
IBM DB2 9.7
for Linux, UNIX, and Windows

Developing Perl, PHP, Python, and Ruby on Rails Applications
Updated September, 2010

Version 9 Release 7

SC27-2447-01

���

IBM DB2 9.7
for Linux, UNIX, and Windows

Developing Perl, PHP, Python, and Ruby on Rails Applications
Updated September, 2010

Version 9 Release 7

SC27-2447-01

���

Note
Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on
page 77.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2006, 2010.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Developing Perl Applications 1
Programming considerations for Perl 1

Perl downloads and related resources 1
Database connections in Perl 2
Fetching results in Perl 3
Parameter markers in Perl 4
SQLSTATE and SQLCODE variables in Perl . . . 4
Perl Restrictions 5
pureXML and Perl 5
Running Perl sample programs 7
Executing routines from Perl applications. . . . 8

Chapter 2. Developing PHP applications 9
PHP application development for IBM data servers . 9

PHP downloads and related resources 10
Setting up the PHP environment 10
Application development in PHP (ibm_db2) . . 13
Application development in PHP (PDO). . . . 29

Chapter 3. Developing Python
applications 41
Python, SQLAlchemy and Django Framework
application development for IBM data servers . . . 41

Python downloads and related resources . . . 41
Setting up the Python environment for IBM data
servers 42
Application development in Python with ibm_db 44

Chapter 4. Developing Ruby on Rails
applications 57
The IBM_DB Ruby driver and Rails adapter . . . 57

Getting started with IBM data servers on Rails 57
Installing the IBM_DB adapter and driver as a
Ruby gem 58

Configuring Rails application connections to IBM
data servers 62
IBM Ruby driver and trusted contexts 63
IBM_DB Rails adapter dependencies and
consequences 63
The IBM_DB Ruby driver and Rails adapter are
not supported on JRuby 64
ActiveRecord-JDBC versus IBM_DB adapter . . 64
Heap size considerations with DB2 on Rails . . 65

Appendix A. Overview of the DB2
technical information 67
DB2 technical library in hardcopy or PDF format . . 67
Ordering printed DB2 books. 70
Displaying SQL state help from the command line
processor 71
Accessing different versions of the DB2 Information
Center 71
Displaying topics in your preferred language in the
DB2 Information Center 71
Updating the DB2 Information Center installed on
your computer or intranet server 72
Manually updating the DB2 Information Center
installed on your computer or intranet server . . . 73
DB2 tutorials 75
DB2 troubleshooting information 75
Terms and Conditions 76

Appendix B. Notices 77

Index 81

© Copyright IBM Corp. 2006, 2010 iii

iv Developing Perl, PHP, Python, and Ruby on Rails Applications

Chapter 1. Developing Perl Applications

Programming considerations for Perl
Perl Database Interface (DBI) is an open standard application programming
interface (API) that provides database access for client applications written in Perl.
Perl DBI defines a set of functions, variables, and conventions that provide a
platform-independent database interface.

You can use the IBM® DB2® Database Driver for Perl DBI (the DBD::DB2 driver)
available from http://www.ibm.com/software/data/db2/perl along with the Perl
DBI Module available from http://www.perl.com to create DB2 applications that
use Perl.

Because Perl is an interpreted language and the Perl DBI module uses dynamic
SQL, Perl is an ideal language for quickly creating and revising prototypes of DB2
applications. The Perl DBI module uses an interface that is quite similar to the CLI
and JDBC interfaces, which makes it easy for you to port your Perl prototypes to
CLI and JDBC.

Most database vendors provide a database driver for the Perl DBI module, which
means that you can also use Perl to create applications that access data from many
different database servers. For example, you can write a Perl DB2 application that
connects to an Oracle database using the DBD::Oracle database driver, fetch data
from the Oracle database, and insert the data into a DB2 database using the
DBD::DB2 database driver.

For information about supported database servers, installation instructions, and
prerequisites, see http://www.ibm.com/software/data/db2/perl

Perl downloads and related resources
Several resources are available to help you develop Perl applications that access
IBM data servers.

Table 1. Perl downloads and related resources

Downloads

Perl Database Interface (DBI) Module http://www.perl.com

DBD::DB2 driver http://www.ibm.com/software/data/db2/
perl

IBM Data Server Driver Package (DS Driver) http://www.ibm.com/software/data/
support/data-server-clients/index.html

API documentation

DBI API documentation http://search.cpan.org/~timb/DBI/DBI.pm

Related resources

DB2 Perl Database Interface for LUW
technote, including readme and installation
instructions

http://www.ibm.com/software/data/db2/
perl

Perl driver bug reporting system http://rt.cpan.org/

Reporting bugs to the Open Source team at
IBM

opendev@us.ibm.com

© Copyright IBM Corp. 2006, 2010 1

http://www.ibm.com/software/data/db2/perl
http://www.perl.com
http://www.ibm.com/software/data/db2/perl
http://www.perl.com
http://www.ibm.com/software/data/db2/perl
http://www.ibm.com/software/data/db2/perl
http://www.ibm.com/software/data/support/data-server-clients/index.html
http://www.ibm.com/software/data/support/data-server-clients/index.html
http://search.cpan.org/~timb/DBI/DBI.pm
http://www.ibm.com/software/data/db2/perl
http://www.ibm.com/software/data/db2/perl
http://rt.cpan.org/

Database connections in Perl
The DBD::DB2 driver provides support for standard database connection functions
defined by the DBI API.

To enable Perl to load the DBI module, you must include the following line in
your application:

use DBI;

The DBI module automatically loads the DBD::DB2 driver when you create a
database handle using the DBI->connect statement with the following syntax:

my $dbhandle = DBI->connect('dbi:DB2:dsn', $userID, $password);

where:

$dbhandle
represents the database handle returned by the connect statement

dsn

for local connections, represents a DB2 alias cataloged in your DB2
database directory

for remote connections, represents a complete connection string that
includes the host name, port number, protocol, user ID, and password for
connecting to the remote host

$userID
represents the user ID used to connect to the database

$password
represents the password for the user ID used to connect to the database

For more information about the DBI API, see http://search.cpan.org/~timb/DBI/
DBI.pmhttp://search.cpan.org/~timb/DBI/DBI.pm.

Example

Example 1: Connect to a database on the local host (client and server are on the
same workstation)
use DBI;

$DATABASE = 'dbname';
$USERID = 'username';
$PASSWORD = 'password';

my $dbh = DBI->connect("dbi:DB2:$DATABASE", $USERID, $PASSWORD, {PrintError => 0})
or die "Couldn't connect to database: " . DBI->errstr;

$dbh->disconnect;

Example 2: Connect to a database on the remote host (client and server are on
different workstations)
use DBI;

$DSN="DATABASE=sample; HOSTNAME=host; PORT=60000; PROTOCOL=TCPIP; UID=username;
PWD=password";

2 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://search.cpan.org/~timb/DBI/DBI.pm
http://search.cpan.org/~timb/DBI/DBI.pm
http://search.cpan.org/~timb/DBI/DBI.pm

my $dbh = DBI->connect("dbi:DB2:$DSN", $USERID, $PASSWORD, {PrintError => 0})
or die "Couldn't connect to database: " . DBI->errstr;

$dbh->disconnect;

Fetching results in Perl
The Perl DBI module provides methods for connecting to a database, preparing
and issuing SQL statements, and fetching rows from result sets.

This procedure fetches results from an SQL query.

Restriction: Because the Perl DBI module supports only dynamic SQL, you cannot
use host variables in your Perl DB2 applications.

To fetch results:
1. Create a database handle by connecting to the database with the DBI->connect

statement.
2. Create a statement handle from the database handle. For example, you can

return the statement handle $sth from the database handle by calling the
prepare method and passing an SQL statement as a string argument, as
demonstrated in the following Perl statement:

my $sth = $dbhandle->prepare(
'SELECT firstnme, lastname

FROM employee '
);

3. Issue the SQL statement by calling the execute method on the statement handle.
A successful call to the execute method associates a result set with the
statement handle. For example, you can run the statement prepared in the
previous example by using the following Perl statement:

#Note: $rc represents the return code for the execute call
my $rc = $sth->execute();

4. Fetch a row from the result set associated with the statement handle by calling
the fetchrow method. The Perl DBI returns a row as an array with one value
per column. For example, you can return all of the rows from the statement
handle in the previous example by using the following Perl statement:

while (($firstnme, $lastname) = $sth->fetchrow()) {
print "$firstnme $lastname\n";

}

The following example shows how to connect to a database and issue a SELECT
statement from an application written in Perl.

#!/usr/bin/perl
use DBI;

my $database='dbi:DB2:sample';
my $user='';
my $password='';

my $dbh = DBI->connect($database, $user, $password)
or die "Can't connect to $database: $DBI::errstr";

my $sth = $dbh->prepare(
q{ SELECT firstnme, lastname

FROM employee }
)
or die "Can't prepare statement: $DBI::errstr";

my $rc = $sth->execute

Chapter 1. Developing Perl Applications 3

or die "Can't execute statement: $DBI::errstr";

print "Query will return $sth->{NUM_OF_FIELDS} fields.\n\n";
print "$sth->{NAME}->[0]: $sth->{NAME}->[1]\n";

while (($firstnme, $lastname) = $sth->fetchrow()) {
print "$firstnme: $lastname\n";

}

check for problems that might have terminated the fetch early
warn $DBI::errstr if $DBI::err;

$sth->finish;
$dbh->disconnect;

Parameter markers in Perl
The Perl DBI module supports executing a prepared statement that includes
parameter markers for variable input. To include a parameter marker in an SQL
statement, use the question mark (?) character or a colon followed by a name
(:name).

The following Perl code creates a statement handle that accepts a parameter
marker for the WHERE clause of a SELECT statement. The code then executes the
statement twice using the input values 25000 and 35000 to replace the parameter
marker.

my $sth = $dbhandle->prepare(
'SELECT firstnme, lastname

FROM employee
WHERE salary > ?'

);

my $rc = $sth->execute(25000);

•
•
•

my $rc = $sth->execute(35000);

SQLSTATE and SQLCODE variables in Perl
The Perl DBI module provides methods for returning the SQLSTATE and
SQLCODE associated with a Perl DBI database or statement handle.

To return the SQLSTATE associated with a Perl DBI database handle or statement
handle, call the state method. For example, to return the SQLSTATE associated
with the database handle $dbhandle, include the following Perl statement in your
application:

my $sqlstate = $dbhandle->state;

To return the SQLCODE associated with a Perl DBI database handle or statement
handle, call the err method. To return the message for an SQLCODE associated
with a Perl DBI database handle or statement handle, call the errstr method. For
example, to return the SQLCODE associated with the database handle $dbhandle,
include the following Perl statement in your application:

my $sqlcode = $dbhandle->err;

4 Developing Perl, PHP, Python, and Ruby on Rails Applications

Perl Restrictions
Some restrictions apply to the support that is available for application
development in Perl.

The Perl DBI module supports only dynamic SQL. When you must execute a
statement multiple times, you can improve the performance of your Perl
applications by issuing a prepare call to prepare the statement.

Perl does not support multiple-thread database access.

For current information on the restrictions of the version of the DBD::DB2 driver
that you install on your workstation, refer to the CAVEATS file in the DBD::DB2
driver package.

pureXML and Perl
The DBD::DB2 driver supports DB2 pureXML®. Support for pureXML allows more
direct access to your data through the DBD::DB2 driver and helps to decrease
application logic by providing more transparent communication between your
application and database.

With pureXML support, you can directly insert XML documents into your DB2
database. Your application no longer needs to parse XML documents because the
pureXML parser is automatically run when you insert XML data into the database.
Having document parsing handled outside your application improves application
performance and reduces maintenance efforts. Retrieval of XML stored data with
the DBD::DB2 driver is easy as well; you can access the data using a BLOB or
record.

For information about the DB2 Perl Database Interface and how to download the
latest DBD::DB2 driver, see http://www.ibm.com/software/data/db2/perl.

Example

The following example is a Perl program that uses pureXML:
#!/usr/bin/perl
use DBI;
use strict ;

Use DBD:DB2 module:
to create a simple DB2 table with an XML column
Add one row of data
retreive the XML data as a record or a LOB (based on $datatype).

NOTE: the DB2 SAMPLE database must already exist.

my $database='dbi:DB2:sample';
my $user='';
my $password='';

my $datatype = "record" ;
$datatype = "LOB" ;

my $dbh = DBI->connect($database, $user, $password)
or die "Can't connect to $database: $DBI::errstr";

For LOB datatype, LongReadLen = 0 -- no data is retrieved on initial fetch
$dbh->{LongReadLen} = 0 if $datatype eq "LOB" ;

SQL CREATE TABLE to create test table

Chapter 1. Developing Perl Applications 5

http://www.ibm.com/software/data/db2/perl

my $stmt = "CREATE TABLE xmlTest (id INTEGER, data XML)";
my $sth = $dbh->prepare($stmt);
$sth->execute();

#insert one row of data into table
insertData() ;

SQL SELECT statement returns home phone element from XML data
$stmt = qq(
SELECT XMLQUERY ('
\$d/*:customerinfo/*:phone[\@type = "home"] '
passing data as "d")
FROM xmlTest
) ;

prepare and execute SELECT statement
$sth = $dbh->prepare($stmt);
$sth->execute();

Print data returned from select statement
if($datatype eq "LOB") {

printLOB() ;
}
else {
printRecord() ;
}

Drop table
$stmt = "DROP TABLE xmlTest" ;
$sth = $dbh->prepare($stmt);
$sth->execute();

warn $DBI::errstr if $DBI::err;

$sth->finish;
$dbh->disconnect;

##############

sub printRecord {
print "output data as as record\n" ;

while(my @row = $sth->fetchrow)
{
print $row[0] . "\n";
}

warn $DBI::errstr if $DBI::err;
}

sub printLOB {
print "output as Blob data\n" ;

my $offset = 0;
my $buff="";
$sth->fetch();
while($buff = $sth->blob_read(1,$offset,1000000)) {
print $buff;
$offset+=length($buff);
$buff="";
}
warn $DBI::errstr if $DBI::err;
}

6 Developing Perl, PHP, Python, and Ruby on Rails Applications

sub insertData {

insert a row of data
my $xmlInfo = qq(\'
<customerinfo xmlns="http://posample.org" Cid="1011">

<name>Bill Jones</name>
<addr country="Canada">

<street>5 Redwood</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>M6W 1E9</pcode-zip>

</addr>
<phone type="work">416-555-9911</phone>
<phone type="home">416-555-1212</phone>

</customerinfo>
\') ;

my $catID = 1011 ;

SQL statement to insert data.
my $Sql = qq(
INSERT INTO xmlTest (id, data)

VALUES($catID, $xmlInfo)
);

$sth = $dbh->prepare($Sql)
or die "Can't prepare statement: $DBI::errstr";

my $rc = $sth->execute
or die "Can't execute statement: $DBI::errstr";

check for problems
warn $DBI::errstr if $DBI::err;
}

Running Perl sample programs
Perl sample programs are available that demonstrate how to build a Perl
application.

Before running the Perl sample programs, you must install the latest DB2::DB2
driver for Perl DBI. For information about how to obtain the latest driver, see
http://www.ibm.com/software/data/db2/perl.

The Perl sample programs for DB2 database are available in the
sqllib/samples/perl directory.

To run the Perl interpreter on a Perl sample program on the command line:

Enter the interpreter name and the program name (including the file extension):
v If connecting locally on the server:

perl dbauth.pl

v If connecting from a remote client:
perl dbauth.pl sample <userid> <password>

Some of the sample programs require you to run support files. For example, the
tbsel sample program requires several tables that are created by the
tbselcreate.db2 CLP script. The tbselinit script (UNIX®), or the tbselinit.bat
batch file (Windows®), first calls tbseldrop.db2 to drop the tables if they exist, and

Chapter 1. Developing Perl Applications 7

http://www.ibm.com/software/data/db2/perl

then calls tbselcreate.db2 to create them. Therefore, to run the tbsel sample
program, you would issue the following commands:
v If connecting locally on the server:

tbselinit
perl tbsel.pl

v If connecting from a remote client:
tbselinit
perl tbsel.pl sample <userid> <password>

Note: For a remote client, you need to modify the connect statement in the
tbselinit or tbselinit.bat file to hardcode your user ID and password: db2
connect to sample user <userid> using <password>

Executing routines from Perl applications
DB2 client applications can access routines (stored procedures and user-defined
functions) that are created by supported host languages or by SQL procedures. For
example, the sample program spclient.pl can access the SQL procedures spserver
shared library, if it exists in the database.

To build a host language routine, you must have the appropriate compiler set up
on the server. SQL procedures do not require a compiler. The shared library can be
built on the server only, and not from a remote client.

To create SQL procedures in a shared library and then accesses the procedures
from a Perl application:
1. Create and catalog the SQL procedures in the library. For example, go to the

samples/sqlpl directory on the server, and run the following commands to
create and catalog the SQL procedures in the spserver library:

db2 connect to sample
db2 -td@ -vf spserver.db2

2. Go back to the perl samples directory (this can be on a remote client
workstation), and run the Perl interpreter on the client program to access the
spserver shared library:
v If connecting locally on the server:

perl spclient

v If connecting from a remote client:
perl spclient sample <userid> <password>

8 Developing Perl, PHP, Python, and Ruby on Rails Applications

Chapter 2. Developing PHP applications

PHP application development for IBM data servers
PHP: Hypertext Preprocessor (PHP) is an interpreted programming language that
is widely used for developing Web applications. PHP has become a popular
language for Web development because it is easy to learn, focuses on practical
solutions, and supports the most commonly required functionality in Web
applications.

PHP is a modular language that enables you to customize the available
functionality through the use of extensions. These extensions can simplify tasks
such as reading, writing, and manipulating XML, creating SOAP clients and
servers, and encrypting communications between server and browser. The most
popular extensions for PHP, however, provide read and write access to databases
so that you can easily create a dynamic database-driven Web site.

IBM provides the following PHP extensions for accessing IBM data server
databases:

ibm_db2
A procedural application programming interface (API) that, in addition to
the normal create, read, update, and write database operations, also offers
extensive access to the database metadata. You can compile the ibm_db2
extension with either PHP 4 or PHP 5. This extension is written,
maintained, and supported by IBM.

pdo_ibm
A driver for the PHP Data Objects (PDO) extension that offers access to
IBM data server databases through the standard object-oriented database
interface introduced in PHP 5.1.

These extensions are included as part of the IBM Data Server Driver Package (DS
Driver) of Version 1.7.0. This version or a later version is supported to connect to
IBM DB2 Version 9.7 for Linux®, UNIX, and Windows. You can check the version
of ibm_db2 extension by issuing the following command:

php --re ibm_db2

The most recent versions of ibm_db2 and pdo_ibm are also available from the PHP
Extension Community Library (PECL) at http://pecl.php.net/.

PHP applications can access the following IBM data server databases:
v IBM DB2 Version 9.1 for Linux, UNIX, and Windows, Fix Pack 2 and later
v IBM DB2 Universal Database™ (DB2 UDB) Version 8 for Linux, UNIX, and

Windows, Fixpak 15 and later
v Remote connections to IBM DB2 Universal Database on i5/OS® V5R3
v Remote connections to IBM DB2 for IBM i 5.4 and later
v Remote connections to IBM DB2 for z/OS®, Version 8 and Version 9

A third extension, Unified ODBC, has historically offered access to DB2 database
systems. For new applications, however, you should use either ibm_db2 and
pdo_ibm because they offer significant performance and stability benefits over

© Copyright IBM Corp. 2006, 2010 9

http://pecl.php.net/

Unified ODBC. The ibm_db2 extension API makes porting an application that was
previously written for Unified ODBC almost as easy as globally changing the
odbc_ function name to db2_ throughout the source code of your application.

PHP downloads and related resources
Many resources are available to help you develop PHP applications for IBM data
servers.

Table 2. PHP downloads and related resources

Downloads

Complete PHP source code 1 http://www.php.net/downloads.php

ibm_db2 and pdo_ibm from the PHP
Extension Community Library (PECL)

http://pecl.php.net/

IBM Data Server Driver Package (DS Driver) http://www.ibm.com/software/data/
support/data-server-clients/index.html

Zend Server http://www.zend.com/en/products/
server/downloads

Documentation

PHP Manual http://www.php.net/docs.php

ibm_db2 API documentation http://www.php.net/ibm_db2

PDO API documentation http://php.net/manual/en/book.pdo.php

Related resources

PHP Web site http://www.php.net/

1. Includes Windows binaries. Most Linux distributions come with PHP already
precompiled.

Setting up the PHP environment
You can set up the PHP environment on Linux, UNIX, or Windows operating
systems by installing a precompiled binary version of PHP and enabling support
for IBM data servers.

For the easiest installation and configuration experience on Linux, UNIX, or
Windows operating systems, you can download and install Zend Server for use in
production systems at http://www.zend.com/en/products/server/downloads.
Packaging details are available at http://www.zend.com/en/products/server/
editions.

On Windows, precompiled binary versions of PHP are available for download
from http://www.php.net/downloads.php. Most Linux distributions include a
precompiled version of PHP. On UNIX operating systems that do not include a
precompiled version of PHP, you can compile your own version of PHP.

For more information about installing and configuring PHP, see
http://www.php.net/manual/en/install.php.

Setting up the PHP environment on Windows
Before you can connect to an IBM data server and execute SQL statements, you
need to set up the PHP environment.

You must have the following software installed on your system:
v An Apache HTTP Server

10 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://www.php.net/downloads.php
http://pecl.php.net/
http://www.ibm.com/software/data/support/data-server-clients/index.html
http://www.ibm.com/software/data/support/data-server-clients/index.html
http://www.zend.com/en/products/server/downloads
http://www.zend.com/en/products/server/downloads
http://www.php.net/docs.php
http://www.php.net/ibm_db2
http://php.net/manual/en/book.pdo.php
http://www.php.net/
http://www.zend.com/en/products/server/downloads
http://www.zend.com/en/products/server/editions
http://www.zend.com/en/products/server/editions
http://www.php.net/downloads.php
http://www.php.net/manual/en/install.php

v One of the following client types: IBM Data Server Driver Package, IBM Data
Server Client, or IBM Data Server Driver for ODBC and CLI

This procedure manually installs a precompiled binary version of PHP and enables
support for IBM data servers on Windows.

To set up the PHP environment on Windows:
1. Download the latest version of the PHP 5.2.x zip package and the collection of

PECL modules zip packages from http://www.php.net.
2. Extract the PHP zip package into an installation directory.
3. Extract the collection of PECL modules zip package into the \ext\ subdirectory

of your PHP installation directory.
4. Create a new file named php.ini in your installation directory by making a

copy of the php.ini-recommended file.
5. Open the php.ini file in a text editor and add the following lines.
v To enable the PDO extension and pdo_ibm driver:

extension=php_pdo.dll
extension=php_pdo_ibm.dll

v To enable the ibm_db2 extension:
extension=php_ibm_db2.dll

6. If you are using Apache HTTP Server 2.x., enable PHP support by adding the
following lines to your httpd.conf file, in which phpdir refers to the PHP
installation directory:
LoadModule php5_module 'phpdir/php5apache2.dll'
AddType application/x-httpd-php .php
PHPIniDir 'phpdir'

7. Restart the Apache HTTP Server to enable the changed configuration.

Note: If you encounter message DB21085I or SQL09054, you can do one of the
following:
v Rebuild PHP in 64 bit mode
v Set the PHP_IBM_DB2_LIB and PHP_PDO_IBM_LIB variables to use lib32

instead of default lib64, and update LD_LIBRARY_PATH to point to lib32.

The PHP extensions are now installed on your system and ready to use.

Connect to the data server and begin executing SQL statements.

Setting up the PHP environment on Linux or UNIX
Before you can connect to an IBM data server and execute SQL statements, you
must set up the PHP environment.

DB2 supports database access for client applications written in the PHP
programming language using either or both of the ibm_db2 extension and the
pdo_ibm driver for the PHP Data Objects (PDO) extension.

You must have the following software and files installed on your system:
v The Apache HTTP Server
v The DB2 Database development header files and libraries
v The gcc compiler and the following development packages: apache-devel,

autoconf, automake, bison, flex, gcc, and libxml2-devel package

Chapter 2. Developing PHP applications 11

http://www.php.net/

v One of the following client types: IBM Data Server Driver Package, IBM Data
Server Client, or IBM Data Server Driver for ODBC and CLI

This procedure manually compiles and installs PHP from source with support for
DB2 on Linux or UNIX.

To set up the PHP environment on Linux or UNIX:
1. Download the latest version of the PHP 5.2.x or PHP 5.3.x tarball from

http://www.php.net.
2. Untar the file by issuing the following command:

tar -xjf php-5.x.x.tar.bz2

3. Change directories to the newly created php-5.x.x directory.
4. Configure the makefile by issuing the configure command. Specify the

features and extensions you want to include in your custom version of PHP. A
typical configure command includes the following options:
./configure --enable-cli --disable-cgi --with-apxs2=/usr/sbin/apxs2
--with-zlib --with-pdo-ibm=<sqllib>

The configure options have the following effects:

--enable-cli
Enables the command line mode of PHP access.

--disable-cgi
Disables the Common Gateway Interface (CGI) mode of PHP access.

--with-apxs2=/usr/sbin/apxs2
Enables the Apache 2 dynamic server object (DSO) mode of PHP
access.

--with-zlib
Enables zlib compression support.

--with-pdo-ibm=<sqllib>
Enables the pdo_ibm driver using the DB2 CLI library to access
database systems. The <sqllib> setting refers to the directory in which
DB2 is installed.

If the source code of pdo_ibm extensions are not in the ext/ directory
under PHP source, this flag will not be valid. To use --with-pdo-ibm,
you must have the pdo_ibm directory, containing source code of
pdo_ibm in the ext/ subdirectory.

5. Compile the files by issuing the make command.
6. Install the files by issuing the make install command. Depending on how

you configured the PHP installation directory using the configure command,
you might need root authority to successfully issue this command. This
should install the executable files and update the Apache HTTP Server
configuration to support PHP.

7. Install the ibm_db2 extension by issuing the following command as a user
with root authority:
pecl install ibm_db2

This command downloads, configures, compiles, and installs the ibm_db2
extension for PHP. It is recommended to use the latest extension. However,
you can also use the ibm_db2 extension which is included as part of the DB2
products.

12 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://www.php.net/

8. Copy the php.ini-recommended file to the configuration file path for your new
PHP installation. To determine the configuration file path, issue the php -i
command, and look for the php.ini keyword. Rename the file to php.ini.

9. Open the new php.ini file in a text editor and add the following lines, where
instance refers to the name of the DB2 instance on Linux or UNIX.
v To set the DB2 environment for pdo_ibm:

PDO_IBM.db2_instance_name=instance

v To enable the ibm_db2 extension and set the DB2 environment:
extension=ibm_db2.so
ibm_db2.instance_name=instance

Where the extension variable should be specified as a relative path from the
extension directory, which is specified in extension_dir variable. For example,
if the extension_dir is $HOME/usr/php/ext and the extension is at
$HOME/user/sqllib/php32, the entry will look like: extension=../../sqllib/
php32/ibm_db2_5.2.1.so

10. Restart the Apache HTTP Server to enable the changed configuration.

Note: If you encounter message DB21085I or SQL09054, you can do one of the
following:
v Rebuild PHP in 64 bit mode
v Set the PHP_IBM_DB2_LIB and PHP_PDO_IBM_LIB variables to use lib32

instead of default lib64, and update LD_LIBRARY_PATH to point to lib32.

Application development in PHP (ibm_db2)
The ibm_db2 extension provides a variety of useful PHP functions for accessing
and manipulating data in an IBM data server database. The extension includes
functions for connecting to a database, executing and preparing SQL statements,
fetching rows from result sets, calling stored procedures, handling errors, and
retrieving metadata.

Connecting to an IBM data server database in PHP (ibm_db2)
Before you can issue SQL statements to create, update, delete, or retrieve data, you
need to connect to a database from your PHP application. You can use the
ibm_db2 API to connect to an IBM data server database through either a cataloged
connection or a direct TCP/IP connection. To improve performance, you can also
create a persistent connection.

Before connecting to an IBM data server database through the ibm_db2 extension,
you must set up the PHP environment on your system and enable the ibm_db2
extension.

To return a connection resource that you can use to call SQL statements, call one of
the following connection functions:

Table 3. ibm_db2 connection functions

Function Description

db2_connect Creates a non-persistent connection.

db2_pconnect Creates a persistent connection. A persistent
connection remains open between PHP
requests, which allows subsequent PHP
script requests to reuse the connection if
they have an identical set of credentials.

The database values that you pass as arguments to these functions can specify

Chapter 2. Developing PHP applications 13

either a cataloged database name or a complete database connection string for a
direct TCP/IP connection. You can specify optional arguments that control when
transactions are committed, the case of the column names that are returned, and
the cursor type.
If the connection attempt fails, you can retrieve diagnostic information by calling
the db2_conn_error or db2_stmt_errormsg function.
When you create a connection by calling the db2_connect function, PHP closes the
connection to the database when one of the following events occurs:
v You call the db2_close function for the connection
v You set the connection resource to NULL
v The PHP script finishes

When you create a connection by calling the db2_pconnect function, PHP ignores
any calls to the db2_close function for the specified connection resource, and keeps
the connection to the database open for subsequent PHP scripts.
For more information about the ibm_db2 API, see http://www.php.net/docs.php.

Connect to a cataloged database.
<?php
$database = "sample";
$user = "db2inst1";
$password = "";

$conn = db2_connect($database, $user, $password);

if ($conn) {
echo "Connection succeeded.";
db2_close($conn);
}
else {
echo "Connection failed.";
}
?>

If the connection attempt is successful, you can use the connection resource when
you call ibm_db2 functions that execute SQL statements. Next, prepare and execute
SQL statements.

Trusted contexts in PHP applications (ibm_db2):

Starting in Version 9.5 Fix Pack 3 (or later), the ibm_db2 extension supports trusted
contexts by using connection string keywords.

Trusted contexts provide a way of building much faster and more secure three-tier
applications. The user's identity is always preserved for auditing and security
purposes. When you need secure connections, trusted contexts improve
performance because you do not have to get new connections.

Example

Enable trusted contexts, switch users, and get the current user ID.
<?php

$database = "SAMPLE";
$hostname = "localhost";
$port = 50000;
$authID = "db2inst1";
$auth_pass = "ibmdb2";

$tc_user = "tcuser";

14 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://www.php.net/docs.php

$tc_pass = "tcpassword";

$dsn = "DATABASE=$database;HOSTNAME=$hostname;PORT=$port;PROTOCOL=TCPIP;UID=$authID;PWD=$auth_pass;";
$options = array ("trustedcontext" => DB2_TRUSTED_CONTEXT_ENABLE);

$tc_conn = db2_connect($dsn, "", "", $options);
if($tc_conn) {
echo "Explicit Trusted Connection succeeded.\n";

if(db2_get_option($tc_conn, "trustedcontext")) {
$userBefore = db2_get_option($tc_conn, "trusted_user");

//Do some work as user 1.

//Switching to trusted user.
$parameters = array("trusted_user" => $tc_user, "trusted_password" => $tcuser_pass);
$res = db2_set_option ($tc_conn, $parameters, 1);

$userAfter = db2_get_option($tc_conn, "trusted_user");
//Do more work as trusted user.

if($userBefore != $userAfter) {
echo "User has been switched." . "\n";
}
}

db2_close($tc_conn);
}
else {
echo "Explicit Trusted Connection failed.\n";
}

?>

Executing SQL statements in PHP (ibm_db2)
After connecting to a database, use functions available in the ibm_db2 API to
prepare and execute SQL statements. The SQL statements can contain static text,
XQuery expressions, or parameter markers that represent variable input.

Executing a single SQL statement in PHP (ibm_db2):

To prepare and execute a single SQL statement that accepts no input parameters,
use the db2_exec function. A typical use of the db2_exec function is to set the
default schema for your application in a common include file or base class.

To avoid the security threat of SQL injection attacks, use the db2_exec function
only to execute SQL statements composed of static strings. Interpolation of PHP
variables representing user input into the SQL statement can expose your
application to SQL injection attacks.

Obtain a connection resource by calling one of the connection functions in the
ibm_db2 API.

To prepare and execute a single SQL statement, call the db2_exec function, passing
the following arguments:

connection
A valid database connection resource returned from the db2_connect or
db2_pconnect function.

statement
A string that contains the SQL statement. This string can include an XQuery
expression that is called by the XMLQUERY function.

Chapter 2. Developing PHP applications 15

options
Optional: An associative array that specifies statement options:

DB2_ATTR_CASE
For compatibility with database systems that do not follow the SQL
standard, this option sets the case in which column names will be returned
to the application. By default, the case is set to DB2_CASE_NATURAL,
which returns column names as they are returned by the database. You can
set this parameter to DB2_CASE_LOWER to force column names to lower
case, or to DB2_CASE_UPPER to force column names to upper case.

DB2_ATTR_CURSOR
This option sets the type of cursor that ibm_db2 returns for result sets. By
default, ibm_db2 returns a forward-only cursor (DB2_FORWARD_ONLY)
which returns the next row in a result set for every call to db2_fetch_array,
db2_fetch_assoc, db2_fetch_both, db2_fetch_object, or db2_fetch_row. You
can set this parameter to DB2_SCROLLABLE to request a scrollable cursor
so that the ibm_db2 fetch functions accept a second argument specifying
the absolute position of the row that you want to access within the result
set.

If the function call succeeds, it returns a statement resource that you can use in
subsequent function calls related to this query.
If the function call fails (returns False), you can use the db2_stmt_error or
db2_stmt_errormsg function to retrieve diagnostic information about the error.
For more information about the ibm_db2 API, see http://www.php.net/docs.php.

Example 1: Executing a single SQL statement.
<?php
$conn = db2_connect("sample", "db2inst1", "");
$sql = "SELECT * FROM DEPT";
$stmt = db2_exec($conn, $sql);
db2_close($conn);
?>

Example 2: Executing an XQuery expression
<?php
$xquery = '$doc/customerinfo/phone';
$stmt = db2_exec($conn, "select xmlquery('$xquery'
PASSING INFO AS \"doc\") from customer");?>

If the SQL statement selected rows using a scrollable cursor, or inserted, updated,
or deleted rows, you can call the db2_num_rows function to return the number of
rows that the statement returned or affected. If the SQL statement returned a result
set, you can begin fetching rows.

Preparing and executing SQL statements with variable input in PHP (ibm_db2):

To prepare and execute an SQL statement that includes variable input, use the
db2_prepare, db2_bind_param, and db2_execute functions. Preparing a statement
improves performance because the database server creates an optimized access
plan for data retrieval that it can reuse if the statement is executed again.

Obtain a connection resource by calling one of the connection functions in the
ibm_db2 API.

To prepare and execute an SQL statement that includes parameter markers:
1. Call the db2_prepare function, passing the following arguments:

16 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://www.php.net/docs.php

connection
A valid database connection resource returned from the db2_connect or
db2_pconnect function.

statement
A string that contains the SQL statement, including question marks (?) as
parameter markers for any column or predicate values that require variable
input. This string can include an XQuery expression that is called the
XMLQUERY function. You can only use parameter markers as a place
holder for column or predicate values. The SQL compiler is unable to create
an access plan for a statement that uses parameter markers in place of
column names, table names, or other SQL identifiers.

options
Optional: An associative array that specifies statement options:

DB2_ATTR_CASE
For compatibility with database systems that do not follow the SQL
standard, this option sets the case in which column names will be
returned to the application. By default, the case is set to
DB2_CASE_NATURAL, which returns column names as they are
returned by the database. You can set this parameter to
DB2_CASE_LOWER to force column names to lower case, or to
DB2_CASE_UPPER to force column names to upper case.

DB2_ATTR_CURSOR
This option sets the type of cursor that ibm_db2 returns for result sets.
By default, ibm_db2 returns a forward-only cursor
(DB2_FORWARD_ONLY) which returns the next row in a result set for
every call to db2_fetch_array, db2_fetch_assoc, db2_fetch_both,
db2_fetch_object, or db2_fetch_row. You can set this parameter to
DB2_SCROLLABLE to request a scrollable cursor so that the ibm_db2
fetch functions accept a second argument specifying the absolute
position of the row that you want to access within the result set.

If the function call succeeds, it returns a statement handle resource that you can
use in subsequent function calls that are related to this query.
If the function call fails (returns False), you can use the db2_stmt_error or
db2_stmt_errormsg function to retrieve diagnostic information about the error.

2. Optional: For each parameter marker in the SQL string, call the
db2_bind_param function, passing the following arguments. Binding input
values to parameter markers ensures that each input value is treated as a single
parameter, which prevents SQL injection attacks against your application.

stmt
A prepared statement returned by the call to the db2_prepare function.

parameter-number
An integer that represents the position of the parameter marker in the SQL
statement.

variable-name
A string that specifies the name of the PHP variable to bind to the
parameter specified by parameter-number.

3. Call the db2_execute function, passing the following arguments:

stmt
A prepared statement returned by the db2_prepare function.

Chapter 2. Developing PHP applications 17

parameters
Optional: An array that contains the values to use in place of the parameter
markers, in order.

For more information about the ibm_db2 API, see http://www.php.net/
docs.php.

Prepare and execute a statement that includes variable input.
$sql = "SELECT firstnme, lastname FROM employee WHERE bonus > ? AND bonus < ?";
$stmt = db2_prepare($conn, $sql);
if (!$stmt) {

// Handle errors
}

// Explicitly bind parameters
db2_bind_param($stmt, 1, $_POST['lower']);
db2_bind_param($stmt, 2, $_POST['upper']);

db2_execute($stmt);
// Process results

// Invoke prepared statement again using dynamically bound parameters
db2_execute($stmt, array($_POST['lower'], $_POST['upper']));

If the SQL statement returns one or more result sets, you can begin fetching rows
from the statement resource.

Inserting large objects in PHP (ibm_db2):

When you insert a large object into the database, rather than loading all of the data
for a large object into a PHP string and passing it to the IBM data server database
through an INSERT statement, you can insert large objects directly from a file on
your PHP server.

Obtain a connection resource by calling one of the connection functions in the
ibm_db2 API.

To insert a large object into the database directly from a file:
1. Call the db2_prepare function to prepare an INSERT statement with a

parameter marker that represents the large object column.
2. Set the value of a PHP variable to the path and name of the file that contains

the data for the large object. The path can be relative or absolute, and is subject
to the access permissions of the PHP executable file.

3. Call the db2_bind_param function to bind the parameter marker to the
variable. The third argument to this function is a string representing the name
of the PHP variable that holds the path and name of the file. The fourth
argument is DB2_PARAM_FILE, which tells the ibm_db2 extension to retrieve
the data from a file.

4. Call the db2_execute function to issue the INSERT statement.

Insert a large object into the database.
$stmt = db2_prepare($conn, "INSERT INTO animal_pictures(picture) VALUES (?)");

$picture = "/opt/albums/spook/grooming.jpg";
$rc = db2_bind_param($stmt, 1, "picture", DB2_PARAM_FILE);
$rc = db2_execute($stmt);

18 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://www.php.net/docs.php
http://www.php.net/docs.php

Reading query result sets

Fetching rows or columns from result sets in PHP (ibm_db2):

After executing a statement that returns one or more result sets, use one of the
functions available in the ibm_db2 API to iterate through the returned rows of each
result set. If your result set includes columns that contain extremely large data, you
can retrieve the data on a column-by-column basis to avoid using too much
memory.

You must have a statement resource returned by either the db2_exec or
db2_execute function that has one or more associated result sets.

To fetch data from a result set:
1. Fetch data from a result set by calling one of the fetch functions.

Table 4. ibm_db2 fetch functions

Function Description

db2_fetch_array Returns an array, indexed by column
position, representing a row in a result set.
The columns are 0-indexed.

db2_fetch_assoc Returns an array, indexed by column name,
representing a row in a result set.

db2_fetch_both Returns an array, indexed by both column
name and position, representing a row in a
result set

db2_fetch_row Sets the result set pointer to the next row or
requested row. Use this function to iterate
through a result set.

db2_fetch_object Returns an object with properties
representing columns in the fetched row.
The properties of the object map to the
names of the columns in the result set.

These functions accept the following arguments:

stmt
A valid statement resource.

row_number
The number of the row that you want to retrieve from the result set. Row
numbering begins with 1. Specify a value for this optional parameter if you
requested a scrollable cursor when you called the db2_exec or db2_prepare
function. With the default forward-only cursor, each call to a fetch method
returns the next row in the result set.

2. Optional: If you called the db2_fetch_row function, for each iteration over the
result set, retrieve a value from the specified column by calling the db2_result
function. You can specify the column by either passing an integer that
represents the position of the column in the row (starting with 0), or a string
that represents the name of column.

3. Continue fetching rows until the fetch function returns False, which indicates
that you have reached the end of the result set.
For more information about the ibm_db2 API, see http://www.php.net/
docs.php.

Chapter 2. Developing PHP applications 19

http://www.php.net/docs.php
http://www.php.net/docs.php

Example 1: Fetch rows from a result set by calling the db2_fetch_object function
<?php
$conn = db2_connect("sample", "db2inst1", "");
$sql = 'SELECT FIRSTNME, LASTNAME FROM EMPLOYEE WHERE EMPNO = ?';
$stmt = db2_prepare($conn, $sql);
db2_execute($stmt, array('000010'));
while ($row = db2_fetch_object($stmt)) {

print "Name:
{$row->FIRSTNME} {$row->LASTNAME}

";
}

db2_close($conn);
?>

Example 2: Fetch rows from a result set by calling the db2_fetch_row function
<?php
$conn = db2_connect("sample", "db2inst1", "");
$sql = 'SELECT FIRSTNME, LASTNAME FROM EMPLOYEE WHERE EMPNO = ?';
$stmt = db2_prepare($conn, $sql);
db2_execute($stmt, array('000010'));
while (db2_fetch_row($stmt)) {

$fname = db2_result($stmt, 0);
$lname = db2_result($stmt, 'LASTNAME');
print "
Name: $fname $lname

";
}

db2_close($conn);
?>

Example 3: Fetch rows from a result set by calling the db2_fetch_both function
<?php
$conn = db2_connect("sample", "db2inst1", "");
$sql = 'SELECT FIRSTNME, LASTNAME FROM EMPLOYEE WHERE EMPNO = ?';
$stmt = db2_prepare($conn, $sql);
db2_execute($stmt, array('000010'));
while ($row = db2_fetch_both($stmt)) {

print "
NAME: $row[0] $row[1]

";
print "
NAME: " . $row['FIRSTNME'] . " " . $row['LASTNAME'] . "

";
}

db2_close($conn);
?>

When you are ready to close the connection to the database, call the db2_close
function. If you attempt to close a persistent connection that you created by using
db2_pconnect, the close request returns TRUE, and the IBM data server client
connection remains available for the next caller.

Fetching large objects in PHP (ibm_db2):

When you fetch a large object from a result set, rather than treating the large object
as a PHP string, you can save system resources by fetching large objects directly
into a file on your PHP server.

20 Developing Perl, PHP, Python, and Ruby on Rails Applications

Obtain a connection resource by calling one of the connection functions in the
ibm_db2 API.

To fetch a large object from the database directly into a file:
1. Create a PHP variable representing a stream. For example, assign the return

value from a call to the fopen function to a variable.
2. Create a SELECT statement by calling the db2_prepare function.
3. Bind the output column for the large object to the PHP variable representing

the stream by calling the db2_bind_param function. The third argument to this
function is a string representing the name of the PHP variable that holds the
path and name of the file. The fourth argument is DB2_PARAM_FILE, which
tells the ibm_db2 extension to write the data into a file.

4. Issue the SQL statement by calling the db2_execute function.
5. Retrieve the next row in the result set by calling an ibm_db2 fetch function (for

example, db2_fetch_object).
For more information about the ibm_db2 API, see http://www.php.net/
docs.php.

Fetch a large object from the database.
$stmt = db2_prepare($conn, "SELECT name, picture FROM animal_pictures");
$picture = fopen("/opt/albums/spook/grooming.jpg", "wb");
$rc = db2_bind_param($stmt, 1, "nickname", DB2_CHAR, 32);
$rc = db2_bind_param($stmt, 2, "picture", DB2_PARAM_FILE);
$rc = db2_execute($stmt);
$rc = db2_fetch_object($stmt);

Calling stored procedures in PHP (ibm_db2)
To call a stored procedure from a PHP application, you prepare and execute an
SQL CALL statement. The procedure that you call can include input parameters
(IN), output parameters (OUT), and input and output parameters (INOUT).

Obtain a connection resource by calling one of the connection functions in the
ibm_db2 API.

To call a stored procedure:
1. Call the db2_prepare function, passing the following arguments:

connection
A valid database connection resource returned from db2_connect or
db2_pconnect.

statement
A string that contains the SQL CALL statement, including parameter
markers (?) for any input or output parameters

options
Optional: A associative array that specifies the type of cursor to return for
result sets. You can use this parameter to request a scrollable cursor on
database servers that support this type of cursor. By default, a forward-only
cursor is returned.

2. For each parameter marker in the CALL statement, call the db2_bind_param
function, passing the following arguments:

stmt
The prepared statement returned by the call to the db2_prepare function.

Chapter 2. Developing PHP applications 21

http://www.php.net/docs.php
http://www.php.net/docs.php

parameter-number
An integer that represents the position of the parameter marker in the SQL
statement.

variable-name
The name of the PHP variable to bind to the parameter specified by
parameter-number.

parameter-type
A constant that specifies whether to bind the PHP variable to the SQL
parameter as an input parameter (DB2_PARAM_INPUT), an output
parameter (DB2_PARAM_OUTPUT), or a parameter that accepts input and
returns output (DB2_PARAM_INPUT_OUTPUT).

This step binds each parameter marker to the name of a PHP variable that will
hold the output.

3. Call the db2_execute function, passing the prepared statement as an argument.
For more information about the ibm_db2 API, see http://www.php.net/
docs.php.

Prepare and execute an SQL CALL statement.
$sql = 'CALL match_animal(?, ?)';
$stmt = db2_prepare($conn, $sql);

$second_name = "Rickety Ride";
$weight = 0;

db2_bind_param($stmt, 1, "second_name", DB2_PARAM_INOUT);
db2_bind_param($stmt, 2, "weight", DB2_PARAM_OUT);

print "Values of bound parameters _before_ CALL:\n";
print " 1: {$second_name} 2: {$weight}\n";

db2_execute($stmt);

print "Values of bound parameters _after_ CALL:\n";
print " 1: {$second_name} 2: {$weight}\n";

If the procedure call returns one or more result sets, you can begin fetching rows
from the statement resource.

Retrieving multiple result sets from a stored procedure in PHP (ibm_db2):

When a single call to a stored procedure returns more than one result set, you can
use the db2_next_result function of the ibm_db2 API to retrieve the result sets.

You must have a statement resource returned by the db2_exec or db2_execute
function that has multiple result sets.

To retrieve multiple result sets:
1. Fetch rows from the first result set returned from the procedure by calling one

of the following ibm_db2 fetch functions, passing the statement resource as an
argument. (The first result set that is returned from the procedure is associated
with the statement resource.)

22 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://www.php.net/docs.php
http://www.php.net/docs.php

Table 5. ibm_db2 fetch functions

Function Description

db2_fetch_array Returns an array, indexed by column
position, representing a row in a result set.
The columns are 0-indexed.

db2_fetch_assoc Returns an array, indexed by column name,
representing a row in a result set.

db2_fetch_both Returns an array, indexed by both column
name and position, representing a row in a
result set

db2_fetch_row Sets the result set pointer to the next row or
requested row. Use this function to iterate
through a result set.

db2_fetch_object Returns an object with properties
representing columns in the fetched row.
The properties of the object map to the
names of the columns in the result set.

2. Retrieve the subsequent result sets by passing the original statement resource as
the first argument to the db2_next_result function. You can fetch rows from the
statement resource until no more rows are available in the result set.
The db2_next_result function returns False when no more result sets are
available or if the procedure did not return a result set.
For more information about the ibm_db2 API, see http://www.php.net/
docs.php.

Retrieve multiple result sets from a stored procedure.
$stmt = db2_exec($conn, 'CALL multiResults()');

print "Fetching first result set\n";
while ($row = db2_fetch_array($stmt)) {

// work with row
}

print "\nFetching second result set\n";
$result_2 = db2_next_result($stmt);
if ($result_2) {

while ($row = db2_fetch_array($result_2)) {
// work with row

}
}

print "\nFetching third result set\n";
$result_3 = db2_next_result($stmt);
if ($result_3) {

while ($row = db2_fetch_array($result_3)) {
// work with row

}
}

When you are ready to close the connection to the database, call the db2_close
function. If you attempt to close a persistent connection that you created by using
db2_pconnect, the close request returns TRUE, and the persistent IBM data server
client connection remains available for the next caller.

Chapter 2. Developing PHP applications 23

http://www.php.net/docs.php
http://www.php.net/docs.php

Commit modes in PHP applications (ibm_db2)
You can control how groups of SQL statements are committed by specifying a
commit mode for a connection resource. The ibm_db2 extension supports two
commit modes: autocommit and manual commit.

You must use a regular connection resource returned by the db2_connect function
to control database transactions in PHP. Persistent connections always use
autocommit mode.

autocommit mode
In autocommit mode, each SQL statement is a complete transaction, which
is automatically committed. Autocommit mode helps prevent locking
escalation issues that can impede the performance of highly scalable Web
applications. By default, the ibm_db2 extension opens every connection in
autocommit mode.

You can turn on autocommit mode after disabling it by calling
db2_autocommit($conn, DB2_AUTOCOMMIT_ON), where conn is a valid
connection resource.

Calling the db2_autocommit function might affect the performance of your
PHP scripts because it requires additional communication between PHP
and the database management system.

manual commit mode
In manual commit mode, the transaction ends when you call the
db2_commit or db2_rollback function. This means that all statements
executed on the same connection between the start of a transaction and the
call to the commit or rollback function are treated as a single transaction.

Manual commit mode is useful if you might have to roll back a transaction
that contains one or more SQL statements. If you issue SQL statements in a
transaction, and the script ends without explicitly committing or rolling
back the transaction, the ibm_db2 extension automatically rolls back any
work performed in the transaction.

You can turn off autocommit mode when you create a database connection
by using the "AUTOCOMMIT" => DB2_AUTOCOMMIT_OFF setting in the
db2_connect options array. You can also turn off autocommit mode for an
existing connection resource by calling db2_autocommit($conn,
DB2_AUTOCOMMIT_OFF), where conn is a valid connection resource.

For more information about the ibm_db2 API, see http://www.php.net/docs.php.

Example

End the transaction when db2_commit or db2_rollback is called.
$conn = db2_connect('SAMPLE', 'db2inst1', 'ibmdb2', array(

'AUTOCOMMIT' => DB2_AUTOCOMMIT_ON));

// Issue one or more SQL statements within the transaction
$result = db2_exec($conn, 'DELETE FROM TABLE employee');
if ($result === FALSE) {

print '<p>Unable to complete transaction!</p>';
db2_rollback($conn);

}
else {

print '<p>Successfully completed transaction!</p>';
db2_commit($conn);

}

24 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://www.php.net/docs.php

Error-handling functions in PHP applications (ibm_db2)
Sometimes errors happen when you attempt to connect to a database or issue an
SQL statement. The username or password might be incorrect, a table or column
name might be misspelled, or the SQL statement might be invalid. The ibm_db2
API provides error-handling functions to help you recover gracefully from these
situations.

Connection errors

Use one of the following functions to retrieve diagnostic information if a
connection attempt fails.

Table 6. ibm_db2 functions for handling connection errors

Function Description

db2_conn_error Retrieves the SQLSTATE returned by the last
connection attempt

db2_conn_errormsg Retrieves a descriptive error message
appropriate for an application error log

SQL errors

Use one of the following functions to retrieve diagnostic information if an attempt
to prepare or execute an SQL statement or to fetch a result from a result set fails.

Table 7. ibm_db2 functions for handling SQL errors

Function Description

db2_stmt_error Retrieves the SQLSTATE returned by the last
attempt to prepare or execute an SQL
statement or to fetch a result from a result
set

db2_stmt_errormsg Retrieves a descriptive error message
appropriate for an application error log

For more information about the ibm_db2 API, see http://www.php.net/docs.php.

Tip: To avoid security vulnerabilities that might result from directly displaying the
raw SQLSTATE returned from the database, and to offer a better overall user
experience in your Web application, use a switch structure to recover from known
error states or return custom error messages. For example:
switch($this->state):

case '22001':
// More data than allowed for the defined column
$message = "You entered too many characters for this value.";
break;

Example

Example 1: Handle connection errors
$connection = db2_connect($database, $user, $password);
if (!$connection) {

$this->state = db2_conn_error();
return false;

}

Chapter 2. Developing PHP applications 25

http://www.php.net/docs.php

Example 2: Handle SQL errors
$stmt = db2_prepare($connection, "DELETE FROM employee
WHERE firstnme = ?");
if (!$stmt) {

$this->state = db2_stmt_error();
return false;

}

Example 3: Handle SQL errors that result from executing prepared statements
$success = db2_execute($stmt, array('Dan');
if (!$success) {

$this->state = db2_stmt_error($stmt);
return $false;

}

Database metadata retrieval functions in PHP (ibm_db2)
You can use functions in the ibm_db2 API to retrieve metadata for databases
served by DB2 Database for Linux, UNIX, and Windows, IBM Cloudscape, and,
through DB2 Connect™, DB2 for z/OS and DB2 for i.

Some classes of applications, such as administration interfaces, must dynamically
reflect the structure and SQL objects contained in arbitrary databases. One
approach to retrieving metadata about a database is to issue SELECT statements
directly against the system catalog tables; however, the schema of the system
catalog tables might change between versions of DB2, or the schema of the system
catalog tables on DB2 Database for Linux, UNIX, and Windows might differ from
the schema of the system catalog tables on DB2 for z/OS. Rather than laboriously
maintaining these differences in your application code, you can use PHP functions
available in the ibm_db2 extension to retrieve database metadata.

Before calling these functions, you must set up the PHP environment and have a
connection resource returned by the db2_connect or db2_pconnect function.

Important: Calling metadata functions uses a significant amount of space. If
possible, cache the results of your calls for use in subsequent calls.

Table 8. ibm_db2 metadata retrieval functions

Function Description

db2_client_info Returns a read-only object with information
about the IBM data server client

db2_column_privileges Returns a result set listing the columns and
associated privileges for a table

db2_columns Returns a result set listing the columns and
associated metadata for a table

db2_foreign_keys Returns a result set listing the foreign keys
for a table

db2_primary_keys Returns a result set listing the primary keys
for a table

db2_procedure_columns Returns a result set listing the parameters
for one or more stored procedures

db2_procedures Returns a result set listing the stored
procedures registered in the database

db2_server_info Returns a read-only object with information
about the database management system
software and configuration

26 Developing Perl, PHP, Python, and Ruby on Rails Applications

Table 8. ibm_db2 metadata retrieval functions (continued)

Function Description

db2_special_columns Returns a result set listing the unique row
identifiers for a table

db2_statistics Returns a result set listing the indexes and
statistics for a table

db2_table_privileges Returns a result set listing tables and their
associated privileges in the database

Most of the ibm_db2 database metadata retrieval functions return result sets with
columns defined for each function. To retrieve rows from the result sets, use the
ibm_db2 functions that are available for this purpose.

The db2_client_info and db2_server_info functions directly return a single object
with read-only properties. You can use the properties of these objects to create an
application that behaves differently depending on the database management
system to which it connects. For example, rather than encoding a limit of the
lowest common denominator for all possible database management systems, a
Web-based database administration application built on the ibm_db2 extension
could use the db2_server_info()->MAX_COL_NAME_LEN property to dynamically
display text fields for naming columns with maximum lengths that correspond to
the maximum length of column names on the database management system to
which it is connected.

For more information about the ibm_db2 API, see http://www.php.net/docs.php.

Example

Example 1: Display a list of columns and associated privileges for a table
<?php
$conn = db2_connect('sample', 'db2inst1', 'ibmdb2');

if ($conn) {
$stmt = db2_column_privileges($conn, NULL, NULL, 'DEPARTMENT');
$row = db2_fetch_array($stmt);
print $row[2] . "\n";
print $row[3] . "\n";
print $row[7];
db2_close($conn);
}
else {
echo db2_conn_errormsg();
printf("Connection failed\n\n");
}
?>

Example 2: Display a list of primary keys for a table
<?php
$conn = db2_connect('sample', 'db2inst1', 'ibmdb2');

if ($conn) {
$stmt = db2_primary_keys($conn, NULL, NULL, 'DEPARTMENT');
while ($row = db2_fetch_array($stmt)) {
echo "TABLE_NAME:\t" . $row[2] . "\n";
echo "COLUMN_NAME:\t" . $row[3] . "\n";
echo "KEY_SEQ:\t" . $row[4] . "\n";
}

Chapter 2. Developing PHP applications 27

http://www.php.net/docs.php

db2_close($conn);
}
else {
echo db2_conn_errormsg();
printf("Connection failed\n\n");
}
?>

Example 3: Display a list of parameters for one or more stored procedures
<?php
$conn = db2_connect('sample', 'db2inst1', 'ibmdb2');

if ($conn) {
$stmt = db2_procedures($conn, NULL, 'SYS%', '%%');

$row = db2_fetch_assoc($stmt);
var_dump($row);

db2_close($conn);
}
else {
echo "Connection failed.\n";
}
?>

Example 4: Display a list of the indexes and statistics for a table
<?php
$conn = db2_connect('sample', 'db2inst1', 'ibmdb2');

if ($conn) {
echo "Test DEPARTMENT table:\n";
$result = db2_statistics($conn, NULL, NULL, "EMPLOYEE", 1);
while ($row = db2_fetch_assoc($result)) {
var_dump($row);
}

echo "Test non-existent table:\n";
$result = db2_statistics($conn,NULL,NULL,"NON_EXISTENT_TABLE",1);
$row = db2_fetch_array($result);
if ($row) {
echo "Non-Empty\n";
} else {
echo "Empty\n";
}

db2_close($conn);
}
else {
echo 'no connection: ' . db2_conn_errormsg();

}
?>

Example 5: Display a list of tables and their associated privileges in the database
<?php
$conn = db2_connect('sample', 'db2inst1', 'ibmdb2');

if ($conn) {
$stmt = db2_table_privileges($conn, NULL, "%%", "DEPARTMENT");
while ($row = db2_fetch_assoc($stmt)) {
var_dump($row);
}
db2_close($conn);
}
else {

28 Developing Perl, PHP, Python, and Ruby on Rails Applications

echo db2_conn_errormsg();
printf("Connection failed\n\n");
}
?>

Application development in PHP (PDO)
The PDO_IBM extension provides a variety of useful PHP functions for accessing
and manipulating data through the standard object-oriented database interface
introduced in PHP 5.1. The extension includes functions for connecting to a
database, executing and preparing SQL statements, fetching rows from result sets,
managing transactions, calling stored procedures, handling errors, and retrieving
metadata.

Connecting to an IBM data server database with PHP (PDO)
Before you can issue SQL statements to create, update, delete, or retrieve data, you
must connect to a database. You can use the PHP Data Objects (PDO) interface for
PHP to connect to an IBM data server database through either a cataloged
connection or a direct TCP/IP connection. To improve performance, you can also
create a persistent connection.

You must set up the PHP 5.1 (or later) environment on your system and enable the
PDO and PDO_IBM extensions.

This procedure returns a connection object to an IBM data server database. This
connection stays open until you set the PDO object to NULL, or the PHP script
finishes.

To connect to an IBM data server database:
1. Create a connection to the database by calling the PDO constructor within a

try{} block. Pass a DSN value that specifies ibm: for the PDO_IBM extension,
followed by either a cataloged database name or a complete database
connection string for a direct TCP/IP connection.
v (Windows): By default, the PDO_IBM extension uses connection pooling to

minimize connection resources and improve connection performance.
v (Linux and UNIX): To create a persistent connection, pass

array(PDO::ATTR_PERSISTENT => TRUE) as the driver_options (fourth) argument
to the PDO constructor.

2. Optional: Set error handling options for the PDO connection in the fourth
argument to the PDO constructor:
v By default, PDO sets an error message that can be retrieved through

PDO::errorInfo() and an SQLCODE that can be retrieved through
PDO::errorCode() when any error occurs; to request this mode explicitly, set
PDO::ATTR_ERRMODE => PDO::ERRMODE_SILENT

v To issue a PHP E_WARNING when any error occurs, in addition to setting the
error message and SQLCODE, set PDO::ATTR_ERRMODE =>
PDO::ERRMODE_WARNING

v To throw a PHP exception when any error occurs, set PDO::ATTR_ERRMODE =>
PDO::ERRMODE_EXCEPTION

3. Catch any exception thrown by the try{} block in a corresponding catch {}
block.
For more information about the PDO API, see http://php.net/manual/en/
book.pdo.php.

Connect to an IBM data server database over a persistent connection.

Chapter 2. Developing PHP applications 29

http://php.net/manual/en/book.pdo.php
http://php.net/manual/en/book.pdo.php

try {
$connection = new PDO("ibm:SAMPLE", "db2inst1", "ibmdb2", array(

PDO::ATTR_PERSISTENT => TRUE,
PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION)

);
}
catch (Exception $e) {

echo($e->getMessage());
}

Next, you prepare and execute SQL statements.

Executing SQL statements in PHP (PDO)
After connecting to a database, use methods available in the PDO API to prepare
and execute SQL statements. The SQL statements can contain static text or
parameter markers that represent variable input.

Executing a single SQL statement in PHP (PDO):

To prepare and execute a single SQL statement that accepts no input parameters,
use the PDO::exec or PDO::query method. Use the PDO::exec method to execute a
statement that returns no result set. Use the PDO::query method to execute a
statement that returns one or more result sets.

Important: To avoid the security threat of SQL injection attacks, use the PDO::exec
or PDO::query method only to execute SQL statements composed of static strings.
Interpolation of PHP variables representing user input into the SQL statement can
expose your application to SQL injection attacks.

Obtain a connection object by calling the PDO constructor.

To prepare and execute a single SQL statement that accepts no input parameters,
call one of the following methods:
v To execute an SQL statement that returns no result set, call the PDO::exec

method on the PDO connection object, passing in a string that contains the SQL
statement. For example, a typical use of PDO::exec is to set the default schema
for your application in a common include file or base class.
If the SQL statement succeeds (successfully inserts, modifies, or deletes rows),
the PDO::exec method returns an integer value representing the number of rows
that were inserted, modified, or deleted.
To determine if the PDO::exec method failed (returned FALSE or 0), use the ===
operator to strictly test the returned value against FALSE.

v To execute an SQL statement that returns one or more result sets, call the
PDO::query method on the PDO connection object, passing in a string that
contains the SQL statement. For example, you might want to call this method to
execute a static SELECT statement.
If the method call succeeds, it returns a PDOStatement resource that you can use
in subsequent method calls.

If the method call fails (returns FALSE), you can use the PDO::errorCode and
PDO::errorInfo method to retrieve diagnostic information about the error.
For more information about the PDO API, see http://php.net/manual/en/
book.pdo.php.

Example 1: Call the PDO::exec method to set the default schema for your
application

30 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://php.net/manual/en/book.pdo.php
http://php.net/manual/en/book.pdo.php

$conn = new PDO('ibm:SAMPLE', 'db2inst1', 'ibmdb2');
$result = $conn->exec('SET SCHEMA myapp');
if ($result === FALSE) {

print "Failed to set schema: " . $conn->errorMsg();
}

Example 2: Call the PDO::query method to issue an SQL SELECT statement
$conn = new PDO('ibm:SAMPLE', 'db2inst1', 'ibmdb2');
$result = $conn->query('SELECT firstnme, lastname FROM employee');
if (!$result) {

print "<p>Could not retrieve employee list: " . $conn->errorMsg(). "</p>";
}
while ($row = $conn->fetch()) {

print "<p>Name: {$row[0] $row[1]}</p>";
}

If you called the PDO::query method to create a PDOStatement object, you can
begin retrieving rows from the object by calling the PDOStatement::fetch or
PDOStatement::fetchAll method.

Preparing and executing SQL statements in PHP (PDO):

To prepare and execute an SQL statement that includes variable input, use the
PDO::prepare, PDOStatement::bindParam, and PDOStatement::execute methods.
Preparing a statement improves performance because the database server creates
an optimized access plan for data retrieval that it can reuse if the statement is
executed again.

Obtain a connection object by calling the PDO constructor.

To prepare and execute an SQL statement that includes parameter markers:
1. Call the PDO::prepare method, passing the following arguments:

statement
A string that contains the SQL statement, including question marks (?) or
named variables (:name) as parameter markers for any column or predicate
values that require variable input. You can only use parameter markers as a
place holder for column or predicate values. The SQL compiler is unable to
create an access plan for a statement that uses parameter markers in place
of column names, table names, or other SQL identifiers. You cannot use
both question mark (?) parameter markers and named parameter markers
(:name) in the same SQL statement.

driver_options
Optional: An array that contains statement options:

PDO::ATTR_CURSOR
This option sets the type of cursor that PDO returns for result sets. By
default, PDO returns a forward-only cursor
(PDO::CURSOR_FWDONLY), which returns the next row in a result set
for every call to PDOStatement::fetch(). You can set this parameter to
PDO::CURSOR_SCROLL to request a scrollable cursor.

If the function call succeeds, it returns a PDOStatement object that you can use
in subsequent method calls that are related to this query.
If the function call fails (returns False), you can use the PDO::errorCode or
PDO::errorInfo method to retrieve diagnostic information about the error.

2. Optional: For each parameter marker in the SQL string, call the
PDOStatement::bindParam method, passing the following arguments. Binding

Chapter 2. Developing PHP applications 31

input values to parameter markers ensures that each input value is treated as a
single parameter, which prevents SQL injection attacks against your application.

parameter
A parameter identifier. For question mark parameter markers (?), this is an
integer that represents the 1-indexed position of the parameter in the SQL
statement. For named parameter markers (:name), this is a string that
represents the parameter name.

variable
The value to use in place of the parameter marker

3. Call the PDOStatement::execute method, optionally passing an array that
contains the values to use in place of the parameter markers, either in order for
question mark parameter markers, or as a :name => value associative array for
named parameter markers.
For more information about the PDO API, see http://php.net/manual/en/
book.pdo.php.

Prepare and execute a statement that includes variable input.
$sql = "SELECT firstnme, lastname FROM employee WHERE bonus > ? AND bonus < ?";
$stmt = $conn->prepare($sql);
if (!$stmt) {

// Handle errors
}

// Explicitly bind parameters
$stmt->bindParam(1, $_POST['lower']);
$stmt->bindParam(2, $_POST['upper']);

$stmt->execute($stmt);

// Invoke statement again using dynamically bound parameters
$stmt->execute($stmt, array($_POST['lower'], $_POST['upper']));

If the SQL statement returns one or more result sets, you can begin fetching rows
from the statement resource by calling the PDOStatement::fetch or
PDOStatement::fetchAll method.

Inserting large objects in PHP (PDO):

When you insert a large object into the database, rather than loading all of the data
for a large object into a PHP string and passing it to the IBM data server database
through an INSERT statement, you can insert large objects directly from a file on
your PHP server.

Obtain a connection object by calling the PDO constructor.

To insert a large object into the database directly from a file:
1. Call the PDO::prepare method to create a PDOStatement object from an

INSERT statement with a parameter marker that represents the large object
column.

2. Create a PHP variable that represents a stream (for example, by assigning the
value returned by the fopen function to variable).

3. Call the PDOStatement::bindParam method, passing the following arguments to
bind the parameter marker to the PHP variable that represents the stream of
data for the large object:

32 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://php.net/manual/en/book.pdo.php
http://php.net/manual/en/book.pdo.php

parameter
A parameter identifier. For question mark parameter markers (?), this is an
integer that represents the 1-indexed position of the parameter in the SQL
statement. For named parameter markers (:name), this is a string that
represents the parameter name.

variable
The value to use in place of the parameter marker

data_type
The PHP constant, PDO::PARAM_LOB, which tells the PDO extension to
retrieve the data from a file.

4. Call the PDOStatement::execute method to issue the INSERT statement.

Insert a large object into the database.
$stmt = $conn->prepare("INSERT INTO animal_pictures(picture) VALUES (?)");
$picture = fopen("/opt/albums/spook/grooming.jpg", "rb");
$stmt->bindParam(1, $picture, PDO::PARAM_LOB);
$stmt->execute();

Reading query result sets

Fetching rows or columns from result sets in PHP (PDO):

After executing a statement that returns one or more result sets, use one of the
methods available in the PDO API to iterate through the returned rows. The PDO
API also provides methods that allow you to fetch a single column from one or
more rows in the result set.

You must have a statement resource returned by either the PDO::query or
PDOStatement::execute method that has one or more associated result sets.

To fetch data from a result set:
1. Fetch data from a result set by calling one of the following fetch methods:
v To return a single row from a result set as an array or object, call the

PDOStatement::fetch method.
v To return all of the rows from the result set as an array of arrays or objects,

call the PDOStatement::fetchAll method.

By default, PDO returns each row as an array indexed by the column name
and 0-indexed column position in the row. To request a different return style,
specify one of the following constants as the first parameter when you call the
PDOStatement::fetch method:

PDO::FETCH_ASSOC
Returns an array indexed by column name as returned in your result
set.

PDO::FETCH_BOTH (default)
Returns an array indexed by both column name and 0-indexed column
number as returned in your result set

PDO::FETCH_BOUND
Returns TRUE and assigns the values of the columns in your result set
to the PHP variables to which they were bound with the
PDOStatement::bindParam method.

Chapter 2. Developing PHP applications 33

PDO::FETCH_CLASS
Returns a new instance of the requested class, mapping the columns of
the result set to named properties in the class.

PDO::FETCH_INTO
Updates an existing instance of the requested class, mapping the
columns of the result set to named properties in the class.

PDO::FETCH_LAZY
Combines PDO::FETCH_BOTH and PDO::FETCH_OBJ, creating the object
variable names as they are accessed.

PDO::FETCH_NUM
Returns an array indexed by column number as returned in your result
set, starting at column 0.

PDO::FETCH_OBJ
Returns an anonymous object with property names that correspond to
the column names returned in your result set.

If you requested a scrollable cursor when you called the PDO::query or
PDOStatement::execute method, you can pass the following optional
parameters that control which rows are returned to the caller:
v One of the following constants that represents the fetch orientation of the

fetch request:

PDO::FETCH_ORI_NEXT (default)
Fetches the next row in the result set.

PDO::FETCH_ORI_PRIOR
Fetches the previous row in the result set.

PDO::FETCH_ORI_FIRST
Fetches the first row in the result set.

PDO::FETCH_ORI_LAST
Fetches the last row in the result set.

PDO::FETCH_ORI_ABS
Fetches the absolute row in the result set. Requires a positive integer
as the third argument to the PDOStatement::fetch method.

PDO::FETCH_ORI_REL
Fetches the relative row in the result set. Requires a positive or
negative integer as the third argument to the PDOStatement::fetch
method.

v An integer requesting the absolute or relative row in the result set,
corresponding to the fetch orientation requested in the second argument to
the PDOStatement::fetch method.

2. Optional: Fetch a single column from one or more rows in a result set by
calling one of the following methods:
v To return a single column from a single row in the result set:

Call the PDOStatement::fetchColumn method, specifying the column you
want to retrieve as the first argument of the method. Column numbers start
at 0. If you do not specify a column, the PDOStatement::fetchColumn returns
the first column in the row.

v To return an array that contains a single column from all of the remaining
rows in the result set:
Call the PDOStatement::fetchAll method, passing the
PDO::FETCH_COLUMN constant as the first argument, and the column you

34 Developing Perl, PHP, Python, and Ruby on Rails Applications

want to retrieve as the second argument. Column numbers start at 0. If you
do not specify a column, calling
PDOStatement::fetchAll(PDO::FETCH_COLUMN) returns the first column in the
row.

For more information about the PDO API, see http://php.net/manual/en/
book.pdo.php.

Return an array indexed by column number.
$stmt = $conn->query("SELECT firstnme, lastname FROM employee");
while ($row = $stmt->fetch(PDO::FETCH_NUM)) {

print "Name: <p>{$row[0] $row[1]}</p>";
}

When you are ready to close the connection to the database, set the PDO object to
NULL. The connection closes automatically when the PHP script finishes.

Fetching large objects in PHP (PDO):

When you fetch a large object from a result set, rather than treating the large object
as a PHP string, you can save system resources by fetching large objects directly
into a file on your PHP server.

Obtain a connection object by calling the PDO constructor.

To fetch a large object from the database directly into a file:
1. Create a PHP variable representing a stream. For example, assign the return

value from a call to the fopen function to a variable.
2. Create a PDOStatement object from an SQL statement by calling the

PDO::prepare method.
3. Bind the output column for the large object to the PHP variable representing

the stream by calling the PDOStatement::bindColumn method. The second
argument is a string representing the name of the PHP variable that holds the
path and name of the file. The third argument is a PHP constant,
PDO::PARAM_LOB, which tells the PDO extension to write the data into a file.
You must call the PDOStatement::bindColumn method to assign a different
PHP variable for every column in the result set.

4. Issue the SQL statement by calling the PDOStatement::execute method.
5. Call PDOStatement::fetch(PDO::FETCH_BOUND) to retrieve the next row in the

result set, binding the column output to the PHP variables that you associated
when you called the PDOStatement::bindColumn method.

Fetch a large object from the database directly into a file.
$stmt = $conn->prepare("SELECT name, picture FROM animal_pictures");
$picture = fopen("/opt/albums/spook/grooming.jpg", "wb");
$stmt->bindColumn('NAME', $nickname, PDO::PARAM_STR, 32);
$stmt->bindColumn('PICTURE', $picture, PDO::PARAM_LOB);
$stmt->execute();
$stmt->fetch(PDO::FETCH_BOUND);

Calling stored procedures in PHP (PDO)
To call a stored procedure from a PHP application, you execute an SQL CALL
statement. The procedure that you call can include input parameters (IN), output
parameters (OUT), and input and output parameters (INOUT).

Obtain a connection object by calling the PDO constructor.

Chapter 2. Developing PHP applications 35

http://php.net/manual/en/book.pdo.php
http://php.net/manual/en/book.pdo.php

This procedure prepares and executes an SQL CALL statement. For more
information, also see the topic about preparing and executing SQL statements.

To call a stored procedure:
1. Call the PDO::prepare method to prepare a CALL statement with parameter

markers that represent the OUT and INOUT parameters.
2. For each parameter marker in the CALL statement, call the

PDOStatement::bindParam method to bind each parameter marker to the name
of the PHP variable that will hold the output value of the parameter after the
CALL statement has been issued. For INOUT parameters, the value of the PHP
variable is passed as the input value of the parameter when the CALL
statement is issued.
a. Set the third parameter, data_type, to one of the following PDO::PARAM_*

constants that specifies the type of data being bound:

PDO::PARAM_NULL
Represents the SQL NULL data type.

PDO::PARAM_INT
Represents SQL integer types.

PDO::PARAM_LOB
Represents SQL large object types.

PDO::PARAM_STR
Represents SQL character data types.

For an INOUT parameter, use the bitwise OR operator to append
PDO::PARAM_INPUT_OUTPUT to the type of data being bound.

b. Set the fourth parameter, length, to the maximum expected length of the
output value.

3. Call the PDOStatement::execute method, passing the prepared statement as an
argument.
For more information about the PDO API, see http://php.net/manual/en/
book.pdo.php.

Prepare and execute an SQL CALL statement.
$sql = 'CALL match_animal(?, ?)';
$stmt = $conn->prepare($sql);

$second_name = "Rickety Ride";
$weight = 0;

$stmt->bindParam(1, $second_name, PDO::PARAM_STR|PDO::PARAM_INPUT_OUTPUT, 32);
$stmt->bindParam(2, $weight, PDO::PARAM_INT, 10);

print "Values of bound parameters _before_ CALL:\n";
print " 1: {$second_name} 2: {$weight}\n";

$stmt->execute();

print "Values of bound parameters _after_ CALL:\n";
print " 1: {$second_name} 2: {$weight}\n";

Retrieving multiple result sets from a stored procedure in PHP (PDO):

When a single call to a stored procedure returns more than one result set, you can
use the PDOStatement::nextRow method of the PDO API to retrieve the result sets.

36 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://php.net/manual/en/book.pdo.php
http://php.net/manual/en/book.pdo.php

You must have a PDOStatement object returned by calling a stored procedure with
the PDO::query or PDOStatement::execute method.

To retrieve multiple result sets:
1. Fetch rows from the first result set returned from the procedure by calling one

of the following PDO fetch methods. (The first result set that is returned from
the procedure is associated with the PDOStatement object returned by the
CALL statement.)
v To return a single row from a result set as an array or object, call the

PDOStatement::fetch method.
v To return all of the rows from the result set as an array of arrays or objects,

call the PDOStatement::fetchAll method.

Fetch rows from the PDOStatement object until no more rows are available in
the first result set.

2. Retrieve the subsequent result sets by calling the PDOStatement::nextRowset
method to return the next result set. You can fetch rows from the
PDOStatement object until no more rows are available in the result set.
The PDOStatement::nextRowset method returns False when no more result sets
are available or the procedure did not return a result set.
For more information about the PDO API, see http://php.net/manual/en/
book.pdo.php.

Retrieve multiple result sets from a stored procedure.
$sql = 'CALL multiple_results()';
$stmt = $conn->query($sql);
do {

$rows = $stmt->fetchAll(PDO::FETCH_NUM);
if ($rows) {

print_r($rows);
}

} while ($stmt->nextRowset());

When you are ready to close the connection to the database, set the PDO object to
NULL. The connection closes automatically when the PHP script finishes.

Commit modes in PHP (PDO)
You can control how groups of SQL statements are committed by specifying a
commit mode for a connection resource. The PDO extension supports two commit
modes: autocommit and manual commit.

autocommit mode
In autocommit mode, each SQL statement is a complete transaction, which
is automatically committed. Autocommit mode helps prevent locking
escalation issues that can impede the performance of highly scalable Web
applications. By default, the PDO extension opens every connection in
autocommit mode.

manual commit mode
In manual commit mode, the transaction begins when you call the
PDO::beginTransaction method, and it ends when you call either the
PDO::commit or PDO::rollBack method. This means that any statements
executed (on the same connection) between the start of a transaction and
the call to the commit or rollback method are treated as a single
transaction.

Manual commit mode is useful if you might have to roll back a transaction
that contains one or more SQL statements. If you issue SQL statements in a

Chapter 2. Developing PHP applications 37

http://php.net/manual/en/book.pdo.php
http://php.net/manual/en/book.pdo.php

transaction and the script ends without explicitly committing or rolling
back the transaction, PDO automatically rolls back any work performed in
the transaction.

After you commit or rollback the transaction, PDO automatically resets the
database connection to autocommit mode.

For more information about the PDO API, see http://php.net/manual/en/
book.pdo.php.

Example

End the transaction when PDO::commit or PDO::rollBack is called.
$conn = new PDO('ibm:SAMPLE', 'db2inst1', 'ibmdb2', array(

PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION));
// PDO::ERRMODE_EXCEPTION means an SQL error throws an exception

try {
// Issue these SQL statements in a transaction within a try{} block
$conn->beginTransaction();

// One or more SQL statements

$conn->commit();
}
catch (Exception $e) {

// If something raised an exception in our transaction block of statements,
// roll back any work performed in the transaction
print '<p>Unable to complete transaction!</p>';
$conn->rollBack();

}

Handling errors and warnings in PHP (PDO)
Sometimes errors happen when you attempt to connect to a database or issue an
SQL statement. The password for your connection might be incorrect, a table you
referred to in a SELECT statement might not exist, or the SQL statement might be
invalid. PDO provides error-handling methods to help you recover gracefully from
these situations.

You must set up the PHP environment on your system and enable the PDO and
PDO_IBM extensions.

PDO gives you the option of handling errors as warnings, errors, or exceptions.
However, when you create a new PDO connection object, PDO always throws a
PDOException object if an error occurs. If you do not catch the exception, PHP
prints a backtrace of the error information that might expose your database
connection credentials, including your user name and password.

This procedure catches a PDOException object and handles the associated error.
1. To catch a PDOException object and handle the associated error:

a. Wrap the call to the PDO constructor in a try block.
b. Following the try block, include a catch block that catches the

PDOException object.
c. Retrieve the error message associated with the error by invoking the

Exception::getMessage method on the PDOException object.
2. To retrieve the SQLSTATE associated with a PDO or PDOStatement object,

invoke the errorCode method on the object.
3. To retrieve an array of error information associated with a PDO or

PDOStatement object, invoke the errorInfo method on the object. The array

38 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://php.net/manual/en/book.pdo.php
http://php.net/manual/en/book.pdo.php

contains a string representing the SQLSTATE as the first element, an integer
representing the SQL or CLI error code as the second element, and a string
containing the full text error message as the third element.
For more information about the PDO API, see http://php.net/manual/en/
book.pdo.php.

Chapter 2. Developing PHP applications 39

http://php.net/manual/en/book.pdo.php
http://php.net/manual/en/book.pdo.php

40 Developing Perl, PHP, Python, and Ruby on Rails Applications

Chapter 3. Developing Python applications

Python, SQLAlchemy and Django Framework application development
for IBM data servers

Python is a general purpose, high level scripting language that is well suited for
rapid application development. Python emphasizes code readability and supports a
variety of programming paradigms, including procedural, object-oriented,
aspect-oriented, meta, and functional programming. The Python language is
managed by the Python Software Foundation.

The following extensions are available for accessing IBM data server databases
from a Python application:

ibm_db
This API is defined by IBM and provides the best support for advanced
features. In addition to issuing SQL queries, calling stored procedures, and
using pureXML, you can access metadata information.

ibm_db_dbi
This API implements Python Database API Specification v2.0. Because the
ibm_db_dbi API conforms to the specification, it does not offer some of the
advanced features that the ibm_db API supports. If you have an
application with a driver that supports Python Database API Specification
v2.0, you can easily switch to ibm_db. The ibm_db and ibm_db_dbi APIs
are packaged together.

ibm_db_sa
This adaptor supports SQLAlchemy, which offers a flexible way to access
IBM data servers. SQLAlchemy is a popular open source Python SQL
toolkit and object-to-relational mapper (ORM).

ibm_db_django
This adaptor enables access to IBM data servers from Django. Django is a
popular web framework used to build high-performing, elegant Web
applications quickly.

Python applications can access the following IBM data server databases:
v IBM DB2 Version 9.1 for Linux, UNIX, and Windows, Fix Pack 2 and later
v IBM DB2 Universal Database (DB2 UDB) Version 8 for Linux, UNIX, and

Windows, Fixpak 15 and later
v Remote connections to IBM DB2 Universal Database on i5/OS V5R3, with PTF

SI27358 (includes SI27250)
v Remote connections to IBM DB2 for IBM i 5.4 and later, with PTF SI27256
v Remote connections to IBM DB2 for z/OS, Version 8 and Version 9
v IBM Informix® Dynamic Server v11.10 and later

Python downloads and related resources
Many resources are available to help you develop Python applications for IBM
data servers.

© Copyright IBM Corp. 2006, 2010 41

Table 9. Python downloads and related resources

Downloads

Python (Includes Windows binaries. Most
Linux distributions come with Python
already precompiled.)

http://www.python.org/download/

SQLAlchemy http://www.sqlalchemy.org/download.html

Django http://www.djangoproject.com/download/

ibm_db and ibm_db_dbi extensions
(including source code)

http://pypi.python.org/pypi/ibm_db/

http://code.google.com/p/ibm-db/
downloads/list

ibm_db_sa adapter for SQLAlchemy 0.4 http://code.google.com/p/ibm-db/
downloads/list

http://pypi.python.org/pypi/ibm_db_sa

ibm_db_django adaptor for Django 1.0.x and
1.1

http://code.google.com/p/ibm-db/
downloads/list

http://pypi.python.org/pypi/
ibm_db_django

setuptools program http://pypi.python.org/pypi/setuptools

IBM Data Server Driver Package (DS Driver) http://www.ibm.com/software/data/
support/data-server-clients/index.html

API documentation

ibm_db API documentation http://code.google.com/p/ibm-db/wiki/
APIs

Python Database API Specification v2.0 http://www.python.org/dev/peps/pep-
0249/

SQLAlchemy documentation

Quick Getting Started Steps for ibm_db_sa http://code.google.com/p/ibm-db/wiki/
README

SQLAlchemy 0.4 Documentation http://www.sqlalchemy.org/docs/04/
index.html

Django documentation

Getting Started steps for ibm_db_django http://code.google.com/p/ibm-db/wiki/
ibm_db_django_README

Django Documentation http://www.djangoproject.com

Additional resources

Python Programming Language Web site http://www.python.org/

The Python SQL Toolkit and Object
Relational Mapper Web site

http://www.sqlalchemy.org/

Setting up the Python environment for IBM data servers
Before you can connect to an IBM data server and execute SQL statements, you
must set up the Python environment by installing the ibm_db (Python) and,
optionally, the ibm_db_sa (SQLAlchemy) or ibm_db_django(Django) packages on
your system.

You must have the following software installed on your system:

42 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://www.python.org/download/
http://www.sqlalchemy.org/download.html
http://www.djangoproject.com/download/
http://pypi.python.org/pypi/ibm_db/
http://code.google.com/p/ibm-db/downloads/list
http://code.google.com/p/ibm-db/downloads/list
http://code.google.com/p/ibm-db/downloads/list
http://code.google.com/p/ibm-db/downloads/list
http://pypi.python.org/pypi/ibm_db_sa
http://code.google.com/p/ibm-db/downloads/list
http://code.google.com/p/ibm-db/downloads/list
http://pypi.python.org/pypi/ibm_db_django
http://pypi.python.org/pypi/ibm_db_django
http://pypi.python.org/pypi/setuptools
http://www.ibm.com/software/data/support/data-server-clients/index.html
http://www.ibm.com/software/data/support/data-server-clients/index.html
http://code.google.com/p/ibm-db/wiki/APIs
http://code.google.com/p/ibm-db/wiki/APIs
http://www.python.org/dev/peps/pep-0249/
http://www.python.org/dev/peps/pep-0249/
http://code.google.com/p/ibm-db/wiki/README
http://code.google.com/p/ibm-db/wiki/README
http://www.sqlalchemy.org/docs/04/index.html
http://www.sqlalchemy.org/docs/04/index.html
http://code.google.com/p/ibm-db/wiki/ibm_db_django_README
http://code.google.com/p/ibm-db/wiki/ibm_db_django_README
http://www.djangoproject.com
http://www.python.org/
http://www.sqlalchemy.org/

v Python 2.5, or later. For Linux operating systems, you also require the
python2.5-dev package.

v setuptools, a program available at http://pypi.python.org/pypi/setuptools. You
can use this program to download, build, install, upgrade, and uninstall Python
packages.

v One of the following client types (Version 8 Fix Pack 14 or Version 9 Fix Pack 2
or later): IBM Data Server Driver Package, IBM Data Server Client, or IBM Data
Server Runtime Client.
IBM Informix Dynamic Server requires a Version 9.5 or later client.

To set up the Python environment:
1. Set up your Linux or Windows environment by using one of the following

approaches:
v If you have Internet access, issue one of the following commands:

– To install ibm_db: easy_install ibm_db

– To install both ibm_db_sa and ibm_db: easy_install ibm_db_sa

– To install ibm_db_django: easy_install ibm_db_django

This step installs the eggs under the site-packages directory where
setuptools is installed.

v If you do not have Internet access, copy the appropriate egg file for your
system from http://code.google.com/p/ibm-db/downloads/list, and issue
the following command:
easy_install egg_file_name

where egg_file_name is the path to the egg file. For example, issue the
following command:
easy_install /home/user/ibm_db-xx-py2.5-linux-i386.egg

v Download the source code from http://pypi.python.org/pypi/ibm_db/,
build the driver, and install it. The instructions for building and installing the
driver are in the README file that is included with the driver source code.

2. Create an environment variable named PYTHONPATH, and set it to the path
where you installed the ibm_db egg, as shown in the following examples:
v On Windows operating systems: PYTHONPATH=setuptools_install_path\site-

packages\ibm_db-xx.egg

v On Linux (BASH shell): export PYTHONPATH=setuptools_install_path/site-
packages/ibm_db-xx.egg

3. From the command prompt, test your setup by typing python to launch the
Python interpreter and entering code similar to that shown in the following
examples:
v To test ibm_db:

import ibm_db
ibm_db_conn = ibm_db.connect('dsn=database', 'user', 'password')
import ibm_db_dbi
conn = ibm_db_dbi.Connection(ibm_db_conn)
conn.tables('SYSCAT', '%')

v To test ibm_db_sa:
import sqlalchemy
from sqlalchemy import *
import ibm_db_sa.ibm_db_sa
db2 = sqlalchemy.create_engine('ibm_db_sa://user:password@host.name.com:50000/database')
metadata = MetaData()
users = Table('users', metadata,

Chapter 3. Developing Python applications 43

http://pypi.python.org/pypi/setuptools
http://code.google.com/p/ibm-db/downloads/list
http://pypi.python.org/pypi/ibm_db/

Column('user_id', Integer, primary_key = True),
Column('user_name', String(16), nullable = False),
Column('email_address', String(60), key='email'),
Column('password', String(20), nullable = False)
)
metadata.bind = db2
metadata.create_all()
users_table = Table('users', metadata, autoload=True, autoload_with=db2)
users_table

v To test ibm_db_django:
a. Create a new Django project:

django-admin.py startproject myproj

b. Edit the settings.py file to configure access to DB2. Use any editor
available on the system. An example on nix would be:

$ cd myproj
$ vi settings.py

DATABASE_ENGINE = 'ibm_db_django'
DATABASE_NAME = 'mydb'
DATABASE_USER = 'db2inst1'
DATABASE_PASSWORD = 'ibmdb2'
DATABASE_HOST = 'localhost'
DATABASE_PORT = '50000'

c. Add the following lines in the tuple INSTALLED_APPS section of the
settings.py file.

'django.contrib.flatpages',
'django.contrib.redirects',
'django.contrib.comments',
'django.contrib.admin',

d. Run a test suite to confirm the configuration is correct:
python manage.py test

The Python packages are now installed on your system and ready to use.

Connect to the data server, and begin issuing SQL statements.

Application development in Python with ibm_db
The ibm_db API provides a variety of useful Python functions for accessing and
manipulating data in an IBM data server database, including functions for
connecting to a database, preparing and issuing SQL statements, fetching rows
from result sets, calling stored procedures, committing and rolling back
transactions, handling errors, and retrieving metadata.

Connecting to an IBM data server database in Python
Before you can execute SQL statements to create, update, delete, or retrieve data,
you must connect to a database. You can use the ibm_db API to connect to a
database through either a cataloged or uncataloged connection. To improve
performance, you can also create a persistent connection.
v Set up the Python environment.
v Issue the following from your Python script: import ibm_db.

To return a connection resource that you can use to call SQL statements, call one of
the following functions:

44 Developing Perl, PHP, Python, and Ruby on Rails Applications

Table 10. ibm_db connection functions

Function Description

ibm_db.connect Creates a nonpersistent connection.

ibm_db.pconnect Creates a persistent connection. A persistent
connection remains open after the initial
Python script request, which allows
subsequent Python requests to reuse the
connection if they have an identical set of
credentials.

The database value that you pass as an argument to these functions can be either a
cataloged database name or a complete database connection string for a direct
TCP/IP connection. You can specify optional arguments that control the timing of
committing transactions, the case of the column names that are returned, and the
cursor type.
If the connection attempt fails, you can retrieve diagnostic information by calling
the ibm_db.conn_error or ibm_db.conn_errormsg function.
For more information about the ibm_db API, see http://code.google.com/p/ibm-
db/wiki/APIs.

Example 1: Connect to a local or cataloged database

Approach 1:
import ibm_db
conn = ibm_db.connect("dsn=name","username","password")

Approach 2:
import ibm_db
conn = ibm_db.connect("name","username","password")

Example 2: Connect to a cataloged or uncataloged database
import ibm_db
ibm_db.connect("DATABASE=name;HOSTNAME=host;PORT=60000;PROTOCOL=TCPIP;UID=username;

PWD=password;", "", "")

If the connection attempt is successful, you can use the connection resource when
you call ibm_db functions that execute SQL statements. Next, you prepare and
execute SQL statements.

Executing SQL statements in Python
After connecting to a database, use functions available in the ibm_db API to
prepare and execute SQL statements. The SQL statements can contain static text,
XQuery expressions, or parameter markers that represent variable input.

Preparing and executing a single SQL statement in Python:

To prepare and execute a single SQL statement, use the ibm_db.exec_immediate
function. To avoid the security threat of SQL injection attacks, use the
ibm_db.exec_immediate function only to execute SQL statements composed of
static strings. Interpolation of Python variables representing user input into the
SQL statement can expose your application to SQL injection attacks.

Obtain a connection resource by calling one of the connection functions in the
ibm_db API.

Chapter 3. Developing Python applications 45

http://code.google.com/p/ibm-db/wiki/APIs
http://code.google.com/p/ibm-db/wiki/APIs

To prepare and execute a single SQL statement, call the ibm_db.exec_immediate
function, passing the following arguments:

connection
A valid database connection resource returned from the ibm_db.connect or
ibm_db.pconnect function.

statement
A string that contains the SQL statement. This string can include an XQuery
expression that is called by the XMLQUERY function.

options
Optional: A dictionary that specifies the type of cursor to return for result sets.
You can use this parameter to request a scrollable cursor for database servers
that support this type of cursor. By default, a forward-only cursor is returned.

If the function call fails (returns False), you can use the ibm_db.stmt_error or
ibm_db.stmt_errormsg function to retrieve diagnostic information about the error.
If the function call succeeds, you can use the ibm_db.num_rows function to return
the number of rows that the SQL statement returned or affected. If the SQL
statement returns a result set, you can begin fetching the rows.
For more information about the ibm_db API, see http://code.google.com/p/ibm-
db/wiki/APIs.

Example 1: Execute a single SQL statement
import ibm_db
conn = ibm_db.connect("dsn=name","username","password")
stmt = ibm_db.exec_immediate(conn, "UPDATE employee SET bonus = '1000' WHERE job = 'MANAGER'")
print "Number of affected rows: ", ibm_db.num_rows(stmt)

Example 2: Execute an XQuery expression
import ibm_db
conn = ibm_db.connect("dsn=name","username","password")
if conn:

sql = "SELECT XMLSERIALIZE(XMLQUERY('for $i in $t/address where $i/city = \"Olathe\" return <zip>
{$i/zip/text()}</zip>' passing c.xmlcol as \"t\") AS CLOB(32k)) FROM xml_test c WHERE id = 1"

stmt = ibm_db.exec_immediate(conn, sql)
result = ibm_db.fetch_both(stmt)
while(result):

print "Result from XMLSerialize and XMLQuery:", result[0]
result = ibm_db.fetch_both(stmt)

If the SQL statement returns one or more result sets, you can begin fetching rows
from the statement resource.

Preparing and executing SQL statements with variable input in Python:

To prepare and execute an SQL statement that includes variable input, use the
ibm_db.prepare, ibm_db.bind_param, and ibm_db.execute functions. Preparing a
statement improves performance because the database server creates an optimized
access plan for data retrieval that it can reuse if the statement is executed again.

Obtain a connection resource by calling one of the connection functions in the
ibm_db API.

To prepare and execute an SQL statement that includes parameter markers:
1. Call the ibm_db.prepare function, passing the following arguments:

connection
A valid database connection resource returned from the ibm_db.connect or
ibm_db.pconnect function.

46 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://code.google.com/p/ibm-db/wiki/APIs
http://code.google.com/p/ibm-db/wiki/APIs

statement
A string that contains the SQL statement, including question marks (?) as
parameter markers for column or predicate values that require variable
input. This string can include an XQuery expression that is called by the
XMLQUERY function.

options
Optional: A dictionary that specifies the type of cursor to return for result
sets. You can use this parameter to request a scrollable cursor for database
servers that support this type of cursor. By default, a forward-only cursor is
returned.

If the function call succeeds, it returns a statement handle resource that you can
use in subsequent function calls that are related to the query.
If the function call fails (returns False), you can use the ibm_db.stmt_error or
ibm_db.stmt_errormsg function to retrieve diagnostic information about the
error.

2. Optional: For each parameter marker in the SQL string, call the
ibm_db.bind_param function, passing the following arguments. Binding input
values to parameter markers ensures that each input value is treated as a single
parameter, which prevents SQL injection attacks.

stmt
The prepared statement returned by the call to the ibm_db.prepare
function.

parameter-number
An integer that represents the position of the parameter marker in the SQL
statement.

variable
The value to use in place of the parameter marker.

3. Call the ibm_db.execute function, passing the following arguments:

stmt
A prepared statement returned from ibm_db.prepare.

parameters
A tuple of input parameters that match parameter markers contained in the
prepared statement.

For more information about the ibm_db API, see http://code.google.com/p/
ibm-db/wiki/APIs.

Prepare and execute a statement that includes variable input.
import ibm_db
conn = ibm_db.connect("dsn=name","username","password")
sql = "SELECT EMPNO, LASTNAME FROM EMPLOYEE WHERE EMPNO > ? AND EMPNO < ?"
stmt = ibm_db.prepare(conn, sql)
max = 50
min = 0
Explicitly bind parameters
ibm_db.bind_param(stmt, 1, min)
ibm_db.bind_param(stmt, 2, max)
ibm_db.execute(stmt)
Process results

Invoke prepared statement again using dynamically bound parameters
param = max, min,
ibm_db.execute(stmt, param)

Chapter 3. Developing Python applications 47

http://code.google.com/p/ibm-db/wiki/APIs
http://code.google.com/p/ibm-db/wiki/APIs

If the SQL statement returns one or more result sets, you can begin fetching rows
from the statement resource.

Fetching rows or columns from result sets in Python
After executing a statement that returns one or more result sets, use one of the
functions available in the ibm_db API to iterate through the returned rows. If your
result set includes columns that contain extremely large data (such as BLOB or
CLOB data), you can retrieve the data on a column-by-column basis to avoid using
too much memory.

You must have a statement resource returned by either the ibm_db.exec_immediate
or ibm_db.execute function that has one or more associated result sets.

To fetch data from a result set:
1. Fetch data from a result set by calling one of the fetch functions.

Table 11. ibm_db fetch functions

Function Description

ibm_db.fetch_tuple Returns a tuple, indexed by column
position, representing a row in a result set.
The columns are 0-indexed.

ibm_db.fetch_assoc Returns a dictionary, indexed by column
name, representing a row in a result set.

ibm_db.fetch_both Returns a dictionary, indexed by both
column name and position, representing a
row in a result set.

ibm_db.fetch_row Sets the result set pointer to the next row or
requested row. Use this function to iterate
through a result set.

These functions accept the following arguments:

stmt
A valid statement resource.

row_number
The number of the row that you want to retrieve from the result set.
Specify a value for this parameter if you requested a scrollable cursor when
you called the ibm_db.exec_immediate or ibm_db.prepare function. With
the default forward-only cursor, each call to a fetch method returns the next
row in the result set.

2. Optional: If you called the ibm_db.fetch_row function, for each iteration
through the result set, retrieve a value from a specified column by calling the
ibm_db.result function. You can specify the column by passing either an integer
that represents the position of the column in the row (starting with 0) or a
string that represents the name of the column.

3. Continue fetching rows until the fetch method returns False, which indicates
that you have reached the end of the result set.
For more information about the ibm_db API, see http://code.google.com/p/
ibm-db/wiki/APIs.

Example 1: Fetch rows from a result set by calling the ibm_db.fetch_both function
import ibm_db

conn = ibm_db.connect("dsn=name", "username", "password")
sql = "SELECT * FROM EMPLOYEE"

48 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://code.google.com/p/ibm-db/wiki/APIs
http://code.google.com/p/ibm-db/wiki/APIs

stmt = ibm_db.exec_immediate(conn, sql)
dictionary = ibm_db.fetch_both(stmt)
while dictionary != False:

print "The ID is : ", dictionary["EMPNO"]
print "The Name is : ", dictionary[1]
dictionary = ibm_db.fetch_both(stmt)

Example 2: Fetch rows from a result set by calling the ibm_db.fetch_tuple function
import ibm_db

conn = ibm_db.connect("dsn=name", "username", "password")
sql = "SELECT * FROM EMPLOYEE"
stmt = ibm_db.exec_immediate(conn, sql)
tuple = ibm_db.fetch_tuple(stmt)
while tuple != False:

print "The ID is : ", tuple[0]
print "The name is : ", tuple[1]
tuple = ibm_db.fetch_tuple(stmt)

Example 3: Fetch rows from a result set by calling the ibm_db.fetch_assoc function
import ibm_db

conn = ibm_db.connect("dsn=name", "username", "password")
sql = "SELECT * FROM EMPLOYEE"
stmt = ibm_db.exec_immediate(conn, sql)
dictionary = ibm_db.fetch_assoc(stmt)
while dictionary != False:

print "The ID is : ", dictionary["EMPNO"]
print "The name is : ", dictionary["FIRSTNME"]
dictionary = ibm_db.fetch_assoc(stmt)

Example 4: Fetch columns from a result set
import ibm_db

conn = ibm_db.connect("dsn=name", "username", "password")
sql = "SELECT * FROM EMPLOYEE
stmt = ibm_db.exec_immediate(conn, sql)
while ibm_db.fetch_row(stmt) != False:

print "The Employee number is : ", ibm_db.result(stmt, 0)
print "The Name is : ", ibm_db.result(stmt, "NAME")

When you are ready to close the connection to the database, call the ibm_db.close
function. If you attempt to close a persistent connection that you created with
ibm_db.pconnect, the close request returns True, and the connection remains
available for the next caller.

Calling stored procedures in Python
To call a stored procedure from a Python application, you prepare and execute an
SQL CALL statement. The procedure that you call can include input parameters
(IN), output parameters (OUT), and input and output parameters (INOUT).

Obtain a connection resource by calling one of the connection functions in the
ibm_db API.

To call a stored procedure:
1. Call the ibm_db.prepare function, passing the following arguments:

connection
A valid database connection resource returned from ibm_db.connect or
ibm_db.pconnect.

Chapter 3. Developing Python applications 49

statement
A string that contains the SQL CALL statement, including parameter
markers (?) for any input or output parameters.

options
Optional: A dictionary that specifies the type of cursor to return for result
sets. You can use this parameter to request a scrollable cursor for database
servers that support this type of cursor. By default, a forward-only cursor is
returned.

2. For each parameter marker in the CALL statement, call the ibm_db.bind_param
function, passing the following arguments:

stmt
The prepared statement returned by the call to the ibm_db.prepare
function.

parameter-number
An integer that represents the position of the parameter marker in the SQL
statement.

variable
The name of the Python variable that will hold the output.

parameter-type
A constant that specifies whether to bind the Python variable to the SQL
parameter as an input parameter (SQL_PARAM_INPUT), an output
parameter (SQL_PARAM_OUTPUT), or a parameter that accepts input and
returns output (SQL_PARAM_INPUT_OUTPUT).

This step binds each parameter marker to the name of a Python variable that
will hold the output.

3. Call the ibm_db.execute function, passing the prepared statement as an
argument.
For more information about the ibm_db API, see http://code.google.com/p/
ibm-db/wiki/APIs.

Prepare and execute an SQL CALL statement.
import ibm_db

conn = ibm_db.connect("dsn=sample","username","password")
if conn:

sql = 'CALL match_animal(?, ?, ?)'
stmt = ibm_db.prepare(conn, sql)

name = "Peaches"
second_name = "Rickety Ride"
weight = 0
ibm_db.bind_param(stmt, 1, name, ibm_db.SQL_PARAM_INPUT)
ibm_db.bind_param(stmt, 2, second_name, ibm_db.SQL_PARAM_INPUT_OUTPUT)
ibm_db.bind_param(stmt, 3, weight, ibm_db.SQL_PARAM_OUTPUT)

print "Values of bound parameters _before_ CALL:"
print " 1: %s 2: %s 3: %d\n" % (name, second_name, weight)

if ibm_db.execute(stmt):
print "Values of bound parameters _after_ CALL:"
print " 1: %s 2: %s 3: %d\n" % (name, second_name, weight)

If the procedure call returns one or more result sets, you can begin fetching rows
from the statement resource.

50 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://code.google.com/p/ibm-db/wiki/APIs
http://code.google.com/p/ibm-db/wiki/APIs

Retrieving multiple result sets from a stored procedure in Python
When a single call to a stored procedure returns more than one result set, you can
use the ibm_db.next_result function of the ibm_db API to retrieve the result sets.

You must have a statement resource returned by the ibm_db.exec_immediate or
ibm_db.execute function that has multiple result sets.

To retrieve multiple result sets:
1. Fetch rows from the first result set returned from the procedure by calling one

of the following ibm_db fetch functions, passing the statement resource as an
argument. (The first result set that is returned from the procedure is associated
with the statement resource.)

Table 12. ibm_db fetch functions

Function Description

ibm_db.fetch_tuple Returns a tuple, indexed by column
position, representing a row in a result set.
The columns are 0-indexed.

ibm_db.fetch_assoc Returns a dictionary, indexed by column
name, representing a row in a result set.

ibm_db.fetch_both Returns a dictionary, indexed by both
column name and position, representing a
row in a result set.

ibm_db.fetch_row Sets the result set pointer to the next row or
requested row. Use this function to iterate
through a result set.

2. Retrieve the subsequent result sets by passing the original statement resource as
the first argument to the ibm_db.next_result function. You can fetch rows from
the statement resource until no more rows are available in the result set.
The ibm_db.next_result function returns False when no more result sets are
available or if the procedure did not return a result set.
For more information about the ibm_db API, see http://code.google.com/p/
ibm-db/wiki/APIs.

Retrieve multiple result sets from a stored procedure.
import ibm_db
conn = ibm_db.connect("dsn=sample", "user", "password")
if conn:

sql = 'CALL sp_multi()'
stmt = ibm_db.exec_immediate(conn, sql)
row = ibm_db.fetch_assoc(stmt)
while row != False :

print "The value returned : ", row
row = ibm_db.fetch_assoc(stmt)

stmt1 = ibm_db.next_result(stmt)
while stmt1 != False:

row = ibm_db.fetch_assoc(stmt1)
while row != False :

print "The value returned : ", row
row = ibm_db.fetch_assoc(stmt1)

stmt1 = ibm_db.next_result(stmt)

When you are ready to close the connection to the database, call the ibm_db.close
function. If you attempt to close a persistent connection that you created by using

Chapter 3. Developing Python applications 51

http://code.google.com/p/ibm-db/wiki/APIs
http://code.google.com/p/ibm-db/wiki/APIs

ibm_db.pconnect, the close request returns True, and the IBM data server client
connection remains available for the next caller.

Commit modes in Python applications
You can control how groups of SQL statements are committed by specifying a
commit mode for a connection resource. The ibm_db API supports the following
two commit modes: autocommit and manual commit.

autocommit mode
In autocommit mode, each SQL statement is a complete transaction, which
is automatically committed. Autocommit mode helps prevent locking
escalation issues that can impede the performance of highly scalable Web
applications. By default, the ibm_db API opens every connection in
autocommit mode.

You can turn on autocommit mode after disabling it by calling
ibm_db.autocommit(conn, ibm_db.SQL_AUTOCOMMIT_ON), where conn is a
valid connection resource.

Calling the ibm_db.autocommit function might affect the performance of
your Python scripts because it requires additional communication between
Python and the database management system.

manual commit mode
In manual commit mode, the transaction ends when you call the
ibm_db.commit or ibm_db.rollback function. This means that all statements
executed on the same connection between the start of a transaction and the
call to the commit or rollback function are treated as a single transaction.

Manual commit mode is useful if you might have to roll back a transaction
that contains one or more SQL statements. If you exectue SQL statements
in a transaction and the script ends without explicitly committing or rolling
back the transaction, the ibm_db extension automatically rolls back any
work performed in the transaction.

You can turn off autocommit mode when you create a database connection
by using the { ibm_db.SQL_ATTR_AUTOCOMMIT: ibm_db.SQL_AUTOCOMMIT_OFF
} setting in the ibm_db.connect or ibm_db.pconnect options array. You can
also turn off autocommit mode for a connection resource by calling
ibm_db.autocommit(conn, ibm_db.SQL_AUTOCOMMIT_OFF), where conn is a
valid connection resource.

For more information about the ibm_db API, see http://code.google.com/p/ibm-
db/wiki/APIs.

Example

Turn off autocomit mode and end the transaction when ibm_db.commit or
ibm_db.rollback is called.
import ibm_db

array = { ibm_db.SQL_ATTR_AUTOCOMMIT : ibm_db.SQL_AUTOCOMMIT_OFF }
conn = ibm_db.pconnect("dsn=SAMPLE", "user", "password", array)
sql = "DELETE FROM EMPLOYEE"
try:

stmt = ibm_db.exec_immediate(conn, sql)
except:

print "Transaction couldn't be completed."

52 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://code.google.com/p/ibm-db/wiki/APIs
http://code.google.com/p/ibm-db/wiki/APIs

ibm_db.rollback(conn)
else:

ibm_db.commit(conn)
print "Transaction complete."

Error-handling functions in Python
Sometimes errors happen when you attempt to connect to a database or issue an
SQL statement. The username or password might be incorrect, a table or column
name might be misspelled, or the SQL statement might be invalid. The ibm_db API
provides error-handling functions to help you recover gracefully from these
situations.

Connection errors

Use one of the following functions to retrieve diagnostic information if a
connection attempt fails.

Table 13. ibm_db functions for handling connection errors

Function Description

ibm_db.conn_error Retrieves the SQLSTATE returned by the last
connection attempt

ibm_db. conn_errormsg Retrieves a descriptive error message
appropriate for an application error log

SQL errors

Use one of the following functions to retrieve diagnostic information if an attempt
to prepare or execute an SQL statement or to fetch a result from a result set fails.

Table 14. ibm_db functions for handling SQL errors

Function Description

ibm_db.stmt_error Retrieves the SQLSTATE returned by the last
attempt to prepare or execute an SQL
statement or to fetch a result from a result
set

ibm_db.stmt_errormsg Retrieves a descriptive error message
appropriate for an application error log

For more information about the ibm_db API, see http://code.google.com/p/ibm-
db/wiki/APIs.

Example

Example 1: Handle connection errors
import ibm_db
try:

conn = ibm_db.connect("dsn=sample","user","password")
except:

print "no connection:", ibm_db.conn_errormsg()
else:

print "The connection was successful"

Example 2: Handle SQL errors

Chapter 3. Developing Python applications 53

http://code.google.com/p/ibm-db/wiki/APIs
http://code.google.com/p/ibm-db/wiki/APIs

import ibm_db
conn = ibm_db.connect("dsn=sample", "user", "password")
sql = "DELETE FROM EMPLOYEE"
try:

stmt = ibm_db.exec_immediate(conn, sql)
except:

print "Transaction couldn't be completed:" , ibm_db.stmt_errormsg()
else:

print "Transaction complete."

Database metadata retrieval functions in Python
You can use functions in the ibm_db API to retrieve metadata for IBM databases.

Before calling these functions, you must set up the Python environment, issue
import_db in your Python script, and obtain a connection resource by calling the
ibm_db.connect or ibm_db.pconnect function.

Important: Calling metadata functions uses a significant amount of space. If
possible, cache the results of your calls for use in subsequent calls.

Table 15. ibm_db metadata retrieval functions

Function Description

ibm_db.client_info Returns a read-only object with information
about the IBM data server client

ibm_db.column_privileges Returns a result set listing the columns and
associated privileges for a table

ibm_db.columns Returns a result set listing the columns and
associated metadata for a table

ibm_db.foreign_keys Returns a result set listing the foreign keys
for a table

ibm_db.primary_keys Returns a result set listing the primary keys
for a table

ibm_db.procedure_columns Returns a result set listing the parameters
for one or more stored procedures

ibm_db.procedures Returns a result set listing the stored
procedures registered in a database

ibm_db.server_info Returns a read-only object with information
about the IBM data server

ibm_db.special_columns Returns a result set listing the unique row
identifier columns for a table

ibm_db.statistics Returns a result set listing the index and
statistics for a table

ibm_db.table_privileges Returns a result set listing the tables in a
database and the associated privileges

For more information about the ibm_db API, see http://code.google.com/p/ibm-
db/wiki/APIs.

Example

Example 1: Display information about the IBM data server client
import ibm_db

conn = ibm_db.connect("dsn=sample", "user", "password")
client = ibm_db.client_info(conn)

54 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://code.google.com/p/ibm-db/wiki/APIs
http://code.google.com/p/ibm-db/wiki/APIs

if client:
print "DRIVER_NAME: string(%d) \"%s\"" % (len(client.DRIVER_NAME), client.DRIVER_NAME)
print "DRIVER_VER: string(%d) \"%s\"" % (len(client.DRIVER_VER), client.DRIVER_VER)
print "DATA_SOURCE_NAME: string(%d) \"%s\"" % (len(client.DATA_SOURCE_NAME), client.DATA_SOURCE_NAME)
print "DRIVER_ODBC_VER: string(%d) \"%s\"" % (len(client.DRIVER_ODBC_VER), client.DRIVER_ODBC_VER)
print "ODBC_VER: string(%d) \"%s\"" % (len(client.ODBC_VER), client.ODBC_VER)
print "ODBC_SQL_CONFORMANCE: string(%d) \"%s\"" % (len(client.ODBC_SQL_CONFORMANCE), client.ODBC_SQL_CONFORMANCE)
print "APPL_CODEPAGE: int(%s)" % client.APPL_CODEPAGE
print "CONN_CODEPAGE: int(%s)" % client.CONN_CODEPAGE
ibm_db.close(conn)

else:
print "Error."

Example 2: Display information about the IBM data server
import ibm_db

conn = ibm_db.connect("dsn=sample", "user", "password")
server = ibm_db.server_info(conn)

if server:
print "DBMS_NAME: string(%d) \"%s\"" % (len(server.DBMS_NAME), server.DBMS_NAME)
print "DBMS_VER: string(%d) \"%s\"" % (len(server.DBMS_VER), server.DBMS_VER)
print "DB_NAME: string(%d) \"%s\"" % (len(server.DB_NAME), server.DB_NAME)
ibm_db.close(conn)

else:
print "Error."

Chapter 3. Developing Python applications 55

56 Developing Perl, PHP, Python, and Ruby on Rails Applications

Chapter 4. Developing Ruby on Rails applications

The IBM_DB Ruby driver and Rails adapter
With the introduction of support for the Ruby on Rails framework, Rails
applications can now access data on IBM data servers.

Collectively known as the IBM_DB gem, the IBM_DB Ruby driver and Rails
adapter allows Ruby applications to access the following database management
systems:
v DB2 Version 9 for Linux, UNIX, and Windows
v DB2 Universal Database (DB2 UDB) Version 8 for Linux, UNIX, and Windows
v DB2 UDB Version 5, Release 1 (and later) for AS/400® and iSeries®, through DB2

Connect
v DB2 for z/OS, Version 8 and Version 9, through DB2 Connect
v Informix Dynamic Server, Version 11.10 and later

Note: Client applications should use IBM Data Server Driver Version 9.5 or later
when accessing Informix Dynamic Server Version 11.10. Previous versions are
not supported. Client applications can also use IBM Data Server Runtime Client
or IBM Data Server Client.

The IBM_DB Ruby driver can be used to connect to and access data from the IBM
data servers mentioned above. The IBM_DB Ruby adapter allows any
database-backed Rails application to interface with IBM data servers.

For more information about IBM Ruby projects and the RubyForge open source
community, refer to the following web site: http://rubyforge.org/projects/
rubyibm/

For a list of installation requirements for DB2 database products, see
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/
com.ibm.db2.luw.qb.server.doc/doc/r0025127.html

For a list of installation requirements for IBM Informix Dynamic Server, see
http://publib.boulder.ibm.com/infocenter/idshelp/v111/topic/com.ibm.expr.doc/
ids_in_004x.html

For information about downloading an IBM Data Server Driver Package (DS
Driver), refer to the following web site: http://www.ibm.com/software/data/
support/data-server-clients/index.html.

Getting started with IBM data servers on Rails
To start developing Ruby on Rails applications with IBM data servers, you must
set up the Rails environment with IBM data servers. To get started, you can
download the free version of DB2 and start developing Rails applications using
DB2.

© Copyright IBM Corp. 2006, 2010 57

http://rubyforge.org/projects/rubyibm/
http://rubyforge.org/projects/rubyibm/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.qb.server.doc/doc/r0025127.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.qb.server.doc/doc/r0025127.html
http://publib.boulder.ibm.com/infocenter/idshelp/v111/topic/com.ibm.expr.doc/ids_in_004x.html
http://publib.boulder.ibm.com/infocenter/idshelp/v111/topic/com.ibm.expr.doc/ids_in_004x.html
http://www.ibm.com/software/data/support/data-server-clients/index.html
http://www.ibm.com/software/data/support/data-server-clients/index.html

To ensure that numeric values in quotations are handled correctly, you must use
Version 9.1 Fix Pack 2 (or later) of one of the following client types: IBM Data
Server Driver Package, IBM Data Server Client, or IBM Data Server Driver for
ODBC and CLI.

To set up your environment and get started with IBM_DB:
1. Download and install DB2 or IBM Informix Dynamic Server from

http://www-306.ibm.com/software/data/servers/.
2. Download and install the latest version of Ruby from http://www.ruby-

lang.org/en/downloads/.
3. Install the Rails gem and its dependencies by issuing the following gem install

command:
gem install rails –-include-dependencies

You are now ready to install the IBM_DB Ruby driver and Rails adapter as a gem.
If you want, you can also set up an integrated development environment (IDE) for
Rails.

Setting up an integrated development environment for Rails
Rails requires no special file formats or integrated development environments
(IDEs); you can get started with a command line prompt and a text editor.
However, various IDEs are now available with Rails support, such as RadRails,
which is a Rails environment for Eclipse.

For more information about RadRails, see http://www.radrails.org/.

To set up an Eclipse based IDE for Ruby on Rails (RoR) development:
1. Install Eclipse from http://www.eclipse.org/downloads/.
2. Install the following Eclipse plug-ins from the following Eclipse remote update

sites:
a. Ruby Development Tools from http://rubyeclipse.sourceforge.net/

download.rdt.html
b. RubyRails IDE feature from http://radrails.sourceforge.net/update
c. Subclipse plug-in from http://subclipse.tigris.org/update

Installing the IBM_DB adapter and driver as a Ruby gem
Ruby Gems is the standard packaging and installation framework for libraries and
applications in the Ruby runtime environment. A single file for each bundle is
called a gem, which complies to the package format. This package is then
distributed and stored in a central repository, allowing simultaneous deployment
of multiple versions of the same library or application.

Similar to package management and bundles (.rpm, .deb) used in Linux
distributions, these gems can also be queried, installed, uninstalled, and
manipulated through the gem end-user utility.

The gem utility can seamlessly query the remote RubyForge central repository and
look up and install any of the many readily available utilities. When the IBM_DB
gem is installed, this functionality is immediately accessible from any script (or
application) in the Ruby runtime environment, through:
require 'ibm_db'

or on Windows:

58 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://www-306.ibm.com/software/data/servers/
http://www.ruby-lang.org/en/downloads/
http://www.ruby-lang.org/en/downloads/
http://www.radrails.org/
http://www.eclipse.org/downloads/
http://rubyeclipse.sourceforge.net/download.rdt.html
http://rubyeclipse.sourceforge.net/download.rdt.html
http://radrails.sourceforge.net/update
http://subclipse.tigris.org/update

require 'mswin32/ibm_db'

To install the IBM_DB adapter and driver as a Ruby gem:
1. On Linux, UNIX, and Mac OS X platforms, set environment variables and

optionally source the DB2 profile:
a. Issue the following commands to set the environment variables

IBM_DB_INCLUDE and IBM_DB_LIB:
$ export IBM_DB_INCLUDE=DB2HOME/include
$ export IBM_DB_LIB=DB2HOME/lib

where DB2HOME is the directory where the IBM data server is installed.
For example:
$ export IBM_DB_INCLUDE=/home/db2inst1/sqllib/include
$ export IBM_DB_LIB=/home/db2inst1/sqllib/lib

If you are using ibm_db 1.0.0 or earlier, instead of setting
IBM_DB_INCLUDE, you must set the environment variable IBM_DB_DIR
to DB2HOME.

More about setting environment variables:

Depending on the architecture for which the IBM data server is installed,
the lib directory under DB2HOME is a link to either lib32 or lib64. You
can set IBM_DB_LIB according to the architecture for which Ruby is
compiled. For a 32-bit architecture, set IBM_DB_LIB to the lib32 directory
under DB2HOME. For a 64-bit architecture set IBM_DB_LIB to the lib64
directory under DB2HOME.

b. Source the DB2 profile, as shown in the following example:
$. /home/db2inst1/sqllib/db2profile

2. On all supported platforms, issue the following gem command to install the
IBM_DB adapter and driver:
$ gem install ibm_db

You are presented with a list of gems from which to select. For example:
1. ibm_db 1.0.1 (mswin32)
2. ibm_db 1.0.1 (ruby)
3. ibm_db 1.0.0 (ruby)
4. ibm_db 1.0.0 (mswin32)

3. Select one of the Ruby gems to build the native extension (IBM_DB driver) and
install the IBM_DB gem.

The IBM_DB gem is now installed on your workstation.

The following example shows the options that are available when you install the
IBM_DB adapter and driver as a Ruby gem:
$ gem install ibm_db

Select which gem to install for your platform (i686-linux)
1. ibm_db 1.0.1 (mswin32)
2. ibm_db 1.0.1 (ruby)
3. ibm_db 1.0.0 (ruby)
4. ibm_db 1.0.0 (mswin32)
...
> 2
Building native extensions. This could take a while...

Chapter 4. Developing Ruby on Rails applications 59

Successfully installed ibm_db-1.0.1
Installing ri documentation for ibm_db-1.0..1...
Installing RDoc documentation for ibm_db-1.0.1...

The examples in this topic include version information to demonstrate the
installation. However, when you run the installation, you can choose from the two
latest versions of the gem that are available.

Verifying installation of the IBM_DB gem with DB2 Express-C
To verify installation of the IBM_DB gem with DB2 Express-C, you connect to the
database, issue a SELECT statement, and then fetch the first row of the result set.

Use the following commands to install and verify the installation of the IBM_DB
gem with Ruby-1.8.6 patch level 111 on a Windows or Linux operating system. The
output of the commands is also shown.
v To perform the installation, issue the command gem install ibm_db. For

example:
D:\>gem install ibm_db
Select which gem to install for your platform (i386-mswin32)
1. ibm_db 1.0.1 (ruby)
2. ibm_db 1.0.1 (mswin32)
2. ibm_db 1.0.0 (ruby)
3. ibm_db 1.0.0 (mswin32)
4. Skip this gem
5. Cancel installation
> 2
Successfully installed ibm_db-1.0.0-mswin32
Installing ri documentation for ibm_db-1.0.0-mswin32...
Installing RDoc documentation for ibm_db-1.0.0-mswin32...

Note: The examples in this topic include version information to demonstrate the
installation. However, when you run the installation, you can choose from the
two latest versions of the gem that are available.
The IBM_DB gem is now installed on your machine.

v To verify the installation, run the following commands.
You can follow this process to verify installation against IBM Informix Dynamic
Server, DB2 Database for Linux, UNIX, and Windows, DB2 for IBM i, and DB2
for z/OS. You can use DB2 Connect to access DB2 for IBM i and DB2 for z/OS
data servers.
C:\>irb
irb(main):001:0> require 'mswin32/ibm_db' (if using Linux based
platform then issue require 'ibm_db')
=>true
irb(main):002:0> conn = IBM_DB::connect
'devdb','username','password' (Here 'devdb' is the database cataloged in
client's database directory)
=> #<IBM_DB::Connection:0x2dddf40>
irb(main):003:0> stmt = IBM_DB::exec conn,'select * from cars'
=> #<IBM_DB::Statement:0x2beaabc>
irb(main):004:0> IBM_DB::fetch_assoc stmt (will fetch the first row of
the result set)

If these commands run successfully, the gem is installed correctly, and you can
begin building Rails applications.

60 Developing Perl, PHP, Python, and Ruby on Rails Applications

Verifying installation with IBM data servers on Rails applications
To verify that the IBM_DB driver and adapter are installed correctly, you test
IBM_DB driver access by connecting to an IBM data server and issuing a SELECT
statement, and then you test IBM_DB adapter access by building and running a
sample Rails application.

To verify installation:
1. Install the latest version of the IBM_DB gem.
2. Test IBM_DB driver access.

For example, to test the access to an i5 data server through the IBM_DB driver
(and underlying DB2 Connect and IBM Data Server Driver for ODBC and CLI):
D:\ws\RoR\TeamRoom>irb
irb(main):001:0> require 'mswin32/ibm_db'
=> true
irb(main):002:0> conn = IBM_DB::connect 'testdb', 'user', 'pass'
=> #<IBM_DB::Connection:0x2f79d40>
irb(main):003:0> stmt = IBM_DB::exec conn, 'select * from qsys2.qsqptabl'
=> #<IBM_DB::Statement:0x2f762f8>
irb(main):004:0> IBM_DB::fetch_assoc stmt

3. Test IBM_DB adapter access.
To test access to an IBM data server through the IBM_DB adapter, follow the
steps below to build a sample Rails application.
a. Create a new Rails application by issuing the following command:

C:\>rails newapp --database=ibm_db
create
create app/controllers
create app/helpers
create app/models
create app/views/layouts
create config/environments
create config/initializers
create db
[......]
create log/server.log
create log/production.log
create log/development.log
create log/test.log

b. Change to the newly created directory, newapp:
C:\>cd newapp

c. Configure connections for the Rails application by editing the database.yml
file. For more information, see “Configuring Rails application connections to
IBM data servers” on page 62.
If you are using a version prior to Rails 2.0, you need to register the
IBM_DB adapter to the list of connection adapters in the Rails framework
by manually adding ibm_db to the list of connection adapters in
<RubyHome>\gems\1.8\gems\activerecord-1.15.6\lib\active_record.rb at
approximately line 77:
RAILS_CONNECTION_ADAPTERS = %w(mysql postgresql sqlite firebird
sqlserver db2 oracle sybase openbase frontbase ibm_db)

d. Create a model and scaffold by issuing the following command:
C:\>ruby script/generate scaffold Tool name:string model_num:integer
exists app/models/
exists app/controllers/
[....]
create db/migrate
create db/migrate/20080716103959_create_tools.rb

Chapter 4. Developing Ruby on Rails applications 61

e. Issue the Rails migrate command to create the table (tools) in the database
(devdb):
C:\ >rake db:migrate
(in C:/ruby trials/newapp)
== 20080716111617 CreateTools: migrating
======================================
-- create_table(:tools)
-> 0.5320s
== 20080716111617 CreateTools: migrated (0.5320s)

The Rails application can now access the Tools table and perform operations
on it.

f. Issue the following command to test the application:
C:\ruby trials\newapp>ruby script/console
Loading development environment (Rails 2.1.0)
>> tool = Tool.new
=> #<Tool id: nil, name: nil, model_num: nil, created_at: nil,
updated_at: nil>
>> tool.name = 'chistel'
=> "chistel"
>> tool.model_num = '007'
=> "007"
>> tool.save
=> true
>> Tool.find :all
=> [#<Tool id: 100, name: "chistel", model_num: 7, created_at:
"2008-07-16 11:29:35", updated_at: "2008-07-16 11:29:35">]
>>

Configuring Rails application connections to IBM data servers
You configure database connections for a Rails application by specifying
connection details in the database.yml file.

To configure host data server connections for a Rails application:

Edit the database configuration details in rails_application_path\config\
database.yml, and specify the following connection attributes:
The IBM_DB Adapter requires the native Ruby driver (ibm_db)

for IBM data servers (ibm_db.so).
+config+ the hash passed as an initializer argument content:
== mandatory parameters
adapter: 'ibm_db' // IBM_DB Adapter name
username: 'db2user' // data server (database) user
password: 'secret' // data server (database) password
database: 'DEVDB' // remote database name (or catalog entry alias)
== optional (highly recommended for data server auditing and monitoring purposes)
schema: 'rails123' // name space qualifier
account: 'tester' // OS account (client workstation)
app_user: 'test11' // authenticated application user
application: 'rtests' // application name
workstation: 'plato' // client workstation name
== remote TCP/IP connection (required when no local database catalog entry available)
host: 'Socrates' // fully qualified hostname or IP address
port: '50000' // data server TCP/IP port number
#
When schema is not specified, the username value is used instead.

Note: Changes to connection information in this file are applied when the Rails
environment is initialized during server startup. Any changes that you make after
initialization do not affect the connections that are created.

62 Developing Perl, PHP, Python, and Ruby on Rails Applications

Schema, account, app_user, application and workstation are not supported for IBM
Informix Dynamic Server.

IBM Ruby driver and trusted contexts
The IBM_DB Ruby driver supports trusted contexts by using connection string
keywords.

Trusted contexts provide a way of building much faster and more secure three-tier
applications. The user's identity is always preserved for auditing and security
purposes. When you require secure connections, trusted contexts improve
performance because you do not have to get new connections.

Example

The following example establishes a trusted connection and switches the user on
the same connection.
def trusted_connection(database,hostname,port,auth_user,auth_pass,tc_user,tc_pass)

dsn = "DATABASE=#{database};HOSTNAME=#{hostname};PORT=#{port};PROTOCOL=TCPIP;UID=#{auth_user};PWD=#{auth_pass};"
conn_options = {IBM_DB::SQL_ATTR_USE_TRUSTED_CONTEXT => IBM_DB::SQL_TRUE}
tc_options = {IBM_DB::SQL_ATTR_TRUSTED_CONTEXT_USERID => tc_user, IBM_DB::SQL_ATTR_TRUSTED_CONTEXT_PASSWORD => tc_pass}
tc_conn = IBM_DB.connect dsn, '', '', conn_options
if tc_conn

puts "Trusted connection established successfully."
val = IBM_DB.get_option tc_conn, IBM_DB::SQL_ATTR_USE_TRUSTED_CONTEXT, 1
if val

userBefore = IBM_DB.get_option tc_conn, IBM_DB::SQL_ATTR_TRUSTED_CONTEXT_USERID, 1
#do some work as user 1
#....
#....
#switch the user
result = IBM_DB.set_option tc_conn, tc_options, 1
userAfter = IBM_DB.get_option tc_conn, IBM_DB::SQL_ATTR_TRUSTED_CONTEXT_USERID, 1
if userBefore != userAfter

puts "User has been switched."
#do some work as user 2
#....
#....

end
end
IBM_DB.close tc_conn

else
puts "Attempt to connect failed due to: #{IBM_DB.conn_errormsg}"

end
end

IBM_DB Rails adapter dependencies and consequences
The IBM_DB adapter (ibm_db_adapter.rb) has a direct dependency on the IBM_DB
driver, which uses IBM Data Server Driver for ODBC and CLI to connect to IBM
data servers. The IBM Call Level Interface (CLI) is a callable SQL interface to IBM
data servers, which is Open Database Connectivity (ODBC) compliant.

This dependency has several ramifications for the IBM_DB adapter and driver.
v Installation of IBM Data Server Driver for ODBC and CLI, which meets the

IBM_DB requirement, is required.
IBM Data Server Driver for ODBC and CLI is included with a full DB2 database
install, or you can obtain it separately

Note: The IBM Data Server Driver for ODBC and CLI is included in the
following client packages:
– IBM Data Server Client
– IBM Data Server Runtime Client
– IBM Data Server Driver Package

v Driver behavior can be modified outside of a Rails application by using CLI
keywords.

Chapter 4. Developing Ruby on Rails applications 63

Certain transactional behavior can be altered outside the Rails application by
using these CLI keywords. For example, CLI keywords can be used to set the
current schema or alter transactional elements such as turning off autocommit
behavior. For more information about CLI keywords, see the following links:
For Version 9: http://publib.boulder.ibm.com/infocenter/db2luw/v9/
index.jsp?topic=/com.ibm.db2.udb.apdv.cli.doc/doc/r0007964.htm
For Version 9.5: http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/
com.ibm.db2.luw.apdv.cli.doc/doc/r0007964.html
For Version 9.7: http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/
com.ibm.db2.luw.apdv.cli.doc/doc/r0007964.html

v Any diagnostic gathering requires CLI driver tracing.
Because all requests through the IBM_DB driver are implemented through IBM
Data Server Driver for ODBC and CLI, the CLI trace facility can identify
problems for applications that use the IBM_DB adapter and driver.
A CLI trace captures all of the API calls made by an application to the IBM Data
Server Driver for ODBC and CLI (including all input parameters), and it
captures all of the values returned from the driver to the application. It is an
interface trace that captures how an application interacts with the IBM Data
Server Driver for ODBC and CLI and offers information about the inner
workings of the driver.

The IBM_DB Ruby driver and Rails adapter are not supported
on JRuby

The IBM_DB adapter is not supported on JRuby.

The IBM_DB adapter is not supported on JRuby because (as stated in the JRuby
Wiki, "Getting Started"): "Many Gems will work fine in JRuby, however some
Gems build native C libraries as part of their install process. These Gems will not
work in JRuby unless the Gem has also provided a Java™ equivalent to the native
library." For more information, see http://kenai.com/projects/jruby/pages/
GettingStarted.

The IBM_DB adapter relies on the IBM_DB Ruby driver (C extension) and the IBM
Data Server Driver for ODBC and CLI to access databases on IBM data servers.
Alternatively, you can either use the regular C implementation of Ruby, or use
JDBC_adapter to access databases.

ActiveRecord-JDBC versus IBM_DB adapter
Update 0.6.0 and later of the IBM_DB gem provides a slightly different handling of
the required numeric values quoting.

While the previous version of the adapter was attempting to screen out such usage
of quotation marks on numeric values to conform to DB2 data server expectations
on different platforms, the new implementation replaces the workaround with a
permanent fix in the IBM data server client. This not only enables IBM data servers
across platforms but provides a more reliable handling of all Rails APIs that could
escape previous screening. The workaround provided by the previous version of
the adapter is by its nature quite brittle, due to fluid developments in the Rails
framework components (ActiveRecord). It is also known that certain Rails APIs
managed to escape the screening of those overridden methods, so the workaround
used in the ActiveRecord-JDBC adapter might require handling of some additional
cases.

64 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.udb.apdv.cli.doc/doc/r0007964.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.udb.apdv.cli.doc/doc/r0007964.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.apdv.cli.doc/doc/r0007964.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/topic/com.ibm.db2.luw.apdv.cli.doc/doc/r0007964.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.apdv.cli.doc/doc/r0007964.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.apdv.cli.doc/doc/r0007964.html
http://kenai.com/projects/jruby/pages/GettingStarted
http://kenai.com/projects/jruby/pages/GettingStarted

The JRuby runtime does not benefit from the same fix due to its inner specific
interaction with the data servers. DB2 for IBM i does not exhibit this issue (fixed in
V5R3 and V5R4) and the same is true regarding IBM Informix Dynamic Server. For
the time being, until JRuby and ActiveRecord-JDBC adapter matures, the best
alternative is to use the "classic Ruby" (C implementation) and the IBM_DB
adapter/driver. A fix in the ActiveRecord-JDBC adapter could also be considered,
which could emulate the previous handling that the IBM_DB adapter was
providing.

Heap size considerations with DB2 on Rails
Rails applications on DB2 require the applheapsz database configuration parameter
to be set to values above 1024.

You must set this parameter for each database for which you will be running DB2
on Rails applications. Use the following command to update the applheapsz
parameter:
db2 update db cfg for database_name using APPLHEAPSZ 1024

To enable this parameter, you must restart your DB2 instance.

Chapter 4. Developing Ruby on Rails applications 65

66 Developing Perl, PHP, Python, and Ruby on Rails Applications

Appendix A. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:
v DB2 Information Center

– Topics (Task, concept and reference topics)
– Help for DB2 tools
– Sample programs
– Tutorials

v DB2 books
– PDF files (downloadable)
– PDF files (from the DB2 PDF DVD)
– printed books

v Command line help
– Command help
– Message help

Note: The DB2 Information Center topics are updated more frequently than either
the PDF or the hardcopy books. To get the most current information, install the
documentation updates as they become available, or refer to the DB2 Information
Center at ibm.com.

You can access additional DB2 technical information such as technotes, white
papers, and IBM Redbooks® publications online at ibm.com. Access the DB2
Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for
how to improve the DB2 documentation, send an e-mail to db2docs@ca.ibm.com.
The DB2 documentation team reads all of your feedback, but cannot respond to
you directly. Provide specific examples wherever possible so that we can better
understand your concerns. If you are providing feedback on a specific topic or
help file, include the topic title and URL.

Do not use this e-mail address to contact DB2 Customer Support. If you have a
DB2 technical issue that the documentation does not resolve, contact your local
IBM service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications
Center at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.
English and translated DB2 Version 9.7 manuals in PDF format can be downloaded
from www.ibm.com/support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be
available in your country or region.

© Copyright IBM Corp. 2006, 2010 67

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

The form number increases each time a manual is updated. Ensure that you are
reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF
or the hard-copy books.

Table 16. DB2 technical information

Name Form Number Available in print Last updated

Administrative API
Reference

SC27-2435-02 Yes September, 2010

Administrative Routines
and Views

SC27-2436-02 No September, 2010

Call Level Interface
Guide and Reference,
Volume 1

SC27-2437-02 Yes September, 2010

Call Level Interface
Guide and Reference,
Volume 2

SC27-2438-02 Yes September, 2010

Command Reference SC27-2439-02 Yes September, 2010

Data Movement Utilities
Guide and Reference

SC27-2440-00 Yes August, 2009

Data Recovery and High
Availability Guide and
Reference

SC27-2441-02 Yes September, 2010

Database Administration
Concepts and
Configuration Reference

SC27-2442-02 Yes September, 2010

Database Monitoring
Guide and Reference

SC27-2458-02 Yes September, 2010

Database Security Guide SC27-2443-01 Yes November, 2009

DB2 Text Search Guide SC27-2459-02 Yes September, 2010

Developing ADO.NET
and OLE DB
Applications

SC27-2444-01 Yes November, 2009

Developing Embedded
SQL Applications

SC27-2445-01 Yes November, 2009

Developing Java
Applications

SC27-2446-02 Yes September, 2010

Developing Perl, PHP,
Python, and Ruby on
Rails Applications

SC27-2447-01 No September, 2010

Developing User-defined
Routines (SQL and
External)

SC27-2448-01 Yes November, 2009

Getting Started with
Database Application
Development

GI11-9410-01 Yes November, 2009

Getting Started with
DB2 Installation and
Administration on Linux
and Windows

GI11-9411-00 Yes August, 2009

68 Developing Perl, PHP, Python, and Ruby on Rails Applications

Table 16. DB2 technical information (continued)

Name Form Number Available in print Last updated

Globalization Guide SC27-2449-00 Yes August, 2009

Installing DB2 Servers GC27-2455-02 Yes September, 2010

Installing IBM Data
Server Clients

GC27-2454-01 No September, 2010

Message Reference
Volume 1

SC27-2450-00 No August, 2009

Message Reference
Volume 2

SC27-2451-00 No August, 2009

Net Search Extender
Administration and
User's Guide

SC27-2469-02 No September, 2010

Partitioning and
Clustering Guide

SC27-2453-01 Yes November, 2009

pureXML Guide SC27-2465-01 Yes November, 2009

Query Patroller
Administration and
User's Guide

SC27-2467-00 No August, 2009

Spatial Extender and
Geodetic Data
Management Feature
User's Guide and
Reference

SC27-2468-01 No September, 2010

SQL Procedural
Languages: Application
Enablement and Support

SC27-2470-02 Yes September, 2010

SQL Reference, Volume 1 SC27-2456-02 Yes September, 2010

SQL Reference, Volume 2 SC27-2457-02 Yes September, 2010

Troubleshooting and
Tuning Database
Performance

SC27-2461-02 Yes September, 2010

Upgrading to DB2
Version 9.7

SC27-2452-02 Yes September, 2010

Visual Explain Tutorial SC27-2462-00 No August, 2009

What's New for DB2
Version 9.7

SC27-2463-02 Yes September, 2010

Workload Manager
Guide and Reference

SC27-2464-02 Yes September, 2010

XQuery Reference SC27-2466-01 No November, 2009

Table 17. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

Installing and
Configuring DB2
Connect Personal Edition

SC27-2432-02 Yes September, 2010

Installing and
Configuring DB2
Connect Servers

SC27-2433-02 Yes September, 2010

Appendix A. Overview of the DB2 technical information 69

Table 17. DB2 Connect-specific technical information (continued)

Name Form Number Available in print Last updated

DB2 Connect User's
Guide

SC27-2434-02 Yes September, 2010

Table 18. Information Integration technical information

Name Form Number Available in print Last updated

Information Integration:
Administration Guide for
Federated Systems

SC19-1020-02 Yes August, 2009

Information Integration:
ASNCLP Program
Reference for Replication
and Event Publishing

SC19-1018-04 Yes August, 2009

Information Integration:
Configuration Guide for
Federated Data Sources

SC19-1034-02 No August, 2009

Information Integration:
SQL Replication Guide
and Reference

SC19-1030-02 Yes August, 2009

Information Integration:
Introduction to
Replication and Event
Publishing

GC19-1028-02 Yes August, 2009

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all
countries or regions. You can always order printed DB2 books from your local IBM
representative. Keep in mind that some softcopy books on the DB2 PDF
Documentation DVD are unavailable in print. For example, neither volume of the
DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF
Documentation DVD can be ordered for a fee from IBM. Depending on where you
are placing your order from, you may be able to order books online, from the IBM
Publications Center. If online ordering is not available in your country or region,
you can always order printed DB2 books from your local IBM representative. Note
that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the
DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r7.

To order printed DB2 books:
v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access
publication ordering information and then follow the ordering instructions for
your location.

v To order printed DB2 books from your local IBM representative:

70 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

1. Locate the contact information for your local representative from one of the
following Web sites:
– The IBM directory of world wide contacts at www.ibm.com/planetwide
– The IBM Publications Web site at http://www.ibm.com/shop/

publications/order. You will need to select your country, region, or
language to the access appropriate publications home page for your
location. From this page, follow the "About this site" link.

2. When you call, specify that you want to order a DB2 publication.
3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical
library in hardcopy or PDF format” on page 67.

Displaying SQL state help from the command line processor
DB2 products return an SQLSTATE value for conditions that can be the result of an
SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state
class codes.

To start SQL state help, open the command line processor and enter:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the
first two digits of the SQL state.
For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help
for the 08 class code.

Accessing different versions of the DB2 Information Center

For DB2 Version 9.8 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r8/.

For DB2 Version 9.7 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r7/.

For DB2 Version 9.5 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r5.

For DB2 Version 9.1 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

For DB2 Version 8 topics, go to the DB2 Information Center URL at:
http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

Displaying topics in your preferred language in the DB2 Information
Center

The DB2 Information Center attempts to display topics in the language specified in
your browser preferences. If a topic has not been translated into your preferred
language, the DB2 Information Center displays the topic in English.
v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...
button. The Language Preferences window opens.

Appendix A. Overview of the DB2 technical information 71

http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

2. Ensure your preferred language is specified as the first entry in the list of
languages.
– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the
fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the
Move Up button until the language is first in the list of languages.

3. Refresh the page to display the DB2 Information Center in your preferred
language.

v To display topics in your preferred language in a Firefox or Mozilla browser:
1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences
window.

2. Ensure your preferred language is specified as the first entry in the list of
languages.
– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.
– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Refresh the page to display the DB2 Information Center in your preferred

language.

On some browser and operating system combinations, you must also change the
regional settings of your operating system to the locale and language of your
choice.

Updating the DB2 Information Center installed on your computer or
intranet server

A locally installed DB2 Information Center must be updated periodically.

A DB2 Version 9.7 Information Center must already be installed. For details, see
the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in
Installing DB2 Servers. All prerequisites and restrictions that applied to installing
the Information Center also apply to updating the Information Center.

An existing DB2 Information Center can be updated automatically or manually:
v Automatic updates - updates existing Information Center features and

languages. An additional benefit of automatic updates is that the Information
Center is unavailable for a minimal period of time during the update. In
addition, automatic updates can be set to run as part of other batch jobs that run
periodically.

v Manual updates - should be used when you want to add features or languages
during the update process. For example, a local Information Center was
originally installed with both English and French languages, and now you want
to also install the German language; a manual update will install German, as
well as, update the existing Information Center features and languages.
However, a manual update requires you to manually stop, update, and restart
the Information Center. The Information Center is unavailable during the entire
update process.

72 Developing Perl, PHP, Python, and Ruby on Rails Applications

This topic details the process for automatic updates. For manual update
instructions, see the “Manually updating the DB2 Information Center installed on
your computer or intranet server” topic.

To automatically update the DB2 Information Center installed on your computer or
intranet server:
1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,
the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the ic-update script:

ic-update

2. On Windows operating systems,
a. Open a command window.
b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2
Information Center\Version 9.7 directory, where <Program Files>
represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the ic-update.bat file:

ic-update.bat

The DB2 Information Center restarts automatically. If updates were available, the
Information Center displays the new and updated topics. If Information Center
updates were not available, a message is added to the log. The log file is located in
doc\eclipse\configuration directory. The log file name is a randomly generated
number. For example, 1239053440785.log.

Manually updating the DB2 Information Center installed on your
computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install
documentation updates from IBM.

Updating your locally-installed DB2 Information Center manually requires that you:
1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone
mode prevents other users on your network from accessing the Information
Center, and allows you to apply updates. The Workstation version of the DB2
Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates
that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center
updates on a machine that is not connected to the internet, mirror the update
site to a local file system using a machine that is connected to the internet and
has the DB2 Information Center installed. If many users on your network will be
installing the documentation updates, you can reduce the time required for
individuals to perform the updates by also mirroring the update site locally
and creating a proxy for the update site.

Appendix A. Overview of the DB2 technical information 73

If update packages are available, use the Update feature to get the packages.
However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information Center
on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later
in this section must be run as an administrator. To open a command prompt or
graphical tool with full administrator privileges, right-click the shortcut and then
select Run as administrator.

To update the DB2 Information Center installed on your computer or intranet server:
1. Stop the DB2 Information Center.
v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Stop.
v On Linux, enter the following command:

/etc/init.d/db2icdv97 stop

2. Start the Information Center in stand-alone mode.
v On Windows:

a. Open a command window.
b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the
Program_Files\IBM\DB2 Information Center\Version 9.7 directory,
where Program_Files represents the location of the Program Files
directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the help_start.bat file:

help_start.bat

v On Linux:
a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information
Center.

3. Click the Update button (). (JavaScript™ must be enabled in your browser.)
On the right panel of the Information Center, click Find Updates. A list of
updates for existing documentation displays.

4. To initiate the installation process, check the selections you want to install, then
click Install Updates.

5. After the installation process has completed, click Finish.
6. Stop the stand-alone Information Center:
v On Windows, navigate to the installation directory's doc\bin directory, and

run the help_end.bat file:
help_end.bat

Note: The help_end batch file contains the commands required to safely stop
the processes that were started with the help_start batch file. Do not use
Ctrl-C or any other method to stop help_start.bat.

74 Developing Perl, PHP, Python, and Ruby on Rails Applications

v On Linux, navigate to the installation directory's doc/bin directory, and run
the help_end script:
help_end

Note: The help_end script contains the commands required to safely stop the
processes that were started with the help_start script. Do not use any other
method to stop the help_start script.

7. Restart the DB2 Information Center.
v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Start.
v On Linux, enter the following command:

/etc/init.d/db2icdv97 start

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials
The DB2 tutorials help you learn about various aspects of DB2 products. Lessons
provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at
http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any
prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML” in pureXML Guide
Set up a DB2 database to store XML data and to perform basic operations
with the native XML data store.

“Visual Explain” in Visual Explain Tutorial
Analyze, optimize, and tune SQL statements for better performance using
Visual Explain.

DB2 troubleshooting information
A wide variety of troubleshooting and problem determination information is
available to assist you in using DB2 database products.

DB2 documentation
Troubleshooting information can be found in the Troubleshooting and Tuning
Database Performance or the Database fundamentals section of the DB2
Information Center. There you will find information about how to isolate
and identify problems using DB2 diagnostic tools and utilities, solutions to
some of the most common problems, and other advice on how to solve
problems you might encounter with your DB2 database products.

DB2 Technical Support Web site
Refer to the DB2 Technical Support Web site if you are experiencing
problems and want help finding possible causes and solutions. The
Technical Support site has links to the latest DB2 publications, TechNotes,

Appendix A. Overview of the DB2 technical information 75

http://publib.boulder.ibm.com/infocenter/db2luw/v9

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and
other resources. You can search through this knowledge base to find
possible solutions to your problems.

Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/support/db2_9/

Terms and Conditions
Permissions for the use of these publications is granted subject to the following
terms and conditions.

Personal use: You may reproduce these Publications for your personal, non
commercial use provided that all proprietary notices are preserved. You may not
distribute, display or make derivative work of these Publications, or any portion
thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications
solely within your enterprise provided that all proprietary notices are preserved.
You may not make derivative works of these Publications, or reproduce, distribute
or display these Publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the Publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the Publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

76 Developing Perl, PHP, Python, and Ruby on Rails Applications

http://www.ibm.com/software/data/db2/support/db2_9/
http://www.ibm.com/software/data/db2/support/db2_9/

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
Information about non-IBM products is based on information available at the time
of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 2006, 2010 77

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Canada Limited
U59/3600
3600 Steeles Avenue East
Markham, Ontario L3R 9Z7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems, and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

78 Developing Perl, PHP, Python, and Ruby on Rails Applications

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies
v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.
v Java and all Java-based trademarks and logos are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.
v UNIX is a registered trademark of The Open Group in the United States and

other countries.
v Intel®, Intel logo, Intel Inside®, Intel Inside logo, Intel® Centrino®, Intel Centrino

logo, Celeron®, Intel® Xeon®, Intel SpeedStep®, Itanium®, and Pentium® are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

v Microsoft®, Windows, Windows NT®, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Appendix B. Notices 79

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

80 Developing Perl, PHP, Python, and Ruby on Rails Applications

Index

A
ActiveRecord-JDBC adapter

IBM_DB adapter comparison 64
application design

prototyping in Perl 1
autocommit function (ibm_db) 52

B
bind_param function (ibm_db)

calling 46, 49
books

ordering 70

C
CALL statement

PHP 21, 35
Python 49

client_info function (ibm_db) 54
close function (ibm_db)

fetching from result sets 48
retrieving multiple result sets 51

column_privileges function (ibm_db) 54
columns function (ibm_db) 54
commit function (ibm_db) 52
commit modes

PHP applications 24, 37
Python applications 52

conn_error function (ibm_db) 53
conn_errormsg function (ibm_db) 53
connect function (ibm_db) 44
connect method (Perl DBI) 2
connections

Rails applications 62

D
DB2 Information Center

languages 71
updating 72, 73
versions 71

db2_autocommit function (ibm_db2) 24
db2_bind_param function (ibm_db2)

calling stored procedures 21
executing SQL statements with variable input 16
inserting large objects 18
preparing SQL statements with variable input 16

db2_client_info function (ibm_db2) 26
db2_close function (ibm_db2) 19
db2_column_privileges function (ibm_db2) 26
db2_columns function (ibm_db2) 26
db2_commit function (ibm_db2) 24
db2_conn_error function (ibm_db2) 25
db2_conn_errormsg function (ibm_db2) 25
db2_connect function (ibm_db2) 13
db2_exec function (ibm_db2) 15
db2_execute function (ibm_db2)

calling stored procedures 21

db2_execute function (ibm_db2) (continued)
executing SQL statements 16
inserting large objects 18

db2_fetch_array function (ibm_db2)
fetching data from a result set 19
retrieving multiple result sets 22

db2_fetch_assoc function (ibm_db2)
fetching data from a result set 19
retrieving multiple result sets 22

db2_fetch_both function (ibm_db2)
fetching data from a result set 19
retrieving multiple result sets 22

db2_fetch_object function (ibm_db2) 21
fetching data from a result set 19

db2_fetch_row function (ibm_db2)
fetching data from a result set 19
retrieving multiple result sets 22

db2_foreign_keys function (ibm_db2) 26
db2_next_result function (ibm_db2)

retrieving multiple result sets 22
db2_pconnect function (ibm_db2) 13
db2_prepare function (ibm_db2)

calling stored procedures 21
inserting large objects 18
preparing SQL statements 16

db2_primary_keys function (ibm_db2) 26
db2_procedure_columns function (ibm_db2) 26
db2_procedures function (ibm_db2) 26
db2_result function (ibm_db2) 19
db2_rollback function (ibm_db2) 24
db2_server_info function (ibm_db2) 26
db2_special_columns function (ibm_db2) 26
db2_statistics function (ibm_db2) 26
db2_stmt_error function (ibm_d2b) 25
db2_stmt_errormsg function (ibm_db2) 25
db2_table_privileges function (ibm_db2) 26
DB2::DB2 driver

downloads 1
pureXML support 5
resources 1

disconnect method (Perl DBI) 2
Django

IBM data server environment setup 42
documentation

overview 67
PDF files 67
printed 67
terms and conditions of use 76

dynamic SQL
Perl support 1

E
err method 4
errors

Perl 4
PHP 25, 38
Python 53

errstr method 4
exec_immediate function (ibm_db) 45

© Copyright IBM Corp. 2006, 2010 81

execute function (ibm_db)
calling stored procedures 49
executing SQL statements with variable input 46

execute method (Perl DBI) 3

F
fetch_assoc function (ibm_db)

fetching columns 48
fetching multiple result sets 51
fetching rows 48

fetch_both function (ibm_db)
fetching columns 48
fetching multiple result sets 51
fetching rows 48

fetch_row function (ibm_db)
fetching columns 48
fetching multiple result sets 51
fetching rows 48

fetch_tuple function (ibm_db)
fetching columns 48
fetching multiple result sets 51
fetching rows 48

fetchrow method (Perl DBI) 3
foreign_keys function (ibm_db) 54
functions

PHP
db2_autocommit 24
db2_bind_param 16, 18, 21
db2_client_info 26
db2_close 19, 22
db2_column_privileges 26
db2_columns 26
db2_commit 24
db2_conn_error 25
db2_conn_errormsg 25
db2_connect 13
db2_exec 15
db2_execute 16, 18, 21
db2_fetch_array 19, 22
db2_fetch_assoc 19, 22
db2_fetch_both 19, 22
db2_fetch_object 19, 21
db2_fetch_row 19, 22
db2_foreign_keys 26
db2_next_result 22
db2_pconnect 13
db2_prepare 16, 18, 21
db2_primary_keys 26
db2_procedure_columns 26
db2_procedures 26
db2_result 19
db2_rollback 24
db2_server_info 26
db2_special_columns 26
db2_statistics 26
db2_stmt_error 25
db2_stmt_errormsg 25
db2_table_privileges 26

Python
ibm_db.autocommit 52
ibm_db.bind_param 46, 49
ibm_db.client_info 54
ibm_db.close 48, 51
ibm_db.column_privileges 54
ibm_db.columns 54
ibm_db.commit 52

functions (continued)
Python (continued)

ibm_db.conn_error 53
ibm_db.conn_errormsg 53
ibm_db.connect 44
ibm_db.exec_immediate 45
ibm_db.execute 46, 49
ibm_db.fetch_assoc 48, 51
ibm_db.fetch_both 48, 51
ibm_db.fetch_row 48, 51
ibm_db.fetch_tuple 48, 51
ibm_db.foreign_keys 54
ibm_db.next_result 51
ibm_db.pconnect 44
ibm_db.prepare 46, 49
ibm_db.primary_keys 54
ibm_db.procedure_columns 54
ibm_db.procedures 54
ibm_db.result 48
ibm_db.rollback 52
ibm_db.server_info 54
ibm_db.special_columns 54
ibm_db.statistics 54
ibm_db.stmt_error 53
ibm_db.stmt_errormsg 53
ibm_db.table_privileges 54

H
help

configuring language 71
SQL statements 71

host variables
Perl 3

I
ibm_db API

details 41
overview 44

IBM_DB Ruby driver and Rails adapter
ActiveRecord-JDBC adapter comparison 64
dependencies 63
details 57
environment setup 58
installation verification

DB2 Express-C 60
IBM data servers 61

integrated development environment setup 58
JRuby support 64
Ruby gem installation 58
trusted contexts 63

ibm_db_dbi API
details 41

ibm_db_sa adaptor
details 41

ibm_db2 API
details 9
PHP application development 13
trusted contexts 14

J
JRuby

IBM_DB Ruby driver and Rails adapter 64

82 Developing Perl, PHP, Python, and Ruby on Rails Applications

L
large objects (LOBs)

fetching
PHP 21, 35

inserting
PHP 18, 32

M
metadata

retrieval
PHP 26
Python 54

methods
Perl

connect 2
disconnect 2
err 4
errstr 4
execute 3
fetchrow 3
prepare 3
state 4

PHP
PDO::beginTransaction 37
PDO::commit 37
PDO::exec 30
PDO::prepare 31, 32, 35
PDO::query 30
PDO::rollBack 37
PDOStatement::bindColumn 35
PDOStatement::bindParam 31, 32, 35
PDOStatement::execute 31, 32, 35
PDOStatement::fetch 33, 35, 37
PDOStatement::fetchAll 33, 37
PDOStatement::fetchColumn 33
PDOStatement::nextRowset 37

N
next_result function (ibm_db) 51
notices 77

O
ordering DB2 books 70

P
parameter markers

Perl 4
pconnect function (ibm_db) 44
pdo_ibm

details 9
developing PHP applications 29

PDO::beginTransaction method (PDO) 37
PDO::commit method (PDO) 37
PDO::exec method (PDO) 30
PDO::prepare method (PDO) 31, 32, 35
PDO::query method (PDO) 30
PDO::rollBack method (PDO) 37
PDOStatement::bindColumn method (PDO) 35
PDOStatement::bindParam method (PDO) 31, 32, 35
PDOStatement::execute method (PDO) 31, 32, 35
PDOStatement::fetch method (PDO) 33, 35, 37

PDOStatement::fetchAll method (PDO) 33, 37
PDOStatement::fetchColumn method (PDO) 33
PDOStatement::nextRowset method (PDO) 37
Perl

connecting to a database 2
documentation 1
downloads 1
drivers 1
errors 4
fetching rows 3
methods

connect 2
disconnect 2
err 4
errstr 4
execute 3
fetchrow 3
prepare 3
state 4

overview 1
parameter markers 4
problem reporting 1
pureXML support 5
restrictions 5
sample programs 7
SQLCODEs 4
SQLSTATEs 4

PHP
application development 9, 13
connecting to database 13, 29
database metadata retrieval 26
developing applications with PDO 29
documentation 10
downloads 10
error handling 25, 38
extensions for IBM data servers 9
fetching large objects 21, 35
fetching rows 19, 33
functions

db2_autocommit 24
db2_bind_param 21
db2_client_info 26
db2_close 19, 22
db2_column_privileges 26
db2_columns 26
db2_commit 24
db2_conn_error 25
db2_conn_errormsg 25
db2_connect 13
db2_exec 15
db2_execute 21
db2_fetch_array 19, 22
db2_fetch_assoc 19, 22
db2_fetch_both 19, 22
db2_fetch_object 19, 21
db2_fetch_row 19, 22
db2_foreign_keys 26
db2_next_result 22
db2_pconnect 13
db2_prepare 21
db2_primary_keys 26
db2_procedure_columns 26
db2_procedures 26
db2_result 19
db2_rollback 24
db2_server_info 26
db2_special_columns 26

Index 83

PHP (continued)
functions (continued)

db2_statistics 26
db2_stmt_error 25
db2_stmt_errormsg 25
db2_table_privileges 26

IBM data server environment setup (Windows) 10
ibm_db2 API

connecting to a database 13
overview 13

large objects 18, 32
methods

PDO::beginTransaction 37
PDO::commit 37
PDO::exec 30
PDO::prepare 31, 32, 35
PDO::query 30
PDO::rollBack 37
PDOStatement::bindColumn 35
PDOStatement::bindParam 31, 32, 35
PDOStatement::execute 31, 32, 35
PDOStatement::fetch 33, 35, 37
PDOStatement::fetchAll 33, 37
PDOStatement::fetchColumn 33
PDOStatement::nextRowset 37

PDO_IBM extension
connecting to database 29
issuing SQL statements 30

procedures 21, 35
setup

Linux 11
overview 10
UNIX 11

SQL statements 15, 16, 18, 19, 30, 31, 32, 33, 35
stored procedures

calling 21, 35
retrieving results 22, 37

transactions 24, 37
trusted contexts

overview 14
prepare function (ibm_db) 46, 49
prepare method (Perl DBI) 3
primary_keys function (ibm_db) 54
problem determination

information available 75
tutorials 75

procedure_columns function (ibm_db) 54
procedures

PHP 21, 35
Python 49

procedures function (ibm_db) 54
pureXML

DB2::DB2 driver 5
Python

API documentation 42
application development 41, 44
connecting to database 44
database metadata retrieval 54
downloading extensions 42
error handling 53
extensions for IBM data servers 41
fetching rows 48
functions

ibm_db.autocommit 52
ibm_db.bind_param 46, 49
ibm_db.client_info 54
ibm_db.close 48, 51

Python (continued)
functions (continued)

ibm_db.column_privileges 54
ibm_db.columns 54
ibm_db.commit 52
ibm_db.conn_error 53
ibm_db.conn_errormsg 53
ibm_db.connect 44
ibm_db.exec_immediate 45
ibm_db.execute 46, 49
ibm_db.fetch_assoc 48, 51
ibm_db.fetch_both 48, 51
ibm_db.fetch_row 48, 51
ibm_db.fetch_tuple 48, 51
ibm_db.foreign_keys 54
ibm_db.next_result 51
ibm_db.pconnect 44
ibm_db.prepare 46, 49
ibm_db.primary_keys 54
ibm_db.procedure_columns 54
ibm_db.procedures 54
ibm_db.result 48
ibm_db.rollback 52
ibm_db.server_info 54
ibm_db.special_columns 54
ibm_db.statistics 54
ibm_db.stmt_error 53
ibm_db.stmt_errormsg 53
ibm_db.table_privileges 54

IBM data server environment setup 42
ibm_db 44
procedures 49
SQL statements 45, 46
stored procedures

calling 49
retrieving results 51

transactions 52

R
RadRails

IBM data server on Rails setup 58
Rails adapter

dependencies 63
details 57
getting started 58
IBM_DB adapter and driver installation 58
installation verification

DB2 Express-C 60
IBM data servers 61

integrated development environment setup 58
JRuby support 64

Rails applications
connection configuration 62

result function (ibm_db) 48
rollback function (ibm_db) 52
rows

fetching
Perl 3
PHP 19, 33
Python 48

Ruby driver
details 57
getting started 58
IBM_DB adapter and driver installation 58
installation verification

DB2 Express-C 60

84 Developing Perl, PHP, Python, and Ruby on Rails Applications

Ruby driver (continued)
installation verification (continued)

IBM data servers 61
integrated development environment setup 58
JRuby support 64
trusted contexts 63

Ruby on Rails
heap size issues 65

S
samples

Perl 7
server_info function (ibm_db) 54
special_columns function (ibm_db) 54
SQL statements

help
displaying 71

PHP 15, 16, 18, 19, 30, 31, 32, 33, 35
Python 45, 46

SQLAlchemy
adapter for IBM data servers 41
downloading extension 42
IBM data server environment setup 42

state method 4
static SQL

unsupported in Perl 5
statistics function (ibm_db) 54
stmt_error function (ibm_db) 53
stmt_errormsg function (ibm_db) 53
stored procedures

PHP
calling 21, 35
retrieving results 22, 37

Python
calling 49
retrieving results 51

T
table_privileges function (ibm_db) 54
terms and conditions

publications 76
transactions

PHP 24, 37
Python 52

troubleshooting
online information 75
tutorials 75

trusted contexts
IBM_DB Ruby driver support

details 63
PHP applications 14

tutorials
list 75
problem determination 75
troubleshooting 75
Visual Explain 75

U
updates

DB2 Information Center 72, 73

Index 85

86 Developing Perl, PHP, Python, and Ruby on Rails Applications

����

Printed in USA

SC27-2447-01

Sp
in
e
in
fo
rm
at
io
n:

IB
M

DB
2

9.
7

fo
rL

in
ux

,U
NI

X,
an

d
W

in
do

w
s

Ve
rs

io
n

9
Re

le
as

e
7

De
ve

lo
pi

ng
Pe

rl,
PH

P,
Py

th
on

,a
nd

Ru
by

on
Ra

ils
Ap

pl
ic

at
io

ns
�
�

�

	Contents
	Chapter 1. Developing Perl Applications
	Programming considerations for Perl
	Perl downloads and related resources
	Database connections in Perl
	Fetching results in Perl
	Parameter markers in Perl
	SQLSTATE and SQLCODE variables in Perl
	Perl Restrictions
	pureXML and Perl
	Running Perl sample programs
	Executing routines from Perl applications

	Chapter 2. Developing PHP applications
	PHP application development for IBM data servers
	PHP downloads and related resources
	Setting up the PHP environment
	Setting up the PHP environment on Windows
	Setting up the PHP environment on Linux or UNIX

	Application development in PHP (ibm_db2)
	Connecting to an IBM data server database in PHP (ibm_db2)
	Executing SQL statements in PHP (ibm_db2)
	Reading query result sets
	Calling stored procedures in PHP (ibm_db2)
	Commit modes in PHP applications (ibm_db2)
	Error-handling functions in PHP applications (ibm_db2)
	Database metadata retrieval functions in PHP (ibm_db2)

	Application development in PHP (PDO)
	Connecting to an IBM data server database with PHP (PDO)
	Executing SQL statements in PHP (PDO)
	Reading query result sets
	Calling stored procedures in PHP (PDO)
	Commit modes in PHP (PDO)
	Handling errors and warnings in PHP (PDO)

	Chapter 3. Developing Python applications
	Python, SQLAlchemy and Django Framework application development for IBM data servers
	Python downloads and related resources
	Setting up the Python environment for IBM data servers
	Application development in Python with ibm_db
	Connecting to an IBM data server database in Python
	Executing SQL statements in Python
	Fetching rows or columns from result sets in Python
	Calling stored procedures in Python
	Retrieving multiple result sets from a stored procedure in Python
	Commit modes in Python applications
	Error-handling functions in Python
	Database metadata retrieval functions in Python

	Chapter 4. Developing Ruby on Rails applications
	The IBM_DB Ruby driver and Rails adapter
	Getting started with IBM data servers on Rails
	Setting up an integrated development environment for Rails

	Installing the IBM_DB adapter and driver as a Ruby gem
	Verifying installation of the IBM_DB gem with DB2 Express-C
	Verifying installation with IBM data servers on Rails applications

	Configuring Rails application connections to IBM data servers
	IBM Ruby driver and trusted contexts
	IBM_DB Rails adapter dependencies and consequences
	The IBM_DB Ruby driver and Rails adapter are not supported on JRuby
	ActiveRecord-JDBC versus IBM_DB adapter
	Heap size considerations with DB2 on Rails

	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U

