. The indexfreespace option affects index leaf pages only.

Chapter 4. Load utility 261

Table 41. Valid file type modifiers for the load utility: All file formats (continued)

Modifier Description

lobsinfile lob-path specifies the path to the files containing LOB data. The ASC, DEL, or IXF

load input files contain the names of the files having LOB data in the LOB

column.

This option is not supported in conjunction with the CURSOR filetype.

The LOBS FROM clause specifies where the LOB files are located when the

“lobsinfile” modifier is used. The LOBS FROM clause will implicitly activate the

LOBSINFILE behavior. The LOBS FROM clause conveys to the LOAD utility the

list of paths to search for the LOB files while loading the data.

Each path contains at least one file that contains at least one LOB pointed to by a

Lob Location Specifier (LLS) in the data file. The LLS is a string representation of

the location of a LOB in a file stored in the LOB file path. The format of an LLS is

filename.ext.nnn.mmm/, where filename.ext is the name of the file that contains the

LOB, nnn is the offset in bytes of the LOB within the file, and mmm is the length

of the LOB in bytes. For example, if the string db2exp.001.123.456/ is stored in

the data file, the LOB is located at offset 123 in the file db2exp.001, and is 456

bytes long.

To indicate a null LOB , enter the size as -1. If the size is specified as 0, it is

treated as a 0 length LOB. For null LOBS with length of -1, the offset and the file

name are ignored. For example, the LLS of a null LOB might be db2exp.001.7.-1/.

noheader Skips the header verification code (applicable only to load operations into tables

that reside in a single-partition database partition group).

If the default MPP load (mode PARTITION_AND_LOAD) is used against a table

residing in a single-partition database partition group, the file is not expected to

have a header. Thus the noheader modifier is not needed. If the LOAD_ONLY

mode is used, the file is expected to have a header. The only circumstance in

which you should need to use the noheader modifier is if you wanted to perform

LOAD_ONLY operation using a file that does not have a header.

norowwarnings Suppresses all warnings about rejected rows.

pagefreespace=x x is an integer between 0 and 100 inclusive. The value is interpreted as the

percentage of each data page that is to be left as free space. If the specified value

is invalid because of the minimum row size, (for example, a row that is at least

3 000 bytes long, and an x value of 50), the row will be placed on a new page. If

a value of 100 is specified, each row will reside on a new page. The PCTFREE

value of a table determines the amount of free space designated per page. If a

pagefreespace value on the load operation or a PCTFREE value on a table have

not been set, the utility will fill up as much space as possible on each page. The

value set by pagefreespace overrides the PCTFREE value specified for the table.

rowchangetimestampignore This modifier informs the load utility that data for the row change timestamp

column is present in the data file but should be ignored. This results in all ROW

CHANGE TIMESTAMPs being generated by the utility. The behavior will be the

same for both GENERATED ALWAYS and GENERATED BY DEFAULT columns.

This means that for GENERATED ALWAYS columns, no rows will be rejected.

This modifier cannot be used with either the rowchangetimestampmissing or the

rowchangetimestampoverride modifier.

rowchangetimestampmissing If this modifier is specified, the utility assumes that the input data file contains no

data for the row change timestamp column (not even NULLs), and will therefore

generate a value for each row. The behavior will be the same for both

GENERATED ALWAYS and GENERATED BY DEFAULT columns. This modifier

cannot be used with either the rowchangetimestampignore or the

rowchangetimestampoverride modifier.

262 Data Movement Utilities Guide and Reference

Table 41. Valid file type modifiers for the load utility: All file formats (continued)

Modifier Description

rowchangetimestampoverride This modifier should be used only when a row change timestamp column

defined as GENERATED ALWAYS is present in the table to be loaded. It instructs

the utility to accept explicit, non-NULL data for such a column (contrary to the

normal rules for these types of row change timestamp columns). This is useful

when migrating data from another database system when the table must be

defined as GENERATED ALWAYS, or when loading a table from data that was

recovered using the DROPPED TABLE RECOVERY option on the

ROLLFORWARD DATABASE command. When this modifier is used, any rows

with no data or NULL data for the ROW CHANGE TIMESTAMP column will be

rejected (SQL3116W). This modifier cannot be used with either the

rowchangetimestampmissing or the rowchangetimestampignore modifier. The load

utility will not attempt to maintain or verify the uniqueness of values in the

table’s row change timestamp column when this option is used.

seclabelchar Indicates that security labels in the input source file are in the string format for

security label values rather than in the default encoded numeric format. LOAD

converts each security label into the internal format as it is loaded. If a string is

not in the proper format the row is not loaded and a warning (SQLSTATE 01H53,

SQLCODE SQL3242W) is returned. If the string does not represent a valid

security label that is part of the security policy protecting the table then the row

is not loaded and a warning (SQLSTATE 01H53, SQLCODE SQL3243W) is

returned.

This modifier cannot be specified if the seclabelname modifier is specified,

otherwise the load fails and an error (SQLCODE SQL3525N) is returned.

If you have a table consisting of a single DB2SECURITYLABEL column, the data file

might look like this:

 "CONFIDENTIAL:ALPHA:G2"

 "CONFIDENTIAL;SIGMA:G2"

 "TOP SECRET:ALPHA:G2"

To load or import this data, the SECLABELCHAR file type modifier must be

used:

LOAD FROM input.del OF DEL MODIFIED BY SECLABELCHAR INSERT INTO t1

seclabelname Indicates that security labels in the input source file are indicated by their name

rather than the default encoded numeric format. LOAD will convert the name to

the appropriate security label if it exists. If no security label exists with the

indicated name for the security policy protecting the table the row is not loaded

and a warning (SQLSTATE 01H53, SQLCODE SQL3244W) is returned.

This modifier cannot be specified if the seclabelchar modifier is specified,

otherwise the load fails and an error (SQLCODE SQL3525N) is returned.

If you have a table consisting of a single DB2SECURITYLABEL column, the data file

might consist of security label names similar to:

 "LABEL1"

 "LABEL1"

 "LABEL2"

To load or import this data, the SECLABELNAME file type modifier must be used:

 LOAD FROM input.del OF DEL MODIFIED BY SECLABELNAME INSERT INTO t1

Note: If the file type is ASC, any spaces following the name of the security label

will be interpreted as being part of the name. To avoid this use the striptblanks

file type modifier to make sure the spaces are removed.

Chapter 4. Load utility 263

Table 41. Valid file type modifiers for the load utility: All file formats (continued)

Modifier Description

totalfreespace=x x is an integer greater than or equal to 0 . The value is interpreted as the

percentage of the total pages in the table that is to be appended to the end of the

table as free space. For example, if x is 20, and the table has 100 data pages after

the data has been loaded, 20 additional empty pages will be appended. The total

number of data pages for the table will be 120. The data pages total does not

factor in the number of index pages in the table. This option does not affect the

index object. If two loads are done with this option specified, the second load will

not reuse the extra space appended to the end by the first load.

usedefaults If a source column for a target table column has been specified, but it contains no

data for one or more row instances, default values are loaded. Examples of

missing data are:

v For DEL files: two adjacent column delimiters (″,,″) or two adjacent column

delimiters separated by an arbitrary number of spaces (″, ,″) are specified for a

column value.

v For DEL/ASC/WSF files: A row that does not have enough columns, or is not

long enough for the original specification. For ASC files, NULL column values

are not considered explicitly missing, and a default will not be substituted for

NULL column values. NULL column values are represented by all space

characters for numeric, date, time, and /timestamp columns, or by using the

NULL INDICATOR for a column of any type to indicate the column is NULL.

Without this option, if a source column contains no data for a row instance, one

of the following occurs:

v For DEL/ASC/WSF files: If the column is nullable, a NULL is loaded. If the

column is not nullable, the utility rejects the row.

 Table 42. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL)

Modifier Description

codepage=x x is an ASCII character string. The value is interpreted as the code page of the

data in the input data set. Converts character data (and numeric data specified in

characters) from this code page to the database code page during the load

operation.

The following rules apply:

v For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to

the range of x00 to x3F, inclusive.

v For DEL data specified in an EBCDIC code page, the delimiters might not

coincide with the shift-in and shift-out DBCS characters.

v nullindchar must specify symbols included in the standard ASCII set between

code points x20 and x7F, inclusive. This refers to ASCII symbols and code

points. EBCDIC data can use the corresponding symbols, even though the code

points will be different.

This option is not supported in conjunction with the CURSOR filetype.

264 Data Movement Utilities Guide and Reference

Table 42. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

dateformat=″x″ x is the format of the date in the source file.1 Valid date elements are:

 YYYY - Year (four digits ranging from 0000 - 9999)

 M - Month (one or two digits ranging from 1 - 12)

 MM - Month (two digits ranging from 1 - 12;

 mutually exclusive with M)

 D - Day (one or two digits ranging from 1 - 31)

 DD - Day (two digits ranging from 1 - 31;

 mutually exclusive with D)

 DDD - Day of the year (three digits ranging

 from 001 - 366; mutually exclusive

 with other day or month elements)

A default value of 1 is assigned for each element that is not specified. Some

examples of date formats are:

 "D-M-YYYY"

 "MM.DD.YYYY"

 "YYYYDDD"

dumpfile = x x is the fully qualified (according to the server database partition) name of an

exception file to which rejected rows are written. A maximum of 32 KB of data is

written per record. Following is an example that shows how to specify a dump

file:

 db2 load from data of del

 modified by dumpfile = /u/user/filename

 insert into table_name

The file will be created and owned by the instance owner. To override the default

file permissions, use the dumpfileaccessall file type modifier.

Note:

1. In a partitioned database environment, the path should be local to the loading

database partition, so that concurrently running load operations do not

attempt to write to the same file.

2. The contents of the file are written to disk in an asynchronous buffered mode.

In the event of a failed or an interrupted load operation, the number of

records committed to disk cannot be known with certainty, and consistency

cannot be guaranteed after a LOAD RESTART. The file can only be assumed

to be complete for a load operation that starts and completes in a single pass.

3. If the specified file already exists, it will not be recreated, but it will be

appended.

dumpfileaccessall Grants read access to ’OTHERS’ when a dump file is created.

This file type modifier is only valid when:

1. it is used in conjunction with dumpfile file type modifier

2. the user has SELECT privilege on the load target table

3. it is issued on a DB2 server database partition that resides on a UNIX

operating system

If the specified file already exists, its permissions will not be changed.

fastparse Use with caution. Reduces syntax checking on user-supplied column values, and

enhances performance. Tables are guaranteed to be architecturally correct (the

utility performs sufficient data checking to prevent a segmentation violation or

trap), however, the coherence of the data is not validated. Only use this option if

you are certain that your data is coherent and correct. For example, if the

user-supplied data contains an invalid timestamp column value of

:1>0-00-20-07.11.12.000000, this value is inserted into the table if FASTPARSE is

specified, and rejected if FASTPARSE is not specified.

Chapter 4. Load utility 265

Table 42. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

implieddecimal The location of an implied decimal point is determined by the column definition;

it is no longer assumed to be at the end of the value. For example, the value

12345 is loaded into a DECIMAL(8,2) column as 123.45, not 12345.00.

This modifier cannot be used with the packeddecimal modifier.

timeformat=″x″ x is the format of the time in the source file.1 Valid time elements are:

 H - Hour (one or two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24

 for a 24 hour system)

 HH - Hour (two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24

 for a 24 hour system; mutually exclusive

 with H)

 M - Minute (one or two digits ranging

 from 0 - 59)

 MM - Minute (two digits ranging from 0 - 59;

 mutually exclusive with M)

 S - Second (one or two digits ranging

 from 0 - 59)

 SS - Second (two digits ranging from 0 - 59;

 mutually exclusive with S)

 SSSSS - Second of the day after midnight (5 digits

 ranging from 00000 - 86399; mutually

 exclusive with other time elements)

 TT - Meridian indicator (AM or PM)

A default value of 0 is assigned for each element that is not specified. Some

examples of time formats are:

 "HH:MM:SS"

 "HH.MM TT"

 "SSSSS"

266 Data Movement Utilities Guide and Reference

Table 42. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

timestampformat=″x″ x is the format of the time stamp in the source file.1 Valid time stamp elements

are:

 YYYY - Year (four digits ranging from 0000 - 9999)

 M - Month (one or two digits ranging from 1 - 12)

 MM - Month (two digits ranging from 01 - 12;

 mutually exclusive with M and MMM)

 MMM - Month (three-letter case-insensitive abbreviation for

 the month name; mutually exclusive with M and MM)

 D - Day (one or two digits ranging from 1 - 31)

 DD - Day (two digits ranging from 1 - 31; mutually exclusive with D)

 DDD - Day of the year (three digits ranging from 001 - 366;

 mutually exclusive with other day or month elements)

 H - Hour (one or two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24 for a 24 hour system)

 HH - Hour (two digits ranging from 0 - 12

 for a 12 hour system, and 0 - 24 for a 24 hour system;

 mutually exclusive with H)

 M - Minute (one or two digits ranging from 0 - 59)

 MM - Minute (two digits ranging from 0 - 59;

 mutually exclusive with M, minute)

 S - Second (one or two digits ranging from 0 - 59)

 SS - Second (two digits ranging from 0 - 59;

 mutually exclusive with S)

 SSSSS - Second of the day after midnight (5 digits

 ranging from 00000 - 86399; mutually

 exclusive with other time elements)

 U (1 to 12 times)

 - Fractional seconds(number of occurrences of U represent the

 number of digits with each digit ranging from 0 to 9

 TT - Meridian indicator (AM or PM)

timestampformat=″x″

(Continued)

A default value of 1 is assigned for unspecified YYYY, M, MM, D, DD, or DDD

elements. A default value of ’Jan’ is assigned to an unspecified MMM element. A

default value of 0 is assigned for all other unspecified elements. Following is an

example of a time stamp format:

 "YYYY/MM/DD HH:MM:SS.UUUUUU"

The valid values for the MMM element include: ’jan’, ’feb’, ’mar’, ’apr’, ’may’,

’jun’, ’jul’, ’aug’, ’sep’, ’oct’, ’nov’ and ’dec’. These values are case insensitive.

If the TIMESTAMPFORMAT modifier is not specified, the load utility formats the

timestamp field using one of two possible formats:

YYYY-MM-DD-HH.MM.SS

YYYY-MM-DD HH:MM:SS

The load utility chooses the format by looking at the separator between the DD

and HH. If it is a dash ’-’, the load utility uses the regular dashes and dots format

(YYYY-MM-DD-HH.MM.SS). If it is a blank space, then the load utility expects a

colon ’:’ to separate the HH, MM and SS.

In either format, if you include the microseconds field (UUUUUU), the load

utility expects the dot ’.’ as the separator. Either YYYY-MM-DD-
HH.MM.SS.UUUUUU or YYYY-MM-DD HH:MM:SS.UUUUUU are acceptable.

The following example illustrates how to load data containing user defined date

and time formats into a table called schedule:

 db2 load from delfile2 of del

 modified by timestampformat="yyyy.mm.dd hh:mm tt"

 insert into schedule

Chapter 4. Load utility 267

Table 42. Valid file type modifiers for the load utility: ASCII file formats (ASC/DEL) (continued)

Modifier Description

usegraphiccodepage If usegraphiccodepage is given, the assumption is made that data being loaded

into graphic or double-byte character large object (DBCLOB) data field(s) is in the

graphic code page. The rest of the data is assumed to be in the character code

page. The graphic codepage is associated with the character code page. LOAD

determines the character code page through either the codepage modifier, if it is

specified, or through the code page of the database if the codepage modifier is not

specified.

This modifier should be used in conjunction with the delimited data file

generated by drop table recovery only if the table being recovered has graphic

data.

Restrictions

The usegraphiccodepage modifier MUST NOT be specified with DEL files created

by the EXPORT utility, as these files contain data encoded in only one code page.

The usegraphiccodepage modifier is also ignored by the double-byte character

large objects (DBCLOBs) in files.

xmlchar Specifies that XML documents are encoded in the character code page.

This option is useful for processing XML documents that are encoded in the

specified character code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,

the encoding must match the character code page, otherwise the row containing

the document will be rejected. Note that the character codepage is the value

specified by the codepage file type modifier, or the application codepage if it is

not specified. By default, either the documents are encoded in Unicode, or they

contain a declaration tag with an encoding attribute.

xmlgraphic Specifies that XML documents are encoded in the specified graphic code page.

This option is useful for processing XML documents that are encoded in a specific

graphic code page but do not contain an encoding declaration.

For each document, if a declaration tag exists and contains an encoding attribute,

the encoding must match the graphic code page, otherwise the row containing

the document will be rejected. Note that the graphic code page is the graphic

component of the value specified by the codepage file type modifier, or the

graphic component of the application code page if it is not specified. By default,

documents are either encoded in Unicode, or they contain a declaration tag with

an encoding attribute.

268 Data Movement Utilities Guide and Reference

Table 43. Valid file type modifiers for the load utility: ASC file formats (Non-delimited ASCII)

Modifier Description

binarynumerics Numeric (but not DECIMAL) data must be in binary form, not the character

representation. This avoids costly conversions.

This option is supported only with positional ASC, using fixed length records

specified by the reclen option.

The following rules apply:

v No conversion between data types is performed, with the exception of BIGINT,

INTEGER, and SMALLINT.

v Data lengths must match their target column definitions.

v FLOATs must be in IEEE Floating Point format.

v Binary data in the load source file is assumed to be big-endian, regardless of

the platform on which the load operation is running.

NULLs cannot be present in the data for columns affected by this modifier.

Blanks (normally interpreted as NULL) are interpreted as a binary value when

this modifier is used.

nochecklengths If nochecklengths is specified, an attempt is made to load each row, even if the

source data has a column definition that exceeds the size of the target table

column. Such rows can be successfully loaded if code page conversion causes the

source data to shrink; for example, 4-byte EUC data in the source could shrink to

2-byte DBCS data in the target, and require half the space. This option is

particularly useful if it is known that the source data will fit in all cases despite

mismatched column definitions.

nullindchar=x x is a single character. Changes the character denoting a NULL value to x. The

default value of x is Y.2

This modifier is case sensitive for EBCDIC data files, except when the character is

an English letter. For example, if the NULL indicator character is specified to be

the letter N, then n is also recognized as a NULL indicator.

packeddecimal Loads packed-decimal data directly, since the binarynumerics modifier does not

include the DECIMAL field type.

This option is supported only with positional ASC, using fixed length records

specified by the reclen option.

Supported values for the sign nibble are:

 + = 0xC 0xA 0xE 0xF

 - = 0xD 0xB

NULLs cannot be present in the data for columns affected by this modifier.

Blanks (normally interpreted as NULL) are interpreted as a binary value when

this modifier is used.

Regardless of the server platform, the byte order of binary data in the load source

file is assumed to be big-endian; that is, when using this modifier on Windows

operating systems, the byte order must not be reversed.

This modifier cannot be used with the implieddecimal modifier.

reclen=x x is an integer with a maximum value of 32 767. x characters are read for each

row, and a new-line character is not used to indicate the end of the row.

Chapter 4. Load utility 269

Table 43. Valid file type modifiers for the load utility: ASC file formats (Non-delimited ASCII) (continued)

Modifier Description

striptblanks Truncates any trailing blank spaces when loading data into a variable-length field.

If this option is not specified, blank spaces are kept.

This option cannot be specified together with striptnulls. These are mutually

exclusive options. This option replaces the obsolete t option, which is supported

for earlier compatibility only.

striptnulls Truncates any trailing NULLs (0x00 characters) when loading data into a

variable-length field. If this option is not specified, NULLs are kept.

This option cannot be specified together with striptblanks. These are mutually

exclusive options. This option replaces the obsolete padwithzero option, which is

supported for earlier compatibility only.

zoneddecimal Loads zoned decimal data, since the BINARYNUMERICS modifier does not

include the DECIMAL field type. This option is supported only with positional

ASC, using fixed length records specified by the RECLEN option.

Half-byte sign values can be one of the following:

 + = 0xC 0xA 0xE 0xF

 - = 0xD 0xB

Supported values for digits are 0x0 to 0x9.

Supported values for zones are 0x3 and 0xF.

 Table 44. Valid file type modifiers for the load utility: DEL file formats (Delimited ASCII)

Modifier Description

chardelx x is a single character string delimiter. The default value is a double quotation

mark (″). The specified character is used in place of double quotation marks to

enclose a character string.23 If you want to explicitly specify the double quotation

mark (″) as the character string delimiter, you should specify it as follows:

 modified by chardel""

The single quotation mark (’) can also be specified as a character string delimiter

as follows:

 modified by chardel’’

coldelx x is a single character column delimiter. The default value is a comma (,). The

specified character is used in place of a comma to signal the end of a column.23

decplusblank Plus sign character. Causes positive decimal values to be prefixed with a blank

space instead of a plus sign (+). The default action is to prefix positive decimal

values with a plus sign.

decptx x is a single character substitute for the period as a decimal point character. The

default value is a period (.). The specified character is used in place of a period as

a decimal point character.23

270 Data Movement Utilities Guide and Reference

Table 44. Valid file type modifiers for the load utility: DEL file formats (Delimited ASCII) (continued)

Modifier Description

delprioritychar The current default priority for delimiters is: record delimiter, character delimiter,

column delimiter. This modifier protects existing applications that depend on the

older priority by reverting the delimiter priorities to: character delimiter, record

delimiter, column delimiter. Syntax:

 db2 load ... modified by delprioritychar ...

For example, given the following DEL data file:

 "Smith, Joshua",4000,34.98<row delimiter>

 "Vincent,<row delimiter>, is a manager", ...

 ... 4005,44.37<row delimiter>

With the delprioritychar modifier specified, there will be only two rows in this

data file. The second <row delimiter> will be interpreted as part of the first data

column of the second row, while the first and the third <row delimiter> are

interpreted as actual record delimiters. If this modifier is not specified, there will

be three rows in this data file, each delimited by a <row delimiter>.

keepblanks Preserves the leading and trailing blanks in each field of type CHAR, VARCHAR,

LONG VARCHAR, or CLOB. Without this option, all leading and trailing blanks

that are not inside character delimiters are removed, and a NULL is inserted into

the table for all blank fields.

The following example illustrates how to load data into a table called TABLE1,

while preserving all leading and trailing spaces in the data file:

 db2 load from delfile3 of del

 modified by keepblanks

 insert into table1

nochardel The load utility will assume all bytes found between the column delimiters to be

part of the column’s data. Character delimiters will be parsed as part of column

data. This option should not be specified if the data was exported using DB2

(unless nochardel was specified at export time). It is provided to support vendor

data files that do not have character delimiters. Improper usage might result in

data loss or corruption.

This option cannot be specified with chardelx, delprioritychar or nodoubledel.

These are mutually exclusive options.

nodoubledel Suppresses recognition of double character delimiters.

 Table 45. Valid file type modifiers for the load utility: IXF file format

Modifier Description

forcein Directs the utility to accept data despite code page mismatches, and to suppress

translation between code pages.

Fixed length target fields are checked to verify that they are large enough for the

data. If nochecklengths is specified, no checking is done, and an attempt is made

to load each row.

nochecklengths If nochecklengths is specified, an attempt is made to load each row, even if the

source data has a column definition that exceeds the size of the target table

column. Such rows can be successfully loaded if code page conversion causes the

source data to shrink; for example, 4-byte EUC data in the source could shrink to

2-byte DBCS data in the target, and require half the space. This option is

particularly useful if it is known that the source data will fit in all cases despite

mismatched column definitions.

Note:

Chapter 4. Load utility 271

1. Double quotation marks around the date format string are mandatory. Field

separators cannot contain any of the following: a-z, A-Z, and 0-9. The field

separator should not be the same as the character delimiter or field delimiter in

the DEL file format. A field separator is optional if the start and end positions

of an element are unambiguous. Ambiguity can exist if (depending on the

modifier) elements such as D, H, M, or S are used, because of the variable

length of the entries.

For time stamp formats, care must be taken to avoid ambiguity between the

month and the minute descriptors, since they both use the letter M. A month

field must be adjacent to other date fields. A minute field must be adjacent to

other time fields. Following are some ambiguous time stamp formats:

 "M" (could be a month, or a minute)

 "M:M" (Which is which?)

 "M:YYYY:M" (Both are interpreted as month.)

 "S:M:YYYY" (adjacent to both a time value and a date value)

In ambiguous cases, the utility will report an error message, and the operation

will fail.

Following are some unambiguous time stamp formats:

 "M:YYYY" (Month)

 "S:M" (Minute)

 "M:YYYY:S:M" (Month....Minute)

 "M:H:YYYY:M:D" (Minute....Month)

Some characters, such as double quotation marks and back slashes, must be

preceded by an escape character (for example, \).

2. Character values provided for the chardel, coldel, or decpt file type modifiers

must be specified in the code page of the source data.

The character code point (instead of the character symbol), can be specified

using the syntax xJJ or 0xJJ, where JJ is the hexadecimal representation of the

code point. For example, to specify the # character as a column delimiter, use

one of the following:

 ... modified by coldel# ...

 ... modified by coldel0x23 ...

 ... modified by coldelX23 ...

3. Delimiter considerations for moving data lists restrictions that apply to the

characters that can be used as delimiter overrides.

4. The load utility does not issue a warning if an attempt is made to use

unsupported file types with the MODIFIED BY option. If this is attempted, the

load operation fails, and an error code is returned.

5. When importing into a table containing an implicitly hidden row change

timestamp column, the implicitly hidden property of the column is not

honoured. Therefore, the rowchangetimestampmissing file type modifier must

be specified in the import command if data for the column is not present in the

data to be imported and there is no explicit column list present.

 Table 46. LOAD behavior when using codepage and usegraphiccodepage

codepage=N usegraphiccodepage LOAD behavior

Absent Absent All data in the file is assumed to be in the database code

page, not the application code page, even if the CLIENT

option is specified.

Present Absent All data in the file is assumed to be in code page N.

Warning: Graphic data will be corrupted when loaded

into the database if N is a single-byte code page.

272 Data Movement Utilities Guide and Reference

Table 46. LOAD behavior when using codepage and usegraphiccodepage (continued)

codepage=N usegraphiccodepage LOAD behavior

Absent Present Character data in the file is assumed to be in the

database code page, even if the CLIENT option is

specified. Graphic data is assumed to be in the code

page of the database graphic data, even if the CLIENT

option is specified.

If the database code page is single-byte, then all data is

assumed to be in the database code page.

Warning: Graphic data will be corrupted when loaded

into a single-byte database.

Present Present Character data is assumed to be in code page N. Graphic

data is assumed to be in the graphic code page of N.

If N is a single-byte or double-byte code page, then all

data is assumed to be in code page N.

Warning: Graphic data will be corrupted when loaded

into the database if N is a single-byte code page.

db2Load - Load data into a table

Loads data into a DB2 table. Data residing on the server may be in the form of a

file, cursor, tape, or named pipe. Data residing on a remotely connected client may

be in the form of a fully qualified file, a cursor, or named pipe. Although faster

than the import utility, the load utility does not support loading data at the

hierarchy level or loading into a nickname.

Authorization

One of the following:

v dataaccess

v load authority on the database and:

– INSERT privilege on the table when the load utility is invoked in INSERT

mode, TERMINATE mode (to terminate a previous load insert operation), or

RESTART mode (to restart a previous load insert operation)

– INSERT and DELETE privilege on the table when the load utility is invoked

in REPLACE mode, TERMINATE mode (to terminate a previous load replace

operation), or RESTART mode (to restart a previous load replace operation)

– INSERT privilege on the exception table, if such a table is used as part of the

load operation.

If the FORCE option is specified, SYSADM authority is required.

Note: In general, all load processes and all DB2 server processes are owned by the

instance owner. All of these processes use the identification of the instance owner

to access needed files. Therefore, the instance owner must have read access to the

input files, regardless of who invokes the command.

Required connection

Database. If implicit connect is enabled, a connection to the default database is

established. Utility access to Linux, UNIX, or Windows database servers from

Chapter 4. Load utility 273

Linux, UNIX, or Windows clients must be a direct connection through the engine

and not through a DB2 Connect gateway or loop back environment.

Instance. An explicit attachment is not required. If a connection to the database has

been established, an implicit attachment to the local instance is attempted.

API include file

db2ApiDf.h

API and data structure syntax

SQL_API_RC SQL_API_FN

 db2Load (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2LoadStruct

{

 struct sqlu_media_list *piSourceList;

 struct sqlu_media_list *piLobPathList;

 struct sqldcol *piDataDescriptor;

 struct sqlchar *piActionString;

 char *piFileType;

 struct sqlchar *piFileTypeMod;

 char *piLocalMsgFileName;

 char *piTempFilesPath;

 struct sqlu_media_list *piVendorSortWorkPaths;

 struct sqlu_media_list *piCopyTargetList;

 db2int32 *piNullIndicators;

 struct db2LoadIn *piLoadInfoIn;

 struct db2LoadOut *poLoadInfoOut;

 struct db2PartLoadIn *piPartLoadInfoIn;

 struct db2PartLoadOut *poPartLoadInfoOut;

 db2int16 iCallerAction;

 struct sqlu_media_list *piXmlPathList;

 struct sqllob *piLongActionString;

} db2LoadStruct;

typedef SQL_STRUCTURE db2LoadUserExit

{

 db2Char iSourceUserExitCmd;

 struct db2Char *piInputStream;

 struct db2Char *piInputFileName;

 struct db2Char *piOutputFileName;

 db2Uint16 *piEnableParallelism;

} db2LoadUserExit;

typedef SQL_STRUCTURE db2LoadIn

{

 db2Uint64 iRowcount;

 db2Uint64 iRestartcount;

 char *piUseTablespace;

 db2Uint32 iSavecount;

 db2Uint32 iDataBufferSize;

 db2Uint32 iSortBufferSize;

 db2Uint32 iWarningcount;

 db2Uint16 iHoldQuiesce;

 db2Uint16 iCpuParallelism;

 db2Uint16 iDiskParallelism;

 db2Uint16 iNonrecoverable;

 db2Uint16 iIndexingMode;

 db2Uint16 iAccessLevel;

 db2Uint16 iLockWithForce;

 db2Uint16 iCheckPending;

 char iRestartphase;

274 Data Movement Utilities Guide and Reference

char iStatsOpt;

 db2Uint16 *piXmlParse;

 db2DMUXmlValidate *piXmlValidate;

 db2Uint16 iSetIntegrityPending;

 struct db2LoadUserExit *piSourceUserExit;

} db2LoadIn;

typedef SQL_STRUCTURE db2LoadOut

{

 db2Uint64 oRowsRead;

 db2Uint64 oRowsSkipped;

 db2Uint64 oRowsLoaded;

 db2Uint64 oRowsRejected;

 db2Uint64 oRowsDeleted;

 db2Uint64 oRowsCommitted;

} db2LoadOut;

typedef SQL_STRUCTURE db2PartLoadIn

{

 char *piHostname;

 char *piFileTransferCmd;

 char *piPartFileLocation;

 struct db2LoadNodeList *piOutputNodes;

 struct db2LoadNodeList *piPartitioningNodes;

 db2Uint16 *piMode;

 db2Uint16 *piMaxNumPartAgents;

 db2Uint16 *piIsolatePartErrs;

 db2Uint16 *piStatusInterval;

 struct db2LoadPortRange *piPortRange;

 db2Uint16 *piCheckTruncation;

 char *piMapFileInput;

 char *piMapFileOutput;

 db2Uint16 *piTrace;

 db2Uint16 *piNewline;

 char *piDistfile;

 db2Uint16 *piOmitHeader;

 SQL_PDB_NODE_TYPE *piRunStatDBPartNum;

} db2PartLoadIn;

typedef SQL_STRUCTURE db2LoadNodeList

{

 SQL_PDB_NODE_TYPE *piNodeList;

 db2Uint16 iNumNodes;

} db2LoadNodeList;

typedef SQL_STRUCTURE db2LoadPortRange

{

 db2Uint16 iPortMin;

 db2Uint16 iPortMax;

} db2LoadPortRange;

typedef SQL_STRUCTURE db2PartLoadOut

{

 db2Uint64 oRowsRdPartAgents;

 db2Uint64 oRowsRejPartAgents;

 db2Uint64 oRowsPartitioned;

 struct db2LoadAgentInfo *poAgentInfoList;

 db2Uint32 iMaxAgentInfoEntries;

 db2Uint32 oNumAgentInfoEntries;

} db2PartLoadOut;

typedef SQL_STRUCTURE db2LoadAgentInfo

{

 db2int32 oSqlcode;

 db2Uint32 oTableState;

 SQL_PDB_NODE_TYPE oNodeNum;

 db2Uint16 oAgentType;

Chapter 4. Load utility 275

} db2LoadAgentInfo;

SQL_API_RC SQL_API_FN

 db2gLoad (

 db2Uint32 versionNumber,

 void * pParmStruct,

 struct sqlca * pSqlca);

typedef SQL_STRUCTURE db2gLoadStruct

{

 struct sqlu_media_list *piSourceList;

 struct sqlu_media_list *piLobPathList;

 struct sqldcol *piDataDescriptor;

 struct sqlchar *piActionString;

 char *piFileType;

 struct sqlchar *piFileTypeMod;

 char *piLocalMsgFileName;

 char *piTempFilesPath;

 struct sqlu_media_list *piVendorSortWorkPaths;

 struct sqlu_media_list *piCopyTargetList;

 db2int32 *piNullIndicators;

 struct db2gLoadIn *piLoadInfoIn;

 struct db2LoadOut *poLoadInfoOut;

 struct db2gPartLoadIn *piPartLoadInfoIn;

 struct db2PartLoadOut *poPartLoadInfoOut;

 db2int16 iCallerAction;

 db2Uint16 iFileTypeLen;

 db2Uint16 iLocalMsgFileLen;

 db2Uint16 iTempFilesPathLen;

 struct sqlu_media_list *piXmlPathList;

 struct sqllob *piLongActionString;

} db2gLoadStruct;

typedef SQL_STRUCTURE db2gLoadIn

{

 db2Uint64 iRowcount;

 db2Uint64 iRestartcount;

 char *piUseTablespace;

 db2Uint32 iSavecount;

 db2Uint32 iDataBufferSize;

 db2Uint32 iSortBufferSize;

 db2Uint32 iWarningcount;

 db2Uint16 iHoldQuiesce;

 db2Uint16 iCpuParallelism;

 db2Uint16 iDiskParallelism;

 db2Uint16 iNonrecoverable;

 db2Uint16 iIndexingMode;

 db2Uint16 iAccessLevel;

 db2Uint16 iLockWithForce;

 db2Uint16 iCheckPending;

 char iRestartphase;

 char iStatsOpt;

 db2Uint16 iUseTablespaceLen;

 db2Uint16 iSetIntegrityPending;

 db2Uint16 *piXmlParse;

 db2DMUXmlValidate *piXmlValidate;

 struct db2LoadUserExit *piSourceUserExit;

} db2gLoadIn;

typedef SQL_STRUCTURE db2gPartLoadIn

{

 char *piHostname;

 char *piFileTransferCmd;

 char *piPartFileLocation;

 struct db2LoadNodeList *piOutputNodes;

 struct db2LoadNodeList *piPartitioningNodes;

 db2Uint16 *piMode;

276 Data Movement Utilities Guide and Reference

db2Uint16 *piMaxNumPartAgents;

 db2Uint16 *piIsolatePartErrs;

 db2Uint16 *piStatusInterval;

 struct db2LoadPortRange *piPortRange;

 db2Uint16 *piCheckTruncation;

 char *piMapFileInput;

 char *piMapFileOutput;

 db2Uint16 *piTrace;

 db2Uint16 *piNewline;

 char *piDistfile;

 db2Uint16 *piOmitHeader;

 void *piReserved1;

 db2Uint16 iHostnameLen;

 db2Uint16 iFileTransferLen;

 db2Uint16 iPartFileLocLen;

 db2Uint16 iMapFileInputLen;

 db2Uint16 iMapFileOutputLen;

 db2Uint16 iDistfileLen;

} db2gPartLoadIn;

/* Definitions for iUsing value of db2DMUXmlValidate structure */

#define DB2DMU_XMLVAL_XDS 1 /* Use XDS */

#define DB2DMU_XMLVAL_SCHEMA 2 /* Use a specified schema */

#define DB2DMU_XMLVAL_SCHEMALOC_HINTS 3 /* Use schemaLocation hints */

#define DB2DMU_XMLVAL_ORIGSCHEMA 4 /* Use schema that document was

 originally validated against

 (load from cursor only) */

db2Load API parameters

versionNumber

Input. Specifies the version and release level of the structure passed as the

second parameter pParmStruct.

pParmStruct

Input. A pointer to the db2LoadStruct structure.

pSqlca

Output. A pointer to the sqlca structure.

db2LoadStruct data structure parameters

piSourceList

Input. A pointer to an sqlu_media_list structure used to provide a list of

source files, devices, vendors, pipes, or SQL statements.

 The information provided in this structure depends on the value of the

media_type field. Valid values (defined in sqlutil header file, located in the

include directory) are:

SQLU_SQL_STMT

If the media_type field is set to this value, the caller provides an

SQL query through the pStatement field of the target field. The

pStatement field is of type sqlu_statement_entry. The sessions field

must be set to the value of 1, since the load utility only accepts a

single SQL query per load.

SQLU_SERVER_LOCATION

If the media_type field is set to this value, the caller provides

information through sqlu_location_entry structures. The sessions

field indicates the number of sqlu_location_entry structures

provided. This is used for files, devices, and named pipes.

Chapter 4. Load utility 277

SQLU_CLIENT_LOCATION

If the media_type field is set to this value, the caller provides

information through sqlu_location_entry structures. The sessions

field indicates the number of sqlu_location_entry structures

provided. This is used for fully qualified files and named pipes.

Note that this media_type is only valid if the API is being called

via a remotely connected client.

SQLU_TSM_MEDIA

If the media_type field is set to this value, the sqlu_vendor

structure is used, where filename is the unique identifier for the

data to be loaded. There should only be one sqlu_vendor entry,

regardless of the value of sessions. The sessions field indicates the

number of TSM sessions to initiate. The load utility will start the

sessions with different sequence numbers, but with the same data

in the one sqlu_vendor entry.

SQLU_OTHER_MEDIA

If the media_type field is set to this value, the sqlu_vendor

structure is used, where shr_lib is the shared library name, and

filename is the unique identifier for the data to be loaded. There

should only be one sqlu_vendor entry, regardless of the value of

sessions. The sessions field indicates the number of other vendor

sessions to initiate. The load utility will start the sessions with

different sequence numbers, but with the same data in the one

sqlu_vendor entry.

SQLU_REMOTEFETCH

If the media_type field is set to this value, the caller provides

information through an sqlu_remotefetch_entry structure. The

sessions field must be set to the value of 1.

piLobPathList

Input. A pointer to an sqlu_media_list structure. For IXF, ASC, and DEL

file types, a list of fully qualified paths or devices to identify the location

of the individual LOB files to be loaded. The file names are found in the

IXF, ASC, or DEL files, and are appended to the paths provided.

 The information provided in this structure depends on the value of the

media_type field. Valid values (defined in sqlutil header file, located in the

include directory) are:

SQLU_LOCAL_MEDIA

If set to this value, the caller provides information through

sqlu_media_entry structures. The sessions field indicates the

number of sqlu_media_entry structures provided.

SQLU_TSM_MEDIA

If set to this value, the sqlu_vendor structure is used, where

filename is the unique identifier for the data to be loaded. There

should only be one sqlu_vendor entry, regardless of the value of

sessions. The sessions field indicates the number of TSM sessions

to initiate. The load utility will start the sessions with different

sequence numbers, but with the same data in the one sqlu_vendor

entry.

SQLU_OTHER_MEDIA

If set to this value, the sqlu_vendor structure is used, where shr_lib

is the shared library name, and filename is the unique identifier for

the data to be loaded. There should only be one sqlu_vendor entry,

278 Data Movement Utilities Guide and Reference

regardless of the value of sessions. The sessions field indicates the

number of other vendor sessions to initiate. The load utility will

start the sessions with different sequence numbers, but with the

same data in the one sqlu_vendor entry.

piDataDescriptor

Input. Pointer to an sqldcol structure containing information about the

columns being selected for loading from the external file.

 If the piFileType parameter is set to SQL_ASC, the dcolmeth field of this

structure must be set to SQL_METH_L. The user specifies the start and end

locations for each column to be loaded.

If the file type is SQL_DEL, dcolmeth can be either SQL_METH_P or

SQL_METH_D. If it is SQL_METH_P, the user must provide the source

column position. If it is SQL_METH_D, the first column in the file is

loaded into the first column of the table, and so on.

If the file type is SQL_IXF, dcolmeth can be one of SQL_METH_P,

SQL_METH_D, or SQL_METH_N. The rules for DEL files apply here,

except that SQL_METH_N indicates that file column names are to be

provided in the sqldcol structure.

piActionString

Deprecated, replaced by piLongActionString.

piLongActionString

Input. Pointer to an sqllob structure containing a 4-byte long field, followed

by an array of characters specifying an action that affects the table.

 The character array is of the form:

"INSERT|REPLACE KEEPDICTIONARY|REPLACE RESETDICTIONARY|RESTART|TERMINATE

INTO tbname [(column_list)]

[FOR EXCEPTION e_tbname]"

INSERT

Adds the loaded data to the table without changing the existing

table data.

REPLACE

Deletes all existing data from the table, and inserts the loaded data.

The table definition and the index definitions are not changed.

RESTART

Restarts a previously interrupted load operation. The load

operation will automatically continue from the last consistency

point in the load, build, or delete phase.

TERMINATE

Terminates a previously interrupted load operation, and rolls back

the operation to the point in time at which it started, even if

consistency points were passed. The states of any table spaces

involved in the operation return to normal, and all table objects are

made consistent (index objects may be marked as invalid, in which

case index rebuild will automatically take place at next access). If

the table spaces in which the table resides are not in load pending

state, this option does not affect the state of the table spaces.

 The load terminate option will not remove a backup pending state

from table spaces.

tbname

The name of the table into which the data is to be loaded. The

Chapter 4. Load utility 279

table cannot be a system table, a declared temporary table, or a

created temporary table. An alias, or the fully qualified or

unqualified table name can be specified. A qualified table name is

in the form schema.tablename. If an unqualified table name is

specified, the table will be qualified with the CURRENT SCHEMA.

(column_list)

A list of table column names into which the data is to be inserted.

The column names must be separated by commas. If a name

contains spaces or lowercase characters, it must be enclosed by

quotation marks.

FOR EXCEPTION e_tbname

Specifies the exception table into which rows in error will be

copied. The exception table is used to store copies of rows that

violate unique index rules, range constraints and security policies.

NORANGEEXC

Indicates that if a row is rejected because of a range violation it

will not be inserted into the exception table.

NOUNIQUEEXC

Indicates that if a row is rejected because it violates a unique

constraint it will not be inserted into the exception table.

piFileType

Input. A string that indicates the format of the input data source.

Supported external formats (defined in sqlutil) are:

SQL_ASC

Non-delimited ASCII.

SQL_DEL

Delimited ASCII, for exchange with dBase, BASIC, and the IBM

Personal Decision Series programs, and many other database

managers and file managers.

SQL_IXF

PC version of the Integration Exchange Format, the preferred

method for exporting data from a table so that it can be loaded

later into the same table or into another database manager table.

SQL_CURSOR

An SQL query. The sqlu_media_list structure passed in through the

piSourceList parameter is either of type SQLU_SQL_STMT or

SQLU_REMOTEFETCH, and refers to an SQL query or a table

name.

piFileTypeMod

Input. A pointer to the sqlchar structure, followed by an array of characters

that specify one or more processing options. If this pointer is NULL, or the

structure pointed to has zero characters, this action is interpreted as

selection of a default specification.

 Not all options can be used with all of the supported file types. See related

link ″File type modifiers for the load utility.″

piLocalMsgFileName

Input. A string containing the name of a local file to which output

messages are to be written.

280 Data Movement Utilities Guide and Reference

piTempFilesPath

Input. A string containing the path name to be used on the server for

temporary files. Temporary files are created to store messages, consistency

points, and delete phase information.

piVendorSortWorkPaths

Input. A pointer to the sqlu_media_list structure which specifies the

Vendor Sort work directories.

piCopyTargetList

Input. A pointer to an sqlu_media_list structure used (if a copy image is to

be created) to provide a list of target paths, devices, or a shared library to

which the copy image is to be written.

 The values provided in this structure depend on the value of the

media_type field. Valid values for this parameter (defined in sqlutil header

file, located in the include directory) are:

SQLU_LOCAL_MEDIA

If the copy is to be written to local media, set the media_type to

this value and provide information about the targets in

sqlu_media_entry structures. The sessions field specifies the

number of sqlu_media_entry structures provided.

SQLU_TSM_MEDIA

If the copy is to be written to TSM, use this value. No further

information is required.

SQLU_OTHER_MEDIA

If a vendor product is to be used, use this value and provide

further information via an sqlu_vendor structure. Set the shr_lib

field of this structure to the shared library name of the vendor

product. Provide only one sqlu_vendor entry, regardless of the

value of sessions. The sessions field specifies the number of

sqlu_media_entry structures provided. The load utility will start

the sessions with different sequence numbers, but with the same

data provided in the one sqlu_vendor entry.

piNullIndicators

Input. For ASC files only. An array of integers that indicate whether or not

the column data is nullable. There is a one-to-one ordered correspondence

between the elements of this array and the columns being loaded from the

data file. That is, the number of elements must equal the dcolnum field of

the piDataDescriptor parameter. Each element of the array contains a

number identifying a location in the data file that is to be used as a NULL

indicator field, or a zero indicating that the table column is not nullable. If

the element is not zero, the identified location in the data file must contain

a Y or an N. A Y indicates that the table column data is NULL, and N

indicates that the table column data is not NULL.

piLoadInfoIn

Input. A pointer to the db2LoadIn structure.

poLoadInfoOut

Output. A pointer to the db2LoadOut structure.

piPartLoadInfoIn

Input. A pointer to the db2PartLoadIn structure.

poPartLoadInfoOut

Output. A pointer to the db2PartLoadOut structure.

Chapter 4. Load utility 281

iCallerAction

Input. An action requested by the caller. Valid values (defined in sqlutil

header file, located in the include directory) are:

SQLU_INITIAL

Initial call. This value (or SQLU_NOINTERRUPT) must be used on

the first call to the API.

SQLU_NOINTERRUPT

Initial call. Do not suspend processing. This value (or

SQLU_INITIAL) must be used on the first call to the API.

 If the initial call or any subsequent call returns and requires the

calling application to perform some action prior to completing the

requested load operation, the caller action must be set to one of the

following:

SQLU_CONTINUE

Continue processing. This value can only be used on subsequent

calls to the API, after the initial call has returned with the utility

requesting user input (for example, to respond to an end of tape

condition). It specifies that the user action requested by the utility

has completed, and the utility can continue processing the initial

request.

SQLU_TERMINATE

Terminate processing. Causes the load utility to exit prematurely,

leaving the table spaces being loaded in LOAD_PENDING state.

This option should be specified if further processing of the data is

not to be done.

SQLU_ABORT

Terminate processing. Causes the load utility to exit prematurely,

leaving the table spaces being loaded in LOAD_PENDING state.

This option should be specified if further processing of the data is

not to be done.

SQLU_RESTART

Restart processing.

SQLU_DEVICE_TERMINATE

Terminate a single device. This option should be specified if the

utility is to stop reading data from the device, but further

processing of the data is to be done.

piXmlPathList

Input. Pointer to an sqlu_media_list with its media_type field set to

SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths

on the client where the xml files can be found.

db2LoadUserExit data structure parameters

iSourceUserExitCmd

Input. The fully qualified name of an executable that will be used to feed

data to the utility. For security reasons, the executable must be placed

within the sqllib/bin directory on the server. This parameter is mandatory

if the piSourceUserExit structure is not NULL.

 The piInputStream, piInputFileName, piOutputFileName and

piEnableParallelism fields are optional.

282 Data Movement Utilities Guide and Reference

piInputStream

Input. A generic byte-stream that will be passed directly to the user-exit

application via STDIN. You have complete control over what data is

contained in this byte-stream and in what format. The load utility will

simply carry this byte-stream over to the server and pass it into the

user-exit application by feeding the process’ STDIN (it will not codepage

convert or modify the byte-stream). Your user-exit application would read

the arguments from STDIN and use the data however intended.

 One important attribute of this feature is the ability to hide sensitive

information (such as userid/passwords).

piInputFileName

Input. Contains the name of a fully qualified client-side file, whose

contents will be passed into the user-exit application by feeding the

process’ STDIN.

piOutputFileName

Input. The fully qualified name of a server-side file. The STDOUT and

STDERR streams of the process which is executing the user-exit application

will be streamed into this file. When piEnableParallelism is TRUE, multiple

files will be created (one per user-exit instance), and each file name will be

appended with a 3 digit numeric node-number value, such as

<filename>.000).

piEnableParallelism

Input. A flag indicating that the utility should attempt to parallelize the

invocation of the user-exit application.

db2LoadIn data structure parameters

iRowcount

Input. The number of physical records to be loaded. Allows a user to load

only the first rowcnt rows in a file.

iRestartcount

Input. Reserved for future use.

piUseTablespace

Input. If the indexes are being rebuilt, a shadow copy of the index is built

in table space iUseTablespaceName and copied over to the original table

space at the end of the load. Only system temporary table spaces can be

used with this option. If not specified then the shadow index will be

created in the same table space as the index object.

 If the shadow copy is created in the same table space as the index object,

the copy of the shadow index object over the old index object is

instantaneous. If the shadow copy is in a different table space from the

index object a physical copy is performed. This could involve considerable

I/O and time. The copy happens while the table is offline at the end of a

load.

This field is ignored if iAccessLevel is SQLU_ALLOW_NO_ACCESS.

This option is ignored if the user does not specify INDEXING MODE

REBUILD or INDEXING MODE AUTOSELECT. This option will also be

ignored if INDEXING MODE AUTOSELECT is chosen and load chooses to

incrementally update the index.

iSavecount

The number of records to load before establishing a consistency point. This

Chapter 4. Load utility 283

value is converted to a page count, and rounded up to intervals of the

extent size. Since a message is issued at each consistency point, this option

should be selected if the load operation will be monitored using

db2LoadQuery - Load Query. If the value of savecount is not sufficiently

high, the synchronization of activities performed at each consistency point

will impact performance.

 The default value is 0, meaning that no consistency points will be

established, unless necessary.

iDataBufferSize

The number of 4KB pages (regardless of the degree of parallelism) to use

as buffered space for transferring data within the utility. If the value

specified is less than the algorithmic minimum, the required minimum is

used, and no warning is returned.

 This memory is allocated directly from the utility heap, whose size can be

modified through the util_heap_sz database configuration parameter.

If a value is not specified, an intelligent default is calculated by the utility

at run time. The default is based on a percentage of the free space available

in the utility heap at the instantiation time of the loader, as well as some

characteristics of the table.

iSortBufferSize

Input. This option specifies a value that overrides the SORTHEAP database

configuration parameter during a load operation. It is relevant only when

loading tables with indexes and only when the iIndexingMode parameter

is not specified as SQLU_INX_DEFERRED. The value that is specified

cannot exceed the value of SORTHEAP. This parameter is useful for

throttling the sort memory used by LOAD without changing the value of

SORTHEAP, which would also affect general query processing.

iWarningcount

Input. Stops the load operation after warningcnt warnings. Set this

parameter if no warnings are expected, but verification that the correct file

and table are being used is desired. If the load file or the target table is

specified incorrectly, the load utility will generate a warning for each row

that it attempts to load, which will cause the load to fail. If warningcnt is

0, or this option is not specified, the load operation will continue

regardless of the number of warnings issued.

 If the load operation is stopped because the threshold of warnings was

exceeded, another load operation can be started in RESTART mode. The

load operation will automatically continue from the last consistency point.

Alternatively, another load operation can be initiated in REPLACE mode,

starting at the beginning of the input file.

iHoldQuiesce

Input. A flag whose value is set to TRUE if the utility is to leave the table

in quiesced exclusive state after the load, and to FALSE if it is not.

iCpuParallelism

Input. The number of processes or threads that the load utility will create

for parsing, converting and formatting records when building table objects.

This parameter is designed to exploit intra-partition parallelism. It is

particularly useful when loading presorted data, because record order in

the source data is preserved. If the value of this parameter is zero, the load

utility uses an intelligent default value at run time. Note: If this parameter

284 Data Movement Utilities Guide and Reference

is used with tables containing either LOB or LONG VARCHAR fields, its

value becomes one, regardless of the number of system CPUs, or the value

specified by the user.

iDiskParallelism

Input. The number of processes or threads that the load utility will create

for writing data to the table space containers. If a value is not specified, the

utility selects an intelligent default based on the number of table space

containers and the characteristics of the table.

iNonrecoverable

Input. Set to SQLU_NON_RECOVERABLE_LOAD if the load transaction is

to be marked as non-recoverable, and it will not be possible to recover it

by a subsequent roll forward action. The rollforward utility will skip the

transaction, and will mark the table into which data was being loaded as

″invalid″. The utility will also ignore any subsequent transactions against

that table. After the roll forward is completed, such a table can only be

dropped. With this option, table spaces are not put in backup pending

state following the load operation, and a copy of the loaded data does not

have to be made during the load operation. Set to

SQLU_RECOVERABLE_LOAD if the load transaction is to be marked as

recoverable.

iIndexingMode

Input. Specifies the indexing mode. Valid values (defined in sqlutil header

file, located in the include directory) are:

SQLU_INX_AUTOSELECT

LOAD chooses between REBUILD and INCREMENTAL indexing

modes.

SQLU_INX_REBUILD

Rebuild table indexes.

SQLU_INX_INCREMENTAL

Extend existing indexes.

SQLU_INX_DEFERRED

Do not update table indexes.

iAccessLevel

Input. Specifies the access level. Valid values are:

SQLU_ALLOW_NO_ACCESS

Specifies that the load locks the table exclusively.

SQLU_ALLOW_READ_ACCESS

Specifies that the original data in the table (the non-delta portion)

should still be visible to readers while the load is in progress. This

option is only valid for load appends, such as a load insert, and

will be ignored for load replace.

iLockWithForce

Input. A boolean flag. If set to TRUE load will force other applications as

necessary to ensure that it obtains table locks immediately. This option

requires the same authority as the FORCE APPLICATIONS command

(SYSADM or SYSCTRL).

 SQLU_ALLOW_NO_ACCESS loads may force conflicting applications at

the start of the load operation. At the start of the load, the utility may force

applications that are attempting to either query or modify the table.

Chapter 4. Load utility 285

SQLU_ALLOW_READ_ACCESS loads may force conflicting applications at

the start or end of the load operation. At the start of the load, the load

utility may force applications that are attempting to modify the table. At

the end of the load, the load utility may force applications that are

attempting to either query or modify the table.

iCheckPending

This parameter is being deprecated as of Version 9.1. Use the

iSetIntegrityPending parameter instead.

iRestartphase

Input. Reserved. Valid value is a single space character ’ ’.

iStatsOpt

Input. Granularity of statistics to collect. Valid values are:

SQLU_STATS_NONE

No statistics to be gathered.

SQLU_STATS_USE_PROFILE

Statistics are collected based on the profile defined for the current

table. This profile must be created using the RUNSTATS command.

If no profile exists for the current table, a warning is returned and

no statistics are collected.

iSetIntegrityPending

Input. Specifies to put the table into set integrity pending state. If the value

SQLU_SI_PENDING_CASCADE_IMMEDIATE is specified, set integrity

pending state will be immediately cascaded to all dependent and

descendent tables. If the value

SQLU_SI_PENDING_CASCADE_DEFERRED is specified, the cascade of

set integrity pending state to dependent tables will be deferred until the

target table is checked for integrity violations.

SQLU_SI_PENDING_CASCADE_DEFERRED is the default value if the

option is not specified.

piSourceUserExit

Input. A pointer to the db2LoadUserExit structure.

piXmlParse

Input. Type of parsing that should occur for XML documents. Valid values

found in the db2ApiDf header file in the include directory are:

DB2DMU_XMLPARSE_PRESERVE_WS

Whitespace should be preserved.

DB2DMU_XMLPARSE_STRIP_WS

Whitespace should be stripped.

piXmlValidate

Input. Pointer to the db2DMUXmlValidate structure. Indicates that XML

schema validation should occur for XML documents.

/* XML Validate structure */

typedef SQL_STRUCTURE db2DMUXmlValidate

{

 db2Uint16 iUsing; /* What to use to perform */

 /* validation */

 struct db2DMUXmlValidateXds *piXdsArgs; /* Arguments for */

 /* XMLVALIDATE USING XDS */

 struct db2DMUXmlValidateSchema *piSchemaArgs; /* Arguments for */

 /* XMLVALIDATE USING SCHEMA */

} db2DMUXmlValidate;

286 Data Movement Utilities Guide and Reference

db2LoadOut data structure parameters

oRowsRead

Output. Number of records read during the load operation.

oRowsSkipped

Output. Number of records skipped before the load operation begins.

oRowsLoaded

Output. Number of rows loaded into the target table.

oRowsRejected

Output. Number of records that could not be loaded.

oRowsDeleted

Output. Number of duplicate rows deleted.

oRowsCommitted

Output. The total number of processed records: the number of records

loaded successfully and committed to the database, plus the number of

skipped and rejected records.

db2PartLoadIn data structure parameters

piHostname

Input. The hostname for the iFileTransferCmd parameter. If NULL, the

hostname will default to ″nohost″. This parameter is deprecated.

piFileTransferCmd

Input. File transfer command parameter. If not required, it must be set to

NULL. This parameter is deprecated. Use the piSourceUserExit parameter

instead.

piPartFileLocation

Input. In PARTITION_ONLY, LOAD_ONLY, and

LOAD_ONLY_VERIFY_PART modes, this parameter can be used to specify

the location of the partitioned files. This location must exist on each

database partition specified by the piOutputNodes option.

 For the SQL_CURSOR file type, this parameter cannot be NULL and the

location does not refer to a path, but to a fully qualified file name. This

will be the fully qualified base file name of the partitioned files that are

created on each output database partition for PARTITION_ONLY mode, or

the location of the files to be read from each database partition for

LOAD_ONLY mode. For PARTITION_ONLY mode, multiple files may be

created with the specified base name if there are LOB columns in the target

table. For file types other than SQL_CURSOR, if the value of this

parameter is NULL, it will default to the current directory.

piOutputNodes

Input. The list of Load output database partitions. A NULL indicates that

all nodes on which the target table is defined.

piPartitioningNodes

Input. The list of partitioning nodes. A NULL indicates the default.

piMode

Input. Specifies the load mode for partitioned databases. Valid values

(defined in db2ApiDf header file, located in the include directory) are:

- DB2LOAD_PARTITION_AND_LOAD

Data is distributed (perhaps in parallel) and loaded simultaneously

on the corresponding database partitions.

Chapter 4. Load utility 287

- DB2LOAD_PARTITION_ONLY

Data is distributed (perhaps in parallel) and the output is written

to files in a specified location on each loading database partition.

For file types other than SQL_CURSOR, the name of the output file

on each database partition will have the form filename.xxx, where

filename is the name of the first input file specified by piSourceList

and xxx is the database partition number.For the SQL_CURSOR file

type, the name of the output file on each database partition will be

determined by the piPartFileLocation parameter. Refer to the

piPartFileLocation parameter for information about how to specify

the location of the database partition file on each database

partition.

Note: This mode cannot be used for a CLI LOAD.

DB2LOAD_LOAD_ONLY

Data is assumed to be already distributed; the distribution process

is skipped, and the data is loaded simultaneously on the

corresponding database partitions. For file types other than

SQL_CURSOR, the input file name on each database partition is

expected to be of the form filename.xxx, where filename is the

name of the first file specified by piSourceList and xxx is the

13-digit database partition number. For the SQL_CURSOR file type,

the name of the input file on each database partition will be

determined by the piPartFileLocation parameter. Refer to the

piPartFileLocation parameter for information about how to specify

the location of the database partition file on each database

partition.

Note: This mode cannot be used when loading a data file located

on a remote client, nor can it be used for a CLI LOAD.

DB2LOAD_LOAD_ONLY_VERIFY_PART

Data is assumed to be already distributed, but the data file does

not contain a database partition header. The distribution process is

skipped, and the data is loaded simultaneously on the

corresponding database partitions. During the load operation, each

row is checked to verify that it is on the correct database partition.

Rows containing database partition violations are placed in a

dumpfile if the dumpfile file type modifier is specified. Otherwise,

the rows are discarded. If database partition violations exist on a

particular loading database partition, a single warning will be

written to the load message file for that database partition. The

input file name on each database partition is expected to be of the

form filename.xxx, where filename is the name of the first file

specified by piSourceList and xxx is the 13-digit database partition

number.

Note: This mode cannot be used when loading a data file located

on a remote client, nor can it be used for a CLI LOAD.

DB2LOAD_ANALYZE

An optimal distribution map with even distribution across all

database partitions is generated.

piMaxNumPartAgents

Input. The maximum number of partitioning agents. A NULL value

indicates the default, which is 25.

288 Data Movement Utilities Guide and Reference

piIsolatePartErrs

Input. Indicates how the load operation will react to errors that occur on

individual database partitions. Valid values (defined in db2ApiDf header

file, located in the include directory) are:

DB2LOAD_SETUP_ERRS_ONLY

In this mode, errors that occur on a database partition during

setup, such as problems accessing a database partition or problems

accessing a table space or table on a database partition, will cause

the load operation to stop on the failing database partitions but to

continue on the remaining database partitions. Errors that occur on

a database partition while data is being loaded will cause the

entire operation to fail and rollback to the last point of consistency

on each database partition.

DB2LOAD_LOAD_ERRS_ONLY

In this mode, errors that occur on a database partition during setup

will cause the entire load operation to fail. When an error occurs

while data is being loaded, the database partitions with errors will

be rolled back to their last point of consistency. The load operation

will continue on the remaining database partitions until a failure

occurs or until all the data is loaded. On the database partitions

where all of the data was loaded, the data will not be visible

following the load operation. Because of the errors in the other

database partitions the transaction will be aborted. Data on all of

the database partitions will remain invisible until a load restart

operation is performed. This will make the newly loaded data

visible on the database partitions where the load operation

completed and resume the load operation on database partitions

that experienced an error.

Note: This mode cannot be used when iAccessLevel is set to

SQLU_ALLOW_READ_ACCESS and a copy target is also specified.

DB2LOAD_SETUP_AND_LOAD_ERRS

In this mode, database partition-level errors during setup or

loading data cause processing to stop only on the affected database

partitions. As with the DB2LOAD_LOAD_ERRS_ONLY mode,

when database partition errors do occur while data is being

loaded, the data on all database partitions will remain invisible

until a load restart operation is performed.

Note: This mode cannot 1be used when iAccessLevel is set to

SQLU_ALLOW_READ_ACCESS and a copy target is also specified.

DB2LOAD_NO_ISOLATION

Any error during the Load operation causes the transaction to be

aborted. If this parameter is NULL, it will default to

DB2LOAD_LOAD_ERRS_ONLY, unless iAccessLevel is set to

SQLU_ALLOW_READ_ACCESS and a copy target is also specified,

in which case the default is DB2LOAD_NO_ISOLATION.

piStatusInterval

Input. Specifies the number of megabytes (MB) of data to load before

generating a progress message. Valid values are whole numbers in the

range of 1 to 4000. If NULL is specified, a default value of 100 will be

used.

Chapter 4. Load utility 289

piPortRange

Input. The TCP port range for internal communication. If NULL, the port

range used will be 6000-6063.

piCheckTruncation

Input. Causes Load to check for record truncation at Input/Output. Valid

values are TRUE and FALSE. If NULL, the default is FALSE.

piMapFileInput

Input. Distribution map input filename. If the mode is not ANALYZE, this

parameter should be set to NULL. If the mode is ANALYZE, this

parameter must be specified.

piMapFileOutput

Input. Distribution map output filename. The rules for piMapFileInput

apply here as well.

piTrace

Input. Specifies the number of records to trace when you need to review a

dump of all the data conversion process and the output of hashing values.

If NULL, the number of records defaults to 0.

piNewline

Input. Forces Load to check for newline characters at end of ASC data

records if RECLEN file type modifier is also specified. Possible values are

TRUE and FALSE. If NULL, the value defaults to FALSE.

piDistfile

Input. Name of the database partition distribution file. If a NULL is

specified, the value defaults to ″DISTFILE″.

piOmitHeader

Input. Indicates that a distribution map header should not be included in

the database partition file when using DB2LOAD_PARTITION_ONLY

mode. Possible values are TRUE and FALSE. If NULL, the default is

FALSE.

piRunStatDBPartNum

Specifies the database partition on which to collect statistics. The default

value is the first database partition in the output database partition list.

db2LoadNodeList data structure parameters

piNodeList

Input. An array of node numbers.

iNumNodes

Input. The number of nodes in the piNodeList array. A 0 indicates the

default, which is all nodes on which the target table is defined.

db2LoadPortRange data structure parameters

iPortMin

Input. Lower port number.

iPortMax

Input. Higher port number.

db2PartLoadOut data structure parameters

oRowsRdPartAgents

Output. Total number of rows read by all partitioning agents.

290 Data Movement Utilities Guide and Reference

oRowsRejPartAgents

Output. Total number of rows rejected by all partitioning agents.

oRowsPartitioned

Output. Total number of rows partitioned by all partitioning agents.

poAgentInfoList

Output. During a load operation into a partitioned database, the following

load processing entities may be involved: load agents, partitioning agents,

pre-partitioning agents, file transfer command agents and load-to-file

agents (these are described in the Data Movement Guide). The purpose of

the poAgentInfoList output parameter is to return to the caller information

about each load agent that participated in a load operation. Each entry in

the list contains the following information:

oAgentType

A tag indicating what kind of load agent the entry describes.

oNodeNum

The number of the database partition on which the agent executed.

oSqlcode

The final sqlcode resulting from the agent’s processing.

oTableState

The final status of the table on the database partition on which the

agent executed (relevant only for load agents).

It is up to the caller of the API to allocate memory for this list prior to

calling the API. The caller should also indicate the number of entries for

which they allocated memory in the iMaxAgentInfoEntries parameter. If

the caller sets poAgentInfoList to NULL or sets iMaxAgentInfoEntries to 0,

then no information will be returned about the load agents.

iMaxAgentInfoEntries

Input. The maximum number of agent information entries allocated by the

user for poAgentInfoList. In general, setting this parameter to 3 times the

number of database partitions involved in the load operation should be

sufficient.

oNumAgentInfoEntries

Output. The actual number of agent information entries produced by the

load operation. This number of entries will be returned to the user in the

poAgentInfoList parameter as long as iMaxAgentInfoEntries is greater than

or equal to oNumAgentInfoEntries. If iMaxAgentInfoEntries is less than

oNumAgentInfoEntries, then the number of entries returned in

poAgentInfoList is equal to iMaxAgentInfoEntries.

db2LoadAgentInfo data structure parameters

oSqlcode

Output. The final sqlcode resulting from the agent’s processing.

oTableState

Output. The purpose of this output parameter is not to report every

possible state of the table after the load operation. Rather, its purpose is to

report only a small subset of possible tablestates in order to give the caller

a general idea of what happened to the table during load processing. This

value is relevant for load agents only. The possible values are:

DB2LOADQUERY_NORMAL

Indicates that the load completed successfully on the database

Chapter 4. Load utility 291

partition and the table was taken out of the LOAD IN PROGRESS

(or LOAD PENDING) state. In this case, the table still could be in

SET INTEGRITY PENDING state due to the need for further

constraints processing, but this will not reported as this is normal.

DB2LOADQUERY_UNCHANGED

Indicates that the load job aborted processing due to an error but

did not yet change the state of the table on the database partition

from whatever state it was in prior to calling db2Load. It is not

necessary to perform a load restart or terminate operation on such

database partitions.

DB2LOADQUERY_LOADPENDING

Indicates that the load job aborted during processing but left the

table on the database partition in the LOAD PENDING state,

indicating that the load job on that database partition must be

either terminated or restarted.

oNodeNum

Output. The number of the database partition on which the agent

executed.

oAgentType

Output. The agent type. Valid values (defined in db2ApiDf header file,

located in the include directory) are :

v DB2LOAD_LOAD_AGENT

v DB2LOAD_PARTITIONING_AGENT

v DB2LOAD_PRE_PARTITIONING_AGENT

v DB2LOAD_FILE_TRANSFER_AGENT

v DB2LOAD_LOAD_TO_FILE_AGENT

db2gLoadStruct data structure specific parameters

iFileTypeLen

Input. Specifies the length in bytes of iFileType parameter.

iLocalMsgFileLen

Input. Specifies the length in bytes of iLocalMsgFileName parameter.

iTempFilesPathLen

Input. Specifies the length in bytes of iTempFilesPath parameter.

piXmlPathList

Input. Pointer to an sqlu_media_list with its media_type field set to

SQLU_LOCAL_MEDIA, and its sqlu_media_entry structure listing paths

on the client where the xml files can be found.

db2gLoadIn data structure specific parameters

iUseTablespaceLen

Input. The length in bytes of piUseTablespace parameter.

piXmlParse

Input. Type of parsing that should occur for XML documents. Valid values

found in the db2ApiDf header file in the include directory are:

DB2DMU_XMLPARSE_PRESERVE_WS

Whitespace should be preserved.

DB2DMU_XMLPARSE_STRIP_WS

Whitespace should be stripped.

292 Data Movement Utilities Guide and Reference

piXmlValidate

Input. Pointer to the db2DMUXmlValidate structure. Indicates that XML

schema validation should occur for XML documents.

/* XML Validate structure */

typedef SQL_STRUCTURE db2DMUXmlValidate

{

 db2Uint16 iUsing; /* What to use to perform */

 /* validation */

 struct db2DMUXmlValidateXds *piXdsArgs; /* Arguments for */

 /* XMLVALIDATE USING XDS */

 struct db2DMUXmlValidateSchema *piSchemaArgs; /* Arguments for */

 /* XMLVALIDATE USING SCHEMA */

} db2DMUXmlValidate;

db2gPartLoadIn data structure specific parameters

piReserved1

Reserved for future use.

iHostnameLen

Input. The length in bytes of piHostname parameter.

iFileTransferLen

Input. The length in bytes of piFileTransferCmd parameter.

iPartFileLocLen

Input. The length in bytes of piPartFileLocation parameter.

iMapFileInputLen

Input. The length in bytes of piMapFileInput parameter.

iMapFileOutputLen

Input. The length in bytes of piMapFileOutput parameter.

iDistfileLen

Input. The length in bytes of piDistfile parameter.

Usage notes

Data is loaded in the sequence that appears in the input file. If a particular

sequence is desired, the data should be sorted before a load is attempted.

The load utility builds indexes based on existing definitions. The exception tables

are used to handle duplicates on unique keys. The utility does not enforce

referential integrity, perform constraints checking, or update summary tables that

are dependent on the tables being loaded. Tables that include referential or check

constraints are placed in set integrity pending state. Summary tables that are

defined with REFRESH IMMEDIATE, and that are dependent on tables being

loaded, are also placed in set integrity pending state. Issue the SET INTEGRITY

statement to take the tables out of set integrity pending state. Load operations

cannot be carried out on replicated summary tables.

For clustering indexes, the data should be sorted on the clustering index prior to

loading. The data need not be sorted when loading into an multi-dimensionally

clustered (MDC) table.

Load sessions - CLP examples

Example 1

TABLE1 has 5 columns:

Chapter 4. Load utility 293

v COL1 VARCHAR 20 NOT NULL WITH DEFAULT

v COL2 SMALLINT

v COL3 CHAR 4

v COL4 CHAR 2 NOT NULL WITH DEFAULT

v COL5 CHAR 2 NOT NULL

ASCFILE1 has 6 elements:

v ELE1 positions 01 to 20

v ELE2 positions 21 to 22

v ELE3 positions 23 to 23

v ELE4 positions 24 to 27

v ELE5 positions 28 to 31

v ELE6 positions 32 to 32

v ELE7 positions 33 to 40

Data Records:

 1...5...10...15...20...25...30...35...40

 Test data 1 XXN 123abcdN

 Test data 2 and 3 QQY XXN

 Test data 4,5 and 6 WWN6789 Y

The following command loads the table from the file:

 db2 load from ascfile1 of asc modified by striptblanks reclen=40

 method L (1 20, 21 22, 24 27, 28 31)

 null indicators (0,0,23,32)

 insert into table1 (col1, col5, col2, col3)

Note:

1. The specification of striptblanks in the MODIFIED BY parameter forces the

truncation of blanks in VARCHAR columns (COL1, for example, which is 11, 17

and 19 bytes long, in rows 1, 2 and 3, respectively).

2. The specification of reclen=40 in the MODIFIED BY parameter indicates that

there is no newline character at the end of each input record, and that each

record is 40 bytes long. The last 8 bytes are not use to load the table.

3. Since COL4 is not provided in the input file, it will be inserted into TABLE1

with its default value (it is defined NOT NULL WITH DEFAULT).

4. Positions 23 and 32 are used to indicate whether COL2 and COL3 of TABLE1

will be loaded NULL for a given row. If there is a Y in the column’s null

indicator position for a given record, the column will be NULL. If there is an N,

the data values in the column’s data positions of the input record (as defined in

L(........)) are used as the source of column data for the row. In this example,

neither column in row 1 is NULL; COL2 in row 2 is NULL; and COL3 in row 3

is NULL.

5. In this example, the NULL INDICATORS for COL1 and COL5 are specified as

0 (zero), indicating that the data is not nullable.

6. The NULL INDICATOR for a given column can be anywhere in the input

record, but the position must be specified, and the Y or N values must be

supplied.

Example 2 (Using dump files)

Table FRIENDS is defined as:

294 Data Movement Utilities Guide and Reference

table friends "(c1 INT NOT NULL, c2 INT, c3 CHAR(8))"

If an attempt is made to load the following data records into this table,

 23, 24, bobby

 , 45, john

 4,, mary

the second row is rejected because the first INT is NULL, and the column

definition specifies NOT NULL. Columns which contain initial characters that are

not consistent with the DEL format will generate an error, and the record will be

rejected. Such records can be written to a dump file.

DEL data appearing in a column outside of character delimiters is ignored, but

does generate a warning. For example:

 22,34,"bob"

 24,55,"sam" sdf

The utility will load ″sam″ in the third column of the table, and the characters

″sdf″ will be flagged in a warning. The record is not rejected. Another example:

 22 3, 34,"bob"

The utility will load 22,34,"bob", and generate a warning that some data in

column one following the 22 was ignored. The record is not rejected.

Example 3 (Loading a table with an identity column)

TABLE1 has 4 columns:

v C1 VARCHAR(30)

v C2 INT GENERATED BY DEFAULT AS IDENTITY

v C3 DECIMAL(7,2)

v C4 CHAR(1)

TABLE2 is the same as TABLE1, except that C2 is a GENERATED ALWAYS

identity column.

Data records in DATAFILE1 (DEL format):

 "Liszt"

 "Hummel",,187.43, H

 "Grieg",100, 66.34, G

 "Satie",101, 818.23, I

Data records in DATAFILE2 (DEL format):

 "Liszt", 74.49, A

 "Hummel", 0.01, H

 "Grieg", 66.34, G

 "Satie", 818.23, I

Note:

1. The following command generates identity values for rows 1 and 2, since no

identity values are supplied in DATAFILE1 for those rows. Rows 3 and 4,

however, are assigned the user-supplied identity values of 100 and 101,

respectively.

 db2 load from datafile1.del of del replace into table1

2. To load DATAFILE1 into TABLE1 so that identity values are generated for all

rows, issue one of the following commands:

Chapter 4. Load utility 295

db2 load from datafile1.del of del method P(1, 3, 4)

 replace into table1 (c1, c3, c4)

 db2load from datafile1.del of del modified by identityignore

 replace into table1

3. To load DATAFILE2 into TABLE1 so that identity values are generated for each

row, issue one of the following commands:

 db2 load from datafile2.del of del replace into table1 (c1, c3, c4)

 db2 load from datafile2.del of del modified by identitymissing

 replace into table1

4. To load DATAFILE1 into TABLE2 so that the identity values of 100 and 101 are

assigned to rows 3 and 4, issue the following command:

 db2 load from datafile1.del of del modified by identityoverride

 replace into table2

In this case, rows 1 and 2 will be rejected, because the utility has been

instructed to override system-generated identity values in favor of

user-supplied values. If user-supplied values are not present, however, the row

must be rejected, because identity columns are implicitly not NULL.

5. If DATAFILE1 is loaded into TABLE2 without using any of the identity-related

file type modifiers, rows 1 and 2 will be loaded, but rows 3 and 4 will be

rejected, because they supply their own non-NULL values, and the identity

column is GENERATED ALWAYS.

Example 4 (Loading from CURSOR)

MY.TABLE1 has 3 columns:

v ONE INT

v TWO CHAR(10)

v THREE DATE

MY.TABLE2 has 3 columns:

v ONE INT

v TWO CHAR(10)

v THREE DATE

Cursor MYCURSOR is defined as follows:

 declare mycursor cursor for select * from my.table1

The following command loads all the data from MY.TABLE1 into MY.TABLE2:

 load from mycursor of cursor method P(1,2,3) insert into

 my.table2(one,two,three)

Note:

1. Only one cursor name can be specified in a single LOAD command. That is,

load from mycurs1, mycurs2 of cursor... is not allowed.

2. P and N are the only valid METHOD values for loading from a cursor.

3. In this example, METHOD P and the insert column list (one,two,three) could

have been omitted since they represent default values.

4. MY.TABLE1 can be a table, view, alias, or nickname.

SET INTEGRITY

The SET INTEGRITY statement is used to:

296 Data Movement Utilities Guide and Reference

v Bring one or more tables out of set integrity pending state (previously known as

″check pending state″) by performing required integrity processing on those

tables.

v Bring one or more tables out of set integrity pending state without performing

required integrity processing on those tables.

v Place one or more tables in set integrity pending state.

v Place one or more tables into full access state.

v Prune the contents of one or more staging tables.

When the statement is used to perform integrity processing for a table after it has

been loaded or attached, the system can incrementally process the table by

checking only the appended portion for constraints violations. If the subject table is

a materialized query table or a staging table, and load, attach, or detach operations

are performed on its underlying tables, the system can incrementally refresh the

materialized query table or incrementally propagate to the staging table with only

the delta portions of its underlying tables. However, there are some situations in

which the system will not be able to perform such optimizations and will instead

perform full integrity processing to ensure data integrity. Full integrity processing

is done by checking the entire table for constraints violations, recomputing a

materialized query table’s definition, or marking a staging table as inconsistent.

The latter implies that a full refresh of its associated materialized query table is

required. There is also a situation in which you might want to explicitly request

incremental processing by specifying the INCREMENTAL option.

The SET INTEGRITY statement is under transaction control.

Invocation

This statement can be embedded in an application program or issued through the

use of dynamic SQL statements. It is an executable statement that can be

dynamically prepared only if DYNAMICRULES run behavior is in effect for the

package (SQLSTATE 42509).

Authorization

The privileges required to execute the SET INTEGRITY statement depend on the

purpose, as outlined below.

v Bringing tables out of set integrity pending state and performing the required

integrity processing.

The privileges held by the authorization ID of the statement must include at

least one of the following:

– CONTROL privilege on:

- The tables on which integrity processing is performed and, if exception

tables are provided for one or more of those tables, INSERT privilege on

the exception tables

- All descendent foreign key tables, descendent immediate materialized

query tables, and descendent immediate staging tables that will implicitly

be placed in set integrity pending state by the statement
– LOAD authority (with conditions). The following conditions must all be met

before LOAD authority can be considered as providing valid privileges:

- The required integrity processing does not involve the following actions:

v Refreshing a materialized query table

v Propagating to a staging table

Chapter 4. Load utility 297

v Updating a generated or identity column
- If exception tables are provided for one or more tables, the required access

is granted for the duration of the integrity processing to the tables on

which integrity processing is performed, and to the associated exception

tables. That is:

v SELECT and DELETE privilege on each table on which integrity

processing is performed, and

v INSERT privilege on the exception tables
– DATAACCESS authority

v Bringing tables out of set integrity pending state without performing the

required integrity processing.

The privileges held by the authorization ID of the statement must include at

least one of the following:

– CONTROL privilege on the tables that are being processed; CONTROL

privilege on each descendent foreign key table, descendent immediate

materialized query table, and descendent immediate staging table that will

implicitly be placed in set integrity pending state by the statement

– LOAD authority

– DATAACCESS authority

– DBADM authority
v Placing tables in set integrity pending state.

The privileges held by the authorization ID of the statement must include at

least one of the following:

– CONTROL privilege on:

- The specified tables, and

- The descendent foreign key tables that will be placed in set integrity

pending state by the statement, and

- The descendent immediate materialized query tables that will be placed in

set integrity pending state by the statement, and

- The descendent immediate staging tables that will be placed in set integrity

pending state by the statement
– LOAD authority

– DATAACCESS authority

– DBADM authority
v Place a table into the full access state.

The privileges held by the authorization ID of the statement must include at

least one of the following:

– CONTROL privilege on the tables that are placed into the full access state

– LOAD authority

– DATAACCESS authority

– DBADM authority
v Prune a staging table.

The privileges held by the authorization ID of the statement must include at

least one of the following:

– CONTROL privilege on the table being pruned

– DATAACCESS authority

298 Data Movement Utilities Guide and Reference

Syntax

�� SET INTEGRITY �

�

�

�

�

 ,

FOR

table-name

OFF

access-mode-clause

cascade-clause

FULL ACCESS

PRUNE

,

FOR

table-name

table-checked-options

IMMEDIATE CHECKED

check-options

,

FOR

table-name

table-unchecked-options

IMMEDIATE UNCHECKED

��

access-mode-clause:

 NO ACCESS

READ ACCESS

cascade-clause:

 CASCADE IMMEDIATE to-descendent-types

CASCADE DEFERRED

to-descendent-types:

�

 TO ALL TABLES

,

TO

MATERIALIZED QUERY TABLES

FOREIGN KEY TABLES

STAGING TABLES

table-checked-options:

�

 ,

online-options

GENERATE IDENTITY

query-optimization-options

online-options:

 ALLOW NO ACCESS

ALLOW READ ACCESS

ALLOW WRITE ACCESS

Chapter 4. Load utility 299

query-optimization-options:

ALLOW QUERY OPTIMIZATION

WITH REFRESH AGE ANY

USING REFRESH DEFERRED TABLES

check-options:

 * incremental-options *

FORCE GENERATED
 *

PRUNE
 �

� *

FULL ACCESS
 *

exception-clause

incremental-options:

INCREMENTAL

NOT INCREMENTAL

exception-clause:

FOR EXCEPTION

�

 ,

in-table-use-clause

in-table-use-clause:

 IN table-name USE table-name

table-unchecked-options:

�

 ,

integrity-options

FULL ACCESS

integrity-options:

�

 ALL

,

FOREIGN KEY

CHECK

MATERIALIZED QUERY

GENERATED COLUMN

STAGING

Description

FOR table-name

Identifies one or more tables for integrity processing. It must be a table

described in the catalog and must not be a view, catalog table, or typed table.

300 Data Movement Utilities Guide and Reference

OFF

Specifies that the tables are placed in set integrity pending state. Only very

limited activity is allowed on a table that is in set integrity pending state.

access-mode-clause

Specifies the readability of the table while it is in set integrity pending state.

NO ACCESS

Specifies that the table is to be put in set integrity pending no access state,

which does not allow read or write access to the table.

READ ACCESS

Specifies that the table is to be put in set integrity pending read access

state, which allows read access to the non-appended portion of the table.

This option is not allowed on a table that is in set integrity pending no

access state (SQLSTATE 428FH).

cascade-clause

Specifies whether the set integrity pending state of the table referenced in the

SET INTEGRITY statement is to be immediately cascaded to descendent tables.

CASCADE IMMEDIATE

Specifies that the set integrity pending state is to be immediately extended

to descendent tables.

to-descendent-types

Specifies the type of descendent tables to which the set integrity pending

state is immediately cascaded.

TO ALL TABLES

Specifies that the set integrity pending state is to be immediately

cascaded to all descendent tables of the tables in the invocation list.

Descendent tables include all descendent foreign key tables, immediate

staging tables, and immediate materialized query tables that are

descendants of the tables in the invocation list, or descendants of

descendent foreign key tables.

 Specifying TO ALL TABLES is equivalent to specifying TO FOREIGN

KEY TABLES, TO MATERIALIZED QUERY TABLES, and TO

STAGING TABLES, all in the same statement.

TO MATERIALIZED QUERY TABLES

If only TO MATERIALIZED QUERY TABLES is specified, the set

integrity pending state is to be immediately cascaded only to

descendent immediate materialized query tables. Other descendent

tables might later be put in set integrity pending state, if necessary,

when the table is brought out of set integrity pending state. If both TO

FOREIGN KEY TABLES and TO MATERIALIZED QUERY TABLES are

specified, the set integrity pending state will be immediately cascaded

to all descendent foreign key tables, all descendent immediate

materialized query tables of the tables in the invocation list, and to all

immediate materialized query tables that are descendants of the

descendent foreign key tables.

TO FOREIGN KEY TABLES

Specifies that the set integrity pending state is to be immediately

cascaded to descendent foreign key tables. Other descendent tables

might later be put in set integrity pending state, if necessary, when the

table is brought out of set integrity pending state.

Chapter 4. Load utility 301

TO STAGING TABLES

Specifies that the set integrity pending state is to be immediately

cascaded to descendent staging tables. Other descendent tables might

later be put in set integrity pending state, if necessary, when the table

is brought out of set integrity pending state. If both TO FOREIGN KEY

TABLES and TO STAGING TABLES are specified, the set integrity

pending state will be immediately cascaded to all descendent foreign

key tables, all descendent immediate staging tables of the tables in the

invocation list, and to all immediate staging tables that are descendants

of the descendent foreign key tables.

CASCADE DEFERRED

Specifies that only the tables in the invocation list are to be put in set

integrity pending state. The states of the descendent tables will remain

unchanged. Descendent foreign key tables might later be implicitly put in

set integrity pending state when their parent tables are checked for

constraints violations. Descendent immediate materialized query tables and

descendent immediate staging tables might be implicitly put in set

integrity pending state when one of their underlying tables is checked for

integrity violations.

If cascade-clause is not specified, the set integrity pending state is immediately

cascaded to all descendent tables.

IMMEDIATE CHECKED

Specifies that the table is to be taken out of set integrity pending state by

performing required integrity processing on the table. This is done in

accordance with the information set in the STATUS and CONST_CHECKED

columns of the SYSCAT.TABLES catalog view. That is:

v The value in the STATUS column must be ’C’ (the table is in set integrity

pending state), or an error is returned (SQLSTATE 51027), unless the table is

a descendent foreign key table, descendent materialized query table, or

descendent staging table of a table that is specified in the list, is in set

integrity pending state, and whose intermediate ancestors are also in the list.

v If the table being checked is in set integrity pending state, the value in

CONST_CHECKED indicates which integrity options are to be checked.

When the table is taken out of set integrity pending state, its descendent tables

are, if necessary, put in set integrity pending state. A warning to indicate that

descendent tables have been put in set integrity pending state is returned

(SQLSTATE 01586).

If the table is a system-maintained materialized query table, the data is

checked against the query and refreshed as necessary. (IMMEDIATE

CHECKED cannot be used for user-maintained materialized query tables.) If

the table is a staging table, the data is checked against its query definition and

propagated as necessary.

When the integrity of a child table is checked:

v None of its parents can be in set integrity pending state, or

v Each of its parents must be checked for constraints violations in the same

SET INTEGRITY statement

When an immediate materialized query table is refreshed, or deltas are

propagated to a staging table:

v None of its underlying tables can be in set integrity pending state, or

302 Data Movement Utilities Guide and Reference

v Each of its underlying tables must be checked in the same SET INTEGRITY

statement

Otherwise, an error is returned (SQLSTATE 428A8).

table-checked-options

online-options

Specifies the accessibility of the table while it is being processed.

ALLOW NO ACCESS

Specifies that no other users can access the table while it is being

processed, except if they are using the Uncommitted Read isolation

level.

ALLOW READ ACCESS

Specifies that other users have read-only access to the table while it

is being processed.

ALLOW WRITE ACCESS

Specifies that other users have read and write access to the table

while it is being processed.

GENERATE IDENTITY

Specifies that if the table includes an identity column, the values are

generated by the SET INTEGRITY statement. By default, when the

GENERATE IDENTITY option is specified, only attached rows will

have their identity column values generated by the SET INTEGRITY

statement. The NOT INCREMENTAL option must be specified in

conjunction with the GENERATE IDENTITY option to have the SET

INTEGRITY statement generate identity column values for all rows in

the table, including attached rows, loaded rows, and existing rows. If

the GENERATE IDENTITY option is not specified, the current identity

column values for all rows in the table are left unchanged.

query-optimization-options

Specifies the query optimization options for the maintenance of

REFRESH DEFERRED materialized query tables.

ALLOW QUERY OPTIMIZATION USING REFRESH DEFERRED

TABLES WITH REFRESH AGE ANY

Specifies that when the CURRENT REFRESH AGE special register

is set to ’ANY’, the maintenance of table-name will allow REFRESH

DEFERRED materialized query tables to be used to optimize the

query that maintains table-name. If table-name is not a REFRESH

DEFERRED materialized query table, an error is returned

(SQLSTATE 428FH). REFRESH IMMEDIATE materialized query

tables are always considered during query optimization.

check-options

incremental-options

INCREMENTAL

Specifies the application of integrity processing on the appended

portion (if any) of the table. If such a request cannot be satisfied

(that is, the system detects that the whole table needs to be

checked for data integrity), an error is returned (SQLSTATE 55019).

NOT INCREMENTAL

Specifies the application of integrity processing on the whole table.

If the table is a materialized query table, the materialized query

Chapter 4. Load utility 303

table definition is recomputed. If the table has at least one

constraint defined on it, this option causes full processing of

descendent foreign key tables and descendent immediate

materialized query tables. If the table is a staging table, it is set to

an inconsistent state.

If the incremental-options clause is not specified, the system determines

whether incremental processing is possible; if not, the whole table is

checked.

FORCE GENERATED

If the table includes generated by expression columns, the values are

computed on the basis of the expression and stored in the column. If

this option is not specified, the current values are compared to the

computed value of the expression, as though an equality check

constraint were in effect. If the table is processed for integrity

incrementally, generated columns are computed only for the appended

portion.

PRUNE

This option can be specified for staging tables only. Specifies that the

content of the staging table is to be pruned, and that the staging table

is to be set to an inconsistent state. If any table in the table-name list is

not a staging table, an error is returned (SQLSTATE 428FH). If the

INCREMENTAL check option is also specified, an error is returned

(SQLSTATE 428FH).

FULL ACCESS

Specifies that the table is to become fully accessible after the SET

INTEGRITY statement executes.

 When an underlying table (that has dependent immediate materialized

query tables or dependent immediate staging tables) in the invocation

list is incrementally processed, the underlying table is put in no data

movement state, as required, after the SET INTEGRITY statement

executes. When all incrementally refreshable dependent immediate

materialized query tables and staging tables are taken out of set

integrity pending state, the underlying table is automatically brought

out of the no data movement state into the full access state. If the

FULL ACCESS option is specified with the IMMEDIATE CHECKED

option, the underlying table is put directly in full access state

(bypassing the no data movement state). Dependent immediate

materialized query tables that have not been refreshed might undergo

a full recomputation in the subsequent REFRESH TABLE statement,

and dependent immediate staging tables that have not had the

appended portions of the table propagated to them might be flagged

as inconsistent.

When an underlying table in the invocation list requires full

processing, or does not have dependent immediate materialized query

tables, or dependent immediate staging tables, the underlying table is

put directly into full access state after the SET INTEGRITY statement

executes, regardless of whether the FULL ACCESS option was

specified.

exception-clause

FOR EXCEPTION

Specifies that any row that is in violation of a constraint being

304 Data Movement Utilities Guide and Reference

checked is to be moved to an exception table. Even if errors are

detected, the table is taken out of set integrity pending state. A

warning to indicate that one or more rows have been moved to the

exception tables is returned (SQLSTATE 01603).

 If the FOR EXCEPTION option is not specified and any constraints

are violated, only the first detected violation is returned

(SQLSTATE 23514). If there is a violation in any table, all of the

tables are left in set integrity pending state.

It is recommended to always use the FOR EXCEPTION option

when checking for constraints violations to prevent a rollback of

the SET INTEGRITY statement if a violation is found.

IN table-name

Specifies the table from which rows that violate constraints are to

be moved. There must be one exception table specified for each

table being checked. This clause cannot be specified for a

materialized query table or a staging table (SQLSTATE 428A7).

USE table-name

Specifies the exception table into which error rows are to be

moved.

FULL ACCESS

If the FULL ACCESS option is specified as the only operation of the statement,

the table is placed into the full access state without being rechecked for

integrity violations. However, dependent immediate materialized query tables

that have not been refreshed might require a full recomputation in subsequent

REFRESH TABLE statements, and dependent immediate staging tables that

have not had the delta portions of the table propagated to them might be

changed to incomplete state. This option can only be specified for a table that

is in the no data movement state or the no access state, but not in the set

integrity pending state (SQLSTATE 428FH).

PRUNE

This option can be specified for staging tables only. Specifies that the content of

the staging table is to be pruned, and that the staging table is to be set to an

inconsistent state. If any table in the table-name list is not a staging table, an

error is returned (SQLSTATE 428FH).

table-unchecked-options

integrity-options

Used to define the types of required integrity processing that are to be

bypassed when the table is taken out of the set integrity pending state.

ALL

The table will be immediately taken out of set integrity pending state

without any of its required integrity processing being performed.

FOREIGN KEY

Required foreign key constraints checking will not be performed when

the table is brought out of set integrity pending state.

CHECK

Required check constraints checking will not be performed when the

table is brought out of set integrity pending state.

MATERIALIZED QUERY

Required refreshing of a materialized query table will not be

performed when the table is brought out of set integrity pending state.

Chapter 4. Load utility 305

GENERATED COLUMN

Required generated column constraints checking will not be performed

when the table is brought out of set integrity pending state.

STAGING

Required propagation of data to a staging table will not be performed

when the table is brought out of set integrity pending state.

 If no other types of integrity processing are required on the table after a

specific type of integrity processing has been marked as bypassed, the

table is immediately taken out of set integrity pending state.

FULL ACCESS

Specifies that the tables are to become fully accessible after the SET

INTEGRITY statement executes.

 When an underlying table in the invocation list is incrementally processed,

and it has dependent immediate materialized query tables or dependent

immediate staging tables, the underlying table is placed, as required, in the

no data movement state after the SET INTEGRITY statement executes.

When all incrementally refreshable dependent immediate materialized

query tables and staging tables have been taken out of set integrity

pending state, the underlying table is automatically brought out of the no

data movement state into the full access state. If the FULL ACCESS option

is specified with the IMMEDIATE UNCHECKED option, the underlying

table is placed directly in full access state (it bypasses the no data

movement state). Dependent immediate materialized query tables that

have not been refreshed might undergo a full recomputation in the

subsequent REFRESH TABLE statement, and dependent immediate staging

tables that have not had the appended portions of the table propagated to

them mIGHT be flagged as inconsistent.

When an underlying table in the invocation list requires full processing, or

does not have dependent immediate materialized query tables, or

dependent immediate staging tables, the underlying table is placed directly

in full access state after the SET INTEGRITY statement executes, regardless

of whether the FULL ACCESS option has been specified.

If the FULL ACCESS option has been specified with the IMMEDIATE

UNCHECKED option, and the statement does not bring the table out of set

integrity pending state, an error is returned (SQLSTATE 428FH).

IMMEDIATE UNCHECKED

Specifies one of the following:

v The table is to be brought out of set integrity pending state immediately

without any required integrity processing.

v The table is to have one or more types of required integrity processing

bypassed when the table is brought out of set integrity pending state by a

subsequent SET INTEGRITY statement using the IMMEDIATE CHECKED

option.

Consider the data integrity implications of this option before using it. See the

“Notes” section below.

Notes

v Effects on tables in one of the restricted set integrity-related states:

– Use of INSERT, UPDATE, or DELETE is disallowed on a table that is in read

access state or in no access state. Furthermore, any statement that requires

306 Data Movement Utilities Guide and Reference

this type of modification to a table that is in such a state will be rejected. For

example, deletion of a row in a parent table that cascades to a dependent

table that is in the no access state is not allowed.

– Use of SELECT is disallowed on a table that is in the no access state.

Furthermore, any statement that requires read access to a table that is in the

no access state will be rejected.

– New constraints added to a table are normally enforced immediately.

However, if the table is in set integrity pending state, the checking of any

new constraints is deferred until the table is taken out of set integrity pending

state. If the table is in set integrity pending state, addition of a new constraint

places the table into set integrity pending no access state, because validity of

data is at risk.

– The CREATE INDEX statement cannot reference any table that is in read

access state or in no access state. Similarly, an ALTER TABLE statement to

add a primary key or a unique constraint cannot reference any table that is in

read access state or in no access state.

– The import utility is not allowed to operate on a table that is in read access

state or in no access state.

– The export utility is not allowed to operate on a table that is in no access

state, but is allowed to operate on a table that is in read access state. If a table

is in read access state, the export utility will only export the data that is in the

non-appended portion.

– Operations (like REORG, REDISTRIBUTE, update distribution key, update

multidimensional clustering key, update range clustering key, update table

partitioning key, and so on) that might involve data movement within a table

are not allowed on a table that is in any of the following states: read access,

no access, or no data movement.

– The load, backup, restore, update statistics, runstats, reorgchk, list history, and

rollforward utilities are allowed on a table that is in any of the following

states: full access, read access, no access, or no data movement.

– The ALTER TABLE, COMMENT, DROP TABLE, CREATE ALIAS, CREATE

TRIGGER, CREATE VIEW, GRANT, REVOKE, and SET INTEGRITY

statements can reference a table that is in any of the following states: full

access, read access, no access, or no data movement. However, they might

cause the table to be put into no access state.

– Packages, views, and any other objects that depend on a table that is in no

access state will return an error when the table is accessed at run time.

Packages that depend on a table that is in read access state will return an

error when an insert, update, or delete operation is attempted on the table at

run time.
The removal of violating rows by the SET INTEGRITY statement is not a delete

event. Therefore, triggers are never activated by a SET INTEGRITY statement.

Similarly, updating generated columns using the FORCE GENERATED option

does not activate triggers.

v Incremental processing will be used whenever the situation allows it, because it

is more efficient. The INCREMENTAL option is not needed in most cases. It is

needed, however, to ensure that integrity checks are indeed processed

incrementally. If the system detects that full processing is needed to ensure data

integrity, an error is returned (SQLSTATE 55019).

v Warning about the use of the IMMEDIATE UNCHECKED clause:

– This clause is intended to be used by utility programs, and its use by

application programs is not recommended. If there is data in the table that

Chapter 4. Load utility 307

does not meet the integrity specifications that were defined for the table, and

the IMMEDIATE UNCHECKED option is used, incorrect query results might

be returned.

The fact that the table was taken out of the set integrity pending state without

performing the required integrity processing will be recorded in the catalog

(the respective byte in the CONST_CHECKED column in the

SYSCAT.TABLES view will be set to ’U’). This indicates that the user has

assumed responsibility for data integrity with respect to the specific

constraints. This value remains unchanged until either:

- The table is put back into set integrity pending state (by referencing the

table in a SET INTEGRITY statement with the OFF option), at which time

’U’ values in the CONST_CHECKED column are changed to ’W’ values,

indicating that the user had previously assumed responsibility for data

integrity, and the system needs to verify the data.

- All unchecked constraints for the table are dropped.
The ’W’ state differs from the ’N’ state in that it records the fact that integrity

was previously checked by the user, but not yet by the system. If the user

issues the SET INTEGRITY ... IMMEDIATE CHECKED statement with the

NOT INCREMENTAL option, the system rechecks the whole table for data

integrity (or performs a full refresh on a materialized query table), and then

changes the ’W’ state to the ’Y’ state. If IMMEDIATE UNCHECKED is

specified, or if NOT INCREMENTAL is not specified, the ’W’ state is changed

back to the ’U’ state to record the fact that some data has still not been

verified by the system. In the latter case (when the NOT INCREMENTAL is

not specified), a warning is returned (SQLSTATE 01636).

If an underlying table’s integrity has been checked using the IMMEDIATE

UNCHECKED clause, the ’U’ values in the CONST_CHECKED column of the

underlying table will be propagated to the corresponding CONST_CHECKED

column of:

- Dependent immediate materialized query tables

- Dependent deferred materialized query tables

- Dependent staging tables
For a dependent immediate materialized query table, this propagation is done

whenever the underlying table is brought out of set integrity pending state,

and whenever the materialized query table is refreshed. For a dependent

deferred materialized query table, this propagation is done whenever the

materialized query table is refreshed. For dependent staging tables, this

propagation is done whenever the underlying table is brought out of set

integrity pending state. These propagated ’U’ values in the

CONST_CHECKED columns of dependent materialized query tables and

staging tables record the fact that these materialized query tables and staging

tables depend on some underlying table whose required integrity processing

has been bypassed using the IMMEDIATE UNCHECKED option.

For a materialized query table, the ’U’ value in the CONST_CHECKED

column that was propagated by the underlying table will remain until the

materialized query table is fully refreshed and none of its underlying tables

have a ’U’ value in their corresponding CONST_CHECKED column. After

such a refresh, the ’U’ value in the CONST_CHECKED column for the

materialized query table will be changed to ’Y’.

For a staging table, the ’U’ value in the CONST_CHECKED column that was

propagated by the underlying table will remain until the corresponding

308 Data Movement Utilities Guide and Reference

deferred materialized query table of the staging table is refreshed. After such

a refresh, the ’U’ value in the CONST_CHECKED column for the staging

table will be changed to ’Y’.

– If a child table and its parent table are checked in the same SET INTEGRITY

statement with the IMMEDIATE CHECKED option, and the parent table

requires full checking of its constraints, the child table will have its foreign

key constraints checked, independently of whether or not the child table has a

’U’ value in the CONST_CHECKED column for foreign key constraints.
v After appending data using LOAD INSERT or ALTER TABLE ATTACH, the SET

INTEGRITY statement with the IMMEDIATE CHECKED option checks the table

for constraints violations. The system determines whether incremental

processing on the table is possible. If so, only the appended portion is checked

for integrity violations. If not, the system checks the whole table for integrity

violations.

v Consider the statement:

 SET INTEGRITY FOR T IMMEDIATE CHECKED

Situations in which the system will require a full refresh, or will check the whole

table for integrity (the INCREMENTAL option cannot be specified) are:

– When new constraints have been added to T itself while it is in the set

integrity pending state

– When a LOAD REPLACE operation against T, it parents, or its underlying

tables has taken place

– When the NOT LOGGED INITIALLY WITH EMPTY TABLE option has been

activated after the last integrity check on T, its parents, or its underlying

tables

– The cascading effect of full processing, when any parent of T (or underlying

table, if T is a materialized query table or a staging table) has been checked

for integrity non-incrementally

– If the table space containing the table or its parent (or underlying table of a

materialized query table or a staging table) has been rolled forward to a point

in time, and the table and its parent (or underlying table if the table is a

materialized query table or a staging table) reside in different table spaces

– When T is a materialized query table, and a LOAD REPLACE or LOAD

INSERT operation directly into T has taken place after the last refresh
v If the conditions for full processing described in the previous bullet are not

satisfied, the system will attempt to check only the appended portion for

integrity, or perform an incremental refresh (if it is a materialized query table)

when the user does not specify the NOT INCREMENTAL option for the

statement SET INTEGRITY FOR T IMMEDIATE CHECKED.

v If an error occurs during integrity processing, all the effects of the processing

(including deleting from the original and inserting into the exception tables) will

be rolled back.

v If a SET INTEGRITY statement issued with the FORCE GENERATED option

fails because of a lack of log space, increase available active log space and

reissue the SET INTEGRITY statement. Alternatively, use the SET INTEGRITY

statement with the GENERATED COLUMN and IMMEDIATE UNCHECKED

options to bypass generated column checking for the table. Then, issue a SET

INTEGRITY statement with the IMMEDIATE CHECKED option and without the

FORCE GENERATED option to check the table for other integrity violations (if

applicable) and to bring it out of set integrity pending state. After the table is

out of the set integrity pending state, the generated columns can be updated to

their default (generated) values by assigning them to the keyword DEFAULT in

Chapter 4. Load utility 309

an UPDATE statement. This is accomplished by using either multiple searched

update statements based on ranges (each followed by a commit), or a

cursor-based approach using intermittent commits. A “with hold” cursor should

be used if locks are to be retained after intermittent commits using the

cursor-based approach.

v A table that was put into set integrity pending state using the CASCADE

DEFERRED option of the SET INTEGRITY statement or the LOAD command, or

through the ALTER TABLE statement with the ATTACH clause, and that is

checked for integrity violations using the IMMEDIATE CHECKED option of the

SET INTEGRITY statement, will have its descendent foreign key tables,

descendent immediate materialized query tables, and descendent immediate

staging tables put in set integrity pending state, as required:

– If the entire table is checked for integrity violations, its descendent foreign

key tables, descendent immediate materialized query tables, and descendent

immediate staging tables will be put in set integrity pending state.

– If the table is checked for integrity violations incrementally, its descendent

immediate materialized query tables and staging tables will be put in set

integrity pending state, and its descendent foreign key tables will remain in

their original states.

– If the table requires no checking at all, its descendent immediate materialized

query tables, descendent staging tables, and descendent foreign key tables

will remain in their original states.
v A table that was put in set integrity pending state using the CASCADE

DEFERRED option (of the SET INTEGRITY statement or the LOAD command),

and that is brought out of set integrity pending state using the IMMEDIATE

UNCHECKED option of the SET INTEGRITY statement, will have its descendent

foreign key tables, descendent immediate materialized query tables, and

descendent immediate staging tables put in set integrity pending state, as

required:

– If the table has been loaded using the REPLACE mode, its descendent foreign

key tables, descendent immediate materialized query tables, and descendent

immediate staging tables will be put in set integrity pending state.

– If the table has been loaded using the INSERT mode, its descendent

immediate materialized query tables and staging tables will be put in set

integrity pending state, and its descendent foreign key tables will remain in

their original states.

– If the table has not been loaded, its descendent immediate materialized query

tables, descendent staging tables, and its descendent foreign key tables will

remain in their original states.
v SET INTEGRITY is usually a long running statement. In light of this, to reduce

the risk of a rollback of the entire statement because of a lock timeout, you can

issue the SET CURRENT LOCK TIMEOUT statement with the WAIT option

before executing the SET INTEGRITY statement, and then reset the special

register to its previous value after the transaction commits. Note, however, that

the CURRENT LOCK TIMEOUT special register only impacts a specific set of

lock types.

v If you use the ALLOW QUERY OPTIMIZATION USING REFRESH DEFERRED

TABLES WITH REFRESH AGE ANY option, ensure that the maintenance order

is correct for REFRESH DEFERRED materialized query tables. For example,

consider two materialized query tables, MQT1 and MQT2, whose materialized

queries share the same underlying tables. The materialized query for MQT2 can

be calculated using MQT1, instead of the underlying tables. If separate

statements are used to maintain these two materialized query tables, and MQT2

310 Data Movement Utilities Guide and Reference

is maintained first, the system might choose to use the contents of MQT1, which

has not yet been maintained, to maintain MQT2. In this case, MQT1 would

contain current data, but MQT2 could still contain stale data, even though both

were maintained at almost the same time. The correct maintenance order, if two

SET INTEGRITY statements are used instead of one, is to maintain MQT1 first.

v When using the SET INTEGRITY statement to perform integrity processing on a

base table that has been loaded or attached, it is recommended that you process

its dependent REFRESH IMMEDIATE materialized query tables and its

PROPAGATE IMMEDIATE staging tables in the same SET INTEGRITY

statement to avoid putting these dependent tables in set integrity pending no

access state at the end of SET INTEGRITY processing. Note that for base tables

that have a large number of dependent REFRESH IMMEDIATE materialized

query tables and PROPAGATE IMMEDIATE staging tables, memory constraints

might make it impossible to process all of the dependents in the same statement

as the base table.

v If the FORCE GENERATED or the GENERATE IDENTITY option is specified,

and the column that is generated is part of a unique index, the SET INTEGRITY

statement returns an error (SQLSTATE 23505) and rolls back if it detects

duplicate keys in the unique index. This error is returned even if there is an

exception table for the table being processed.

This scenario can occur under the following circumstances:

– The SET INTEGRITY statement runs after a LOAD command against the

table, and the GENERATEDOVERRIDE or the IDENTITYOVERRIDE file type

modifier is specified during the load operation. To prevent this scenario, it is

recommended that you use the GENERATEDIGNORE or the

GENERATEDMISSING file type modifier instead of GENERATEDOVERRIDE,

and that you use the IDENTITYIGNORE or the IDENTITYMISSING modifier

instead of IDENTITYOVERRIDE. Using the recommended modifiers will

prevent the need for any generated by expression column or identity column

processing during SET INTEGRITY statement execution.

– The SET INTEGRITY statement is run after an ALTER TABLE statement that

alters the expression of a generated by expression column.
To bring a table out of the set integrity pending state after encountering such a

scenario:

– Do not use the FORCE GENERATED or the GENERATE IDENTITY option to

regenerate the column values. Instead, use the IMMEDIATE CHECKED

option in conjunction with the FOR EXCEPTION option to move any rows

that violate the generated column expression to an exception table. Then,

re-insert the rows into the table from the exception table, which will generate

the correct expression and perform unique key checking. This prevents

having to reprocess the entire table, because only those rows that violated the

generated column expression will need to be processed again.

– If the table being processed has attached partitions, detach those partitions

before performing the actions that are described in the previous bullet. Then,

re-attach the partitions and execute a SET INTEGRITY statement to process

integrity on the attached partitions separately.
v If a protected table is specified for the SET INTEGRITY statement along with an

exception table, all of the following table criteria must be met; otherwise, an

error is returned (SQLSTATE 428A5):

– The tables must be protected by the same security policy.

– If a column in the protected table has data type DB2SECURITYLABEL, the

corresponding column in the exception table must also have data type

DB2SECURITYLABEL.

Chapter 4. Load utility 311

– If a column in the protected table is protected by a security label, the

corresponding column in the exception table must also be protected by the

same security label.
v Compatibilities: For compatibility with previous versions of DB2:

– SET CONSTRAINTS can be specified in place of SET INTEGRITY

– SUMMARY can be specified in place of MATERIALIZED QUERY

Examples

Example 1: The following is an example of a query that provides information about

the set integrity pending state and the set integrity-related access restriction states

of tables. SUBSTR is used to extract individual bytes of the CONST_CHECKED

column of SYSCAT.TABLES. The first byte represents foreign key constraints; the

second byte represents check constraints; the fifth byte represents materialized

query table integrity; the sixth byte represents generated column constraints; the

seventh byte represents staging table integrity; and the eighth byte represents data

partitioning constraints. STATUS gives the set integrity pending state, and

ACCESS_MODE gives the set integrity-related access restriction state.

 SELECT TABNAME, STATUS, ACCESS_MODE,

 SUBSTR(CONST_CHECKED,1,1) AS FK_CHECKED,

 SUBSTR(CONST_CHECKED,2,1) AS CC_CHECKED,

 SUBSTR(CONST_CHECKED,5,1) AS MQT_CHECKED,

 SUBSTR(CONST_CHECKED,6,1) AS GC_CHECKED,

 SUBSTR(CONST_CHECKED,7,1) AS STG_CHECKED,

 SUBSTR(CONST_CHECKED,8,1) AS DP_CHECKED

 FROM SYSCAT.TABLES

Example 2: Put the PARENT table in set integrity pending no access state, and

immediately cascade the set integrity pending state to its descendants.

 SET INTEGRITY FOR PARENT OFF

 NO ACCESS CASCADE IMMEDIATE

Example 3: Put the PARENT table in set integrity pending read access state without

immediately cascading the set integrity pending state to its descendants.

 SET INTEGRITY FOR PARENT OFF

 READ ACCESS CASCADE DEFERRED

Example 4: Check integrity for a table named FACT_TABLE. If there are no

integrity violations detected, the table is brought out of set integrity pending state.

If any integrity violations are detected, the entire statement is rolled back, and the

table remains in set integrity pending state.

 SET INTEGRITY FOR FACT_TABLE IMMEDIATE CHECKED

Example 5: Check integrity for the SALES and PRODUCTS tables, and move the

rows that violate integrity into exception tables named SALES_EXCEPTIONS and

PRODUCTS_EXCEPTIONS. Both the SALES and PRODUCTS tables are brought

out of set integrity pending state, whether or not there are any integrity violations.

 SET INTEGRITY FOR SALES, PRODUCTS IMMEDIATE CHECKED

 FOR EXCEPTION IN SALES USE SALES_EXCEPTIONS,

 IN PRODUCTS USE PRODUCTS_EXCEPTIONS

Example 6: Enable FOREIGN KEY constraint checking in the MANAGER table, and

CHECK constraint checking in the EMPLOYEE table, to be bypassed with the

IMMEDIATE UNCHECKED option.

 SET INTEGRITY FOR MANAGER FOREIGN KEY,

 EMPLOYEE CHECK IMMEDIATE UNCHECKED

312 Data Movement Utilities Guide and Reference

Example 7: Add a check constraint and a foreign key to the EMP_ACT table, using

two ALTER TABLE statements. The SET INTEGRITY statement with the OFF

option is used to put the table in set integrity pending state, so that the constraints

are not checked immediately upon execution of the two ALTER TABLE statements.

The single SET INTEGRITY statement with the IMMEDIATE CHECKED option is

used to check both of the added constraints during a single pass through the table.

 SET INTEGRITY FOR EMP_ACT OFF;

 ALTER TABLE EMP_ACT ADD CHECK

 (EMSTDATE <= EMENDATE);

 ALTER TABLE EMP_ACT ADD FOREIGN KEY

 (EMPNO) REFERENCES EMPLOYEE;

 SET INTEGRITY FOR EMP_ACT IMMEDIATE CHECKED

 FOR EXCEPTION IN EMP_ACT USE EMP_ACT_EXCEPTIONS

Example 8: Update generated columns with the correct values.

 SET INTEGRITY FOR SALES IMMEDIATE CHECKED

 FORCE GENERATED

Example 9: Append (using LOAD INSERT) from different sources into an

underlying table (SALES) of a REFRESH IMMEDIATE materialized query table

(SALES_SUMMARY). Check SALES incrementally for data integrity, and refresh

SALES_SUMMARY incrementally. In this scenario, integrity checking for SALES

and refreshing of SALES_SUMMARY are incremental, because the system chooses

incremental processing. The ALLOW READ ACCESS option is used on the SALES

table to allow concurrent reads of existing data while integrity checking of the

loaded portion of the table is taking place.

 LOAD FROM 2000_DATA.DEL OF DEL

 INSERT INTO SALES ALLOW READ ACCESS;

 LOAD FROM 2001_DATA.DEL OF DEL

 INSERT INTO SALES ALLOW READ ACCESS;

 SET INTEGRITY FOR SALES ALLOW READ ACCESS IMMEDIATE CHECKED

 FOR EXCEPTION IN SALES USE SALES_EXCEPTIONS;

 REFRESH TABLE SALES_SUMMARY;

Example 10: Attach a new partition to a data partitioned table named SALES.

Incrementally check for constraints violations in the attached data of the SALES

table and incrementally refresh the dependent SALES_SUMMARY table. The

ALLOW WRITE ACCESS option is used on both tables to allow concurrent

updates while integrity checking is taking place.

 ALTER TABLE SALES

 ATTACH PARTITION STARTING (100) ENDING (200)

 FROM SOURCE;

 SET INTEGRITY FOR SALES ALLOW WRITE ACCESS, SALES_SUMMARY ALLOW WRITE ACCESS

 IMMEDIATE CHECKED FOR EXCEPTION IN SALES

 USE SALES_EXCEPTIONS;

Example 11: Detach a partition from a data partitioned table named SALES.

Incrementally refresh the dependent SALES_SUMMARY table.

 ALTER TABLE SALES

 DETACH PARTITION 2000_PART INTO ARCHIVE_TABLE;

 SET INTEGRITY FOR SALES_SUMMARY

 IMMEDIATE CHECKED;

Example 12: Bring a new user-maintained materialized query table out of set

integrity pending state.

 CREATE TABLE YEARLY_SALES

 AS (SELECT YEAR, SUM(SALES)AS SALES

 FROM FACT_TABLE GROUP BY YEAR)

Chapter 4. Load utility 313

DATA INITIALLY DEFERRED REFRESH DEFERRED MAINTAINED BY USER

 SET INTEGRITY FOR YEARLY_SALES

 ALL IMMEDIATE UNCHECKED

LOAD QUERY

Checks the status of a load operation during processing and returns the table state.

If a load is not processing, then the table state alone is returned. A connection to

the same database, and a separate CLP session are also required to successfully

invoke this command. It can be used either by local or remote users.

Authorization

None

Required connection

Database

Command syntax

�� LOAD QUERY TABLE table-name

TO

local-message-file

NOSUMMARY

SUMMARYONLY

 �

�
SHOWDELTA

 ��

Command parameters

NOSUMMARY

Specifies that no load summary information (rows read, rows skipped,

rows loaded, rows rejected, rows deleted, rows committed, and number of

warnings) is to be reported.

SHOWDELTA

Specifies that only new information (pertaining to load events that have

occurred since the last invocation of the LOAD QUERY command) is to be

reported.

SUMMARYONLY

Specifies that only load summary information is to be reported.

TABLE table-name

Specifies the name of the table into which data is currently being loaded. If

an unqualified table name is specified, the table will be qualified with the

CURRENT SCHEMA.

TO local-message-file

Specifies the destination for warning and error messages that occur during

the load operation. This file cannot be the message-file specified for the

LOAD command. If the file already exists, all messages that the load utility

has generated are appended to it.

314 Data Movement Utilities Guide and Reference

Examples

A user loading a large amount of data into the STAFF table in the BILLYBOB

database, wants to check the status of the load operation. The user can specify:

 db2 connect to billybob

 db2 load query table staff to /u/mydir/staff.tempmsg

The output file /u/mydir/staff.tempmsg might look like the following:

SQL3501W The table space(s) in which the table resides will not be placed in

backup pending state since forward recovery is disabled for the database.

SQL3109N The utility is beginning to load data from file

"/u/mydir/data/staffbig.del"

SQL3500W The utility is beginning the "LOAD" phase at time "03-21-2002

11:31:16.597045".

SQL3519W Begin Load Consistency Point. Input record count = "0".

SQL3520W Load Consistency Point was successful.

SQL3519W Begin Load Consistency Point. Input record count = "104416".

SQL3520W Load Consistency Point was successful.

SQL3519W Begin Load Consistency Point. Input record count = "205757".

SQL3520W Load Consistency Point was successful.

SQL3519W Begin Load Consistency Point. Input record count = "307098".

SQL3520W Load Consistency Point was successful.

SQL3519W Begin Load Consistency Point. Input record count = "408439".

SQL3520W Load Consistency Point was successful.

SQL3532I The Load utility is currently in the "LOAD" phase.

Number of rows read = 453376

Number of rows skipped = 0

Number of rows loaded = 453376

Number of rows rejected = 0

Number of rows deleted = 0

Number of rows committed = 408439

Number of warnings = 0

Tablestate:

 Load in Progress

Usage notes

In addition to locks, the load utility uses table states to control access to the table.

The LOAD QUERY command can be used to determine the table state; LOAD

QUERY can be used on tables that are not currently being loaded. For a partitioned

table, the state reported is the most restrictive of the corresponding visible data

partition states. For example, if a single data partition is in the Read Access Only

state and all other data partitions are in Normal state, the load query operation

returns the Read Access Only state. A load operation will not leave a subset of data

partitions in a state different from the rest of the table. The table states described

by LOAD QUERY are as follows:

Chapter 4. Load utility 315

Normal

A table is in Normal state if it is not in any of the other (abnormal) table

states. Normal state is the initial state of a table after it is created.

Set Integrity Pending

The table has constraints which have not yet been verified. Use the SET

INTEGRITY statement to take the table out of Set Integrity Pending state.

The load utility places a table in Set Integrity Pending state when it begins

a load operation on a table with constraints.

Load in Progress

This is a transient state that is only in effect during a load operation. For

information about bringing a table out of Load in Progress state if your

load operation has failed or was interrupted, see the section on pending

states after a load operation in the Related links section. See also Load in

Progress table space state.

Load Pending

A load operation has been active on this table but has been aborted before

the data could be committed. Issue a LOAD TERMINATE, LOAD

RESTART, or LOAD REPLACE command to bring the table out of this

state.

Read Access Only

A table is in this state during a load operation if the ALLOW READ

ACCESS option was specified. Read Access Only is a transient state that

allows other applications and utilities to have read access to data that

existed prior to the load operation.

Reorg Pending

A REORG command recommended ALTER TABLE statement has been

executed on the table. A classic REORG must be performed before the table

is accessible again.

Unavailable

The table is unavailable. The table can only be dropped or restored from a

backup. Rolling forward through a non-recoverable load operation will

place a table in the unavailable state.

Not Load Restartable

The table is in a partially loaded state that will not allow a load restart

operation. The table will also be in load pending state. Issue a LOAD

TERMINATE or a LOAD REPLACE command to bring the table out of the

not load restartable state. A table is placed in not load restartable state

when a rollforward operation is performed after a failed load operation

that has not been successfully restarted or terminated, or when a restore

operation is performed from an online backup that was taken while the

table was in load in progress or load pending state. In either case, the

information required for a load restart operation is unreliable, and the not

load restartable state prevents a load restart operation from taking place.

Unknown

The LOAD QUERY command is unable to determine the table state.

There are currently at least 25 table or table space states supported by the IBM DB2

database product. These states are used to control access to data under certain

circumstances, or to elicit specific user actions, when required, to protect the

integrity of the database. Most of them result from events related to the operation

of one of the DB2 utilities, such as the load utility, or the backup and restore

utilities.

316 Data Movement Utilities Guide and Reference

Although dependent table spaces are no longer quiesced (a quiesce is a persistent

lock) prior to a load operation, the Load in Progress table space state prevents the

backup of dependent tables during a load operation. The Load in Progress table

space state is different from the Load in Progress table state: All load operations

use the Load in Progress table state, but load operations (against a recoverable

database) with the COPY NO option specified also use the Load in Progress table

space state.

The following table describes each of the supported table states. The table also

provides you with working examples that show you exactly how to interpret and

respond to states that you might encounter while administering your database. The

examples are taken from command scripts that were run on AIX; you can copy,

paste and run them yourself. If you are running the DB2 database product on a

system that is not UNIX, ensure that any path names are in the correct format for

your system. Most of the examples are based on tables in the SAMPLE database

that comes with the DB2 database product. A few examples require scenarios that

are not part of the SAMPLE database, but you can use a connection to the

SAMPLE database as a starting point.

 Table 47. Supported table states

State Examples

Load Pending Given load input file staffdata.del with a substantial amount of data (for example, 20000 or more

records), create a small table space that contains the target table of the load operation, a new table

called NEWSTAFF:

connect to sample;

create tablespace ts1 managed by database using (file ’/home/melnyk/melnyk/NODE0000

/SQL00001/ts1c1’ 256);

create table newstaff like staff in ts1;

load from staffdata.del of del insert into newstaff;

load query table newstaff;

load from staffdata.del of del terminate into newstaff;

load query table newstaff;

connect reset;

Information returned by the LOAD QUERY command shows that the NEWSTAFF table is in Load

Pending state; after a load terminate operation, the table is in Normal state.

Load in

Progress

Given load input file staffdata.del with a substantial amount of data (for example, 20000 or more

records):

connect to sample;

create table newstaff like staff;

load from staffdata.del of del insert into newstaff;

While the load operation is running, execute the following script from another session:

connect to sample;

load query table newstaff;

connect reset;

Information returned by the LOAD QUERY command shows that the NEWSTAFF table is in Load

in Progress state.

Normal connect to sample;

create table newstaff like staff;

load query table newstaff;

Information returned by the LOAD QUERY command shows that the NEWSTAFF table is in

Normal state.

Chapter 4. Load utility 317

Table 47. Supported table states (continued)

State Examples

Not Load

Restartable

Given load input file staffdata.del with a substantial amount of data (for example, 20000 or more

records):

update db cfg for sample using logretain recovery;

backup db sample;

connect to sample;

create tablespace ts1 managed by database using (file ’/home/melnyk/melnyk/NODE0000

/SQL00001/ts1c1’ 256);

create table newstaff like staff in ts1;

connect reset;

backup db sample;

The timestamp for this backup image is: 20040629205935

connect to sample;

load from staffdata.del of del insert into newstaff copy yes to /home/melnyk/backups;

connect reset;

restore db sample taken at 20040629205935;

rollforward db sample to end of logs and stop;

connect to sample;

load query table newstaff;

connect reset;

Information returned by the LOAD QUERY command shows that the NEWSTAFF table is in Not

Load Restartable and Load Pending state.

connect to sample;

load from staffdata.del of del terminate into newstaff copy yes to /home/melnyk/backups;

load query table newstaff;

connect reset;

Information returned by the LOAD QUERY command shows that the NEWSTAFF table is now in

Normal state.

Read Access

Only

Given load input file staffdata.del with a substantial amount of data (for example, 20000 or more

records):

connect to sample;

export to st_data.del of del select * from staff;

create table newstaff like staff;

import from st_data.del of del insert into newstaff;

load from staffdata.del of del insert into newstaff allow read access;

While the load operation is running, execute the following script from another session:

connect to sample;

load query table newstaff;

select * from newstaff;

connect reset;

Information returned by the LOAD QUERY command shows that the NEWSTAFF table is in Read

Access Only and Load in Progress state. The query returns only the exported contents of the

STAFF table, data that existed in the NEWSTAFF table prior to the load operation.

Set Integrity

Pending

Given load input file staff_data.del with content:

11,″Melnyk″,20,″Sales″,10,70000,15000:

connect to sample;

alter table staff add constraint max_salary check (100000 - salary > 0);

load from staff_data.del of del insert into staff;

load query table staff;

Information returned by the LOAD QUERY command shows that the STAFF table is in Set

Integrity Pending state.

318 Data Movement Utilities Guide and Reference

Table 47. Supported table states (continued)

State Examples

Unavailable Given load input file staff_data.del with content:

11,″Melnyk″,20,″Sales″,10,70000,15000:

update db cfg for sample using logretain recovery;

backup db sample;

The timestamp for this backup image is: 20040629182012

connect to sample;

load from staff_data.del of del insert into staff nonrecoverable;

connect reset;

restore db sample taken at 20040629182012;

rollforward db sample to end of logs and stop;

connect to sample;

load query table staff;

connect reset;

Information returned by the LOAD QUERY command shows that the STAFF table is in

Unavailable state.

For additional information about table states, see the Related links section.

The progress of a load operation can also be monitored with the LIST UTILITIES

command.

LIST TABLESPACES

Lists table spaces and information about table spaces for the current database.

Information displayed by this command is also available in the table space

snapshot.

Scope

This command returns information only for the database partition on which it is

executed.

Authorization

One of the following:

v sysadm

v sysctrl

v sysmaint

v sysmon

v dbadm

v LOAD authority

Required connection

Database

Chapter 4. Load utility 319

Command syntax

�� LIST TABLESPACES

SHOW DETAIL
 ��

Command parameters

SHOW DETAIL

If this option is not specified, only the following basic information about

each table space is provided:

v Table space ID

v Name

v Type (system managed space or database managed space)

v Contents (any data, long or index data, or temporary data)

v State, a hexadecimal value indicating the current table space state. The

externally visible state of a table space is composed of the hexadecimal

sum of certain state values. For example, if the state is ″quiesced:

EXCLUSIVE″ and ″Load pending″, the value is 0x0004 + 0x0008, which

is 0x000c. The db2tbst (Get Tablespace State) command can be used to

obtain the table space state associated with a given hexadecimal value.

Following are the bit definitions listed in sqlutil.h:

 0x0 Normal

 0x1 Quiesced: SHARE

 0x2 Quiesced: UPDATE

 0x4 Quiesced: EXCLUSIVE

 0x8 Load pending

 0x10 Delete pending

 0x20 Backup pending

 0x40 Roll forward in progress

 0x80 Roll forward pending

 0x100 Restore pending

 0x100 Recovery pending (not used)

 0x200 Disable pending

 0x400 Reorg in progress

 0x800 Backup in progress

 0x1000 Storage must be defined

 0x2000 Restore in progress

 0x4000 Offline and not accessible

 0x8000 Drop pending

 0x20000 Load in progress

 0x2000000 Storage may be defined

 0x4000000 StorDef is in ’final’ state

 0x8000000 StorDef was change prior to roll forward

 0x10000000 DMS rebalance in progress

 0x20000000 Table space deletion in progress

 0x40000000 Table space creation in progress

If this option is specified, the following additional information about each

table space is provided:

v Total number of pages

v Number of usable pages

v Number of used pages

v Number of free pages

v High water mark (in pages)

v Page size (in bytes)

v Extent size (in pages)

v Prefetch size (in pages)

320 Data Movement Utilities Guide and Reference

v Number of containers

v Minimum recovery time (displayed only if not zero)

v State change table space ID (displayed only if the table space state is

″load pending″ or ″delete pending″)

v State change object ID (displayed only if the table space state is ″load

pending″ or ″delete pending″)

v Number of quiescers (displayed only if the table space state is ″quiesced:

SHARE″, ″quiesced: UPDATE″, or ″quiesced: EXCLUSIVE″)

v Table space ID and object ID for each quiescer (displayed only if the

number of quiescers is greater than zero).

Examples

The following are two sample outputs from LIST TABLESPACES SHOW DETAIL.

 Tablespaces for Current Database

 Tablespace ID = 0

 Name = SYSCATSPACE

 Type = Database managed space

 Contents = Any data

 State = 0x0000

 Detailed explanation:

 Normal

 Total pages = 895

 Useable pages = 895

 Used pages = 895

 Free pages = Not applicable

 High water mark (pages) = Not applicable

 Page size (bytes) = 4096

 Extent size (pages) = 32

 Prefetch size (pages) = 32

 Number of containers = 1

 Tablespace ID = 1

 Name = TEMPSPACE1

 Type = System managed space

 Contents = Temporary data

 State = 0x0000

 Detailed explanation:

 Normal

 Total pages = 1

 Useable pages = 1

 Used pages = 1

 Free pages = Not applicable

 High water mark (pages) = Not applicable

 Page size (bytes) = 4096

 Extent size (pages) = 32

 Prefetch size (pages) = 32

 Number of containers = 1

 Tablespace ID = 2

 Name = USERSPACE1

 Type = Database managed space

 Contents = Any data

 State = 0x000c

 Detailed explanation:

 Quiesced: EXCLUSIVE

 Load pending

 Total pages = 337

 Useable pages = 337

 Used pages = 337

 Free pages = Not applicable

 High water mark (pages) = Not applicable

Chapter 4. Load utility 321

Page size (bytes) = 4096

 Extent size (pages) = 32

 Prefetch size (pages) = 32

 Number of containers = 1

 State change tablespace ID = 2

 State change object ID = 3

 Number of quiescers = 1

 Quiescer 1:

 Tablespace ID = 2

 Object ID = 3

DB21011I In a partitioned database server environment, only the table spaces

on the current node are listed.

 Tablespaces for Current Database

 Tablespace ID = 0

 Name = SYSCATSPACE

 Type = System managed space

 Contents = Any data

 State = 0x0000

 Detailed explanation:

 Normal

 Total pages = 1200

 Useable pages = 1200

 Used pages = 1200

 Free pages = Not applicable

 High water mark (pages) = Not applicable

 Page size (bytes) = 4096

 Extent size (pages) = 32

 Prefetch size (pages) = 32

 Number of containers = 1

 Tablespace ID = 1

 Name = TEMPSPACE1

 Type = System managed space

 Contents = Temporary data

 State = 0x0000

 Detailed explanation:

 Normal

 Total pages = 1

 Useable pages = 1

 Used pages = 1

 Free pages = Not applicable

 High water mark (pages) = Not applicable

 Page size (bytes) = 4096

 Extent size (pages) = 32

 Prefetch size (pages) = 32

 Number of containers = 1

Tablespace ID = 2

 Name = USERSPACE1

 Type = System managed space

 Contents = Any data

 State = 0x0000

 Detailed explanation:

 Normal

 Total pages = 1

 Useable pages = 1

 Used pages = 1

 Free pages = Not applicable

 High water mark (pages) = Not applicable

 Page size (bytes) = 4096

 Extent size (pages) = 32

 Prefetch size (pages) = 32

 Number of containers = 1

Tablespace ID = 3

 Name = DMS8K

322 Data Movement Utilities Guide and Reference

Type = Database managed space

 Contents = Any data

 State = 0x0000

 Detailed explanation:

 Normal

 Total pages = 2000

 Useable pages = 1952

 Used pages = 96

 Free pages = 1856

 High water mark (pages) = 96

 Page size (bytes) = 8192

 Extent size (pages) = 32

 Prefetch size (pages) = 32

 Number of containers = 2

Tablespace ID = 4

 Name = TEMP8K

 Type = System managed space

 Contents = Temporary data

 State = 0x0000

 Detailed explanation:

 Normal

 Total pages = 1

 Useable pages = 1

 Used pages = 1

 Free pages = Not applicable

 High water mark (pages) = Not applicable

 Page size (bytes) = 8192

 Extent size (pages) = 32

 Prefetch size (pages) = 32

 Number of containers = 1

DB21011I In a partitioned database server environment, only the table spaces

on the current node are listed.

Usage notes

In a partitioned database environment, this command does not return all the table

spaces in the database. To obtain a list of all the table spaces, query

SYSCAT.TABLESPACES.

During a table space rebalance, the number of usable pages includes pages for the

newly added container, but these new pages are not reflected in the number of free

pages until the rebalance is complete. When a table space rebalance is not in

progress, the number of used pages plus the number of free pages equals the

number of usable pages.

There are currently at least 25 table or table space states supported by the IBM DB2

database product. These states are used to control access to data under certain

circumstances, or to elicit specific user actions, when required, to protect the

integrity of the database. Most of them result from events related to the operation

of one of the DB2 utilities, such as the load utility, or the backup and restore

utilities.

The following table describes each of the supported table space states. The table

also provides you with working examples that show you exactly how to interpret

and respond to states that you might encounter while administering your database.

The examples are taken from command scripts that were run on AIX; you can

copy, paste and run them yourself. If you are running the DB2 database product on

a system that is not UNIX, ensure that any path names are in the correct format for

your system. Most of the examples are based on tables in the SAMPLE database

Chapter 4. Load utility 323

that comes with the DB2 database product. A few examples require scenarios that

are not part of the SAMPLE database, but you can use a connection to the

SAMPLE database as a starting point.

 Table 48. Supported table space states

State

Hexadecimal

state value Description Examples

Backup

Pending

0x20 A table space is in this

state after a point-in-time

table space rollforward

operation, or after a load

operation (against a

recoverable database) that

specifies the COPY NO

option. The table space (or,

alternatively, the entire

database) must be backed

up before the table space

can be used. If the table

space is not backed up,

tables within that table

space can be queried, but

not updated.

Note: A database must

also be backed up

immediately after it is

enabled for rollforward

recovery. A database is

recoverable if the logretain

database configuration

parameter is set to

RECOVERY, or the

userexit database

configuration parameter is

set to YES. You cannot

activate or connect to such

a database until it has been

backed up, at which time

the value of the

backup_pending

informational database

configuration parameter is

set to NO.

1. Given load input file staff_data.del with content:

11,″Melnyk″,20,″Sales″,10,70000,15000:

update db cfg for sample using logretain recovery;

backup db sample;

connect to sample;

load from staff_data.del of del messages load.msg

 insert into staff copy no;

update staff set salary = 69000 where id = 11;

2.

update db cfg for sample using logretain recovery;

connect to sample;

324 Data Movement Utilities Guide and Reference

Table 48. Supported table space states (continued)

State

Hexadecimal

state value Description Examples

Backup in

Progress

0x800 This is a transient state

that is only in effect during

a backup operation.

Issue an online BACKUP DATABASE command:

backup db sample online;

While the backup operation is running, execute the

following script from another session:

connect to sample;

1.

list tablespaces show detail;

or

2.

get snapshot for tablespaces on sample;

connect reset;

Information returned for USERSPACE1 shows that this

table space is in Backup in Progress state.

DMS

Rebalance

in Progress

0x10000000 This is a transient state

that is only in effect during

a data rebalancing

operation. When new

containers are added to a

table space that is defined

as database managed space

(DMS), or existing

containers are extended, a

rebalancing of the table

space data might occur.

Rebalancing is the process

of moving table space

extents from one location

to another in an attempt to

keep the data striped. An

extent is a unit of container

space (measured in pages),

and a stripe is a layer of

extents across the set of

containers for a table space.

Given load input file staffdata.del with a substantial

amount of data (for example, 20000 or more records):

connect to sample;

create tablespace ts1 managed by database using

 (file ’/home/melnyk/melnyk/NODE0000/SQL00001

/ts1c1’ 1024);

create table newstaff like staff in ts1;

load from staffdata.del of del insert into newstaff

 nonrecoverable;

alter tablespace ts1 add (file ’/home/melnyk/melnyk

/NODE0000/SQL00001/ts1c2’ 1024);

list tablespaces;

connect reset;

Information returned for TS1 shows that this table space is

in DMS Rebalance in Progress state.

Chapter 4. Load utility 325

Table 48. Supported table space states (continued)

State

Hexadecimal

state value Description Examples

Disable

Pending

0x200 A table space may be in

this state during a

database rollforward

operation and should no

longer be in this state by

the end of the rollforward

operation. The state is

triggered by conditions

that result from a table

space going offline and

compensation log records

for a transaction not being

written. The appearance

and subsequent

disappearance of this table

space state is transparent

to users.

An example illustrating this table space state is beyond the

scope of this document.

Drop

Pending

0x8000 A table space is in this

state if one or more of its

containers is found to have

a problem during a

database restart operation.

(A database must be

restarted if the previous

session with this database

terminated abnormally,

such as during a power

failure, for example.) If a

table space is in Drop

Pending state, it will not

be available, and can only

be dropped.

An example illustrating this table space state is beyond the

scope of this document.

Load in

Progress

0x20000 This is a transient state

that is only in effect during

a load operation (against a

recoverable database) that

specifies the COPY NO

option. See also Load in

Progress table state.

Given load input file staffdata.del with a substantial

amount of data (for example, 20000 or more records):

update db cfg for sample using logretain recovery;

backup db sample;

connect to sample;

create table newstaff like staff;

load from staffdata.del of del insert into newstaff

 copy no;

connect reset;

While the load operation is running, execute the following

script from another session:

connect to sample;

list tablespaces;

connect reset;

Information returned for USERSPACE1 shows that this

table space is in Load in Progress (and Backup Pending)

state.

326 Data Movement Utilities Guide and Reference

Table 48. Supported table space states (continued)

State

Hexadecimal

state value Description Examples

Normal 0x0 A table space is in Normal

state if it is not in any of

the other (abnormal) table

space states. Normal state

is the initial state of a table

space after it is created.

connect to sample;

create tablespace ts1 managed by database using

 (file ’/home/melnyk/melnyk/NODE0000/SQL00001

/tsc1’ 1024);

list tablespaces show detail;

Offline and

Not

Accessible

0x4000 A table space is in this

state if there is a problem

with one or more of its

containers. A container

might be inadvertently

renamed, moved, or

damaged. After the

problem has been rectified,

and the containers that are

associated with the table

space are accessible again,

this abnormal state can be

removed by disconnecting

all applications from the

database and then

reconnecting to the

database. Alternatively,

you can issue an ALTER

TABLESPACE statement,

specifying the SWITCH

ONLINE clause, to remove

the Offline and Not

Accessible state from the

table space without

disconnecting other

applications from the

database.

connect to sample;

create tablespace ts1 managed by database using

 (file ’/home/melnyk/melnyk/NODE0000/SQL00001

/tsc1’ 1024);

alter tablespace ts1 add (file ’/home/melnyk/melnyk

/NODE0000/SQL00001/tsc2’ 1024);

export to st_data.del of del select * from staff;

create table stafftemp like staff in ts1;

import from st_data.del of del insert into stafftemp;

connect reset;

Rename table space container tsc1 to tsc3 and then try to

query the STAFFTEMP table:

connect to sample;

select * from stafftemp;

The query returns SQL0290N (table space access is not

allowed), and the LIST TABLESPACES command returns a

state value of 0x4000 (Offline and Not Accessible) for TS1.

Rename table space container tsc3 back to tsc1. This time

the query runs successfully.

Quiesced

Exclusive

0x4 A table space is in this

state when the application

that invokes the table

space quiesce function has

exclusive (read or write)

access to the table space.

You can put a table space

in Quiesced Exclusive state

explicitly by issuing the

QUIESCE TABLESPACES

FOR TABLE command.

Ensure that the table space state is Normal before setting it

to Quiesced Exclusive.

connect to sample;

quiesce tablespaces for table staff reset;

quiesce tablespaces for table staff exclusive;

connect reset;

Execute the following script from another session:

connect to sample;

select * from staff where id=60;

update staff set salary=50000 where id=60;

list tablespaces;

connect reset;

Information returned for USERSPACE1 shows that this

table space is in Quiesced Exclusive state.

Chapter 4. Load utility 327

Table 48. Supported table space states (continued)

State

Hexadecimal

state value Description Examples

Quiesced

Share

0x1 A table space is in this

state when both the

application that invokes

the table space quiesce

function and concurrent

applications have read (but

not write) access to the

table space. You can put a

table space in Quiesced

Share state explicitly by

issuing the QUIESCE

TABLESPACES FOR

TABLE command.

Ensure that the table space state is Normal before setting it

to Quiesced Share.

connect to sample;

quiesce tablespaces for table staff reset;

quiesce tablespaces for table staff share;

connect reset;

Execute the following script from another session:

connect to sample;

select * from staff where id=40;

update staff set salary=50000 where id=40;

list tablespaces;

connect reset;

Information returned for USERSPACE1 shows that this

table space is in Quiesced Share state.

Quiesced

Update

0x2 A table space is in this

state when the application

that invokes the table

space quiesce function has

exclusive write access to

the table space. You can

put a table space in

Quiesced Update state

explicitly by issuing the

QUIESCE TABLESPACES

FOR TABLE command.

Ensure that the table space state is Normal before setting it

to Quiesced Update.

connect to sample;

quiesce tablespaces for table staff reset;

quiesce tablespaces for table staff intent to update;

connect reset;

Execute the following script from another session:

connect to sample;

select * from staff where id=50;

update staff set salary=50000 where id=50;

list tablespaces;

connect reset;

Information returned for USERSPACE1 shows that this

table space is in Quiesced Update state.

328 Data Movement Utilities Guide and Reference

Table 48. Supported table space states (continued)

State

Hexadecimal

state value Description Examples

Reorg in

Progress

0x400 This is a transient state

that is only in effect during

a reorg operation.

Issue a REORG TABLE command:

connect to sample;

reorg table staff;

connect reset;

While the reorg operation is running, execute the following

script from another session:

connect to sample;

1.

list tablespaces show detail;

or

2.

get snapshot for tablespaces on sample;

connect reset;

Information returned for USERSPACE1 shows that this

table space is in Reorg in Progress state.

Note: Table reorganization operations involving the

SAMPLE database are likely to complete in a short period

of time and, as a result, it may be difficult to observe the

Reorg in Progress state using this approach.

Restore

Pending

0x100 Table spaces for a database

are in this state after the

first part of a redirected

restore operation (that is,

before the SET

TABLESPACE

CONTAINERS command

is issued). The table space

(or the entire database)

must be restored before the

table space can be used.

You cannot connect to the

database until the restore

operation has been

successfully completed, at

which time the value of

the restore_pending

informational database

configuration parameter is

set to NO.

When the first part of the redirected restore operation in

Storage May be Defined completes, all of the table spaces

are in Restore Pending state.

Chapter 4. Load utility 329

Table 48. Supported table space states (continued)

State

Hexadecimal

state value Description Examples

Restore in

Progress

0x2000 This is a transient state

that is only in effect during

a restore operation.

update db cfg for sample using logretain recovery;

backup db sample;

backup db sample tablespace (userspace1);

The timestamp for this backup image is:

20040611174124

restore db sample tablespace (userspace1) online

 taken at 20040611174124;

While the restore operation is running, execute the

following script from another session:

connect to sample;

1.

list tablespaces show detail;

or

2.

get snapshot for tablespaces on sample;

connect reset;

Information returned for USERSPACE1 shows that this

table space is in Restore in Progress state.

Roll

Forward

Pending

0x80 A table space is in this

state after a restore

operation against a

recoverable database. The

table space (or the entire

database) must be rolled

forward before the table

space can be used. A

database is recoverable if

the logretain database

configuration parameter is

set to RECOVERY, or the

userexit database

configuration parameter is

set to YES. You cannot

activate or connect to the

database until a

rollforward operation has

been successfully

completed, at which time

the value of the

rollfwd_pending

informational database

configuration parameter is

set to NO.

When the online table space restore operation in Restore in

Progress completes, the table space USERSPACE1 is in Roll

Forward Pending state.

330 Data Movement Utilities Guide and Reference

Table 48. Supported table space states (continued)

State

Hexadecimal

state value Description Examples

Roll

Forward in

Progress

0x40 This is a transient state

that is only in effect during

a rollforward operation.

Given load input file staffdata.del with a substantial

amount of data (for example, 20000 or more records):

update db cfg for sample using logretain recovery;

backup db sample;

connect to sample;

create tablespace ts1 managed by database using

 (file ’/home/melnyk/melnyk/NODE0000/SQL00001

/ts1c1’ 1024);

create table newstaff like staff in ts1;

connect reset;

backup db sample tablespace (ts1) online;

The timestamp for this backup image is:

20040630000715

connect to sample;

load from staffdata.del of del insert into newstaff

 copy yes to /home/melnyk/backups;

connect reset;

restore db sample tablespace (ts1) online taken at

 20040630000715;

rollforward db sample to end of logs and stop

 tablespace (ts1) online;

While the rollforward operation is running, execute the

following script from another session:

connect to sample;

1.

list tablespaces show detail;

or

2.

get snapshot for tablespaces on sample;

connect reset;

Information returned for TS1 shows that this table space is

in Roll Forward in Progress state.

Storage

May be

Defined

0x2000000 Table spaces for a database

are in this state after the

first part of a redirected

restore operation (that is,

before the SET

TABLESPACE

CONTAINERS command

is issued). This allows you

to redefine the containers,

if you wish.

backup db sample;

Assuming that the timestamp for this backup image is

20040613204955:

restore db sample taken at 20040613204955 redirect;

list tablespaces;

Information returned by the LIST TABLESPACES

command shows that all of the table spaces are in Storage

May be Defined and Restore Pending state.

Chapter 4. Load utility 331

Table 48. Supported table space states (continued)

State

Hexadecimal

state value Description Examples

Storage

Must be

Defined

0x1000 Table spaces for a database

are in this state during a

redirected restore operation

to a new database if the set

table space containers

phase is omitted or if,

during the set table space

containers phase, the

specified containers cannot

be acquired. The latter can

occur if, for example, an

invalid path name has

been specified, or there is

insufficient disk space.

backup db sample;

Assuming that the timestamp for this backup image is

20040613204955:

restore db sample taken at 20040613204955 into

 mydb redirect;

set tablespace containers for 2 using

 (path ’ts2c1’);

list tablespaces;

Information returned by the LIST TABLESPACES

command shows that table space SYSCATSPACE and table

space TEMPSPACE1 are in Storage Must be Defined,

Storage May be Defined, and Restore Pending state.

Storage Must be Defined state takes precedence over

Storage May be Defined state.

Table Space

Creation in

Progress

0x40000000 This is a transient state

that is only in effect during

a create table space

operation.

connect to sample;

create tablespace ts1 managed by database using

 (file ’/home/melnyk/melnyk/NODE0000/SQL00001

/tsc1’ 1024);

create tablespace ts2 managed by database using

 (file ’/home/melnyk/melnyk/NODE0000/SQL00001

/tsc2’ 1024);

create tablespace ts3 managed by database using

 (file ’/home/melnyk/melnyk/NODE0000/SQL00001

/tsc3’ 1024);

While the create table space operations are running,

execute the following script from another session:

connect to sample;

1.

list tablespaces show detail;

or

2.

get snapshot for tablespaces on sample;

connect reset;

Information returned for TS1, TS2, and TS3 shows that

these table spaces are in Table Space Creation in Progress

state.

332 Data Movement Utilities Guide and Reference

Table 48. Supported table space states (continued)

State

Hexadecimal

state value Description Examples

Table Space

Deletion in

Progress

0x20000000 This is a transient state

that is only in effect during

a delete table space

operation.

connect to sample;

create tablespace ts1 managed by database using

 (file ’/home/melnyk/melnyk/NODE0000/SQL00001

/tsc1’ 1024);

create tablespace ts2 managed by database using

 (file ’/home/melnyk/melnyk/NODE0000/SQL00001

/tsc2’ 1024);

create tablespace ts3 managed by database using

 (file ’/home/melnyk/melnyk/NODE0000/SQL00001

/tsc3’ 1024);

drop tablespace ts1;

drop tablespace ts2;

drop tablespace ts3;

While the drop table space operations are running, execute

the following script from another session:

connect to sample;

1.

list tablespaces show detail;

or

2.

get snapshot for tablespaces on sample;

connect reset;

Information returned for TS1, TS2, and TS3 shows that

these table spaces are in Table Space Deletion in Progress

state.

For additional information about table space states, see the Related links section.

Chapter 4. Load utility 333

334 Data Movement Utilities Guide and Reference

Chapter 5. Other data movement options

Moving tables online by using the ADMIN_MOVE_TABLE procedure

Using the ADMIN_MOVE_TABLE procedure, you can move tables by using an

online or offline move. Use an online table move instead of an offline table move if

you value availability more than cost, space, move performance, and transaction

overhead.

Ensure there is sufficient disk space to accommodate the copies of the table and

index, the staging table, and the additional log entries.

You can move a table online by calling the stored procedure once or multiple

times, one call for each operation performed by the procedure. Using multiple calls

provides you with additional options, such as cancelling the move or controlling

when the target table is taken offline to be updated.

When you call the SYSPROC.ADMIN_MOVE_TABLE procedure, a shadow copy of

the source table is created. During the copy phase, changes to the source table

(updates, insertions, or deletions) are captured using triggers and placed in a

staging table. After the copy phase is completed, the changes captured in the

staging table are replayed to the shadow copy. Following that, the stored

procedure briefly takes the source table offline and assigns the source table name

and index names to the shadow copy and its indexes. The shadow table is then

brought online, replacing the source table. By default, the source table is dropped,

but you can use the KEEP option to retain it under a different name.

Avoid performing online moves for tables without indexes, particularly unique

indexes. Performing a online move for a table without a unique index might result

in deadlocks and complex or expensive replay.

Procedure

To move a table online:

1. Call the ADMIN_MOVE_TABLE procedure in one of the following ways:

v Call the ADMIN_MOVE_TABLE procedure once, specifying at least the

schema name of the source table, the source table name, and an operation

type of MOVE. For example, use the following syntax to move the data to an

existing table within the same table space:

CALL SYSPROC.ADMIN_MOVE_TABLE (

’schema name’,

’source table’,

’’,

’’,

’’,

’’,

’’,

’’,

’’,

’’,

’MOVE’)

v Call the ADMIN_MOVE_TABLE procedure multiple times, once for each

operation, specifying at least the schema name of the source table, the source

© Copyright IBM Corp. 1993, 2009 335

table name, and an operation name. For example, use the following syntax to

move the data to a new table within the same table space:

CALL SYSPROC.ADMIN_MOVE_TABLE (

’schema name’,

’source table’,

’’,

’’,

’’,

’’,

’’,

’’,

’’,

’’,

’operation name’)

where operation name is one of the following values: INIT, COPY, REPLAY,

VERIFY, or SWAP. You must call the procedure based on this order of

operations, for example, you must specify INIT as the operation name in the

first call.

Note: The VERIFY operation is costly; perform this operation only if you

require it for your table move.
2. If the online move fails, rerun it:

a. Fix the problem that caused the table move to fail.

b. Determine the stage that was in progress when the table move failed by

querying the SYSTOOLS.ADMIN_MOVE_TABLE protocol table for the

status.

c. Call the stored procedure again, specifying the applicable option:

v If the status of the procedure is INIT, use the INIT option.

v If the status of the procedure is COPY, use the COPY option.

v If the status of the procedure is REPLAY, use the REPLAY or SWAP

option.

v If the status of the procedure is CLEANUP, use the CLEANUP option.

If the status of an online table move is not COMPLETED or CLEANUP, you

can cancel the move by specifying the CANCEL option for the stored

procedure.

In this example, assume that you have a table named T1, in schema SVALENTI,

that you want to move to the ACCOUNTING table space without taking T1

offline. To move the table, call the ADMIN_MOVE_TABLE as follows. Because you

are moving the table into a new table space, you must specify the DATA, INDEX,

and LONG table spaces.

CALL SYSPROC.ADMIN_MOVE_TABLE(

’SVALENTI’,

’T1’,

’ACCOUNTING’,

’ACCOUNTING’,

’ACCOUNTING’,

’’,

’’,

’’,

’’,

’’,

’MOVE’)

In this example, assume that you want to move the T1 table within the same table

space. One of the T1 columns, C1, uses the deprecated datatype LONG

336 Data Movement Utilities Guide and Reference

VARCHAR, so you also want to change C1 to use a compatible data type. To move

the table and to use a new data type for C1, call the ADMIN_MOVE_TABLE

procedure as follows:

CALL SYSPROC.ADMIN_MOVE_TABLE(

’SVALENTI’,

’T1’,

’’,

’’,

’’,

’’,

’’,

’’,

’C1 VARCHAR(1000), C2 INT(5), C3 CHAR(5), C4 CLOB’,

’’,

’MOVE’)

Note: You cannot change the column name during this operation.

In this example, assume that you created a table named T2 by issuing the

following statement:

CREATE TABLE T1(C1 BIGINT,C2 BIGINT,C3 CHAR(20),C4 DEC(10,2),C5 TIMESTAMP,C6 BIGINT

 GENERATED ALWAYS AS (C1+c2),C7 GRAPHIC(10),C8 VARGRAPHIC(20),C9 XML

To move the table within the same table space, dropping columns C5 and C6, call

the ADMIN_MOVE_TABLE procedure as follows:

CALL SYSPROC.ADMIN_MOVE_TABLE(

’SVALENTI’,

’T1’,

’’,

’’,

’’,

’’,

’’,

’’,

’c1 BIGINT,c2 BIGINT ,c3 CHAR(20),c4 DEC(10,2),c7 GRAPHIC(10),c8 VARGRAPHIC(20),c9 XML’,

’’,

’MOVE’)

Moving data with DB2 Connect

If you are working in a complex environment in which you need to move data

between a host database system and a workstation, you can use DB2 Connect, the

gateway for data transfer between the host and the workstation (see Figure 17 on

page 338).

Chapter 5. Other data movement options 337

The DB2 export and import utilities allow you to move data from an IBM

mainframe server database to a file on the DB2 Connect workstation, and the

reverse. You can then use the data with any other application or relational database

management system that supports this export or import format. For example, you

can export data from an IBM mainframe server database into a PC/IXF file, and

then import it into a DB2 Database for Linux, UNIX, and Windows database.

You can perform export and import operations from a database client or from the

DB2 Connect workstation.

Note:

1. The data to be exported or imported must comply with the size and data type

restrictions that are applicable to both databases.

2. To improve import performance, you can use compound queries. Specify the

compound file type modifier in the import utility to group a specified number of

query statements into a block. This can reduce network overhead and improve

response time.

With DB2 Connect, export and import operations must meet the following

conditions:

v The file type must be PC/IXF.

v A target table with attributes that are compatible with the data must be created

on the target server before you can import to it. The db2look utility can be used

to get the attributes of the source table. Import through DB2 Connect cannot

create a table, because INSERT is the only supported option.

If any of these conditions is not met, the operation fails, and an error message is

returned.

Note: Index definitions are not stored on export or used on import.

If you export or import mixed data (columns containing both single-byte and

double-byte data), consider the following:

v On systems that store data in EBCDIC (MVS, System z®, IBM Power Systems®,

VM, and VSE), shift-out and shift-in characters mark the start and the end of

Figure 17. Import/Export through DB2 Connect

338 Data Movement Utilities Guide and Reference

double-byte data. When you define column lengths for your database tables, be

sure to allow enough room for these characters.

v Variable-length character columns are recommended, unless the column data has

a consistent pattern.

Moving Data from a workstation to a host server

To move data to a host or System i server database:

1. Export the data from a DB2 table to a PC/IXF file

2. Using the INSERT option, import the PC/IXF file into a compatible table in the

host server database.

To move data from a host server database to a workstation:

1. Export the data from the host server database table to a PC/IXF file.

2. Import the PC/IXF file into a DB2 table.

Example

The following example illustrates how to move data from a workstation to a host

or System i server database.

Export the data into an external IXF format by issuing the following command:

 db2 export to staff.ixf of ixf select * from userid.staff

Issue the following command to establish a DRDA connection to the target DB2

database:

 db2 connect to cbc664 user admin using xxx

If it doesn’t already exit, create the target table on the target DB2 database

instance:

 CREATE TABLE mydb.staff (ID SMALLINT NOT NULL, NAME VARCHAR(9),

 DEPT SMALLINT, JOB CHAR(5), YEARS SMALLINT, SALARY DECIMAL(7,2),

 COMM DECIMAL(7,2))

To import the data issue the following command:

 db2 import from staff.ixf of ixf insert into mydb.staff

Each row of data will be read from the file in IXF format, and an SQL INSERT

statement will be issued to insert the row into table mydb.staff. Single rows will

continue to be inserted until all of the data has been moved to the target table.

Detailed information is available in ″Moving Data Across the DB2 Family,″ an IBM

Redbooks® publication. This Redbooks publication can be found at the following

URL: http://www.redbooks.ibm.com/redbooks/SG246905.

The IBM Replication Tools by Component

IBM offers two primary replication solutions: Q replication and SQL replication.

The primary components of Q replication are the Q Capture program and the Q

Apply program. The primary components of SQL replication are the Capture

program and Apply program. Both types of replication share the Replication Alert

Monitor tool. You can set up and administer these replication components using

the Replication Center and the ASNCLP command-line program.

Chapter 5. Other data movement options 339

The following list briefly summarizes these replication components:

Q Capture program

Reads the DB2 recovery log looking for changes to DB2 source tables and

translates committed source data into WebSphere® MQ messages that can be

published in XML format to a subscribing application, or replicated in a compact

format to the Q Apply program.

Q Apply program

Takes WebSphere MQ messages from a queue, transforms the messages into SQL

statements, and updates a target table or stored procedure. Supported targets

include DB2 databases or subsystems and Oracle, Sybase, Informix® and Microsoft®

SQL Server databases that are accessed through federated server nicknames.

Capture program

Reads the DB2 recovery log for changes made to registered source tables or views

and then stages committed transactional data in relational tables called change-data

(CD) tables, where they are stored until the target system is ready to copy them.

SQL replication also provides Capture triggers that populate a staging table called

a consistent-change-data (CCD) table with records of changes to non-DB2 source

tables.

Apply program

Reads data from staging tables and makes the appropriate changes to targets. For

non-DB2 data sources, the Apply program reads the CCD table through that table’s

nickname on the federated database and makes the appropriate changes to the

target table.

Replication Alert Monitor

A utility that checks the health of the Q Capture, Q Apply, Capture, and Apply

programs. It checks for situations in which a program terminates, issues a warning

or error message, reaches a threshold for a specified value, or performs a certain

action, and then issues notifications to an email server, pager, or the z/OS console.

Use the Replication Center to:

v Define registrations, subscriptions, publications, queue maps, alert conditions,

and other objects.

v Start, stop, suspend, resume, and reinitialize the replication programs.

v Specify the timing of automated copying.

v Specify SQL enhancements to the data.

v Define relationships between the source and the target tables.

Copying schemas

The db2move utility and the ADMIN_COPY_SCHEMA procedure allow you to

quickly make copies of a database schema. Once a model schema is established,

you can use it as a template for creating new versions.

Use the ADMIN_COPY_SCHEMA procedure to copy a single schema within the

same database or the db2move utility with the -co COPY action to copy a single

340 Data Movement Utilities Guide and Reference

schema or multiple schemas from a source database to a target database. Most

database objects from the source schema are copied to the target database under

the new schema.

Troubleshooting tips

Both the ADMIN_COPY_SCHEMA procedure and the db2move utility invoke the

LOAD command. While the load is processing, the table spaces wherein the

database target objects reside are put into backup pending state.

ADMIN_COPY_SCHEMA procedure

Using this procedure with the COPYNO option places the table spaces

wherein the target object resides into backup pending state, as described in

the note above. To get the table space out of the set integrity pending state,

this procedure issues a SET INTEGRITY statement. In situations where a

target table object has referential constraints defined, the target table is also

placed in the set integrity pending state. Because the table spaces are

already in backup pending state, the ADMIN_COPY_SCHEMA procedure’s

attempt to issue a SET INTEGRITY statement will fail.

 To resolve this situation, issue a BACKUP DATABASE command to get the

affected table spaces out of backup pending state. Next, look at the

Statement_text column of the error table generated by this procedure to

find a list of tables in the set integrity pending state. Then issue the SET

INTEGRITY statement for each of the tables listed to take each table out of

the set integrity pending state.

db2move utility

This utility attempts to copy all allowable schema objects with the

exception of the following types:

v table hierarchy

v staging tables (not supported by the load utility in multiple partition

database environments)

v jars (Java™ routine archives)

v nicknames

v packages

v view hierarchies

v object privileges (All new objects are created with default authorizations)

v statistics (New objects do not contain statistics information)

v index extensions (user-defined structured type related)

v user-defined structured types and their transform functions

Unsupported type errors

If an object of one of the unsupported types is detected in the source

schema, an entry is logged to an error file, indicating that an unsupported

object type is detected. The COPY operation will still succeed–the logged

entry is meant to inform you of objects not copied by this operation.

Objects not coupled with schemas

Objects that are not coupled with a schema, such as table spaces and event

monitors, are not operated on during a copy schema operation. You should

create them on the target database before the copy schema operation is

invoked.

Chapter 5. Other data movement options 341

Replicated tables

When copying a replicated table, the new copy of the table is not enabled

for replication. The table is re-created as a regular table.

Different instances

The source database must be cataloged if it does not reside in the same

instance as the target database.

SCHEMA_MAP option

When using the SCHEMA_MAP option to specify a different schema name

on the target database, the copy schema operation will perform only

minimal parsing of the object definition statements to replace the original

schema name with the new schema name. For example, any instances of

the original schema that appear inside the contents of an SQL procedure

are not replaced with the new schema name. Thus the copy schema

operation might fail to recreate these objects. You can use the DDL in the

error file to manually recreate these failed objects after the copy operation

completes.

Interdependencies between objects

The copy schema operation attempts to recreate objects in an order that

satisfies the interdependencies between these objects. For example, if a

table T1 contains a column that references a user-defined function U1, then

it will recreate U1 before recreating T1. However, dependency information

for procedures is not readily available in the catalogs, so when recreating

procedures, the copy schema operation will first attempt to recreate all

procedures, then retry to recreate those that failed (on the assumption that

if they depended on a procedure that was successfully created during the

previous attempt, then during a subsequent attempt they will be recreated

successfully). The operation will continually try to recreate these failed

procedures as long as it is able to successfully recreate one or more during

a subsequent attempt. During every attempt at recreating a procedure, an

error (and DDL) is logged into the error file. You might see many entries in

the error file for the same procedures, but these procedures might have

even been successfully recreated during a subsequent attempt. You should

query the SYSCAT.PROCEDURES table upon completion of the copy

schema operation to determine if these procedures listed in the error file

were successfully recreated.

For more information, see the ADMIN_COPY_SCHEMA procedure and the

db2move utility.

Examples of schema copy using the db2move utility

Use the db2move utility with the -co COPY action to copy one or more schemas

from a source database to a target database. Once a model schema is established,

you can use it as a template for creating new versions.

Example 1: Using the -c COPY options

The following example of the db2move -co COPY options copies the

schema BAR and renames it FOO from the sample database to the target

database:

 db2move sample COPY -sn BAR -co target_db target schema_map

 "((BAR,FOO))" -u userid -p password

The new (target) schema objects are created using the same object names as

the objects in the source schema, but with the target schema qualifier. It is

342 Data Movement Utilities Guide and Reference

possible to create copies of tables with or without the data from the source

table. The source and target databases can be on different systems.

Example 2: Specifying table space name mappings during the COPY operation

The following example shows how to specify specific table space name

mappings to be used instead of the table spaces from the source system

during a db2move COPY operation. You can specify the SYS_ANY

keyword to indicate that the target table space should be chosen using the

default table space selection algorithm. In this case, the db2move utility

chooses any available table space to be used as the target:

 db2move sample COPY -sn BAR -co target_db target schema_map

 "((BAR,FOO))" tablespace_map "(SYS_ANY)" -u userid -p password

The SYS_ANY keyword can be used for all table spaces, or you can specify

specific mappings for some table spaces, and the default table space

selection algorithm for the remaining:

 db2move sample COPY -sn BAR -co target_db target schema_map "

 ((BAR,FOO))" tablespace_map "((TS1, TS2),(TS3, TS4), SYS_ANY)"

 -u userid -p password

This indicates that table space TS1 is mapped to TS2, TS3 is mapped to

TS4, but the remaining table spaces use a default table space selection

algorithm.

Example 3: Changing the object owners after the COPY operation

You can change the owner of each new object created in the target schema

after a successful COPY. The default owner of the target objects is the

connect user. If this option is specified, ownership is transferred to a new

owner as demonstrated:

 db2move sample COPY -sn BAR -co target_db target schema_map

 "((BAR,FOO))" tablespace_map "(SYS_ANY)" owner jrichards

 -u userid -p password

The new owner of the target objects is jrichards.

 The db2move utility must be invoked on the target system if source and

target schemas reside on different systems. For copying schemas from one

database to another, this action requires a list of schema names to be

copied from a source database, separated by commas, and a target

database name.

To copy a schema, issue db2move from an OS command prompt as

follows:

 db2move <dbname> COPY -co <COPY- options>

 -u <userid> -p <password>

db2move - Database movement tool

This tool, when used in the EXPORT/IMPORT/LOAD mode, facilitates the

movement of large numbers of tables between DB2 databases located on

workstations. The tool queries the system catalog tables for a particular database

and compiles a list of all user tables. It then exports these tables in PC/IXF format.

The PC/IXF files can be imported or loaded to another local DB2 database on the

same system, or can be transferred to another workstation platform and imported

or loaded to a DB2 database on that platform. Tables with structured type columns

are not moved when this tool is used. When used in the COPY mode, this tool

facilitates the duplication of a schema.

Chapter 5. Other data movement options 343

Authorization

This tool calls the DB2 export, import, and load APIs, depending on the action

requested by the user. Therefore, the requesting user ID must have the correct

authorization required by those APIs, or the request will fail.

Command syntax

��

db2move

dbname

action

�

-tc

table-definers

-tn

table-names

-sn

schema-names

-ts

tablespace-names

-tf

filename

-io

import-option

-lo

load-option

-co

copy-option

-l

lobpaths

-u

userid

-p

password

-aw

��

Command parameters

dbname

Name of the database.

action Must be one of:

EXPORT

Exports all tables that meet the filtering criteria in options. If no

options are specified, exports all the tables. Internal staging

information is stored in the db2move.lst file.

IMPORT

Imports all tables listed in the internal staging file db2move.lst.

Use the -io option for IMPORT specific actions.

LOAD

Loads all tables listed in the internal staging file db2move.lst. Use

the -lo option for LOAD specific actions.

COPY Duplicates a schema(s) into a target database. Use the -sn option to

specify one or more schemas. See the -co option for COPY specific

options. Use the -tn or -tf option to filter tables in LOAD_ONLY

mode.

See below for a list of files that are generated during each action.

-tc table-definers

The default is all definers.

 This is an EXPORT action only. If specified, only those tables created by

the definers listed with this option are exported. If not specified, the

default is to use all definers. When specifying multiple definers, they must

be separated by commas; no blanks are allowed between definer IDs. This

option can be used with the -tn table-names option to select the tables for

export.

344 Data Movement Utilities Guide and Reference

An asterisk (*) can be used as a wildcard character that can be placed

anywhere in the string.

-tn table-names

The default is all user tables.

 This is an EXPORT or COPY action only.

If specified with the EXPORT action, only those tables whose names match

those in the specified string are exported. If not specified, the default is to

use all user tables. When specifying multiple table names, they must be

separated by commas; no blanks are allowed between table names. Table

names should be listed unqualified and the -sn option should be used to

filter schemas.

For export, an asterisk (*) can be used as a wildcard character that can be

placed anywhere in the string.

If specified with the COPY action, the -co ″MODE″ LOAD_ONLY

copy-option must also be specified, and only those tables specified will be

repopulated on the target database. The table names should be listed with

their schema qualifier in the format ″schema″.″table″.

-sn schema-names

The default for EXPORT is all schemas (not for COPY).

 If specified, only those tables whose schema names match will be exported

or copied. If multiple schema names are specified, they must be separated

by commas; no blanks are allowed between schema names. Schema names

of less than 8 characters are padded to 8 characters in length.

In the case of export: If the asterisk wildcard character (*) is used in the

schema names, it will be changed to a percent sign (%) and the table name

(with percent sign) will be used in the LIKE predicate of the WHERE

clause. If not specified, the default is to use all schemas. If used with the

-tn or -tc option, db2move will only act on those tables whose schemas

match the specified schema names and whose definers match the specified

definers. A schema name fred has to be specified -sn fr*d* instead of -sn

fr*d when using an asterisk.

-ts tablespace-names

The default is all table spaces.

 This is an EXPORT action only. If this option is specified, only those tables

that reside in the specified table space will be exported. If the asterisk

wildcard character (*) is used in the table space name, it will be changed to

a percent sign (%) and the table name (with percent sign) will be used in

the LIKE predicate in the WHERE clause. If the -ts option is not specified,

the default is to use all table spaces. If multiple table space names are

specified, they must be separated by commas; no blanks are allowed

between table space names. Table space names less than 8 characters are

padded to 8 characters in length. For example, a table space name mytb has

to be specified -ts my*b* instead of -sn my*b when using the asterisk.

-tf filename

 If specified with EXPORT action, only those tables whose names match

exactly those in the specified file are exported. If not specified, the default

is to use all user tables. The tables should be listed one per line, and each

table should be fully qualified. Wildcard characters are not allowed in the

strings. Here is an example of the contents of a file:

Chapter 5. Other data movement options 345

"SCHEMA1"."TABLE NAME1"

 "SCHEMA NAME77"."TABLE155"

If specified with the COPY action, the -co ″MODE″ LOAD_ONLY

copy-option must also be specified, and only those tables specified in the file

will be repopulated on the target database. The table names should be

listed with their schema qualifier in the format ″schema″.″table″.

-io import-option

The default is REPLACE_CREATE. See “IMPORT command options

CREATE and REPLACE_CREATE are deprecated” for limitations of import

create function.

 Valid options are: INSERT, INSERT_UPDATE, REPLACE, CREATE, and

REPLACE_CREATE.

-lo load-option

The default is INSERT.

 Valid options are: INSERT and REPLACE.

-co When the db2move action is COPY, the following -co follow-on options

will be available:

“TARGET_DB db name [USER userid USING password]”

Allows the user to specify the name of the target database and the

user/password. (The source database user/password can be

specified using the existing -p and -u options). The USER/USING

clause is optional. If USER specifies a userid, then the password

must either be supplied following the USING clause, or if it’s not

specified, then db2move will prompt for the password information.

The reason for prompting is for security reasons discussed below.

TARGET_DB is a mandatory option for the COPY action. The

TARGET_DB cannot be the same as the source database. The

ADMIN_COPY_SCHEMA procedure can be used for copying schemas

within the same database. The COPY action requires inputting at

least one schema (-sn) or one table (-tn or -tf).

 Running multiple db2move commands to copy schemas from one

database to another will result in deadlocks. Only one db2move

command should be issued at a time. Changes to tables in the

source schema during copy processing may mean that the data in

the target schema is not identical following a copy.

“MODE”

DDL_AND_LOAD

Creates all supported objects from the source schema, and

populates the tables with the source table data. This is the

default option.

DDL_ONLY

Creates all supported objects from the source schema, but

does not repopulate the tables.

LOAD_ONLY

Loads all specified tables from the source database to the

target database. The tables must already exist on the target.

The LOAD_ONLY mode requires inputting at least one

table using the -tn or -tf option.

This is an optional option that is only used with the COPY action.

346 Data Movement Utilities Guide and Reference

“SCHEMA_MAP”

Allows user to rename schema when copying to target. Provides a

list of the source-target schema mapping, separated by commas,

surrounded by brackets. e.g schema_map ((s1, t1), (s2, t2)). This

would mean objects from schema s1 will be copied to schema t1 on

the target; objects from schema s2 will be copied to schema t2 on

the target. The default, and recommended, target schema name is

the source schema name. The reason for this is db2move will not

attempt to modify the schema for any qualified objects within

object bodies. Therefore, using a different target schema name may

lead to problems if there are qualified objects within the object

body.

 For example:create view FOO.v1 as ‘select c1 from FOO.t1’

 In this case, copy of schema FOO to BAR, v1 will be regenerated

as:create view BAR.v1 as ‘select c1 from FOO.t1’

 This will either fail since schema FOO does not exist on the target

database, or have an unexpected result due to FOO being different

than BAR. Maintaining the same schema name as the source will

avoid these issues. If there are cross dependencies between

schemas, all inter-dependant schemas must be copied or there may

be errors copying the objects with the cross dependencies.

For example:create view FOO.v1 as ‘select c1 from BAR.t1’

 In this case, the copy of v1 will either fail if BAR is not copied as

well, or have an unexpected result if BAR on the target is different

than BAR from the source. db2move will not attempt to detect

cross schema dependencies.

This is an optional option that is only used with the COPY action.

“NONRECOVERABLE”

This option allows the user to override the default behavior of the

load to be done with COPY-NO. With the default behavior, the

user will be forced to take backups of each table space that was

loaded into. When specifying this NONRECOVERABLE keyword,

the user will not be forced to take backups of the table spaces

immediately. It is, however, highly recommended that the backups

be taken as soon as possible to ensure the newly created tables will

be properly recoverable. This is an optional option available to the

COPY action.

“OWNER”

Allows the user to change the owner of each new object created in

the target schema after a successful COPY. The default owner of

the target objects will be the connect user; if this option is

specified, ownership will be transferred to the new owner. This is

an optional option available to the COPY action.

“TABLESPACE_MAP”

The user may specify table space name mappings to be used

instead of the table spaces from the source system during a copy.

This will be an array of table space mappings surrounded by

brackets. For example, tablespace_map ((TS1, TS2),(TS3, TS4)).

This would mean that all objects from table space TS1 will be

copied into table space TS2 on the target database and objects from

table space TS3 will be copied into table space TS4 on the target. In

Chapter 5. Other data movement options 347

the case of ((T1, T2),(T2, T3)), all objects found in T1 on the

source database will be recreated in T2 on the target database and

any objects found in T2 on the source database will be recreated in

T3 on the target database. The default is to use the same table

space name as from the source, in which case, the input mapping

for this table space is not necessary. If the specified table space

does not exist, the copy of the objects using that table space will

fail and be logged in the error file.

 The user also has the option of using the SYS_ANY keyword to

indicate that the target table space should be chosen using the

default table space selection algorithm. In this case, db2move will

be able to choose any available table space to be used as the target.

The SYS_ANY keyword can be used for all table spaces, example:

tablespace_map SYS_ANY. In addition, the user can specify specific

mappings for some table spaces, and the default table space

selection algorithm for the remaining. For example, tablespace_map

((TS1, TS2),(TS3, TS4), SYS_ANY). This indicates that table space

TS1 is mapped to TS2, TS3 is mapped to TS4, but the remaining

table spaces will be using a default table space target. The SYS_ANY

keyword is being used since it’s not possible to have a table space

starting with ″SYS″.

This is an optional option available to the COPY action.

-l lobpaths

For IMPORT and EXPORT, if this option is specified, it will be also used

for XML paths. The default is the current directory.

 This option specifies the absolute path names where LOB or XML files are

created (as part of EXPORT) or searched for (as part of IMPORT or

LOAD). When specifying multiple paths, each must be separated by

commas; no blanks are allowed between paths. If multiple paths are

specified, EXPORT will use them in round-robin fashion. It will write one

LOB document to the first path, one to the second path, and so on up to

the last, then back to the first path. The same is true for XML documents.

If files are not found in the first path (during IMPORT or LOAD), the

second path will be used, and so on.

-u userid

The default is the logged on user ID.

 Both user ID and password are optional. However, if one is specified, the

other must be specified. If the command is run on a client connecting to a

remote server, user ID and password should be specified.

-p password

The default is the logged on password. Both user ID and password are

optional. However, if one is specified, the other must be specified. When

the -p option is specified, but the password not supplied, db2move will

prompt for the password. This is done for security reasons. Inputting the

password through command line creates security issues. For example, a ps

-ef command would display the password. If, however, db2move is

invoked through a script, then the passwords will have to be supplied. If

the command is issued on a client connecting to a remote server, user ID

and password should be specified.

-aw Allow Warnings. When -aw is not specified, tables that experience

warnings during export are not included in the db2move.lst file (although

that table’s .ixf file and .msg file are still generated). In some scenarios

348 Data Movement Utilities Guide and Reference

(such as data truncation) the user might want to allow such tables to be

included in the db2move.lst file. Specifying this option allows tables which

receive warnings during export to be included in the .lst file.

Examples

v To export all tables in the SAMPLE database (using default values for all

options), issue:

 db2move sample export

v To export all tables created by userid1 or user IDs LIKE us%rid2, and with the

name tbname1 or table names LIKE %tbname2, issue:

 db2move sample export -tc userid1,us*rid2 -tn tbname1,*tbname2

v To import all tables in the SAMPLE database (LOB paths D:\LOBPATH1 and

C:\LOBPATH2 are to be searched for LOB files; this example is applicable to

Windows operating systems only), issue:

 db2move sample import -l D:\LOBPATH1,C:\LOBPATH2

v To load all tables in the SAMPLE database (/home/userid/lobpath subdirectory

and the tmp subdirectory are to be searched for LOB files; this example is

applicable to Linux and UNIX systems only), issue:

 db2move sample load -l /home/userid/lobpath,/tmp

v To import all tables in the SAMPLE database in REPLACE mode using the

specified user ID and password, issue:

 db2move sample import -io replace -u userid -p password

v To duplicate schema schema1 from source database dbsrc to target database

dbtgt, issue:

 db2move dbsrc COPY -sn schema1 -co TARGET_DB dbtgt USER myuser1 USING mypass1

v To duplicate schema schema1 from source database dbsrc to target database

dbtgt, rename the schema to newschema1 on the target, and map source table

space ts1 to ts2 on the target, issue:

 db2move dbsrc COPY -sn schema1 -co TARGET_DB dbtgt USER myuser1 USING mypass1

 SCHEMA_MAP ((schema1,newschema1)) TABLESPACE_MAP ((ts1,ts2), SYS_ANY))

Usage notes

v A db2move EXPORT, followed by a db2move IMPORT/LOAD, facilitates the

movement of table data. It is necessary to manually move all other database

objects associated with the tables (such as aliases, views, or triggers) as well as

objects that these tables may depend on (such as user-defined types or

user-defined functions).

v If the IMPORT action with the CREATE or REPLACE_CREATE option is used to

create the tables on the target database (both options are deprecated and may be

removed in a future release), then the limitations outlined in “Imported table

re-creation” are imposed. If unexpected errors are encountered during the

db2move import phase when the REPLACE_CREATE option is used, examine

the appropriate tabnnn.msg message file and consider whether the errors might

be the result of the limitations on table creation.

v Tables that contain GENERATED ALWAYS identity columns cannot be imported

or loaded using db2move. You can, however, manually import or load these

tables. For more information, see “Identity column load considerations” or

“Identity column import considerations”.

v When export, import, or load APIs are called by db2move, the FileTypeMod

parameter is set to lobsinfile. That is, LOB data is kept in files that are separate

from the PC/IXF file, for every table.

Chapter 5. Other data movement options 349

v The LOAD command must be run locally on the machine where the database

and the data file reside.

v When using db2move LOAD and logretain is enabled for the database (the

database is recoverable):

– If the NONRECOVERABLE option is not specified, then db2move will invoke

the db2Load API using the default COPY NO option, and the table spaces

where the loaded tables reside are placed in the Backup Pending state upon

completion of the utility (a full database or table space backup is required to

take the table spaces out of the Backup Pending state).

– If the NONRECOVERABLE option is specified, the table spaces are not

placed in backup-pending state, however if rollforward recovery is performed

later, the table is marked inaccessible and it must be dropped. For more

information on Load recoverability options, see “Options for improving load

performance”.
v Performance for the db2move command with the IMPORT or LOAD actions can

be improved by altering the default buffer pool, IBMDEFAULTBP, and by

updating the configuration parameters sortheap, util_heap_sz, logfilsiz, and

logprimary.

Files Required/Generated When Using EXPORT:

v Input: None.

v Output:

EXPORT.out

The summarized result of the EXPORT action.

db2move.lst

The list of original table names, their corresponding PC/IXF file names

(tabnnn.ixf), and message file names (tabnnn.msg). This list, the exported

PC/IXF files, and LOB files (tabnnnc.yyy) are used as input to the

db2move IMPORT or LOAD action.

tabnnn.ixf

The exported PC/IXF file of a specific table.

tabnnn.msg

The export message file of the corresponding table.

tabnnnc.yyy

The exported LOB files of a specific table.

 “nnn” is the table number. “c” is a letter of the alphabet. “yyy” is a

number ranging from 001 to 999.

These files are created only if the table being exported contains LOB

data. If created, these LOB files are placed in the “lobpath” directories.

There are a total of 26,000 possible names for the LOB files.

system.msg

The message file containing system messages for creating or deleting file

or directory commands. This is only used if the action is EXPORT, and a

LOB path is specified.

Files Required/Generated When Using IMPORT:

v Input:

db2move.lst

An output file from the EXPORT action.

350 Data Movement Utilities Guide and Reference

tabnnn.ixf

An output file from the EXPORT action.

tabnnnc.yyy

An output file from the EXPORT action.
v Output:

IMPORT.out

The summarized result of the IMPORT action.

tabnnn.msg

The import message file of the corresponding table.

Files Required/Generated When Using LOAD:

v Input:

db2move.lst

An output file from the EXPORT action.

tabnnn.ixf

An output file from the EXPORT action.

tabnnnc.yyy

An output file from the EXPORT action.
v Output:

LOAD.out

The summarized result of the LOAD action.

tabnnn.msg

The LOAD message file of the corresponding table.

Files Required/Generated When Using COPY:

v Input: None

v Output:

COPYSCHEMA.msg

An output file containing messages generated during the COPY

operation.

COPYSCHEMA.err

An output file containing an error message for each error encountered

during the COPY operation, including DDL statements for each object

which could not be recreated on the target database.

LOADTABLE.msg

An output file containing messages generated by each invocation of the

Load utility (used to repopulate data on the target database).

LOADTABLE.err

An output file containing the names of tables that either encountered a

failure during Load or still need to be populated on the target database.

See the “Restarting a failed copy schema operation” topic for more

details.
These files are timestamped and all files that are generated from one run will

have the same timestamp.

Chapter 5. Other data movement options 351

Performing a redirected restore using an automatically generated

script

When you perform a redirected restore operation, you need to specify the locations

of physical containers stored in the backup image and provide the complete set of

containers for each table space that will be altered. Use the following procedure to

generate a redirected restore script based on an existing backup image, modify the

generated script, then run the script to perform the redirected restore.

You can perform a redirected restore only if the database has been previously

backed up using the DB2 backup utility.

v If the database exists, you must be able to connect to it in order to generate the

script. Therefore, if the database requires an upgrade or crash recovery, this must

be done before you attempt to generate a redirected restore script.

v If you are working in a partitioned database environment, and the target

database does not exist, you cannot run the command to generate the redirected

restore script concurrently on all database partitions. Instead, the command to

generate the redirected restore script must be run one database partition at a

time, starting from the catalog partition.

Alternatively, you can first create a dummy database with the same name as

your target database. After the dummy database has been created, you can then

generate the redirected restore script concurrently on all database partitions.

v Even if you specify the REPLACE EXISTING option when you issue the

RESTORE command to generate the script, the REPLACE EXISTING option will

appear in the script commented out.

v For security reasons, your password will not appear in the generated script. You

need to fill in the password manually.

v You cannot generate a script for redirected restore using the Restore Wizard in

the Control Center.

To perform a redirected restore using a script:

1. Use the restore utility to generate a redirected restore script. The restore utility

can be invoked through the command line processor (CLP) or the db2Restore

application programming interface (API). The following is an example of the

RESTORE DATABASE command with the REDIRECT option and the

GENERATE SCRIPT option:

 db2 restore db test from /home/jseifert/backups taken at 20050304090733

 redirect generate script test_node0000.clp

This creates a redirected restore script on the client called test_node0000.clp.

2. Open the redirected restore script in a text editor to make any modifications

that are required. You can modify:

v Restore options

v Automatic storage paths

v Container layout and paths
3. Run the modified redirected restore script. For example:

 db2 -tvf test_node0000.clp

RESTORE DATABASE

The RESTORE DATABASE command recreates a damaged or corrupted database

that has been backed up using the DB2 backup utility. The restored database is in

352 Data Movement Utilities Guide and Reference

the same state that it was in when the backup copy was made. This utility can also

overwrite a database with a different image or restore the backup copy to a new

database.

For information on the restore operations supported by DB2 database systems

between different operating systems and hardware platforms, see “Backup and

restore operations between different operating systems and hardware platforms” in

the Data Recovery and High Availability Guide and Reference.

The restore utility can also be used to restore backup images in DB2 Version 9.7

that were backed up on DB2 Universal Database Version 8, DB2 Version 9.1, or

DB2 Version 9.5. If a database upgrade is required, it will be invoked automatically

at the end of the restore operation.

If, at the time of the backup operation, the database was enabled for rollforward

recovery, the database can be brought to its previous state by invoking the

rollforward utility after successful completion of a restore operation.

This utility can also restore a table space level backup.

Incremental images and images only capturing differences from the time of the

previous capture (called a “delta image”) cannot be restored when there is a

difference in operating systems or word size (32-bit or 64-bit).

Following a successful restore operation from one environment to a different

environment, no incremental or delta backups are allowed until a non-incremental

backup is taken. (This is not a limitation following a restore operation within the

same environment.)

Even with a successful restore operation from one environment to a different

environment, there are some considerations: packages must be rebound before use

(using the BIND command, the REBIND command, or the db2rbind utility); SQL

procedures must be dropped and recreated; and all external libraries must be

rebuilt on the new platform. (These are not considerations when restoring to the

same environment.)

A restore operation run over an existing database and existing containers reuses

the same containers and tablespace map.

A restore operation run against a new database reacquires all containers and

rebuilds an optimized tablespace map. A restore operation run over an existing

database with one or more missing containers also reacquires all containers and

rebuilds an optimized tablespace map.

Scope

This command only affects the node on which it is executed.

Authorization

To restore to an existing database, one of the following:

v sysadm

v sysctrl

v sysmaint

Chapter 5. Other data movement options 353

To restore to a new database, one of the following:

v sysadm

v sysctrl

Required connection

The required connection will vary based on the type of restore action:

v You require a database connection, to restore to an existing database. This

command automatically establishes an exclusive connection to the specified

database.

v You require an instance and a database connection, to restore to a new database.

The instance attachment is required to create the database.

To restore to a new database at an instance different from the current instance, it

is necessary to first attach to the instance where the new database will reside.

The new instance can be local or remote. The current instance is defined by the

value of the DB2INSTANCE environment variable.

v For snapshot restore, instance and database connections are required.

Command syntax

�� RESTORE DATABASE

DB
 source-database-alias restore-options

CONTINUE

ABORT

 ��

restore-options:

USER

username

USING

password

 �

�

�

REBUILD WITH

ALL TABLESPACES IN DATABASE

ALL TABLESPACES IN IMAGE

EXCEPT

rebuild-tablespace-clause

rebuild-tablespace-clause

TABLESPACE

,

ONLINE

(

tablespace-name

)

HISTORY FILE

COMPRESSION LIBRARY

LOGS

 �

�
INCREMENTAL

AUTO

AUTOMATIC

ABORT

�

USE

TSM

open-sessions

options

XBSA

SNAPSHOT

LIBRARY

library-name

LOAD

shared-library

open-sessions

options

,

FROM

directory

device

 �

�
TAKEN AT

date-time

TO

target-directory

DBPATH ON

target-directory

ON

path-list

DBPATH ON

target-directory

 �

�
INTO

target-database-alias

LOGTARGET

directory

EXCLUDE

INCLUDE

FORCE

NEWLOGPATH

directory
 �

�
WITH

num-buffers

BUFFERS

BUFFER

buffer-size

REPLACE HISTORY FILE

REPLACE EXISTING
 �

354 Data Movement Utilities Guide and Reference

�
REDIRECT

GENERATE SCRIPT

script

PARALLELISM

n

COMPRLIB

name

COMPROPTS

string
 �

�
WITHOUT ROLLING FORWARD

WITHOUT PROMPTING

rebuild-tablespace-clause:

�

 ,

TABLESPACE

(

tablespace-name

)

open-sessions:

OPEN

num-sessions

SESSIONS

options:

OPTIONS

″options-string″

@

file-name

Command parameters

DATABASE source-database-alias

Alias of the source database from which the backup was taken.

CONTINUE

Specifies that the containers have been redefined, and that the final step in

a redirected restore operation should be performed.

ABORT

This parameter:

v Stops a redirected restore operation. This is useful when an error has

occurred that requires one or more steps to be repeated. After RESTORE

DATABASE with the ABORT option has been issued, each step of a

redirected restore operation must be repeated, including RESTORE

DATABASE with the REDIRECT option.

v Terminates an incremental restore operation before completion.

USER username

Identifies the user name under which the database is to be restored.

USING password

The password used to authenticate the user name. If the password is

omitted, the user is prompted to enter it.

REBUILD WITH ALL TABLESPACES IN DATABASE

Restores the database with all the table spaces known to the database at

the time of the image being restored. This restore overwrites a database if

it already exists.

REBUILD WITH ALL TABLESPACES IN DATABASE EXCEPT

rebuild-tablespace-clause

Restores the database with all the table spaces known to the database at

Chapter 5. Other data movement options 355

the time of the image being restored except for those specified in the list.

This restore overwrites a database if it already exists.

REBUILD WITH ALL TABLESPACES IN IMAGE

Restores the database with only the table spaces in the image being

restored. This restore overwrites a database if it already exists.

REBUILD WITH ALL TABLESPACES IN IMAGE EXCEPT rebuild-tablespace-
clause Restores the database with only the table spaces in the image being

restored except for those specified in the list. This restore overwrites a

database if it already exists.

REBUILD WITH rebuild-tablespace-clause

Restores the database with only the list of table spaces specified. This

restore overwrites a database if it already exists.

TABLESPACE tablespace-name

A list of names used to specify the table spaces that are to be restored.

ONLINE

This keyword, applicable only when performing a table space-level restore

operation, is specified to allow a backup image to be restored online. This

means that other agents can connect to the database while the backup

image is being restored, and that the data in other table spaces will be

available while the specified table spaces are being restored.

HISTORY FILE

This keyword is specified to restore only the history file from the backup

image.

COMPRESSION LIBRARY

This keyword is specified to restore only the compression library from the

backup image. If the object exists in the backup image, it will be restored

into the database directory. If the object does not exist in the backup image,

the restore operation will fail.

LOGS This keyword is specified to restore only the set of log files contained in

the backup image. If the backup image does not contain any log files, the

restore operation will fail. If this option is specified, the LOGTARGET

option must also be specified.

INCREMENTAL

Without additional parameters, INCREMENTAL specifies a manual

cumulative restore operation. During manual restore the user must issue

each restore command manually for each image involved in the restore. Do

so according to the following order: last, first, second, third and so on up

to and including the last image.

INCREMENTAL AUTOMATIC/AUTO

Specifies an automatic cumulative restore operation.

INCREMENTAL ABORT

Specifies abortion of an in-progress manual cumulative restore operation.

USE

TSM Specifies that the database is to be restored from output managed

by Tivoli Storage Manager.

XBSA Specifies that the XBSA interface is to be used. Backup Services

APIs (XBSA) are an open application programming interface for

applications or facilities needing data storage management for

backup or archiving purposes.

356 Data Movement Utilities Guide and Reference

SNAPSHOT

Specifies that the data is to be restored from a snapshot backup.

 You cannot use the SNAPSHOT parameter with any of the

following parameters:

v INCREMENTAL

v TO

v ON

v DBPATH ON

v INTO

v NEWLOGPATH

v WITH num-buffers BUFFERS

v BUFFER

v REDIRECT

v REPLACE HISTORY FILE

v COMPRESSION LIBRARY

v PARALLELISM

v COMPRLIB

v OPEN num-sessions SESSIONS

v HISTORY FILE

v LOGS

Also, you cannot use the SNAPSHOT parameter with any restore

operation that involves a table space list, which includes the

REBUILD WITH option.

The default behavior when restoring data from a snapshot backup

image will be a FULL DATABASE OFFLINE restore of all paths

that make up the database including all containers, local volume

directory, database path (DBPATH), primary log and mirror log

paths of the most recent snapshot backup if no timestamp is

provided (INCLUDE LOGS is the default for all snapshot backups

unless EXCLUDE LOGS is explicitly stated). If a timestamp is

provided, then that snapshot backup image will be restored.

LIBRARY library-name

Integrated into IBM Data Server is a DB2 ACS API driver

for the following storage hardware:

v IBM TotalStorage® SAN Volume Controller

v IBM Enterprise Storage Server® Model 800

v IBM System Storage™ DS6000™

v IBM System Storage DS8000®

v IBM System Storage N Series

v NetApp V-series

v NetApp FAS

If you have other storage hardware, and a DB2 ACS API

driver for that storage hardware, you can use the LIBRARY

parameter to specify the DB2 ACS API driver.

The value of the LIBRARY parameter is a fully-qualified

library file name.

OPTIONS

Chapter 5. Other data movement options 357

″options-string″

Specifies options to be used for the restore operation. The string

will be passed to DB2 ACS API driver exactly as it was entered,

without the double quotation marks. You cannot use the

VENDOROPT database configuration parameter to specify

vendor-specific options for snapshot restore operations. You must

use the OPTIONS parameter of the restore utilities instead.

@file-name

Specifies that the options to be used for the restore operation are

contained in a file located on the DB2 server. The string will be

passed to the vendor support library. The file must be a fully

qualified file name.

OPEN num-sessions SESSIONS

Specifies the number of I/O sessions that are to be used with TSM or the

vendor product.

FROM directory/device

The fully qualified path name of the directory or device on which the

backup image resides. If USE TSM, FROM, and LOAD are omitted, the

default value is the current working directory of the client machine. This

target directory or device must exist on the target server/instance.

 If several items are specified, and the last item is a tape device, the user is

prompted for another tape. Valid response options are:

c Continue. Continue using the device that generated the warning

message (for example, continue when a new tape has been

mounted).

d Device terminate. Stop using only the device that generated the

warning message (for example, terminate when there are no more

tapes).

t Terminate. Abort the restore operation after the user has failed to

perform some action requested by the utility.

LOAD shared-library

The name of the shared library (DLL on Windows operating systems)

containing the vendor backup and restore I/O functions to be used. The

name can contain a full path. If the full path is not given, the value

defaults to the path on which the user exit program resides.

TAKEN AT® date-time

The time stamp of the database backup image. The time stamp is

displayed after successful completion of a backup operation, and is part of

the path name for the backup image. It is specified in the form

yyyymmddhhmmss. A partial time stamp can also be specified. For example,

if two different backup images with time stamps 20021001010101 and

20021002010101 exist, specifying 20021002 causes the image with time

stamp 20021002010101 to be used. If a value for this parameter is not

specified, there must be only one backup image on the source media.

TO target-directory

This parameter states the target database directory. This parameter is

ignored if the utility is restoring to an existing database. The drive and

directory that you specify must be local. If the backup image contains a

database that is enabled for automatic storage then only the database

directory changes, the storage paths associated with the database do not

change.

358 Data Movement Utilities Guide and Reference

DBPATH ON target-directory

This parameter states the target database directory. This parameter is

ignored if the utility is restoring to an existing database. The drive and

directory that you specify must be local. If the backup image contains a

database that is enabled for automatic storage and the ON parameter is not

specified then this parameter is synonymous with the TO parameter and

only the database directory changes, the storage paths associated with the

database do not change.

ON path-list

This parameter redefines the storage paths associated with an automatic

storage database. Using this parameter with a database that is not enabled

for automatic storage results in an error (SQL20321N). The existing storage

paths as defined within the backup image are no longer used and

automatic storage table spaces are automatically redirected to the new

paths. If this parameter is not specified for an automatic storage database

then the storage paths remain as they are defined within the backup

image.

 One or more paths can be specified, each separated by a comma. Each path

must have an absolute path name and it must exist locally. If the database

does not already exist on disk and the DBPATH ON parameter is not

specified then the first path is used as the target database directory.

For a multi-partition database the ON path-list option can only be specified

on the catalog partition. The catalog partition must be restored before any

other partitions are restored when the ON option is used. The restore of

the catalog-partition with new storage paths will place all non-catalog

nodes in a RESTORE_PENDING state. The non-catalog nodes can then be

restored in parallel without specifying the ON clause in the restore

command.

In general, the same storage paths must be used for each partition in a

multi-partition database and they must all exist prior to executing the

RESTORE DATABASE command. One exception to this is where database

partition expressions are used within the storage path. Doing this allows

the database partition number to be reflected in the storage path such that

the resulting path name is different on each partition.

You use the argument “ $N” ([blank]$N) to indicate a database partition

expression. A database partition expression can be used anywhere in the

storage path, and multiple database partition expressions can be specified.

Terminate the database partition expression with a space character;

whatever follows the space is appended to the storage path after the

database partition expression is evaluated. If there is no space character in

the storage path after the database partition expression, it is assumed that

the rest of the string is part of the expression. The argument can only be

used in one of the following forms:

 Table 49. . Operators are evaluated from left to right. % represents the modulus operator.

The database partition number in the examples is assumed to be 10.

Syntax Example Value

[blank]$N ″ $N″ 10

[blank]$N+[number] ″ $N+100″ 110

[blank]$N%[number] ″ $N%5″ 0

[blank]$N+[number]%[number] ″ $N+1%5″ 1

Chapter 5. Other data movement options 359

Table 49. (continued). Operators are evaluated from left to right. % represents the modulus

operator. The database partition number in the examples is assumed to be 10.

Syntax Example Value

[blank]$N%[number]+[number] ″ $N%4+2″ 4

a % is modulus.

INTO target-database-alias

The target database alias. If the target database does not exist, it is created.

 When you restore a database backup to an existing database, the restored

database inherits the alias and database name of the existing database.

When you restore a database backup to a nonexistent database, the new

database is created with the alias and database name that you specify. This

new database name must be unique on the system where you restore it.

LOGTARGET directory

Non-snapshot restores:

 The absolute path name of an existing directory on the database server, to

be used as the target directory for extracting log files from a backup image.

If this option is specified, any log files contained within the backup image

will be extracted into the target directory. If this option is not specified, log

files contained within a backup image will not be extracted. To extract only

the log files from the backup image, specify the LOGS option.

Snapshot restores:

INCLUDE

Restore log directory volumes from the snapshot image. If this

option is specified and the backup image contains log directories,

then they will be restored. Existing log directories and log files on

disk will be left intact if they do not conflict with the log

directories in the backup image. If existing log directories on disk

conflict with the log directories in the backup image, then an error

will be returned.

EXCLUDE

Do not restore log directory volumes. If this option is specified,

then no log directories will be restored from the backup image.

Existing log directories and log files on disk will be left intact if

they do not conflict with the log directories in the backup image. If

a path belonging to the database is restored and a log directory

will implicitly be restored because of this, thus causing a log

directory to be overwritten, an error will be returned.

FORCE

Allow existing log directories in the current database to be

overwritten and replaced when restoring the snapshot image.

Without this option, existing log directories and log files on disk

which conflict with log directories in the snapshot image will cause

the restore to fail. Use this option to indicate that the restore can

overwrite and replace those existing log directories.

Note: Use this option with caution, and always ensure that you

have backed up and archived all logs that might be required for

recovery.

360 Data Movement Utilities Guide and Reference

Note: If LOGTARGET is not specified non-snapshot restores, then the

default LOGTARGET directory is LOGTARGET EXCLUDE.

NEWLOGPATH directory

The absolute pathname of a directory that will be used for active log files

after the restore operation. This parameter has the same function as the

newlogpath database configuration parameter, except that its effect is

limited to the restore operation in which it is specified. The parameter can

be used when the log path in the backup image is not suitable for use after

the restore operation; for example, when the path is no longer valid, or is

being used by a different database.

WITH num-buffers BUFFERS

The number of buffers to be used. The DB2 database system will

automatically choose an optimal value for this parameter unless you

explicitly enter a value. A larger number of buffers can be used to improve

performance when multiple sources are being read from, or if the value of

PARALLELISM has been increased.

BUFFER buffer-size

The size, in pages, of the buffer used for the restore operation. The DB2

database system will automatically choose an optimal value for this

parameter unless you explicitly enter a value. The minimum value for this

parameter is 8 pages.

 The restore buffer size must be a positive integer multiple of the backup

buffer size specified during the backup operation. If an incorrect buffer size

is specified, the buffers are allocated to be of the smallest acceptable size.

REPLACE HISTORY FILE

Specifies that the restore operation should replace the history file on disk

with the history file from the backup image.

REPLACE EXISTING

If a database with the same alias as the target database alias already exists,

this parameter specifies that the restore utility is to replace the existing

database with the restored database. This is useful for scripts that invoke

the restore utility, because the command line processor will not prompt the

user to verify deletion of an existing database. If the WITHOUT

PROMPTING parameter is specified, it is not necessary to specify

REPLACE EXISTING, but in this case, the operation will fail if events

occur that normally require user intervention.

REDIRECT

Specifies a redirected restore operation. To complete a redirected restore

operation, this command should be followed by one or more SET

TABLESPACE CONTAINERS commands, and then by a RESTORE

DATABASE command with the CONTINUE option. All commands

associated with a single redirected restore operation must be invoked from

the same window or CLP session.

GENERATE SCRIPT script

Creates a redirect restore script with the specified file name. The script

name can be relative or absolute and the script will be generated on the

client side. If the file cannot be created on the client side, an error message

(SQL9304N) will be returned. If the file already exists, it will be

overwritten. Please see the examples below for further usage information.

Chapter 5. Other data movement options 361

WITHOUT ROLLING FORWARD

Specifies that the database is not to be put in rollforward pending state

after it has been successfully restored.

 If, following a successful restore operation, the database is in rollforward

pending state, the ROLLFORWARD command must be invoked before the

database can be used again.

If this option is specified when restoring from an online backup image,

error SQL2537N will be returned.

If backup image is of a recoverable database then WITHOUT ROLLING

FORWARD cannot be specified with REBUILD option.

PARALLELISM n

Specifies the number of buffer manipulators that are to be created during

the restore operation. The DB2 database system will automatically choose

an optimal value for this parameter unless you explicitly enter a value.

COMPRLIB name

Indicates the name of the library to be used to perform the decompression

(e.g., db2compr.dll for Windows; libdb2compr.so for Linux/UNIX

systems). The name must be a fully qualified path referring to a file on the

server. If this parameter is not specified, DB2 will attempt to use the

library stored in the image. If the backup was not compressed, the value of

this parameter will be ignored. If the specified library cannot be loaded,

the restore operation will fail.

COMPROPTS string

Describes a block of binary data that is passed to the initialization routine

in the decompression library. The DB2 database system passes this string

directly from the client to the server, so any issues of byte reversal or code

page conversion are handled by the decompression library. If the first

character of the data block is “@”, the remainder of the data is interpreted

by the DB2 database system as the name of a file residing on the server.

The DB2 database system will then replace the contents of string with the

contents of this file and pass the new value to the initialization routine

instead. The maximum length for the string is 1 024 bytes.

WITHOUT PROMPTING

Specifies that the restore operation is to run unattended. Actions that

normally require user intervention will return an error message. When

using a removable media device, such as tape or diskette, the user is

prompted when the device ends, even if this option is specified.

Examples

 1. In the following example, the database WSDB is defined on all 4 database

partitions, numbered 0 through 3. The path /dev3/backup is accessible from

all database partitions. The following offline backup images are available from

/dev3/backup:

 wsdb.0.db2inst1.NODE0000.CATN0000.20020331234149.001

 wsdb.0.db2inst1.NODE0001.CATN0000.20020331234427.001

 wsdb.0.db2inst1.NODE0002.CATN0000.20020331234828.001

 wsdb.0.db2inst1.NODE0003.CATN0000.20020331235235.001

To restore the catalog partition first, then all other database partitions of the

WSDB database from the /dev3/backup directory, issue the following

commands from one of the database partitions:

362 Data Movement Utilities Guide and Reference

db2_all ’<<+0< db2 RESTORE DATABASE wsdb FROM /dev3/backup

 TAKEN AT 20020331234149

 INTO wsdb REPLACE EXISTING’

 db2_all ’<<+1< db2 RESTORE DATABASE wsdb FROM /dev3/backup

 TAKEN AT 20020331234427

 INTO wsdb REPLACE EXISTING’

 db2_all ’<<+2< db2 RESTORE DATABASE wsdb FROM /dev3/backup

 TAKEN AT 20020331234828

 INTO wsdb REPLACE EXISTING’

 db2_all ’<<+3< db2 RESTORE DATABASE wsdb FROM /dev3/backup

 TAKEN AT 20020331235235

 INTO wsdb REPLACE EXISTING’

The db2_all utility issues the restore command to each specified database

partition. When performing a restore using db2_all, you should always

specify REPLACE EXISTING and/or WITHOUT PROMPTING. Otherwise, if

there is prompting, the operation will look like it is hanging. This is because

db2_all does not support user prompting.

 2. Following is a typical redirected restore scenario for a database whose alias is

MYDB:

a. Issue a RESTORE DATABASE command with the REDIRECT option.

 restore db mydb replace existing redirect

After successful completion of step 1, and before completing step 3, the

restore operation can be aborted by issuing:

 restore db mydb abort

b. Issue a SET TABLESPACE CONTAINERS command for each table space

whose containers must be redefined. For example:

 set tablespace containers for 5 using

 (file ’f:\ts3con1’ 20000, file ’f:\ts3con2’ 20000)

To verify that the containers of the restored database are the ones specified

in this step, issue the LIST TABLESPACE CONTAINERS command.

c. After successful completion of steps 1 and 2, issue:

 restore db mydb continue

This is the final step of the redirected restore operation.

d. If step 3 fails, or if the restore operation has been aborted, the redirected

restore can be restarted, beginning at step 1.
 3. Following is a sample weekly incremental backup strategy for a recoverable

database. It includes a weekly full database backup operation, a daily

non-cumulative (delta) backup operation, and a mid-week cumulative

(incremental) backup operation:

 (Sun) backup db mydb use tsm

 (Mon) backup db mydb online incremental delta use tsm

 (Tue) backup db mydb online incremental delta use tsm

 (Wed) backup db mydb online incremental use tsm

 (Thu) backup db mydb online incremental delta use tsm

 (Fri) backup db mydb online incremental delta use tsm

 (Sat) backup db mydb online incremental use tsm

For an automatic database restore of the images created on Friday morning,

issue:

 restore db mydb incremental automatic taken at (Fri)

For a manual database restore of the images created on Friday morning, issue:

Chapter 5. Other data movement options 363

restore db mydb incremental taken at (Fri)

 restore db mydb incremental taken at (Sun)

 restore db mydb incremental taken at (Wed)

 restore db mydb incremental taken at (Thu)

 restore db mydb incremental taken at (Fri)

 4. To produce a backup image, which includes logs, for transportation to a

remote site:

 backup db sample online to /dev3/backup include logs

To restore that backup image, supply a LOGTARGET path and specify this

path during ROLLFORWARD:

 restore db sample from /dev3/backup logtarget /dev3/logs

 rollforward db sample to end of logs and stop overflow log path /dev3/logs

 5. To retrieve only the log files from a backup image that includes logs:

 restore db sample logs from /dev3/backup logtarget /dev3/logs

 6. The USE TSM OPTIONS keywords can be used to specify the TSM

information to use for the restore operation. On Windows platforms, omit the

-fromowner option.

v Specifying a delimited string:

restore db sample use TSM options ’"-fromnode=bar -fromowner=dmcinnis"’

v Specifying a fully qualified file:

restore db sample use TSM options @/u/dmcinnis/myoptions.txt

The file myoptions.txt contains the following information: -fromnode=bar

-fromowner=dmcinnis
 7. The following is a simple restore of a multi-partition automatic storage

enabled database with new storage paths. The database was originally created

with one storage path, /myPath0:

v On the catalog partition issue: restore db mydb on /myPath1,/myPath2

v On all non-catalog partitions issue: restore db mydb

 8. A script output of the following command on a non-auto storage database:

restore db sample from /home/jseifert/backups taken at 20050301100417 redirect

generate script SAMPLE_NODE0000.clp

would look like this:

-- **

-- ** automatically created redirect restore script

-- **

UPDATE COMMAND OPTIONS USING S ON Z ON SAMPLE_NODE0000.out V ON;

SET CLIENT ATTACH_DBPARTITIONNUM 0;

SET CLIENT CONNECT_DBPARTITIONNUM 0;

-- **

-- ** initialize redirected restore

-- **

RESTORE DATABASE SAMPLE

-- USER ‘<username>’

-- USING ‘<password>’

FROM ‘/home/jseifert/backups’

TAKEN AT 20050301100417

-- DBPATH ON ‘<target-directory>’

INTO SAMPLE

-- NEWLOGPATH ‘/home/jseifert/jseifert/NODE0000/SQL00001/SQLOGDIR/’

-- WITH <num-buff> BUFFERS

-- BUFFER <buffer-size>

-- REPLACE HISTORY FILE

-- REPLACE EXISTING

REDIRECT

364 Data Movement Utilities Guide and Reference

-- PARALLELISM <n>

-- WITHOUT ROLLING FORWARD

-- WITHOUT PROMPTING

;

-- **

-- ** tablespace definition

-- **

-- **

-- ** Tablespace name = SYSCATSPACE

-- ** Tablespace ID = 0

-- ** Tablespace Type = System managed space

-- ** Tablespace Content Type = Any data

-- ** Tablespace Page size (bytes) = 4096

-- ** Tablespace Extent size (pages) = 32

-- ** Using automatic storage = No

-- ** Total number of pages = 5572

-- **

SET TABLESPACE CONTAINERS FOR 0

-- IGNORE ROLLFORWARD CONTAINER OPERATIONS

USING (

 PATH ‘SQLT0000.0’

);

-- **

-- ** Tablespace name = TEMPSPACE1

-- ** Tablespace ID = 1

-- ** Tablespace Type = System managed space

-- ** Tablespace Content Type = System Temporary data

-- ** Tablespace Page size (bytes) = 4096

-- ** Tablespace Extent size (pages) = 32

-- ** Using automatic storage = No

-- ** Total number of pages = 0

-- **

SET TABLESPACE CONTAINERS FOR 1

-- IGNORE ROLLFORWARD CONTAINER OPERATIONS

USING (

 PATH ‘SQLT0001.0’

);

-- **

-- ** Tablespace name = USERSPACE1

-- ** Tablespace ID = 2

-- ** Tablespace Type = System managed space

-- ** Tablespace Content Type = Any data

-- ** Tablespace Page size (bytes) = 4096

-- ** Tablespace Extent size (pages) = 32

-- ** Using automatic storage = No

-- ** Total number of pages = 1

-- **

SET TABLESPACE CONTAINERS FOR 2

-- IGNORE ROLLFORWARD CONTAINER OPERATIONS

USING (

 PATH ‘SQLT0002.0’

);

-- **

-- ** Tablespace name = DMS

-- ** Tablespace ID = 3

-- ** Tablespace Type = Database managed space

-- ** Tablespace Content Type = Any data

-- ** Tablespace Page size (bytes) = 4096

-- ** Tablespace Extent size (pages) = 32

-- ** Using automatic storage = No

-- ** Auto-resize enabled = No

-- ** Total number of pages = 2000

-- ** Number of usable pages = 1960

-- ** High water mark (pages) = 96

-- **

SET TABLESPACE CONTAINERS FOR 3

-- IGNORE ROLLFORWARD CONTAINER OPERATIONS

Chapter 5. Other data movement options 365

USING (

 FILE /tmp/dms1 1000

, FILE /tmp/dms2 1000

);

-- **

-- ** Tablespace name = RAW

-- ** Tablespace ID = 4

-- ** Tablespace Type = Database managed space

-- ** Tablespace Content Type = Any data

-- ** Tablespace Page size (bytes) = 4096

-- ** Tablespace Extent size (pages) = 32

-- ** Using automatic storage = No

-- ** Auto-resize enabled = No

-- ** Total number of pages = 2000

-- ** Number of usable pages = 1960

-- ** High water mark (pages) = 96

-- **

SET TABLESPACE CONTAINERS FOR 4

-- IGNORE ROLLFORWARD CONTAINER OPERATIONS

USING (

 DEVICE ‘/dev/hdb1’ 1000

, DEVICE ‘/dev/hdb2’ 1000

);

-- **

-- ** start redirect restore

-- **

RESTORE DATABASE SAMPLE CONTINUE;

-- **

-- ** end of file

-- **

 9. A script output of the following command on an automatic storage database:

restore db test from /home/jseifert/backups taken at 20050304090733 redirect

generate script TEST_NODE0000.clp

would look like this:

-- **

-- ** automatically created redirect restore script

-- **

UPDATE COMMAND OPTIONS USING S ON Z ON TEST_NODE0000.out V ON;

SET CLIENT ATTACH_DBPARTITIONNUM 0;

SET CLIENT CONNECT_DBPARTITIONNUM 0;

-- **

-- ** initialize redirected restore

-- **

RESTORE DATABASE TEST

-- USER ‘<username>’

-- USING ‘<password>’

FROM ‘/home/jseifert/backups’

TAKEN AT 20050304090733

ON ‘/home/jseifert’

-- DBPATH ON <target-directory>

INTO TEST

-- NEWLOGPATH ‘/home/jseifert/jseifert/NODE0000/SQL00002/SQLOGDIR/’

-- WITH <num-buff> BUFFERS

-- BUFFER <buffer-size>

-- REPLACE HISTORY FILE

-- REPLACE EXISTING

REDIRECT

-- PARALLELISM <n>

-- WITHOUT ROLLING FORWARD

-- WITHOUT PROMPTING

;

-- **

-- ** tablespace definition

-- **

366 Data Movement Utilities Guide and Reference

-- **

-- ** Tablespace name = SYSCATSPACE

-- ** Tablespace ID = 0

-- ** Tablespace Type = Database managed space

-- ** Tablespace Content Type = Any data

-- ** Tablespace Page size (bytes) = 4096

-- ** Tablespace Extent size (pages) = 4

-- ** Using automatic storage = Yes

-- ** Auto-resize enabled = Yes

-- ** Total number of pages = 6144

-- ** Number of usable pages = 6140

-- ** High water mark (pages) = 5968

-- **

-- **

-- ** Tablespace name = TEMPSPACE1

-- ** Tablespace ID = 1

-- ** Tablespace Type = System managed space

-- ** Tablespace Content Type = System Temporary data

-- ** Tablespace Page size (bytes) = 4096

-- ** Tablespace Extent size (pages) = 32

-- ** Using automatic storage = Yes

-- ** Total number of pages = 0

-- **

-- **

-- ** Tablespace name = USERSPACE1

-- ** Tablespace ID = 2

-- ** Tablespace Type = Database managed space

-- ** Tablespace Content Type = Any data

-- ** Tablespace Page size (bytes) = 4096

-- ** Tablespace Extent size (pages) = 32

-- ** Using automatic storage = Yes

-- ** Auto-resize enabled = Yes

-- ** Total number of pages = 256

-- ** Number of usable pages = 224

-- ** High water mark (pages) = 96

-- **

-- **

-- ** Tablespace name = DMS

-- ** Tablespace ID = 3

-- ** Tablespace Type = Database managed space

-- ** Tablespace Content Type = Any data

-- ** Tablespace Page size (bytes) = 4096

-- ** Tablespace Extent size (pages) = 32

-- ** Using automatic storage = No

-- ** Auto-resize enabled = No

-- ** Total number of pages = 2000

-- ** Number of usable pages = 1960

-- ** High water mark (pages) = 96

-- **

SET TABLESPACE CONTAINERS FOR 3

-- IGNORE ROLLFORWARD CONTAINER OPERATIONS

USING (

 FILE ‘/tmp/dms1’ 1000

, FILE ‘/tmp/dms2’ 1000

);

-- **

-- ** Tablespace name = RAW

-- ** Tablespace ID = 4

-- ** Tablespace Type = Database managed space

-- ** Tablespace Content Type = Any data

-- ** Tablespace Page size (bytes) = 4096

-- ** Tablespace Extent size (pages) = 32

-- ** Using automatic storage = No

-- ** Auto-resize enabled = No

-- ** Total number of pages = 2000

-- ** Number of usable pages = 1960

-- ** High water mark (pages) = 96

Chapter 5. Other data movement options 367

-- **

SET TABLESPACE CONTAINERS FOR 4

-- IGNORE ROLLFORWARD CONTAINER OPERATIONS

USING (

 DEVICE ‘/dev/hdb1’ 1000

, DEVICE ‘/dev/hdb2’ 1000

);

-- **

-- ** start redirect restore

-- **

RESTORE DATABASE TEST CONTINUE;

-- **

-- ** end of file

-- **

10. The following are examples of the RESTORE DB command using the

SNAPSHOT option:

Restore log directory volumes from the snapshot image and do not prompt.

db2 restore db sample use snapshot LOGTARGET INCLUDE without prompting

Do not restore log directory volumes and do not prompt.

db2 restore db sample use snapshot LOGTARGET EXCLUDE without prompting

Do not restore log directory volumes and do not prompt. When LOGTARGET

is not specified, then the default is LOGTARGET EXCLUDE.

db2 restore db sample use snapshot without prompting

Allow existing log directories in the current database to be overwritten and

replaced when restoring the snapshot image containing conflicting log

directories, without prompting.

db2 restore db sample use snapshot LOGTARGET EXCLUDE FORCE without prompting

Allow existing log directories in the current database to be overwritten and

replaced when restoring the snapshot image containing conflicting log

directories, without prompting.

db2 restore db sample use snapshot LOGTARGET INCLUDE FORCE without prompting

Usage notes

v A RESTORE DATABASE command of the form db2 restore db <name> will

perform a full database restore with a database image and will perform a table

space restore operation of the table spaces found in a table space image. A

RESTORE DATABASE command of the form db2 restore db <name> tablespace

performs a table space restore of the table spaces found in the image. In

addition, if a list of table spaces is provided with such a command, the explicitly

listed table spaces are restored.

v Following the restore operation of an online backup, you must perform a

roll-forward recovery.

v If a backup image is compressed, the DB2 database system detects this and

automatically decompresses the data before restoring it. If a library is specified

on the db2Restore API, it is used for decompressing the data. Otherwise, a check

is made to see if a library is stored in the backup image and if the library exists,

it is used. Finally, if there is not library stored in the backup image, the data

cannot be decompressed and the restore operation fails.

v If the compression library is to be restored from a backup image (either

explicitly by specifying the COMPRESSION LIBRARY option or implicitly by

performing a normal restore of a compressed backup), the restore operation

must be done on the same platform and operating system that the backup was

taken on. If the platform the backup was taken on is not the same as the

platform that the restore is being done on, the restore operation will fail, even if

DB2 normally supports cross-platform restores involving the two systems.

368 Data Movement Utilities Guide and Reference

v A backed up SMS tablespace can only be restored into a SMS tablespace. You

cannot restore it into a DMS tablespace, or vice versa.

v To restore log files from the backup image that contains them, the LOGTARGET

option must be specified, providing the fully qualified and valid path that exists

on the DB2 server. If those conditions are satisfied, the restore utility will write

the log files from the image to the target path. If a LOGTARGET is specified

during a restore of a backup image that does not include logs, the restore

operation will return an error before attempting to restore any table space data.

A restore operation will also fail with an error if an invalid, or read-only,

LOGTARGET path is specified.

v If any log files exist in the LOGTARGET path at the time the RESTORE

DATABASE command is issued, a warning prompt will be returned to the user.

This warning will not be returned if WITHOUT PROMPTING is specified.

v During a restore operation where a LOGTARGET is specified, if any log file

cannot be extracted, the restore operation will fail and return an error. If any of

the log files being extracted from the backup image have the same name as an

existing file in the LOGTARGET path, the restore operation will fail and an error

will be returned. The restore database utility will not overwrite existing log files

in the LOGTARGET directory.

v You can also restore only the saved log set from a backup image. To indicate

that only the log files are to be restored, specify the LOGS option in addition to

the LOGTARGET path. Specifying the LOGS option without a LOGTARGET

path will result in an error. If any problem occurs while restoring log files in this

mode of operation, the restore operation will terminate immediately and an

error will be returned.

v During an automatic incremental restore operation, only the log files included in

the target image of the restore operation will be retrieved from the backup

image. Any log files included in intermediate images referenced during the

incremental restore process will not be extracted from those intermediate backup

images. During a manual incremental restore operation, the LOGTARGET path

should only be specified with the final restore command to be issued.

v Offline full database backups as well as offline incremental database backups

can be restored to a later database version, whereas online backups cannot. For

multi-partition databases, the catalog partition must first be restored

individually, followed by the remaining database partitions (in parallel or serial).

However, the implicit database upgrade done by the restore operation can fail.

In a multi-partition database it can fail on one or more database partitions. In

this case, you can follow the RESTORE DATABASE command with a single

UPGRADE DATABASE command issued from the catalog partition to upgrade

the database successfully.

Snapshot restore

Like a traditional (non-snapshot) restore, the default behavior when restoring a

snapshot backup image will be to NOT restore the log directories —LOGTARGET

EXCLUDE.

If the DB2 manager detects that any log directory’s group ID is shared among any

of the other paths to be restored, then an error is returned. In this case,

LOGTARGET INCLUDE or LOGTARGET INCLUDE FORCE must be specified, as

the log directories must be part of the restore.

Chapter 5. Other data movement options 369

The DB2 manager will make all efforts to save existing log directories (primary,

mirror and overflow) before the restore of the paths from the backup image takes

place.

If you wish the log directories to be restored and the DB2 manager detects that the

pre-existing log directories on disk conflict with the log directories in the backup

image, then the DB2 manager will report an error. In such a case, if you have

specified LOGTARGET INCLUDE FORCE, then this error will be suppressed and

the log directories from the image will be restored, deleting whatever existed

beforehand.

There is a special case in which the LOGTARGET EXCLUDE option is specified

and a log directory path resides under the database directory (i.e.,

/NODExxxx/SQLxxxxx/SQLOGDIR/). In this case, a restore would still overwrite

the log directory as the database path, and all of the contents beneath it, would be

restored. If the DB2 manager detects this scenario and log files exist in this log

directory, then an error will be reported. If you specify LOGTARGET EXCLUDE

FORCE, then this error will be suppressed and those log directories from the

backup image will overwrite the conflicting log directories on disk.

High availability through suspended I/O and online split mirror support

IBM Data Server suspended I/O support enables you to split mirrored copies of

your primary database without taking the database offline. You can use this to

very quickly create a standby database to take over if the primary database fails.

Disk mirroring is the process of writing data to two separate hard disks at the

same time. One copy of the data is called a mirror of the other. Splitting a mirror is

the process of separating the two copies.

You can use disk mirroring to maintain a secondary copy of your primary

database. You can use IBM Data Server suspended I/O functionality to split the

primary and secondary mirrored copies of the database without taking the

database offline. Once the primary and secondary databases copies are split, the

secondary database can take over operations if the primary database fails.

If you would rather not back up a large database using the IBM Data Server

backup utility, you can make copies from a mirrored image by using suspended

I/O and the split mirror function. This approach also:

v Eliminates backup operation overhead from the production machine

v Represents a fast way to clone systems

v Represents a fast implementation of idle standby failover. There is no initial

restore operation, and if a rollforward operation proves to be too slow, or

encounters errors, reinitialization is very fast.

The db2inidb command initializes the split mirror so that it can be used:

v As a clone database

v As a standby database

v As a backup image

This command can only be issued against a split mirror, and it must be run before

the split mirror can be used.

In a partitioned database environment, you do not have to suspend I/O writes on

all database partitions simultaneously. You can suspend a subset of one or more

370 Data Movement Utilities Guide and Reference

database partitions to create split mirrors for performing offline backups. If the

catalog partition is included in the subset, it must be the last database partition to

be suspended.

In a partitioned database environment, the db2inidb command must be run on

every database partition before the split image from any of the database partitions

can be used. The tool can be run on all database partitions simultaneously using

the db2_all command. If; however, you are using the RELOCATE USING option,

you cannot use the db2_all command to run db2inidb on all of the database

partitions simultaneously. A separate configuration file must be supplied for each

database partition, that includes the NODENUM value of the database partition

being changed. For example, if the name of a database is being changed, every

database partition will be affected and the db2relocatedb command must be run

with a separate configuration file on each database partition. If containers

belonging to a single database partition are being moved, the db2relocatedb

command only needs to be run once on that database partition.

Note: Ensure that the split mirror contains all containers and directories which

comprise the database, including the volume directory. To gather this information,

refer to the DBPATHS administrative view, which shows all the files and

directories of the database that need to be split.

db2inidb - Initialize a mirrored database

Initializes a mirrored database in a split mirror environment. The mirrored

database can be initialized as a clone of the primary database, placed in roll

forward pending state, or used as a backup image to restore the primary database.

This command can only be run against a split mirror database, and it must be run

before the split mirror can be used.

Authorization

One of the following:

v sysadm

v sysctrl

v sysmaint

Required connection

None

Command syntax

�� db2inidb database_alias AS SNAPSHOT

STANDBY

MIRROR

RELOCATE USING

configFile
 ��

Command parameters

database_alias

Specifies the alias of the database to be initialized.

SNAPSHOT

Specifies that the mirrored database will be initialized as a clone of the

primary database.

Chapter 5. Other data movement options 371

STANDBY

Specifies that the database will be placed in roll forward pending state.

New logs from the primary database can be fetched and applied to the

standby database. The standby database can then be used in place of the

primary database if it goes down.

MIRROR

Specifies that the mirrored database is to be used as a backup image which

can be used to restore the primary database.

RELOCATE USING configFile

Specifies that the database files are to be relocated based on the

information listed in the specified configFile prior to initializing the

database as a snapshot, standby, or mirror. The format of configFile is

described in “db2relocatedb - Relocate database” on page 373.

Usage notes

Do not issue the db2 connect to database-alias operation before issuing the

db2inidb database_alias as mirror command. Attempting to connect to a split mirror

database before initializing it erases the log files needed during roll forward

recovery. The connect sets your database back to the state it was in when you

suspended the database. If the database is marked as consistent when it was

suspended, the DB2 database system concludes there is no need for crash recovery

and empties the logs for future use. If the logs have been emptied, attempting to

roll forward results in the SQL4970N error message being returned.

In a partitioned database environment, db2inidb must be run on every database

partition before the split mirror from any of the database partitions can be used.

db2inidb can be run on all database partitions simultaneously using the db2_all

command.

If, however, you are using the RELOCATE USING option, you cannot use the

db2_all command to run db2inidb on all of the partitions simultaneously. A

separate configuration file must be supplied for each partition, that includes the

NODENUM value of the database partition being changed. For example, if the

name of a database is being changed, every database partition will be affected and

the db2relocatedb command must be run with a separate configuration file on each

database partition. If containers belonging to a single database partition are being

moved, the db2relocatedb command only needs to be run once on that database

partition.

If the RELOCATE USING configFile parameter is specified and the database is

relocated successfully, the specified configFile will be copied into the database

directory and renamed to db2path.cfg. During a subsequent crash recovery or

rollforward recovery, this file will be used to rename container paths as log files

are being processed.

If a clone database is being initialized, the specified configFile will be automatically

removed from the database directory after a crash recovery is completed.

If a standby database or mirrored database is being initialized, the specified

configFile will be automatically removed from the database directory after a

rollforward recovery is completed or canceled. New container paths can be added

to the db2path.cfg file after db2inidb has been run. This would be necessary when

CREATE or ALTER TABLESPACE operations are done on the original database and

different paths must be used on the standby database.

372 Data Movement Utilities Guide and Reference

db2relocatedb - Relocate database

This command renames a database, or relocates a database or part of a database

(for example, the container and the log directory) as specified in the configuration

file provided by the user. This tool makes the necessary changes to the DB2

instance and database support files.

Authorization

None

Command syntax

�� db2relocatedb -f configFilename ��

Command parameters

-f configFilename

Specifies the name of the file containing the configuration information

necessary for relocating the database. This can be a relative or absolute file

name. The format of the configuration file is:

 DB_NAME=oldName,newName

 DB_PATH=oldPath,newPath

 INSTANCE=oldInst,newInst

 NODENUM=nodeNumber

 LOG_DIR=oldDirPath,newDirPath

 CONT_PATH=oldContPath1,newContPath1

 CONT_PATH=oldContPath2,newContPath2

 ...

 STORAGE_PATH=oldStoragePath1,newStoragePath1

 STORAGE_PATH=oldStoragePath2,newStoragePath2

 ...

Where:

DB_NAME

Specifies the name of the database being relocated. If the database

name is being changed, both the old name and the new name must

be specified. This is a required field.

DB_PATH

Specifies the original path of the database being relocated. If the

database path is changing, both the old path and new path must

be specified. This is a required field.

INSTANCE

Specifies the instance where the database exists. If the database is

being moved to a new instance, both the old instance and new

instance must be specified. This is a required field.

NODENUM

Specifies the node number for the database node being changed.

The default is 0.

LOG_DIR

Specifies a change in the location of the log path. If the log path is

being changed, both the old path and new path must be specified.

This specification is optional if the log path resides under the

database path, in which case the path is updated automatically.

Chapter 5. Other data movement options 373

CONT_PATH

Specifies a change in the location of table space containers. Both

the old and new container path must be specified. Multiple

CONT_PATH lines can be provided if there are multiple container

path changes to be made. This specification is optional if the

container paths reside under the database path, in which case the

paths are updated automatically. If you are making changes to

more than one container where the same old path is being replaced

by a common new path, a single CONT_PATH entry can be used.

In such a case, an asterisk (*) could be used both in the old and

new paths as a wildcard.

STORAGE_PATH

This is only applicable to databases with automatic storage

enabled. It specifies a change in the location of one of the storage

paths for the database. Both the old storage path and the new

storage path must be specified. Multiple STORAGE_PATH lines

can be given if there are several storage path changes to be made.

Blank lines or lines beginning with a comment character (#) are ignored.

Examples

Example 1

To change the name of the database TESTDB to PRODDB in the instance db2inst1

that resides on the path /home/db2inst1, create the following configuration file:

 DB_NAME=TESTDB,PRODDB

 DB_PATH=/home/db2inst1

 INSTANCE=db2inst1

 NODENUM=0

Save the configuration file as relocate.cfg and use the following command to

make the changes to the database files:

 db2relocatedb -f relocate.cfg

Example 2

To move the database DATAB1 from the instance jsmith on the path /dbpath to the

instance prodinst do the following:

1. Move the files in the directory /dbpath/jsmith to /dbpath/prodinst.

2. Use the following configuration file with the db2relocatedb command to make

the changes to the database files:

 DB_NAME=DATAB1

 DB_PATH=/dbpath

 INSTANCE=jsmith,prodinst

 NODENUM=0

Example 3

The database PRODDB exists in the instance inst1 on the path /databases/PRODDB.

The location of two table space containers needs to be changed as follows:

v SMS container /data/SMS1 needs to be moved to /DATA/NewSMS1.

v DMS container /data/DMS1 needs to be moved to /DATA/DMS1.

374 Data Movement Utilities Guide and Reference

After the physical directories and files have been moved to the new locations, the

following configuration file can be used with the db2relocatedb command to make

changes to the database files so that they recognize the new locations:

 DB_NAME=PRODDB

 DB_PATH=/databases/PRODDB

 INSTANCE=inst1

 NODENUM=0

 CONT_PATH=/data/SMS1,/DATA/NewSMS1

 CONT_PATH=/data/DMS1,/DATA/DMS1

Example 4

The database TESTDB exists in the instance db2inst1 and was created on the path

/databases/TESTDB. Table spaces were then created with the following containers:

 TS1

 TS2_Cont0

 TS2_Cont1

 /databases/TESTDB/TS3_Cont0

 /databases/TESTDB/TS4/Cont0

 /Data/TS5_Cont0

 /dev/rTS5_Cont1

TESTDB is to be moved to a new system. The instance on the new system will be

newinst and the location of the database will be /DB2.

When moving the database, all of the files that exist in the /databases/TESTDB/
db2inst1 directory must be moved to the /DB2/newinst directory. This means that

the first 5 containers will be relocated as part of this move. (The first 3 are relative

to the database directory and the next 2 are relative to the database path.) Since

these containers are located within the database directory or database path, they

do not need to be listed in the configuration file. If the 2 remaining containers are

to be moved to different locations on the new system, they must be listed in the

configuration file.

After the physical directories and files have been moved to their new locations, the

following configuration file can be used with db2relocatedb to make changes to the

database files so that they recognize the new locations:

 DB_NAME=TESTDB

 DB_PATH=/databases/TESTDB,/DB2

 INSTANCE=db2inst1,newinst

 NODENUM=0

 CONT_PATH=/Data/TS5_Cont0,/DB2/TESTDB/TS5_Cont0

 CONT_PATH=/dev/rTS5_Cont1,/dev/rTESTDB_TS5_Cont1

Example 5

The database TESTDB has two database partitions on database partition servers 10

and 20. The instance is servinst and the database path is /home/servinst on both

database partition servers. The name of the database is being changed to SERVDB

and the database path is being changed to /databases on both database partition

servers. In addition, the log directory is being changed on database partition server

20 from /testdb_logdir to /servdb_logdir.

Since changes are being made to both database partitions, a configuration file must

be created for each database partition and db2relocatedb must be run on each

database partition server with the corresponding configuration file.

On database partition server 10, the following configuration file will be used:

Chapter 5. Other data movement options 375

DB_NAME=TESTDB,SERVDB

 DB_PATH=/home/servinst,/databases

 INSTANCE=servinst

 NODE_NUM=10

On database partition server 20, the following configuration file will be used:

 DB_NAME=TESTDB,SERVDB

 DB_PATH=/home/servinst,/databases

 INSTANCE=servinst

 NODE_NUM=20

 LOG_DIR=/testdb_logdir,/servdb_logdir

Example 6

The database MAINDB exists in the instance maininst on the path /home/maininst.

The location of four table space containers needs to be changed as follows:

 /maininst_files/allconts/C0 needs to be moved to /MAINDB/C0

 /maininst_files/allconts/C1 needs to be moved to /MAINDB/C1

 /maininst_files/allconts/C2 needs to be moved to /MAINDB/C2

 /maininst_files/allconts/C3 needs to be moved to /MAINDB/C3

After the physical directories and files are moved to the new locations, the

following configuration file can be used with the db2relocatedb command to make

changes to the database files so that they recognize the new locations.

A similar change is being made to all of the containers; that is,

/maininst_files/allconts/ is being replaced by /MAINDB/ so that a single entry

with the wildcard character can be used:

 DB_NAME=MAINDB

 DB_PATH=/home/maininst

 INSTANCE=maininst

 NODE_NUM=0

 CONT_PATH=/maininst_files/allconts/*, /MAINDB/*

Usage notes

If the instance that a database belongs to is changing, the following must be done

before running this command to ensure that changes to the instance and database

support files are made:

v If a database is being moved to another instance, create the new instance. The

new instance must be at the same release level as the instance where the

database currently resides.

v Copy the files and devices belonging to the databases being copied onto the

system where the new instance resides. The path names must be changed as

necessary. However, if there are already databases in the directory where the

database files are moved to, you can mistakenly overwrite the existing sqldbdir

file, thereby removing the references to the existing databases. In this scenario,

the db2relocatedb utility cannot be used. Instead of db2relocatedb, an alternative

is a redirected restore operation.

v Change the permission of the files/devices that were copied so that they are

owned by the instance owner.

The db2relocatedb command cannot be used to move existing user created

containers for a table space that was converted to use automatic storage using the

ALTER TABLESPACE MANAGED BY AUTOMATIC STORAGE statement.

376 Data Movement Utilities Guide and Reference

If the instance is changing, the tool must be run by the new instance owner.

In a partitioned database environment, this tool must be run against every

database partition that requires changes. A separate configuration file must be

supplied for each database partition, that includes the NODENUM value of the

database partition being changed. For example, if the name of a database is being

changed, every database partition will be affected and the db2relocatedb command

must be run with a separate configuration file on each database partition. If

containers belonging to a single database partition are being moved, the

db2relocatedb command only needs to be run once on that database partition.

You cannot use the db2relocatedb command to relocate a database that has a load

in progress or is waiting for the completion of a LOAD RESTART or LOAD

TERMINATE command.

Limitation: In a partitioned database environment, you cannot relocate an entire

node if that node is one of two or more logical partitions that reside on the same

device.

db2look - DB2 statistics and DDL extraction tool

Extracts the required Data Definition Language (DDL) statements to reproduce the

database objects of a production database on a test database. The db2look

command generates the DDL statements by object type.

This tool can generate the required UPDATE statements used to replicate the

statistics on the objects in a test database. It can also be used to generate the

UPDATE DATABASE CONFIGURATION and UPDATE DATABASE MANAGER

CONFIGURATION commands and the db2set commands so that query

optimizer-related configuration parameters and registry variables on the test

database match those of the production database.

It is often advantageous to have a test system contain a subset of the production

system’s data. However, access plans selected for such a test system are not

necessarily the same as those that would be selected for the production system.

Both the catalog statistics and the configuration parameters for the test system

must be updated to match those of the production system. Using this tool makes it

possible to create a test database where access plans are similar to those that

would be used on the production system.

You should check the DDL statements generated by the db2look command since

they might not exactly reproduce all characteristics of the original SQL objects. For

table spaces on partitioned database environments, DDL might not be complete if

some database partitions are not active. Make sure all database partitions are active

using the ACTIVATE command.

Authorization

SELECT privilege on the system catalog tables.

In some cases, such as generating table space container DDL, you will require one

of the following:

v sysadm

v sysctrl

v sysmaint

Chapter 5. Other data movement options 377

v sysmon

v dbadm

Required connection

None

Command syntax

�� db2look -d DBname

-e

-u

Creator

-z

schema
 �

�

�

-tw

Tname

-t

Tname

-ct

-dp

�

-v

Vname

 �

�
-h

-ap

-o

Fname

-a

-m

-c

-r

-l
 �

�
-x

-xd

-f

-td

delimiter

-noview
 �

�
-i

userid

-w

password

-wlm

-wrapper

Wname

-server

Sname

-nofed
 �

�
-fedonly

-mod

-xs

-xdir

dirname

-cor
 ��

Command parameters

-d DBname

Alias name of the production database that is to be queried. DBname can

be the name of a DB2 Database for Linux, UNIX, and Windows or DB2

Version 9.1 for z/OS (DB2 for z/OS) database. If the DBname is a DB2 for

z/OS database, the db2look utility will extract the DDL and UPDATE

statistics statements for OS/390 and z/OS objects. These DDL and

UPDATE statistics statements are statements applicable to a DB2 Database

for Linux, UNIX, and Windows database and not to a DB2 for z/OS

database. This is useful for users who want to extract OS/390 and z/OS

objects and recreate them in a DB2 Database for Linux, UNIX, and

Windows database.

 If DBname is a DB2 for z/OS database, the output of the db2look command

is limited to the following:

v Generate DDL for tables, indexes, views, and user-defined distinct types

v Generate UPDATE statistics statements for tables, columns, column

distributions and indexes

-e Extract DDL statements for database objects. DDL for the following

database objects are extracted when using the -e option:

v Audit policies

v Schemas

378 Data Movement Utilities Guide and Reference

v Tables (including the inline length if at least one exists for the table, and

the partition level INDEX IN clause for a partitioned table)

v Views

v Materialized query tables (MQT)

v Aliases

v Indexes (including partitioned indexes on partitioned tables)

v Triggers

v Sequences

v User-defined distinct types

v Primary key, referential integrity, and check constraints

v User-defined structured types

v User-defined functions

v User-defined methods

v User-defined transforms

v Wrappers

v Servers

v User mappings

v Nicknames

v Type mappings

v Function templates

v Function mappings

v Index specifications

v Stored procedures

v Roles

v Trusted contexts

v Global variables

v Security label components

v Security policies

v Security labels

The DDL generated by the db2look command can be used to recreate

user-defined functions successfully. However, the user source code that a

particular user-defined function references (the EXTERNAL NAME clause,

for example) must be available in order for the user-defined function to be

usable.

-u Creator

Creator ID. Limits output to objects with this creator ID. If option -a is

specified, this parameter is ignored. The output will not include any

inoperative objects. To display inoperative objects, use the -a option.

-z schema

Schema name. Limits output to objects with this schema name. The output

will not include any inoperative objects. To display inoperative objects, use

the -a option. If this parameter is not specified, objects with all schema

names are extracted. If the -a option is specified, this parameter is ignored.

This option is ignored for the federated DDL.

-t Tname1 Tname2 ... TnameN

Table name list. Limits the output to particular tables in the table list. The

maximum number of tables is 30. Table names are separated by a blank

Chapter 5. Other data movement options 379

space. Case-sensitive names and double-byte character set (DBCS) names

must be enclosed inside a backward slash and double quotation delimiter,

for example, \″ MyTabLe \″. For multiple-word table names, the delimiters

must be placed within quotation marks (for example, ″\″My Table\″″) to

prevent the pairing from being evaluated word-by-word by the command

line processor. If a multiple-word table name is not enclosed by the

backward slash and double delimiter (for example, ″My Table″), all words

will be converted into uppercase and the db2look command will look for

an uppercase table (for example, ″MY TABLE″). When -t is used with -l,

the combination does support partitioned tables in DB2 Version 9.5.

-tw Tname

Generates DDL for table names that match the pattern criteria specified by

Tname. Also generates the DDL for all dependent objects of all returned

tables. Tname can be a single value only. The underscore character (_) in

Tname represents any single character. The percent sign (%) represents a

string of zero or more characters. Any other character in Tname only

represents itself. When -tw is specified, the -t option is ignored.

-ct Generate DDL by object creation time. Generating DDL by object creation

time will not guarantee that all the object DDLs will be displayed in

correct dependency order. The db2look command only supports the

following options if the -ct option is also specified: -e, -a, -u, -z, -t, -tw, -v,

-l, -noview, -wlm.

-dp Generate DROP statement before CREATE statement. The DROP statement

might not work if there is an object that depends on the dropped object.

For example, dropping a schema will fail if there is a table that depends on

the dropped schema, or dropping a user-defined type/function will fail if

there is any other type, function, trigger, or table that depends on it. For

typed tables, the DROP TABLE HIERARCHY statement will be generated

for the root table only. A DROP statement is not generated for index,

primary and foreign keys, and constraints, because they are always

dropped when the table is dropped. When a table has the RESTRICT ON

DROP attribute, it cannot be dropped.

-v Vname1 Vname2 ... VnameN

Generates DDL for the specified views. The maximum number of views is

30. If the -t option is specified, the -v option is ignored. The rules

governing case-sensitive, DBCS, and multiple-word table names also apply

to view names.

-h Display help information. When this option is specified, all other options

are ignored, and only the help information is displayed.

-ap Generates the required AUDIT USING statements to associate audit

policies with other database objects.

-o Fname

Write the output to filename.sql. If this option is not specified, output is

written to standard output. If a filename is specified with an extension, the

output will be written into that file.

-a When this option is specified the output is not limited to the objects

created under a particular creator ID. All objects, including inoperative

objects, created by all users are considered. For example, if this option is

specified with the -e option, DDL statements are extracted for all objects in

the database. If this option is specified with the -m option, UPDATE

statistics statements are extracted for all user created tables and indexes in

the database. If neither -u nor -a is specified, the environment variable

380 Data Movement Utilities Guide and Reference

USER is used. On UNIX operating systems, this variable does not have to

be explicitly set; on Windows systems, however, there is no default value

for the USER environment variable: a user variable in the SYSTEM

variables must be set, or a set USER=username must be issued for the

session.

-m Generates the required UPDATE statements to replicate the statistics on

tables, statistical views, columns and indexes.

-c When this option is specified in conjunction with the -m option,

the db2look command does not generate COMMIT, CONNECT

and CONNECT RESET statements. The default action is to

generate these statements.

-r When this option is specified in conjunction with the -m option,

the db2look command does not generate the RUNSTATS

command. The default action is to generate the RUNSTATS

command.

Note: If you intend to run the command processor script created using

db2look in mimic mode (-m option) against another database (for example,

to make the catalog statistics of the test database match those in

production), both databases must use the same codeset and territory.

-l If this option is specified, then the db2look command will generate DDL

for user defined table spaces, database partition groups and buffer pools.

DDL for the following database objects is extracted when using the -l

option:

v User-defined table spaces

v User-defined database partition groups

v User-defined buffer pools

-x If this option is specified, the db2look command will generate

authorization DDL (GRANT statement, for example).

 The supported authorizations include:

v Table: ALTER, SELECT, INSERT, DELETE, UPDATE, INDEX,

REFERENCE, CONTROL

v View: SELECT, INSERT, DELETE, UPDATE, CONTROL

v Index: CONTROL

v Schema: CREATEIN, DROPIN, ALTERIN

v Database: ACCESSCTRL, BINDADD, CONNECT, CREATETAB,

CREATE_EXTERNAL_ROUTINE, CREATE_NOT_FENCED_ROUTINE,

DATAACCESS, DBADM, EXPLAIN, IMPLICIT_SCHEMA, LOAD,

QUIESCE_CONNECT, SECADM, SQLADM, WLMADM

v User-defined function (UDF): EXECUTE

v User-defined method: EXECUTE

v Stored procedure: EXECUTE

v Package: CONTROL, BIND, EXECUTE

v Column: UPDATE, REFERENCES

v Table space: USE

v Sequence: USAGE, ALTER

v Workloads: USAGE

v Global variables

Chapter 5. Other data movement options 381

v Role

v Security labels

v Exemptions

-xd If this option is specified, the db2look command will generate all

authorization DDLs, including authorization DDL for objects whose

authorizations were granted by SYSIBM at object creation time.

-f Use this option to extract the configuration parameters and registry

variables that affect the query optimizer.

-td delimiter

Specifies the statement delimiter for SQL statements generated by the

db2look command. If this option is not specified, the default is the

semicolon (;). It is recommended that this option be used if the -e option is

specified. In this case, the extracted objects might contain triggers or SQL

routines.

-noview

If this option is specified, CREATE VIEW DDL statements will not be

extracted.

-i userid

Use this option when working with a remote database.

-w password

Used with the -i option, this parameter allows the user to run the db2look

command against a database that resides on a remote system. The user ID

and the password are used by the db2look command to log on to the

remote system. If working with remote databases, the remote database

must be the same version as the local database. The db2look command

does not have down-level or up-level support.

-wlm This option generates WLM specific DDL output, which can serve to

generate CREATE and ALTER statements for:

v Histograms

v WLM Event Monitors

v Service Classes

v Workloads

v Thresholds

v Work Class Sets

v Work Action Sets

-wrapper Wname

Generates DDL statements for federated objects that apply to this wrapper.

The federated DDL statements that might be generated include: CREATE

WRAPPER, CREATE SERVER, CREATE USER MAPPING, CREATE

NICKNAME, CREATE TYPE MAPPING, CREATE FUNCTION ... AS

TEMPLATE, CREATE FUNCTION MAPPING, CREATE INDEX

SPECIFICATION, and GRANT (privileges to nicknames, servers, indexes).

Only one wrapper name is supported; an error is returned if less than one

or more than one is specified. This option does not support non-relational

data sources.

-server Sname

Generates DDL statements for federated objects that apply to this server.

The federated DDL statements that might be generated include: CREATE

WRAPPER, CREATE SERVER, CREATE USER MAPPING, CREATE

382 Data Movement Utilities Guide and Reference

NICKNAME, CREATE TYPE MAPPING, CREATE FUNCTION ... AS

TEMPLATE, CREATE FUNCTION MAPPING, CREATE INDEX

SPECIFICATION, and GRANT (privileges to nicknames, servers, indexes).

Only one server name is supported; an error is returned if less than one or

more than one is specified. This option does not support non-relational

data sources.

-nofed Specifies that no federated DDL statements will be generated. When this

option is specified, the -wrapper and -server options are ignored.

-fedonly

Specifies that only federated DDL statements will be generated.

-mod Generates DDL statements for each module, and for all of the objects that

are defined in each module.

-xs Exports all files necessary to register XML schemas and DTDs at the target

database, and generates appropriate commands for registering them. The

set of XSR objects that will be exported is controlled by the -u, -z, and -a

options.

-xdir dirname

Places exported XML-related files into the given path. If this option is not

specified, all XML-related files will be exported into the current directory.

-cor Generates DDL statements with the CREATE OR REPLACE clause,

regardless of whether or not the statements originally contained that

clause.

Examples

v Generate the DDL statements for objects created by user walid in database

DEPARTMENT. The db2look output is sent to file db2look.sql:

 db2look -d department -u walid -e -o db2look.sql

v Generate the DDL statements for objects that have schema name ianhe, created

by user walid, in database DEPARTMENT. The db2look output is sent to file

db2look.sql:

 db2look -d department -u walid -z ianhe -e -o db2look.sql

v Generate the UPDATE statements to replicate the statistics for the database

objects created by user walid in database DEPARTMENT. The output is sent to

file db2look.sql:

 db2look -d department -u walid -m -o db2look.sql

v Generate both the DDL statements for the objects created by user walid and the

UPDATE statements to replicate the statistics on the database objects created by

the same user. The db2look output is sent to file db2look.sql:

 db2look -d department -u walid -e -m -o db2look.sql

v Generate the DDL statements for objects created by all users in the database

DEPARTMENT. The db2look output is sent to file db2look.sql:

 db2look -d department -a -e -o db2look.sql

v Generate the DDL statements for all user-defined database partition groups,

buffer pools and table spaces. The db2look output is sent to file db2look.sql:

 db2look -d department -l -o db2look.sql

v Generate the UPDATE statements for optimizer-related database and database

manager configuration parameters, as well as the db2set statements for

optimizer-related registry variables in database DEPARTMENT. The db2look

output is sent to file db2look.sql:

 db2look -d department -f -o db2look.sql

Chapter 5. Other data movement options 383

v Generate the DDL for all objects in database DEPARTMENT, the UPDATE

statements to replicate the statistics on all tables and indexes in database

DEPARTMENT, the GRANT authorization statements, the UPDATE statements

for optimizer-related database and database manager configuration parameters,

the db2set statements for optimizer-related registry variables, and the DDL for

all user-defined database partition groups, buffer pools and table spaces in

database DEPARTMENT. The output is sent to file db2look.sql.

 db2look -d department -a -e -m -l -x -f -o db2look.sql

v Generate all authorization DDL statements for all objects in database

DEPARTMENT, including the objects created by the original creator. (In this

case, the authorizations were granted by SYSIBM at object creation time.) The

db2look output is sent to file db2look.sql:

 db2look -d department -xd -o db2look.sql

v Generate the DDL statements for objects created by all users in the database

DEPARTMENT. The db2look output is sent to file db2look.sql:

 db2look -d department -a -e -td % -o db2look.sql

The output can then be read by the CLP:

 db2 -td% -f db2look.sql

v Generate the DDL statements for objects in database DEPARTMENT, excluding

the CREATE VIEW statements. The db2look output is sent to file db2look.sql:

 db2look -d department -e -noview -o db2look.sql

v Generate the DDL statements for objects in database DEPARTMENT related to

specified tables. The db2look output is sent to file db2look.sql:

 db2look -d department -e -t tab1 \"My TaBlE2\" -o db2look.sql

v Generate the DDL statements for all objects (federated and non-federated) in the

federated database FEDDEPART. For federated DDL statements, only those that

apply to the specified wrapper, FEDWRAP, are generated. The db2look output is

sent to standard output:

 db2look -d feddepart -e -wrapper fedwrap

v Generate a script file that includes only non-federated DDL statements. The

following system command can be run against a federated database

(FEDDEPART) and yet only produce output like that found when run against a

database which is not federated. The db2look output is sent to a file out.sql:

 db2look -d feddepart -e -nofed -o out

v Generate the DDL statements for objects that have schema name walid in the

database DEPARTMENT. The files required to register any included XML

schemas and DTDs are exported to the current directory. The db2look output is

sent to file db2look.sql:

 db2look -d department -z walid -e -xs -o db2look.sql

v Generate the DDL statements for objects created by all users in the database

DEPARTMENT. The files required to register any included XML schemas and

DTDs are exported to directory /home/ofer/ofer/. The db2look output is sent to

standard output:

 db2look -d department -a -e -xs -xdir /home/ofer/ofer/

v Generate WLM specific DDLs exclusively, in database DEPARTMENT.

db2look -d department -wlm

Generate the DDLs for all objects in the database DEPARTMENT.

db2look -d department -wlm -e -l

384 Data Movement Utilities Guide and Reference

Usage notes

On Windows operating systems, the db2look command must be run from a DB2

command window.

Several of the existing options support a federated environment. The following

db2look command line options are used in a federated environment:

v -ap

When used, AUDIT USING statements are generated.

v -e

When used, federated DDL statements are generated.

v -x

When used, GRANT statements are generated to grant privileges to the

federated objects.

v -xd

When used, federated DDL statements are generated to add system-granted

privileges to the federated objects.

v -f

When used, federated-related information is extracted from the database

manager configuration.

v -m

When used, statistics for nicknames are extracted.

v -wlm

When used, WLM specific DDLs will be output.

The ability to use federated systems needs to be enabled in the database manager

configuration in order to create federated DDL statements. After the db2look

command generates the script file, you must set the federated configuration

parameter to YES before running the script.

You need to modify the output script to add the remote passwords for the

CREATE USER MAPPING statements.

You need to modify the db2look command output script by adding

AUTHORIZATION and PASSWORD to those CREATE SERVER statements that are

used to define a DB2 family instance as a data source.

Usage of the -tw option is as follows:

v To both generate the DDL statements for objects in the DEPARTMENT database

associated with tables that have names beginning with abc and send the output

to the db2look.sql file:

 db2look -d department -e -tw abc% -o db2look.sql

v To generate the DDL statements for objects in the DEPARTMENT database

associated with tables that have a d as the second character of the name and to

send the output to the db2look.sql file:

 db2look -d department -e -tw _d% -o db2look.sql

v The db2look command uses the LIKE predicate when evaluating which table

names match the pattern specified by the Tname argument. Because the LIKE

predicate is used, if either the _ character or the % character is part of the table

name, the backslash (\) escape character must be used immediately before the _

or the %. In this situation, neither the _ nor the % can be used as a wildcard

Chapter 5. Other data movement options 385

character in Tname. For example, to generate the DDL statements for objects in

the DEPARTMENT database associated with tables that have a percent sign in

the neither the first nor the last position of the name:

 db2look -d department -e -tw string\%string

v Case-sensitive, DBCS, and multi-word table and view names must be enclosed

by both a backslash and double quotation marks. For example:

 \"My TabLe\"

If a multibyte character set (MBCS) or double-byte character set (DBCS) name is

not enclosed by the backward slash and double quotation delimiter and if it

contains the same byte as the lowercase character, it will be converted into

uppercase and db2look will look for a database object with the converted name.

As a result, the DDL statement will not be extracted.

v The -tw option can be used with the -x option (to generate GRANT privileges),

the -m option (to return table and column statistics), and the -l option (to

generate the DDL for user-defined table spaces, database partition groups, and

buffer pools). If the -t option is specified with the -tw option, the -t option (and

its associated Tname argument) is ignored.

v The -tw option cannot be used to generate the DDL for tables (and their

associated objects) that reside on federated data sources, or on DB2 for z/OS,

DB2 for i , or DB2 Server for VSE & VM.

v The -tw option is only supported via the CLP.

When requesting DDL on systems using the database partitioning feature, a

warning message will be displayed in place of the DDL for table spaces that exist

on inactive database partitions. To ensure proper DDL is produced for all table

spaces all database partitions must be activated.

When extracting DDL for security label components of type array, the extracted

DDL may not generate a security label component whose internal representation

(i.e., the encoding of elements in that array) exactly matches the internal

representation of that security label component within the database that the

db2look extract was taken from. This can happen when a security label component

of type array has been altered and one or more elements were added to it. In such

cases, data extracted from one table and moved to another table, created from

db2look output, will not have corresponding security label values, such that the

protection of the new table may be compromised.

Related information

Nickname column and index names

Changing applications for migration

386 Data Movement Utilities Guide and Reference

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.swg.im.iis.fed.query.doc/topics/iiyfqnnonam.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.swg.im.iis.prod.migration.doc/topics/iiymgchapps.html

Chapter 6. File formats and data types

Export/Import/Load utility file formats

Five operating system file formats supported by the DB2 export, import, and load

utilities are described:

DEL Delimited ASCII, for data exchange among a wide variety of database

managers and file managers. This common approach to storing data uses

special character delimiters to separate column values.

ASC Non-delimited ASCII, for importing or loading data from other

applications that create flat text files with aligned column data.

PC/IXF

PC version of the Integration Exchange Format (IXF), the preferred method

for data exchange within the database manager. PC/IXF is a structured

description of a database table that contains an external representation of

the internal table.

WSF Worksheet format, for data exchange with products such as Lotus 1-2-3

and Symphony. The load utility does not support this file format.

 This format is deprecated and may be removed in a future release.

CURSOR

A cursor declared against an SQL query. This file type is only supported by

the load utility.

When using DEL, WSF, or ASC data file formats, define the table, including its

column names and data types, before importing the file. The data types in the

operating system file fields are converted into the corresponding type of data in

the database table. The import utility accepts data with minor incompatibility

problems, including character data imported with possible padding or truncation,

and numeric data imported into different types of numeric fields.

When using the PC/IXF data file format, the table does not need to exist before

you begin the import operation. However, the user-defined distinct type (UDT)

does need to be defined, otherwise you receive an undefined name error

(SQL0204N). Similarly, when you are exporting to the PC/IXF data file format,

UDTs are stored in the output file.

When using the CURSOR file type, the table, including its column names and data

types, must be defined before beginning the load operation. The column types of

the SQL query must be compatible with the corresponding column types in the

target table. It is not necessary for the specified cursor to be open before starting

the load operation. The load utility will process the entire result of the query

associated with the specified cursor whether or not the cursor has been used to

fetch rows.

Moving data across platforms - file format considerations

Compatibility is important when exporting, importing, or loading data across

platforms. The following sections describe PC/IXF, delimited ASCII (DEL), and

WSF file format considerations when moving data between different operating

systems.

© Copyright IBM Corp. 1993, 2009 387

PC/IXF file format

PC/IXF is the recommended file format for transferring data across platforms.

PC/IXF files allow the load utility or the import utility to process (normally

machine dependent) numeric data in a machine-independent fashion. For example,

numeric data is stored and handled differently by Intel® and other hardware

architectures.

To provide compatibility of PC/IXF files among all products in the DB2 family, the

export utility creates files with numeric data in Intel format, and the import utility

expects it in this format.

Depending on the hardware platform, DB2 products convert numeric values

between Intel and non-Intel formats (using byte reversal) during both export and

import operations.

UNIX based implementations of DB2 database do not create multiple-part PC/IXF

files during export. However, they will allow you to import a multiple-part

PC/IXF file that was created by DB2. When importing this type of file, all parts

should be in the same directory, otherwise an error is returned.

Single-part PC/IXF files created by UNIX based implementations of the DB2

export utility can be imported by DB2 database for Windows.

Delimited ASCII (DEL) file format

DEL files have differences based on the operating system on which they were

created. The differences are:

v Row separator characters

– UNIX based text files use a line feed (LF) character.

– Non-UNIX based text files use a carriage return/line feed (CRLF) sequence.
v End-of-file character

– UNIX based text files do not have an end-of-file character.

– Non-UNIX based text files have an end-of-file character (X’1A’).

Since DEL export files are text files, they can be transferred from one operating

system to another. File transfer programs can handle operating system-dependant

differences if you transfer the files in text mode; the conversion of row separator

and end-of-file characters is not performed in binary mode.

Note: If character data fields contain row separator characters, these will also be

converted during file transfer. This conversion causes unexpected changes to the

data and, for this reason, it is recommended that you do not use DEL export files

to move data across platforms. Use the PC/IXF file format instead.

WSF file format

Numeric data in WSF format files is stored using Intel machine format. This format

allows Lotus WSF files to be transferred and used in different Lotus operating

environments (for example, in Intel based and UNIX based systems).

Note: Support for this file format is deprecated and might be removed in a future

release. It is recommended that you start using a supported file format instead of

WSF files before support is removed.

388 Data Movement Utilities Guide and Reference

As a result of this consistency in internal formats, exported WSF files from DB2

products can be used by Lotus 1-2-3 or Symphony running on a different platform.

DB2 products can also import WSF files that were created on different platforms.

Transfer WSF files between operating systems in binary (not text) mode.

Note: Do not use the WSF file format to transfer data between DB2 databases on

different platforms, because a loss of data can occur. Use the PC/IXF file format

instead.

Delimited ASCII (DEL) file format

A Delimited ASCII (DEL) file is a sequential ASCII file with row and column

delimiters. Each DEL file is a stream of ASCII characters consisting of cell values

ordered by row, and then by column. Rows in the data stream are separated by

row delimiters; within each row, individual cell values are separated by column

delimiters.

The following table describes the format of DEL files that can be imported, or that

can be generated as the result of an export action.

DEL file ::= Row 1 data || Row delimiter ||

 Row 2 data || Row delimiter ||

 .

 .

 .

 Row n data || Optional row delimiter

Row i data ::= Cell value(i,1) || Column delimiter ||

 Cell value(i,2) || Column delimiter ||

 .

 .

 .

 Cell value(i,m)

Row delimiter ::= ASCII line feed sequencea

Column delimiter ::= Default value ASCII comma (,)b

Cell value(i,j) ::= Leading spaces

 || ASCII representation of a numeric value

 (integer, decimal, or float)

 || Delimited character string

 || Non-delimited character string

 || Trailing spaces

Non-delimited character string ::= A set of any characters except a

 row delimiter or a column delimiter

Delimited character string ::= A character string delimiter ||

 An extended character string ||

 A character string delimiter ||

 Trailing garbage

Trailing garbage ::= A set of any characters except a row delimiter

 or a column delimiter

Character string delimiter ::= Default value ASCII double quotation

 marks (")c

extended character string ::= || A set of any characters except a

 row delimiter or a character string

 delimiter if the NODOUBLEDEL

Chapter 6. File formats and data types 389

modifier is specified

 || A set of any characters except a

 row delimiter or a character string

 delimiter if the character string

 is not part of two consecutive

 character string delimiters

 || A set of any characters except a

 character string delimiter if the

 character string delimiter is not

 part of two consecutive character

 string delimiters, and the DELPRIORITYCHAR

 modifier is specified

End-of-file character ::= Hex ’1A’ (Windows operating system only)

ASCII representation of a numeric valued ::= Optional sign ’+’ or ’-’

 || 1 to 31 decimal digits with an optional decimal point before,

 after, or between two digits

 || Optional exponent

Exponent ::= Character ’E’ or ’e’

 || Optional sign ’+’ or ’-’

 || 1 to 3 decimal digits with no decimal point

Decimal digit ::= Any one of the characters ’0’, ’1’, ... ’9’

Decimal point ::= Default value ASCII period (.)e

v

a The record delimiter is assumed to be a new line character, ASCII x0A. Data

generated on the Windows operating system can use the carriage return/line

feed 2-byte standard of 0x0D0A. Data in EBCDIC code pages should use the

EBCDIC LF character (0x25) as the record delimiter (EBCDIC data can be loaded

using the codepage file type modifier with the LOAD command).

v

b The column delimiter can be specified with the coldel file type modifier.

v

c The character string delimiter can be specified with the chardel file type

modifier.

Note: The default priority of delimiters is:

1. Record delimiter

2. Character delimiter

3. Column delimiter
v

d If the ASCII representation of a numeric value contains an exponent, it is a

FLOAT constant. If it has a decimal point but no exponent, it is a DECIMAL

constant. If it has no decimal point and no exponent, it is an INTEGER constant.

v

e The decimal point character can be specified with the decpt file type modifier.

The export utility will replace every character string delimiter byte (default is

double quote or x22) that is embedded within column data with two character

string delimiter bytes (ie. doubling it). This is done so that the import parsing

routines can distinguish between a character string delimiter byte that defines the

beginning or end of a column, versus a character string delimiter byte embedded

within the column data. Take caution when using an exported DEL file for some

application other than the export utility, and note that the same doubling of

character string delimiters occurs within ’FOR BIT’ binary column data.

390 Data Movement Utilities Guide and Reference

DEL data type descriptions

 Table 50. Acceptable Data Type Forms for the DEL File Format

Data Type

Form in Files Created by the

Export Utility

Form Acceptable to the

Import Utility

BIGINT An INTEGER constant in the

range

-9 223 372 036 854 775 808

to

9 223 372 036 854 775 807.

ASCII representation of a

numeric value in the range

-9 223 372 036 854 775 808

to

9 223 372 036 854 775 807.

Decimal and float numbers

are truncated to integer

values.

BLOB, CLOB Character data enclosed by

character delimiters (for

example, double quotation

marks).

A delimited or non-delimited

character string. The

character string is used as

the database column value.

BLOB_FILE, CLOB_FILE The character data for each

BLOB/CLOB column is

stored in individual files, and

the file name is enclosed by

character delimiters.

The delimited or

non-delimited name of the

file that holds the data.

CHAR Character data enclosed by

character delimiters (for

example, double quotation

marks).

A delimited or non-delimited

character string. The

character string is truncated

or padded with spaces

(X’20’), if necessary, to match

the width of the database

column.

DATE yyyymmdd (year month day)

with no character delimiters.

For example: 19931029

Alternatively, the DATESISO

option can be used to specify

that all date values are to be

exported in ISO format.

A delimited or non-delimited

character string containing a

date value in an ISO format

consistent with the territory

code of the target database,

or a non-delimited character

string of the form yyyymmdd.

DBCLOB (DBCS only) Graphic data is exported as a

delimited character string.

A delimited or non-delimited

character string, an even

number of bytes in length.

The character string is used

as the database column

value.

DBCLOB_FILE (DBCS only) The character data for each

DBCLOB column is stored in

individual files, and the file

name is enclosed by

character delimiters.

The delimited or

non-delimited name of the

file that holds the data.

DB2SECURITYLABEL Column data is exported as

″raw″ data enclosed in

quotation marks (“). Use the

SECLABEL_TO_CHAR scalar

function in the SELECT

statement to convert the

value to the security label

string format.

The value in the data file is

assumed by default to be the

actual bytes that make up

the internal representation of

that security label. The value

is assumed to be delimited

by quotation marks (″ ″).

Chapter 6. File formats and data types 391

Table 50. Acceptable Data Type Forms for the DEL File Format (continued)

Data Type

Form in Files Created by the

Export Utility

Form Acceptable to the

Import Utility

DECIMAL A DECIMAL constant with

the precision and scale of the

field being exported. The

decplusblank file type

modifier can be used to

specify that positive decimal

values are to be prefixed

with a blank space instead of

a plus sign (+).

ASCII representation of a

numeric value that does not

overflow the range of the

database column into which

the field is being imported. If

the input value has more

digits after the decimal point

than can be accommodated

by the database column, the

excess digits are truncated.

FLOAT(long) A FLOAT constant in the

range -10E307 to 10E307.

ASCII representation of a

numeric value in the range

-10E307 to 10E307.

GRAPHIC (DBCS only) Graphic data is exported as a

delimited character string.

A delimited or non-delimited

character string, an even

number of bytes in length.

The character string is

truncated or padded with

double-byte spaces (for

example, X’8140’), if

necessary, to match the

width of the database

column.

INTEGER An INTEGER constant in the

range -2 147 483 648 to

2 147 483 647.

ASCII representation of a

numeric value in the range

-2 147 483 648 to

2 147 483 647. Decimal and

float numbers are truncated

to integer values.

LONG VARCHAR Character data enclosed by

character delimiters (for

example, double quotation

marks).

A delimited or non-delimited

character string. The

character string is used as

the database column value.

LONG VARGRAPHIC (DBCS

only)

Graphic data is exported as a

delimited character string.

A delimited or non-delimited

character string, an even

number of bytes in length.

The character string is used

as the database column

value.

SMALLINT An INTEGER constant in the

range -32 768 to 32 767.

ASCII representation of a

numeric value in the range

-32 768 to 32 767. Decimal

and float numbers are

truncated to integer values.

TIME hh.mm.ss (hour minutes

seconds). A time value in

ISO format enclosed by

character delimiters. For

example: “09.39.43”

A delimited or non-delimited

character string containing a

time value in a format

consistent with the territory

code of the target database.

392 Data Movement Utilities Guide and Reference

Table 50. Acceptable Data Type Forms for the DEL File Format (continued)

Data Type

Form in Files Created by the

Export Utility

Form Acceptable to the

Import Utility

TIMESTAMP yyyy-mm-dd-hh.mm.ss.nnnnnn

(year month day hour

minutes seconds

microseconds). A character

string representing a date

and time enclosed by

character delimiters.

A delimited or non-delimited

character string containing a

time stamp value acceptable

for storage in a database.

VARCHAR Character data enclosed by

character delimiters (for

example, double quotation

marks).

A delimited or non-delimited

character string. The

character string is truncated,

if necessary, to match the

maximum width of the

database column.

VARGRAPHIC (DBCS only) Graphic data is exported as a

delimited character string.

A delimited or non-delimited

character string, an even

number of bytes in length.

The character string is

truncated, if necessary, to

match the maximum width

of the database column.

Example DEL file

Following is an example of a DEL file. Each line ends with a line feed sequence

(on the Windows operating system, each line ends with a carriage return/line feed

sequence).

 "Smith, Bob",4973,15.46

 "Jones, Bill",12345,16.34

 "Williams, Sam",452,193.78

The following example illustrates the use of non-delimited character strings. The

column delimiter has been changed to a semicolon, because the character data

contains a comma.

 Smith, Bob;4973;15.46

 Jones, Bill;12345;16.34

 Williams, Sam;452;193.78

Note:

1. A space (X’20’) is never a valid delimiter.

2. Spaces that precede the first character, or that follow the last character of a cell

value, are discarded during import. Spaces that are embedded in a cell value

are not discarded.

3. A period (.) is not a valid character string delimiter, because it conflicts with

periods in time stamp values.

4. For pure DBCS (graphic), mixed DBCS, and EUC, delimiters are restricted to

the range of x00 to x3F, inclusive.

5. For DEL data specified in an EBCDIC code page, the delimiters might not

coincide with the shift-in and shift-out DBCS characters.

6. On the Windows operating system, the first occurrence of an end-of-file

character (X’1A’) that is not within character delimiters indicates the end-of-file.

Any subsequent data is not imported.

Chapter 6. File formats and data types 393

7. A null value is indicated by the absence of a cell value where one would

normally occur, or by a string of spaces.

8. Since some products restrict character fields to 254 or 255 bytes, the export

utility generates a warning message whenever a character column of maximum

length greater than 254 bytes is selected for export. The import utility

accommodates fields that are as long as the longest LONG VARCHAR and

LONG VARGRAPHIC columns.

Delimiter considerations for moving data

When moving delimited ASCII (DEL) files, it is important to ensure that the data

being moved is not unintentionally altered because of problems with delimiter

character recognition. To help prevent these errors, DB2 enforces several

restrictions and provides a number of file type modifiers.

Delimiter restrictions

There are a number of restrictions in place that help prevent the chosen delimiter

character from being treated as a part of the data being moved. First, delimiters are

mutually exclusive. Second, a delimiter cannot be binary zero, a line-feed character,

a carriage-return, or a blank space. As well, the default decimal point (.) cannot be

a string delimiter. Finally, in a DBCS environment, the pipe (|) character delimiter

is not supported.

The following characters are specified differently by an ASCII-family code page

and an EBCDIC-family code page:

v The Shift-In (0x0F) and the Shift-Out (0x0E) character cannot be delimiters for an

EBCDIC MBCS data file.

v Delimiters for MBCS, EUC, or DBCS code pages cannot be greater than 0x40,

except the default decimal point for EBCDIC MBCS data, which is 0x4b.

v Default delimiters for data files in ASCII code pages or EBCDIC MBCS code

pages are:

– string delimiter: "(0x22, double quotation mark)

– column delimiter: ,(0x2c, comma)
v Default delimiters for data files in EBCDIC SBCS code pages are:

– string delimiter: "(0x7F, double quotation mark)

– column delimiter: ,(0x6B, comma)
v The default decimal point for ASCII data files is 0x2e (period).

v The default decimal point for EBCDIC data files is 0x4B (period).

v If the code page of the server is different from the code page of the client, it is

recommended that the hex representation of non-default delimiters be specified.

For example,

 db2 load from ... modified by chardel0x0C coldelX1e ...

Issues with delimiters during data movement

Double character delimiters

By default, for character-based fields of a DEL file, any instance of the character

delimiter found within the field is represented by double character delimiters. For

example, assuming that the character delimiter is the double quote, if you export

the text I am 6″ tall., the output text in the DEL file reads ″I am 6″″ tall.″

Conversely, if the input text in a DEL file reads ″What a ″″nice″″ day!″, the text is

imported as What a ″nice″ day!

394 Data Movement Utilities Guide and Reference

nodoubledel
Double character delimiter behavior can be disabled for the import, export, and

load utilities by specifying the nodoubledel file type modifier. However, be aware

that double character delimiter behavior exists in order to avoid parsing errors.

When you use nodoubledel with export, the character delimiter is not doubled if it

is present in character fields. When you use nodoubledel with import and load, the

double character delimiter is not interpreted as a literal instance of the character

delimiter.

nochardel
When you use the nochardel file type modifier with export, the character fields are

not surrounded by character delimiters. When nochardel is used import and load,

the character delimiters are not treated as special characters and are interpreted as

actual data.

chardel
Other file type modifiers can be used to manually prevent confusion between

default delimiters and the data. Thechardel file type modifier specifies x, a single

character, as the character string delimiter to be used instead of double quotation

marks (as is the default).

coldel
Similarly, if you wanted to avoid using the default comma as a column delimiter,

you could use coldel, which specifies x, a single character, as the column data

delimiter.

delprioritychar
Another concern in regards to moving DEL files is maintaining the correct

precedence order for delimiters. The default priority for delimiters is: row,

character, column. However, some applications depend on the priority: character,

row, column. For example, using the default priority, the DEL data file:

"Vincent <row delimiter> is a manager",<row delimiter>

would be interpreted as having two rows: Vincent, and is a manager, since <row

delimiter> takes precedence over the character delimiter (″). Using

delprioritychar gives the character delimiter (″) precedence over the row

delimiter (<row delimiter>), meaning that the same DEL file would be interpreted

(correctly) as having one row: Vincent is a manager.

Non-delimited ASCII (ASC) file format

The non-delimited ASCII format, known as ASC to the import and load utilities,

comes in two varieties: fixed length and flexible length. For fixed length ASC, all

records are of a fixed length. For flexible length ASC, records are delimited by a

row delimiter (always a new line). The term non-delimited in non-delimited ASCII

means that column values are not separated by delimiters.

When importing or loading ASC data, specifying the reclen file type modifier will

indicate that the datafile is fixed length ASC. Not specifying it means that the

datafile is flexible length ASC.

The non-delimited ASCII format, can be used for data exchange with any ASCII

product that has a columnar format for data, including word processors. Each ASC

file is a stream of ASCII characters consisting of data values ordered by row and

column. Rows in the data stream are separated by row delimiters. Each column

Chapter 6. File formats and data types 395

within a row is defined by a beginning-ending location pair (specified by IMPORT

parameters). Each pair represents locations within a row specified as byte

positions. The first position within a row is byte position 1. The first element of

each location pair is the byte on which the column begins, and the second element

of each location pair is the byte on which the column ends. The columns might

overlap. Every row in an ASC file has the same column definition.

An ASC file is defined by:

ASC file ::= Row 1 data || Row delimiter ||

 Row 2 data || Row delimiter ||

 .

 .

 .

 Row n data

Row i data ::= ASCII characters || Row delimiter

Row Delimiter ::= ASCII line feed sequencea

v

a The record delimiter is assumed to be a new line character, ASCII x0A. Data

generated on the Windows operating system can use the carriage return/line

feed 2-byte standard of 0x0D0A. Data in EBCDIC code pages should use the

EBCDIC LF character (0x25) as the record delimiter (EBCDIC data can be loaded

using the codepage file type modifier with the LOAD command). The record

delimiter is never interpreted to be part of a field of data.

ASC data type descriptions

 Table 51. Acceptable Data Type Forms for the ASC File Format

Data Type Form Acceptable to the Import Utility

BIGINT A constant in any numeric type (SMALLINT, INTEGER,

BIGINT, DECIMAL, or FLOAT) is accepted. Individual values

are rejected if they are not in the range

-9 223 372 036 854 775 808 to 9 223 372 036 854 775 807.

Decimal numbers are truncated to integer values. A comma,

period, or colon is considered to be a decimal point. Thousands

separators are not allowed.

The beginning and ending locations should specify a field

whose width does not exceed 50 bytes. Integers, decimal

numbers, and the mantissas of floating point numbers can have

no more than 31 digits. Exponents of floating point numbers

can have no more than 3 digits.

BLOB/CLOB A string of characters. The character string is truncated on the

right, if necessary, to match the maximum length of the target

column. If the ASC truncate blanks option is in effect, trailing

blanks are stripped from the original or the truncated string.

BLOB_FILE, CLOB_FILE,

DBCLOB_FILE (DBCS

only)

A delimited or non-delimited name of the file that holds the

data.

CHAR A string of characters. The character string is truncated or

padded with spaces on the right, if necessary, to match the

width of the target column.

DATE A character string representing a date value in a format

consistent with the territory code of the target database.

The beginning and ending locations should specify a field

width that is within the range for the external representation of

a date.

396 Data Movement Utilities Guide and Reference

Table 51. Acceptable Data Type Forms for the ASC File Format (continued)

Data Type Form Acceptable to the Import Utility

DBCLOB (DBCS only) A string of an even number of bytes. A string of an odd number

of bytes is invalid and is not accepted. A valid string is

truncated on the right, if necessary, to match the maximum

length of the target column.

DECIMAL A constant in any numeric type (SMALLINT, INTEGER,

BIGINT, DECIMAL, or FLOAT) is accepted. Individual values

are rejected if they are not in the range of the database column

into which they are being imported. If the input value has more

digits after the decimal point than the scale of the database

column, the excess digits are truncated. A comma, period, or

colon is considered to be a decimal point. Thousands separators

are not allowed.

The beginning and ending locations should specify a field

whose width does not exceed 50 bytes. Integers, decimal

numbers, and the mantissas of floating point numbers can have

no more than 31 digits. Exponents of floating point numbers

can have no more than 3 digits.

FLOAT(long) A constant in any numeric type (SMALLINT, INTEGER,

BIGINT, DECIMAL, or FLOAT) is accepted. All values are valid.

A comma, period, or colon is considered to be a decimal point.

An uppercase or lowercase E is accepted as the beginning of the

exponent of a FLOAT constant.

The beginning and ending locations should specify a field

whose width does not exceed 50 bytes. Integers, decimal

numbers, and the mantissas of floating point numbers can have

no more than 31 digits. Exponents of floating point numbers

can have no more than 3 digits.

GRAPHIC (DBCS only) A string of an even number of bytes. A string of an odd number

of bytes is invalid and is not accepted. A valid string is

truncated or padded with double-byte spaces (0x8140) on the

right, if necessary, to match the maximum length of the target

column.

INTEGER A constant in any numeric type (SMALLINT, INTEGER,

BIGINT, DECIMAL, or FLOAT) is accepted. Individual values

are rejected if they are not in the range -2 147 483 648 to

2 147 483 647. Decimal numbers are truncated to integer

values. A comma, period, or colon is considered to be a decimal

point. Thousands separators are not allowed.

The beginning and ending locations should specify a field

whose width does not exceed 50 bytes. Integers, decimal

numbers, and the mantissas of floating point numbers can have

no more than 31 digits. Exponents of floating point numbers

can have no more than 3 digits.

LONG VARCHAR A string of characters. The character string is truncated on the

right, if necessary, to match the maximum length of the target

column. If the ASC truncate blanks option is in effect, trailing

blanks are stripped from the original or the truncated string.

LONG VARGRAPHIC

(DBCS only)

A string of an even number of bytes. A string of an odd number

of bytes is invalid and is not accepted. A valid string is

truncated on the right, if necessary, to match the maximum

length of the target column.

Chapter 6. File formats and data types 397

Table 51. Acceptable Data Type Forms for the ASC File Format (continued)

Data Type Form Acceptable to the Import Utility

SMALLINT A constant in any numeric type (SMALLINT, INTEGER,

BIGINT, DECIMAL, or FLOAT) is accepted. Individual values

are rejected if they are not in the range -32 768 to 32 767.

Decimal numbers are truncated to integer values. A comma,

period, or colon is considered to be a decimal point. Thousands

separators are not allowed.

The beginning and ending locations should specify a field

whose width does not exceed 50 bytes. Integers, decimal

numbers, and the mantissas of floating point numbers can have

no more than 31 digits. Exponents of floating point numbers

can have no more than 3 digits.

TIME A character string representing a time value in a format

consistent with the territory code of the target database.

The beginning and ending locations should specify a field

width that is within the range for the external representation of

a time.

TIMESTAMP A character string representing a time stamp value acceptable

for storage in a database.

The beginning and ending locations should specify a field

width that is within the range for the external representation of

a time stamp.

VARCHAR A string of characters. The character string is truncated on the

right, if necessary, to match the maximum length of the target

column. If the ASC truncate blanks option is in effect, trailing

blanks are stripped from the original or the truncated string.

VARGRAPHIC (DBCS

only)

A string of an even number of bytes. A string of an odd number

of bytes is invalid and is not accepted. A valid string is

truncated on the right, if necessary, to match the maximum

length of the target column.

Example ASC file

Following is an example of an ASC file. Each line ends with a line feed sequence

(on the Windows operating system, each line ends with a carriage return/line feed

sequence).

 Smith, Bob 4973 15.46

 Jones, Suzanne 12345 16.34

 Williams, Sam 452123 193.78

Note:

1. ASC files are assumed not to contain column names.

2. Character strings are not enclosed by delimiters. The data type of a column in

the ASC file is determined by the data type of the target column in the

database table.

3. A NULL is imported into a nullable database column if:

v A field of blanks is targeted for a numeric, DATE, TIME, or TIMESTAMP

database column

v A field with no beginning and ending location pairs is specified

v A location pair with beginning and ending locations equal to zero is

specified

398 Data Movement Utilities Guide and Reference

v A row of data is too short to contain a valid value for the target column

v The NULL INDICATORS load option is used, and an N (or other value

specified by the user) is found in the null indicator column.
4. If the target column is not nullable, an attempt to import a field of blanks into

a numeric, DATE, TIME, or TIMESTAMP column causes the row to be rejected.

5. If the input data is not compatible with the target column, and that column is

nullable, a null is imported or the row is rejected, depending on where the

error is detected. If the column is not nullable, the row is rejected. Messages are

written to the message file, specifying incompatibilities that are found.

PC version of IXF file format

The PC version of IXF (PC/IXF) file format is a database manager adaptation of

the Integration Exchange Format (IXF) data interchange architecture. The IXF

architecture was specifically designed to enable the exchange of relational database

structures and data. The PC/IXF architecture allows the database manager to

export a database without having to anticipate the requirements and idiosyncrasies

of a receiving product. Similarly, a product importing a PC/IXF file need only

understand the PC/IXF architecture; the characteristics of the product which

exported the file are not relevant. The PC/IXF file architecture maintains the

independence of both the exporting and the importing database systems.

The IXF architecture is a generic relational database exchange format that supports

a rich set of relational data types, including some types that might not be

supported by specific relational database products. The PC/IXF file format

preserves this flexibility; for example, the PC/IXF architecture supports both

single-byte character string (SBCS) and double-byte character string (DBCS) data

types. Not all implementations support all PC/IXF data types; however, even

restricted implementations provide for the detection and disposition of

unsupported data types during import.

In general, a PC/IXF file consists of an unbroken sequence of variable-length

records. The file contains the following record types in the order shown:

v One header record of record type H

v One table record of record type T

v Multiple column descriptor records of record type C (one record for each

column in the table)

v Multiple data records of record type D (each row in the table is represented by

one or more D records).

A PC/IXF file might also contain application records of record type A, anywhere

after the H record. These records are permitted in PC/IXF files to enable an

application to include additional data, not defined by the PC/IXF format, in a

PC/IXF file. A records are ignored by any program reading a PC/IXF file that does

not have particular knowledge about the data format and content implied by the

application identifier in the A record.

Every record in a PC/IXF file begins with a record length indicator. This is a 6-byte

right justified character representation of an integer value specifying the length, in

bytes, of the portion of the PC/IXF record that follows the record length indicator;

that is, the total record size minus 6 bytes. Programs reading PC/IXF files should

use these record lengths to locate the end of the current record and the beginning

of the next record. H, T, and C records must be sufficiently large to include all of

their defined fields, and, of course, their record length fields must agree with their

Chapter 6. File formats and data types 399

actual lengths. However, if extra data (for example, a new field), is added to the

end of one of these records, pre-existing programs reading PC/IXF files should

ignore the extra data, and generate no more than a warning message. Programs

writing PC/IXF files, however, should write H, T and C records that are the

precise length needed to contain all of the defined fields.

If a PC/IXF file contains LOB Location Specifier (LLS) columns, each LLS column

must have its own D record. D records are automatically created by the export

utility, but you will need to create them manually if you are using a third party

tool to generate the PC/IXF files. Further, an LLS is required for each LOB column

in a table, including those with a null value. If a LOB column is null, you will

need to create an LLS representing a null LOB.

The D record entry for each XML column will contain two bytes little endian

indicating the XML data specifier (XDS) length, followed by the XDS itself.

For example, the following XDS:

 XDS FIL="a.xml" OFF="1000" LEN="100" SCH="RENATA.SCHEMA" />

will be represented by the following bytes in a D record:

 0x3D 0x00 XDS FIL="a.xml" OFF="1000" LEN="100" SCH="RENATA.SCHEMA" />

PC/IXF file records are composed of fields which contain character data. The

import and export utilities interpret this character data using the CPGID of the

target database, with two exceptions:

v The IXFADATA field of A records.

The code page environment of character data contained in an IXFADATA field is

established by the application which creates and processes a particular A record;

that is, the environment varies by implementation.

v The IXFDCOLS field of D records.

The code page environment of character data contained in an IXFDCOLS field is

a function of information contained in the C record which defines a particular

column and its data.

Numeric fields in H, T, and C records, and in the prefix portion of D and A records

should be right justified single-byte character representations of integer values,

filled with leading zeros or blanks. A value of zero should be indicated with at

least one (right justified) zero character, not blanks. Whenever one of these numeric

fields is not used, for example IXFCLENG, where the length is implied by the data

type, it should be filled with blanks. These numeric fields are:

 IXFHRECL, IXFTRECL, IXFCRECL, IXFDRECL, IXFARECL,

 IXFHHCNT, IXFHSBCP, IXFHDBCP, IXFTCCNT, IXFTNAML,

 IXFCLENG, IXFCDRID, IXFCPOSN, IXFCNAML, IXFCTYPE,

 IXFCSBCP, IXFCDBCP, IXFCNDIM, IXFCDSIZ, IXFDRID

Note: The database manager PC/IXF file format is not identical to the

System/370™.

PC/IXF record types

There are five basic PC/IXF record types:

v header

v table

v column descriptor

400 Data Movement Utilities Guide and Reference

v data

v application

and six application subtypes that DB2 uses:

v index

v hierarchy

v subtable

v continuation

v terminate

v identity

Each PC/IXF record type is defined as a sequence of fields; these fields are

required, and must appear in the order shown.

HEADER RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- ------- --------- -------------

 IXFHRECL 06-BYTE CHARACTER record length

 IXFHRECT 01-BYTE CHARACTER record type = ’H’

 IXFHID 03-BYTE CHARACTER IXF identifier

 IXFHVERS 04-BYTE CHARACTER IXF version

 IXFHPROD 12-BYTE CHARACTER product

 IXFHDATE 08-BYTE CHARACTER date written

 IXFHTIME 06-BYTE CHARACTER time written

 IXFHHCNT 05-BYTE CHARACTER heading record count

 IXFHSBCP 05-BYTE CHARACTER single byte code page

 IXFHDBCP 05-BYTE CHARACTER double byte code page

 IXFHFIL1 02-BYTE CHARACTER reserved

The following fields are contained in the header record:

IXFHRECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. The H record must be sufficiently long to include all of its defined

fields.

IXFHRECT

The IXF record type, which is set to H for this record.

IXFHID

The file format identifier, which is set to IXF for this file.

IXFHVERS

The PC/IXF format level used when the file was created, which is set to

’0002’.

IXFHPROD

A field that can be used by the program creating the file to identify itself.

If this field is filled in, the first six bytes are used to identify the product

creating the file, and the last six bytes are used to indicate the version or

release of the creating product. The database manager uses this field to

signal the existence of database manager-specific data.

IXFHDATE

The date on which the file was written, in the form yyyymmdd.

Chapter 6. File formats and data types 401

IXFHTIME

The time at which the file was written, in the form hhmmss. This field is

optional and can be left blank.

IXFHHCNT

The number of H, T, and C records in this file that precede the first data

record. A records are not included in this count.

IXFHSBCP

Single-byte code page field, containing a single-byte character

representation of a SBCS CPGID or ’00000’.

 The export utility sets this field equal to the SBCS CPGID of the exported

database table. For example, if the table SBCS CPGID is 850, this field

contains ’00850’.

IXFHDBCP

Double-byte code page field, containing a single-byte character

representation of a DBCS CPGID or ’00000’.

 The export utility sets this field equal to the DBCS CPGID of the exported

database table. For example, if the table DBCS CPGID is 301, this field

contains ’00301’.

IXFHFIL1

Spare field set to two blanks to match a reserved field in host IXF files.
TABLE RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- ------- --------- -------------

 IXFTRECL 006-BYTE CHARACTER record length

 IXFTRECT 001-BYTE CHARACTER record type = ’T’

 IXFTNAML 003-BYTE CHARACTER name length

 IXFTNAME 256-BYTE CHARACTER name of data

 IXFTQULL 003-BYTE CHARACTER qualifier length

 IXFTQUAL 256-BYTE CHARACTER qualifier

 IXFTSRC 012-BYTE CHARACTER data source

 IXFTDATA 001-BYTE CHARACTER data convention = ’C’

 IXFTFORM 001-BYTE CHARACTER data format = ’M’

 IXFTMFRM 005-BYTE CHARACTER machine format = ’PC’

 IXFTLOC 001-BYTE CHARACTER data location = ’I’

 IXFTCCNT 005-BYTE CHARACTER ’C’ record count

 IXFTFIL1 002-BYTE CHARACTER reserved

 IXFTDESC 030-BYTE CHARACTER data description

 IXFTPKNM 257-BYTE CHARACTER primary key name

 IXFTDSPC 257-BYTE CHARACTER reserved

 IXFTISPC 257-BYTE CHARACTER reserved

 IXFTLSPC 257-BYTE CHARACTER reserved

The following fields are contained in the table record:

IXFTRECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. The T record must be sufficiently long to include all of its defined

fields.

IXFTRECT

The IXF record type, which is set to T for this record.

IXFTNAML

The length, in bytes, of the table name in the IXFTNAME field.

402 Data Movement Utilities Guide and Reference

IXFTNAME

The name of the table. If each file has only one table, this is an

informational field only. The database manager does not use this field

when importing data. When writing a PC/IXF file, the database manager

writes the DOS file name (and possibly path information) to this field.

IXFTQULL

The length, in bytes, of the table name qualifier in the IXFTQUAL field.

IXFTQUAL

Table name qualifier, which identifies the creator of a table in a relational

system. This is an informational field only. If a program writing a file has

no data to write to this field, the preferred fill value is blanks. Programs

reading a file might print or display this field, or store it in an

informational field, but no computations should depend on the content of

this field.

IXFTSRC

Used to indicate the original source of the data. This is an informational

field only. If a program writing a file has no data to write to this field, the

preferred fill value is blanks. Programs reading a file might print or

display this field, or store it in an informational field, but no computations

should depend on the content of this field.

IXFTDATA

Convention used to describe the data. This field must be set to C for

import and export, indicating that individual column attributes are

described in the following column descriptor (C) records, and that data

follows PC/IXF conventions.

IXFTFORM

Convention used to store numeric data. This field must be set to M,

indicating that numeric data in the data (D) records is stored in the

machine (internal) format specified by the IXFTMFRM field.

IXFTMFRM

The format of any machine data in the PC/IXF file. The database manager

will only read or write files if this field is set to PCbbb, where b represents a

blank, and PC specifies that data in the PC/IXF file is in IBM PC machine

format.

IXFTLOC

The location of the data. The database manager only supports a value of I,

meaning the data is internal to this file.

IXFTCCNT

The number of C records in this table. It is a right-justified character

representation of an integer value.

IXFTFIL1

Spare field set to two blanks to match a reserved field in host IXF files.

IXFTDESC

Descriptive data about the table. This is an informational field only. If a

program writing a file has no data to write to this field, the preferred fill

value is blanks. Programs reading a file might print or display this field, or

store it in an informational field, but no computations should depend on

the content of this field. This field contains NOT NULL WITH DEFAULT if the

column was not null with default, and the table name came from a

workstation database.

Chapter 6. File formats and data types 403

IXFTPKNM

The name of the primary key defined on the table (if any). The name is

stored as a null-terminated string.

IXFTDSPC

This field is reserved for future use.

IXFTISPC

This field is reserved for future use.

IXFTLSPC

This field is reserved for future use.
COLUMN DESCRIPTOR RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- ------- --------- -------------

 IXFCRECL 006-BYTE CHARACTER record length

 IXFCRECT 001-BYTE CHARACTER record type = ’C’

 IXFCNAML 003-BYTE CHARACTER column name length

 IXFCNAME 256-BYTE CHARACTER column name

 IXFCNULL 001-BYTE CHARACTER column allows nulls

 IXFCDEF 001-BYTE CHARACTER column has defaults

 IXFCSLCT 001-BYTE CHARACTER column selected flag

 IXFCKPOS 002-BYTE CHARACTER position in primary key

 IXFCCLAS 001-BYTE CHARACTER data class

 IXFCTYPE 003-BYTE CHARACTER data type

 IXFCSBCP 005-BYTE CHARACTER single byte code page

 IXFCDBCP 005-BYTE CHARACTER double byte code page

 IXFCLENG 005-BYTE CHARACTER column data length

 IXFCDRID 003-BYTE CHARACTER ’D’ record identifier

 IXFCPOSN 006-BYTE CHARACTER column position

 IXFCDESC 030-BYTE CHARACTER column description

 IXFCLOBL 020-BYTE CHARACTER lob column length

 IXFCUDTL 003-BYTE CHARACTER UDT name length

 IXFCUDTN 256-BYTE CHARACTER UDT name

 IXFCDEFL 003-BYTE CHARACTER default value length

 IXFCDEFV 254-BYTE CHARACTER default value

 IXFCREF 001-BYTE CHARACTER reference type

 IXFCNDIM 002-BYTE CHARACTER number of dimensions

 IXFCDSIZ varying CHARACTER size of each dimension

The following fields are contained in column descriptor records:

IXFCRECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. The C record must be sufficiently long to include all of its defined

fields.

IXFCRECT

The IXF record type, which is set to C for this record.

IXFCNAML

The length, in bytes, of the column name in the IXFCNAME field.

IXFCNAME

The name of the column.

IXFCNULL

Specifies if nulls are permitted in this column. Valid settings are Y or N.

IXFCDEF

Specifies if a default value is defined for this field. Valid settings are Y or N.

404 Data Movement Utilities Guide and Reference

IXFCSLCT

An obsolete field whose intended purpose was to allow selection of a

subset of columns in the data. Programs writing PC/IXF files should

always store a Y in this field. Programs reading PC/IXF files should ignore

the field.

IXFCKPOS

The position of the column as part of the primary key. Valid values range

from 01 to 16, or N if the column is not part of the primary key.

IXFCCLAS

The class of data types to be used in the IXFCTYPE field. The database

manager only supports relational types (R).

IXFCTYPE

The data type for the column.

IXFCSBCP

Contains a single-byte character representation of a SBCS CPGID. This field

specifies the CPGID for single-byte character data, which occurs with the

IXFDCOLS field of the D records for this column.

 The semantics of this field vary with the data type for the column

(specified in the IXFCTYPE field).

v For a character string column, this field should normally contain a

non-zero value equal to that of the IXFHSBCP field in the H record;

however, other values are permitted. If this value is zero, the column is

interpreted to contain bit string data.

v For a numeric column, this field is not meaningful. It is set to zero by

the export utility, and ignored by the import utility.

v For a date or time column, this field is not meaningful. It is set to the

value of the IXFHSBCP field by the export utility, and ignored by the

import utility.

v For a graphic column, this field must be zero.

IXFCDBCP

Contains a single-byte character representation of a DBCS CPGID. This

field specifies the CPGID for double-byte character data, which occurs with

the IXFDCOLS field of the D records for this column.

 The semantics of this field vary with the data type for the column

(specified in the IXFCTYPE field).

v For a character string column, this field should either be zero, or contain

a value equal to that of the IXFHDBCP field in the H record; however,

other values are permitted. If the value in the IXFCSBCP field is zero,

the value in this field must be zero.

v For a numeric column, this field is not meaningful. It is set to zero by

the export utility, and ignored by the import utility.

v For a date or time column, this field is not meaningful. It is set to zero

by the export utility, and ignored by the import utility.

v For a graphic column, this field must have a value equal to the value of

the IXFHDBCP field.

IXFCLENG

Provides information about the size of the column being described. For

some data types, this field is unused, and should contain blanks. For other

data types, this field contains the right-justified character representation of

an integer specifying the column length. For yet other data types, this field

Chapter 6. File formats and data types 405

is divided into two subfields: 3 bytes for precision, and 2 bytes for scale;

both of these subfields are right-justified character representations of

integers. Starting with Version 9.7, for a timestamp data type this field

contains the right-justified character representation of an integer specifying

the timestamp precision.

IXFCDRID

The D record identifier. This field contains the right-justified character

representation of an integer value. Several D records can be used to contain

each row of data in the PC/IXF file. This field specifies which D record (of

the several D records contributing to a row of data) contains the data for

the column. A value of one (for example, 001) indicates that the data for a

column is in the first D record in a row of data. The first C record must

have an IXFCDRID value of one. All subsequent C records must have an

IXFCDRID value equal to the value in the preceding C record, or one

higher.

IXFCPOSN

The value in this field is used to locate the data for the column within one

of the D records representing a row of table data. It is the starting position

of the data for this column within the IXFDCOLS field of the D record. If

the column is nullable, IXFCPOSN points to the null indicator; otherwise,

it points to the data itself. If a column contains varying length data, the

data itself begins with the current length indicator. The IXFCPOSN value

for the first byte in the IXFDCOLS field of the D record is one (not zero). If

a column is in a new D record, the value of IXFCPOSN should be one;

otherwise, IXFCPOSN values should increase from column to column to

such a degree that the data values do not overlap.

IXFCDESC

Descriptive information about the column. This is an informational field

only. If a program writing to a file has no data to write to this field, the

preferred fill value is blanks. Programs reading a file might print or

display this field, or store it in an informational field, but no computations

should depend on the content of this field.

IXFCLOBL

The length, in bytes, of the long or the LOB defined in this column. If this

column is not a long or a LOB, the value in this field is 000.

IXFCUDTL

The length, in bytes, of the user defined type (UDT) name in the

IXFCUDTN field. If the type of this column is not a UDT, the value in this

field is 000.

IXFCUDTN

The name of the user defined type that is used as the data type for this

column.

IXFCDEFL

The length, in bytes, of the default value in the IXFCDEFV field. If this

column does not have a default value, the value in this field is 000.

IXFCDEFV

Specifies the default value for this column, if one has been defined.

IXFCREF

If the column is part of a hierarchy, this field specifies whether the column

is a data column (D), or a reference column (R).

406 Data Movement Utilities Guide and Reference

IXFCNDIM

The number of dimensions in the column. Arrays are not supported in this

version of PC/IXF. This field must therefore contain a character

representation of a zero integer value.

IXFCDSIZ

The size or range of each dimension. The length of this field is five bytes

per dimension. Since arrays are not supported (that is, the number of

dimensions must be zero), this field has zero length, and does not actually

exist.
DATA RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- ------- --------- -------------

 IXFDRECL 06-BYTE CHARACTER record length

 IXFDRECT 01-BYTE CHARACTER record type = ’D’

 IXFDRID 03-BYTE CHARACTER ’D’ record identifier

 IXFDFIL1 04-BYTE CHARACTER reserved

 IXFDCOLS varying variable columnar data

The following fields are contained in the data records:

IXFDRECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. Each D record must be sufficiently long to include all significant

data for the current occurrence of the last data column stored in the record.

IXFDRECT

The IXF record type, which is set to D for this record, indicating that it

contains data values for the table.

IXFDRID

The record identifier, which identifies a particular D record within the

sequence of several D records contributing to a row of data. For the first D

record in a row of data, this field has a value of one; for the second D

record in a row of data, this field has a value of two, and so on. In each

row of data, all the D record identifiers called out in the C records must

actually exist.

IXFDFIL1

Spare field set to four blanks to match reserved fields, and hold a place for

a possible shift-out character, in host IXF files.

IXFDCOLS

The area for columnar data. The data area of a data record (D record) is

composed of one or more column entries. There is one column entry for

each column descriptor record, which has the same D record identifier as

the D record. In the D record, the starting position of the column entries is

indicated by the IXFCPOSN value in the C records.

 The format of the column entry data depends on whether or not the

column is nullable:

v If the column is nullable (the IXFCNULL field is set to Y), the column

entry data includes a null indicator. If the column is not null, the

indicator is followed by data type-specific information, including the

actual database value. The null indicator is a two-byte value set to

x’0000’ for not null, and x’FFFF’ for null.

Chapter 6. File formats and data types 407

v If the column is not nullable, the column entry data includes only data

type-specific information, including the actual database value.

For varying-length data types, the data type-specific information includes a

current length indicator. The current length indicators are 2-byte integers in

a form specified by the IXFTMFRM field.

The length of the data area of a D record cannot exceed 32 771 bytes.
APPLICATION RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- ------- --------- -------------

 IXFARECL 06-BYTE CHARACTER record length

 IXFARECT 01-BYTE CHARACTER record type = ’A’

 IXFAPPID 12-BYTE CHARACTER application identifier

 IXFADATA varying variable application-specific data

The following fields are contained in application records:

IXFARECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. Each A record must be sufficiently long to include at least the

entire IXFAPPID field.

IXFARECT

The IXF record type, which is set to A for this record, indicating that this is

an application record. These records are ignored by programs which do not

have particular knowledge about the content and the format of the data

implied by the application identifier.

IXFAPPID

The application identifier, which identifies the application creating the A

record. PC/IXF files created by the database manager can have A records

with the first 6 characters of this field set to a constant identifying the

database manager, and the last 6 characters identifying the release or

version of the database manager or another application writing the A

record.

IXFADATA

This field contains application dependent supplemental data, whose form

and content are known only to the program creating the A record, and to

other applications which are likely to process the A record.
DB2 INDEX RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- -------- --------- -------------

 IXFARECL 006-BYTE CHARACTER record length

 IXFARECT 001-BYTE CHARACTER record type = ’A’

 IXFAPPID 012-BYTE CHARACTER application identifier =

 ’DB2 02.00’

 IXFAITYP 001-BYTE CHARACTER application specific data type =

 ’I’

 IXFADATE 008-BYTE CHARACTER date written from the ’H’ record

 IXFATIME 006-BYTE CHARACTER time written from the ’H’ record

 IXFANDXL 002-BYTE SHORT INT length of name of the index

 IXFANDXN 256-BYTE CHARACTER name of the index

 IXFANCL 002-BYTE SHORT INT length of name of the index creator

 IXFANCN 256-BYTE CHARACTER name of the index creator

 IXFATABL 002-BYTE SHORT INT length of name of the table

 IXFATABN 256-BYTE CHARACTER name of the table

 IXFATCL 002-BYTE SHORT INT length of name of the table creator

408 Data Movement Utilities Guide and Reference

IXFATCN 256-BYTE CHARACTER name of the table creator

 IXFAUNIQ 001-BYTE CHARACTER unique rule

 IXFACCNT 002-BYTE CHARACTER column count

 IXFAREVS 001-BYTE CHARACTER allow reverse scan flag

 IXFAPCTF 002-BYTE CHARACTER amount of pct free

 IXFAPCTU 002-BYTE CHARACTER amount of minpctused

 IXFAEXTI 001-BYTE CHARACTER reserved

 IXFACNML 002-BYTE SHORT INT length of name of the columns

 IXFACOLN varying CHARACTER name of the columns in the index

One record of this type is specified for each user defined index. This record is

located after all of the C records for the table. The following fields are contained in

DB2 index records:

IXFARECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. Each A record must be sufficiently long to include at least the

entire IXFAPPID field.

IXFARECT

The IXF record type, which is set to A for this record, indicating that this is

an application record. These records are ignored by programs which do not

have particular knowledge about the content and the format of the data

implied by the application identifier.

IXFAPPID

The application identifier, which identifies DB2 as the application creating

this A record.

IXFAITYP

Specifies that this is subtype ″I″ of DB2 application records.

IXFADATE

The date on which the file was written, in the form yyyymmdd. This field

must have the same value as IXFHDATE.

IXFATIME

The time at which the file was written, in the form hhmmss. This field must

have the same value as IXFHTIME.

IXFANDXL

The length, in bytes, of the index name in the IXFANDXN field.

IXFANDXN

The name of the index.

IXFANCL

The length, in bytes, of the index creator name in the IXFANCN field.

IXFANCN

The name of the index creator.

IXFATABL

The length, in bytes, of the table name in the IXFATABN field.

IXFATABN

The name of the table.

IXFATCL

The length, in bytes, of the table creator name in the IXFATCN field.

Chapter 6. File formats and data types 409

IXFATCN

The name of the table creator.

IXFAUNIQ

Specifies the type of index. Valid values are P for a primary key, U for a

unique index, and D for a non unique index.

IXFACCNT

Specifies the number of columns in the index definition.

IXFAREVS

Specifies whether reverse scan is allowed on this index. Valid values are Y

for reverse scan, and N for no reverse scan.

IXFAPCTF

Specifies the percentage of index pages to leave as free. Valid values range

from -1 to 99. If a value of -1 or zero is specified, the system default value

is used.

IXFAPCTU

Specifies the minimum percentage of index pages that must be free before

two index pages can be merged. Valid values range from 00 to 99.

IXFAEXTI

Reserved for future use.

IXFACNML

The length, in bytes, of the column names in the IXFACOLN field.

IXFACOLN

The names of the columns that are part of this index. Valid values are in

the form +name-name..., where + specifies an ascending sort on the

column, and - specifies a descending sort on the column.
DB2 HIERARCHY RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- -------- --------- -------------

 IXFARECL 006-BYTE CHARACTER record length

 IXFARECT 001-BYTE CHARACTER record type = ’A’

 IXFAPPID 012-BYTE CHARACTER application identifier =

 ’DB2 02.00’

 IXFAXTYP 001-BYTE CHARACTER application specific data type =

 ’X’

 IXFADATE 008-BYTE CHARACTER date written from the ’H’ record

 IXFATIME 006-BYTE CHARACTER time written from the ’H’ record

 IXFAYCNT 010-BYTE CHARACTER ’Y’ record count for this hierarchy

 IXFAYSTR 010-BYTE CHARACTER starting column of this hierarchy

One record of this type is used to describe a hierarchy. All subtable records (see

below) must be located immediately after the hierarchy record, and hierarchy

records are located after all of the C records for the table. The following fields are

contained in DB2 hierarchy records:

IXFARECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. Each A record must be sufficiently long to include at least the

entire IXFAPPID field.

IXFARECT

The IXF record type, which is set to A for this record, indicating that this is

410 Data Movement Utilities Guide and Reference

an application record. These records are ignored by programs which do not

have particular knowledge about the content and the format of the data

implied by the application identifier.

IXFAPPID

The application identifier, which identifies DB2 as the application creating

this A record.

IXFAXTYP

Specifies that this is subtype ″X″ of DB2 application records.

IXFADATE

The date on which the file was written, in the form yyyymmdd. This field

must have the same value as IXFHDATE.

IXFATIME

The time at which the file was written, in the form hhmmss. This field must

have the same value as IXFHTIME.

IXFAYCNT

Specifies the number of subtable records that are expected after this

hierarchy record.

IXFAYSTR

Specifies the index of the subtable records at the beginning of the exported

data. If export of a hierarchy was started from a non-root subtable, all

parent tables of this subtable are exported. The position of this subtable

inside of the IXF file is also stored in this field. The first X record

represents the column with an index of zero.
DB2 SUBTABLE RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- -------- --------- -------------

 IXFARECL 006-BYTE CHARACTER record length

 IXFARECT 001-BYTE CHARACTER record type = ’A’

 IXFAPPID 012-BYTE CHARACTER application identifier =

 ’DB2 02.00’

 IXFAYTYP 001-BYTE CHARACTER application specific data type =

 ’Y’

 IXFADATE 008-BYTE CHARACTER date written from the ’H’ record

 IXFATIME 006-BYTE CHARACTER time written from the ’H’ record

 IXFASCHL 003-BYTE CHARACTER type schema name length

 IXFASCHN 256-BYTE CHARACTER type schema name

 IXFATYPL 003-BYTE CHARACTER type name length

 IXFATYPN 256-BYTE CHARACTER type name

 IXFATABL 003-BYTE CHARACTER table name length

 IXFATABN 256-BYTE CHARACTER table name

 IXFAPNDX 010-BYTE CHARACTER subtable index of parent table

 IXFASNDX 005-BYTE CHARACTER starting column index of current

 table

 IXFAENDX 005-BYTE CHARACTER ending column index of current

 table

One record of this type is used to describe a subtable as part of a hierarchy. All

subtable records belonging to a hierarchy must be stored together, and

immediately after the corresponding hierarchy record. A subtable is composed of

one or more columns, and each column is described in a column record. Each

column in a subtable must be described in a consecutive set of C records. The

following fields are contained in DB2 subtable records:

IXFARECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

Chapter 6. File formats and data types 411

that follows the record length indicator; that is, the total record size minus

6 bytes. Each A record must be sufficiently long to include at least the

entire IXFAPPID field.

IXFARECT

The IXF record type, which is set to A for this record, indicating that this is

an application record. These records are ignored by programs which do not

have particular knowledge about the content and the format of the data

implied by the application identifier.

IXFAPPID

The application identifier, which identifies DB2 as the application creating

this A record.

IXFAYTYP

Specifies that this is subtype ″Y″ of DB2 application records.

IXFADATE

The date on which the file was written, in the form yyyymmdd. This field

must have the same value as IXFHDATE.

IXFATIME

The time at which the file was written, in the form hhmmss. This field must

have the same value as IXFHTIME.

IXFASCHL

The length, in bytes, of the subtable schema name in the IXFASCHN field.

IXFASCHN

The name of the subtable schema.

IXFATYPL

The length, in bytes, of the subtable name in the IXFATYPN field.

IXFATYPN

The name of the subtable.

IXFATABL

The length, in bytes, of the table name in the IXFATABN field.

IXFATABN

The name of the table.

IXFAPNDX

Subtable record index of the parent subtable. If this subtable is the root of

a hierarchy, this field contains the value -1.

IXFASNDX

Starting index of the column records that made up this subtable.

IXFAENDX

Ending index of the column records that made up this subtable.
DB2 CONTINUATION RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- -------- --------- -------------

 IXFARECL 006-BYTE CHARACTER record length

 IXFARECT 001-BYTE CHARACTER record type = ’A’

 IXFAPPID 012-BYTE CHARACTER application identifier =

 ’DB2 02.00’

 IXFACTYP 001-BYTE CHARACTER application specific data type = ’C’

 IXFADATE 008-BYTE CHARACTER date written from the ’H’ record

 IXFATIME 006-BYTE CHARACTER time written from the ’H’ record

412 Data Movement Utilities Guide and Reference

IXFALAST 002-BYTE SHORT INT last diskette volume number

 IXFATHIS 002-BYTE SHORT INT this diskette volume number

 IXFANEXT 002-BYTE SHORT INT next diskette volume number

This record is found at the end of each file that is part of a multi-volume IXF file,

unless that file is the final volume; it can also be found at the beginning of each

file that is part of a multi-volume IXF file, unless that file is the first volume. The

purpose of this record is to keep track of file order. The following fields are

contained in DB2 continuation records:

IXFARECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. Each A record must be sufficiently long to include at least the

entire IXFAPPID field.

IXFARECT

The IXF record type, which is set to A for this record, indicating that this is

an application record. These records are ignored by programs which do not

have particular knowledge about the content and the format of the data

implied by the application identifier.

IXFAPPID

The application identifier, which identifies DB2 as the application creating

this A record.

IXFACTYP

Specifies that this is subtype ″C″ of DB2 application records.

IXFADATE

The date on which the file was written, in the form yyyymmdd. This field

must have the same value as IXFHDATE.

IXFATIME

The time at which the file was written, in the form hhmmss. This field must

have the same value as IXFHTIME.

IXFALAST

This field is a binary field, in little-endian format. The value should be one

less than the value in IXFATHIS.

IXFATHIS

This field is a binary field, in little-endian format. The value in this field on

consecutive volumes should also be consecutive. The first volume has a

value of 1.

IXFANEXT

This field is a binary field, in little-endian format. The value should be one

more than the value in IXFATHIS, unless the record is at the beginning of

the file, in which case the value should be zero.
DB2 TERMINATE RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- -------- --------- -------------

 IXFARECL 006-BYTE CHARACTER record length

 IXFARECT 001-BYTE CHARACTER record type = ’A’

 IXFAPPID 012-BYTE CHARACTER application identifier =

 ’DB2 02.00’

 IXFAETYP 001-BYTE CHARACTER application specific data type =

 ’E’

 IXFADATE 008-BYTE CHARACTER date written from the ’H’ record

 IXFATIME 006-BYTE CHARACTER time written from the ’H’ record

Chapter 6. File formats and data types 413

This record is the end-of-file marker found at the end of an IXF file. The following

fields are contained in DB2 terminate records:

IXFARECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. Each A record must be sufficiently long to include at least the

entire IXFAPPID field.

IXFARECT

The IXF record type, which is set to A for this record, indicating that this is

an application record. These records are ignored by programs which do not

have particular knowledge about the content and the format of the data

implied by the application identifier.

IXFAPPID

The application identifier, which identifies DB2 as the application creating

this A record.

IXFAETYP

Specifies that this is subtype ″E″ of DB2 application records.

IXFADATE

The date on which the file was written, in the form yyyymmdd. This field

must have the same value as IXFHDATE.

IXFATIME

The time at which the file was written, in the form hhmmss. This field must

have the same value as IXFHTIME.
DB2 IDENTITY RECORD

 FIELD NAME LENGTH TYPE COMMENTS

 ---------- ------- --------- -------------

 IXFARECL 06-BYTE CHARACTER record length

 IXFARECT 01-BYTE CHARACTER record type = ’A’

 IXFAPPID 12-BYTE CHARACTER application identifier

 IXFATYPE 01-BYTE CHARACTER application specific record type = ’S’

 IXFADATE 08-BYTE CHARACTER application record creation date

 IXFATIME 06-BYTE CHARACTER application record creation time

 IXFACOLN 06-BYTE CHARACTER column number of the identity column

 IXFAITYP 01-BYTE CHARACTER generated always (’Y’ or ’N’)

 IXFASTRT 33-BYTE CHARACTER identity START AT value

 IXFAINCR 33-BYTE CHARACTER identity INCREMENT BY value

 IXFACACH 10-BYTE CHARACTER identity CACHE value

 IXFAMINV 33-BYTE CHARACTER identity MINVALUE

 IXFAMAXV 33-BYTE CHARACTER identity MAXVALUE

 IXFACYCL 01-BYTE CHARACTER identity CYCLE (’Y’ or ’N’)

 IXFAORDR 01-BYTE CHARACTER identity ORDER (’Y’ or ’N’)

 IXFARMRL 03-BYTE CHARACTER identity Remark length

 IXFARMRK 254-BYTE CHARACTER identity Remark value

The following fields are contained in DB2 identity records:

IXFARECL

The record length indicator. A 6-byte character representation of an integer

value specifying the length, in bytes, of the portion of the PC/IXF record

that follows the record length indicator; that is, the total record size minus

6 bytes. Each A record must be sufficiently long to include at least the

entire IXFAPPID field.

IXFARECT

The IXF record type, which is set to A for this record, indicating that this is

414 Data Movement Utilities Guide and Reference

an application record. These records are ignored by programs which do not

have particular knowledge about the content and the format of the data

implied by the application identifier.

IXFAPPID

The application identifier, which identifies DB2 as the application creating

this A record.

IXFATYPE

Application specific record type. This field should always have a value of

″S″.

IXFADATE

The date on which the file was written, in the form yyyymmdd. This field

must have the same value as IXFHDATE.

IXFATIME

The time at which the file was written, in the form hhmmss. This field must

have the same value as IXFHTIME.

IXFACOLN

Column number of the identity column in the table.

IXFAITYP

The type of the identity column. A value of ″Y″ indicates that the identity

column is always GENERATED. All other values are interpreted to mean

that the column is of type GENERATED BY DEFAULT.

IXFASTRT

The START AT value for the identity column that was supplied to the

CREATE TABLE statement at the time of table creation.

IXFAINCR

The INCREMENT BY value for the identity column that was supplied to

the CREATE TABLE statement at the time of table creation.

IXFACACH

The CACHE value for the identity column that was supplied to the

CREATE TABLE statement at the time of table creation. A value of ″1″

corresponds to the NO CACHE option.

IXFAMINV

The MINVALUE for the identity column that was supplied to the CREATE

TABLE statement at the time of table creation.

IXFAMAXV

The MAXVALUE for the identity column that was supplied to the CREATE

TABLE statement at the time of table creation.

IXFACYCL

The CYCLE value for the identity column that was supplied to the

CREATE TABLE statement at the time of table creation. A value of ″Y″

corresponds to the CYCLE option, any other value corresponds to NO

CYCLE.

IXFAORDR

The ORDER value for the identity column that was supplied to the

CREATE TABLE statement at the time of table creation. A value of ″Y″

corresponds to the ORDER option, any other value corresponds to NO

ORDER.

IXFARMRL

The length, in bytes, of the remark in IXFARMRK field.

Chapter 6. File formats and data types 415

IXFARMRK

This is the user-entered remark associated with the identity column. This is

an informational field only. The database manager does not use this field

when importing data.

PC/IXF data types

 Table 52. PC/IXF Data Types

Name IXFCTYPE Value Description

BIGINT 492 An 8-byte integer in the form specified by

IXFTMFRM. It represents a whole number

between -9 223 372 036 854 775 808 and

9 223 372 036 854 775 807. IXFCSBCP and

IXFCDBCP are not significant , and should

be zero. IXFCLENG is not used, and should

contain blanks.

BLOB, CLOB 404, 408 A variable-length character string. The

maximum length of the string is contained

in the IXFCLENG field of the column

descriptor record, and cannot exceed 32 767

bytes. The string itself is preceded by a

current length indicator, which is a 4-byte

integer specifying the length of the string,

in bytes. The string is in the code page

indicated by IXFCSBCP.

The following applies to BLOBs only: If

IXFCSBCP is zero, the string is bit data, and

should not be translated by any

transformation program.

The following applies to CLOBs only: If

IXFCDBCP is non-zero, the string can also

contain double-byte characters in the code

page indicated by IXFCDBCP.

BLOB_LOCATION_

SPECIFIER and

DBCLOB_

LOCATION_

SPECIFIER

960, 964, 968 A fixed-length field, which cannot exceed

255 bytes. The LOB Location Specifier

(LLS)is located in the code page indicated

by IXFCSBCP. If IXFCSBCP is zero, the LLS

is bit data and should not be translated by

any transformation program. If IXFCDBCP

is non-zero, the string can also contain

double-byte characters in the code page

indicated by IXFCDBCP.

Since the length of the LLS is stored in

IXFCLENG, the actual length of the original

LOB is lost. PC/IXF files with columns of

this type should not be used to recreate the

LOB field since the LOB will be created

with the length of the LLS.

416 Data Movement Utilities Guide and Reference

Table 52. PC/IXF Data Types (continued)

Name IXFCTYPE Value Description

BLOB_FILE,

CLOB_FILE,

DBCLOB_FILE

916, 920, 924 A fixed-length field containing an SQLFILE

structure with the name_length and the name

fields filled in. The length of the structure is

contained in the IXFCLENG field of the

column descriptor record, and cannot

exceed 255 bytes. The file name is in the

code page indicated by IXFCSBCP. If

IXFCDBCP is non-zero, the file name can

also contain double-byte characters in the

code page indicated by IXFCDBCP. If

IXFCSBCP is zero, the file name is bit data

and should not be translated by any

transformation program.

Since the length of the structure is stored in

IXFCLENG, the actual length of the original

LOB is lost. IXF files with columns of type

BLOB_FILE, CLOB_FILE, or DBCLOB_FILE

should not be used to recreate the LOB

field, since the LOB will be created with a

length of sql_lobfile_len.

CHAR 452 A fixed-length character string. The string

length is contained in the IXFCLENG field

of the column descriptor record, and cannot

exceed 254 bytes. The string is in the code

page indicated by IXFCSBCP. If IXFCDBCP

is non-zero, the string can also contain

double-byte characters in the code page

indicated by IXFCDBCP. If IXFCSBCP is

zero, the string is bit data and should not

be translated by any transformation

program.

DATE 384 A point in time in accordance with the

Gregorian calendar. Each date is a 10-byte

character string in International Standards

Organization (ISO) format: yyyy-mm-dd. The

range of the year part is 0001 to 9999. The

range of the month part is 01 to 12. The

range of the day part is 01 to n, where n

depends on the month, using the usual

rules for days of the month and leap year.

Leading zeros cannot be omitted from any

part. IXFCLENG is not used, and should

contain blanks. Valid characters within

DATE are invariant in all PC ASCII code

pages; therefore, IXFCSBCP and IXFCDBCP

are not significant, and should be zero.

Chapter 6. File formats and data types 417

Table 52. PC/IXF Data Types (continued)

Name IXFCTYPE Value Description

DBCLOB 412 A variable-length string of double-byte

characters. The IXFCLENG field in the

column descriptor record specifies the

maximum number of double-byte

characters in the string, and cannot exceed

16 383. The string itself is preceded by a

current length indicator, which is a 4-byte

integer specifying the length of the string in

double-byte characters (that is, the value of

this integer is one half the length of the

string, in bytes). The string is in the DBCS

code page, as specified by IXFCDBCP in the

C record. Since the string consists of

double-byte character data only, IXFCSBCP

should be zero. There are no surrounding

shift-in or shift-out characters.

DECIMAL 484 A packed decimal number with precision P

(as specified by the first three bytes of

IXFCLENG in the column descriptor record)

and scale S (as specified by the last two

bytes of IXFCLENG). The length, in bytes,

of a packed decimal number is (P+2)/2. The

precision must be an odd number between

1 and 31, inclusive. The packed decimal

number is in the internal format specified

by IXFTMFRM, where packed decimal for

the PC is defined to be the same as packed

decimal for the System/370. IXFCSBCP and

IXFCDBCP are not significant, and should

be zero.

DECFLOAT 996 A decimal floating-point value is an IEEE

754r number with a decimal point. The

position of the decimal point is stored in

each decimal floating point value. The

range of a decimal floating-point number is

a number with either 16 or 34 digits of

precision, and an exponent range of 10-383

to 10+384 or 10-6143 to 10+6144,

respectively. The storage length of the 16

digit value is 8 bytes, and the storage

length of the 34 digit value is 16 bytes.

FLOATING POINT 480 Either a long (8-byte) or short (4-byte)

floating point number, depending on

whether IXFCLENG is set to eight or to

four. The data is in the internal machine

form, as specified by IXFTMFRM.

IXFCSBCP and IXFCDBCP are not

significant, and should be zero. Four-byte

floating point is not supported by the

database manager.

418 Data Movement Utilities Guide and Reference

Table 52. PC/IXF Data Types (continued)

Name IXFCTYPE Value Description

GRAPHIC 468 A fixed-length string of double-byte

characters. The IXFCLENG field in the

column descriptor record specifies the

number of double-byte characters in the

string, and cannot exceed 127. The actual

length of the string is twice the value of the

IXFCLENG field, in bytes. The string is in

the DBCS code page, as specified by

IXFCDBCP in the C record. Since the string

consists of double-byte character data only,

IXFCSBCP should be zero. There are no

surrounding shift-in or shift-out characters.

INTEGER 496 A 4-byte integer in the form specified by

IXFTMFRM. It represents a whole number

between -2 147 483 648 and

+2 147 483 647. IXFCSBCP and IXFCDBCP

are not significant, and should be zero.

IXFCLENG is not used, and should contain

blanks.

LONGVARCHAR 456 A variable-length character string. The

maximum length of the string is contained

in the IXFCLENG field of the column

descriptor record, and cannot exceed 32 767

bytes. The string itself is preceded by a

current length indicator, which is a 2-byte

integer specifying the length of the string,

in bytes. The string is in the code page

indicated by IXFCSBCP. If IXFCDBCP is

non-zero, the string can also contain

double-byte characters in the code page

indicated by IXFCDBCP. If IXFCSBCP is

zero, the string is bit data and should not

be translated by any transformation

program.

LONG

VARGRAPHIC

472 A variable-length string of double-byte

characters. The IXFCLENG field in the

column descriptor record specifies the

maximum number of double-byte

characters for the string, and cannot exceed

16 383. The string itself is preceded by a

current length indicator, which is a 2-byte

integer specifying the length of the string in

double-byte characters (that is, the value of

this integer is one half the length of the

string, in bytes). The string is in the DBCS

code page, as specified by IXFCDBCP in the

C record. Since the string consists of

double-byte character data only, IXFCSBCP

should be zero. There are no surrounding

shift-in or shift-out characters.

SMALLINT 500 A 2-byte integer in the form specified by

IXFTMFRM. It represents a whole number

between -32 768 and +32 767. IXFCSBCP

and IXFCDBCP are not significant, and

should be zero. IXFCLENG is not used, and

should contain blanks.

Chapter 6. File formats and data types 419

Table 52. PC/IXF Data Types (continued)

Name IXFCTYPE Value Description

TIME 388 A point in time in accordance with the

24-hour clock. Each time is an 8-byte

character string in ISO format: hh.mm.ss.

The range of the hour part is 00 to 24, and

the range of the other parts is 00 to 59. If

the hour is 24, the other parts are 00. The

smallest time is 00.00.00, and the largest is

24.00.00. Leading zeros cannot be omitted

from any part. IXFCLENG is not used, and

should contain blanks. Valid characters

within TIME are invariant in all PC ASCII

code pages; therefore, IXFCSBCP and

IXFCDBCP are not significant, and should

be zero.

TIMESTAMP 392 The date and time with fractional second

precision. Each time stamp is a character

string of the form yyyy-mm-dd-
hh.mm.ss.nnnnnn (year month day hour

minutes seconds fractional seconds).

Starting with Version 9.7, the timestamp

precision is contained in the IXFCLENG

field of the column descriptor record, and

cannot exceed 12. Prior to Version 9.7,

IXFCLENG is not used, and should contain

blanks. Valid characters within

TIMESTAMP are invariant in all PC ASCII

code pages; therefore, IXFCSBCP and

IXFCDBCP are not significant, and should

be zero.

VARCHAR 448 A variable-length character string. The

maximum length of the string, in bytes, is

contained in the IXFCLENG field of the

column descriptor record, and cannot

exceed 254 bytes. The string itself is

preceded by a current length indicator,

which is a two-byte integer specifying the

length of the string, in bytes. The string is

in the code page indicated by IXFCSBCP. If

IXFCDBCP is non-zero, the string can also

contain double-byte characters in the code

page indicated by IXFCDBCP. If IXFCSBCP

is zero, the string is bit data and should not

be translated by any transformation

program.

420 Data Movement Utilities Guide and Reference

Table 52. PC/IXF Data Types (continued)

Name IXFCTYPE Value Description

VARGRAPHIC 464 A variable-length string of double-byte

characters. The IXFCLENG field in the

column descriptor record specifies the

maximum number of double-byte

characters in the string, and cannot exceed

127. The string itself is preceded by a

current length indicator, which is a 2-byte

integer specifying the length of the string in

double-byte characters (that is, the value of

this integer is one half the length of the

string, in bytes). The string is in the DBCS

code page, as specified by IXFCDBCP in the

C record. Since the string consists of

double-byte character data only, IXFCSBCP

should be zero. There are no surrounding

shift-in or shift-out characters.

Not all combinations of IXFCSBCP and IXFCDBCP values for PC/IXF character or

graphic columns are valid. A PC/IXF character or graphic column with an invalid

(IXFCSBCP,IXFCDBCP) combination is an invalid data type.

 Table 53. Valid PC/IXF Data Types

PC/IXF Data Type

Valid

(IXFCSBCP,IXFCDBCP)

Pairs

Invalid

(IXFCSBCP,IXFCDBCP)

Pairs

CHAR, VARCHAR, or

LONG VARCHAR

(0,0), (x,0), or (x,y) (0,y)

BLOB (0,0) (x,0), (0,y), or (x,y)

CLOB (x,0), (x,y) (0,0), (0,y)

GRAPHIC, VARGRAPHIC,

LONG VARGRAPHIC, or

DBCLOB

(0,y) (0,0), (x,0), or (x,y)

Note: x and y are not 0.

PC/IXF data type descriptions

 Table 54. Acceptable Data Type Forms for the PC/IXF File Format

Data Type

Form in Files

Created by the

Export Utility Form Acceptable to the Import Utility

BIGINT A BIGINT column,

identical to the

database column, is

created.

A column in any numeric type (SMALLINT,

INTEGER, BIGINT, DECIMAL, or FLOAT)

is accepted. Individual values are rejected if

they are not in the range

-9 223 372 036 854 775 808 to

9 223 372 036 854 775 807.

Chapter 6. File formats and data types 421

Table 54. Acceptable Data Type Forms for the PC/IXF File Format (continued)

Data Type

Form in Files

Created by the

Export Utility Form Acceptable to the Import Utility

BLOB A PC/IXF BLOB

column is created.

The maximum length

of the database

column, the SBCS

CPGID value, and the

DBCS CPGID value

are copied to the

column descriptor

record.

A PC/IXF CHAR, VARCHAR, LONG

VARCHAR, BLOB, BLOB_FILE, or

BLOB_LOCATION_SPECIFIER column is

acceptable if:

v The database column is marked FOR BIT

DATA

v The PC/IXF column single-byte code

page value equals the SBCS CPGID of the

database column, and the PC/IXF

column double-byte code page value

equals zero, or the DBCS CPGID of the

database column. A PC/IXF GRAPHIC,

VARGRAPHIC, or LONG VARGRAPHIC

BLOB column is also acceptable. If the

PC/IXF column is of fixed length, its

length must be compatible with the

maximum length of the database column.

CHAR A PC/IXF CHAR

column is created.

The database column

length, the SBCS

CPGID value, and the

DBCS CPGID value

are copied to the

PC/IXF column

descriptor record.

A PC/IXF CHAR, VARCHAR, or LONG

VARCHAR column is acceptable if:

v The database column is marked FOR BIT

DATA

v The PC/IXF column single-byte code

page value equals the SBCS CPGID of the

database column, and the PC/IXF

column double-byte code page value

equals zero, or the DBCS CPGID of the

database column.

A PC/IXF GRAPHIC, VARGRAPHIC, or

LONG VARGRAPHIC column is also

acceptable if the database column is marked

FOR BIT DATA. In any case, if the PC/IXF

column is of fixed length, its length must be

compatible with the length of the database

column. The data is padded on the right

with single-byte spaces (x’20’), if necessary.

CLOB A PC/IXF CLOB

column is created.

The maximum length

of the database

column, the SBCS

CPGID value, and the

DBCS CPGID value

are copied to the

column descriptor

record.

A PC/IXF CHAR, VARCHAR, LONG

VARCHAR, CLOB, CLOB_FILE, or

CLOB_LOCATION_SPECIFIER column is

acceptable if the PC/IXF column single-byte

code page value equals the SBCS CPGID of

the database column, and the PC/IXF

column double-byte code page value equals

zero, or the DBCS CPGID of the database

column. If the PC/IXF column is of fixed

length, its length must be compatible with

the maximum length of the database

column.

422 Data Movement Utilities Guide and Reference

Table 54. Acceptable Data Type Forms for the PC/IXF File Format (continued)

Data Type

Form in Files

Created by the

Export Utility Form Acceptable to the Import Utility

DATE A DATE column,

identical to the

database column, is

created.

A PC/IXF column of type DATE is the

usual input. The import utility also

attempts to accept columns in any of the

character types, except those with

incompatible lengths. The character column

in the PC/IXF file must contain dates in a

format consistent with the territory code of

the target database.

DBCLOB A PC/IXF DBCLOB

column is created.

The maximum length

of the database

column, the SBCS

CPGID value, and the

DBCS CPGID value

are copied to the

column descriptor

record.

A PC/IXF GRAPHIC, VARGRAPHIC,

LONG VARGRAPHIC, DBCLOB,

DBCLOB_FILE, or

DBCLOB_LOCATION_SPECIFIER column

is acceptable if the PC/IXF column

double-byte code page value equals that of

the database column. If the PC/IXF column

is of fixed length, its length must be

compatible with the maximum length of the

database column.

DECIMAL A DECIMAL column,

identical to the

database column, is

created. The precision

and scale of the

column is stored in

the column descriptor

record.

A column in any numeric type (SMALLINT,

INTEGER, BIGINT, DECIMAL, or FLOAT)

is accepted. Individual values are rejected if

they are not in the range of the DECIMAL

column into which they are being imported.

DECFLOAT A DECFLOAT

column, identical to

the database column,

is created. The

precision of the

column is stored in

the column descriptor

record.

A column in the following types:

SMALLINT, INTEGER, BIGINT (only into

DECFLOAT(34)), DECIMAL, FLOAT, REAL,

DOUBLE, or DECFLOAT(16) (only into

DECFLOAT(34)) is accepted. Other numeric

column types are valid for DECFLOAT, but

if the value does not fit within the target

precision, it is rounded.

FLOAT A FLOAT column,

identical to the

database column, is

created.

A column in any numeric type (SMALLINT,

INTEGER, BIGINT, DECIMAL, or FLOAT)

is accepted. All values are within range.

GRAPHIC (DBCS

only)

A PC/IXF GRAPHIC

column is created.

The database column

length, the SBCS

CPGID value, and the

DBCS CPGID value

are copied to the

column descriptor

record.

A PC/IXF GRAPHIC, VARGRAPHIC, or

LONG VARGRAPHIC column is acceptable

if the PC/IXF column double-byte code

page value equals that of the database

column. If the PC/IXF column is of fixed

length, its length must be compatible with

the database column length. The data is

padded on the right with double-byte

spaces (x’8140’), if necessary.

INTEGER An INTEGER

column, identical to

the database column,

is created.

A column in any numeric type (SMALLINT,

INTEGER, BIGINT, DECIMAL, or FLOAT)

is accepted. Individual values are rejected if

they are not in the range -2 147 483 648 to

2 147 483 647.

Chapter 6. File formats and data types 423

Table 54. Acceptable Data Type Forms for the PC/IXF File Format (continued)

Data Type

Form in Files

Created by the

Export Utility Form Acceptable to the Import Utility

LONG VARCHAR A PC/IXF LONG

VARCHAR column is

created. The

maximum length of

the database column,

the SBCS CPGID

value, and the DBCS

CPGID value are

copied to the column

descriptor record.

A PC/IXF CHAR, VARCHAR, or LONG

VARCHAR column is acceptable if:

v The database column is marked FOR BIT

DATA

v The PC/IXF column single-byte code

page value equals the SBCS CPGID of the

database column, and the PC/IXF

column double-byte code page value

equals zero, or the DBCS CPGID of the

database column.

A PC/IXF GRAPHIC, VARGRAPHIC, or

LONG VARGRAPHIC column is also

acceptable if the database column is marked

FOR BIT DATA. In any case, if the PC/IXF

column is of fixed length, its length must be

compatible with the maximum length of the

database column.

LONG

VARGRAPHIC

(DBCS only)

A PC/IXF LONG

VARGRAPHIC

column is created.

The maximum length

of the database

column, the SBCS

CPGID value, and the

DBCS CPGID value

are copied to the

column descriptor

record.

A PC/IXF GRAPHIC, VARGRAPHIC, or

LONG VARGRAPHIC column is acceptable

if the PC/IXF column double-byte code

page value equals that of the database

column. If the PC/IXF column is of fixed

length, its length must be compatible with

the maximum length of the database

column.

SMALLINT A SMALLINT

column, identical to

the database column,

is created.

A column in any numeric type (SMALLINT,

INTEGER, BIGINT, DECIMAL, or FLOAT)

is accepted. Individual values are rejected if

they are not in the range -32 768 to 32 767.

TIME A TIME column,

identical to the

database column, is

created.

A PC/IXF column of type TIME is the

usual input. The import utility also

attempts to accept columns in any of the

character types, except those with

incompatible lengths. The character column

in the PC/IXF file must contain time data

in a format consistent with the territory

code of the target database.

TIMESTAMP A TIMESTAMP

column, identical to

the database column,

is created.

A PC/IXF column of type TIMESTAMP is

the usual input. The import utility also

attempts to accept columns in any of the

character types, except those with

incompatible lengths. The character column

in the PC/IXF file must contain data in the

input format for time stamps.

424 Data Movement Utilities Guide and Reference

Table 54. Acceptable Data Type Forms for the PC/IXF File Format (continued)

Data Type

Form in Files

Created by the

Export Utility Form Acceptable to the Import Utility

VARCHAR If the maximum

length of the database

column is = 254, a

PC/IXF VARCHAR

column is created. If

the maximum length

of the database

column is > 254, a

PC/IXF LONG

VARCHAR column is

created. The

maximum length of

the database column,

the SBCS CPGID

value, and the DBCS

CPGID value are

copied to the column

descriptor record.

A PC/IXF CHAR, VARCHAR, or LONG

VARCHAR column is acceptable if:

v The database column is marked FOR BIT

DATA

v The PC/IXF column single-byte code

page value equals the SBCS CPGID of the

database column, and the PC/IXF

column double-byte code page value

equals zero, or the DBCS CPGID of the

database column.

A PC/IXF GRAPHIC, VARGRAPHIC, or

LONG VARGRAPHIC column is also

acceptable if the database column is marked

FOR BIT DATA. In any case, if the PC/IXF

column is of fixed length, its length must be

compatible with the maximum length of the

database column.

VARGRAPHIC

(DBCS only)

If the maximum

length of the database

column is = 127, a

PC/IXF

VARGRAPHIC

column is created. If

the maximum length

of the database

column is > 127, a

PC/IXF LONG

VARGRAPHIC

column is created.

The maximum length

of the database

column, the SBCS

CPGID value, and the

DBCS CPGID value

are copied to the

column descriptor

record.

A PC/IXF GRAPHIC, VARGRAPHIC, or

LONG VARGRAPHIC column is acceptable

if the PC/IXF column double-byte code

page value equals that of the database

column. If the PC/IXF column is of fixed

length, its length must be compatible with

the maximum length of the database

column.

General rules governing PC/IXF file import into databases

The database manager import utility applies the following general rules when

importing a PC/IXF file in either an SBCS or a DBCS environment:

v The import utility accepts PC/IXF format files only (IXFHID = ’IXF’). IXF files of

other formats cannot be imported.

v The import utility rejects a PC/IXF file with more than 1024 columns.

v When exporting to the IXF format, if identifiers exceed the maximum size

supported by the IXF format, the export operation succeeds, but the resulting

data file cannot be used by a subsequent import operation using the CREATE

mode. SQL27984W is returned.

Chapter 6. File formats and data types 425

Note: The CREATE and REPLACE_CREATE options of the IMPORT command

are deprecated and might be removed in a future release.

v The value of IXFHSBCP in the PC/IXF H record must equal the SBCS CPGID, or

there must be a conversion table between the IXFHSBCP/IXFHDBCP and the

SBCS/DBCS CPGID of the target database. The value of IXFHDBCP must equal

either ’00000’, or the DBCS CPGID of the target database. If either of these

conditions is not satisfied, the import utility rejects the PC/IXF file, unless the

FORCEIN option is specified.

v Invalid data types — new tables

Import of a PC/IXF file into a new table is specified by the CREATE or the

REPLACE_CREATE keywords in the IMPORT command. If a PC/IXF column of

an invalid data type is selected for import into a new table, the import utility

terminates. The entire PC/IXF file is rejected, no table is created, and no data is

imported.

v Invalid data types — existing tables

Import of a PC/IXF file into an existing table is specified by the INSERT, the

INSERT_UPDATE, the REPLACE or the REPLACE_CREATE keywords in the

IMPORT command. If a PC/IXF column of an invalid data type is selected for

import into an existing table, one of two actions is possible:

– If the target table column is nullable, all values for the invalid PC/IXF

column are ignored, and the table column values are set to NULL

– If the target table column is not nullable, the import utility terminates. The

entire PC/IXF file is rejected, and no data is imported. The existing table

remains unaltered.
v When importing into a new table, nullable PC/IXF columns generate nullable

database columns, and not nullable PC/IXF columns generate not nullable

database columns.

v A not nullable PC/IXF column can be imported into a nullable database column.

v A nullable PC/IXF column can be imported into a not nullable database column.

If a NULL value is encountered in the PC/IXF column, the import utility rejects

the values of all columns in the PC/IXF row that contains the NULL value (the

entire row is rejected), and processing continues with the next PC/IXF row. That

is, no data is imported from a PC/IXF row that contains a NULL value if a

target table column (for the NULL) is not nullable.

v Incompatible Columns — New Table

If, during import to a new database table, a PC/IXF column is selected that is

incompatible with the target database column, the import utility terminates. The

entire PC/IXF file is rejected, no table is created, and no data is imported.

Note: IMPORT’s FORCEIN option extends the scope of compatible columns.

v Incompatible columns — existing table

If, during import to an existing database table, a PC/IXF column is selected that

is incompatible with the target database column, one of two actions is possible:

– If the target table column is nullable, all values for the PC/IXF column are

ignored, and the table column values are set to NULL

– If the target table column is not nullable, the import utility terminates. The

entire PC/IXF file is rejected, and no data is imported. The existing table

remains unaltered.

Note: IMPORT’s FORCEIN option extends the scope of compatible columns.

v Invalid values

426 Data Movement Utilities Guide and Reference

If, during import, a PC/IXF column value is encountered that is not valid for the

target database column, the import utility rejects the values of all columns in the

PC/IXF row that contains the invalid value (the entire row is rejected), and

processing continues with the next PC/IXF row.

Data type-specific rules governing PC/IXF file import into

databases

v A valid PC/IXF numeric column can be imported into any compatible numeric

database column. PC/IXF columns containing 4-byte floating point data are not

imported, because this is an invalid data type.

v Database date/time columns can accept values from matching PC/IXF

date/time columns (DATE, TIME, and TIMESTAMP), as well as from PC/IXF

character columns (CHAR, VARCHAR, and LONG VARCHAR), subject to

column length and value compatibility restrictions.

v A valid PC/IXF character column (CHAR, VARCHAR, or LONG VARCHAR)

can always be imported into an existing database character column marked FOR

BIT DATA; otherwise:

– IXFCSBCP and the SBCS CPGID must agree

– There must be a conversion table for the IXFCSBCP/IXFCDBCP and the

SBCS/DBCS

– One set must be all zeros (FOR BIT DATA).
If IXFCSBCP is not zero, the value of IXFCDBCP must equal either zero or the

DBCS CPGID of the target database column.

If either of these conditions is not satisfied, the PC/IXF and database columns

are incompatible.

When importing a valid PC/IXF character column into a new database table, the

value of IXFCSBCP must equal either zero or the SBCS CPGID of the database,

or there must be a conversion table. If IXFCSBCP is zero, IXFCDBCP must also

be zero (otherwise the PC/IXF column is an invalid data type); IMPORT creates

a character column marked FOR BIT DATA in the new table. If IXFCSBCP is not

zero, and equals the SBCS CPGID of the database, the value of IXFCDBCP must

equal either zero or the DBCS CPGID of the database; in this case, the utility

creates a character column in the new table with SBCS and DBCS CPGID values

equal to those of the database. If these conditions are not satisfied, the PC/IXF

and database columns are incompatible.

The FORCEIN option can be used to override code page equality checks.

However, a PC/IXF character column with IXFCSBCP equal to zero and

IXFCDBCP not equal to zero is an invalid data type, and cannot be imported,

even if FORCEIN is specified.

v A valid PC/IXF graphic column (GRAPHIC, VARGRAPHIC, or LONG

VARGRAPHIC) can always be imported into an existing database character

column marked FOR BIT DATA, but is incompatible with all other database

columns. The FORCEIN option can be used to relax this restriction. However, a

PC/IXF graphic column with IXFCSBCP not equal to zero, or IXFCDBCP equal

to zero, is an invalid data type, and cannot be imported, even if FORCEIN is

specified.

When importing a valid PC/IXF graphic column into a database graphic

column, the value of IXFCDBCP must equal the DBCS CPGID of the target

database column (that is, the double-byte code pages of the two columns must

agree).

v If, during import of a PC/IXF file into an existing database table, a fixed-length

string column (CHAR or GRAPHIC) is selected whose length is greater than the

maximum length of the target column, the columns are incompatible.

Chapter 6. File formats and data types 427

v If, during import of a PC/IXF file into an existing database table, a

variable-length string column (VARCHAR, LONG VARCHAR, VARGRAPHIC,

or LONG VARGRAPHIC) is selected whose length is greater than the maximum

length of the target column, the columns are compatible. Individual values are

processed according to the compatibility rules governing the database manager

INSERT statement, and PC/IXF values which are too long for the target

database column are invalid.

v PC/IXF values imported into a fixed-length database character column (that is, a

CHAR column) are padded on the right with single-byte spaces (0x20), if

necessary, to obtain values whose length equals that of the database column.

PC/IXF values imported into a fixed-length database graphic column (that is, a

GRAPHIC column) are padded on the right with double-byte spaces (0x8140), if

necessary, to obtain values whose length equals that of the database column.

v Since PC/IXF VARCHAR columns have a maximum length of 254 bytes, a

database VARCHAR column of maximum length n, with 254 n 4001, must be

exported into a PC/IXF LONG VARCHAR column of maximum length n.

v Although PC/IXF LONG VARCHAR columns have a maximum length of

32 767 bytes, and database LONG VARCHAR columns have a maximum length

restriction of 32 700 bytes, PC/IXF LONG VARCHAR columns of length greater

than 32 700 bytes (but less than 32 768 bytes) are still valid, and can be

imported into database LONG VARCHAR columns, but data might be lost.

v Since PC/IXF VARGRAPHIC columns have a maximum length of 127 bytes, a

database VARGRAPHIC column of maximum length n, with 127 n 2001, must be

exported into a PC/IXF LONG VARGRAPHIC column of maximum length n.

v Although PC/IXF LONG VARGRAPHIC columns have a maximum length of

16 383 bytes, and database LONG VARGRAPHIC columns have a maximum

length restriction of 16 350, PC/IXF LONG VARGRAPHIC columns of length

greater than 16 350 bytes (but less than 16 384 bytes) are still valid, and can be

imported into database LONG VARGRAPHIC columns, but data might be lost.

Table 55 and Table 56 on page 429 summarize PC/IXF file import into new or

existing database tables without the FORCEIN option.

 Table 55. Summary of PC/IXF file import without FORCEIN option–numeric types

DATABASE COLUMN DATA TYPE

PC/IXF COLUMN DATA

TYPE SMALL INT INT BIGINT DEC DFP FLT

-SMALLINT N

E E E Ea E E

-INTEGER N

Ea E E Ea E E

-BIGINT N

Ea Ea E Ea E E

-DECIMAL N

Ea Ea Ea Ea E E

-DECFLOAT

Ea Ea Ea Ea E Ea

-FLOAT N

Ea Ea Ea Ea E E

428 Data Movement Utilities Guide and Reference

Table 55. Summary of PC/IXF file import without FORCEIN option–numeric types (continued)

DATABASE COLUMN DATA TYPE

PC/IXF COLUMN DATA

TYPE SMALL INT INT BIGINT DEC DFP FLT

a Individual values are rejected if they are out of range for the target numeric data type.

 Table 56. Summary of PC/IXF file import without FORCEIN option–character, graphic, and date/time types

DATABASE COLUMN DATA TYPE

PC/IXF COLUMN

DATA TYPE (0,0)

(SBCS,

0)d

(SBCS,

DBCS)b GRAPHb DATE TIME

TIME

STAMP

-(0,0) N

E Ec Ec Ec

-(SBCS,0) N N

E E E Ec Ec Ec

-(SBCS, DBCS) N Ec Ec Ec

E E

-GRAPHIC N

E E

-DATE N

E

-TIME N

E

-TIME STAMP N

E

b Data type is available only in DBCS environments.

c Individual values are rejected if they are not valid date or time values.

d Data type is not available in DBCS environments.

Note:

1. The table is a matrix of all valid PC/IXF and database manager data types. If a

PC/IXF column can be imported into a database column, a letter is displayed

in the matrix cell at the intersection of the PC/IXF data type matrix row and

the database manager data type matrix column. An ’N’ indicates that the utility

is creating a new database table (a database column of the indicated data type

is created). An ’E’ indicates that the utility is importing data to an existing

database table (a database column of the indicated data type is a valid target).

2. Character string data types are distinguished by code page attributes. These

attributes are shown as an ordered pair (SBCS,DBCS), where:

v SBCS is either zero or denotes a non-zero value of the single-byte code page

attribute of the character data type

v DBCS is either zero or denotes a non-zero value of the double-byte code

page attribute of the character data type.

Chapter 6. File formats and data types 429

3. If the table indicates that a PC/IXF character column can be imported into a

database character column, the values of their respective code page attribute

pairs satisfy the rules governing code page equality.

Differences between PC/IXF and Version 0 System/370 IXF

The following describes differences between PC/IXF, used by the database

manager, and Version 0 System/370 IXF, used by several host database products:

v PC/IXF files are ASCII, rather than EBCDIC oriented. PC/IXF files have

significantly expanded code page identification, including new code page

identifiers in the H record, and the use of actual code page values in the column

descriptor records. There is also a mechanism for marking columns of character

data as FOR BIT DATA. FOR BIT DATA columns are of special significance,

because transforms which convert a PC/IXF file format to or from any other IXF

or database file format cannot perform any code page translation on the values

contained in FOR BIT DATA columns.

v Only the machine data form is permitted; that is, the IXFTFORM field must

always contain the value M. Furthermore, the machine data must be in PC forms;

that is, the IXFTMFRM field must contain the value PC. This means that integers,

floating point numbers, and decimal numbers in data portions of PC/IXF data

records must be in PC forms.

v Application (A) records are permitted anywhere after the H record in a PC/IXF

file. They are not counted when the value of the IXFHHCNT field is computed.

v Every PC/IXF record begins with a record length indicator. This is a 6-byte

character representation of an integer value containing the length, in bytes, of

the PC/IXF record not including the record length indicator itself; that is, the

total record length minus 6 bytes. The purpose of the record length field is to

enable PC programs to identify record boundaries.

v To facilitate the compact storage of variable-length data, and to avoid complex

processing when a field is split into multiple records, PC/IXF does not support

Version 0 IXF X records, but does support D record identifiers. Whenever a

variable-length field or a nullable field is the last field in a data D record, it is

not necessary to write the entire maximum length of the field to the PC/IXF file.

FORCEIN option

The forcein file type modifier permits import of a PC/IXF file despite code page

differences between data in the PC/IXF file and the target database. It offers

additional flexibility in the definition of compatible columns.

General semantics of forcein

The following general semantics apply when using the forcein file type modifier

in either an SBCS or a DBCS environment:

v The forcein file type modifier should be used with caution. It is usually

advisable to attempt an import without this option enabled. However, because

of the generic nature of the PC/IXF data interchange architecture, some PC/IXF

files might contain data types or values that cannot be imported without

intervention.

v Import with forcein to a new table might yield a different result than import to

an existing table. An existing table has predefined target data types for each

PC/IXF data type.

v When LOB data is exported with the lobsinfile file type modifier, and the files

move to another client with a different code page, then, unlike other data, the

430 Data Movement Utilities Guide and Reference

CLOBS and DBCLOBS in the separate files are not converted to the client code

page when imported or loaded into a database.

Code page semantics for forcein

The following code page semantics apply when using the forcein file type

modifier in either an SBCS or a DBCS environment:

v The forcein file type modifier disables all import utility code page comparisons.

This rule applies to code page comparisons at the column level and at the file

level as well, when importing to a new or an existing database table. At the

column (for example, data type) level, this rule applies only to the following

database manager and PC/IXF data types: character (CHAR, VARCHAR, and

LONG VARCHAR), and graphic (GRAPHIC, VARGRAPHIC, and LONG

VARGRAPHIC). The restriction follows from the fact that code page attributes of

other data types are not relevant to the interpretation of data type values.

v forcein does not disable inspection of code page attributes to determine data

types.

For example, the database manager allows a CHAR column to be declared with

the FOR BIT DATA attribute. Such a declaration sets both the SBCS CPGID and

the DBCS CPGID of the column to zero; it is the zero value of these CPGIDs

that identifies the column values as bit strings (rather than character strings).

v forcein does not imply code page translation.

Values of data types that are sensitive to the forcein file type modifier are

copied ″as is″. No code point mappings are employed to account for a change of

code page environments. Padding of the imported value with spaces might be

necessary in the case of fixed length target columns.

v When data is imported to an existing table using forcein:

– The code page value of the target database table and columns always

prevails.

– The code page value of the PC/IXF file and columns is ignored.
This rule applies whether or not forcein is used. The database manager does

not permit changes to a database or a column code page value once a database

is created.

v When importing to a new table using forcein:

– The code page value of the target database prevails.

– PC/IXF character columns with IXFCSBCP = IXFCDBCP = 0 generate table

columns marked FOR BIT DATA.

– All other PC/IXF character columns generate table character columns with

SBCS and DBCS CPGID values equal to those of the database.

– PC/IXF graphic columns generate table graphic columns with an SBCS

CPGID of ″undefined″, and a DBCS CPGID equal to that of the database

(DBCS environment only).

Example of forcein

Consider a PC/IXF CHAR column with IXFCSBCP = ’00897’ and IXFCDBCP =

’00301’. This column is to be imported into a database CHAR column whose SBCS

CPGID = ’00850’ and DBCS CPGID = ’00000’. Without forcein, the utility

terminates, and no data is imported, or the PC/IXF column values are ignored,

and the database column contains NULLs (if the database column is nullable).

With forcein, the utility proceeds, ignoring code page incompatibilities. If there are

no other data type incompatibilities (such as length, for example), the values of the

Chapter 6. File formats and data types 431

PC/IXF column are imported ″as is″, and become available for interpretation under

the database column code page environment.

The following two tables show:

v The code page attributes of a column created in a new database table when a

PC/IXF file data type with specified code page attributes is imported.

v That the import utility rejects PC/IXF data types if they are invalid or

incompatible.

 Table 57. Summary of Import Utility Code Page Semantics (New Table) for SBCS. This

table assumes there is no conversion table between a and x. If there were, items 3 and 4

would work successfully without forcein.

CODE PAGE ATTRIBUTES

of PC/IXF DATA TYPE

CODE PAGE ATTRIBUTES OF DATABASE TABLE

COLUMN

Without forcein With forcein

(0,0) (0,0) (0,0)

(a,0) (a,0) (a,0)

(x,0) reject (a,0)

(x,y) reject (a,0)

(a,y) reject (a,0)

(0,y) reject (0,0)

Note:

1. See the notes for Table 58.

 Table 58. Summary of Import Utility Code Page Semantics (New Table) for DBCS. This

table assumes there is no conversion table between a and x.

CODE PAGE ATTRIBUTES

of PC/IXF DATA TYPE

CODE PAGE ATTRIBUTES OF DATABASE TABLE

COLUMN

Without forcein With forcein

(0,0) (0,0) (0,0)

(a,0) (a,b) (a,b)

(x,0) reject (a,b)

(a,b) (a,b) (a,b)

(x,y) reject (a,b)

(a,y) reject (a,b)

(x,b) reject (a,b)

(0,b) (-,b) (-,b)

(0,y) reject (-,b)

432 Data Movement Utilities Guide and Reference

Table 58. Summary of Import Utility Code Page Semantics (New Table) for

DBCS (continued). This table assumes there is no conversion table between a and x.

CODE PAGE ATTRIBUTES

of PC/IXF DATA TYPE

CODE PAGE ATTRIBUTES OF DATABASE TABLE

COLUMN

Without forcein With forcein

Note:

1. Code page attributes of a PC/IXF data type are shown as an ordered pair, where x

represents a non-zero single-byte code page value, and y represents a non-zero

double-byte code page value. A ’-’ represents an undefined code page value.

2. The use of different letters in various code page attribute pairs is deliberate. Different

letters imply different values. For example, if a PC/IXF data type is shown as (x,y), and

the database column as (a,y), x does not equal a, but the PC/IXF file and the database

have the same double-byte code page value y.

3. Only character and graphic data types are affected by the forcein code page semantics.

4. It is assumed that the database containing the new table has code page attributes of

(a,0); therefore, all character columns in the new table must have code page attributes

of either (0,0) or (a,0).

In a DBCS environment, it is assumed that the database containing the new table has

code page attributes of (a,b); therefore, all graphic columns in the new table must have

code page attributes of (-,b), and all character columns must have code page attributes

of (a,b). The SBCS CPGID is shown as ’-’, because it is undefined for graphic data

types.

5. The data type of the result is determined by the rules described in Data type semantics

for forcein.

6. The reject result is a reflection of the rules for invalid or incompatible data types.

The following two tables show:

v That the import utility accepts PC/IXF data types with various code page

attributes into an existing table column (the target column) having the specified

code page attributes.

v That the import utility does not permit a PC/IXF data type with certain code

page attributes to be imported into an existing table column having the code

page attributes shown. The utility rejects PC/IXF data types if they are invalid

or incompatible.

 Table 59. Summary of Import Utility Code Page Semantics (Existing Table) for SBCS. This

table assumes there is no conversion table between a and x.

CODE PAGE

ATTRIBUTES OF

PC/IXF DATA TYPE

CODE PAGE

ATTRIBUTES OF

TARGET

DATABASE

COLUMN

RESULTS OF IMPORT

Without forcein With forcein

(0,0) (0,0) accept accept

(a,0) (0,0) accept accept

(x,0) (0,0) accept accept

(x,y) (0,0) accept accept

(a,y) (0,0) accept accept

(0,y) (0,0) accept accept

(0,0) (a,0) null or reject accept

Chapter 6. File formats and data types 433

Table 59. Summary of Import Utility Code Page Semantics (Existing Table) for

SBCS (continued). This table assumes there is no conversion table between a and x.

CODE PAGE

ATTRIBUTES OF

PC/IXF DATA TYPE

CODE PAGE

ATTRIBUTES OF

TARGET

DATABASE

COLUMN

RESULTS OF IMPORT

Without forcein With forcein

(a,0) (a,0) accept accept

(x,0) (a,0) null or reject accept

(x,y) (a,0) null or reject accept

(a,y) (a,0) null or reject accept

(0,y) (a,0) null or reject null or reject

Note:

1. See the notes for Table 57 on page 432.

2. The null or reject result is a reflection of the rules for invalid or incompatible data

types.

 Table 60. Summary of Import Utility Code Page Semantics (Existing Table) for DBCS. This

table assumes there is no conversion table between a and x.

CODE PAGE

ATTRIBUTES OF

PC/IXF DATA TYPE

CODE PAGE

ATTRIBUTES OF

TARGET

DATABASE

COLUMN

RESULTS OF IMPORT

Without forcein With forcein

(0,0) (0,0) accept accept

(a,0) (0,0) accept accept

(x,0) (0,0) accept accept

(a,b) (0,0) accept accept

(x,y) (0,0) accept accept

(a,y) (0,0) accept accept

(x,b) (0,0) accept accept

(0,b) (0,0) accept accept

(0,y) (0,0) accept accept

(0,0) (a,b) null or reject accept

(a,0) (a,b) accept accept

(x,0) (a,b) null or reject accept

(a,b) (a,b) accept accept

(x,y) (a,b) null or reject accept

(a,y) (a,b) null or reject accept

(x,b) (a,b) null or reject accept

(0,b) (a,b) null or reject null or reject

(0,y) (a,b) null or reject null or reject

(0,0) (-,b) null or reject accept

434 Data Movement Utilities Guide and Reference

Table 60. Summary of Import Utility Code Page Semantics (Existing Table) for

DBCS (continued). This table assumes there is no conversion table between a and x.

CODE PAGE

ATTRIBUTES OF

PC/IXF DATA TYPE

CODE PAGE

ATTRIBUTES OF

TARGET

DATABASE

COLUMN

RESULTS OF IMPORT

Without forcein With forcein

(a,0) (-,b) null or reject null or reject

(x,0) (-,b) null or reject null or reject

(a,b) (-,b) null or reject null or reject

(x,y) (-,b) null or reject null or reject

(a,y) (-,b) null or reject null or reject

(x,b) (-,b) null or reject null or reject

(0,b) (-,b) accept accept

(0,y) (-,b) null or reject accept

Note:

1. See the notes for Table 57 on page 432.

2. The null or reject result is a reflection of the rules for invalid or incompatible data

types.

Data type semantics for forcein

The forcein file type modifier permits import of certain PC/IXF columns into

target database columns of unequal and otherwise incompatible data types. The

following data type semantics apply when using forcein in either an SBCS or a

DBCS environment (except where noted):

v In SBCS environments, forcein permits import of:

– A PC/IXF BIT data type (IXFCSBCP = 0 = IXFCDBCP for a PC/IXF character

column) into a database character column (non-zero SBCS CPGID, and DBCS

CPGID = 0); existing tables only

– A PC/IXF MIXED data type (non-zero IXFCSBCP and IXFCDBCP) into a

database character column; both new and existing tables

– A PC/IXF GRAPHIC data type into a database FOR BIT DATA column (SBCS

CPGID = 0 = DBCS CPGID); new tables only (this is always permitted for

existing tables).
v The forcein file type modifier does not extend the scope of valid PC/IXF data

types.

PC/IXF columns with data types not defined as valid PC/IXF data types are

invalid for import with or without forcein.

v In DBCS environments, forcein permits import of:

– A PC/IXF BIT data type into a database character column

– A PC/IXF BIT data type into a database graphic column; however, if the

PC/IXF BIT column is of fixed length, that length must be even. A fixed

length PC/IXF BIT column of odd length is not compatible with a database

graphic column. A varying-length PC/IXF BIT column is compatible whether

its length is odd or even, although an odd-length value from a varying-length

column is an invalid value for import into a database graphic column

– A PC/IXF MIXED data type into a database character column.

Chapter 6. File formats and data types 435

Table 61 summarizes PC/IXF file import into new or existing database tables with

forcein specified.

 Table 61. Summary of PC/IXF File Import with forcein

DATABASE COLUMN DATA TYPE

PC/IXF

COLUMN

DATA TYPE

SMALL

INT INT BIGINT DEC FLT (0,0)

(SBCS,

0)e

(SBCS,

DBCS)b GRAPHb DATE TIME

TIME

STAMP

-SMALLINT N

E E E Ea E

-INTEGER N

Ea E E Ea E

-BIGINT N

Ea Ea E Ea E

-DECIMAL N

Ea Ea Ea Ea E

-FLOAT N

Ea Ea Ea Ea E

-(0,0) N

E E w/F E w/F E w/F Ec Ec Ec

-(SBCS,0) N N

E E E Ec Ec Ec

-(SBCS,

DBCS)

N

w/Fd

N Ec Ec Ec

E E w/F E

-GRAPHIC N

w/Fd

N

E E

-DATE N

E

-TIME N

E

-TIME

STAMP

N

E

436 Data Movement Utilities Guide and Reference

Table 61. Summary of PC/IXF File Import with forcein (continued)

DATABASE COLUMN DATA TYPE

PC/IXF

COLUMN

DATA TYPE

SMALL

INT INT BIGINT DEC FLT (0,0)

(SBCS,

0)e

(SBCS,

DBCS)b GRAPHb DATE TIME

TIME

STAMP

Note: If a PC/IXF column can be imported into a database column only with forcein, the string ’w/F’ is displayed

together with an ’N’ or an ’E’. An ’N’ indicates that the utility is creating a new database table; an ’E’ indicates that

the utility is importing data to an existing database table. The forcein file type modifier affects compatibility of

character and graphic data types only.

a Individual values are rejected if they are out of range for the target numeric data type.

b Data type is available only in DBCS environments.

c Individual values are rejected if they are not valid date or time values.

d Applies only if the source PC/IXF data type is not supported by the target database.

e Data type is not available in DBCS environments.

Worksheet File Format (WSF)

Lotus 1-2-3 and Symphony products use the same basic format, with additional

functions added at each new release. The database manager supports the subset of

the worksheet records that are the same for all the Lotus products. That is, for the

releases of Lotus 1-2-3 and Symphony products supported by the database

manager, all file names with any three-character extension are accepted; for

example: WKS, WK1, WRK, WR1, WJ2.

Note: Support for this file format is deprecated and might be removed in a future

release. It is recommended that you start using a supported file format instead of

WSF files before support is removed.

Each WSF file represents one worksheet. The database manager uses the following

conventions to interpret worksheets and to provide consistency in worksheets

generated by its export operations:

v Cells in the first row (ROW value 0) are reserved for descriptive information

about the entire worksheet. All data within this row is optional. It is ignored

during import.

v Cells in the second row (ROW value 1) are used for column labels.

v The remaining rows are data rows (records, or rows of data from the table).

v Cell values under any column heading are values for that particular column or

field.

v A NULL value is indicated by the absence of a real cell content record (for

example, no integer, number, label, or formula record) for a particular column

within a row of cell content records.

Note: A row of NULLs will be neither imported nor exported.

To create a file that is compliant with the WSF format during an export operation,

some loss of data might occur.

WSF files use a Lotus code point mapping that is not necessarily the same as

existing code pages supported by DB2 database. As a result, when importing or

Chapter 6. File formats and data types 437

exporting a WSF file, data is converted from the Lotus code points to or from the

code points used by the application code page. DB2 supports conversion between

the Lotus code points and code points defined by code pages 437, 819, 850, 860,

863, and 865.

Note: For multi-byte character set users, no conversions are performed.

Unicode considerations for data movement

The export, import, and load utilities are not supported when they are used with a

Unicode client connected to a non-Unicode database.

The DEL, ASC, and PC/IXF file formats are supported for a Unicode database, as

described in this section. The WSF format is not supported.

When exporting from a Unicode database to an ASCII delimited (DEL) file, all

character data is converted to the application code page. Both character string and

graphic string data are converted to the same SBCS or MBCS code page of the

client. This is expected behavior for the export of any database, and cannot be

changed, because the entire delimited ASCII file can have only one code page.

Therefore, if you export to a delimited ASCII file, only those UCS-2 characters that

exist in your application code page will be saved. Other characters are replaced

with the default substitution character for the application code page. For UTF-8

clients (code page 1208), there is no data loss, because all UCS-2 characters are

supported by UTF-8 clients.

When importing from an ASCII file (DEL or ASC) to a Unicode database, character

string data is converted from the application code page to UTF-8, and graphic

string data is converted from the application code page to UCS-2. There is no data

loss. If you want to import ASCII data that has been saved under a different code

page, you should change the data file code page before issuing the IMPORT

command. You can specify the code page of the data file by setting the

DB2CODEPAGE registry variable to the code page of the ASCII data file or by

using the codepage file type modifier.

The range of valid ASCII delimiters for SBCS and MBCS clients is identical to what

is currently supported by IBM DB2 V9.1 for those clients. The range of valid

delimiters for UTF-8 clients is X’01’ to X’7F’, with the usual restrictions.

When exporting from a Unicode database to a PC/IXF file, character string data is

converted to the SBCS/MBCS code page of the client. Graphic string data is not

converted, and is stored in UCS-2 (code page 1200). There is no data loss.

When importing from a PC/IXF file to a Unicode database, character string data is

assumed to be in the SBCS/MBCS code page stored in the PC/IXF header, and

graphic string data is assumed to be in the DBCS code page stored in the PC/IXF

header. Character string data is converted by the import utility from the code page

specified in the PC/IXF header to the code page of the client, and then from the

client code page to UTF-8 (by the INSERT statement). Graphic string data is

converted by the import utility from the DBCS code page specified in the PC/IXF

header directly to UCS-2 (code page 1200).

The load utility places the data directly into the database and, by default, assumes

data in ASC or DEL files to be in the code page of the database. Therefore, by

default, no code page conversion takes place for ASCII files. When the code page

438 Data Movement Utilities Guide and Reference

for the data file has been explicitly specified (using the codepage modifier), the

load utility uses this information to convert from the specified code page to the

database code page before loading the data. For PC/IXF files, the load utility

always converts from the code pages specified in the IXF header to the database

code page (1208 for CHAR, and 1200 for GRAPHIC).

The code page for DBCLOB files is always 1200 for UCS-2. The code page for

CLOB files is the same as the code page for the data files being imported, loaded

or exported. For example, when loading or importing data using the PC/IXF

format, the CLOB file is assumed to be in the code page specified by the PC/IXF

header. If the DBCLOB file is in ASC or DEL format, the load utility assumes that

CLOB data is in the code page of the database, while the import utility assumes it

to be in the code page of the client application.

The nochecklengths modifier is always specified for a Unicode database, because:

v Any SBCS can be connected to a database for which there is no DBCS code page

v Character strings in UTF-8 format usually have different lengths than those in

client code pages.

Considerations for code pages 1394, 1392, and 5488

The import, export and load utilities can be used to transfer data from the Chinese

code page GB 18030 (code page identifier 1392 and 5488) and the Japanese code

page ShiftJISX 0213 (code page identifier 1394) to DB2 Unicode databases. In

addition, the export utility can be used to transfer data from DB2 Unicode

databases to GB 18030 or ShiftJIS X0213 code page data.

For example, the following command will load the Shift_JISX0213 data file

u/jp/user/x0213/data.del residing on a remotely connected client into MYTABLE:

 db2 load client from /u/jp/user/x0213/data.del

 of del modified by codepage=1394 insert into mytable

where MYTABLE is located on a DB2 Unicode database.

Since only connections between a Unicode client and a Unicode server are

supported, you need to use either a Unicode client or set the DB2 registry variable

DB2CODEPAGE to 1208 prior to using the load, import, or export utilities.

Conversion from code page 1394, 1392, or 5488 to Unicode can result in expansion.

For example, a 2-byte character can be stored as two 16-bit Unicode characters in

the GRAPHIC columns. You need to ensure the target columns in the Unicode

database are wide enough to contain any expanded Unicode byte.

Incompatibilities

For applications connected to a Unicode database, graphic string data is always in

UCS-2 (code page 1200). For applications connected to non-Unicode databases, the

graphic string data is in the DBCS code page of the application, or not allowed if

the application code page is SBCS. For example, when a 932 client is connected to

a Japanese non-Unicode database, the graphic string data is in code page 301. For

the 932 client applications connected to a Unicode database, the graphic string data

is in UCS-2 encoding.

Chapter 6. File formats and data types 439

Character set and national language support

The DB2 data movement utilities offer the following national language support

(NLS):

v The import and the export utilities provide automatic code page conversion

from a client code page to the server code page.

v For the load utility, data can be converted from any code page to the server code

page by using the codepage modifier with DEL and ASC files.

v For all utilities, IXF data is automatically converted from its original code page

(as stored in the IXF file) to the server code page.

Unequal code page situations, involving expansion or contraction of the character

data, can sometimes occur. For example, Japanese or Traditional-Chinese Extended

UNIX Code (EUC) and double-byte character sets (DBCS) might encode different

lengths for the same character. Normally, comparison of input data length to target

column length is performed before reading in any data. If the input length is

greater than the target length, NULLs are inserted into that column if it is nullable.

Otherwise, the request is rejected. If the nochecklengths file type modifier is

specified, no initial comparison is performed, and an attempt is made to import or

load the data. If the data is too long after translation is complete, the row is

rejected. Otherwise, the data is imported or loaded.

XML data movement

Support for XML data movement is provided by the load, import and export

utilities. Support for moving tables that contain XML columns without taking the

tables offline is provided by the ADMIN_MOVE_TABLE stored procedure.

Importing XML data

The import utility can be used to insert XML documents into a regular relational

table. Only well-formed XML documents can be imported.

Use the XML FROM option of the IMPORT command to specify the location of the

XML documents to import. The XMLVALIDATE option specifies how imported

documents should be validated. You can select to have the imported XML data

validated against a schema specified with the IMPORT command, against a

schema identified by a schema location hint inside of the source XML document,

or by the schema identified by the XML Data Specifier in the main data file. You

can also use the XMLPARSE option to specify how whitespace is handled when

the XML document is imported. The xmlchar and xmlgraphic file type modifiers

allow you to specify the encoding characteristics for the imported XML data.

Loading XML data

The load utility offers an efficient way to insert large volumes of XML data into a

table. This utility also allows certain options unavailable with the import utility,

such as the ability to load from a user-defined cursor.

Like the IMPORT command, with the LOAD command you can specify the

location of the XML data to load, validation options for the XML data, and how

whitespace is handled. As with IMPORT, you can use the xmlchar and xmlgraphic

file type modifiers to specify the encoding characteristics for the loaded XML data.

440 Data Movement Utilities Guide and Reference

Exporting XML data

Data may be exported from tables that include one or more columns with an XML

data type. Exported XML data is stored in files separate from the main data file

containing the exported relational data. Information about each exported XML

document is represented in the main exported data file by an XML data specifier

(XDS). The XDS is a string that specifies the name of the system file in which the

XML document is stored, the exact location and length of the XML document

inside of this file, and the XML schema used to validate the XML document.

You can use the XMLFILE, XML TO, and XMLSAVESCHEMA parameters of the

EXPORT command to specify details about how exported XML documents are

stored. The xmlinsepfiles, xmlnodeclaration, xmlchar, and xmlgraphic file type

modifiers allow you to specify further details about the storage location and the

encoding of the exported XML data.

Moving tables online

The ADMIN_MOVE_TABLE stored procedure moves the data in an active table

into a new table object with the same name, while the data remains online and

available for access. The table can include one or more columns with an XML data

type. Use an online table move instead of an offline table move if you value

availability more than cost, space, move performance, and transaction overhead

You can call the procedure once or multiple times, one call for each operation

performed by the procedure. Using multiple calls provides you with additional

options, such as cancelling the move or controlling when the target table is taken

offline to be updated.

Important considerations for XML data movement

There are a number of restrictions, prerequisites, and reminders to consider when

importing or exporting XML data. Review these considerations before importing or

exporting XML data.

Keep the following consideration in mind when exporting or importing XML data:

v Exported XML data is always stored separately from the main data file

containing exported relational data.

v By default, the export utility writes XML data in Unicode. Use the xmlchar file

type modifier to have XML data written in the character code page, or use the

xmlgraphic file type modifier to have XML data written in UTF-16 (the graphic

code page) regardless of the application code page.

v XML data can be stored in non-Unicode databases, and the data inserted into an

XML column is converted from the database codepage to UTF-8 before insertion.

In order to avoid the possible introduction of substitution characters during

XML parsing, character data to be inserted should consist only of code points

that are part of the database codepage. Setting the enable_xmlchar configuration

parameter to no blocks the insertion of character data types during XML parsing,

restricting insertion to data types that do not undergo codepage conversion,

such as BIT DATA, BLOB, or XML.

v When importing or loading XML data, the XML data is assumed to be in

Unicode unless the XML document to import contains a declaration tag that

includes an encoding attribute. You can use the xmlchar file type modifier to

Chapter 6. File formats and data types 441

indicate that XML documents to import are encoded in the character code page,

while the xmlgraphic file type modifier indicates that XML documents to import

are encoded in UTF-16.

v The import and load utilities reject rows that contain documents that are not

well-formed.

v If the XMLVALIDATE option is specified for the import utility or the load utility,

documents that successfully validate against their matching schema are

annotated with information about the schema used for validation as they are

inserted into a table. Rows containing documents that fail to validate against

their matching schema are rejected.

v If the XMLVALIDATE option is specified for an import or load utility and

multiple XML schemas are used to validate XML documents, you might need to

increase the catalog cache size configuration parameter catalogcache_sz. If

increasing the value of catalogcache_sz is not feasible or possible, you can

separate the single import or load command into multiple commands that use

fewer schema documents.

v When you export XML data specifying an XQuery statement, you might export

Query and XPath Data Model (XDM) instances that are not well-formed XML

documents. Exported XML documents that are not well-formed cannot be

imported directly into an XML column, because columns defined with the XML

data type can contain only complete, well formed XML documents.

v The CPU_PARALLELISM setting during a load is reduced to 1 if statistics are

being collected.

v An XML load operation requires the use of shared sort memory to proceed.

Enable SHEAPTHRES_SHR or INTRA_PARALLEL, or turn on the connection

concentrator. By default, SHEAPTHRES_SHR is set, so shared sort memory is

available on the default configuration.

v You cannot specify the SOURCEUSEREXIT option or SAVECOUNT parameter

of the LOAD command when loading a table containing an XML column.

v As with LOB files, XML files have to reside on the server side when using the

LOAD command.

v When loading XML data to multiple database partitions in a partitioned

database environment, the files containing the XML data must be accessible to

all database partitions. For example, you can copy the files or create an NFS

mount to make the files accessible.

LOB and XML file behavior when importing and exporting

LOB and XML files share certain behaviors and compatibilities that can be used

when importing and exporting data.

Export When exporting data, if one or more LOB paths are specified with the

LOBS TO option, the export utility will cycle between the paths to write

each successive LOB value to the appropriate LOB file. Similarly, if one or

more XML paths are specified with the XML TO option, the export utility

will cycle between the paths to write each successive XQuery and XPath

Data Model (XDM) instance to the appropriate XML file. By default, LOB

values and XDM instances are written to the same path to which the

exported relational data is written. Unless the LOBSINSEPFILES or

XMLINSEPFILES file type modifier is set, both LOB files and XML files can

have multiple values concatenated to the same file.

 The LOBFILE option provides a means to specify the base name of the

LOB files generated by the export utility. Similarly, the XMLFILE option

provides a means to specify the base name of the XML files generated by

442 Data Movement Utilities Guide and Reference

the export utility. The default LOB file base name is the name of the

exported data file, with the extension .lob. The default XML file base

name is the name of the exported data file, with the extension .xml. The

full name of the exported LOB file or XML file therefore consists of the

base name, followed by a number extension that is padded to three digits,

and the extension .lob or .xml.

Import

When importing data, a LOB Location Specifier (LLS) is compatible with

an XML target column, and an XML Data Specifier (XDS) is compatible

with a LOB target column. If the LOBS FROM option is not specified, the

LOB files to import are assumed to reside in the same path as the input

relational data file. Similarly, if the XML FROM option is not specified, the

XML files to import are assumed to reside in the same path as the input

relational data file.

Export examples

In the following example, all LOB values are written to the file

/mypath/t1export.del.001.lob, and all XDM instances are written to the file

/mypath/t1export.del.001.xml:

 EXPORT TO /mypath/t1export.del OF DEL MODIFIED BY LOBSINFILE

 SELECT * FROM USER.T1

In the following example, the first LOB value is written to the file

/lob1/t1export.del.001.lob, the second is written to the file /lob2/
t1export.del.002.lob, the third is appended to /lob1/t1export.del.001.lob, the

fourth is appended to /lob2/t1export.del.002.lob, and so on:

 EXPORT TO /mypath/t1export.del OF DEL LOBS TO /lob1,/lob2

 MODIFIED BY LOBSINFILE SELECT * FROM USER.T1

In the following example, the first XDM instance is written to the file

/xml1/xmlbase.001.xml, the second is written to the file /xml2/xmlbase.002.xml,

the third is written to /xml1/xmlbase.003.xml, the fourth is written to

/xml2/xmlbase.004.xml, and so on:

 EXPORT TO /mypath/t1export.del OF DEL XML TO /xml1,/xml2 XMLFILE xmlbase

 MODIFIED BY XMLINSEPFILES SELECT * FROM USER.T1

Import examples

For a table ″mytable″ that contains a single XML column, and the following

IMPORT command:

 IMPORT FROM myfile.del of del LOBS FROM /lobpath XML FROM /xmlpath

 MODIFIED BY LOBSINFILE XMLCHAR replace into mytable

If ″myfile.del″ contains the following data:

 mylobfile.001.lob.123.456/

The import utility will try to import an XML document from the file

/lobpath/mylobfile.001.lob, starting at file offset 123, with its length being 456

bytes.

The file ″mylobfile.001.lob″ is assumed to be in the LOB path, as opposed to the

XML path, since the value is referred to by a LOB Location Specifier (LLS) instead

of an XML Data Specifier (XDS).

Chapter 6. File formats and data types 443

The document is assumed to be encoded in the character codepage, since the

XMLCHAR file type modifier is specified.

XML data specifier

XML data moved with the export, import and load utilities must be stored in files

separate from the main data file. The XML data is represented in the main data file

with an XML data specifier (XDS).

The XDS is a string represented as an XML tag named ″XDS″, which has attributes

that describe information about the actual XML data in the column; such

information includes the name of the file that contains the actual XML data, and

the offset and length of the XML data within that file. The attributes of the XDS are

described below.

FIL The name of the file that contains the XML data. You cannot specify a

named pipe. Importing or loading XML documents from a named pipe is

not supported.

OFF The byte offset of the XML data in the file named by the FIL attribute,

where the offset begins from 0.

LEN The length in bytes of the XML data in the file named by the FIL attribute.

SCH The fully qualified SQL identifier of the XML schema that is used to

validate this XML document. The schema and name components of the

SQL identifier are stored as the ″OBJECTSCHEMA″ and ″OBJECTNAME″

values, respectively, of the row in the SYSCAT.XSROBJECTS catalog table

that corresponds to this XML schema.

 The XDS is interpreted as a character field in the data file and is subject to the

parsing behavior for character columns of the file format. For the delimited ASCII

file format (DEL), for example, if the character delimiter is present in the XDS, it

must be doubled. The special characters <, >, &, ’, ″ within the attribute values

must always be escaped. Case-sensitive object names must be placed between

" character entities.

Examples

Consider a FIL attribute with the value abc&"def".del. To include this XDS in a

delimited ASCII file, where the character delimiter is the ″ character, the ″

characters are doubled and special characters are escaped.

<XDS FIL=""abc&"def".del"" />

The following example shows an XDS as it would appear in a delimited ASCII

data file. XML data is stored in the file xmldocs.xml.001 beginning at byte offset

100 with a length of 300 bytes. Because this XDS is within an ASCII file delimited

with double quotation marks, the double quotation marks within the XDS tag itself

must be doubled.

"<XDS FIL = ""xmldocs.xml.001"" OFF=""100"" LEN=""300"" />"

The following example shows the fully qualified SQL identifier

ANTHONY.purchaseOrderTest. The case-sensitive portion of the identifier must be

placed between " character entities in the XDS:

"<XDS FIL=’/home/db2inst1/xmlload/a.xml’ OFF=’0’ LEN=’6758’

 SCH=’ANTHONY."purchaseOrderTest"’ />"

444 Data Movement Utilities Guide and Reference

Query and XPath Data Model

XML data can be accessed in a database table either by use of the XQuery

functions available in SQL, or by invoking XQuery directly. An instance of the

Query and XPath Data Model (XDM) can be a well-formed XML document, a

sequence of nodes, a sequence of atomic values, or any combination of nodes and

atomic values.

Individual XDM instances can be written to one or more XML files by means of

the EXPORT command.

Chapter 6. File formats and data types 445

446 Data Movement Utilities Guide and Reference

Part 2. Appendixes

© Copyright IBM Corp. 1993, 2009 447

448 Data Movement Utilities Guide and Reference

Appendix A. Differences between the import and load utility

The following table summarizes the important differences between the DB2 load

and import utilities.

 Import Utility Load Utility

Slow when moving large amounts of data. Faster than the import utility when moving

large amounts of data, because the load

utility writes formatted pages directly into

the database.

Limited exploitation of intra-partition

parallelism. Intra-partition parallelism can

only be achieved through concurrent

invocations of the import utility in ALLOW

WRITE ACCESS mode.

Exploitation of intra-partition parallelism.

Typically, this requires symmetric

multiprocessor (SMP) machines.

No FASTPARSE support. FASTPARSE support, providing reduced

data checking of user-supplied data.

Supports hierarchical data. Does not support hierarchical data.

Creation of tables, hierarchies, and indexes

supported with PC/IXF format.

Tables and indexes must exist.

No support for importing into materialized

query tables.

Support for loading into materialized query

tables.

WSF format is supported. WSF format is not supported.

No BINARYNUMERICS support. BINARYNUMERICS support.

No PACKEDDECIMAL support. PACKEDDECIMAL support.

No ZONEDDECIMAL support. ZONEDDECIMAL support.

Cannot override columns defined as

GENERATED ALWAYS.

Can override GENERATED ALWAYS

columns, by using the generatedoverride

and identityoverride file type modifiers.

Supports import into tables, views and

nicknames.

Supports loading into tables only.

All rows are logged. Minimal logging is performed.

Trigger support. No trigger support.

If an import operation is interrupted, and a

commitcount was specified, the table is usable

and will contain the rows that were loaded

up to the last COMMIT. The user can restart

the import operation, or accept the table as

is.

If a load operation is interrupted, and a

savecount was specified, the table remains in

Load Pending state and cannot be used until

the load operation is restarted, a load

terminate operation is invoked, or until the

table space is restored from a backup image

created some time before the attempted load

operation.

Space required is approximately equivalent

to the size of the largest index plus 10%.

This space is obtained from the temporary

table spaces within the database.

Space required is approximately equivalent

to the sum of the size of all indexes defined

on the table, and can be as much as twice

this size. This space is obtained from

temporary space within the database.

All constraints are validated during an

import operation.

The load utility checks for uniqueness and

computes generated column values, but all

other constraints must be checked using SET

INTEGRITY.

© Copyright IBM Corp. 1993, 2009 449

Import Utility Load Utility

The key values are inserted into the index

one at a time during an import operation.

The key values are sorted and the index is

built after the data has been loaded.

If updated statistics are required, the

runstats utility must be run after an import

operation.

Statistics can be gathered during the load

operation if all the data in the table is being

replaced.

You can import into a host database through

DB2 Connect.

You cannot load into a host database.

Import files must exist on the client from

which the import utility is invoked.

Depending on the options specified, load

files or pipes can reside either on the

database partition(s) that contain the

database, or on the remotely connected

client from which the load utility is invoked.

Note: LOBs and XML data can only be read

from the server side.

A backup image is not required. Because the

import utility uses SQL inserts, the activity

is logged, and no backups are required to

recover these operations in case of failure.

A backup image can be created during the

load operation.

450 Data Movement Utilities Guide and Reference

Appendix B. Bind files used by the export, import, and load

utilities

The following table lists bind files with their default isolation levels, as well as

which utilities use them and for what purpose.

 Bind File (Default Isolation Level) Utility/Purpose

db2ueiwi.bnd (CS) Import/Export. Used to query information

about table columns and indexes.

db2uexpm.bnd (CS) Export. Used to fetch from the query

specified for the export operation.

db2uimpm.bnd (RS) Import. Used to insert data from the source

data file into the target table when INSERT,

REPLACE or REPLACE_CREATE option is

used.

Note: Note: The CREATE and

REPLACE_CREATE options of the IMPORT

command are deprecated and might be

removed in a future release.

db2uipkg.bnd (CS) Import. Used to check bind options.

db2ucktb.bnd (CS) Load. Used to perform general initialization

processes for a load operation.

db2ulxld.bnd (CS) Load. Used to process the query provided

during a load from cursor operation.

db2uigsi.bnd (RS on UNIX based systems,

RR on all other platforms)

Import/Export. Used to drop indexes and

check for referential constraints for an

import replace operation. Also used to

retrieve identity column information for

exporting IXF files.

db2uqtpd.bnd (RR) Import/Export. Used to perform processing

for hierarchical tables.

db2uimtb.bnd (RS) Import. Used to perform general

initialization processes for an import

operation.

db2uImpInsUpdate.bnd (RS) Import. Used to insert data from the source

data file into the target table when

INSERT_UPDATE option is used. Cannot be

bound with the INSERT BUF option.

© Copyright IBM Corp. 1993, 2009 451

452 Data Movement Utilities Guide and Reference

Appendix C. How to read the syntax diagrams

SQL syntax is described using the structure defined as follows:

Read the syntax diagrams from left to right and top to bottom, following the path

of the line.

The ��─── symbol indicates the beginning of a syntax diagram.

The ───� symbol indicates that the syntax is continued on the next line.

The �─── symbol indicates that the syntax is continued from the previous line.

The ──�� symbol indicates the end of a syntax diagram.

Syntax fragments start with the ├─── symbol and end with the ───┤ symbol.

Required items appear on the horizontal line (the main path).

�� required_item ��

Optional items appear below the main path.

�� required_item

optional_item
 ��

If an optional item appears above the main path, that item has no effect on

execution, and is used only for readability.

��

required_item
 optional_item

��

If you can choose from two or more items, they appear in a stack.

If you must choose one of the items, one item of the stack appears on the main

path.

�� required_item required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack appears below the main

path.

�� required_item

optional_choice1

optional_choice2

 ��

© Copyright IBM Corp. 1993, 2009 453

If one of the items is the default, it will appear above the main path, and the

remaining choices will be shown below.

��

required_item
 default_choice

optional_choice

optional_choice

��

An arrow returning to the left, above the main line, indicates an item that can be

repeated. In this case, repeated items must be separated by one or more blanks.

��

required_item

�

repeatable_item

��

If the repeat arrow contains a comma, you must separate repeated items with a

comma.

��

required_item

�

 ,

repeatable_item

��

A repeat arrow above a stack indicates that you can make more than one choice

from the stacked items or repeat a single choice.

Keywords appear in uppercase (for example, FROM). They must be spelled exactly

as shown. Variables appear in lowercase (for example, column-name). They

represent user-supplied names or values in the syntax.

If punctuation marks, parentheses, arithmetic operators, or other such symbols are

shown, you must enter them as part of the syntax.

Sometimes a single variable represents a larger fragment of the syntax. For

example, in the following diagram, the variable parameter-block represents the

whole syntax fragment that is labeled parameter-block:

�� required_item parameter-block ��

parameter-block:

 parameter1

parameter2

parameter3

parameter4

Adjacent segments occurring between “large bullets” (*) may be specified in any

sequence.

�� required_item item1 * item2 * item3 * item4 ��

454 Data Movement Utilities Guide and Reference

The above diagram shows that item2 and item3 may be specified in either order.

Both of the following are valid:

 required_item item1 item2 item3 item4

 required_item item1 item3 item2 item4

Appendix C. How to read the syntax diagrams 455

456 Data Movement Utilities Guide and Reference

Appendix D. Collecting data for data movement problems

If you are experiencing problems while performing data movement commands and

you cannot determine the cause of the problem, collect diagnostic data that either

you or IBM Software Support can use to diagnose and resolve the problem.

Follow the data collection instructions, appropriate for the circumstance you are

experiencing, from the following list:

v To collect data for problems related to the db2move command, go to the

directory where you issued the command. Locate the following file(s),

depending on the action you specified in the command:

– For the COPY action, look for files called COPY.timestamp.ERR and

COPYSCHEMA.timestamp.MSG. If you also specified either LOAD_ONLY or

DDL_AND_LOAD mode, look for a file called LOADTABLE.timestamp.MSG

as well.

– For the EXPORT action, look for a file called EXPORT.out.

– For the IMPORT action, look for a file called IMPORT.out.

– For the LOAD action, look for a file called LOAD.out.
v To collect data for problems related to EXPORT, IMPORT, or LOAD commands,

determine whether your command included the MESSAGES parameter. If it did,

collect the output file. These utilities use the current directory and the default

drive as the destination if you do not specify otherwise.

v To collect data for problems related to a REDISTRIBUTE command, look for a

file called ″databasename.database_partition_groupname. timestamp″ on Linux and

UNIX and “databasename. database_partition_groupname.date.time″ on Windows. It

is located in $HOME/sqllib/db2dump directory or $DB2PATH\sqllib\redist

respectively, where $HOME is the home directory of the instance owner.

© Copyright IBM Corp. 1993, 2009 457

458 Data Movement Utilities Guide and Reference

Appendix E. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics (Task, concept and reference topics)

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF DVD)

– printed books
v Command line help

– Command help

– Message help

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hardcopy books. To get the most current information, install the

documentation updates as they become available, or refer to the DB2 Information

Center at ibm.com.

You can access additional DB2 technical information such as technotes, white

papers, and IBM Redbooks publications online at ibm.com. Access the DB2

Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how to improve the DB2 documentation, send an e-mail to db2docs@ca.ibm.com.

The DB2 documentation team reads all of your feedback, but cannot respond to

you directly. Provide specific examples wherever possible so that we can better

understand your concerns. If you are providing feedback on a specific topic or

help file, include the topic title and URL.

Do not use this e-mail address to contact DB2 Customer Support. If you have a

DB2 technical issue that the documentation does not resolve, contact your local

IBM service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. English and translated DB2

Version 9.7 manuals in PDF format can be downloaded from www.ibm.com/
support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be

available in your country or region.

© Copyright IBM Corp. 1993, 2009 459

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

The form number increases each time a manual is updated. Ensure that you are

reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF

or the hard-copy books.

 Table 62. DB2 technical information

Name Form Number Available in print Last updated

Administrative API

Reference

SC27-2435-00 Yes August, 2009

Administrative Routines

and Views

SC27-2436-00 No August, 2009

Call Level Interface

Guide and Reference,

Volume 1

SC27-2437-00 Yes August, 2009

Call Level Interface

Guide and Reference,

Volume 2

SC27-2438-00 Yes August, 2009

Command Reference SC27-2439-00 Yes August, 2009

Data Movement Utilities

Guide and Reference

SC27-2440-00 Yes August, 2009

Data Recovery and High

Availability Guide and

Reference

SC27-2441-00 Yes August, 2009

Database Administration

Concepts and

Configuration Reference

SC27-2442-00 Yes August, 2009

Database Monitoring

Guide and Reference

SC27-2458-00 Yes August, 2009

Database Security Guide SC27-2443-00 Yes August, 2009

DB2 Text Search Guide SC27-2459-00 Yes August, 2009

Developing ADO.NET

and OLE DB

Applications

SC27-2444-00 Yes August, 2009

Developing Embedded

SQL Applications

SC27-2445-00 Yes August, 2009

Developing Java

Applications

SC27-2446-00 Yes August, 2009

Developing Perl, PHP,

Python, and Ruby on

Rails Applications

SC27-2447-00 No August, 2009

Developing User-defined

Routines (SQL and

External)

SC27-2448-00 Yes August, 2009

Getting Started with

Database Application

Development

GI11-9410-00 Yes August, 2009

Getting Started with

DB2 Installation and

Administration on Linux

and Windows

GI11-9411-00 Yes August, 2009

460 Data Movement Utilities Guide and Reference

Table 62. DB2 technical information (continued)

Name Form Number Available in print Last updated

Globalization Guide SC27-2449-00 Yes August, 2009

Installing DB2 Servers GC27-2455-00 Yes August, 2009

Installing IBM Data

Server Clients

GC27-2454-00 No August, 2009

Message Reference

Volume 1

SC27-2450-00 No August, 2009

Message Reference

Volume 2

SC27-2451-00 No August, 2009

Net Search Extender

Administration and

User’s Guide

SC27-2469-00 No August, 2009

Partitioning and

Clustering Guide

SC27-2453-00 Yes August, 2009

pureXML Guide SC27-2465-00 Yes August, 2009

Query Patroller

Administration and

User’s Guide

SC27-2467-00 No August, 2009

Spatial Extender and

Geodetic Data

Management Feature

User’s Guide and

Reference

SC27-2468-00 No August, 2009

SQL Procedural

Languages: Application

Enablement and Support

SC27-2470-00 Yes August, 2009

SQL Reference, Volume 1 SC27-2456-00 Yes August, 2009

SQL Reference, Volume 2 SC27-2457-00 Yes August, 2009

Troubleshooting and

Tuning Database

Performance

SC27-2461-00 Yes August, 2009

Upgrading to DB2

Version 9.7

SC27-2452-00 Yes August, 2009

Visual Explain Tutorial SC27-2462-00 No August, 2009

What’s New for DB2

Version 9.7

SC27-2463-00 Yes August, 2009

Workload Manager

Guide and Reference

SC27-2464-00 Yes August, 2009

XQuery Reference SC27-2466-00 No August, 2009

 Table 63. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

Installing and

Configuring DB2

Connect Personal Edition

SC27-2432-00 Yes August, 2009

Installing and

Configuring DB2

Connect Servers

SC27-2433-00 Yes August, 2009

Appendix E. Overview of the DB2 technical information 461

Table 63. DB2 Connect-specific technical information (continued)

Name Form Number Available in print Last updated

DB2 Connect User’s

Guide

SC27-2434-00 Yes August, 2009

 Table 64. Information Integration technical information

Name Form Number Available in print Last updated

Information Integration:

Administration Guide for

Federated Systems

SC19-1020-02 Yes August, 2009

Information Integration:

ASNCLP Program

Reference for Replication

and Event Publishing

SC19-1018-04 Yes August, 2009

Information Integration:

Configuration Guide for

Federated Data Sources

SC19-1034-02 No August, 2009

Information Integration:

SQL Replication Guide

and Reference

SC19-1030-02 Yes August, 2009

Information Integration:

Introduction to

Replication and Event

Publishing

GC19-1028-02 Yes August, 2009

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation DVD are unavailable in print. For example, neither volume of the

DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation DVD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r7.

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

462 Data Movement Utilities Guide and Reference

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

1. Locate the contact information for your local representative from one of the

following Web sites:

– The IBM directory of world wide contacts at www.ibm.com/planetwide

– The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
2. When you call, specify that you want to order a DB2 publication.

3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical

library in hardcopy or PDF format” on page 459.

Displaying SQL state help from the command line processor

DB2 products return an SQLSTATE value for conditions that can be the result of an

SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state

class codes.

To start SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

Accessing different versions of the DB2 Information Center

For DB2 Version 9.7 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/

For DB2 Version 9.5 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Displaying topics in your preferred language in the DB2 Information

Center

The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button.

Appendix E. Overview of the DB2 technical information 463

http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Note: Adding a language does not guarantee that the computer has the

fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.
v To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences

window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you must also change the

regional settings of your operating system to the locale and language of your

choice.

Updating the DB2 Information Center installed on your computer or

intranet server

A locally installed DB2 Information Center must be updated periodically.

Before you begin

A DB2 Version 9.7 Information Center must already be installed. For details, see

the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in

Installing DB2 Servers. All prerequisites and restrictions that applied to installing

the Information Center also apply to updating the Information Center.

About this task

An existing DB2 Information Center can be updated automatically or manually:

v Automatic updates - updates existing Information Center features and

languages. An additional benefit of automatic updates is that the Information

Center is unavailable for a minimal period of time during the update. In

addition, automatic updates can be set to run as part of other batch jobs that run

periodically.

v Manual updates - should be used when you want to add features or languages

during the update process. For example, a local Information Center was

originally installed with both English and French languages, and now you want

to also install the German language; a manual update will install German, as

well as, update the existing Information Center features and languages.

However, a manual update requires you to manually stop, update, and restart

the Information Center. The Information Center is unavailable during the entire

update process.

Procedure

464 Data Movement Utilities Guide and Reference

This topic details the process for automatic updates. For manual update

instructions, see the “Manually updating the DB2 Information Center installed on

your computer or intranet server” topic.

To automatically update the DB2 Information Center installed on your computer or

intranet server:

1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7

directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the ic-update script:

ic-update

2. On Windows operating systems,

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2

Information Center\Version 9.7 directory, where <Program Files> represents

the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the ic-update.bat file:

ic-update.bat

Results

The DB2 Information Center restarts automatically. If updates were available, the

Information Center displays the new and updated topics. If Information Center

updates were not available, a message is added to the log. The log file is located in

doc\eclipse\configuration directory. The log file name is a randomly generated

number. For example, 1239053440785.log.

Manually updating the DB2 Information Center installed on your

computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install

documentation updates from IBM.

Updating your locally-installed DB2 Information Center manually requires that

you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to apply updates. The Workstation version of the DB2

Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates

that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center

updates on a machine that is not connected to the internet, mirror the update

site to a local file system using a machine that is connected to the internet and

has the DB2 Information Center installed. If many users on your network will

be installing the documentation updates, you can reduce the time required for

Appendix E. Overview of the DB2 technical information 465

individuals to perform the updates by also mirroring the update site locally

and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.

However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later

in this section must be run as an administrator. To open a command prompt or

graphical tool with full administrator privileges, right-click the shortcut and then

select Run as administrator.

To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv97 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the <Program

Files>\IBM\DB2 Information Center\Version 9.7 directory, where

<Program Files> represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the help_start.bat file:

help_start.bat

v On Linux:

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

/opt/ibm/db2ic/V9.7 directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information

Center.

3. Click the Update button (

). (JavaScript™ must be enabled in your browser.)

On the right panel of the Information Center, click Find Updates. A list of

updates for existing documentation displays.

4. To initiate the installation process, check the selections you want to install, then

click Install Updates.

5. After the installation process has completed, click Finish.

6. Stop the stand-alone Information Center:

v On Windows, navigate to the installation directory’s doc\bin directory, and

run the help_end.bat file:

help_end.bat

466 Data Movement Utilities Guide and Reference

Note: The help_end batch file contains the commands required to safely stop

the processes that were started with the help_start batch file. Do not use

Ctrl-C or any other method to stop help_start.bat.

v On Linux, navigate to the installation directory’s doc/bin directory, and run

the help_end script:

help_end

Note: The help_end script contains the commands required to safely stop the

processes that were started with the help_start script. Do not use any other

method to stop the help_start script.
7. Restart the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv97 start

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials

The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML®” in pureXML Guide

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

“Visual Explain” in Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 database products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting Guide

or the Database fundamentals section of the DB2 Information Center. There

you will find information about how to isolate and identify problems using

DB2 diagnostic tools and utilities, solutions to some of the most common

problems, and other advice on how to solve problems you might encounter

with your DB2 database products.

Appendix E. Overview of the DB2 technical information 467

http://publib.boulder.ibm.com/infocenter/db2luw/v9

DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/support/db2_9/

Terms and Conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

468 Data Movement Utilities Guide and Reference

http://www.ibm.com/software/data/db2/support/db2_9/
http://www.ibm.com/software/data/db2/support/db2_9/

Appendix F. Notices

This information was developed for products and services offered in the U.S.A.

Information about non-IBM products is based on information available at the time

of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,

contact the IBM Intellectual Property Department in your country or send

inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan, Ltd.

3-2-12, Roppongi, Minato-ku, Tokyo 106-8711 Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 1993, 2009 469

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

 Office of the Lab Director

 8200 Warden Avenue

 Markham, Ontario

 L6G 1C7

 CANADA

Such information may be available, subject to appropriate terms and conditions,

including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

470 Data Movement Utilities Guide and Reference

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. The sample

programs are provided ″AS IS″, without warranty of any kind. IBM shall not be

liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of

International Business Machines Corp., registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web at “Copyright and

trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

v Java and all Java-based trademarks and logos are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.

v UNIX is a registered trademark of The Open Group in the United States and

other countries.

v Intel, Intel logo, Intel Inside®, Intel Inside logo, Intel® Centrino®, Intel Centrino

logo, Celeron®, Intel® Xeon®, Intel SpeedStep®, Itanium®, and Pentium® are

trademarks or registered trademarks of Intel Corporation or its subsidiaries in

the United States and other countries.

v Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix F. Notices 471

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

472 Data Movement Utilities Guide and Reference

Index

A
ADMIN_CMD procedure

supported commands
EXPORT 27

IMPORT 86

LOAD 240

ADMIN_COPY_SCHEMA procedure
overview 3

anyorder file type modifier 207, 273

APIs
db2Export 36

db2Import 109

db2Load 273

sqluexpr 36

sqluimpr 109

application record
PC/IXF 400

ASC data type descriptions 396

ASC file
format 395

sample 398

ASC import file type 63

authority levels
LOAD 129

automatic dictionary creation (ADC)
during data movement 163

auxiliary storage objects
XML data specifier 444

B
binarynumerics file type modifier 207, 273

bind files
used by export, import, load 451

books
printed

ordering 462

buffered inserts
import utility 57

building indexes 154

C
character strings

delimiter 393

chardel file type modifier
export 18, 36

import 63, 109

load 207, 273

code page file type modifier 207, 273

code pages
conversion

files 425

when importing or loading PC/IXF data 425

Export API 36

EXPORT command 18

Import API 109

IMPORT command 63

import utility considerations 440

load utility considerations 440

coldel file type modifier
export

db2Export API 36

EXPORT command 18

import
db2Import API 109

IMPORT command 63

load
db2Load API 273

LOAD command 207

column descriptor record
PC/IXF 400

columns
incompatible 425

invalid values 425

LBAC protected
export considerations 12

importing to 55

load considerations 135

loading 129

priveleges and authorites required to export 8

specifying for import 109

commands
db2inidb 371

db2look 377

db2move 343

db2relocatedb 373

EXPORT 18, 27

IMPORT 63, 86

LIST TABLESPACES 319

LOAD 207, 240

LOAD QUERY 314

RESTORE DATABASE 352

compound file type modifier 63, 109

compressed tables
loading data into 163

compression dictionaries
KEEPDICTIONARY option 163

RESETDICTIONARY option 163

constraint violations
checking

using the SET INTEGRITY statement 172

constraints
checking

after load operations 169

continuation record type
PC/IXF 400

CURSOR file type
data movement 141

D
data

distribution 147

exporting 8

importing 48

label-based access control (LBAC)
exporting 8

loading 128, 129

moving across platforms 388

© Copyright IBM Corp. 1993, 2009 473

data (continued)
transfer

across platforms 388

between hosts and workstations 337

data movement
tools 3

Data Movement Guide
overview v

data record type
PC/IXF 400

data types
ASC 396

DEL 391

PC/IXF 416, 421

database movement tool command 343

databases
exporting from table into file

db2Export API 36

EXPORT command 18

importing from file into table
db2Import API 109

IMPORT command 63

loading data into tables 207

rebuilding
RESTORE DATABASE command 352

restoring 352

dateformat file type modifier
db2Import API 109

db2Load API 273

IMPORT command 63

LOAD command 207

DB2 Connect
moving data 337

DB2 Information Center
languages 463

updating 464, 465

versions 463

viewing in different languages 463

DB2 statistics and DDL extraction tool command 377

db2inidb command
description 371

overview 370

db2Load API
description 273

DB2LOADREC registry variable
recovering data 184

db2look command
description 377

db2move command
description 343

overview 3

schema copying examples 342

db2relocatedb command
description 373

overview 3

DB2SECURITYLABEL data type
exporting 12

importing 55

loading 135

decplusblank file type modifier
EXPORT command 18

IMPORT command 63

LOAD command 207

decpt file type modifier
EXPORT command 18

IMPORT command 63

LOAD command 207

DEL data type descriptions 391

DEL file
format 389

sample 393

delimited ASCII (DEL) file format
moving data across platforms 388

overview 389

delimiters
character string 393

modifying 394

restrictions on moving data 394

delprioritychar file type modifier
IMPORT command 63

LBAC-protected data import 55

LBAC-protected data load 135

LOAD command 207

diagnostic information
data movement problems 457

distribution keys
loading data 187

documentation
overview 459

PDF 459

printed 459

terms and conditions of use 468

dump files
load utility 186

dumpfile file type modifier 207

E
exception tables

load utility 181

SET INTEGRITY statement 296

export API 36

EXPORT command
description

with ADMIN_CMD procedure 27

without ADMIN_CMD procedure 18

export utility
authorities required 8

file formats 387

identity columns 16

large objects (LOBs) 17

options 7

overview 3, 7

performance 7

prerequisites 8

privileges required 8

restrictions 8

table re-creating 13

transferring data between hosts and workstations 337

exported tables
re-creating 51

exporting
data

db2Export API 36

examples 42

EXPORT command 18

export utility overview 7

file type modifiers 18, 36

LBAC-protected 12

procedure 8

XML 9

474 Data Movement Utilities Guide and Reference

F
fastparse file type modifier 207, 273

file formats
CURSOR 141

delimited ASCII (DEL) 389

exporting table to file 18

importing file to table 63

nondelimited ASCII (ASC) 395

PC version of IXF (PC/IXF) 399

worksheet (WSF) 437

file type modifiers
dumpfile 186

Export API 36

EXPORT utility 18

Import API 109

IMPORT command 63

Load API 273

LOAD command 207

forcein file type modifier 63, 109, 207, 273, 430

G
generated columns

import utility 59

using load utility 139

generatedignore file type modifier 59, 63, 109, 207, 273

generatedmissing file type modifier 59, 63, 109, 207, 273

generatedoverride file type modifier 207, 273

H
header record

PC/IXF 400

help
configuring language 463

SQL statements 463

hierarchy records
description 400

I
IBM Relational Data Replication Tools

components 339

identity columns
exporting data with 16

import utility 58

using load utility 137

identity record
PC/IXF 400

identityignore 63

file type modifier 109, 207, 273

identityignore file type modifier 58

identitymissing
file type modifier 63, 109, 207, 273

identitymissing file type modifier 58

identityoverride
file type modifier 207, 273

implieddecimal file type modifier 63, 109, 207, 273

Import API 109

IMPORT command 63

using ADMIN_CMD 86

import operations
ALLOW NO ACCESS 62

ALLOW WRITE ACCESS 62

import utility
authorities and privileges required to use 47

buffered inserts 57

client/server 61

code page considerations 440

compared to load utility 449

file formats 387

generated columns 59

identity columns 58

large objects (LOBs) 60

overview 3, 45

prerequisites 48

re-creating an exported table 51

remote database 61

restrictions 48

table locking 62

transferring data between host and workstation 337

user-defined distinct types (UDTs) 61

importing
code page considerations 109

data 48, 63

LBAC protected 55

database access through DB2 Connect 109

effect of LBAC protection 47

file to database table 109

file type modifiers for 109

overview 45

PC/IXF files, data type-specific rules 427

PC/IXF files, general rules 425

PC/IXF files, with forcein 430

PC/IXF, multiple-part files 109

required information 45

restrictions 109

to a remote database 109

to a table or hierarchy that does not exist 109

to typed tables 109

XML data 50

incompatible columns 425

index creation
improving performance after load operations 154

indexes
building 154

modes 154

PC/IXF record 400

rebuilding 154

resolving errors when loading XML data 157

indexfreespace file type modifier 207, 273

indexixf file type modifier 63, 109

indexschema file type modifier 63, 109

Initialize a Mirrored Database command 371

Integration Exchange Format (IXF) 399

integrity checking 169

K
keepblanks file type modifier

db2Import API 109

IMPORT command 63

loading
db2Load API 273

LOAD command 207

L
label-based access control (LBAC)

exporting data 8

Index 475

label-based access control (LBAC) (continued)
loading data

authorities and permissions 128

overview 129

protected data load considerations 135

protected importing
export 12

import 55

large objects (LOBs)
exporting 17

importing 60

LBAC (label-based access control)
exporting data 8, 12

importing data protected by 55

loading 129

loading data 128

loading data protected by 135

protected data
exporting 8

importing 47

loading 128, 129

LIST TABLESPACES command 319

Load API 273

LOAD command
in a partitioned database environment 189, 199

overview 207

using ADMIN_CMD 240

load copy location file 184

LOAD database authority
description 129

load delete start compensation log record 187

load operations
build phase 154

load pending list log record 187

LOAD QUERY command 314

in a partitioned database environment 196

load start log record
utility logs 187

load utility
authorities and privileges required to use 128

build phase 125

code page considerations 440

compared to import utility 449

data movement options 3

database recovery 125

delete phase 125

dump file 186

exception tables 181

features for maintaining referential integrity
overview 169

table space states 178

table states 179

file formats 387

file type modifiers 165

file type modifiers for 273

generated columns 139

identity columns 137

improving index creation 154

index copy phase 125

load phase 125

log records 187

moving data using SOURCEUSEREXIT 147

Not Load Restartable loads 182

optimizing performance 165

options for improving performance 165

overview 125

parallelism 153

load utility (continued)
prerequisites 129

recovery from failure 182

rejected rows 186

restarting failed loads 182

restrictions 129

table locking 174

table space states 178

table states 179

temporary files
LOAD command 207

overview 186

XML data
resolving indexing errors 157

loading
access options 175

compressed tables 163

configuration options 203

data
LBAC protected 135

database partitions 194

examples
overview 293

partitioned database environments 200

partitioned database sessions 200

file to database table 207

file type modifiers for 207

into database partitions 187

into partitioned tables 132

multidimensional clustered (MDC) tables 146

overview 125

partitioned database environments 203

required information 125

table access options 175

using CURSOR 141

XML data 131

LOB Location Specifier (LLS) 399

LOBs (large objects)
exporting 17

importing 60

importing and exporting 442

lobsinfile file type modifier
Export API 36

export considerations 17

exporting 18

importing 63

loading 207

loading data into tables 273

loading overview 109

lobsinsepfiles file type modifier 17

locks
import utility 62

table level 174

log records
load utility 187

M
materialized query tables (MQTs)

dependent immediate 145

refreshing data 145

Set Integrity Pending state 145

message files
export, import, and load 7, 45, 125

modifiers
file type

EXPORT command 18

476 Data Movement Utilities Guide and Reference

modifiers (continued)
file type (continued)

IMPORT command 63

LOAD command 207

moving data
between databases 63, 109

delimiter restrictions 394

export utility 7

import utility 45

load utility 125

using DB2 Connect 337

XML data 441

MQTs (materialized query tables)
dependent immediate 145

refreshing data 145

multidimensional clustering (MDC) tables
load considerations 146

N
nochecklengths file type modifier

importing 63

importing data to a table 109

loading 207

loading data in a table 273

nodefaults file type modifier
importing 63

importing data to a table 109

nodoubledel file type modifier
exporting 18

exporting to tables 109

importing 63

importing from tables 36

loading 207

loading tables 273

noeofchar file type modifier
importing 63

importing data into tables 109

loading 207

loading data into tables 273

noheader file type modifier
loading 207

loading data into tables 273

non-identity generated columns 59

nondelimited ASCII (ASC) file format 395

nonidentity generated columns 139

nonrecoverable databases
load options 125

norowwarnings file type modifier
LOAD command 207

loading data into tables 273

notices 469

notypeid file type modifier
IMPORT command 63

importing data into tables 109

nullindchar file type modifier
IMPORT command 207

importing data to tables 109

LOAD command 63

loading data to tables 273

O
options

forcein 430

ordering DB2 books 462

P
packeddecimal file type modifier 207

pagefreespace file type modifier 207

parallelism
load utility 153

partitioned database environments
loading data

migration 199

monitoring 196

overview 187, 194

restrictions 189

version compatibility 199

migrating 199

version compatibility 199

partitioned tables
loading 132

PC/IXF
code page conversion files 425

column values
invalid 425

data types
invalid 416, 425

valid 416, 421

file import
data type-specific rules 427

forcein option 430

general rules 425

moving data across platforms 388

overview 399

record types 400

System/370 IXF comparison 430

performance
load utility 165

privileges
export utility 8

import utility 47

load utility 128

problem determination
information available 467

tutorials 467

R
rebuilding

indexes 154

reclen file type modifier 63

importing 109

Load API 273

loading 207

record types
PC/IXF 400

recoverable databases
load options 125

recovery
database 352

without roll forward 352

redirected restore
using generated script 352

registry variables
DB2LOADREC 184

Relocate Database command 373

REMOTEFETCH media type
data movement 141

replication tools 339

restarting a load operation
allow read access mode 183

Index 477

restarting a load operation (continued)
multi-partition database load operations 197

restarting load operations 182

RESTORE DATABASE command 352

restore utility
GENERATE SCRIPT option

overview 3

REDIRECT option
overview 3

restoring
earlier versions of DB2 databases 352

rollforward utility
load copy location file 184

rows
exporting LBAC protected 8, 12

importing to LBAC protected 55

loading data into LBAC-protected 135

loading into LBAC protected 129

S
samples

files
ASC 398

DEL 393

schemas
copying 340

troubleshooting tips 340

seclabelchar file type modifier 55, 135

seclabelname file type modifier 55, 135

SELECT statement
in EXPORT command 18

semantics
forcein

code page 430

data type 430

general 430

SET CONSTRAINTS statement 296

set integrity pending state 296

SET INTEGRITY statement 296

checking for constraint violations 172

SOURCEUSEREXIT option
data movement 147

split mirror
handling 370

overview 3

SQL statements
displaying help 463

SET CONSTRAINTS 296

SET INTEGRITY 296

sqluexpr API 36

sqluimpr API 109

staging tables
dependent immediate 144

propagating 144

storage
XML data specifier 444

striptblanks file type modifier 55, 63, 109, 135, 207, 273

striptnulls file type modifier 63, 109, 207, 273

structure
delimited ASCII (DEL) files 389

non-delimited ASCII (ASC) files 395

subtable record
PC/IXF 400

subtableconvert file type modifier 207

summary tables
import restriction 48

suspended I/O to support continuous availability 370

syntax
description 453

System/370 IXF
contrasted with PC/IXF 430

contrasted with System/370 430

T
table load delete start log record 187

table record
PC/IXF 400

table space states
Backup Pending 178

Load in Progress 178

Normal 178

Restore Pending 178

table spaces
states 178

table states
Load in Progress 179

Load Pending 179

Normal 179

Not Load Restartable 179

Read Access Only 179

Set Integrity Pending 179

Unavailable 179

tables
exception 296

exported, re-creating 51

exporting to files 18, 36

importing files 63, 109

loading files to 207

locking 174

moving online
ADMIN_MOVE_TABLE procedure 335

temporary files
LOAD command 207

load utility 186

termination
load operations 183

in multi-partition databases 197

records
PC/IXF 400

terms and conditions
use of publications 468

timeformat file type modifier 63, 109, 207, 273

timestampformat file type modifier
db2import API 109

db2load API 273

IMPORT command 63

LOAD command 207

totalfreespace file type modifier 207, 273

troubleshooting
diagnostic data

for data movement 457

online information 467

tutorials 467

tutorials
problem determination 467

troubleshooting 467

Visual Explain 467

typed tables
exporting 14

importing 53

moving data between 14, 53

re-creating 53

478 Data Movement Utilities Guide and Reference

typed tables (continued)
traverse order 14, 53

U
Unicode (UCS-2)

data movement considerations 438

updates
DB2 Information Center 464, 465

usedefaults file type modifier 55, 63, 109, 135, 207, 273

user exit programs
customize 147

data movement 147

user-defined types
distinct types

importing 61

utilities
file formats 387

V
Visual Explain

tutorial 467

W
Worksheet File Format (WSF)

description 437

See WSF (Worksheet File Format) 437

WSF (Worksheet File Format)
description 437

moving data across platforms 388

X
XML

data type
importing and exporting 442

XML data
exporting 9

importing 50

loading 131

movement 440

moving 441

Query and XPath Data Model 445

XQuery statements
Query and XPath Data Model 445

Z
zoned decimal file type modifier 207, 273

Index 479

480 Data Movement Utilities Guide and Reference

����

Printed in USA

SC27-2440-00

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

DB

2
9.

7
fo

r L
in

ux
, U

NI
X,

an

d
W

in
do

w
s

Da
ta

M

ov
em

en
t U

til
iti

es

Gu

id
e

an
d

Re
fe

re
nc

e
�
�

�

	Contents
	About this book
	Part 1. Data movement utilities and reference
	Chapter 1. Data movement options
	Chapter 2. Export utility
	Export utility overview
	Privileges and authorities required to use the export utility
	Exporting data
	Exporting XML data
	LBAC-protected data export considerations
	Table export considerations
	Typed table export considerations
	Identity column export considerations
	LOB export considerations

	Reference - Export
	EXPORT
	EXPORT command using the ADMIN_CMD procedure
	db2Export - Export data from a database
	Export sessions - CLP examples

	Chapter 3. Import utility
	Import overview
	Privileges and authorities required to use import
	Importing data
	Importing XML data
	Imported table re-creation
	Typed table import considerations
	LBAC-protected data import considerations
	Buffered-insert imports
	Identity column import considerations
	Generated column import considerations
	LOB import considerations
	User-defined distinct types import considerations

	Additional considerations for import
	Client/server environments and import
	Table locking modes supported by the import utility

	Reference - Import
	IMPORT
	IMPORT command using the ADMIN_CMD procedure
	db2Import - Import data into a table, hierarchy, nickname or view
	Import sessions - CLP examples

	Chapter 4. Load utility
	Load overview
	Privileges and authorities required to use load
	LOAD authority

	Loading data
	Loading XML data
	Load considerations for partitioned tables
	LBAC-protected data load considerations
	Identity column load considerations
	Generated column load considerations
	Moving data using the CURSOR file type
	Propagating dependent immediate staging tables
	Refreshing dependent immediate materialized query tables
	Multidimensional clustering considerations
	Moving data using a customized application (user exit)

	Additional considerations for load
	Parallelism and loading
	Index creation during load operations
	Resolving indexing errors when loading XML data

	Compression dictionary creation during load operations
	Options for improving load performance

	Load features for maintaining referential integrity
	Checking for integrity violations following a load operation
	Checking for constraint violations using SET INTEGRITY
	Table locking during load operations
	Read access load operations
	Table space states during and after load operations
	Table states during and after load operations
	Load exception tables

	Failed or incomplete loads
	Restarting an interrupted load operation
	Restarting or terminating an ALLOW READ ACCESS load operation
	Recovering data with the load copy location file
	Load dump file
	Load temporary files
	Load utility log records

	Load overview–partitioned database environments
	Loading data in a partitioned database environment
	Loading data in a partitioned database environment–hints and tips

	Monitoring a load operation in a partitioned database environment using the LOAD QUERY command
	Resuming, restarting, or terminating load operations in a partitioned database environment
	Migration and version compatibility
	Reference - Load in a partitioned environment
	Load sessions in a partitioned database environment - CLP examples
	Load configuration options for partitioned database environments

	Reference - Load
	LOAD
	LOAD command using the ADMIN_CMD procedure
	db2Load - Load data into a table
	Load sessions - CLP examples
	SET INTEGRITY
	LOAD QUERY
	LIST TABLESPACES

	Chapter 5. Other data movement options
	Moving tables online by using the ADMIN_MOVE_TABLE procedure
	Moving data with DB2 Connect
	The IBM Replication Tools by Component
	Copying schemas
	Examples of schema copy using the db2move utility
	db2move - Database movement tool

	Performing a redirected restore using an automatically generated script
	RESTORE DATABASE

	High availability through suspended I/O and online split mirror support
	db2inidb - Initialize a mirrored database

	db2relocatedb - Relocate database
	db2look - DB2 statistics and DDL extraction tool

	Chapter 6. File formats and data types
	Export/Import/Load utility file formats
	Moving data across platforms - file format considerations
	Delimited ASCII (DEL) file format
	DEL data type descriptions
	Example DEL file
	Delimiter considerations for moving data

	Non-delimited ASCII (ASC) file format
	ASC data type descriptions
	Example ASC file

	PC version of IXF file format
	PC/IXF record types
	PC/IXF data types
	PC/IXF data type descriptions
	General rules governing PC/IXF file import into databases
	Data type-specific rules governing PC/IXF file import into databases
	Differences between PC/IXF and Version 0 System/370 IXF
	FORCEIN option

	Worksheet File Format (WSF)

	Unicode considerations for data movement
	Character set and national language support
	XML data movement
	Important considerations for XML data movement
	LOB and XML file behavior when importing and exporting
	XML data specifier
	Query and XPath Data Model

	Part 2. Appendixes
	Appendix A. Differences between the import and load utility
	Appendix B. Bind files used by the export, import, and load utilities
	Appendix C. How to read the syntax diagrams
	Appendix D. Collecting data for data movement problems
	Appendix E. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix F. Notices
	Index

