
DB2
for Linux, UNIX, and Windows

Call Level Interface Guide and Reference, Volume 2
Updated July, 2012

Version 9 Release 7

SC27-2438-03

���

DB2
for Linux, UNIX, and Windows

Call Level Interface Guide and Reference, Volume 2
Updated July, 2012

Version 9 Release 7

SC27-2438-03

���

Note
Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on
page 551.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected
by copyright law. The information contained in this publication does not include any product warranties, and any
statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.
v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU
(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1993, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this book ix

Chapter 1. CLI and ODBC function
summary 1
Unicode functions (CLI) 5
SQLAllocConnect function (CLI) - Allocate
connection handle 6
SQLAllocEnv function (CLI) - Allocate environment
handle 7
SQLAllocHandle function (CLI) - Allocate handle . . 7
SQLAllocStmt function (CLI) - Allocate a statement
handle 10
SQLBindCol function (CLI) - Bind a column to an
application variable or LOB locator 10
SQLBindFileToCol function (CLI) - Bind LOB file
reference to LOB column 16
SQLBindFileToParam function (CLI) - Bind LOB file
reference to LOB parameter 19
SQLBindParameter function (CLI) - Bind a
parameter marker to a buffer or LOB locator . . . 22
SQLBrowseConnect function (CLI) - Get required
attributes to connect to data source 36
SQLBulkOperations function (CLI) - Add, update,
delete or fetch a set of rows 41
SQLCancel function (CLI) - Cancel statement . . . 46
SQLCloseCursor function (CLI) - Close cursor and
discard pending results 48
SQLColAttribute function (CLI) - Return a column
attribute 50
SQLColAttributes function (CLI) - Get column
attributes 58
SQLColumnPrivileges function (CLI) - Get
privileges associated with the columns of a table . . 59
SQLColumns function (CLI) - Get column
information for a table. 63
SQLConnect function (CLI) - Connect to a data
source 69
SQLCopyDesc function (CLI) - Copy descriptor
information between handles 71
SQLCreateDb function (CLI) - Create a database . . 74
SQLCreatePkg 76
SQLDataSources function (CLI) - Get list of data
sources 77
SQLDescribeCol function (CLI) - Return a set of
attributes for a column 80
SQLDescribeParam function (CLI) - Return
description of a parameter marker 84
SQLDisconnect function (CLI) - Disconnect from a
data source 86
SQLDriverConnect function (CLI) - (Expanded)
Connect to a data source 88
SQLDropDb function (CLI) - Drop a database . . . 93
SQLEndTran function (CLI) - End transactions of a
connection or an environment 94
SQLError function (CLI) - Retrieve error information 98

SQLExecDirect function (CLI) - Execute a statement
directly 98
SQLExecute function (CLI) - Execute a statement 103
SQLExtendedBind function (CLI) - Bind an array of
columns 106
SQLExtendedFetch function (CLI) - Extended fetch
(fetch array of rows) 109
SQLExtendedPrepare function (CLI) - Prepare a
statement and set statement attributes 110
SQLExtendedProcedures function (CLI) - Get list of
procedure names 114
SQLExtendedProcedureColumns function (CLI) -
Get input/output parameter information for a
procedure 119
SQLFetch function (CLI) - Fetch next row 125
SQLFetchScroll function (CLI) - Fetch rowset and
return data for all bound columns 132

Cursor positioning rules for SQLFetchScroll()
(CLI) 138

SQLForeignKeys function (CLI) - Get the list of
foreign key columns 141
SQLFreeConnect function (CLI) - Free connection
handle. 145
SQLFreeEnv function (CLI) - Free environment
handle. 146
SQLFreeHandle function (CLI) - Free handle
resources 146
SQLFreeStmt function (CLI) - Free (or reset) a
statement handle 149
SQLGetConnectAttr function (CLI) - Get current
attribute setting 151
SQLGetConnectOption function (CLI) - Return
current setting of a connect option 154
SQLGetCursorName function (CLI) - Get cursor
name 154
SQLGetData function (CLI) - Get data from a
column 156
SQLGetDescField function (CLI) - Get single field
settings of descriptor record 162
SQLGetDescRec function (CLI) - Get multiple field
settings of descriptor record 166
SQLGetDiagField function (CLI) - Get a field of
diagnostic data 170
SQLGetDiagRec function (CLI) - Get multiple fields
settings of diagnostic record 174
SQLGetEnvAttr function (CLI) - Retrieve current
environment attribute value 177
SQLGetFunctions function (CLI) - Get functions 178
SQLGetInfo function (CLI) - Get general
information 180
SQLGetLength function (CLI) - Retrieve length of a
string value 210
SQLGetPosition function (CLI) - Return starting
position of string 212
SQLGetSQLCA function (CLI) - Get SQLCA data
structure 216

© Copyright IBM Corp. 1993, 2012 iii

SQLGetStmtAttr function (CLI) - Get current
setting of a statement attribute 216
SQLGetStmtOption function (CLI) - Return current
setting of a statement option 219
SQLGetSubString function (CLI) - Retrieve portion
of a string value 219
SQLGetTypeInfo function (CLI) - Get data type
information 222
SQLMoreResults function (CLI) - Determine if
there are more result sets 227
SQLNativeSql function (CLI) - Get native SQL text 229
SQLNumParams function (CLI) - Get number of
parameters in a SQL statement 230
SQLNextResult function (CLI) - Associate next
result set with another statement handle 232
SQLNumResultCols function (CLI) - Get number of
result columns 234
SQLParamData function (CLI) - Get next parameter
for which a data value is needed 236
SQLParamOptions function (CLI) - Specify an
input array for a parameter. 238
SQLPrepare function (CLI) - Prepare a statement 239
SQLPrimaryKeys function (CLI) - Get primary key
columns of a table 243
SQLProcedureColumns function (CLI) - Get
input/output parameter information for a
procedure 246
SQLProcedures function (CLI) - Get list of
procedure names 252
SQLPutData function (CLI) - Passing data value for
a parameter 256
SQLReloadConfig function (CLI) - Reload a
configuration property from the client
configuration file 259
SQLRowCount function (CLI) - Get row count . . 262
SQLSetColAttributes function (CLI) - Set column
attributes 264
SQLSetConnectAttr function (CLI) - Set connection
attributes 264
SQLSetConnection function (CLI) - Set connection
handle. 267
SQLSetConnectOption function (CLI) - Set
connection option 269
SQLSetCursorName function (CLI) - Set cursor
name 269
SQLSetDescField function (CLI) - Set a single field
of a descriptor record. 272
SQLSetDescRec function (CLI) - Set multiple
descriptor fields for a column or parameter data . 276
SQLSetEnvAttr function (CLI) - Set environment
attribute 280
SQLSetParam function (CLI) - Bind a parameter
marker to a buffer or LOB locator 281
SQLSetPos function (CLI) - Set the cursor position
in a rowset 282
SQLSetStmtAttr function (CLI) - Set options related
to a statement 289
SQLSetStmtOption function (CLI) - Set statement
option 293
SQLSpecialColumns function (CLI) - Get special
(row identifier) columns 294

SQLStatistics function (CLI) - Get index and
statistics information for a base table 298
SQLTablePrivileges function (CLI) - Get privileges
associated with a table 303
SQLTables function (CLI) - Get table information 307
SQLTransact function (CLI) - Transaction
management 312

Chapter 2. Return codes and
SQLSTATES for CLI. 313
CLI function return codes 313
SQLSTATES for CLI 314
Return codes for compound SQL (CLI) in CLI
applications 315

Chapter 3. CLI/ODBC configuration
keywords listing by category 317
db2cli.ini initialization file 322
AllowGetDataLOBReaccess CLI/ODBC
configuration keyword 325
AllowInterleavedGetData CLI/ODBC configuration
keyword 325
AltHostName CLI/ODBC configuration keyword 326
AltPort CLI/ODBC configuration keyword . . . 326
AppUsesLOBLocator CLI/ODBC configuration
keyword 327
AppendAPIName CLI/ODBC configuration
keyword 327
AppendForFetchOnly CLI/ODBC configuration
keyword 328
AppendRowColToErrorMessage CLI/ODBC
configuration keyword 328
ArrayInputChain CLI/ODBC configuration
keyword 329
AsyncEnable CLI/ODBC configuration keyword 330
Attach CLI/ODBC configuration keyword. . . . 330
Authentication CLI/ODBC configuration keyword 331
AutoCommit CLI/ODBC configuration keyword 332
BIDI CLI/ODBC configuration keyword 333
BitData CLI/ODBC configuration keyword . . . 333
BlockForNRows CLI/ODBC configuration
keyword 333
BlockLobs CLI/ODBC configuration keyword . . 334
CLIPkg CLI/ODBC configuration keyword . . . 335
CheckForFork CLI/ODBC configuration keyword 335
ClientAcctStr CLI/ODBC configuration keyword 336
ClientApplName CLI/ODBC configuration
keyword 336
ClientBuffersUnboundLOBS CLI/ODBC
configuration keyword 337
ClientEncAlg CLI/ODBC configuration keyword 337
ClientUserID CLI/ODBC configuration keyword 338
ClientWrkStnName CLI/ODBC configuration
keyword 339
ColumnwiseMRI CLI/ODBC configuration
keyword 339
CommitOnEOF CLI/ODBC configuration keyword 340
ConcurrentAccessResolution CLI/ODBC
configuration keyword 340
ConnectNode CLI/ODBC configuration keyword 341

iv Call Level Interface Guide and Reference, Volume 2

ConnectTimeout CLI/ODBC configuration
keyword 342
ConnectType CLI/ODBC configuration keyword 343
CurrentFunctionPath CLI/ODBC configuration
keyword 343
CurrentImplicitXMLParseOption CLI/ODBC
configuration keyword 344
CurrentMaintainedTableTypesForOpt CLI/ODBC
configuration keyword 344
CURRENTOPTIMIZATIONPROFILE CLI/ODBC
configuration keyword 345
CurrentPackagePath CLI/ODBC configuration
keyword 345
CurrentPackageSet CLI/ODBC configuration
keyword 346
CurrentRefreshAge CLI/ODBC configuration
keyword 346
CurrentSQLID CLI/ODBC configuration keyword 347
CurrentSchema CLI/ODBC configuration keyword 347
CursorHold CLI/ODBC configuration keyword 347
CursorTypes CLI/ODBC configuration keyword 348
DB2Degree CLI/ODBC configuration keyword . . 348
DB2Explain CLI/ODBC configuration keyword 349
DB2NETNamedParam CLI/ODBC configuration
keyword 350
DB2Optimization CLI/ODBC configuration
keyword 350
DBAlias CLI/ODBC configuration keyword . . . 351
DBName CLI/ODBC configuration keyword . . . 351
DSN CLI/ODBC configuration keyword 352
Database CLI/ODBC configuration keyword . . . 352
DateTimeStringFormat CLI/ODBC configuration
keyword 352
DecimalFloatRoundingMode CLI/ODBC
configuration keyword 353
DeferredPrepare CLI/ODBC configuration
keyword 354
DescribeCall CLI/ODBC configuration keyword 355
DescribeInputOnPrepare CLI/ODBC configuration
keyword 355
DescribeOutputLevel CLI/ODBC configuration
keyword 356
DescribeParam CLI/ODBC configuration keyword 357
DiagLevel CLI/ODBC configuration keyword . . 358
DiagPath CLI/ODBC configuration keyword . . . 358
DisableKeysetCursor CLI/ODBC configuration
keyword 358
DisableMultiThread CLI/ODBC configuration
keyword 358
DisableUnicode CLI/ODBC configuration keyword 359
EnableNamedParameterSupport CLI/ODBC
configuration keyword 359
FET_BUF_SIZE CLI/ODBC configuration keyword 360
FileDSN CLI/ODBC configuration keyword . . . 360
FloatPrecRadix CLI/ODBC configuration keyword 360
GetDataLobNoTotal CLI/ODBC configuration
keyword 361
GranteeList CLI/ODBC configuration keyword . . 362
GrantorList CLI/ODBC configuration keyword . . 362
Graphic CLI/ODBC configuration keyword . . . 363
Hostname CLI/ODBC configuration keyword . . 363

IgnoreWarnList CLI/ODBC configuration keyword 364
IgnoreWarnings CLI/ODBC configuration keyword 364
Instance CLI/ODBC configuration keyword . . . 364
Interrupt CLI/ODBC configuration keyword . . . 365
KRBPlugin CLI/ODBC configuration keyword . . 365
KeepDynamic CLI/ODBC configuration keyword 366
LOBCacheSize CLI/ODBC configuration keyword 366
LOBFileThreshold CLI/ODBC configuration
keyword 367
LOBMaxColumnSize CLI/ODBC configuration
keyword 367
LoadXAInterceptor CLI/ODBC configuration
keyword 368
LockTimeout CLI/ODBC configuration keyword 368
LongDataCompat CLI/ODBC configuration
keyword 368
MapBigintCDefault CLI/ODBC configuration
keyword 369
MapCharToWChar CLI/ODBC configuration
keyword 369
MapDateCDefault CLI/ODBC configuration
keyword 370
MapDateDescribe CLI/ODBC configuration
keyword 370
MapDecimalFloatDescribe CLI/ODBC
configuration keyword 371
MapGraphicDescribe CLI/ODBC configuration
keyword 372
MapTimeCDefault CLI/ODBC configuration
keyword 372
MapTimeDescribe CLI/ODBC configuration
keyword 373
MapTimestampCDefault CLI/ODBC configuration
keyword 373
MapTimestampDescribe CLI/ODBC configuration
keyword 374
MapXMLCDefault CLI/ODBC configuration
keyword 375
MapXMLDescribe CLI/ODBC configuration
keyword 375
MaxLOBBlockSize CLI/ODBC configuration
keyword 376
Mode CLI/ODBC configuration keyword 376
NotifyLevel CLI/ODBC configuration keyword 376
OleDbReportIsLongForLongTypes CLI/ODBC
configuration keyword 377
OleDbReturnCharAsWChar CLI/ODBC
configuration keyword 377
OleDbSQLColumnsSortByOrdinal CLI/ODBC
configuration keyword 378
OnlyUseBigPackages CLI/ODBC configuration
keyword 379
OptimizeForNRows CLI/ODBC configuration
keyword 379
PWD CLI/ODBC configuration keyword 379
PWDPlugin CLI/ODBC configuration keyword 380
Patch1 CLI/ODBC configuration keyword. . . . 380
Patch2 CLI/ODBC configuration keyword. . . . 383
Port CLI/ODBC configuration keyword 386
ProgramID CLI/ODBC configuration keyword . . 387
ProgramName CLI/ODBC configuration keyword 387

Contents v

PromoteLONGVARtoLOB CLI/ODBC
configuration keyword 388
Protocol CLI/ODBC configuration keyword . . . 388
QueryTimeoutInterval CLI/ODBC configuration
keyword 389
ReadCommonSectionOnNullConnect CLI/ODBC
configuration keyword 390
ReceiveTimeout CLI/ODBC configuration keyword 390
Reopt CLI/ODBC configuration keyword 390
ReportPublicPrivileges CLI/ODBC configuration
keyword 391
ReportRetryErrorsAsWarnings CLI/ODBC
configuration keyword 391
RetCatalogAsCurrServer CLI/ODBC configuration
keyword 392
RetOleDbConnStr CLI/ODBC configuration
keyword 392
RetryOnError CLI/ODBC configuration keyword 393
ReturnAliases CLI/ODBC configuration keyword 394
ReturnSynonymSchema CLI/ODBC configuration
keyword 394
SQLOverrideFileName CLI/ODBC configuration
keyword 395
SaveFile CLI/ODBC configuration keyword . . . 396
SchemaList CLI/ODBC configuration keyword . . 396
security CLI/ODBC configuration keyword . . . 397
ServerMsgMask CLI/ODBC configuration keyword 397
ServiceName CLI/ODBC configuration keyword 398
SkipTrace CLI/ODBC configuration keyword. . . 398
SQLCODEMAP CLI/ODBC configuration keyword 399
SSLClientLabel CLI/ODBC configuration keyword 399
SSLClientKeystash CLI/ODBC configuration
keyword 400
SSLClientKeystoredb CLI/ODBC configuration
keyword 400
SSLClientKeystoreDBPassword CLI/ODBC
configuration keyword 401
StaticCapFile CLI/ODBC configuration keyword 401
StaticLogFile CLI/ODBC configuration keyword 402
StaticMode CLI/ODBC configuration keyword . . 402
StaticPackage CLI/ODBC configuration keyword 402
StmtConcentrator CLI/ODBC configuration
keyword 403
StreamGetData CLI/ODBC configuration keyword 403
StreamPutData CLI/ODBC configuration keyword 404
SysSchema CLI/ODBC Configuration Keyword 404
TableType CLI/ODBC configuration keyword . . 405
TargetPrincipal CLI/ODBC configuration keyword 406
TempDir CLI/ODBC configuration keyword . . . 406
TimestampTruncErrToWarning CLI/ODBC
configuration keyword 407
Trace CLI/ODBC configuration keyword 407
TraceAPIList CLI/ODBC configuration keyword 408
TraceAPIList! CLI/ODBC configuration keyword 410
TraceComm CLI/ODBC configuration keyword 412
TraceErrImmediate CLI/ODBC configuration
keyword 413
TraceFileName CLI/ODBC configuration keyword 413
TraceFlush CLI/ODBC configuration keyword . . 414
TraceFlushOnError CLI/ODBC configuration
keyword 415

TraceLocks CLI/ODBC configuration keyword . . 415
TracePIDList CLI/ODBC configuration keyword 416
TracePIDTID CLI/ODBC configuration keyword 416
TracePathName CLI/ODBC configuration keyword 417
TraceRefreshInterval CLI/ODBC configuration
keyword 418
TraceStmtOnly CLI/ODBC configuration keyword 418
TraceTime CLI/ODBC configuration keyword . . 419
TraceTimestamp CLI/ODBC configuration
keyword 419
Trusted_Connection CLI/ODBC configuration
keyword 420
TxnIsolation CLI/ODBC configuration keyword 421
UID CLI/ODBC configuration keyword 422
Underscore CLI/ODBC configuration keyword . . 422
UseOldStpCall CLI/ODBC configuration keyword 423
UseServerMsgSP CLI/ODBC configuration
keyword 423
ServerMsgTextSP CLI/ODBC configuration
keyword 424
WarningList CLI/ODBC configuration keyword 424
XMLDeclaration CLI/ODBC configuration
keyword 425

Chapter 4. Environment, connection,
and statement attributes in CLI
applications 427
Environment attributes (CLI) list 429
Connection attributes (CLI) list 436
Statement attributes (CLI) list 466

Chapter 5. Descriptor values 489
Descriptor FieldIdentifier argument values (CLI) 489
Descriptor header and record field initialization
values (CLI) 500

Chapter 6. Header and record fields
for the DiagIdentifier argument (CLI) . 505

Chapter 7. CLI data type attributes 511
SQL symbolic and default data types for CLI
applications 511
C data types for CLI applications. 512
Data conversions supported in CLI 517
SQL to C data conversion in CLI 520
C to SQL data conversion in CLI 527
Data type attributes 532

Data type precision (CLI) table 532
Data type scale (CLI) table 534
Data type length (CLI) table 535
Data type display (CLI) table 536

Appendix A. Overview of the DB2
technical information 539
DB2 technical library in hardcopy or PDF format 539
Ordering printed DB2 books 542
Displaying SQL state help from the command line
processor 543

vi Call Level Interface Guide and Reference, Volume 2

Accessing different versions of the DB2
Information Center 543
Displaying topics in your preferred language in the
DB2 Information Center 544
Updating the DB2 Information Center installed on
your computer or intranet server 544
Manually updating the DB2 Information Center
installed on your computer or intranet server . . 546

DB2 tutorials 547
DB2 troubleshooting information 548
Terms and Conditions 548

Appendix B. Notices 551

Index 555

Contents vii

viii Call Level Interface Guide and Reference, Volume 2

About this book

The Call Level Interface (CLI) Guide and Reference is in two volumes:
v Volume 1 describes how to use CLI to create database applications for DB2®

Database for Linux, UNIX, and Windows.
v Volume 2 is a reference that describes CLI functions, keywords and

configuration.

© Copyright IBM Corp. 1993, 2012 ix

About this book

x Call Level Interface Guide and Reference, Volume 2

Chapter 1. CLI and ODBC function summary

Depr in the ODBC column indicates that the function has been deprecated for
ODBC.

The SQL/CLI column can have the following values:

95 The function is defined in the SQL/CLI 9075-3 specification.

SQL3 The function is defined in the SQL/CLI part of the ISO SQL3 draft
replacement for SQL/CLI 9075-3.

Table 1. CLI Function list by category

Task
Function name

ODBC
3.0

SQL/
CLI

DB2 CLI
first version

supported Purpose

Connecting to a data source

SQLConnect() Depr 95 V1.1 Obtains a connection handle.

SQLAllocEnv() Depr 95 V1.1 Obtains an environment handle. One
environment handle is used for one or
more connections.

SQLAllocHandle() Core 95 V5 Obtains a handle.

SQLBrowseConnect() Level 1 95 V5 Gets required attributes to connect to a
data source.

SQLConnect() Core 95 V1.1 Connects to a specific driver by using a
data source name, user ID, and password.

SQLDriverConnect() Core SQL3 V2.1 1 Connects to a specific driver by using a
connection string or optionally requests
that the Driver Manager and driver display
connection dialogs for the user.
Note: This function is also affected by the
additional IBM® keywords supported in
the ODBC.INI file.

SQLDrivers() Core No None CLI does not support this function because
this function is implemented by a Driver
Manager.

SQLSetConnectAttr() Core 95 V5 Sets connection attributes.

SQLSetConnectOption() Depr 95 V2.1 Sets connection attributes.

SQLSetConnection() No SQL3 V2.1 Sets the current active connection. You
have to use this function only when using
embedded SQL within a CLI application
with multiple concurrent connections.

Obtaining information about a driver and data source

SQLDataSources() Lvl 2 95 V1.1 Returns the list of available data sources.

SQLGetInfo() Core 95 V1.1 Returns information about a specific driver
and data source.

SQLGetFunctions() Core 95 V1.1 Returns a list of supported driver
functions.

© Copyright IBM Corp. 1993, 2012 1

Table 1. CLI Function list by category (continued)

Task
Function name

ODBC
3.0

SQL/
CLI

DB2 CLI
first version

supported Purpose

SQLGetTypeInfo() Core 95 V1.1 Returns information about supported data
types.

Setting and retrieving driver options

SQLCreatePkg() No No V9.5 Binds packages to the database.

SQLSetEnvAttr() Core 95 V2.1 Sets an environment option.

SQLGetEnvAttr() Core 95 V2.1 Returns the value of an environment
option.

SQLGetConnectAttr() Lvl 1 95 V5 Returns the value of a connection option.

SQLGetConnectOption() Depr 95 V2.1 1 Returns the value of a connection option.

SQLSetStmtAttr() Core 95 V5 Sets a statement attribute.

SQLSetStmtOption() Depr 95 V2.1 1 Sets a statement option.

SQLGetStmtAttr() Core 95 V5 Returns the value of a statement attribute.

SQLGetStmtOption() Depr 95 V2.1 1 Returns the value of a statement option.

SQLReloadConfig() No No V9.7 Reloads a configuration property from the
client configuration file db2dsdriver.cfg

Preparing SQL requests

SQLAllocStmt() Depr 95 V1.1 Allocates a statement handle.

SQLPrepare() Core 95 V1.1 Prepares an SQL statement for later
execution.

SQLExtendedPrepare() No No V6 Prepares an array of statement attributes
for an SQL statement for later execution.

SQLExtendedBind() No No V6 Bind an array of columns instead of using
repeated calls to SQLBindCol() and
SQLBindParameter()

SQLBindParameter() Lvl 1 95 2 V2.1 Assigns storage for a parameter in an SQL
statement (ODBC 2.0).

SQLSetParam() Depr No V1.1 Assigns storage for a parameter in an SQL
statement (ODBC 1.0).
Note: In ODBC 2.0, this function has been
replaced by SQLBindParameter().

SQLParamOptions() Depr No V2.1 Specifies the use of multiple values for
parameters.

SQLGetCursorName() Core 95 V1.1 Returns the cursor name associated with a
statement handle.

SQLSetCursorName() Core 95 V1.1 Specifies a cursor name.

Submitting requests

SQLDescribeParam() Level 2 SQL3 V5 Returns the description of a parameter
marker.

SQLExecute() Core 95 V1.1 Executes a prepared statement.

SQLExecDirect() Core 95 V1.1 Executes a statement.

SQLNativeSql() Lvl 2 95 V2.1 1 Returns the text of an SQL statement as
translated by the driver.

CLI and ODBC function summary

2 Call Level Interface Guide and Reference, Volume 2

Table 1. CLI Function list by category (continued)

Task
Function name

ODBC
3.0

SQL/
CLI

DB2 CLI
first version

supported Purpose

SQLNumParams() Lvl 2 95 V2.1 1 Returns the number of parameters in a
statement.

SQLParamData() Lvl 1 95 V2.1 1 Used in conjunction with SQLPutData() to
supply parameter data at execution time.
This is useful for long data values.

SQLPutData() Core 95 V2.1 1 Sends part or all of a data value for a
parameter. This is useful for long data
values.

Retrieving results and information about results

SQLRowCount() Core 95 V1.1 Returns the number of rows affected by an
insert, update, or delete request.

SQLNumResultCols() Core 95 V1.1 Returns the number of columns in the
result set.

SQLDescribeCol() Core 95 V1.1 Describes a column in the result set.

SQLColAttribute() Core Yes V5 Describes attributes of a column in the
result set.

SQLColAttributes() Depr Yes V1.1 Describes attributes of a column in the
result set.

SQLColumnPrivileges() Level 2 95 V2.1 Gets privileges associated with the
columns of a table.

SQLSetColAttributes() No No V2.1 Sets attributes of a column in the result set.

SQLBindCol() Core 95 V1.1 Assigns storage for a result column and
specifies the data type.

SQLFetch() Core 95 V1.1 Returns a result row.

SQLFetchScroll() Core 95 V5 Returns a rowset from a result row.

SQLExtendedFetch() Depr 95 V2.1 Returns multiple result rows.

SQLGetData() Core 95 V1.1 Returns part or all of one column of one
row of a result set. This is useful for long
data values.

SQLMoreResults() Lvl 1 SQL3 V2.1 a Determines whether there are more result
sets available and, if so, initializes
processing for the next result set.

SQLNextResult() No Yes V7.1 Provides nonsequential access to multiple
result sets returned from a stored
procedure.

SQLError() Depr 95 V1.1 Returns additional error or status
information.

SQLGetDiagField() Core 95 V5 Gets a field of diagnostic data.

SQLGetDiagRec() Core 95 V5 Gets multiple fields of diagnostic data.

SQLSetPos() Level 1 SQL3 V5 Sets the cursor position in a rowset.

SQLGetSQLCA() No No V2.1 Returns the SQLCA associated with a
statement handle.

SQLBulkOperations() Level 1 No V6 Performs bulk insertions, updates,
deletions, and fetches by bookmark.

CLI and ODBC function summary

Chapter 1. CLI and ODBC functions 3

Table 1. CLI Function list by category (continued)

Task
Function name

ODBC
3.0

SQL/
CLI

DB2 CLI
first version

supported Purpose

Descriptors

SQLCopyDesc() Core 95 V5 Copies descriptor information between
handles.

SQLGetDescField() Core 95 V5 Gets single field settings of a descriptor
record.

SQLGetDescRec() Core 95 V5 Gets multiple field settings of a descriptor
record.

SQLSetDescField() Core 95 V5 Sets a single field of a descriptor record.

SQLSetDescRec() Core 95 V5 Sets multiple field settings of a descriptor
record.

Large object support

SQLBindFileToCol() No No V2.1 Associates a LOB file reference with a LOB
column.

SQLBindFileToParam() No No V2.1 Associates a LOB file reference with a
parameter marker.

SQLGetLength() No SQL3 V2.1 Gets the length of a string referenced by a
LOB locator.

SQLGetPosition() No SQL3 V2.1 Gets the position of a string within a
source string referenced by a LOB locator.

SQLGetSubString() No SQL3 V2.1 Creates a new LOB locator that references
a substring within a source string. The
source string is also represented by a LOB
locator.

Obtaining information about the data source's system tables (catalog functions)

SQLColumns() Lvl 1 SQL3 V2.1 1 Returns the list of column names in
specified tables.

SQLExtendedProcedures() No No V9.7 Returns the list of procedure names stored
in a specific data source with additional
information.

SQLExtendedProceduresColumns() No No V9.7 Returns the list of input and output
parameters for the specified procedures
with additional information.

SQLForeignKeys() Lvl 2 SQL3 V2.1 Returns the list of column names that
comprise foreign keys, if they exist for a
specified table.

SQLPrimaryKeys() Lvl 1 SQL3 V2.1 Returns the list of column names that
comprise the primary key for a table.

SQLProcedureColumns() Lvl 2 No V2.1 Returns the list of input and output
parameters for the specified procedures.

SQLProcedures() Lvl 2 No V2.1 Returns the list of procedure names stored
in a specific data source.

SQLSpecialColumns() Core SQL3 V2.1 1 Returns information about the optimal set
of columns that uniquely identifies a row
in a specified table.

CLI and ODBC function summary

4 Call Level Interface Guide and Reference, Volume 2

Table 1. CLI Function list by category (continued)

Task
Function name

ODBC
3.0

SQL/
CLI

DB2 CLI
first version

supported Purpose

SQLStatistics() Core SQL3 V2.1 1 Returns statistics about a single table and
the list of indexes associated with the table.

SQLTablePrivileges() Lvl 2 SQL3 V2.1 Returns a list of tables and the privileges
associated with each table.

SQLTables() Core SQL3 V2.1 1 Returns the list of table names stored in a
specific data source.

Terminating a statement

SQLFreeHandle() Core 95 V1.1 Frees handle resources.

SQLFreeStmt() Core 95 V1.1 Ends statement processing and closes the
associated cursor, discards pending results,
and, optionally, frees all resources
associated with the statement handle.

SQLCancel() Core 95 V1.1 Cancels an SQL statement.

SQLTransact() Depr No V1.1 Commits or rolls back a transaction.

SQLCloseCursor() Core 95 V5 Commits or rolls back a transaction.

Terminating a connection

SQLDisconnect() Core 95 V1.1 Closes the connection.

SQLEndTran() Core 95 V5 Ends the transaction of a connection.

SQLFreeConnect() Depr 95 V1.1 Releases the connection handle.

SQLFreeEnv() Depr 95 V1.1 Releases the environment handle.

Creating and dropping a database

SQLCreateDb() No No V9.7 Creates a database based on the specified
database name, code-set, and mode.

SQLDropDb() No No V9.7 Drops the specified database.

Note:
1 Runtime support for this function was also available in the DB2 Client Application Enabler for DOS

Version 1.2 product.
2 SQLBindParam() has been replaced by SQLBindParameter().

The following limitations apply to ODBC functions:

v SQLSetScrollOptions() is supported for runtime use only, because it has been superseded by the
SQL_CURSOR_TYPE, SQL_CONCURRENCY, SQL_KEYSET_SIZE, and SQL_ROWSET_SIZE statement options.

v SQLDrivers() is implemented by the ODBC driver manager.

Unicode functions (CLI)
CLI Unicode functions accept Unicode string arguments in place of ANSI string
arguments. The Unicode string arguments must be in UCS-2 encoding
(native-endian format). ODBC API functions have suffixes to indicate the format of
their string arguments: those that accept Unicode end in W, and those that accept
ANSI have no suffix (ODBC adds equivalent functions with names that end in A,
but these are not offered by CLI). The following is a list of functions available in
CLI which have both ANSI and Unicode versions:

CLI and ODBC function summary

Chapter 1. CLI and ODBC functions 5

SQLBrowseConnect
SQLColAttribute
SQLColAttributes
SQLColumnPrivileges
SQLColumns
SQLConnect
SQLCreateDb
SQLDataSources
SQLDescribeCol
SQLDriverConnect
SQLDropDb
SQLError
SQLExecDirect
SQLExtendedPrepare
SQLExtendedProcedures
SQLExtendedProcedureColumns
SQLForeignKeys
SQLGetConnectAttr
SQLGetConnectOption
SQLGetCursorName
SQLGetDescField
SQLGetDescRec

SQLGetDiagField
SQLGetDiagRec
SQLGetInfo
SQLGetPosition
SQLGetStmtAttr
SQLNativeSQL
SQLPrepare
SQLPrimaryKeys
SQLProcedureColumns
SQLProcedures
SQLReloadConfig
SQLSetConnectAttr
SQLSetConnectOption
SQLSetCursorName
SQLSetDescField
SQLSetStmtAttr
SQLSpecialColumns
SQLStatistics
SQLTablePrivileges
SQLTables

Unicode functions that have arguments which are always the length of strings
interpret these arguments as the number of SQLWCHAR elements needed to store
the string. For functions that return length information for server data, the display
size and precision are again described in terms of the number of SQLWCHAR
elements used to store them. When the length (transfer size of the data) could refer
to string or non-string data, it is interpreted as the number of bytes needed to store
the data.

For example, SQLGetInfoW() will still take the length as the number of bytes, but
SQLExecDirectW() will use the number of SQLWCHAR elements. Consider a single
character from the UTF-16 extended character set (UTF-16 is an extended character
set of UCS-2; Microsoft Windows 2000 and Microsoft Windows XP use UTF-16).
Microsoft Windows 2000 will use two SQL_C_WCHAR elements, which is
equivalent to 4 bytes, to store this single character. The character therefore has a
display size of 1, a string length of 2 (when using SQL_C_WCHAR), and a byte
count of 4. CLI will return data from result sets in either Unicode or ANSI,
depending on the application's binding. If an application binds to SQL_C_CHAR,
the driver will convert SQL_WCHAR data to SQL_CHAR. An ODBC driver
manager, if used, maps SQL_C_WCHAR to SQL_C_CHAR for ANSI drivers but
does no mapping for Unicode drivers.

ANSI to Unicode function mappings

The syntax for a CLI Unicode function is the same as the syntax for its
corresponding ANSI function, except that SQLCHAR parameters are defined as
SQLWCHAR. Character buffers defined as SQLPOINTER in the ANSI syntax can
be defined as either SQLCHAR or SQLWCHAR in the Unicode function. Refer to
the ANSI version of the CLI Unicode functions for ANSI syntax details.

SQLAllocConnect function (CLI) - Allocate connection handle
Deprecated

Note:

Unicode functions (CLI)

6 Call Level Interface Guide and Reference, Volume 2

In ODBC 3.0, SQLAllocConnect() has been deprecated and replaced with
SQLAllocHandle().

Although this version of CLI continues to support SQLAllocConnect(), it is
recommended that you use SQLAllocHandle() in your CLI programs so that they
conform to the latest standards.

Migrating to the new function

The statement:
SQLAllocConnect(henv, &hdbc);

for example, would be rewritten using the new function as:
SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);

SQLAllocEnv function (CLI) - Allocate environment handle
Deprecated

Note:

In ODBC 3.0, SQLAllocEnv() has been deprecated and replaced with
SQLAllocHandle().

Although this version of CLI continues to support SQLAllocEnv(), use
SQLAllocHandle() in your CLI programs so that they conform to the latest
standards.

Migrating to the new function

The statement:
SQLAllocEnv(&henv);

for example, would be rewritten using the new function as:
SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

SQLAllocHandle function (CLI) - Allocate handle
Purpose

Specification: CLI 5.0 ODBC 3.0 ISO CLI

SQLAllocHandle() is a generic function that allocates environment, connection,
statement, or descriptor handles.

Note: This function replaces the deprecated ODBC 2.0 functions
SQLAllocConnect(), SQLAllocEnv(), and SQLAllocStmt().

Syntax
SQLRETURN SQLAllocHandle (

SQLSMALLINT HandleType, /* fHandleType */
SQLHANDLE InputHandle, /* hInput */
SQLHANDLE *OutputHandlePtr); /* *phOutput */

SQLAllocConnect function (CLI) - Allocate connection handle

Chapter 1. CLI and ODBC functions 7

Function Arguments

Table 2. SQLAllocHandle arguments

Data type Argument Use Description

SQLSMALLINT HandleType input The type of handle to be allocated by
SQLAllocHandle(). Must be one of the following
values:
v SQL_HANDLE_ENV
v SQL_HANDLE_DBC
v SQL_HANDLE_STMT
v SQL_HANDLE_DESC

SQLHANDLE InputHandle input Existing handle to use as a context for the new
handle being allocated. If HandleType is
SQL_HANDLE_ENV, this is SQL_NULL_HANDLE.
If HandleType is SQL_HANDLE_DBC, this must be
an environment handle, and if it is
SQL_HANDLE_STMT or SQL_HANDLE_DESC, it
must be a connection handle.

SQLHANDLE * OutputHandlePtr output Pointer to a buffer in which to return the handle to
the newly allocated data structure.

Usage

SQLAllocHandle() is used to allocate environment, connection, statement, and
descriptor handles. An application can allocate multiple environment, connection,
statement, or descriptor handles at any time a valid InputHandle exists.

If the application calls SQLAllocHandle() with *OutputHandlePtr set to an existing
environment, connection, statement, or descriptor handle, CLI overwrites the
handle, and new resources appropriate to the handle type are allocated. There are
no changes made to the CLI resources associated with the original handle.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_INVALID_HANDLE
v SQL_ERROR

If SQLAllocHandle() returns SQL_INVALID_HANDLE, it will set OutputHandlePtr
to SQL_NULL_HENV, SQL_NULL_HDBC, SQL_NULL_HSTMT, or
SQL_NULL_HDESC, depending on the value of HandleType, unless the output
argument is a null pointer. The application can then obtain additional information
from the diagnostic data structure associated with the handle in the InputHandle
argument.

Diagnostics

Table 3. SQLAllocHandle SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

SQLAllocHandle function (CLI) - Allocate handle

8 Call Level Interface Guide and Reference, Volume 2

Table 3. SQLAllocHandle SQLSTATEs (continued)

SQLSTATE Description Explanation

08003 Connection is closed. The HandleType argument was SQL_HANDLE_STMT or
SQL_HANDLE_DESC, but the connection handle specified by the
InputHandle argument did not have an open connection. The
connection process must be completed successfully (and the
connection must be open) for CLI to allocate a statement or
descriptor handle.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY013 Unexpected memory handling
error.

The HandleType argument was SQL_HANDLE_DBC,
SQL_HANDLE_STMT, or SQL_HANDLE_DESC; and the function
call could not be processed because the underlying memory
objects could not be accessed, possibly because of low memory
conditions.

HY014 No more handles. The limit for the number of handles that can be allocated for the
type of handle indicated by the HandleType argument has been
reached, or in some cases, insufficient system resources exist to
properly initialize the new handle.

HY092 Option type out of range. The HandleType argument was not one of:
v SQL_HANDLE_ENV
v SQL_HANDLE_DBC
v SQL_HANDLE_STMT
v SQL_HANDLE_DESC

Restrictions

None.

Example
SQLHANDLE henv; /* environment handle */
SQLHANDLE hdbc; /* connection handle */
SQLHANDLE hstmt; /* statement handle */
SQLHANDLE hdesc; /* descriptor handle */

/* ... */

/* allocate an environment handle */
cliRC = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &henv);

/* ... */

/* allocate a database connection handle */
cliRC = SQLAllocHandle(SQL_HANDLE_DBC, henv, &hdbc);

/* ... */
/* connect to database using hdbc */
/* ... */

/* allocate one or more statement handles */
cliRC = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

SQLAllocHandle function (CLI) - Allocate handle

Chapter 1. CLI and ODBC functions 9

/* ... */
/* allocate a descriptor handle */
cliRC = SQLAllocHandle(SQL_HANDLE_DESC, hstmt, &hdesc);

SQLAllocStmt function (CLI) - Allocate a statement handle
Deprecated

Note:

In ODBC 3.0, SQLAllocStmt() has been deprecated and replaced with
SQLAllocHandle().

Although this version of CLI continues to support SQLAllocStmt(), use
SQLAllocHandle() in your CLI programs so that they conform to the latest
standards.

Migrating to the new function

The statement:
SQLAllocStmt(hdbc, &hstmt);

for example, would be rewritten using the new function as:
SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

SQLBindCol function (CLI) - Bind a column to an application variable
or LOB locator

Purpose

Specification: CLI 1.1 ODBC 1.0 ISO CLI

SQLBindCol() is used to associate (bind) columns in a result set to either:
v Application variables or arrays of application variables (storage buffers), for all

C data types. Data is transferred from the DBMS to the application when
SQLFetch() or SQLFetchScroll() is called. Data conversion might occur as the
data is transferred.

v A LOB locator, for LOB columns. A LOB locator, not the data itself, is transferred
from the DBMS to the application when SQLFetch() is called.
Alternatively, LOB columns can be bound directly to a file using
SQLBindFileToCol().

SQLBindCol() is called once for each column in the result set that the application
needs to retrieve.

In general, SQLPrepare(), SQLExecDirect() or one of the schema functions is called
before this function, and SQLFetch(), SQLFetchScroll(), SQLBulkOperations(), or
SQLSetPos() is called after. Column attributes might also be needed before calling
SQLBindCol(), and can be obtained using SQLDescribeCol() or SQLColAttribute().

Syntax
SQLRETURN SQLBindCol (

SQLHSTMT StatementHandle, /* hstmt */
SQLUSMALLINT ColumnNumber, /* icol */
SQLSMALLINT TargetType, /* fCType */

SQLAllocHandle function (CLI) - Allocate handle

10 Call Level Interface Guide and Reference, Volume 2

SQLPOINTER TargetValuePtr, /* rgbValue */
SQLLEN BufferLength, /* dbValueMax */
SQLLEN *StrLen_or_IndPtr); /* *pcbValue */

Function arguments

Table 4. SQLBindCol arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLUSMALLINT ColumnNumber input Number identifying the column. Columns are
numbered sequentially, from left to right.
v Column numbers start at 1 if bookmarks are not

used (SQL_ATTR_USE_BOOKMARKS statement
attribute set to SQL_UB_OFF).

v Column numbers start at 0 if bookmarks are
used (the statement attribute is set to
SQL_UB_ON). Column 0 is the bookmark
column.

SQLSMALLINT TargetType input The C data type for column number ColumnNumber
in the result set. When the application retrieves
data from the data source, it will convert the data
to this C type. When using SQLBulkOperations() or
SQLSetPos(), the driver will convert data from this
C data type when sending information to the data
source. The following types are supported:
v SQL_C_BINARY
v SQL_C_BIT
v SQL_C_BLOB_LOCATOR
v SQL_C_CHAR
v SQL_C_CLOB_LOCATOR
v SQL_C_DBCHAR
v SQL_C_DBCLOB_LOCATOR
v SQL_C_DECIMAL_IBM
v SQL_C_DOUBLE
v SQL_C_FLOAT
v SQL_C_LONG
v SQL_C_NUMERIC a

v SQL_C_SBIGINT
v SQL_C_SHORT
v SQL_C_TYPE_DATE
v SQL_C_TYPE_TIME
v SQL_C_TYPE_TIMESTAMP
v SQL_C_TYPE_TIMESTAMP_EXT
v SQL_C_TINYINT
v SQL_C_UBIGINT
v SQL_C_UTINYINT
v SQL_C_WCHAR

Specifying SQL_C_DEFAULT causes data to be
transferred to its default C data type.

SQLBindCol function (CLI) - Bind a column to an application variable or LOB locator

Chapter 1. CLI and ODBC functions 11

Table 4. SQLBindCol arguments (continued)

Data type Argument Use Description

SQLPOINTER TargetValuePtr input/output
(deferred)

Pointer to buffer or an array of buffers with either
column-wise or row-wise binding, where CLI is to
store the column data or the LOB locator when the
fetch occurs.

This buffer is used to return data when any of the
following functions are called: SQLFetch(),
SQLFetchScroll(), SQLSetPos() using the Operation
argument SQL_REFRESH, or SQLBulkOperations()
using the Operation argument
SQL_FETCH_BY_BOOKMARK. Otherwise,
SQLBulkOperations() and SQLSetPos() use the
buffer to retrieve data.

If TargetValuePtr is null, the column is unbound. All
columns can be unbound with a call to
SQLFreeStmt() with the SQL_UNBIND option.

SQLLEN BufferLength input Size in bytes of TargetValuePtr buffer available to
store the column data or the LOB locator.

If TargetType denotes a binary or character string
(either single or double byte) or is
SQL_C_DEFAULT for a column returning variable
length data, then BufferLength must be > 0, or an
error will be returned. Note that for character data,
the driver counts the NULL termination character
and so space must be allocated for it. For all other
data types, this argument is ignored.

SQLLEN * StrLen_or_IndPtr input/output
(deferred)

Pointer to value (or array of values) which
indicates the number of bytes CLI has available to
return in the TargetValuePtr buffer. If TargetType is a
LOB locator, the size of the locator is returned, not
the size of the LOB data.

This buffer is used to return data when any of the
following functions are called: SQLFetch(),
SQLFetchScroll(), SQLSetPos() using the Operation
argument SQL_REFRESH, or SQLBulkOperations()
using the Operation argument
SQL_FETCH_BY_BOOKMARK. Otherwise,
SQLBulkOperations() and SQLSetPos() use the
buffer to retrieve data.

SQLFetch() returns SQL_NULL_DATA in this
argument if the data value of the column is null.

This pointer value must be unique for each bound
column, or NULL.

A value of SQL_COLUMN_IGNORE, SQL_NTS,
SQL_NULL_DATA, or the length of the data can be
set for use with SQLBulkOperations().

SQL_NO_LENGTH might also be returned, refer to
the Usage section below for more information.

v For this function, both TargetValuePtr and StrLen_or_IndPtr are deferred outputs,
meaning that the storage locations these pointers point to do not get updated

SQLBindCol function (CLI) - Bind a column to an application variable or LOB locator

12 Call Level Interface Guide and Reference, Volume 2

until a result set row is fetched. As a result, the locations referenced by these
pointers must remain valid until SQLFetch() or SQLFetchScroll() is called. For
example, if SQLBindCol() is called within a local function, SQLFetch() must be
called from within the same scope of the function or the TargetValuePtr buffer
must be allocated as static or global.

v CLI will be able to optimize data retrieval for all variable length data types if
TargetValuePtr is placed consecutively in memory after StrLen_or_IndPtr.

Usage

Call SQLBindCol() once for each column in the result set for which either the data
or, for LOB columns, the LOB locator is to be retrieved. When SQLFetch() or
SQLFetchScroll() is called to retrieve data from the result set, the data in each of
the bound columns is placed in the locations assigned by the TargetValuePtr and
StrLen_or_IndPtr pointers. When the statement attribute
SQL_ATTR_ROW_ARRAY_SIZE is greater than 1, then TargetType should refer to
an array of buffers. If TargetType is a LOB locator, a locator value is returned, not
the actual LOB data. The LOB locator references the entire data value in the LOB
column.

If a CLI application does not provide an output buffer for a LOB column using the
function SQLBindCol() the IBM data server client will, by default, request a LOB
locator on behalf of the application for each LOB column in the result sets.

Columns are identified by a number, assigned sequentially from left to right.
v Column numbers start at 1 if bookmarks are not used

(SQL_ATTR_USE_BOOKMARKS statement attribute set to SQL_UB_OFF).
v Column numbers start at 0 if bookmarks are used (the statement attribute set to

SQL_UB_ON).

After columns have been bound, in subsequent fetches the application can change
the binding of these columns or bind previously unbound columns by calling
SQLBindCol(). The new binding does not apply to data already fetched, it will be
used on the next fetch. To unbind a single column (including columns bound with
SQLBindFileToCol()), call SQLBindCol() with the TargetValuePtr pointer set to
NULL. To unbind all the columns, the application should call SQLFreeStmt() with
the Option input set to SQL_UNBIND.

The application must ensure enough storage is allocated for the data to be
retrieved. If the buffer is to contain variable length data, the application must
allocate as much storage as the maximum length of the bound column plus the
NULL terminator. Otherwise, the data might be truncated. If the buffer is to
contain fixed length data, CLI assumes the size of the buffer is the length of the C
data type. If data conversion is specified, the required size might be affected.

If string truncation does occur, SQL_SUCCESS_WITH_INFO is returned and
StrLen_or_IndPtr will be set to the actual size of TargetValuePtr available for return
to the application.

Truncation is also affected by the SQL_ATTR_MAX_LENGTH statement attribute
(used to limit the amount of data returned to the application). The application can
specify not to report truncation by calling SQLSetStmtAttr() with
SQL_ATTR_MAX_LENGTH and a value for the maximum length to return for all
variable length columns, and by allocating a TargetValuePtr buffer of the same size
(plus the null-terminator). If the column data is larger than the set maximum

SQLBindCol function (CLI) - Bind a column to an application variable or LOB locator

Chapter 1. CLI and ODBC functions 13

length, SQL_SUCCESS will be returned when the value is fetched and the
maximum length, not the actual length, will be returned in StrLen_or_IndPtr.

If the column to be bound is a SQL_GRAPHIC, SQL_VARGRAPHIC or
SQL_LONGVARGRAPHIC type, then TargetType can be set to SQL_C_DBCHAR or
SQL_C_CHAR. If TargetType is SQL_C_DBCHAR, the data fetched into the
TargetValuePtr buffer will be null-terminated with a double byte null-terminator. If
TargetType is SQL_C_CHAR, then there will be no null-termination of the data. In
both cases, the length of the TargetValuePtr buffer (BufferLength) is in units of bytes
and should therefore be a multiple of 2. It is also possible to force CLI to null
terminate graphic strings using the PATCH1 keyword.

Note: SQL_NO_TOTAL will be returned in StrLen_or_IndPtr if:
v The SQL type is a variable length type, and
v StrLen_or_IndPtr and TargetValuePtr are contiguous, and
v The column type is NOT NULLABLE, and
v String truncation occurred.

Descriptors and SQLBindCol

The following sections describe how SQLBindCol() interacts with descriptors.

Note: Calling SQLBindCol() for one statement can affect other statements. This
occurs when the ARD associated with the statement is explicitly allocated and is
also associated with other statements. Because SQLBindCol() modifies the
descriptor, the modifications apply to all statements with which this descriptor is
associated. If this is not the required behavior, the application should dissociate
this descriptor from the other statements before calling SQLBindCol().

Argument mappings

Conceptually, SQLBindCol() performs the following steps in sequence:
v Calls SQLGetStmtAttr() to obtain the ARD handle.
v Calls SQLGetDescField() to get this descriptor's SQL_DESC_COUNT field, and if

the value in the ColumnNumber argument exceeds the value of
SQL_DESC_COUNT, calls SQLSetDescField() to increase the value of
SQL_DESC_COUNT to ColumnNumber.

v Calls SQLSetDescField() multiple times to assign values to the following fields
of the ARD:
– Sets SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE to the value of

TargetType.
– Sets one or more of SQL_DESC_LENGTH, SQL_DESC_PRECISION,

SQL_DESC_SCALE as appropriate for TargetType.
– Sets the SQL_DESC_OCTET_LENGTH field to the value of BufferLength.
– Sets the SQL_DESC_DATA_PTR field to the value of TargetValue.
– Sets the SQL_DESC_INDICATOR_PTR field to the value of StrLen_or_IndPtr

(see the following paragraph).
– Sets the SQL_DESC_OCTET_LENGTH_PTR field to the value of

StrLen_or_IndPtr (see the following paragraph).

The variable that the StrLen_or_IndPtr argument refers to is used for both indicator
and length information. If a fetch encounters a null value for the column, it stores
SQL_NULL_DATA in this variable; otherwise, it stores the data length in this
variable. Passing a null pointer as StrLen_or_IndPtr keeps the fetch operation from
returning the data length, but makes the fetch fail if it encounters a null value and
has no way to return SQL_NULL_DATA.

SQLBindCol function (CLI) - Bind a column to an application variable or LOB locator

14 Call Level Interface Guide and Reference, Volume 2

If the call to SQLBindCol() fails, the content of the descriptor fields it would have
set in the ARD are undefined, and the value of the SQL_DESC_COUNT field of
the ARD is unchanged.

Implicit resetting of COUNT field

SQLBindCol() sets SQL_DESC_COUNT to the value of the ColumnNumber
argument only when this would increase the value of SQL_DESC_COUNT. If the
value in the TargetValuePtr argument is a null pointer and the value in the
ColumnNumber argument is equal to SQL_DESC_COUNT (that is, when unbinding
the highest bound column), then SQL_DESC_COUNT is set to the number of the
highest remaining bound column.

Cautions regarding SQL_C_DEFAULT

To retrieve column data successfully, the application must determine correctly the
length and starting point of the data in the application buffer. When the
application specifies an explicit TargetType, application misconceptions are readily
detected. However, when the application specifies a TargetType of
SQL_C_DEFAULT, SQLBindCol() can be applied to a column of a different data
type from the one intended by the application, either from changes to the metadata
or by applying the code to a different column. In this case, the application might
fail to determine the start or length of the fetched column data. This can lead to
unreported data errors or memory violations.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 5. SQLBindCol SQLSTATEs

SQLSTATE Description Explanation

07009 Invalid descriptor index The value specified for the argument ColumnNumber exceeded the
maximum number of columns in the result set, or the value
specified was less than 0.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY003 Program type out of range. TargetType was not a valid data type or SQL_C_DEFAULT.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

SQLBindCol function (CLI) - Bind a column to an application variable or LOB locator

Chapter 1. CLI and ODBC functions 15

Table 5. SQLBindCol SQLSTATEs (continued)

SQLSTATE Description Explanation

HY090 Invalid string or buffer length. The value specified for the argument BufferLength is less than 1
and the argument TargetType is either SQL_C_CHAR,
SQL_C_BINARY or SQL_C_DEFAULT.

HYC00 Driver not capable. CLI recognizes, but does not support the data type specified in
the argument TargetType

A LOB locator C data type was specified, but the connected server
does not support LOB data types.

Note: Additional diagnostic messages relating to the bound columns might be reported at fetch time.

Restrictions

The LOB data support is only available when connected to a server that supports
large object data types. If the application attempts to specify a LOB locator C data
type for a server that does not support it, SQLSTATE HYC00 will be returned.

Example
/* bind column 1 to variable */
cliRC = SQLBindCol(hstmt, 1, SQL_C_SHORT, &deptnumb.val, 0, &deptnumb.ind);

SQLBindFileToCol function (CLI) - Bind LOB file reference to LOB
column

Purpose

Specification: CLI 2.1

SQLBindFileToCol() is used to associate or bind a LOB or XML column in a result
set to a file reference or an array of file references. This enables data in that
column to be transferred directly into a file when each row is fetched for the
statement handle.

The LOB file reference arguments (file name, file name length, file reference
options) refer to a file within the application's environment (on the client). Before
fetching each row, the application must make sure that these variables contain the
name of a file, the length of the file name, and a file option (new / overwrite /
append). These values can be changed between each row fetch operation.

Syntax
SQLRETURN SQLBindFileToCol (SQLHSTMT StatementHandle, /* hstmt */

SQLUSMALLINT ColumnNumber, /* icol */
SQLCHAR *FileName,
SQLSMALLINT *FileNameLength,
SQLUINTEGER *FileOptions,
SQLSMALLINT MaxFileNameLength,
SQLINTEGER *StringLength,
SQLINTEGER *IndicatorValue);

SQLBindCol function (CLI) - Bind a column to an application variable or LOB locator

16 Call Level Interface Guide and Reference, Volume 2

Function arguments

Table 6. SQLBindFileToCol arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT icol input Number identifying the column. Columns are
numbered sequentially, from left to right, starting at
1.

SQLCHAR * FileName input
(deferred)

Pointer to the location that will contain the file name
or an array of file names at the time of the next fetch
using the StatementHandle. This is either the complete
path name of the file(s) or a relative file name(s). If
relative file name(s) are provided, they are appended
to the current path of the running application. This
pointer cannot be NULL.

SQLSMALLINT * FileNameLength input
(deferred)

Pointer to the location that will contain the length of
the file name (or an array of lengths) at the time of
the next fetch using the StatementHandle. If this
pointer is NULL, then the FileName will be
considered a null-terminated string, similar to
passing a length of SQL_NTS.

The maximum value of the file name length is 255.

SQLUINTEGER * FileOptions input
(deferred)

Pointer to the location that will contain the file
option or (array of file options) to be used when
writing the file at the time of the next fetch using the
StatementHandle. The following FileOptions are
supported:

SQL_FILE_CREATE
Create a new file. If a file by this name
already exists, SQL_ERROR will be
returned.

SQL_FILE_OVERWRITE
If the file already exists, overwrite it.
Otherwise, create a new file.

SQL_FILE_APPEND
If the file already exists, append the data to
it. Otherwise, create a new file.

Only one option can be chosen per file, there is no
default.

SQLSMALLINT MaxFileNameLength input This specifies the length of the FileName buffer or, if
the application uses SQLFetchScroll() to retrieve
multiple rows for the LOB column, this specifies the
length of each element in the FileName array.

SQLINTEGER * StringLength output
(deferred)

Pointer to the location that contains the length (or
array of lengths) in bytes of the LOB data that is
returned. If this pointer is NULL, nothing is
returned.

SQLINTEGER * IndicatorValue output
(deferred)

Pointer to the location that contains an indicator
value (or array of values).

SQLBindFileToCol function (CLI) - Bind LOB file reference to LOB column

Chapter 1. CLI and ODBC functions 17

Usage

The application calls SQLBindFileToCol() once for each column that should be
transferred directly to a file when a row is fetched. LOB data is written directly to
the file without any data conversion, and without appending null-terminators.
XML data is written out in UTF-8, with an XML declaration generated according to
the setting of the SQL_ATTR_XML_DECLARATION connection or statement
attribute.

FileName, FileNameLength, and FileOptions must be set before each fetch. When
SQLFetch() or SQLFetchScroll() is called, the data for any column which has been
bound to a LOB file reference is written to the file or files pointed to by that file
reference. Errors associated with the deferred input argument values of
SQLBindFileToCol() are reported at fetch time. The LOB file reference, and the
deferred StringLength and IndicatorValue output arguments are updated between
fetch operations.

If SQLFetchScroll() is used to retrieve multiple rows for the LOB column,
FileName, FileNameLength, and FileOptions point to arrays of LOB file reference
variables. In this case, MaxFileNameLength specifies the length of each element in
the FileName array and is used by CLI to determine the location of each element in
the FileName array. The contents of the array of file references must be valid at the
time of the SQLFetchScroll() call. The StringLength and IndicatorValue pointers
each point to an array whose elements are updated upon the SQLFetchScroll()
call.

Using SQLFetchScroll(), multiple LOB values can be written to multiple files, or
to the same file depending on the file names specified. If writing to the same file,
the SQL_FILE_APPEND file option should be specified for each file name entry.
Only column-wise binding of arrays of file references is supported with
SQLFetchScroll().

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 7. SQLBindFileToCol SQLSTATEs

SQLSTATE Description Explanation

07009 Invalid column number. The value specified for the argument icol was less than 1.

The value specified for the argument icol exceeded the maximum
number of columns supported by the data source.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY009 Invalid argument value. FileName, StringLength or FileOptions is a null pointer.

SQLBindFileToCol function (CLI) - Bind LOB file reference to LOB column

18 Call Level Interface Guide and Reference, Volume 2

Table 7. SQLBindFileToCol SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the argument MaxFileNameLength was less
than 0.

HYC00 Driver not capable. The application is currently connected to a data source that does
not support large objects.

Restrictions

This function is not available when connected to DB2 servers that do not support
large object data types. Call SQLGetFunctions() with the function type set to
SQL_API_SQLBINDFILETOCOL and check the SupportedPtr output argument to
determine if the function is supported for the current connection.

Example
/* bind a file to the BLOB column */

rc = SQLBindFileToCol(hstmt,
1,
fileName,
&fileNameLength,
&fileOption,
14,
NULL,
&fileInd);

SQLBindFileToParam function (CLI) - Bind LOB file reference to LOB
parameter

Purpose

Specification: CLI 2.1

SQLBindFileToParam() is used to associate or bind a parameter marker in an SQL
statement to a file reference or an array of file references. This enables data from
the file to be transferred directly into a LOB or XML column when the statement is
subsequently executed.

The LOB file reference arguments (file name, file name length, file reference
options) refer to a file within the application's environment (on the client). Before
calling SQLExecute() or SQLExecDirect(), the application must make sure that this
information is available in the deferred input buffers. These values can be changed
between SQLExecute() calls.

Syntax
SQLRETURN SQLBindFileToParam (

SQLHSTMT StatementHandle, /* hstmt */
SQLUSMALLINT TargetType, /* ipar */

SQLBindFileToCol function (CLI) - Bind LOB file reference to LOB column

Chapter 1. CLI and ODBC functions 19

SQLSMALLINT DataType, /* fSqlType */
SQLCHAR *FileName,
SQLSMALLINT *FileNameLength,
SQLUINTEGER *FileOptions,
SQLSMALLINT MaxFileNameLength,
SQLINTEGER *IndicatorValue);

Function arguments

Table 8. SQLBindFileToParam arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT TargetType input Parameter marker number. Parameters are numbered
sequentially, from left to right, starting at 1.

SQLSMALLINT DataType input SQL Data Type of the column. The data type must
be one of:
v SQL_BLOB
v SQL_CLOB
v SQL_DBCLOB
v SQL_XML

SQLCHAR * FileName input
(deferred)

Pointer to the location that will contain the file name
or an array of file names when the statement
(StatementHandle) is executed. This is either the
complete path name of the file or a relative file
name. If a relative file name is provided, it is
appended to the current path of the client process.

This argument cannot be NULL.

SQLSMALLINT * FileNameLength input
(deferred)

Pointer to the location that will contain the length of
the file name (or an array of lengths) at the time of
the next SQLExecute() or SQLExecDirect() using the
StatementHandle.

If this pointer is NULL, then the FileName will be
considered a null-terminated string, similar to
passing a length of SQL_NTS.

The maximum value of the file name length is 255.

SQLUINTEGER * FileOptions input
(deferred)

Pointer to the location that will contain the file
option (or an array of file options) to be used when
reading the file. The location will be accessed when
the statement (StatementHandle) is executed. Only one
option is supported (and it must be specified):

SQL_FILE_READ
A regular file that can be opened, read and
closed. (The length is computed when the
file is opened)

This pointer cannot be NULL.

SQLSMALLINT MaxFileNameLength input This specifies the length of the FileName buffer. If the
application calls SQLParamOptions() to specify
multiple values for each parameter, this is the length
of each element in the FileName array.

SQLBindFileToParam function (CLI) - Bind LOB file reference to LOB parameter

20 Call Level Interface Guide and Reference, Volume 2

Table 8. SQLBindFileToParam arguments (continued)

Data type Argument Use Description

SQLINTEGER * IndicatorValue input
(deferred)

Pointer to the location that contains an indicator
value (or array of values), which is set to
SQL_NULL_DATA if the data value of the parameter
is to be null. It must be set to 0 (or the pointer can
be set to null) when the data value is not null.

Usage

The application calls SQLBindFileToParam() once for each parameter marker whose
value should be obtained directly from a file when a statement is executed. Before
the statement is executed, FileName, FileNameLength, and FileOptions values must be
set. When the statement is executed, the data for any parameter which has been
bound using SQLBindFileToParam() is read from the referenced file and passed to
the server.

If the application uses SQLParamOptions() to specify multiple values for each
parameter, then FileName, FileNameLength, and FileOptions point to an array of LOB
file reference variables. In this case, MaxFileNameLength specifies the length of each
element in the FileName array and is used by CLI to determine the location of each
element in the FileName array.

A LOB parameter marker can be associated with (bound to) an input file using
SQLBindFileToParam(), or with a stored buffer using SQLBindParameter(). The most
recent bind parameter function call determines the type of binding that is in effect.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 9. SQLBindFileToParam SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY004 SQL data type out of range. The value specified for DataType was not a valid SQL type for this
function call.

HY009 Invalid argument value. FileName, FileOptions FileNameLength, is a null pointer.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

SQLBindFileToParam function (CLI) - Bind LOB file reference to LOB parameter

Chapter 1. CLI and ODBC functions 21

Table 9. SQLBindFileToParam SQLSTATEs (continued)

SQLSTATE Description Explanation

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the input argument MaxFileNameLength
was less than 0.

HY093 Invalid parameter number. The value specified for TargetType was either less than 1 or greater
than the maximum number of parameters supported.

HYC00 Driver not capable. The server does not support Large Object data types.

Restrictions

This function is not available when connected to DB2 servers that do not support
large object data types. Call SQLGetFunctions() with the function type set to
SQL_API_SQLBINDFILETOPARAM and check the SupportedPtr output argument
to determine if the function is supported for the current connection.

Example
/* bind the file parameter */
rc = SQLBindFileToParam(hstmt,

3,
SQL_BLOB,
fileName,
&fileNameLength,
&fileOption,
14,
&fileInd);

SQLBindParameter function (CLI) - Bind a parameter marker to a
buffer or LOB locator

Purpose

Specification: CLI 2.1 ODBC 2.0

SQLBindParameter() is used to associate or bind parameter markers in an SQL
statement to either:
v Application variables or arrays of application variables (storage buffers) for all C

data types. In this case data is transferred from the application to the DBMS
when SQLExecute() or SQLExecDirect() is called. Data conversion might occur
as the data is transferred.

v A LOB locator, for SQL LOB data types. In this case a LOB locator value, not the
LOB data itself, is transferred from the application to the server when the SQL
statement is executed.
Alternatively, LOB parameters can be bound directly to a file using
SQLBindFileToParam()

This function must also be used to bind a parameter of a stored procedure CALL
statement to the application where the parameter can be input, output or both.

SQLBindFileToParam function (CLI) - Bind LOB file reference to LOB parameter

22 Call Level Interface Guide and Reference, Volume 2

Syntax
SQLRETURN SQLBindParameter(

SQLHSTMT StatementHandle, /* hstmt */
SQLUSMALLINT ParameterNumber, /* ipar */
SQLSMALLINT InputOutputType, /* fParamType */
SQLSMALLINT ValueType, /* fCType */
SQLSMALLINT ParameterType, /* fSqlType */
SQLULEN ColumnSize, /* cbColDef */
SQLSMALLINT DecimalDigits, /* ibScale */
SQLPOINTER ParameterValuePtr, /* rgbValue */
SQLLEN BufferLength, /* cbValueMax */
SQLLEN *StrLen_or_IndPtr); /* pcbValue */

Function arguments

Table 10. SQLBindParameter arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement Handle

SQLUSMALLINT ParameterNumber input Parameter marker number, ordered sequentially left
to right, starting at 1.

SQLSMALLINT InputOutputType input The type of parameter. The value of the
SQL_DESC_PARAMETER_TYPE field of the IPD is
also set to this argument. The supported types are:

v SQL_PARAM_INPUT: The parameter marker is
associated with an SQL statement that is not a
stored procedure CALL; or, it marks an input
parameter of the CALLed stored procedure.

When the statement is executed, the data for the
parameter is sent to the server and as such, the
ParameterValuePtr buffer must contain valid input
data value(s), unless the StrLen_or_IndPtr buffer
contains SQL_NULL_DATA or
SQL_DATA_AT_EXEC (if the value should be sent
via SQLParamData() and SQLPutData()).

v SQL_PARAM_INPUT_OUTPUT: The parameter
marker is associated with an input/output
parameter of the CALLed stored procedure.

When the statement is executed, the data for the
parameter is sent to the server and as such, the
ParameterValuePtr buffer must contain valid input
data value(s), unless the StrLen_or_IndPtr buffer
contains SQL_NULL_DATA or
SQL_DATA_AT_EXEC (if the value should be sent
via SQLParamData() and SQLPutData()).

v SQL_PARAM_OUTPUT: The parameter marker is
associated with an output parameter of the
CALLed stored procedure or the return value of
the stored procedure.

After the statement is executed, data for the
output parameter is returned to the application
buffer specified by ParameterValuePtr and
StrLen_or_IndPtr, unless both are NULL pointers,
in which case the output data is discarded. If an
output parameter does not have a return value
then StrLen_or_IndPtr is set to SQL_NULL_DATA.

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

Chapter 1. CLI and ODBC functions 23

Table 10. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLSMALLINT ValueType input C data type of the parameter. The following types
are supported:
v SQL_C_BINARY
v SQL_C_BIT
v SQL_C_BLOB_LOCATOR
v SQL_C_CHAR
v SQL_C_CLOB_LOCATOR
v SQL_C_DBCHAR
v SQL_C_DBCLOB_LOCATOR
v SQL_C_DECIMAL_IBM
v SQL_C_DOUBLE
v SQL_C_FLOAT
v SQL_C_LONG
v SQL_C_NUMERIC a

v SQL_C_SBIGINT
v SQL_C_SHORT
v SQL_C_TYPE_DATE
v SQL_C_TYPE_TIME
v SQL_C_TYPE_TIMESTAMP
v SQL_C_TYPE_TIMESTAMP_EXT
v SQL_C_TYPE_TIMESTAMP_EXT_TZ
v SQL_C_TINYINT
v SQL_C_UBIGINT
v SQL_C_UTINYINT
v SQL_C_WCHAR

Specifying SQL_C_DEFAULT causes data to be
transferred from its default C data type to the type
indicated in ParameterType.

a Windows 32-bit only

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

24 Call Level Interface Guide and Reference, Volume 2

Table 10. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLSMALLINT ParameterType input SQL data type of the parameter. The supported types
are:

v SQL_BIGINT

v SQL_BINARY

v SQL_BIT

v SQL_BLOB

v SQL_BLOB_LOCATOR

v SQL_CHAR

v SQL_CLOB

v SQL_CLOB_LOCATOR

v SQL_DBCLOB

v SQL_DBCLOB_LOCATOR

v SQL_DECIMAL

v SQL_DOUBLE

v SQL_FLOAT

v SQL_GRAPHIC

v SQL_INTEGER

v SQL_LONGVARBINARY

v SQL_LONGVARCHAR

v SQL_LONGVARGRAPHIC

v SQL_NUMERIC

v SQL_REAL

v SQL_SMALLINT

v SQL_TINYINT

v SQL_TYPE_DATE

v SQL_TYPE_TIME

v SQL_TYPE_TIMESTAMP

v SQL_TYPE_TIMESTAMP_WITH_TIMEZONE

v SQL_VARBINARY

v SQL_VARCHAR

v SQL_VARGRAPHIC

v SQL_WCHAR

v SQL_XML

Note: SQL_BLOB_LOCATOR,
SQL_CLOB_LOCATOR, SQL_DBCLOB_LOCATOR
are application related concepts and do not map to a
data type for column definition during a CREATE
TABLE statement.

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

Chapter 1. CLI and ODBC functions 25

Table 10. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLULEN ColumnSize input Precision of the corresponding parameter marker. If
ParameterType denotes:

v A binary or single byte character string (for
example, SQL_CHAR, SQL_BLOB), this is the
maximum length in bytes for this parameter
marker.

v A double byte character string (for example,
SQL_GRAPHIC), this is the maximum length in
double-byte characters for this parameter.

v SQL_DECIMAL, SQL_NUMERIC, this is the
maximum decimal precision.

v An XML value (SQL_XML) for an external routine
argument, this is the maximum length in bytes, n,
of the declared XML AS CLOB(n) argument. For
all other parameters of type SQL_XML, this
argument is ignored.

v Otherwise, this argument is ignored.

SQLSMALLINT DecimalDigits input If ParameterType is SQL_DECIMAL or
SQL_NUMERIC, DecimalDigits represents the scale of
the corresponding parameter and sets the
SQL_DESC_SCALE field of the IPD.

If ParameterType is SQL_TYPE_TIMESTAMP or
SQL_TYPE_TIME, Decimal Digits represents the
precision of the corresponding parameter and sets
the SQL_DESC_PRECISION field of the IPD. The
precision of a time timestamp value is the number of
digits to the right of the decimal point in the string
representation of a time or timestamp (for example,
the scale of yyyy-mm-dd hh:mm:ss.fff is 3).

Other than for the ParameterType values mentioned
here, DecimalDigits is ignored.

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

26 Call Level Interface Guide and Reference, Volume 2

Table 10. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLPOINTER ParameterValuePtr input
(deferred),
output
(deferred), or
both

v On input (InputOutputType set to
SQL_PARAM_INPUT, or
SQL_PARAM_INPUT_OUTPUT):

At execution time, if StrLen_or_IndPtr does not
contain SQL_NULL_DATA or
SQL_DATA_AT_EXEC, then ParameterValuePtr
points to a buffer that contains the actual data for
the parameter.

If StrLen_or_IndPtr contains SQL_DATA_AT_EXEC,
then ParameterValuePtr is an application-defined
32-bit value that is associated with this parameter.
This 32-bit value is returned to the application via
a subsequent SQLParamData() call.

If SQLParamOptions() is called to specify multiple
values for the parameter, then ParameterValuePtr is
a pointer to a input buffer array of BufferLength
bytes.

v On output (InputOutputType set to
SQL_PARAM_OUTPUT, or
SQL_PARAM_INPUT_OUTPUT):

ParameterValuePtr points to the buffer where the
output parameter value of the stored procedure
will be stored.

If InputOutputType is set to
SQL_PARAM_OUTPUT, and both
ParameterValuePtr and StrLen_or_IndPtr are NULL
pointers, then the output parameter value or the
return value from the stored procedure call is
discarded.

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

Chapter 1. CLI and ODBC functions 27

Table 10. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLLEN BufferLength input For character and binary data, BufferLength specifies
the length of the ParameterValuePtr buffer (if is
treated as a single element) or the length of each
element in the ParameterValuePtr array (if the
application calls SQLParamOptions() to specify
multiple values for each parameter). For
non-character and non-binary data, this argument is
ignored -- the length of the ParameterValuePtr buffer
(if it is a single element) or the length of each
element in the ParameterValuePtr array (if
SQLParamOptions() is used to specify an array of
values for each parameter) is assumed to be the
length associated with the C data type.

For output parameters, BufferLength is used to
determine whether to truncate character or binary
output data in the following manner:

v For character data, if the number of bytes
available to return is greater than or equal to
BufferLength, the data in ParameterValuePtr is
truncated to BufferLength-1 bytes and is
null-terminated (unless null-termination has been
turned off).

v For binary data, if the number of bytes available
to return is greater than BufferLength, the data in
ParameterValuePtr is truncated to BufferLength
bytes.

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

28 Call Level Interface Guide and Reference, Volume 2

Table 10. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLLEN * StrLen_or_IndPtr input
(deferred),
output
(deferred), or
both

If this is an input or input/output parameter:

This is the pointer to the location which contains
(when the statement is executed) the length of the
parameter marker value stored at ParameterValuePtr.

To specify a null value for a parameter marker, this
storage location must contain SQL_NULL_DATA.

If ValueType is SQL_C_CHAR, this storage location
must contain either the exact length of the data
stored at ParameterValuePtr, or SQL_NTS if the
contents at ParameterValuePtr is null-terminated.

If ValueType indicates character data (explicitly, or
implicitly using SQL_C_DEFAULT), and this pointer
is set to NULL, it is assumed that the application
will always provide a null-terminated string in
ParameterValuePtr. This also implies that this
parameter marker will never have a null value.

If ParameterType denotes a graphic data type and the
ValueType is SQL_C_CHAR, the pointer to
StrLen_or_IndPtr can never be NULL and the
contents of StrLen_or_IndPtr can never hold
SQL_NTS. In general for graphic data types, this
length should be the number of octets that the
double byte data occupies; therefore, the length
should always be a multiple of 2. In fact, if the
length is odd, then an error will occur when the
statement is executed.

When SQLExecute() or SQLExecDirect() is called,
and StrLen_or_IndPtr points to a value of
SQL_DATA_AT_EXEC, the data for the parameter
will be sent with SQLPutData(). This parameter is
referred to as a data-at-execution parameter. When
SQLBindParameter() or SQLExtendedBind() method
is called through after setting the
SQL_ATTR_EXTENDED_INDICATORS attribute, the
StrLen_or_IndPtr argument allows
SQL_UNASSIGNED and SQL_DEFAULT_PARAM
constant to pass through the method.

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

Chapter 1. CLI and ODBC functions 29

Table 10. SQLBindParameter arguments (continued)

Data type Argument Use Description

SQLINTEGER * StrLen_or_IndPtr (cont) input
(deferred),
output
(deferred), or
both

If SQLSetStmtAttr() is used with the
SQL_ATTR_PARAMSET_SIZE attribute to specify
multiple values for each parameter, StrLen_or_IndPtr
points to an array of SQLINTEGER values where
each of the elements can be the number of bytes in
the corresponding ParameterValuePtr element
(excluding the null-terminator), or
SQL_NULL_DATA.

The StrLen_or_IndPtr represents the size of the
parameter. If you have an output parameter,
StrLen_or_IndPtr is a memory address (a pointer) to
an SQLINTEGER and the value will contain either:

v The length of the buffer (minus the NULL
terminator).

v -1 (SQL_NULL_DATA), which means that the
value is NULL, and you can ignore the actual
value.

v -4 (SQL_NO_TOTAL), which is only used for LOB
type of data, and is used to indicate that the
number of bytes available to return cannot be
determined.

Usage

SQLBindParameter() extends the capability of the deprecated SQLSetParam()
function, by providing a method of:
v Specifying whether a parameter is input, input / output, or output, necessary

for proper handling of parameters for stored procedures.
v Specifying an array of input parameter values when SQLSetStmtAttr() with the

SQL_ATTR_PARAMSET_SIZE attribute is used in conjunction with
SQLBindParameter().

This function can be called before SQLPrepare() if the data types and lengths of the
target columns in the WHERE or UPDATE clause, or the parameters for the stored
procedure are known. Otherwise, you can obtain the attributes of the target
columns or stored procedure parameters after the statement is prepared using
SQLDescribeParam(), and then bind the parameter markers.

Parameter markers are referenced by number (ParameterNumber) and are numbered
sequentially from left to right, starting at 1.

The C buffer data type given by ValueType must be compatible with the SQL data
type indicated by ParameterType, or an error will occur.

All parameters bound by this function remain in effect until one of the following
occurs:
v SQLFreeStmt() is called with the SQL_RESET_PARAMS option, or
v SQLFreeHandle() is called with HandleType set to SQL_HANDLE_STMT, or

SQLFreeStmt() is called with the SQL_DROP option, or
v SQLBindParameter() is called again for the same ParameterNumber, or

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

30 Call Level Interface Guide and Reference, Volume 2

v SQLSetDescField() is called, with the associated APD descriptor handle, to set
SQL_DESC_COUNT in the header field of the APD to zero (0).

A parameter can only be bound to either a file or a storage location, not both. The
most recent parameter binding function call determines the bind that is in effect.

Parameter type

The InputOutputType argument specifies the type of the parameter. All parameters
in the SQL statements that do not call procedures are input parameters. Parameters
in stored procedure calls can be input, input/output, or output parameters. Even
though the DB2 stored procedure argument convention typically implies that all
procedure arguments are input/output, the application programmer can still
choose to specify more exactly the input or output nature on the
SQLBindParameter() to follow a more rigorous coding style.
v If an application cannot determine the type of a parameter in a procedure call,

set InputOutputType to SQL_PARAM_INPUT; if the data source returns a value
for the parameter, CLI discards it.

v If an application has marked a parameter as SQL_PARAM_INPUT_OUTPUT or
SQL_PARAM_OUTPUT and the data source does not return a value, CLI sets
the StrLen_or_IndPtr buffer to SQL_NULL_DATA.

v If an application marks a parameter as SQL_PARAM_OUTPUT, data for the
parameter is returned to the application after the CALL statement has been
processed. If the ParameterValuePtr and StrLen_or_IndPtr arguments are both null
pointers, CLI discards the output value. If the data source does not return a
value for an output parameter, CLI sets the StrLen_or_IndPtr buffer to
SQL_NULL_DATA.

v For this function, ParameterValuePtr and StrLen_or_IndPtr are deferred arguments.
In the case where InputOutputType is set to SQL_PARAM_INPUT or
SQL_PARAM_INPUT_OUTPUT, the storage locations must be valid and contain
input data values when the statement is executed. This means either keeping the
SQLExecDirect() or SQLExecute() call in the same procedure scope as the
SQLBindParameter() calls, or, these storage locations must be dynamically
allocated or statically / globally declared.
Similarly, if InputOutputType is set to SQL_PARAM_OUTPUT or
SQL_PARAM_INPUT_OUTPUT, the ParameterValuePtr and StrLen_or_IndPtr
buffer locations must remain valid until the CALL statement has been executed.

ParameterValuePtr and StrLen_or_IndPtr arguments

ParameterValuePtr and StrLen_or_IndPtr are deferred arguments, so the storage
locations they point to must be valid and contain input data values when the
statement is executed. This means either keeping the SQLExecDirect() or
SQLExecute() call in the same application function scope as the
SQLBindParameter() calls, or dynamically allocating or statically or globally
declaring these storage locations.

Since the data in the variables referenced by ParameterValuePtr and
StrLen_or_IndPtr is not verified until the statement is executed, data content or
format errors are not detected or reported until SQLExecute() or SQLExecDirect()
is called.

An application can pass the value for a parameter either in the ParameterValuePtr
buffer or with one or more calls to SQLPutData(). In the latter case, these
parameters are data-at-execution parameters. The application informs CLI of a

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

Chapter 1. CLI and ODBC functions 31

data-at-execution parameter by placing the SQL_DATA_AT_EXEC value in the
buffer pointed to by StrLen_or_IndPtr. It sets the ParameterValuePtr input argument
to a 32-bit value which will be returned on a subsequent SQLParamData() call and
can be used to identify the parameter position.

When SQLBindParameter() is used to bind an application variable to an output
parameter for a stored procedure, CLI can provide some performance enhancement
if the ParameterValuePtr buffer is placed consecutively in memory after the
StrLen_or_IndPtr buffer. For example:

struct { SQLINTEGER StrLen_or_IndPtr;
SQLCHAR ParameterValuePtr[MAX_BUFFER];

} column;

BufferLength argument

For character and binary C data, the BufferLength argument specifies the length of
the ParameterValuePtr buffer if it is a single element; or, if the application calls
SQLSetStmtAttr() with the SQL_ATTR_PARAMSET_SIZE attribute to specify
multiple values for each parameter, BufferLength is the length of each element in the
ParameterValuePtr array, including the null-terminator. If the application specifies
multiple values, BufferLength is used to determine the location of values in the
ParameterValuePtr array. For all other types of C data, the BufferLength argument is
ignored.

ColumnSize argument

When actual size of the target column or output parameter is not known, the
application can specify 0 for the length of the column. (ColumnSize set to 0).

If the column's data type is of fixed-length, the CLI driver will base the length
from the data type itself. However, setting ColumnSize to 0 means different things
when the data type is of type character, binary string or large object:

Input parameter
A 0 ColumnSize means that CLI will use the maximum length for the SQL
type provided as the size of the column or stored procedure parameter.
CLI will perform any necessary conversions using this size.

Output parameter (stored procedures only)
A 0 ColumnSize means that CLI will use BufferLength as the parameter's
size. Note that this means that the stored procedure must not return more
than BufferLength bytes of data or a truncation error will occur.

For Input-output parameter (store procedures only)
A 0 ColumnSize means that CLI will set both the input and output to
BufferLength as the target parameter. This means that the input data will be
converted to this new size if necessary before being sent to the stored
procedure and at most BufferLength bytes of data are expected to be
returned.

Setting ColumnSize to 0 is not recommended unless it is required; it causes CLI to
perform costly checking for the length of the data at run time.

Descriptors

How a parameter is bound is determined by fields of the APD and IPD. The
arguments in SQLBindParameter() are used to set those descriptor fields. The fields

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

32 Call Level Interface Guide and Reference, Volume 2

can also be set by the SQLSetDescField() functions, although SQLBindParameter()
is more efficient to use because the application does not have to obtain a descriptor
handle to call SQLBindParameter().

Note: Calling SQLBindParameter() for one statement can affect other statements.
This occurs when the APD associated with the statement is explicitly allocated and
is also associated with other statements. Because SQLBindParameter() modifies the
fields of the APD, the modifications apply to all statements with which this
descriptor is associated. If this is not the required behavior, the application should
dissociate the descriptor from the other statements before calling
SQLBindParameter().

Conceptually, SQLBindParameter() performs the following steps in sequence:
v Calls SQLGetStmtAttr() to obtain the APD handle.
v Calls SQLGetDescField() to get the SQL_DESC_COUNT header field from the

APD, and if the value of the ParameterNumber argument exceeds the value of
SQL_DESC_COUNT, calls SQLSetDescField() to increase the value of
SQL_DESC_COUNT to ParameterNumber.

v Calls SQLSetDescField() multiple times to assign values to the following fields
of the APD:
– Sets SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE to the value of

ValueType, except that if ValueType is one of the concise identifiers of a
datetime, it sets SQL_DESC_TYPE to SQL_DATETIME, sets
SQL_DESC_CONCISE_TYPE to the concise identifier, and sets
SQL_DESC_DATETIME_INTERVAL_CODE to the corresponding datetime
subcode.

– Sets the SQL_DESC_DATA_PTR field to the value of ParameterValue.
– Sets the SQL_DESC_OCTET_LENGTH_PTR field to the value of

StrLen_or_Ind.
– Sets the SQL_DESC_INDICATOR_PTR field also to the value of StrLen_or_Ind.

The StrLen_or_Ind parameter specifies both the indicator information and the
length for the parameter value.

v Calls SQLGetStmtAttr() to obtain the IPD handle.
v Calls SQLGetDescField() to get the IPD's SQL_DESC_COUNT field, and if the

value of the ParameterNumber argument exceeds the value of
SQL_DESC_COUNT, calls SQLSetDescField() to increase the value of
SQL_DESC_COUNT to ParameterNumber.

v Calls SQLSetDescField() multiple times to assign values to the following fields
of the IPD:
– Sets SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE to the value of

ParameterType, except that if ParameterType is one of the concise identifiers of a
datetime, it sets SQL_DESC_TYPE to SQL_DATETIME, sets
SQL_DESC_CONCISE_TYPE to the concise identifier, and sets
SQL_DESC_DATETIME_INTERVAL_CODE to the corresponding datetime
subcode.

– Sets one or more of SQL_DESC_LENGTH, SQL_DESC_PRECISION, and
SQL_DESC_SCALE as appropriate for ParameterType.

If the call to SQLBindParameter() fails, the content of the descriptor fields that it
would have set in the APD are undefined, and the SQL_DESC_COUNT field of the
APD is unchanged. In addition, the SQL_DESC_LENGTH,
SQL_DESC_PRECISION, SQL_DESC_SCALE, and SQL_DESC_TYPE fields of the
appropriate record in the IPD are undefined and the SQL_DESC_COUNT field of
the IPD is unchanged.

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

Chapter 1. CLI and ODBC functions 33

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 11. SQLBindParameter SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. The conversion from the data value identified by the ValueType
argument to the data type identified by the ParameterType
argument is not a meaningful conversion. (For example,
conversion from SQL_C_TYPE_DATE to SQL_DOUBLE.)

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY003 Program type out of range. The value specified by the argument ParameterNumber not a valid
data type or SQL_C_DEFAULT.

HY004 SQL data type out of range. The value specified for the argument ParameterType is not a valid
SQL data type.

HY009 Invalid argument value. The argument ParameterValuePtr was a null pointer and the
argument StrLen_or_IndPtr was a null pointer, and
InputOutputType is not SQL_PARAM_OUTPUT.

HY010 Function sequence error. Function was called after SQLExecute() or SQLExecDirect() had
returned SQL_NEED_DATA, but data has not been sent for all
data-at-execution parameters.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY021 Inconsistent descriptor
information

The descriptor information checked during a consistency check
was not consistent.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength was less than 0.

HY093 Invalid parameter number. The value specified for the argument ValueType was less than 1 or
greater than the maximum number of parameters supported by
the server.

HY094 Invalid scale value. The value specified for ParameterType was either SQL_DECIMAL
or SQL_NUMERIC and the value specified for DecimalDigits was
less than 0 or greater than the value for the argument ParamDef
(precision).

The value specified for ParameterType was
SQL_C_TYPE_TIMESTAMP and the value for ParameterType was
either SQL_CHAR or SQL_VARCHAR and the value for
DecimalDigits was less than 0 or greater than 9.

The value specified for ParameterType was
SQL_C_TIMESTAMP_EXT and the value for ParameterType was
either SQL_CHAR or SQL_VARCHAR and the value for
DecimalDigits was less than 0 or greater than 12.

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

34 Call Level Interface Guide and Reference, Volume 2

Table 11. SQLBindParameter SQLSTATEs (continued)

SQLSTATE Description Explanation

HY104 Invalid precision value. The value specified for ParameterType was either SQL_DECIMAL
or SQL_NUMERIC and the value specified for ParamDef was less
than 1.

HY105 Invalid parameter type. InputOutputType is not one of SQL_PARAM_INPUT,
SQL_PARAM_OUTPUT, or SQL_PARAM_INPUT_OUTPUT.

HYC00 Driver not capable. CLI or data source does not support the conversion specified by
the combination of the value specified for the argument ValueType
and the value specified for the argument ParameterType.

The value specified for the argument ParameterType is not
supported by either CLI or the data source.

Restrictions

SQLBindParameter() replaces the deprecated SQLSetParam() API in CLI V5 and
above, and ODBC 2.0 and above.

An additional value for StrLen_or_IndPtr, SQL_DEFAULT_PARAM, was introduced
in ODBC 2.0, to indicate that the procedure is to use the default value of a
parameter, rather than a value sent from the application. Since DB2 stored
procedure arguments do not support default values, specification of this value for
StrLen_or_IndPtr argument will result in an error when the CALL statement is
executed since the SQL_DEFAULT_PARAM value will be considered an invalid
length.

ODBC 2.0 also introduced the SQL_LEN_DATA_AT_EXEC(length) macro to be
used with the StrLen_or_IndPtr argument. The macro is used to specify the sum
total length of the entire data that would be sent for character or binary C data via
the subsequent SQLPutData() calls. Since the DB2 ODBC driver does not need this
information, the macro is not needed. An ODBC application calls SQLGetInfo()
with the SQL_NEED_LONG_DATA_LEN option to check if the driver needs this
information. The DB2 ODBC driver will return 'N' to indicate that this information
is not needed by SQLPutData().

Example
SQLSMALLINT parameter1 = 0;

/* ... */

cliRC = SQLBindParameter(hstmt,
1,
SQL_PARAM_INPUT,
SQL_C_SHORT,
SQL_SMALLINT,
0,
0,
¶meter1,
0,
NULL);

SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator

Chapter 1. CLI and ODBC functions 35

SQLBrowseConnect function (CLI) - Get required attributes to connect
to data source

Purpose

Specification: CLI 5.0 ODBC 1

SQLBrowseConnect() supports an iterative method of discovering and enumerating
the attributes and attribute values required to connect to a data source. Each call to
SQLBrowseConnect() returns successive levels of attributes and attribute values.
When all levels have been enumerated, a connection to the data source is
completed and a complete connection string is returned by SQLBrowseConnect(). A
return code of SQL_SUCCESS or SQL_SUCCESS_WITH_INFO indicates that all
connection information has been specified and the application is now connected to
the data source.

Unicode Equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLBrowseConnectW(). Refer to
“Unicode functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLBrowseConnect (

SQLHDBC ConnectionHandle, /* hdbc */
SQLCHAR *InConnectionString, /* *szConnStrIn */
SQLSMALLINT InConnectionStringLength, /* dbConnStrIn */
SQLCHAR *OutConnectionString, /* *szConnStrOut */
SQLSMALLINT OutConnectionStringCapacity, /* dbConnStrOutMax */
SQLSMALLINT *OutConnectionStringLengthPtr); /* *pcbConnStrOut */

Function Arguments

Table 12. SQLBrowseConnect arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle.

SQLCHAR * InConnectionString input Browse request connection string (see
InConnectionString argument).

SQLSMALLINT InConnectionStringLength input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store *InConnectionString.

SQLCHAR * OutConnectionString output Pointer to a buffer in which to return the browse
result connection string (see OutConnectionString
argument).

SQLSMALLINT
OutConnectionString
Capacity

input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the *OutConnectionString buffer.

SQLSMALLINT *
OutConnectionString
LengthPtr

output The total number of elements (excluding the null
termination character) available to return in
*OutConnectionString. If the number of elements
available to return is greater than or equal to
OutConnectionStringCapacity, the connection string in
*OutConnectionString is truncated to
OutConnectionStringCapacity minus the length of a
null termination character.

SQLBrowseConnect function (CLI) - Get required attributes to connect to data source

36 Call Level Interface Guide and Reference, Volume 2

Usage

SQLBrowseConnect() requires an allocated connection. If SQLBrowseConnect()
returns SQL_ERROR, outstanding connection information is discarded, and the
connection is returned to an unconnected state.

When SQLBrowseConnect() is called for the first time on a connection, the browse
request connection string must contain the DSN keyword.

On each call to SQLBrowseConnect(), the application specifies the connection
attribute values in the browse request connection string. CLI returns successive
levels of attributes and attribute values in the browse result connection string; it
returns SQL_NEED_DATA as long as there are connection attributes that have not
yet been enumerated in the browse request connection string. The application uses
the contents of the browse result connection string to build the browse request
connection string for the next call to SQLBrowseConnect(). All mandatory attributes
(those not preceded by an asterisk in the OutConnectionString argument) must be
included in the next call to SQLBrowseConnect(). Note that the application cannot
simply copy the entire content of previous browse result connection strings when
building the current browse request connection string; that is, it cannot specify
different values for attributes set in previous levels.

When all levels of connection and their associated attributes have been
enumerated, CLI returns SQL_SUCCESS, the connection to the data source is
complete, and a complete connection string is returned to the application. The
connection string is suitable to use as an argument for SQLDriverConnect() in
conjunction with the SQL_DRIVER_NOPROMPT option to establish another
connection. The complete connection string cannot be used in another call to
SQLBrowseConnect(), however; if SQLBrowseConnect() were called again, the entire
sequence of calls would have to be repeated.

SQLBrowseConnect() also returns SQL_NEED_DATA if there are recoverable,
nonfatal errors during the browse process, for example, an invalid password
supplied by the application or an invalid attribute keyword supplied by the
application. When SQL_NEED_DATA is returned and the browse result connection
string is unchanged, an error has occurred and the application can call
SQLGetDiagRec() to return the SQLSTATE for browse-time errors. This permits the
application to correct the attribute and continue the browse.

An application can terminate the browse process at any time by calling
SQLDisconnect(). CLI will terminate any outstanding connection information and
return the connection to an unconnected state.

InConnectionString argument

A browse request connection string has the following syntax:

connection-string ::= attribute[] | attribute: connection-string

attribute ::= attribute-keyword=attribute-value
| DRIVER=[{]attribute-value[}]

attribute-keyword ::= DSN | UID | PWD | NEWPWD
| driver-defined-attribute-keyword

SQLBrowseConnect function (CLI) - Get required attributes to connect to data source

Chapter 1. CLI and ODBC functions 37

attribute-value ::= character-string
driver-defined-attribute-keyword ::= identifier

where
v character-string has zero or more SQLCHAR or SQLWCHAR elements
v identifier has one or more SQLCHAR or SQLWCHAR elements
v attribute-keyword is case insensitive
v attribute-value might be case sensitive
v the value of the DSN keyword does not consist solely of blanks
v NEWPWD is used as part of a change password request. The application can

either specify the new string to use, for example, NEWPWD=anewpass; or
specify NEWPWD=; and rely on a dialog box generated by the DB2 CLI driver
to prompt for the new password

Because of connection string and initialization file grammar, keywords and
attribute values that contain the characters []{}(),;?*=!@ should be avoided. Because
of the grammar in the system information, keywords and data source names
cannot contain the backslash (\) character. For CLI Version 2, braces are required
around the DRIVER keyword.

If any keywords are repeated in the browse request connection string, CLI uses the
value associated with the first occurrence of the keyword. If the DSN and
DRIVER keywords are included in the same browse request connection string, CLI
uses whichever keyword appears first.

OutConnectionString argument

The browse result connection string is a list of connection attributes. A connection
attribute consists of an attribute keyword and a corresponding attribute value. The
browse result connection string has the following syntax:

connection-string ::= attribute[;] | attribute; connection-string

attribute ::= [*]attribute-keyword=attribute-value
attribute-keyword ::= ODBC-attribute-keyword
| driver-defined-attribute-keyword

ODBC-attribute-keyword = {UID | PWD}[:localized-identifier]
driver-defined-attribute-keyword ::= identifier[:localized-identifier]

attribute-value ::= {attribute-value-list} | ?
(The braces are literal; they are returned by CLI.)
attribute-value-list ::= character-string [:localized-character
string] | character-string [:localized-character string], attribute-value-list

where
v character-string and localized-character string have zero or more SQLCHAR or

SQLWCHAR elements
v identifier and localized-identifier have one or more elements; attribute-keyword

is case insensitive
v attribute-value might be case sensitive

Because of connection string and initialization file grammar, keywords, localized
identifiers, and attribute values that contain the characters []{}(),;?*=!@ should be
avoided. Because of the grammar in the system information, keywords and data
source names cannot contain the backslash (\) character.

SQLBrowseConnect function (CLI) - Get required attributes to connect to data source

38 Call Level Interface Guide and Reference, Volume 2

The browse result connection string syntax is used according to the following
semantic rules:
v If an asterisk (*) precedes an attribute-keyword, the attribute is optional, and can

be omitted in the next call to SQLBrowseConnect().
v The attribute keywords UID and PWD have the same meaning as defined in

SQLDriverConnect().
v When connecting to a DB2 database, only DSN, UID and PWD are required.

Other keywords can be specified but do not affect the connection.
v ODBC-attribute-keywords and driver-defined-attribute-keywords include a

localized or user-friendly version of the keyword. This might be used by
applications as a label in a dialog box. However, UID, PWD, or the identifier
alone must be used when passing a browse request string to CLI.

v The {attribute-value-list} is an enumeration of actual values valid for the
corresponding attribute-keyword. Note that the braces ({}) do not indicate a list
of choices; they are returned by CLI. For example, it might be a list of server
names or a list of database names.

v If the attribute-value is a single question mark (?), a single value corresponds to
the attribute-keyword. For example, UID=JohnS; PWD=Sesame.

v Each call to SQLBrowseConnect() returns only the information required to satisfy
the next level of the connection process. CLI associates state information with
the connection handle so that the context can always be determined on each call.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_NEED_DATA
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 13. SQLBrowseConnect SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The buffer *OutConnectionString was not large enough to return
entire browse result connection string, so the string was truncated.
The buffer *OutConnectionStringLengthPtr contains the length of
the untruncated browse result connection string. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S00 Invalid connection string
attribute.

An invalid attribute keyword was specified in the browse request
connection string (InConnectionString). (Function returns
SQL_NEED_DATA.)

An attribute keyword was specified in the browse request
connection string (InConnectionString) that does not apply to the
current connection level. (Function returns SQL_NEED_DATA.)

01S02 Option value changed. CLI did not support the specified value of the ValuePtr argument
in SQLSetConnectAttr() and substituted a similar value. (Function
returns SQL_SUCCESS_WITH_INFO.)

08001 Unable to connect to data source. CLI was unable to establish a connection with the data source.

08002 Connection in use. The specified connection had already been used to establish a
connection with a data source and the connection was open.

SQLBrowseConnect function (CLI) - Get required attributes to connect to data source

Chapter 1. CLI and ODBC functions 39

Table 13. SQLBrowseConnect SQLSTATEs (continued)

SQLSTATE Description Explanation

08004 The application server rejected
establishment of the connection.

The data source rejected the establishment of the connection for
implementation defined reasons.

08S01 Communication link failure. The communication link between CLI and the data source to
which it was trying to connect failed before the function
completed processing.

28000 Invalid authorization
specification.

Either the user identifier or the authorization string or both as
specified in the browse request connection string
(InConnectionString) violated restrictions defined by the data
source.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for argument InConnectionStringLength was
less than 0 and was not equal to SQL_NTS.

The value specified for argument OutConnectionStringCapacity was
less than 0.

Restrictions

None.

Example
SQLCHAR connInStr[255]; /* browse request connection string */
SQLCHAR outStr[1025]; /* browse result connection string*/

/* ... */

cliRC = SQL_NEED_DATA;
while (cliRC == SQL_NEED_DATA)
{

/* get required attributes to connect to data source */
cliRC = SQLBrowseConnect(hdbc,

connInStr,
SQL_NTS,
outStr,
sizeof(outStr),
&indicator);

DBC_HANDLE_CHECK(hdbc, cliRC);

printf(" So far, have connected %d times to database %s\n",
count++, db1Alias);

printf(" Resulting connection string:

/* if inadequate connection information was provided, exit
the program */

if (cliRC == SQL_NEED_DATA)
{

printf(" You can provide other connection information "

SQLBrowseConnect function (CLI) - Get required attributes to connect to data source

40 Call Level Interface Guide and Reference, Volume 2

"here by setting connInStr\n");
break;

}

/* if the connection was successful, output confirmation */
if (cliRC == SQL_SUCCESS)
{

printf(" Connected to the database
}

}

SQLBulkOperations function (CLI) - Add, update, delete or fetch a set
of rows

Purpose

Specification: CLI 6.0 ODBC 3.0

SQLBulkOperations() is used to perform the following operations on a
keyset-driven cursor:
v Add new rows
v Update a set of rows where each row is identified by a bookmark
v Delete a set of rows where each row is identified by a bookmark
v Fetch a set of rows where each row is identified by a bookmark

Syntax
SQLRETURN SQLBulkOperations (

SQLHSTMT StatementHandle,
SQLSMALLINT Operation);

Function arguments

Table 14. SQLBulkOperations arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLSMALLINT Operation Input Operation to perform:
v SQL_ADD
v SQL_UPDATE_BY_BOOKMARK
v SQL_DELETE_BY_BOOKMARK
v SQL_FETCH_BY_BOOKMARK

Usage

An application uses SQLBulkOperations() to perform the following operations on
the base table or view that corresponds to the current query in a keyset-driven
cursor:
v Add new rows
v Update a set of rows where each row is identified by a bookmark
v Delete a set of rows where each row is identified by a bookmark
v Fetch a set of rows where each row is identified by a bookmark

A generic application should first ensure that the required bulk operation is
supported. To do so, it can call SQLGetInfo() with an InfoType of
SQL_DYNAMIC_CURSOR_ATTRIBUTES1 and
SQL_DYNAMIC_CURSOR_ATTRIBUTES2 (to see if
SQL_CA1_BULK_UPDATE_BY_BOOKMARK is returned, for instance).

SQLBrowseConnect function (CLI) - Get required attributes to connect to data source

Chapter 1. CLI and ODBC functions 41

After a call to SQLBulkOperations(), the block cursor position is undefined. The
application has to call SQLFetchScroll() to set the cursor position. An application
should only call SQLFetchScroll() with a FetchOrientation argument of
SQL_FETCH_FIRST, SQL_FETCH_LAST, SQL_FETCH_ABSOLUTE, or
SQL_FETCH_BOOKMARK. The cursor position is undefined if the application
calls SQLFetch(), or SQLFetchScroll() with a FetchOrientation argument of
SQL_FETCH_PRIOR, SQL_FETCH_NEXT, or SQL_FETCH_RELATIVE.

A column can be ignored in bulk operations (calls to SQLBulkOperations()). To do
so, call SQLBindCol() and set the column length/indicator buffer (StrLen_or_IndPtr)
to SQL_COLUMN_IGNORE. This does not apply to
SQL_DELETE_BY_BOOKMARK bulk operation.

It is not necessary for the application to set the
SQL_ATTR_ROW_OPERATION_PTR statement attribute when calling
SQLBulkOperations() because rows cannot be ignored when performing bulk
operations with this function.

The buffer pointed to by the SQL_ATTR_ROWS_FETCHED_PTR statement
attribute contains the number of rows affected by a call to SQLBulkOperations().

When the Operation argument is SQL_ADD or SQL_UPDATE_BY_BOOKMARK,
and the select-list of the query specification associated with the cursor contains
more than one reference to the same column, an error is generated.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_NEED_DATA
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 15. SQLBulkOperations SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The Operation argument was SQL_FETCH_BY_BOOKMARK, and
string or binary data returned for a column or columns with a
data type of SQL_C_CHAR or SQL_C_BINARY resulted in the
truncation of non-blank character or non-NULL binary data.

01S07 Invalid conversion. The Operation argument was SQL_FETCH_BY_BOOKMARK, the
data type of the application buffer was not SQL_C_CHAR or
SQL_C_BINARY, and the data returned to application buffers for
one or more columns was truncated. (For numeric C data types,
the fractional part of the number was truncated. For time and
timestamp data types, the fractional portion of the time was
truncated.)

(Function returns SQL_SUCCESS_WITH_INFO.)

SQLBulkOperations function (CLI) - Add, update, delete or fetch a set of rows

42 Call Level Interface Guide and Reference, Volume 2

Table 15. SQLBulkOperations SQLSTATEs (continued)

SQLSTATE Description Explanation

07006 Restricted data type attribute
violation.

The Operation argument was SQL_FETCH_BY_BOOKMARK, and
the data value of a column in the result set could not be
converted to the data type specified by the TargetType argument in
the call to SQLBindCol().

The Operation argument was SQL_UPDATE_BY_BOOKMARK or
SQL_ADD, and the data value in the application buffers could not
be converted to the data type of a column in the result set.

07009 Invalid descriptor index. The argument Operation was SQL_ADD and a column was bound
with a column number greater than the number of columns in the
result set, or the column number was less than 0.

21S02 Degree of derived table does not
match column list.

The argument Operation was SQL_UPDATE_BY_BOOKMARK;
and no columns were updatable because all columns were either
unbound, read-only, or the value in the bound length/indicator
buffer was SQL_COLUMN_IGNORE.

22001 String data right truncation. The assignment of a character or binary value to a column in the
result set resulted in the truncation of non-blank (for characters)
or non-null (for binary) characters or bytes.

22003 Numeric value out of range. The Operation argument was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK, and the assignment of a
numeric value to a column in the result set caused the whole (as
opposed to fractional) part of the number to be truncated.

The argument Operation was SQL_FETCH_BY_BOOKMARK, and
returning the numeric value for one or more bound columns
would have caused a loss of significant digits.

22007 Invalid datetime format. The Operation argument was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK, and the assignment of a date or
timestamp value to a column in the result set caused the year,
month, or day field to be out of range.

The argument Operation was SQL_FETCH_BY_BOOKMARK, and
returning the date or timestamp value for one or more bound
columns would have caused the year, month, or day field to be
out of range.

22008 Date/time field overflow. The Operation argument was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK, and the performance of
datetime arithmetic on data being sent to a column in the result
set resulted in a datetime field (the year, month, day, hour,
minute, or second field) of the result being outside the permissible
range of values for the field, or being invalid based on the natural
rules for datetimes based on the Gregorian calendar.

The Operation argument was SQL_FETCH_BY_BOOKMARK, and
the performance of datetime arithmetic on data being retrieved
from the result set resulted in a datetime field (the year, month,
day, hour, minute, or second field) of the result being outside the
permissible range of values for the field, or being invalid based on
the natural rules for datetimes based on the Gregorian calendar.

SQLBulkOperations function (CLI) - Add, update, delete or fetch a set of rows

Chapter 1. CLI and ODBC functions 43

Table 15. SQLBulkOperations SQLSTATEs (continued)

SQLSTATE Description Explanation

22018 Invalid character value for cast
specification.

The Operation argument was SQL_FETCH_BY_BOOKMARK; the
C type was an exact or approximate numeric or datetime data
type; the SQL type of the column was a character data type; and
the value in the column was not a valid literal of the bound C
type.

The argument Operation was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK; the SQL type was an exact or
approximate numeric or datetime data type; the C type was
SQL_C_CHAR; and the value in the column was not a valid literal
of the bound SQL type.

23000 Integrity constraint violation. The Operation argument was SQL_ADD,
SQL_DELETE_BY_BOOKMARK, or
SQL_UPDATE_BY_BOOKMARK, and an integrity constraint was
violated.

The Operation argument was SQL_ADD, and a column that was
not bound is defined as NOT NULL and has no default.

The Operation argument was SQL_ADD, the length specified in
the bound StrLen_or_IndPtr buffer was SQL_COLUMN_IGNORE,
and the column did not have a default value.

24000 Invalid cursor state. The StatementHandle was in an executed state but no result set was
associated with the StatementHandle. SQLFetch() or
SQLFetchScroll() was not called by the application after
SQLExecute() or SQLExecDirect().

40001 Serialization failure. The transaction was rolled back due to a resource deadlock with
another transaction.

40003 Statement completion unknown. The associated connection failed during the execution of this
function and the state of the transaction cannot be determined.

42000 Syntax error or access violation. CLI was unable to lock the row as needed to perform the
operation requested in the Operation argument.

44000 WITH CHECK OPTION
violation.

The Operation argument was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK, and the insert or update was
performed on a viewed table or a table derived from the viewed
table which was created by specifying WITH CHECK OPTION,
such that one or more rows affected by the insert or update will
no longer be present in the viewed table.

HY000 General error. An error occurred for which there was no specific SQLSTATE and
for which no implementation-specific SQLSTATE was defined. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation error. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

SQLBulkOperations function (CLI) - Add, update, delete or fetch a set of rows

44 Call Level Interface Guide and Reference, Volume 2

Table 15. SQLBulkOperations SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error.
The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
For the StatementHandle and was still executing when this function
was called.

The function was called before a statement was prepared on the
statement handle.

HY011 Operation invalid at this time. The SQL_ATTR_ROW_STATUS_PTR statement attribute was set
between calls to SQLFetch() or SQLFetchScroll() and
SQLBulkOperations.

HY013 Unexpected memory handling
error.

CLI was unable to access memory required to support execution
or completion of this function.

HY090 Invalid string or buffer length. The Operation argument was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK, a data value was a null pointer,
and the column length value was not 0, SQL_DATA_AT_EXEC,
SQL_COLUMN_IGNORE, SQL_NULL_DATA, or less than or
equal to SQL_LEN_DATA_AT_EXEC_OFFSET.

The Operation argument was SQL_ADD or
SQL_UPDATE_BY_BOOKMARK, a data value was not a null
pointer; the C data type was SQL_C_BINARY or SQL_C_CHAR;
and the column length value was less than 0, but not equal to
SQL_DATA_AT_EXEC, SQL_COLUMN_IGNORE, SQL_NTS, or
SQL_NULL_DATA, or less than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

The value in a length/indicator buffer was SQL_DATA_AT_EXEC;
the SQL type was either SQL_LONGVARCHAR,
SQL_LONGVARBINARY, or a long data type; and the
SQL_NEED_LONG_DATA_LEN information type in SQLGetInfo()
was “Y”.

The Operation argument was SQL_ADD, the
SQL_ATTR_USE_BOOKMARKS statement attribute was set to
SQL_UB_VARIABLE, and column 0 was bound to a buffer whose
length was not equal to the maximum length for the bookmark
for this result set. (This length is available in the
SQL_DESC_OCTET_LENGTH field of the IRD, and can be
obtained by calling SQLDescribeCol(), SQLColAttribute(), or
SQLGetDescField().)

SQLBulkOperations function (CLI) - Add, update, delete or fetch a set of rows

Chapter 1. CLI and ODBC functions 45

Table 15. SQLBulkOperations SQLSTATEs (continued)

SQLSTATE Description Explanation

HY092 Invalid attribute identifier. The value specified for the Operation argument was invalid.

The Operation argument was SQL_ADD,
SQL_UPDATE_BY_BOOKMARK, or
SQL_DELETE_BY_BOOKMARK, and the
SQL_ATTR_CONCURRENCY statement attribute was set to
SQL_CONCUR_READ_ONLY.

The Operation argument was SQL_DELETE_BY_BOOKMARK,
SQL_FETCH_BY_BOOKMARK, or
SQL_UPDATE_BY_BOOKMARK, and the bookmark column was
not bound or the SQL_ATTR_USE_BOOKMARKS statement
attribute was set to SQL_UB_OFF.

HYC00 Optional feature not
implemented.

CLI or data source does not support the operation requested in
the Operation argument.

HYT00 Timeout expired. The query timeout period expired before the data source returned
the result set. The timeout period is set through SQLSetStmtAttr()
with an Attribute argument of SQL_ATTR_QUERY_TIMEOUT.

HYT01 Connection timeout expired. The connection timeout period expired before the data source
responded to the request. The connection timeout period is set
through SQLSetConnectAttr(),
SQL_ATTR_CONNECTION_TIMEOUT.

Restrictions

None.

SQLCancel function (CLI) - Cancel statement
Purpose

Specification: CLI 1.1 ODBC 1.0 ISO CLI

SQLCancel() can be used to prematurely terminate the data-at-execution sequence
for sending and retrieving long data in pieces.

SQLCancel() can also be used to cancel a function called in a different thread.

Syntax
SQLRETURN SQLCancel (SQLHSTMT StatementHandle); /* hstmt */

Function arguments

Table 16. SQLCancel arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

Usage

After SQLExecDirect() or SQLExecute() returns SQL_NEED_DATA to solicit for
values for data-at-execution parameters, SQLCancel() can be used to cancel the

SQLBulkOperations function (CLI) - Add, update, delete or fetch a set of rows

46 Call Level Interface Guide and Reference, Volume 2

data-at-execution sequence for sending and retrieving long data in pieces.
SQLCancel() can be called any time before the final SQLParamData() in the
sequence. After the cancellation of this sequence, the application can call
SQLExecute() or SQLExecDirect() to re-initiate the data-at-execution sequence.

If no processing is being done on the statement, SQLCancel() has no effect.
Applications should not call SQLCancel() to close a cursor, but rather
SQLFreeStmt() should be used.

Canceling queries on host databases

To call SQLCancel() against a server which does not have native interrupt support
(such as DB2 for z/OS®, Version 7 and earlier, and IBM DB2 for IBM i), the
INTERRUPT_ENABLED option must be set when cataloging the DCS database
entry for the server.

When the INTERRUPT_ENABLED option is set and SQLCancel() is received by the
server, the server drops the connection and rolls back the unit of work. The
application receives an SQL30081N error indicating that the connection to the
server has been terminated. In order for the application to process additional
database requests, the application must establish a new connection with the
database server.

Canceling asynchronous processing

After an application calls a function asynchronously, it calls the function repeatedly
to determine whether it has finished processing. If the function is still processing, it
returns SQL_STILL_EXECUTING.

After any call to the function that returns SQL_STILL_EXECUTING, an application
can call SQLCancel() to cancel the function. If the cancel request is successful,
SQL_SUCCESS is returned. This message does not indicate that the function was
actually canceled; it indicates that the cancel request was processed. The
application must then continue to call the original function until the return code is
not SQL_STILL_EXECUTING. If the function was successfully canceled, the return
code is for that function is SQL_ERROR and SQLSTATE HY008 (Operation was
cancelled.). If the function succeeded by completing its normal processing, the
return code is SQL_SUCCESS or SQL_SUCCESS_WITH_INFO. If the function
failed for reasons other than cancellation, the return code is SQL_ERROR and an
SQLSTATE other than HY008 (Operation was cancelled.).

Canceling functions in multithread applications

In a multithread application, the application can cancel a function that is running
synchronously on a statement. To cancel the function, the application calls
SQLCancel() with the same statement handle as that used by the target function,
but on a different thread. How the function is canceled depends upon the
operating system. The return code of the SQLCancel() call indicates only whether
CLI processed the request successfully. Only SQL_SUCCESS or SQL_ERROR can be
returned; no SQLSTATEs are returned. If the original function is canceled, it
returns SQL_ERROR and SQLSTATE HY008 (Operation was cancelled.).

If an SQL statement is being executed when SQLCancel() is called on another
thread to cancel the statement execution, it is possible that the execution succeeds
and returns SQL_SUCCESS, while the cancel is also successful. In this case, CLI
assumes that the cursor opened by the statement execution is closed by the cancel,

SQLCancel function (CLI) - Cancel statement

Chapter 1. CLI and ODBC functions 47

so the application will not be able to use the cursor.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_INVALID_HANDLE
v SQL_ERROR

Note: SQL_SUCCESS means that the cancel request was processed, not that the
function call was canceled.

Diagnostics

Table 17. SQLCancel SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY018 Server declined cancel request. The server declined the cancel request.

HY506 Error closing a file. An error occurred when closing the temporary file generated by
CLI when inserting LOB data in pieces using SQLParamData()/
SQLPutData().

Restrictions

None.

Example
/* cancel the SQL_DATA_AT_EXEC state for hstmt */
cliRC = SQLCancel(hstmt);

SQLCloseCursor function (CLI) - Close cursor and discard pending
results

Purpose

Specification: CLI 5.0 ODBC 3.0 ISO CLI

SQLCloseCursor() closes a cursor that has been opened on a statement and
discards pending results.

Syntax
SQLRETURN SQLCloseCursor (SQLHSTMT StatementHandle); /* hStmt */

SQLCancel function (CLI) - Cancel statement

48 Call Level Interface Guide and Reference, Volume 2

Function arguments

Table 18. SQLCloseCursor arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

Usage

After an application calls SQLCloseCursor(), the application can reopen the cursor
later by executing a SELECT statement again with the same or different parameter
values. SQLCloseCursor() can be called before a transaction is completed.

SQLCloseCursor() returns SQLSTATE 24000 (Invalid cursor state) if no cursor is
open. Calling SQLCloseCursor() is equivalent to calling SQLFreeStmt() with the
SQL_CLOSE option, with the exception that SQLFreeStmt() with SQL_CLOSE has
no effect on the application if no cursor is open on the statement, while
SQLCloseCursor() returns SQLSTATE 24000 (Invalid cursor state).

The statement attribute SQL_ATTR_CLOSE_BEHAVIOR can be used to indicate
whether or not CLI should attempt to release read locks acquired during a cursor's
operation when the cursor is closed. If SQL_ATTR_CLOSE_BEHAVIOR is set to
SQL_CC_RELEASE then the database manager will attempt to release all read
locks (if any) that have been held for the cursor.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 19. SQLCloseCursor SQLSTATEs

SQLSTATE Description Explanation

01000 General warning Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state. No cursor was open on the StatementHandle. (This is returned only
by CLI Version 5 or later.)

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY010 Function sequence error. An asynchronously executing function was called for the
StatementHandle and was still executing when this function was
called.

SQLExecute() or SQLExecDirect() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns.

SQLCloseCursor function (CLI) - Close cursor and discard pending results

Chapter 1. CLI and ODBC functions 49

Table 19. SQLCloseCursor SQLSTATEs (continued)

SQLSTATE Description Explanation

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

Restrictions

None.

Example
/* close the cursor */

cliRC = SQLCloseCursor(hstmt);

SQLColAttribute function (CLI) - Return a column attribute
Purpose

Specification: CLI 5.0 ODBC 3.0 ISO CLI

SQLColAttribute() returns descriptor information for a column in a result set.
Descriptor information is returned as a character string, a 32-bit
descriptor-dependent value, or an integer value.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLColAttributeW(). Refer to “Unicode
functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Syntax

In a Windows 64-bit environment, the syntax is as follows:
SQLRETURN SQLColAttribute (

SQLHSTMT StatementHandle, /* hstmt */
SQLSMALLINT ColumnNumber, /* icol */
SQLSMALLINT FieldIdentifier, /* fDescType */
SQLPOINTER CharacterAttributePtr, /* rgbDesc */
SQLSMALLINT BufferLength, /* cbDescMax */
SQLSMALLINT *StringLengthPtr, /* pcbDesc */
SQLLEN *NumericAttributePtr); /* pfDesc */

The syntax for all other platforms is as follows:
SQLRETURN SQLColAttribute (

SQLHSTMT StatementHandle, /* hstmt */
SQLSMALLINT ColumnNumber, /* icol */
SQLSMALLINT FieldIdentifier, /* fDescType */
SQLPOINTER CharacterAttributePtr, /* rgbDesc */
SQLSMALLINT BufferLength, /* cbDescMax */
SQLSMALLINT *StringLengthPtr, /* pcbDesc */
SQLPOINTER NumericAttributePtr); /* pfDesc */

Function arguments

Table 20. SQLColAttribute arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLCloseCursor function (CLI) - Close cursor and discard pending results

50 Call Level Interface Guide and Reference, Volume 2

Table 20. SQLColAttribute arguments (continued)

Data type Argument Use Description

SQLUSMALLINT ColumnNumber input The number of the record in the IRD from which the
field value is to be retrieved. This argument
corresponds to the column number of result data,
ordered sequentially from left to right, starting at 1.
Columns can be described in any order.

Column 0 can be specified in this argument, but all
values except SQL_DESC_TYPE and
SQL_DESC_OCTET_LENGTH will return undefined
values.

SQLSMALLINT FieldIdentifier input The field in row ColumnNumber of the IRD that is to
be returned (see Table 21 on page 52).

SQLPOINTER CharacterAttributePtr output Pointer to a buffer in which to return the value in
the FieldIdentifier field of the ColumnNumber row of
the IRD, if the field is a character string. Otherwise,
the field is unused.

SQLINTEGER BufferLength input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the *CharacterAttributePtr buffer, if
the field is a character string. Otherwise, the field is
ignored.

SQLSMALLINT * StringLengthPtr output Pointer to a buffer in which to return the total
number of bytes (excluding the byte count of the
null termination character for character data)
available to return in *CharacterAttributePtr.

For character data, if the number of bytes available
to return is greater than or equal to BufferLength, the
descriptor information in *CharacterAttributePtr is
truncated to BufferLength minus the length of a null
termination character and is null-terminated by CLI.

For all other types of data, the value of BufferLength
is ignored and CLI assumes the size of
*CharacterAttributePtr is 32 bits.

SQLLEN* (Window
64-bit) or
SQLPOINTER

NumericAttributePtr output Pointer to a buffer in which to return the value in
the FieldIdentifier field of the ColumnNumber row of
the IRD, if the field is a numeric descriptor type,
such as SQL_DESC_COLUMN_LENGTH. Otherwise,
the field is unused.

Usage

SQLColAttribute() returns information either in *NumericAttributePtr or in
*CharacterAttributePtr. Integer information is returned in *NumericAttributePtr as a
32-bit, signed value; all other formats of information are returned in
*CharacterAttributePtr. When information is returned in *NumericAttributePtr, CLI
ignores CharacterAttributePtr, BufferLength, and StringLengthPtr When information is
returned in *CharacterAttributePtr, CLI ignores NumericAttributePtr.

SQLColAttribute() returns values from the descriptor fields of the IRD. The
function is called with a statement handle rather than a descriptor handle. The
values returned by SQLColAttribute() for the FieldIdentifier values listed below can
also be retrieved by calling SQLGetDescField() with the appropriate IRD handle.

SQLColAttribute function (CLI) - Return a column attribute

Chapter 1. CLI and ODBC functions 51

The currently defined descriptor types, the version of CLI in which they were
introduced (perhaps with a different name), and the arguments in which
information is returned for them are shown below; it is expected that more
descriptor types will be defined to take advantage of different data sources.

CLI must return a value for each of the descriptor types. If a descriptor type does
not apply to a data source, then, unless otherwise stated, CLI returns 0 in
*StringLengthPtr or an empty string in *CharacterAttributePtr.

The following table lists the descriptor types returned by SQLColAttribute().

Table 21. SQLColAttribute arguments

FieldIdentifier
Information
returned in Description

SQL_DESC_AUTO_UNIQUE_VALUE
(DB2 CLI/v2)

Numeric
AttributePtr

Indicates if the column data type is an auto
increment data type.

SQL_FALSE is returned in NumericAttributePtr for all
DB2 SQL data types. Currently CLI is not able to
determine if a column is an identity column,
therefore SQL_FALSE is always returned. This
limitation does not fully conform to the ODBC
specifications. Future versions of CLI for UNIX and
Windows servers will provide auto-unique support.

SQL_DESC_BASE_COLUMN_NAME
(DB2 CLI/v5)

Character
AttributePtr

The base column name for the set column. If a base
column name does not exist (as in the case of
columns that are expressions), then this variable
contains an empty string.

This information is returned from the
SQL_DESC_BASE_COLUMN_NAME record field of
the IRD, which is a read-only field.

SQL_DESC_BASE_TABLE_NAME (DB2
CLI/v5)

Character
AttributePtr

The name of the base table that contains the column.
If the base table name cannot be defined or is not
applicable, then this variable contains an empty
string.

SQL_DESC_CASE_SENSITIVE (DB2
CLI/v2)

Numeric
AttributePtr

Indicates if the column data type is a case sensitive
data type.

Either SQL_TRUE or SQL_FALSE will be returned in
NumericAttributePtr depending on the data type.

Case sensitivity does not apply to graphic data types,
SQL_FALSE is returned.

SQL_FALSE is returned for non-character data types
and for the XML data type.

SQL_DESC_CATALOG_NAME (DB2
CLI/v2)

Character
AttributePtr

An empty string is returned since CLI only supports
two part naming for a table.

SQL_DESC_CONCISE_TYPE (DB2
CLI/v5)

Numeric
AttributePtr

The concise data type.

For the datetime data types, this field returns the
concise data type, for example, SQL_TYPE_TIME.

This information is returned from the
SQL_DESC_CONCISE_TYPE record field of the IRD.

SQL_DESC_COUNT (DB2 CLI/v2) Numeric
AttributePtr

The number of columns in the result set is returned
in NumericAttributePtr.

SQLColAttribute function (CLI) - Return a column attribute

52 Call Level Interface Guide and Reference, Volume 2

Table 21. SQLColAttribute arguments (continued)

FieldIdentifier
Information
returned in Description

SQL_DESC_DISPLAY_SIZE (DB2 CLI/v2) Numeric
AttributePtr

The maximum number of bytes needed to display
the data in character form is returned in
NumericAttributePtr.

Refer to the data type display size table for the
display size of each of the column types.

SQL_DESC_DISTINCT_TYPE (DB2
CLI/v2)

Character
AttributePtr

The user defined distinct type name of the column is
returned in CharacterAttributePtr. If the column is a
built-in SQL type and not a user defined distinct
type, an empty string is returned.
Note: This is an IBM defined extension to the list of
descriptor attributes defined by ODBC.

SQL_DESC_FIXED_PREC_SCALE (DB2
CLI/v2)

Numeric
AttributePtr

SQL_TRUE if the column has a fixed precision and
non-zero scale that are data-source-specific.

SQL_FALSE if the column does not have a fixed
precision and non-zero scale that are
data-source-specific.

SQL_FALSE is returned in NumericAttributePtr for all
DB2 SQL data types.

SQL_DESC_LABEL (DB2 CLI/v2) Character
AttributePtr

The column label is returned in CharacterAttributePtr.
If the column does not have a label, the column
name or the column expression is returned. If the
column is unlabeled and unnamed, an empty string
is returned.

SQL_DESC_LENGTH (DB2 CLI/v2) Numeric
AttributePtr

A numeric value that is either the maximum or
actual element (SQLCHAR or SQLWCHAR) length of
a character string or binary data type. It is the
maximum element length for a fixed-length data
type, or the actual element length for a
variable-length data type. Its value always excludes
the null termination byte that ends the character
string.

This information is returned from the
SQL_DESC_LENGTH record field of the IRD.

This value is 0 for the XML data type.

SQL_DESC_LITERAL_PREFIX (DB2
CLI/v5)

Character
AttributePtr

This VARCHAR(128) record field contains the
character or characters that CLI recognizes as a prefix
for a literal of this data type. This field contains an
empty string for a data type for which a literal prefix
is not applicable.

SQL_DESC_LITERAL_SUFFIX (DB2
CLI/v5)

Character
AttributePtr

This VARCHAR(128) record field contains the
character or characters that CLI recognizes as a suffix
for a literal of this data type. This field contains an
empty string for a data type for which a literal suffix
is not applicable.

SQLColAttribute function (CLI) - Return a column attribute

Chapter 1. CLI and ODBC functions 53

Table 21. SQLColAttribute arguments (continued)

FieldIdentifier
Information
returned in Description

SQL_DESC_LOCAL_TYPE_NAME (DB2
CLI/v5)

Character
AttributePtr

This VARCHAR(128) record field contains any
localized (native language) name for the data type
that might be different from the regular name of the
data type. If there is no localized name, then an
empty string is returned. This field is for display
purposes only. The character set of the string is
locale-dependent and is typically the default
character set of the server.

SQL_DESC_NAME (DB2 CLI/v2) Character
AttributePtr

The name of the column ColumnNumber is returned
in CharacterAttributePtr. If the column is an
expression, then the column number is returned.

In either case, SQL_DESC_UNNAMED is set to
SQL_NAMED. If there is no column name or a
column alias, an empty string is returned and
SQL_DESC_UNNAMED is set to SQL_UNNAMED.

This information is returned from the
SQL_DESC_NAME record field of the IRD.

SQL_DESC_NULLABLE (DB2 CLI/v2) Numeric
AttributePtr

If the column identified by ColumnNumber can
contain nulls, then SQL_NULLABLE is returned in
NumericAttributePtr.

If the column is constrained not to accept nulls, then
SQL_NO_NULLS is returned in NumericAttributePtr.

This information is returned from the
SQL_DESC_NULLABLE record field of the IRD.

SQL_DESC_NUM_PREX_RADIX (DB2
CLI/v5)

Numeric
AttributePtr

v If the data type in the SQL_DESC_TYPE field is an
approximate data type, this SQLINTEGER field
contains a value of 2 because the
SQL_DESC_PRECISION field contains the number
of bits.

v If the data type in the SQL_DESC_TYPE field is an
exact numeric data type, this field contains a value
of 10 because the SQL_DESC_PRECISION field
contains the number of decimal digits.

SQLColAttribute function (CLI) - Return a column attribute

54 Call Level Interface Guide and Reference, Volume 2

Table 21. SQLColAttribute arguments (continued)

FieldIdentifier
Information
returned in Description

SQL_DESC_OCTET_LENGTH (DB2
CLI/v2)

Numeric
AttributePtr

The number of bytes of data associated with the
column is returned in NumericAttributePtr. This is the
length in bytes of data transferred on the fetch or
SQLGetData() for this column if SQL_C_DEFAULT is
specified as the C data type. Refer to data type
length table for the length of each of the SQL data
types.

If the column identified in ColumnNumber is a fixed
length character or binary string, (for example,
SQL_CHAR or SQL_BINARY) the actual length is
returned.

If the column identified in ColumnNumber is a
variable length character or binary string, (for
example, SQL_VARCHAR or SQL_BLOB) the
maximum length is returned.

If the column identified in ColumnNumber is of type
SQL_XML, 0 is returned.

SQL_DESC_PRECISION (DB2 CLI/v2) Numeric
AttributePtr

The precision in units of digits is returned in
NumericAttributePtr if the column is SQL_DECIMAL,
SQL_NUMERIC, SQL_DOUBLE, SQL_FLOAT,
SQL_INTEGER, SQL_REAL or SQL_SMALLINT.

If the column is a character SQL data type, then the
precision returned in NumericAttributePtr, indicates
the maximum number of SQLCHAR or SQLWCHAR
elements the column can hold.

If the column is a graphic SQL data type, then the
precision returned in NumericAttributePtr, indicates
the maximum number of double-byte elements the
column can hold.

If the column is the XML data type, the precision is
0.

Refer to data type precision table for the precision of
each of the SQL data types.

This information is returned from the
SQL_DESC_PRECISION record field of the IRD.

SQL_DESC_SCALE (DB2 CLI/v2) Numeric
AttributePtr

The scale attribute of the column is returned. Refer to
the data type scale table for the scale of each of the
SQL data types.

This information is returned from the SCALE record
field of the IRD.

SQL_DESC_SCHEMA_NAME (DB2
CLI/v2)

Character
AttributePtr

The schema of the table that contains the column is
returned in CharacterAttributePtr. The name of the
schema that contains the table is returned. If the
schema name is of less than 8 characters, then spaces
are appended as extra characters.

SQLColAttribute function (CLI) - Return a column attribute

Chapter 1. CLI and ODBC functions 55

Table 21. SQLColAttribute arguments (continued)

FieldIdentifier
Information
returned in Description

SQL_DESC_SEARCHABLE (DB2 CLI/v2) Numeric
AttributePtr

Indicates if the column data type is searchable:
v SQL_PRED_NONE (SQL_UNSEARCHABLE in

DB2 CLI/v2) if the column cannot be used in a
WHERE clause.

v SQL_PRED_CHAR (SQL_LIKE_ONLY in DB2
CLI/v2) if the column can be used in a WHERE
clause only with the LIKE predicate.

v SQL_PRED_BASIC (SQL_ALL_EXCEPT_LIKE in
DB2 CLI/v2) if the column can be used in a
WHERE clause with all comparison operators
except LIKE.

v SQL_SEARCHABLE if the column can be used in
a WHERE clause with any comparison operator.

SQL_DESC_TABLE_NAME (DB2 CLI/v2) Character
AttributePtr

The name of the table that contains the column is
returned. If the table name cannot be defined or is
not applicable, then this variable contains an empty
string.

SQL_DESC_TYPE (DB2 CLI/v2) Numeric
AttributePtr

The SQL data type of the column identified in
ColumnNumber is returned in NumericAttributePtr.
The possible values returned are listed in table of
symbolic and default data types for CLI.

When ColumnNumber is equal to 0, SQL_BINARY is
returned for variable-length bookmarks, and
SQL_INTEGER is returned for fixed-length
bookmarks.

For the datetime data types, this field returns the
verbose data type, for example, SQL_DATETIME.

This information is returned from the
SQL_DESC_TYPE record field of the IRD.

SQL_DESC_TYPE_NAME (DB2 CLI/v2) Character
AttributePtr

The type of the column (as entered in an SQL
statement) is returned in CharacterAttributePtr.

For information on each data type refer to the list of
symbolic and default data types for CLI.

SQL_DESC_UNNAMED (DB2 CLI/v5) Numeric
AttributePtr

SQL_NAMED or SQL_UNNAMED. If the
SQL_DESC_NAME field of the IRD contains a
column alias, or a column name, SQL_NAMED is
returned. If there is no column name or a column
alias, SQL_UNNAMED is returned.

This information is returned from the
SQL_DESC_UNNAMED record field of the IRD.

SQL_DESC_UNSIGNED (DB2 CLI/v2) Numeric
AttributePtr

Indicates if the column data type is an unsigned type
or not.

SQL_TRUE is returned in NumericAttributePtr for all
non-numeric data types, SQL_FALSE is returned for
all numeric data types.

SQLColAttribute function (CLI) - Return a column attribute

56 Call Level Interface Guide and Reference, Volume 2

Table 21. SQLColAttribute arguments (continued)

FieldIdentifier
Information
returned in Description

SQL_DESC_UPDATABLE (DB2 CLI/v2) Numeric
AttributePtr

Indicates if the column data type is an updatable
data type:

v SQL_ATTR_READONLY is returned if the result
set column is read-only.

v SQL_ATTR_WRITE is returned if the result set
column is read-write.

v SQL_ATTR_READWRITE_UNKNOWN is returned
if it is not known whether the result set column is
updatable or not.

This function is an extensible alternative to SQLDescribeCol(). SQLDescribeCol()
returns a fixed set of descriptor information based on ANSI-89 SQL.
SQLColAttribute() allows access to the more extensive set of descriptor information
available in ANSI SQL-92 and DBMS vendor extensions.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 22. SQLColAttribute SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The buffer *CharacterAttributePtr was not large enough to return
the entire string value, so the string was truncated. The length of
the untruncated string value is returned in *StringLengthPtr.
(Function returns SQL_SUCCESS_WITH_INFO.)

07005 The statement did not return a
result set.

The statement associated with the StatementHandle did not return
a result set. There were no columns to describe.

07009 Invalid descriptor index. The value specified for ColumnNumber was equal to 0, and the
SQL_ATTR_USE_BOOKMARKS statement attribute was
SQL_UB_OFF. The value specified for the argument
ColumnNumber was greater than the number of columns in the
result set.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

SQLColAttribute function (CLI) - Return a column attribute

Chapter 1. CLI and ODBC functions 57

Table 22. SQLColAttribute SQLSTATEs (continued)

SQLSTATE Description Explanation

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY010 Function sequence error. The function was called prior to calling SQLPrepare() or
SQLExecDirect() for the StatementHandle.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

SQLExecute() or SQLExecDirect() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength was less than 0.

HY091 Invalid descriptor field identifier. The value specified for the argument FieldIdentifier was not one of
the defined values, and was not an implementation-defined value.

HYC00 Driver not capable. The value specified for the argument FieldIdentifier was not
supported by CLI.

SQLColAttribute() can return any SQLSTATE that can be returned by SQLPrepare()
or SQLExecute() when called after SQLPrepare() and before SQLExecute()
depending on when the data source evaluates the SQL statement associated with
the StatementHandle.

For performance reasons, an application should not call SQLColAttribute() before
executing a statement.

Restrictions

None.

Example
/* get display size for column */
cliRC = SQLColAttribute(hstmt,

(SQLSMALLINT)(i + 1),
SQL_DESC_DISPLAY_SIZE,
NULL,
0,
NULL,
&colDataDisplaySize)

SQLColAttributes function (CLI) - Get column attributes
Deprecated

Note:

In ODBC 3.0, SQLColAttributes() has been deprecated and replaced with
SQLColAttribute().

SQLColAttribute function (CLI) - Return a column attribute

58 Call Level Interface Guide and Reference, Volume 2

Although this version of CLI continues to support SQLColAttributes(), use
SQLColAttribute() in your CLI programs so that they conform to the latest
standards.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLColAttributesW(). Refer to
“Unicode functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Migrating to the new function

The statement:
SQLColAttributes (hstmt, colNum, SQL_DESC_COUNT, NULL, len,

NULL, &numCols);

for example, would be rewritten using the new function as:
SQLColAttribute (hstmt, colNum, SQL_DESC_COUNT, NULL, len,

NULL, &numCols);

SQLColumnPrivileges function (CLI) - Get privileges associated with
the columns of a table

SQLColumnPrivileges() returns a list of columns and associated privileges for the
specified table. The information is returned in an SQL result set, which you can
retrieve by using the same functions that you use to process a result set that is
generated from a query.

Purpose

Specification: CLI 2.1 ODBC 1.0

Unicode equivalent: You can also use this function with the Unicode character set.
The corresponding Unicode function is SQLColumnPrivilegesW(). See “Unicode
functions (CLI)” on page 5 for information about ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLColumnPrivileges(

SQLHSTMT StatementHandle, /* hstmt */
SQLCHAR *CatalogName, /* szCatalogName */
SQLSMALLINT NameLength1, /* cbCatalogName */
SQLCHAR *SchemaName, /* szSchemaName */
SQLSMALLINT NameLength2, /* cbSchemaName */
SQLCHAR *TableName /* szTableName */
SQLSMALLINT NameLength3, /* cbTableName */
SQLCHAR *ColumnName, /* szColumnName */
SQLSMALLINT NameLength4); /* cbColumnName */

Function arguments

Table 23. SQLColumnPrivileges arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input The statement handle.

SQLColAttributes function (CLI) - Get column attributes

Chapter 1. CLI and ODBC functions 59

Table 23. SQLColumnPrivileges arguments (continued)

Data type Argument Use Description

SQLCHAR * CatalogName Input The catalog qualifier of a 3-part table name. If the
target DBMS does not support 3-part naming, and
CatalogName is not a null pointer and does not point
to a zero-length string, then an empty result set and
SQL_SUCCESS is returned. Otherwise, this is a valid
filter for DBMSs that support 3-part naming.

SQLSMALLINT NameLength1 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store CatalogName, or SQL_NTS
if CatalogName is null-terminated.

SQLCHAR * SchemaName Input The schema qualifier of the table name.

SQLSMALLINT NameLength2 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store SchemaName, or SQL_NTS
if SchemaName is null-terminated.

SQLCHAR * TableName Input The table name.

SQLSMALLINT NameLength3 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store TableName, or SQL_NTS if
TableName is null-terminated.

SQLCHAR * ColumnName Input A buffer that might contain a pattern value to qualify
the result set by column name.

SQLSMALLINT NameLength4 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store ColumnName, or SQL_NTS
if ColumnName is null-terminated.

Usage

The results are returned as a standard result set that contains the columns listed in
Columns Returned by SQLColumnPrivileges. The result set is ordered by
TABLE_CAT, TABLE_SCHEM, TABLE_NAME, COLUMN_NAME, and
PRIVILEGE. If multiple privileges are associated with any given column, each
privilege is returned as a separate row. A typical application might want to call this
function after a call to SQLColumns() to determine column privilege information.
The application should use the character strings that are returned in the
TABLE_CAT, TABLE_SCHEM, TABLE_NAME, COLUMN_NAME columns of the
SQLColumns() result set as input arguments to this function.

Because calls to SQLColumnPrivileges(), in many cases, map to a complex and thus
expensive query against the system catalog, you should use the calls sparingly, and
save the results rather than repeating the calls.

The ColumnName input argument accepts a search pattern, however, all other input
arguments do not.

Sometimes, an application calls the function and no attempt is made to restrict the
result set that is returned. In order to help reduce the long retrieval times, you can
specify the configuration keyword SchemaList in the CLI initialization file to help
restrict the result set when the application has supplied a null pointer for
SchemaName. If the application specifies a SchemaName string, the SchemaList

SQLColumnPrivileges function (CLI) - Get privileges associated with the columns of a
table

60 Call Level Interface Guide and Reference, Volume 2

keyword is still used to restrict the output. Therefore, if the schema name that is
supplied is not in the SchemaList string, the result is an empty result set.

In Version 9.7 Fix Pack 5, you can specify *ALL or *USRLIBL as values in the
SchemaName to resolve unqualified stored procedure calls or to find libraries in
catalog API calls. If you specify *ALL, CLI searches on all existing schemas in the
connected database. You are not required to specify *ALL, as this behavior is the
default in CLI. For IBM DB2 for IBM i servers, if you specify *USRLIBL, CLI
searches on the current libraries of the server job. For other DB2 servers, *USRLIBL
does not have a special meaning and CLI searches using *USRLIBL as a pattern.
Alternatively, you can set the SchemaFilter IBM Data Server Driver configuration
keyword or the Schema List CLI/ODBC configuration keyword to *ALL or
*USRLIBL.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns will not change.

Columns returned by SQLColumnPrivileges

Column 1 TABLE_CAT (VARCHAR(128) Data type)
Name of the catalog. The value is NULL if this table does not have
catalogs.

Column 2 TABLE_SCHEM (VARCHAR(128))
Name of the schema containing TABLE_NAME.

Column 3 TABLE_NAME (VARCHAR(128) not NULL)
Name of the table or view.

Column 4 COLUMN_NAME (VARCHAR(128) not NULL)
Name of the column of the specified table or view.

Column 5 GRANTOR (VARCHAR(128))
Authorization ID of the user who granted the privilege.

Column 6 GRANTEE (VARCHAR(128))
Authorization ID of the user to whom the privilege is granted.

Column 7 PRIVILEGE (VARCHAR(128))
The column privilege. This can be:
v INSERT
v REFERENCES
v SELECT
v UPDATE

Note: Some IBM RDBMSs do not offer column level privileges at the
column level. DB2 Database for Linux, UNIX, and Windows, DB2 for
z/OS, and DB2 Server for VM and VSE support the UPDATE column
privilege; there is one row in this result set for each updateable column.
For all other privileges for DB2 Database for Linux, UNIX, and Windows,
DB2 for z/OS, and DB2 Server for VM and VSE, and for all privileges for
other IBM RDBMSs, if a privilege has been granted at the table level, a row
is present in this result set.

Column 8 IS_GRANTABLE (VARCHAR(3) Data type)
Indicates whether the grantee is permitted to grant the privilege to other
users.

Either “YES” or “NO”.

SQLColumnPrivileges function (CLI) - Get privileges associated with the columns of a
table

Chapter 1. CLI and ODBC functions 61

Note: The column names that are used by CLI follow the X/Open CLI CAE
specification style. The column types, contents, and order are identical to those
defined for the SQLColumnPrivileges() result set in ODBC.

If there is more than one privilege associated with a column, each privilege is
returned as a separate row in the result set.

Return Codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 24. SQLColumnPrivileges SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40001 Serialization failure The transaction was rolled back due to a resource deadlock with
another transaction.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY009 Invalid argument value. TableName is NULL.

HY010 Function sequence error
An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

SQLExecute(), SQLExecDirect(), or SQLSetPos() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource
limitations.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,
but not equal to SQL_NTS.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

SQLColumnPrivileges function (CLI) - Get privileges associated with the columns of a
table

62 Call Level Interface Guide and Reference, Volume 2

Example
cliRC = SQLColumnPrivileges(hstmt,

NULL,
0,
tbSchema,
SQL_NTS,
tbName,
SQL_NTS,
colNamePattern,
SQL_NTS);

SQLColumns function (CLI) - Get column information for a table
The SQLColumns() function returns a list of columns in the specified tables. The
information is returned in an SQL result set, which you can retrieve by using the
same functions that you use to fetch a result set that is generated by a query.

Purpose

Specification: CLI 2.1 ODBC 1.0

Unicode Equivalent: You can also use this function with the Unicode character set.
The corresponding Unicode function is SQLColumnsW(). For details about ANSI to
Unicode function mappings, see “Unicode functions (CLI)” on page 5.

Syntax
SQLRETURN SQLColumns (

SQLHSTMT StatementHandle, /* hstmt */
SQLCHAR *CatalogName, /* szCatalogName */
SQLSMALLINT NameLength1, /* cbCatalogName */
SQLCHAR *SchemaName, /* szSchemaName */
SQLSMALLINT NameLength2, /* cbSchemaName */
SQLCHAR *TableName, /* szTableName */
SQLSMALLINT NameLength3, /* cbTableName */
SQLCHAR *ColumnName, /* szColumnName */
SQLSMALLINT NameLength4); /* cbColumnName */

Function arguments

Table 25. SQLColumns arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input The statement handle.

SQLCHAR * CatalogName Input A catalog qualifier of a 3-part table name. If the
target DBMS does not support 3-part naming, and
CatalogName is not a null pointer and does not point
to a zero-length string, then an empty result set and
SQL_SUCCESS will be returned. Otherwise, this is a
valid filter for DBMSs that supports 3-part naming.

SQLSMALLINT NameLength1 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that is required to store CatalogName, or SQL_NTS if
CatalogName is null-terminated.

SQLCHAR * SchemaName Input A buffer that might contain a pattern value to qualify
the result set by schema name.

SQLColumnPrivileges function (CLI) - Get privileges associated with the columns of a
table

Chapter 1. CLI and ODBC functions 63

Table 25. SQLColumns arguments (continued)

Data type Argument Use Description

SQLSMALLINT NameLength2 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store SchemaName, or SQL_NTS
if SchemaName is null-terminated.

SQLCHAR * TableName Input A buffer that might contain a pattern value to qualify
the result set by table name.

SQLSMALLINT NameLength3 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store TableName, or SQL_NTS if
TableName is null-terminated.

SQLCHAR * ColumnName Input A buffer that might contain a pattern value to qualify
the result set by column name.

SQLSMALLINT NameLength4 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store ColumnName, or SQL_NTS
if ColumnName is null-terminated.

Usage

Use this function to retrieve information about the columns of either a table or a
set of tables. An application can call this function after a call to SQLTables() to
determine the columns of a table. The application must use the character strings
that are returned in the TABLE_SCHEMA and TABLE_NAME columns of the
SQLTables() result set as input to this function.

The SQLColumns() function returns a standard result set that is ordered by
TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and ORDINAL_POSITION.
Columns returned by SQLColumns lists the columns that are in the result set.

The SchemaName, TableName, and ColumnName input arguments accept search
patterns.

Sometimes, an application calls the function and no attempt is made to restrict the
result set that is returned. For some data sources that contain a large quantity of
tables, views, and aliases for example, this scenario maps to an extremely large
result set and very long retrieval times. In order to help reduce the long retrieval
times, you can specify the configuration keyword SchemaList in the CLI
initialization file to help restrict the result set when the application has supplied a
null pointer for the SchemaName. If the application specifies a SchemaName string, the
SchemaList keyword is still used to restrict the output. Therefore, if the schema
name supplied is not in the SchemaList string, the result will be an empty result
set.

This function does not return information about the columns of a result set.
Instead, you should use SQLDescribeCol() or SQLColAttribute() function.

If the SQL_ATTR_LONGDATA_COMPAT attribute is set to
SQL_LD_COMPAT_YES via either a call to SQLSetConnectAttr() or by setting the
LONGDATACOMPAT keyword in the CLI initialization file, then the LOB data
types are reported as SQL_LONGVARCHAR, SQL_LONGVARBINARY or
SQL_LONGVARGRAPHIC.

SQLColumns function (CLI) - Get column information for a table

64 Call Level Interface Guide and Reference, Volume 2

In many cases, calls to the SQLColumns() function map to a complex and thus
expensive query against the system catalog, so you should use the calls sparingly,
and save the results rather than repeating calls.

Call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_OWNER_SCHEMA_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
that are supported by the connected DBMS.

In Version 9.7 Fix Pack 5, you can specify *ALL or *USRLIBL as values in the
SchemaName to resolve unqualified stored procedure calls or to find libraries in
catalog API calls. If you specify *ALL, CLI searches on all existing schemas in the
connected database. You are not required to specify *ALL, as this behavior is the
default in CLI. For IBM DB2 for IBM i servers, if you specify *USRLIBL, CLI
searches on the current libraries of the server job. For other DB2 servers, *USRLIBL
does not have a special meaning and CLI searches using *USRLIBL as a pattern.
Alternatively, you can set the SchemaFilter IBM Data Server Driver configuration
keyword or the Schema List CLI/ODBC configuration keyword to *ALL or
*USRLIBL.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns will not change.

Columns returned by SQLColumns

Column 1 TABLE_CAT (VARCHAR(128))
The name of the catalog. The value is NULL if this table does not have
catalogs.

Column 2 TABLE_SCHEM (VARCHAR(128))
The name of the schema containing TABLE_NAME.

Column 3 TABLE_NAME (VARCHAR(128) not NULL)
The name of the table, view, alias, or synonym.

Column 4 COLUMN_NAME (VARCHAR(128) not NULL)
The column identifier. The name of the column of the specified table, view,
alias, or synonym.

Column 5 DATA_TYPE (SMALLINT not NULL)
The SQL data type of the column that is identified by COLUMN_NAME.
The DATA_TYPE is one of the values in the Symbolic SQL Data Type
column in the table of symbolic and default data types for CLI.

Column 6 TYPE_NAME (VARCHAR(128) not NULL)
A character string that represents the name of the data type that
corresponds to DATA_TYPE.

Column 7 COLUMN_SIZE (INTEGER)
If the DATA_TYPE column value denotes a character or binary string, this
column contains the maximum length in SQLCHAR or SQLWCHAR
elements for the column.

For date, time, and timestamp data types, the COLUMN_SIZE is the total
number of SQLCHAR or SQLWCHAR elements that are required to
display the value when converted to character data type.

SQLColumns function (CLI) - Get column information for a table

Chapter 1. CLI and ODBC functions 65

For numeric data types, the COLUMN_SIZE is either the total number of
digits or the total number of bits that are allowed in the column,
depending on the value in the NUM_PREC_RADIX column in the result
set.

For the XML data type, the length of zero is returned.

See the table of data type precision.

Column 8 BUFFER_LENGTH (INTEGER)
The maximum number of bytes for the associated C buffer to store data
from this column if SQL_C_DEFAULT is specified on the SQLBindCol(),
SQLGetData() and SQLBindParameter() calls. This length does not include
any null-terminator. For exact numeric data types, the length accounts for
the decimal and the sign.

See the table of data type lengths.

Column 9 DECIMAL_DIGITS (SMALLINT)
The scale of the column. NULL is returned for data types where scale is
not applicable.

See the table of data type scale.

Column 10 NUM_PREC_RADIX (SMALLINT)
Either 10, 2, or NULL. If DATA_TYPE is an approximate numeric data
type, this column contains the value 2, and the COLUMN_SIZE column
contains the number of bits that are allowed in the column.

If DATA_TYPE is an exact numeric data type, this column contains the
value 10, and the COLUMN_SIZE contains the number of decimal digits
that are allowed for the column.

For numeric data types, the DBMS can return a NUM_PREC_RADIX of 10
or 2.

NULL is returned for data types where the radix is not applicable.

Column 11 NULLABLE (SMALLINT not NULL)
SQL_NO_NULLS if the column does not accept NULL values.

SQL_NULLABLE if the column accepts NULL values.

Column 12 REMARKS (VARCHAR(254))
Might contain descriptive information about the column. It is possible that
no information is returned in this column. For more details, see Optimize
SQL columns keyword and attribute.

Column 13 COLUMN_DEF (VARCHAR(254))
The default value of the column. If the default value is a numeric literal,
this column contains the character representation of the numeric literal
with no enclosing single quotation marks. If the default value is a character
string, this column is that string that is enclosed in single quotation marks.
If the default value is a pseudo-literal, such as for DATE, TIME, and
TIMESTAMP columns, this column contains the keyword of the
pseudo-literal (for example. CURRENT DATE) with no enclosing quotation
marks.

If NULL is specified as the default value, this column returns the word
NULL, not enclosed in quotation marks. If the default value cannot be
represented without truncation, this column contains TRUNCATED with
no enclosing single quotation marks. If no default value is specified, this
column is NULL.

SQLColumns function (CLI) - Get column information for a table

66 Call Level Interface Guide and Reference, Volume 2

It is possible that no information is returned in this column. For more
details, see Optimize SQL columns keyword and attribute.

Column 14 SQL_DATA_TYPE (SMALLINT not NULL)
The SQL data type, as it is displayed in the SQL_DESC_TYPE record field
in the IRD. This column is the same as the DATA_TYPE column in
Columns returned by SQLColumns for the date, time, and timestamp data
types.

Column 15 SQL_DATETIME_SUB (SMALLINT)
The subtype code for datetime data types:
v SQL_CODE_DATE
v SQL_CODE_TIME
v SQL_CODE_TIMESTAMP

For all other data types this column returns NULL.

Column 16 CHAR_OCTET_LENGTH (INTEGER)
For single byte character sets, this is the same as COLUMN_SIZE. For the
XML type, zero is returned. For all other data types, NULL is returned.

Column 17 ORDINAL_POSITION (INTEGER not NULL)
The ordinal position of the column in the table. The first column in the
table is number 1.

Column 18 IS_NULLABLE (VARCHAR(254))
Contains the string 'NO' if the column is known to be not nullable, and
'YES' if the column is nullable.

Note: This result set is identical to the X/Open CLI Columns() result set
specification, which is an extended version of the SQLColumns() result set that is
specified in ODBC V2. The ODBC SQLColumns() result set includes every column
in the same position.

Optimize SQL columns keyword and attribute

It is possible to set up the CLI/ODBC Driver to optimize calls to the SQLColumns()
function by using either:
v OPTIMIZESQLCOLUMNS CLI/ODBC configuration keyword
v SQL_ATTR_OPTIMIZESQLCOLUMNS connection attribute of

SQLSetConnectAttr()

If either of these values are set, the information that is contained in the succeeding
columns is not returned:
v Column 12 REMARKS
v Column 13 COLUMN_DEF

Return codes
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_STILL_EXECUTING
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO

SQLColumns function (CLI) - Get column information for a table

Chapter 1. CLI and ODBC functions 67

Diagnostics

Table 26. SQLColumns SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY010 Function sequence error.
The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for StatementHandle and was still executing when this function
was called.

The function was called before a statement was prepared on the
statement handle.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource
limitations.

HY090 Invalid string or buffer length. The value of one of the name-length arguments was less than 0,
but not equal to SQL_NTS.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. You can set the timeout period by using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restriction

The SQLColumns() function does not support returning data from an alias of an
alias. When called against an alias of an alias, the SQLColumns() function returns
an empty result set.

Example
/* get column information for a table */
cliRC = SQLColumns(hstmt,

NULL,
0,
tbSchemaPattern,
SQL_NTS,
tbNamePattern,
SQL_NTS,
colNamePattern,
SQL_NTS);

SQLColumns function (CLI) - Get column information for a table

68 Call Level Interface Guide and Reference, Volume 2

SQLConnect function (CLI) - Connect to a data source
Purpose

Specification: CLI 1.1 ODBC 1.0 ISO CLI

SQLConnect() establishes a connection or a trusted connection to the target
database. The application must supply a target SQL database, and optionally an
authorization-name and an authentication-string.

A connection must be established before allocating a statement handle using
SQLAllocHandle().

Unicode Equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLConnectW(). Refer to “Unicode
functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLConnect (

SQLHDBC ConnectionHandle, /* hdbc */
SQLCHAR *ServerName, /* szDSN */
SQLSMALLINT ServerNameLength, /* cbDSN */
SQLCHAR *UserName, /* szUID */
SQLSMALLINT UserNameLength, /* cbUID */
SQLCHAR *Authentication, /* szAuthStr */
SQLSMALLINT AuthenticationLength); /* cbAuthStr */

Function arguments

Table 27. SQLConnect arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle

SQLCHAR * ServerName input Data Source: The name or alias-name of the
database.

SQLSMALLINT ServerNameLength input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the ServerName argument.

SQLCHAR * UserName input Authorization-name (user identifier)

SQLSMALLINT UserNameLength input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the UserName argument.

SQLCHAR * Authentication input Authentication-string (password)

SQLSMALLINT AuthenticationLength input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the Authentication argument.

Usage

The target database (also known as data source) for IBM RDBMSs is the
database-alias. The application can obtain a list of databases available to connect to
by calling SQLDataSources().

SQLConnect function (CLI) - Connect to a data source

Chapter 1. CLI and ODBC functions 69

The input length arguments to SQLConnect() (ServerNameLength, UserNameLength,
AuthenticationLength) can be set to the actual length of their associated data in
elements (SQLCHAR or SQLWCHAR), not including any null-terminating
character, or to SQL_NTS to indicate that the associated data is null-terminated.

The ServerName and UserName argument values must not contain any blanks.

Stored procedures written using CLI must make a null SQLConnect() call. A null
SQLConnect() is where the ServerName, UserName, and Authentication argument
pointers are all set to NULL and their respective length arguments all set to 0. A
null SQLConnect() still requires SQLAllocHandle() to be called first, but does not
require that SQLEndTran() be called before SQLDisconnect().

To create a trusted connection, specify the connection attribute
SQL_ATTR_USE_TRUSTED_CONTEXT before calling SQLConnect(). If the database
server accepts the connection as trusted the connection is treated as a trusted
connection. Otherwise the connection is a regular connection and a warning is
returned.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 28. SQLConnect SQLSTATEs

SQLSTATE Description Explanation

01679 Unable to establish a trusted
connection.

CLI requested a trusted connection but the trust attributes of the
connection do not match any trusted context object on the
database server. The connection is allowed but it is a regular
connection, not a trusted connection.

08001 Unable to connect to data source. CLI was unable to establish a connection with the data source
(server).

The connection request was rejected because an existing
connection established via embedded SQL already exists.

08002 Connection in use. The specified ConnectionHandle has already been used to establish
a connection with a data source and the connection is still open.

08004 The application server rejected
establishment of the connection.

The data source (server) rejected the establishment of the
connection.

28000 Invalid authorization
specification.

The value specified for the argument UserName or the value
specified for the argument Authentication violated restrictions
defined by the data source.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

SQLConnect function (CLI) - Connect to a data source

70 Call Level Interface Guide and Reference, Volume 2

Table 28. SQLConnect SQLSTATEs (continued)

SQLSTATE Description Explanation

HY090 Invalid string or buffer length. The value specified for argument ServerNameLength was less than
0, but not equal to SQL_NTS and the argument ServerName was
not a null pointer.

The value specified for argument UserNameLength was less than 0,
but not equal to SQL_NTS and the argument UserName was not a
null pointer.

The value specified for argument AuthenticationLength was less
than 0, but not equal to SQL_NTS and the argument
Authentication was not a null pointer.

HY501 Invalid data source name. An invalid data source name was specified in argument
ServerName.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

The implicit connection (or default database) option for IBM RDBMSs is not
supported. SQLConnect() must be called before any SQL statements can be
executed.

Example
/* connect to the database */
cliRC = SQLConnect(hdbc,

(SQLCHAR *)db1Alias,
SQL_NTS,
(SQLCHAR *)user,
SQL_NTS,
(SQLCHAR *)pswd,
SQL_NTS);

SQLCopyDesc function (CLI) - Copy descriptor information between
handles

Purpose

Specification: CLI 5.0 ODBC 3.0 ISO CLI

SQLCopyDesc() copies descriptor information from one descriptor handle to
another.

Syntax
SQLRETURN SQLCopyDesc (

SQLHDESC SourceDescHandle, /* hDescSource */
SQLHDESC TargetDescHandle); /* hDescTarget */

SQLConnect function (CLI) - Connect to a data source

Chapter 1. CLI and ODBC functions 71

Function arguments

Table 29. SQLCopyDesc arguments

Data type Argument Use Description

SQLHDESC SourceDescHandle input Source descriptor handle.

SQLHDESC TargetDescHandle input Target descriptor handle. TargetDescHandle can be a
handle to an application descriptor or an IPD.
SQLCopyDesc() will return SQLSTATE HY016 (Cannot
modify an implementation descriptor) if
TargetDescHandle is a handle to an IRD.

Usage

A call to SQLCopyDesc() copies the fields of the source descriptor handle to the
target descriptor handle. Fields can only be copied to an application descriptor or
an IPD, but not to an IRD. Fields can be copied from either an application or an
implementation descriptor.

All fields of the descriptor, except SQL_DESC_ALLOC_TYPE (which specifies
whether the descriptor handle was automatically or explicitly allocated), are
copied, whether or not the field is defined for the destination descriptor. Copied
fields overwrite the existing fields in the TargetDescHandle.

All descriptor fields are copied, even if SourceDescHandle and TargetDescHandle are
on two different connections or environments.

The call to SQLCopyDesc() is immediately aborted if an error occurs.

When the SQL_DESC_DATA_PTR field is copied, a consistency check is
performed. If the consistency check fails, SQLSTATE HY021 (Inconsistent
descriptor information.) is returned and the call to SQLCopyDesc() is immediately
aborted.

Note: Descriptor handles can be copied across connections or environments. An
application may, however, be able to associate an explicitly allocated descriptor
handle with a StatementHandle, rather than calling SQLCopyDesc() to copy fields
from one descriptor to another. An explicitly allocated descriptor can be associated
with another StatementHandle on the same ConnectionHandle by setting the
SQL_ATTR_APP_ROW_DESC or SQL_ATTR_APP_PARAM_DESC statement
attribute to the handle of the explicitly allocated descriptor. When this is done,
SQLCopyDesc() does not have to be called to copy descriptor field values from one
descriptor to another.

A descriptor handle cannot be associated with a StatementHandle on another
ConnectionHandle, however; to use the same descriptor field values on
StatementHandle on different ConnectionHandle, SQLCopyDesc() has to be called.

Copying rows between tables

An ARD on one statement handle can serve as the APD on another statement
handle. This allows an application to copy rows between tables without copying
data at the application level. To do this, an application calls SQLCopyDesc() to copy
the fields of an ARD that describes a fetched row of a table, to the APD for a
parameter in an INSERT statement on another statement handle. The
SQL_ACTIVE_STATEMENTS InfoType returned by the driver for a call to

SQLCopyDesc function (CLI) - Copy descriptor information between handles

72 Call Level Interface Guide and Reference, Volume 2

SQLGetInfo() must be greater than 1 for this operation to succeed.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

When SQLCopyDesc() returns SQL_ERROR or SQL_SUCCESS_WITH_INFO, an
associated SQLSTATE value may be obtained by calling SQLGetDiagRec() with a
HandleType of SQL_HANDLE_DESC and a Handle of TargetDescHandle. If an
invalid SourceDescHandle was passed in the call, SQL_INVALID_HANDLE will be
returned, but no SQLSTATE will be returned.

When an error is returned, the call to SQLCopyDesc() is immediately aborted, and
the contents of the fields in the TargetDescHandle descriptor are undefined.

Table 30. SQLCopyDesc SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link failure. The communication link between CLI and the data source to
which it was trying to connect failed before the function
completed processing.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY007 Associated statement is not
prepared.

SourceDescHandle was associated with an IRD, and the associated
statement handle was not in the prepared or executed state.

HY010 Function sequence error.
The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

HY016 Cannot modify an
implementation row descriptor.

TargetDescHandle was associated with an IRD.

HY021 Inconsistent descriptor
information.

The descriptor information checked during a consistency check
was not consistent.

HY092 Option type out of range. The call to SQLCopyDesc() prompted a call to SQLSetDescField(),
but *ValuePtr was not valid for the FieldIdentifier argument on
TargetDescHandle.

SQLCopyDesc function (CLI) - Copy descriptor information between handles

Chapter 1. CLI and ODBC functions 73

Restrictions

None.

Example
SQLHANDLE hIRD, hARD; /* descriptor handles */

/* ... */

/* copy descriptor information between handles */
rc = SQLCopyDesc(hIRD, hARD);

SQLCreateDb function (CLI) - Create a database
Purpose

Specification: CLI V9.7 ODBC ISO CLI

The SQLCreateDb() function creates a database by using the specified database
name, code set, and mode.

An active connection to the server must exist before you issue the SQLCreateDb
API.

Unicode equivalent: The corresponding Unicode function is the SQLCreateDbW()
function. For information about ANSI to Unicode function mappings, refer to
“Unicode functions (CLI)” on page 5.

Syntax
SQLRETURN SQL_API_FN SQLCreateDb (SQLHDBC hDbc,

SQLCHAR *szDbName,
SQLINTEGER cbDbName,
SQLCHAR *szCodeSet,
SQLINTEGER cbCodeSet,
SQLCHAR *szMode,
SQLINTEGER cbMode);

Function arguments

Table 31. SQLCreateDb arguments

Data type Argument Use Description

SQLHDBC hDbc input Connection handle.

SQLCHAR * szDbName input Name of the database that is to be created.

SQLINTEGER cbDbName input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of the function)
that is needed to store the szDbName argument or to
store SQL_NTS if the szDbName argument is null
terminated.

SQLCHAR * szCodeSet input Database code set information.
Note: If the value of the szCodeSetargument is
NULL, the database is created in the Unicode code
page for DB2 data servers and in the UTF-8 code
page for IDS data servers.

SQLCopyDesc function (CLI) - Copy descriptor information between handles

74 Call Level Interface Guide and Reference, Volume 2

Table 31. SQLCreateDb arguments (continued)

Data type Argument Use Description

SQLINTEGER cbCodeSet input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of the function)
that is needed to store the szCodeSet argument or to
store SQL_NTS if szCodeSet argument is null
terminated.

SQLCHAR * szMode input Database logging mode.
Note: This value is applicable only to IDS data
servers.

SQLINTEGER cbMode input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of the function)
that is needed to store the szMode argument or to
store SQL_NTS if szMode argument is null
terminated.

Usage

When creating a DB2 database, CLI application must first connect to the server
instance by specifying the ATTACH keyword. The valid APIs, after connecting to
the server instance using ATTACH keyword are SQLCreateDb(), SQLDropDb(),
and SQLDisconnect(). Before performing other CLI operations on the new
database, you must disconnect from the server instance and then connect to the
new database.

Return codes
v SQL_SUCCESS
v SQL_ERROR

Diagnostics

Table 32. SQLCreateDb SQLSTATEs

SQLSTATE Description Explanation

08003 Connection is closed. The connection that was specified for the SQLCreateDb argument
was not open.

HY090 Invalid string or buffer length. The cbDbName, cbCodeSet, and cbMode arguments have a
maximum length of 128. If you specify an invalid value, CLI
generates an error.

Restrictions
v A connection representing an instance attachment is required.
v The SQLCreateDb() function is not supported for DB2 for IBM i and DB2 for

z/OS servers.

.

Examples

The following example creates DB2 databases on a local server:
sqldriverconnect 1 0 "attach=true" -3 50 SQL_DRIVER_NOPROMPT
sqlcreatedb 1 sample1 8 null 0 null 0
sqlcreatedb 1 sample2 8 null 0 null 0

SQLCreateDb function (CLI) - Create a database

Chapter 1. CLI and ODBC functions 75

The following example creates DB2 databases on a remote server:
sqldriverconnect 1 0 “attach=true;hostname=myhostname;port=9999;
uid=myuid;pwd=mypwd;protocol=tcpip" -3 50 SQL_DRIVER_NOPROMPT
sqlcreatedb 1 sample1 8 null 0 null 0
sqlcreatedb 1 sample2 8 null 0 null 0

Version information

Last update
This topic was last updated for IBM DB2 Version 9.7, Fix Pack 3.

IBM Data Server Client
Supported in IBM DB2 for Linux, UNIX, and Windows

SQLCreatePkg
SQLCreatePkg() invokes the bind utility, which prepares SQL statements stored in
the bind file, and creates a package that is stored in the database.

Purpose

Specification: CLI 9.5 - -

Syntax
SQLRETURN SQLCreatePkg(

SQLHDBC hDbc,
SQLCHAR *szBindFileNameIn,
SQLINTEGER cbBindFileNameIn,
SQLCHAR *szBindOpts,
SQLINTEGER cbBindOpts)

Function arguments

Table 33. SQLCreatePkg() arguments

Data type Argument Use Description

SQLHDBC hDbc input Connection handle.

SQLCHAR* szBindFileNameIn input Name of the file to bind, or the name of a file
containing a list of bind file names.

SQLINTEGER cbBindFileNameln input Number of SQLCHAR elements needed to store
szBindFileNameIn, or SQL_NTS if szBindFileNameIn is
null-terminated.

SQLCHAR* szBindOpts input List of bind options separated by semicolon.

SQLINTEGER cbBindOpts input Number of SQLCHAR elements needed to store
szBindOpts, or SQL_NTS if szBindOpts is
null-terminated.

Usage

The argument szBindFileNameIn is a string containing the name of the bind file, or
the name of a file containing a list of bind file names. The bind file names must
contain the extension .bnd. You can specify a path for these files. Precede the name
of a bind list file with the at sign (@). The following example is a fully qualified
bind list file name:
/u/user1/sqllib/bnd/@all.lst

SQLCreateDb function (CLI) - Create a database

76 Call Level Interface Guide and Reference, Volume 2

The bind list file should contain one or more bind file names, and must have the
extension .lst. Precede all but the first bind file name with a plus symbol (+). The
bind file names can be on one or more lines. For example, the bind list file all.lst
might contain the following lines:
mybind1.bnd+mybind2.bnd+
mybind3.bnd+
mybind4.bnd

You can use path specifications on bind file names in the list file. If no path is
specified, the database manager takes path information from the bind list file.

The following BIND command parameters can be specified with SQLCreatePkg():
v KEEPDYNAMIC={YES | NO}
v ISOLATION={CS | NC | RR | RS | UR}
v BLOCKING={YES | NO | UNAMBIG}
v ENCODING={ASCII | EBCDIC | UNICODE | CCSID | integer} (DB2 for z/OS and

OS/390® only)
v REOPT={NONE | ONCE | ALWAYS}
v COLLECTION={schema name

The BIND command parameters can be passed in as a string with name-value pairs
separated by a semicolon. For example:
keepdynamic=yes; isolation=cs; blocking=no

Both options and values are case insensitive.

Example 1: Binding a file with REOPT=ONCE and ENCODING=CCSID
strcpy (bindFileName, “insertEmp.bnd”);
cliRC = SQLCreatePkg(hdbc,

bindFileName,
-3, // SQL_NTS
“REOPT=ONCE; ENCODING=CCSID”);

Example 2: Binding a list of files all with KEEPDYNAMIC=YES, BLOCKING=NO, and
ISOLATION=RS
strcpy (bindFileName, "/u/user1/sqllib/bnd/@all.lst");
cliRC = SQLCreatePkg(hdbc,

bindFileName,
strlen(bindFileName),
"KEEPDYNAMIC=YES; BLOCKING=NO; ISOLATION=RS");

Example 3: Binding a file with COLLECTION=SCHEMA NAME

strcpy (bindFileName, “insertEmp.bnd”);
cliRC = SQLCreatePkg(hdbc,

bindFileName,
-3, // SQL_NTS
“REOPT=ONCE; ENCODING=CCSID;

COLLECTION=NEWTON”);

SQLDataSources function (CLI) - Get list of data sources
Purpose

Specification: CLI 1.1 ODBC 1.0 ISO CLI

SQLCreatePkg

Chapter 1. CLI and ODBC functions 77

SQLDataSources() returns a list of target databases available, one at a time. A
database must be cataloged to be available.

SQLDataSources() is usually called before a connection is made, to determine the
databases that are available to connect to.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLDataSourcesW(). Refer to “Unicode
functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLDataSources (

SQLHENV EnvironmentHandle, /* henv */
SQLUSMALLINT Direction, /* fDirection */
SQLCHAR *ServerName, /* *szDSN */
SQLSMALLINT BufferLength1, /* cbDSNMax */
SQLSMALLINT *NameLength1Ptr, /* *pcbDSN */
SQLCHAR *Description, /* *szDescription */
SQLSMALLINT BufferLength2, /* cbDescriptionMax */
SQLSMALLINT *NameLength2Ptr); /* *pcbDescription */

Function arguments

Table 34. SQLDataSources arguments

Data type Argument Use Description

SQLHENV EnvironmentHandle input Environment handle.

SQLUSMALLINT Direction input Used by application to request the first data source
name in the list or the next one in the list. Direction
can take on only the following values:
v SQL_FETCH_FIRST
v SQL_FETCH_NEXT

SQLCHAR * ServerName output Pointer to buffer in which to return the data source
name.

SQLSMALLINT BufferLength1 input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the ServerName buffer. This number
should be less than or equal to
SQL_MAX_DSN_LENGTH + 1.

SQLSMALLINT * NameLength1Ptr output Pointer to a buffer in which to return the total
number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function),
excluding the null-termination character, available to
return in *ServerName. If the number of SQLCHAR
or SQLWCHAR elements available to return is
greater than or equal to BufferLength1, the data
source name in *ServerName is truncated to
BufferLength1 minus the length of a null-termination
character.

SQLCHAR * Description output Pointer to buffer where the description of the data
source is returned. CLI will return the Comment
field associated with the database catalogued to the
DBMS.

SQLSMALLINT BufferLength2 input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the Description buffer.

SQLDataSources function (CLI) - Get list of data sources

78 Call Level Interface Guide and Reference, Volume 2

Table 34. SQLDataSources arguments (continued)

Data type Argument Use Description

SQLSMALLINT * NameLength2Ptr output Pointer to a buffer in which to return the total
number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function),
excluding the null-termination character, available to
return in *Description. If the number of SQLCHAR or
SQLWCHAR elements available to return is greater
than or equal to BufferLength2, the driver description
in *Description is truncated to BufferLength2 minus
the length of a null-termination character.

Usage

The application can call this function any time with Direction set to either
SQL_FETCH_FIRST or SQL_FETCH_NEXT.

If SQL_FETCH_FIRST is specified, the first database in the list will always be
returned.

If SQL_FETCH_NEXT is specified:
v Directly following a SQL_FETCH_FIRST call, the second database in the list is

returned
v Before any other SQLDataSources() call, the first database in the list is returned
v When there are no more databases in the list, SQL_NO_DATA_FOUND is

returned. If the function is called again, the first database is returned.
v Any other time, the next database in the list is returned.

In an ODBC environment, the ODBC Driver Manager will perform this function.

Since the IBM RDBMSs always returns the description of the data source blank
padded to 30 bytes, CLI will do the same.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_NO_DATA_FOUND

Diagnostics

Table 35. SQLDataSources SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data source name returned in the argument ServerName was
longer than the value specified in the argument BufferLength1. The
argument NameLength1Ptr contains the length of the full data
source name. (Function returns SQL_SUCCESS_WITH_INFO.)

The data source name returned in the argument Description was
longer than the value specified in the argument BufferLength2. The
argument NameLength2Ptr contains the length of the full data
source description. (Function returns
SQL_SUCCESS_WITH_INFO.)

58004 Unexpected system failure. Unrecoverable system error.

SQLDataSources function (CLI) - Get list of data sources

Chapter 1. CLI and ODBC functions 79

Table 35. SQLDataSources SQLSTATEs (continued)

SQLSTATE Description Explanation

HY000 General error. An error occurred for which there was no specific SQLSTATE and
for which no implementation-specific SQLSTATE was defined. The
error message returned by SQLGetDiagRec() in the MessageText
argument describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for argument BufferLength1 was less than 0.

The value specified for argument BufferLength2 was less than 0.

HY103 Direction option out of range. The value specified for the argument Direction was not equal to
SQL_FETCH_FIRST or SQL_FETCH_NEXT.

Authorization

None.

Example
/* get list of data sources */
cliRC = SQLDataSources(henv,

SQL_FETCH_FIRST,
dbAliasBuf,
SQL_MAX_DSN_LENGTH + 1,
&aliasLen,
dbCommentBuf,
255,
&commentLen);

SQLDescribeCol function (CLI) - Return a set of attributes for a column
Purpose

Specification: CLI 1.1 ODBC 1.0 ISO CLI

SQLDescribeCol() returns a set of commonly used descriptor information (column
name, type, precision, scale, nullability) for the indicated column in the result set
generated by a query.

This information is also available in the fields of the IRD.

If the application needs only one attribute of the descriptor information, or needs
an attribute not returned by SQLDescribeCol(), the SQLColAttribute() function can
be used in place of SQLDescribeCol().

Either SQLPrepare() or SQLExecDirect() must be called before calling this function.

SQLDataSources function (CLI) - Get list of data sources

80 Call Level Interface Guide and Reference, Volume 2

This function (or SQLColAttribute()) is usually called before a bind column
function (SQLBindCol(), SQLBindFileToCol()) to determine the attributes of a
column before binding it to an application variable.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLDescribeColW(). Refer to “Unicode
functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLDescribeCol (

SQLHSTMT StatementHandle, /* hstmt */
SQLUSMALLINT ColumnNumber, /* icol */
SQLCHAR *ColumnName, /* szColName */
SQLSMALLINT BufferLength, /* cbColNameMax */
SQLSMALLINT *NameLengthPtr, /* pcbColName */
SQLSMALLINT *DataTypePtr, /* pfSqlType */
SQLULEN *ColumnSizePtr, /* pcbColDef */
SQLSMALLINT *DecimalDigitsPtr, /* pibScale */
SQLSMALLINT *NullablePtr); /* pfNullable */

Function arguments

Table 36. SQLDescribeCol arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLUSMALLINT ColumnNumber input Column number to be described. Columns are
numbered sequentially from left to right, starting at
1. This can also be set to 0 to describe the bookmark
column.

SQLCHAR * ColumnName output Pointer to column name buffer. This value is read
from the SQL_DESC_NAME field of the IRD. This is
set to NULL if the column name cannot be
determined.

SQLSMALLINT BufferLength input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the * ColumnName buffer.

SQLSMALLINT * NameLengthPtr output Pointer to a buffer in which to return the total
number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function),
excluding the null-termination character, available to
return in * ColumnName. Truncation of column name
(* ColumnName) to BufferLength - 1 SQLCHAR or
SQLWCHAR elements occurs if NameLengthPtr is
greater than or equal to BufferLength.

SQLSMALLINT * DataTypePtr output Base SQL data type of column. To determine if there
is a User Defined Type associated with the column,
call SQLColAttribute() with fDescType set to
SQL_COLUMN_DISTINCT_TYPE. Refer to the
Symbolic SQL Data Type column of the symbolic
and default data types table for the data types that
are supported.

SQLDescribeCol function (CLI) - Return a set of attributes for a column

Chapter 1. CLI and ODBC functions 81

Table 36. SQLDescribeCol arguments (continued)

Data type Argument Use Description

SQLULEN * ColumnSizePtr output Precision of column as defined in the database.

If fSqlType denotes a graphic or DBCLOB SQL data
type, then this variable indicates the maximum
number of double-byte characters the column can
hold.

SQLSMALLINT * DecimalDigitsPtr output Scale of column as defined in the database (only
applies to SQL_DECIMAL, SQL_NUMERIC,
SQL_TYPE_TIMESTAMP). Refer to the data type
scale table for the scale of each of the SQL data
types.

SQLSMALLINT * NullablePtr output Indicates whether NULLS are allowed for this
column
v SQL_NO_NULLS
v SQL_NULLABLE

Usage

Columns are identified by a number, are numbered sequentially from left to right,
and can be described in any order.
v Column numbers start at 1 if bookmarks are not used

(SQL_ATTR_USE_BOOKMARKS statement attribute set to SQL_UB_OFF).
v The ColumnNumber argument can be set to 0 to describe the bookmark column if

bookmarks are used (the statement attribute is set to SQL_UB_ON).

If a null pointer is specified for any of the pointer arguments, CLI assumes that the
information is not needed by the application and nothing is returned.

If the column is a User Defined Type, SQLDescribeCol() only returns the built-in
type in DataTypePtr. Call SQLColAttribute() with fDescType set to
SQL_COLUMN_DISTINCT_TYPE to obtain the User Defined Type.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

If SQLDescribeCol() returns either SQL_ERROR, or SQL_SUCCESS_WITH_INFO,
one of the following SQLSTATEs can be obtained by calling the SQLGetDiagRec()
or SQLGetDiagField() function.

Table 37. SQLDescribeCol SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The column name returned in the argument * ColumnName was
longer than the value specified in the argument BufferLength. The
argument * NameLengthPtr contains the length of the full column
name. (Function returns SQL_SUCCESS_WITH_INFO.)

SQLDescribeCol function (CLI) - Return a set of attributes for a column

82 Call Level Interface Guide and Reference, Volume 2

Table 37. SQLDescribeCol SQLSTATEs (continued)

SQLSTATE Description Explanation

07005 The statement did not return a
result set.

The statement associated with the StatementHandle did not return
a result set. There were no columns to describe. (Call
SQLNumResultCols() first to determine if there are any rows in the
result set.)

07009 Invalid descriptor index The value specified for ColumnNumber was equal to 0, and the
SQL_ATTR_USE_BOOKMARKS statement attribute was
SQL_UB_OFF. The value specified for the argument
ColumnNumber was greater than the number of columns in the
result set.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY010 Function sequence error. The function was called prior to calling SQLPrepare() or
SQLExecDirect() for the StatementHandle.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The length specified in argument BufferLength less than 1.

HYC00 Driver not capable. The SQL data type of column ColumnNumber is not recognized by
CLI.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

The following ODBC defined data types are not supported:
v SQL_BIT
v SQL_TINYINT

Example
/* return a set of attributes for a column */
cliRC = SQLDescribeCol(hstmt,

(SQLSMALLINT)(i + 1),
colName,
sizeof(colName),
&colNameLen,

SQLDescribeCol function (CLI) - Return a set of attributes for a column

Chapter 1. CLI and ODBC functions 83

&colType,
&colSize,
&colScale,
NULL);

SQLDescribeParam function (CLI) - Return description of a parameter
marker

Purpose

Specification: CLI 5.0 ODBC 1.0 ISO CLI

SQLDescribeParam() returns the description of a parameter marker associated with
a prepared SQL statement. This information is also available in the fields of the
IPD. If deferred prepared is enabled, and this is the first call to
SQLDescribeParam(), SQLNumResultCols(), or SQLDescribeCol(), the call will force a
PREPARE of the SQL statement to be flowed to the server.

Syntax
SQLRETURN SQLDescribeParam (

SQLHSTMT StatementHandle, /* hstmt */
SQLUSMALLINT ParameterNumber, /* ipar */
SQLSMALLINT *DataTypePtr, /* pfSqlType */
SQLULEN *ParameterSizePtr, /* pcbParamDef */
SQLSMALLINT *DecimalDigitsPtr, /* pibScale */
SQLSMALLINT *NullablePtr); /* pfNullable */

Function arguments

Table 38. SQLDescribeParam arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT ParameterNumber input Parameter marker number ordered sequentially in
increasing parameter order, starting at 1.

SQLSMALLINT * DataTypePtr output Pointer to a buffer in which to return the SQL data
type of the parameter. This value is read from the
SQL_DESC_CONCISE_TYPE record field of the IPD.

When ColumnNumber is equal to 0 (for a bookmark
column), SQL_BINARY is returned in *DataTypePtr
for variable-length bookmarks.

SQLULEN * ParameterSizePtr output Pointer to a buffer in which to return the size of the
column or expression of the corresponding
parameter marker as defined by the data source.

SQLSMALLINT * DecimalDigitsPtr output Pointer to a buffer in which to return the number of
decimal digits of the column or expression of the
corresponding parameter as defined by the data
source.

SQLDescribeCol function (CLI) - Return a set of attributes for a column

84 Call Level Interface Guide and Reference, Volume 2

Table 38. SQLDescribeParam arguments (continued)

Data type Argument Use Description

SQLSMALLINT * NullablePtr output Pointer to a buffer in which to return a value that
indicates whether the parameter allows NULL
values. This value is read from the
SQL_DESC_NULLABLE field of the IPD.

One of the following:
v SQL_NO_NULLS: The parameter does not allow

NULL values (this is the default value).
v SQL_NULLABLE: The parameter allows NULL

values.
v SQL_NULLABLE_UNKNOWN: Cannot determine

if the parameter allows NULL values.

Note: The CLI driver returns
SQL_NULLABLE_UNKNOWN.

Usage

Parameter markers are numbered in increasing order as they appear in the SQL
statement, starting with 1.

SQLDescribeParam() does not return the type (input, input/output, or output) of a
parameter in an SQL statement. Except in calls to stored procedures, all parameters
in SQL statements are input parameters. To determine the type of each parameter
in a call to a stored procedure, call SQLProcedureColumns().

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 39. SQLDescribeParam SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

07009 Invalid descriptor index. The value specified for the argument ParameterNumber less than 1.

The value specified for the argument ParameterNumber was greater
than the number of parameters in the associated SQL statement.

The parameter marker was part of a non-DML statement.

The parameter marker was part of a SELECT list.

08S01 Communication link failure. The communication link between CLI and the data source to
which it was connected failed before the function completed
processing.

21S01 Insert value list does not match
column list.

The number of parameters in the INSERT statement did not match
the number of columns in the table named in the statement.

SQLDescribeParam function (CLI) - Return description of a parameter marker

Chapter 1. CLI and ODBC functions 85

Table 39. SQLDescribeParam SQLSTATEs (continued)

SQLSTATE Description Explanation

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY010 Function sequence error. The function was called prior to calling SQLPrepare() or
SQLExecDirect() for the StatementHandle.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

SQLExecute() SQLExecDirect(), SQLBulkOperations(), or
SQLSetPos() was called for the StatementHandle and returned
SQL_NEED_DATA. This function was called before data was sent
for all data-at-execution parameters or columns.

HY013 Unexpected memory handling
error.

The function call could not be processed because the underlying
memory objects could not be accessed, possibly because of low
memory conditions.

HYC00 Driver not capable. The schema function stored procedures are not accessible on the
server. Install the schema function stored procedures on the server
and ensure they are accessible.

Restrictions

None.

SQLDisconnect function (CLI) - Disconnect from a data source
Purpose

Specification: CLI 1.1 ODBC 1.0 ISO CLI

SQLDisconnect() closes the connection associated with the database connection
handle.

SQLEndTran() must be called before calling SQLDisconnect() if an outstanding
transaction exists on this connection.

After calling this function, either call SQLConnect() to connect to another database,
or use SQLFreeHandle() to free the connection handle.

Syntax
SQLRETURN SQLDisconnect (SQLHDBC ConnectionHandle;) /* hdbc */

SQLDescribeParam function (CLI) - Return description of a parameter marker

86 Call Level Interface Guide and Reference, Volume 2

Function arguments

Table 40. SQLDisconnect arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle

Usage

If an application calls SQLDisconnect() before it has freed all the statement handles
associated with the connection, CLI frees them after it successfully disconnects
from the database.

If SQL_SUCCESS_WITH_INFO is returned, it implies that even though the
disconnect from the database is successful, additional error or implementation
specific information is available. For example, a problem was encountered on the
clean up subsequent to the disconnect, or if there is no current connection because
of an event that occurred independently of the application (such as communication
failure).

After a successful SQLDisconnect() call, the application can re-use ConnectionHandle
to make another SQLConnect() or SQLDriverConnect() request.

An application should not rely on SQLDisconnect() to close cursors (with both
stored procedures and regular client applications). In both cases the cursor should
be closed using SQLCloseCursor(), then the statement handle freed using
SQLFreeHandle().

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 41. SQLDisconnect SQLSTATEs

SQLSTATE Description Explanation

01002 Disconnect error. An error occurred during the disconnect. However, the disconnect
succeeded. (Function returns SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. The connection specified in the argument ConnectionHandle was
not open.

25000 25501 Invalid transaction state. There was a transaction in process on the connection specified by
the argument ConnectionHandle. The transaction remains active,
and the connection cannot be disconnected.
Note: This error does not apply to stored procedures written in
CLI.

25501 Invalid transaction state. There was a transaction in process on the connection specified by
the argument ConnectionHandle. The transaction remains active,
and the connection cannot be disconnected.

58004 Unexpected system failure. Unrecoverable system error.

SQLDisconnect function (CLI) - Disconnect from a data source

Chapter 1. CLI and ODBC functions 87

Table 41. SQLDisconnect SQLSTATEs (continued)

SQLSTATE Description Explanation

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

Restrictions

None.

Example
SQLHANDLE hdbc; /* connection handle */

/* ... */

/* disconnect from the database */
cliRC = SQLDisconnect(hdbc);

SQLDriverConnect function (CLI) - (Expanded) Connect to a data
source

Purpose

Specification: CLI 2.1 ODBC 1.0

SQLDriverConnect() is an alternative to SQLConnect(). Both functions establish a
connection to the target database, but SQLDriverConnect() supports additional
connection parameters and the ability to prompt the user for connection
information.

Use SQLDriverConnect() when the data source requires parameters other than the 3
input arguments supported by SQLConnect() (data source name, user ID and
password), or when you want to use CLI's graphical user interface to prompt the
user for mandatory connection information.

Once a connection is established, the completed connection string is returned.
Applications can store this string for future connection requests.

Syntax

Generic
SQLRETURN SQLDriverConnect (

SQLHDBC ConnectionHandle, /* hdbc */
SQLHWND WindowHandle, /* hwnd */
SQLCHAR *InConnectionString, /* szConnStrIn */
SQLSMALLINT InConnectionStringLength, /* cbConnStrIn */
SQLCHAR *OutConnectionString, /* szConnStrOut */

SQLDisconnect function (CLI) - Disconnect from a data source

88 Call Level Interface Guide and Reference, Volume 2

SQLSMALLINT OutConnectionStringCapacity, /* cbConnStrOutMax */
SQLSMALLINT *OutConnectionStringLengthPtr, /* pcbConnStrOut */
SQLUSMALLINT DriverCompletion); /* fDriverCompletion */

Function arguments

Table 42. SQLDriverConnect arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle

SQLHWND WindowHandle input Window handle. On the Windows platform, this is
the parent Windows handle. Currently the window
handle is only supported on Windows.

If a NULL is passed, then no dialog will be
presented.

SQLCHAR * InConnectionString input A full, partial or empty (null pointer) connection
string (see syntax and description below).

SQLSMALLINT InConnectionStringLength input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store InConnectionString.

SQLSMALLINT * OutConnectionString output Pointer to buffer for the completed connection string.

If the connection was established successfully, this
buffer will contain the completed connection string.
Applications should allocate at least
SQL_MAX_OPTION_STRING_LENGTH bytes for
this buffer.

SQLSMALLINT
OutConnectionString
Capacity

input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store OutConnectionString.

SQLSMALLINT *
OutConnectionString
LengthPtr

output Pointer to the number of SQLCHAR elements (or
SQLWCHAR elements for the Unicode variant of this
function), excluding the null-termination character,
available to return in the OutConnectionString buffer.

If the value of *OutConnectionStringLengthPtr is
greater than or equal to OutConnectionStringCapacity,
the completed connection string in
OutConnectionString is truncated to
OutConnectionStringCapacity - 1 SQLCHAR or
SQLWCHAR elements.

SQLUSMALLINT DriverCompletion input Indicates when CLI should prompt the user for more
information.

Possible values:
v SQL_DRIVER_PROMPT
v SQL_DRIVER_COMPLETE
v SQL_DRIVER_COMPLETE_REQUIRED
v SQL_DRIVER_NOPROMPT

Usage

InConnectionString Argument

A request connection string has the following syntax:

SQLDriverConnect function (CLI) - (Expanded) Connect to a data source

Chapter 1. CLI and ODBC functions 89

connection-string ::= attribute[;] | attribute; connection-string

attribute ::= attribute-keyword=attribute-value
| DRIVER=[{]attribute-value[}]

attribute-keyword ::= DSN | UID | PWD | NEWPWD
| driver-defined-attribute-keyword

attribute-value ::= character-string
driver-defined-attribute-keyword ::= identifier

where
v character-string has zero or more SQLCHAR or SQLWCHAR elements
v identifier has one or more SQLCHAR or SQLWCHAR elements
v attribute-keyword is case insensitive
v attribute-value may be case sensitive
v the value of the DSN keyword does not consist solely of blanks
v NEWPWD is used as part of a change password request. The application can

either specify the new string to use, for example, NEWPWD=anewpass; or
specify NEWPWD=; and rely on a dialog box generated by the CLI driver to
prompt for the new password

Because of connection string and initialization file grammar, keywords and
attribute values that contain the characters []{}(),;?*=!@ should be avoided. Because
of the grammar in the system information, keywords and data source names
cannot contain the backslash (\) character. For CLI Version 2, braces are required
around the DRIVER keyword.

If any keywords are repeated in the browse request connection string, CLI uses the
value associated with the first occurrence of the keyword. If the DSN and
DRIVER keywords are included in the same browse request connection string, CLI
uses whichever keyword appears first.

OutConnectionString Argument

The result connection string is a list of connection attributes. A connection attribute
consists of an attribute keyword and a corresponding attribute value. The browse
result connection string has the following syntax:

connection-string ::= attribute[;] | attribute; connection-string

attribute ::= [*]attribute-keyword=attribute-value
attribute-keyword ::= ODBC-attribute-keyword
| driver-defined-attribute-keyword

ODBC-attribute-keyword = {UID | PWD}:[localized-identifier]
driver-defined-attribute-keyword ::= identifier[:localized-identifier]

attribute-value ::= {attribute-value-list} | ?
(The braces are literal; they are returned by CLI.)
attribute-value-list ::= character-string [:localized-character
string] | character-string [:localized-character string], attribute-value-list

where
v character-string and localized-character string have zero or more SQLCHAR or

SQLWCHAR elements

SQLDriverConnect function (CLI) - (Expanded) Connect to a data source

90 Call Level Interface Guide and Reference, Volume 2

v identifier and localized-identifier have one or more SQLCHAR or SQLWCHAR
elements; attribute-keyword is case insensitive

v attribute-value may be case sensitive

Because of connection string and initialization file grammar, keywords, localized
identifiers, and attribute values that contain the characters []{}(),;?*=!@ should be
avoided. Because of the grammar in the system information, keywords and data
source names cannot contain the backslash (\) character.

The connection string is used to pass one or more values needed to complete a
connection. The contents of the connection string and the value of DriverCompletion
will determine if CLI needs to establish a dialog with the user.

�� �

;

Connection string syntax = attribute ��

Connection string syntax

DSN
UID
PWD
NEWPWD
CLI-defined-keyword

Each keyword above has an attribute that is equal to the following:

DSN Data source name. The name or alias-name of the database. Required if
DriverCompletion is equal to SQL_DRIVER_NOPROMPT.

UID Authorization-name (user identifier).

PWD The password corresponding to the authorization name. If there is no
password for the user ID, an empty value is specified (PWD=;).

NEWPWD
New password used as part of a change password request. The application
can either specify the new string to use, for example,
NEWPWD=anewpass; or specify NEWPWD=; and rely on a dialog box
generated by the CLI driver to prompt for the new password (set the
DriverCompletion argument to anything other than
SQL_DRIVER_NOPROMPT).

Any one of the CLI keywords can be specified on the connection string. If any
keywords are repeated in the connection string, the value associated with the first
occurrence of the keyword is used.

If any keywords exists in the CLI initialization file, the keywords and their
respective values are used to augment the information passed to CLI in the
connection string. If the information in the CLI initialization file contradicts
information in the connection string, the values in connection string take
precedence.

If the end user Cancels a dialog box presented, SQL_NO_DATA_FOUND is
returned.

The following values of DriverCompletion determines when a dialog will be opened:

SQLDriverConnect function (CLI) - (Expanded) Connect to a data source

Chapter 1. CLI and ODBC functions 91

SQL_DRIVER_PROMPT:
A dialog is always initiated. The information from the connection string
and the CLI initialization file are used as initial values, to be supplemented
by data input via the dialog box.

SQL_DRIVER_COMPLETE:
A dialog is only initiated if there is insufficient information in the
connection string. The information from the connection string is used as
initial values, to be supplemented by data entered via the dialog box.

SQL_DRIVER_COMPLETE_REQUIRED:
A dialog is only initiated if there is insufficient information in the
connection string. The information from the connection string is used as
initial values. Only mandatory information is requested. The user is
prompted for required information only.

SQL_DRIVER_NOPROMPT:
The user is not prompted for any information. A connection is attempted
with the information contained in the connection string. If there is not
enough information, SQL_ERROR is returned.

Once a connection is established, the complete connection string is returned.
Applications that need to set up multiple connections to the same database for a
given user ID should store this output connection string. This string can then be
used as the input connection string value on future SQLDriverConnect() calls.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLDriverConnectW(). Refer to
“Unicode functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_NO_DATA_FOUND
v SQL_INVALID_HANDLE
v SQL_ERROR

Diagnostics

All of the diagnostics generated by SQLConnect() can be returned here as well. The
following table shows the additional diagnostics that can be returned.

Table 43. SQLDriverConnect SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The buffer szConnstrOut was not large enough to hold the entire
connection string. The argument *OutConnectionStringLengthPtr
contains the actual length of the connection string available for
return. (Function returns SQL_SUCCESS_WITH_INFO)

01S00 Invalid connection string
attribute.

An invalid keyword or attribute value was specified in the input
connection string, but the connection to the data source was
successful anyway because one of the following occurred:
v The unrecognized keyword was ignored.
v The invalid attribute value was ignored, the default value was

used instead.

(Function returns SQL_SUCCESS_WITH_INFO)

SQLDriverConnect function (CLI) - (Expanded) Connect to a data source

92 Call Level Interface Guide and Reference, Volume 2

Table 43. SQLDriverConnect SQLSTATEs (continued)

SQLSTATE Description Explanation

HY000 General error.

Dialog Failed

The information specified in the connection string was insufficient
for making a connect request, but the dialog was prohibited by
setting fCompletion to SQL_DRIVER_NOPROMPT.

The attempt to display the dialog failed.

HY090 Invalid string or buffer length. The value specified for InConnectionStringLength was less than 0,
but not equal to SQL_NTS.

The value specified for OutConnectionStringCapacity was less than
0.

HY110 Invalid driver completion. The value specified for the argument fCompletion was not equal to
one of the valid values.

Restrictions

None.

Example
rc = SQLDriverConnect(hdbc,

(SQLHWND)sqlHWND,
InConnectionString,
InConnectionStringLength,
OutConnectionString,
OutConnectionStringCapacity,
StrLength2,
DriveCompletion);

SQLDropDb function (CLI) - Drop a database
Purpose

Specification: CLI V9.7

The SQLDropDb() function drops the specified database.

Unicode Equivalent: The corresponding Unicode function is the SQLDropDbW()
function. For information about ANSI to Unicode function mappings, see “Unicode
functions (CLI)” on page 5.

Syntax
SQLRETURN SQL_API_FN SQLDropDb (SQLHDBC hDbc,

SQLCHAR *szDbName,
SQLINTEGER cbDbName);

Function arguments

Table 44. SQLDropDb function argument

Data type Argument Use Description

SQLHDBC hDbc input Connection handle.

SQLCHAR * szDbName input Name of the database that is to be dropped.

SQLDriverConnect function (CLI) - (Expanded) Connect to a data source

Chapter 1. CLI and ODBC functions 93

Table 44. SQLDropDb function argument (continued)

Data type Argument Use Description

SQLINTEGER cbDbName input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of the function)
that is needed to store the szDbName argument or to
store SQL_NTS if the szDbName is null terminated.

Usage

To drop a DB2 database, the CLI application must first attach to the server instance
by using the ATTACH keyword. The valid APIs, after connecting to the server
instance using ATTACH keyword are SQLCreateDb(), SQLDropDb(), and
SQLDisconnect().

Return codes
v SQL_SUCCESS
v SQL_ERROR

Restrictions
v An already connected database cannot be dropped.
v The SQLDropDb() function is not supported for DB2 for IBM i and DB2 for

z/OS data servers.

Example

The following example creates and drops DB2 databases on a local server:
sqldriverconnect 1 0 "attach=true" -3 50 SQL_DRIVER_NOPROMPT
sqlcreatedb 1 sample1 8 null 0 null 0
sqlcreatedb 1 sample2 8 null 0 null 0
sqldropdb 1 sample1 8
sqldropdb 1 sample2 8
sqldisconnect 1

The following example creates and drops DB2 databases on a remote server:
sqldriverconnect 1 0 “attach=true;hostname=myhostname;port=9999;
uid=myuid;pwd=mypwd;protocol=tcpip" -3 50 SQL_DRIVER_NOPROMPT
sqlcreatedb 1 sample1 8 null 0 null 0
sqlcreatedb 1 sample2 8 null 0 null 0
sqldropdb 1 sample1 8
sqldropdb 1 sample2 8
sqldisconnect 1

Version information

Last update
This topic was last updated for IBM DB2 Version 9.7, Fix Pack 3.

IBM Data Server Client
Supported in IBM DB2 Database for Linux, UNIX, and Windows

SQLEndTran function (CLI) - End transactions of a connection or an
environment

Requests a commit or rollback operation for all active operations on all statements
associated with a connection, or for all connections associated with an
environment.

SQLDropDb function (CLI) - Drop a database

94 Call Level Interface Guide and Reference, Volume 2

Purpose

Specification: CLI 5.0 ODBC 3.0 ISO CLI

SQLEndTran() requests a commit or rollback operation for all active operations on
all statements that are associated with a connection, or for all connections that are
associated with an environment.

Syntax
SQLRETURN SQLEndTran (

SQLSMALLINT HandleType, /* fHandleType */
SQLHANDLE Handle, /* hHandle */
SQLSMALLINT CompletionType); /* fType */

Function arguments

Table 45. SQLEndTran arguments

Data type Argument Use Description

SQLSMALLINT HandleType Input TheHandle type identifier contains either
SQL_HANDLE_ENV if Handle is an environment
handle, or SQL_HANDLE_DBC if Handle is a
connection handle.

SQLHANDLE Handle Input The handle, of the type that is indicated by
HandleType, that indicates the scope of the
transaction.

SQLSMALLINT CompletionType Input One of the following two values:
v SQL_COMMIT
v SQL_ROLLBACK

Usage

If HandleType is SQL_HANDLE_ENV and Handle is a valid environment
handle,CLI attempts to commit or roll back transactions one at a time, depending
on the value of CompletionType, on all connections that are in a connected state on
that environment. SQL_SUCCESS is returned only if it receives SQL_SUCCESS for
each connection. If it receives SQL_ERROR on one or more connections, it returns
SQL_ERROR to the application, and the diagnostic information is placed in the
diagnostic data structure of the environment. To determine which connections
failed during the commit or rollback operation, the application can call
SQLGetDiagRec() for each connection.

You should not useSQLEndTran() when working in a Distributed Unit of Work
environment. Use the transaction manager APIs instead.

If CompletionType is SQL_COMMIT, SQLEndTran() issues a commit request for all
active operations on any statement that is associated with an affected connection. If
CompletionType is SQL_ROLLBACK, SQLEndTran() issues a rollback request for all
active operations on any statement that is associated with an affected connection. If
no transactions are active, SQLEndTran() returns SQL_SUCCESS with no effect on
any data sources.

To determine how transaction operations affect cursors, an application calls
SQLGetInfo() with the SQL_CURSOR_ROLLBACK_BEHAVIOR and
SQL_CURSOR_COMMIT_BEHAVIOR options.

SQLEndTran function (CLI) - End transactions of a connection or an environment

Chapter 1. CLI and ODBC functions 95

If the SQL_CURSOR_ROLLBACK_BEHAVIOR or
SQL_CURSOR_COMMIT_BEHAVIOR value equals SQL_CB_DELETE,
SQLEndTran() closes and deletes all open cursors on all statements that are
associated with the connection, and discards all pending results. SQLEndTran()
leaves any statement present in an allocated (unprepared) state; the application can
reuse them for subsequent SQL requests or can call SQLFreeStmt() or
SQLFreeHandle() with a HandleType of SQL_HANDLE_STMT to deallocate them.

If the SQL_CURSOR_ROLLBACK_BEHAVIOR or
SQL_CURSOR_COMMIT_BEHAVIOR value equals SQL_CB_CLOSE, SQLEndTran()
closes all open cursors on all statements that are associated with the connection.
SQLEndTran() leaves any statement present in a prepared state; the application can
call SQLExecute() for a statement that is associated with the connection without
first calling SQLPrepare().

If the SQL_CURSOR_ROLLBACK_BEHAVIOR or
SQL_CURSOR_COMMIT_BEHAVIOR value equals SQL_CB_PRESERVE,
SQLEndTran() does not affect open cursors that are associated with the connection.
Cursors remain at the row that they pointed to prior to the call to SQLEndTran().

When autocommit mode is off, calling SQLEndTran() with either SQL_COMMIT or
SQL_ROLLBACK when no transaction is active returns SQL_SUCCESS, which
indicates that there is no work to be committed or rolled back. Calling
SQLEndTran() has no effect on the data source, unless errors that are not related to
the transactions occur.

When autocommit mode is on, calling SQLEndTran() with a CompletionType of either
SQL_COMMIT or SQL_ROLLBACK always returns SQL_SUCCESS, unless errors
that are not related to the transactions occur.

When a CLI application is running in autocommit mode, the CLI driver does not
pass the statement to the server.

For applications that use the ODBC driver version 3.8 or later, the SQLEnTran
function can set the connection to suspended state and returns SQL_ERROR (with
SQLSTATE set to HY117). You must set the SQL_ATTR_ODBC_VERSION
environment attribute to SQL_OV_ODBC3_80. For more details about necessary
conditions to set the connection in a suspended state, see the Microsoft MSDN
documentation for the SQLEndTran() at http://msdn.microsoft.com/en-us/library/
ms716544(v=vs.85).aspx.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 46. SQLEndTran SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. An informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. The ConnectionHandle is not in a connected state.

SQLEndTran function (CLI) - End transactions of a connection or an environment

96 Call Level Interface Guide and Reference, Volume 2

http://msdn.microsoft.com/en-us/library/ms716544(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/ms716544(v=vs.85).aspx

Table 46. SQLEndTran SQLSTATEs (continued)

SQLSTATE Description Explanation

08007 Connection failure during
transaction.

The connection that is associated with the ConnectionHandle failed
during the execution of the function, and it cannot be determined
whether the requested COMMIT or ROLLBACK occurred before
the failure.

40001 Transaction rollback. The transaction is rolled back due to a resource deadlock with
another transaction.

HY000 General error. An error occurred for which there is no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY010 Function sequence error. An asynchronously executing function was called for a
StatementHandle that is associated with the ConnectionHandle and
was still executing when SQLEndTran() was called.

SQLExecute() or SQLExecDirect() was called for a StatementHandle
that is associated with the ConnectionHandle and returned
SQL_NEED_DATA. This function was called before data was sent
for all data-at-execution parameters or columns.

An exception to this behavior exists for CLI applications that run
against a DB2 for z/OS database server. When the connection
attribute SQL_ATTR_FORCE_ROLLBACK is turned on, CLI
applications can successfully perform SQLEndTran() or
SQLTransact() when CompletionType is SQL_ROLLBACK. The
StreamPutData configuration keyword must be set to 1 (on).

HY012 Invalid transaction code. The value that is specified for the argument CompletionType is
neither SQL_COMMIT nor SQL_ROLLBACK.

HY092 Option type out of range. The value specified for the argument HandleType was neither
SQL_HANDLE_ENV nor SQL_HANDLE_DBC.

Restrictions

None.

Example
/* commit all active transactions on the connection */
cliRC = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT)

/* ... */

/* rollback all active transactions on the connection */
cliRC = SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_ROLLBACK);

/* ... */

/* rollback all active transactions on all connections
in this environment */

cliRC = SQLEndTran(SQL_HANDLE_ENV, henv, SQL_ROLLBACK);

SQLEndTran function (CLI) - End transactions of a connection or an environment

Chapter 1. CLI and ODBC functions 97

SQLError function (CLI) - Retrieve error information
Deprecated

Note:

In ODBC 3.0, SQLError() has been deprecated and replaced with SQLGetDiagRec()
and SQLGetDiagField().

Although this version of CLI continues to support SQLError(), use
SQLGetDiagRec() in your CLI programs so that they conform to the latest
standards.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLErrorW(). Refer to “Unicode
functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Migrating to the new function

To read the error diagnostic records for a statement handle, the SQLError()
function,

SQLError(henv, hdbc, hstmt, *szSqlState, *pfNativeError,
*szErrorMsg, cbErrorMsgMax, *pcbErrorMsg);

for example, would be rewritten using the new function as:
SQLGetDiagRec(SQL_HANDLE_HSTMT, hstmt, 1, szSqlState, pfNativeError,

szErrorMsg, cbErrorMsgMax, pcbErrorMsg);

SQLExecDirect function (CLI) - Execute a statement directly
Purpose

Specification: CLI 1.1 ODBC 1.0 ISO CLI

SQLExecDirect() directly executes the specified SQL statement or XQuery
expression using the current values of the parameter marker variables if any
parameters exist in the statement. The statement or expression can only be
executed once.

For XQuery expressions, you cannot specify parameter markers in the expression
itself. You can, however, use the XMLQUERY function to bind parameter markers
to XQuery variables. The values of the bound parameter markers will then be
passed to the XQuery expression specified in XMLQUERY for execution.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLExecDirectW(). Refer to “Unicode
functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLExecDirect (

SQLHSTMT StatementHandle, /* hstmt */
SQLCHAR *StatementText, /* szSqlStr */
SQLINTEGER TextLength); /* cbSqlStr */

SQLError function (CLI) - Retrieve error information

98 Call Level Interface Guide and Reference, Volume 2

Function arguments

Table 47. SQLExecDirect arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. There must not be an open cursor
associated with StatementHandle.

SQLCHAR * StatementText input SQL statement or XQuery expression string.

SQLINTEGER TextLength input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the StatementText argument, or
SQL_NTS if StatementText is null-terminated.

Usage

If the SQL statement text contains vendor escape clause sequences, CLI will first
modify the SQL statement text to the appropriate DB2-specific format before
submitting it for preparation and execution. If the application does not generate
SQL statements that contain vendor escape clause sequences, then it should set the
SQL_ATTR_NOSCAN statement attribute to SQL_NOSCAN_ON at the connection
level so that CLI does not perform a scan for vendor escape clauses.

The SQL statement can be COMMIT or ROLLBACK if it is called using
SQLExecDirect(). Doing so yields the same result as calling SQLEndTran() on the
current connection handle.

The SQL statement string can contain parameter markers, however all parameters
must be bound before calling SQLExecDirect().

If the SQL statement is a query, or StatementText is an XQuery expression,
SQLExecDirect() will generate a cursor name, and open the cursor. If the
application has used SQLSetCursorName() to associate a cursor name with the
statement handle, CLI associates the application generated cursor name with the
internally generated one.

If a result set is generated, SQLFetch() or SQLFetchScroll() will retrieve the next
row (or rows) of data into bound variables, LOB locators, or LOB file references.

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor
referenced by the statement must be positioned on a row and must be defined on a
separate statement handle under the same connection handle.

There must not already be an open cursor on the statement handle.

If SQLSetStmtAttr() has been called with the SQL_ATTR_PARAMSET_SIZE
attribute to specify that an array of input parameter values has been bound to each
parameter marker, then the application needs to call SQLExecDirect() only once to
process the entire array of input parameter values.

If the executed statement returns multiple result sets (one for each set of input
parameters), then SQLMoreResults() should be used to advance to the next result
set once processing on the current result set is complete.

SQLExecDirect function (CLI) - Execute a statement directly

Chapter 1. CLI and ODBC functions 99

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_NEED_DATA
v SQL_NO_DATA_FOUND

SQL_NEED_DATA is returned when the application has requested to input
data-at-execute parameter values by setting the *StrLen_or_IndPtr value specified
during SQLBindParameter() to SQL_DATA_AT_EXEC for one or more parameters.

SQL_NO_DATA_FOUND is returned if the SQL statement is a Searched UPDATE
or Searched DELETE and no rows satisfy the search condition.

Diagnostics

Table 48. SQLExecDirect SQLSTATEs

SQLSTATE Description Explanation

01504 The UPDATE or DELETE
statement does not include a
WHERE clause.

StatementText contained an UPDATE or DELETE statement which
did not contain a WHERE clause. (Function returns
SQL_SUCCESS_WITH_INFO or SQL_NO_DATA_FOUND if there
were no rows in the table).

01508 Statement disqualified for
blocking.

The statement was disqualified for blocking for reasons other than
storage.

07001 Wrong number of parameters. The number of parameters bound to application variables using
SQLBindParameter() was less than the number of parameter
markers in the SQL statement contained in the argument
StatementText.

07006 Invalid conversion. Transfer of data between CLI and the application variables would
result in an incompatible data conversion.

21S01 Insert value list does not match
column list.

StatementText contained an INSERT statement and the number of
values to be inserted did not match the degree of the derived
table.

21S02 Degrees of derived table does
not match column list.

StatementText contained a CREATE VIEW statement and the
number of names specified is not the same degree as the derived
table defined by the query specification.

22001 String data right truncation. A character string assigned to a character type column exceeded
the maximum length of the column.

22003 Numeric value out of range. A numeric value assigned to a numeric type column caused
truncation of the whole part of the number, either at the time of
assignment or in computing an intermediate result.

StatementText contained an SQL statement with an arithmetic
expression which caused division by zero.
Note: as a result the cursor state is undefined for DB2 Database
for Linux, UNIX, and Windows (the cursor will remain open for
other RDBMSs).

SQLExecDirect function (CLI) - Execute a statement directly

100 Call Level Interface Guide and Reference, Volume 2

Table 48. SQLExecDirect SQLSTATEs (continued)

SQLSTATE Description Explanation

22005 Error in assignment. StatementText contained an SQL statement with a parameter or
literal and the value or LOB locator was incompatible with the
data type of the associated table column.

The length associated with a parameter value (the contents of the
pcbValue buffer specified on SQLBindParameter()) is not valid.

The argument fSQLType used in SQLBindParameter() or
SQLSetParam(), denoted an SQL graphic data type, but the
deferred length argument (pcbValue) contains an odd length value.
The length value must be even for graphic data types.

22007 Invalid datetime format. StatementText contained an SQL statement with an invalid
datetime format; that is, an invalid string representation or value
was specified, or the value was an invalid date, time, or
timestamp.

22008 Datetime field overflow. Datetime field overflow occurred; for example, an arithmetic
operation on a date or timestamp has a result that is not within
the valid range of dates, or a datetime value cannot be assigned to
a bound variable because it is too small.

22012 Division by zero is invalid. StatementText contained an SQL statement with an arithmetic
expression that caused division by zero.

23000 Integrity constraint violation. The execution of the SQL statement is not permitted because the
execution would cause integrity constraint violation in the DBMS.

24000 Invalid cursor state. A cursor was already opened on the statement handle.

24504 The cursor identified in the
UPDATE, DELETE, SET, or GET
statement is not positioned on a
row.

Results were pending on the StatementHandle from a previous
query or a cursor associated with the hstmt had not been closed.

34000 Invalid cursor name. StatementText contained a Positioned DELETE or a Positioned
UPDATE and the cursor referenced by the statement being
executed was not open.

37xxx a Invalid SQL syntax. StatementText contained one or more of the following:
v an SQL statement that the connected database server could not

prepare
v a statement containing a syntax error

40001 Transaction rollback. The transaction to which this SQL statement belonged was rolled
back due to a deadlock or timeout.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

42xxx Syntax Error or Access Rule
Violation.

425xx indicates the authorization ID does not have permission to
execute the SQL statement contained in StatementText.

Other 42xxx SQLSTATES indicate a variety of syntax or access
problems with the statement.

SQLExecDirect function (CLI) - Execute a statement directly

Chapter 1. CLI and ODBC functions 101

Table 48. SQLExecDirect SQLSTATEs (continued)

SQLSTATE Description Explanation

428A1 Unable to access a file referenced
by a host file variable.

This can be raised for any of the following scenarios. The
associated reason code in the text identifies the particular error:

v 01 - The file name length is invalid, or the file name, the path
has an invalid format, or both.

v 02 - The file option is invalid. It must have one of the following
values:

SQL_FILE_READ -read from an existing file
SQL_FILE_CREATE -create a new file for write
SQL_FILE_OVERWRITE -overwrite an existing file.

If the file does not exist,
create the file.

SQL_FILE_APPEND -append to an existing file.
If the file does not exist,
create the file.

v 03 - The file cannot be found.

v 04 - The SQL_FILE_CREATE option was specified for a file with
the same name as an existing file.

v 05 - Access to the file was denied. The user does not have
permission to open the file.

v 06 - Access to the file was denied. The file is in use with
incompatible modes. Files to be written to are opened in
exclusive mode.

v 07 - Disk full was encountered while writing to the file.

v 08 - Unexpected end of file encountered while reading from the
file.

v 09 - A media error was encountered while accessing the file.

42895 The value of a host variable in
the EXECUTE or OPEN
statement cannot be used
because of its data type.

The LOB locator type specified on the bind parameter function
call does not match the LOB data type of the parameter marker.

The argument fSQLType used on the bind parameter function
specified a LOB locator type but the corresponding parameter
marker is not a LOB.

44000 Integrity constraint violation. StatementText contained an SQL statement which contained a
parameter or literal. This parameter value was NULL for a
column defined as NOT NULL in the associated table column, or
a duplicate value was supplied for a column constrained to
contain only unique values, or some other integrity constraint was
violated.

56084 LOB data is not supported in
DRDA®.

LOB columns cannot either be selected or updated when
connecting to host or AS/400® servers (using DB2 Connect™).

58004 Unexpected system failure. Unrecoverable system error.

S0001 Database object already exists. StatementText contained a CREATE TABLE or CREATE VIEW
statement and the table name or view name specified already
existed.

S0002 Database object does not exist. StatementText contained an SQL statement that references a table
name or view name which does not exist.

S0011 Index already exists. StatementText contained a CREATE INDEX statement and the
specified index name already existed.

S0012 Index not found. StatementText contained a DROP INDEX statement and the
specified index name did not exist.

SQLExecDirect function (CLI) - Execute a statement directly

102 Call Level Interface Guide and Reference, Volume 2

Table 48. SQLExecDirect SQLSTATEs (continued)

SQLSTATE Description Explanation

S0021 Column already exists. StatementText contained an ALTER TABLE statement and the
column specified in the ADD clause was not unique or identified
an existing column in the base table.

S0022 Column not found. StatementText contained an SQL statement that references a column
name which does not exist.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY009 Invalid argument value. StatementText was a null pointer.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource
limitations.

HY090 Invalid string or buffer length. The argument TextLength was less than 1 but not equal to
SQL_NTS.

HY092 Option type out of range. The FileOptions argument of a previous SQLBindFileToParam()
operation was not valid.

HY503 Invalid file name length. The fileNameLength argument value from SQLBindFileToParam()
was less than 0, but not equal to SQL_NTS.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Note:

a xxx refers to any SQLSTATE with that class code. Example, 37xxx refers to any SQLSTATE in the 37 class.

Restrictions

None.

Example
/* directly execute a statement - end the COMPOUND statement */
cliRC = SQLExecDirect(hstmt, (SQLCHAR *)"SELECT * FROM ORG", SQL_NTS);

SQLExecute function (CLI) - Execute a statement
Purpose

Specification: CLI 1.1 ODBC 1.0 ISO CLI

SQLExecute() executes a statement that was successfully prepared using
SQLPrepare() on the same statement handle, once or multiple times. The statement
is executed using the current values of any application variables that were bound
to parameter markers by SQLBindParameter() or SQLBindFileToParam().

Syntax
SQLRETURN SQLExecute (SQLHSTMT StatementHandle); /* hstmt */

SQLExecDirect function (CLI) - Execute a statement directly

Chapter 1. CLI and ODBC functions 103

Function arguments

Table 49. SQLExecute arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. There must not be an open cursor
associated with StatementHandle.

Usage

The SQL statement string previously prepared on StatementHandle using
SQLPrepare() may contain parameter markers. All parameters must be bound
before calling SQLExecute().

Note: For XQuery expressions, you cannot specify parameter markers in the
expression itself. You can, however, use the XMLQUERY function to bind
parameter markers to XQuery variables. The values of the bound parameter
markers will then be passed to the XQuery expression specified in XMLQUERY for
execution.

Once the application has processed the results from the SQLExecute() call, it can
execute the statement again with new (or the same) parameter values.

A statement executed by SQLExecDirect() cannot be re-executed by calling
SQLExecute(). Only statements prepared with SQLPrepare() can be executed and
re-executed with SQLExecute().

If the prepared SQL statement is a query or an XQuery expression, SQLExecute()
will generate a cursor name, and open the cursor. If the application has used
SQLSetCursorName() to associate a cursor name with the statement handle, CLI
associates the application generated cursor name with the internally generated one.

To execute a query more than once on a given statement handle, the application
must close the cursor by calling SQLCloseCursor() or SQLFreeStmt() with the
SQL_CLOSE option. There must not be an open cursor on the statement handle
when calling SQLExecute().

If a result set is generated, SQLFetch() or SQLFetchScroll() will retrieve the next
row (or rows) of data into bound variables, LOB locators or LOB file references.

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor
referenced by the statement must be positioned on a row at the time SQLExecute()
is called, and must be defined on a separate statement handle under the same
connection handle.

If SQLSetStmtAttr() has been called with the SQL_ATTR_PARAMSET_SIZE
attribute to specify that an array of input parameter values has been bound to each
parameter marker, the application needs to call SQLExecute() only once to process
the entire array of input parameter values. If the executed statement returns
multiple result sets (one for each set of input parameters), then SQLMoreResults()
should be used to advance to the next result set once processing on the current
result set is complete.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO

SQLExecute function (CLI) - Execute a statement

104 Call Level Interface Guide and Reference, Volume 2

v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_NEED_DATA
v SQL_NO_DATA_FOUND

SQL_NEED_DATA is returned when the application has requested to input
data-at-execute parameter values by setting the *StrLen_or_IndPtr value specified
during SQLBindParameter() to SQL_DATA_AT_EXEC for one or more parameters.

SQL_NO_DATA_FOUND is returned if the SQL statement is a searched UPDATE
or searched DELETE and no rows satisfy the search condition.

Diagnostics

The SQLSTATEs for SQLExecute() include all those for SQLExecDirect() except for
HY009, HY090 and with the addition of the SQLSTATE in the table below. Any
SQLSTATE that SQLPrepare() could return can also be returned on a call to
SQLExecute() as a result of deferred prepare behavior.

Table 50. SQLExecute SQLSTATEs

SQLSTATE Description Explanation

HY010 Function sequence error. The specified StatementHandle was not in a prepared state.
SQLExecute() was called without first calling SQLPrepare().

Authorization

None.

Example
SQLHANDLE hstmt; /* statement handle */
SQLCHAR *stmt = (SQLCHAR *)"DELETE FROM org WHERE deptnumb = ? ";
SQLSMALLINT parameter1 = 0;

/* allocate a statement handle */
cliRC = SQLAllocHandle(SQL_HANDLE_STMT, hdbc, &hstmt);

/* ... */

/* prepare the statement */
cliRC = SQLPrepare(hstmt, stmt, SQL_NTS);

/* ... */

/* bind parameter1 to the statement */
cliRC = SQLBindParameter(hstmt,

1,
SQL_PARAM_INPUT,
SQL_C_SHORT,
SQL_SMALLINT,
0,
0,
¶meter1,
0,
NULL);

/* ... */
parameter1 = 15;

/* execute the statement for parameter1 = 15 */
cliRC = SQLExecute(hstmt);

SQLExecute function (CLI) - Execute a statement

Chapter 1. CLI and ODBC functions 105

SQLExtendedBind function (CLI) - Bind an array of columns
Purpose

Specification: CLI 6

SQLExtendedBind() is used to bind an array of columns or parameters instead of
using repeated calls to SQLBindCol() or SQLBindParameter().

Syntax
SQLRETURN SQLExtendedBind (

SQLHSTMT StatementHandle, /* hstmt */
SQLSMALLINT fBindCol,
SQLSMALLINT cRecords,
SQLSMALLINT * pfCType,
SQLPOINTER * rgbValue,
SQLINTEGER * cbValueMax,
SQLUINTEGER * puiPrecisionCType,
SQLSMALLINT * psScaleCType,
SQLINTEGER ** pcbValue,
SQLINTEGER ** piIndicator,
SQLSMALLINT * pfParamType,
SQLSMALLINT * pfSQLType,
SQLUINTEGER * pcbColDef,
SQLSMALLINT * pibScale) ;

Function arguments

Table 51. SQLExtendedBind() arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLSMALLINT fBindCol input If SQL_TRUE then the result is similar to
SQLBindCol(), otherwise, it is similar to
SQLBindParameter().

SQLSMALLINT cRecords input Number of columns or parameters to bind.

SQLSMALLINT * pfCType input Array of values for the application data type.

SQLPOINTER * rgbValue input Array of pointers to application data area.

SQLINTEGER * cbValueMax input Array of maximum sizes for rgbValue.

SQLUINTEGER * puiPrecisionCType input Array of decimal precision values. Each value is
used only if the application data type of the
corresponding record is SQL_C_DECIMAL_IBM.

SQLSMALLINT * psScaleCType input Array of decimal scale values. Each value is used
only if the application data type of the
corresponding record is SQL_C_DECIMAL_IBM.

SQLINTEGER ** pcbValue input Array of pointers to length values.

SQLINTEGER ** piIndicator input Array of pointers to indicator values. The piIndicator
argument allows the constants SQL_UNASSIGNED
and SQL_DEFAULT_PARAM to pass through the
method, when extended indicator feature is enabled
using the SQL_ATTR_EXTENDED_INDICATORS
attribute.

SQLExtendedBind function (CLI) - Bind an array of columns

106 Call Level Interface Guide and Reference, Volume 2

Table 51. SQLExtendedBind() arguments (continued)

Data type Argument Use Description

SQLSMALLINT * pfParamType input Array of parameter types. Only used if fBindCol is
FALSE.

Each row in this array serves the same purpose as
the SQLBindParameter() argument InputOutputType.
It can be set to:
v SQL_PARAM_INPUT
v SQL_PARAM_INPUT_OUTPUT
v SQL_PARAM_OUTPUT

SQLSMALLINT * pfSQLType input Array of SQL data types. Only used if fBindCol is
FALSE.

Each row in this array serves the same purpose as
the SQLBindParameter() argument ParameterType.

SQLUINTEGER * pcbColDef input Array of SQL precision values. Only used if fBindCol
is FALSE.

Each row in this array serves the same purpose as
the SQLBindParameter() argument ColumnSize.

SQLSMALLINT * pibScale input Array of SQL scale values. Only used if fBindCol is
FALSE.

Each row in this array serves the same purpose as
the SQLBindParameter() argument DecimalDigits.

Usage

The argument fBindCol determines whether this function call is used to associate
(bind):
v parameter markers in an SQL statement (as with SQLBindParameter()) - fBindCol

= SQL_FALSE
v columns in a result set (as with SQLBindCol()) - fBindCol = SQL_TRUE

This function can be used to replace multiple calls to SQLBindCol() or
SQLBindParameter(), however, important differences should be noted. Depending
on how the fBindCol parameter has been set, the input expected by
SQLExtendedBind() is similar to either SQLBindCol() or SQLBindParameter() with
the following exceptions:
v When SQLExtendedBind() is set to SQLBindCol() mode:

– targetValuePtr must be a positive integer that specifies in bytes, the maximum
length of the data that will be in the returned column.

v When SQLExtendedBind() is set to SQLBindParameter() mode:
– ColumnSize must be a positive integer that specifies the maximum length of

the target column in bytes, where applicable.
– DecimalDigits must be set to the correct scale for the target column, where

applicable.
– ValueType of SQL_C_DEFAULT should not be used.
– If ValueType is a locator type, the corresponding ParameterType should be a

matching locator type.
– All ValueType to ParameterType mappings should be as closely matched as

possible to minimize the conversion that CLI must perform.

SQLExtendedBind function (CLI) - Bind an array of columns

Chapter 1. CLI and ODBC functions 107

Each array reference passed to SQLExtendedBind() must contain at least the
number of elements indicated by cRecords. If the calling application fails to pass in
sufficiently large arrays, CLI may attempt to read beyond the end of the arrays
resulting in corrupt data or critical application failure.

Each array passed to SQLExtendedBind() is considered to be a deferred argument,
which means the values in the array are examined and retrieved at the time of
execution. As a result, ensure that each array is in a valid state and contains valid
data when CLI executes using the values in the array. Following a successful
execution, if a statement needs to be executed again, you do not need to call
SQLExtendedBind() a second time if the handles passed to the original call to
SQLExtendedBind() still refer to valid arrays.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 52. SQLExtendedBind() SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. The conversion from the data value identified by a row in the
pfCType argument to the data type identified by the pfParamType
argument is not a meaningful conversion. (For example,
conversion from SQL_C_TYPE_DATE to SQL_DOUBLE.)

07009 Invalid descriptor index The value specified for the argument cRecords exceeded the
maximum number of columns in the result set.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY003 Program type out of range. A row in pfParamType or pfSQLType was not a valid data type or
SQL_C_DEFAULT.

HY004 SQL data type out of range. The value specified for the argument pfParamType is not a valid
SQL data type.

HY009 Invalid argument value. The argument rgbValue was a null pointer and the argument
cbValueMax was a null pointer, and pfParamType is not
SQL_PARAM_OUTPUT.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY021 Inconsistent descriptor
information

The descriptor information checked during a consistency check
was not consistent.

SQLExtendedBind function (CLI) - Bind an array of columns

108 Call Level Interface Guide and Reference, Volume 2

Table 52. SQLExtendedBind() SQLSTATEs (continued)

SQLSTATE Description Explanation

HY090 Invalid string or buffer length. The value specified for the argument cbValueMax is less than 1
and the argument the corresponding row in pfParamType or
pfSQLType is either SQL_C_CHAR, SQL_C_BINARY or
SQL_C_DEFAULT.

HY093 Invalid parameter number. The value specified for a row in the argument pfCType was less
than 1 or greater than the maximum number of parameters
supported by the server.

HY094 Invalid scale value. The value specified for pfParamType was either SQL_DECIMAL or
SQL_NUMERIC and the value specified for DecimalDigits was less
than 0 or greater than the value for the argument pcbColDef
(precision).

The value specified for pfParamType was
SQL_C_TYPE_TIMESTAMP and the value for pfParamType was
either SQL_CHAR or SQL_VARCHAR and the value for
DecimalDigits was less than 0 or greater than 9.

The value specified for pfParamType was
SQL_C_TIMESTAMP_EXT and the value for DecimalDigits was
less than 0 or greater than 12.

HY104 Invalid precision value. The value specified for pfParamType was either SQL_DECIMAL or
SQL_NUMERIC and the value specified by pcbColDef was less
than 1.

HY105 Invalid parameter type. pfParamType is not one of SQL_PARAM_INPUT,
SQL_PARAM_OUTPUT, or SQL_PARAM_INPUT_OUTPUT.

HYC00 Driver not capable. CLI recognizes, but does not support the data type specified in
the row in pfParamType or pfSQLType.

A LOB locator C data type was specified, but the connected server
does not support LOB data types.

Restrictions

None

SQLExtendedFetch function (CLI) - Extended fetch (fetch array of
rows)

Deprecated

Note:

In ODBC 3.0, SQLExtendedFetch() has been deprecated and replaced with
SQLFetchScroll().

Although this version of CLI continues to support SQLExtendedFetch(), use
SQLFetchScroll() in your CLI programs so that they conform to the latest
standards.

Migrating to the new function

The statement:

SQLExtendedBind function (CLI) - Bind an array of columns

Chapter 1. CLI and ODBC functions 109

SQLExtendedFetch(hstmt, SQL_FETCH_ABSOLUTE, 5, &rowCount, &rowStatus);

for example, would be rewritten using the new function as:
SQLFetchScroll(hstmt, SQL_FETCH_ABSOLUTE, 5);

Note:

The information returned in the rowCount and rowStatus parameters of
SQLExtendedFetch() are handled by SQLFetchScroll() as follows:
v rowCount: SQLFetchScroll() returns the number of rows fetched in the buffer

pointed to by the SQL_ATTR_ROWS_FETCHED_PTR statement attribute.
v rowStatus: SQLFetchScroll() returns the array of statuses for each row in the

buffer pointed to by the SQL_ATTR_ROW_STATUS_PTR statement attribute.

SQLExtendedPrepare function (CLI) - Prepare a statement and set
statement attributes

Purpose

Specification: CLI 6.0

SQLExtendedPrepare() is used to prepare a statement and set a group of statement
attributes, all in one call.

This function can be used in place of a call to SQLPrepare() followed by a number
of calls to SQLSetStmtAttr().

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLExtendedPrepareW(). Refer to
“Unicode functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLExtendedPrepare(

SQLHSTMT StatementHandle, /* hstmt */
SQLCHAR *StatementText, /* pszSqlStmt */
SQLINTEGER TextLength, /* cbSqlStmt */
SQLINTEGER cPars,
SQLSMALLINT sStmtType,
SQLINTEGER cStmtAttrs,
SQLINTEGER *piStmtAttr,
SQLINTEGER *pvParams);

Function arguments

Table 53. SQLExtendedPrepare() arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLCHAR * StatementText Input SQL statement string.

SQLINTEGER TextLength Input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the StatementText argument, or
SQL_NTS if StatementText is null-terminated.

SQLINTEGER cPars Input Number of parameter markers in statement.

SQLExtendedFetch function (CLI) - Extended fetch (fetch array of rows)

110 Call Level Interface Guide and Reference, Volume 2

Table 53. SQLExtendedPrepare() arguments (continued)

Data type Argument Use Description

SQLSMALLINT cStmtType Input Statement type. For possible values see List of
cStmtType Values.

SQLINTEGER cStmtAttrs Input Number of statement attributes specified on this call.

SQLINTEGER * piStmtAttr Input Array of statement attributes to set.

SQLINTEGER * pvParams Input Array of corresponding statement attributes values
to set.

Usage

The first three arguments of this function are exactly the same as the arguments in
SQLPrepare().

There are two requirements when using SQLExtendedPrepare():
1. The SQL statements will not be scanned for ODBC/vendor escape clauses. It

behaves as if the SQL_ATTR_NOSCAN statement attribute is set to
SQL_NOSCAN. If the SQL statement contains ODBC/vendor escape clauses
then SQLExtendedPrepare() cannot be used.

2. You must indicate in advance (through cPars) the number of parameter markers
that are included in the SQL statement.

The cPars argument indicates the number of parameter markers in StatementText.

The argument cStmtType is used to indicate the type of statement that is being
prepared. See List of cStmtType Values for the list of possible values.

The final three arguments are used to indicate a set of statement attributes to use.
Set cStmtAttrs to the number of statement attributes specified on this call. Create
two arrays, one to hold the list of statement attributes, one to hold the value for
each. Use these arrays for piStmtAttr and pvParams.

List of cStmtType Values

The argument cStmtType can be set to one of the following values:
v SQL_CLI_STMT_UNDEFINED
v SQL_CLI_STMT_ALTER_TABLE
v SQL_CLI_STMT_CREATE_INDEX
v SQL_CLI_STMT_CREATE_TABLE
v SQL_CLI_STMT_CREATE_VIEW
v SQL_CLI_STMT_DELETE_SEARCHED
v SQL_CLI_STMT_DELETE_POSITIONED
v SQL_CLI_STMT_GRANT
v SQL_CLI_STMT_INSERT
v SQL_CLI_STMT_INSERT_VALUES
v SQL_CLI_STMT_REVOKE
v SQL_CLI_STMT_SELECT
v SQL_CLI_STMT_UPDATE_SEARCHED
v SQL_CLI_STMT_UPDATE_POSITIONED
v SQL_CLI_STMT_CALL
v SQL_CLI_STMT_SELECT_FOR_UPDATE
v SQL_CLI_STMT_WITH
v SQL_CLI_STMT_SELECT_FOR_FETCH

SQLExtendedPrepare function (CLI) - Prepare a statement and set statement attributes

Chapter 1. CLI and ODBC functions 111

v SQL_CLI_STMT_VALUES
v SQL_CLI_STMT_CREATE_TRIGGER
v SQL_CLI_STMT_SELECT_OPTIMIZE_FOR_NROWS
v SQL_CLI_STMT_SELECT_INTO
v SQL_CLI_STMT_CREATE_PROCEDURE
v SQL_CLI_STMT_CREATE_FUNCTION
v SQL_CLI_STMT_SET_CURRENT_QUERY_OPT

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 54. SQLExtendedPrepare SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01504 The UPDATE or DELETE
statement does not include a
WHERE clause.

StatementText contained an UPDATE or DELETE statement which
did not contain a WHERE clause.

01508 Statement disqualified for
blocking.

The statement was disqualified for blocking for reasons other than
storage.

01S02 Option value changed. CLI did not support a value specified in *pvParams, or a value
specified in *pvParams was invalid because of SQL constraints or
requirements, so CLI substituted a similar value. (Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link failure. The communication link between CLI and the data source to
which it was connected failed before the function completed
processing.

21S01 Insert value list does not match
column list.

StatementText contained an INSERT statement and the number of
values to be inserted did not match the degree of the derived
table.

21S02 Degrees of derived table does
not match column list.

StatementText contained a CREATE VIEW statement and the
number of names specified is not the same degree as the derived
table defined by the query specification.

22018 Invalid character value for cast
specification.

*StatementText contained an SQL statement that contained a literal
or parameter and the value was incompatible with the data type
of the associated table column.

22019 Invalid escape character The argument StatementText contained a LIKE predicate with an
ESCAPE in the WHERE clause, and the length of the escape
character following ESCAPE was not equal to 1.

22025 Invalid escape sequence The argument StatementText contained “LIKE pattern value
ESCAPE escape character” in the WHERE clause, and the character
following the escape character in the pattern value was not one of
"%" or "_".

24000 Invalid cursor state. A cursor was already opened on the statement handle.

34000 Invalid cursor name. StatementText contained a positioned DELETE or a positioned
UPDATE and the cursor referenced by the statement being
executed was not open.

SQLExtendedPrepare function (CLI) - Prepare a statement and set statement attributes

112 Call Level Interface Guide and Reference, Volume 2

Table 54. SQLExtendedPrepare SQLSTATEs (continued)

SQLSTATE Description Explanation

37xxx a Invalid SQL syntax. StatementText contained one or more of the following:

v an SQL statement that the connected database server could not
prepare

v a statement containing a syntax error

40001 Transaction rollback. The transaction to which this SQL statement belonged was rolled
back due to deadlock or timeout.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

42xxx a Syntax Error or Access Rule
Violation.

425xx indicates the authorization ID does not have permission to
execute the SQL statement contained in StatementText.

Other 42xxx SQLSTATES indicate a variety of syntax or access
problems with the statement.

58004 Unexpected system failure. Unrecoverable system error.

S0001 Database object already exists. StatementText contained a CREATE TABLE or CREATE VIEW
statement and the table name or view name specified already
existed.

S0002 Database object does not exist. StatementText contained an SQL statement that references a table
name or a view name which did not exist.

S0011 Index already exists. StatementText contained a CREATE INDEX statement and the
specified index name already existed.

S0012 Index not found. StatementText contained a DROP INDEX statement and the
specified index name did not exist.

S0021 Column already exists. StatementText contained an ALTER TABLE statement and the
column specified in the ADD clause was not unique or identified
an existing column in the base table.

S0022 Column not found. StatementText contained an SQL statement that references a column
name which did not exist.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY009 Invalid argument value. StatementText was a null pointer.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY011 Operation invalid at this time. The Attribute was SQL_ATTR_CONCURRENCY, SQL_
ATTR_CURSOR_TYPE, SQL_ATTR_SIMULATE_CURSOR, or
SQL_ATTR_USE_BOOKMARKS and the statement was prepared.

SQLExtendedPrepare function (CLI) - Prepare a statement and set statement attributes

Chapter 1. CLI and ODBC functions 113

Table 54. SQLExtendedPrepare SQLSTATEs (continued)

SQLSTATE Description Explanation

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource
limitations.

HY017 Invalid use of an automatically
allocated descriptor handle.

The Attribute argument was SQL_ATTR_IMP_ROW_DESC or
SQL_ATTR_IMP_PARAM_DESC. The Attribute argument was
SQL_ATTR_APP_ROW_DESC or
SQL_ATTR_APP_PARAM_DESC, and the value in *ValuePtr was
an implicitly allocated descriptor handle.

HY024 Invalid attribute value. Given the specified Attribute value, an invalid value was specified
in *ValuePtr. (CLI returns this SQLSTATE only for connection and
statement attributes that accept a discrete set of values, such as
SQL_ATTR_ACCESS_MODE. For all other connection and
statement attributes, the driver must verify the value specified in
*ValuePtr.)

HY090 Invalid string or buffer length. The argument TextLength was less than 1, but not equal to
SQL_NTS.

HY092 Option type out of range. The value specified for the argument Attribute was not valid for
this version of CLI.

HYC00 Driver not capable. The value specified for the argument Attribute was a valid
connection or statement attribute for the version of the CLI driver,
but was not supported by the data source.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Note:

a xxx refers to any SQLSTATE with that class code. Example, 37xxx refers to any SQLSTATE in the 37 class.

Note: Not all DBMSs report all of the above diagnostic messages at prepare time.
If deferred prepare is left on as the default behavior (controlled by the
SQL_ATTR_DEFERRED_PREPARE statement attribute), then these errors could
occur when the PREPARE is flowed to the server. The application must be able to
handle these conditions when calling functions that cause this flow. These
functions include SQLExecute(), SQLDescribeParam(), SQLNumResultCols(),
SQLDescribeCol(), and SQLColAttribute().

Restrictions

When accessing IDS data servers, only IDS data server specific
SQLExtendedPrepare() attributes are supported. If any SQLExtendedPrepare()
attributes not supported by the IDS data server are used, a "Driver not capable"
error is returned.

SQLExtendedProcedures function (CLI) - Get list of procedure names
The SQLExtendedProcedures() function returns a list of stored procedure names
that are registered at the server, and which match the specified search pattern.

The information is returned in an SQL result set, which you can retrieve by using
the same functions that you use to process a result set that is generated by a query.

SQLExtendedPrepare function (CLI) - Prepare a statement and set statement attributes

114 Call Level Interface Guide and Reference, Volume 2

Purpose

Specification: CLI 9.7

Unicode equivalent: You can also use this function with the Unicode character set.
The corresponding Unicode function is SQLExtendedProceduresW(). For information
about ANSI to Unicode function mappings, see “Unicode functions (CLI)” on page
5.

Modules are an extension to the concept of schemas. Applications that connect to
DB2 version 9.7 or later data servers can create modules inside their schema and
can create procedures inside the modules. The fully qualified name of a procedure
in a module would be <SCHEMA NAME>.<MODULE NAME>.<PROCEDURE
NAME>. The SQLExtendedProcedures() and SQLExtendedProcedureColumns()
functions provide information about modules. These functions are not part of the
current ODBC specification. For more information, see “Modules” in SQL
Procedural Languages: Application Enablement and Support.

Syntax
SQLRETURN SQLExtendedProcedures (

SQLHSTMT StatementHandle, /* hstmt */
SQLCHAR *CatalogName, /* szProcCatalog */
SQLSMALLINT NameLength1, /* cbProcCatalog */
SQLCHAR *SchemaName, /* szProcSchema */
SQLSMALLINT NameLength2, /* cbProcSchema */
SQLCHAR *ProcName, /* szProcName */
SQLSMALLINT NameLength3), /* cbProcName */
SQLCHAR *ProcModule, /* szProcModule */
SQLSMALLINT NameLength4; /* cbProcModule */

Function arguments

Table 55. SQLExtendedProcedures arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input The statement handle.

SQLCHAR * CatalogName Input A catalog qualifier of a 3-part table name. If the
target DBMS does not support 3-part naming, and
CatalogName is not a null pointer and does not point
to a zero-length string, then an empty result set and
SQL_SUCCESS is returned. Otherwise, this is a valid
filter for DBMSs that supports 3-part naming.

SQLSMALLINT NameLength1 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store CatalogName, or SQL_NTS
if CatalogName is null-terminated.

SQLCHAR * SchemaName Input A buffer that can contain a pattern value to qualify
the result set by schema name.

For DB2 for MVS/ESA V 4.1 and later, all the stored
procedures are in one schema; the only acceptable
value for the SchemaName argument is a null pointer.
If a value is specified, an empty result set and
SQL_SUCCESS are returned. For DB2 Database for
Linux, UNIX, and Windows, SchemaName can contain
a valid pattern value. For more information about
valid search patterns, see the catalog functions input
arguments.

SQLExtendedProcedures function (CLI) - Get list of procedure names

Chapter 1. CLI and ODBC functions 115

Table 55. SQLExtendedProcedures arguments (continued)

Data type Argument Use Description

SQLSMALLINT NameLength2 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store SchemaName, or SQL_NTS
if SchemaName is null-terminated.

SQLCHAR * ProcName Input A buffer that can contain a pattern value to qualify
the result set by table name.

SQLSMALLINT NameLength3 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store ProcName, or SQL_NTS if
ProcName is null-terminated.

SQLCHAR * ProcModule Input A buffer that can contain a pattern value to qualify
the result set by module name.

SQLSMALLINT NameLength4 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store ProcModule, or SQL_NTS if
ProcModule is null-terminated.

Usage

The result set that is returned by the SQLExtendedProcedures() function contains
the columns that are listed in Columns returned by SQLExtendedProcedures in the
order given. The rows are ordered by PROCEDURE_CAT,
PROCEDURE_SCHEMA, and PROCEDURE_NAME.

In many cases, calls to the SQLExtendedProcedures() function map to a complex
and thus expensive query against the system catalog, so you should use the calls
sparingly, and save the results rather than repeating calls.

Call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
that are supported by the connected DBMS.

If the SQL_ATTR_LONGDATA_COMPAT connection attribute is set, LOB column
types are reported as LONG VARCHAR, LONG VARBINARY, or LONG
VARGRAPHIC types.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns will not change.

If the stored procedure is at a DB2 for MVS/ESA V4.1 up to V6 server, the name of
the stored procedures must be registered in the server's SYSIBM.SYSPROCEDURES
catalog table. For V8 and later servers, the stored procedure must be registered in
the server's SYSIBM.SYSROUTINES and SYSIBM.SYSPARAMS catalog tables.

For other versions of DB2 servers that do not provide facilities for a stored
procedure catalog, an empty result set is returned.

In Version 9.7 Fix Pack 5, you can specify *ALL as a value in the SchemaName to
resolve unqualified stored procedure calls, or to find libraries in catalog API calls.
CLI searches on all existing schemas in the connected database. You are not

SQLExtendedProcedures function (CLI) - Get list of procedure names

116 Call Level Interface Guide and Reference, Volume 2

required to specify *ALL, as this behavior is the default in CLI. Alternatively, you
can set the SchemaFilter IBM Data Server Driver configuration keyword or the
Schema List CLI/ODBC configuration keyword to *ALL.

Columns returned by SQLExtendedProcedures

Column 1 PROCEDURE_CAT (VARCHAR(128))
The procedure catalog name. The value is NULL if this procedure does not
have catalogs.

Column 2 PROCEDURE_SCHEM (VARCHAR(128))
The name of the schema that contains PROCEDURE_NAME.

Column 3 PROCEDURE_NAME (VARCHAR(128) NOT NULL)
The name of the procedure.

Column 4 NUM_INPUT_PARAMS (INTEGER not NULL)
The number of input parameters. INOUT parameters are not counted as
part of this number.

To determine information regarding INOUT parameters, examine the
COLUMN_TYPE column that is returned by SQLProcedureColumns().

Column 5 NUM_OUTPUT_PARAMS (INTEGER not NULL)
The number of output parameters. INOUT parameters are not counted as
part of this number.

To determine information regarding INOUT parameters, examine the
COLUMN_TYPE column that is returned by SQLProcedureColumns().

Column 6 NUM_RESULT_SETS (INTEGER not NULL)
The number of result sets that are returned by the procedure.

You should not use this column, it is reserved for future use by ODBC.

Column 7 REMARKS (VARCHAR(254))
Contains the descriptive information about the procedure.

Column 8 PROCEDURE_TYPE (SMALLINT)
Defines the procedure type:
v SQL_PT_UNKNOWN: It cannot be determined whether the procedure

returns a value.
v SQL_PT_PROCEDURE: The returned object is a procedure that does not

have a return value
v SQL_PT_FUNCTION: The returned object is a function that has a return

value.

CLI always returns SQL_PT_PROCEDURE.

Column 9 SPECIFIC_NAME (VARCHAR(128))
The unique specific name of PROCEDURE_NAME.

Column 10 PROCEDURE_MODULE (VARCHAR(128))
The name of the module that contains PROCEDURE_NAME within the
schema.

Note:

v The column names that are used by CLI follow the X/Open CLI CAE
specification style. The column types, contents, and order are identical to those
defined for the SQLExtendedProcedures() result set in ODBC.

v If two modules contain procedures that share the same name, the
SQLExtendedProcedures() function returns details about both procedures.

SQLExtendedProcedures function (CLI) - Get list of procedure names

Chapter 1. CLI and ODBC functions 117

Return codes
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_STILL_EXECUTING
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO

Diagnostics

Table 56. SQLExtendedProcedures SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY010 Function sequence error.
The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

The function was called before a statement was prepared on the
statement handle.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource
limitations.

HY090 Invalid string or buffer length. The value of one of the name-length arguments was less than 0,
but not equal to SQL_NTS.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. You can set the timeout period byt using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

If an application is connected to a DB2 server that does not provide support for a
stored procedure catalog, or does not provide support for stored procedures, the
SQLExtendedProcedures() function returns an empty result set.

The SQLExtendedProcedures() function is currently supported only with DB2
version 9.7 or later data servers.

SQLExtendedProcedures function (CLI) - Get list of procedure names

118 Call Level Interface Guide and Reference, Volume 2

SQLExtendedProcedureColumns function (CLI) - Get input/output
parameter information for a procedure

The SQLExtendedProcedureColumns() function returns a list of input and output
parameters that are associated with a stored procedure. The information is
returned in an SQL result set, which you can retrieve by using the same functions
that you use to process a result set that is generated by a query.

Purpose

Specification: CLI 9.7

Unicode equivalent: You can also use this function with the Unicode character set.
The corresponding Unicode function is SQLExtendedProcedureColumnsW(). For
information about ANSI to Unicode function mappings, see “Unicode functions
(CLI)” on page 5.

Modules are an extension to the concept of schemas. Applications that connect to
DB2 version 9.7 or later data servers can create modules inside their schema, and
can create procedures inside the modules. The fully qualified name of a procedure
in a module would be <SCHEMA NAME>.<MODULE NAME>.<PROCEDURE
NAME>. The SQLExtendedProcedures() and SQLExtendedProcedureColumns()
functions provide information about modules. These functions are not part of the
current ODBC specification. See in SQL Procedural Languages: Application Enablement
and Support for more information.

Syntax
SQLRETURN SQLExtendedProcedureColumns(

SQLHSTMT StatementHandle, /* hstmt */
SQLCHAR *CatalogName, /* szProcCatalog */
SQLSMALLINT NameLength1, /* cbProcCatalog */
SQLCHAR *SchemaName, /* szProcSchema */
SQLSMALLINT NameLength2, /* cbProcSchema */
SQLCHAR *ProcName, /* szProcName */
SQLSMALLINT NameLength3, /* cbProcName */
SQLCHAR *ColumnName, /* szColumnName */
SQLSMALLINT NameLength4), /* cbColumnName */
SQLCHAR *ProcModule, /* szProcModule */
SQLSMALLINT NameLength5; /* cbProcModule */

Function arguments

Table 57. SQLExtendedProcedureColumns arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input A statement handle.

SQLCHAR * CatalogName Input A catalog qualifier of a 3-part table name. If the
target DBMS does not support 3-part naming, and
CatalogName is not a null pointer and does not point
to a zero-length string, then an empty result set and
SQL_SUCCESS is returned. Otherwise, this is a valid
filter for DBMSs that support 3-part naming.

SQLSMALLINT NameLength1 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store CatalogName, or SQL_NTS
if CatalogName is null-terminated.

SQLExtendedProcedureColumns function (CLI) - Get input/output parameter information
for a procedure

Chapter 1. CLI and ODBC functions 119

Table 57. SQLExtendedProcedureColumns arguments (continued)

Data type Argument Use Description

SQLCHAR * SchemaName Input A buffer that can contain a pattern value to qualify
the result set by schema name.

For DB2 Database for Linux, UNIX, and Windows,
SchemaName can contain a valid pattern value. For
more information about valid search patterns, see the
catalog functions input arguments.

SQLSMALLINT NameLength2 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store SchemaName, or SQL_NTS
if SchemaName is null-terminated.

SQLCHAR * ProcName Input A buffer that can contain a pattern value to qualify
the result set by procedure name.

SQLSMALLINT NameLength3 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store ProcName, or SQL_NTS if
ProcName is null-terminated.

SQLCHAR * ColumnName Input A buffer that can contain a pattern value to qualify
the result set by parameter name. Use this argument
to further qualify the result set that is already
restricted by specifying a non-empty value for
ProcName, SchemaName, or both.

SQLSMALLINT NameLength4 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store ColumnName, or SQL_NTS
if ColumnName is null-terminated.

SQLCHAR * ProcModule Input A buffer that can contain a pattern value to qualify
the result set by parameter name. Use this argument
to further qualify the result set that is already
restricted by specifying a non-empty value for
ProcName, SchemaName, or ColumnName.

SQLSMALLINT NameLength5 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store ProcModule, or SQL_NTS if
ProcModule is null-terminated.

Usage

The SQLExtendedProcedureColumns() function returns the information in a result
set, that is ordered by PROCEDURE_CAT, PROCEDURE_SCHEM,
PROCEDURE_NAME, COLUMN_TYPE and PROCEDURE_MODULE. Columns
returned by SQLExtendedProcedureColumns lists the columns in the result set.
Columns that are beyond the last column might be defined in future releases.

In many cases, calls to the SQLExtendedProcedureColumns() function map to a
complex and thus expensive query against the system catalog, therefore you
should use these calls sparingly, and save the results rather than repeating calls.

Call the SQLGetInfo() function with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_SCHEMA_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN to
determine respectively the actual lengths of the TABLE_CAT, TABLE_SCHEM, and
COLUMN_NAME columns that are supported by the connected DBMS.

SQLExtendedProcedureColumns function (CLI) - Get input/output parameter information
for a procedure

120 Call Level Interface Guide and Reference, Volume 2

If the SQL_ATTR_LONGDATA_COMPAT connection attribute is set, LOB column
types are reported as LONG VARCHAR, LONG VARBINARY or LONG
VARGRAPHIC types.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns will not change.

For versions of other DB2 servers that do not provide facilities for a stored
procedure catalog, an empty result set is returned.

CLI returns information about the input, input/output, and output parameters that
are associated with the stored procedure, but cannot return descriptor information
for any result sets that the stored procedure might return.

In Version 9.7 Fix Pack 5, you can specify *ALL as a value in the SchemaName to
resolve unqualified stored procedure calls, or to find libraries in catalog API calls.
CLI searches on all existing schemas in the connected database. You are not
required to specify *ALL, as this behavior is the default in CLI. Alternatively, you
can set the SchemaFilter IBM Data Server Driver configuration keyword or the
Schema List CLI/ODBC configuration keyword to *ALL.

Columns returned by SQLExtendedProcedureColumns

Column 1 PROCEDURE_CAT (VARCHAR(128))
The name of the procedure catalog. The value is NULL if this procedure
does not have catalogs.

Column 2 PROCEDURE_SCHEM (VARCHAR(128))
The name of the schema containing PROCEDURE_NAME.

Column 3 PROCEDURE_NAME (VARCHAR(128))
The name of the procedure.

Column 4 COLUMN_NAME (VARCHAR(128))
The name of the parameter.

Column 5 COLUMN_TYPE (SMALLINT not NULL)
Identifies the type of information that is associated with this row. The
values can be:
v SQL_PARAM_TYPE_UNKNOWN : The parameter type is unknown.

Note: This is not returned.
v SQL_PARAM_INPUT: This parameter is an input parameter.
v SQL_PARAM_INPUT_OUTPUT: This parameter is an input / output

parameter.
v SQL_PARAM_OUTPUT: This parameter is an output parameter.
v SQL_RETURN_VALUE: The procedure column is the return value of the

procedure.

Note: This is not returned.
v SQL_RESULT_COL: This parameter is actually a column in the result set.

Note: This is not returned.

Column 6 DATA_TYPE (SMALLINT not NULL)
An SQL data type.

SQLExtendedProcedureColumns function (CLI) - Get input/output parameter information
for a procedure

Chapter 1. CLI and ODBC functions 121

Column 7 TYPE_NAME (VARCHAR(128) not NULL)
A character string that represents the name of the data type that
corresponds to DATA_TYPE.

Column 8 COLUMN_SIZE (INTEGER)
For XML arguments in SQL routines, zero is returned (as XML arguments
have no length). For cataloged external routines, however, XML parameters
are declared as XML AS CLOB(n), in which case COLUMN_SIZE is the
cataloged length, n.

If the DATA_TYPE column value denotes a character or binary string, this
column contains the maximum length in SQLCHAR or SQLWCHAR
elements. If the DATA_TYPE column value is a graphic (DBCS) string,
COLUMN_SIZE is the number of double byte SQLCHAR or SQLWCHAR
elements for the parameter.

For date, time, and timestamp data types, COLUMN_SIZE is the total
number of SQLCHAR or SQLWCHAR elements that are required to
display the value when converted to character data type.

For numeric data types, this is either the total number of digits, or the total
number of bits that are allowed in the column, depending on the value in
the NUM_PREC_RADIX column in the result set.

See the table of data type precision.

Column 9 BUFFER_LENGTH (INTEGER)
The maximum number of bytes for the associated C buffer to store data
from this parameter if SQL_C_DEFAULT is specified on the SQLBindCol(),
SQLGetData() and SQLBindParameter() calls. This length excludes any
null-terminator. For exact numeric data types, the length accounts for the
decimal and the sign.

For XML arguments in SQL routines, zero is returned (as XML arguments
have no length). For cataloged external routines, however, XML parameters
are declared as XML AS CLOB(n), in which case BUFFER_LENGTH is the
cataloged length, n.

See the table of data type length.

Column 10 DECIMAL_DIGITS (SMALLINT)
The scale of the parameter. NULL is returned for data types where scale is
not applicable.

See the table of data type scale.

Column 11 NUM_PREC_RADIX (SMALLINT)
Either 10, 2, or NULL. If DATA_TYPE is an approximate numeric data
type, this column contains the value 2, and the COLUMN_SIZE column
contains the number of bits that are allowed in the parameter.

If DATA_TYPE is an exact numeric data type, this column contains the
value 10, and the COLUMN_SIZE and DECIMAL_DIGITS columns contain
the number of decimal digits that are allowed for the parameter.

For numeric data types, the DBMS can return a NUM_PREC_RADIX of
either 10 or 2.

NULL is returned for data types where radix is not applicable.

Column 12 NULLABLE (SMALLINT not NULL)
SQL_NO_NULLS if the parameter does not accept NULL values.

SQL_NULLABLE if the parameter accepts NULL values.

SQLExtendedProcedureColumns function (CLI) - Get input/output parameter information
for a procedure

122 Call Level Interface Guide and Reference, Volume 2

Column 13 REMARKS (VARCHAR(254))
Might contain descriptive information about the parameter.

Column 14 COLUMN_DEF (VARCHAR)
The default value of the column.

If NULL is specified as the default value, this column is the word NULL,
not enclosed in quotation marks. If the default value cannot be represented
without truncation, this column contains TRUNCATED, with no enclosing
single quotation marks. If no default value is specified, this column is
NULL.

You can use the value of COLUMN_DEF to generate a new column
definition, except when it contains the value TRUNCATED.

Column 15 SQL_DATA_TYPE (SMALLINT not NULL)
The value of the SQL data type as it is displayed in the SQL_DESC_TYPE
field of the descriptor. This column is the same as the DATA_TYPE column
except for datetime data types (CLI does not support interval data types).

For datetime data types, the SQL_DATA_TYPE field in the result set is
SQL_DATETIME, and the SQL_DATETIME_SUB field returns the subcode
for the specific datetime data type (SQL_CODE_DATE, SQL_CODE_TIME
or SQL_CODE_TIMESTAMP).

Column 16 SQL_DATETIME_SUB (SMALLINT)
The subtype code for datetime data types. For all other data types this
column returns a NULL (including interval data types, which CLI does not
support).

Column 17 CHAR_OCTET_LENGTH (INTEGER)
The maximum length in bytes of a character data type column. For all
other data types, this column returns a NULL.

Column 18 ORDINAL_POSITION (INTEGER NOT NULL)
Contains the ordinal position of the parameter that is given by
COLUMN_NAME in this result set. The ORDINAL_POSITION is the
ordinal position of the argument to be provided on the CALL statement.
The leftmost argument has an ordinal position of 1.

Column 19 IS_NULLABLE (Varchar)
v “NO” if the column does not include NULLs.
v “YES” if the column can include NULLs.
v Zero-length string if the nullability is unknown.

ISO rules are followed to determine nullability.

An ISO SQL-compliant DBMS cannot return an empty string.

The value that is returned for this column is different than the value that is
returned for the NULLABLE column. See the description of the
NULLABLE column.

Column 20 SPECIFIC_NAME (VARCHAR(128))
The unique specific name of PROCEDURE_NAME.

Column 21 PROCEDURE_MODULE (VARCHAR(128))
The name of the module containing PROCEDURE_NAME within the
schema.

Note:

SQLExtendedProcedureColumns function (CLI) - Get input/output parameter information
for a procedure

Chapter 1. CLI and ODBC functions 123

v The column names that are used by CLI follow the X/Open CLI CAE
specification style. The column types, contents, and order are identical to those
defined for the SQLExtendedProcedureColumns() result set in ODBC.

v If two modules contain procedures that share the same name, the
SQLExtendedProcedureColumns() function returns details about both procedures.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 58. SQLExtendedProcedureColumns SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

42601 PARMLIST syntax error. The PARMLIST value that is in the stored procedures catalog table
contains a syntax error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called, and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY010 Function sequence error.
The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

The function was called before a statement was prepared on the
statement handle.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource
limitations.

HY090 Invalid string or buffer length. The value of one of the name-length arguments was less than 0,
but not equal to SQL_NTS.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. You can set the timeout period by using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

SQLExtendedProcedureColumns function (CLI) - Get input/output parameter information
for a procedure

124 Call Level Interface Guide and Reference, Volume 2

Restrictions

SQLExtendedProcedureColumns() does not return information about the attributes of
result sets that might be returned from stored procedures.

If an application is connected to a DB2 server that does not provide support for a
stored procedure catalog, or does not provide support for stored procedures,
SQLExtendedProcedureColumns() will return an empty result set.

SQLExtendedProcedureColumns() is currently only supported with DB2 Version 9.7
or later.

Example
/* get input/output parameter information for a procedure including
extended information */
cliRC = SQLExtendedProcedureColumns(hstmt,
"CatalogName",
SQL_NTS,
"SchemaName",
SQL_NTS,
"ProcName",
SQL_NTS,
"ColumnName",
SQL_NTS,
"ModuleName",
SQL_NTS);

SQLFetch function (CLI) - Fetch next row
Purpose

Specification: CLI 1.1 ODBC 1.0 ISO CLI

SQLFetch() advances the cursor to the next row of the result set, and retrieves any
bound columns.

Columns can be bound to:
v application storage
v LOB locators
v LOB file references

When SQLFetch() is called, the appropriate data transfer is performed, along with
any data conversion if conversion was indicated when the column was bound. The
columns can also be received individually after the fetch, by calling SQLGetData().

SQLFetch() can only be called after a result set has been generated (using the same
statement handle) by either executing a query, calling SQLGetTypeInfo() or calling
a catalog function.

Syntax
SQLRETURN SQLFetch (SQLHSTMT StatementHandle); /* hstmt */

SQLExtendedProcedureColumns function (CLI) - Get input/output parameter information
for a procedure

Chapter 1. CLI and ODBC functions 125

Function arguments

Table 59. SQLFetch arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

Usage

SQLFetch() can only be called after a result set has been generated on the same
statement handle. Before SQLFetch() is called the first time, the cursor is positioned
before the start of the result set.

The number of application variables bound with SQLBindCol() must not exceed the
number of columns in the result set or SQLFetch() will fail.

If SQLBindCol() has not been called to bind any columns, then SQLFetch() does not
return data to the application, but just advances the cursor. In this case
SQLGetData() could be called to obtain all of the columns individually. If the cursor
is a multirow cursor (that is, the SQL_ATTR_ROW_ARRAY_SIZE is greater than 1),
SQLGetData() can be called only if SQL_GD_BLOCK is returned when
SQLGetInfo() is called with an InfoType of SQL_GETDATA_EXTENSIONS. (Not all
DB2 data sources support SQL_GD_BLOCK.) Data in unbound columns is
discarded when SQLFetch() advances the cursor to the next row. For fixed length
data types, or small variable length data types, binding columns provides better
performance than using SQLGetData().

If LOB values are too large to be retrieved in one fetch, they can be retrieved in
pieces by either using SQLGetData() (which can be used for any column type), or
by binding a LOB locator, and using SQLGetSubString().

If any bound storage buffer is not large enough to hold the data returned by
SQLFetch(), the data will be truncated. If character data is truncated,
SQL_SUCCESS_WITH_INFO is returned, and an SQLSTATE is generated
indicating truncation. The SQLBindCol() deferred output argument pcbValue will
contain the actual length of the column data retrieved from the server. The
application should compare the actual output length to the input buffer length
(pcbValue and cbValueMax arguments from SQLBindCol()) to determine which
character columns have been truncated.

Truncation of numeric data types is reported as a warning if the truncation
involves digits to the right of the decimal point. If truncation occurs to the left of
the decimal point, an error is returned (refer to the diagnostics section).

Truncation of graphic data types is treated the same as character data types, except
that the rgbValue buffer is filled to the nearest multiple of two bytes that is still less
than or equal to the cbValueMax specified in SQLBindCol(). Graphic (DBCS) data
transferred between CLI and the application is not null-terminated if the C buffer
type is SQL_C_CHAR (unless the CLI/ODBC configuration keyword PATCH1
includes the value 64). If the buffer type is SQL_C_DBCHAR, then null-termination
of graphic data does occur.

Truncation is also affected by the SQL_ATTR_MAX_LENGTH statement attribute.
The application can specify that CLI should not report truncation by calling
SQLSetStmtAttr() with SQL_ATTR_MAX_LENGTH and a value for the maximum
length to return for any one column, and by allocating a rgbValue buffer of the

SQLFetch function (CLI) - Fetch next row

126 Call Level Interface Guide and Reference, Volume 2

same size (plus the null-terminator). If the column data is larger than the set
maximum length, SQL_SUCCESS will be returned and the maximum length, not
the actual length will be returned in pcbValue.

When all the rows have been retrieved from the result set, or the remaining rows
are not needed, SQLCloseCursor() or SQLFreeStmt() with an option of SQL_CLOSE
or SQL_DROP should be called to close the cursor and discard the remaining data
and associated resources.

An application cannot mix SQLFetch() with SQLExtendedFetch() calls on the same
statement handle. It can, however, mix SQLFetch() with SQLFetchScroll() calls on
the same statement handle. Note that SQLExtendedFetch() has been deprecated and
replaced with SQLFetchScroll().

Positioning the cursor

When the result set is created, the cursor is positioned before the start of the result
set. SQLFetch() fetches the next rowset. It is equivalent to calling SQLFetchScroll()
with FetchOrientation set to SQL_FETCH_NEXT.

The SQL_ATTR_ROW_ARRAY_SIZE statement attribute specifies the number of
rows in the rowset. If the rowset being fetched by SQLFetch() overlaps the end of
the result set, SQLFetch() returns a partial rowset. That is, if S + R-1 is greater than
L, where S is the starting row of the rowset being fetched, R is the rowset size, and
L is the last row in the result set, then only the first L-S+1 rows of the rowset are
valid. The remaining rows are empty and have a status of SQL_ROW_NOROW.

Refer to the cursor positioning rules of SQL_FETCH_NEXT for SQLFetchScroll()
for more information.

After SQLFetch() returns, the current row is the first row of the rowset.

Row status array

SQLFetch() sets values in the row status array in the same manner as
SQLFetchScroll() and SQLBulkOperations(). The row status array is used to return
the status of each row in the rowset. The address of this array is specified with the
SQL_ATTR_ROW_STATUS_PTR statement attribute.

Rows fetched buffer

SQLFetch() returns the number of rows fetched in the rows fetched buffer
including those rows for which no data was returned. The address of this buffer is
specified with the SQL_ATTR_ROWSFETCHED_PTR statement attribute. The
buffer is set by SQLFetch() and SQLFetchScroll().

Error handling

Errors and warnings can apply to individual rows or to the entire function. They
can be retrieved using the SQLGetDiagField() function.

Errors and Warnings on the Entire Function

If an error applies to the entire function, such as SQLSTATE HYT00 (Timeout
expired) or SQLSTATE 24000 (Invalid cursor state), SQLFetch() returns

SQLFetch function (CLI) - Fetch next row

Chapter 1. CLI and ODBC functions 127

SQL_ERROR and the applicable SQLSTATE. The contents of the rowset buffers are
undefined and the cursor position is unchanged.

If a warning applies to the entire function, SQLFetch() returns
SQL_SUCCESS_WITH_INFO and the applicable SQLSTATE. The status records for
warnings that apply to the entire function are returned before the status records
that apply to individual rows.

Errors and warnings in individual rows

If an error (such as SQLSTATE 22012 (Division by zero)) or a warning (such as
SQLSTATE 01004 (Data truncated)) applies to a single row, SQLFetch() returns
SQL_SUCCESS_WITH_INFO, unless an error occurs in every row, in which case
SQL_ERROR is returned. SQLFetch() also:
v Sets the corresponding element of the row status array to SQL_ROW_ERROR for

errors or SQL_ROW_SUCCESS_WITH_INFO for warnings.
v Adds zero or more status records containing SQLSTATEs for the error or

warning.
v Sets the row and column number fields in the status records. If SQLFetch()

cannot determine a row or column number, it sets that number to
SQL_ROW_NUMBER_UNKNOWN or SQL_COLUMN_NUMBER_UNKNOWN
respectively. If the status record does not apply to a particular column,
SQLFetch() sets the column number to SQL_NO_COLUMN_NUMBER.

SQLFetch() returns the status records in row number order. That is, it returns all
status records for unknown rows (if any), then all status records for the first row
(if any), then all status records for the second row (if any), and so on. The status
records for each individual row are ordered according to the normal rules for
ordering status records, described in SQLGetDiagField().

Descriptors and SQLFetch

The following sections describe how SQLFetch() interacts with descriptors.

Argument mappings

The driver does not set any descriptor fields based on the arguments of
SQLFetch().

Other descriptor fields

The following descriptor fields are used by SQLFetch():

Table 60. Descriptor fields

Descriptor field Desc. Location Set through

SQL_DESC_ARRAY_SIZE ARD header SQL_ATTR_ROW_ARRAY_SIZE statement
attribute

SQL_DESC_ARRAY_STATUS_PTR IRD header SQL_ATTR_ROW_STATUS_PTR statement
attribute

SQL_DESC_BIND_OFFSET_PTR ARD header SQL_ATTR_ROW_BIND_OFFSET_PTR
statement attribute

SQL_DESC_BIND_TYPE ARD header SQL_ATTR_ROW_BIND_TYPE statement
attribute

SQL_DESC_COUNT ARD header ColumnNumber argument of SQLBindCol()

SQLFetch function (CLI) - Fetch next row

128 Call Level Interface Guide and Reference, Volume 2

Table 60. Descriptor fields (continued)

Descriptor field Desc. Location Set through

SQL_DESC_DATA_PTR ARD records TargetValuePtr argument of SQLBindCol()

SQL_DESC_INDICATOR_PTR ARD records StrLen_or_IndPtr argument in SQLBindCol()

SQL_DESC_OCTET_LENGTH ARD records BufferLength argument in SQLBindCol()

SQL_DESC_OCTET_LENGTH_PTR ARD records StrLen_or_IndPtr argument in SQLBindCol()

SQL_DESC_ROWS_PROCESSED_PTR IRD header SQL_ATTR_ROWS_FETCHED_PTR
statement attribute

SQL_DESC_TYPE ARD records TargetType argument in SQLBindCol()

All descriptor fields can also be set through SQLSetDescField().

Separate length and indicator buffers

Applications can bind a single buffer or two separate buffers to be used to hold
length and indicator values. When an application calls SQLBindCol(),
SQL_DESC_OCTET_LENGTH_PTR and SQL_DESC_INDICATOR_PTR fields of the
ARD are set to the same address, which is passed in the StrLen_or_IndPtr
argument. When an application calls SQLSetDescField() or SQLSetDescRec(), it can
set these two fields to different addresses.

SQLFetch() determines whether the application has specified separate length and
indicator buffers. In this case, when the data is not NULL, SQLFetch() sets the
indicator buffer to 0 and returns the length in the length buffer. When the data is
NULL, SQLFetch() sets the indicator buffer to SQL_NULL_DATA and does not
modify the length buffer.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_NO_DATA_FOUND

SQL_NO_DATA_FOUND is returned if there are no rows in the result set, or
previous SQLFetch() calls have fetched all the rows from the result set.

If all the rows have been fetched, the cursor is positioned after the end of the
result set.

Diagnostics

Table 61. SQLFetch SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data returned for one or more columns was truncated. String
values or numeric values are right truncated.
(SQL_SUCCESS_WITH_INFO is returned if no error occurred.)

07002 Too many columns. A column number specified in the binding for one or more
columns was greater than the number of columns in the result set.

07006 Invalid conversion. The data value could not be converted in a meaningful manner to
the data type specified by fCType in SQLBindCol()

SQLFetch function (CLI) - Fetch next row

Chapter 1. CLI and ODBC functions 129

Table 61. SQLFetch SQLSTATEs (continued)

SQLSTATE Description Explanation

07009 Invalid descriptor index Column 0 was bound but bookmarks are not being used (the
SQL_ATTR_USE_BOOKMARKS statement attribute was set to
SQL_UB_OFF).

22002 Invalid output or indicator
buffer specified.

The pointer value specified for the argument pcbValue in
SQLBindCol() was a null pointer and the value of the
corresponding column is null. There is no means to report
SQL_NULL_DATA. The pointer specified for the argument
IndicatorValue in SQLBindFileToCol() was a null pointer and the
value of the corresponding LOB column is NULL. There is no
means to report SQL_NULL_DATA.

22003 Numeric value out of range. Returning the numeric value (as numeric or string) for one or
more columns would have caused the whole part of the number
to be truncated either at the time of assignment or in computing
an intermediate result.

A value from an arithmetic expression was returned which
resulted in division by zero.
Note: The associated cursor is undefined if this error is detected
by DB2 Database for Linux, UNIX, and Windows. If the error was
detected by CLI or by other IBM RDBMSs, the cursor will remain
open and continue to advance on subsequent fetch calls.

22005 Error in assignment. A returned value was incompatible with the data type of binding.

A returned LOB locator was incompatible with the data type of
the bound column.

22007 Invalid datetime format. Conversion from character a string to a datetime format was
indicated, but an invalid string representation or value was
specified, or the value was an invalid date.

The value of a date, time, or timestamp does not conform to the
syntax for the specified data type.

22008 Datetime field overflow. Datetime field overflow occurred; for example, an arithmetic
operation on a date or timestamp has a result that is not within
the valid range of dates, or a datetime value cannot be assigned to
a bound variable because it is too small.

22012 Division by zero is invalid. A value from an arithmetic expression was returned which
resulted in division by zero.

24000 Invalid cursor state. The previous SQL statement executed on the statement handle
was not a query.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

SQLFetch function (CLI) - Fetch next row

130 Call Level Interface Guide and Reference, Volume 2

Table 61. SQLFetch SQLSTATEs (continued)

SQLSTATE Description Explanation

428A1 Unable to access a file referenced
by a host file variable.

This can be raised for any of the following scenarios. The
associated reason code in the text identifies the particular error:
v 01 - The file name length is invalid, or the file name, the path

or both has an invalid format.
v 02 - The file option is invalid. It must have one of the following

values:

SQL_FILE_READ -read from an existing file
SQL_FILE_CREATE -create a new file for write
SQL_FILE_OVERWRITE -overwrite an existing file.

If the file does not exist,
create the file.

SQL_FILE_APPEND -append to an existing file.
If the file does not exist,
create the file.

v 03 - The file cannot be found.
v 04 - The SQL_FILE_CREATE option was specified for a file with

the same name as an existing file.
v 05 - Access to the file was denied. The user does not have

permission to open the file.
v 06 - Access to the file was denied. The file is in use with

incompatible modes. Files to be written to are opened in
exclusive mode.

v 07 - Disk full was encountered while writing to the file.
v 08 - Unexpected end of file encountered while reading from the

file.
v 09 - A media error was encountered while accessing the file.

54028 The maximum number of
concurrent LOB handles has
been reached.

Maximum LOB locator assigned.

The maximum number of concurrent LOB locators has been
reached. A new locator can not be assigned.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY010 Function sequence error. SQLFetch() was called for an StatementHandle after
SQLExtendedFetch() was called and before SQLFreeStmt() had
been called with the SQL_CLOSE option.

The function was called prior to calling SQLPrepare() or
SQLExecDirect() for the StatementHandle.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

SQLFetch function (CLI) - Fetch next row

Chapter 1. CLI and ODBC functions 131

Table 61. SQLFetch SQLSTATEs (continued)

SQLSTATE Description Explanation

HY092 Option type out of range. The FileOptions argument of a previous SQLBindFileToCol()
operation was not valid.

HYC00 Driver not capable. CLI or the data source does not support the conversion specified
by the combination of the fCType in SQLBindCol() or
SQLBindFileToCol() and the SQL data type of the corresponding
column.

A call to SQLBindCol() was made for a column data type which is
not supported by CLI.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

Example
/* fetch each row and display */
cliRC = SQLFetch(hstmt);
STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

if (cliRC == SQL_NO_DATA_FOUND)
{

printf("\n Data not found.\n");
}
while (cliRC != SQL_NO_DATA_FOUND)
{

printf("

/* fetch next row */
cliRC = SQLFetch(hstmt);
STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

}

SQLFetchScroll function (CLI) - Fetch rowset and return data for all
bound columns

Purpose

Specification: CLI 5.0 ODBC 3.0 ISO CLI

SQLFetchScroll() fetches the specified rowset of data from the result set and
returns data for all bound columns. Rowsets can be specified at an absolute or
relative position or by bookmark.

Syntax
SQLRETURN SQLFetchScroll (SQLHSTMT StatementHandle,

SQLSMALLINT FetchOrientation,
SQLLEN FetchOffset);

SQLFetch function (CLI) - Fetch next row

132 Call Level Interface Guide and Reference, Volume 2

Function arguments

Table 62. SQLFetchScroll arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLUSMALLINT FetchOrientation input Type of fetch:
v SQL_FETCH_NEXT
v SQL_FETCH_PRIOR
v SQL_FETCH_FIRST
v SQL_FETCH_LAST
v SQL_FETCH_ABSOLUTE
v SQL_FETCH_RELATIVE
v SQL_FETCH_BOOKMARK

For more information, see Positioning the Cursor.

SQLLEN FetchOffset input Number of the row to fetch. The interpretation of
this argument depends on the value of the
FetchOrientation argument. For more information, see
Positioning the Cursor.

Usage

Overview

SQLFetchScroll() returns a specified rowset from the result set. Rowsets can be
specified by absolute or relative position or by bookmark. SQLFetchScroll() can be
called only while a result set exists, that is, after a call that creates a result set and
before the cursor over that result set is closed. If any columns are bound, it returns
the data in those columns. If the application has specified a pointer to a row status
array or a buffer in which to return the number of rows fetched, SQLFetchScroll()
returns this information as well. Calls to SQLFetchScroll() can be mixed with calls
to SQLFetch() but cannot be mixed with calls to SQLExtendedFetch().

Positioning the cursor

When the result set is created, the cursor is positioned before the start of the result
set. SQLFetchScroll() positions the block cursor based on the values of the
FetchOrientation and FetchOffset arguments as shown in the following table. The
exact rules for determining the start of the new rowset are shown in the next
section.

FetchOrientation
Meaning

SQL_FETCH_NEXT
Return the next rowset. This is equivalent to calling SQLFetch().
SQLFetchScroll() ignores the value of FetchOffset.

SQL_FETCH_PRIOR
Return the prior rowset. SQLFetchScroll() ignores the value of FetchOffset.

SQL_FETCH_RELATIVE
Return the rowset FetchOffset from the start of the current rowset.

SQL_FETCH_ABSOLUTE
Return the rowset starting at row FetchOffset.

SQLFetchScroll function (CLI) - Fetch rowset and return data for all bound columns

Chapter 1. CLI and ODBC functions 133

SQL_FETCH_FIRST
Return the first rowset in the result set. SQLFetchScroll() ignores the value
of FetchOffset.

SQL_FETCH_LAST
Return the last complete rowset in the result set. SQLFetchScroll() ignores
the value of FetchOffset.

SQL_FETCH_BOOKMARK
Return the rowset FetchOffset rows from the bookmark specified by the
SQL_ATTR_FETCH_BOOKMARK_PTR statement attribute.

Not all cursors support all of these options. A static forward-only cursor, for
example, will only support SQL_FETCH_NEXT. Scrollable cursors, such as keyset
cursors, will support all of these options. The SQL_ATTR_ROW_ARRAY_SIZE
statement attribute specifies the number of rows in the rowset. If the rowset being
fetched by SQLFetchScroll() overlaps the end of the result set, SQLFetchScroll()
returns a partial rowset. That is, if S + R-1 is greater than L, where S is the starting
row of the rowset being fetched, R is the rowset size, and L is the last row in the
result set, then only the first L-S+1 rows of the rowset are valid. The remaining
rows are empty and have a status of SQL_ROW_NOROW.

After SQLFetchScroll() returns, the rowset cursor is positioned on the first row of
the result set.

Returning data in bound columns

SQLFetchScroll() returns data in bound columns in the same way as SQLFetch().

If no columns are bound, SQLFetchScroll() does not return data but does move
the block cursor to the specified position. As with SQLFetch(), you can use
SQLGetData() to retrieve the information in this case.

Row status array

The row status array is used to return the status of each row in the rowset. The
address of this array is specified with the SQL_ATTR_ROW_STATUS_PTR
statement attribute. The array is allocated by the application and must have as
many elements as are specified by the SQL_ATTR_ROW_ARRAY_SIZE statement
attribute. Its values are set by SQLFetch(), SQLFetchScroll(), or SQLSetPos()
(except when they have been called after the cursor has been positioned by
SQLExtendedFetch()). If the value of the SQL_ATTR_ROW_STATUS_PTR statement
attribute is a null pointer, these functions do not return the row status.

The contents of the row status array buffer are undefined if SQLFetch() or
SQLFetchScroll() does not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO.

The following values are returned in the row status array.

Row status array value
Description

SQL_ROW_SUCCESS
The row was successfully fetched.

SQL_ROW_SUCCESS_WITH_INFO
The row was successfully fetched. However, a warning was returned about
the row.

SQLFetchScroll function (CLI) - Fetch rowset and return data for all bound columns

134 Call Level Interface Guide and Reference, Volume 2

SQL_ROW_ERROR
An error occurred while fetching the row.

SQL_ROW_ADDED
The row was inserted by SQLBulkOperations(). If the row is fetched again,
or is refreshed by SQLSetPos() its status is SQL_ROW_SUCCESS.

This value is not set by SQLFetch() or SQLFetchScroll().

SQL_ROW_UPDATED
The row was successfully fetched and has changed since it was last fetched
from this result set. If the row is fetched again from this result set, or is
refreshed by SQLSetPos(), the status changes to the row's new status.

SQL_ROW_DELETED
The row has been deleted since it was last fetched from this result set.

SQL_ROW_NOROW
The rowset overlapped the end of the result set and no row was returned
that corresponded to this element of the row status array.

Rows fetched buffer

The rows fetched buffer is used to return the number of rows fetched, including
those rows for which no data was returned because an error occurred while they
were being fetched. In other words, it is the number of rows for which the value in
the row status array is not SQL_ROW_NOROW. The address of this buffer is
specified with the SQL_ATTR_ROWS_FETCHED_PTR statement attribute. The
buffer is allocated by the application. It is set by SQLFetch() and SQLFetchScroll().
If the value of the SQL_ATTR_ROWS_FETCHED_PTR statement attribute is a null
pointer, these functions do not return the number of rows fetched. To determine
the number of the current row in the result set, an application can call
SQLGetStmtAttr() with the SQL_ATTR_ROW_NUMBER attribute.

The contents of the rows fetched buffer are undefined if SQLFetch() or
SQLFetchScroll() does not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO,
except when SQL_NO_DATA is returned, in which case the value in the rows
fetched buffer is set to 0.

Error handling

SQLFetchScroll() returns errors and warnings in the same manner as SQLFetch().

Descriptors and SQLFetchScroll()

SQLFetchScroll() interacts with descriptors in the same manner as SQLFetch().

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_NO_DATA
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE

SQLFetchScroll function (CLI) - Fetch rowset and return data for all bound columns

Chapter 1. CLI and ODBC functions 135

Diagnostics

The return code associated with each SQLSTATE value is SQL_ERROR, unless
noted otherwise. If an error occurs on a single column, SQLGetDiagField() can be
called with a DiagIdentifier of SQL_DIAG_COLUMN_NUMBER to determine the
column the error occurred on; and SQLGetDiagField() can be called with a
DiagIdentifier of SQL_DIAG_ROW_NUMBER to determine the row containing that
column.

Table 63. SQLFetchScroll SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. String or binary data returned for a column resulted in the
truncation of non-blank character or non-NULL binary data.
String values are right truncated. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S01 Error in row. An error occurred while fetching one or more rows. (Function
returns SQL_SUCCESS_WITH_INFO.) (This SQLSTATE is only
returned when connected to CLI v2.)

01S06 Attempt to fetch before the result
set returned the first rowset.

The requested rowset overlapped the start of the result set when
the current position was beyond the first row, and either
FetchOrientation was SQL_PRIOR, or FetchOrientation was
SQL_RELATIVE with a negative FetchOffset whose absolute value
was less than or equal to the current
SQL_ATTR_ROW_ARRAY_SIZE. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S07 Fractional truncation. The data returned for a column was truncated. For numeric data
types, the fractional part of the number was truncated. For time or
timestamp data types, the fractional portion of the time was
truncated.

07002 Too many columns. A column number specified in the binding for one or more
columns was greater than the number of columns in the result set.

07006 Invalid conversion. A data value of a column in the result set could not be converted
to the C data type specified by TargetType in SQLBindCol().

07009 Invalid descriptor index. Column 0 was bound and the SQL_USE_BOOKMARKS statement
attribute was set to SQL_UB_OFF.

08S01 Communication link failure. The communication link between CLI and the data source to
which it was connected failed before the function completed
processing.

22001 String data right truncation. A variable-length bookmark returned for a row was truncated.

22002 Invalid output or indicator
buffer specified.

NULL data was fetched into a column whose StrLen_or_IndPtr set
by SQLBindCol() (or SQL_DESC_INDICATOR_PTR set by
SQLSetDescField() or SQLSetDescRec()) was a null pointer.

22003 Numeric value out of range. Returning the numeric value (as numeric or string) for one or
more bound columns would have caused the whole (as opposed
to fractional) part of the number to be truncated.

22007 Invalid datetime format. A character column in the result set was bound to a date, time, or
timestamp C structure, and a value in the column was,
respectively, an invalid date, time, or timestamp.

22012 Division by zero is invalid. A value from an arithmetic expression was returned which
resulted in division by zero.

SQLFetchScroll function (CLI) - Fetch rowset and return data for all bound columns

136 Call Level Interface Guide and Reference, Volume 2

Table 63. SQLFetchScroll SQLSTATEs (continued)

SQLSTATE Description Explanation

22018 Invalid character value for cast
specification.

A character column in the result set was bound to a character C
buffer and the column contained a character for which there was
no representation in the character set of the buffer. A character
column in the result set was bound to an approximate numeric C
buffer and a value in the column could not be cast to a valid
approximate numeric value. A character column in the result set
was bound to an exact numeric C buffer and a value in the
column could not be cast to a valid exact numeric value. A
character column in the result set was bound to a datetime C
buffer and a value in the column could not be cast to a valid
datetime value.

24000 Invalid cursor state. The StatementHandle was in an executed state but no result set was
associated with the StatementHandle.

40001 Transaction rollback. The transaction in which the fetch was executed was terminated
to prevent deadlock.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY010 Function sequence error. The specified StatementHandle was not in an executed state. The
function was called without first calling SQLExecDirect(),
SQLExecute(), or a catalog function.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

SQLExecute() or SQLExecDirect() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns.

SQLFetchScroll() was called for a StatementHandle after
SQLExtendedFetch() was called and before SQLFreeStmt() with
SQL_CLOSE was called.

HY106 Fetch type out of range. The value specified for the argument FetchOrientation was invalid.

The argument FetchOrientation was SQL_FETCH_BOOKMARK,
and the SQL_ATTR_USE_BOOKMARKS statement attribute was
set to SQL_UB_OFF.

The value of the SQL_CURSOR_TYPE statement attribute was
SQL_CURSOR_FORWARD_ONLY and the value of argument
FetchOrientation was not SQL_FETCH_NEXT.

SQLFetchScroll function (CLI) - Fetch rowset and return data for all bound columns

Chapter 1. CLI and ODBC functions 137

Table 63. SQLFetchScroll SQLSTATEs (continued)

SQLSTATE Description Explanation

HY107 Row value out of range. The value specified with the SQL_ATTR_CURSOR_TYPE
statement attribute was SQL_CURSOR_KEYSET_DRIVEN, but the
value specified with the SQL_ATTR_KEYSET_SIZE statement
attribute was greater than 0 and less than the value specified with
the SQL_ATTR_ROW_ARRAY_SIZE statement attribute.

HY111 Invalid bookmark value. The argument FetchOrientation was SQL_FETCH_BOOKMARK
and the bookmark pointed to by the value in the
SQL_ATTR_FETCH_BOOKMARK_PTR statement attribute was
not valid or was a null pointer.

HYC00 Driver not capable. The specified fetch type is not supported.

The conversion specified by the combination of the TargetType in
SQLBindCol() and the SQL data type of the corresponding column
is not supported.

Restrictions

None.

Example
/* fetch the rowset: row15, row16, row17, row18, row19 */
printf("\n Fetch the rowset: row15, row16, row17, row18, row19.\n");

/* fetch the rowset and return data for all bound columns */
cliRC = SQLFetchScroll(hstmt, SQL_FETCH_ABSOLUTE, 15);
STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

/* call SQLFetchScroll with SQL_FETCH_RELATIVE offset 3 */
printf(" SQLFetchScroll with SQL_FETCH_RELATIVE offset 3.\n");
printf(" COL1 COL2 \n");
printf(" ------------ -------------\n");

/* fetch the rowset and return data for all bound columns */
cliRC = SQLFetchScroll(hstmt, SQL_FETCH_RELATIVE, 3);

Cursor positioning rules for SQLFetchScroll() (CLI)

The following sections describe the exact rules for each value of FetchOrientation.
These rules use the following notation:

FetchOrientation
Meaning

Before start
The block cursor is positioned before the start of the result set. If the first
row of the new rowset is before the start of the result set,
SQLFetchScroll() returns SQL_NO_DATA.

After end
The block cursor is positioned after the end of the result set. If the first row
of the new rowset is after the end of the result set, SQLFetchScroll()
returns SQL_NO_DATA.

CurrRowsetStart
The number of the first row in the current rowset.

SQLFetchScroll function (CLI) - Fetch rowset and return data for all bound columns

138 Call Level Interface Guide and Reference, Volume 2

LastResultRow
The number of the last row in the result set.

RowsetSize
The rowset size.

FetchOffset
The value of the FetchOffset argument.

BookmarkRow
The row corresponding to the bookmark specified by the
SQL_ATTR_FETCH_BOOKMARK_PTR statement attribute.

SQL_FETCH_NEXT rules:

Table 64. SQL_FETCH_NEXT rules:

Condition First row of new rowset

Before start 1

CurrRowsetStart + RowsetSize <= LastResultRow CurrRowsetStart + RowsetSize

CurrRowsetStart + RowsetSize > LastResultRow After end

After end After end

SQL_FETCH_PRIOR rules:

Table 65. SQL_FETCH_PRIOR rules:

Condition First row of new rowset

Before start Before start

CurrRowsetStart = 1 Before start

1 < CurrRowsetStart <= RowsetSize 1 a

CurrRowsetStart > RowsetSize CurrRowsetStart - RowsetSize

After end AND LastResultRow < RowsetSize 1 a

After end AND LastResultRow >= RowsetSize LastResultRow - RowsetSize + 1

v a SQLFetchScroll() returns SQLSTATE 01S06 (Attempt to fetch before the result
set returned the first rowset.) and SQL_SUCCESS_WITH_INFO.

SQL_FETCH_RELATIVE rules:

Table 66. SQL_FETCH_RELATIVE rules:

Condition First row of new rowset

(Before start AND FetchOffset > 0) OR (After end
AND FetchOffset 0)

-- a

Before start AND FetchOffset <= 0 Before start

CurrRowsetStart = 1 AND FetchOffset < 0 Before start

CurrRowsetStart > 1 AND CurrRowsetStart +
FetchOffset <1 AND |FetchOffset| > RowsetSize

Before start

CurrRowsetStart > 1 AND CurrRowsetStart +
FetchOffset <1 AND |FetchOffset| <= RowsetSize

1 b

1 <= CurrRowsetStart + FetchOffset <=
LastResultRow

CurrRowsetStart + FetchOffset

CurrRowsetStart + FetchOffset > LastResultRow After end

Cursor positioning rules for SQLFetchScroll() (CLI)

Chapter 1. CLI and ODBC functions 139

Table 66. SQL_FETCH_RELATIVE rules: (continued)

Condition First row of new rowset

After end AND FetchOffset >= 0 After end

v a SQLFetchScroll() returns the same rowset as if it was called with
FetchOrientation set to SQL_FETCH_ABSOLUTE. For more information, see the
SQL_FETCH_ABSOLUTE section.

v b SQLFetchScroll() returns SQLSTATE 01S06 (Attempt to fetch before the result
set returned the first rowset.) and SQL_SUCCESS_WITH_INFO.

SQL_FETCH_ABSOLUTE rules:

Table 67. SQL_FETCH_ABSOLUTE rules:

Condition First row of new rowset

FetchOffset <0 AND |FetchOffset| <= LastResultRow LastResultRow + FetchOffset + 1

FetchOffset <0 AND |FetchOffset| > LastResultRow
AND |FetchOffset| > RowsetSize

Before start

FetchOffset <0 AND |FetchOffset| > LastResultRow
AND |FetchOffset| <= RowsetSize

1 a

FetchOffset = 0 Before start

1 <= FetchOffset <= LastResultRow FetchOffset

FetchOffset > LastResultRow After end

v a SQLFetchScroll() returns SQLSTATE 01S06 (Attempt to fetch before the result
set returned the first rowset.) and SQL_SUCCESS_WITH_INFO.

SQL_FETCH_FIRST rules:

Table 68. SQL_FETCH_FIRST rules:

Condition First row of new rowset

Any 1

SQL_FETCH_LAST rules:

Table 69. SQL_FETCH_LAST rules:

Condition First row of new rowset

RowsetSize = LastResultRow LastResultRow - RowsetSize + 1

RowsetSize > LastResultRow 1

SQL_FETCH_BOOKMARK rules:

Table 70. SQL_FETCH_BOOKMARK rules:

Condition First row of new rowset

BookmarkRow + FetchOffset <1 Before start

1 <= BookmarkRow + FetchOffset <= LastResultRow BookmarkRow +FetchOffset

BookmarkRow + FetchOffset > LastResultRow After end

Cursor positioning rules for SQLFetchScroll() (CLI)

140 Call Level Interface Guide and Reference, Volume 2

SQLForeignKeys function (CLI) - Get the list of foreign key columns
Returns information about foreign keys for the specified table.

Purpose

Specification: CLI 2.1 ODBC 1.0

The SQLForeignKeys() function returns information about foreign keys for the
specified table. The information is returned in an SQL result set which you can
process by using the same functions that you use to retrieve a result that is
generated by a query.

Unicode equivalent: You can also use this function with the Unicode character set.
The corresponding Unicode function is SQLForeignKeysW(). See “Unicode functions
(CLI)” on page 5 for information about ANSI to Unicode function mappings.

Syntax
SQLRETURN SQLForeignKeys (

SQLHSTMT StatementHandle, /* hstmt */
SQLCHAR *PKCatalogName, /* szPkCatalogName */
SQLSMALLINT NameLength1, /* cbPkCatalogName */
SQLCHAR *PKSchemaName, /* szPkSchemaName */
SQLSMALLINT NameLength2, /* cbPkSchemaName */
SQLCHAR *PKTableName, /* szPkTableName */
SQLSMALLINT NameLength3, /* cbPkTableName */
SQLCHAR *FKCatalogName, /* szFkCatalogName */
SQLSMALLINT NameLength4, /* cbFkCatalogName */
SQLCHAR *FKSchemaName, /* szFkSchemaName */
SQLSMALLINT NameLength5, /* cbFkSchemaName */
SQLCHAR *FKTableName, /* szFkTableName */
SQLSMALLINT NameLength6); /* cbFkTableName */

Function arguments

Table 71. SQLForeignKeys arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input The statement handle.

SQLCHAR * PKCatalogName Input The catalog qualifier of the 3-part primary key table
name. If the target DBMS does not support 3-part
naming, and PKCatalogName is not a null pointer and
does not point to a zero-length string, then an empty
result set and SQL_SUCCESS is returned. Otherwise,
this is a valid filter for DBMSs that support 3-part
naming.

SQLSMALLINT NameLength1 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store PKCatalogName, or
SQL_NTS if PKCatalogName is null-terminated.

SQLCHAR * PKSchemaName Input The schema qualifier of the primary key table.

SQLSMALLINT NameLength2 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store PKSchemaName, or
SQL_NTS if PKSchemaName is null-terminated.

SQLCHAR * PKTableName Input The name of the table name that contains the
primary key.

SQLForeignKeys function (CLI) - Get the list of foreign key columns

Chapter 1. CLI and ODBC functions 141

Table 71. SQLForeignKeys arguments (continued)

Data type Argument Use Description

SQLSMALLINT NameLength3 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store PKTableName, or SQL_NTS
if PKTableName is null-terminated.

SQLCHAR * FKCatalogName Input The catalog qualifier of the 3-part foreign key table
name. If the target DBMS does not support 3-part
naming, and FKCatalogName is not a null pointer and
does not point to a zero-length string, then an empty
result set and SQL_SUCCESS is returned. Otherwise,
this is a valid filter for DBMSs that support 3-part
naming.

SQLSMALLINT NameLength4 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store FKCatalogName, or
SQL_NTS if FKCatalogName is null-terminated.

SQLCHAR * FKSchemaName Input The schema qualifier of the table that contains the
foreign key.

SQLSMALLINT NameLength5 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store FKSchemaName, or
SQL_NTS if FKSchemaName is null-terminated.

SQLCHAR * FKTableName Input The name of the table that contains the foreign key.

SQLSMALLINT NameLength6 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store FKTableName, or SQL_NTS
if FKTableName is null-terminated.

Usage

If PKTableName contains a table name, and FKTableName is an empty string, the
SQLForeignKeys() function returns a result set that contains the primary key of the
specified table and all of the foreign keys (in other tables) that refer to it.

If FKTableName contains a table name, and PKTableName is an empty string, the
SQLForeignKeys() function returns a result set that contains all of the foreign keys
in the specified table and the primary keys (in other tables) to which they refer.

If both PKTableName and FKTableName contain table names, the SQLForeignKeys()
function returns the foreign keys in the table that are specified in FKTableName,
which refer to the primary key of the table that is specified in PKTableName. There
should be one key at the most.

If the schema qualifier argument that is associated with a table name is not
specified, the schema name defaults to the table name that is currently in effect for
the current connection.

Columns Returned by SQLForeignKeys lists the columns of the result set that is
generated by the SQLForeignKeys() call. If the foreign keys that are associated with
a primary key are requested, the result set is ordered by FKTABLE_CAT,
FKTABLE_SCHEM, FKTABLE_NAME, and ORDINAL_POSITION. If the primary

SQLForeignKeys function (CLI) - Get the list of foreign key columns

142 Call Level Interface Guide and Reference, Volume 2

keys that are associated with a foreign key are requested, the result set is ordered
by PKTABLE_CAT, PKTABLE_SCHEM, PKTABLE_NAME, and
ORDINAL_POSITION.

Call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to respectively determine the actual lengths of
the associated TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and
COLUMN_NAME columns that are supported by the connected DBMS.

In Version 9.7 Fix Pack 5, you can specify *ALL as a value in the SchemaName to
resolve unqualified stored procedure calls, or to find libraries in catalog API calls.
CLI searches on all existing schemas in the connected database. You are not
required to specify *ALL, as this behavior is the default in CLI. Alternatively, you
can set the SchemaFilter IBM Data Server Driver configuration keyword or the
Schema List CLI/ODBC configuration keyword to *ALL.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns will not change.

Columns that are returned by SQLForeignKeys

Column 1 PKTABLE_CAT (VARCHAR(128))
Name of the catalog for PKTABLE_NAME. The value is NULL if this table
does not have catalogs.

Column 2 PKTABLE_SCHEM (VARCHAR(128))
Name of the schema containing PKTABLE_NAME.

Column 3 PKTABLE_NAME (VARCHAR(128) not NULL)
Name of the table containing the primary key.

Column 4 PKCOLUMN_NAME (VARCHAR(128) not NULL)
Primary key column name.

Column 5 FKTABLE_CAT (VARCHAR(128))
Name of the catalog for FKTABLE_NAME. The value is NULL if this table
does not have catalogs.

Column 6 FKTABLE_SCHEM (VARCHAR(128))
Name of the schema containing FKTABLE_NAME.

Column 7 FKTABLE_NAME (VARCHAR(128) not NULL)
Name of the table containing the foreign key.

Column 8 FKCOLUMN_NAME (VARCHAR(128) not NULL)
Foreign key column name.

Column 9 KEY_SEQ (SMALLINT not NULL)
Ordinal position of the column in the key, starting at 1.

Column 10 UPDATE_RULE (SMALLINT)
Action to be applied to the foreign key when the SQL operation is
UPDATE:
v SQL_RESTRICT
v SQL_NO_ACTION

The update rule for IBM DB2 DBMSs is always either RESTRICT or
SQL_NO_ACTION. However, ODBC applications might encounter the
listed UPDATE_RULE values when connected to non-IBM RDBMSs:
v SQL_CASCADE

SQLForeignKeys function (CLI) - Get the list of foreign key columns

Chapter 1. CLI and ODBC functions 143

v SQL_SET_NULL

Column 11 DELETE_RULE (SMALLINT)
Action to be applied to the foreign key when the SQL operation is
DELETE:
v SQL_CASCADE
v SQL_NO_ACTION
v SQL_RESTRICT
v SQL_SET_DEFAULT
v SQL_SET_NULL

Column 12 FK_NAME (VARCHAR(128))
Foreign key identifier. NULL if not applicable to the data source.

Column 13 PK_NAME (VARCHAR(128))
Primary key identifier. NULL if not applicable to the data source.

Column 14 DEFERRABILITY (SMALLINT)
One of:
v SQL_INITIALLY_DEFERRED
v SQL_INITIALLY_IMMEDIATE
v SQL_NOT_DEFERRABLE

Note: The column names that are used by CLI follow the X/Open CLI CAE
specification style. The column types, contents, and order are identical to those
defined for the SQLForeignKeys() result set in ODBC.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 72. SQLForeignKeys SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor is already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY009 Invalid argument value. The arguments PKTableName and FKTableName are both NULL
pointers.

SQLForeignKeys function (CLI) - Get the list of foreign key columns

144 Call Level Interface Guide and Reference, Volume 2

Table 72. SQLForeignKeys SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error.
The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while in a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

The function was called before a statement was prepared on the
statement handle.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource
limitations.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,
but not equal to SQL_NTS.

The length of the table or owner name is greater than the
maximum length that is supported by the server.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. You can set the timeout period by using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

Example
/* get the list of foreign key columns */
cliRC = SQLForeignKeys(hstmt,

NULL,
0,
tbSchema,
SQL_NTS,
tbName,
SQL_NTS,
NULL,
0,
NULL,
SQL_NTS,
NULL,
SQL_NTS);

SQLFreeConnect function (CLI) - Free connection handle
Deprecated

Note:

In ODBC 3.0, SQLFreeConnect() has been deprecated and replaced with
SQLFreeHandle().

Although this version of CLI continues to support SQLFreeConnect(), use
SQLFreeHandle() in your CLI programs so that they conform to the latest
standards.

SQLForeignKeys function (CLI) - Get the list of foreign key columns

Chapter 1. CLI and ODBC functions 145

Migrating to the new function

The statement:
SQLFreeConnect(hdbc);

for example, would be rewritten using the new function as:
SQLFreeHandle(SQL_HANDLE_DBC, hdbc);

SQLFreeEnv function (CLI) - Free environment handle
Deprecated

Note:

In ODBC 3.0, SQLFreeEnv() has been deprecated and replaced with
SQLFreeHandle().

Although this version of CLI continues to support SQLFreeEnv(), use
SQLFreeHandle() in your CLI programs so that they conform to the latest
standards.

Migrating to the new function

The statement:
SQLFreeEnv(henv);

for example, would be rewritten using the new function as:
SQLFreeHandle(SQL_HANDLE_ENV, henv);

SQLFreeHandle function (CLI) - Free handle resources
Purpose

Specification: CLI 5.0 ODBC 3.0 ISO CLI

SQLFreeHandle() frees resources associated with a specific environment,
connection, statement, or descriptor handle.

Note: This function is a generic function for freeing resources. It replaces the
ODBC 2.0 functions SQLFreeConnect() (for freeing a connection handle), and
SQLFreeEnv() (for freeing an environment handle). SQLFreeHandle() also replaces
the ODBC 2.0 function SQLFreeStmt() (with the SQL_DROP Option) for freeing a
statement handle.

Syntax
SQLRETURN SQLFreeHandle (

SQLSMALLINT HandleType, /* fHandleType */
SQLHANDLE Handle); /* hHandle */

SQLFreeConnect function (CLI) - Free connection handle

146 Call Level Interface Guide and Reference, Volume 2

Function arguments

Table 73. SQLFreeHandle arguments

Data type Argument Use Description

SQLSMALLINT HandleType input The type of handle to be freed by SQLFreeHandle().
Must be one of the following values:
v SQL_HANDLE_ENV
v SQL_HANDLE_DBC
v SQL_HANDLE_STMT
v SQL_HANDLE_DESC

If HandleType is not one of the above values,
SQLFreeHandle() returns SQL_INVALID_HANDLE.

SQLHANDLE Handle input The handle to be freed.

Usage

SQLFreeHandle() is used to free handles for environments, connections, statements,
and descriptors.

An application should not use a handle after it has been freed; CLI does not check
the validity of a handle in a function call.

Return codes
v SQL_SUCCESS
v SQL_ERROR
v SQL_INVALID_HANDLE

If SQLFreeHandle() returns SQL_ERROR, the handle is still valid.

Diagnostics

Table 74. SQLFreeHandle SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link failure. The HandleType argument was SQL_HANDLE_DBC, and the
communication link between CLI and the data source to which it
was trying to connect failed before the function completed
processing.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

SQLFreeHandle function (CLI) - Free handle resources

Chapter 1. CLI and ODBC functions 147

Table 74. SQLFreeHandle SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error. The HandleType argument was SQL_HANDLE_ENV, and at least
one connection was in an allocated or connected state.
SQLDisconnect() and SQLFreeHandle() with a HandleType of
SQL_HANDLE_DBC must be called for each connection before
calling SQLFreeHandle() with a HandleType of
SQL_HANDLE_ENV. The HandleType argument was
SQL_HANDLE_DBC, and the function was called before calling
SQLDisconnect() for the connection.

The HandleType argument was SQL_HANDLE_STMT; an
asynchronously executing function was called on the statement
handle; and the function was still executing when this function
was called.

The HandleType argument was SQL_HANDLE_STMT;
SQLExecute() or SQLExecDirect() was called with the statement
handle, and returned SQL_NEED_DATA. This function was called
before data was sent for all data-at-execution parameters or
columns. (DM) All subsidiary handles and other resources were
not released before SQLFreeHandle() was called.

HY013 Unexpected memory handling
error.

The HandleType argument was SQL_HANDLE_STMT or
SQL_HANDLE_DESC, and the function call could not be
processed because the underlying memory objects could not be
accessed, possibly because of low memory conditions.

HY017 Invalid use of an automatically
allocated descriptor handle.

The Handle argument was set to the handle for an automatically
allocated descriptor or an implementation descriptor.

Restrictions

None.

Example
/* free the statement handle */
cliRC = SQLFreeHandle(SQL_HANDLE_STMT, hstmt2);
SRV_HANDLE_CHECK_SETTING_SQLRC_AND_MSG(SQL_HANDLE_STMT,

hstmt2,
cliRC,
henv,
hdbc,
pOutSqlrc,
outMsg,
"SQLFreeHandle");

/* ... */
/* free the database handle */
cliRC = SQLFreeHandle(SQL_HANDLE_DBC, hdbc);
SRV_HANDLE_CHECK_SETTING_SQLRC_AND_MSG(SQL_HANDLE_DBC,

hdbc,
cliRC,
henv,
hdbc,
pOutSqlrc,
outMsg,
"SQLFreeHandle");

/* free the environment handle */
cliRC = SQLFreeHandle(SQL_HANDLE_ENV, henv);
SRV_HANDLE_CHECK_SETTING_SQLRC_AND_MSG(SQL_HANDLE_ENV,

henv,

SQLFreeHandle function (CLI) - Free handle resources

148 Call Level Interface Guide and Reference, Volume 2

cliRC,
henv,
hdbc,
pOutSqlrc,
outMsg,
"SQLFreeHandle");

SQLFreeStmt function (CLI) - Free (or reset) a statement handle
Purpose

Specification: CLI 1.1 ODBC 1.0 ISO CLI

SQLFreeStmt() ends processing on the statement referenced by the statement
handle. Use this function to:
v Close a cursor and discard all pending results
v Disassociate (reset) parameters from application variables and LOB file

references
v Unbind columns from application variables and LOB file references
v Drop the statement handle and free the CLI resources associated with the

statement handle.

SQLFreeStmt() is called after executing an SQL statement and processing the
results.

Syntax
SQLRETURN SQLFreeStmt (SQLHSTMT StatementHandle, /* hstmt */

SQLUSMALLINT Option); /* fOption */

Function arguments

Table 75. SQLFreeStmt arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLUSMALLINT Option input Option which specifies the manner of freeing the
statement handle. The option must have one of the
following values:
v SQL_CLOSE
v SQL_DROP
v SQL_UNBIND
v SQL_RESET_PARAMS

Usage

SQLFreeStmt() can be called with the following options:

SQL_CLOSE
The cursor (if any) associated with the statement handle (StatementHandle)
is closed and all pending results are discarded. The application can reopen
the cursor by calling SQLExecute() with the same or different values in the
application variables (if any) that are bound to StatementHandle. The cursor
name is retained until the statement handle is dropped or a subsequent call
to SQLGetCursorName() is successful. If no cursor has been associated with
the statement handle, this option has no effect (no warning or error is
generated).

SQLFreeHandle function (CLI) - Free handle resources

Chapter 1. CLI and ODBC functions 149

SQLCloseCursor() can also be used to close a cursor.

SQL_DROP
CLI resources associated with the input statement handle are freed, and the
handle is invalidated. The open cursor, if any, is closed and all pending
results are discarded.

This option has been replaced with a call to SQLFreeHandle() with the
HandleType set to SQL_HANDLE_STMT. Although this version of CLI
continues to support this option, begin using SQLFreeHandle() in your CLI
programs so that they conform to the latest standards.

SQL_UNBIND
Sets the SQL_DESC_COUNT field of the ARD (Application Row
Descriptor) to 0, releasing all column buffers bound by SQLBindCol() or
SQLBindFileToCol() for the given StatementHandle. This does not unbind
the bookmark column; to do that, the SQL_DESC_DATA_PTR field of the
ARD for the bookmark column is set to NULL. Note that if this operation
is performed on an explicitly allocated descriptor that is shared by more
than one statement, the operation will affect the bindings of all statements
that share the descriptor.

SQL_RESET_PARAMS
Sets the SQL_DESC_COUNT field of the APD (Application Parameter
Descriptor) to 0, releasing all parameter buffers set by SQLBindParameter()
or SQLBindFileToParam() for the given StatementHandle. Note that if this
operation is performed on an explicitly allocated descriptor that is shared
by more than one statement, this operation will affect the bindings of all
the statements that share the descriptor.

SQLFreeStmt() has no effect on LOB locators, call SQLExecDirect() with the FREE
LOCATOR statement to free a locator.

It is possible to reuse a statement handle to execute a different statement:
v If the handle was associated with a query, catalog function or SQLGetTypeInfo(),

you must close the cursor.
v If the handle was bound with a different number or type of parameters, the

parameters must be reset.
v If the handle was bound with a different number or type of column bindings,

the columns must be unbound.

Alternatively you may drop the statement handle and allocate a new one.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

SQL_SUCCESS_WITH_INFO is not returned if Option is set to SQL_DROP, as there
would be no statement handle to use when SQLGetDiagRec() or SQLGetDiagField()
is called.

SQLFreeStmt function (CLI) - Free (or reset) a statement handle

150 Call Level Interface Guide and Reference, Volume 2

Diagnostics

Table 76. SQLFreeStmt SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

HY092 Option type out of range. The value specified for the argument Option was not SQL_CLOSE,
SQL_DROP, SQL_UNBIND, or SQL_RESET_PARAMS.

HY506 Error closing a file. Error encountered while trying to close a temporary file.

Authorization

None.

Example
/* free the statement handle */
cliRC = SQLFreeStmt(hstmt, SQL_UNBIND);
rc = HandleInfoPrint(SQL_HANDLE_STMT, hstmt, cliRC, __LINE__, __FILE__);
if (rc != 0)
{

return 1;
}

/* free the statement handle */
cliRC = SQLFreeStmt(hstmt, SQL_RESET_PARAMS);
rc = HandleInfoPrint(SQL_HANDLE_STMT, hstmt, cliRC, __LINE__, __FILE__);
if (rc != 0)
{

return 1;
}

/* free the statement handle */
cliRC = SQLFreeStmt(hstmt, SQL_CLOSE);
rc = HandleInfoPrint(SQL_HANDLE_STMT, hstmt, cliRC, __LINE__, __FILE__);
if (rc != 0)
{

return 1;
}

SQLGetConnectAttr function (CLI) - Get current attribute setting
Purpose

Specification: CLI 5.0 ODBC 3.0 ISO CLI

SQLGetConnectAttr() returns the current setting of a connection attribute.

SQLFreeStmt function (CLI) - Free (or reset) a statement handle

Chapter 1. CLI and ODBC functions 151

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLGetConnectAttrW(). Refer to
“Unicode functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLGetConnectAttr(SQLHDBC ConnectionHandle,

SQLINTEGER Attribute,
SQLPOINTER ValuePtr,
SQLINTEGER BufferLength,
SQLINTEGER *StringLengthPtr);

Function arguments

Table 77. SQLGetConnectAttr arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle.

SQLINTEGER Attribute input Attribute to retrieve.

SQLPOINTER ValuePtr output A pointer to memory in which to return the current
value of the attribute specified by Attribute.

SQLINTEGER BufferLength input v If ValuePtr points to a character string, this
argument should be the length of *ValuePtr.

v If ValuePtr is a pointer, but not to a string, then
BufferLength should have the value
SQL_IS_POINTER.

v If the value in *ValuePtr is a Unicode string the
BufferLength argument must be an even number.

SQLINTEGER * StringLengthPtr output A pointer to a buffer in which to return the total
number of bytes (excluding the null-termination
character) available to return in *ValuePtr. If ValuePtr
is a null pointer, no length is returned. If the
attribute value is a character string, and the number
of bytes available to return is greater than
BufferLength minus the length of the
null-termination character, the data in *ValuePtr is
truncated to BufferLength minus the length of the
null-termination character and is null-terminated by
CLI.

Usage

If Attribute specifies an attribute that returns a string, ValuePtr must be a pointer to
a buffer for the string. The maximum length of the string, including the null
termination character, will be BufferLength bytes.

Depending on the attribute, an application does not need to establish a connection
prior to calling SQLGetConnectAttr(). However, if SQLGetConnectAttr() is called
and the specified attribute does not have a default and has not been set by a prior
call to SQLSetConnectAttr(), SQLGetConnectAttr() will return SQL_NO_DATA.

If Attribute is SQL_ATTR_TRACE or SQL_ATTR_TRACEFILE, ConnectionHandle
does not have to be valid, and SQLGetConnectAttr() will not return SQL_ERROR if
ConnectionHandle is invalid. These attributes apply to all connections.
SQLGetConnectAttr() will return SQL_ERROR if another argument is invalid.

SQLGetConnectAttr function (CLI) - Get current attribute setting

152 Call Level Interface Guide and Reference, Volume 2

While an application can set statement attributes using SQLSetConnectAttr(), an
application cannot use SQLGetConnectAttr() to retrieve statement attribute values;
it must call SQLGetStmtAttr() to retrieve the setting of statement attributes.

The SQL_ATTR_AUTO_IPD connection attribute can be returned by a call to
SQLGetConnectAttr(), but cannot be set by a call to SQLSetConnectAttr().

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_NO_DATA
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 78. SQLGetConnectAttr SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The data returned in *ValuePtr was truncated to be BufferLength
minus the length of a null termination character. The length of the
untruncated string value is returned in *StringLengthPtr. (Function
returns SQL_SUCCESS_WITH_INFO.)

08003 Connection is closed. An Attribute value was specified that required an open connection.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY010 Function sequence error. SQLBrowseConnect() was called for the ConnectionHandle and
returned SQL_NEED_DATA. This function was called before
SQLBrowseConnect() returned SQL_SUCCESS_WITH_INFO or
SQL_SUCCESS.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength was less than 0.

HY092 Option type out of range. The value specified for the argument Attribute was not valid.

HYC00 Driver not capable. The value specified for the argument Attribute was a valid
connection or statement attribute for the version of the CLI driver,
but was not supported by the data source.

Restrictions

None.

Example
SQLINTEGER autocommit;

/* ... */

/* get the current setting for the AUTOCOMMIT attribute */
cliRC = SQLGetConnectAttr(hdbc, SQL_ATTR_AUTOCOMMIT, &autocommit, 0, NULL);

SQLGetConnectAttr function (CLI) - Get current attribute setting

Chapter 1. CLI and ODBC functions 153

SQLGetConnectOption function (CLI) - Return current setting of a
connect option

Deprecated

Note:

In ODBC version 3, SQLGetConnectOption() has been deprecated and replaced with
SQLGetConnectAttr().

Although this version of CLI continues to support SQLGetConnectOption(), use
SQLGetConnectAttr() in your CLI programs so that they conform to the latest
standards.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLGetConnectOptionW(). Refer to
“Unicode functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Migrating to the new function

The statement:
SQLGetConnectOption(hdbc, SQL_ATTR_AUTOCOMMIT, pvAutoCommit);

for example, would be rewritten using the new function as:
SQLGetConnectAttr(hdbc, SQL_ATTR_AUTOCOMMIT, pvAutoCommit,

SQL_IS_POINTER, NULL);

SQLGetCursorName function (CLI) - Get cursor name
Purpose

Specification: CLI 1.1 ODBC 1.0 ISO CLI

SQLGetCursorName() returns the cursor name associated with the input statement
handle. If a cursor name was explicitly set by calling SQLSetCursorName(), this
name will be returned; otherwise, an implicitly generated name will be returned.

Unicode Equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLGetCursorNameW(). Refer to
“Unicode functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLGetCursorName (

SQLHSTMT StatementHandle, /* hstmt */
SQLCHAR *CursorName, /* szCursor */
SQLSMALLINT BufferLength, /* cbCursorMax */
SQLSMALLINT *NameLengthPtr); /* pcbCursor */

SQLGetConnectOption function (CLI) - Return current setting of a connect option

154 Call Level Interface Guide and Reference, Volume 2

Function arguments

Table 79. SQLGetCursorName arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLCHAR * CursorName output Cursor name

SQLSMALLINT BufferLength input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store CursorName.

SQLSMALLINT * NameLengthPtr output Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function),
excluding the null-termination character, available to
return for CursorName.

Usage

SQLGetCursorName() will return the cursor name set explicitly with
SQLSetCursorName(), or if no name was set, it will return the cursor name
internally generated by CLI. If SQLGetCursorName() is called before a statement has
been prepared on the input statement handle, an error will result. The internal
cursor name is generated on a statement handle the first time dynamic SQL is
prepared on the statement handle, not when the handle is allocated.

If a name is set explicitly using SQLSetCursorName(), this name will be returned
until the statement is dropped, or until another explicit name is set.

Internally generated cursor names always begin with SQLCUR or SQL_CUR.
Cursor names are always 128 SQLCHAR or SQLWCHAR elements or less, and are
always unique within a connection.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 80. SQLGetCursorName SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The cursor name returned in CursorName was longer than the
value in BufferLength, and is truncated to BufferLength - 1 bytes.
The argument NameLengthPtr contains the length of the full cursor
name available for return. The function returns
SQL_SUCCESS_WITH_INFO.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

SQLGetCursorName function (CLI) - Get cursor name

Chapter 1. CLI and ODBC functions 155

Table 80. SQLGetCursorName SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error.
The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
For the StatementHandle and was still executing when this function
was called.

The function was called before a statement was prepared on the
statement handle.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for the argument BufferLength is less than 0.

Restrictions

ODBC generated cursor names start with SQL_CUR, CLI generated cursor names
start with SQLCUR, and X/Open CLI generated cursor names begin with either
SQLCUR or SQL_CUR.

Example
SQLCHAR cursorName[20];

/* ... */

/* get the cursor name of the SELECT statement */
cliRC = SQLGetCursorName(hstmtSelect, cursorName, 20, &cursorLen);

SQLGetData function (CLI) - Get data from a column
Purpose

Specification: CLI 1.1 ODBC 1.0 ISO CLI

SQLGetData() retrieves data for a single column in the current row of the result set.
This is an alternative to SQLBindCol(), which is used to transfer data directly into
application variables or LOB locators on each SQLFetch() or SQLFetchScroll() call.
An application can either bind LOBs with SQLBindCol() or use SQLGetData() to
retrieve LOBs, but both methods cannot be used together. SQLGetData() can also be
used to retrieve large data values in pieces.

SQLFetch() or SQLFetchScroll() must be called before SQLGetData().

After calling SQLGetData() for each column, SQLFetch() or SQLFetchScroll() is
called to retrieve the next row.

Syntax
SQLRETURN SQLGetData (

SQLHSTMT StatementHandle, /* hstmt */
SQLUSMALLINT ColumnNumber, /* icol */
SQLSMALLINT TargetType, /* fCType */

SQLGetCursorName function (CLI) - Get cursor name

156 Call Level Interface Guide and Reference, Volume 2

SQLPOINTER TargetValuePtr, /* rgbValue */
SQLLEN BufferLength, /* cbValueMax */
SQLLEN *StrLen_or_IndPtr); /* pcbValue */

Function arguments

Table 81. SQLGetData arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLUSMALLINT ColumnNumber input Column number for which the data retrieval is
requested. Result set columns are numbered
sequentially from left to right.
v Column numbers start at 1 if bookmarks are not

used (SQL_ATTR_USE_BOOKMARKS statement
attribute set to SQL_UB_OFF).

v Column numbers start at 0 if bookmarks are used
(the statement attribute set to SQL_UB_ON or
SQL_UB_VARIABLE).

SQLSMALLINT TargetType input The C data type of the column identifier by
ColumnNumber. The following types are supported:
v SQL_C_BINARY
v SQL_C_BIT
v SQL_C_BLOB_LOCATOR
v SQL_C_CHAR
v SQL_C_CLOB_LOCATOR
v SQL_C_DBCHAR
v SQL_C_DBCLOB_LOCATOR
v SQL_C_DECIMAL_IBM
v SQL_C_DOUBLE
v SQL_C_FLOAT
v SQL_C_LONG
v SQL_C_NUMERIC a

v SQL_C_SBIGINT
v SQL_C_SHORT
v SQL_C_TYPE_DATE
v SQL_C_TYPE_TIME
v SQL_C_TYPE_TIMESTAMP
v SQL_C_TYPE_TIMESTAMP_EXT
v SQL_C_TINYINT
v SQL_C_UBIGINT
v SQL_C_UTINYINT
v SQL_C_WCHAR

Specifying SQL_ARD_TYPE results in the data being
converted to the data type specified in the
SQL_DESC_CONCISE_TYPE field of the ARD.

Specifying SQL_C_DEFAULT results in the data
being converted to its default C data type.

SQLPOINTER TargetValuePtr output Pointer to buffer where the retrieved column data is
to be stored.

SQLLEN BufferLength input Maximum size of the buffer pointed to by
TargetValuePtr. This value is ignored when the driver
returns fixed-length data.

SQLGetData function (CLI) - Get data from a column

Chapter 1. CLI and ODBC functions 157

Table 81. SQLGetData arguments (continued)

Data type Argument Use Description

SQLLEN * StrLen_or_IndPtr output Pointer to value which indicates the number of bytes
CLI has available to return in the TargetValuePtr
buffer. If the data is being retrieved in pieces, this
contains the number of bytes still remaining.

The value is SQL_NULL_DATA if the data value of
the column is null. If this pointer is NULL and
SQLFetch() has obtained a column containing null
data, then this function will fail because it has no
means of reporting this.

If SQLFetch() has fetched a column containing
binary data, then the pointer to StrLen_or_IndPtr
must not be NULL or this function will fail because
it has no other means of informing the application
about the length of the data retrieved in the
TargetValuePtr buffer.

Note: CLI will provide some performance enhancement if TargetValuePtr is placed consecutively in memory after
StrLen_or_IndPtr

Usage

Different DB2 data sources have different restrictions on how SQLGetData() can be
used. For an application to be sure about the functional capabilities of this
function, it should call SQLGetInfo() with any of the following
SQL_GETDATA_EXTENSIONS options:
v SQL_GD_ANY_COLUMN: If this option is returned, SQLGetData() can be called

for any unbound column, including those before the last bound column. All DB2
data sources support this feature.

v SQL_GD_ANY_ORDER: If this option is returned, SQLGetData() can be called
for unbound columns in any order. All DB2 data sources support this feature.

v SQL_GD_BLOCK: If this option if returned by SQLGetInfo() for the
SQL_GETDATA_EXTENSIONS InfoType argument, then the driver will support
calls to SQLGetData() when the rowset size is greater than 1. The application can
also call SQLSetPos() with the SQL_POSITION option to position the cursor on
the correct row before calling SQLGetData(). At least DB2 for UNIX and
Windows data sources support this feature.

v SQL_GD_BOUND: If this option is returned, SQLGetData() can be called for
bound columns as well as unbound columns. DB2 Database for Linux, UNIX,
and Windows does not currently support this feature.

SQLGetData() can also be used to retrieve long columns if the C data type
(TargetType) is SQL_C_CHAR, SQL_C_BINARY, SQL_C_DBCHAR,
SQL_C_WCHAR, or if TargetType is SQL_C_DEFAULT and the column type
denotes a binary or character string.

Upon each SQLGetData() call, if the data available for return is greater than or
equal to BufferLength, truncation occurs. Truncation is indicated by a function
return code of SQL_SUCCESS_WITH_INFO coupled with a SQLSTATE denoting
data truncation. The application can call SQLGetData() again, with the same
ColumnNumber value, to get subsequent data from the same unbound column
starting at the point of truncation. To obtain the entire column, the application

SQLGetData function (CLI) - Get data from a column

158 Call Level Interface Guide and Reference, Volume 2

repeats such calls until the function returns SQL_SUCCESS. The next call to
SQLGetData() returns SQL_NO_DATA_FOUND.

When the application calls the function SQLGetData() to retrieve the actual LOB
data it will, by default, make one request to the server and will store the entire
LOB in memory provided BufferLength is large enough. If BufferLength is not large
enough to hold the requested LOB data, it will be retrieved in pieces.

Although SQLGetData() can be used for the sequential retrieval of LOB column
data, use the CLI LOB functions if only a portion of the LOB data or a few sections
of the LOB column data are needed:
1. Bind the column to a LOB locator.
2. Fetch the row.
3. Use the locator in a SQLGetSubString() call, to retrieve the data in pieces

(SQLGetLength() and SQLGetPosition() might also be required in order to
determine the values of some of the arguments).

4. Repeat step 2.

Truncation is also affected by the SQL_ATTR_MAX_LENGTH statement attribute.
The application can specify that truncation is not to be reported by calling
SQLSetStmtAttr() with SQL_ATTR_MAX_LENGTH and a value for the maximum
length to return for any one column, and by allocating a TargetValuePtr buffer of
the same size (plus the null-terminator). If the column data is larger than the set
maximum length, SQL_SUCCESS will be returned and the maximum length, not
the actual length will be returned in StrLen_or_IndPtr.

To discard the column data part way through the retrieval, the application can call
SQLGetData() with ColumnNumber set to the next column position of interest. To
discard data that has not been retrieved for the entire row, the application should
call SQLFetch() to advance the cursor to the next row; or, if it does not want any
more data from the result set, the application can close the cursor by calling
SQLCloseCursor() or SQLFreeStmt() with the SQL_CLOSE or SQL_DROP option.

The TargetType input argument determines the type of data conversion (if any)
needed before the column data is placed into the storage area pointed to by
TargetValuePtr.

For SQL graphic column data:
v The length of the TargetValuePtr buffer (BufferLength) should be a multiple of 2.

The application can determine the SQL data type of the column by first calling
SQLDescribeCol() or SQLColAttribute().

v The pointer to StrLen_or_IndPtr must not be NULL since CLI will be storing the
number of octets stored in TargetValuePtr.

v If the data is to be retrieved in piecewise fashion, CLI will attempt to fill
TargetValuePtr to the nearest multiple of two octets that is still less than or equal
to BufferLength. This means if BufferLength is not a multiple of two, the last byte
in that buffer will be untouched; CLI will not split a double-byte character.

The content returned in TargetValuePtr is always null-terminated unless the column
data to be retrieved is binary, or if the SQL data type of the column is graphic
(DBCS) and the C buffer type is SQL_C_CHAR. If the application is retrieving the
data in multiple chunks, it should make the proper adjustments (for example, strip
off the null-terminator before concatenating the pieces back together assuming the
null termination environment attribute is in effect).

SQLGetData function (CLI) - Get data from a column

Chapter 1. CLI and ODBC functions 159

Truncation of numeric data types is reported as a warning if the truncation
involves digits to the right of the decimal point. If truncation occurs to the left of
the decimal point, an error is returned (refer to the diagnostics section).

With the exception of scrollable cursors, applications that use SQLFetchScroll() to
retrieve data should call SQLGetData() only when the rowset size is 1 (equivalent
to issuing SQLFetch()). SQLGetData() can only retrieve column data for a row
where the cursor is currently positioned.

Using SQLGetData() with Scrollable Cursors

SQLGetData() can also be used with scrollable cursors. You can save a pointer to
any row in the result set with a bookmark. The application can then use that
bookmark as a relative position to retrieve a rowset of information.

Once you have positioned the cursor to a row in a rowset using SQLSetPos(), you
can obtain the bookmark value from column 0 using SQLGetData(). In most cases
you will not want to bind column 0 and retrieve the bookmark value for every
row, but use SQLGetData() to retrieve the bookmark value for the specific row you
require.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_NO_DATA_FOUND
v SQL_NO_TOTAL

SQL_NO_DATA_FOUND is returned when the preceding SQLGetData() call has
retrieved all of the data for this column.

SQL_SUCCESS is returned if a zero-length string is retrieved by SQLGetData(). If
this is the case, StrLen_or_IndPtr will contain 0, and TargetValuePtr will contain a
null terminator.

SQL_NO_TOTAL is returned as the length when truncation occurs if the CLI
configuration keyword StreamGetData is set to 1 and CLI cannot determine the
number of bytes still available to return in the output buffer.

If the preceding call to SQLFetch() failed, SQLGetData() should not be called since
the result is undefined.

Diagnostics

Table 82. SQLGetData SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. Data returned for the specified column (ColumnNumber) was
truncated. String or numeric values are right truncated.
SQL_SUCCESS_WITH_INFO is returned.

07006 Invalid conversion. The data value cannot be converted to the C data type specified
by the argument TargetType.

The function has been called before for the same ColumnNumber
value but with a different TargetType value.

SQLGetData function (CLI) - Get data from a column

160 Call Level Interface Guide and Reference, Volume 2

Table 82. SQLGetData SQLSTATEs (continued)

SQLSTATE Description Explanation

07009 Invalid descriptor index. The value specified for ColumnNumber was equal to 0, and the
SQL_ATTR_USE_BOOKMARKS statement attribute was
SQL_UB_OFF. The value specified for the argument
ColumnNumber was greater than the number of columns in the
result set.

22002 Invalid output or indicator
buffer specified.

The pointer value specified for the argument StrLen_or_IndPtr
was a null pointer and the value of the column is null. There is no
means to report SQL_NULL_DATA.

22003 Numeric value out of range. Returning the numeric value (as numeric or string) for the column
would have caused the whole part of the number to be truncated.

22005 Error in assignment. A returned value was incompatible with the data type denoted by
the argument TargetType.

22007 Invalid datetime format. Conversion from character a string to a datetime format was
indicated, but an invalid string representation or value was
specified, or the value was an invalid date.

22008 Datetime field overflow. Datetime field overflow occurred; for example, an arithmetic
operation on a date or timestamp has a result that is not within
the valid range of dates, or a datetime value cannot be assigned to
a bound variable because it is too small.

24000 Invalid cursor state. The previous SQLFetch() resulted in SQL_ERROR or
SQL_NO_DATA found; as a result, the cursor is not positioned on
a row.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY003 Program type out of range. TargetType was not a valid data type or SQL_C_DEFAULT.

HY010 Function sequence error. The specified StatementHandle was not in a cursor positioned state.
The function was called without first calling SQLFetch().

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
For the StatementHandle and was still executing when this function
was called.

The function was called before a statement was prepared on the
statement handle.

HY011 Operation invalid at this time. Calls to SQLGetData() for previously accessed LOB columns are
not allowed. Refer to “AllowGetDataLOBReaccess CLI/ODBC
configuration keyword” on page 325 for more information.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

SQLGetData function (CLI) - Get data from a column

Chapter 1. CLI and ODBC functions 161

Table 82. SQLGetData SQLSTATEs (continued)

SQLSTATE Description Explanation

HY090 Invalid string or buffer length. The value of the argument BufferLength is less than 0 and the
argument TargetType is SQL_C_CHAR, SQL_C_BINARY,
SQL_C_DBCHAR or (SQL_C_DEFAULT and the default type is
one of SQL_C_CHAR, SQL_C_BINARY, or SQL_C_DBCHAR).

HYC00 Driver not capable. The SQL data type for the specified data type is recognized but
not supported by CLI.

The requested conversion from the SQL data type to the
application data TargetType cannot be performed by CLI or the
data source.

The column was bound using SQLBindFileToCol().

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

Example
/* use SQLGetData to get the results */
/* get data from column 1 */
cliRC = SQLGetData(hstmt,

1,
SQL_C_SHORT,
&deptnumb.val,
0,
&deptnumb.ind);

STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

/* get data from column 2 */
cliRC = SQLGetData(hstmt,

2,
SQL_C_CHAR,
location.val,
15,
&location.ind);

SQLGetDescField function (CLI) - Get single field settings of descriptor
record

Purpose

Specification: CLI 5.0 ODBC 3.0 ISO CLI

SQLGetDescField() returns the current settings of a single field of a descriptor
record.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLGetDescFieldW(). Refer to “Unicode
functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

SQLGetData function (CLI) - Get data from a column

162 Call Level Interface Guide and Reference, Volume 2

Syntax
SQLRETURN SQLGetDescField (

SQLHDESC DescriptorHandle,
SQLSMALLINT RecNumber,
SQLSMALLINT FieldIdentifier,
SQLPOINTER ValuePtr, /* Value */
SQLINTEGER BufferLength,
SQLINTEGER *StringLengthPtr); /* *StringLength */

Function arguments

Table 83. SQLGetDescField arguments

Data type Argument Use Description

SQLHDESC DescriptorHandle input Descriptor handle.

SQLSMALLINT RecNumber input Indicates the descriptor record from which the
application seeks information. Descriptor records are
numbered from 0, with record number 0 being the
bookmark record. If the FieldIdentifier argument
indicates a field of the descriptor header record,
RecNumber must be 0. If RecNumber is less than
SQL_DESC_COUNT, but the row does not contain
data for a column or parameter, a call to
SQLGetDescField() will return the default values of
the fields.

SQLSMALLINT FieldIdentifier input Indicates the field of the descriptor whose value is to
be returned.

SQLPOINTER ValuePtr output Pointer to a buffer in which to return the descriptor
information. The data type depends on the value of
FieldIdentifier.

SQLINTEGER BufferLength input v If ValuePtr points to a character string, this
argument should be the length of *ValuePtr.

v If ValuePtr is a pointer, but not to a string, then
BufferLength should have the value
SQL_IS_POINTER.

v If the value in *ValuePtr is of a Unicode data type
the BufferLength argument must be an even
number.

SQLSMALLINT * StringLengthPtr output Pointer to the total number of bytes (excluding the
number of bytes required for the null termination
character) available to return in *ValuePtr.

Usage

An application can call SQLGetDescField() to return the value of a single field of a
descriptor record. A call to SQLGetDescField() can return the setting of any field in
any descriptor type, including header fields, record fields, and bookmark fields. An
application can obtain the settings of multiple fields in the same or different
descriptors, in arbitrary order, by making repeated calls to SQLGetDescField().
SQLGetDescField() can also be called to return CLI defined descriptor fields.

For performance reasons, an application should not call SQLGetDescField() for an
IRD before executing a statement. Calling SQLGetDescField() in this case causes
the CLI driver to describe the statement, resulting in an extra network flow. When
deferred prepare is on and SQLGetDescField() is called, you lose the benefit of
deferred prepare because the statement must be prepared at the server to obtain
describe information.

SQLGetDescField function (CLI) - Get single field settings of descriptor record

Chapter 1. CLI and ODBC functions 163

The settings of multiple fields that describe the name, data type, and storage of
column or parameter data can also be retrieved in a single call to SQLGetDescRec().
SQLGetStmtAttr() can be called to return the value of a single field in the
descriptor header that has an associated statement attribute.

When an application calls SQLGetDescField() to retrieve the value of a field that is
undefined for a particular descriptor type, the function returns SQLSTATE HY091
(Invalid descriptor field identifier). When an application calls SQLGetDescField() to
retrieve the value of a field that is defined for a particular descriptor type, but has
no default value and has not been set yet, the function returns SQL_SUCCESS but
the value returned for the field is undefined. Refer to the list of initialization
values of descriptor fields for any default values which may exist.

The SQL_DESC_ALLOC_TYPE header field is available as read-only. This field is
defined for all types of descriptors.

Each of these fields is defined either for the IRD only, or for both the IRD and the
IPD.
SQL_DESC_AUTO_UNIQUE_VALUE SQL_DESC_LITERAL_SUFFIX
SQL_DESC_BASE_COLUMN_NAME SQL_DESC_LOCAL_TYPE_NAME
SQL_DESC_CASE_SENSITIVE SQL_DESC_SCHEMA_NAME
SQL_DESC_CATALOG_NAME SQL_DESC_SEARCHABLE
SQL_DESC_DISPLAY_SIZE SQL_DESC_TABLE_NAME
SQL_DESC_FIXED_PREC_SCALE SQL_DESC_TYPE_NAME
SQL_DESC_LABEL SQL_DESC_UNSIGNED
SQL_DESC_LITERAL_PREFIX SQL_DESC_UPDATABLE

Refer to the list of descriptor FieldIdentifier values for more information about the
above fields.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_NO_DATA
v SQL_INVALID_HANDLE

SQL_NO_DATA is returned if RecNumber is greater than the number of descriptor
records.

SQL_NO_DATA is returned if DescriptorHandle is an IRD handle and the statement
is in the prepared or executed state, but there was no open cursor associated with
it.

Diagnostics

Table 84. SQLGetDescField SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The buffer *ValuePtr was not large enough to return the entire
descriptor field, so the field was truncated. The length of the
untruncated descriptor field is returned in *StringLengthPtr.
(Function returns SQL_SUCCESS_WITH_INFO.)

SQLGetDescField function (CLI) - Get single field settings of descriptor record

164 Call Level Interface Guide and Reference, Volume 2

Table 84. SQLGetDescField SQLSTATEs (continued)

SQLSTATE Description Explanation

07009 Invalid descriptor index. The value specified for the RecNumber argument was less than 1,
the SQL_ATTR_USE_BOOKMARKS statement attribute was
SQL_UB_OFF, and the field was not a header field or a CLI
defined field.

The FieldIdentifier argument was a record field, and the RecNumber
argument was 0.

The RecNumber argument was less than 0, and the field was not a
header field or a CLI defined field.

08S01 Communication link failure. The communication link between CLI and the data source to
which it was connected failed before the function completed
processing.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY007 Associated statement is not
prepared.

DescriptorHandle was associated with an IRD, and the associated
statement handle was not in the prepared or executed state.

HY010 Function sequence error. DescriptorHandle was associated with a StatementHandle for which
an asynchronously executing function (not this one) was called
and was still executing when this function was called.

DescriptorHandle was associated with a StatementHandle for which
SQLExecute() or SQLExecDirect() was called and returned
SQL_NEED_DATA. This function was called before data was sent
for all data-at-execution parameters or columns.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY021 Inconsistent descriptor
information.

The descriptor information checked during a consistency check
was not consistent.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,
but not equal to SQL_NTS.

HY091 Invalid descriptor field identifier. FieldIdentifier was undefined for the DescriptorHandle.

The value specified for the RecNumber argument was greater than
the value in the SQL_DESC_COUNT field.

Restrictions

None.

Example
/* see how the field SQL_DESC_PARAMETER_TYPE is set */
cliRC = SQLGetDescField(hIPD,

1, /* look at the parameter */
SQL_DESC_PARAMETER_TYPE,
&descFieldParameterType, /* result */
SQL_IS_SMALLINT,

SQLGetDescField function (CLI) - Get single field settings of descriptor record

Chapter 1. CLI and ODBC functions 165

NULL);

/* ... */

/* see how the descriptor record field SQL_DESC_TYPE_NAME is set */
rc = SQLGetDescField(hIRD,

(SQLSMALLINT)colCount,
SQL_DESC_TYPE_NAME, /* record field */
descFieldTypeName, /* result */
25,
NULL);

/* ... */

/* see how the descriptor record field SQL_DESC_LABEL is set */
rc = SQLGetDescField(hIRD,

(SQLSMALLINT)colCount,
SQL_DESC_LABEL, /* record field */
descFieldLabel, /* result */
25,
NULL);

SQLGetDescRec function (CLI) - Get multiple field settings of
descriptor record

Purpose

Specification: CLI 5.0 ODBC 3.0 ISO CLI

SQLGetDescRec() returns the current settings of multiple fields of a descriptor
record. The fields returned describe the name, data type, and storage of column or
parameter data.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLGetDescRecW(). Refer to “Unicode
functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLGetDescRec (

SQLHDESC DescriptorHandle, /* hDesc */
SQLSMALLINT RecNumber,
SQLCHAR *Name,
SQLSMALLINT BufferLength,
SQLSMALLINT *StringLengthPtr, /* *StringLength */
SQLSMALLINT *TypePtr, /* *Type */
SQLSMALLINT *SubTypePtr, /* *SubType */
SQLLEN *LengthPtr, /* *Length */
SQLSMALLINT *PrecisionPtr, /* *Precision */
SQLSMALLINT *ScalePtr, /* *Scale */
SQLSMALLINT *NullablePtr); /* *Nullable */

Function arguments

Table 85. SQLGetDescRec arguments

Data type Argument Use Description

SQLHDESC DescriptorHandle input Descriptor handle.

SQLGetDescField function (CLI) - Get single field settings of descriptor record

166 Call Level Interface Guide and Reference, Volume 2

Table 85. SQLGetDescRec arguments (continued)

Data type Argument Use Description

SQLSMALLINT RecNumber input Indicates the descriptor record from which the
application seeks information. Descriptor records are
numbered from 0, with record number 0 being the
bookmark record. The RecNumber argument must be
less than or equal to the value of
SQL_DESC_COUNT. If RecNumber is less than
SQL_DESC_COUNT, but the row does not contain
data for a column or parameter, a call to
SQLGetDescRec() will return the default values of the
fields.

SQLCHAR * Name output A pointer to a buffer in which to return the
SQL_DESC_NAME field for the descriptor record.

SQLINTEGER BufferLength input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the *Name buffer.

SQLSMALLINT * StringLengthPtr output A pointer to a buffer in which to return the number
of SQLCHAR elements (or SQLWCHAR elements for
the Unicode variant of this function) available to
return in the Name buffer, excluding the
null-termination character. If the number of
SQLCHAR or SQLWCHAR elements was greater
than or equal to BufferLength, the data in *Name is
truncated to BufferLength minus the length of a
null-termination character, and is null terminated by
CLI.

SQLSMALLINT * TypePtr output A pointer to a buffer in which to return the value of
the SQL_DESC_TYPE field for the descriptor record.

SQLSMALLINT * SubTypePtr output For records whose type is SQL_DATETIME, this is a
pointer to a buffer in which to return the value of
the SQL_DESC_DATETIME_INTERVAL_CODE field.

SQLLEN * LengthPtr output A pointer to a buffer in which to return the value of
the SQL_DESC_OCTET_LENGTH field for the
descriptor record.

SQLSMALLINT * PrecisionPtr output A pointer to a buffer in which to return the value of
the SQL_DESC_PRECISION field for the descriptor
record.

SQLSMALLINT * ScalePtr output A pointer to a buffer in which to return the value of
the SQL_DESC_SCALE field for the descriptor
record.

SQLSMALLINT * NullablePtr output A pointer to a buffer in which to return the value of
the SQL_DESC_NULLABLE field for the descriptor
record.

Usage

An application can call SQLGetDescRec() to retrieve the values of the following
fields for a single column or parameter:
v SQL_DESC_NAME
v SQL_DESC_TYPE
v SQL_DESC_DATETIME_INTERVAL_CODE (for records whose type is

SQL_DATETIME)
v SQL_DESC_OCTET_LENGTH

SQLGetDescRec function (CLI) - Get multiple field settings of descriptor record

Chapter 1. CLI and ODBC functions 167

v SQL_DESC_PRECISION
v SQL_DESC_SCALE
v SQL_DESC_NULLABLE

SQLGetDescRec() does not retrieve the values for header fields.

An application can inhibit the return of a field's setting by setting the argument
corresponding to the field to a null pointer. When an application calls
SQLGetDescRec() to retrieve the value of a field that is undefined for a particular
descriptor type, the function returns SQL_SUCCESS but the value returned for the
field is undefined. For example, calling SQLGetDescRec() for the
SQL_DESC_NAME or SQL_DESC_NULLABLE field of an APD or ARD will return
SQL_SUCCESS but an undefined value for the field.

When an application calls SQLGetDescRec() to retrieve the value of a field that is
defined for a particular descriptor type, but has no default value and has not been
set yet, the function returns SQL_SUCCESS but the value returned for the field is
undefined.

The values of fields can also be retrieved individually by a call to
SQLGetDescField().

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_NO_DATA
v SQL_INVALID_HANDLE

SQL_NO_DATA is returned if RecNumber is greater than the number of descriptor
records.

SQL_NO_DATA is returned if DescriptorHandle is an IRD handle and the statement
in the prepared or executed state, but there was no open cursor associated with it.

Diagnostics

Table 86. SQLGetDescRec SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The buffer *Name was not large enough to return the entire
descriptor field, so the field was truncated. The length of the
untruncated descriptor field is returned in *StringLengthPtr.
(Function returns SQL_SUCCESS_WITH_INFO.)

07009 Invalid descriptor index. The RecNumber argument was set to 0 and the DescriptorHandle
argument was an IPD handle.

The RecNumber argument was set to 0, and the
SQL_ATTR_USE_BOOKMARKS statement attribute was set to
SQL_UB_OFF.

The RecNumber argument was less than 0.

08S01 Communication link failure. The communication link between CLI and the data source to
which it was connected failed before the function completed
processing.

SQLGetDescRec function (CLI) - Get multiple field settings of descriptor record

168 Call Level Interface Guide and Reference, Volume 2

Table 86. SQLGetDescRec SQLSTATEs (continued)

SQLSTATE Description Explanation

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY007 Associated statement is not
prepared.

DescriptorHandle was associated with an IRD, and the associated
statement handle was not in the prepared or executed state.

HY010 Function sequence error. DescriptorHandle was associated with a StatementHandle for which
an asynchronously executing function (not this one) was called
and was still executing when this function was called.

DescriptorHandle was associated with a StatementHandle for which
SQLExecute() or SQLExecDirect() was called and returned
SQL_NEED_DATA. This function was called before data was sent
for all data-at-execution parameters or columns.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

Restrictions

None.

Example
/* get multiple field settings of descriptor record */
rc = SQLGetDescRec(hIRD,

i,
colname,
sizeof(colname),
&namelen,
&type,
&subtype,
&width,
&precision,
&scale,
&nullable);

/* ... */

/* get the record/column value after setting */
rc = SQLGetDescRec(hARD,

i,
colname,
sizeof(colname),
&namelen,
&type,
&subtype,
&width,
&precision,
&scale,
&nullable);

SQLGetDescRec function (CLI) - Get multiple field settings of descriptor record

Chapter 1. CLI and ODBC functions 169

SQLGetDiagField function (CLI) - Get a field of diagnostic data
Purpose

Specification: CLI 5.0 ODBC 3.0 ISO CLI

SQLGetDiagField() returns the current value of a field of a diagnostic data
structure, associated with a specific handle, that contains error, warning, and status
information.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLGetDiagFieldW(). Refer to “Unicode
functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLGetDiagField (

SQLSMALLINT HandleType, /* fHandleType */
SQLHANDLE Handle, /* hHandle */
SQLSMALLINT RecNumber, /* iRecNumber */
SQLSMALLINT DiagIdentifier, /* fDiagIdentifier */
SQLPOINTER DiagInfoPtr, /* pDiagInfo */
SQLSMALLINT BufferLength, /* cbDiagInfoMax */
SQLSMALLINT *StringLengthPtr); /* *pcgDiagInfo */

Function arguments

Table 87. SQLGetDiagField arguments

Data type Argument Use Description

SQLSMALLINT HandleType input A handle type identifier that describes the type of
handle for which diagnostics are desired. Must be
one of the following:
v SQL_HANDLE_ENV
v SQL_HANDLE_DBC
v SQL_HANDLE_STMT
v SQL_HANDLE_DESC

SQLHANDLE Handle input A handle for the diagnostic data structure, of the
type indicated by HandleType.

SQLSMALLINT RecNumber input Indicates the status record from which the
application seeks information. Status records are
numbered from 1. If the DiagIdentifier argument
indicates any field of the diagnostics header record,
RecNumber must be 0. If not, it should be greater
than 0.

SQLSMALLINT DiagIdentifier input Indicates the field of the diagnostic data structure
whose value is to be returned. For more information,
see DiagIdentifier argument.

SQLPOINTER DiagInfoPtr output Pointer to a buffer in which to return the diagnostic
information. The data type depends on the value of
DiagIdentifier.

SQLGetDiagField function (CLI) - Get a field of diagnostic data

170 Call Level Interface Guide and Reference, Volume 2

Table 87. SQLGetDiagField arguments (continued)

Data type Argument Use Description

SQLINTEGER BufferLength input If DiagIdentifier is ODBC-defined diagnostic:

v If DiagInfoPtr points to a character string or binary
buffer, BufferLength should be the length of
*DiagInfoPtr.

v If *DiagInfoPtr is an integer, BufferLength is
ignored.

v If *DiagInfoPtr is a Unicode string, BufferLength
must be an even number.

If DiagIdentifier is a CLI diagnostic:

v If *DiagInfoPtr is a pointer to a character string,
BufferLength is the number of bytes needed to store
the string, or SQL_NTS.

v If *DiagInfoPtr is a pointer to a binary buffer, then
the application places the result of the
SQL_LEN_BINARY_ATTR(length) macro in
BufferLength. This places a negative value in
BufferLength.

v If *DiagInfoPtr is a pointer to a value other than a
character string or binary string, then BufferLength
should have the value SQL_IS_POINTER.

v If *DiagInfoPtr contains a fixed-length data type,
then BufferLength is SQL_IS_INTEGER,
SQL_IS_UINTEGER, SQL_IS_SMALLINT, or
SQL_IS_USMALLINT, as appropriate.

SQLSMALLINT * StringLengthPtr output Pointer to a buffer in which to return the total
number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function),
excluding the number of bytes required for the
null-termination character, available to return in
*DiagInfoPtr, for character data. If the number of
bytes available to return is greater than BufferLength,
then the text in *DiagInfoPtr is truncated to
BufferLength minus the length of a null-termination
character. This argument is ignored for non-character
data.

Usage

An application typically calls SQLGetDiagField() to accomplish one of three goals:
1. To obtain specific error or warning information when a function call has

returned the SQL_ERROR or SQL_SUCCESS_WITH_INFO (or
SQL_NEED_DATA for the SQLBrowseConnect() function) return codes.

2. To find out the number of rows in the data source that were affected when
insert, delete, or update operations were performed with a call to SQLExecute(),
SQLExecDirect(), SQLBulkOperations(), or SQLSetPos() (from the
SQL_DIAG_ROW_COUNT header field), or to find out the number of rows
that exist in the current open static scrollable cursor (from the
SQL_DIAG_CURSOR_ROW_COUNT header field).

3. To determine which function was executed by a call to SQLExecDirect() or
SQLExecute() (from the SQL_DIAG_DYNAMIC_FUNCTION and
SQL_DIAG_DYNAMIC_FUNCTION_CODE header fields).

SQLGetDiagField function (CLI) - Get a field of diagnostic data

Chapter 1. CLI and ODBC functions 171

Any CLI function can post zero or more errors each time it is called, so an
application can call SQLGetDiagField() after any function call. SQLGetDiagField()
retrieves only the diagnostic information most recently associated with the
diagnostic data structure specified in the Handle argument. If the application calls
another function, any diagnostic information from a previous call with the same
handle is lost.

An application can scan all diagnostic records by incrementing RecNumber, as long
as SQLGetDiagField() returns SQL_SUCCESS. The number of status records is
indicated in the SQL_DIAG_NUMBER header field. Calls to SQLGetDiagField() are
non-destructive as far as the header and status records are concerned. The
application can call SQLGetDiagField() again at a later time to retrieve a field from
a record, as long as another function other than SQLGetDiagField(),
SQLGetDiagRec(), or SQLError() has not been called in the interim, which would
post records on the same handle.

An application can call SQLGetDiagField() to return any diagnostic field at any
time, with the exception of SQL_DIAG_ROW_COUNT, which will return
SQL_ERROR if Handle was not a statement handle on which an SQL statement had
been executed. If any other diagnostic field is undefined, the call to
SQLGetDiagField() will return SQL_SUCCESS (provided no other error is
encountered), and an undefined value is returned for the field.

HandleType argument

Each handle type can have diagnostic information associated with it. The
HandleType argument denotes the handle type of Handle.

Some header and record fields cannot be returned for all types of handles:
environment, connection, statement, and descriptor. Those handles for which a
field is not applicable are indicated in the Header Field and Record Fields sections
below.

No CLI-specific header diagnostic field should be associated with an environment
handle.

DiagIdentifier argument

This argument indicates the identifier of the field desired from the diagnostic data
structure. If RecNumber is greater than or equal to 1, the data in the field describes
the diagnostic information returned by a function. If RecNumber is 0, the field is in
the header of the diagnostic data structure, so it contains data pertaining to the
function call that returned the diagnostic information, not the specific information.
Refer to the list of header and record fields for the DiagIdentifier argument for
further information.

Sequence of status records

Status records are placed in a sequence based upon row number and the type of
the diagnostic.

If there are two or more status records, the sequence of the records is determined
first by row number. The following rules apply to determining the sequence of
errors by row:

SQLGetDiagField function (CLI) - Get a field of diagnostic data

172 Call Level Interface Guide and Reference, Volume 2

v Records that do not correspond to any row appear in front of records that
correspond to a particular row, since SQL_NO_ROW_NUMBER is defined to be
-1.

v Records for which the row number is unknown appear in front of all other
records, since SQL_ROW_NUMBER_UNKNOWN is defined to be -2.

v For all records that pertain to specific rows, records are sorted by the value in
the SQL_DIAG_ROW_NUMBER field. All errors and warnings of the first row
affected are listed, then all errors and warnings of the next row affected, and so
on.

Within each row, or for all those records that do not correspond to a row or for
which the row number is unknown, the first record listed is determined using a set
of sorting rules. After the first record, the order of the other records affecting a row
is undefined. An application cannot assume that errors precede warnings after the
first record. Applications should scan the entire diagnostic data structure to obtain
complete information on an unsuccessful call to a function.

The following rules are followed to determine the first record within a row. The
record with the highest rank is the first record.
v Errors. Status records that describe errors have the highest rank. The following

rules are followed to sort errors:
– Records that indicate a transaction failure or possible transaction failure

outrank all other records.
– If two or more records describe the same error condition, then SQLSTATEs

defined by the X/Open CLI specification (classes 03 through HZ) outrank
ODBC- and driver-defined SQLSTATEs.

v Implementation-defined No Data values. Status records that describe CLI No
Data values (class 02) have the second highest rank.

v Warnings. Status records that describe warnings (class 01) have the lowest rank.
If two or more records describe the same warning condition, then warning
SQLSTATEs defined by the X/Open CLI specification outrank ODBC- and
driver-defined SQLSTATEs.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_NO_DATA

Diagnostics

SQLGetDiagField() does not post error values for itself. It uses the following return
values to report the outcome of its own execution:
v SQL_SUCCESS: The function successfully returned diagnostic information.
v SQL_SUCCESS_WITH_INFO: *DiagInfoPtr was too small to hold the requested

diagnostic field so the data in the diagnostic field was truncated. To determine
that a truncation occurred, the application must compare BufferLength to the
actual number of bytes available, which is written to *StringLengthPtr.

v SQL_INVALID_HANDLE: The handle indicated by HandleType and Handle was
not a valid handle.

v SQL_ERROR: One of the following occurred:

SQLGetDiagField function (CLI) - Get a field of diagnostic data

Chapter 1. CLI and ODBC functions 173

– The DiagIdentifier argument was not one of the valid values.
– The DiagIdentifier argument was SQL_DIAG_CURSOR_ROW_COUNT,

SQL_DIAG_DYNAMIC_FUNCTION,
SQL_DIAG_DYNAMIC_FUNCTION_CODE, or SQL_DIAG_ROW_COUNT,
but Handle was not a statement handle.

– The RecNumber argument was negative or 0 when DiagIdentifier indicated a
field from a diagnostic record. RecNumber is ignored for header fields.

– The value requested was a character string and BufferLength was less than
zero.

v SQL_NO_DATA: RecNumber was greater than the number of diagnostic records
that existed for the handle specified in Handle. The function also returns
SQL_NO_DATA for any positive RecNumber if there are no diagnostic records for
Handle.

Restrictions

None.

SQLGetDiagRec function (CLI) - Get multiple fields settings of
diagnostic record

Purpose

Specification: CLI 5.0 ODBC 3.0 ISO CLI

SQLGetDiagRec() returns the current values of multiple fields of a diagnostic record
that contains error, warning, and status information. Unlike SQLGetDiagField(),
which returns one diagnostic field per call, SQLGetDiagRec() returns several
commonly used fields of a diagnostic record: the SQLSTATE, native error code,
and error message text.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLGetDiagRecW(). Refer to “Unicode
functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLGetDiagRec (

SQLSMALLINT HandleType, /* fHandleType */
SQLHANDLE Handle, /* hHandle */
SQLSMALLINT RecNumber, /* iRecNumber */
SQLCHAR *SQLState, /* *pszSqlState */
SQLINTEGER *NativeErrorPtr, /* *pfNativeError */
SQLCHAR *MessageText, /* *pszErrorMsg */
SQLSMALLINT BufferLength, /* cbErrorMsgMax */
SQLSMALLINT *TextLengthPtr); /* *pcbErrorMsg */

SQLGetDiagField function (CLI) - Get a field of diagnostic data

174 Call Level Interface Guide and Reference, Volume 2

Function arguments

Table 88. SQLGetDiagRec arguments

Data type Argument Use Description

SQLSMALLINT HandleType input A handle type identifier that describes the type of
handle for which diagnostics are desired. Must be
one of the following:
v SQL_HANDLE_ENV
v SQL_HANDLE_DBC
v SQL_HANDLE_STMT
v SQL_HANDLE_DESC

SQLHANDLE Handle input A handle for the diagnostic data structure, of the
type indicated by HandleType.

SQLSMALLINT RecNumber input Indicates the status record from which the
application seeks information. Status records are
numbered from 1.

SQLCHAR * SQLState output Pointer to a buffer in which to return 5 characters
plus a NULL terminator for the SQLSTATE code
pertaining to the diagnostic record RecNumber. The
first two characters indicate the class; the next three
indicate the subclass.

SQLINTEGER * NativeErrorPtr output Pointer to a buffer in which to return the native error
code, specific to the data source.

SQLCHAR * MessageText output Pointer to a buffer in which to return the error
message text. The fields returned by
SQLGetDiagRec() are contained in a text string.

SQLINTEGER BufferLength input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the MessageText buffer.

SQLSMALLINT * TextLengthPtr output Pointer to a buffer in which to return the total
number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function),
excluding the null-termination character, available to
return in *MessageText. If the number of SQLCHAR
or SQLWCHAR elements available to return is
greater than BufferLength, then the error message text
in *MessageText is truncated to BufferLength minus the
length of a null-termination character.

Usage

An application typically calls SQLGetDiagRec() when a previous call to a CLI
function has returned anything other than SQL_SUCCESS. However, any function
can post zero or more errors each time it is called, so an application can call
SQLGetDiagRec() after any function call. An application can call SQLGetDiagRec()
multiple times to return some or all of the records in the diagnostic data structure.

SQLGetDiagRec() returns a character string containing the following fields of the
diagnostic data structure record:

SQL_DIAG_MESSAGE_TEXT (return type CHAR *)
An informational message on the error or warning.

SQL_DIAG_NATIVE (return type SQLINTEGER)
A driver/data-source-specific native error code. If there is no native error
code, the driver returns 0.

SQLGetDiagRec function (CLI) - Get multiple fields settings of diagnostic record

Chapter 1. CLI and ODBC functions 175

SQL_DIAG_SQLSTATE (return type CHAR *)
A five-character SQLSTATE diagnostic code.

SQLGetDiagRec() cannot be used to return fields from the header of the diagnostic
data structure (the RecNumber argument must be greater than 0). The application
should call SQLGetDiagField() for this purpose.

SQLGetDiagRec() retrieves only the diagnostic information most recently associated
with the handle specified in the Handle argument. If the application calls another
function, except SQLGetDiagRec() or SQLGetDiagField(), any diagnostic
information from the previous calls on the same handle is lost.

An application can scan all diagnostic records by looping, incrementing RecNumber,
as long as SQLGetDiagRec() returns SQL_SUCCESS. Calls to SQLGetDiagRec() are
non-destructive to the header and record fields. The application can call
SQLGetDiagRec() again at a later time to retrieve a field from a record, as long as
no other function, except SQLGetDiagRec() or SQLGetDiagField(), has been called
in the interim. The application can call SQLGetDiagField() to retrieve the value of
the SQL_DIAG_NUMBER field, which is the total number of diagnostic records
available. SQLGetDiagRec() should then be called that many times.

HandleType argument

Each handle type can have diagnostic information associated with it. The
HandleType argument denotes the handle type of Handle.

Some header and record fields cannot be returned for all types of handles:
environment, connection, statement, and descriptor. Those handles for which a
field is not applicable are indicated in the list of header and record fields for the
DiagIdentifier argument.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

SQLGetDiagRec() does not post error values for itself. It uses the following return
values to report the outcome of its own execution:
v SQL_SUCCESS: The function successfully returned diagnostic information.
v SQL_SUCCESS_WITH_INFO: The *MessageText buffer was too small to hold the

requested diagnostic message. No diagnostic records were generated. To
determine that a truncation occurred, the application must compare BufferLength
to the actual number of bytes available, which is written to *StringLengthPtr.

v SQL_INVALID_HANDLE: The handle indicated by HandleType and Handle was
not a valid handle.

v SQL_ERROR: One of the following occurred:
– RecNumber was negative or 0.
– BufferLength was less than zero.

v SQL_NO_DATA: RecNumber was greater than the number of diagnostic records
that existed for the handle specified in Handle. The function also returns
SQL_NO_DATA for any positive RecNumber if there are no diagnostic records for
Handle.

SQLGetDiagRec function (CLI) - Get multiple fields settings of diagnostic record

176 Call Level Interface Guide and Reference, Volume 2

Example
/* get multiple fields settings of diagnostic record */
SQLGetDiagRec(SQL_HANDLE_STMT,

hstmt,
1,
sqlstate,
&sqlcode,
message,
200,
&length);

SQLGetEnvAttr function (CLI) - Retrieve current environment attribute
value

Purpose

Specification: CLI 2.1 ISO CLI

SQLGetEnvAttr() returns the current setting for the specified environment attribute.

These options are set using the SQLSetEnvAttr() function.

Syntax
SQLRETURN SQLGetEnvAttr (

SQLHENV EnvironmentHandle, /* henv */
SQLINTEGER Attribute,
SQLPOINTER ValuePtr, /* Value */
SQLINTEGER BufferLength,
SQLINTEGER *StringLengthPtr); /* StringLength */

Function arguments

Table 89. SQLGetEnvAttr arguments

Data type Argument Use Description

SQLHENV EnvironmentHandle input Environment handle.

SQLINTEGER Attribute input Attribute to receive. Refer to the list of environment
attributes and their descriptions.

SQLPOINTER ValuePtr output A pointer to memory in which to return the current
value of the attribute specified by Attribute.

SQLINTEGER BufferLength input Maximum size of buffer pointed to by ValuePtr, if
the attribute value is a character string; otherwise,
ignored.

SQLINTEGER * StringLengthPtr output Pointer to a buffer in which to return the total
number of bytes (excluding the number of bytes
returned for the null-termination character) available
to return in ValuePtr. If ValuePtr is a null pointer, no
length is returned. If the attribute value is a
character string, and the number of bytes available
to return is greater than or equal to BufferLength, the
data in ValuePtr is truncated to BufferLength minus
the length of a null-termination character and is
null-terminated by CLI.

If Attribute does not denote a string, then CLI ignores BufferLength and does not set
StringLengthPtr.

SQLGetDiagRec function (CLI) - Get multiple fields settings of diagnostic record

Chapter 1. CLI and ODBC functions 177

Usage

SQLGetEnvAttr() can be called at any time between the allocation and freeing of
the environment handle. It obtains the current value of the environment attribute.

Return codes
v SQL_SUCCESS
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 90. SQLGetEnvAttr SQLSTATEs

SQLSTATE Description Explanation

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY092 Option type out of range. An invalid Attribute value was specified.

Restrictions

None.

Example
/* retrieve the current environment attribute value */
cliRC = SQLGetEnvAttr(henv, SQL_ATTR_OUTPUT_NTS, &output_nts, 0, NULL);

SQLGetFunctions function (CLI) - Get functions
Purpose

Specification: CLI 2.1 ODBC 1.0 ISO CLI

SQLGetFunctions() can be used to query whether a specific CLI or ODBC function
is supported. This allows applications to adapt to varying levels of support when
connecting to different database servers.

A connection to a database server must exist before calling this function.

Syntax
SQLRETURN SQLGetFunctions (

SQLHDBC ConnectionHandle, /* hdbc */
SQLUSMALLINT FunctionId, /* fFunction */
SQLUSMALLINT *SupportedPtr); /* pfExists */

Function arguments

Table 91. SQLGetFunctions arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Database connection handle.

SQLUSMALLINT FunctionId input The function being queried.

SQLGetEnvAttr function (CLI) - Retrieve current environment attribute value

178 Call Level Interface Guide and Reference, Volume 2

Table 91. SQLGetFunctions arguments (continued)

Data type Argument Use Description

SQLUSMALLINT * SupportedPtr output Pointer to location where this function will return
SQL_TRUE or SQL_FALSE depending on whether
the function being queried is supported.

Usage

If FunctionId is set to SQL_API_ALL_FUNCTIONS, then SupportedPtr must point to
an SQLSMALLINT array of 100 elements. The array is indexed by the FunctionId
values used to identify many of the functions. Some elements of the array are
unused and reserved. Since some FunctionId values are greater than 100, the array
method can not be used to obtain a list of functions. The SQLGetFunctions() call
must be explicitly issued for all FunctionId values equal to or above 100. The
complete set of FunctionId values is defined in sqlcli1.h.

Note: The LOB support functions (SQLGetLength(), SQLGetPosition(),
SQLGetSubString(), SQLBindFileToCol(), SQLBindFileToCol()) are not supported
when connected to IBM RDBMSs that do not support LOB data types.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 92. SQLGetFunctions SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY010 Function sequence error. SQLGetFunctions() was called before a database connection was
established.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

Authorization

None.

Example
/* check to see if SQLGetInfo() is supported */
cliRC = SQLGetFunctions(hdbc, SQL_API_SQLGETINFO, &supported);

SQLGetFunctions function (CLI) - Get functions

Chapter 1. CLI and ODBC functions 179

References

None.

SQLGetInfo function (CLI) - Get general information
Returns general information about the DBMS that the application is currently
connected to.

Purpose

Specification: CLI 1.1 ODBC 1.0 ISO CLI

The SQLGetInfo() function returns general information about the database
management system (DBMS) that the application is currently connected to.

Unicode equivalent: You can also use this function with the Unicode character set.
The corresponding Unicode function is SQLGetInfoW(). See “Unicode functions
(CLI)” on page 5 for information about ANSI to Unicode function mappings.

Syntax
SQLRETURN SQLGetInfo (

SQLHDBC ConnectionHandle, /* hdbc */
SQLUSMALLINT InfoType, /* fInfoType */
SQLPOINTER InfoValuePtr, /* rgbInfoValue */
SQLSMALLINT BufferLength, /* cbInfoValueMax */
SQLSMALLINT *StringLengthPtr); /* pcbInfoValue */

Function arguments

Table 93. SQLGetInfo arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle Input The database connection handle.

SQLUSMALLINT InfoType Input The type of information that is required. The
possible values for this argument are described in
Information returned by SQLGetInfo().

SQLPOINTER InfoValuePtr Output and
input

Pointer to buffer where this function stores the
information that you want. Depending on the type
of information that is being retrieved, 5 types of
information can be returned:
v 16-bit integer value
v 32-bit integer value
v 32-bit binary value
v 32-bit mask
v Null-terminated character string

If the InfoType argument is SQL_DRIVER_HDESC or
SQL_DRIVER_HSTMT, InfoValuePtr is both input and
output argument.

SQLSMALLINT BufferLength Input The maximum length of the buffer pointed by
InfoValuePtr pointer. If *InfoValuePtr is a Unicode
string, the BufferLength argument must be an even
number.

SQLGetFunctions function (CLI) - Get functions

180 Call Level Interface Guide and Reference, Volume 2

Table 93. SQLGetInfo arguments (continued)

Data type Argument Use Description

SQLSMALLINT * StringLengthPtr Output Pointer to location where this function returns the
total number of bytes of information that is available
to return. For string output, the length does not
include the null terminating character.

If the value in the location pointed by
StringLengthPtr is greater than the size specified in
BufferLength, the string output information would be
truncated to BufferLength - 1 bytes and the function
returns with SQL_SUCCESS_WITH_INFO.

Usage

See Information returned by SQLGetInfo() for a list of the possible values of the
InfoType argument and a description of the information that the SQLGetInfo()
function would return for that value.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 94. SQLGetInfo SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The requested information is returned as a string, and its length
exceeded the length of the application buffer as specified in the
BufferLength argument. The StringLengthPtr argument contains the
actual (not truncated) length of the requested information.
(Function returns SQL_SUCCESS_WITH_INFO return code.)

08003 Connection is closed. The type of information that is requested in the InfoType argument
requires an open connection. Only the SQL_ODBC_VER
information does not require an open connection.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY090 Invalid string or buffer length. The value specified for the BufferLength argument is less than 0.

HY096 Information type out of range. An invalid InfoType argument is specified.

HYC00 Driver not capable. The value specified in the InfoType argument is not supported by
either CLI or the data source.

Restrictions

None.

SQLGetInfo function (CLI) - Get general information

Chapter 1. CLI and ODBC functions 181

Example
/* get server name information */
cliRC = SQLGetInfo(hdbc, SQL_DBMS_NAME, imageInfoBuf, 255, &outlen);

/* ... */

/* get client driver name information */
cliRC = SQLGetInfo(hdbc, SQL_DRIVER_NAME, imageInfoBuf, 255, &outlen);

Information that is returned by the SQLGetInfo() function

Note: CLI returns a value for each InfoType argument in this table. If the InfoType
argument does not apply or is not supported, the result is dependent on the return
type. If the return type is a:
v Character string ("Y" or "N"), "N" is returned.
v Character string (not "Y" or "N"), an empty string is returned.
v 32-bit integer, 0 (zero) is returned.
v 32-bit mask, 0 (zero) is returned.

SQL_ACCESSIBLE_PROCEDURES (string)
A character string of "Y" indicates that you can run all procedures that are
returned by the function SQLProcedures(). "N" indicates there might be
procedures returned that you cannot run.

SQL_ACCESSIBLE_TABLES (string)
A character string of "Y" indicates that you are guaranteed SELECT
privilege to all tables that are returned by the function SQLTables(). "N"
indicates that there might be tables returned that you cannot access.

SQL_AGGREGATE_FUNCTIONS (32-bit mask)
A bit mask that enumerates support for the listed aggregation functions:
v SQL_AF_ALL
v SQL_AF_AVG
v SQL_AF_COUNT
v SQL_AF_DISTINCT
v SQL_AF_MAX
v SQL_AF_MIN
v SQL_AF_SUM

SQL_ALTER_DOMAIN (32-bit mask)
CLI returns 0 that indicates that the ALTER DOMAIN statement is not
supported.

ODBC also defines the listed values that are not returned by CLI:
v SQL_AD_ADD_CONSTRAINT_DEFERRABLE
v SQL_AD_ADD_CONSTRAINT_NON_DEFERRABLE
v SQL_AD_ADD_CONSTRAINT_INITIALLY_DEFERRED
v SQL_AD_ADD_CONSTRAINT_INITIALLY_IMMEDIATE
v SQL_AD_ADD_DOMAIN_CONSTRAINT
v SQL_AD_ADD_DOMAIN_DEFAULT
v SQL_AD_CONSTRAINT_NAME_DEFINITION
v SQL_AD_DROP_DOMAIN_CONSTRAINT
v SQL_AD_DROP_DOMAIN_DEFAULT

SQL_ALTER_TABLE (32-bit mask)
Indicates which clauses in the ALTER TABLE statement are supported by
the DBMS:
v SQL_AT_ADD_COLUMN_COLLATION
v SQL_AT_ADD_COLUMN_DEFAULT
v SQL_AT_ADD_COLUMN_SINGLE

SQLGetInfo function (CLI) - Get general information

182 Call Level Interface Guide and Reference, Volume 2

v SQL_AT_ADD_CONSTRAINT
v SQL_AT_ADD_TABLE_CONSTRAINT
v SQL_AT_CONSTRAINT_NAME_DEFINITION
v SQL_AT_DROP_COLUMN_CASCADE
v SQL_AT_DROP_COLUMN_DEFAULT
v SQL_AT_DROP_COLUMN_RESTRICT
v SQL_AT_DROP_TABLE_CONSTRAINT_CASCADE
v SQL_AT_DROP_TABLE_CONSTRAINT_RESTRICT
v SQL_AT_SET_COLUMN_DEFAULT
v SQL_AT_CONSTRAINT_INITIALLY_DEFERRED
v SQL_AT_CONSTRAINT_INITIALLY_IMMEDIATE
v SQL_AT_CONSTRAINT_DEFERRABLE
v SQL_AT_CONSTRAINT_NON_DEFERRABLE

SQL_APPLICATION_CODEPAGE (32-bit unsigned integer)
Indicates the application code page.

SQL_ASYNC_MODE (32-bit unsigned integer)
Indicates the level of asynchronous support in the driver:
v SQL_AM_CONNECTION : Connection level asynchronous execution is

supported. Either all statement handles that are associated with a given
connection handle are in asynchronous mode, or all are in synchronous
mode. A statement handle that is on a connection cannot be in
asynchronous mode while another statement handle on the same
connection is in synchronous mode, and vice versa.

v SQL_AM_STATEMENT : Statement level asynchronous execution is
supported. Some statement handles that are associated with a connection
handle can be in asynchronous mode, while other statement handles on
the same connection are in synchronous mode.

v SQL_AM_NONE : Asynchronous mode is not supported.
This value is also returned if the CLI/ODBC configuration keyword
ASYNCENABLE is set to disable asynchronous execution.

SQL_BATCH_ROW_COUNT (32-bit mask)
Indicates how row counts are dealt with. CLI always returns
SQL_BRC_ROLLED_UP, which indicates that row counts for consecutive
INSERT, DELETE, or UPDATE statements are rolled into one.

ODBC also defines the values that are not returned by CLI:
v SQL_BRC_PROCEDURES
v SQL_BRC_EXPLICIT

SQL_BATCH_SUPPORT (32-bit mask)
Indicates which levels of batches are supported:
v SQL_BS_SELECT_EXPLICIT : Supports explicit batches that can have

result-set generating statements.
v SQL_BS_ROW_COUNT_EXPLICIT : Supports explicit batches that can

have row-count generating statements.
v SQL_BS_SELECT_PROC : Supports explicit procedures that can have

result-set generating statements.
v SQL_BS_ROW_COUNT_PROC : Supports explicit procedures that can

have row-count generating statements.

SQL_BOOKMARK_PERSISTENCE (32-bit mask)
Indicates when bookmarks remain valid after an operation:
v SQL_BP_CLOSE : After an application calls SQLFreeStmt() with the

SQL_CLOSE option, or SQLCloseCursor() to close the cursor associated
with a statement.

v SQL_BP_DELETE : After that row has been deleted.

SQLGetInfo function (CLI) - Get general information

Chapter 1. CLI and ODBC functions 183

v SQL_BP_DROP : Bookmarks are valid after an application calls
SQLFreeHandle() with a HandleType of SQL_HANDLE_STMT to drop a
statement.

v SQL_BP_TRANSACTION : After an application commits or rolls back a
transaction.

v SQL_BP_UPDATE : After any column in that row has been updated,
including key columns.

v SQL_BP_OTHER_HSTMT : A bookmark that is associated with one
statement can be used with another statement. Unless SQL_BP_CLOSE
or SQL_BP_DROP is specified, the cursor on the first statement must be
open.

SQL_CATALOG_LOCATION (16-bit integer)
A 16-bit integer value that indicates the position of the qualifier in a
qualified table name. CLI always returns SQL_CL_START for this
information type. ODBC also defines the value SQL_CL_END which is not
returned by CLI.

In previous versions of CLI this InfoType argument was
SQL_QUALIFIER_LOCATION.

SQL_CATALOG_NAME (string)
A character string of "Y" indicates that the server supports catalog names.
"N" indicates that catalog names are not supported.

SQL_CATALOG_NAME_SEPARATOR (string)
The character(s) used as a separator between a catalog name and the
qualified name element that follows or precedes it.

In previous versions of CLI this InfoType was
SQL_QUALIFIER_NAME_SEPARATOR.

SQL_CATALOG_TERM (string)
The qualifier (catalog) terminology that is used by the database vendor.

The name that the vendor uses for the high-order part of a three-part
name.

If the target DBMS does not support three-part naming, a zero-length
string is returned.

In previous versions of CLI this InfoType argument was
SQL_QUALIFIER_TERM.

SQL_CATALOG_USAGE (32-bit mask)

A 32-bit mask enumerating the statements in which you can use catalogs.
The SQL_CATALOG_USAGE is similar to SQL_SCHEMA_USAGE, except
that SQL_CATALOG_USAGE is specific for catalogs.
v SQL_CU_DML_STATEMENTS : All data manipulation language (DML)

statements.
v SQL_CU_INDEX_DEFINITION : All index definition statements.
v SQL_CU_PRIVILEGE_DEFINITION : All privilege definition statements.
v SQL_CU_PROCEDURE_INVOCATION : The ODBC procedure

invocation statement.
v SQL_CU_TABLE_DEFINITION : All table definition statements.

A value of 0 is returned if catalogs are not supported by the data source.

In previous versions of CLI, this InfoType argument was
SQL_QUALIFIER_USAGE.

SQLGetInfo function (CLI) - Get general information

184 Call Level Interface Guide and Reference, Volume 2

SQL_COLLATION_SEQ (string)
Indicates the name of the default collation sequence for the default
character set for this server (for example ISO 8859-1 or EBCDIC). If the
collation sequence is unknown, an empty string is returned.

SQL_COLUMN_ALIAS (string)
Returns "Y" if column aliases are supported, or "N" if they are not.

SQL_CONCAT_NULL_BEHAVIOR (16-bit integer)
Indicates how the concatenation of NULL valued character data type
columns with non-NULL valued character data type columns is handled.
v SQL_CB_NULL : A NULL value (this behavior is the case for IBM

RDBMS).
v SQL_CB_NON_NULL : A concatenation of non-NULL column values.

SQL_CONVERT_* (32-bit masks)
SQL_CONVERT_BIGINT (32-bit mask)
SQL_CONVERT_BINARY (32-bit mask)
SQL_CONVERT_BIT (32-bit mask)
SQL_CONVERT_CHAR (32-bit mask)
SQL_CONVERT_DATE (32-bit mask)
SQL_CONVERT_DECIMAL (32-bit mask)
SQL_CONVERT_DOUBLE (32-bit mask)
SQL_CONVERT_FLOAT (32-bit mask)
SQL_CONVERT_INTEGER (32-bit mask)
SQL_CONVERT_INTERVAL_YEAR_MONTH (32-bit mask)
SQL_CONVERT_INTERVAL_DAY_TIME (32-bit mask)
SQL_CONVERT_LONGVARBINARY (32-bit mask)
SQL_CONVERT_LONGVARCHAR (32-bit mask)
SQL_CONVERT_NUMERIC (32-bit mask)
SQL_CONVERT_REAL (32-bit mask)
SQL_CONVERT_SMALLINT (32-bit mask)
SQL_CONVERT_TIME (32-bit mask)
SQL_CONVERT_TIMESTAMP (32-bit mask)
SQL_CONVERT_TINYINT (32-bit mask)
SQL_CONVERT_VARBINARY (32-bit mask)
SQL_CONVERT_VARCHAR (32-bit mask)
SQL_CONVERT_WCHAR (32-bit mask)
SQL_CONVERT_WLONGVARCHAR (32-bit mask)
SQL_CONVERT_WVARCHAR (32-bit mask)

Indicates the conversions that are supported by the data source with the
CONVERT scalar function for data of the type named in the InfoType. If the
bit mask equals zero, the data source does not support any conversions for
the named data type, including conversions to the same data type.
For example, to find out if a data source supports the conversion of
SQL_INTEGER data to the SQL_DECIMAL data type, an application calls
SQLGetInfo() function with the InfoType argument of
SQL_CONVERT_INTEGER. The application then performs AND operation
on the returned bit mask with SQL_CVT_DECIMAL. If the resulting value
is nonzero, the conversion is supported.
The listed bit masks are used to determine which conversions are
supported:
v SQL_CVT_BIGINT
v SQL_CVT_BINARY
v SQL_CVT_BIT
v SQL_CVT_CHAR

SQLGetInfo function (CLI) - Get general information

Chapter 1. CLI and ODBC functions 185

v SQL_CVT_DATE
v SQL_CVT_DECIMAL
v SQL_CVT_DOUBLE
v SQL_CVT_FLOAT
v SQL_CVT_INTEGER
v SQL_CVT_INTERVAL_YEAR_MONTH
v SQL_CVT_INTERVAL_DAY_TIME
v SQL_CVT_LONGVARBINARY
v SQL_CVT_LONGVARCHAR
v SQL_CVT_NUMERIC
v SQL_CVT_REAL
v SQL_CVT_SMALLINT
v SQL_CVT_TIME
v SQL_CVT_TIMESTAMP
v SQL_CVT_TINYINT
v SQL_CVT_VARBINARY
v SQL_CVT_VARCHAR
v SQL_CVT_WCHAR
v SQL_CVT_WLONGVARCHAR
v SQL_CVT_WVARCHAR

SQL_CONNECT_CODEPAGE (32-bit unsigned integer)
Indicates the code page of the current connection.

SQL_CONVERT_FUNCTIONS (32-bit mask)
Indicates the scalar conversion functions that are supported by the driver
and associated data source.

CLI Version 2.1.1 and later supports ODBC scalar conversions between
char variables (CHAR, VARCHAR, LONG VARCHAR, and CLOB) and
DOUBLE (or FLOAT).
v SQL_FN_CVT_CONVERT : Used to determine which conversion

functions are supported.

SQL_CORRELATION_NAME (16-bit integer)
Indicates the degree of correlation name support by the server:
v SQL_CN_ANY : Any valid user-defined name is supported.
v SQL_CN_NONE : Correlation name is not supported.
v SQL_CN_DIFFERENT : Correlation name is supported, but it must be

different than the name of the table that it represents.

SQL_CREATE_ASSERTION (32-bit mask)
Indicates which clauses in the CREATE ASSERTION statement are
supported by the DBMS. CLI always returns zero; the CREATE
ASSERTION statement is not supported.

ODBC also defines the listed values that are not returned by CLI:
v SQL_CA_CREATE_ASSERTION
v SQL_CA_CONSTRAINT_INITIALLY_DEFERRED
v SQL_CA_CONSTRAINT_INITIALLY_IMMEDIATE
v SQL_CA_CONSTRAINT_DEFERRABLE
v SQL_CA_CONSTRAINT_NON_DEFERRABLE

SQL_CREATE_CHARACTER_SET (32-bit mask)
Indicates which clauses in the CREATE CHARACTER SET statement are
supported by the DBMS. CLI always returns zero; the CREATE
CHARACTER SET statement is not supported.

ODBC also defines the listed values that are not returned by CLI:
v SQL_CCS_CREATE_CHARACTER_SET

SQLGetInfo function (CLI) - Get general information

186 Call Level Interface Guide and Reference, Volume 2

v SQL_CCS_COLLATE_CLAUSE
v SQL_CCS_LIMITED_COLLATION

SQL_CREATE_COLLATION (32-bit mask)
Indicates which clauses in the CREATE COLLATION statement are
supported by the DBMS. CLI always returns zero; the CREATE
COLLATION statement is not supported.

ODBC also defines the listed values that are not returned by CLI:
v SQL_CCOL_CREATE_COLLATION

SQL_CREATE_DOMAIN (32-bit mask)
Indicates which clauses in the CREATE DOMAIN statement are supported
by the DBMS. CLI always returns zero; the CREATE DOMAIN statement is
not supported.

ODBC also defines the listed values that are not returned by CLI:
v SQL_CDO_CREATE_DOMAIN
v SQL_CDO_CONSTRAINT_NAME_DEFINITION
v SQL_CDO_DEFAULT
v SQL_CDO_CONSTRAINT
v SQL_CDO_COLLATION
v SQL_CDO_CONSTRAINT_INITIALLY_DEFERRED
v SQL_CDO_CONSTRAINT_INITIALLY_IMMEDIATE
v SQL_CDO_CONSTRAINT_DEFERRABLE
v SQL_CDO_CONSTRAINT_NON_DEFERRABLE

SQL_CREATE_MODULE (32-bit mask)
Indicates which clauses in the CREATE MODULE statement are supported
by the DBMS.CLI always returns zero for z/OS.

CLI returns the listed values:
v SQL_CM_CREATE_MODULE
v SQL_CM_AUTHORIZATION
v SQL_CM_DEFAULT_CHARACTER_SET

SQL_CREATE_SCHEMA (32-bit mask)
Indicates which clauses in the CREATE SCHEMA statement are supported
by the DBMS:
v SQL_CS_CREATE_SCHEMA
v SQL_CS_AUTHORIZATION
v SQL_CS_DEFAULT_CHARACTER_SET

SQL_CREATE_TABLE (32-bit mask)
Indicates which clauses in the CREATE TABLE statement are supported by
the DBMS.

The lilsted bit masks are used to determine which clauses are supported:
v SQL_CT_CREATE_TABLE
v SQL_CT_TABLE_CONSTRAINT
v SQL_CT_CONSTRAINT_NAME_DEFINITION

The listed bits specify the ability to create temporary tables:
v SQL_CT_COMMIT_PRESERVE : Deleted rows are preserved on commit.
v SQL_CT_COMMIT_DELETE : Deleted rows are deleted on commit.
v SQL_CT_GLOBAL_TEMPORARY : Global temporary tables can be

created.
v SQL_CT_LOCAL_TEMPORARY : Local temporary tables can be created.

The listed bits specify the ability to create column constraints:

SQLGetInfo function (CLI) - Get general information

Chapter 1. CLI and ODBC functions 187

v SQL_CT_COLUMN_CONSTRAINT : Specifying column constraints is
supported.

v SQL_CT_COLUMN_DEFAULT : Specifying column defaults is
supported.

v SQL_CT_COLUMN_COLLATION : Specifying column collation is
supported.

The listed bits specify the supported constraint attributes, if specifying
column or table constraints is supported:
v SQL_CT_CONSTRAINT_INITIALLY_DEFERRED
v SQL_CT_CONSTRAINT_INITIALLY_IMMEDIATE
v SQL_CT_CONSTRAINT_DEFERRABLE
v SQL_CT_CONSTRAINT_NON_DEFERRABLE

SQL_CREATE_TRANSLATION (32-bit mask)
Indicates which clauses in the CREATE TRANSLATION statement are
supported by the DBMS. CLI always returns zero; the CREATE
TRANSLATION statement is not supported.

ODBC also defines the listed value that is not returned by CLI:
v SQL_CTR_CREATE_TRANSLATION

SQL_CREATE_VIEW (32-bit mask)
Indicates which clauses in the CREATE VIEW statement are supported by
the DBMS:
v SQL_CV_CREATE_VIEW
v SQL_CV_CHECK_OPTION
v SQL_CV_CASCADED
v SQL_CV_LOCAL

A return value of 0 means that the CREATE VIEW statement is not
supported.

SQL_CURSOR_COMMIT_BEHAVIOR (16-bit integer)
Indicates how a COMMIT operation affects cursors. A value of:
v SQL_CB_DELETE, deletes cursors and drops access plans for dynamic

SQL statements.
v SQL_CB_CLOSE, deletes cursors, but retains access plans for dynamic

SQL statements (including non-query statements)
v SQL_CB_PRESERVE, retains cursors and access plans for dynamic

statements (including non-query statements). Applications can continue
to fetch data, or close the cursor and re-execute the query without
preparing again the statement.

Note: After COMMIT, a FETCH must be issued to reposition the cursor
before actions such as positioned updates or deletes can be taken.

SQL_CURSOR_ROLLBACK_BEHAVIOR (16-bit integer)
Indicates how a ROLLBACK operation affects cursors. A value of:
v SQL_CB_DELETE, deletes cursors and drops access plans for dynamic

SQL statements.
v SQL_CB_CLOSE, deletes cursors, but retains access plans for dynamic

SQL statements (including non-query statements)
v SQL_CB_PRESERVE, retains cursors and access plans for dynamic

statements (including non-query statements). Applications can continue
to fetch data, or close the cursor and re-execute the query without
preparing again the statement.

Note: DB2 servers do not have the SQL_CB_PRESERVE property.

SQLGetInfo function (CLI) - Get general information

188 Call Level Interface Guide and Reference, Volume 2

SQL_CURSOR_SENSITIVITY (32-bit unsigned integer)
Indicates support for cursor sensitivity:
v SQL_INSENSITIVE, all cursors on the statement handle show the result

set without reflecting any changes made to it by any other cursor within
the same transaction.

v SQL_UNSPECIFIED, it is unspecified whether cursors on the statement
handle make visible the changes made to a result set by another cursor
within the same transaction. Cursors on the statement handle might
make visible none, some, or all such changes.

v SQL_SENSITIVE, cursors are sensitive to changes made by other cursors
within the same transaction.

SQL_DATA_SOURCE_NAME (string)
Indicates the data source name used during connection. If the application
called SQLConnect(), this character string is the value of the szDSN
argument. If the application called SQLDriverConnect() or
SQLBrowseConnect(), this character string is the value of the DSN keyword
in the connection string passed to the driver. If the connection string did
not contain the DSN keyword, this character string is an empty string.

SQL_DATA_SOURCE_READ_ONLY (string)
A character string of "Y" indicates that the database is set to READ ONLY
mode, "N" indicates that is not set to READ ONLY mode. This
characteristic pertains only to the data source itself; it is not characteristic
of the driver that enables access to the data source.

SQL_DATABASE_CODEPAGE (32-bit unsigned integer)
Indicates the code page of the database that the application is currently
connected to.

SQL_DATABASE_NAME (string)
The name of the current database in use

Note: This string is the same as that returned by the SELECT CURRENT
SERVER statement on non-host systems. For host databases, such as DB2
for z/OS or DB2 for i, the string returned is the DCS database name. This
database name was provided when the CATALOG DCS DATABASE
DIRECTORY command was issued at the DB2 Connect gateway.

SQL_DATETIME_LITERALS (32-bit unsigned integer)
Indicates the datetime literals that are supported by the DBMS. CLI always
returns zero; datetime literals are not supported.

ODBC also defines the listed values that are not returned by CLI:
v SQL_DL_SQL92_DATE
v SQL_DL_SQL92_TIME
v SQL_DL_SQL92_TIMESTAMP
v SQL_DL_SQL92_INTERVAL_YEAR
v SQL_DL_SQL92_INTERVAL_MONTH
v SQL_DL_SQL92_INTERVAL_DAY
v SQL_DL_SQL92_INTERVAL_HOUR
v SQL_DL_SQL92_INTERVAL_MINUTE
v SQL_DL_SQL92_INTERVAL_SECOND
v SQL_DL_SQL92_INTERVAL_YEAR_TO_MONTH
v SQL_DL_SQL92_INTERVAL_DAY_TO_HOUR
v SQL_DL_SQL92_INTERVAL_DAY_TO_MINUTE
v SQL_DL_SQL92_INTERVAL_DAY_TO_SECOND
v SQL_DL_SQL92_INTERVAL_HOUR_TO_MINUTE

SQLGetInfo function (CLI) - Get general information

Chapter 1. CLI and ODBC functions 189

v SQL_DL_SQL92_INTERVAL_HOUR_TO_SECOND
v SQL_DL_SQL92_INTERVAL_MINUTE_TO_SECOND

SQL_DBMS_NAME (string)
The name of the DBMS product being accessed

For example:
v "DB2/6000"
v "DB2/2"

SQL_DBMS_VER (string)
The Version of the DBMS product accessed. A string of the form
'mm.vv.rrrr' where mm is the major version, vv is the minor version, and
rrrr is the release number. For example, "0r.01.0000" translates to major
version r, minor version 1, release 0.

SQL_DDL_INDEX (32-bit unsigned integer)
Indicates support for the creation and dropping of indexes:
v SQL_DI_CREATE_INDEX
v SQL_DI_DROP_INDEX

SQL_DEFAULT_TXN_ISOLATION (32-bit mask)
The default transaction isolation level supported

One of the lilsted masks are returned:
v SQL_TXN_READ_UNCOMMITTED : Changes are immediately

perceived by all transactions (dirty read, non-repeatable read, and
phantoms are possible).
This behavior is equivalent to Uncommitted Read level for IBM
databases.

v SQL_TXN_READ_COMMITTED : Row read by transaction 1 can be
altered and committed by transaction 2 (non-repeatable read and
phantoms are possible)
This behavior is equivalent to Cursor Stability level in IBM databases.

v SQL_TXN_REPEATABLE_READ : A transaction can add or remove rows
matching the search condition or a pending transaction (repeatable read,
but phantoms are possible)
This behavior is equivalent to Read Stability level in IBM databases.

v SQL_TXN_SERIALIZABLE : Data affected by pending transaction is not
available to other transactions (repeatable read, phantoms are not
possible)
This behavior is equivalent to Repeatable Read level in IBM databases.

v SQL_TXN_VERSIONING : Not applicable to IBM DBMSs.
v SQL_TXN_NOCOMMIT : Any changes are effectively committed at the

end of a successful operation; no explicit commit or rollback is allowed.
This is a IBM DB2 for IBM i isolation level.

In IBM terminology,
v SQL_TXN_READ_UNCOMMITTED is Uncommitted Read;
v SQL_TXN_READ_COMMITTED is Cursor Stability;
v SQL_TXN_REPEATABLE_READ is Read Stability;
v SQL_TXN_SERIALIZABLE is Repeatable Read.

SQL_DESCRIBE_PARAMETER (string)
"Y" if parameters can be described; "N" if not.

SQL_DM_VER (string)
Reserved.

SQLGetInfo function (CLI) - Get general information

190 Call Level Interface Guide and Reference, Volume 2

SQL_DRIVER_BLDLEVEL
Build level information about the current version of CLI.

The information is in the listed format: sYYMMDD, where YY is the year
of the build, MM is the month and DD is the day. For example, s100610.

For special builds, the format is: special_JOBID, where JOBID is the special
build's job identification. For example, special_39899.

For full version information, use SQL_DRIVER_BLDLEVEL with
SQL_DRIVER_VER.

SQL_DRIVER_HDBC (32 bits)
CLI's database handle

SQL_DRIVER_HDESC (32 bits)
CLI's descriptor handle

SQL_DRIVER_HENV (32 bits)
CLI's environment handle

SQL_DRIVER_HLIB (32 bits)
Reserved.

SQL_DRIVER_HSTMT (32 bits)
CLI's statement handle

In an ODBC environment with an ODBC Driver Manager, if InfoType is set
to SQL_DRIVER_HSTMT, the Driver Manager statement handle (the one
returned from SQLAllocStmt()) must be passed on input in rgbInfoValue
from the application. In this case rgbInfoValue is both an input and an
output argument. The ODBC Driver Manager is responsible for returning
the mapped value. ODBC applications wishing to call CLI specific
functions (such as the LOB functions) can access them, by passing these
handle values to the functions after loading the CLI library and issuing an
operating system function call to invoke the desired functions.

SQL_DRIVER_NAME (string)
The file name of the CLI implementation.

SQL_DRIVER_ODBC_VER (string)
The version number of ODBC that CLI supports. By Default CLI returns
“03.51”. You can call the SQLSetEnvAttr() function to change the ODBC
driver version. If you set the SQL_ATTR_ODBC_VERSION attribute to
SQL_OV_ODBC3_80 (value 380), CLI returns “03.80”.

SQL_DRIVER_VER (string)
The version of the IBM Data Server Driver for ODBC and CLI. A string of
the form 'mm.vv.rrrr' where mm is the major version, vv is the minor
version, and rrrr is the release. For example, "05.01.0000" translates to
major version 5, minor version 1, release 0. For full version information,
use SQL_DRIVER_VER with SQL_DRIVER_BLDLEVEL.

SQL_DROP_ASSERTION (32-bit unsigned integer)
Indicates which clause in the DROP ASSERTION statement is supported by
the DBMS. CLI always returns zero; the DROP ASSERTION statement is
not supported.

ODBC also defines the SQL_DA_DROP_ASSERTION value that is not returned
by CLI.

SQLGetInfo function (CLI) - Get general information

Chapter 1. CLI and ODBC functions 191

SQL_DROP_CHARACTER_SET (32-bit unsigned integer)
Indicates which clause in the DROP CHARACTER SET statement is
supported by the DBMS. CLI always returns zero; the DROP CHARACTER
SET statement is not supported.

ODBC also defines the SQL_DCS_DROP_CHARACTER_SET value that is not
returned by CLI.

SQL_DROP_COLLATION (32-bit unsigned integer)
Indicates which clause in the DROP COLLATION statement is supported
by the DBMS. CLI always returns zero; the DROP COLLATION statement
is not supported.

ODBC also defines the SQL_DC_DROP_COLLATION value that is not returned
by CLI.

SQL_DROP_DOMAIN (32-bit unsigned integer)
Indicates which clauses in the DROP DOMAIN statement are supported by
the DBMS. CLI always returns zero; the DROP DOMAIN statement is not
supported.

ODBC also defines the listed values that are not returned by CLI:
v SQL_DD_DROP_DOMAIN
v SQL_DD_CASCADE
v SQL_DD_RESTRICT

SQL_DROP_MODULE (32-bit unsigned integer)
Indicates which clauses in the DROP MODULE statement are supported by
the DBMS. CLI always returns zero for DB2 for z/OS.

CLI returns the listed values:
v SQL_DM_DROP_MODULE
v SQL_DM_RESTRICT

SQL_DROP_SCHEMA (32-bit unsigned integer)
Indicates which clauses in the DROP SCHEMA statement are supported by
the DBMS. CLI always returns zero; the DROP SCHEMA statement is not
supported.

ODBC also defines the listed values that are not returned by CLI:
v SQL_DS_CASCADE
v SQL_DS_RESTRICT

SQL_DROP_TABLE (32-bit unsigned integer)
Indicates which clauses in the DROP TABLE statement are supported by
the DBMS. Valid returned values are:
v SQL_DT_DROP_TABLE
v SQL_DT_CASCADE
v SQL_DT_RESTRICT

SQL_DROP_TRANSLATION (32-bit unsigned integer)
Indicates which clauses in the DROP TRANSLATION statement are
supported by the DBMS. CLI always returns zero; the DROP
TRANSLATION statement is not supported.

ODBC also defines the listed value that is not returned by CLI:
v SQL_DTR_DROP_TRANSLATION

SQL_DROP_VIEW (32-bit unsigned integer)
Indicates which clauses in the DROP VIEW statement are supported by the
DBMS. CLI always returns zero; the DROP VIEW statement is not
supported.

SQLGetInfo function (CLI) - Get general information

192 Call Level Interface Guide and Reference, Volume 2

ODBC also defines the listed values that are not returned by CLI:
v SQL_DV_CASCADE
v SQL_DV_RESTRICT

SQL_DTC_TRANSITION_COST (32-bit unsigned mask)
Used by Microsoft Transaction Server to determine whether the enlistment
process for a connection is expensive. CLI returns:
v SQL_DTC_ENLIST_EXPENSIVE
v SQL_DTC_UNENLIST_EXPENSIVE

SQL_DYNAMIC_CURSOR_ATTRIBUTES1 (32-bit mask)
Indicates the attributes of a dynamic cursor that are supported by CLI
(subset 1 of 2). Valid returned values are:
v SQL_CA1_NEXT
v SQL_CA1_ABSOLUTE
v SQL_CA1_RELATIVE
v SQL_CA1_BOOKMARK
v SQL_CA1_LOCK_EXCLUSIVE
v SQL_CA1_LOCK_NO_CHANGE
v SQL_CA1_LOCK_UNLOCK
v SQL_CA1_POS_POSITION
v SQL_CA1_POS_UPDATE
v SQL_CA1_POS_DELETE
v SQL_CA1_POS_REFRESH
v SQL_CA1_POSITIONED_UPDATE
v SQL_CA1_POSITIONED_DELETE
v SQL_CA1_SELECT_FOR_UPDATE
v SQL_CA1_BULK_ADD
v SQL_CA1_BULK_UPDATE_BY_BOOKMARK
v SQL_CA1_BULK_DELETE_BY_BOOKMARK
v SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_DYNAMIC_CURSOR_ATTRIBUTES2 (32-bit mask)
Indicates the attributes of a dynamic cursor that are supported by CLI
(subset 2 of 2). Valid returned values are:
v SQL_CA2_READ_ONLY_CONCURRENCY
v SQL_CA2_LOCK_CONCURRENCY
v SQL_CA2_OPT_ROWVER_CONCURRENCY
v SQL_CA2_OPT_VALUES_CONCURRENCY
v SQL_CA2_SENSITIVITY_ADDITIONS
v SQL_CA2_SENSITIVITY_DELETIONS
v SQL_CA2_SENSITIVITY_UPDATES
v SQL_CA2_MAX_ROWS_SELECT
v SQL_CA2_MAX_ROWS_INSERT
v SQL_CA2_MAX_ROWS_DELETE
v SQL_CA2_MAX_ROWS_UPDATE
v SQL_CA2_MAX_ROWS_CATALOG
v SQL_CA2_MAX_ROWS_AFFECTS_ALL
v SQL_CA2_CRC_EXACT
v SQL_CA2_CRC_APPROXIMATE
v SQL_CA2_SIMULATE_NON_UNIQUE
v SQL_CA2_SIMULATE_TRY_UNIQUE
v SQL_CA2_SIMULATE_UNIQUE

SQL_EXPRESSIONS_IN_ORDERBY (string)
The character string "Y" indicates that the database server supports the
DIRECT specification of expressions in the ORDER BY list, "N" indicates
that it does not.

SQLGetInfo function (CLI) - Get general information

Chapter 1. CLI and ODBC functions 193

SQL_FETCH_DIRECTION (32-bit mask)
The supported fetch directions.

The listed bit masks are used with the flag to determine which options are
supported:
v SQL_FD_FETCH_NEXT
v SQL_FD_FETCH_FIRST
v SQL_FD_FETCH_LAST
v SQL_FD_FETCH_PREV
v SQL_FD_FETCH_ABSOLUTE
v SQL_FD_FETCH_RELATIVE
v SQL_FD_FETCH_RESUME

SQL_FILE_USAGE (16-bit integer)
Indicates how a single-tier driver directly treats files in a data source. The
IBM Data Server Driver for ODBC and CLI driver is not a single-tier
driver, and therefore always returns SQL_FILE_NOT_SUPPORTED.

ODBC also defines the listed values that are not returned by CLI:
v SQL_FILE_TABLE
v SQL_FILE_CATALOG

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1 (32-bit mask)
Indicates the attributes of a forward-only cursor that are supported by CLI.
Valid returned values are (subset 1 of 2):
v SQL_CA1_NEXT
v SQL_CA1_POSITIONED_UPDATE
v SQL_CA1_POSITIONED_DELETE
v SQL_CA1_SELECT_FOR_UPDATE
v SQL_CA1_LOCK_EXCLUSIVE
v SQL_CA1_LOCK_NO_CHANGE
v SQL_CA1_LOCK_UNLOCK
v SQL_CA1_POS_POSITION
v SQL_CA1_POS_UPDATE
v SQL_CA1_POS_DELETE
v SQL_CA1_POS_REFRESH
v SQL_CA1_BULK_ADD
v SQL_CA1_BULK_UPDATE_BY_BOOKMARK
v SQL_CA1_BULK_DELETE_BY_BOOKMARK
v SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES2 (32-bit mask)
Indicates the attributes of a forward-only cursor that are supported by CLI.
Valid returned values are (subset 2 of 2):
v SQL_CA2_READ_ONLY_CONCURRENCY
v SQL_CA2_LOCK_CONCURRENCY
v SQL_CA2_MAX_ROWS_SELECT
v SQL_CA2_MAX_ROWS_CATALOG
v SQL_CA2_OPT_ROWVER_CONCURRENCY
v SQL_CA2_OPT_VALUES_CONCURRENCY
v SQL_CA2_SENSITIVITY_ADDITIONS
v SQL_CA2_SENSITIVITY_DELETIONS
v SQL_CA2_SENSITIVITY_UPDATES
v SQL_CA2_MAX_ROWS_INSERT
v SQL_CA2_MAX_ROWS_DELETE
v SQL_CA2_MAX_ROWS_UPDATE
v SQL_CA2_MAX_ROWS_AFFECTS_ALL
v SQL_CA2_CRC_EXACT

SQLGetInfo function (CLI) - Get general information

194 Call Level Interface Guide and Reference, Volume 2

v SQL_CA2_CRC_APPROXIMATE
v SQL_CA2_SIMULATE_NON_UNIQUE
v SQL_CA2_SIMULATE_TRY_UNIQUE
v SQL_CA2_SIMULATE_UNIQUE

SQL_GETDATA_EXTENSIONS (32-bit mask)
Indicates whether extensions to the SQLGetData() function are supported.
The listed extensions are currently identified and supported by CLI:
v SQL_GD_ANY_COLUMN, SQLGetData() can be called for unbound

columns that precede the last bound column.
v SQL_GD_ANY_ORDER, SQLGetData() can be called for columns in any

order.

ODBC also defines the listed extensions which are not returned by CLI:
v SQL_GD_BLOCK
v SQL_GD_BOUND

SQL_GROUP_BY (16-bit integer)
Indicates the degree of support for the GROUP BY clause by the server.
Valid returned values are:
v SQL_GB_NO_RELATION - No relationship between the columns in the

GROUP BY clause and in the SELECT list.
v SQL_GB_NOT_SUPPORTED - GROUP BY clause not supported.
v SQL_GB_GROUP_BY_EQUALS_SELECT - GROUP BY clause must

include all non-aggregated columns in the SELECT list.
v SQL_GB_GROUP_BY_CONTAINS_SELECT - GROUP BY clause must

contain all non-aggregated columns in the SELECT list.
v SQL_GB_COLLATE - COLLATE clause can be specified at the end of

each grouping column.

SQL_IDENTIFIER_CASE (16-bit integer)
Indicates the case sensitivity of object names (such as table-name).

Valid returned values are::
v SQL_IC_UPPER : Stored in uppercase.
v SQL_IC_LOWER : Stored in lowercase.
v SQL_IC_SENSITIVE : Case sensitive, stored in mixed-case.
v SQL_IC_MIXED : Not case sensitive, stored in mixed-case.

Note: Identifier names in IBM DBMSs are not case sensitive.

SQL_IDENTIFIER_QUOTE_CHAR (string)
Indicates the character that is used to surround a delimited identifier.

SQL_INDEX_KEYWORDS (32-bit mask)
Indicates the supported keywords for the CREATE INDEX statement. Valid
returned values are:
v SQL_IK_NONE - None of the keywords are supported.
v SQL_IK_ASC - ASC keyword is supported.
v SQL_IK_DESC - DESC keyword is supported.
v SQL_IK_ALL - All keywords are supported.

To see if the CREATE INDEX statement is supported, an application can
call the SQLGetInfo() function with the SQL_DLL_INDEX InfoType
argument.

SQL_INFO_SCHEMA_VIEWS (32-bit mask)
Indicates the views in the INFORMATION_SCHEMA that are supported.
CLI always returns zero; no views in the INFORMATION_SCHEMA are
supported.

SQLGetInfo function (CLI) - Get general information

Chapter 1. CLI and ODBC functions 195

ODBC also defines the listed values that are not returned by CLI:
v SQL_ISV_ASSERTIONS
v SQL_ISV_CHARACTER_SETS
v SQL_ISV_CHECK_CONSTRAINTS
v SQL_ISV_COLLATIONS
v SQL_ISV_COLUMN_DOMAIN_USAGE
v SQL_ISV_COLUMN_PRIVILEGES
v SQL_ISV_COLUMNS
v SQL_ISV_CONSTRAINT_COLUMN_USAGE
v SQL_ISV_CONSTRAINT_TABLE_USAGE
v SQL_ISV_DOMAIN_CONSTRAINTS
v SQL_ISV_DOMAINS
v SQL_ISV_KEY_COLUMN_USAGE
v SQL_ISV_REFERENTIAL_CONSTRAINTS
v SQL_ISV_SCHEMATA
v SQL_ISV_SQL_LANGUAGES
v SQL_ISV_TABLE_CONSTRAINTS
v SQL_ISV_TABLE_PRIVILEGES
v SQL_ISV_TABLES
v SQL_ISV_TRANSLATIONS
v SQL_ISV_USAGE_PRIVILEGES
v SQL_ISV_VIEW_COLUMN_USAGE
v SQL_ISV_VIEW_TABLE_USAGE
v SQL_ISV_VIEWS

SQL_INSERT_STATEMENT (32-bit mask)
Indicates support for INSERT statements. Valid returned values are:
v SQL_IS_INSERT_LITERALS
v SQL_IS_INSERT_SEARCHED
v SQL_IS_SELECT_INTO

SQL_INTEGRITY (string)
The "Y" character string indicates that the data source supports Integrity
Enhanced Facility (IEF) in SQL89 and in X/Open XPG4 Embedded SQL, an
"N" indicates it does not.

In previous versions of CLI this InfoType argument was
SQL_ODBC_SQL_OPT_IEF.

SQL_KEYSET_CURSOR_ATTRIBUTES1 (32-bit mask)
Indicates the attributes of a keyset-driven cursor that are supported by
CLI. Valid returned values are (subset 1 of 2):
v SQL_CA1_NEXT
v SQL_CA1_ABSOLUTE
v SQL_CA1_RELATIVE
v SQL_CA1_BOOKMARK
v SQL_CA1_LOCK_EXCLUSIVE
v SQL_CA1_LOCK_NO_CHANGE
v SQL_CA1_LOCK_UNLOCK
v SQL_CA1_POS_POSITION
v SQL_CA1_POS_UPDATE
v SQL_CA1_POS_DELETE
v SQL_CA1_POS_REFRESH
v SQL_CA1_POSITIONED_UPDATE
v SQL_CA1_POSITIONED_DELETE
v SQL_CA1_SELECT_FOR_UPDATE
v SQL_CA1_BULK_ADD
v SQL_CA1_BULK_UPDATE_BY_BOOKMARK

SQLGetInfo function (CLI) - Get general information

196 Call Level Interface Guide and Reference, Volume 2

v SQL_CA1_BULK_DELETE_BY_BOOKMARK
v SQL_CA1_BULK_FETCH_BY_BOOKMARK

SQL_KEYSET_CURSOR_ATTRIBUTES2 (32-bit mask)
Indicates the attributes of a keyset-driven cursor that are supported by
CLI. Valid returned values are (subset 2 of 2):
v SQL_CA2_READ_ONLY_CONCURRENCY
v SQL_CA2_LOCK_CONCURRENCY
v SQL_CA2_OPT_ROWVER_CONCURRENCY
v SQL_CA2_OPT_VALUES_CONCURRENCY
v SQL_CA2_SENSITIVITY_ADDITIONS
v SQL_CA2_SENSITIVITY_DELETIONS
v SQL_CA2_SENSITIVITY_UPDATES
v SQL_CA2_MAX_ROWS_SELECT
v SQL_CA2_MAX_ROWS_INSERT
v SQL_CA2_MAX_ROWS_DELETE
v SQL_CA2_MAX_ROWS_UPDATE
v SQL_CA2_MAX_ROWS_CATALOG
v SQL_CA2_MAX_ROWS_AFFECTS_ALL
v SQL_CA2_CRC_EXACT
v SQL_CA2_CRC_APPROXIMATE
v SQL_CA2_SIMULATE_NON_UNIQUE
v SQL_CA2_SIMULATE_TRY_UNIQUE
v SQL_CA2_SIMULATE_UNIQUE

SQL_KEYWORDS (string)
Indicates a comma-separated list of all data source-specific keywords. This
character string is a list of all reserved keywords. Interoperable
applications should not use these keywords in object names. This list does
not contain keywords specific to ODBC or keywords that are used by both
the data source and ODBC.

SQL_LIKE_ESCAPE_CLAUSE (string)
Indicates whether the data source supports an escape character for the
percent character (%) and underscore (_) character in a LIKE predicate.
Also, it indicates that the driver supports the ODBC syntax for defining a
LIKE predicate escape character.
v "Y" indicates that there is support for escape characters in a LIKE

predicate.
v "N" indicates that there is no support for escape characters in a LIKE

predicate.

SQL_LOCK_TYPES (32-bit mask)
Reserved option, zero is returned for the bit-mask.

SQL_MAX_ASYNC_CONCURRENT_STATEMENTS (32-bit unsigned integer)
The maximum number of active concurrent statements in asynchronous
mode that CLI can support on a given connection. This value is zero if
there is no specific limit, or the limit is unknown.

SQL_MAX_BINARY_LITERAL_LEN (32-bit unsigned integer)
A 32-bit unsigned integer value specifying the maximum length (number
of hexadecimal characters, excluding the literal prefix and suffix returned
by SQLGetTypeInfo()) of a binary literal in an SQL statement. For example,
the binary literal 0xFFAA has a length of 4. If there is no maximum length
or the length is unknown, this value is set to zero.

SQLGetInfo function (CLI) - Get general information

Chapter 1. CLI and ODBC functions 197

SQL_MAX_CATALOG_NAME_LEN (16-bit integer)
The maximum length of a catalog name in the data source. This value is
zero if there is no maximum length, or the length is unknown.

In previous versions of CLI this fInfoType argument was
SQL_MAX_QUALIFIER_NAME_LEN.

SQL_MAX_CHAR_LITERAL_LEN (32-bit unsigned integer)
The maximum length of a character literal in an SQL statement (in bytes).
Zero if there is no limit.

SQL_MAX_COLUMN_NAME_LEN (16-bit integer)
The maximum length of a column name (in bytes). Zero if there is no limit.

SQL_MAX_COLUMNS_IN_GROUP_BY (16-bit integer)
Indicates the maximum number of columns that the server supports in a
GROUP BY clause. Zero if there is no limit.

SQL_MAX_COLUMNS_IN_INDEX (16-bit integer)
Indicates the maximum number of columns that the server supports in an
index. Zero if there is no limit.

SQL_MAX_COLUMNS_IN_ORDER_BY (16-bit integer)
Indicates the maximum number of columns that the server supports in an
ORDER BY clause. Zero if there is no limit.

SQL_MAX_COLUMNS_IN_SELECT (16-bit integer)
Indicates the maximum number of columns that the server supports in a
SELECT list. Zero if there no limit.

SQL_MAX_COLUMNS_IN_TABLE (16-bit integer)
Indicates the maximum number of columns that the server supports in a
base table. Zero if there is no limit.

SQL_MAX_CONCURRENT_ACTIVITIES (16-bit integer)
The maximum number of active environments that CLI can support. If
there is no specified limit or the limit is unknown, this value is set to zero.

In previous versions of CLI this InfoType argument
SQL_ACTIVE_ENVIRONMENTS.

SQL_MAX_CURSOR_NAME_LEN (16-bit integer)
The maximum length of a cursor name (in bytes). This value is zero if
there is no maximum length, or the length is unknown.

SQL_MAX_DRIVER_CONNECTIONS (16-bit integer)
The maximum number of active connections that are supported per
application.

If the limit is dependent on system resources, zero is returned.

In previous versions of CLI this InfoType argument was
SQL_ACTIVE_CONNECTIONS.

SQL_MAX_IDENTIFIER_LEN (16-bit integer)
The maximum size (in characters) that the data source supports for
user-defined names.

SQL_MAX_INDEX_SIZE (32-bit unsigned integer)
Indicates the maximum size in bytes that the server supports for the
combined columns in an index. Zero if no limit.

SQL_MAX_MODULE_NAME_LEN (16-bit integer)
Indicates the maximum length in bytes of a module qualifier name.

SQLGetInfo function (CLI) - Get general information

198 Call Level Interface Guide and Reference, Volume 2

SQL_MAX_PROCEDURE_NAME_LEN (16-bit integer)
The maximum length of a procedure name (in bytes).

SQL_MAX_ROW_SIZE (32-bit unsigned integer)
Specifies the maximum length in bytes that the server supports in single
row of a base table. Zero if there is no limit.

SQL_MAX_ROW_SIZE_INCLUDES_LONG (string)
Set to "Y" to indicate that the value that is returned by
SQL_MAX_ROW_SIZE InfoType argument includes the length of
product-specific long string data types. Otherwise, set to "N".

SQL_MAX_SCHEMA_NAME_LEN (16-bit integer)
The maximum length of a schema qualifier name (in bytes).

In previous versions of CLI this fInfoType argument was
SQL_MAX_OWNER_NAME_LEN.

SQL_MAX_STATEMENT_LEN (32-bit unsigned integer)
Indicates the maximum length of an SQL statement string in bytes,
including the number of white spaces in the statement.

SQL_MAX_TABLE_NAME_LEN (16-bit integer)
The maximum length of a table name (in bytes).

SQL_MAX_TABLES_IN_SELECT (16-bit integer)
Indicates the maximum number of table names in a FROM clause in a
<query specification>.

SQL_MAX_USER_NAME_LEN (16-bit integer)
Indicates the maximum size for a <user identifier> (in bytes).

SQL_MODULE_USAGE (32-bit mask)
Indicates the type of SQL statements that have a module associated with
them when these statements are executed. CLI always returns zero for
z/OS.

SQL_MU_PROCEDURE_INVOCATION is supported in the procedure
invocation statement.

SQL_MULT_RESULT_SETS (string)
The character string "Y" indicates that the database supports multiple result
sets, "N" indicates that it does not.

SQL_MULTIPLE_ACTIVE_TXN (string)
Indicates whether active transactions on multiple connections are
permitted.
v "Y" indicates that multiple connections can have active transactions.
v "N" indicates that only one connection at a time can have an active

transaction.CLI returns "N" for coordinated distributed unit of work
(CONNECT TYPE 2) connections, (since the transaction or Unit Of Work
spans all connections), and returns "Y" for all other connections.

SQL_NEED_LONG_DATA_LEN (string)
Indicates that a character string is reserved for the use of ODBC. “N” is
always returned.

SQL_NON_NULLABLE_COLUMNS (16-bit integer)
Indicates whether non-nullable columns are supported. Valid returned
values are:
v SQL_NNC_NON_NULL - Can be defined as NOT NULL.
v SQL_NNC_NULL - Cannot be defined as NOT NULL.

SQLGetInfo function (CLI) - Get general information

Chapter 1. CLI and ODBC functions 199

SQL_NULL_COLLATION (16-bit integer)
Indicates where NULLs are sorted in a result set. Valid returned values are:
v SQL_NC_HIGH - Null values sort high.
v SQL_NC_LOW - Null values sort low.

SQL_NUMERIC_FUNCTIONS (32-bit mask)
Indicates that the ODBC scalar numeric functions are supported. These
functions are intended to be used with the ODBC vendor escape sequence.

The listed bit-masks are used to determine which numeric functions are
supported:
v SQL_FN_NUM_ABS
v SQL_FN_NUM_ACOS
v SQL_FN_NUM_ASIN
v SQL_FN_NUM_ATAN
v SQL_FN_NUM_ATAN2
v SQL_FN_NUM_CEILING
v SQL_FN_NUM_COS
v SQL_FN_NUM_COT
v SQL_FN_NUM_DEGREES
v SQL_FN_NUM_EXP
v SQL_FN_NUM_FLOOR
v SQL_FN_NUM_LOG
v SQL_FN_NUM_LOG10
v SQL_FN_NUM_MOD
v SQL_FN_NUM_PI
v SQL_FN_NUM_POWER
v SQL_FN_NUM_RADIANS
v SQL_FN_NUM_RAND
v SQL_FN_NUM_ROUND
v SQL_FN_NUM_SIGN
v SQL_FN_NUM_SIN
v SQL_FN_NUM_SQRT
v SQL_FN_NUM_TAN
v SQL_FN_NUM_TRUNCATE

SQL_ODBC_API_CONFORMANCE (16-bit integer)
Indicates the level of ODBC conformance. Valid returned values are:
v SQL_OAC_NONE
v SQL_OAC_LEVEL1
v SQL_OAC_LEVEL2

SQL_ODBC_INTERFACE_CONFORMANCE (32-bit unsigned integer)
Indicates the level of the ODBC 3.0 interface that CLI conforms to:
v SQL_OIC_CORE : The minimum level that all ODBC drivers are

expected to conform to. This level includes basic interface elements such
as connection functions; functions for preparing and executing an SQL
statement; basic result set metadata functions; basic catalog functions;
and so on.

v SQL_OIC_LEVEL1 : A level that includes the core standards compliance
level functionality, plus scrollable cursors, bookmarks, positioned
updates and deletes; and so on.

v SQL_OIC_LEVEL2 : A level that includes the level 1 standards
compliance level functionality, plus advanced features such as sensitive
cursors; update, delete, and refresh by bookmarks; stored procedure
support; catalog functions for primary and foreign keys; multi-catalog
support; and so on.

SQLGetInfo function (CLI) - Get general information

200 Call Level Interface Guide and Reference, Volume 2

SQL_ODBC_SAG_CLI_CONFORMANCE (16-bit integer)
The compliance to the functions of the SQL Access Group (SAG) CLI
specification.

Valid returned values are:
v SQL_OSCC_NOT_COMPLIANT : The driver is not SAG-compliant.
v SQL_OSCC_COMPLIANT : The driver is SAG-compliant.

SQL_ODBC_SQL_CONFORMANCE (16-bit integer)
Valid returned values are:
v SQL_OSC_MINIMUM : Minimum ODBC SQL grammar supported
v SQL_OSC_CORE : Core ODBC SQL Grammar supported
v SQL_OSC_EXTENDED : Extended ODBC SQL Grammar supported

SQL_ODBC_VER (string)
The ODBC version number that the driver manager supports.

CLI returns the string “03.01.0000”. CLI returns the string "03.01.0000". For
Windows 7 and Windows Server 2008 R2 operating systems, CLI returns
the string “03.80.0000”.

SQL_OJ_CAPABILITIES (32-bit mask)
A 32-bit bit-mask enumerating the types of outer join supported.

The bitmasks are:
v SQL_OJ_LEFT : Left outer join is supported.
v SQL_OJ_RIGHT : Right outer join is supported.
v SQL_OJ_FULL : Full outer join is supported.
v SQL_OJ_NESTED : Nested outer join is supported.
v SQL_OJ_ORDERED : The order of the tables underlying the columns in

the outer join ON clause do not have to be in the same order as the
tables in the JOIN clause.

v SQL_OJ_INNER : The inner table of an outer join can also be an inner
join.

v SQL_OJ_ALL_COMPARISONS_OPS : Any predicate can be used in the
outer join ON clause. If this bit is not set, only the equality (=)
comparison operator can be used in outer joins.

SQL_ORDER_BY_COLUMNS_IN_SELECT (string)
Set to "Y" if columns in the ORDER BY clauses must be in the select list;
otherwise set to "N".

SQL_OUTER_JOINS (string)
The character string:
v "Y" indicates that outer joins are supported, and CLI supports the ODBC

outer join request syntax.
v "N" indicates tha touter joins are not supported.

SQL_PARAM_ARRAY_ROW_COUNTS (32-bit unsigned integer)
Indicates the availability of row counts in a parameterized execution:
v SQL_PARC_BATCH : Individual row counts are available for each set of

parameters. This behavior is conceptually equivalent to CLI generating a
batch of SQL statements, one for each parameter set in the array.
Extended error information can be retrieved by using the
SQL_PARAM_STATUS_PTR descriptor field. To enable this behavior for
non-atomic operations, set the SQL_ATTR_PARC_BATCH connection
attribute to SQL_PARC_BATCH_ENABLE and
SQL_ATTR_PARAMOPT_ATOMIC to SQL_ATOMIC_NO. If
SQL_ATTR_PARAMOPT_ATOMIC is set to SQL_ATOMIC_YES, the
CLI0150E error message is returned.

SQLGetInfo function (CLI) - Get general information

Chapter 1. CLI and ODBC functions 201

v SQL_PARC_NO_BATCH : Only one row count is available, which is the
cumulative row count resulting from the execution of the statement for
the entire array of parameters. This behavior is conceptually equivalent
to treating the statement along with the entire parameter array as one
atomic unit. Errors are handled the same as if one statement was issued.

SQL_PARAM_ARRAY_SELECTS (32-bit unsigned integer)
Indicates the availability of result sets in a parameterized execution. Valid
returned values are:
v SQL_PAS_BATCH : One result set is available per set of parameters. The

SQL_PAS_BATCH is conceptually equivalent to CLI generating a batch
of SQL statements, one for each parameter set in the array.

v SQL_PAS_NO_BATCH : Only one result set is available, which
represents the cumulative result set resulting from the execution of the
statement for the entire array of parameters. The SQL_PAS_NO_BATCH
is conceptually equivalent to treating the statement along with the entire
parameter array as one atomic unit.

v SQL_PAS_NO_SELECT : CLI does not allow a result-set generating
statement to be executed with an array of parameters.

SQL_POS_OPERATIONS (32-bit mask)
Reserved option, zero is returned for the bit-mask.

SQL_POSITIONED_STATEMENTS (32-bit mask)
Indicates the degree of support for positioned UPDATE and positioned
DELETE statements:
v SQL_PS_POSITIONED_DELETE
v SQL_PS_POSITIONED_UPDATE
v SQL_PS_SELECT_FOR_UPDATE - Indicates whether the server requires

the FOR UPDATE clause to be specified on a <query expression> in
order for a column to be updateable by using a cursor.

SQL_PROCEDURE_TERM (string)
The name a database vendor uses for a procedure

SQL_PROCEDURES (string)
A character string of "Y" indicates that the data source supports procedures
and CLI supports the ODBC procedure invocation syntax specified by the
CALL statement. "N" indicates that it does not.

SQL_QUOTED_IDENTIFIER_CASE (16-bit integer)
Valid returned values are:
v SQL_IC_UPPER : Not case sensitive and are stored in uppercase.
v SQL_IC_LOWER : Not case sensitive and are stored in lowercase.
v SQL_IC_SENSITIVE : Quoted identifiers (delimited identifiers) in SQL

are case sensitive and are stored in mixed case in the system catalog.
v SQL_IC_MIXED - Not case sensitive and are stored in mixed case.

The SQL_QUOTED_ IDENTIFIER_CASE integer should be contrasted with
the SQL_IDENTIFIER_CASE InfoType argument, which is used to
determine how (unquoted) identifiers are stored in the system catalog.

SQL_ROW_UPDATES (string)
A character string of "Y" indicates a keyset-driven cursor or mixed cursor
that maintains row versions or values for all fetched rows, and therefore
can detect any updates made to a row since the row was last fetched. This
character string only applies to updates, not to deletions or insertions. CLI
can return the SQL_ROW_UPDATED flag to the row status array when
SQLFetchScroll() is called. Otherwise, "N" is returned.

SQLGetInfo function (CLI) - Get general information

202 Call Level Interface Guide and Reference, Volume 2

SQL_SCHEMA_TERM (string)
The terminology of the database vendor for a schema (owner).

In previous versions of CLI this InfoType was SQL_OWNER_TERM.

SQL_SCHEMA_USAGE (32-bit mask)
Indicates the type of SQL statements that have schema (owners) associated
with them when these statements are executed. Valid returned schema
qualifiers (owners) are:
v SQL_SU_DML_STATEMENTS - All DML statements.
v SQL_SU_PROCEDURE_INVOCATION - The procedure invocation

statement.
v SQL_SU_TABLE_DEFINITION - All table definition statements.
v SQL_SU_INDEX_DEFINITION - All index definition statements.
v SQL_SU_PRIVILEGE_DEFINITION - All privilege definition statements

(grant and revoke statements).

In previous versions of CLI this InfoType argument was
SQL_OWNER_USAGE.

SQL_SCROLL_CONCURRENCY (32-bit mask)
Indicates the concurrency options that are supported for the cursor.

The listed bit masks are used with the flag to determine which options are
supported:
v SQL_SCCO_LOCK
v SQL_SCCO_READ_ONLY
v SQL_SCCO_TIMESTAMP
v SQL_SCCO_VALUES

CLI returns SQL_SCCO_LOCK, which indicates that the lowest level of
locking that is sufficient to make an update.

SQL_SCROLL_OPTIONS (32-bit mask)
Indicates the scroll options that are supported for scrollable cursors.

The listed bit masks are used with the flag to determine which options are
supported:
v SQL_SO_FORWARD_ONLY : The cursor scrolls only forward.
v SQL_SO_KEYSET_DRIVEN : CLI saves and uses the keys for every row

in the result set.
v SQL_SO_STATIC : The data in the result set is static.
v SQL_SO_DYNAMIC : CLI keeps the keys for every row in the rowset

(the keyset size is the same as the rowset size).
v SQL_SO_MIXED : CLI keeps the keys for every row in the keyset, and

the keyset size is greater than the rowset size. The cursor is
keyset-driven inside the keyset and dynamic outside the keyset.

SQL_SEARCH_PATTERN_ESCAPE (string)
Used to specify what the driver supports as an escape character for catalog
functions, such as the SQLTables() function, and the SQLColumns()
function.

SQL_SERVER_NAME (string)
Indicates the name of the DB2 instance. In contrast to the
SQL_DATA_SOURCE_NAME character string, this character string is the
actual name of the database server. Some DBMSs provide a different name
upon establishing a connection than the real server-name of the database.

SQL_SPECIAL_CHARACTERS (string)
A character string that contains only special characters (all characters

SQLGetInfo function (CLI) - Get general information

Chapter 1. CLI and ODBC functions 203

except a...z, A...Z, 0...9, and underscore) that can be used in an identifier
name, such as table, column, or index name, on the data source. For
example, "@#". If an identifier contains special characters, the identifier
must be a delimited identifier.

SQL_SQL_CONFORMANCE (32-bit unsigned integer)
Indicates the level of SQL-92 that is supported:
v SQL_SC_SQL92_ENTRY : Entry level SQL-92 compliant.
v SQL_SC_FIPS127_2_TRANSITIONAL : FIPS 127-2 transitional-level

compliant.
v SQL_SC_SQL92_FULL : Full-level SQL-92 compliant.
v SQL_SC_ SQL92_INTERMEDIATE : Intermediate level SQL-92

compliant.

SQL_SQL92_DATETIME_FUNCTIONS (32-bit mask)
Indicates the datetime scalar functions that are supported by CLI and the
data source. Valid returned values are:
v SQL_SDF_CURRENT_DATE
v SQL_SDF_CURRENT_TIME
v SQL_SDF_CURRENT_TIMESTAMP

SQL_SQL92_FOREIGN_KEY_DELETE_RULE (32-bit mask)
Indicates the rules that are supported for a foreign key in a DELETE
statement, as defined by SQL-92. Valid returned values are:
v SQL_SFKD_CASCADE
v SQL_SFKD_NO_ACTION
v SQL_SFKD_SET_DEFAULT
v SQL_SFKD_SET_NULL

SQL_SQL92_FOREIGN_KEY_UPDATE_RULE (32-bit mask)
Indicates the rules that are supported for a foreign key in an UPDATE
statement, as defined by SQL-92. Valid returned values are:
v SQL_SFKU_CASCADE
v SQL_SFKU_NO_ACTION
v SQL_SFKU_SET_DEFAULT
v SQL_SFKU_SET_NULL

SQL_SQL92_GRANT (32-bit mask)
Indicates the clauses that are supported in a GRANT statement, as defined
by SQL-92. Valid returned values are:
v SQL_SG_DELETE_TABLE
v SQL_SG_INSERT_COLUMN
v SQL_SG_INSERT_TABLE
v SQL_SG_REFERENCES_TABLE
v SQL_SG_REFERENCES_COLUMN
v SQL_SG_SELECT_TABLE
v SQL_SG_UPDATE_COLUMN
v SQL_SG_UPDATE_TABLE
v SQL_SG_USAGE_ON_DOMAIN
v SQL_SG_USAGE_ON_CHARACTER_SET
v SQL_SG_USAGE_ON_COLLATION
v SQL_SG_USAGE_ON_TRANSLATION
v SQL_SG_WITH_GRANT_OPTION

SQL_SQL92_NUMERIC_VALUE_FUNCTIONS (32-bit mask)
Indicates the numeric value scalar functions that are supported by CLI and
the data source, as defined in SQL-92. Valid returned values are:
v SQL_SNVF_BIT_LENGTH
v SQL_SNVF_CHAR_LENGTH

SQLGetInfo function (CLI) - Get general information

204 Call Level Interface Guide and Reference, Volume 2

v SQL_SNVF_CHARACTER_LENGTH
v SQL_SNVF_EXTRACT
v SQL_SNVF_OCTET_LENGTH
v SQL_SNVF_POSITION

SQL_SQL92_PREDICATES (32-bit mask)
Indicates the predicates that are supported in a SELECT statement, as
defined by SQL-92. Valid returned values are:
v SQL_SP_BETWEEN
v SQL_SP_COMPARISON
v SQL_SP_EXISTS
v SQL_SP_IN
v SQL_SP_ISNOTNULL
v SQL_SP_ISNULL
v SQL_SP_LIKE
v SQL_SP_MATCH_FULL
v SQL_SP_MATCH_PARTIAL
v SQL_SP_MATCH_UNIQUE_FULL
v SQL_SP_MATCH_UNIQUE_PARTIAL
v SQL_SP_OVERLAPS
v SQL_SP_QUANTIFIED_COMPARISON
v SQL_SP_UNIQUE

SQL_SQL92_RELATIONAL_JOIN_OPERATORS (32-bit mask)
Indicates the relational join operators that are supported in a SELECT
statement, as defined by SQL-92. Valid returned values are:
v SQL_SRJO_CORRESPONDING_CLAUSE
v SQL_SRJO_CROSS_JOIN
v SQL_SRJO_EXCEPT_JOIN
v SQL_SRJO_FULL_OUTER_JOIN
v SQL_SRJO_INNER_JOIN (indicates support for the INNER JOIN syntax,

not for the inner join capability)
v SQL_SRJO_INTERSECT_JOIN
v SQL_SRJO_LEFT_OUTER_JOIN
v SQL_SRJO_NATURAL_JOIN
v SQL_SRJO_RIGHT_OUTER_JOIN
v SQL_SRJO_UNION_JOIN

SQL_SQL92_REVOKE (32-bit mask)
Indicates which clauses the data source supports in the REVOKE
statement, as defined by SQL-92. Valid returned values are:
v SQL_SR_CASCADE
v SQL_SR_DELETE_TABLE
v SQL_SR_GRANT_OPTION_FOR
v SQL_SR_INSERT_COLUMN
v SQL_SR_INSERT_TABLE
v SQL_SR_REFERENCES_COLUMN
v SQL_SR_REFERENCES_TABLE
v SQL_SR_RESTRICT
v SQL_SR_SELECT_TABLE
v SQL_SR_UPDATE_COLUMN
v SQL_SR_UPDATE_TABLE
v SQL_SR_USAGE_ON_DOMAIN
v SQL_SR_USAGE_ON_CHARACTER_SET
v SQL_SR_USAGE_ON_COLLATION
v SQL_SR_USAGE_ON_TRANSLATION

SQLGetInfo function (CLI) - Get general information

Chapter 1. CLI and ODBC functions 205

SQL_SQL92_ROW_VALUE_CONSTRUCTOR (32-bit mask)
Indicates the row value constructor expressions that are supported in a
SELECT statement, as defined by SQL-92. Valid returned values are:
v SQL_SRVC_DEFAULT
v SQL_SRVC_NULL
v SQL_SRVC_ROW_SUBQUERY
v SQL_SRVC_VALUE_EXPRESSION

SQL_SQL92_STRING_FUNCTIONS (32-bit mask)
Indicates the string scalar functions that are supported by CLI and the data
source, as defined by SQL-92. Valid returned values are:
v SQL_SSF_CONVERT
v SQL_SSF_LOWER
v SQL_SSF_SUBSTRING
v SQL_SSF_TRANSLATE
v SQL_SSF_TRIM_BOTH
v SQL_SSF_TRIM_LEADING
v SQL_SSF_TRIM_TRAILING
v SQL_SSF_UPPER

SQL_SQL92_VALUE_EXPRESSIONS (32-bit mask)
Indicates the value expressions that are supported, as defined by SQL-92.
Valid returned values are:
v SQL_SVE_CASE
v SQL_SVE_CAST
v SQL_SVE_COALESCE
v SQL_SVE_NULLIF

SQL_STANDARD_CLI_CONFORMANCE (32-bit mask)
Indicates the CLI standard or standards to which CLI conforms. Valid
returned values are:
v SQL_SCC_ISO92_CLI
v SQL_SCC_XOPEN_CLI_VERSION1

SQL_STATIC_CURSOR_ATTRIBUTES1 (32-bit mask)
Indicates the attributes of a static cursor that are supported by CLI. Valid
returned values are (subset 1 of 2):
v SQL_CA1_ABSOLUTE
v SQL_CA1_BOOKMARK
v SQL_CA1_BULK_ADD
v SQL_CA1_BULK_DELETE_BY_BOOKMARK
v SQL_CA1_BULK_FETCH_BY_BOOKMARK
v SQL_CA1_BULK_UPDATE_BY_BOOKMARK
v SQL_CA1_LOCK_EXCLUSIVE
v SQL_CA1_LOCK_NO_CHANGE
v SQL_CA1_LOCK_UNLOCK
v SQL_CA1_NEXT
v SQL_CA1_POS_DELETE
v SQL_CA1_POS_POSITION
v SQL_CA1_POS_REFRESH
v SQL_CA1_POS_UPDATE
v SQL_CA1_POSITIONED_UPDATE
v SQL_CA1_POSITIONED_DELETE
v SQL_CA1_RELATIVE
v SQL_CA1_SELECT_FOR_UPDATE

SQLGetInfo function (CLI) - Get general information

206 Call Level Interface Guide and Reference, Volume 2

SQL_STATIC_CURSOR_ATTRIBUTES2 (32-bit mask)
Indicates the attributes of a static cursor that are supported by CLI. Valid
returned values are (subset 2 of 2):
v SQL_CA2_CRC_APPROXIMATE
v SQL_CA2_CRC_EXACT
v SQL_CA2_LOCK_CONCURRENCY
v SQL_CA2_OPT_ROWVER_CONCURRENCY
v SQL_CA2_OPT_VALUES_CONCURRENCY
v SQL_CA2_MAX_ROWS_AFFECTS_ALL
v SQL_CA2_MAX_ROWS_CATALOG
v SQL_CA2_MAX_ROWS_DELETE
v SQL_CA2_MAX_ROWS_INSERT
v SQL_CA2_MAX_ROWS_SELECT
v SQL_CA2_MAX_ROWS_UPDATE
v SQL_CA2_READ_ONLY_CONCURRENCY
v SQL_CA2_SENSITIVITY_ADDITIONS
v SQL_CA2_SENSITIVITY_DELETIONS
v SQL_CA2_SENSITIVITY_UPDATES
v SQL_CA2_SIMULATE_NON_UNIQUE
v SQL_CA2_SIMULATE_TRY_UNIQUE
v SQL_CA2_SIMULATE_UNIQUE

SQL_STATIC_SENSITIVITY (32-bit mask)
Indicates whether changes that are made by an application with a
positioned update or delete statement can be detected by that application.
Valid returned values are:
v SQL_SS_ADDITIONS : Added rows are visible to the cursor, and the

cursor can scroll to these rows. All DB2 servers see added rows.
v SQL_SS_DELETIONS : Deleted rows are no longer available to the

cursor, and do not leave a hole in the result set. After the cursor scrolls
from a deleted row, it cannot return to that row.

v SQL_SS_UPDATES : Updated rows are visible to the cursor. If the cursor
scrolls from and returns to an updated row, the data that is returned by
the cursor is the updated data, not the original data.

SQL_STRING_FUNCTIONS (32-bit mask)
Indicates which string functions are supported.

The listed bit masks are used to determine which string functions are
supported:
v SQL_FN_STR_ASCII
v SQL_FN_STR_BIT_LENGTH
v SQL_FN_STR_CHAR
v SQL_FN_STR_CHAR_LENGTH
v SQL_FN_STR_CHARACTER_LENGTH
v SQL_FN_STR_CONCAT
v SQL_FN_STR_DIFFERENCE
v SQL_FN_STR_INSERT
v SQL_FN_STR_LCASE
v SQL_FN_STR_LEFT
v SQL_FN_STR_LENGTH
v SQL_FN_STR_LOCATE
v SQL_FN_STR_LOCATE_2
v SQL_FN_STR_LTRIM
v SQL_FN_STR_OCTET_LENGTH
v SQL_FN_STR_POSITION
v SQL_FN_STR_REPEAT

SQLGetInfo function (CLI) - Get general information

Chapter 1. CLI and ODBC functions 207

v SQL_FN_STR_REPLACE
v SQL_FN_STR_RIGHT
v SQL_FN_STR_RTRIM
v SQL_FN_STR_SOUNDEX
v SQL_FN_STR_SPACE
v SQL_FN_STR_SUBSTRING
v SQL_FN_STR_UCASE

If an application can call the LOCATE scalar function with the string_exp1,
string_exp2, and start arguments, the SQL_FN_STR_LOCATE bit mask is
returned. If an application can call the LOCATE scalar function only with
the string_exp1 and string_exp2, the SQL_FN_STR_LOCATE_2 bit mask is
returned. If the LOCATE scalar function is fully supported, both bit masks
are returned.

SQL_SUBQUERIES (32-bit mask)
Indicates which predicates support subqueries. Valid returned values are:
v SQL_SQ_COMPARISION : The comparison predicate.
v SQL_SQ_CORRELATE_SUBQUERIES : All predicates that support

subqueries also support correlated subqueries.
v SQL_SQ_EXISTS : The exists predicate.
v SQL_SQ_IN : The in predicate.
v SQL_SQ_QUANTIFIED : The predicates that contains a quantification

scalar function.

SQL_SYSTEM_FUNCTIONS (32-bit mask)
Indicates which scalar system functions are supported.

The listed bit masks are used to determine which scalar system functions
are supported:
v SQL_FN_SYS_DBNAME
v SQL_FN_SYS_IFNULL
v SQL_FN_SYS_USERNAME

Note: These functions are intended to be used with the escape sequence in
ODBC.

SQL_TABLE_TERM (string)
The terminology of a database vendor for a table.

SQL_TIMEDATE_ADD_INTERVALS (32-bit mask)
Indicates whether or not the special ODBC system function
TIMESTAMPADD is supported, and, if it is, which intervals are supported.

The listed bit masks are used to determine which intervals are supported:
v SQL_FN_TSI_FRAC_SECOND
v SQL_FN_TSI_SECOND
v SQL_FN_TSI_MINUTE
v SQL_FN_TSI_HOUR
v SQL_FN_TSI_DAY
v SQL_FN_TSI_WEEK
v SQL_FN_TSI_MONTH
v SQL_FN_TSI_QUARTER
v SQL_FN_TSI_YEAR

SQL_TIMEDATE_DIFF_INTERVALS (32-bit mask)
Indicates whether or not the special ODBC system function
TIMESTAMPDIFF is supported, and, if it is, which intervals are supported.

The listed bit masks are used to determine which intervals are supported:

SQLGetInfo function (CLI) - Get general information

208 Call Level Interface Guide and Reference, Volume 2

v SQL_FN_TSI_FRAC_SECOND
v SQL_FN_TSI_SECOND
v SQL_FN_TSI_MINUTE
v SQL_FN_TSI_HOUR
v SQL_FN_TSI_DAY
v SQL_FN_TSI_WEEK
v SQL_FN_TSI_MONTH
v SQL_FN_TSI_QUARTER
v SQL_FN_TSI_YEAR

SQL_TIMEDATE_FUNCTIONS (32-bit mask)
Indicates which time and date functions are supported.

The listed bit masks are used to determine which date functions are
supported:
v SQL_FN_TD_CURRENT_DATE
v SQL_FN_TD_CURRENT_TIME
v SQL_FN_TD_CURRENT_TIMESTAMP
v SQL_FN_TD_CURDATE
v SQL_FN_TD_CURTIME
v SQL_FN_TD_DAYNAME
v SQL_FN_TD_DAYOFMONTH
v SQL_FN_TD_DAYOFWEEK
v SQL_FN_TD_DAYOFYEAR
v SQL_FN_TD_EXTRACT
v SQL_FN_TD_HOUR
v SQL_FN_TD_JULIAN_DAY
v SQL_FN_TD_MINUTE
v SQL_FN_TD_MONTH
v SQL_FN_TD_MONTHNAME
v SQL_FN_TD_NOW
v SQL_FN_TD_QUARTER
v SQL_FN_TD_SECOND
v SQL_FN_TD_SECONDS_SINCE_MIDNIGHT
v SQL_FN_TD_TIMESTAMPADD
v SQL_FN_TD_TIMESTAMPDIFF
v SQL_FN_TD_WEEK
v SQL_FN_TD_YEAR

Note: These functions are intended to be used with the escape sequence in
ODBC.

SQL_TXN_CAPABLE (16-bit integer)
Indicates whether transactions can contain DDL, DML, or both. Valid
returned values are:
v SQL_TC_NONE : Transactions not supported.
v SQL_TC_DML : Transactions can contain only DML statements (for

example, SELECT, INSERT, UPDATE and DELETE). DDL statements,
such as CREATE TABLE and DROP INDEX, that are encountered in a
transaction cause an error.

v SQL_TC_DDL_COMMIT : Transactions can only contain DML
statements. DDL statements that are encountered in a transaction cause
the transaction to be committed.

v SQL_TC_DDL_IGNORE : Transactions can only contain DML statements.
DDL statements that are encountered in a transaction are ignored.

v SQL_TC_ALL : Transactions can contain DDL and DML statements in
any order.

SQLGetInfo function (CLI) - Get general information

Chapter 1. CLI and ODBC functions 209

SQL_TXN_ISOLATION_OPTION (32-bit mask)
The transaction isolation levels that are available at the currently connected
database server.

The listed masks are used in conjunction with the flag to determine which
options are supported:
v SQL_TXN_NOCOMMIT
v SQL_TXN_READ_COMMITTED
v SQL_TXN_READ_UNCOMMITTED
v SQL_TXN_REPEATABLE_READ
v SQL_TXN_SERIALIZABLE
v SQL_TXN_VERSIONING

For descriptions of each level, see SQL_DEFAULT_TXN_ISOLATION.

SQL_UNION (32-bit mask)
Indicates if the server supports the UNION operator. Valid returned values
are:
v SQL_U_UNION : Supports the UNION clause.
v SQL_U_UNION_ALL : Supports the ALL keyword in the UNION clause.

If SQL_U_UNION_ALL is set, so is SQL_U_UNION.

SQL_USER_NAME (string)
Indicates the user name that is used in a particular database. This character
string is the identifier that is specified on the SQLConnect() call.

SQL_XOPEN_CLI_YEAR (string)
Indicates the year of publication of the X/Open specification with which
the version of the driver fully complies.

SQLGetLength function (CLI) - Retrieve length of a string value
Purpose

Specification: CLI 2.1

SQLGetLength() is used to retrieve the length of a large object value, referenced by
a large object locator that has been returned from the server (as a result of a fetch,
or an SQLGetSubString() call) during the current transaction.

Syntax
SQLRETURN SQLGetLength (SQLHSTMT StatementHandle, /* hstmt */

SQLSMALLINT LocatorCType,
SQLINTEGER Locator,
SQLINTEGER *StringLength,
SQLINTEGER *IndicatorValue);

Function arguments

Table 95. SQLGetLength arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. This can be any statement handle
which has been allocated but which does not
currently have a prepared statement assigned to it.

SQLGetInfo function (CLI) - Get general information

210 Call Level Interface Guide and Reference, Volume 2

Table 95. SQLGetLength arguments (continued)

Data type Argument Use Description

SQLSMALLINT LocatorCType input The C type of the source LOB locator. This may be:

v SQL_C_BLOB_LOCATOR

v SQL_C_CLOB_LOCATOR

v SQL_C_DBCLOB_LOCATOR

SQLINTEGER Locator input Must be set to the LOB locator value.

SQLINTEGER * StringLength output The length of the returned information in rgbValue in
bytesa if the target C buffer type is intended for a
binary or character string variable and not a locator
value.

If the pointer is set to NULL then the SQLSTATE
HY009 is returned.

SQLINTEGER * IndicatorValue output Always set to zero.

Note:

a This is in characters for DBCLOB data.

Usage

SQLGetLength() can be used to determine the length of the data value represented
by a LOB locator. It is used by applications to determine the overall length of the
referenced LOB value so that the appropriate strategy to obtain some or all of the
LOB value can be chosen. The length is calculated by the database server using the
server code page, and so if the application code page is different from the server
code page, then there may be some complexity in calculating space requirements
on the client. The application will need to allow for code page expansion if any is
needed.

The Locator argument can contain any valid LOB locator which has not been
explicitly freed using a FREE LOCATOR statement nor implicitly freed because the
transaction during which it was created has ended.

The statement handle must not have been associated with any prepared statements
or catalog function calls.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 96. SQLGetLength SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. The combination of LocatorCType and Locator is not valid.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

SQLGetLength function (CLI) - Retrieve length of a string value

Chapter 1. CLI and ODBC functions 211

Table 96. SQLGetLength SQLSTATEs (continued)

SQLSTATE Description Explanation

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY003 Program type out of range. LocatorCType is not one of SQL_C_CLOB_LOCATOR,
SQL_C_BLOB_LOCATOR, or SQL_C_DBCLOB_LOCATOR.

HY009 Invalid argument value. Pointer to StringLength was NULL.

HY010 Function sequence error. The specified StatementHandle is not in an allocated state.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HYC00 Driver not capable. The application is currently connected to a data source that does
not support large objects.

0F001 The LOB token variable does not
currently represent any value.

The value specified for Locator has not been associated with a LOB
locator.

Restrictions

This function is not available when connected to a DB2 server that does not
support large objects. Call SQLGetFunctions() with the function type set to
SQL_API_SQLGETLENGTH and check the fExists output argument to determine if
the function is supported for the current connection.

Example
/* get the length of the whole CLOB data */
cliRC = SQLGetLength(hstmtLocUse,

SQL_C_CLOB_LOCATOR,
clobLoc,
&clobLen,
&ind);

SQLGetPosition function (CLI) - Return starting position of string
Purpose

Specification: CLI 2.1

SQLGetPosition() is used to return the starting position of one string within a LOB
value (the source). The source value must be a LOB locator, the search string can
be a LOB locator or a literal string.

SQLGetLength function (CLI) - Retrieve length of a string value

212 Call Level Interface Guide and Reference, Volume 2

The source and search LOB locators can be any that have been returned from the
database from a fetch or a SQLGetSubString() call during the current transaction.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLGetPositionW(). For information
about ANSI to Unicode function mappings, refer to “Unicode functions (CLI)” on
page 5.

Syntax
SQLRETURN SQLGetPosition (SQLHSTMT StatementHandle, /* hstmt */

SQLSMALLINT LocatorCType,
SQLINTEGER SourceLocator,
SQLINTEGER SearchLocator,
SQLCHAR *SearchLiteral,
SQLINTEGER SearchLiteralLength,
SQLUINTEGER FromPosition,
SQLUINTEGER *LocatedAt,
SQLINTEGER *IndicatorValue);

Function arguments

Table 97. SQLGetPosition arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. This can be any statement handle
which has been allocated but which does not
currently have a prepared statement assigned to it.

SQLSMALLINT LocatorCType input The C type of the source LOB locator. This can be:
v SQL_C_BLOB_LOCATOR
v SQL_C_CLOB_LOCATOR
v SQL_C_DBCLOB_LOCATOR

SQLINTEGER Locator input Locator must be set to the source LOB locator.

SQLINTEGER SearchLocator input If the SearchLiteral pointer is NULL and if
SearchLiteralLength is set to 0, then SearchLocator must
be set to the LOB locator associated with the search
string; otherwise, this argument is ignored.

SQLCHAR * SearchLiteral input This argument points to the area of storage that
contains the search string literal.

If SearchLiteralLength is 0, this pointer must be NULL.

SQLINTEGER SearchLiteralLength input The length of the string in SearchLiteral(in bytes). a

The length of the string in SearchLiteral(in bytes) will
be the number of WCHAR characters for the
Unicode variant of this function.

If this argument value is 0, then the argument
SearchLocator is meaningful.

SQLUINTEGER FromPosition input For BLOBs and CLOBs, this is the position of the
first byte within the source string at which the
search is to start. For DBCLOBs, this is the first
character. The start byte or character is numbered 1.

SQLUINTEGER * LocatedAt output For BLOBs and CLOBs, this is the byte position at
which the string was located or, if not located, the
value zero. For DBCLOBs, this is the character
position.

If the length of the source string is zero, the value 1
is returned.

SQLGetPosition function (CLI) - Return starting position of string

Chapter 1. CLI and ODBC functions 213

Table 97. SQLGetPosition arguments (continued)

Data type Argument Use Description

SQLINTEGER * IndicatorValue output Always set to zero.

Note:

a This is in bytes even for DBCLOB data.

Usage

SQLGetPosition() is used in conjunction with SQLGetSubString() in order to obtain
any portion of a LOB in a random manner. In order to use SQLGetSubString(), the
location of the substring within the overall string must be known in advance. In
situations where the start of that substring can be found by a search string,
SQLGetPosition() can be used to obtain the starting position of that substring.

The Locator and SearchLocator (if used) arguments can contain any valid LOB
locator which has not been explicitly freed using a FREE LOCATOR statement or
implicitly freed because the transaction during which it was created has ended.

The Locator and SearchLocator must have the same LOB locator type.

The statement handle must not have been associated with any prepared statements
or catalog function calls.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 98. SQLGetPosition SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. The combination of LocatorCType and either of the LOB locator
values is not valid.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY009 Invalid argument value. The pointer to the LocatedAt argument was NULL.

The argument value for FromPosition was not greater than 0.

LocatorCType is not one of SQL_C_CLOB_LOCATOR,
SQL_C_BLOB_LOCATOR, or SQL_C_DBCLOB_LOCATOR.

SQLGetPosition function (CLI) - Return starting position of string

214 Call Level Interface Guide and Reference, Volume 2

Table 98. SQLGetPosition SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error. The specified StatementHandle is not in an allocated state.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value of SearchLiteralLength was less than 1, and not
SQL_NTS.

The length of the pattern is longer than the maximum data length
of the associated variable SQL data type (for DB2 for z/OS
servers, the pattern length is a maximum of 4000 bytes regardless
of the data type or the LocatorCType). For LocatorCType of
SQL_C_CLOB_LOCATOR, the literal maximum size is that of an
SQLCLOB; for LocatorCType of SQL_C_BLOB_LOCATOR, the
literal maximum size is that of an SQLVARBINARY; for
LocatorCType of SQL_C_DBCLOB_LOCATOR, the literal
maximum size is that of an SQLVARGRAPHIC.

HYC00 Driver not capable. The application is currently connected to a data source that does
not support large objects.

0F001 The LOB token variable does not
currently represent any value.

The value specified for Locator or SearchLocator is not currently a
LOB locator.

Restrictions

This function is not available when connected to a DB2 server that does not
support large objects. Call SQLGetFunctions() with the function type set to
SQL_API_SQLGETPOSITION and check the fExists output argument to determine
if the function is supported for the current connection.

The SQLGetPosition() function is intended to handle graphic data and not
WCHAR data. As a result, the data passed to this function should be considered
big endian.

Example
/* get the starting position of the CLOB piece of data */
cliRC = SQLGetPosition(hstmtLocUse,

SQL_C_CLOB_LOCATOR,
clobLoc,
0,
(SQLCHAR *)"Interests",
strlen("Interests"),
1,
&clobPiecePos,
&ind);

SQLGetPosition function (CLI) - Return starting position of string

Chapter 1. CLI and ODBC functions 215

SQLGetSQLCA function (CLI) - Get SQLCA data structure
Deprecated

Note:

SQLGetSQLCA() has been deprecated.

Although this version of CLI continues to support SQLGetSQLCA(), it is
recommended that you stop using it in your CLI programs so that they conform to
the latest standards.

Use SQLGetDiagField() and SQLGetDiagRec() to retrieve diagnostic information.

SQLGetStmtAttr function (CLI) - Get current setting of a statement
attribute

Purpose

Specification: CLI 5.0 ODBC 3.0 ISO CLI

SQLGetStmtAttr() returns the current setting of a statement attribute.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLGetStmtAttrW(). Refer to “Unicode
functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLGetStmtAttr (SQLHSTMT StatementHandle,

SQLINTEGER Attribute,
SQLPOINTER ValuePtr,
SQLINTEGER BufferLength,
SQLINTEGER *StringLengthPtr);

Function arguments

Table 99. SQLGetStmtAttr arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLINTEGER Attribute input Attribute to retrieve.

SQLPOINTER ValuePtr output Pointer to a buffer in which to return the value of
the attribute specified in Attribute.

SQLGetSQLCA function (CLI) - Get SQLCA data structure

216 Call Level Interface Guide and Reference, Volume 2

Table 99. SQLGetStmtAttr arguments (continued)

Data type Argument Use Description

SQLINTEGER BufferLength input If Attribute is an ODBC-defined attribute and
ValuePtr points to a character string or a binary
buffer, this argument should be the length of
*ValuePtr. If Attribute is an ODBC-defined attribute
and *ValuePtr is an integer, BufferLength is ignored.

If Attribute is a CLI attribute, the application
indicates the nature of the attribute by setting the
BufferLength argument. BufferLength can have the
following values:
v If *ValuePtr is a pointer to a character string, then

BufferLength is the number of bytes needed to store
the string, or SQL_NTS.

v If *ValuePtr is a pointer to a binary buffer, then the
application places the result of the
SQL_LEN_BINARY_ATTR(length) macro in
BufferLength. This places a negative value in
BufferLength.

v If *ValuePtr is a pointer to a value other than a
character string or binary string, then BufferLength
should have the value SQL_IS_POINTER.

v If *ValuePtr is contains a fixed-length data type,
then BufferLength is either SQL_IS_INTEGER or
SQL_IS_UINTEGER, as appropriate.

v If the value returned in ValuePtr is a Unicode
string, the BufferLength argument must be an even
number.

SQLSMALLINT * StringLengthPtr output A pointer to a buffer in which to return the total
number of bytes (excluding the null termination
character) available to return in *ValuePtr. If this is a
null pointer, no length is returned. If the attribute
value is a character string, and the number of bytes
available to return is greater than or equal to
BufferLength, the data in *ValuePtr is truncated to
BufferLength minus the length of a null termination
character and is null-terminated by the CLI.

Usage

A call to SQLGetStmtAttr() returns in *ValuePtr the value of the statement attribute
specified in Attribute. That value can either be a 32-bit value or a null-terminated
character string. If the value is a null-terminated string, the application specifies
the maximum length of that string in the BufferLength argument, and CLI returns
the length of that string in the *StringLengthPtr buffer. If the value is a 32-bit value,
the BufferLength and StringLengthPtr arguments are not used.

The following statement attributes are read-only, so can be retrieved by
SQLGetStmtAttr(), but not set by SQLSetStmtAttr(). Refer to the list of statement
attributes for all statement attributes that can be set and retrieved.
v SQL_ATTR_IMP_PARAM_DESC
v SQL_ATTR_IMP_ROW_DESC
v SQL_ATTR_ROW_NUMBER

SQLGetStmtAttr function (CLI) - Get current setting of a statement attribute

Chapter 1. CLI and ODBC functions 217

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 100. SQLGetStmtAttr SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The data returned in *ValuePtr was truncated to be BufferLength
minus the length of a null termination character. The length of the
untruncated string value is returned in *StringLengthPtr. (Function
returns SQL_SUCCESS_WITH_INFO.)

24000 Invalid cursor state. The argument Attribute was SQL_ATTR_ROW_NUMBER and the
cursor was not open, or the cursor was positioned before the start
of the result set or after the end of the result set.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY010 Function sequence error. An asynchronously executing function was called for the
StatementHandle and was still executing when this function was
called.

SQLExecute() or SQLExecDirect() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value specified for argument BufferLength was less than 0.

HY092 Option type out of range. The value specified for the argument Attribute was not valid for
this version of CLI

HY109 Invalid cursor position. The Attribute argument was SQL_ATTR_ROW_NUMBER and the
row had been deleted or could not be fetched.

HYC00 Driver not capable. The value specified for the argument Attribute was a valid CLI
attribute for the version of CLI, but was not supported by the
data source.

Restrictions

None.

SQLGetStmtAttr function (CLI) - Get current setting of a statement attribute

218 Call Level Interface Guide and Reference, Volume 2

Example
/* get the handle for the implicitly allocated descriptor */
rc = SQLGetStmtAttr(hstmt,

SQL_ATTR_IMP_ROW_DESC,
&hIRD,
SQL_IS_INTEGER,
&indicator);

SQLGetStmtOption function (CLI) - Return current setting of a
statement option

Deprecated

Note:

In ODBC 3.0, SQLGetStmtOption() has been deprecated and replaced with
SQLGetStmtAttr().

Although this version of CLI continues to support SQLGetStmtOption(), use
SQLGetStmtAttr() in your CLI programs so that they conform to the latest
standards.

Migrating to the new function

The statement:
SQLGetStmtOption(hstmt, SQL_ATTR_CURSOR_HOLD, pvCursorHold);

for example, would be rewritten using the new function as:
SQLGetStmtAttr(hstmt, SQL_ATTR_CURSOR_HOLD, pvCursorHold,

SQL_IS_INTEGER, NULL);

SQLGetSubString function (CLI) - Retrieve portion of a string value
Purpose

Specification: CLI 2.1

SQLGetSubString() is used to retrieve a portion of a large object value, referenced
by a large object locator that has been returned from the server (returned by a
fetch or a previous SQLGetSubString() call) during the current transaction.

Syntax
SQLRETURN SQLGetSubString (

SQLHSTMT StatementHandle, /* hstmt */
SQLSMALLINT LocatorCType,
SQLINTEGER SourceLocator,
SQLUINTEGER FromPosition,
SQLUINTEGER ForLength,
SQLSMALLINT TargetCType,
SQLPOINTER DataPtr, /* rgbValue */
SQLINTEGER BufferLength, /* cbValueMax */
SQLINTEGER *StringLength,
SQLINTEGER *IndicatorValue);

SQLGetStmtAttr function (CLI) - Get current setting of a statement attribute

Chapter 1. CLI and ODBC functions 219

Function arguments

Table 101. SQLGetSubString arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. This can be any statement handle
which has been allocated but which does not
currently have a prepared statement assigned to it.

SQLSMALLINT LocatorCType input The C type of the source LOB locator. This may be:

v SQL_C_BLOB_LOCATOR

v SQL_C_CLOB_LOCATOR

v SQL_C_DBCLOB_LOCATOR

SQLINTEGER Locator input Locator must be set to the source LOB locator value.

SQLUINTEGER FromPosition input For BLOBs and CLOBs, this is the position of the
first byte to be returned by the function. For
DBCLOBs, this is the first character. The start byte or
character is numbered 1.

SQLUINTEGER ForLength input This is the length of the string to be returned by the
function. For BLOBs and CLOBs, this is the length in
bytes. For DBCLOBs, this is the length in characters.

If FromPosition is less than the length of the source
string but FromPosition + ForLength - 1 extends
beyond the end of the source string, the result is
padded on the right with the necessary number of
characters (X'00' for BLOBs, single byte blank
character for CLOBs, and double byte blank
character for DBCLOBs).

SQLSMALLINT TargetCType input The C data type of the DataPtr. The target must
always be either a LOB locator C buffer type:

v SQL_C_CLOB_LOCATOR

v SQL_C_BLOB_LOCATOR

v SQL_C_DBCLOB_LOCATOR

or a C string type:

v SQL_C_CHAR

v SQL_C_WCHAR

v SQL_C_BINARY

v SQL_C_DBCHAR

SQLPOINTER DataPtr output Pointer to the buffer where the retrieved string value
or a LOB locator is to be stored.

SQLINTEGER BufferLength input Maximum size of the buffer pointed to by DataPtr in
bytes.

SQLINTEGER * StringLength output The length of the returned information in DataPtr in
bytesa if the target C buffer type is intended for a
binary or character string variable and not a locator
value.

If the pointer is set to NULL, nothing is returned.

SQLINTEGER * IndicatorValue output Always set to zero.

Note:

a This is in bytes even for DBCLOB data.

SQLGetSubString function (CLI) - Retrieve portion of a string value

220 Call Level Interface Guide and Reference, Volume 2

Usage

SQLGetSubString() is used to obtain any portion of the string that is represented
by the LOB locator. There are two choices for the target:
v The target can be an appropriate C string variable.
v A new LOB value can be created on the server and the LOB locator for that

value can be assigned to a target application variable on the client.

SQLGetSubString() can be used as an alternative to SQLGetData() for getting LOB
data in pieces. In this case a column is first bound to a LOB locator, which is then
used to fetch the LOB as a whole or in pieces.

The Locator argument can contain any valid LOB locator which has not been
explicitly freed using a FREE LOCATOR statement nor implicitly freed because the
transaction during which it was created has ended.

The statement handle must not have been associated with any prepared statements
or catalog function calls.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 102. SQLGetSubString SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The amount of data to be returned is longer than BufferLength. The
actual length of data available for return is stored in StringLength.

07006 Invalid conversion. The value specified for TargetCType was not SQL_C_CHAR,
SQL_WCHAR, SQL_C_BINARY, SQL_C_DBCHAR, or a LOB
locator.

The value specified for TargetCType is inappropriate for the source
(for example SQL_C_DBCHAR for a BLOB column).

22011 A substring error occurred. FromPosition is greater than the of length of the source string.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY003 Program type out of range. LocatorCType is not one of SQL_C_CLOB_LOCATOR,
SQL_C_BLOB_LOCATOR, or SQL_C_DBCLOB_LOCATOR.

HY009 Invalid argument value. The value specified for FromPosition or for ForLength was not a
positive integer.

SQLGetSubString function (CLI) - Retrieve portion of a string value

Chapter 1. CLI and ODBC functions 221

Table 102. SQLGetSubString SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error. The specified StatementHandle is not in an allocated state.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The value of BufferLength was less than 0.

HYC00 Driver not capable. The application is currently connected to a data source that does
not support large objects.

0F001 No locator currently assigned The value specified for Locator is not currently a LOB locator.

Restrictions

This function is not available when connected to a DB2 server that does not
support large objects. Call SQLGetFunctions() with the function type set to
SQL_API_SQLGETSUBSTRING and check the fExists output argument to
determine if the function is supported for the current connection.

FromPosition of SQLGetSubstring() can not take zero or negative values for IDS
Data Servers. This is a current limitation.

When accessing IDS data servers, calling the SQLGetSubString() function with a
TargetCType argument value of SQL_C_CLOB_LOCATOR or
SQL_C_BLOB_LOCATOR will return an "Invalid Conversion" error. This
conversion is not supported.

Example
/* read the piece of CLOB data in buffer */
cliRC = SQLGetSubString(hstmtLocUse,

SQL_C_CLOB_LOCATOR,
clobLoc,
clobPiecePos,
clobLen - clobPiecePos,
SQL_C_CHAR,
buffer,
clobLen - clobPiecePos + 1,
&clobPieceLen,
&ind);

SQLGetTypeInfo function (CLI) - Get data type information
Purpose

Specification: CLI 1.1 ODBC 1.0 ISO CLI

SQLGetSubString function (CLI) - Retrieve portion of a string value

222 Call Level Interface Guide and Reference, Volume 2

SQLGetTypeInfo() returns information about the data types that are supported by
the DBMSs associated with CLI. The information is returned in an SQL result set.
The columns can be received using the same functions that are used to process a
query.

Syntax
SQLRETURN SQLGetTypeInfo (

SQLHSTMT StatementHandle, /* hstmt */
SQLSMALLINT DataType); /* fSqlType */

Function arguments

Table 103. SQLGetTypeInfo arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLSMALLINT DataType input The SQL data type being queried. The supported
types are:
v SQL_ALL_TYPES
v SQL_BIGINT
v SQL_BINARY
v SQL_BIT
v SQL_BLOB
v SQL_CHAR
v SQL_CLOB
v SQL_DATE 1

v SQL_TYPE_DATE
v SQL_DBCLOB
v SQL_DECIMAL
v SQL_DOUBLE
v SQL_FLOAT
v SQL_GRAPHIC
v SQL_INTEGER
v SQL_LONGVARBINARY
v SQL_LONGVARCHAR
v SQL_LONGVARGRAPHIC
v SQL_NUMERIC
v SQL_REAL
v SQL_SMALLINT
v SQL_TIME 1

v SQL_TIMESTAMP 1

v SQL_TYPE_TIME
v SQL_TYPE_TIMESTAMP
v SQL_TINYINT
v SQL_VARBINARY
v SQL_VARCHAR
v SQL_VARGRAPHIC
v SQL_XML

If SQL_ALL_TYPES is specified, information about
all supported data types would be returned in
ascending order by TYPE_NAME. All unsupported
data types would be absent from the result set.

Note:

1. These SQL data types are supported for compatibility with ODBC 2.0.

SQLGetTypeInfo function (CLI) - Get data type information

Chapter 1. CLI and ODBC functions 223

Usage

Since SQLGetTypeInfo() generates a result set and is equivalent to executing a
query, it will generate a cursor and begin a transaction. To prepare and execute
another statement on this statement handle, the cursor must be closed.

If SQLGetTypeInfo() is called with an invalid DataType, an empty result set is
returned.

If either the LONGDATACOMPAT keyword or the
SQL_ATTR_LONGDATA_COMPAT connection attribute is set, then
SQL_LONGVARBINARY, SQL_LONGVARCHAR and SQL_LONGVARGRAPHIC
will be returned for the DATA_TYPE argument instead of SQL_BLOB, SQL_CLOB
and SQL_DBCLOB.

The columns of the result set generated by this function are described below.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns will not change.
The data types returned are those that can be used in a CREATE TABLE, ALTER
TABLE, DDL statement. Non-persistent data types such as the locator data types
are not part of the returned result set. User-defined data types are not returned
either.

Columns returned by SQLGetTypeInfo

Column 1 TYPE_NAME (VARCHAR(128) NOT NULL Data Type)
Data source-dependent data type name; for example, "CHAR()", "LONG
VARBINARY". Applications must use this name in the CREATE TABLE
and ALTER TABLE statements.

Column 2 DATA_TYPE (SMALLINT NOT NULL Data Type)
SQL data type define values, for example, SQL_VARCHAR, SQL_BLOB,
SQL_DATE, SQL_INTEGER.

Column 3 COLUMN_SIZE (INTEGER Data Type)
If the data type is a character or binary string, then this column contains
the maximum length in bytes; if it is a graphic (DBCS) string, this is the
number of double byte characters for the column (the CLI/ODBC
configuration keyword Graphic can change this default behaviour). If the
data type is XML, zero is returned.

For date, time, timestamp data types, this is the total number of characters
required to display the value when converted to character.

For numeric data types, this is the total number of digits (precision).

Column 4 LITERAL_PREFIX (VARCHAR(128) Data Type)
Character that DB2 recognizes as a prefix for a literal of this data type.
This column is null for data types where a literal prefix is not applicable.

Column 5 LITERAL_SUFFIX (VARCHAR(128) Data Type)
Character that DB2 recognizes as a suffix for a literal of this data type. This
column is null for data types where a literal prefix is not applicable.

Column 6 CREATE_PARAMS (VARCHAR(128) Data Type)
The text of this column contains a list of keywords, separated by commas,
corresponding to each parameter the application might specify in
parenthesis when using the name in the TYPE_NAME column as a data

SQLGetTypeInfo function (CLI) - Get data type information

224 Call Level Interface Guide and Reference, Volume 2

type in SQL. The keywords in the list can be any of the following:
LENGTH, PRECISION, SCALE. They appear in the order that the SQL
syntax requires that they be used.

A NULL indicator is returned if there are no parameters for the data type
definition, (such as INTEGER).

Note: The intent of CREATE_PARAMS is to enable an application to
customize the interface for a DDL builder. An application should expect,
using this, only to be able to determine the number of arguments required
to define the data type and to have localized text that could be used to
label an edit control.

Column 7 NULLABLE (SMALLINT NOT NULL Data Type)
Indicates whether the data type accepts a NULL value
v Set to SQL_NO_NULLS if NULL values are disallowed.
v Set to SQL_NULLABLE if NULL values are allowed.
v Set to SQL_NULLABLE_UNKNOWN if it is not known whether NULL

values are allowed or not.

Column 8 CASE_SENSITIVE (SMALLINT NOT NULL Data Type)
Indicates whether a character data type is case-sensitive in collations and
comparisons. Valid values are SQL_TRUE and SQL_FALSE.

Column 9 SEARCHABLE (SMALLINT NOT NULL Data Type)
Indicates how the data type is used in a WHERE clause. Valid values are:
v SQL_UNSEARCHABLE : if the data type cannot be used in a WHERE

clause.
v SQL_LIKE_ONLY : if the data type can be used in a WHERE clause only

with the LIKE predicate.
v SQL_ALL_EXCEPT_LIKE : if the data type can be used in a WHERE

clause with all comparison operators except LIKE.
v SQL_SEARCHABLE : if the data type can be used in a WHERE clause

with any comparison operator.

Column 10 UNSIGNED_ATTRIBUTE (SMALLINT Data Type)
Indicates whether the data type is unsigned. The valid values are:
SQL_TRUE, SQL_FALSE or NULL. A NULL indicator is returned if this
attribute is not applicable to the data type.

Column 11 FIXED_PREC_SCALE (SMALLINT NOT NULL Data Type)
Contains the value SQL_TRUE if the data type is exact numeric and
always has the same precision and scale; otherwise, it contains
SQL_FALSE.

Column 12 AUTO_INCREMENT (SMALLINT Data Type)
Contains SQL_TRUE if a column of this data type is automatically set to a
unique value when a row is inserted; otherwise, contains SQL_FALSE.

Column 13 LOCAL_TYPE_NAME (VARCHAR(128) Data Type)
This column contains any localized (native language) name for the data
type that is different from the regular name of the data type. If there is no
localized name, this column is NULL.

This column is intended for display only. The character set of the string is
locale-dependent and is typically the default character set of the database.

Column 14 MINIMUM_SCALE (INTEGER Data Type)
The minimum scale of the SQL data type. If a data type has a fixed scale,
the MINIMUM_SCALE and MAXIMUM_SCALE columns both contain the
same value. NULL is returned where scale is not applicable.

SQLGetTypeInfo function (CLI) - Get data type information

Chapter 1. CLI and ODBC functions 225

Column 15 MAXIMUM_SCALE (INTEGER Data Type)
The maximum scale of the SQL data type. NULL is returned where scale is
not applicable. If the maximum scale is not defined separately in the
DBMS, but is defined instead to be the same as the maximum length of the
column, then this column contains the same value as the COLUMN_SIZE
column.

Column 16 SQL_DATA_TYPE (SMALLINT NOT NULL Data Type)
The value of the SQL data type as it appears in the SQL_DESC_TYPE field
of the descriptor. This column is the same as the DATA_TYPE column
(except for interval and datetime data types which CLI does not support).

Column 17 SQL_DATETIME_SUB (SMALLINT Data Type)
This field is always NULL (CLI does not support interval and datetime
data types).

Column 18 NUM_PREC_RADIX (INTEGER Data Type)
If the data type is an approximate numeric type, this column contains the
value 2 to indicate that COLUMN_SIZE specifies a number of bits. For
exact numeric types, this column contains the value 10 to indicate that
COLUMN_SIZE specifies a number of decimal digits. Otherwise, this
column is NULL.

Column 19 INTERVAL_PRECISION (SMALLINT Data Type)
This field is always NULL (CLI does not support interval data types).

Return codes
v SQL_SUCCESS
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 104. SQLGetTypeInfo SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.
StatementHandle had not been closed.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY004 SQL data type out of range. An invalid DataType was specified.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

SQLGetTypeInfo function (CLI) - Get data type information

226 Call Level Interface Guide and Reference, Volume 2

Example
/* get data type information */
cliRC = SQLGetTypeInfo(hstmt, SQL_ALL_TYPES);

SQLMoreResults function (CLI) - Determine if there are more result
sets

Purpose

Specification: CLI 2.1 ODBC 1.0

SQLMoreResults() determines whether there is more information available on the
statement handle which has been associated with:
v an array input of parameter values for a query
v a stored procedure that is returning result sets
v or batched SQL

Syntax
SQLRETURN SQLMoreResults (SQLHSTMT StatementHandle); /* hstmt */

Function arguments

Table 105. SQLMoreResults arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

Usage

This function is used to return multiple results set in a sequential manner upon the
execution of:
v a parameterized query with an array of input parameter values specified with

the SQL_ATTR_PARAMSET_SIZE statement attribute and SQLBindParameter(),
or

v a stored procedure containing SQL queries, the cursors of which have been left
open so that the result sets remain accessible when the stored procedure has
finished execution. For this scenario, the stored procedure is typically trying to
return multiple result sets.

v or batched SQL. When multiple SQL statements are batched together during a
single SQLExecute() or SQLExecDirect().

After completely processing the first result set, the application can call
SQLMoreResults() to determine if another result set is available. If the current
result set has unfetched rows, SQLMoreResults() discards them by closing the
cursor and, if another result set is available, returns SQL_SUCCESS.

If all the result sets have been processed, SQLMoreResults() returns
SQL_NO_DATA_FOUND.

Applications that want to be able to manipulate more than one result set at the
same time can use the CLI function SQLNextResult() to move a result set to
another statement handle. SQLNextResult() does not support batched statements.

SQLGetTypeInfo function (CLI) - Get data type information

Chapter 1. CLI and ODBC functions 227

When using batched SQL, SQLExecute() or SQLExecDirect() will only execute the
first SQL statement in the batch. SQLMoreResults() can then be called to execute
the next SQL statement and will return SQL_SUCCESS if the next statement is
successfully executed. If there are no more statements to be executed, then
SQL_NO_DATA_FOUND is returned. If the batched SQL statement is an UPDATE,
INSERT, or DELETE statement, then SQLRowCount() can be called to determine the
number of rows affected.

If SQLCloseCursor() or if SQLFreeStmt() is called with the SQL_CLOSE option, or
SQLFreeHandle() is called with HandleType set to SQL_HANDLE_STMT, all
pending result sets on this statement handle are discarded.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_NO_DATA_FOUND

Diagnostics

Table 106. SQLMoreResults SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

In addition SQLMoreResults() can return the SQLSTATEs associated with
SQLExecute().

Example
cliRC = SQLMoreResults(hstmt);

SQLMoreResults function (CLI) - Determine if there are more result sets

228 Call Level Interface Guide and Reference, Volume 2

SQLNativeSql function (CLI) - Get native SQL text
Purpose

Specification: CLI 2.1 ODBC 1.0

SQLNativeSql() is used to show how CLI interprets vendor escape clauses. If the
original SQL string passed in by the application contained vendor escape clause
sequences, then CLI will return the transformed SQL string that would be seen by
the data source (with vendor escape clauses either converted or discarded, as
appropriate).

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLNativeSqlW(). Refer to “Unicode
functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLNativeSql (

SQLHDBC ConnectionHandle, /* hdbc */
SQLCHAR *InStatementText, /* szSqlStrIn */
SQLINTEGER TextLength1, /* cbSqlStrIn */
SQLCHAR *OutStatementText, /* szSqlStr */
SQLINTEGER BufferLength, /* cbSqlStrMax */
SQLINTEGER *TextLength2Ptr); /* pcbSqlStr */

Function arguments

Table 107. SQLNativeSql arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection Handle

SQLCHAR * InStatementText input Input SQL string

SQLINTEGER TextLength1 input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store InStatementText.

SQLCHAR * OutStatementText output Pointer to buffer for the transformed output string

SQLINTEGER BufferLength input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store OutStatementText.

SQLINTEGER * TextLength2Ptr output The total number of SQLCHAR elements (or
SQLWCHAR elements for the Unicode variant of this
function), excluding the null-terminator, available to
return in OutStatementText. If the number of
SQLCHAR elements (or SQLWCHAR elements for
the Unicode variant of this function) available to
return is greater than or equal to BufferLength, the
output SQL string in OutStatementText is truncated to
BufferLength - 1 SQLCHAR or SQLWCHAR elements.

SQLNativeSql function (CLI) - Get native SQL text

Chapter 1. CLI and ODBC functions 229

Usage

This function is called when the application wishes to examine or display the
transformed SQL string that would be passed to the data source by CLI.
Translation (mapping) would only occur if the input SQL statement string contains
vendor escape clause sequence(s).

CLI can only detect vendor escape clause syntax errors when SQLNativeSql() is
called. Because CLI does not pass the transformed SQL string to the data source
for preparation, syntax errors that are detected by the DBMS are not generated at
this time. (The statement is not passed to the data source for preparation because
the preparation may potentially cause the initiation of a transaction.)

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 108. SQLNativeSql SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The buffer OutStatementText was not large enough to contain the
entire SQL string, so truncation occurred. The argument
TextLength2Ptr contains the total length of the untruncated SQL
string. (Function returns with SQL_SUCCESS_WITH_INFO)

08003 Connection is closed. The ConnectionHandle does not reference an open database
connection.

37000 Invalid SQL syntax. The input SQL string in InStatementText contained a syntax error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY009 Invalid argument value. The argument InStatementText is a NULL pointer.

The argument OutStatementText is a NULL pointer.

HY090 Invalid string or buffer length. The argument TextLength1 was less than 0, but not equal to
SQL_NTS.

The argument BufferLength was less than 0.

Restrictions

None.

SQLNumParams function (CLI) - Get number of parameters in a SQL
statement

Purpose

Specification: CLI 2.1 ODBC 1.0

SQLNativeSql function (CLI) - Get native SQL text

230 Call Level Interface Guide and Reference, Volume 2

SQLNumParams() returns the number of parameter markers in an SQL statement.

Syntax
SQLRETURN SQLNumParams (

SQLHSTMT StatementHandle, /* hstmt */
SQLSMALLINT *ParameterCountPtr); /* pcpar */

Function arguments

Table 109. SQLNumParams arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLSMALLINT * ParameterCountPtr Output Number of parameters in the statement.

Usage

If the prepared SQL statement associated with Statement Handle contains batch SQL
(multiple SQL statements separated by a semicolon ';'), the parameters are counted
for the entire string and are not differentiated by the individual statements making
up the batch.

This function can only be called after the statement associated with StatementHandle
has been prepared. If the statement does not contain any parameter markers,
ParameterCountPtr is set to 0.

An application can call this function to determine how many SQLBindParameter()
(or SQLBindFileToParam()) calls are necessary for the SQL statement associated
with the statement handle.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 110. SQLNumParams SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

SQLNumParams function (CLI) - Get number of parameters in a SQL statement

Chapter 1. CLI and ODBC functions 231

Table 110. SQLNumParams SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error. This function was called before SQLPrepare() was called for the
specified StatementHandle

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

SQLNextResult function (CLI) - Associate next result set with another
statement handle

Purpose

Specification: CLI 7.x

SQLNextResult() allows non-sequential access to multiple result sets returned from
a stored procedure.

Syntax
SQLRETURN SQLNextResult (SQLHSTMT StatementHandle1

SQLHSTMT StatementHandle2);

Function arguments

Table 111. SQLNextResult arguments

Data type Argument Use Description

SQLHSTMT StatementHandle1 input Statement handle.

SQLHSTMT StatementHandle2 input Statement handle.

Usage

A stored procedure returns multiple result sets by leaving one or more cursors
open after exiting. The first result set is always accessed by using the statement
handle that called the stored procedure. If multiple result sets are returned, either
SQLMoreResults() or SQLNextResult() can be used to describe and fetch the result
set.

SQLMoreResults() is used to close the cursor for the first result set and allow the
next result set to be processed on the same statement handle, whereas

SQLNumParams function (CLI) - Get number of parameters in a SQL statement

232 Call Level Interface Guide and Reference, Volume 2

SQLNextResult() moves the next result set to StatementHandle2, without closing the
cursor on StatementHandle1. Both functions return SQL_NO_DATA_FOUND if there
are no result sets to be fetched.

Using SQLNextResult() allows result sets to be processed in any order once they
have been transferred to other statement handles. Mixed calls to SQLMoreResults()
and SQLNextResult() are allowed until there are no more cursors (open result sets)
on StatementHandle1.

When SQLNextResult() returns SQL_SUCCESS, the next result set is no longer
associated with StatementHandle1. Instead, the next result set is associated with
StatementHandle2, as if a call to SQLExecDirect() had just successfully executed a
query on StatementHandle2. The cursor, therefore, can be described using
SQLNumResultCols(), SQLDescribeCol(), or SQLColAttribute().

After SQLNextResult() has been called, the result set now associated with
StatementHandle2 is removed from the chain of remaining result sets and cannot be
used again in either SQLNextResult() or SQLMoreResults(). This means that for 'n'
result sets, SQLNextResult() can be called successfully at most 'n-1' times.

If SQLCloseCursor() or if SQLFreeStmt() is called with the SQL_CLOSE option, or
SQLFreeHandle() is called with HandleType set to SQL_HANDLE_STMT, all
pending result sets on this statement handle are discarded.

SQLNextResult() returns SQL_ERROR if StatementHandle2 has an open cursor or
StatementHandle1 and StatementHandle2 are not on the same connection. If any
errors or warnings are returned, SQLGetDiagRec() must always be called on
StatementHandle1.

Note: SQLMoreResults() also works with a parameterized query with an array of
input parameter values specified with the SQL_ATTR_ROW_ARRAY_SIZE
statement attribute and SQLBindParameter(). SQLNextResult(), however, does not
support this.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_NO_DATA_FOUND

Diagnostics

Table 112. SQLNextResult SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication Link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate the memory required to support
execution or completion of the function.

SQLNextResult function (CLI) - Associate next result set with another statement handle

Chapter 1. CLI and ODBC functions 233

Table 112. SQLNextResult SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error.
The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

StatementHandle2 has an open cursor associated with it.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access the memory required to support
execution or completion of the function.

HYT00 Time-out expired. The time-out period expired before the data source returned the
result set. The time-out period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

Only SQLMoreResults() can be used for parameterized queries and batched SQL.

Example
/* use SQLNextResult to push Result Set 2 onto the second statement handle */
cliRC = SQLNextResult(hstmt, hstmt2); /* open second cursor */

SQLNumResultCols function (CLI) - Get number of result columns
Purpose

Specification: CLI 1.1 ODBC 1.0 ISO CLI

SQLNumResultCols() returns the number of columns in the result set associated
with the input statement handle.

SQLPrepare() or SQLExecDirect() must be called before calling this function.

After calling this function, you can call SQLColAttribute(), or one of the bind
column functions.

Syntax
SQLRETURN SQLNumResultCols (

SQLHSTMT StatementHandle, /* hstmt */
SQLSMALLINT *ColumnCountPtr); /* pccol */

Function arguments

Table 113. SQLNumResultCols arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLSMALLINT * ColumnCountPtr output Number of columns in the result set

SQLNextResult function (CLI) - Associate next result set with another statement handle

234 Call Level Interface Guide and Reference, Volume 2

Usage

The function sets the output argument to zero if the last statement or function
executed on the input statement handle did not generate a result set.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 114. SQLNumResultCols SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY010 Function sequence error. The function was called prior to calling SQLPrepare() or
SQLExecDirect() for the StatementHandle.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Authorization

None.

Example
/* identify the number of output columns */
cliRC = SQLNumResultCols(hstmt, &nResultCols);

SQLNumResultCols function (CLI) - Get number of result columns

Chapter 1. CLI and ODBC functions 235

SQLParamData function (CLI) - Get next parameter for which a data
value is needed

Purpose

Specification: CLI 2.1 ODBC 1.0 ISO CLI

SQLParamData() is used in conjunction with SQLPutData() to send long data in
pieces. It can also be used to send fixed-length data at execution time.

Syntax
SQLRETURN SQLParamData (

SQLHSTMT StatementHandle, /* hstmt */
SQLPOINTER *ValuePtrPtr); /* prgbValue */

Function arguments

Table 115. SQLParamData arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLPOINTER * ValuePtrPtr output Pointer to a buffer in which to return the address of
the ParameterValuePtr buffer specified in
SQLBindParameter() (for parameter data) or the
address of the TargetValuePtr buffer specified in
SQLBindCol() (for column data), as contained in the
SQL_DESC_DATA_PTR descriptor record field.

input Starting in Version 9.7 Fix Pack 1, when
SQL_ATTR_INTERLEAVED_PUTDATA is set to
TRUE, this is an input argument. The application
provides a value for which it wants to put data in
subsequent SQLPutData() calls.

Usage

SQLParamData() returns SQL_NEED_DATA if there is at least one
SQL_DATA_AT_EXEC parameter for which data still has not been assigned. This
function returns an application-provided value in ValuePtrPtr supplied by the
application during a previous SQLBindParameter() call. SQLPutData() is called one
or more times (in the case of long data) to send the parameter data.
SQLParamData() is called to signal that all the data has been sent for the current
parameter and to advance to the next SQL_DATA_AT_EXEC parameter.
SQL_SUCCESS is returned when all the parameters have been assigned data
values and the associated statement has been executed successfully. If any errors
occur during or before actual statement execution, SQL_ERROR is returned.

If SQLParamData() returns SQL_NEED_DATA, then only SQLPutData() or
SQLCancel() calls can be made. All other function calls using this statement handle
will fail. In addition, all function calls referencing the parent connection handle of
StatementHandle will fail if they involve changing any attribute or state of that
connection; that is, that following function calls on the parent connection handle
are also not permitted:
v SQLSetConnectAttr()
v SQLEndTran()

SQLParamData function (CLI) - Get next parameter for which a data value is needed

236 Call Level Interface Guide and Reference, Volume 2

However, calls to the SQLEndTran() function specifying SQL_ROLLBACK as
completion type are allowed when the SQL_ATTR_FORCE_ROLLBACK connection
attribute is set, the StreamPutData configuration keyword is set to 1, and
autocommit mode is enabled.

Should they be invoked during an SQL_NEED_DATA sequence, these functions
will return SQL_ERROR with SQLSTATE of HY010 and the processing of the
SQL_DATA_AT_EXEC parameters will not be affected.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_NEED_DATA
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_NEED_DATA

Diagnostics

SQLParamData() can return any SQLSTATE returned by the SQLPrepare(),
SQLExecDirect(), and SQLExecute() functions. In addition, the following
diagnostics can also be generated:

Table 116. SQLParamData SQLSTATEs

SQLSTATE Description Explanation

07006 Invalid conversion. Transfer of data between CLI and the application variables would
result in incompatible data conversion.

22026 String data, length mismatch The SQL_NEED_LONG_DATA_LEN information type in
SQLGetInfo() was 'Y' and less data was sent for a long parameter
(the data type was SQL_LONGVARCHAR,
SQL_LONGVARBINARY, or other long data type) than was
specified with the StrLen_or_IndPtr argument in
SQLBindParameter().

The SQL_NEED_LONG_DATA_LEN information type in
SQLGetInfo() was 'Y' and less data was sent for a long column
(the data type was SQL_LONGVARCHAR,
SQL_LONGVARBINARY, or other long data type) than was
specified in the length buffer corresponding to a column in a row
of data that was updated with SQLSetPos().

40001 Transaction rollback. The transaction to which this SQL statement belonged was rolled
back due to a deadlock or timeout.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

HY000 General error. An error occurred for which there was no specific SQLSTATE and
for which no implementation-specific SQLSTATE was defined. The
error message returned by SQLGetDiagRec() in the argument
MessageText describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

SQLParamData function (CLI) - Get next parameter for which a data value is needed

Chapter 1. CLI and ODBC functions 237

Table 116. SQLParamData SQLSTATEs (continued)

SQLSTATE Description Explanation

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY010 Function sequence error. SQLParamData() was called out of sequence. This call is only valid
after an SQLExecDirect() or an SQLExecute(), or after an
SQLPutData() call.

Even though this function was called after an SQLExecDirect() or
an SQLExecute() call, there were no SQL_DATA_AT_EXEC
parameters (left) to process.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY092 Option type out of range. The FileOptions argument of a previous SQLBindFileToParam()
operation was not valid.

HY506 Error closing a file. Error encountered while trying to close a temporary file.

HY509 Error deleting a file. Error encountered while trying to delete a temporary file.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

Example
/* get next parameter for which a data value is needed */
cliRC = SQLParamData(hstmt, (SQLPOINTER *)&valuePtr);

SQLParamOptions function (CLI) - Specify an input array for a
parameter

Deprecated

Note:

In ODBC 3.0, SQLParamOptions() has been deprecated and replaced with
SQLSetStmtAttr().

Although this version of CLI continues to support SQLParamOptions(), use
SQLSetStmtAttr() in your CLI programs so that they conform to the latest
standards.

Migrating to the new function

The statement:
SQLParamOptions(hstmt, crow, pirow);

for example, would be rewritten using the new function as:
SQLSetStmtAttr(hstmt, fOption, pvParam, fStrLen);

SQLParamData function (CLI) - Get next parameter for which a data value is needed

238 Call Level Interface Guide and Reference, Volume 2

SQLPrepare function (CLI) - Prepare a statement
Purpose

Specification: CLI 1.1 ODBC 1.0 ISO CLI

SQLPrepare() associates an SQL statement or XQuery expression with the input
statement handle provided. The application can include one or more parameter
markers in the SQL statement. To include a parameter marker, the application
embeds a question mark (?) or a colon followed by a name (:name) into the SQL
string at the appropriate position. The application can reference this prepared
statement by passing the statement handle to other functions.

Note: For XQuery expressions, you cannot specify parameter markers in the
expression itself. You can, however, use the XMLQUERY function to bind
parameter markers to XQuery variables. The values of the bound parameter
markers will then be passed to the XQuery expression specified in XMLQUERY for
execution.

If the statement handle has been previously used with a query statement (or any
function that returns a result set), either SQLCloseCursor() or SQLFreeStmt() with
the SQL_CLOSE option must be called to close the cursor before calling
SQLPrepare().

XQuery expressions must be prefixed with the "XQUERY" keyword. To prepare
and execute XQuery expressions without having to include this keyword, set the
statement attribute SQL_ATTR_XQUERY_STATEMENT to SQL_TRUE before
calling SQLPrepare() or SQLExecDirect().

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLPrepareW(). Refer to “Unicode
functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLPrepare (

SQLHSTMT StatementHandle, /* hstmt */
SQLCHAR *StatementText, /* szSqlStr */
SQLINTEGER TextLength); /* cbSqlStr */

Function arguments

Table 117. SQLPrepare arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle. There must not be an open cursor
associated with StatementHandle.

SQLCHAR * StatementText input SQL statement string

SQLINTEGER TextLength input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the StatementText argument, or
SQL_NTS if StatementText is null-terminated.

SQLPrepare function (CLI) - Prepare a statement

Chapter 1. CLI and ODBC functions 239

Usage

Deferred prepare is on by default. The prepare request is not sent to the server
until either SQLDescribeParam(), SQLExecute(), SQLNumResultCols(),
SQLDescribeCol(), or SQLColAttribute() is called using the same statement handle
as the prepared statement. This minimizes network flow and improves
performance.

If the SQL statement text contains vendor escape clause sequences, CLI will first
modify the SQL statement text to the appropriate DB2 specific format before
submitting it to the database for preparation. If the application does not generate
SQL statements that contain vendor escape clause sequences then the
SQL_ATTR_NOSCAN statement attribute should be set to SQL_NOSCAN at the
connection level so that CLI does not perform a scan for any vendor escape
clauses.

Once a statement has been prepared using SQLPrepare(), the application can
request information about the format of the result set (if the statement was a
query) by calling:
v SQLNumResultCols()

v SQLDescribeCol()

v SQLColAttribute()

Information about the parameter markers in StatementText can be requested using
the following:
v SQLDescribeParam()

v SQLNumParams()

Note: The first invocation of any of the above functions except SQLNumParams()
will force the PREPARE request to be sent to the server if deferred prepare is
enabled.

The SQL statement string might contain parameter markers and SQLNumParams()
can be called to determine the number of parameter markers in the statement. A
parameter marker is represented by a “?” character or a colon followed by a name
(:name), and is used to indicate a position in the statement where an
application-supplied value is to be substituted when SQLExecute() is called. The
bind parameter functions, SQLBindParameter(), SQLSetParam() and
SQLBindFileToParam(), are used to bind or associate application variables with
each parameter marker and to indicate if any data conversion should be performed
at the time the data is transferred. An application can call SQLDescribeParam() to
retrieve information about the data expected by the database server for the
parameter marker.

All parameters must be bound before calling SQLExecute().

Refer to the PREPARE statement for information on rules related to parameter
markers.

Once the application has processed the results from the SQLExecute() call, it can
execute the statement again with new (or the same) parameter values.

The SQL statement can be COMMIT or ROLLBACK and executing either of these
statements has the same effect as calling SQLEndTran() on the current connection
handle.

SQLPrepare function (CLI) - Prepare a statement

240 Call Level Interface Guide and Reference, Volume 2

If the SQL statement is a positioned DELETE or a positioned UPDATE, the cursor
referenced by the statement must be defined on a separate statement handle under
the same connection handle and same isolation level.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 118. SQLPrepare SQLSTATEs

SQLSTATE Description Explanation

01504 The UPDATE or DELETE
statement does not include a
WHERE clause.

StatementText contained an UPDATE or DELETE statement which
did not contain a WHERE clause.

01508 Statement disqualified for
blocking.

The statement was disqualified for blocking for reasons other than
storage.

21S01 Insert value list does not match
column list.

StatementText contained an INSERT statement and the number of
values to be inserted did not match the degree of the derived
table.

21S02 Degrees of derived table does
not match column list.

StatementText contained a CREATE VIEW statement and the
number of names specified is not the same degree as the derived
table defined by the query specification.

22018 Invalid character value for cast
specification.

StatementText contained an SQL statement that contained a literal
or parameter and the value was incompatible with the data type
of the associated table column.

22019 Invalid escape character The argument StatementText contained a LIKE predicate with an
ESCAPE in the WHERE clause, and the length of the escape
character following ESCAPE was not equal to 1.

22025 Invalid escape sequence The argument StatementText contained “LIKE pattern value
ESCAPE escape character” in the WHERE clause, and the character
following the escape character in the pattern value was not one of
"%" or "_".

24000 Invalid cursor state. A cursor was already opened on the statement handle.

34000 Invalid cursor name. StatementText contained a positioned DELETE or a positioned
UPDATE and the cursor referenced by the statement being
executed was not open.

37xxx a Invalid SQL syntax. StatementText contained one or more of the following:

v an SQL statement that the connected database server could not
prepare

v a statement containing a syntax error

40001 Transaction rollback. The transaction to which this SQL statement belonged was rolled
back due to deadlock or timeout.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

SQLPrepare function (CLI) - Prepare a statement

Chapter 1. CLI and ODBC functions 241

Table 118. SQLPrepare SQLSTATEs (continued)

SQLSTATE Description Explanation

42xxx a Syntax Error or Access Rule
Violation.

425xx indicates the authorization ID does not have permission to
execute the SQL statement contained in StatementText.

Other 42xxx SQLSTATES indicate a variety of syntax or access
problems with the statement.

58004 Unexpected system failure. Unrecoverable system error.

S0001 Database object already exists. StatementText contained a CREATE TABLE or CREATE VIEW
statement and the table name or view name specified already
existed.

S0002 Database object does not exist. StatementText contained an SQL statement that references a table
name or a view name which did not exist.

S0011 Index already exists. StatementText contained a CREATE INDEX statement and the
specified index name already existed.

S0012 Index not found. StatementText contained a DROP INDEX statement and the
specified index name did not exist.

S0021 Column already exists. StatementText contained an ALTER TABLE statement and the
column specified in the ADD clause was not unique or identified
an existing column in the base table.

S0022 Column not found. StatementText contained an SQL statement that references a column
name which did not exist.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY009 Invalid argument value. StatementText was a null pointer.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource
limitations.

HY090 Invalid string or buffer length. The argument TextLength was less than 1, but not equal to
SQL_NTS.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Note:

a xxx refers to any SQLSTATE with that class code. Example, 37xxx refers to any SQLSTATE in the 37 class.

SQLPrepare function (CLI) - Prepare a statement

242 Call Level Interface Guide and Reference, Volume 2

Note: Not all DBMSs report all of the above diagnostic messages at prepare time.
If deferred prepare is left on as the default behavior (controlled by the
SQL_ATTR_DEFERRED_PREPARE statement attribute), then these errors could
occur when the PREPARE is flowed to the server. The application must be able to
handle these conditions when calling functions that cause this flow. These
functions include SQLExecute(), SQLDescribeParam(), SQLNumResultCols(),
SQLDescribeCol(), and SQLColAttribute().

Authorization

None.

Example
SQLCHAR *stmt = (SQLCHAR *)"DELETE FROM org WHERE deptnumb = ? ";

/* ... */

/* prepare the statement */
cliRC = SQLPrepare(hstmt, stmt, SQL_NTS);

SQLPrimaryKeys function (CLI) - Get primary key columns of a table
The SQLPrimaryKeys() function returns a list of column names that comprise the
primary key for a table. The information is returned in an SQL result set, which
you can retrieve by using the same functions that you use to process a result set
that is generated by a query.

Purpose

Specification: CLI 2.1 ODBC 1.0

Unicode equivalent: You can also use this function with the Unicode character set.
The corresponding Unicode function is SQLPrimaryKeysW(). For information about
ANSI to Unicode function mappings, see“Unicode functions (CLI)” on page 5.

Syntax
SQLRETURN SQLPrimaryKeys (

SQLHSTMT StatementHandle, /* hstmt */
SQLCHAR *CatalogName, /* szCatalogName */
SQLSMALLINT NameLength1, /* cbCatalogName */
SQLCHAR *SchemaName, /* szSchemaName */
SQLSMALLINT NameLength2, /* cbSchemaName */
SQLCHAR *TableName, /* szTableName */
SQLSMALLINT NameLength3); /* cbTableName */

Function arguments

Table 119. SQLPrimaryKeys arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input The statement handle.

SQLCHAR * CatalogName Input A catalog qualifier of a 3-part table name. If the
target DBMS does not support 3-part naming, and
CatalogName is not a null pointer and does not point
to a zero-length string, then an empty result set and
SQL_SUCCESS is returned. Otherwise, this is a valid
filter for DBMSs that supports 3-part naming.

SQLPrepare function (CLI) - Prepare a statement

Chapter 1. CLI and ODBC functions 243

Table 119. SQLPrimaryKeys arguments (continued)

Data type Argument Use Description

SQLSMALLINT NameLength1 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store CatalogName, or SQL_NTS
if CatalogName is null-terminated.

SQLCHAR * SchemaName Input The schema qualifier of table name.

SQLSMALLINT NameLength2 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store SchemaName, or SQL_NTS
if SchemaName is null-terminated.

SQLCHAR * TableName Input The table name.

SQLSMALLINT NameLength3 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store TableName, or SQL_NTS if
TableName is null-terminated.

Usage

The SQLPrimaryKeys() function returns the primary key columns from a single
table. You cannot use search patterns to specify any of the arguments.

The result set contains the columns that are listed in Columns Returned By
SQLPrimaryKeys, ordered by TABLE_CAT, TABLE_SCHEM, TABLE_NAME and
ORDINAL_POSITION columns.

In many cases, calls to the SQLPrimaryKeys() function map to a complex and thus
expensive query against the system catalog, so you should use these calls
sparingly, and save the results rather than repeating calls.

If the schema name is not provided, the schema name defaults to the name that is
in effect for the current connection.

Call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
that are supported by the connected DBMS.

In Version 9.7 Fix Pack 5, you can specify *ALL as a value in the SchemaName to
resolve unqualified stored procedure calls, or to find libraries in catalog API calls.
CLI searches on all existing schemas in the connected database. You are not
required to specify *ALL, as this behavior is the default in CLI. Alternatively, you
can set the SchemaFilter IBM Data Server Driver configuration keyword or the
Schema List CLI/ODBC configuration keyword to *ALL.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns will not change.

Columns Returned By SQLPrimaryKeys

Column 1 TABLE_CAT (VARCHAR(128))
The primary key table catalog name. The value is NULL if this table does
not have catalogs.

SQLPrimaryKeys function (CLI) - Get primary key columns of a table

244 Call Level Interface Guide and Reference, Volume 2

Column 2 TABLE_SCHEM (VARCHAR(128))
The name of the schema that contains TABLE_NAME.

Column 3 TABLE_NAME (VARCHAR(128) not NULL)
The name of the specified table.

Column 4 COLUMN_NAME (VARCHAR(128) not NULL)
The primary key column name.

Column 5 KEY_SEQ (SMALLINT not NULL)
The column sequence number in the primary key, starting with 1.

Column 6 PK_NAME (VARCHAR(128))
The primary key identifier. NULL if not applicable to the data source.

Note: The column names that are used by CLI follow the X/Open CLI CAE
specification style. The column types, contents, and order are identical to those
defined for the SQLPrimaryKeys() result set in ODBC.

If the specified table does not contain a primary key, an empty result set is
returned.

Return codes
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_STILL_EXECUTING
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO

Diagnostics

Table 120. SQLPrimaryKeys SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY010 Function sequence error. The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while in a BEGIN COMPOUND and
END COMPOUND SQL operation.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource
limitations.

HY090 Invalid string or buffer length. The value of one of the name-length arguments was less than 0,
but not equal to SQL_NTS.

HYC00 Driver not capable. CLI does not support catalog as a qualifier for table name.

SQLPrimaryKeys function (CLI) - Get primary key columns of a table

Chapter 1. CLI and ODBC functions 245

Table 120. SQLPrimaryKeys SQLSTATEs (continued)

SQLSTATE Description Explanation

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. You can set the timeout period by using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

Example
/* get the primary key columns of a table */
cliRC = SQLPrimaryKeys(hstmt, NULL, 0, tbSchema, SQL_NTS, tbName, SQL_NTS);

SQLProcedureColumns function (CLI) - Get input/output parameter
information for a procedure

The SQLProcedureColumns() function returns a list of input and output parameters
that are associated with a stored procedure.

The information is returned in an SQL result set, which you can retrieve using the
same functions that you use to process a result set that is generated by a query.

Purpose

Specification: CLI 2.1 ODBC 1.0

Unicode equivalent: You can also use this function with the Unicode character set.
The corresponding Unicode function is SQLProcedureColumnsW(). For information
about ANSI to Unicode function mappings, see “Unicode functions (CLI)” on page
5.

Syntax
SQLRETURN SQLProcedureColumns(

SQLHSTMT StatementHandle, /* hstmt */
SQLCHAR *CatalogName, /* szProcCatalog */
SQLSMALLINT NameLength1, /* cbProcCatalog */
SQLCHAR *SchemaName, /* szProcSchema */
SQLSMALLINT NameLength2, /* cbProcSchema */
SQLCHAR *ProcName, /* szProcName */
SQLSMALLINT NameLength3, /* cbProcName */
SQLCHAR *ColumnName, /* szColumnName */
SQLSMALLINT NameLength4); /* cbColumnName */

Function arguments

Table 121. SQLProcedureColumns arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input The statement handle.

SQLPrimaryKeys function (CLI) - Get primary key columns of a table

246 Call Level Interface Guide and Reference, Volume 2

Table 121. SQLProcedureColumns arguments (continued)

Data type Argument Use Description

SQLCHAR * CatalogName Input A catalog qualifier of a 3-part table name. If the
target DBMS does not support 3-part naming, and
CatalogName is not a null pointer and does not point
to a zero-length string, then an empty result set and
SQL_SUCCESS is returned. Otherwise, this is a valid
filter for DBMSs that supports 3-part naming.

SQLSMALLINT NameLength1 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store CatalogName, or SQL_NTS
if CatalogName is null-terminated.

SQLCHAR * SchemaName Input A buffer that can contain a pattern value to qualify
the result set by schema name.

For DB2 for z/OS, the stored procedures are in one
schema; the only acceptable value for the
SchemaName argument is a null pointer. If a value is
specified, an empty result set and SQL_SUCCESS are
returned. For DB2 Database for Linux, UNIX, and
Windows, SchemaName can contain a valid pattern
value. For more information about valid search
patterns, see the catalog functions input arguments.

SQLSMALLINT NameLength2 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store SchemaName, or SQL_NTS
if SchemaName is null-terminated.

SQLCHAR * ProcName Input A buffer that can contain a pattern value to qualify
the result set by the procedure name.

SQLSMALLINT NameLength3 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store ProcName, or SQL_NTS if
ProcName is null-terminated.

SQLCHAR * ColumnName Input A buffer that can contain a pattern value to qualify
the result set by the parameter name. Use this
argument to further qualify the result set that is
already restricted by specifying a non-empty value
for ProcName, SchemaName, or both.

SQLSMALLINT NameLength4 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store ColumnName, or SQL_NTS
if ColumnName is null-terminated.

Usage

The SQLProcedureColumns() function returns the information in a result set,
ordered by PROCEDURE_CAT, PROCEDURE_SCHEM, PROCEDURE_NAME, and
COLUMN_TYPE. Columns returned by SQLProcedureColumns lists the columns
in the result set. Applications should be aware that columns that are beyond the
last column might be defined in future releases.

In many cases, calls to the SQLProcedureColumns() function map to a complex and
thus expensive query against the system catalog, so you should use the calls
sparingly, and save the results rather than repeating calls.

SQLProcedureColumns function (CLI) - Get input/output parameter information for a
procedure

Chapter 1. CLI and ODBC functions 247

Call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_SCHEMA_NAME_LEN, and SQL_MAX_COLUMN_NAME_LEN to
determine respectively the actual lengths of the TABLE_CAT, TABLE_SCHEM, and
COLUMN_NAME columns that are supported by the connected DBMS.

If the SQL_ATTR_LONGDATA_COMPAT connection attribute is set, LOB column
types are reported as LONG VARCHAR, LONG VARBINARY or LONG
VARGRAPHIC types.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns will not change.

If the stored procedure is at a DB2 for z/OS server, the name of the stored
procedure must be registered in the SYSIBM.SYSPROCEDURES catalog table of the
server. For V8 and later servers, the stored procedures must be registered in the
SYSIBM.SYSROUTINES and SYSIBM.SYSPARAMS catalog tables of the server.

For versions of other DB2 servers that do not provide facilities for a stored
procedure catalog, an empty result set is returned.

CLI returns information about the input, input/output, and output parameters that
are associated with the stored procedure, but cannot return descriptor information
for any result sets that the stored procedure might return.

In Version 9.7 Fix Pack 5, you can specify *ALL as a value in the SchemaName to
resolve unqualified stored procedure calls, or to find libraries in catalog API calls.
CLI searches on all existing schemas in the connected database. You are not
required to specify *ALL, as this behavior is the default in CLI. Alternatively, you
can set the SchemaFilter IBM Data Server Driver configuration keyword or the
Schema List CLI/ODBC configuration keyword to *ALL.

Columns returned by SQLProcedureColumns

Column 1 PROCEDURE_CAT (VARCHAR(128))
The procedure catalog name. The value is NULL if this procedure does not
have catalogs.

Column 2 PROCEDURE_SCHEM (VARCHAR(128))
The name of the schema that contains PROCEDURE_NAME. This is NULL
for DB2 for z/OS SQLProcedureColumns() result sets.

Column 3 PROCEDURE_NAME (VARCHAR(128))
The name of the procedure.

Column 4 COLUMN_NAME (VARCHAR(128))
The name of the parameter.

Column 5 COLUMN_TYPE (SMALLINT not NULL)
Identifies the type of information that is associated with this row. The
values that can be returned are:
v SQL_PARAM_INPUT is an input parameter.
v SQL_PARAM_INPUT_OUTPUT is an input / output parameter.
v SQL_PARAM_OUTPUT is an output parameter.

The values which are defined in the ODBC specification but are not
returned:
v SQL_PARAM_TYPE_UNKNOWN : the parameter type is unknown.

SQLProcedureColumns function (CLI) - Get input/output parameter information for a
procedure

248 Call Level Interface Guide and Reference, Volume 2

v SQL_RETURN_VALUE is the return value of the procedure, in the
procedure column.

v SQL_RESULT_COL is a column in the result set.

Column 6 DATA_TYPE (SMALLINT not NULL)
The SQL data type.

Column 7 TYPE_NAME (VARCHAR(128) not NULL)
The character string that represents the name of the data type that
corresponds to DATA_TYPE.

Column 8 COLUMN_SIZE (INTEGER)
For XML arguments in SQL routines, zero is returned (as XML arguments
have no length). For cataloged external routines, however, XML parameters
are declared as XML AS CLOB(n), in which case COLUMN_SIZE is the
cataloged length, n.

If the DATA_TYPE column value denotes a character or binary string, this
column contains the maximum length in SQLCHAR or SQLWCHAR
elements. If DATA_TYPE column value is a graphic (DBCS) string, the
COLUMN_SIZE is the number of double byte SQLCHAR or SQLWCHAR
elements for the parameter.

For date, time, and timestamp data types, this is the total number of
SQLCHAR or SQLWCHAR elements that are required to display the value
when converted to character data type.

For numeric data types, COLUMN_SIZE value is either the total number of
digits or the total number of bits that are allowed in the column,
depending on the value in the NUM_PREC_RADIX column in the result
set.

See the table of data type precision.

Column 9 BUFFER_LENGTH (INTEGER)
The maximum number of bytes for the associated C buffer to store data
from this parameter if SQL_C_DEFAULT is specified on the SQLBindCol(),
SQLGetData() and SQLBindParameter() calls. This length excludes any
null-terminator. For exact numeric data types, the length accounts for the
decimal and the sign.

For XML arguments in SQL routines, zero is returned (as XML arguments
have no length). For cataloged external routines, however, XML parameters
are declared as XML AS CLOB(n), in which case BUFFER_LENGTH is the
cataloged length, n.

See the table of data type length.

Column 10 DECIMAL_DIGITS (SMALLINT)
The scale of the parameter. NULL is returned for data types where scale is
not applicable.

See the table of data type scale.

Column 11 NUM_PREC_RADIX (SMALLINT)
Either 10, 2, or NULL. If DATA_TYPE is an approximate numeric data
type, this column contains the value 2, and the COLUMN_SIZE column
contains the number of bits that are allowed in the parameter.

If DATA_TYPE is an exact numeric data type, this column contains the
value 10, and the COLUMN_SIZE and DECIMAL_DIGITS columns contain
the number of decimal digits that are allowed for the parameter.

SQLProcedureColumns function (CLI) - Get input/output parameter information for a
procedure

Chapter 1. CLI and ODBC functions 249

For numeric data types, the DBMS can return a NUM_PREC_RADIX of
either 10 or 2.

NULL is returned for data types where radix is not applicable.

Column 12 NULLABLE (SMALLINT not NULL)
SQL_NO_NULLS if the parameter does not accept NULL values.

SQL_NULLABLE if the parameter accepts NULL values.

Column 13 REMARKS (VARCHAR(254))
Might contain descriptive information about the parameter.

Column 14 COLUMN_DEF (VARCHAR)
The default value of the column.

If NULL was specified as the default value, this column is the word NULL,
not enclosed in quotation marks. If the default value cannot be represented
without truncation, this column contains TRUNCATED, not enclosed in
single quotation marks. If no default value is specified, this column is
NULL.

You can use the value of COLUMN_DEF to generate a new column
definition, except when COLUMN_DEF contains the value TRUNCATED.

Column 15 SQL_DATA_TYPE (SMALLINT not NULL)
The value of the SQL data type as it is displayed in the SQL_DESC_TYPE
field of the descriptor. This column is the same as the DATA_TYPE column
except for datetime data types (CLI does not support interval data types).

For datetime data types, the SQL_DATA_TYPE field in the result set is
SQL_DATETIME, and the SQL_DATETIME_SUB field returns the subcode
for the specific datetime data type (SQL_CODE_DATE, SQL_CODE_TIME
or SQL_CODE_TIMESTAMP).

Column 16 SQL_DATETIME_SUB (SMALLINT)
The subtype code for datetime data types. For all other data types this
column returns a NULL value (including interval data types that CLI does
not support).

Column 17 CHAR_OCTET_LENGTH (INTEGER)
The maximum length in bytes of a character data type column. For all
other data types, this column returns a NULL.

Column 18 ORDINAL_POSITION (INTEGER NOT NULL)
Contains the ordinal position of the parameter that is given by
COLUMN_NAME in this result set. This is the ordinal position of the
argument to be provided on the CALL statement. The leftmost argument
has an ordinal position of 1.

Column 19 IS_NULLABLE (Varchar)
v “NO” if the column cannot contain NULLs.
v “YES” if the column can include NULLs.
v Zero-length string if nullability is unknown.

ISO rules are followed to determine nullability.

An ISO SQL-compliant DBMS cannot return an empty string.

The value that is returned for this column is different than the value that is
returned for the NULLABLE column. (See the description of the
NULLABLE column.)

Note:

SQLProcedureColumns function (CLI) - Get input/output parameter information for a
procedure

250 Call Level Interface Guide and Reference, Volume 2

v The column names that are used by CLI follow the X/Open CLI CAE
specification style. The column types, contents, and order are identical to those
defined for the SQLProcedureColumns() result set in ODBC.

v If two modules contain procedures that share the same name,
SQLProcedureColumns() returns details about both procedures.

Return codes
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_STILL_EXECUTING
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO

Diagnostics

Table 122. SQLProcedureColumns SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

42601 PARMLIST syntax error. The PARMLIST value in the stored procedures catalog table
contains a syntax error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY010 Function sequence error.
The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while in a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

The function was called before a statement was prepared on the
statement handle.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource
limitations.

HY090 Invalid string or buffer length. The value of one of the name-length arguments was less than 0,
but not equal to SQL_NTS.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. You can set the timeout period by using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

SQLProcedureColumns function (CLI) - Get input/output parameter information for a
procedure

Chapter 1. CLI and ODBC functions 251

Restrictions

The SQLProcedureColumns() function does not return information about the
attributes of result sets that might be returned from stored procedures.

If an application is connected to a DB2 server that does not provide support for a
stored procedure catalog, or does not provide support for stored procedures, the
SQLProcedureColumns() function returns an empty result set.

Example
/* get input/output parameter information for a procedure */
sqlrc = SQLProcedureColumns(hstmt,

NULL,
0, /* catalog name not used */
(unsigned char *)colSchemaNamePattern,
SQL_NTS, /* schema name not currently used */
(unsigned char *)procname,
SQL_NTS,
colNamePattern,
SQL_NTS); /* all columns */

SQLProcedures function (CLI) - Get list of procedure names
The SQLProcedures() function returns a list of stored procedure names that have
been registered at the server, and which match the specified search pattern.

The information is returned in an SQL result set, which you can retrieve by using
the same functions that you use to process a result set that is generated by a query.

Purpose

Specification: CLI 2.1 ODBC 1.0

Unicode equivalent: You can also use this function with the Unicode character set.
The corresponding Unicode function is SQLProceduresW(). For information about
ANSI to Unicode function mappings, see “Unicode functions (CLI)” on page 5.

Syntax
SQLRETURN SQLProcedures (

SQLHSTMT StatementHandle, /* hstmt */
SQLCHAR *CatalogName, /* szProcCatalog */
SQLSMALLINT NameLength1, /* cbProcCatalog */
SQLCHAR *SchemaName, /* szProcSchema */
SQLSMALLINT NameLength2, /* cbProcSchema */
SQLCHAR *ProcName, /* szProcName */
SQLSMALLINT NameLength3); /* cbProcName */

Function arguments

Table 123. SQLProcedures arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input The statement handle.

SQLProcedureColumns function (CLI) - Get input/output parameter information for a
procedure

252 Call Level Interface Guide and Reference, Volume 2

Table 123. SQLProcedures arguments (continued)

Data type Argument Use Description

SQLCHAR * CatalogName Input A catalog qualifier of a 3-part table name. If the
target DBMS does not support 3-part naming, and
CatalogName is not a null pointer and does not point
to a zero-length string, then an empty result set and
SQL_SUCCESS is returned. Otherwise, this is a valid
filter for DBMSs that support 3-part naming.

SQLSMALLINT NameLength1 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store CatalogName, or SQL_NTS
if CatalogName is null-terminated.

SQLCHAR * SchemaName Input A buffer that can contain a pattern value to qualify
the result set by schema name.

For DB2 for z/OS, the stored procedures are in one
schema; the only acceptable value for the
SchemaName argument is a null pointer. If a value is
specified, an empty result set and SQL_SUCCESS are
returned. For DB2 Database for Linux, UNIX, and
Windows, SchemaName can contain a valid pattern
value. For more information about valid search
patterns, see the catalog functions input arguments.

SQLSMALLINT NameLength2 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store SchemaName, or SQL_NTS
if SchemaName is null-terminated.

SQLCHAR * ProcName Input A buffer that can contain a pattern value to qualify
the result set by table name.

SQLSMALLINT NameLength3 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store ProcName, or SQL_NTS if
ProcName is null-terminated.

Usage

The result set that is returned by the SQLProcedures() function contains the
columns that are listed in Columns returned by SQLProcedures in the order given.
The rows are ordered by PROCEDURE_CAT, PROCEDURE_SCHEMA, and
PROCEDURE_NAME.

In many cases, calls to the SQLProcedures() function map to a complex and thus
expensive query against the system catalog, so you should use them sparingly, and
save the results rather than repeating calls.

Call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_SCHEMA_NAME_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
that are supported by the connected DBMS.

If the SQL_ATTR_LONGDATA_COMPAT connection attribute is set, LOB column
types are reported as LONG VARCHAR, LONG VARBINARY, or LONG
VARGRAPHIC types.

SQLProcedures function (CLI) - Get list of procedure names

Chapter 1. CLI and ODBC functions 253

If the stored procedure is at a DB2 for z/OS server, the name of the stored
procedures must be registered in the server's SYSIBM.SYSPROCEDURES catalog
table. For V8 and later servers, the stored procedure must be registered in the
server's SYSIBM.SYSROUTINES and SYSIBM.SYSPARAMS catalog tables.

For other versions of DB2 servers that do not provide facilities for a stored
procedure catalog, an empty result set is returned.

In Version 9.7 Fix Pack 5, you can specify *ALL as a value in the SchemaName to
resolve unqualified stored procedure calls, or to find libraries in catalog API calls.
CLI searches on all existing schemas in the connected database. You are not
required to specify *ALL, as this behavior is the default in CLI. Alternatively, you
can set the SchemaFilter IBM Data Server Driver configuration keyword or the
Schema List CLI/ODBC configuration keyword to *ALL.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns will not change.

Columns returned by SQLProcedures

Column 1 PROCEDURE_CAT (VARCHAR(128))
The procedure catalog name. The value is NULL if this procedure does not
have catalogs.

Column 2 PROCEDURE_SCHEM (VARCHAR(128))
The name of the schema that contains PROCEDURE_NAME.

Column 3 PROCEDURE_NAME (VARCHAR(128) NOT NULL)
The name of the procedure.

Column 4 NUM_INPUT_PARAMS (INTEGER not NULL)
The number of input parameters. INOUT parameters are not counted as
part of this number.

To determine information regarding INOUT parameters, examine the
COLUMN_TYPE column that is returned by SQLProcedureColumns().

Column 5 NUM_OUTPUT_PARAMS (INTEGER not NULL)
The number of output parameters. INOUT parameters are not counted as
part of this number.

To determine information regarding INOUT parameters, examine the
COLUMN_TYPE column that is returned by SQLProcedureColumns().

Column 6 NUM_RESULT_SETS (INTEGER not NULL)
The number of result sets that are returned by the procedure.

You should not use this column, it is reserved for future use by ODBC.

Column 7 REMARKS (VARCHAR(254))
Contains the descriptive information about the procedure.

Column 8 PROCEDURE_TYPE (SMALLINT)
Defines the procedure type:
v SQL_PT_UNKNOWN: It cannot be determined whether the procedure

returns a value.
v SQL_PT_PROCEDURE: The returned object is a procedure that does not

have a return value.
v SQL_PT_FUNCTION: The returned objects is a function that has a return

value

CLI always returns SQL_PT_PROCEDURE.

SQLProcedures function (CLI) - Get list of procedure names

254 Call Level Interface Guide and Reference, Volume 2

Note:

v The column names that are used by CLI follow the X/Open CLI CAE
specification style. The column types, contents, and order are identical to those
that are defined for the SQLProcedures() result set in ODBC.

v If two modules contain procedures that share the same name, the
SQLProcedures() function returns details about both procedures.

Return codes
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_STILL_EXECUTING
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO

Diagnostics

Table 124. SQLProcedures SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. The function was called again on
StatementHandle.

HY010 Function sequence error.
The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

The function was called before a statement was prepared on the
statement handle.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource
limitations.

HY090 Invalid string or buffer length. The value of one of the name-length arguments was less than 0,
but not equal to SQL_NTS.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. You can set timeout period by using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

SQLProcedures function (CLI) - Get list of procedure names

Chapter 1. CLI and ODBC functions 255

Restrictions

If an application is connected to a DB2 server that does not provide support for a
stored procedure catalog, or does not provide support for stored procedures,
SQLProcedureColumns() will return an empty result set.

SQLPutData function (CLI) - Passing data value for a parameter
Purpose

Specification: CLI 2.1 ODBC 1.0 ISO CLI

SQLPutData() is called following an SQLParamData() call returning
SQL_NEED_DATA to supply parameter data values. This function can be used to
send large parameter values in pieces.

Syntax
SQLRETURN SQLPutData (

SQLHSTMT StatementHandle, /* hstmt */
SQLPOINTER DataPtr, /* rgbValue */
SQLLEN StrLen_or_Ind); /* cbValue */

Function arguments

Table 125. SQLPutData arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle.

SQLPOINTER DataPtr Input Pointer to the actual data, or portion of data, for a
parameter. The data must be in the form specified in
the SQLBindParameter() call that the application used
when specifying the parameter.

SQLLEN StrLen_or_Ind Input The length of DataPtr. Specifies the amount of data
sent in a call to SQLPutData() .

The amount of data can vary with each call for a
given parameter. The application can also specify
SQL_NTS or SQL_NULL_DATA for StrLen_or_Ind.

StrLen_or_Ind is ignored for all fixed length C buffer
types, such as date, time, timestamp, and all numeric
C buffer types.

For cases where the C buffer type is SQL_C_CHAR
or SQL_C_BINARY, or if SQL_C_DEFAULT is
specified as the C buffer type and the C buffer type
default is SQL_C_CHAR or SQL_C_BINARY, this is
the number of bytes of data in the DataPtr buffer.

Usage

The application calls SQLPutData() after calling SQLParamData() on a statement in
the SQL_NEED_DATA state to supply the data values for an
SQL_DATA_AT_EXEC parameter. Long data can be sent in pieces via repeated
calls to SQLPutData(). CLI generates a temporary file for each
SQL_DATA_AT_EXEC parameter to which each piece of data is appended when
SQLPutData() is called. The path in which CLI creates its temporary files can be set

SQLProcedures function (CLI) - Get list of procedure names

256 Call Level Interface Guide and Reference, Volume 2

using the TEMPDIR keyword in the db2cli.ini file. If this keyword is not set, CLI
attempts to write to the path specified by the environment variables TEMP or TMP.
After all the pieces of data for the parameter have been sent, the application calls
SQLParamData() again to proceed to the next SQL_DATA_AT_EXEC parameter, or,
if all parameters have data values, to execute the statement.

SQLPutData() cannot be called more than once for a fixed length C buffer type,
such as SQL_C_LONG.

After an SQLPutData() call, the only legal function calls are SQLParamData(),
SQLCancel(), or another SQLPutData() if the input data is character or binary data.
As with SQLParamData(), all other function calls using this statement handle will
fail. In addition, all function calls referencing the parent connection handle of
StatementHandle will fail if they involve changing any attribute or state of that
connection; that is, the following function calls on the parent connection handle are
also not permitted:
v SQLSetConnectAttr()
v SQLEndTran()

However, calls to the SQLEndTran() function specifying SQL_ROLLBACK as
completion type are allowed when the SQL_ATTR_FORCE_ROLLBACK connection
attribute is set, the StreamPutData configuration keyword is set to 1, and
autocommit mode is enabled.

Should they be invoked during an SQL_NEED_DATA sequence, these functions
will return SQL_ERROR with SQLSTATE of HY010 and the processing of the
SQL_DATA_AT_EXEC parameters will not be affected.

If one or more calls to SQLPutData() for a single parameter results in
SQL_SUCCESS, attempting to call SQLPutData() with StrLen_or_Ind set to
SQL_NULL_DATA for the same parameter results in an error with SQLSTATE of
22005. This error does not result in a change of state; the statement handle is still
in a Need Data state and the application can continue sending parameter data.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Some of the following diagnostics conditions might also be reported on the final
SQLParamData() call rather than at the time the SQLPutData() is called.

Table 126. SQLPutData SQLSTATEs

SQLSTATE Description Explanation

01004 Data truncated. The data sent for a numeric parameter was truncated without the
loss of significant digits.

Timestamp data sent for a date or time column was truncated.

Function returns with SQL_SUCCESS_WITH_INFO.

22001 String data right truncation. More data was sent for a binary or char data than the data source
can support for that column.

SQLPutData function (CLI) - Passing data value for a parameter

Chapter 1. CLI and ODBC functions 257

Table 126. SQLPutData SQLSTATEs (continued)

SQLSTATE Description Explanation

22003 Numeric value out of range. The data sent for a numeric parameter caused the whole part of
the number to be truncated when assigned to the associated
column.

SQLPutData() was called more than once for a fixed length
parameter.

22005 Error in assignment. The data sent for a parameter was incompatible with the data
type of the associated table column.

22007 Invalid datetime format. The data value sent for a date, time, or timestamp parameters was
invalid.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY009 Invalid argument value. The argument DataPtr was a NULL pointer, and the argument
StrLen_or_Ind was neither 0 nor SQL_NULL_DATA.

HY010 Function sequence error. The statement handle StatementHandle must be in a need data
state and must have been positioned on an SQL_DATA_AT_EXEC
parameter via a previous SQLParamData() call.

HY090 Invalid string or buffer length. The argument DataPtr was not a NULL pointer, and the argument
StrLen_or_Ind was less than 0, but not equal to SQL_NTS or
SQL_NULL_DATA.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

A additional value for StrLen_or_Ind, SQL_DEFAULT_PARAM, was introduced in
ODBC 2.0, to indicate that the procedure is to use the default value of a parameter,
rather than a value sent from the application. Since DB2 stored procedure
arguments do not support default values, specification of this value for
StrLen_or_Ind argument will result in an error when the CALL statement is
executed since the SQL_DEFAULT_PARAM value will be considered an invalid
length.

ODBC 2.0 also introduced the SQL_LEN_DATA_AT_EXEC(length) macro to be
used with the StrLen_or_Ind argument. The macro is used to specify the sum total
length of the entire data that would be sent for character or binary C data via the
subsequent SQLPutData() calls. Since the DB2 ODBC driver does not need this
information, the macro is not needed. An ODBC application calls SQLGetInfo()
with the SQL_NEED_LONG_DATA_LEN option to check if the driver needs this

SQLPutData function (CLI) - Passing data value for a parameter

258 Call Level Interface Guide and Reference, Volume 2

information. The DB2 ODBC driver will return 'N' to indicate that this information
is not needed by SQLPutData().

Example
SQLCHAR buffer[BUFSIZ];
size_t n = BUFSIZ;

/* ... */

/* passing data value for a parameter */
cliRC = SQLPutData(hstmt, buffer, n);

SQLReloadConfig function (CLI) - Reload a configuration property
from the client configuration file

The SQLReloadConfig() function reloads a configuration property from the
db2dsdriver.cfg client configuration file.

Purpose

Specification: CLI 9.7

Unicode equivalent: You can also use this function with the Unicode character set.
The corresponding Unicode function is SQLReloadConfigW(). For more
information about ANSI to Unicode function mappings, see “Unicode functions
(CLI)” on page 5.

Syntax
SQLRETURN SQLReloadConfig(SQLINTEGER ConfigProperty,

SQLCHAR *DiagInfoString,
SQLSMALLINT BufferLength,
SQLSMALLINT *StringLengthPtr);

Function arguments

Table 127. SQLReloadConfig function arguments

Data type Argument Use Description

SQLINTEGER ConfigProperty Input A predefined grouping of db2dsdriver.cfg file
sections to reload. DSD_ACR_AFFINITY is the only
supported value. DSD_ACR_AFFINITY value is defined
in the usage section.

SQLCHAR * DiagInfoString Output If the value is SQL_ERROR, CLI returns a detailed error
description or information in the DiagInfoString
output. If the value is SQL_SUCCESS or
SQL_SUCCESS_WITH_INFO, CLI does not return any
information.

In DB2 Version 9.7 Fix Pack 5 and later fix packs,
warning messages are prefixed with a diagnostic
string that consists of the database name, server
name, and port number (database:hostname:port).
Multiple warnings are separated with newline
characters.

SQLINTEGER BufferLength Input The length of the *DiagInfoString argument.

SQLPutData function (CLI) - Passing data value for a parameter

Chapter 1. CLI and ODBC functions 259

Table 127. SQLReloadConfig function arguments (continued)

Data type Argument Use Description

SQLINTEGER * StringLengthPtr Output A pointer to a buffer in which to return the total
number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function),
excluding the number of bytes that are required for
the null termination character, available to return in
the *DiagInfoString argument. If the number of bytes
to return is greater than the value of the BufferLength
argument, the text in the *DiagInfoString argument is
truncated to the value of the BufferLength argument
minus the length of a null termination character. CLI
then uses a null character to terminate the text in the
*DiagInfoString argument.

Usage

After you modify the db2dsdriver.cfg file, you can issue the SQLReloadConfig()
function to reload the entries for the section of the db2dsdriver.cfg file that you
specify in the ConfigProperty argument.

Currently, you can reload only the DSD_ACR_AFFINITY configuration property. The
DSD_ACR_AFFINITY configuration property consists of the following parameters,
which you define in the automatic client reroute (<acr>) section in the
db2dsdriver.cfg file:
v <alternateserverlist>
v <affinitylist>
v <clientaffinitydefined>
v <clientaffinityroundrobin>

Modifications to other parameters in the <acr> section are ignored.

When your application issues the SQLReloadConfig() function, the reload causes
reevaluation of affinity members for all connections at the next transaction interval.
The next transaction interval refers to the next transaction boundary, which is
defined when a commit or rollback occurs. This reevaluation of affinity members
involves validating entries for all alternate servers within the <acr> section. For
each server, an attempt is made to open a socket by using the specified host name
and port number. If all servers in the alternate server list of an active database
connection are unreachable, an error message is returned in the DiagInfoString
argument of the SQLReloadConfig() function:
IBM DB2 [CLI Driver] <database>:<hostname>:<port> - None of the servers,

specified under <alternateserverlist> section, are reachable.

Affinity for an idle connection is evaluated only when the connection becomes
active. When the connection becomes active, it is moved to an affinity member.

If you modify a section of the db2dsdriver.cfg file other than the <acr> section,
the SQLReloadConfig() function returns a value of SQL_ERROR in the DiagInfoString
argument. Also, if you remove or add a <acr> section for existing database entries
in the db2dsdriver.cfg file, the SQLReloadConfig() function returns an error. If the
SQLReloadConfig() function returns an error, applications continue to access the
old db2dsdriver.cfg file contents.

SQLReloadConfig function (CLI) - Reload a configuration property from the client
configuration file

260 Call Level Interface Guide and Reference, Volume 2

The SQLReloadConfig() function updates in-memory versions of automatic client
reroute (ACR) affinities with all the databases that are listed in the current
db2dsdriver.cfg file. If the function finds that the <acr> section of any database
entry is invalid, the next attempt to connect to that database results in an error.
The detection of invalid <acr> sections also terminates connections for active
databases at the next transaction interval. Possible causes for an invalid <acr>
section are as follows:
v The <database> section is missing (results in SQL_ERROR being returned).
v The <acr> section is missing (results in SQL_ERROR being returned).
v A new alternate server list is empty.
v CLI encountered internal buffer boundary limit to hold new server list.

The SQLReloadConfig() function has no default timeout value for attempting to
open a socket against an alternate server port. You can set a specific timeout value
by using the SocketTimeOut parameter in the global section of the db2dsdriver.cfg
file.

Return codes
v SQL_ERROR
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO

Diagnostics

The following tables provide lists of errors and warnings that can result from
calling the SQLReloadConfig() function.

Table 128. SQLReloadConfig() function error messages

Error message Explanation

IBM DB2 [CLI Driver] Another
SQLReloadConfig() execution is already
under progress.

The SQLReloadConfig() function was
already called for a particular process and is
running.

IBM DB2 [CLI Driver] Unrecognized value
found in ConfigProperty argument of
SQLReloadConfig().

A value other than the DSD_ACR_AFFINITY
configuration property was specified.

IBM DB2 [CLI Driver] db2dsdriver.cfg
file to be reloaded cannot be located in
the expected location.

The db2dsdriver.cfg file cannot be accessed.
Ensure that the db2dsdriver.cfg file is
present and has global read permission.

IBM DB2 [CLI Driver] Sections other than
one specified in ConfigProperty argument
is found modified, which is not
supported.

A section other than the <acr> section was
modified.

IBM DB2 [CLI Driver] CLI subsystem is
not initialized. Use SQLAllocHandle() to
allocate environment handle.

You must allocate the environment handle
before calling the SQLReloadConfig()
function.

IBM DB2 [CLI Driver]
<database>:<hostname>:<port> - Either
all or one of <client>, <affinitylist>,
<alternateserverlist> sections are
missing in db2dsdriver.cfg.

The db2dsdriver.cfg file is missing an entry
for all or one of the <client>, <affinitylist>,
and <alternateserverlist> sections.

SQLReloadConfig function (CLI) - Reload a configuration property from the client
configuration file

Chapter 1. CLI and ODBC functions 261

Table 128. SQLReloadConfig() function error messages (continued)

Error message Explanation

IBM DB2 [CLI Driver]
<database>:<hostname>:<port> - None of
the servers, specified under
<alternateserverlist> section, are
reachable.

The IBM driver cannot establish connection
to all the servers that are specified in the
<alternateserverlist> section of the
db2dsdriver.cfg file.

IBM DB2 [CLI Driver]
<database>:<hostname>:<port> - cannot
find appropriate port number for service
name <srvcname>.

The IBM driver cannot allocate a port
number for the service name that is
specified in the error message.

Table 129. SQLReloadConfig() function warning message

Error message Explanation

IBM DB2 [CLI Driver]
<database>:<hostname>:<port> - The
following server(s) from
<alternateserverlist> were unreachable
“<hostname>:<port>,<hostname>:port,...”.

The IBM driver cannot establish connection
to some of the servers that were specified in
the <alternateserverlist> section of the
db2dsdriver.cfg file.

Restrictions

The DSD_ACR_AFFINITY configuration property of the db2dsdriver.cfg file is the
only property that you can reload by using the SQLReloadConfig() function.

SQLRowCount function (CLI) - Get row count
Purpose

Specification: CLI 1.1 ODBC 1.0 ISO CLI

SQLRowCount() returns the number of rows in a table that were affected by an
UPDATE, an INSERT, a DELETE, or a MERGE statement issued against the table,
or a view based on the table.

You must call SQLExecute() or SQLExecDirect() before calling SQLRowCount().

Syntax
SQLRETURN SQLRowCount (

SQLHSTMT StatementHandle, /* hstmt */
SQLLEN *RowCountPtr); /* pcrow */

Function arguments

Table 130. SQLRowCount arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLLEN * RowCountPtr output Pointer to location where the number of rows
affected is stored. If the SQL_ATTR_PARC_BATCH
connection attribute is set to
SQL_PARC_BATCH_ENABLE, the location size must
be the size of an array. See the Usage section for
details.

SQLReloadConfig function (CLI) - Reload a configuration property from the client
configuration file

262 Call Level Interface Guide and Reference, Volume 2

Usage

If the last issued statement referenced by the input statement handle was not an
UPDATE, an INSERT, a DELETE, or a MERGE statement or if the statement did
not run successfully, the function sets the contents of StatementHandle to -1.

If you use the SQLRowCount() function on a non-scrollable SELECT-only cursor,
the function sets the contents of RowCountPtr to -1. The number of rows is not
available until all of the data has been fetched. You can use the CLI statement
attribute SQL_ATTR_ROWCOUNT_PREFETCH to enable the client to request the
full row count before fetching the data.

Restriction: The SQL_ATTR_ROWCOUNT_PREFETCH attribute is not supported
when the cursor contains LOBs or XML.

If the SQL_ATTR_PARC_BATCH connection attribute is set to
SQL_PARC_BATCH_ENABLE, then the SQL_ATTR_PARAMOPT_ATOMIC
attribute must be set to SQL_ATOMIC_NO and the RowCountPtr argument must
be pointing to an array of type SQLLEN *. The length of this array must be equal
to SQL_ATTR_PARAMSET_SIZE. Upon successful execution of non-atomic update,
delete or insert operations, the number of rows in a table that were affected by
each parameter set is stored in this array.

Any rows in other tables that might have been affected by the statement (for
example, due to cascading deletes) are not included in the count.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 131. SQLRowCount SQLSTATEs

SQLSTATE Description Explanation

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY010 Function sequence error. The function was called before calling SQLExecute() or
SQLExecDirect() for the StatementHandle.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

Authorization

None.

SQLRowCount function (CLI) - Get row count

Chapter 1. CLI and ODBC functions 263

SQLSetColAttributes function (CLI) - Set column attributes
Deprecated

Note:

In ODBC 3.0, SQLSetColAttributes() has been deprecated, and CLI no longer
supports this function.

Now that CLI uses deferred prepare by default, there is no need for the
functionality of SQLSetColAttributes().

SQLSetConnectAttr function (CLI) - Set connection attributes
Purpose

Specification: CLI 5.0 ODBC 3.0 ISO CLI

SQLSetConnectAttr() sets attributes that govern aspects of connections.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLSetConnectAttrW(). Refer to
“Unicode functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLSetConnectAttr (

SQLHDBC ConnectionHandle, /* hdbc */
SQLINTEGER Attribute, /* fOption */
SQLPOINTER ValuePtr, /* pvParam */
SQLINTEGER StringLength); /* fStrLen */

Function arguments

Table 132. SQLSetConnectAttr arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input Connection handle.

SQLINTEGER Attribute input Attribute to set, listed in the connection attributes
list.

SQLPOINTER ValuePtr input Pointer to the value to be associated with Attribute.
Depending on the value of Attribute, ValuePtr will be
a 32-bit unsigned integer value or pointer to a
null-terminated character string. Note that if the
Attribute argument is a driver-specific value, the
value in *ValuePtr can be a signed integer. Refer to
the connection attributes list for details.

SQLSetColAttributes function (CLI) - Set column attributes

264 Call Level Interface Guide and Reference, Volume 2

Table 132. SQLSetConnectAttr arguments (continued)

Data type Argument Use Description

SQLINTEGER StringLength input If Attribute is an ODBC-defined attribute and
ValuePtr points to a character string or a binary
buffer, this argument should be the length of
*ValuePtr. For character string data, StringLength
should contain the number of bytes in the string. If
Attribute is an ODBC-defined attribute and ValuePtr
is an integer, StringLength is ignored.

If Attribute is a CLI attribute, the application
indicates the nature of the attribute by setting the
StringLength argument. StringLength can have the
following values:
v If ValuePtr is a pointer to a character string, then

StringLength is the number of bytes needed to
store the string or SQL_NTS.

v If ValuePtr is a pointer to a binary buffer, then the
application places the result of the
SQL_LEN_BINARY_ATTR(length) macro in
StringLength. This places a negative value in
StringLength.

v If ValuePtr is a pointer to a value other than a
character string or a binary string, then
StringLength should have the value
SQL_IS_POINTER.

v If ValuePtr contains a fixed-length value, then
StringLength is either SQL_IS_INTEGER or
SQL_IS_UINTEGER, as appropriate.

Usage

Setting statement attributes using SQLSetConnectAttr() no longer supported

The ability to set statement attributes using SQLSetConnectAttr() is no longer
supported. To support applications written before version 5, some statement
attributes can be set using SQLSetConnectAttr() in this release of CLI. All
applications that rely on this behavior, however, should be updated to use
SQLSetStmtAttr() instead.

If SQLSetConnectAttr() is called to set a statement attribute that sets the header
field of a descriptor, the descriptor field is set for the application descriptors
currently associated with all statements on the connection. However, the attribute
setting does not affect any descriptors that might be associated with the statements
on that connection in the future.

Connection Attributes

At any time between allocating and freeing a connection, an application can call
SQLSetConnectAttr(). All connection and statement attributes successfully set by
the application for the connection persist until SQLFreeHandle() is called on the
connection.

Some connection attributes can be set only before a connection has been made;
others can be set only after a connection has been made, while some cannot be set
once a statement is allocated. Refer to the connection attributes list for details on
when each attribute can be set.

SQLSetConnectAttr function (CLI) - Set connection attributes

Chapter 1. CLI and ODBC functions 265

Some connection attributes support substitution of a similar value if the data
source does not support the value specified in ValuePtr. In such cases, CLI returns
SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02 (Option value changed.). To
determine the substituted value, an application calls SQLGetConnectAttr().

The format of information set through ValuePtr depends on the specified Attribute.
SQLSetConnectAttr() will accept attribute information in one of two different
formats: a null-terminated character string or a 32-bit integer value. The format of
each is noted in the attribute's description. Character strings pointed to by the
ValuePtr argument of SQLSetConnectAttr() have a length of StringLength bytes. The
StringLength argument is ignored if the length is defined by the attribute.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

CLI can return SQL_SUCCESS_WITH_INFO to provide information about the
result of setting an option.

When Attribute is a statement attribute, SQLSetConnectAttr() can return any
SQLSTATEs returned by SQLSetStmtAttr().

Table 133. SQLSetConnectAttr SQLSTATEs

SQLSTATE Description Explanation

01000 General error. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S02 Option value changed. CLI did not support the value specified in *ValuePtr and
substituted a similar value. (Function returns
SQL_SUCCESS_WITH_INFO.)

08002 Connection in use. The argument Attribute was SQL_ATTR_ODBC_CURSORS and
CLI was already connected to the data source.

08003 Connection is closed. An Attribute value was specified that required an open connection,
but the ConnectionHandle was not in a connected state.

08S01 Communication link failure. The communication link between CLI and the data source to
which it was connected failed before the function completed
processing.

24000 Invalid cursor state. The argument Attribute was SQL_ATTR_CURRENT_QUALIFIER
and a result set was pending.

HY000 General error. An error occurred for which there was no specific SQLSTATE and
for which no implementation-specific SQLSTATE was defined. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY009 Invalid argument value. A null pointer was passed for ValuePtr and the value in *ValuePtr
was a string value.

SQLSetConnectAttr function (CLI) - Set connection attributes

266 Call Level Interface Guide and Reference, Volume 2

Table 133. SQLSetConnectAttr SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error. An asynchronously executing function was called for a
StatementHandle associated with the ConnectionHandle and was still
executing when SQLSetConnectAttr() was called.

SQLExecute() or SQLExecDirect() was called for a StatementHandle
associated with the ConnectionHandle and returned
SQL_NEED_DATA. This function was called before data was sent
for all data-at-execution parameters or columns.

SQLBrowseConnect() was called for the ConnectionHandle and
returned SQL_NEED_DATA. This function was called before
SQLBrowseConnect() returned SQL_SUCCESS_WITH_INFO or
SQL_SUCCESS.

HY011 Operation invalid at this time. The argument Attribute was SQL_ATTR_TXN_ISOLATION and a
transaction was open.

HY024 Invalid attribute value. Given the specified Attribute value, an invalid value was specified
in *ValuePtr. (CLI returns this SQLSTATE only for connection and
statement attributes that accept a discrete set of values, such as
SQL_ATTR_ACCESS_MODE. For all other connection and
statement attributes, CLI must verify the value specified in
ValuePtr.)

The Attribute argument was SQL_ATTR_TRACEFILE or
SQL_ATTR_TRANSLATE_LIB, and *ValuePtr was an empty string.

HY090 Invalid string or buffer length. The StringLength argument was less than 0, but was not
SQL_NTS.

HY092 Option type out of range. The value specified for the argument Attribute was not valid for
this version of CLI.

HYC00 Driver not capable. The value specified for the argument Attribute was a valid
connection or statement attribute for the version of the CLI driver,
but was not supported by the data source.

Restrictions

None.

Example
/* set AUTOCOMMIT on */
cliRC = SQLSetConnectAttr(hdbc,

SQL_ATTR_AUTOCOMMIT,
(SQLPOINTER)SQL_AUTOCOMMIT_ON,
SQL_NTS);

/* ... */

/* set AUTOCOMMIT OFF */
cliRC = SQLSetConnectAttr(hdbc,

SQL_ATTR_AUTOCOMMIT,
(SQLPOINTER)SQL_AUTOCOMMIT_OFF,
SQL_NTS);

SQLSetConnection function (CLI) - Set connection handle
Purpose

Specification: CLI 2.1

SQLSetConnectAttr function (CLI) - Set connection attributes

Chapter 1. CLI and ODBC functions 267

This function is needed if the application needs to deterministically switch to a
particular connection before continuing execution. It should only be used when the
application is mixing CLI function calls with embedded SQL function calls and
where multiple connections are used.

Syntax
SQLRETURN SQLSetConnection (SQLHDBC ConnectionHandle); /* hdbc */

Function arguments

Table 134. SQLSetConnection arguments

Data type Argument Use Description

SQLHDBC ConnectionHandle input The connection handle associated with the
connection that the application wishes to switch to.

Usage

In CLI version 1 it was possible to mix CLI calls with calls to routines containing
embedded SQL as long as the connect request was issued via the CLI connect
function. The embedded SQL routine would simply use the existing CLI
connection.

Although this is still true, there is a potential complication: CLI allows multiple
concurrent connections. This means that it is no longer clear which connection an
embedded SQL routine would use upon being invoked. In practice, the embedded
routine would use the connection associated with the most recent network activity.
However, from the application's perspective, this is not always deterministic and it
is difficult to keep track of this information. SQLSetConnection() is used to allow
the application to explicitly specify which connection is active. The application can
then call the embedded SQL routine.

SQLSetConnection() is not needed if the application makes use of CLI exclusively.
Under those conditions, each statement handle is implicitly associated with a
connection handle and there is never any confusion as to which connection a
particular CLI function applies.

Return codes
v SQL_SUCCESS
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 135. SQLSetConnection SQLSTATEs

SQLSTATE Description Explanation

08003 Connection is closed. The connection handle provided is not currently associated with
an open connection to a database server.

HY000 General error. An error occurred for which there was no specific SQLSTATE and
for which no implementation-specific SQLSTATE was defined. The
error message returned by SQLGetDiagRec() in the argument
MessageText describes the error and its cause.

SQLSetConnection function (CLI) - Set connection handle

268 Call Level Interface Guide and Reference, Volume 2

Restrictions

None.

Example
/* perform statements on the first connection */
cliRC = SQLSetConnection(hdbc1);

/* ... */

/* perform statements on the second connection */
cliRC = SQLSetConnection(hdbc2);

SQLSetConnectOption function (CLI) - Set connection option
Deprecated

Note:

In ODBC 3.0, SQLSetConnectOption() has been deprecated and replaced with
SQLSetConnectAttr().

Although this version of CLI continues to support SQLSetConnectOption(), use
SQLSetConnectAttr() in your CLI programs so that they conform to the latest
standards.

This deprecated function cannot be used in a 64-bit environment.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLSetConnectOptionW(). Refer to
“Unicode functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Migrating to the new function

The statement:
SQLSetConnectOption(

hdbc,
SQL_AUTOCOMMIT,
SQL_AUTOCOMMIT_OFF);

for example, would be rewritten using the new function as:
SQLSetConnectAttr(

hdbc,
SQL_ATTR_AUTOCOMMIT,
SQL_AUTOCOMMIT_OFF,
0);

SQLSetCursorName function (CLI) - Set cursor name
Purpose

Specification: CLI 1.1 ODBC 1.0 ISO CLI

SQLSetConnection function (CLI) - Set connection handle

Chapter 1. CLI and ODBC functions 269

SQLSetCursorName() associates a cursor name with the statement handle. This
function is optional because CLI implicitly generates a cursor name. The implicit
cursor name is available after the dynamic SQL has been prepared on the
statement handle.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLSetCursorNameW(). Refer to
“Unicode functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLSetCursorName (

SQLHSTMT StatementHandle, /* hstmt */
SQLCHAR *CursorName, /* szCursor */
SQLSMALLINT NameLength); /* cbCursor */

Function arguments

Table 136. SQLSetCursorName arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle

SQLCHAR * CursorName input Cursor name

SQLSMALLINT NameLength input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store the CursorName argument.

Usage

CLI always generates and uses an internally generated cursor name when a query
is prepared or executed directly. SQLSetCursorName() allows an application-defined
cursor name to be used in an SQL statement (a positioned UPDATE or DELETE).
CLI maps this name to the internal name. The name will remain associated with
the statement handle, until the handle is dropped, or another SQLSetCursorName()
is called on this statement handle.

Although SQLGetCursorName() will return the name set by the application (if one
was set), error messages associated with positioned UPDATE and DELETE
statements will refer to the internal name. For this reason, do not use
SQLSetCursorName() for positioned UPDATEs and DELETEs, but instead use the
internal name which can be obtained by calling SQLGetCursorName().

Cursor names must follow these rules:
v All cursor names within the connection must be unique.
v Each cursor name must be less than or equal to 128 bytes in length. Any attempt

to set a cursor name longer than 128 bytes results in truncation of that cursor
name to 128 bytes. (No warning is generated.)

v Since internally generated names begin with SQLCUR or SQL_CUR, the
application must not input a cursor name starting with either SQLCUR or
SQL_CUR in order to avoid conflicts with internal names.

v Since a cursor name is considered an identifier in SQL, it must begin with an
English letter (a-z, A-Z) followed by any combination of digits (0-9), English
letters or the underscore character (_).

SQLSetCursorName function (CLI) - Set cursor name

270 Call Level Interface Guide and Reference, Volume 2

v To permit cursor names containing characters other than those listed above (such
as National Language Set or Double Bytes Character Set characters), the
application must enclose the cursor name in double quotes (").

v Unless the input cursor name is enclosed in double quotes, all leading and
trailing blanks from the input cursor name string will be removed.

For efficient processing, applications should not include any leading or trailing
spaces in the CursorName buffer. If the CursorName buffer contains a delimited
identifier, applications should position the first double quote as the first character
in the CursorName buffer.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 137. SQLSetCursorName SQLSTATEs

SQLSTATE Description Explanation

34000 Invalid cursor name. The cursor name specified by the argument CursorName was
invalid. The cursor name either begins with "SQLCUR" or
"SQL_CUR" or violates the cursor naming rules (Must begin with
a-z or A-Z followed by any combination of English letters, digits,
or the '_' character.

The cursor name specified by the argument CursorName already
exists.

The cursor name length is greater than the value returned by
SQLGetInfo() with the SQL_MAX_CURSOR_NAME_LEN
argument.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

58004 Unexpected system failure. Unrecoverable system error.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY009 Invalid argument value. CursorName was a null pointer.

HY010 Function sequence error. There is an open or positioned cursor on the statement handle.

The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

The function was called before a statement was prepared on the
statement handle.

SQLSetCursorName function (CLI) - Set cursor name

Chapter 1. CLI and ODBC functions 271

Table 137. SQLSetCursorName SQLSTATEs (continued)

SQLSTATE Description Explanation

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY090 Invalid string or buffer length. The argument NameLength was less than 0, but not equal to
SQL_NTS.

Authorization

None.

Example
/* set the name of the cursor */
rc = SQLSetCursorName(hstmtSelect, (SQLCHAR *)"CURSNAME", SQL_NTS);

SQLSetDescField function (CLI) - Set a single field of a descriptor
record

Purpose

Specification: CLI 5.0 ODBC 3.0 ISO CLI

SQLSetDescField() sets the value of a single field of a descriptor record.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLSetDescFieldW(). Refer to “Unicode
functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLSetDescField (SQLHDESC DescriptorHandle,

SQLSMALLINT RecNumber,
SQLSMALLINT FieldIdentifier,
SQLPOINTER ValuePtr,
SQLINTEGER BufferLength);

Function arguments

Table 138. SQLSetDescField arguments

Data type Argument Use Description

SQLHDESC DescriptorHandle input Descriptor handle.

SQLSMALLINT RecNumber input Indicates the descriptor record containing the field
that the application seeks to set. Descriptor records
are numbered from 0, with record number 0 being
the bookmark record. The RecNumber argument is
ignored for header fields.

SQLSMALLINT FieldIdentifier input Indicates the field of the descriptor whose value is to
be set. For more information, refer to the list of
values for the descriptor FieldIdentifier argument.

SQLSetCursorName function (CLI) - Set cursor name

272 Call Level Interface Guide and Reference, Volume 2

Table 138. SQLSetDescField arguments (continued)

Data type Argument Use Description

SQLPOINTER ValuePtr input Pointer to a buffer containing the descriptor
information, or a four-byte value. The data type
depends on the value of FieldIdentifier. If ValuePtr is a
four-byte value, either all four of the bytes are used,
or just two of the four are used, depending on the
value of the FieldIdentifier argument.

SQLINTEGER BufferLength input If FieldIdentifier is an ODBC-defined field and
ValuePtr points to a character string or a binary
buffer, this argument should be the length of
*ValuePtr. For character string data, BufferLength
should contain the number of bytes in the string. If
FieldIdentifier is an ODBC-defined field and ValuePtr
is an integer, BufferLength is ignored.

If FieldIdentifier is a driver-defined field, the
application indicates the nature of the field by
setting the BufferLength argument. BufferLength can
have the following values:

v If ValuePtr is a pointer to a character string, then
BufferLength is the number of bytes needed to store
the string or SQL_NTS.

v If ValuePtr is a pointer to a binary buffer, then the
application places the result of the
SQL_LEN_BINARY_ATTR(length) macro in
BufferLength This places a negative value in
BufferLength.

v If ValuePtr is a pointer to a value other than a
character string or a binary string, then
BufferLength should have the value
SQL_IS_POINTER.

v If ValuePtr contains a fixed-length value, then
BufferLength is either SQL_IS_INTEGER,
SQL_IS_UINTEGER, SQL_IS_SMALLINT, or
SQL_IS_USMALLINT, as appropriate.

Usage

An application can call SQLSetDescField() to set any descriptor field one at a time.
One call to SQLSetDescField() sets a single field in a single descriptor. This
function can be called to set any field in any descriptor type, provided the field
can be set. See the descriptor header and record field initialization values for more
information.

Note: If a call to SQLSetDescField() fails, the contents of the descriptor record
identified by the RecNumber argument are undefined.

Other functions can be called to set multiple descriptor fields with a single call of
the function. The SQLSetDescRec() function sets a variety of fields that affect the
data type and buffer bound to a column or parameter (the SQL_DESC_TYPE,
SQL_DESC_DATETIME_INTERVAL_CODE, SQL_DESC_OCTET_LENGTH,
SQL_DESC_PRECISION, SQL_DESC_SCALE, SQL_DESC_DATA_PTR,
SQL_DESC_OCTET_LENGTH_PTR, and SQL_DESC_INDICATOR_PTR fields).
SQLBindCol() or SQLBindParameter() can be used to make a complete specification

SQLSetDescField function (CLI) - Set a single field of a descriptor record

Chapter 1. CLI and ODBC functions 273

for the binding of a column or parameter. These functions each set a specific group
of descriptor fields with one function call.

SQLSetDescField() can be called to change the binding buffers by adding an offset
to the binding pointers (SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, or
SQL_DESC_OCTET_LENGTH_PTR). This changes the binding buffers without
calling SQLBindCol() or SQLBindParameter(). This allows an application to quickly
change SQL_DESC_DATA_PTR without concern for changing other fields, for
instance SQL_DESC_DATA_TYPE.

Descriptor header fields are set by calling SQLSetDescField() with a RecNumber of
0, and the appropriate FieldIdentifier. Many header fields contain statement
attributes, so can also be set by a call to SQLSetStmtAttr(). This allows applications
to set a statement attribute without first obtaining a descriptor handle. A
RecNumber of 0 is also used to set bookmark fields.

Note: The statement attribute SQL_ATTR_USE_BOOKMARKS should always be
set before calling SQLSetDescField() to set bookmark fields. While this is not
mandatory, it is strongly recommended.

Sequence of setting descriptor fields

When setting descriptor fields by calling SQLSetDescField(), the application must
follow a specific sequence:
v The application must first set the SQL_DESC_TYPE,

SQL_DESC_CONCISE_TYPE, or SQL_DESC_DATETIME_INTERVAL_CODE
field.

Note: SQL_DESC_DATETIME_INTERVAL_CODE is defined by ODBC but not
supported by CLI.

v After one of these fields has been set, the application can set an attribute of a
data type, and the driver sets data type attribute fields to the appropriate default
values for the data type. Automatic defaulting of type attribute fields ensures
that the descriptor is always ready to use once the application has specified a
data type. If the application explicitly sets a data type attribute, it is overriding
the default attribute.

v After one of the fields listed in Step 1 has been set, and data type attributes have
been set, the application can set SQL_DESC_DATA_PTR. This prompts a
consistency check of descriptor fields. If the application changes the data type or
attributes after setting the SQL_DESC_DATA_PTR field, then the driver sets
SQL_DESC_DATA_PTR to a null pointer, unbinding the record. This forces the
application to complete the proper steps in sequence, before the descriptor
record is usable.

Initialization of descriptor fields

When a descriptor is allocated, the fields in the descriptor can be initialized to a
default value, be initialized without a default value, or be undefined for the type
of descriptor. Refer to the list of descriptor header and record field initialization
values for details.

The fields of an IRD have a default value only after the statement has been
prepared or executed and the IRD has been populated, not when the statement
handle or descriptor has been allocated. Until the IRD has been populated, any
attempt to gain access to a field of an IRD will return an error.

SQLSetDescField function (CLI) - Set a single field of a descriptor record

274 Call Level Interface Guide and Reference, Volume 2

Some descriptor fields are defined for one or more, but not all, of the descriptor
types (ARDs and IRDs, and APDs and IPDs). When a field is undefined for a type
of descriptor, it is not needed by any of the functions that use that descriptor.
Because a descriptor is a logical view of data, rather than an actual data structure,
these extra fields have no effect on the defined fields.

The fields that can be accessed by SQLGetDescField() are not necessarily set by
SQLSetDescField(). Fields that can be set by SQLSetDescField() are described in
the descriptor header and record field initialization values list.

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 139. SQLSetDescField SQLSTATEs

SQLSTATE Description Explanation

01000 General warning Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S02 Option value changed. CLI did not support the value specified in *ValuePtr (if ValuePtr
was a pointer) or the value in ValuePtr (if ValuePtr was a four-byte
value), or *ValuePtr was invalid because of SQL constraints or
requirements, so CLI substituted a similar value. (Function returns
SQL_SUCCESS_WITH_INFO.)

07009 Invalid descriptor index. The FieldIdentifier argument was a header field, and the RecNumber
argument was not 0.

The RecNumber argument was 0 and the DescriptorHandle was an
IPD.

The RecNumber argument was less than 0.

08S01 Communication link failure. The communication link between CLI and the data source to
which it was connected failed before the function completed
processing.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY010 Function sequence error. The DescriptorHandle was associated with a StatementHandle for
which an asynchronously executing function (not this one) was
called and was still executing when this function was called.

SQLExecute() or SQLExecDirect() was called for the
StatementHandle with which the DescriptorHandle was associated
and returned SQL_NEED_DATA. This function was called before
data was sent for all data-at-execution parameters or columns.

HY016 Cannot modify an
implementation row descriptor.

The DescriptorHandle argument was associated with an IRD, and
the FieldIdentifier argument was not
SQL_DESC_ARRAY_STATUS_PTR.

SQLSetDescField function (CLI) - Set a single field of a descriptor record

Chapter 1. CLI and ODBC functions 275

Table 139. SQLSetDescField SQLSTATEs (continued)

SQLSTATE Description Explanation

HY021 Inconsistent descriptor
information.

The TYPE field, or any other field associated with the TYPE field
in the descriptor, was not valid or consistent. The TYPE field was
not a valid CLI C type.

Descriptor information checked during a consistency check was
not consistent.

HY091 Invalid descriptor field identifier. The value specified for the FieldIdentifier argument was not a CLI
defined field and was not a defined value.

The value specified for the RecNumber argument was greater than
the value in the SQL_DESC_COUNT field.

The FieldIdentifier argument was SQL_DESC_ALLOC_TYPE.

HY092 Option type out of range. The value specified for the Attribute argument was not valid.

HY094 Invalid scale value. The value specified for pfParamType was either SQL_DECIMAL or
SQL_NUMERIC and the value specified for DecimalDigits was less
than 0 or greater than the value for the argument pcbColDef
(precision).

The value specified for pfParamType was
SQL_C_TYPE_TIMESTAMP and the value for pfParamType was
either SQL_CHAR or SQL_VARCHAR and the value for
DecimalDigits was less than 0 or greater than 9.

The value specified for pfParamType was
SQL_C_TIMESTAMP_EXT and the value for DecimalDigits was
less than 0 or greater than 12.

HY105 Invalid parameter type. The value specified for the SQL_DESC_PARAMETER_TYPE field
was invalid. (For more information, see the InputOutputType
Argument section in SQLBindParameter().)

Restrictions

None.

Example
/* set a single field of a descriptor record */
rc = SQLSetDescField(hARD,

1,
SQL_DESC_TYPE,
(SQLPOINTER)SQL_SMALLINT,
SQL_IS_SMALLINT);

SQLSetDescRec function (CLI) - Set multiple descriptor fields for a
column or parameter data

Purpose

Specification: CLI 5.0 ODBC 3.0 ISO CLI

The SQLSetDescRec() function sets multiple descriptor fields that affect the data
type and buffer bound to a column or parameter data.

SQLSetDescField function (CLI) - Set a single field of a descriptor record

276 Call Level Interface Guide and Reference, Volume 2

Syntax
SQLRETURN SQLSetDescRec (SQLHDESC DescriptorHandle,

SQLSMALLINT RecNumber,
SQLSMALLINT Type,
SQLSMALLINT SubType,
SQLLEN Length,
SQLSMALLINT Precision,
SQLSMALLINT Scale,
SQLPOINTER DataPtr,
SQLLEN *StringLengthPtr,
SQLLEN *IndicatorPtr);

Function arguments

Table 140. SQLSetDescRec arguments

Data type Argument Use Description

SQLHDESC DescriptorHandle input Descriptor handle. This must not be an IRD handle.

SQLSMALLINT RecNumber input Indicates the descriptor record that contains the
fields to be set. Descriptor records are numbered
from 0, with record number 0 being the bookmark
record. This argument must be equal to or greater
than 0. If RecNumber is greater than the value of
SQL_DESC_COUNT, SQL_DESC_COUNT is changed
to the value of RecNumber.

SQLSMALLINT Type input The value to which to set the SQL_DESC_TYPE field
for the descriptor record.

SQLSMALLINT SubType input For records whose type is SQL_DATETIME, this is
the value to which to set the
SQL_DESC_DATETIME_INTERVAL_CODE field.

SQLLEN Length input The value to which to set the
SQL_DESC_OCTET_LENGTH field for the descriptor
record.

SQLSMALLINT Precision input The value to which to set the
SQL_DESC_PRECISION field for the descriptor
record.

SQLSMALLINT Scale input The value to which to set the SQL_DESC_SCALE
field for the descriptor record.

SQLPOINTER DataPtr Deferred
Input or
Output

The value to which to set the
SQL_DESC_DATA_PTR field for the descriptor
record. DataPtr can be set to a null pointer to set the
SQL_DESC_DATA_PTR field to a null pointer.

SQLLEN * StringLengthPtr Deferred
Input or
Output

The value to which to set the
SQL_DESC_OCTET_LENGTH_PTR field for the
descriptor record. StringLengthPtr can be set to a null
pointer to set the SQL_DESC_OCTET_LENGTH_PTR
field to a null pointer.

SQLLEN * IndicatorPtr Deferred
Input or
Output

The value to which to set the
SQL_DESC_INDICATOR_PTR field for the
descriptor record. IndicatorPtr can be set to a null
pointer to set the SQL_DESC_INDICATOR_PTR field
to a null pointer.

SQLSetDescRec function (CLI) - Set multiple descriptor fields for a column or parameter
data

Chapter 1. CLI and ODBC functions 277

Usage

An application can call SQLSetDescRec() to set the following fields for a single
column or parameter:
v SQL_DESC_TYPE
v SQL_DESC_OCTET_LENGTH
v SQL_DESC_PRECISION
v SQL_DESC_SCALE
v SQL_DESC_DATA_PTR
v SQL_DESC_OCTET_LENGTH_PTR
v SQL_DESC_INDICATOR_PTR

SQL_DESC_DATETIME_INTERVAL_CODE can only be updated if
SQL_DESC_TYPE indicates SQL_DATETIME.

Note: If a call to SQLSetDescRec() fails, the contents of the descriptor record
identified by the RecNumber argument are undefined.

When binding a column or parameter, SQLSetDescRec() allows you to change
multiple fields affecting the binding without calling SQLBindCol() or
SQLBindParameter(), or making multiple calls to SQLSetDescField().
SQLSetDescRec() can set fields on a descriptor not currently associated with a
statement. Note that SQLBindParameter() sets more fields than SQLSetDescRec(),
can set fields on both an APD and an IPD in one call, and does not require a
descriptor handle.

The statement attribute SQL_ATTR_USE_BOOKMARKS should always be set
before calling SQLSetDescRec() with a RecNumber argument of 0 to set bookmark
fields. While this is not mandatory, it is strongly recommended.

Return Codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 141. SQLSetDescRec SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

07009 Invalid descriptor index. The RecNumber argument was set to 0, and the DescriptorHandle
was an IPD handle.

The RecNumber argument was less than 0.

The RecNumber argument was greater than the maximum number
of columns or parameters that the data source can support, and
the DescriptorHandle argument was an APD, IPD, or ARD.

The RecNumber argument was equal to 0, and the DescriptorHandle
argument referred to an implicitly allocated APD. (This error does
not occur with an explicitly allocated application descriptor,
because it is not known whether an explicitly allocated application
descriptor is an APD or ARD until execute time.)

SQLSetDescRec function (CLI) - Set multiple descriptor fields for a column or parameter
data

278 Call Level Interface Guide and Reference, Volume 2

Table 141. SQLSetDescRec SQLSTATEs (continued)

SQLSTATE Description Explanation

08S01 Communication link failure. The communication link between CLI and the data source to
which it was connected failed before the function completed
processing.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY010 Function sequence error. The DescriptorHandle was associated with a StatementHandle for
which an asynchronously executing function (not this one) was
called and was still executing when this function was called.

SQLExecute() or SQLExecDirect() was called for the
StatementHandle with which the DescriptorHandle was associated
and returned SQL_NEED_DATA. This function was called before
data was sent for all data-at-execution parameters.

HY013 Unexpected memory handling
error.

DB2 CLI was unable to access memory required to support
execution or completion of the function.

HY016 Cannot modify an
implementation row descriptor.

The DescriptorHandle argument was associated with an IRD.

HY021 Inconsistent descriptor
information.

The Type field, or any other field associated with the TYPE field in
the descriptor, was not valid or consistent.

Descriptor information checked during a consistency check was
not consistent.

HY094 Invalid scale value. The value specified for pfParamType was either SQL_DECIMAL or
SQL_NUMERIC and the value specified for DecimalDigits was less
than 0 or greater than the value for the argument pcbColDef
(precision).

The value specified for pfParamType was
SQL_C_TYPE_TIMESTAMP and the value for pfParamType was
either SQL_CHAR or SQL_VARCHAR and the value for
DecimalDigits was less than 0 or greater than 9.

The value specified for pfParamType was
SQL_C_TIMESTAMP_EXT and the value for DecimalDigits was
less than 0 or greater than 12.

Restrictions

None.

Example
SQLSMALLINT type;
SQLINTEGER length, datalen;
SQLSMALLINT id_no;
/* ... */

/* set multiple descriptor fields for a column or parameter data */
rc = SQLSetDescRec(hARD, 1, type, 0, length, 0, 0, &id_no, &datalen, NULL);

SQLSetDescRec function (CLI) - Set multiple descriptor fields for a column or parameter
data

Chapter 1. CLI and ODBC functions 279

SQLSetEnvAttr function (CLI) - Set environment attribute
Purpose

Specification: CLI 2.1 ISO CLI

SQLSetEnvAttr() sets an environment attribute for the current environment.

Syntax
SQLRETURN SQLSetEnvAttr (SQLHENV EnvironmentHandle, /* henv */

SQLINTEGER Attribute,
SQLPOINTER ValuePtr, /* Value */
SQLINTEGER StringLength);

Function arguments

Table 142. SQLSetEnvAttr arguments

Data type Argument Use Description

SQLHENV EnvironmentHandle Input Environment handle.

SQLINTEGER Attribute Input Environment attribute to set; refer to the list of CLI
environment attributes for descriptions.

SQLPOINTER ValuePtr Input The desired value for Attribute.

SQLINTEGER StringLength Input Length of ValuePtr in bytes if the attribute value is a
character string; if Attribute does not denote a string,
then CLI ignores StringLength.

Usage

Once set, the attribute's value affects all connections under this environment.

The application can obtain the current attribute value by calling SQLGetEnvAttr().

Refer to the list of CLI environment attributes for the attributes that can be set
with SQLSetEnvAttr().

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 143. SQLSetEnvAttr SQLSTATEs

SQLSTATE Description Explanation

HY011 Operation invalid at this time. Applications cannot set environment attributes while connection
handles are allocated on the environment handle.

HY024 Invalid attribute value Given the specified Attribute value, an invalid value was specified
in *ValuePtr.

HY090 Invalid string or buffer length The StringLength argument was less than 0, but was not
SQL_NTS.

SQLSetEnvAttr function (CLI) - Set environment attribute

280 Call Level Interface Guide and Reference, Volume 2

Table 143. SQLSetEnvAttr SQLSTATEs (continued)

SQLSTATE Description Explanation

HY092 Option type out of range. An invalid Attribute value was specified.

HYC00 Driver not capable. The specified Attribute is not supported by CLI.

Given specified Attribute value, the value specified for the
argument ValuePtr is not supported.

Restrictions

None.

Example
/* set environment attribute */
cliRC = SQLSetEnvAttr(henv, SQL_ATTR_OUTPUT_NTS, (SQLPOINTER) SQL_TRUE, 0);

SQLSetParam function (CLI) - Bind a parameter marker to a buffer or
LOB locator

Deprecated

Note:

In ODBC 2.0 and above, SQLSetParam() is deprecated and replaced with
SQLBindParameter().

Although this version of CLI continues to support SQLSetParam(), use
SQLBindParameter() in your CLI programs so that they conform to the latest
standards.

Equivalent function: SQLBindParameter()

The CLI function SQLBindParameter() is functionally the same as the
SQLSetParam() function. Both take a similar number and type of arguments, behave
the same, and return the same return codes. The difference is that SQLSetParam()
does not have the InputOutputType or BufferLength arguments to specify the
parameter type and maximum buffer length. Calling SQLSetParam() is functionally
equivalent to calling SQLBindParameter() with the InputOutputType argument set to
SQL_PARAM_INPUT and the BufferLength argument set to
SQL_SETPARAM_VALUE_MAX.

Migrating to the new function

The statement:
SQLSetParam(hstmt, 1, SQL_C_SHORT, SQL_SMALLINT, 0, 0,

¶meter1, NULL);

for example, would be rewritten using the new function as:
SQLBindParameter(hstmt, 1, SQL_PARAM_INPUT, SQL_C_SHORT,

SQL_SMALLINT, 0, 0, ¶meter1,
SQL_SETPARAM_VALUE_MAX, NULL);

SQLSetEnvAttr function (CLI) - Set environment attribute

Chapter 1. CLI and ODBC functions 281

SQLSetPos function (CLI) - Set the cursor position in a rowset
Purpose

Specification: CLI 5.0 ODBC 1

SQLSetPos() sets the cursor position in a rowset.

Syntax
SQLRETURN SQLSetPos (

SQLHSTMT StatementHandle, /* hstmt */
SQLSETPOSIROW RowNumber, /* irow */
SQLUSMALLINT Operation, /* fOption */
SQLUSMALLINT LockType); /* fLock */

Function arguments

Table 144. SQLSetPos arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLSETPOSIROW RowNumber input
Position of the row in the rowset on which to
perform the operation specified with the Operation
argument. If RowNumber is 0, the operation applies
to every row in the rowset.

For additional information, see RowNumber
argument.

SQLUSMALLINT Operation input Operation to perform:
v SQL_POSITION
v SQL_REFRESH
v SQL_UPDATE
v SQL_DELETE
v SQL_ADD

ODBC also specifies the following operations for
backwards compatibility only, which CLI also
supports:
v SQL_ADD

While CLI does support SQL_ADD in SQLSetPos()
calls, it is suggested that you use
SQLBulkOperations() with the Operation argument
set to SQL_ADD.

SQLUSMALLINT LockType input Specifies how to lock the row after performing the
operation specified in the Operation argument.
v SQL_LOCK_NO_CHANGE

ODBC also specifies the following operations which
CLI does not support:
v SQL_LOCK_EXCLUSIVE
v SQL_LOCK_UNLOCK

For additional information, see LockType argument.

Usage

RowNumber argument

SQLSetPos function (CLI) - Set the cursor position in a rowset

282 Call Level Interface Guide and Reference, Volume 2

The RowNumber argument specifies the number of the row in the rowset on which
to perform the operation specified by the Operation argument. If RowNumber is 0,
the operation applies to every row in the rowset. RowNumber must be a value from
0 to the number of rows in the rowset.

Note In the C language, arrays are 0-based, while the RowNumber argument is
1-based. For example, to update the fifth row of the rowset, an application
modifies the rowset buffers at array index 4, but specifies a RowNumber of 5.

All operations position the cursor on the row specified by RowNumber. The
following operations require a cursor position:
v Positioned update and delete statements.
v Calls to SQLGetData().
v Calls to SQLSetPos() with the SQL_DELETE, SQL_REFRESH, and SQL_UPDATE

options.

An application can specify a cursor position when it calls SQLSetPos(). Generally, it
calls SQLSetPos() with the SQL_POSITION or SQL_REFRESH operation to position
the cursor before executing a positioned update or delete statement or calling
SQLGetData().

Operation argument

To determine which options are supported by a data source, an application calls
SQLGetInfo() with one of the following information types, depending on the type
of cursor:
v SQL_DYNAMIC_CURSOR_ATTRIBUTES1
v SQL_FORWARD_ONLY_CURSOR_ATTRIBUTES1
v SQL_KEYSET_CURSOR_ATTRIBUTES1
v SQL_STATIC_CURSOR_ATTRIBUTES1

SQL_POSITION

CLI positions the cursor on the row specified by RowNumber.

The contents of the row status array pointed to by the
SQL_ATTR_ROW_OPERATION_PTR statement attribute are ignored for
the SQL_POSITION Operation.

SQL_REFRESH

CLI positions the cursor on the row specified by RowNumber and refreshes
data in the rowset buffers for that row. For more information about how
CLI returns data in the rowset buffers, see the descriptions of row-wise
and column-wise binding.

SQLSetPos() with an Operation of SQL_REFRESH simply updates the status
and content of the rows within the current fetched rowset. This includes
refreshing the bookmarks. The data in the buffers is refreshed, but not
refetched, so the membership in the rowset is fixed.

A successful refresh with SQLSetPos() will not change a row status of
SQL_ROW_DELETED. Deleted rows within the rowset will continue to be
marked as deleted until the next fetch. The rows will disappear at the next
fetch if the cursor supports packing (in which case a subsequent
SQLFetch() or SQLFetchScroll() does not return deleted rows).

SQLSetPos function (CLI) - Set the cursor position in a rowset

Chapter 1. CLI and ODBC functions 283

A successful refresh with SQLSetPos() will change a row status of
SQL_ROW_ADDED to SQL_ROW_SUCCESS (if the row status array
exists).

A refresh with SQLSetPos() will change a row status of
SQL_ROW_UPDATED to the row's new status (if the row status array
exists).

If an error occurs in a SQLSetPos() operation on a row, the row status is set
to SQL_ROW_ERROR (if the row status array exists).

For a cursor opened with a SQL_ATTR_CONCURRENCY statement
attribute of SQL_CONCUR_ROWVER or SQL_CONCUR_VALUES, a
refresh with SQLSetPos() will update the optimistic concurrency values
used by the data source to detect that the row has changed. This occurs for
each row that is refreshed.

The contents of the row status array are ignored for the SQL_REFRESH
Operation.

SQL_UPDATE

CLI positions the cursor on the row specified by RowNumber and updates
the underlying row of data with the values in the rowset buffers (the
TargetValuePtr argument in SQLBindCol()). It retrieves the lengths of the
data from the length/indicator buffers (the StrLen_or_IndPtr argument in
SQLBindCol()). If the length of any column is SQL_COLUMN_IGNORE,
the column is not updated. After updating the row, the corresponding
element of the row status array is updated to SQL_ROW_UPDATED or
SQL_ROW_SUCCESS_WITH_INFO (if the row status array exists).

The row operation array pointed to by the
SQL_ATTR_ROW_OPERATION_PTR statement attribute can be used to
indicate that a row in the current rowset should be ignored during a bulk
update. For more information, see Status and operation arrays.

SQL_DELETE

CLI positions the cursor on the row specified by RowNumber and deletes
the underlying row of data. It changes the corresponding element of the
row status array to SQL_ROW_DELETED. After the row has been deleted,
the following are not valid for the row:
v positioned update and delete statements
v calls to SQLGetData()
v calls to SQLSetPos() with Operation set to anything except

SQL_POSITION.

Deleted rows remain visible to static and keyset-driven cursors; however,
the entry in the implementation row status array (pointed to by the
SQL_ATTR_ROW_STATUS_PTR statement attribute) for the deleted row is
changed to SQL_ROW_DELETED.

The row operation array pointed to by the
SQL_ATTR_ROW_OPERATION_PTR statement attribute can be used to
indicate that a row in the current rowset should be ignored during a bulk
delete. For more information, see Status and operation arrays.

SQL_ADD

ODBC also specifies the SQL_ADD Operation for backwards compatibility
only, which CLI also supports. It is suggested, however, that you use
SQLBulkOperations() with the Operation argument set to SQL_ADD.

SQLSetPos function (CLI) - Set the cursor position in a rowset

284 Call Level Interface Guide and Reference, Volume 2

LockType argument

The LockType argument provides a way for applications to control concurrency.
Generally, data sources that support concurrency levels and transactions will only
support the SQL_LOCK_NO_CHANGE value of the LockType argument.

Although the LockType argument is specified for a single statement, the lock
accords the same privileges to all statements on the connection. In particular, a lock
that is acquired by one statement on a connection can be unlocked by a different
statement on the same connection.

ODBC defines the following LockType arguments. CLI supports
SQL_LOCK_NO_CHANGE. To determine which locks are supported by a data
source, an application calls SQLGetInfo() with the SQL_LOCK_TYPES information
type.

Table 145. Operation values
LockType argument Lock type
SQL_LOCK_NO_CHANGE Ensures that the row is in the same locked or unlocked state

as it was before SQLSetPos() was called. This value of
LockType allows data sources that do not support explicit
row-level locking to use whatever locking is required by the
current concurrency and transaction isolation levels.

SQL_LOCK_EXCLUSIVE Not supported by CLI. Locks the row exclusively.
SQL_LOCK_UNLOCK Not supported by CLI. Unlocks the row.

Status and operation arrays

The following status and operation arrays are used when calling SQLSetPos():
v The row status array (as pointed to by the SQL_DESC_ARRAY_STATUS_PTR

field in the IRD and the SQL_ATTR_ROW_STATUS_ARRAY statement attribute)
contains status values for each row of data in the rowset. The status values are
set in this array after a call to SQLFetch(), SQLFetchScroll(), or SQLSetPos().
This array is pointed to by the SQL_ATTR_ROW_STATUS_PTR statement
attribute.

v The row operation array (as pointed to by the SQL_DESC_ARRAY_STATUS_PTR
field in the ARD and the SQL_ATTR_ROW_OPERATION_ARRAY statement
attribute) contains a value for each row in the rowset that indicates whether a
call to SQLSetPos() for a bulk operation is ignored or performed. Each element
in the array is set to either SQL_ROW_PROCEED (the default) or
SQL_ROW_IGNORE. This array is pointed to by the
SQL_ATTR_ROW_OPERATION_PTR statement attribute.

The number of elements in the status and operation arrays must equal the number
of rows in the rowset (as defined by the SQL_ATTR_ROW_ARRAY_SIZE statement
attribute).

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_NEED_DATA
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE

SQLSetPos function (CLI) - Set the cursor position in a rowset

Chapter 1. CLI and ODBC functions 285

Diagnostics

Table 146. SQLSetPos SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01004 Data truncated. The Operation argument was SQL_REFRESH, and string or binary
data returned for a column or columns with a data type of
SQL_C_CHAR or SQL_C_BINARY resulted in the truncation of
non-blank character or non-NULL binary data

01S01 Error in row. The RowNumber argument was 0 and an error occurred in one or
more rows while performing the operation specified with the
Operation argument.

(SQL_SUCCESS_WITH_INFO is returned if an error occurs on one
or more, but not all, rows of a multirow operation, and
SQL_ERROR is returned if an error occurs on a single-row
operation.)

01S07 Fractional truncation. The Operation argument was SQL_REFRESH, the data type of the
application buffer was not SQL_C_CHAR or SQL_C_BINARY, and
the data returned to application buffers for one or more columns
was truncated. For numeric data types, the fractional part of the
number was truncated. For time and timestamp data types, the
fractional portion of the time was truncated.

07006 Invalid conversion. The data value of a column in the result set could not be
converted to the data type specified by TargetType in the call to
SQLBindCol().

07009 Invalid descriptor index. The argument Operation was SQL_REFRESH or SQL_UPDATE
and a column was bound with a column number greater than the
number of columns in the result set or a column number less than
0.

21S02 Degrees of derived table does
not match column list.

The argument Operation was SQL_UPDATE and no columns were
updateable because all columns were either unbound, read-only,
or the value in the bound length/indicator buffer was
SQL_COLUMN_IGNORE.

22001 String data right truncation. The assignment of a character or binary value to a column
resulted in the truncation of non-blank (for characters) or non-null
(for binary) characters or bytes.

22003 Numeric value out of range. The argument Operation was SQL_UPDATE and the assignment of
a numeric value to a column in the result set caused the whole (as
opposed to fractional) part of the number to be truncated.

The argument Operation was SQL_REFRESH, and returning the
numeric value for one or more bound columns would have
caused a loss of significant digits.

22007 Invalid datetime format. The argument Operation was SQL_UPDATE, and the assignment
of a date or timestamp value to a column in the result set caused
the year, month, or day field to be out of range.

The argument Operation was SQL_REFRESH, and returning the
date or timestamp value for one or more bound columns would
have caused the year, month, or day field to be out of range.

SQLSetPos function (CLI) - Set the cursor position in a rowset

286 Call Level Interface Guide and Reference, Volume 2

Table 146. SQLSetPos SQLSTATEs (continued)

SQLSTATE Description Explanation

22008 Datetime field overflow. The Operation argument was SQL_UPDATE, and the performance
of datetime arithmetic on data being sent to a column in the result
set resulted in a datetime field (the year, month, day, hour,
minute, or second field) of the result being outside the permissible
range of values for the field, or being invalid based on the natural
rules for datetimes based on the Gregorian calendar.

The Operation argument was SQL_REFRESH, and the performance
of datetime arithmetic on data being retrieved from the result set
resulted in a datetime field (the year, month, day, hour, minute, or
second field) of the result being outside the permissible range of
values for the field, or being invalid based on the natural rules for
datetimes based on the Gregorian calendar.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY010 Function sequence error. The specified StatementHandle was not in an executed state. The
function was called without first calling SQLExecDirect(),
SQLExecute(), or a catalog function.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

SQLExecute(), SQLExecDirect(), or SQLSetPos() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns.

An ODBC 2.0 application called SQLSetPos() for a StatementHandle
before SQLFetchScroll() was called or after SQLFetch() was
called, and before SQLFreeStmt() was called with the SQL_CLOSE
option.

HY011 Operation invalid at this time. An ODBC 2.0 application set the SQL_ATTR_ROW_STATUS_PTR
statement attribute; then SQLSetPos() was called before
SQLFetch(), SQLFetchScroll(), or SQLExtendedFetch() was called.

SQLSetPos function (CLI) - Set the cursor position in a rowset

Chapter 1. CLI and ODBC functions 287

Table 146. SQLSetPos SQLSTATEs (continued)

SQLSTATE Description Explanation

HY090 Invalid string or buffer length. The Operation argument was SQL_ADD, SQL_UPDATE, or
SQL_UPDATE_BY_BOOKMARK, a data value was a null pointer,
and the column length value was not 0, SQL_DATA_AT_EXEC,
SQL_COLUMN_IGNORE, SQL_NULL_DATA, or less than or
equal to SQL_LEN_DATA_AT_EXEC_OFFSET.

The Operation argument was SQL_ADD, SQL_UPDATE, or
SQL_UPDATE_BY_BOOKMARK, a data value was not a null
pointer, and the column length value was less than 0, but not
equal to SQL_DATA_AT_EXEC, SQL_COLUMN_IGNORE,
SQL_NTS, or SQL_NULL_DATA, or less than or equal to
SQL_LEN_DATA_AT_EXEC_OFFSET.

A value in a length/indicator buffer was SQL_DATA_AT_EXEC;
the SQL type was either SQL_LONGVARCHAR,
SQL_LONGVARBINARY, or a other, data-source-specific data
type; and the SQL_NEED_LONG_DATA_LEN information type in
SQLGetInfo() was Y.

HY092 Option type out of range. The Operation argument was SQL_UPDATE_BY_BOOKMARK,
SQL_DELETE_BY_BOOKMARK, or
SQL_REFRESH_BY_BOOKMARK, and the
SQL_ATTR_USE_BOOKMARKS statement attribute was set to
SQL_UB_OFF.

HY107 Row value out of range. The value specified for the argument RowNumber was greater than
the number of rows in the rowset.

HY109 Invalid cursor position. The cursor associated with the StatementHandle was defined as
forward only, so the cursor could not be positioned within the
rowset. See the description for the SQL_ATTR_CURSOR_TYPE
attribute in SQLSetStmtAttr().

The Operation argument was SQL_UPDATE, SQL_DELETE, or
SQL_REFRESH, and the row identified by the RowNumber
argument had been deleted or had not be fetched.

The RowNumber argument was 0 and the Operation argument was
SQL_POSITION.

HYC00 Driver not capable. CLI or the data source does not support the operation requested
in the Operation argument or the LockType argument.

HYT00 Timeout expired The query timeout period expired before the data source returned
the result set. The timeout period is set through SQLSetStmtAttr()
with an Attribute of SQL_ATTR_QUERY_TIMEOUT.

Restrictions

None.

Example
/* set the cursor position in a rowset */
cliRC = SQLSetPos(hstmt, 3, SQL_POSITION, SQL_LOCK_NO_CHANGE);

SQLSetPos function (CLI) - Set the cursor position in a rowset

288 Call Level Interface Guide and Reference, Volume 2

SQLSetStmtAttr function (CLI) - Set options related to a statement
Purpose

Specification: CLI 5.0 ODBC 3.0 ISO CLI

SQLSetStmtAttr() sets options related to a statement. To set an option for all
statements associated with a specific connection, an application can call
SQLSetConnectAttr().

Refer to the CLI statement attributes list for all available statement attributes.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLSetStmtAttrW(). Refer to “Unicode
functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLSetStmtAttr (

SQLHSTMT StatementHandle, /* hstmt */
SQLINTEGER Attribute, /* fOption */
SQLPOINTER ValuePtr, /* pvParam */
SQLINTEGER StringLength); /* fStrLen */

Function arguments

Table 147. SQLSetStmtAttr arguments

Data type Argument Use Description

SQLHSTMT StatementHandle input Statement handle.

SQLINTEGER Attribute input Option to set, described in the CLI statement
attributes list.

SQLPOINTER ValuePtr input Pointer to the value to be associated with Attribute.

If Attribute is an ODBC-defined attribute, the
application might need to qualify the attribute value
in ValuePtr by setting the StringLength attribute as
described in the StringLength description.

If Attribute is a CLI attribute, the application should
always qualify the attribute value in ValuePtr by
setting the StringLength attribute as described in the
StringLength description.
Note: If Attribute is an ODBC attribute, ValuePtr can,
depending on the attribute, be set to an unsigned
integer. If Attribute is a CLI attribute, ValuePtr can,
depending on the attribute, be set to a signed
integer. If ValuePtr is set to a signed negative integer
and an unsigned integer is expected, ValuePtr might
be treated as a large unsigned integer by CLI
without warning. Alternatively, CLI might return an
error (SQLSTATE HY024).

SQLSetStmtAttr function (CLI) - Set options related to a statement

Chapter 1. CLI and ODBC functions 289

Table 147. SQLSetStmtAttr arguments (continued)

Data type Argument Use Description

SQLINTEGER StringLength input If Attribute is an ODBC attribute, the application
might need to qualify the attribute by setting
StringLength to the following values:

v If ValuePtr points to a character string or a binary
buffer, StringLength should be the length of
*ValuePtr. For character string data, StringLength
should contain the number of bytes in the string.

v If ValuePtr is a pointer, but not to a string or
binary buffer, then StringLength should have the
value SQL_IS_POINTER.

v If ValuePtr points to an unsigned integer, the
StringLength attribute is ignored.

If Attribute is a CLI attribute, the application must
qualify the attribute by setting StringLength to the
following values:

v If ValuePtr is a pointer to a character string, then
StringLength is the number of bytes needed to
store the string or SQL_NTS.

v If ValuePtr is a pointer to a binary buffer, then the
application should place the result of the
SQL_LEN_BINARY_ATTR (length) macro in
StringLength. This places a negative value in
StringLength.

v If ValuePtr contains a fixed-length value, then
StringLength is either SQL_IS_INTEGER or
SQL_IS_UINTEGER, as appropriate.

v If ValuePtr is a pointer to a value other than a
character string, a binary string, or a fixed-length
value, then StringLength should have the value
SQL_IS_POINTER.

Usage

Statement attributes for a statement remain in effect until they are changed by
another call to SQLSetStmtAttr() or the statement is dropped by calling
SQLFreeHandle(). Calling SQLFreeStmt() with the SQL_CLOSE, SQL_UNBIND, or
SQL_RESET_PARAMS options does not reset statement attributes.

Some statement attributes support substitution of a similar value if the data source
does not support the value specified in *ValuePtr. In such cases, CLI returns
SQL_SUCCESS_WITH_INFO and SQLSTATE 01S02 (Option value changed). For
example, CLI supports a pure keyset cursor. As a result, CLI does not allow
applications to change the default value of the SQL_ATTR_KEYSET_SIZE attribute.
Instead, CLI substitutes SQL_KEYSET_SIZE_DEFAULT for all other values that
might be supplied in the *ValuePtr argument and returns
SQL_SUCCESS_WITH_INFO. To determine the substituted value, an application
calls SQLGetStmtAttr().

The format of information set with ValuePtr depends on the specified Attribute.
SQLSetStmtAttr() accepts attribute information in one of two different formats: a
null-terminated character string or a 32-bit integer value. The format of
information returned in SQLGetStmtAttr() reflects what was specified in

SQLSetStmtAttr function (CLI) - Set options related to a statement

290 Call Level Interface Guide and Reference, Volume 2

SQLSetStmtAttr(). For example, character strings pointed to by the ValuePtr
argument of SQLSetStmtAttr() have a length of StringLength, and this is the value
that would be returned by SQLGetStmtAttr().

Setting statement attributes by setting descriptors

Many statement attributes also corresponding to a header field of one or more
descriptors. These attributes can be set not only by a call to SQLSetStmtAttr(), but
also by a call to SQLSetDescField(). Setting these options by a call to
SQLSetStmtAttr(), rather than SQLSetDescField(), has the advantage that a
descriptor handle does not have to be fetched.

Note: Calling SQLSetStmtAttr() for one statement can affect other statements. This
occurs when the application parameter descriptor (APD) or application row
descriptor (ARD) associated with the statement is explicitly allocated and is also
associated with other statements. Because SQLSetStmtAttr() modifies the APD or
ARD, the modifications apply to all statements with which this descriptor is
associated. If this is not the desired behavior, the application should dissociate this
descriptor from the other statement (by calling SQLSetStmtAttr() to set the
SQL_ATTR_APP_ROW_DESC or SQL_ATTR_APP_PARAM_DESC field to a
different descriptor handle) before calling SQLSetStmtAttr() again.

When a statement attribute that is also a descriptor field is set by a call to
SQLSetStmtAttr(), the corresponding field in the descriptor that is associated with
the statement is also set. The field is set only for the applicable descriptors that are
currently associated with the statement identified by the StatementHandle argument,
and the attribute setting does not affect any descriptors that might be associated
with that statement in the future. When a descriptor field that is also a statement
attribute is set by a call to SQLSetDescField(), the corresponding statement
attribute is also set.

Statement attributes determine which descriptors a statement handle is associated
with. When a statement is allocated (see SQLAllocHandle()), four descriptor
handles are automatically allocated and associated with the statement. Explicitly
allocated descriptor handles can be associated with the statement by calling
SQLAllocHandle() with a HandleType of SQL_HANDLE_DESC to allocate a
descriptor handle, then calling SQLSetStmtAttr() to associate the descriptor handle
with the statement.

The following statement attributes correspond to descriptor header fields:

Table 148. Statement attributes
Statement attribute Header field Descriptor
SQL_ATTR_PARAM_BIND_OFFSET_PTR SQL_DESC_BIND_OFFSET_PTR APD
SQL_ATTR_PARAM_BIND_TYPE SQL_DESC_BIND_TYPE APD
SQL_ATTR_PARAM_OPERATION_PTR SQL_DESC_ARRAY_STATUS_PTR APD
SQL_ATTR_PARAM_STATUS_PTR SQL_DESC_ARRAY_STATUS_PTR IPD
SQL_ATTR_PARAMS_PROCESSED_PTR SQL_DESC_ROWS_PROCESSED_PTR IPD
SQL_ATTR_PARAMSET_SIZE SQL_DESC_ARRAY_SIZE APD
SQL_ATTR_ROW_ARRAY_SIZE SQL_DESC_ARRAY_SIZE APD
SQL_ATTR_ROW_BIND_OFFSET_PTR SQL_DESC_BIND_OFFSET_PTR ARD
SQL_ATTR_ROW_BIND_TYPE SQL_DESC_BIND_TYPE ARD
SQL_ATTR_ROW_OPERATION_PTR SQL_DESC_ARRAY_STATUS_PTR APD
SQL_ATTR_ROW_STATUS_PTR SQL_DESC_ARRAY_STATUS_PTR IRD
SQL_ATTR_ROWS_FETCHED_PTR SQL_DESC_ROWS_PROCESSED_PTR IRD

SQLSetStmtAttr function (CLI) - Set options related to a statement

Chapter 1. CLI and ODBC functions 291

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 149. SQLSetStmtAttr SQLSTATEs

SQLSTATE Description Explanation

01000 Warning. Informational message. (Function returns
SQL_SUCCESS_WITH_INFO.)

01S02 Option value changed. CLI did not support the value specified in *ValuePtr, or the value
specified in *ValuePtr was invalid because of SQL constraints or
requirements, so CLI substituted a similar value. (Function returns
SQL_SUCCESS_WITH_INFO.)

08S01 Communication link failure. The communication link between CLI and the data source to
which it was connected failed before the function completed
processing.

24000 Invalid cursor state. The Attribute was SQL_ATTR_CONCURRENCY,
SQL_ATTR_CURSOR_TYPE, SQL_ATTR_SIMULATE_CURSOR, or
SQL_ATTR_USE_BOOKMARKS and the cursor was open.

HY000 General error. An error occurred for which there was no specific SQLSTATE. The
error message returned by SQLGetDiagRec() in the *MessageText
buffer describes the error and its cause.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY009 Invalid argument value. A null pointer was passed for ValuePtr and the value in *ValuePtr
was a string attribute.

HY010 Function sequence error. An asynchronously executing function was called for the
StatementHandle and was still executing when this function was
called.

SQLExecute() or SQLExecDirect() was called for the
StatementHandle and returned SQL_NEED_DATA. This function
was called before data was sent for all data-at-execution
parameters or columns.

HY011 Operation invalid at this time. The Attribute was SQL_ATTR_CONCURRENCY, SQL_
ATTR_CURSOR_TYPE, SQL_ATTR_SIMULATE_CURSOR, or
SQL_ATTR_USE_BOOKMARKS and the statement was prepared.

HY017 Invalid use of an automatically
allocated descriptor handle.

The Attribute argument was SQL_ATTR_IMP_ROW_DESC or
SQL_ATTR_IMP_PARAM_DESC. The Attribute argument was
SQL_ATTR_APP_ROW_DESC or
SQL_ATTR_APP_PARAM_DESC, and the value in *ValuePtr was
an implicitly allocated descriptor handle.

HY024 Invalid attribute value. Given the specified Attribute value, an invalid value was specified
in *ValuePtr. (CLI returns this SQLSTATE only for connection and
statement attributes that accept a discrete set of values, such as
SQL_ATTR_ACCESS_MODE.)

HY090 Invalid string or buffer length. The StringLength argument was less than 0, but was not
SQL_NTS.

SQLSetStmtAttr function (CLI) - Set options related to a statement

292 Call Level Interface Guide and Reference, Volume 2

Table 149. SQLSetStmtAttr SQLSTATEs (continued)

SQLSTATE Description Explanation

HY092 Option type out of range. The value specified for the argument Attribute was not valid for
this version of CLI.

HYC00 Driver not capable. The value specified for the argument Attribute was a valid
connection or statement attribute for the version of the CLI driver,
but was not supported by the data source.

Restrictions

None.

Example
/* set the required statement attributes */
cliRC = SQLSetStmtAttr(hstmt,

SQL_ATTR_ROW_ARRAY_SIZE,
(SQLPOINTER)ROWSET_SIZE,
0);

STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

/* set the required statement attributes */
cliRC = SQLSetStmtAttr(hstmt,

SQL_ATTR_ROW_BIND_TYPE,
SQL_BIND_BY_COLUMN,
0);

STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

/* set the required statement attributes */
cliRC = SQLSetStmtAttr(hstmt,

SQL_ATTR_ROWS_FETCHED_PTR,
&rowsFetchedNb,
0);

STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

SQLSetStmtOption function (CLI) - Set statement option
Deprecated

Note:

In ODBC 3.0, SQLSetStmtOption() has been deprecated and replaced with
SQLSetStmtAttr().

Although this version of CLI continues to support SQLSetStmtOption(), use
SQLSetStmtAttr() in your CLI programs so that they conform to the latest
standards.

Note: This deprecated function cannot be used in a 64-bit environment.

Migrating to the new function

The statement:
SQLSetStmtOption(

hstmt,
SQL_ROWSET_SIZE,
RowSetSize);

SQLSetStmtAttr function (CLI) - Set options related to a statement

Chapter 1. CLI and ODBC functions 293

for example, would be rewritten using the new function as:
SQLSetStmtAttr(

hstmt,
SQL_ATTR_ROW_ARRAY_SIZE,
(SQLPOINTER) RowSetSize,
0);

SQLSpecialColumns function (CLI) - Get special (row identifier)
columns

Purpose

Specification: DB2 Call Level
Interface 2.1

ODBC 1.0

SQLSpecialColumns() returns unique row identifier information (for example, the
primary key or unique index) for a table. The information is returned in an SQL
result set, which can be retrieved using the same functions that are used to process
a result set generated by a query.

Unicode equivalent: This function can also be used with the Unicode character
set. The corresponding Unicode function is SQLSpecialColumnsW(). Refer to
“Unicode functions (CLI)” on page 5 for information on ANSI to Unicode function
mappings.

Syntax
SQLRETURN SQLSpecialColumns(

SQLHSTMT StatementHandle, /* hstmt */
SQLUSMALLINT IdentifierType, /* fColType */
SQLCHAR *CatalogName, /* szCatalogName */
SQLSMALLINT NameLength1, /* cbCatalogName */
SQLCHAR *SchemaName, /* szSchemaName */
SQLSMALLINT NameLength2, /* cbSchemaName */
SQLCHAR *TableName, /* szTableName */
SQLSMALLINT NameLength3, /* cbTableName */
SQLUSMALLINT Scope, /* fScope */
SQLUSMALLINT Nullable); /* fNullable */

Function arguments

Table 150. SQLSpecialColumns arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input Statement handle

SQLUSMALLINT IdentifierType Input Type of unique row identifier to return. Only the
following type is supported:
v SQL_BEST_ROWID

Returns the optimal set of column(s) which can
uniquely identify any row in the specified table.

Note: For compatibility with ODBC applications,
SQL_ROWVER is also recognized, but not
supported; therefore, if SQL_ROWVER is specified,
an empty result will be returned.

SQLSetStmtOption function (CLI) - Set statement option

294 Call Level Interface Guide and Reference, Volume 2

Table 150. SQLSpecialColumns arguments (continued)

Data type Argument Use Description

SQLCHAR * CatalogName Input Catalog qualifier of a 3-part table name. If the target
DBMS does not support 3-part naming, and
CatalogName is not a null pointer and does not point
to a zero-length string, then an empty result set and
SQL_SUCCESS will be returned. Otherwise, this is a
valid filter for DBMSs that support 3-part naming.

SQLSMALLINT NameLength1 Input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store CatalogName, or SQL_NTS if
CatalogName is null-terminated.

SQLCHAR * SchemaName Input Schema qualifier of the specified table.

SQLSMALLINT NameLength2 Input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store SchemaName, or SQL_NTS if
SchemaName is null-terminated.

SQLCHAR * TableName Input Table name.

SQLSMALLINT NameLength3 Input Number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
needed to store TableName, or SQL_NTS if TableName
is null-terminated.

SQLUSMALLINT Scope Input Minimum required duration for which the unique
row identifier will be valid.

Scope must be one of the following:

v SQL_SCOPE_CURROW: The row identifier is
guaranteed to be valid only while positioned on
that row. A later re-select using the same row
identifier values might not return a row if the row
was updated or deleted by another transaction.

v SQL_SCOPE_TRANSACTION: The row identifier
is guaranteed to be valid for the duration of the
current transaction.

v SQL_SCOPE_SESSION: The row identifier is
guaranteed to be valid for the duration of the
connection.

The duration over which a row identifier value is
guaranteed to be valid depends on the current
transaction isolation level.

SQLUSMALLINT Nullable Input Determines whether to return special columns that
can have a NULL value.

Must be one of the following:

v SQL_NO_NULLS - The row identifier column set
returned cannot have any NULL values.

v SQL_NULLABLE - The row identifier column set
returned might include columns where NULL
values are permitted.

SQLSpecialColumns function (CLI) - Get special (row identifier) columns

Chapter 1. CLI and ODBC functions 295

Usage

If multiple ways exist to uniquely identify any row in a table (for example, if there
are multiple unique indexes on the specified table), then DB2 Call Level Interface
will return the best set of row identifier column set based on its internal criterion.

If the schema qualifier argument associated with a table name is not specified, then
the schema name defaults to the one currently in effect for the current connection.

If there is no column set which allows any row in the table to be uniquely
identified, an empty result set is returned.

The unique row identifier information is returned in the form of a result set where
each column of the row identifier is represented by one row in the result set.
Columns returned by SQLSpecialColumns shows the order of the columns in the
result set returned by SQLSpecialColumns(), sorted by SCOPE.

Since calls to SQLSpecialColumns() in many cases map to a complex and thus
expensive query against the system catalog, they should be used sparingly, and the
results saved rather than repeating calls.

Call SQLGetInfo() with the SQL_MAX_COLUMN_NAME_LEN to determine the
actual length of the COLUMN_NAME column supported by the connected DBMS.

Although new columns might be added and the names of the columns changed in
future releases, the position of the current columns will not change.

Note: IDS data servers have a virtual column named ROWID for every
non-fragmented table. The SQLSpecialColumns() function will return information
on the ROWID column when accessing IDS data servers.

Columns returned by SQLSpecialColumns

Column 1 SCOPE (SMALLINT)
The duration for which the name in COLUMN_NAME is guaranteed to
point to the same row. Valid values are the same as for the Scope argument:
Actual scope of the row identifier. Contains one of the following values:
v SQL_SCOPE_CURROW
v SQL_SCOPE_TRANSACTION
v SQL_SCOPE_SESSION

Refer to Scope in Table 150 on page 294 for a description of each value.

Column 2 COLUMN_NAME (VARCHAR(128) not NULL)
Name of the column that is (or is part of) the table's primary key.

Column 3 DATA_TYPE (SMALLINT not NULL)
SQL data type of the column.

Column 4 TYPE_NAME (VARCHAR(128) not NULL)
DBMS character string representation of the name associated with
DATA_TYPE column value.

Column 5 COLUMN_SIZE (INTEGER)
If the DATA_TYPE column value denotes a character or binary string, then
this column contains the maximum length in bytes; if it is a graphic
(DBCS) string, this is the number of double byte characters for the
parameter.

SQLSpecialColumns function (CLI) - Get special (row identifier) columns

296 Call Level Interface Guide and Reference, Volume 2

For date, time, timestamp data types, this is the total number of SQLCHAR
or SQLWCHAR elements required to display the value when converted to
character.

For numeric data types, this is either the total number of digits, or the total
number of bits allowed in the column, depending on the value in the
NUM_PREC_RADIX column in the result set.

Refer to the table of data type precision.

Column 6 BUFFER_LENGTH (INTEGER)
The maximum number of bytes for the associated C buffer to store data
from this column if SQL_C_DEFAULT were specified on the SQLBindCol(),
SQLGetData() and SQLBindParameter() calls. This length does not include
any null-terminator. For exact numeric data types, the length accounts for
the decimal and the sign.

Refer to the table of data type length.

Column 7 DECIMAL_DIGITS (SMALLINT)
The scale of the column. NULL is returned for data types where scale is
not applicable. Refer to the table of data type scale.

Column 8 PSEUDO_COLUMN (SMALLINT)
Indicates whether or not the column is a pseudo-column DB2 Call Level
Interface will only return:
v SQL_PC_NOT_PSEUDO

DB2 DBMSs do not support pseudo columns. ODBC applications might
receive the following values from other non-IBM RDBMS servers:
v SQL_PC_UNKNOWN
v SQL_PC_PSEUDO

Return codes
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO
v SQL_STILL_EXECUTING
v SQL_ERROR
v SQL_INVALID_HANDLE

Diagnostics

Table 151. SQLSpecialColumns SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY009 Invalid argument value. TableName is null.

SQLSpecialColumns function (CLI) - Get special (row identifier) columns

Chapter 1. CLI and ODBC functions 297

Table 151. SQLSpecialColumns SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error.
The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

The function was called before a statement was prepared on the
statement handle.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource
limitations.

HY090 Invalid string or buffer length. The value of one of the length arguments was less than 0, but not
equal to SQL_NTS.

The value of one of the length arguments exceeded the maximum
length supported by the DBMS for that qualifier or name.

HY097 Column type out of range. An invalid IdentifierType value was specified.

HY098 Scope type out of range. An invalid Scope value was specified.

HY099 Nullable type out of range. An invalid Nullable values was specified.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

Example
/* get special columns */
cliRC = SQLSpecialColumns(hstmt,

SQL_BEST_ROWID,
NULL,
0,
tbSchema,
SQL_NTS,
tbName,
SQL_NTS,
SQL_SCOPE_CURROW,
SQL_NULLABLE);

SQLStatistics function (CLI) - Get index and statistics information for a
base table

The SQLStatistics() function retrieves index information for a given table.

The SQLStatistics() function also returns the cardinality and the number of pages
that are associated with the table and the indexes on the table.

SQLSpecialColumns function (CLI) - Get special (row identifier) columns

298 Call Level Interface Guide and Reference, Volume 2

Purpose

Specification: CLI 2.1 ODBC 1.0

The information is returned in a result set, which you can retrieve by using the
same functions that you use to process a result set that is generated by a query.

You can also use this function with the Unicode character set. The corresponding
Unicode function is SQLStatisticsW(). For information about ANSI to Unicode
function mappings, see “Unicode functions (CLI)” on page 5.

Syntax
SQLRETURN SQLStatistics (

SQLHSTMT StatementHandle, /* hstmt */
SQLCHAR *CatalogName, /* szCatalogName */
SQLSMALLINT NameLength1, /* cbCatalogName */
SQLCHAR *SchemaName, /* szSchemaName */
SQLSMALLINT NameLength2, /* cbSchemaName */
SQLCHAR *TableName, /* szTableName */
SQLSMALLINT NameLength3, /* cbTableName */
SQLUSMALLINT Unique, /* fUnique */
SQLUSMALLINT Reserved); /* fAccuracy */

Function arguments

Table 152. SQLStatistics arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input The statement handle.

SQLCHAR * CatalogName Input A catalog qualifier of a 3-part table name. If the
target DBMS does not support 3-part naming, and
CatalogName is not a null pointer and does not point
to a zero-length string, then an empty result set and
SQL_SUCCESS isreturned. Otherwise, this is a valid
filter for DBMSs that supports 3-part naming.

SQLSMALLINT NameLength1 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store CatalogName, or SQL_NTS
if CatalogName is null-terminated.

SQLCHAR * SchemaName Input The schema qualifier of the specified table.

SQLSMALLINT NameLength2 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store SchemaName, or SQL_NTS
if SchemaName is null-terminated.

SQLCHAR * TableName Input The table name.

SQLSMALLINT NameLength3 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store TableName, or SQL_NTS if
TableName is null-terminated.

SQLUSMALLINT Unique Input The type of index information to return:

v SQL_INDEX_UNIQUE

Only unique indexes are returned.

v SQL_INDEX_ALL

All indexes are returned.

SQLStatistics function (CLI) - Get index and statistics information for a base table

Chapter 1. CLI and ODBC functions 299

Table 152. SQLStatistics arguments (continued)

Data type Argument Use Description

SQLUSMALLINT Reserved Input Indicates whether the CARDINALITY and PAGES
columns in the result set contain the most current
information:

v SQL_ENSURE : This value is reserved for future
use, when the application requests the most
up-to-date statistics information. New applications
should not use this value. Existing applications
that specify this value will receive the same results
as SQL_QUICK.

v SQL_QUICK : Statistics which are readily available
at the server are returned. No attempt is made to
ensure that the values are current.

Usage

The SQLStatistics() function returns two types of information:
v Statistics information for the table (if it is available):

– if the TYPE column of the result set is set to SQL_TABLE_STAT, the number
of rows in the table, and the number of pages that are used to store the table
are returned.

– if the TYPE column of the result set indicates an index, the number of unique
values in the index, and the number of pages that are used to store the
indexes are returned.

v Information about each index, where each index column is represented by one
row of the result set. The result set columns are described in Columns returned
by SQLStatistics. The rows in the result set are ordered by NON_UNIQUE,
TYPE, INDEX_QUALIFIER, INDEX_NAME and KEY_SEQ columns.

In many cases, calls to the SQLStatistics() function map to a complex and thus
expensive query against the system catalog, so you should use the calls sparingly,
and save the results rather than repeating calls.

If the schema qualifier argument that is associated with a table name is not
specified, the schema name defaults to the argument that is in effect for the current
connection.

Call the SQLGetInfo() function with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_OWNER_SCHEMA_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
that are supported by the connected DBMS.

In Version 9.7 Fix Pack 5, you can specify *ALL as a value in the SchemaName to
resolve unqualified stored procedure calls, or to find libraries in catalog API calls.
CLI searches on all existing schemas in the connected database. You are not
required to specify *ALL, as this behavior is the default in CLI. Alternatively, you
can set the SchemaFilter IBM Data Server Driver configuration keyword or the
Schema List CLI/ODBC configuration keyword to *ALL.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns will not change.

SQLStatistics function (CLI) - Get index and statistics information for a base table

300 Call Level Interface Guide and Reference, Volume 2

Columns returned by SQLStatistics

Column 1 TABLE_CAT (VARCHAR(128))
The catalog name of the table for which the index applies. The value is
NULL if this table does not have catalogs.

Column 2 TABLE_SCHEM (VARCHAR(128))
The name of the schema containing TABLE_NAME.

Column 3 TABLE_NAME (VARCHAR(128) not NULL)
The name of the table.

Column 4 NON_UNIQUE (SMALLINT)
Indicates whether the index prohibits duplicate values:
v SQL_TRUE is returned if the index allows duplicate values.
v SQL_FALSE is returned if the index values must be unique.
v NULL is returned if the TYPE column indicates that this row is

SQL_TABLE_STAT (statistics information about the table).

Column 5 INDEX_QUALIFIER (VARCHAR(128))
The string that is used to qualify the index name in the DROP INDEX
statement. Appending a period (.) plus the INDEX_NAME results in a full
specification of the index.

Column 6 INDEX_NAME (VARCHAR(128))
The name of the index. If the TYPE column has the value
SQL_TABLE_STAT, this column has the value NULL.

Column 7 TYPE (SMALLINT not NULL)
Indicates the type of information that is contained in this row of the result
set:
v SQL_TABLE_STAT indicates that this row contains statistics information

about the table.
v SQL_INDEX_CLUSTERED indicates that this row contains information

about an index, and the index type is a clustered index.
v SQL_INDEX_HASHED indicates that this row contains information

about an index, and the index type is a hashed index.
v SQL_INDEX_OTHER indicates that this row contains information about

an index that is not clustered or hashed

Column 8 ORDINAL_POSITION (SMALLINT)
The ordinal position of the column in the index whose name is given in
the INDEX_NAME column. A NULL value is returned for this column if
the TYPE column has the value of SQL_TABLE_STAT.

Column 9 COLUMN_NAME (VARCHAR(128))
The name of the column in the index. A NULL value is returned for this
column if the TYPE column has the value of SQL_TABLE_STAT.

Column 10 ASC_OR_DESC (CHAR(1))
The sort sequence for the column; "A" for ascending, or "D" for
descending. A NULL value is returned if the value in the TYPE column is
SQL_TABLE_STAT.

Column 11 CARDINALITY (INTEGER)
v If the TYPE column contains the value SQL_TABLE_STAT, this column

contains the number of rows that are in the table.
v If the TYPE column value is not SQL_TABLE_STAT, this column

contains the number of unique values that are in the index.
v A NULL value is returned if information is not available from the

DBMS.

SQLStatistics function (CLI) - Get index and statistics information for a base table

Chapter 1. CLI and ODBC functions 301

Column 12 PAGES (INTEGER)
v If the TYPE column contains the value SQL_TABLE_STAT, this column

contains the number of pages that are used to store the table.
v If the TYPE column value is not SQL_TABLE_STAT, this column

contains the number of pages that are used to store the indexes.
v A NULL value is returned if information is not available from the

DBMS.

Column 13 FILTER_CONDITION (VARCHAR(128))
If the index is a filtered index, this is the filter condition. Because DB2
servers do not support filtered indexes, NULL is always returned. NULL is
also returned if TYPE is SQL_TABLE_STAT.

For the row in the result set that contains table statistics (TYPE is set to
SQL_TABLE_STAT), the columns values of NON_UNIQUE, INDEX_QUALIFIER,
INDEX_NAME, ORDINAL_POSITION, COLUMN_NAME, and ASC_OR_DESC
are set to NULL. If the CARDINALITY or PAGES information cannot be
determined, then NULL is returned for those columns.

Note: An application can check the SQLERRD(3) and SQLERRD(4) fields of the
SQLCA to gather some statistics on a table. However, the accuracy of the
information that is returned in those fields depends on many factors, such as the
use of parameter markers and expressions within the statement. The main factor
that you can control is the accuracy of the database statistics. For example, for DB2
Database for Linux, UNIX, and Windows, the last time the RUNSTATS command was
run. Therefore, the statistics information that is returned by SQLStatistics() is
often more consistent and reliable than the statistics information that is contained
in the SQLCA fields that were previously explained.

Return codes
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_STILL_EXECUTING
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO

Diagnostics

Table 153. SQLStatistics SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY009 Invalid argument value. TableName is null.

SQLStatistics function (CLI) - Get index and statistics information for a base table

302 Call Level Interface Guide and Reference, Volume 2

Table 153. SQLStatistics SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error.
The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called while within a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

The function was called before a statement was prepared on the
statement handle.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource
limitations.

HY090 Invalid string or buffer length. The value of one of the name-length arguments was less than 0,
but not equal to SQL_NTS.

The valid of one of the name-length arguments exceeded the
maximum value that is supported for that data source. The
maximum supported value can be obtained by calling the
SQLGetInfo() function.

HY100 Uniqueness option type out of
range.

An invalid Unique value was specified.

HY101 Accuracy option type out of
range.

An invalid Reserved value was specified.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. You can set the timeout period by using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

Example
/* get index and statistics information for a base table */
cliRC = SQLStatistics(hstmt,

NULL,
0,
tbSchema,
SQL_NTS,
tbName,
SQL_NTS,
SQL_INDEX_UNIQUE,
SQL_QUICK);

SQLTablePrivileges function (CLI) - Get privileges associated with a
table

The SQLTablePrivileges() function returns a list of tables and associated privileges
for each table.

The information is returned in an SQL result set, which you can retrieve by using
the same functions that you use to process a result set that is generated by a query.

SQLStatistics function (CLI) - Get index and statistics information for a base table

Chapter 1. CLI and ODBC functions 303

Purpose

Specification: CLI 2.1 ODBC 1.0

Unicode equivalent: You can also use this function with the Unicode character set.
The corresponding Unicode function is SQLTablePrivilegesW(). For details about
ANSI to Unicode function mappings, see“Unicode functions (CLI)” on page 5.

Syntax
SQLRETURN SQLTablePrivileges (

SQLHSTMT StatementHandle, /* hstmt */
SQLCHAR *CatalogName, /* *szCatalogName */
SQLSMALLINT NameLength1, /* cbCatalogName */
SQLCHAR *SchemaName, /* *szSchemaName */
SQLSMALLINT NameLength2, /* cbSchemaName */
SQLCHAR *TableName, /* *szTableName */
SQLSMALLINT NameLength3); /* cbTableName */

Function arguments

Table 154. SQLTablePrivileges arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input The statement handle.

SQLCHAR * CatalogName Input The catalog qualifier of a 3-part table name. If the
target DBMS does not support 3-part naming, and
PKCatalogName is not a null pointer and does not
point to a zero-length string, then an empty result
set and SQL_SUCCESS is returned. Otherwise, this is
a valid filter for DBMSs that supports 3-part naming.

SQLSMALLINT NameLength1 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store CatalogName, or SQL_NTS
if CatalogName is null-terminated.

SQLCHAR * SchemaName Input A buffer that can contain a pattern value to qualify
the result set by schema name.

SQLSMALLINT NameLength2 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store SchemaName, or SQL_NTS
if SchemaName is null-terminated.

SQLCHAR * TableName Input A buffer that can contain a pattern value to qualify
the result set by table name.

SQLSMALLINT NameLength3 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store TableName, or SQL_NTS if
TableName is null-terminated.

Note that the SchemaName and TableName input arguments accept search patterns.

Usage

The results are returned as a standard result set that contain the columns that are
listed in the succeeding table. The result set is ordered by the TABLE_CAT,
TABLE_SCHEM, TABLE_NAME, and PRIVILEGE columns. If multiple privileges
are associated with any given table, each privilege is returned as a separate row.

SQLTablePrivileges function (CLI) - Get privileges associated with a table

304 Call Level Interface Guide and Reference, Volume 2

The granularity of each privilege that is reported here might apply at the column
level. For example, for some data sources, if you can update a table, you can also
update every column in that table. For other data sources, the application must call
SQLColumnPrivileges() to discover if the individual columns have the same table
privileges.

In many cases, calls to the SQLTablePrivileges() function map to a complex and
thus expensive query against the system catalog, so you should use the calls
sparingly, and save the results rather than repeating the calls.

Sometimes, an application calls the function and no attempt is made to restrict the
result set that is returned. For some data sources that contain a large quantity of
tables, views, and aliases for example, this scenario maps to an extremely large
result set and very long retrieval times. In order to help reduce the long retrieval
times, you can specify the SchemaList configuration keyword in the CLI
initialization file to help restrict the result set when the application has supplied a
null pointer for the SchemaName. If the application specifies a SchemaName
string, the SchemaList keyword is still used to restrict the output. Therefore, if the
schema name that is supplied is not in the SchemaList string, the result is an
empty result set.

Call SQLGetInfo() with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_OWNER_SCHEMA_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
that are supported by the connected DBMS.

In Version 9.7 Fix Pack 5, you can specify *ALL or *USRLIBL as values in the
SchemaName to resolve unqualified stored procedure calls or to find libraries in
catalog API calls. If you specify *ALL, CLI searches on all existing schemas in the
connected database. You are not required to specify *ALL, as this behavior is the
default in CLI. For IBM DB2 for IBM i servers, if you specify *USRLIBL, CLI
searches on the current libraries of the server job. For other DB2 servers, *USRLIBL
does not have a special meaning and CLI searches using *USRLIBL as a pattern.
Alternatively, you can set the SchemaFilter IBM Data Server Driver configuration
keyword or the Schema List CLI/ODBC configuration keyword to *ALL or
*USRLIBL.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns will not change.

Columns returned by SQLTablePrivileges

Column 1 TABLE_CAT (VARCHAR(128))
The name of the catalog table. The value is NULL if this table does not
have catalogs.

Column 2 TABLE_SCHEM (VARCHAR(128))
The name of the schema that contains TABLE_NAME.

Column 3 TABLE_NAME (VARCHAR(128) not NULL)
The name of the table.

Column 4 GRANTOR (VARCHAR(128))
The authorization ID of the user who granted the privilege.

Column 5 GRANTEE (VARCHAR(128))
The authorization ID of the user to whom the privilege is granted.

SQLTablePrivileges function (CLI) - Get privileges associated with a table

Chapter 1. CLI and ODBC functions 305

Column 6 PRIVILEGE (VARCHAR(128))
The table privilege. This privilege can be one of the listed strings:
v ALTER
v CONTROL
v DELETE
v INDEX
v INSERT
v REFERENCES
v SELECT
v UPDATE

Column 7 IS_GRANTABLE (VARCHAR(3))
Indicates whether the grantee is permitted to grant the privilege to other
users.

The IS_GRANTABLE value can be "YES", "NO," or NULL.

Note: The column names that are used by CLI follow the X/Open CLI CAE
specification style. The column types, contents, and order are identical to those that
are defined for the SQLProcedures() result set in ODBC.

Return codes
v SQL_ERROR
v SQL_INVALID_HANDLE
v SQL_STILL_EXECUTING
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO

Diagnostics

Table 155. SQLTablePrivileges SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

SQLTablePrivileges function (CLI) - Get privileges associated with a table

306 Call Level Interface Guide and Reference, Volume 2

Table 155. SQLTablePrivileges SQLSTATEs (continued)

SQLSTATE Description Explanation

HY010 Function sequence error.
The function was called while in a data-at-execute
(SQLParamData(), SQLPutData()) operation.

The function was called during a BEGIN COMPOUND and END
COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

The function was called before a statement was prepared on the
statement handle.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource
limitations.

HY090 Invalid string or buffer length. The value of one of the name-length arguments was less than 0,
but not equal to SQL_NTS.

The valid value of one of the name-length arguments exceeded
the maximum value that is supported for that data source. You
can obtain the maximum supported value by calling the
SQLGetInfo() function.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. You can set the timeout period by using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

Example
/* get privileges associated with a table */
cliRC = SQLTablePrivileges(hstmt,

NULL,
0,
tbSchemaPattern,
SQL_NTS,
tbNamePattern,
SQL_NTS);

SQLTables function (CLI) - Get table information
The SQLTables() function returns a list of table names and associated information
that is stored in the system catalog of the connected data source.

The list of table names is returned as a result set, which you can retrieve by using
the same functions that you use to process a result set that is generated by a query.

Purpose

Specification: CLI 2.1 ODBC 1.0

SQLTablePrivileges function (CLI) - Get privileges associated with a table

Chapter 1. CLI and ODBC functions 307

Unicode equivalent: You can also use this function with the Unicode character set.
The corresponding Unicode function is SQLTablesW(). For information about ANSI
and Unicode function mappings, see “Unicode functions (CLI)” on page 5.

Syntax
SQLRETURN SQLTables (

SQLHSTMT StatementHandle, /* hstmt */
SQLCHAR *CatalogName, /* szCatalogName */
SQLSMALLINT NameLength1, /* cbCatalogName */
SQLCHAR *SchemaName, /* szSchemaName */
SQLSMALLINT NameLength2, /* cbSchemaName */
SQLCHAR *TableName, /* szTableName */
SQLSMALLINT NameLength3, /* cbTableName */
SQLCHAR *TableType, /* szTableType */
SQLSMALLINT NameLength4); /* cbTableType */

Function arguments

Table 156. SQLTables arguments

Data type Argument Use Description

SQLHSTMT StatementHandle Input The statement handle.

SQLCHAR * CatalogName Input A catalog qualifier of a 3-part table name that can
contain a pattern value. If the target DBMS does not
support 3-part naming, and CatalogName is not a null
pointer and does not point to a zero-length string,
then an empty result set and SQL_SUCCESS is
returned. Otherwise, this is a valid filter for DBMSs
that support 3-part naming.

SQLSMALLINT NameLength1 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store CatalogName, or SQL_NTS
if CatalogName is null-terminated.

SQLCHAR * SchemaName Input A buffer that can contain a pattern value to qualify
the result set by the schema name.

SQLSMALLINT NameLength2 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store SchemaName, or SQL_NTS
if SchemaName is null-terminated.

SQLCHAR * TableName Input A buffer that can contain a pattern value to qualify
the result set by the table name.

SQLSMALLINT NameLength3 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store TableName, or SQL_NTS if
TableName is null-terminated.

SQLTables function (CLI) - Get table information

308 Call Level Interface Guide and Reference, Volume 2

Table 156. SQLTables arguments (continued)

Data type Argument Use Description

SQLCHAR * TableType Input A buffer that can contain a value list to qualify the
result set by table type.

The value list is a list of uppercase comma-separated
single values for the table types of interest. Valid
table type identifiers include: ALIAS, HIERARCHY
TABLE, INOPERATIVE VIEW, NICKNAME,
MATERIALIZED QUERY TABLE, SYSTEM TABLE,
TABLE, TYPED TABLE, TYPED VIEW, or VIEW. If
TableType argument is a NULL pointer or a zero
length string, this is equivalent to specifying all of
the possibilities for the table type identifier.

If SYSTEM TABLE is specified, both system tables
and system views (if there are any) are returned.

SQLSMALLINT NameLength4 Input The number of SQLCHAR elements (or SQLWCHAR
elements for the Unicode variant of this function)
that are required to store TableType, or SQL_NTS if
TableType is null-terminated.

The CatalogName, SchemaName, and TableName input arguments accept search
patterns.

Usage

Table information is returned in a result set where each table is represented by one
row of the result set. To determine the type of access that is permitted on any
given table in the list, the application can call the SQLTablePrivileges() function.
The application must be able to handle a situation where the user selects a table
for which SELECT privileges are not granted.

To support obtaining just a list of schemas, you can apply the succeeding
semantics for the SchemaName argument: if SchemaName is a string that contains a
single percent (%) character, and CatalogName and TableName are empty strings,
then the result set contains a list of valid schemas in the data source.

If TableType is a single percent character (%) and CatalogName, SchemaName, and
TableName are empty strings, then the result set contains a list of valid table types
for the data source. (All columns except the TABLE_TYPE column contain NULLs.)

If TableType is not an empty string, it must contain a list of uppercase,
comma-separated values for the types of interest. You can enclose each value in
single quotation marks or place double quotation marks around all of the values.
For example, "'TABLE','VIEW'" or "TABLE,VIEW". If the data source does not
support or does not recognize a specified table type, nothing is returned for that
type.

Sometimes, an application calls the SQLTables() function with null pointers for
some or all of the SchemaName, TableName, and TableType arguments so that no
attempt is made to restrict the result set that is returned. For some data sources
that contain a large quantity of tables, views and, aliases for example, this scenario
maps to an extremely large result set and very long retrieval times. You can specify
three configuration keywords (SCHEMALIST, SYSSCHEMA, TABLETYPE) in the
CLI initialization file to help restrict the result set when the application has

SQLTables function (CLI) - Get table information

Chapter 1. CLI and ODBC functions 309

supplied null pointers for SchemaName, TableType, or both. If the application
specifies a SchemaName string, the SCHEMALIST keyword is still used to restrict
the output. Therefore, if the schema name that is supplied is not in the
SCHEMALIST string, the result is an empty result set.

The result set that is returned by the SQLTables() function contains the columns
that are listed in Columns returned by SQLTables in the order given. The rows are
ordered by the TABLE_TYPE, TABLE_CAT, TABLE_SCHEM, and TABLE_NAME
columns.

In many cases, calls to the SQLTables() function map to a complex and thus
expensive query against the system catalog, so you should use the calls sparingly,
and save the results rather than repeating calls.

Call the SQLGetInfo() function with the SQL_MAX_CATALOG_NAME_LEN,
SQL_MAX_OWNER_SCHEMA_LEN, SQL_MAX_TABLE_NAME_LEN, and
SQL_MAX_COLUMN_NAME_LEN to determine respectively the actual lengths of
the TABLE_CAT, TABLE_SCHEM, TABLE_NAME, and COLUMN_NAME columns
that are supported by the connected DBMS.

In Version 9.7 Fix Pack 5, you can specify *ALL or *USRLIBL as values in the
SchemaName to resolve unqualified stored procedure calls or to find libraries in
catalog API calls. If you specify *ALL, CLI searches on all existing schemas in the
connected database. You are not required to specify *ALL, as this behavior is the
default in CLI. For IBM DB2 for IBM i servers, if you specify *USRLIBL, CLI
searches on the current libraries of the server job. For other DB2 servers, *USRLIBL
does not have a special meaning and CLI searches using *USRLIBL as a pattern.
Alternatively, you can set the SchemaFilter IBM Data Server Driver configuration
keyword or the Schema List CLI/ODBC configuration keyword to *ALL or
*USRLIBL.

Although new columns might be added and the names of the existing columns
changed in future releases, the position of the current columns will not change.

Columns returned by SQLTables

Column 1 TABLE_CAT (VARCHAR(128))
Name of the catalog containing TABLE_SCHEM. The value is NULL if this
table does not have catalogs.

Column 2 TABLE_SCHEM (VARCHAR(128))
Name of the schema containing TABLE_NAME.

Column 3 TABLE_NAME (VARCHAR(128))
Name of the table, view, alias, or synonym.

Column 4 TABLE_TYPE (VARCHAR(128))
Identifies the type that is given by the name in the TABLE_NAME column.
It can have the string values 'ALIAS', 'HIERARCHY TABLE',
'INOPERATIVE VIEW', 'NICKNAME', 'MATERIALIZED QUERY TABLE',
'SYSTEM TABLE', 'TABLE', 'TYPED TABLE', 'TYPED VIEW', or 'VIEW'.

Column 5 REMARKS (VARCHAR(254))
Descriptive information about the table.

Return codes
v SQL_ERROR
v SQL_INVALID_HANDLE

SQLTables function (CLI) - Get table information

310 Call Level Interface Guide and Reference, Volume 2

v SQL_STILL_EXECUTING
v SQL_SUCCESS
v SQL_SUCCESS_WITH_INFO

Diagnostics

Table 157. SQLTables SQLSTATEs

SQLSTATE Description Explanation

24000 Invalid cursor state. A cursor was already opened on the statement handle.

40003 08S01 Communication link failure. The communication link between the application and data source
failed before the function completed.

HY001 Memory allocation failure. DB2 CLI is unable to allocate memory required to support
execution or completion of the function. It is likely that
process-level memory has been exhausted for the application
process. Consult the operating system configuration for
information on process-level memory limitations.

HY008 Operation was cancelled. Asynchronous processing was enabled for StatementHandle. The
function was called and before it completed execution,
SQLCancel() was called on StatementHandle from a different thread
in a multithreaded application. Then the function was called again
on StatementHandle.

HY009 Invalid argument value. TableName is null.

HY010 Function sequence error.
The function was called during a data-at-execute (SQLParamData(),
SQLPutData()) operation.

The function was called while in a BEGIN COMPOUND and
END COMPOUND SQL operation.

An asynchronously executing function (not this one) was called
for the StatementHandle and was still executing when this function
was called.

The function was called before a statement was prepared on the
statement handle.

HY014 No more handles. DB2 CLI was unable to allocate a handle due to resource
limitations.

HY090 Invalid string or buffer length. The value of one of the name length arguments was less than 0,
but not equal to SQL_NTS.

The valid of one of the name length arguments exceeded the
maximum value supported for that data source. The maximum
supported value can be obtained by calling the SQLGetInfo()
function.

HYT00 Timeout expired. The timeout period expired before the data source returned the
result set. The timeout period can be set using the
SQL_ATTR_QUERY_TIMEOUT attribute for SQLSetStmtAttr().

Restrictions

None.

Example
/* get table information */
cliRC = SQLTables(hstmt,

NULL,

SQLTables function (CLI) - Get table information

Chapter 1. CLI and ODBC functions 311

0,
tbSchemaPattern,
SQL_NTS,
tbNamePattern,
SQL_NTS,
NULL,
0);

SQLTransact function (CLI) - Transaction management
Deprecated

Note:

In ODBC 3.0, SQLTransact() has been deprecated and replaced with SQLEndTran().

Although this version of CLI continues to support SQLTransact(), use
SQLEndTran() in your CLI programs so that they conform to the latest standards.

Migrating to the new function

The statement:
SQLTransact(henv, hdbc, SQL_COMMIT);

for example, would be rewritten using the new function as:
SQLEndTran(SQL_HANDLE_DBC, hdbc, SQL_COMMIT);

SQLTables function (CLI) - Get table information

312 Call Level Interface Guide and Reference, Volume 2

Chapter 2. Return codes and SQLSTATES for CLI

When you call CLI functions, there are two levels of diagnostics returned by the
function: return codes and detailed diagnostics (SQLSTATEs, messages, SQLCA).

Each CLI function returns the function return code as a basic diagnostic. Both
SQLGetDiagRec() and SQLGetDiagField() provide more detailed diagnostic
information. If the diagnostic originates at the DBMS, the SQLGetSQLCA() function
provides access to the SQLCA. This arrangement lets applications handle the basic
flow control based on return codes, and use the SQLSTATES along with the
SQLCA to determine the specific causes of failure and to perform specific error
handling.

Both SQLGetDiagRec() and SQLGetDiagField() return three pieces of information:
v SQLSTATE
v Native error: if the diagnostic is detected by the data source, this is the

SQLCODE; otherwise, this is set to -99999.
v Message text: this is the message text associated with the SQLSTATE.

SQLGetSQLCA() returns the SQLCA for access to specific fields, but should only be
used when SQLGetDiagRec() or SQLGetDiagField() cannot provide the required
information.

CLI function return codes

The following table lists all possible return codes for CLI functions.

Table 158. CLI Function return codes

Return code Explanation

SQL_SUCCESS The function completed successfully, no additional
SQLSTATE information is available.

SQL_SUCCESS_WITH_INFO The function completed successfully with a warning
or other information. Call SQLGetDiagRec() or
SQLGetDiagField() to receive the SQLSTATE and any
other informational messages or warnings. The
SQLSTATE will have a class of '01'.

SQL_STILL_EXECUTING The function is running asynchronously and has not
yet completed. The CLI driver has returned control to
the application after calling the function, but the
function has not yet finished executing.

SQL_NO_DATA_FOUND The function returned successfully, but no relevant
data was found. When this is returned after the
execution of an SQL statement, additional information
may be available and can be obtained by calling
SQLGetDiagRec() or SQLGetDiagField().

SQL_NEED_DATA The application tried to execute an SQL statement but
CLI lacks parameter data that the application had
indicated would be passed at execute time.

SQL_ERROR The function failed. Call SQLGetDiagRec() or
SQLGetDiagField() to receive the SQLSTATE and any
other error information.

© Copyright IBM Corp. 1993, 2012 313

Table 158. CLI Function return codes (continued)

Return code Explanation

SQL_INVALID_HANDLE The function failed due to an invalid input handle
(environment, connection or statement handle). This is
a programming error. No further information is
available.

The following code segment shows how a function return code,
SQL_NO_DATA_FOUND, can be used to control when data retrieval should stop:

while (cliRC != SQL_NO_DATA_FOUND)
{

printf(" %-8d %-14.14s \n", deptnumb.val, location.val);
/* fetch next row */

cliRC = SQLFetch(hstmt);
STMT_HANDLE_CHECK(hstmt, hdbc, cliRC);

}

SQLSTATES for CLI
SQLSTATEs are alphanumeric strings of 5 characters (bytes) with a format of
ccsss, where cc indicates class and sss indicates subclass. Any SQLSTATE that has
a class of:
v '01', is a warning.
v 'HY', is generated by the CLI or ODBC driver.
v 'IM', is generated by the ODBC driver manager.

Note: Versions of CLI before Version 5 returned SQLSTATEs with a class of 'S1'
rather than 'HY'. To force the CLI driver to return 'S1' SQLSTATEs, the application
should set the environment attribute SQL_ATTR_ODBC_VERSION to the value
SQL_OV_ODBC2.

CLI SQLSTATEs include both additional IBM defined SQLSTATEs that are returned
by the database server, and CLI defined SQLSTATEs for conditions that are not
defined in the ODBC version 3 and ISO SQL/CLI specifications. This allows for
the maximum amount of diagnostic information to be returned. When running
applications in an ODBC environment, it is also possible to receive ODBC defined
SQLSTATEs.

Follow these guidelines for using SQLSTATEs within your application:
v Always check the function return code before calling SQLGetDiagRec() to

determine if diagnostic information is available.
v Use the SQLSTATEs rather than the native error code.
v To increase your application's portability, only build dependencies on the subset

of CLI SQLSTATEs that are defined by the ODBC version 3 and ISO SQL/CLI
specifications, and return the additional ones as information only. A dependency
in an application is a logic flow decision based on specific SQLSTATEs.

Note: It may be useful to build dependencies on the class (the first 2 characters)
of the SQLSTATEs.

v For maximum diagnostic information, return the text message along with the
SQLSTATE (if applicable, the text message will also include the IBM defined
SQLSTATE). It is also useful for the application to print out the name of the
function that returned the error.

CLI function return codes

314 Call Level Interface Guide and Reference, Volume 2

v Ensure that the string allocated for the SQLSTATE includes space for the null
termination character returned by CLI.

The following code segment from utilcli.c shows how diagnostic information,
such as SQLSTATEs, can be retrieved and displayed:
void HandleDiagnosticsPrint(SQLSMALLINT htype, /* handle type identifier */

SQLHANDLE hndl /* handle */)
{

SQLCHAR message[SQL_MAX_MESSAGE_LENGTH + 1];
SQLCHAR sqlstate[SQL_SQLSTATE_SIZE + 1];
SQLINTEGER sqlcode;
SQLSMALLINT length, i;

i = 1;

/* get multiple field settings of diagnostic record */
while (SQLGetDiagRec(htype,

hndl,
i,
sqlstate,
&sqlcode,
message,
SQL_MAX_MESSAGE_LENGTH + 1,
&length) == SQL_SUCCESS)

{
printf("\n SQLSTATE =
printf(" Native Error Code =
printf("
i++;

}

printf("-------------------------\n");
}

You can use the CLI/ODBC trace facility to gain a better understanding of how
your application calls DB2, including any errors that may occur.

Return codes for compound SQL (CLI) in CLI applications

Return codes are generated on the call to SQLExecute() or SQLExecDirect() for the
END COMPOUND statement. The following lists the return codes for ATOMIC
and NOT ATOMIC compound statements:

ATOMIC
v SQL_SUCCESS: all substatements have executed without any warnings or errors.
v SQL_SUCCESS_WITH_INFO: all substatements executed successfully with one

or more warnings. Call SQLGetDiagRec() or SQLGetDiagField() to retrieve
additional information on the error or warning. The handle used by
SQLGetDiagRec() or SQLGetDiagField() must be the same one used to process
the BEGIN COMPOUND and END COMPOUND statements.

v SQL_NO_DATA_FOUND: BEGIN COMPOUND and END COMPOUND
statements executed without any substatements, or none of the substatements
affected any rows.

v SQL_ERROR: one or more substatements failed and all substatements were
rolled back.

NOT ATOMIC
v SQL_SUCCESS: all substatements executed without any errors.

SQLSTATES for CLI

Chapter 2. Return codes and SQLSTATES for CLI 315

v SQL_SUCCESS_WITH_INFO: the COMPOUND statement executed with one or
more warnings returned by one or more substatements. Call SQLGetDiagRec() or
SQLGetDiagField() to retrieve additional information on the error or warning.
The handle used by SQLGetDiagRec() or SQLGetDiagField() must be the same
one used to process the BEGIN COMPOUND and END COMPOUND
statements.

v SQL_NO_DATA_FOUND: the BEGIN COMPOUND and END COMPOUND
statements executed without any substatements, or none of the substatements
affected any rows.

v SQL_ERROR: the COMPOUND statement failed. At least one substatement
returned an error. Examine the SQLCA to determine which statements failed.

Return codes for compound SQL (CLI) in CLI applications

316 Call Level Interface Guide and Reference, Volume 2

Chapter 3. CLI/ODBC configuration keywords listing by
category

Categorized list of CLI configuration keywords

The CLI/ODBC configuration keywords are divided into the listed categories:
v Compatibility configuration keywords
v Data source configuration keywords
v Data type configuration keywords
v Enterprise configuration keywords
v Environment configuration keywords
v File DSN configuration keywords
v Optimization configuration keywords
v Service configuration keywords
v Static SQL configuration keywords
v Transaction configuration keywords

While most CLI/ODBC configuration keywords can be set in the db2cli.ini
initialization file or by providing the keyword information in the connection string
to SQLDriverConnect() function, the Trusted_Connection Keyword can be set only
with SQLDriverConnect().

Compatibility configuration keywords

Use the compatibility configuration keywords to define DB2 behavior. You can set
the compatibility configuration keywords to ensure that other applications are
compatible with DB2.
v “AllowInterleavedGetData CLI/ODBC configuration keyword” on page 325
v “CheckForFork CLI/ODBC configuration keyword” on page 335
v “CursorTypes CLI/ODBC configuration keyword” on page 348
v “DeferredPrepare CLI/ODBC configuration keyword” on page 354
v “DescribeCall CLI/ODBC configuration keyword” on page 355
v “DescribeParam CLI/ODBC configuration keyword” on page 357
v “DisableKeysetCursor CLI/ODBC configuration keyword” on page 358
v “DisableMultiThread CLI/ODBC configuration keyword” on page 358
v “DisableUnicode CLI/ODBC configuration keyword” on page 359
v “EnableNamedParameterSupport CLI/ODBC configuration keyword” on page

359
v “Interrupt CLI/ODBC configuration keyword” on page 365
v “OleDbReportIsLongForLongTypes CLI/ODBC configuration keyword” on page

377
v “OleDbSQLColumnsSortByOrdinal CLI/ODBC configuration keyword” on page

378
v “RetCatalogAsCurrServer CLI/ODBC configuration keyword” on page 392
v “RetOleDbConnStr CLI/ODBC configuration keyword” on page 392

© Copyright IBM Corp. 1993, 2012 317

v “Trusted_Connection CLI/ODBC configuration keyword” on page 420(use
SQLDriverConnect() function to set this keyword.)

v “TimestampTruncErrToWarning CLI/ODBC configuration keyword” on page 407

Data source configuration keywords

General keywords associated with a data source configuration.
v “DBAlias CLI/ODBC configuration keyword” on page 351
v “ClientEncAlg CLI/ODBC configuration keyword” on page 337
v “PWD CLI/ODBC configuration keyword” on page 379
v “UID CLI/ODBC configuration keyword” on page 422

Data type configuration keywords

Use the data type configuration keywords to define how DB2 reports and handles
various data types.
v “BitData CLI/ODBC configuration keyword” on page 333
v “CurrentImplicitXMLParseOption CLI/ODBC configuration keyword” on page

344
v “DateTimeStringFormat CLI/ODBC configuration keyword” on page 352
v “DecimalFloatRoundingMode CLI/ODBC configuration keyword” on page 353
v “FloatPrecRadix CLI/ODBC configuration keyword” on page 360
v “Graphic CLI/ODBC configuration keyword” on page 363
v “LOBMaxColumnSize CLI/ODBC configuration keyword” on page 367
v “LongDataCompat CLI/ODBC configuration keyword” on page 368
v “MapBigintCDefault CLI/ODBC configuration keyword” on page 369
v “MapCharToWChar CLI/ODBC configuration keyword” on page 369
v “MapDateCDefault CLI/ODBC configuration keyword” on page 370
v “MapDateDescribe CLI/ODBC configuration keyword” on page 370
v “MapDecimalFloatDescribe CLI/ODBC configuration keyword” on page 371
v “MapGraphicDescribe CLI/ODBC configuration keyword” on page 372
v “MapTimeCDefault CLI/ODBC configuration keyword” on page 372
v “MapTimeDescribe CLI/ODBC configuration keyword” on page 373
v “MapTimestampCDefault CLI/ODBC configuration keyword” on page 373
v “MapTimestampDescribe CLI/ODBC configuration keyword” on page 374
v “MapXMLCDefault CLI/ODBC configuration keyword” on page 375
v “MapXMLDescribe CLI/ODBC configuration keyword” on page 375
v “OleDbReturnCharAsWChar CLI/ODBC configuration keyword” on page 377
v “PromoteLONGVARtoLOB CLI/ODBC configuration keyword” on page 388
v “XMLDeclaration CLI/ODBC configuration keyword” on page 425

Enterprise configuration keywords

Use the enterprise configuration keywords to maximize the efficiency of
connections to large databases.
v “ConnectNode CLI/ODBC configuration keyword” on page 341
v “CurrentPackagePath CLI/ODBC configuration keyword” on page 345
v “CurrentPackageSet CLI/ODBC configuration keyword” on page 346

CLI/ODBC configuration keywords listing by category

318 Call Level Interface Guide and Reference, Volume 2

v “CurrentRefreshAge CLI/ODBC configuration keyword” on page 346
v “CurrentSchema CLI/ODBC configuration keyword” on page 347
v “CurrentSQLID CLI/ODBC configuration keyword” on page 347
v “DBName CLI/ODBC configuration keyword” on page 351
v “GranteeList CLI/ODBC configuration keyword” on page 362
v “GrantorList CLI/ODBC configuration keyword” on page 362
v “OnlyUseBigPackages CLI/ODBC configuration keyword” on page 379
v “ReportPublicPrivileges CLI/ODBC configuration keyword” on page 391
v “ReturnSynonymSchema CLI/ODBC configuration keyword” on page 394
v “SchemaList CLI/ODBC configuration keyword” on page 396
v “ServerMsgMask CLI/ODBC configuration keyword” on page 397
v “SQLCODEMAP CLI/ODBC configuration keyword” on page 399
v “SysSchema CLI/ODBC Configuration Keyword” on page 404
v “TableType CLI/ODBC configuration keyword” on page 405
v “UseServerMsgSP CLI/ODBC configuration keyword” on page 423

Environment configuration keywords

Use the environment configuration keywords to define environment-specific
settings, such as the location of various files on the server and client machines.
v

v “ConnectTimeout CLI/ODBC configuration keyword” on page 342
v “CurrentFunctionPath CLI/ODBC configuration keyword” on page 343
v “Interrupt CLI/ODBC configuration keyword” on page 365
v “QueryTimeoutInterval CLI/ODBC configuration keyword” on page 389
v “ReadCommonSectionOnNullConnect CLI/ODBC configuration keyword” on

page 390
v “ReceiveTimeout CLI/ODBC configuration keyword” on page 390
v “TempDir CLI/ODBC configuration keyword” on page 406

File DSN configuration keywords

Use the File DSN configuration keywords to set the TCP/IP settings for a file DSN
connection.
v “Attach CLI/ODBC configuration keyword” on page 330
v “Authentication CLI/ODBC configuration keyword” on page 331
v “BIDI CLI/ODBC configuration keyword” on page 333
v “Database CLI/ODBC configuration keyword” on page 352
v “Hostname CLI/ODBC configuration keyword” on page 363
v “Port CLI/ODBC configuration keyword” on page 386
v “Protocol CLI/ODBC configuration keyword” on page 388
v “ServiceName CLI/ODBC configuration keyword” on page 398
v “security CLI/ODBC configuration keyword” on page 397
v “SSLClientLabel CLI/ODBC configuration keyword” on page 399
v “SSLClientKeystoredb CLI/ODBC configuration keyword” on page 400
v “SSLClientKeystoreDBPassword CLI/ODBC configuration keyword” on page

401

CLI/ODBC configuration keywords listing by category

Chapter 3. CLI/ODBC configuration keywords 319

v “SSLClientKeystash CLI/ODBC configuration keyword” on page 400
v “TargetPrincipal CLI/ODBC configuration keyword” on page 406

Optimization configuration keywords

Use the optimization configuration keywords to speed up and reduce the amount
of network flow between the IBM Data Server Driver for ODBC and CLI and the
server.
v “AllowGetDataLOBReaccess CLI/ODBC configuration keyword” on page 325
v “AppendForFetchOnly CLI/ODBC configuration keyword” on page 328
v “AppUsesLOBLocator CLI/ODBC configuration keyword” on page 327
v “BlockForNRows CLI/ODBC configuration keyword” on page 333
v “BlockLobs CLI/ODBC configuration keyword” on page 334
v “ClientBuffersUnboundLOBS CLI/ODBC configuration keyword” on page 337
v “ColumnwiseMRI CLI/ODBC configuration keyword” on page 339
v “ConcurrentAccessResolution CLI/ODBC configuration keyword” on page 340
v “CurrentMaintainedTableTypesForOpt CLI/ODBC configuration keyword” on

page 344
v “DB2Degree CLI/ODBC configuration keyword” on page 348
v “DB2Explain CLI/ODBC configuration keyword” on page 349
v “DB2NETNamedParam CLI/ODBC configuration keyword” on page 350
v “DB2Optimization CLI/ODBC configuration keyword” on page 350
v “DescribeInputOnPrepare CLI/ODBC configuration keyword” on page 355
v “DescribeOutputLevel CLI/ODBC configuration keyword” on page 356
v “FET_BUF_SIZE CLI/ODBC configuration keyword” on page 360
v “GetDataLobNoTotal CLI/ODBC configuration keyword” on page 361
v “KeepDynamic CLI/ODBC configuration keyword” on page 366
v “LOBCacheSize CLI/ODBC configuration keyword” on page 366
v “LOBFileThreshold CLI/ODBC configuration keyword” on page 367
v “LockTimeout CLI/ODBC configuration keyword” on page 368
v “MaxLOBBlockSize CLI/ODBC configuration keyword” on page 376
v “OptimizeForNRows CLI/ODBC configuration keyword” on page 379
v “Reopt CLI/ODBC configuration keyword” on page 390
v “ReturnAliases CLI/ODBC configuration keyword” on page 394
v “SkipTrace CLI/ODBC configuration keyword” on page 398
v “StmtConcentrator CLI/ODBC configuration keyword” on page 403
v “StreamGetData CLI/ODBC configuration keyword” on page 403
v “StreamPutData CLI/ODBC configuration keyword” on page 404
v “Underscore CLI/ODBC configuration keyword” on page 422

Service configuration keywords

Use the service configuration keywords to help in troubleshooting problems with
CLI/ODBC connections. Programmers can also use service configuration keywords
to gain a better understanding of how their CLI programs are translated into calls
to the server.
v “AppendAPIName CLI/ODBC configuration keyword” on page 327

CLI/ODBC configuration keywords listing by category

320 Call Level Interface Guide and Reference, Volume 2

v “AppendRowColToErrorMessage CLI/ODBC configuration keyword” on page
328

v “IgnoreWarnings CLI/ODBC configuration keyword” on page 364
v “IgnoreWarnList CLI/ODBC configuration keyword” on page 364
v “LoadXAInterceptor CLI/ODBC configuration keyword” on page 368
v “Patch1 CLI/ODBC configuration keyword” on page 380
v “Patch2 CLI/ODBC configuration keyword” on page 383
v “ReportRetryErrorsAsWarnings CLI/ODBC configuration keyword” on page 391
v “RetryOnError CLI/ODBC configuration keyword” on page 393
v “ProgramID CLI/ODBC configuration keyword” on page 387
v “ProgramName CLI/ODBC configuration keyword” on page 387
v “Trace CLI/ODBC configuration keyword” on page 407
v “TraceAPIList CLI/ODBC configuration keyword” on page 408
v “TraceAPIList! CLI/ODBC configuration keyword” on page 410
v “TraceComm CLI/ODBC configuration keyword” on page 412
v “TraceErrImmediate CLI/ODBC configuration keyword” on page 413
v “TraceFileName CLI/ODBC configuration keyword” on page 413
v “TraceFlush CLI/ODBC configuration keyword” on page 414
v “TraceFlushOnError CLI/ODBC configuration keyword” on page 415
v “TraceLocks CLI/ODBC configuration keyword” on page 415
v “TracePathName CLI/ODBC configuration keyword” on page 417
v “TracePIDList CLI/ODBC configuration keyword” on page 416
v “TracePIDTID CLI/ODBC configuration keyword” on page 416
v “TraceRefreshInterval CLI/ODBC configuration keyword” on page 418
v “TraceStmtOnly CLI/ODBC configuration keyword” on page 418
v “TraceTime CLI/ODBC configuration keyword” on page 419
v “TraceTimestamp CLI/ODBC configuration keyword” on page 419
v “WarningList CLI/ODBC configuration keyword” on page 424

Static SQL configuration keywords

Use the static SQL configuration keywords when running static SQL statements in
CLI/ODBC applications.
v “StaticCapFile CLI/ODBC configuration keyword” on page 401
v “StaticLogFile CLI/ODBC configuration keyword” on page 402
v “StaticMode CLI/ODBC configuration keyword” on page 402
v “StaticPackage CLI/ODBC configuration keyword” on page 402

Transaction configuration keywords

Use the transaction configuration keywords to control and speed up SQL
statements that are used in the application.
v “ArrayInputChain CLI/ODBC configuration keyword” on page 329
v “AsyncEnable CLI/ODBC configuration keyword” on page 330
v “AutoCommit CLI/ODBC configuration keyword” on page 332
v “ClientAcctStr CLI/ODBC configuration keyword” on page 336
v “ClientApplName CLI/ODBC configuration keyword” on page 336

CLI/ODBC configuration keywords listing by category

Chapter 3. CLI/ODBC configuration keywords 321

v “ClientUserID CLI/ODBC configuration keyword” on page 338
v “ClientWrkStnName CLI/ODBC configuration keyword” on page 339
v “CommitOnEOF CLI/ODBC configuration keyword” on page 340
v “ConnectType CLI/ODBC configuration keyword” on page 343
v “CursorHold CLI/ODBC configuration keyword” on page 347
v “Mode CLI/ODBC configuration keyword” on page 376
v “SQLOverrideFileName CLI/ODBC configuration keyword” on page 395
v “TxnIsolation CLI/ODBC configuration keyword” on page 421
v “UseOldStpCall CLI/ODBC configuration keyword” on page 423

db2cli.ini initialization file
The CLI/ODBC initialization file (db2cli.ini) contains various keywords and
values that can be used to configure the behavior of CLI and the applications using
it.

The keywords are associated with the database alias name, and affect all CLI and
ODBC applications that access the database.

In Version 9.7 Fix Pack 3 and later, the db2cli.ini.sample sample configuration file
is shipped to help you get started. You can create a db2cli.ini file that is based on
the db2cli.ini.sample file and that is stored in the same location. The location of
the sample configuration file depends on your driver type and platform.

For IBM Data Server Client, IBM Data Server Runtime Client, or IBM Data Server
Driver Package, the sample configuration file is created in one of the following
paths:
v On AIX®, HP-UX, Linux, or Solaris operating systems: instance_path/cfg
v On Windows XP and Windows Server 2003: C:\Documents and Settings\All

Users\Application Data\IBM\DB2\driver_copy_name\cfg

v On Windows Vista and Windows Server 2008: C:\ProgramData\IBM\DB2\
driver_copy_name\cfg

For example, if you use IBM Data Server Driver Package for Windows XP, and the
data server driver copy name is DSD_COPY, then the db2cli.ini.sample file is
created in the C:\Documents and Settings\All Users\Application
Data\IBM\DB2\DSD_COPY\cfg directory.

For IBM Data Server Driver for ODBC and CLI, the sample configuration file is
created in one of the following paths:
v On AIX, HP-UX, Linux, or Solaris operating systems: instance_path/cfg
v On Windows XP and Windows Server 2003: C:\Documents and Settings\All

Users\Application Data\IBM\DB2\driver_installation_path\cfg

where driver_installation_path is the file path where the driver is installed, with
each directory separated by an underscore (_) instead of a backslash (\).

v On Windows Vista and Windows Server 2008: C:\ProgramData\IBM\DB2\
driver_installation_path\cfg

where driver_installation_path is the file path where the driver is installed, with
each directory separated by an underscore (_) instead of a backslash (\).

For example, if you use IBM Data Server Driver for ODBC and CLI for Windows
Vista, and the driver is installed in the C:\IBMDB2\CLIDRIVER\V97FP3 directory, then

CLI/ODBC configuration keywords listing by category

322 Call Level Interface Guide and Reference, Volume 2

the db2cli.ini.sample file is created in the C:\ProgramData\IBM\DB2\
C_IBMDB2_CLIDRIVER_V97FP3\cfg directory.

When the ODBC Driver Manager is used to configure a user DSN on Windows
operating systems, the db2cli.ini file is created in Documents and Settings\User
Name where User Name represents the name of the user directory.

You can use the environment variable DB2CLIINIPATH to specify a different location
for the db2cli.ini file.

If you use a copy of the db2cli.ini file from Version 9.7 Fix Pack 2 or earlier on
Windows, the file is in a different location. You can keep the copy of the
db2cli.ini file in the previous location, but this location might not be valid in
future releases.

The configuration keywords enable you to:
v Configure general features such as data source name, user name, and password.
v Set options that will affect performance.
v Indicate query parameters such as wild card characters.
v Set patches or work-arounds for various ODBC applications.
v Set other, more specific features associated with the connection, such as code

pages and IBM GRAPHIC data types.
v Override default connection options specified by an application. For example, if

an application requests Unicode support from the CLI driver by setting the
SQL_ATTR_ANSI_APP connection attribute, then setting DisableUnicode=1 in
the db2cli.ini file will force the CLI driver not to provide the application with
Unicode support.

Note: If the CLI/ODBC configuration keywords set in the db2cli.ini file
conflict with keywords in the SQLDriverConnect() connection string, then the
SQLDriverConnect() keywords will take precedence.

The db2cli.ini initialization file is an ASCII file which stores values for the CLI
configuration options. The db2cli.ini.sample sample configuration file is shipped
to help you get started. While most CLI/ODBC configuration keywords are set in
the db2cli.ini initialization file, some keywords are set by providing the keyword
information in the connection string to SQLDriverConnect() instead.

There is one section within the file for each database (data source) the user wishes
to configure. If needed, there is also a common section that affects all database
connections.

Only the keywords that apply to all database connections through the CLI/ODBC
driver are included in the COMMON section. This includes the following
keywords:
v CheckForFork

v DiagPath

v DisableMultiThread

v JDBCTrace

v JDBCTraceFlush

v JDBCTracePathName

v QueryTimeoutInterval

db2cli.ini initialization file

Chapter 3. CLI/ODBC configuration keywords 323

v ReadCommonSectionOnNullConnect

v Trace

v TraceComm

v TraceErrImmediate

v TraceFileName

v TraceFlush

v TraceFlushOnError

v TraceLocks

v TracePathName

v TracePIDList

v TracePIDTID

v TraceRefreshInterval

v TraceStmtOnly

v TraceTime

v TraceTimeStamp

All other keywords are to be placed in the database specific section, described
below.

Note: Configuration keywords are valid in the COMMON section, however, they
will apply to all database connections.

The COMMON section of the db2cli.ini file begins with:
[COMMON]

Before setting a common keyword it is important to evaluate its impact on all
CLI/ODBC connections from that client. A keyword such as TRACE, for instance,
will generate information on all CLI/ODBC applications connecting to DB2 on that
client, even if you are intending to troubleshoot only one of those applications.

Each database specific section always begins with the name of the data source
name (DSN) between square brackets:
[data source name]

This is called the section header.

The parameters are set by specifying a keyword with its associated keyword value
in the form:
KeywordName =keywordValue

v All the keywords and their associated values for each database must be located
below the database section header.

v If the database-specific section does not contain a DBAlias keyword, the data
source name is used as the database alias when the connection is established.
The keyword settings in each section apply only to the applicable database alias.

v The keywords are not case sensitive; however, their values can be if the values
are character based.

v If a database is not found in the .INI file, the default values for these keywords
are in effect.

v Comment lines are introduced by having a semicolon in the first position of a
new line.

v Blank lines are permitted.

db2cli.ini initialization file

324 Call Level Interface Guide and Reference, Volume 2

v If duplicate entries for a keyword exist, the first entry is used (and no warning
is given).

The following is a sample .INI file with two database alias sections:
; This is a comment line.
[MYDB22]
AutoCommit=0
TableType="’TABLE’,’SYSTEM TABLE’"

; This is another comment line.
[MYDB2MVS]
CurrentSQLID=SAAID
TableType="’TABLE’"
SchemaList="’USER1’,CURRENT SQLID,’USER2’"

Although you can edit the db2cli.ini file manually on all platforms, it is
recommended that you use the Configuration Assistant if it is available on your
platform or the UPDATE CLI CONFIGURATION command. You must add a blank line
after the last entry if you manually edit the db2cli.ini file.

AllowGetDataLOBReaccess CLI/ODBC configuration keyword
Specifies whether the application can call SQLGetData() for previously accessed
LOB columns when querying database servers that support Dynamic Data Format.

db2cli.ini keyword syntax:
AllowGetDataLOBReaccess = 0 | 1

Default setting:
Do not allow calls to SQLGetData() for previously accessed LOB columns
when querying database servers that support Dynamic Data Format.

Usage notes:
This keyword only affects connections to database servers that support
Dynamic Data Format, also known as progressive streaming. The default
setting of 0 does not allow applications to call SQLGetData() for previously
accessed LOB columns. Specify 1 to allow applications to call SQLGetData()
for previously accessed LOB columns.

Note that when the keyword is set to 1 to allow re-access to LOB columns,
some resources on the server might not be freed upon completion of
SQLGetData().

If the server does not support Dynamic Data Format, this keyword has no
effect and calls to SQLGetData() for previously accessed LOB columns are
allowed.

A similar keyword exists called AllowInterleavedGetData that allows
applications to call SQLGetData() for previously accessed LOB columns and
maintain the data offset position from the previous call to SQLGetData()
when querying data servers that support Dynamic Data Format. If both
AllowGetDataLOBReaccess and AllowInterleavedGetData are set for a
given connection or statement, the AllowInterleavedGetData setting takes
precedence over AllowGetDataLOBReaccess.

AllowInterleavedGetData CLI/ODBC configuration keyword
Specifies whether the application can call SQLGetData() for previously accessed
LOB columns and maintain the data offset position from the previous call to
SQLGetData() when querying data servers that support Dynamic Data Format.

db2cli.ini initialization file

Chapter 3. CLI/ODBC configuration keywords 325

db2cli.ini keyword syntax:
AllowInterleavedGetData = 0 | 1

Default setting:
Do not allow calls to SQLGetData() for previously accessed LOB columns
when querying database servers that support Dynamic Data Format.

Equivalent environment or connection attribute:
SQL_ATTR_ALLOW_INTERLEAVED_GETDATA

Usage notes:
This keyword affects only connections to database servers that support
Dynamic Data Format, also known as progressive streaming. The default
setting of 0 does not allow applications to call SQLGetData() for previously
accessed LOB columns. Specify 1 to allow applications to call SQLGetData()
for previously accessed LOB columns and start reading LOB data from
where the application stopped reading during the previous read.

Note that when the keyword is set to 1 to allow re-access to LOB columns,
some resources on the server might not be freed upon completion of
SQLGetData().

If the server does not support Dynamic Data Format, this keyword has no
effect, and calls to SQLGetData() for previously accessed LOB columns are
allowed.

A similar keyword exists called AllowGetDataLOBReaccess that allows
applications to call SQLGetData() for previously accessed LOB columns.
However, if the AllowGetDataLOBReaccess keyword is used, data position
and offset information is not maintained. When the LOB column is
re-accessed after interleaving, SQLGetData() starts reading data from the
beginning for that LOB data column. If both AllowGetDataLOBReaccess
and AllowInterleavedGetData are set for a given connection or statement,
the AllowInterleavedGetData setting takes precedence over
AllowGetDataLOBReaccess.

AltHostName CLI/ODBC configuration keyword
Specifies the alternate host name to be used if the primary server specified by
HOSTNAME cannot be contacted (Client Reroute.)

db2cli.ini keyword syntax:
AltHostName = fully qualified alternate host name | IP address of node

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

This parameter specifies a fully qualified host name or the IP address of
the node where the alternate server for the database resides.

If the primary server returns alternate server information, it will override
this AltHostName setting. However, this keyword is read only. That means
the db2cli.ini will not be updated with the alternate server information
received from the primary server.

AltPort CLI/ODBC configuration keyword
Specifies the alternate port to be used if the primary server specified by HOSTNAME
and PORT cannot be contacted (Client Reroute.)

AllowInterleavedGetData CLI/ODBC configuration keyword

326 Call Level Interface Guide and Reference, Volume 2

db2cli.ini keyword syntax:
AltPort = port number

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

This parameter specifies the port number of the alternate server of the
database manager instance where the alternate server for the database
resides.

If the primary server returns alternate server information, it will override
this AltPort setting. However, this keyword is read only. That means the
db2cli.ini will not be updated with the alternate server information
received from the primary server.

AppUsesLOBLocator CLI/ODBC configuration keyword
Specifies whether applications use LOB locators.

db2cli.ini keyword syntax:
AppUsesLOBLocator = 0 | 1

Default setting:
Applications are using LOB locators.

Equivalent connection or statement attribute:
SQL_ATTR_APP_USES_LOB_LOCATOR

Usage notes:
The default setting of 1 indicates that applications are using LOB locators.
For applications that do not use LOB locators and are querying data on a
server that supports Dynamic Data Format, also known as progressive
streaming, specify 0 to indicate that LOB locators are not used and allow
the return of LOB data to be optimized.

This keyword is ignored for stored procedure result sets.

If the keyword is set to 0 and an application binds a LOB locator to a
result set using SQLBindCol(), an Invalid conversion error will be returned
by the SQLFetch() function.

AppendAPIName CLI/ODBC configuration keyword
Appends the CLI/ODBC function name which generated an error to the error
message text.

db2cli.ini keyword syntax:
AppendAPIName = 0 | 1

Default setting:
Do NOT display CLI function name.

Usage notes:

The CLI function (API) name that generated an error is appended to the error
message retrieved using SQLGetDiagRec() or SQLError(). The function name is
enclosed in curly braces { }.

For example,

AltPort CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 327

[IBM][CLI Driver]" CLIxxxx: < text >
SQLSTATE=XXXXX {SQLGetData}"
v 0 = do NOT append CLI function name (default)
v 1 = append the CLI function name

This keyword is only useful for debugging.

AppendForFetchOnly CLI/ODBC configuration keyword
Specifies whether the clause FOR FETCH ONLY is appended to READ-ONLY SQL
statements.

db2cli.ini keyword syntax:
AppendForFetchOnly = 0 | 1

Default setting:
The keyword is not set by default. CLI appends the "FOR FETCH ONLY"
clause only when connected to certain server types.

Equivalent connection attribute:
SQL_ATTR_APPEND_FOR_FETCH_ONLY

Usage notes:
By default, CLI appends the "FOR FETCH ONLY" clause to read SELECT
statements when connected to DB2 for z/OS or DB2 for i databases.

This keyword allows an application to control when CLI appends the "FOR
FETCH ONLY" clause, for example, in a situation where an application is
binding the CLI packages using different bind BLOCKING options (for
example, BLOCKING UNAMBIG) and wants to suppress the blocking in
order to keep positioned on a given row.

To change the default CLI behavior, the keyword can be set as follows:
v 0: CLI never appends the "FOR FETCH ONLY" clause to read SELECT

statements regardless of the server type it is connecting to.
v 1: CLI always appends the "FOR FETCH ONLY" clause to read SELECT

statements regardless of the server type it is connecting to.

AppendRowColToErrorMessage CLI/ODBC configuration keyword
Specifies whether the row and column numbers that generated the error are
appended the error message string.

db2cli.ini keyword syntax:
AppendRowColToErrorMessage= 0 | 1

Default setting:
The default setting of 0 will return the error message string without the
row and column numbers.

Usage notes:
Specify 1 to append the row and column number that generated the error
to the error message string. The values for row and column numbers are
only appended when DB2 CLI is able to apply a row or column number to
the problem.

The row or column numbers appended to error messages are the same
positive values that would be returned if an application called
SQLGetDiagField() with the DiagIdentifier argument as
SQL_DIAG_ROW_NUMBER or SQL_DIAG_COLUMN_NUMBER. When

AppendAPIName CLI/ODBC configuration keyword

328 Call Level Interface Guide and Reference, Volume 2

AppendRowColToErrorMessage is set to 1, errors returned from calls to
SQLGetDescField(), SQLGetDescRec() or SQLError() will have these row or
column numbers appended with the following format: Row=<r>, Col=<c>,
if they can be determined.

For example, the default text for error CLI0111E is as follows:
[IBM][CLI Driver] CLI0111E Numeric value out of range. SQLSTATE=22003

Specifying 1 to append the row and column number will return the
following text for error CLI0111E:
[IBM][CLI Driver] CLI0111E Numeric value out of range.

SQLSTATE=22003 {Row=2,Col=1}

Note: It is also possible for an error to be returned with only a row
number.

ArrayInputChain CLI/ODBC configuration keyword
Enables array input without needing pre-specified size and memory allocation
requirements of normal array input.

db2cli.ini keyword syntax:
ArrayInputChain = -1 | 0 | <positive integer>

Default setting:
Normal input array is enabled, where the array and its size must be
specified before the corresponding SQLExecute() call is made.

Usage notes:

By default, array input (where an array of values is bound to an input parameter)
requires the array and its size to be specified before the corresponding
SQLExecute() function is called. An application, however, may not know the array
size in advance, or the array size may be too large for the application to allocate
from its pool of available memory. Under these circumstances, the application can
set ArrayInputChain=-1 and use the SQL_ATTR_CHAINING_BEGIN and
SQL_ATTR_CHAINING_END statement attributes to enable chaining, which
allows array input without the pre-specified size and memory requirements of
normal array input.

To enable chaining:
1. Set the keyword ArrayInputChain = -1.
2. Prepare and bind input parameters to the SQL statement.
3. Set the SQL_ATTR_CHAINING_BEGIN statement attribute with

SQLSetStmtAttr().
4. Update the bound parameters with input data and call SQLExecute().
5. Repeat Step 4 for as many rows as there are in the input array.
6. Set the SQL_ATTR_CHAINING_END statement attribute with

SQLSetStmtAttr() after the last row in the array has been processed according
to Step 4.

The effect of completing these steps will be the same as if normal array input had
been used.

AppendRowColToErrorMessage CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 329

Setting ArrayInputChain=0 (the default value) turns this array input feature off.
ArrayInputChain can also be set to any positive integer which sets the array size to
use for the input array.

Restriction: DB2 CLI does not support array input chaining for compound SQL
(compiled) or compound SQL (inlined) statements.

AsyncEnable CLI/ODBC configuration keyword
Enables or disables the ability to execute queries asynchronously.

db2cli.ini keyword syntax:
AsyncEnable = 0 | 1

Default setting:
Queries can be executed asynchronously.

Usage notes:
This option allows you to enable or disable support that allows queries to
execute asynchronously. This only benefits applications that were written
to take advantage of this feature by setting the
SQL_ATTR_ASYNC_ENABLE attribute using SQLSetStmtAttr() or
SQLSetConnectAttr().
v 0 = Queries are not executed asynchronously
v 1 = Allow queries to be executed asynchronously. The application must

also enable the asynchronous functionality by setting
SQL_ATTR_ASYNC_ENABLE using SQLSetStmtAttr() or
SQLSetConnectAttr(). (default)

Once a function has been called asynchronously, only the original function,
SQLAllocHandle(), SQLCancel(), SQLSetStmtAttr(), SQLGetDiagField(),
SQLGetDiagRec(), or SQLGetFunctions() can be called on the statement
handle, until the original function returns a code other than
SQL_STILL_EXECUTING. Any other function called on any other
statement handle under the same connection returns SQL_ERROR with an
SQLSTATE of HY010 (Function sequence error).

Attach CLI/ODBC configuration keyword
Specifies whether to attach to the server instance. You can specify this keyword in
the connection string or set it in the db2cli.ini or db2dsdriver.cfg file.

db2cli.ini keyword syntax:
ATTACH = TRUE | FALSE

Default setting:
The SQLDriverConnect() function connects to the specified database.

Equivalent environment or connection attribute:
N/A

Usage notes:

When you set the keyword to TRUE, the SQLDriverConnect() function
does not connect to a database but instead connects to the specified server
instance.

ArrayInputChain CLI/ODBC configuration keyword

330 Call Level Interface Guide and Reference, Volume 2

To establish a connection with a DB2 server instance for Linux, UNIX, and
Windows remote server, the CLI application must specify values for the
Hostname, Port, UID, PWD, and Protocol along with setting the keyword
to TRUE.

Any value other than TRUE that you assign to the ATTACH keyword is
treated as FALSE.

Examples:
The following example shows a specification of the keyword in the
db2cli.ini file:
ATTACH=TRUE

The following example shows specifications of the keyword in the
db2dsdriver.cfg file:
<configuration>

<dsncollection>
<dsn

alias="db2dsn01",name="db2db01",host="server1.mynet.com",
port="50001">

<parameter name="ATTACH" value="TRUE"/>
</dsn>

</dsncollection>
<databases>

<database name="sample", host="serv1.mynet.com",
port="50001">

<parameter name="ATTACH" value="TRUE"/>
</database>

</databases>
</configuration>

Version information

Last update
This topic was last updated for IBM DB2 Version 9.7, Fix Pack 3.

IBM Data Server Client
Supported in IBM DB2 Database for Linux, UNIX, and Windows

Authentication CLI/ODBC configuration keyword
Specifies the type of authentication to be used with file DSN or DSN-less
connectivity.

db2cli.ini keyword syntax:
Authentication = CERTIFICATE | SERVER | SERVER_ENCRYPT |
SERVER_ENCRYPT_AES | DATA_ENCRYPT | KERBEROS |
GSSPLUGIN

Default setting:
Not specified

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file, or in
the connection string.

When you set this option, you must also set the following options:
v Database

v Protocol.

If Protocol=IPC, you need to set the following too:
v Instance.

Attach CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 331

If Protocol=TCPIP, you need to set the following too:
v Port

v Hostname.

If Kerberos is specified, then the KRBPlugin may also be optionally
specified. If KRBPlugin is not specified, the default plugin IBMkrb5 will be
used.

Starting in DB2 Version 9.7 Fix Pack 6 and later, CERTIFICATE
authentication is available for connection to DB2 for z/OS Version 10 with
APAR PM53450 and later. The CERTIFICATE authentication type is
supported starting in DB2 Version 9.7 Fix Pack 6. This authentication type
allows you to use SSL client authentication without the need of providing
database passwords on the database client. When certificate-based
authentication is configured to supply authentication information, a
password cannot be specified in any other way (as in the db2dsdriver.cfg
configuration file, in the db2cli.ini configuration file, or in the connection
string). If CERTIFICATE is specified, then the new label parameter
SSLCLientLabel must also be specified in the CLI configuration file,
db2cli.ini, or in the data server driver configuration file,
db2dsdriver.cfg.

AutoCommit CLI/ODBC configuration keyword
Specifies whether the application commits each statement by default.

db2cli.ini keyword syntax:
AutoCommit = 1 | 0

Default setting:
Each statement is treated as a single, complete transaction.

Equivalent connection attribute:
SQL_ATTR_AUTOCOMMIT

Usage notes:

To be consistent with ODBC, CLI defaults with AutoCommit on, which means each
statement is treated as a single, complete transaction. This keyword can provide an
alternative default, but will only be used if the application does not specify a value
for SQL_ATTR_AUTOCOMMIT.
v 1 = SQL_ATTR_AUTOCOMMIT_ON (default)
v 0 = SQL_ATTR_AUTOCOMMIT_OFF

Note: Most ODBC applications assume the default of AutoCommit to be on.
Extreme care must be used when overriding this default during runtime as the
application may depend on this default to operate properly.

This keyword also allows you to specify whether autocommit should be enabled in
a Distributed Unit of Work (DUOW) environment. If a connection is part of a
coordinated Distributed Unit of Work, and AutoCommit is not set, the default does
not apply; implicit commits arising from autocommit processing are suppressed. If
AutoCommit is set to 1, and the connection is part of a coordinated Distributed
Unit of Work, the implicit commits are processed. This may result in severe
performance degradation, and possibly other unexpected results elsewhere in the
DUOW system. However, some applications may not work at all unless this is
enabled.

Authentication CLI/ODBC configuration keyword

332 Call Level Interface Guide and Reference, Volume 2

A thorough understanding of the transaction processing of an application is
necessary, especially applications written by a third party, before applying it to a
DUOW environment.

BIDI CLI/ODBC configuration keyword
Specifies the BIDI codepage when we are connected to a DB2 for z/OS.

db2cli.ini keyword syntax:
BIDI = codepage

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

When you set this option, you must also set the following options:
v Database
v Protocol=TCPIP
v Hostname
v Port

BitData CLI/ODBC configuration keyword
Specifies whether binary data types are reported as binary or character data types.

db2cli.ini keyword syntax:
BitData = 1 | 0

Default setting:
Report FOR BIT DATA and BLOB data types as binary data types.

Usage notes:

This option allows you to specify whether ODBC binary data types (SQL_BINARY,
SQL_VARBINARY, SQL_LONGVARBINARY, and SQL_BLOB), are reported as
binary type data. IBM DBMSs support columns with binary data types by defining
CHAR, VARCHAR, and LONG VARCHAR columns with the FOR BIT DATA
attribute. DB2 Database for Linux, UNIX, and Windows will also support binary
data via the BLOB data type (in this case it is mapped to a CLOB data type).

Only set BitData = 0 if you are sure that all columns defined as FOR BIT DATA or
BLOB contain only character data, and the application is incapable of displaying
binary data columns.
v 1 = report FOR BIT DATA and BLOB data types as binary data types (default).
v 0 = report FOR BIT DATA and BLOB data types as character data types.

BlockForNRows CLI/ODBC configuration keyword
Specifies the number of rows of data to be returned in a single fetch.

db2cli.ini keyword syntax:
BlockForNRows = <positive integer>

Default setting:
The server returns as many rows as can fit in a query block in a single
fetch request.

AutoCommit CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 333

Usage notes:

The BlockForNRows keyword controls the number of rows of data that are
returned to the client in a single fetch request. If BlockForNRows is not specified
(the default setting), then as many rows of non-LOB data as can fit in a query
block are returned from the server. If the result set contains LOB data, then the
behavior BlockForNRows yields can be affected by the BlockLobs CLI/ODBC
configuration keyword and the server's support for blocking of result sets
returning LOB data types.

All LOB data associated with rows that fit completely within a single query block
are returned in a single fetch request if:
v BlockForNRows is not specified,
v BlockLobs is set to 1 and
v the server supports blocking of result sets returning LOB data types.

LOB data is described here as being associated with a row, because the LOB data
of a result set is itself not contained in the row. Instead, the row contains a
reference to the actual LOB data.

If BlockForNRows is set to a positive integer n, then n rows of data will be
returned in a single fetch request. If the result set contains LOB data and the server
supports blocking of result sets returning LOB data types, then the LOB data that
corresponds to the n rows of data will also be returned in the single fetch request.
If the result set contains LOB data, but the server does not support blocking of
result sets returning LOB data types, then only one row of data, including the LOB
data, will be returned in a single fetch request.

BlockLobs CLI/ODBC configuration keyword
Enables LOB blocking fetch against servers that support LOB blocking.

db2cli.ini keyword syntax:
BlockLobs = 0 | 1

Default setting:
Blocking of result sets returning LOB data types is disabled.

Equivalent statement attribute:
SQL_ATTR_BLOCK_LOBS

Usage notes:

Setting BlockLobs to 1 enables all of the LOB data associated with rows that fit
completely within a single query block to be returned in a single fetch request, if
the server supports LOB blocking. CLI clients which enable BlockLobs = 1 and
bind the LOB values directly to buffers can show an increase in memory
consumption depending on the amount of data retrieved for one request compared
to previous releases. LOB data is described here as being associated with a row,
because the LOB data of a result set is itself not contained in the row. Instead, the
row contains a reference to the actual LOB data. Therefore, with blocking of result
sets returning LOB data types, any rows of the result set that fit completely within
the query block (where each row consists of non-LOB data, since LOB data is not
stored directly in the row), will have their associated LOB data returned from the
server, if the server supports blocking of result sets returning LOB data types.

BlockForNRows CLI/ODBC configuration keyword

334 Call Level Interface Guide and Reference, Volume 2

If the server does not support cursor blocking with LOB columns, then only one
row of LOB data will be returned in a single fetch request and the BlockLobs value
is ignored. While DB2 does support cursor blocking with LOB columns, other
servers may not.

DB2 LUW does not support LOB blocking fetch.

IDS data servers do not support LOB blocking fetch.

CLIPkg CLI/ODBC configuration keyword
Specifies the number of large packages to be generated.

db2cli.ini keyword syntax:
CLIPkg = 3 | 4 | ... | 30

Default setting:
Three large packages are generated.

Usage notes:

This keyword is used to increase the number of sections for SQL statements in
CLI/ODBC applications. If it is used, the administrator should explicitly bind the
required bind files with the CLIPkg bind option. For client applications, the
db2cli.ini file on the client must be updated with this value of CLIPkg. For
CLI/JDBC stored procedures, the db2cli.ini file on the server (DB2 Database for
Linux, UNIX, and Windows) must be updated with the same value of CLIPkg.

If the value is NOT an integer between 3 and 30, the default will be used without
error or warning.

This setting only applies to large packages (containing 384 sections). The number
of small packages (containing 64 sections) is 3 and cannot be changed.

It is recommended that you only increase the number of sections enough to run
your application as the packages take up space in the database.

CheckForFork CLI/ODBC configuration keyword
Checks for a forked process for each function call.

db2cli.ini keyword syntax:
0 | 1

Default setting:
CLI does not check for forked processes.

Usage notes:
CLI assumes that the process will never be forked. The CheckForFork
keyword must be set to 1 if applications want to fork while connection and
statement handles are allocated in order to avoid interfering with the
parent process' active connections.

The SQL_ATTR_PROCESSCTL environment attribute can be set to
SQL_PROCESSCTL_NOTHREAD option by an application to override the
CheckForFork keyword for that application.

(This option is contained in the Common section of the initialization file
and therefore applies to all connections to DB2 databases.)

BlockLobs CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 335

ClientAcctStr CLI/ODBC configuration keyword
Allows a CLI application to set the client accounting string that is sent to a
database through DB2 Connect or DB2 database products. Applications that do not
set the accounting string can use this keyword to provide the client accounting
string information.

db2cli.ini keyword syntax:
ClientAcctStr = accounting string

Default setting:
None

Applicable when:
Connected to a database using DB2 Connect or DB2 Database for Linux,
UNIX, and Windows

Equivalent environment or connection attribute:
SQL_ATTR_INFO_ACCTSTR

Usage notes:

Note the following conditions:
v Some servers might not be able to handle the entire length of the value

and might truncate it.
v DB2 for z/OS and OS/390 servers support a length of up to 200

characters.
v In DB2 Version 9.7 Fix Pack 6 and later, CLI applications can set the

ClientAcctStr keyword on DB2 for i V6R1 and later servers. DB2 for i
servers support a length of up to 255 characters.

v To ensure that the data is converted correctly when transmitted to a host
system, use only the characters A - Z and 0 -9 and the underscore (_) or
period (.).

ClientApplName CLI/ODBC configuration keyword
Allows a CLI application to set the client application name that is sent to a
database through DB2 Connect or DB2 database products. Applications that do not
specify the application name by default can use this keyword to provide this
information.

db2cli.ini keyword syntax:
ClientApplName = application name

Default setting:
None

Applicable when:
Connected to a database using DB2 Connect or DB2 for Linux, UNIX, and
Windows database products.

Equivalent environment or connection attribute:
SQL_ATTR_INFO_APPLNAME

Usage notes:

Note the following conditions:
v Some servers might not be able to handle the entire length of the value

and might truncate it.

ClientAcctStr CLI/ODBC configuration keyword

336 Call Level Interface Guide and Reference, Volume 2

v DB2 for z/OS and OS/390 servers support a length of up to 32
characters.

v In DB2 Version 9.7 Fix Pack 6 and later, CLI applications can set the
ClientApplName keyword on DB2 for i V6R1 and later servers. DB2 for i
servers support a length of up to 255 characters.

v To ensure that the data is converted correctly when transmitted to a host
system, use only the characters A - Z and 0 - 9 and the underscore (_) or
period (.).

ClientBuffersUnboundLOBS CLI/ODBC configuration keyword
Specifies whether LOB data is fetched instead of the LOB locator for LOB columns
that have not been bound to application parameters.

db2cli.ini keyword syntax:
ClientBuffersUnboundLOBS = 0 | 1

Default setting:
A LOB locator is retrieved instead of the actual LOB data for LOB columns
that have not been bound to application parameters.

Usage notes:

By default, when a result set contains a LOB column that has not been
bound to an application parameter, CLI will fetch the corresponding LOB
locator rather than the LOB data itself. The application must then use the
SQLGetLength(), SQLGetPosition(), and SQLGetSubString() CLI functions
to retrieve the LOB data. If the application regularly wants to retrieve the
LOB data, then this default two-step process is unnecessary and could
decrease performance. In this case, set ClientBuffersUnboundLOBS = 1 to
force DB2 CLI to fetch the LOB data instead of the LOB locator.

Servers that support Dynamic Data Format, also known as progressive
streaming, optimize the return of LOB and XML data depending on the
actual length of the data. The LOB and XML data can be returned in its
entirety, or as an internal token called a progressive reference. CLI manages
progressive reference data retrieval.

For applications that are querying data on a server that supports Dynamic
Data Format, setting the LOBCacheSize keyword sets a threshold that is
used to determine if the data is returned in its entirety, or as a progressive
reference. If the data has a length greater than the LOBCacheSize threshold
value, the progressive reference will be returned to CLI to manage, but if
the data has a length less than or equal to the LOBCacheSize threshold
value, the data will be returned in its entirety. Setting
ClientBuffersUnboundLOBS to 1 is equivalent to setting LOBCacheSize to
2147483647 and will force the server to return the data in its entirety rather
than as a progressive reference.

ClientEncAlg CLI/ODBC configuration keyword
Specifies the type of encryption algorithm to be used when encrypting user IDs
and passwords.

db2cli.ini keyword syntax:
ClientEncAlg = 1 | 2 | AES

Default setting:
Any encryption algorithm can be used.

ClientApplName CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 337

Applicable when:
Connecting to remote databases.

Equivalent environment or connection attribute:
SQL_ATTR_CLIENT_ENCALG

Usage notes:

The values for this keyword are defined as follows:
v 1 - Encrypt the user ID and password using any encryption algorithm.
v 2 - Encrypt the user ID and password using an Advanced Encryption

Standard (AES) encryption algorithm.
v AES - Equivalent to 2.

The CLI attribute SQL_ATTR_CLIENT_ENCALG has a similar behavior as
the keyword, except when an invalid attribute value is specified an error is
returned: CLI0191E Invalid attribute value. The CLI keyword or connection
attribute values take precedence over the authentication type specified in
the system database directory.

ClientUserID CLI/ODBC configuration keyword
Allows a CLI application to set the client user ID (accounting user ID) that is sent
to a database through DB2 Connect or DB2 database products. Applications that
do not specify the client user ID by default can use this keyword to provide this
information.

db2cli.ini keyword syntax:
ClientUserID = userid

Default setting:
None

Applicable when:
Connected to a database using DB2 Connect or DB2 Database for Linux,
UNIX, and Windows

Equivalent environment or connection attribute:
SQL_ATTR_INFO_USERID

Usage notes:
Do not confuse the client user ID with the authentication user ID. The
client user ID is for identification purposes only and is not used for any
authorization.

Note the following conditions:
v Some servers might not be able to handle the entire length of the value

and might truncate it.
v DB2 for z/OS and OS/390 servers support a length of up to 16

characters.
v In DB2 Version 9.7 Fix Pack 6 and later, CLI applications can set the

ClientUserID keyword on DB2 for i V6R1 and later servers. DB2 for i
servers support a length of up to 255 characters.

v This user ID is not to be confused with the authentication user ID. This
user ID is for identification purposes only and is not used for any
authorization.

v To ensure that the data is converted correctly when transmitted to a host
system, use only the characters A - Z and 0 - 9 and the underscore (_) or
period (.).

ClientEncAlg CLI/ODBC configuration keyword

338 Call Level Interface Guide and Reference, Volume 2

ClientWrkStnName CLI/ODBC configuration keyword
Allows a CLI application to set the client workstation name that is sent to a
database through DB2 Connect or DB2 database products. Applications that do not
specify the client workstation name by default can use this keyword to provide
this information.

db2cli.ini keyword syntax:
ClientWrkStnName = workstation name

Default setting:
In DB2 Version 9.7 Fix pack 6 and later, if ClientWrkStnName keyword is
not specified, default value that consists of the host name is used. The host
name is obtained by gethostname() function call. If host name is not
configured or an error is encountered during a gethostname() function call,
no value for theClientWrkStnName keyword is sent to the server.

Applicable when:
Connected to a database using DB2 Connect or DB2 Database for Linux,
UNIX, and Windows

Equivalent environment or connection attribute:
SQL_ATTR_INFO_WRKSTNNAME

Usage notes:

Note the following conditions:
v Some servers might not be able to handle the entire length of the value

and might truncate it.
v DB2 for z/OS and OS/390 servers support a length of up to 18

characters.
v In DB2 Version 9.7 Fix Pack 6 and later, CLI applications can set the

ClientWrkStnName keyword on DB2 for i V6R1 and later servers. DB2 for
i servers support a length of up to 255 characters.

v To ensure that the data is converted correctly when transmitted to a host
system, use only the characters A - Z and 0 - 9 and the underscore (_) or
period (.).

ColumnwiseMRI CLI/ODBC configuration keyword
In DB2 Version 9.7 Fix Pack 5 and later fix packs, this keyword specifies whether
array input chaining is converted to column-wise array input for DB2 for z/OS
servers.

db2cli.ini keyword syntax:
ColumnwiseMRI = ON | OFF

Default setting:
Conversion from array input chaining into column-wise array input is
disabled.

Equivalent connection attribute:
SQL_ATTR_COLUMNWISE_MRI

Usage notes:
The multi-row insert (MRI) feature in DB2 for z/OS expects data to be in
column-wise array form. Therefore, you can use this conversion to

ClientUserID CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 339

optimize performance in applications that use the array input chaining
feature because the data is sent in a compacted form. The following
example shows how to enable this conversion:
[dsn-name]
...
ColumnwiseMRI=ON

The conversion is not performed in certain cases. For details about these
cases, see SQL_ATTR_COLUMNWISE_MRI.

This keyword only affects DB2 for z/OS servers.

CommitOnEOF CLI/ODBC configuration keyword
Specifies whether an implicit COMMIT is issued immediately after receiving the
last row from a result set. You can free resources as soon as the application
receives the entire result set from a cursor by using this keyword.

db2cli.ini keyword syntax:
CommitOnEOF = 0 | 1

Default setting:
0

Equivalent connection attribute:
SQL_ATTR_COMMITONEOF

Usage notes:
Starting in DB2 Version 9.7 Fix Pack 5, you can specify whether an implicit
COMMIT is issued immediately after receiving the last row from a result
set using the CommitOnEOF CLI keyword.

You must enable autocommit and the cursor must be read-only and
forward-only to be able to take advantage of this optimization.

If stored procedures or applications return multiple result sets, a COMMIT
is issued when the last row from the result set of the last cursor is read.

ConcurrentAccessResolution CLI/ODBC configuration keyword
Specifies the concurrent access resolution to use.

db2cli.ini keyword syntax:
ConcurrentAccessResolution = 0 | 1 | 2 | 3

Default setting:
DB2 CLI does not supply a prepare option, and the currently committed
behavior is determined by the database configuration.

Applicable when:
Connected to a database using DB2 Connect or DB2 Database for Linux,
UNIX, and Windows

Equivalent environment or connection attribute:
SQL_ATTR_CONCURRENT_ACCESS_RESOLUTION

Usage notes:
This keyword specifies a prepare attribute that overrides the default
behavior specified for cursor stability (CS) scans.
v 0 = No setting. The client does not supply a prepare option.

ColumnwiseMRI CLI/ODBC configuration keyword

340 Call Level Interface Guide and Reference, Volume 2

v 1 = Use currently committed semantics. CLI flows "currently committed"
on every prepare, which means that the database manager can use the
currently committed version of the data for applicable scans when the
data is in the process of being updated or deleted. Rows in the process
of being inserted can be skipped. This setting applies when the isolation
level in effect is Cursor Stability or Read Stability (for Read Stability it
skips uncommitted inserts only) and is ignored otherwise. Applicable
scans include read-only scans that can be part of a read-only statement
as well as a non read-only statement. The settings for the registry
variables DB2_EVALUNCOMMITTED, DB2_SKIPDELETED, and DB2_SKIPINSERTED
do not apply to scans using currently committed. However, the settings
for these registry variables still apply to scans that do not use currently
committed.

v 2 = Wait for outcome. CLI flows "wait for outcome" on every prepare,
which means that Cursor Stability and higher scans wait for the commit
or rollback when encountering data in the process of being updated or
deleted. Rows in the process of being inserted are not skipped. The
settings for the registry variables DB2_EVALUNCOMMITTED,
DB2_SKIPDELETED, and DB2_SKIPINSERTED no longer apply.

v 3 = Skip locked data. CLI flows "skip locked data" on every prepare,
which means that currently committed semantics are used and rows in
the process of being inserted are skipped. This option is not supported
on DB2 Database for Linux, UNIX, and Windows. If specified, this
setting is ignored.

For DB2 Database for Linux, UNIX, and Windows, use this keyword to
override the default behavior for currently committed that is defined by
the cur_commit configuration parameter. For DB2 for z/OS, use this
keyword to enable currently committed behavior. There is no equivalent
database configuration parameter available on DB2 for z/OS for specifying
this behavior.

DB2 z/OS Version 10 only supports INSERT and DELETE operations of
currently committed.

ConnectNode CLI/ODBC configuration keyword
Specifies the database partition server to which a connection is to be made.

db2cli.ini keyword syntax:
ConnectNode = integer value from 0 to 999 |
SQL_CONN_CATALOG_NODE

Default setting:
Database partition server which is defined with port 0 on the machine is
used.

Only applicable when:
Connecting to a partitioned database environment.

Equivalent connection attribute:
SQL_ATTR_CONNECT_NODE

Usage notes:

Used to specify the target database partition server that you want to
connect to. Can be set to:
v an integer between 0 and 999
v SQL_CONN_CATALOG_NODE

ConcurrentAccessResolution CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 341

If this variable is not set, the target defaults to the database partition server
that is defined with port 0 on the machine.

Note: This keyword does not affect the Control Center. The Control Center
always connects to the catalog partition referred to by the
SQL_CONN_CATALOG_NODE setting.

Important: The Control Center and its associated components have been
deprecated in Version 9.7 and might be removed in a future release. Start
using IBM Data Studio and IBM Optim™ tools. For a mapping between
these recommended tools and Control Center tools, see “Table of
recommended tools versus Control Center tools” in the What's New for DB2
Version 9.7 book.

This keyword (or attribute setting) overrides the value of the DB2NODE
environment variable. Any out of range value specified for this keyword is
ignored and the SQL_CONN_CATALOG_NODE value is used instead.

ConnectTimeout CLI/ODBC configuration keyword
Specifies the time in seconds to wait for a reply when trying to establish a
connection to a server before terminating the attempt and generating a
communication timeout.

db2cli.ini keyword syntax:
ConnectTimeout = 0 | 1 |2 | ... | 32767

Default setting:
The client waits indefinitely for a reply from the server when trying to
establish a connection.

Equivalent connection attribute:
SQL_ATTR_LOGIN_TIMEOUT

Usage notes:

If ConnectTimeout is set and client reroute is enabled, a connection will be
attempted only once to the original server and once to the alternate server.
Since the ConnectTimeout value is used when attempting to connect to each
server, the maximum waiting time will be approximately double the
specified value for ConnectTimeout. If neither server can be reached within
the amount of time specified by the keyword, the following error message
will be received:
SQL30081N A communication error has been detected. Communication

protocol being used: "TCP/IP". Communication API being used:
"SOCKETS". Location where the error was detected: "<ip address>".
Communication function detecting the error: "<failing function>".
Protocol specific error code(s): "<error code>", "*", "*".
SQLSTATE=08001

If ConnectTimeout is set and Sysplex exploitation is enabled, a connection
will be attempted only once for each of the Sysplex members. Since the
ConnectTimeout value is used when attempting to connect to each Sysplex
member, the maximum waiting time will be approximately equal to the
number of Sysplex members, times the amount of time specified by the
ConnectTimeout keyword.

ConnectTimeout only applies to the TCPIP protocol and is not supported
for connections to databases cataloged on a SOCKS-enabled TCP/IP node.

ConnectNode CLI/ODBC configuration keyword

342 Call Level Interface Guide and Reference, Volume 2

A ConnectTimeout value explicitly specified in db2cli.ini file will take
precedence over the SQL_ATTR_LOGIN_TIMEOUT during the execution.

ConnectType CLI/ODBC configuration keyword
Controls whether the application is to operate in a remote or distributed unit of
work.

db2cli.ini keyword syntax:
ConnectType = 1 | 2

Default setting:
Remote unit of work.

Equivalent environment or connection attribute:
SQL_ATTR_CONNECTTYPE

Usage notes:
This option allows you to specify the default connect type. The options are:
v 1 = Remote unit of work. Multiple concurrent connections, each with its

own commit scope. The concurrent transactions are not coordinated.
This is the default.

v 2= Distributed unit of work. Coordinated connections where multiple
databases participate under the same distributed unit of work.

The first connection determines the connect type for all other connections
that are allocated under the same environment handle.

This keyword takes precedence over the environment or connection
attribute.

CurrentFunctionPath CLI/ODBC configuration keyword
Specifies the schema used to resolve function references and data type references in
dynamic SQL statements.

db2cli.ini keyword syntax:
CurrentFunctionPath = current_function_path

Default setting:
See description below.

Usage notes:

This keyword defines the path used to resolve function references and data type
references that are used in dynamic SQL statements. It contains a list of one or
more schema-names, where schema-names are enclosed in double quotes and
separated by commas.

The default value is "SYSIBM","SYSFUN",X where X is the value of the USER
special register delimited by double quotes. The schema SYSIBM does not need to
be specified. If it is not included in the function path, then it is implicitly assumed
as the first schema.

This keyword is used as part of the process for resolving unqualified function and
stored procedure references that may have been defined in a schema name other
than the current user's schema. The order of the schema names determines the
order in which the function and procedure names will be resolved.

ConnectTimeout CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 343

CurrentImplicitXMLParseOption CLI/ODBC configuration keyword
Sets the value of the CURRENT IMPLICIT XMLPARSE OPTION special register.

db2cli.ini keyword syntax:
CurrentImplicitXMLParseOption = 'STRIP WHITESPACE' | 'PRESERVE
WHITESPACE'

Default setting:
Whitespace is stripped during implicit non-validating parsing.

Equivalent connection attribute:
SQL_ATTR_CURRENT_IMPLICIT_XMLPARSE_OPTION

Usage notes:

Setting this keyword issues the SET CURRENT IMPLICIT XMLPARSE OPTION
statement after every connection to a database. By default, this statement is not
issued.

The SET CURRENT IMPLICIT XMLPARSE OPTION statement sets the CURRENT
IMPLICIT XMLPARSE OPTION special register, which controls whether white
space is stripped or preserved during implicit non-validating parsing.

CurrentImplicitXMLParseOption does not affect explicit parsing with the
XMLPARSE function.

The supported settings for CurrentImplicitXMLParseOption are:
v STRIP WHITESPACE - white space is removed when an XML document is

implicitly parsed. This is the default setting.
v PRESERVE WHITESPACE - white space is preserved when an XML document is

implicitly parsed.

CurrentMaintainedTableTypesForOpt CLI/ODBC configuration keyword
Sets the value of the CURRENT MAINTAINED TABLE TYPES FOR
OPTIMIZATION special register.

db2cli.ini keyword syntax:
CurrentMaintainedTableTypesForOpt = ALL | FEDERATED_TOOL |
NONE | SYSTEM | USER | <list>

Default setting:
System-maintained refresh-deferred materialized query tables are
considered in the optimization of a query.

Usage notes:

This keyword defines the default value for the CURRENT MAINTAINED TABLE
TYPES FOR OPTIMIZATION special register. The value of the special register
affects the types of tables which are considered in the optimization of a query.
Refer to the SET CURRENT MAINTAINED TABLE TYPES FOR OPTIMIZATION
SQL statement for details on the supported settings of ALL, FEDERATED_TOOL,
NONE, SYSTEM, or USER. The <list> option represents a combination of the
supported settings, however, ALL and NONE cannot be specified with any other
value, and the same value cannot be specified more than once. Separate each value
in the list with a comma, for example:

CurrentImplicitXMLParseOption CLI/ODBC configuration keyword

344 Call Level Interface Guide and Reference, Volume 2

CurrentMaintainedTableTypesForOpt = SYSTEM,USER

CURRENTOPTIMIZATIONPROFILE CLI/ODBC configuration keyword
Specifies the optimization profile used in a SET CURRENT OPTIMIZATION
PROFILE statement upon a successful connection.

db2cli.ini keyword syntax:
CURRENTOPTIMIZATIONPROFILE =NULL│optimization-profile-name

Default setting:
NULL

Usage notes:

NULL
Sets the register to the null value.

optimization-profile-name
Sets the CURRENT OPTIMIZATION PROFILE special register to the
name of an optimization profile. If optimization-profile-name is
unqualified, then the default schema qualification is applied.

Examples

If a DB2CLI.INI file has the following entry, after each successful connection to the
“Rochester” database, the CLI client would issue the command SET CURRENT
OPTIMIZATION PROFILE = ’"Hamid"."RochesterProfile"’.

[Rochester]
CURRENTOPTIMIZATIONPROFILE=’"Hamid"."RochesterProfile"’

In this example, the optimization profile name is delimited by quotation marks
because it contains lower case characters.

CurrentPackagePath CLI/ODBC configuration keyword
Issues 'SET CURRENT PACKAGE PATH = schema1, schema2, ...' after every
connection.

db2cli.ini keyword syntax:
CurrentPackagePath = schema1, schema2, ...

Default setting:
The clause is not appended.

Equivalent connection attribute:
SQL_ATTR_CURRENT_PACKAGE_PATH

Usage notes:

When set, this option issues the command "SET CURRENT PACKAGE PATH =
schema1, schema2, ..." after every connection to the database. This setting specifies
the list of schema names (collection identifiers) that will be searched when there is
a package from a different schema.

This keyword is best suited for use with ODBC static processing applications,
rather than CLI applications.

CurrentMaintainedTableTypesForOpt CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 345

CurrentPackageSet CLI/ODBC configuration keyword
Issues the SET CURRENT PACKAGESET statement after every connection.

db2cli.ini keyword syntax:
CurrentPackageSet = schema name

Default setting:
The clause is not appended.

Equivalent connection attribute:
SQL_ATTR_CURRENT_PACKAGE_SET

Usage notes:

This option issues the SET CURRENT PACKAGESET SQL statement with
the CurrentPackageSet value after every connection to a database. By
default this clause is not appended.

The SET CURRENT PACKAGESET SQL statement sets the schema name
(collection identifier) that is used to select the package to use for
subsequent SQL statements.

CLI/ODBC applications issue dynamic SQL statements. Using this option
you can control the privileges used to run these statements:
v Choose a schema to use when running SQL statements from CLI/ODBC

applications.
v Ensure the objects in the schema have the desired privileges and then

rebind accordingly.
v Set the CurrentPackageSet option to this schema.

The SQL statements from the CLI/ODBC applications will now run under
the specified schema and use the privileges defined there.

The following package set names are reserved: NULLID, NULLIDR1,
NULLIDRA.

If both the Reopt and CurrentPackageSet keywords are specified,
CurrentPackageSet takes precedence.

CurrentRefreshAge CLI/ODBC configuration keyword
Sets the value of the CURRENT REFRESH AGE special register.

db2cli.ini keyword syntax:
CurrentRefreshAge = 0 | ANY | positive integer

Default setting:
Only materialized query tables defined with REFRESH IMMEDIATE may
be used to optimize the processing of a query.

Usage notes:

Setting this keyword sets the value of the CURRENT REFRESH AGE special
register.

CurrentPackageSet CLI/ODBC configuration keyword

346 Call Level Interface Guide and Reference, Volume 2

CurrentSQLID CLI/ODBC configuration keyword
Specifies the ID used in a SET CURRENT SQLID statement sent to the DBMS upon
a successful connection.

db2cli.ini keyword syntax:
CurrentSQLID = current_sqlid

Default setting:
No statement is issued.

Only applicable when:
connecting to those DB2 DBMS's where SET CURRENT SQLID is
supported.

Usage notes:

Upon a successful connection, if this option is set, a SET CURRENT SQLID
statement is sent to the DBMS. This allows the end user and the application to
name SQL objects without having to qualify them by schema name.

CurrentSchema CLI/ODBC configuration keyword
Specifies the schema used in a SET CURRENT SCHEMA statement upon a
successful connection.

db2cli.ini keyword syntax:
CurrentSchema = schema name

Default setting:
No statement is issued.

Usage notes:

Upon a successful connect, if this option is set, a SET CURRENT SCHEMA
statement is sent to the DBMS. This allows the end user or application to name
SQL objects without having to qualify them by schema name.

CursorHold CLI/ODBC configuration keyword
Controls the effect of a transaction completion on open cursors.

db2cli.ini keyword syntax:
CursorHold = 1 | 0

Default setting:
Selected--Cursors are not destroyed.

Equivalent statement attribute:
SQL_ATTR_CURSOR_HOLD

Usage notes:

This option controls the effect of a transaction completion on open cursors.
v 1 = SQL_CURSOR_HOLD_ON, the cursors are not destroyed when the

transaction is committed (default).
v 0 = SQL_CURSOR_HOLD_OFF, the cursors are destroyed when the transaction

is committed.

CurrentSQLID CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 347

Note: Cursors are always closed when transactions are rolled back.

This option affects the result returned by SQLGetInfo() when called with
SQL_CURSOR_COMMIT_BEHAVIOR or SQL_CURSOR_ROLLBACK_BEHAVIOR.
The value of CursorHold is ignored if connecting to DB2 Server for VSE & VM
where cursor with hold is not supported.

You can use this option to tune performance. It can be set to
SQL_CURSOR_HOLD_OFF (0) if you are sure that your application:
1. Does not have behavior that is dependent on the

SQL_CURSOR_COMMIT_BEHAVIOR or the
SQL_CURSOR_ROLLBACK_BEHAVIOR information returned via
SQLGetInfo(), and

2. Does not require cursors to be preserved from one transaction to the next.

The DBMS will operate more efficiently with CursorHold disabled, as resources no
longer need to be maintained after the end of a transaction.

CursorTypes CLI/ODBC configuration keyword
Specifies which cursor types are permitted.

db2cli.ini keyword syntax:
CursorTypes = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7

Default setting:
Forward-only, static, keyset-driven, and dynamic cursors are supported if
the server supports them.

Usage notes:

The CursorTypes keyword is a bitmask that indicates what types of cursors an
application can open:
v 0x0 - forward-only (can always be opened)
v 0x1 - static
v 0x2 - keyset-driven
v 0x4 - dynamic

For example,
v to prevent applications from opening dynamic scrollable cursors, set

CursorTypes to 3.
v to allow applications to open only non-scrollable cursors, set CursorTypes to 0.

This keyword only affects calls made to the following CLI functions:
v SQLBulkOperations()

v SQLExecDirect()

v SQLExecute()

v SQLFetchScroll()

v SQLPrepare()

v SQLSetPos()

DB2Degree CLI/ODBC configuration keyword
Sets the degree of parallelism for the execution of SQL statements.

CursorHold CLI/ODBC configuration keyword

348 Call Level Interface Guide and Reference, Volume 2

db2cli.ini keyword syntax:
DB2Degree = 0 | integer value from 1 to 32767 | ANY

Default setting:
No SET CURRENT DEGREE statement is issued.

Only applicable when:
connecting to a cluster database system.

Usage notes:

If the value specified is anything other than 0 (the default) then CLI will issue the
following SQL statement after a successful connection:

SET CURRENT DEGREE value

This specifies the degree of parallelism for the execution of the SQL statements.
The database manager will determine the degree of parallelism if you specify ANY.

DB2Explain CLI/ODBC configuration keyword
Determines whether Explain snapshot and/or Explain table information will be
generated by the server.

db2cli.ini keyword syntax:
DB2Explain = 0 | 1 | 2 | 3

Default setting:
Neither Explain snapshot nor Explain table information will be generated
by the server.

Equivalent connection attribute:
SQL_ATTR_DB2EXPLAIN

Usage notes:

This keyword determines whether Explain snapshot and/or Explain table
information will be generated by the server.
v 0 = both off (default)

A 'SET CURRENT EXPLAIN SNAPSHOT=NO' and a 'SET CURRENT EXPLAIN
MODE=NO' statement will be sent to the server to disable both the Explain
snapshot and the Explain table information capture facilities.

v 1 = Only Explain snapshot facility on
A 'SET CURRENT EXPLAIN SNAPSHOT=YES' and a 'SET CURRENT EXPLAIN
MODE=NO' statement will be sent to the server to enable the Explain snapshot
facility, and disable the Explain table information capture facility.

v 2 = Only Explain table information capture facility on
A 'SET CURRENT EXPLAIN MODE=YES' and a 'SET CURRENT EXPLAIN
SNAPSHOT=NO' will be sent to the server to enable the Explain table
information capture facility and disable the Explain snapshot facility.

v 3 = Both on
A 'SET CURRENT EXPLAIN MODE=YES' and a 'SET CURRENT EXPLAIN
SNAPSHOT=YES' will be sent to the server to enable both the Explain snapshot
and the Explain table information capture facilities.

DB2Degree CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 349

Explain information is inserted into Explain tables, which must be created before
the Explain information can be generated. The current authorization ID must have
INSERT privilege for the Explain tables.

Remarks

Starting in Version 9.7 Fix Pack 3 and later fix packs, DB2 z/OS server supports
only 0 (OFF) and 2 (Table) values in DB2Explain settings as only explain mode
information is available. If the DB2Explain keyword is attempted to set against the
data server which do not support it, the application receives an error "CLI0150E
Driver not capable".

DB2NETNamedParam CLI/ODBC configuration keyword
Specifies if named parameters are used by DB2 .NET applications.

db2cli.ini keyword syntax:
DB2NETNamedParam = 0 | 1

Default setting:
The DB2 .NET Data Provider recognizes named parameters as parameters,
but ignores positioned parameters, in SQL statements.

Usage notes:
By default, the DB2 .NET Data Provider processes tokens in an SQL
statement with the format "@<paramname>" as named parameters and
ignores any positioned parameters, where positioned parameters are
specified with a '?' character or a colon followed by a name (:name).

The following is an example of a query that contains a named parameter:
SELECT * FROM T1 WHERE C1 = @param1

This is an example of a query that contains a positioned parameter:
SELECT * FROM T1 WHERE C1 = ?

Specify 0 to indicate that only positioned parameters will be recognized as
parameters in SQL statements. This setting can improve application
performance by reducing the overhead required to process named
parameters.

DB2Optimization CLI/ODBC configuration keyword
Sets the query optimization level.

db2cli.ini keyword syntax:
DB2Optimization = integer value from 0 to 9

Default setting:
No SET CURRENT QUERY OPTIMIZATION statement issued.

Usage notes:

If this option is set then CLI will issue the following SQL statement after a
successful connection:

SET CURRENT QUERY OPTIMIZATION positive number

DB2Explain CLI/ODBC configuration keyword

350 Call Level Interface Guide and Reference, Volume 2

This specifies the query optimization level at which the optimizer should operate
the SQL queries.

DBAlias CLI/ODBC configuration keyword
Specifies the database alias for a data source name (DSN) that is greater than 8
characters.

db2cli.ini keyword syntax:
DBAlias = dbalias

Default setting:
Use the DB2 database alias as the ODBC Data Source Name.

Usage notes:

The DSN is the name, enclosed in square brackets, that denotes the section header
in the db2cli.ini file. Typically, this section header is the database alias name that
has a maximum length of 8 bytes. If you want to use a longer, more meaningful
name, you can place the longer name in the section header, and set this keyword
value to the database alias that is used on the CATALOGcommand. Here is an
example:

; The much longer name maps to an 8 single byte character dbalias
[MyMeaningfulName]
DBAlias=DB2DBT10

You can specify [MyMeaningfulName] as the name of the data source on connect
while the actual database alias is DB2DBT10.

In DB2 Version 9.7 Fix Pack 5 and later fix packs, if you specify a value in the
DBAlias keyword with the database keyword in the db2cli.ini file, applications
that try to connect to the database or DSN that matches this value do not receive
an error.

DBName CLI/ODBC configuration keyword
Specifies the database name to reduce the time it takes for the application to query
z/OS or OS/390 table information.

db2cli.ini keyword syntax:
DBName = dbname

Default setting:
Do not filter on the DBNAME column.

Only applicable when:
connecting to DB2 for z/OS and OS/390.

Usage notes:

This option is only used when connecting to DB2 for z/OS and OS/390, and only
if (base) table catalog information is requested by the application. If a large number
of tables exist in the z/OS or OS/390 subsystem, a dbname can be specified to
reduce the time it takes for the application to query table information, and reduce
the number of tables listed by the application.

DB2Optimization CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 351

If this option is set then the statement IN DATABASE dbname will be appended to
various statements such as CREATE TABLE.

This value maps to the DBNAME column in the z/OS or OS/390 system catalog
tables. If no value is specified, or if views, synonyms, system tables, or aliases are
also specified via TableType, only table information will be restricted; views,
aliases, and synonyms are not restricted with DBName. It can be used in
conjunction with SchemaList, and TableType to further limit the number of tables
for which information will be returned.

DSN CLI/ODBC configuration keyword
Sets the name of a data source as returned by SQLDataSources or the data sources
dialog box of SQLDriverConnect.

db2cli.ini keyword syntax:
You can not set this keyword in the db2cli.ini file.

You can specify the value of this keyword in the connection string in
SQLDriverConnect like this:
DSN = database name

Database CLI/ODBC configuration keyword
Specifies the database on the server to connect to when using a File DSN.

db2cli.ini keyword syntax:
Database = database name

Default setting:
None

Only applicable when:
Protocol set to TCPIP

Usage notes:

When using a File DSN you must use this option to specify the database on the
server to connect to. This value has nothing to do with any database alias name
specified on the client, it must be set to the database name on the server itself.

This setting is only considered when the Protocol option is set to TCPIP.

DateTimeStringFormat CLI/ODBC configuration keyword
Specifies the format to use when inserting date or time data into character
columns.

db2cli.ini keyword syntax:
DateTimeStringFormat = JIS | ISO | EUR | USA

Default setting:
The JIS format is used when date or time data is inserted into character
columns.

Usage notes:

DBName CLI/ODBC configuration keyword

352 Call Level Interface Guide and Reference, Volume 2

The DateTimeStringFormat keyword controls the format in which date or time data
is inserted into character columns. This setting affects the insertion of
SQL_C_TYPE_DATE, SQL_C_TYPE_TIME, or SQL_C_TYPE_TIMESTAMP, or
SQL_C_TIMESTAMP_EXT data into the following column types:
v SQL_CHAR
v SQL_VARCHAR
v SQL_LONGVARCHAR
v SQL_CLOB

This keyword also affects the format of date or time columns that are retrieved
into character strings. For example, retrieving data from an
SQL_TYPE_TIMESTAMP column into an SQL_C_CHAR string will be affected by
the setting of this keyword.

The four setting values are as follows:

Format Date Time Timestamp

JIS yyyy-mm-dd hh:mm:ss yyyy-mm-dd
hh:mm:ss.ffffffffffff

ISO yyyy-mm-dd hh.mm.ss yyyy-mm-dd-
hh.mm.ss.ffffffffffff

EUR dd.mm.yyyy hh.mm.ss yyyy-mm-dd
hh:mm:ss.ffffffffffff*

USA mm/dd/yyyy hh:mm AM or PM yyyy-mm-dd
hh:mm:ss.ffffffffffff*

*Timestamps will take the default format if EUR or USA is specified. The default format is
JIS.

DecimalFloatRoundingMode CLI/ODBC configuration keyword
Sets the rounding mode when working with servers that support the DECFLOAT
SQL type.

db2cli.ini keyword syntax:
DecimalFloatRoundingMode = 0 | 1 | 2 | 3 | 4

Default setting:
0 (Half even rounding mode)

Equivalent connection attribute:
SQL_ATTR_DECFLOAT_ROUNDING_MODE

Usage notes:

The decimal float rounding mode determines what type of rounding will
be used if a value is put into a DECFLOAT variable or column but the
value has more digits than are allowed in the DECFLOAT data type. This
can occur when inserting, updating, selecting, converting from another
type, or as the result of a mathematical operation.

The value of SQL_ATTR_DECFLOAT_ROUNDING_MODE determines the
decimal float rounding mode that will be used for new connections unless
another mode is specified by a connection attribute for that connection. For
any given connection both CLI and DB2 will use the same decimal float
rounding mode for all action initiated as part of that connection.

DateTimeStringFormat CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 353

When your applications are connecting to a DB2 Database for Linux,
UNIX, and Windows Version 9.5 server, you must set the decimal float
rounding mode on the database client to the same mode that is set on the
server. If you set the decimal float rounding mode on the client to a value
that is different from the decimal float rounding mode that is set on the
database server, the database server will return SQL0713N on connection.

The settings correspond to these decimal float rounding modes:
v 0 = Half even (default)
v 1 = Half up
v 2 = Down
v 3 = Ceiling
v 4 = Floor

The different modes are:

Half even (default)
In this mode CLI and DB2 use the number that will fit in the target
variable and that is closest to the original value. If two numbers
are equally close, they use the one that is even. This mode
produces the smallest rounding errors over large amounts of data.

Half up
In this mode CLI and DB2 use the number that will fit in the target
variable and that is closest to the original value. If two numbers
are equally close, they use the one that is greater than the original
value.

Down In this mode CLI and DB2 use the number that will fit in the target
variable and that is closest to the original value and for which the
absolute value is not greater than the absolute value of the original
value. You can also think of this as rounding toward zero or as
using ceiling for negative values and using floor for positive
values.

Ceiling
In this mode CLI and DB2 use the smallest number that will fit in
the target variable and that is greater than or equal to the original
value.

Floor In this mode CLI and DB2 use the largest number that will fit in
the target variable and that is less than or equal to the original
value.

This attribute is not supported when accessing IDS data servers.

DeferredPrepare CLI/ODBC configuration keyword
Minimizes network flow by combining the PREPARE request with the
corresponding execute request.

db2cli.ini keyword syntax:
DeferredPrepare = 0 | 1

Default setting:
The prepare request will be delayed until the execute request is sent.

Equivalent statement attribute:
SQL_ATTR_DEFERRED_PREPARE

DecimalFloatRoundingMode CLI/ODBC configuration keyword

354 Call Level Interface Guide and Reference, Volume 2

Usage notes:

Defers sending the PREPARE request until the corresponding execute request is
issued. The two requests are then combined into one command/reply flow (instead
of two) to minimize network flow and to improve performance.
v 0 = SQL_DEFERRED_PREPARE_OFF. The PREPARE request will be executed

the moment it is issued.
v 1 = SQL_DEFERRED_PREPARE_ON (default). Defer the execution of the

PREPARE request until the corresponding execute request is issued.
If the target DBMS does not support deferred prepare, the client disables
deferred prepare for that connection.

Note: When deferred prepare is enabled, the row and cost estimates normally
returned in the SQLERRD(3) and SQLERRD(4) of the SQLCA of a PREPARE
statement may become zeros. This may be of concern to users who want to use
these values to decide whether or not to continue the SQL statement.

DescribeCall CLI/ODBC configuration keyword
Determines when stored procedure arguments are described.

db2cli.ini keyword syntax:
DescribeCall = 1 | -1

Default setting:
DB2 CLI does not request stored procedure argument describe information
when it prepares a CALL statement.

Equivalent connection attribute:
SQL_ATTR_DESCRIBE_CALL

Usage notes:
By default, CLI does not request input parameter describe information
when it prepares a CALL statement. If an application has correctly bound
parameters to a statement, then this describe information is unnecessary
and not requesting it improves performance.

The option values are:
v 1 = SQL_DESCRIBE_CALL_BEFORE. CLI always requests describe

information from the server, ignoring the binding information provided
by the application. Setting DescribeCall to 1 will also set
DeferredPrepare to 0 which means that describe information will also be
requested for dynamic SQL statements. Note that setting
DeferredPrepare to 0 will not set DescribeCall to 1.

v -1 = SQL_DESCRIBE_CALL_DEFAULT (default). CLI does not request
describe information from the server and uses the binding information
provided by the application. If the CALL statement execution fails, then
the CLI error recovery logic requests input parameter describe
information from the server and issues the CALL statement again.

DescribeInputOnPrepare CLI/ODBC configuration keyword
Enables or disables the request for describe information when an SQL statement is
prepared.

db2cli.ini keyword syntax:
DescribeInputOnPrepare = 0 | 1

DeferredPrepare CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 355

Default setting:
Do not request describe information when preparing an SQL statement.

Usage notes:

By default, CLI does not request input parameter describe information when it
prepares an SQL statement. If an application has correctly bound parameters to a
statement, then this describe information is unnecessary and not requesting it
improves performance. If, however, parameters have not been correctly bound,
then statement execution will fail and cause the CLI error recovery retry logic to
request input parameter describe information. The result is an additional server
request and reduced performance, compared to if the describe information had
been requested with the prepare. Setting DescribeInputOnPrepare to 1 causes the
input describe information to be requested with the prepare. This setting may
improve performance for applications which rely heavily on the CLI retry logic to
recover from application binding errors.

DescribeOutputLevel CLI/ODBC configuration keyword
Sets the level of output column describe information that is requested by the CLI
driver during prepare or describe requests.

db2cli.ini keyword syntax:
DescribeOutputLevel = 0 | 1 | 2 | 3

Default setting:
Request the describe information listed in level 2 of Table 159 on page 357.

Equivalent connection attribute:
SQL_ATTR_DESCRIBE_OUTPUT_LEVEL

Usage notes:

This keyword controls the amount of information the CLI driver requests
on a prepare or describe request. By default, when the server receives a
describe request, it returns the information contained in level 2 of Table 159
on page 357 for the result set columns. An application, however, might not
need all of this information or might need additional information. Setting
the DescribeOutputLevel keyword to a level that suits the needs of the
client application might improve performance because the describe data
transferred between the client and server is limited to the minimum
amount that the application requires. If the DescribeOutputLevel setting is
set too low, it might impact the functionality of the application (depending
on the application's requirements). The CLI functions to retrieve the
describe information might not fail in this case, but the information
returned might be incomplete. Supported settings for DescribeOutputLevel
are:
v 0 - no describe information is returned to the client application
v 1 - describe information categorized in level 1 (see Table 159 on page

357) is returned to the client application
v 2 - (default) describe information categorized in level 2 (see Table 159 on

page 357) is returned to the client application
v 3 - describe information categorized in level 3 (see Table 159 on page

357) is returned to the client application

The following table lists the fields that form the describe information that
the server returns when it receives a prepare or describe request. These

DescribeInputOnPrepare CLI/ODBC configuration keyword

356 Call Level Interface Guide and Reference, Volume 2

fields are grouped into levels, and the DescribeOutputLevel CLI/ODBC
configuration keyword controls which levels of describe information the
CLI driver requests.

Note:

1. Not all levels of describe information are supported by all DB2 servers.
All levels of describe information are supported on the following DB2
servers: DB2 for Linux, UNIX, and Windows Version 8 and later, DB2
for z/OS Version 8 and later, and DB2 for i5/OS® Version 5 Release 3
and later. All other DB2 servers support only the 2 or 0 setting for
DescribeOutputLevel.

2. The default behavior allows CLI to promote the level to 3 if the
application asks for describe information that was not initially retrieved
using the default level 2. This might result in two network flows to the
server. If an application uses this keyword to explicitly set a describe
level, then no promotion will occur. Therefore, if the keyword is used
to set the describe level to 2, CLI will not promote to level 3 even if the
application asks for extended information.

Table 159. Levels of describe information

Level 1 Level 2 Level 3

SQL_DESC_COUNT
SQL_COLUMN_COUNT
SQL_DESC_TYPE
SQL_DESC_CONCISE_TYPE
SQL_COLUMN_LENGTH
SQL_DESC_OCTET_LENGTH
SQL_DESC_LENGTH
SQL_DESC_PRECISION
SQL_COLUMN_PRECISION
SQL_DESC_SCALE
SQL_COLUMN_SCALE
SQL_DESC_DISPLAY_SIZE
SQL_DESC_NULLABLE
SQL_COLUMN_NULLABLE
SQL_DESC_UNSIGNED
SQL_DESC_SEARCHABLE
SQL_DESC_LITERAL_SUFFIX
SQL_DESC_LITERAL_PREFIX
SQL_DESC_CASE_SENSITIVE
SQL_DESC_FIXED_PREC_SCALE

all fields of level 1 and:
SQL_DESC_NAME
SQL_DESC_LABEL
SQL_COLUMN_NAME
SQL_DESC_UNNAMED
SQL_DESC_TYPE_NAME
SQL_DESC_DISTINCT_TYPE
SQL_DESC_REFERENCE_TYPE
SQL_DESC_STRUCTURED_TYPE
SQL_DESC_USER_TYPE
SQL_DESC_LOCAL_TYPE_NAME
SQL_DESC_USER_DEFINED_

TYPE_CODE

all fields of levels 1
and 2 and:
SQL_DESC_BASE_COLUMN_NAME
SQL_DESC_UPDATABLE
SQL_DESC_AUTO_UNIQUE_VALUE
SQL_DESC_SCHEMA_NAME
SQL_DESC_CATALOG_NAME
SQL_DESC_TABLE_NAME
SQL_DESC_BASE_TABLE_NAME

DescribeParam CLI/ODBC configuration keyword
Enables or disables the SQLDescribeParam() function.

db2cli.ini keyword syntax:
DescribeParam = 0 | 1

Default setting:
The SQLDescribeParam() function is enabled.

Usage notes:

When set to 1 (default), SQLDescribeParam() is enabled and SQLGetFunctions() will
return SQLDescribeParam() as supported.

DescribeOutputLevel CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 357

When set to 0, SQLDescribeParam() is disabled. If SQLDescribeParam() is called,
CLI0150E will be returned. SQLGetFunctions() will return SQLDescribeParam() as
not supported.

DiagLevel CLI/ODBC configuration keyword
Sets the diagnostic level.

db2cli.ini keyword syntax:
DiagLevel = 0 | 1 | 2 | 3 | 4

Default setting:
3

Usage notes:
This can be set in the [COMMON] section of the db2cli.ini file only.

This is applicable only at Environment Handle allocation time for an entire
process.

This is equivalent to the database manager parameter DIAGLEVEL.

DiagPath CLI/ODBC configuration keyword
Sets the path of the db2diag log files.

db2cli.ini keyword syntax:
DiagPath = existing directory

Default setting:
The default value is the db2dump directory on UNIX and Linux operating
systems, and the db2 directory on Windows operating systems.

Usage notes:

This can be set in the [COMMON] section of the db2cli.ini file only.

This is equivalent to the database manager parameter DIAGPATH.

DisableKeysetCursor CLI/ODBC configuration keyword
Disables keyset-driven scrollable cursors.

db2cli.ini keyword syntax:
DisableKeysetCursor = 0 | 1

Default setting:
Keyset-driven scrollable cursors are returned when requested.

Usage notes:

When set to 1, this keyword forces the CLI driver to return a static cursor to the
application, even if the application has requested a keyset-driven scrollable cursor.
The default setting (0) causes keyset-driven cursors to be returned when the
application requests them. This keyword can be used to restore behavior before
scrollable cursors were supported.

DisableMultiThread CLI/ODBC configuration keyword
Disables multithreading.

DescribeParam CLI/ODBC configuration keyword

358 Call Level Interface Guide and Reference, Volume 2

db2cli.ini keyword syntax:
DisableMultiThread = 0 | 1

Default setting:
Multithreading is enabled.

Usage notes:

The CLI/ODBC driver is capable of supporting multiple concurrent threads.

This option is used to enable or disable multi-thread support.
v 0 = Multithreading is enabled (default).
v 1 = Disable multithreading.

If multithreading is disabled then all calls for all threads will be serialized at the
process level. Use this setting for multithreaded applications that require serialized
behavior.

(This option is contained in the Common section of the initialization file and
therefore applies to all connections to DB2.)

DisableUnicode CLI/ODBC configuration keyword
Disables underlying Unicode support.

db2cli.ini keyword syntax:
DisableUnicode = <not set> | 0 | 1

Default setting:
Unicode support is enabled.

Usage notes:

With Unicode support enabled, and when called by a Unicode application,
CLI will attempt to connect to the database using the best client code page
possible to ensure there is no unnecessary data loss due to code page
conversion. This may increase the connection time as code pages are
exchanged, or may cause code page conversions on the client that did not
occur before this support was added.

If an application is Unicode (the SQL_ATTR_ANSI_APP connection
attribute is set to SQL_AA_FALSE, or the connection occurred with
SQLConnectW()), then the DisableUnicode keyword can be used to effect
three different connection behaviors:
v DisableUnicode is not set in the db2cli.ini file: If the target database

supports Unicode, CLI will connect in Unicode code pages (1208 and
1200). Otherwise, CLI will connect in the application code page.

v DisableUnicode=0 is set: CLI always connects in Unicode, whether or
not the target database supports Unicode.

v DisableUnicode=1 is set: CLI always connects in the application code
page, whether or not the target database supports Unicode.

EnableNamedParameterSupport CLI/ODBC configuration keyword
Specifies whether named parameter processing is enabled.

db2cli.ini keyword syntax:
EnableNamedParameterSupport = TRUE | FALSE

DisableMultiThread CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 359

Default setting:
Named parameter support is off (FALSE).

Equivalent environment or connection attribute:
None

Usage notes:
Named parameter processing allows applications to use named parameters
(for example, :name) in addition to traditional unnamed parameter markers
that are represented by a question mark (?). The following options are
available to enable or disable named parameter support:
v TRUE - Named parameter processing is enabled. For DB2for Linux,

UNIX, and WindowsVersion 9.7 and later, CLI sends the statement text
as it is to the server for processing. For all other servers, CLI substitutes
the statement text by replacing named parameters with question marks
(?) before sending the statement to the server for processing.

v FALSE - Named parameter processing is off, and CLI does not process
the parameter markers.

There is no support for the ability to bind by name. CLI processes
anything that matches a valid parameter marker, and treats it as if it is a
normal parameter marker represented by a question mark (?).

FET_BUF_SIZE CLI/ODBC configuration keyword
Specifies the default query block size to optimize the data flow.

db2cli.ini keyword syntax:
FET_BUF_SIZE = 64K | 96K | 128K | 160K | 192K | 224K | 256K

Default setting:
FET_BUF_SIZE = 64K

Equivalent connection attribute:
SQL_ATTR_FET_BUF_SIZE

Usage notes:

CLI allows query block size only in multiples of 32K (that is 64K, 96K,
128K, 160K, 192K, 224K, and 256K). CLI applications round up any other
values in the range of 64K-256K, to the next nearest 32K boundary.

Application can obtain the value it has set for this attribute using
SQLGetConnectAttr(). If application has not set any value, the default
query block size is returned.

FileDSN CLI/ODBC configuration keyword
Specifies a DSN file from which a connection string will be built for the data
source.

db2cli.ini keyword syntax:
You can not set this keyword in the db2cli.ini file.

You can specify the value of this keyword in the connection string in
SQLDriverConnect like this:
FileDSN = file name

FloatPrecRadix CLI/ODBC configuration keyword
Forces the NUM_PREC_RADIX value of a floating point type to be 2 or 10.

EnableNamedParameterSupport CLI/ODBC configuration keyword

360 Call Level Interface Guide and Reference, Volume 2

db2cli.ini keyword syntax:
FloatPrecRadix = 2 | 10

Default setting:
Report the NUM_PREC_RADIX as 2 for floating point types, as they have
a base of 2, not 10.

Usage notes:

The NUM_PREC_RADIX value represents a data type's base. Binary numbers, such
as floating point numbers, have a base of 2, and integers have a base of 10. An
application may expect all values in the COLUMN_SIZE field to represent the
maximum number of digits, which assumes a NUM_PREC_RADIX value of 10.
However, for floating point numeric types, the NUM_PREC_RADIX is 2, in which
case the COLUMN_SIZE will report the number of bits in the data type's
representation, rather than the maximum number of digits.

FloatPrecRadix can force the NUM_PREC_RADIX to be reported as 10 for floating
point data types, in which case the COLUMN_SIZE will report the maximum
number of digits.

The FloatPrecRadix keyword affects SQLColumns(), SQLGetDescField() (for the
SQL_DESC_NUM_PREC_RADIX field), SQLGetTypeInfo(), SQLProcedureColumns(),
and SQLSpecialColumns().

GetDataLobNoTotal CLI/ODBC configuration keyword
Causes SQLGetData() to fetch column data in pieces of specified size (in bytes)
instead of fetching column data all at once.

db2cli.ini keyword syntax:
GetDataLobNoTotal = positive integer

Usage notes:

SQLGetData() retrieves data for a single column in the current row of the
result set. The first call to SQLGetData() does the following:
v Fetches all the data from the database server to the client, which requires

allocating memory on the client for the data
v Applies a codepage conversion to that data, if required
v Calculates the total length of the converted data
v Returns the length of the converted data to the client application

When the data is very large, allocating memory for the data on the client
might fail. You can avoid this potential memory allocation problem, by
using the GetDataLobNoTotal keyword.

When you set the GetDataLobNoTotal keyword, SQLGetData() does not
fetch all the data for the given column on the first call. Instead,
SQLGetData() fetches enough data to fill the buffer on the client, as
specified by the value of GetDataLobNoTotal, and returns SQL_NO_TOTAL
(-4) if there is more data to be fetched from the server. You can call
SQLGetData() as many times as needed to fetch all the data. When all the
data has been fetched, SQLGetData() returns SQL_SUCCESS and the size
of the last data chunk.

FloatPrecRadix CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 361

GranteeList CLI/ODBC configuration keyword
Reduces the amount of information returned when the application gets a list of
table or column privileges.

db2cli.ini keyword syntax:
GranteeList = " 'userID1', 'userID2',... 'userIDn' "

Default setting:
Do not filter the results.

Usage notes:

This option can be used to reduce the amount of information returned when the
application gets a list of privileges for tables in a database, or columns in a table.
The list of authorization IDs specified is used as a filter; the only tables or columns
that are returned are those with privileges that have been granted TO those IDs.

Set this option to a list of one or more authorization IDs that have been granted
privileges, delimited with single quotes, and separated by commas. The entire
string must also be enclosed in double quotes. For example:

GranteeList=" ’USER1’, ’USER2’, ’USER8’ "

In the above example, if the application gets a list of privileges for a specific table,
only those columns that have a privilege granted TO USER1, USER2, or USER8
would be returned.

GrantorList CLI/ODBC configuration keyword
Reduces the amount of information returned when the application gets a list of
table or column privileges.

db2cli.ini keyword syntax:
GrantorList = " 'userID1', 'userID2',... 'userIDn' "

Default setting:
Do not filter the results.

Usage notes:

This option can be used to reduce the amount of information returned when the
application gets a list of privileges for tables in a database, or columns in a table.
The list of authorization IDs specified is used as a filter; the only tables or columns
that are returned are those with privileges that have been granted BY those IDs.

Set this option to a list of one or more authorization IDs that have granted
privileges, delimited with single quotes, and separated by commas. The entire
string must also be enclosed in double quotes. For example:

GrantorList=" ’USER1’, ’USER2’, ’USER8’ "

In the above example, if the application gets a list of privileges for a specific table,
only those columns that have a privilege granted BY USER1, USER2, or USER8
would be returned.

GranteeList CLI/ODBC configuration keyword

362 Call Level Interface Guide and Reference, Volume 2

Graphic CLI/ODBC configuration keyword
Specifies if CLI returns SQL_GRAPHIC (double-byte character) as a supported SQL
data type and what unit is used to report GRAPHIC column length.

db2cli.ini keyword syntax:
Graphic = 0 | 1 | 2 | 3

Default setting:
The SQL_GRAPHIC data type is not returned as a supported SQL data
type, and the length of GRAPHIC columns equals the maximum number
of DBCS characters in the column.

Usage Notes:

The Graphic keyword controls whether the SQL_GRAPHIC (double-byte character)
data type is reported as a supported SQL data type when SQLGetTypeInfo() is
called, as well as what unit is used to report the length of GRAPHIC columns for
all CLI functions that return length or precision as either output arguments or as
part of a result set.

Set the Graphic keyword as follows:
v 0 - SQL_GRAPHIC is not returned as a supported SQL data type, and the

reported length of GRAPHIC columns equals the maximum number of DBCS
characters in the column.

v 1 - SQL_GRAPHIC is returned as a supported SQL data type, and the reported
length of GRAPHIC columns equals the maximum number of DBCS characters
in the column.

v 2 - SQL_GRAPHIC is not returned as a supported SQL data type, and the
reported length of GRAPHIC columns equals the maximum number of bytes in
the column.

v 3 - SQL_GRAPHIC is returned as a supported SQL data type, and the reported
length of GRAPHIC columns equals the maximum number of bytes in the
column.

Hostname CLI/ODBC configuration keyword
Specifies the server system's host name or IP address, used with file DSN or in a
DSN-less connection.

db2cli.ini keyword syntax:
Hostname = host name | IP Address

Default setting:
None

Only applicable when:
Protocol set to TCPIP

Usage notes:

Use this option in conjunction with the ServiceName option to specify the required
attributes for a TCP/IP connection from this client machine to a server running
DB2. These two values are only considered when the Protocol option is set to
TCPIP.

Graphic CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 363

Specify either the server system's host name or its IP address.

IgnoreWarnList CLI/ODBC configuration keyword
Ignores specified sqlstates.

db2cli.ini keyword syntax:
IgnoreWarnList = “'sqlstate1', 'sqlstate2', ...”

Default setting:
Warnings are returned as normal

Usage notes:

On rare occasions an application may not correctly handle some warning
messages, but does not want to ignore all warning messages. This keyword can be
used to indicate which warnings are not to be passed on to the application. The
IgnoreWarnings keyword should be used if all database manager warnings are to
be ignored.

If an sqlstate is included in both IgnoreWarnList and WarningList, it will be
ignored altogether.

Each sqlstate must be in uppercase, delimited with single quotes and separated by
commas. The entire string must also be enclosed in double quotes. For example:

IgnoreWarnList="’01000’, ’01004’,’01504’"

IgnoreWarnings CLI/ODBC configuration keyword
Ignores database manager warnings.

db2cli.ini keyword syntax:
IgnoreWarnings = 0 | 1

Default setting:
Warnings are returned as normal.

Usage notes:

On rare occasions, an application will not correctly handle warning messages. This
keyword can be used to indicate that warnings from the database manager are not
to be passed to the application. The possible settings are:
v 0 - Warnings are reported as usual (default)
v 1 - Database manager warnings are ignored and SQL_SUCCESS is returned.

Warnings from the DB2 CLI/ODBC driver are still returned; many are required
for normal operation.

Although this keyword can be used on its own, it can also be used with the
WarningList CLI/ODBC configuration keyword.

Instance CLI/ODBC configuration keyword
Specifies the instance name for a local IPC connection for file DSN or DSN-less
connectivity.

db2cli.ini keyword syntax:
Instance = instance name

IgnoreWarnList CLI/ODBC configuration keyword

364 Call Level Interface Guide and Reference, Volume 2

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

When you set this keyword, you must also set the following options:
v Database
v Protocol=IPC

Interrupt CLI/ODBC configuration keyword
Sets the interrupt processing mode.

db2cli.ini keyword syntax:
Interrupt = 0 | 1 | 2

Default setting:
1

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

When you set this option, you must also set the following options:
v Database
v Protocol=IPC

The keyword values have the following meaning:

0 Disables interrupt processing (SQLCancel calls will not interrupt
the processing.)

1 Interrupts are supported (default.) In this mode, if the server
supports an interrupt, an interrupt will be sent. Otherwise the
connection is dropped.

The settings for INTERRUPT_ENABLED (a DB2 Connect gateway
setting) and the DB2 registry variable
DB2CONNECT_DISCONNECT_ON_INTERRUPT will take precedence over the
Interrupt keyword setting of 1.

2 Interrupt drops the connection regardless of server's interrupt
capabilities (SQLCancel will drop the connection.)

KRBPlugin CLI/ODBC configuration keyword
Specifies the name of the Kerberos plug-in library to be used for client side
authentication for file DSN or DSN-less connectivity.

db2cli.ini keyword syntax:
KRBPlugin = plugin name

Default setting:
By default, the value is null on UNIX operating systems, and IBMkrb5 on
Windows operating systems.

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

This parameter specifies the name of the Kerberos plug-in library to be
used for client-side connection authentication. The plug-in is used when
the client is authenticated using KERBEROS authentication.

Instance CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 365

KeepDynamic CLI/ODBC configuration keyword
Specifies if KEEPDYNAMIC functionality is available to CLI applications.

db2cli.ini keyword syntax:
KeepDynamic = 0 | 1

Default setting:
KEEPDYNAMIC functionality is not available to CLI applications.

Equivalent connection attribute:
SQL_ATTR_KEEP_DYNAMIC

Usage notes:

The KeepDynamic CLI/ODBC configuration keyword should be set according to
how the CLI packages were bound on the DB2 for z/OS and OS/390 server. Set
KeepDynamic as follows:
v 0 - if the CLI packages on the server were bound with the KEEPDYNAMIC NO

option
v 1 - if the CLI packages on the server were bound with the KEEPDYNAMIC YES

option

It is recommended that when KeepDynamic is used, the CurrentPackageSet
CLI/ODBC keyword also be set. Refer to the documentation about enabling
KEEPDYNAMIC support for details on how these keywords can be used together.

LOBCacheSize CLI/ODBC configuration keyword
Specifies maximum cache size (in bytes) for LOBs.

db2cli.ini keyword syntax:
LOBCacheSize = positive integer

Default setting:
LOBs are not cached.

Equivalent connection or statement attribute:
SQL_ATTR_LOB_CACHE_SIZE

Usage notes:

The use of LOB locators when retrieving unbound LOB data can be
avoided by setting this keyword. For example, if an application does not
bind a column prior to calling SQLFetch() and then calls SQLGetData() to
fetch the LOB, if LOBCacheSize was set to a value large enough to contain
the entire LOB being fetched, then the LOB is retrieved from the LOB
cache rather than from a LOB locator. Using the LOB cache instead of the
LOB locator in this case improves performance.

Servers that support Dynamic Data Format, also known as progressive
streaming, optimize the return of LOB and XML data depending on the
actual length of the data. The LOB and XML data can be returned in its
entirety, or as an internal token called a progressive reference. CLI manages
progressive reference data retrieval. The LobCacheSize defaults to 1MB if a
progressive reference is possible for LOB data. Dynamic Data Format
progressive references are always used even if LOBCacheSize is not set
explicitly. It will be used for any actual LOB instance that exceeds 1MB by
default.

KeepDynamic CLI/ODBC configuration keyword

366 Call Level Interface Guide and Reference, Volume 2

For applications that are querying data on a server that supports Dynamic
Data Format, setting the LOBCacheSize keyword sets a threshold that is
used to determine if the data is returned in its entirety, or as a progressive
reference. If the data has a length greater than the LOBCacheSize threshold
value, the progressive reference will be returned to CLI to manage, but if
the data has a length less than or equal to the LOBCacheSize threshold
value, the data will be returned in its entirety.

For applications that are querying data on a server that does not supports
Dynamic Data Format, the LOBCacheSize threshold value specifies the
maximum defined size of a LOB that CLI will buffer in memory. If the
defined size of a LOB exceeds the value LOBCacheSize is set to, then the
LOB will not be cached. For example, consider a table that is created with
a CLOB column of 100MB currently holding 20MB of data, with
LOBCacheSize set to 50MB. In this case, even though the size of the LOB
itself (20MB) is less than the value set through LOBCacheSize, the CLOB
column will not be cached because the defined CLOB size (100MB) exceeds
the maximum cache size set through LOBCacheSize (50MB).

ClientBuffersUnboundLOBS is a related keyword.

LOBFileThreshold CLI/ODBC configuration keyword
Specifies the maximum number of bytes of LOB data buffered when SQLPutData()
is used.

db2cli.ini keyword syntax:
LOBFileThreshold = positive integer

Default setting:
25 MB

Usage notes:

This option specifies the maximum number of bytes of LOB data that CLI will
buffer in memory on calls to SQLPutData(). If the specified cache size is exceeded,
a temporary file will be created on disk to hold the LOB data before it is sent to
the server.

LOBMaxColumnSize CLI/ODBC configuration keyword
Overrides the default value in the COLUMN_SIZE column for LOB data types.

db2cli.ini keyword syntax:
LOBMaxColumnSize = integer greater than zero

Default setting:
2 Gigabytes (1G for DBCLOB)

Only applicable when:
LongDataCompat or MapXMLDescribe with a LOB type is used.

Usage notes:

This will override the 2 Gigabyte (1G for DBCLOB) value that is returned by
SQLGetTypeInfo() for the COLUMN_SIZE column for SQL_CLOB, SQL_BLOB, and
SQL_DBCLOB and SQL_XML SQL data types. For SQL_XML, LOBMaxColumnSize

LOBCacheSize CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 367

must be specified with MapXMLDescribe set to a LOB type. Subsequent CREATE
TABLE statements that contain LOB columns will use the column size value you
set here instead of the default.

LoadXAInterceptor CLI/ODBC configuration keyword
Loads the XA Interceptor for debugging.

db2cli.ini keyword syntax:
LoadXAInterceptor = 0 | 1

Default setting:
The XA Interceptor is not loaded.

Usage notes:

This keyword loads the XA Interceptor for debugging purposes in MTS.

LockTimeout CLI/ODBC configuration keyword
Sets the default value of the LOCKTIMEOUT configuration parameter.

db2cli.ini keyword syntax:
LockTimeout = -1 | 0 | positive integer ≤ 32767

Default setting:
Timeout is turned off (-1), with the application waiting for a lock until
either the lock is granted or deadlock occurs.

Usage notes:

The LockTimeout keyword specifies the number of seconds a CLI application will
wait to obtain locks. If the keyword is set to 0, locks will not be waited for. The -1
setting causes the application to wait indefinitely until either the lock is granted or
deadlock occurs.

LongDataCompat CLI/ODBC configuration keyword
Reports LOBs as long data types or as large object types.

db2cli.ini keyword syntax:
LongDataCompat = 0 | 1 | 2

Default setting:
Reference LOB data types as large object types.

Equivalent connection attribute:
SQL_ATTR_LONGDATA_COMPAT

Usage notes:

This option indicates to CLI what data type the application expects when working
with a database with large object (LOB) columns.

The values for this option are:
v 0 = Reference LOB data types as large object types.
v 1 = Report LOBs as long data types for CLI/ODBC applications only.

LOBMaxColumnSize CLI/ODBC configuration keyword

368 Call Level Interface Guide and Reference, Volume 2

v 2 = Report LOBs as long data types for JDBC applications only. This does not
affect applications using the DB2 Universal JDBC Driver.

Table 160. Corresponding large object and long data types for LOB data

Database data type Large objects (0 - Default)
Long data types (1 —
CLI/ODBC; 2 — JDBC)

CLOB SQL_CLOB SQL_LONGVARCHAR
BLOB SQL_BLOB SQL_LONGVARBINARY
DBCLOB SQL_DBCLOB SQL_LONGVARGRAPHIC*
* If the MapGraphicDescribe keyword is set in conjunction with LongDataCompat, DBCLOB
columns will return an SQL type of SQL_LONGVARCHAR if MapGraphicDescribe is 1 and
SQL_WLONGVARCHAR if MapGraphicDescribe is 2.

This option is useful when running ODBC applications that cannot handle the
large object data types.

The CLI/ODBC option LOBMaxColumnSize can be used in conjunction with this
option to reduce the default size declared for the data.

MapBigintCDefault CLI/ODBC configuration keyword
Specifies the default C type of BIGINT columns and parameter markers.

db2cli.ini keyword syntax:
MapBigintCDefault = 0 | 1 | 2

Default setting:
The default C type representation for BIGINT data is SQL_C_BIGINT.

Usage notes:

MapBigintCDefault controls the C type that is used when SQL_C_DEFAULT is
specified for BIGINT columns and parameter markers. This keyword should be
used primarily with Microsoft applications, such as Microsoft Access, which cannot
handle 8-byte integers. Set MapBigintCDefault as follows:
v 0 - for the default SQL_C_BIGINT C type representation
v 1 - for an SQL_C_CHAR C type representation
v 2 - for an SQL_C_WCHAR C type representation

This keyword affects the behavior of CLI functions where SQL_C_DEFAULT might
be specified as a C type, such as SQLBindParameter(), SQLBindCol(), and
SQLGetData()

MapCharToWChar CLI/ODBC configuration keyword
Specifies the default SQL type associated with SQL_CHAR, SQL_VARCHAR,
SQL_LONGVARCHAR.

db2cli.ini keyword syntax:
MapCharToWChar = 0 | 1

Default setting:
The default SQL type representation for SQL_CHAR, SQL_VARCHAR and
SQL_LONGVARCHAR is used.

Equivalent connection attribute:
SQL_ATTR_MAPCHAR

LongDataCompat CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 369

Usage notes:
MapCharToWChar controls the SQL type that is returned when describing
SQL_CHAR, SQL_VARCHAR and SQL_LONGVARCHAR columns or
parameter markers.

Set MapCharToWChar as follows:
v 0 - to return the default SQL type representation
v 1 - to return SQL_CHAR as SQL_WCHAR, SQL_VARCHAR as

SQL_WVARCHAR, and SQL_LONGVARCHAR as
SQL_WLONGVARCHAR

Only the following CLI functions are affected by setting
MapCharToWChar:
v SQLColumns()
v SQLColAttribute()
v SQLDescribeCol()
v SQLDescribeParam()
v SQLGetDescField()
v SQLGetDescRec()
v SQLProcedureColumns()

MapDateCDefault CLI/ODBC configuration keyword
Specifies the default C type of DATE columns and parameter markers.

db2cli.ini keyword syntax:
MapDateCDefault = 0 | 1 | 2

Default setting:
The default C type representation for DATE data is SQL_C_TYPE_DATE.

Usage notes:

MapDateCDefault controls the C type that is used when SQL_C_DEFAULT is
specified for DATE columns and parameter markers. This keyword should be used
primarily with Microsoft applications, such as Microsoft Access, which assume
SQL_C_CHAR as the default C type for datetime values. Set MapDateCDefault as
follows:
v 0 - for the default SQL_C_TYPE_DATE C type representation: a struct containing

numeric members for year, month and day
v 1 - for an SQL_C_CHAR C type representation: "2004-01-01"
v 2 - for an SQL_C_WCHAR C type representation: "2004-01-01" in UTF-16.

This keyword affects the behavior of CLI functions where SQL_C_DEFAULT may
be specified as a C type, such as SQLBindParameter(), SQLBindCol(), and
SQLGetData().

MapDateDescribe CLI/ODBC configuration keyword
Controls the SQL data type returned when DATE columns and parameter markers
are described.

db2cli.ini keyword syntax:
MapDateDescribe = 0 | 1 | 2

MapCharToWChar CLI/ODBC configuration keyword

370 Call Level Interface Guide and Reference, Volume 2

Default setting:
The default SQL data type for DATE data is returned: SQL_DATE for
ODBC 2.0 or SQL_TYPE_DATE for ODBC 3.0.

Usage notes:

To control the SQL data type that is returned when DATE columns and parameter
markers are described, set MapDateDescribe as follows:
v 0 - to return the default SQL data type: SQL_DATE for ODBC 2.0 or

SQL_TYPE_DATE for ODBC 3.0
v 1 - to return the SQL_CHAR SQL data type
v 2 - to return the SQL_WCHAR SQL data type

Only the following CLI functions are affected by setting MapDateDescribe:
v SQLColumns()

v SQLDescribeCol()

v SQLDescribeParam()

v SQLGetDescField()

v SQLGetDescRec()

v SQLProcedureColumns()

v SQLSpecialColumns()

MapDecimalFloatDescribe CLI/ODBC configuration keyword
Specifies the default C type and reported data type of DECFLOAT columns and
parameter markers.

db2cli.ini keyword syntax:
MapDecimalFloatDescribe = 0 | 1| 2| 3

Default setting:
0

Usage notes:

MapDecimalFloatDescribe controls the default C type to be used for
columns and parameters with a data type of DECFLOAT. It affects the
behavior of CLI functions for which SQL_C_DEFAULT can be specified as
the C type of a column or parameter. Examples of such functions include
SQLBindParameter(), SQLBindCol(), and SQLGetData().

MapDecimalFloatDescribe also controls the type that will be reported for
columns and parameters that have a data type of DECFLOAT. This affects
CLI functions that return information about parameters and columns.
Examples of such functions include SQLColAttribute() and
SQLDescribeParam().

Use this configuration keyword for applications that cannot handle decimal
float types or when you would rather always deal with decimal float types
as some other type.

Here are the allowed values:

MapDateDescribe CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 371

Table 161. Valid values for MapDecimalFloatDescribe

Value

DECFLOAT columns and
parameters are reported as being
this type

DECFLOAT columns and parameters use
this default C type

0 SQL_DECFLOAT
SQL_C_CHAR

1 SQL_VARCHAR SQL_C_CHAR

2 SQL_WVARCHAR SQL_C_WCHAR

3 SQL_DOUBLE SQL_C_DOUBLE

MapGraphicDescribe CLI/ODBC configuration keyword
Controls the SQL data type returned when GRAPHIC, VARGRAPHIC, and
LONGVARGRAPHIC columns and parameter markers are described.

db2cli.ini keyword syntax:
MapGraphicDescribe = 0 | 1 | 2

Default setting:
The default SQL data types are returned: SQL_GRAPHIC for GRAPHIC
columns, SQL_VARGRAPHIC for VARGRAPHIC columns, and
SQL_LONGVARGRAPHIC for LONG VARGRAPHIC columns.

Usage notes:

To control the SQL data type that is returned when GRAPHIC-based columns and
parameter markers are described, set MapGraphicDescribe as follows:
v 0 - to return the default SQL data types
v 1 - to return the CHAR-based SQL data types: SQL_CHAR for GRAPHIC

columns, SQL_VARCHAR for VARGRAPHIC columns, and
SQL_LONGVARCHAR for LONG VARGRAPHIC columns

v 2 - to return the WCHAR-based SQL data types: SQL_WCHAR for GRAPHIC
columns, SQL_WVARCHAR for VARGRAPHIC columns, and
SQL_WLONGVARCHAR for LONG VARGRAPHIC columns

Only the following CLI functions are affected by setting MapGraphicDescribe:
v SQLDescribeCol()

v SQLDescribeParam()

v SQLGetDescField()

v SQLGetDescRec()

v SQLProcedureColumns()

v SQLSpecialColumns()

MapTimeCDefault CLI/ODBC configuration keyword
Specifies the default C type of TIME columns and parameter markers.

db2cli.ini keyword syntax:
MapTimeCDefault = 0 | 1 | 2

Default setting:
The default C type representation for TIME data is SQL_C_TYPE_TIME.

MapDecimalFloatDescribe CLI/ODBC configuration keyword

372 Call Level Interface Guide and Reference, Volume 2

Usage notes:

MapTimeCDefault controls the C type that is used when SQL_C_DEFAULT is
specified for TIME columns and parameter markers. This keyword should be used
primarily with Microsoft applications, such as Microsoft Access, which assume
SQL_C_CHAR as the default C type for datetime values. Set MapTimeCDefault as
follows:
v 0 - for the default SQL_C_TYPE_TIME C type representation: a struct containing

numeric members for hour, minute, and second
v 1 - for an SQL_C_CHAR C type representation: "12:34:56"
v 2 - for an SQL_C_WCHAR C type representation: "12:34:56" in UTF-16.

This keyword affects the behavior of CLI functions where SQL_C_DEFAULT may
be specified as a C type, such as SQLBindParameter(), SQLBindCol(), and
SQLGetData().

Note: MapTimeCDefault supersedes Patch2=24. If both MapTimeCDefault and
Patch2=24 are set, the MapTimeCDefault value takes precedence.

MapTimeDescribe CLI/ODBC configuration keyword
Controls the SQL data type returned when TIME columns and parameter markers
are described.

db2cli.ini keyword syntax:
MapTimeDescribe = 0 | 1 | 2

Default setting:
The default SQL data type for TIME data is returned: SQL_TIME for
ODBC 2.0 or SQL_TYPE_TIME for ODBC 3.0

Usage notes:

To control the SQL data type that is returned when TIME columns and parameter
markers are described, set MapTimeDescribe as follows:
v 0 - to return the default SQL data type: SQL_TIME for ODBC 2.0 or

SQL_TYPE_TIME for ODBC 3.0
v 1 - to return the SQL_CHAR SQL data type
v 2 - to return the SQL_WCHAR SQL data type

Only the following CLI functions are affected by setting MapTimeDescribe:
v SQLColumns()

v SQLDescribeCol()

v SQLDescribeParam()

v SQLGetDescField()

v SQLGetDescRec()

v SQLProcedureColumns()

v SQLSpecialColumns()

MapTimestampCDefault CLI/ODBC configuration keyword
Specifies the default C type of TIMESTAMP columns and parameter markers.

MapTimeCDefault CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 373

db2cli.ini keyword syntax:
MapTimestampCDefault = 0 | 1 | 2

Default setting:
The default C type representation for TIMESTAMP data is
SQL_C_TYPE_TIMESTAMP.

Usage notes:

MapTimestampCDefault controls the C type that is used when SQL_C_DEFAULT
is specified for TIMESTAMP columns and parameter markers. This keyword
should be used primarily with Microsoft applications, such as Microsoft Access,
which assume SQL_C_CHAR as the default C type for datetime values. Set
MapTimestampCDefault as follows:
v 0 - for the default SQL_C_TYPE_TIMESTAMP C type representation: a struct

containing numeric members for year, month, day, hour, minute, second, and
fraction of a second

v 1 - for an SQL_C_CHAR C type representation: "2004-01-01 12:34:56.123...n",
where n=12.

v 2 - for an SQL_C_WCHAR C type representation: "2004-01-01
12:34:56.123456...n"" in UTF-16, where n=12.

This keyword affects the behavior of CLI functions where SQL_C_DEFAULT may
be specified as a C type, such as SQLBindParameter(), SQLBindCol(), and
SQLGetData().

MapTimestampDescribe CLI/ODBC configuration keyword
Controls the SQL data type returned when TIMESTAMP columns and parameter
markers are described.

db2cli.ini keyword syntax:
MapTimestampDescribe = 0 | 1 | 2

Default setting:
The default SQL data type for TIMESTAMP data is returned:
SQL_TIMESTAMP for ODBC 2.0 or SQL_TYPE_TIMESTAMP for ODBC
3.0.

Usage notes:

To control the SQL data type that is returned when TIMESTAMP columns and
parameter markers are described, set MapTimestampDescribe as follows:
v 0 - to return the default SQL data type: SQL_TIMESTAMP for ODBC 2.0 or

SQL_TYPE_TIMESTAMP for ODBC 3.0
v 1 - to return the SQL_CHAR SQL data type
v 2 - to return the SQL_WCHAR SQL data type

Only the following CLI functions are affected by setting MapTimeStampDescribe:
v SQLColumns()

v SQLDescribeCol()

v SQLDescribeParam()

v SQLGetDescField()

v SQLGetDescRec()

MapTimestampCDefault CLI/ODBC configuration keyword

374 Call Level Interface Guide and Reference, Volume 2

v SQLProcedureColumns()

v SQLSpecialColumns()

MapXMLCDefault CLI/ODBC configuration keyword
Controls the default C type representation used when SQL_C_DEFAULT is
specified for XML columns and parameter markers.

db2cli.ini keyword syntax:
MapXMLCDefault = 0 | 1 | 2 | 3

Default setting:
The default C type representation for XML data is SQL_C_BINARY.

Usage notes:

MapXMLCDefault controls the C type that is used when SQL_C_DEFAULT is
specified for XML columns and parameter markers. This keyword should be used
primarily with Microsoft applications, such as Microsoft Access, which might
assume SQL_C_WCHAR as the default C type for XML values. Set
MapXMLCDefault as follows:
v 0 - for the default SQL_C_BINARY C type representation
v 1 - for the SQL_C_CHAR C type representation; this can result in data loss as

the XML data is converted to the local application code page
v 2 - for the SQL_C_WCHAR C type representation

This keyword affects the behaviour of CLI functions where SQL_C_DEFAULT can
be specified as a C type, such as SQLBindParameter(), SQLBindCol(), and
SQLGetData().

MapXMLDescribe CLI/ODBC configuration keyword
Controls the SQL data type returned when XML columns and parameter markers
are described.

db2cli.ini keyword syntax:
MapXMLDescribe = -370 | -350 | -152 | -99 | -98

Default setting:
The default SQL data type for XML data is returned: SQL_XML (-370)

Usage notes:

To control the SQL data type that is returned when XML columns and parameter
markers are described, set MapXMLDescribe to one of the following integer values:
v -370 to return the default SQL_XML SQL data type
v -350 to return the SQL_DBCLOB SQL data type
v -152 to return the SQL_SS_XML SQL data type

Note: The SQL_SS_XML value of -152 belongs to the reserved range of
Microsoft SQL Server and is not defined by IBM.

v -99 to return the SQL_BLOB SQL data type
v -98 to return the SQL_CLOB SQL data type

MapTimestampDescribe CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 375

The data length for XML values mapped to LOB types is the maximum length for
the mapped data type.

When used in conjunction with the LongDataCompat keyword set to the value 1,
XML values mapped to LOB data types will be mapped to the corresponding
LONG data type as well.

Character types specified for MapXMLDescribe may result in data loss during data
conversion if the application code page does not support all of the characters in
the source data. Mapping XML values to character types, therefore, is only
recommended with caution.

This keyword is recommended to provide compatibility with applications that
access XML columns as CLOB or BLOB, or use Microsoft application development
technologies.

MaxLOBBlockSize CLI/ODBC configuration keyword
Specifies the maximum return block size for LOB or XML data.

db2cli.ini keyword syntax:
MaxLOBBlockSize = 0 | ... | 2147483647

Default setting:
There is no limit to the data block size for LOB or XML data.

Equivalent connection or statement attribute:
SQL_ATTR_MAX_LOB_BLOCK_SIZE

Usage notes:
During data retrieval, the server will include all of the information for the
current row in its reply to the client even if the maximum block size has
been reached.

If both MaxLOBBlockSize and the db2set registry variable
DB2_MAX_LOB_BLOCK_SIZE are specified, the value for
MaxLOBBlockSize will be used.

Mode CLI/ODBC configuration keyword
Sets the default connection mode.

db2cli.ini keyword syntax:
Mode = SHARE | EXCLUSIVE

Default setting:
SHARE

Not applicable when:
connecting to a host or IBM Power Systems™ server.

Usage notes:

Sets the CONNECT mode to either SHARE or EXCLUSIVE. If a mode is set by the
application at connect time, this value is ignored. The default is SHARE.

NotifyLevel CLI/ODBC configuration keyword
Sets the diagnostic level.

MapXMLDescribe CLI/ODBC configuration keyword

376 Call Level Interface Guide and Reference, Volume 2

db2cli.ini keyword syntax:
NotifyLevel = 0 | 1 | 2 | 3 | 4

Default setting:
3

Usage notes:
This can be set in the [COMMON] section of the db2cli.ini file only.

This is equivalent to the database manager parameter NOTIFYLEVEL.

OleDbReportIsLongForLongTypes CLI/ODBC configuration keyword
Makes OLE DB flag LONG data types with DBCOLUMNFLAGS_ISLONG.

db2cli.ini keyword syntax:
OleDbReportIsLongForLongTypes = 0 | 1

Equivalent connection attribute:
SQL_ATTR_REPORT_ISLONG_FOR_LONGTYPES_OLEDB

Default setting:
LONG types (LONG VARCHAR, LONG VARCHAR FOR BIT DATA,
LONG VARGRAPHIC and LONG VARGRAPHIC FOR BIT DATA) do not
have the DBCOLUMNFLAGS_ISLONG flag set, which might cause the
columns to be used in the WHERE clause.

Usage notes:
The OLE DB client cursor engine and the OLE DB .NET Data Provider
CommandBuilder object generate UPDATE and DELETE statements based
on column information provided by the IBM DB2 OLE DB Provider. If the
generated statement contains a LONG type in the WHERE clause, the
statement will fail because LONG types cannot be used in a search with an
equality operator. Setting the keyword OleDbReportIsLongForLongTypes to
1 will make the IBM DB2 OLE DB Provider report LONG types (LONG
VARCHAR, LONG VARCHAR FOR BIT DATA, LONG VARGRAPHIC and
LONG VARGRAPHIC FOR BIT DATA) with the
DBCOLUMNFLAGS_ISLONG flag set. This will prevent the long columns
from being used in the WHERE clause.

The OleDbReportIsLongForLongTypes keyword is supported by the
following database servers:
v DB2 for z/OS

– version 6 with PTF UQ93891
– version 7 with PTF UQ93889
– version 8 with PTF UQ93890
– versions later than version 8, PTFs are not required

v DB2 Database for Linux, UNIX, and Windows
– version 8.2 (equivalent to Version 8.1, FixPak 7) and later

OleDbReturnCharAsWChar CLI/ODBC configuration keyword
Controls how the IBM DB2 OLE DB Provider describes CHAR, VARCHAR, LONG
VARCHAR, and CLOB data.

db2cli.ini keyword syntax:
OleDbReturnCharAsWChar = 0 | 1

NotifyLevel CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 377

Default setting:
The IBM DB2 OLE DB Provider describes CHAR, VARCHAR, LONG
VARCHAR, and CLOB data as DBTYPE_WSTR.

Usage notes:

The IBM DB2 OLE DB Provider describes CHAR, VARCHAR, LONG VARCHAR,
and CLOB data as DBTYPE_WSTR by default as of DB2 luw Version 8.1.2. The
CLI/ODBC configuration keyword OleDbReturnCharAsWChar allows you to
change this default to have the previously stated character data types reported as
DBTYPE_STR.

The available settings are:
v 0 - CHAR, VARCHAR, LONG VARCHAR, and CLOB data are described as

DBTYPE_STR, and the code page of data in ISequentialStream is the local code
page of the client

v 1 - CHAR, VARCHAR, LONG VARCHAR, and CLOB data are reported as
DBTYPE_WSTR, and the code page of data in ISequentialStream is UCS-2

OleDbSQLColumnsSortByOrdinal CLI/ODBC configuration keyword
Makes OLE DB's IDBSchemaRowset::GetRowset(DBSCHEMA_COLUMNS) return a
row set sorted by the ORDINAL_POSITION column.

db2cli.ini keyword syntax:
OleDbSQLColumnsSortByOrdinal = 0 | 1

Equivalent connection attribute:
SQL_ATTR_SQLCOLUMNS_SORT_BY_ORDINAL_OLEDB

Default setting:
IDBSchemaRowset::GetRowset(DBSCHEMA_COLUMNS) returns the row
set sorted by the columns TABLE_CATALOG, TABLE_SCHEMA,
TABLE_NAME, COLUMN_NAME.

Usage notes:
The Microsoft OLE DB specification requires that
IDBSchemaRowset::GetRowset(DBSCHEMA_COLUMNS) returns the row
set sorted by the columns TABLE_CATALOG, TABLE_SCHEMA,
TABLE_NAME, COLUMN_NAME. The IBM DB2 OLE DB Provider
conforms to the specification. However, applications that use the Microsoft
ODBC Bridge provider (MSDASQL) have been typically coded to get the
row set sorted by ORDINAL_POSITION. Setting the
OleDbSQLColumnsSortByOrdinal keyword to 1 will make the provider
return a row set sorted by ORDINAL_POSITION.

The OleDbSQLColumnsSortByOrdinal keyword is supported by the
following database servers:
v DB2 for z/OS

– version 6 with PTF UQ93891
– version 7 with PTF UQ93889
– version 8 with PTF UQ93890
– versions later than version 8, PTFs are not required

v DB2 Database for Linux, UNIX, and Windows
– version 8.2 (equivalent to Version 8.1, FixPak 7) and later

OleDbReturnCharAsWChar CLI/ODBC configuration keyword

378 Call Level Interface Guide and Reference, Volume 2

OnlyUseBigPackages CLI/ODBC configuration keyword
Allows the CLI applications to use only big packages.

db2cli.ini keyword syntax:
OnlyUseBigPackages= 0 | 1

Default setting:
CLI applications use small packages (3 by default) with 64 sections, and
once these sections are exhausted, it starts using big packages, with 384
sections.

Usage notes:
This option can be used to allow the applications to access to a large
number of sections (384) in big packages, as opposed to 64 sections in
small packages.

When the OnlyUseBigPackages=1 keyword is set, the small CLI packages
should not be used.

OptimizeForNRows CLI/ODBC configuration keyword
Appends 'OPTIMIZE FOR n ROWS' clause to every select statement.

db2cli.ini keyword syntax:
OptimizeForNRows = integer

Default setting:
The clause is not appended.

Equivalent statement attribute:
SQL_ATTR_OPTIMIZE_FOR_NROWS

Usage notes:

This option will append the "OPTIMIZE FOR n ROWS" clause to every select
statement, where n is an integer larger than 0. If set to 0 (the default) this clause
will not be appended.

PWD CLI/ODBC configuration keyword
Defines the default password.

db2cli.ini keyword syntax:
PWD = password

Default setting:
None

Usage notes:

Use this password if a password is not provided by the application at connect time.

The password is stored as plain text in the db2cli.ini file and is therefore not
secure.

OleDbSQLColumnsSortByOrdinal CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 379

In Version 9.7 Fix Pack 5 and later fix packs, a password phrase can be used as the
password when accessing DB2 for z/OS servers. A password phrase is a character
string consisting of mixed-case letters, numbers, and special characters including
blanks. Password phrases have security advantages over passwords in that they
are long enough to withstand most hacking attempts yet are unlikely to be written
down because they are so easy to remember.

PWDPlugin CLI/ODBC configuration keyword
Specifies the name of the userid-password plug-in library to be used for client side
authentication for file DSN or DSN-less connectivity.

db2cli.ini keyword syntax:
PWDPlugin = plugin name

Default setting:
By default, the value is null and the DB2-supplied userid-password plug-in
library is used.

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

This parameter specifies the name of the userid-password plug-in library
to be used for client-side connection authentication. The plug-in is used
when the client is authenticated using SERVER or SERVER_ENCRYPT
authentication.

Patch1 CLI/ODBC configuration keyword
Specifies a work-around for known CLI/ODBC application problems.

db2cli.ini keyword syntax:
Patch1 = { 0 | 1 | 2 | 4 | 8 | 16 | ... }

Default setting:
Use no work-arounds.

Usage notes:
This keyword is used to specify a work-around for known problems with
ODBC applications. The value specified can be for none, one, or multiple
work-arounds. The patch values specified here are used in conjunction
with any Patch2 values that might also be set.

Using the CLI/ODBC Settings notebook you can select one or more
patches to use. If you set the values in the db2cli.ini file itself and want
to use multiple patch values then simply add the values together to form
the keyword value. For example, if you want the patches 1, 4, and 8, then
specify Patch1=13.
v 0 = No work around (default)

PWD CLI/ODBC configuration keyword

380 Call Level Interface Guide and Reference, Volume 2

Table 162. Patch1 CLI/ODBC configuration keyword values

Value Description

1 Replaces COUNT(exp) with COUNT(*) before
sending the SQL statement to the database
server.

DB2 for z/OS Version 7 and Version 8.1 in
"compatibility mode" do not support the
syntax COUNT(exp). With PATCH1 = 1
specified, applications that use this syntax
can run without modification. Depending on
the complexity of the query that is being
replaced, this replacement might not
produce the expected results.

This setting is ignored for DB2 Database for
Linux, UNIX, and Windows, and for
versions of DB2 for z/OS later than Version
8.1.

4 Changes input timestamp data to date data
if the time and fraction part of the
timestamp are zero. For example, {ts
'YYYY-MM-DD 00:00:00'} is changed to {d
'YYYY-MM-DD'}. This value is typically
needed for older versions of Microsoft
Access.

8 Changes input timestamp data to time data
if the date part of the timestamp is either
1899-12-30 or 1900-01-01. For example, {ts
'1899-12-30 HH:MM:SS'} is changed to {t
'HH:MM:SS'}. This value is typically needed
for older versions of Microsoft Access.

64 Null-terminates output GRAPHIC strings.
This value is typically needed by Microsoft
Access in a double-byte (DBCS)
environment.

Patch1 CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 381

Table 162. Patch1 CLI/ODBC configuration keyword values (continued)

Value Description

128 Disables the default performance
optimization behavior for the MSysConf
table associated with some Microsoft
applications.

Microsoft applications, such as Microsoft
Access, use a configuration table called
MSysConf. Once these applications
successfully connect to a database, they will
typically issue the following query: "SELECT
Config, nValue FROM MSysConf". Because
the MSysConf table does not exist in a DB2
database by default, this query fails with the
error "SQL0204N "MSysConf" is an
undefined name.". Microsoft applications can
handle this error and continue processing,
however, issuing the query across the
network to the DB2 server incurs overhead.

To enhance performance, CLI assumes that
this query will always fail, so when it
detects that an application is trying to
execute this query, it automatically returns
an error with an SQLSTATE of S0002 (Table
not found). The query, therefore, is never
sent to the server. If, however, the user has
created the MSysConf configuration table in
the database and wants the application to
access it, this PATCH1 value can be set to
disable the performance optimization and
allow the query to be executed.

256 Service use only

512 Service use only

1024 Returns SQL_SUCCESS_WITH_INFO
instead of SQL_NO_DATA_FOUND from
the SQLExecute() and SQLExecDirect()
functions if the executed UPDATE or
DELETE statement affected no rows. This
value might be needed by some Microsoft
Visual Basic applications.

4096 Prevents a COMMIT from being issued after
closing a cursor in autocommit mode.

8192 Returns an extra result set after invoking a
stored procedure. This extra result set has
one row and consists of the output values of
the stored procedure. This PATCH1 value
might be needed by some Powerbuilder
applications that require an extra result set.

32768 Forces the driver to make Microsoft Query
applications work with DB2 for z/OS
synonyms.

65536 Deprecated

131072 Deprecated

262144 Deprecated

Patch1 CLI/ODBC configuration keyword

382 Call Level Interface Guide and Reference, Volume 2

Table 162. Patch1 CLI/ODBC configuration keyword values (continued)

Value Description

524288 Deprecated

1048576 Service use only

2097152 Service use only

Patch2 CLI/ODBC configuration keyword
Specifies a workaround for known CLI and ODBC application problems.

db2cli.ini keyword syntax:
Patch2 = "patch value 1, patch value 2, patch value 3, ..."

Default setting:
Use no workarounds

Usage notes:
You can specify this value for zero, one, or multiple workarounds. You can
use the patch values that are specified here with any Patch1 values that
might also be set.

When specifying multiple patches, the values are specified in a
comma-delimited string (unlike the Patch1 option where the values are
added together and the sum is used).
v 0 = No work around (default)

To set Patch2 values 3, 4 and 8 you would specify:
Patch2="3, 4, 8"

Table 163. Patch2 CLI/ODBC configuration keyword values

Value Description

1 Deprecated

3 Service use only.

4 Deprecated

5 Deprecated

6 Forces CLI to return a message indicating
that scrollable cursors are not supported.
This setting is required by some applications
(such as Visual Basic) that make use of LOBs
or that do not require or want scrollable
cursors to be used, even though they have
been explicitly requested by the application.

7 Maps all GRAPHIC column data types to
the CHAR column data type. The precision
of a GRAPHIC column will also be doubled;
for example, GRAPHIC(20) will be reported
as CHAR(40).

8 Ignores catalog search arguments in schema
calls.

11 SQLGetInfo() function reports that catalog
names are supported for Visual Basic stored
procedures.

12 Deprecated

Patch1 CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 383

Table 163. Patch2 CLI/ODBC configuration keyword values (continued)

Value Description

13 Prevents keywords in the db2cli.ini
initialization file from being appended to the
output connection string.

14 Deprecated

15 Causes a period separator to be used instead
of the default locale's decimal separator in
character output.

16 Deprecated

17 Deprecated

18 Attempts to replace literals with parameter
markers for inefficient applications that use
literals repeatedly. It is only applicable to
INSERT SQL statements with the VALUES
clause using only literals. Coding your
application properly to use parameter
markers is the best solution.

This value is no longer available in Version
9.7 or later.

19 Removes parentheses from the ON clause of
an outer join, where the outer join is an
ODBC escape sequence and the server is
DB2 for MVS/ESA Version 5. DB2 for
MVS/ESA Version 5 does not currently
support the ODBC syntax where parentheses
are permitted in the ON clause of an outer
join clause. Setting this Patch2 value allows
the outer join escape sequence to be used
against DB2 for MVS/ESA Version 5. You
should only set this value when the server is
DB2 for MVS/ESA Version 5.

20 Forces CLI to rewrite the BETWEEN
predicate when the server is DB2 for
MVS/ESA. DB2 for MVS/ESA does not
currently support the BETWEEN predicate
with parameter markers as both operands.
Setting this Patch2 value causes (expression
? BETWEEN ?) to be rewritten as
(expression >= ? and expression <= ?).

21 Deprecated

22 Causes theSQLGetInfo() function to report
SQL_OUTER_JOINS=NO and
SQL_OJ_CAPABILITIES=0. This prevents the
application from using outer joins where
they are not supported, thus ensuring that
the outer join queries do not fail.

23 Deprecated

24 Reports TIME data as SQL_CHAR data. This
patch value is used as a workaround for
Microsoft Access applications.

Patch2 CLI/ODBC configuration keyword

384 Call Level Interface Guide and Reference, Volume 2

Table 163. Patch2 CLI/ODBC configuration keyword values (continued)

Value Description

25 Removes trailing zeros in the CHAR
representation of DECIMAL columns; used
as a workaround for Microsoft Access
applications.

28 Deprecated

29 Removes leading zeros in the string
representation of DECIMAL values x, where
1 > x > -1; used as a workaround for ADO
applications with some MDAC versions.

30 Disables stored procedure caching
optimization.

31 Deprecated

32 Deprecated

33 Returns the ISO version of timestamp data
when converted to CHAR, rather than the
ODBC version.

34 Deprecated

38 Turns statement caching off.

42 Prevents the FOR UPDATE clause from
being used with keyset cursors. By default,
most applications behaves as though keyset
cursors is updatable. However, if updatable
cursor is not required, then this Patch2 value
makes the cursor read-only (but still
scrollable and sensitive to changes made by
others).

50 Frees LOB locators when the SQLFetch()
function is executed, rather than when a
COMMIT is issued. This Patch2 value frees
the locators that are used internally when
applications fetch LOB data without binding
the LOB columns with the SQLBindCol()
function(or equivalent descriptor APIs).
Locators that are explicitly returned to the
application must still be freed by the
application. You can use this Patch2 value to
avoid scenarios where an application
receives SQLCODE = -429 (no more
locators).

56 Allows client support for Early Close
Cursors for those servers that do not
support it as in the case of DB2 Universal
Database™ for z/OS and OS/390 version 7
or earlier.

57 Allows calling a stored procedure that
returns a NULL output parameter value
without providing an output indicator
pointer. This is normally applicable to older
versions of Borland Delphi products.

Patch2 CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 385

Table 163. Patch2 CLI/ODBC configuration keyword values (continued)

Value Description

58 DateTime values inserted into the database
that cause truncation errors can be
downgraded to a truncation warning using
this Patch2 value.

61 When data is given to the client from an
SQL_CHAR data type,there might be right
padded spaces. This patch value strips off
right padded single byte spaces, but not
double byte spaces. This behavior partially
mimics the Neon Shadow Driver behavior

66 Allows applications to retrieve the regional
setting that affects decimal separators in a
Windows environment. The regional setting
is normally ignored by default. This patch
value is ignored if Patch2=15 or db2set
registry variables DB2TERRITORY or
DB2CODEPAGE are set. The only supported
decimal separators are the period and
comma.

78 Alters the behavior of the SQLGetPosition()
function when the source LOB value is in a
DBCLOB column on DB2 Universal
Database for z/OS and OS/390 Version 7.1
or later. Setting this PATCH2 value causes the
SQLGetPosition() function to query
SYSIBM.SYSDUMMYU instead of
SYSIBM.SYSDUMMY1.

81 According to the CLI specification, IBM Data
Server Driver for ODBC and CLI should
return the column ordinal number for an
expression. By default, CLI returns the
column ordinal number. According to the
ODBC Specification, an ODBC driver should
return an empty string as the column names
for an expression. If the Patch2 CLI/ODBC
configuration keyword is set to 81, an empty
string is returned for the column name of an
expression by the IBM Data Server Driver
for ODBC and CLI.

82 Forces the CLI to use the meaning of the
SQL_ATTR_REPLACE_QUOTED_LITERALS
value instead of the
SQL_ATTR_RESET_CONNECTION value .
SQL_ATTR_RESET_CONNECTION is
supported starting with DB2 Version 9.7 Fix
Pack 5 and later Fix Packs

Port CLI/ODBC configuration keyword
Specifies the server system's service name or port number, used with a file DSN or
in a DSN-less connection.

db2cli.ini keyword syntax:
Port = service name | port number

Patch2 CLI/ODBC configuration keyword

386 Call Level Interface Guide and Reference, Volume 2

Default setting:
None

Only applicable when:
Protocol set to TCPIP

Usage notes:

Use this option in conjunction with the Hostname option to specify the required
attributes for a TCP/IP connection from this client machine to a server running
DB2. These two values are only considered when the Protocol option is set to
TCPIP.

Specify either the server system's service name or its port number. The service
name must be available for lookup at the client machine if it is used.

ProgramID CLI/ODBC configuration keyword
Sets the user-defined character string, that associates an application with a
connection. When you set the ProgramID keyword, DB2 for z/OS or IBM Informix®

database server associates this keyword with any statements that are inserted into
the dynamic SQL statement cache.

db2cli.ini keyword syntax:
ProgramID = <string>

Default setting:
None

Equivalent connection attribute:
SQL_ATTR_INFO_PROGRAMID

Usage notes:

Restriction: This keyword is supported only for CLI applications accessing
DB2 Universal Database for z/OS Version 8 and later, IBM Informix
database server, or DB2 for i servers.
When monitoring a CLI application, you can use the ProgramID keyword to
identify a statement that was inserted into the dynamic SQL statement
cache. You can use the ProgamID keyword to specify an identifier, as a
string of up to 80 bytes for connection to DB2 for z/OS, or IBM Informix
database server server at the connection and statement level. In IBM DB2
Version 9.7 Fix Pack 6 and later, CLI applications can set the ProgamID
keyword on DB2 for i V6R1 and later servers. DB2 for i servers support up
to a length of 255 characters.If you set the ProgamID keyword, the
SQLGetConnectAttr() and SQLGetStatementAttr() APIs return the specified
ProgamID keyword value.

ProgramName CLI/ODBC configuration keyword
Sets the default client application name to a user-defined name which is used to
identify the application at the server when monitoring.

db2cli.ini keyword syntax:
ProgramName = <string> | PID

Default setting:
The application is identified by the client. By default, the first 20 bytes of
the executable name is used.

Port CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 387

Equivalent connection attribute:
SQL_ATTR_INFO_PROGRAMNAME

Usage notes:

When monitoring a CLI application, it may be useful to identify the application by
a user-defined string, instead of by the default identifier that DB2 assigns.
ProgramName allows the user to specify the identifier as either a string up to 20
bytes in length or the string "PID" (without the quotation marks).

If ProgramName is set to "PID" for a CLI application, the application's name will
consist of the prefix "CLI" along with the application's process ID and the current
active connection handle, as follows: CLI<pid>:<connectionHandle#>. The "PID"
setting is useful when monitoring application servers that run multiple
applications with numerous connections to the same database.

(When the ProgramName keyword is set to "PID" for other types of applications,
the "CLI" prefix is replaced with the following values corresponding to the type of
application: "JDBC" for JDBC applications, "OLEDB" for OLE DB applications, and
"ADONET" for .NET applications.)

PromoteLONGVARtoLOB CLI/ODBC configuration keyword
Promotes LONGVARxxx data types to xLOB data types.

db2cli.ini keyword syntax:
PROMOTELONGVARTOLOB = 0 | 1

Default setting:
0

Usage notes:

This option should only be used when a LONGVARxxxx value has the
potential to exceed 32K. The return type of the column is promoted to
xLOB to hold the larger data size.

Protocol CLI/ODBC configuration keyword
Communications protocol used for File DSN or in a DSN-less connection.

db2cli.ini keyword syntax:
Protocol = TCPIP | TCPIP6 | TCPIP4 | IPC | LOCAL

Default setting:
none

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

TCP/IP is the only protocol supported when using a File DSN. Set the
option to the string TCPIP (without the slash).

When this option is set then the following options must also be set:
v Database;
v ServiceName; and
v Hostname.

ProgramName CLI/ODBC configuration keyword

388 Call Level Interface Guide and Reference, Volume 2

IPC connectivity can be specified by setting Protocol to either IPC or
LOCAL.

When Protocol = IPC | LOCAL the Instance keyword must also be set.

QueryTimeoutInterval CLI/ODBC configuration keyword
Delay (in seconds) between checks for a query timeout.

db2cli.ini Keyword Syntax:
QueryTimeoutInterval = 0 | 5 | positive integer

Default Setting:
5 seconds

Usage Notes®:

An application can use the SQLSetStmtAttr() function to set the
SQL_ATTR_QUERY_TIMEOUT statement attribute. This attribute indicates the number of
seconds to wait for an SQL statement or XQuery expression to complete executing
before attempting to cancel the execution and returning to the application.

The QueryTimeoutInterval configuration keyword is used to indicate how long the
CLI driver should wait between checks to see if the query has completed.

For instance, suppose SQL_ATTR_QUERY_TIMEOUT is set to 25 seconds (timeout after
waiting for 25 seconds), and QueryTimeoutInterval is set to 10 seconds (check the
query every 10 seconds). The query will not time out until 30 seconds (the first
check AFTER the 25 second limit). CLI implements query timeout by starting a
thread that periodically queries the status of each executing query. The
QueryTimeoutInterval value specifies how long the query timeout thread waits
between checks for expired queries. Because this is an asynchronous operation to
the queries being executed, it is possible that a given query may not be timed out
until SQL_ATTR_QUERY_TIMEOUT + QueryTimeoutInterval seconds. In the example
above, the best-case timeout would be at 26 seconds, and the worst-case timeout
would be at 35 seconds.

There may be cases where the SQL_ATTR_QUERY_TIMEOUT is set to a value which is
too low, and the query should NOT be timed-out. If the application cannot be
modified (that is, a third party ODBC application), then the QueryTimeoutInterval
can be set to 0, and the CLI driver will ignore the SQL_ATTR_QUERY_TIMEOUT setting,
and therefore wait for SQL statements to complete execution before returning to
the application.

If QueryTimeoutInterval is set to 0, any attempt by the application to set
SQL_ATTR_QUERY_TIMEOUT will result in SQLSTATE 01S02 (Option Value Changed).

This option is only valid in the COMMON section of a initialization file and therefore
applies to all connections to DB2 database(s).

Alternatively, QueryTimeoutInterval can be set to a value that is larger than the
SQL_ATTR_QUERY_TIMEOUT setting, thus preventing timeouts from occurring at the
specified interval. For example, if the application sets a 15 second
SQL_ATTR_QUERY_TIMEOUT value, but the server requires at least 30 seconds to
execute the query, the QueryTimeoutInterval can be set to a value of 30 seconds or
so to prevent this query from timing out after 15 seconds.

Protocol CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 389

Note:

v The .NET Framework does not support settings in db2cli.ini file.
v This CLI keyword is ignored if it is used inside a stored procedure or routine

that uses CLI API calls.
v The QueryTimeoutInterval can also interrupt a LOAD, which returns SQL3005N

instead of SQL0952N.

ReadCommonSectionOnNullConnect CLI/ODBC configuration keyword
Allows a NULL connect to process the COMMON section of the db2cli.ini
initialization file.

db2cli.ini keyword syntax:
ReadCommonSectionOnNullConnect = 0 | 1

Default setting:
A NULL connect does not process the db2cli.ini initialization file.

Usage notes:
For use with DB2 CLI, DB2 JDBC Type 2 and DB2 .NET stored procedures,
specify 1 to allow stored procedures to read the COMMON section of the
db2cli.ini file, thus allowing stored procedures to use keywords listed in
that section.

(This option is contained in the Common section of the initialization file
and therefore applies to all connections to DB2 databases.)

ReceiveTimeout CLI/ODBC configuration keyword
Specifies the time in seconds to wait for a reply from the server on an established
connection before terminating the attempt and generating a communication
timeout error.

db2cli.ini keyword syntax:
ReceiveTimeout = 0 | 1 |2 | ... | 32767

Default setting:
The client waits indefinitely for a reply from the server on an established
connection.

Equivalent connection attribute:
SQL_ATTR_RECEIVE_TIMEOUT

Usage notes:

This keyword has no effect during connection establishment and is only
supported for TCP/IP protocol.

Reopt CLI/ODBC configuration keyword
Enables query optimization or reoptimization of SQL statements that have special
registers, global variables, or parameter markers.

db2cli.ini keyword syntax:
Reopt = 2 | 3 | 4

Default setting:
No query optimization occurs at query execution time. The default
estimates chosen by the compiler are used for special registers, global
variables, or parameter markers.

QueryTimeoutInterval CLI/ODBC configuration keyword

390 Call Level Interface Guide and Reference, Volume 2

Equivalent connection or statement attribute:
SQL_ATTR_REOPT

Usage notes:

Optimization occurs by using the values available at query execution time
for the special registers, global variables, or parameter markers instead of
the default estimates that are chosen by the compiler. The valid values of
the keyword are:
v 2 = SQL_REOPT_NONE. This is the default. No query optimization

occurs at query execution time. The default estimates chosen by the
compiler are used for the special registers, global variables, or parameter
markers. The default NULLID package set is used to execute dynamic
SQL statements.

v 3 = SQL_REOPT_ONCE. Query optimization occurs once at query
execution time, when the query is executed for the first time. The
NULLIDR1 package set, which is bound with the REOPT ONCE bind
option, is used.

v 4 = SQL_REOPT_ALWAYS. Query optimization or reoptimization occurs
at query execution time every time the query is executed. The
NULLIDRA package set, which is bound with the REOPT ALWAYS bind
option, is used.

The NULLIDR1 and NULLIDRA are reserved package set names, and
when used, REOPT ONCE and REOPT ALWAYS are implied respectively.
These package sets have to be explicitly created with the following
commands:
db2 bind db2clipk.bnd collection NULLIDR1
db2 bind db2clipk.bnd collection NULLIDRA

If both the Reopt and CurrentPackageSet keywords are specified,
CurrentPackageSet takes precedence.

ReportPublicPrivileges CLI/ODBC configuration keyword
Reports PUBLIC privileges in SQLColumnPrivileges() and SQLTablePrivileges()
results.

db2cli.ini keyword syntax:
ReportPublicPrivileges = 0 | 1

Default setting:
PUBLIC privileges are not reported.

Usage notes:

This keyword specifies if privileges assigned to the PUBLIC group are to be
reported as if PUBLIC was a user in the SQLColumnPrivileges() and
SQLTablePrivileges() results.

ReportRetryErrorsAsWarnings CLI/ODBC configuration keyword
Returns errors that were uncovered during CLI error recovery as warnings.

db2cli.ini keyword syntax:
ReportRetryErrorsAsWarnings = 0 | 1

Reopt CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 391

Only applicable when:
RetryOnError keyword is set to 1.

Default setting:
Do not return errors uncovered during CLI error recovery to the
application.

Usage notes:

By default, when the CLI retry logic is able to recover successfully from a non-fatal
error, it masks that error from the application by returning SQL_SUCCESS. Because
application binding errors can be hidden this way, for debugging purposes, you
may want to set ReportRetryErrorsAsWarnings to 1. This setting keeps the error
recovery on, but forces CLI to return to the application, any errors that were
uncovered as warnings.

RetCatalogAsCurrServer CLI/ODBC configuration keyword
Specifies whether catalog functions return the CURRENT SERVER value or a null
value for the catalog columns.

db2cli.ini keyword syntax:
RetCatalogAsCurrServer= 0 | 1

Default setting:
If the target DBMS returns null for the catalog columns, the CURRENT
SERVER value will not be substituted.

Usage notes:
If the catalog functions for the target DBMS return a null value for the
catalog columns, setting RetCatalogAsCurrServer to 1 causes the DBMS to
return the CURRENT SERVER value instead.
v 0 = Catalog functions return the null value for the catalog columns

(default).
v 1 = Catalog functions return the CURRENT SERVER value, instead of

the null value, for the catalog columns.

For example, assume the catalog function SQLTables() returns a result set
where the values in the TABLE_CAT column are null values. Setting
RetCatalogAsCurrServer to 1 causes the DBMS to return the CURRENT
SERVER value in the TABLE_CAT column.

RetOleDbConnStr CLI/ODBC configuration keyword
Specifies whether the Mode CLI/ODBC configuration keyword returns a numeric
value or string value.

db2cli.ini keyword syntax:
RetOleDbConnStr = 0 | 1

Default setting:
The value for the Mode CLI/ODBC configuration keyword is returned as a
string.

Usage notes:

The Mode CLI/ODBC configuration keyword sets the CONNECT mode to
either SHARE or EXCLUSIVE. OLE DB expects the value for Mode to have

ReportRetryErrorsAsWarnings CLI/ODBC configuration keyword

392 Call Level Interface Guide and Reference, Volume 2

a numeric representation instead of a string representation.
RetOleDbConnStr toggles between returning a string and a numeric value.

The possible settings are as follows:
v 0 — the value returned by SQLDriverConnect() and

SQLBrowseConnect()for the Mode keyword is either SHARE or
EXCLUSIVE

v 1 — the value returned by SQLDriverConnect() and
SQLBrowseConnect()for the Mode keyword is either 3 (for SHARE) or 12
(for EXCLUSIVE)

For example, if you set RetOleDbConnStr=1 and call SQLDriverConnect()or
SQLBrowseConnect() with the following input connection string for a
shared connection:
DSN=SAMPLE;MODE=SHARE

then the output connection string will have the following format:
DSN=SAMPLE;UID=;PWD=;MODE=3

If you set RetOleDbConnStr=1 and call SQLDriverConnect()or
SQLBrowseConnect() with the following input connection string for an
exclusive connection:
DSN=SAMPLE;UID=NEWTON;PWD=SECRET;MODE=EXCLUSIVE

then the output connection string will have the following format:
DSN=SAMPLE;UID=NEWTON;PWD=SECRET;MODE=12

OLE DB applications that use the string representation for the value of the
Mode keyword returned by SQLDriverConnect()and SQLBrowseConnect()
will receive an error from OLE DB Component Services. OLE DB
Component Services returns an error because it expects the keyword Mode
to have numeric values. Setting RetOleDbConnStr to 1 avoids this
behavior, as the value for Mode will then be numeric.

RetryOnError CLI/ODBC configuration keyword
Turns on or off the CLI driver's error recovery behavior.

db2cli.ini keyword syntax:
RetryOnError = 0 | 1

Default setting:
Allow the CLI driver to attempt error recovery on non-fatal errors.

Usage notes:

By default, CLI will attempt to recover from non-fatal errors, such as incorrect
binding of application parameters, by retrieving additional information on the
failing SQL statement and then executing the statement again. The additional
information retrieved includes input parameter information from the database
catalog tables. If CLI is able to recover successfully from the error, by default, it
does not report the error to the application. The CLI/ODBC configuration keyword
ReportRetryErrorsAsWarnings allows you to set whether error recovery warnings
are returned to the application or not.

Important: Once CLI has successfully completed the error recovery, the application
may behave differently, because CLI will use the catalog information gathered

RetOleDbConnStr CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 393

during the recovery for subsequent executions of that particular SQL statement,
rather than the information provided in the original SQLBindParameter() function
calls. If you do not want this behavior, set RetryOnError to 0, forcing CLI not to
attempt recovery. You should, however, modify the application to correctly bind
statement parameters.

ReturnAliases CLI/ODBC configuration keyword
Controls whether the CLI schema APIs report aliases in the metadata results.

db2cli.ini keyword syntax:
ReturnAliases = 0 | 1

Default setting:
1: By default, aliases will be considered when qualifying rows for metadata
procedures.

Usage notes:

This keyword specifies whether aliases (or synonyms) should be
considered when qualifying rows for metadata procedures. Not
considering aliases can provide significant performance benefits by avoided
costly joins with the base tables to determine the addition tables that
should qualify for a given query.
v 0 : Aliases will not be considered when qualifying rows for metadata

procedures (better performance.)
v 1 : Aliases will be considered when qualifying rows for metadata

procedures.

The following CLI APIs are affected by this keyword :
v SQLColumns()

v SQLColumnPrivileges()

v SQLTables()

v SQLTablePrivileges()

v SQLStatistics()

v SQLSpecialColumns()

v SQLForeignKeys()

v SQLPrimaryKeys()

ReturnSynonymSchema CLI/ODBC configuration keyword
Controls whether CLI schema APIs report the schema name for DB2 for z/OS
synonyms in the TABLE_SCHEM column of the schema procedure result sets.

db2cli.ini keyword syntax:
ReturnSynonymSchema = 0 | 1

Default setting:
1: By default, the creator of the synonym will be returned in the
TABLE_SCHEM column.

Usage notes:
Valid settings:
v 0 : the TABLE_SCHEM column of the procedure result set will be NULL.
v 1 : the TABLE_SCHEM column of the procedure result set will contain

the creator of the synonym.

RetryOnError CLI/ODBC configuration keyword

394 Call Level Interface Guide and Reference, Volume 2

You cannot access a synonym on a DB2 for z/OS server using a name
qualified with a schema. For this reason, the meaning of the
TABLE_SCHEM column of a CLI schema API result set is different, with
respect to synonyms, when you are running against a DB2 for z/OS server.

This CLI keyword has no effect when you use CLI schema APIs against a
DB2 Database for Linux, UNIX, and Windows server.

The following CLI APIs are affected by this keyword:
v SQLColumns()

v SQLColumnPrivileges()

v SQLTables()

v SQLTablePrivileges()

v SQLStatistics()

v SQLSpecialColumns()

v SQLForeignKeys()

v SQLPrimaryKeys()

You must have the following program temporary fixes (PTFs) on the DB2
for z/OS database server to use this keyword:

Table 164. DB2 for z/OS PTFs for ReturnSynonymSchema

DB2 for z/OS PTF or APAR numbers

Version 7 UK13643

Version 8 UK13644

Version 9

SQLOverrideFileName CLI/ODBC configuration keyword
Specifies the location of the override file, which lists CLI statement attribute
settings for particular SQL statements.

db2cli.ini keyword syntax:
SQLOverrideFileName = <absolute or relative path name>

Default setting:
No override file is used.

Usage notes:

The SQLOverrideFileName keyword specifies the location of the override file to be
read by the CLI driver. An override file contains values for CLI statement
attributes that apply to particular SQL statements. For example, you can specify
the SQLOverrideFileName keyword with path and the override file name in the
db2cli.ini file.
[MyDatabase]
SQLOverrideFileName=C:\temp\myfile.txt

In the c:\temp\ path, you would have override file named myfile.txt, containing
values for CLI statement attributes that applies to particular SQL statements. The
override file would start with a COMMON section ([COMMON]) containing only one
keyword called Stmts, which tells you how many statements to override.
Following sample override file (myfile.txt) has two statements:

ReturnSynonymSchema CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 395

[Common]
Stmts=2

[1]
StmtIn=SELECT * FROM Employee
StmtAttr=SQL_ATTR_BLOCK_FOR_NROWS=50;SQL_ATTR_OPTIMIZE_FOR_NROWS=1;

[2]
StmtIn=SELECT * FROM Sales
StmtAttr=SQL_ATTR_MAX_ROWS=25;

The number specified by Stmts in the [COMMON] section of the override file equals
the number of SQL statements contained in the override file.

SaveFile CLI/ODBC configuration keyword
Specifies the file name of a DSN file in which to save the attribute values of the
keywords used in making the present, successful connection.

db2cli.ini keyword syntax:
You can not set this keyword in the db2cli.ini file.

You can specify the value of this keyword in the connection string in
SQLDriverConnect like this:
SaveFile = file name

SchemaList CLI/ODBC configuration keyword
Restricts schemas that are used to query table information.

db2cli.ini keyword syntax:
SchemaList = " 'schema1', 'schema2',... 'schemaN' "

Default setting:
None

Usage notes:

You can use the SchemaList keyword to specify a schema list to reduce the
time that it takes for an application to query table information and reduce
the number of tables that are listed by the application. Each schema name
is case-sensitive. As shown in the following example, you must delimit a
schema name with single quotation marks, separate schema names by
commas, and enclose the list in double quotation marks:

SchemaList="’USER1’,’USER2’,’USER3’"

For DB2 for z/OS, you can include the CURRENT SQLID option in the list,
but without the single quotation marks, as shown in the following
example:

SchemaList="’USER1’,CURRENT SQLID,’USER3’"

The maximum length of the string is 256 characters.

You can use this keyword with the DBName and TableType keywords to
further limit the number of tables for which information is returned.

In DB2 Version 9.7 Fix Pack 5 and later fix packs, you can specify the *ALL
or *USRLIBLoption in the list of schema names to resolve unqualified stored
procedure calls or to find libraries in catalog API calls. Use the *ALL option
to search all schemas in the connected database. The *ALL option is the

SQLOverrideFileName CLI/ODBC configuration keyword

396 Call Level Interface Guide and Reference, Volume 2

default for CLI. For DB2 for i servers, if you specify the *USRLIBL option,
CLI searches the current libraries of the server job. If you are migrating
from the IBM i Access ODBC drive, and you specified the *USRLIBL option
for the DBQ or DefaultLibraries connection string keyword, add the
*USRLIBL option to the list of schema names for the SchemaList keyword,
as shown in the following example:

[DSNSAMP]
SCHEMALIST=”*USRLIBL”

In DB2 Version 9.7 Fix Pack 5, if you specify the *USRLIBL option for the
SchemaFilter keyword and specify the *USRLIBL option along with schema
names for the SchemaList keyword, a CLI call to the SQLTables() function
in DB2 for i returns a result set that contains only tables with schemas
belonging to the user library list (*USRLIBL).

In DB2 Version 9.7 Fix Pack 6 and later fix packs, a CLI call to the
following catalog functions in DB2 for i returns a result set that contains
database objects with schema that belong to user library list (*USRLIBL) and
schema names listed in the SchemaList keyword:
v SQLTables
v SQLTablePrivileges
v SQLColumns
v SQLColumnPrivileges

To obtained database objects with combined user library list (*USRLIBL) and
schema names that you specified for the SchemaList keyword, the DB2 for
i server must meet the following requirements:
v You must apply PTF Group SF99601 Version 21 or later on DB2 for i

V6R1.
v You must apply PTF Group SF99701 Version 11 or later on DB2 for i

V7R1.

security CLI/ODBC configuration keyword
Specifies whether or not SSL support is used for File DSN or in a DSN-less
connection.

db2cli.ini keyword syntax:
security = SSL

Default setting:
None.

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

This parameter specifies whether a TCP/IP communication will be with
SSL support or not. It can only be used with the protocols TCPIP, TCPIP4,
or TCPIP6. If not specified, a normal TCP/IP without SSL support will be
used.

ServerMsgMask CLI/ODBC configuration keyword
Specifies when CLI should request the error message from the server.

SchemaList CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 397

db2cli.ini keyword syntax:
ServerMsgMask = 0 | 1 | -2| -1

Default setting:
CLI will check the local message files first to see if the message can be
retrieved. If no matching SQLCODE is found, CLI will request the
information from the server.

Equivalent connection attribute:
SQL_ATTR_SERVER_MSGTXT_MASK

Usage notes:
This keyword is used in conjunction with the “UseServerMsgSP
CLI/ODBC configuration keyword” on page 423. The keyword can be set
to:
v 0 (default) = SQL_ATTR_SERVER_MSGTXT_MASK_LOCAL_FIRST. CLI

will check the local message files first to see if the message can be
retrieved. If no matching SQLCODE is found, CLI will request the
information from the server.

v 1 = SQL_ATTR_SERVER_MSGTXT_MASK_WARNINGS. CLI always
requests the message information from the server for warnings but error
messages are retrieved from the local message files.

v -2 = SQL_ATTR_SERVER_MSGTXT_MASK_ERRORS. CLI always
requests the message information from the server for errors but warning
messages are retrieved from the local message files.

v -1 = SQL_ATTR_SERVER_MSGTXT_MASK_ALL. CLI always requests
the message information from the server for both error and warning
messages.

ServiceName CLI/ODBC configuration keyword
The server system's service name or port number, used with file DSN or in a
DSN-less connection.

db2cli.ini keyword syntax:
ServiceName = service name | port number

Default setting:
None

Only applicable when:
Protocol set to TCPIP

Usage notes:

Use this option in conjunction with the Hostname option to specify the required
attributes for a TCP/IP connection from this client machine to a server running
DB2. These two values are only considered when the PROTOCOL option is set to
TCPIP.

Specify either the server system's service name or its port number. The service
name must be available for lookup at the client machine if it is used.

SkipTrace CLI/ODBC configuration keyword
Excludes CLI trace information from the DB2 trace.

ServerMsgMask CLI/ODBC configuration keyword

398 Call Level Interface Guide and Reference, Volume 2

db2cli.ini keyword syntax:
SkipTrace = 0 | 1

Default setting:
Do not skip the trace function.

Usage notes:

This keyword can improve performance by allowing the DB2 trace function to
bypass CLI applications. Therefore, if the DB2 trace facility db2trc is turned on and
this keyword is set to 1, the trace will not contain information from the execution
of the CLI application.

Turning SkipTrace on is recommended for production environments on the UNIX
platform where trace information is not required. Test environments may benefit,
however, from having trace output, so this keyword can be turned off (or left at its
Default setting) when detailed execution information is desired.

(This option is contained in the Common section of the initialization file and
therefore applies to all connections to DB2.)

SQLCODEMAP CLI/ODBC configuration keyword
Specifies whether SQLCODE mapping is used or turned off.

db2cli.ini keyword syntax:
SQLCODEMAP = <MAP> | <NOMAP>

Default setting:
MAP

Usage notes:
You can set this keyword in the [Data Source] section of the db2cli.ini
file, or in the connection string.

If the value of the keyword is MAP, SQLCODE mapping is used. If you
specify the NOMAP option, SQLCODE mapping is turned off.

SSLClientLabel CLI/ODBC configuration keyword
Specifies a unique SSL label that is mapped to a specific certificate to use with
CERTIFICATE authentication.

db2cli.ini keyword syntax:
SSLClientLabel = <label>

Default setting:
None.

Usage notes:
The SSLClientLabel keyword in only available for use with CERTIFICATE
authentication starting in DB2 Version 9.7 Fix Pack 6 and later. You can set
this keyword can be set in the [Data Source] section of the db2cli.ini file,
or in the connection string.

When you configure certificate-based authentication to supply
authentication information, you must specify the SSLClientLabel keyword
in the db2dsdriver.cfg configuration file or in the db2cli.ini
configuration file.

SkipTrace CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 399

If you set the authentication parameter to the CERTIFICATE option but do
not specify the SSLClientLabel keyword in the db2cli.ini configuration
file, the db2dsdriver.cfg configuration file, or the connection string, error
CLI0221E is returned. If you do not set the authentication parameter to the
CERTIFICATE option but specify the SSLClientLabel keyword in the
db2cli.ini configuration file, the db2dsdriver.cfg configuration file, or the
connection string, error CLI0222E is returned.

SSLClientKeystash CLI/ODBC configuration keyword
Specifies the SSL stash file used for File DSN or in a DSN-less connection.

db2cli.ini keyword syntax:
SSLClientKeystash = <fully qualified stash file path>

Default setting:
None.

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

This parameter specifies the fully qualified path of the stash file (.sth),
which stores an encrypted password to the key database file. The stash file
is used to access the key database file during the SSL handshake. This
parameter must be defined if the SSL protocol (security=SSL) is specified.

The SSLCLientKeystash keyword is mutually exclusive with the
SSLClientKeystoreDBPassword keyword. If the SSL protocol (security=SSL)
is specified, either SSLClientKeystash or SSLClientKeystoreDBPassword
must be specified in the connection string, CLI configuration file, db2cli.ini,
or in your data server driver configuration file, db2dsdriver.cfg. Otherwise,
the connection fail error will be returned.

Note:

v The ssl_client_keystash keyword is also supported to provide
compatibility with earlier version

v SSLClientKeystash keyword is supported starting from DB2 Version 9.7
Fix Pack 6

SSLClientKeystoredb CLI/ODBC configuration keyword
Specifies the SSL key database file that is used for File DSN or in a DSN-less
connection.

db2cli.ini keyword syntax:
SSLClientKeystoredb = <fully qualified key file path>

Default setting:
None.

Usage notes:
This can be set in the [Data Source] section of the db2cli.ini file for the
given data source, or in a connection string.

This parameter specifies the fully qualified path of the key database file
(.kdb). The key database file stores the signer certificate from the server
personal certificate.
v For a self-signed server personal certificate, the signer certificate is the

public key of the personal certificate.

SSLClientLabel CLI/ODBC configuration keyword

400 Call Level Interface Guide and Reference, Volume 2

v For a certificate authority signed server personal certificate, the signer
certificate is the root CA certificate of the CA that signed the personal
certificate.

If the SSL protocol (security=SSL) is used, this parameter must be defined.
The signer certificate from the server's personal certificate must also exist
on the client for authentication to take place.

Note:

v The ssl_client_keystoredb keyword is also supported to provide
compatibility with earlier version

v SSLClientKeystoredb keyword is supported starting from DB2 Version
9.7 Fix Pack 6

SSLClientKeystoreDBPassword CLI/ODBC configuration keyword
Specifies the password for the SSL connection when the authentication parameter
is set to CERTIFICATE.

db2cli.ini keyword syntax:
SSLClientKeystoreDBPassword = <password>

Default setting:
None.

Usage notes:
The SSLClientKeystoreDBPassword keyword in only available for use with
CERTIFICATE authentication starting in DB2 Version 9.7 Fix Pack 6 and
later. You can set this keyword can be set in the [Data Source] section of
the db2cli.ini file, or in the connection string.

The SSLClientKeystash and SSLClientKeyStoreDBPassword configuration
parameters are mutually exclusive. If you specify both the
SSLClientKeystash configuration parameter and the
SSLClientKeyStoreDBPassword configuration parameter in either the
db2cli.ini configuration file or the db2dsdriver.cfg configuration file,
error CLI0219E is returned.

StaticCapFile CLI/ODBC configuration keyword
Specifies the Capture File name and optionally the path where it will be saved.

db2cli.ini keyword syntax:
StaticCapFile = < Full file name >

Default setting:
None - you must specify a capture file.

Only applicable when:
StaticMode is set to Capture or Match

Usage notes:

This keyword is used to specify the Capture File name and optionally the directory
where it will be saved.

SSLClientKeystoredb CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 401

StaticLogFile CLI/ODBC configuration keyword
Specifies the Static Profiling Log File name and optionally the directory where it
will be saved.

db2cli.ini keyword syntax:
StaticLogFile = < Full file name >

Default setting:
No Static Profiling Log is created. If a filename is specified without a
pathname then the current path will be used.

Only applicable when:
StaticMode is set to Capture or Match

Usage notes:

This keyword is used to specify the Static Profiling Log File name and optionally
the directory where it will be saved.

StaticMode CLI/ODBC configuration keyword
Specifies whether the CLI/ODBC application will capture SQL or use a static SQL
Package for this DSN.

db2cli.ini keyword syntax:
StaticMode = DISABLED | CAPTURE | MATCH

Default setting:
Disabled - SQL statements are not captured and no static SQL package is
used.

Usage notes:

This option allows you to specify how the SQL issued by the CLI/ODBC
application for this DSN will be processed:
v DISABLED = Static mode disabled. No special processing. The CLI/ODBC

statements will be executed as dynamic SQL with no change. This is the default.
v CAPTURE = Capture Mode. Execute the CLI/ODBC statements as dynamic

SQL. If the SQL statements are successful, they will be captured into a file
(known as the Capture File) to be bound by the DB2CAP command later.

v MATCH = Match mode. Execute the CLI/ODBC statements as static SQL
statements if a matching statement is found in the Capture Files specified in
StaticPackage. The Capture File must first be bound by the DB2CAP command.

StaticPackage CLI/ODBC configuration keyword
Specifies the package to be used with the static profiling feature.

db2cli.ini keyword syntax:
StaticPackage = collection_id.package_name

Default setting:
None - you must specify a package name.

Only applicable when:
STATICMODE is set to CAPTURE

StaticLogFile CLI/ODBC configuration keyword

402 Call Level Interface Guide and Reference, Volume 2

Usage notes:

This keyword is used to specify the package to be used when the application runs
in Match Mode. You first need to use Capture Mode to create the Capture File.

Only the first 7 characters of the indicated package name will be used. A one-byte
suffix will be added to represent each isolation level, as follows:
v 0 for Uncommitted Read (UR)
v 1 for Cursor Stability (CS)
v 2 for Read Stability (RS)
v 3 for Repeatable Read (RR)
v 4 for No Commit (NC)

StmtConcentrator CLI/ODBC configuration keyword
Starting in Version 9.7 Fix Pack 3 and later fix packs, DB2 supports this keyword,
which specifies whether dynamic statements that contain literal values use the
statement cache.

db2cli.ini keyword syntax:
StmtConcentrator = OFF | WITHLITERALS

Default setting:
The default behavior specified for statement concentration on the server.

Equivalent environment or connection attribute:
SQL_ATTR_STMT_CONCENTRATOR

Usage notes:
This option specifies whether dynamic statements that contain literal
values use the statement cache.
v OFF - The statement concentrator is disabled.
v WITHLITERALS - The statement concentrator with literal behavior is

enabled for situations that are supported by the server. For example, the
statement concentrator is not enabled if the statement has parameter
markers, named parameter markers, or a mix of literals, parameter
markers, and named parameter markers.

Starting in V9.7 Fix Pack 3a, the StmtConcentrator keyword is supported
with DB2 for z/OS V10. When you use this attribute against DB2 for z/OS
servers older than Version 10, the request is ignored.

StreamGetData CLI/ODBC configuration keyword
Optimizes data output stream for SQLGetData() function.

db2cli.ini keyword syntax:
StreamGetData = 0 | 1

Default setting:
CLI buffers all the data on the client.

Equivalent connection or statement attribute:
SQL_ATTR_STREAM_GETDATA

Usage notes:
The StreamGetData keyword is ignored if Dynamic Data Format, also
known as progressive streaming, is not supported by the server. For

StaticPackage CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 403

applications that do not need to buffer data and are querying data on a
server that supports Dynamic Data Format, specify 1 to indicate that data
buffering is not required. The CLI client will optimize the data output
stream.

If StreamGetData is set to 1 and CLI cannot determine the number of bytes
still available to return in the output buffer, SQLGetData() returns
SQL_NO_TOTAL (-4) as the length when truncation occurs. Otherwise,
SQLGetData() returns the number of bytes still available.

StreamPutData CLI/ODBC configuration keyword
Improves performance for data passed through SQLPutData() function calls on one
statement handle, by writing data directly to the internal connection-level
communication buffer.

db2cli.ini keyword syntax:
StreamPutData = 0 | 1

Default setting:
Do not write data directly to the connection-level buffer; write to the
default statement-level buffer instead.

Usage notes:

By default, CLI writes data passed in through SQLPutData() function calls to an
internal statement-level buffer. On the subsequent SQLParamData() call, the contents
of the buffer are then written to an internal connection-level communication buffer
and sent to the server. If only one statement handle is used to insert data into a
target database on a particular connection at a given point in time, then you can
improve performance by setting StreamPutData=1. This causes CLI to write the put
data directly to the connection-level buffer. If, however, multiple statements
concurrently insert data into a target database on a particular connection, then
setting StreamPutData=1 may decrease performance and result in unexpected
application errors, as the statements in the shared connection-level communication
buffer will be prone to serialization.

SysSchema CLI/ODBC Configuration Keyword
Sets an alternative schema to be searched in place of the SYSIBM schema.

db2cli.ini keyword syntax:
SysSchema = alternative schema

Default setting:
The default table qualifier name used when querying DB2 for z/OS is
SYSIBM.

Usage notes:
This option indicates an alternative schema, or table qualifier, to be
searched in place of the SYSIBM schema when the CLI and ODBC Catalog
Function calls are issued to obtain system catalog information from DB2
for z/OS.

Using this new schema name, the system administrator can define a set of
views, or a copies of the tables, consisting of a subset of the rows for
system catalog tables such as:
v SYSIBM.SYSCOLAUTH

StreamGetData CLI/ODBC configuration keyword

404 Call Level Interface Guide and Reference, Volume 2

v SYSIBM.SYSCOLUMNS
v SYSIBM.SYSDATATYPES
v SYSIBM.SYSFOREIGNKEYS
v SYSIBM.SYSINDEXES
v SYSIBM.SYSKEYS
v SYSIBM.SYSKEYCOLUSES
v SYSIBM.SYSPARMS
v SYSIBM.SYSRELS
v SYSIBM.SYSROUTINES
v SYSIBM.SYSTABAUTH
v SYSIBM.SYSTABCONST
v SYSIBM.SYSTABLES
v SYSIBM.SYSSYNONYMS

For example, if the set of views, or a copies tables, for the system catalog
tables is in the ACME schema, then the view (or copy of the table) for
SYSIBM.SYSTABLES is ACME.SYSTABLES; and SysSchema should be set to
ACME.

For applications that automatically query the system catalogs for all table
names, defining and using limited views of the system catalog tables
reduces the number of tables listed by the application. This can reduce the
time it takes for the application to query table information since a subset of
table names is returned.

Defining and using copies of the system catalog tables, with the same
indexes defined on the copy as those defined on the system table, can
reduce the time it takes for applications to query the database.

The SchemaList, TableType and DBName keywords can be used in
conjunction with the SysSchema keyword to further limit the number of
tables for which information is returned.

For more information about which system catalog tables can be used with
SysSchema, and about the function of SysSchema, refer to the documentation
for APAR PK05102 by visiting:

Support for IBM mainframes

and searching for “PK05102”.

TableType CLI/ODBC configuration keyword
Defines a default list of TABLETYPES returned when querying table information.

db2cli.ini keyword syntax:
TableType = " 'TABLE' | ,'ALIAS' | ,'VIEW' | , 'INOPERATIVE
VIEW' | , 'SYSTEM TABLE' | ,'SYNONYM' "

Default setting:
No default list of TABLETYPES is defined.

Usage notes:

If there is a large number of tables defined in the database, a tabletype string can
be specified to reduce the time it takes for the application to query table
information, and reduce the number of tables listed by the application.

SysSchema CLI/ODBC Configuration Keyword

Chapter 3. CLI/ODBC configuration keywords 405

Any number of the values can be specified. Each type must be delimited with
single quotes, separated by commas, and in uppercase. The entire string must also
be enclosed in double quotes. For example:

TableType="’TABLE’,’VIEW’"

This option can be used in conjunction with DBNAME and SCHEMALIST to
further limit the number of tables for which information will be returned.

TableType is used to provide a default for the CLI function that retrieves the list of
tables, views, aliases, and synonyms in the database. If the application does not
specify a table type on the function call, and this keyword is not used, information
about all table types is returned. If the application does supply a value for the
tabletype on the function call, then that argument value will override this keyword
value.

If TableType includes any value other than TABLE, then the DBName keyword
setting cannot be used to restrict information to a particular DB2 for z/OS
database.

TargetPrincipal CLI/ODBC configuration keyword
Specifies the fully qualified Kerberos principal name of the DB2 instance owner for
a target server.

db2cli.ini keyword syntax:
TargetPrincipal = name/instance@REALM

Default setting:
None

Usage notes:

For Windows 2000, Windows XP, and Windows Server 2003, the fully
qualified Kerberos principal name is the DB2 server service logon account
in one of the following forms: userid@DOMAIN, userid@xxx.xxx.xxx.com, or
domain\userid. For example, if the DB2 server service account is
LocalSystem then the TargetPrincipal is HOST/host_name@DOMAIN, where
host_name is the fully qualified host name and DOMAIN is the fully
qualified domain name in uppercase. Otherwise, the TargetPrincipal is
userid@DOMAIN, where userid is the user ID for the DB2 server service
account and DOMAIN is the fully qualified domain name in uppercase.

You can add this keyword to the db2cli.ini file or the db2dsdriver.cfg file.
This keyword can set a data source in the [DATA SOURCE] or [COMMON]
section of the db2cli.ini file.

TempDir CLI/ODBC configuration keyword
Defines the directory used for temporary files.

db2cli.ini keyword syntax:
TempDir = < full path name >

Default setting:
Use the system temporary directory specified by the TEMP or TMP
environment variables.

Usage notes:

TableType CLI/ODBC configuration keyword

406 Call Level Interface Guide and Reference, Volume 2

When working with Large Objects (CLOBS, BLOBS, etc...), when data conversion
occurs, or when data is sent to the server in pieces, a temporary file is often
created on the client machine to store the information. Using this option you can
specify a location for these temporary files. The system temporary directory will be
used if nothing is specified.

The keyword is placed in the data source specific section of the db2cli.ini file, and
has the following syntax:
v TempDir= F:\DB2TEMP

The path specified must already exist and the user executing the application must
have the appropriate authorities to write files to it. When the DB2 CLI Driver
attempts to create temporary files, an SQLSTATE of HY507 will be returned if the
path name is invalid, or if the temporary files cannot be created in the directory
specified.

TimestampTruncErrToWarning CLI/ODBC configuration keyword
Sets the return value for an overflow of fractional seconds in TIMESTAMP.

db2cli.ini keyword syntax:
TimestampTruncErrToWarning = 0 | 1

Default setting:
The overflow of fractional seconds in TIMESTAMP results in an error
(SQLSTATE 22007).

Usage notes:
TimestampTruncErrToWarning controls whether the overflow of fractional
seconds in TIMESTAMP results in an error (SQLSTATE 22007) or a
warning (SQLSTATE 01S07).

Set TimestampTruncErrToWarning as follows:
v 0 - to return the default error (SQLSTATE 22007)
v 1 - to return the warning (SQLSTATE 01S07)

Trace CLI/ODBC configuration keyword
Turns on the CLI/ODBC trace facility.

db2cli.ini keyword syntax:
Trace = 0 | 1 | db2trc

Default setting:
No trace information is captured.

Equivalent environment attribute:
SQL_ATTR_TRACE

Usage notes:

Note: Starting in version 9.7 FP3, the CLI trace mechanism is also supported with
instance-less clients, (IBM data server drivers).

When this option is set to value (1), CLI/ODBC trace records are appended to the
file indicated by the TraceFileName configuration parameter or to files in the

TempDir CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 407

subdirectory indicated by the TracePathName configuration parameter. Trace
CLI/ODBC configuration keyword will have no effect if neither TraceFileName or
TracePathname is set.

The following example shows how to setup a CLI/ODBC trace file that is written
directly to disk:

[COMMON]
Trace=1
TraceFileName=E:\TRACES\CLI\MONDAY.CLI
TraceFlush=1

When this option is set to value (db2trc), the trace facility of the DB2 instance or
the DB2 Administration Server (DAS) will be started. The trace facility is controlled
by the db2trc command and records information about operations and formats this
information into readable form. Enabling the trace facility (OFF by default) might
impact your system's performance. As a result, only use the trace facility when
directed by a DB2 technical support representative; otherwise, turn off the trace
once enough information has been recorded.

Setting the Trace CLI/ODBC configuration keyword to (db2trc) will automatically
run db2trc on command with -cli option. To stop tracing, command db2trc off
must be run by the user.

To create a CLI/ODBC trace file from the trace records recorded by the trace
facility, the trace records must be dumped and formatted from the internal trace
buffer. For example, after finishing tracing an application, the following steps
should be followed to dump and format the CLI/ODBC trace:
1. db2trc dump <dump_filename>

2. db2trc off

3. db2trc fmt -cli <dump_filename> <ODBC-CLI_trace_filename>

Setting the Trace CLI/ODBC configuration keyword to value (db2trc) provides
better performance than value (1). Also, the dumped CLI Trace file is smaller than
the CLI Trace file generated with Trace value (1). Using the Trace CLI/ODBC
configuration keyword value (db2trc) starts the db2trc trace command with a
default in memory trace buffer size. With larger CLI applications, the default trace
buffer size may be insufficient to prevent trace records from wrapping. To avoid
this limitation, run the command db2trc on with the -f parameter to trace to a file.
Here is an example command for tracing CLI to a file named clitrc.dmp:
db2trc on -f clitrc.dmp -m *.*.CLITRC.*.*

After tracing to a file, the trace records do not need to be dumped, but do still
require formatting to obtain a final CLI Trace file.

(This option is contained in the Common section of the initialization file and
therefore applies to all connections to DB2 databases.)

TraceAPIList CLI/ODBC configuration keyword
Specifies what APIs to trace using the CLI trace facility. If you do not set the
TraceAPIList keyword, all APIs are traced.

To set the TraceAPIList keyword in thedb2cli.ini file, issue the following
command:
db2 update cli cfg for section common using TRACEAPILIST API ID,API ID...

Trace CLI/ODBC configuration keyword

408 Call Level Interface Guide and Reference, Volume 2

where API ID is an integer that corresponds to the name of a CLI API. You can
find the mapping between API names and IDs in the /sqllib/include/sqlcli1.h
file, as shown in the following example:
#define SQL_API_SQLALLOCHANDLE 1001
#define SQL_API_SQLFREEHANDLE 1006
#define SQL_API_SQLCLOSECURSOR 1003
#define SQL_API_SQLENDTRAN 1005
#define SQL_API_SQLCOLATTRIBUTE 6
#define SQL_API_SQLGETSTMTATTR 1014
#define SQL_API_SQLGETCONNECTATTR 1007

The /sqllib/samples/cli/db2conn.c sample program depicts the behavior of
different CLI connect APIs: SQLConnect, SQLDriverConnect, and
SQLBrowseConnect. If you do not set the TraceAPIList keyword, the CLI trace
that is generated is similar to the following example:
[Process: 4453, Thread: 47717036514016]
[Date & Time: 06/26/2009 03:14:51.158736]
[Product: QDB2/LINUXX8664 DB2 v9.7.0.1]
[Level Identifier: 08020107]
[CLI Driver Version: 09.02.0000]
[Informational Tokens: "DB2 v9.7.0.1","n090609","LINUXAMD6497","Fixpack 1"]
[Install Path:
/view/mayprasa_db2_v97fp1_linuxamd64_n090609_trc42/vbs/INST]
[db2cli.ini Location: /home/mayprasa/sqllib/cfg/db2cli.ini]
[CLI Driver Type: IBM DB2 Application Runtime Client]

SQLAllocHandle(fHandleType=SQL_HANDLE_ENV, hInput=0:0,
phOutput=&00007fffb229a990)

---> Time elapsed - 0 seconds

SQLAllocHandle(phOutput=0:1)
<--- SQL_SUCCESS Time elapsed - +2.830000E-004 seconds

SQLSetEnvAttr(hEnv=0:1, fAttribute=SQL_ATTR_ODBC_VERSION, vParam=3,
cbParam=0)

---> Time elapsed - +4.300000E-005 seconds

SQLSetEnvAttr()
<--- SQL_SUCCESS Time elapsed - +1.800000E-005 seconds

SQLAllocHandle(fHandleType=SQL_HANDLE_DBC, hInput=0:1,
phOutput=&00007fffb229a8e4)

---> Time elapsed - +3.600000E-005 seconds

SQLAllocHandle(phOutput=0:1)
<--- SQL_SUCCESS Time elapsed - +4.480000E-004 seconds

SQLConnect(hDbc=0:1, szDSN="sample", cbDSN=-3, szUID="", cbUID=-3, szAuthStr="",
cbAuthStr=-3)
---> Time elapsed - +2.000000E-005 seconds

(DBMS NAME="DB2/LINUXX8664", Version="09.07.0001", Fixpack="0x28020107")
(Application Codepage=819, Database Codepage=1208,
Database XML Codepage=1208,

Char Send/Recv Codepage=819, Graphic Send/Recv Codepage=1200,
XML Send/Recv Codepage=1208)

SQLConnect()
<--- SQL_SUCCESS Time elapsed - +1.242704E+000 seconds

(DSN=""SAMPLE"")
(UID=" ")
(PWD="")

TraceAPIList CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 409

To trace only the SQLAllocHandle API, issue the following command:
db2 update cli cfg for section common using TRACEAPILIST 1001

where 1001 is the ID for the SQLAllocHandle API. The CLI trace that is generated
is similar to the following example:
[Process: 5977, Thread: 47628919556832]
[Date & Time: 06/26/2009 03:17:25.066017]
[Product: QDB2/LINUXX8664 DB2 v9.7.0.1]
[Level Identifier: 08020107]
[CLI Driver Version: 09.02.0000]
[Informational Tokens: "DB2 v9.7.0.1","n090609","LINUXAMD6497","Fixpack 1"]
[Install Path:
/view/mayprasa_db2_v97fp1_linuxamd64_n090609_trc42/vbs/INST]
[db2cli.ini Location: /home/mayprasa/sqllib/cfg/db2cli.ini]
[CLI Driver Type: IBM DB2 Application Runtime Client]

SQLAllocHandle(fHandleType=SQL_HANDLE_ENV, hInput=0:0,
phOutput=&00007fff3657bc70)

---> Time elapsed - 0 seconds

SQLAllocHandle(phOutput=0:1)
<--- SQL_SUCCESS Time elapsed - +2.720000E-004 seconds

SQLAllocHandle(fHandleType=SQL_HANDLE_DBC, hInput=0:1,
phOutput=&00007fff3657bbc4)

---> Time elapsed - +8.000000E-005 seconds

SQLAllocHandle(phOutput=0:1)
<--- SQL_SUCCESS Time elapsed - +4.250000E-004 seconds

SQLAllocHandle(fHandleType=SQL_HANDLE_DBC, hInput=0:1,
phOutput=&00007fff3657bbc4)

---> Time elapsed - +1.303675E+000 seconds

SQLAllocHandle(phOutput=0:1)
<--- SQL_SUCCESS Time elapsed - +1.920000E-004 seconds

SQLAllocHandle(fHandleType=SQL_HANDLE_DBC, hInput=0:1,
phOutput=&00007fff3657bbc0)

---> Time elapsed - +1.154550E+000 seconds

SQLAllocHandle(phOutput=0:1)
<--- SQL_SUCCESS Time elapsed - +1.320000E-004 seconds

Usage notes:
You must enable CLI TRACE to use the TraceAPIList keyword.

TraceAPIList! CLI/ODBC configuration keyword
Specifies what APIs not to trace using the CLI trace facility. If you do not set the
TraceAPIList! keyword, all APIs are traced.

To set the TraceAPIList! keyword in thedb2cli.ini file, issue the following
command:
"db2 update cli cfg for section common using ’TRACEAPILIST!’API ID,API ID..."

where API ID is an integer that corresponds to the name of a CLI API. You can
find the mapping between API names and IDs in the /sqllib/include/sqlcli1.h
file, as shown in the following example:

TraceAPIList CLI/ODBC configuration keyword

410 Call Level Interface Guide and Reference, Volume 2

#define SQL_API_SQLALLOCHANDLE 1001
#define SQL_API_SQLFREEHANDLE 1006
#define SQL_API_SQLCLOSECURSOR 1003
#define SQL_API_SQLENDTRAN 1005
#define SQL_API_SQLCOLATTRIBUTE 6
#define SQL_API_SQLGETSTMTATTR 1014
#define SQL_API_SQLGETCONNECTATTR 1007

Note: To run this command, you must use double quotation marks around the full
command and single quotation marks around the TRACEAPILIST! keyword.

The /sqllib/samples/cli/db2conn.c sample program depicts the behavior of
different CLI connect APIs: SQLConnect, SQLDriverConnect, and
SQLBrowseConnect. If you do not set the TraceAPIList! keyword, the CLI trace
that is generated is similar to the following example:
[Process: 4453, Thread: 47717036514016]
[Date & Time: 06/26/2009 03:14:51.158736]
[Product: QDB2/LINUXX8664 DB2 v9.7.0.1]
[Level Identifier: 08020107]
[CLI Driver Version: 09.02.0000]
[Informational Tokens: "DB2 v9.7.0.1","n090609","LINUXAMD6497","Fixpack 1"]
[Install Path:
/view/mayprasa_db2_v97fp1_linuxamd64_n090609_trc42/vbs/INST]
[db2cli.ini Location: /home/mayprasa/sqllib/cfg/db2cli.ini]
[CLI Driver Type: IBM DB2 Application Runtime Client]

SQLAllocHandle(fHandleType=SQL_HANDLE_ENV, hInput=0:0,
phOutput=&00007fffb229a990)

---> Time elapsed - 0 seconds

SQLAllocHandle(phOutput=0:1)
<--- SQL_SUCCESS Time elapsed - +2.830000E-004 seconds

SQLSetEnvAttr(hEnv=0:1, fAttribute=SQL_ATTR_ODBC_VERSION, vParam=3, cbParam=0)
---> Time elapsed - +4.300000E-005 seconds

SQLSetEnvAttr()
<--- SQL_SUCCESS Time elapsed - +1.800000E-005 seconds

SQLAllocHandle(fHandleType=SQL_HANDLE_DBC, hInput=0:1,
phOutput=&00007fffb229a8e4)

---> Time elapsed - +3.600000E-005 seconds

SQLAllocHandle(phOutput=0:1)
<--- SQL_SUCCESS Time elapsed - +4.480000E-004 seconds

SQLConnect(hDbc=0:1, szDSN="sample", cbDSN=-3, szUID="", cbUID=-3,
szAuthStr="",

cbAuthStr=-3)
---> Time elapsed - +2.000000E-005 seconds

(DBMS NAME="DB2/LINUXX8664", Version="09.07.0001", Fixpack="0x28020107")
(Application Codepage=819, Database Codepage=1208, Database XML Codepage=1208,

Char Send/Recv Codepage=819, Graphic Send/Recv Codepage=1200,
XML Send/Recv Codepage=1208)

SQLConnect()
<--- SQL_SUCCESS Time elapsed - +1.242704E+000 seconds

(DSN=""SAMPLE"")
(UID=" ")
(PWD="")

To prevent the SQLAllocHandle API from being traced, issue the following
command:

TraceAPIList! CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 411

"db2 update cli cfg for section common using ’TRACEAPILIST!’ 1001"

where 1001 is the ID for SQLAllocHandle API. The CLI trace that is generated is
similar to the following example:
[Process: 5442, Thread: 47530732661472]
[Date & Time: 06/26/2009 05:11:10.794067]
[Product: QDB2/LINUXX8664 DB2 v9.7.0.1]
[Level Identifier: 08020107]
[CLI Driver Version: 09.02.0000]
[Informational Tokens: "DB2 v9.7.0.1","n090609","LINUXAMD6497","Fixpack 1"]
[Install Path:
/view/mayprasa_db2_v97fp1_linuxamd64_n090609_trc42/vbs/INST]
[db2cli.ini Location: /home/mayprasa/sqllib/cfg/db2cli.ini]
[CLI Driver Type: IBM DB2 Application Runtime Client]

SQLSetEnvAttr(hEnv=0:1, fAttribute=SQL_ATTR_ODBC_VERSION, vParam=3, cbParam=0)
---> Time elapsed - 0 seconds

SQLSetEnvAttr()
<--- SQL_SUCCESS Time elapsed - +2.200000E-005 seconds

SQLConnect(hDbc=0:1, szDSN="sample", cbDSN=-3, szUID="", cbUID=-3, szAuthStr="",
cbAuthStr=-3)
---> Time elapsed - +4.850000E-004 seconds

(DBMS NAME="DB2/LINUXX8664", Version="09.07.0001", Fixpack="0x28020107")
(Application Codepage=819, Database Codepage=1208, Database XML Codepage=1208,

Char Send/Recv Codepage=819, Graphic Send/Recv Codepage=1200,
XML Send/Recv Codepage=1208)

SQLConnect()
<--- SQL_SUCCESS Time elapsed - +1.156099E+000 seconds

(DSN=""SAMPLE"")
(UID=" ")
(PWD="")

SQLDisconnect(hDbc=0:1)
---> Time elapsed - +4.400000E-005 seconds

SQLDisconnect()
<--- SQL_SUCCESS Time elapsed - +1.197430E-001 seconds

Usage notes:
You must enable CLI TRACE to use the TraceAPIList! keyword.

TraceComm CLI/ODBC configuration keyword
Specifies whether information about each network request is included in the trace
file.

db2cli.ini keyword syntax:
TraceComm = 0 | 1

Default setting:
0 - No network request information is captured.

Only applicable when:
the CLI/ODBC Trace option is turned on.

Usage notes:

TraceAPIList! CLI/ODBC configuration keyword

412 Call Level Interface Guide and Reference, Volume 2

When TraceComm is set on (1) then the following information about each network
request will be included in the trace file:
v which CLI functions are processed completely on the client and which CLI

functions involve communication with the server
v the number of bytes sent and received in each communication with the server
v the time spent communicating data between the client and server

This option is only used when the Trace CLI/ODBC option is turned on.

(This option is contained in the Common section of the initialization file and
therefore applies to all connections to DB2.)

TraceErrImmediate CLI/ODBC configuration keyword
Specifies whether diagnostic records are written to the CLI/ODBC trace when
records are generated.

db2cli.ini keyword syntax:
TraceErrImmediate = 0 | 1

Default setting:
Diagnostic records are only written to the trace file when
SQLGetDiagField() or SQLGetDiagRec() is called; or "Unretrieved Error
Message" is written to the trace file for handles which had diagnostic
records that were left unretreived.

Only applicable when:
the CLI/ODBC Trace option is turned on.

Usage notes:

Setting TraceErrImmediate=1 helps in determining when errors occur during
application execution by writing diagnostic records to the CLI/ODBC trace file at
the time the records are generated. This is especially useful for applications that do
not retrieve diagnostic information using SQLGetDiagField() and SQLGetDiagRec(),
because the diagnostic records that were generated on a handle will be lost if they
are not retrieved or written to the trace file before the next function is called on the
handle.

If TraceErrImmediate=0 (the default setting), then diagnostic records will only be
written to the trace file if an application calls SQLGetDiagField() or
SQLGetDiagRec() to retrieve diagnostic information. If the application does not
retrieve diagnostic information through function calls and this keyword is set to 0,
then the "Unretrieved Error Message" entry will be written to the trace file if a
diagnostic record exists, when a function is next called on the handle.

This option is only used when the Trace CLI/ODBC option is turned on.

(This option is contained in the Common section of the initialization file and
therefore applies to all connections to DB2.)

TraceFileName CLI/ODBC configuration keyword
Specifies a file to which all CLI/ODBC trace information is written.

db2cli.ini keyword syntax:
TraceFileName = < fully qualified file name >

TraceComm CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 413

Default setting:
None

Only applicable when:
the Trace option is turned on.

Usage notes:

If the file specified does not exist, then it will be created; otherwise, the new trace
information will be appended to the end of the file. However, the path the file is
expected in must exist.

If the filename given is invalid or if the file cannot be created or written to, no
trace will occur and no error message will be returned.

This option is only used when the Trace option is turned on. This will be done
automatically when you set this option in the CLI/ODBC Configuration utility.

The TracePathName option will be ignored if this option is set.

CLI trace should only be used for debugging purposes. It will slow down the
execution of the CLI/ODBC driver, and the trace information can grow quite large
if it is left on for extended periods of time.

The TraceFileName keyword option should not be used with multi-process or
multithreaded applications as the trace output for all threads or processes will be
written to the same log file, and the output for each thread or process will be
difficult to decipher. Furthermore, semaphores are used to control access to the
shared trace file which could change the behavior of multithreaded applications.
There is no default DB2 CLI trace output log file name.

(This option is contained in the Common section of the initialization file and
therefore applies to all connections to DB2 databases.)

TraceFlush CLI/ODBC configuration keyword
Forces a write to disk after n CLI/ODBC trace entries.

db2cli.ini keyword syntax:
TraceFlush = 0 | positive integer

Default setting:
Do not write after every entry.

Only applicable when:
the CLI/ODBC Trace option is turned on.

Usage notes:

TraceFlush specifies how often trace information is written to the CLI trace file. By
default, TraceFlush is set to 0 and each DB2 CLI trace file is kept open until the
traced application or thread terminates normally. If the application terminates
abnormally, some trace information that was not written to the trace log file may
be lost.

Set this keyword to a positive integer to force the CLI driver to close and re-open
the appropriate trace file after the specified number of trace entries. The smaller

TraceFileName CLI/ODBC configuration keyword

414 Call Level Interface Guide and Reference, Volume 2

the value of the TraceFlush keyword, the greater the impact CLI tracing has on the
performance of the application. Setting TraceFlush=1 has the most impact on
performance, but will ensure that each entry is written to disk before the
application continues to the next statement.

This option is only used when the Trace CLI/ODBC option is turned on.

(This option is contained in the Common section of the initialization file and
therefore applies to all connections to DB2.)

TraceFlushOnError CLI/ODBC configuration keyword
Specifies whether all CLI/ODBC trace entries are written to disk when an error
occurs.

db2cli.ini keyword syntax:
TraceFlushOnError = 0 | 1

Default setting:
Do not write CLI/ODBC trace entries as soon as an error occurs.

Only applicable when:
the CLI/ODBC Trace option is turned on.

Usage notes:

Setting TraceFlushOnError=1 forces the CLI driver to close and re-open the trace
file each time an error is encountered. If TraceFlushOnError is left at its default
value of 0, then trace file will only be closed when the application terminates
normally or the interval specified by the TraceFlush keyword is reached. If the
application process were to terminate abnormally when TraceFlushOnError=0, then
valuable trace information may be lost. Setting TraceFlushOnError=1 may impact
performance, but will ensure that trace entries associated with errors are written to
disk.

This option is only used when the Trace CLI/ODBC option is turned on.

(This option is contained in the Common section of the initialization file and
therefore applies to all connections to DB2.)

TraceLocks CLI/ODBC configuration keyword
Only trace lock timeouts in the CLI/ODBC trace.

db2cli.ini keyword syntax:
TraceLocks = 0 | 1

Default setting:
Trace information is not limited to only lock timeouts.

Only applicable when:
the Trace option is turned on.

Usage notes:

When TraceLocks is set to 1, lock timeouts will be recorded in the trace file.

This option is only used when the CLI/ODBC TRACE option is turned on.

TraceFlush CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 415

(This option is contained in the Common section of the initialization file and
therefore applies to all connections to DB2.)

TracePIDList CLI/ODBC configuration keyword
Restricts the process IDs for which the CLI/ODBC trace will be enabled.

db2cli.ini keyword syntax:
TracePIDList = <no value specified> | <comma-delimited list of process
IDs>

Default setting:
All of the process IDs will be traced when the CLI/ODBC trace is run.

Usage notes:

Use this keyword for applications that create many processes. Capturing
the CLI/ODBC trace for such applications can generate many trace files.
By using this keyword you can collect the trace of specific problematic
processes of applications.

If no value is specified for this keyword, all process IDs will be traced.
Otherwise, specify a comma-delimited list of process IDs which you want
to be traced when the CLI/ODBC trace runs.

The TraceRefreshInterval keyword must be set to some value before
initializing your application, otherwise, the TracePIDList keyword will not
take effect.

(This option is contained in the Common section of the initialization file
and therefore applies to all connections to DB2 databases.)

To use the TracePIDList keyword:
1. Ensure the Trace CLI/ODBC keyword is set to zero or is not specified

in the db2cli.ini file.
2. Add the TraceRefreshInterval CLI/ODBC keyword to the Common

section of the db2cli.ini file as follows:
[COMMON]
TraceRefreshInterval=<some positive integer>

3. Start your application.
4. Using an operating system command such as ps (on a UNIX and

Linux-based operating systems), determine the process IDs of the
processes that you want to collect the CLI/ODBC trace for.

5. Turn CLI/ODBC tracing on and add the process IDs identified to the
Common section of the db2cli.ini file by including the following
keywords:
[COMMON]
Trace=1
TracePathName=<fully-qualified subdirectory name>
TracePIDList=<comma-delimited list of process IDs>

CLI/ODBC traces containing information of the process IDs specified will
be located in the directory specified by the TracePathName keyword.. You
might also see extra empty files that can be ignored.

TracePIDTID CLI/ODBC configuration keyword
Captures the process ID and thread ID for each item being traced.

TraceLocks CLI/ODBC configuration keyword

416 Call Level Interface Guide and Reference, Volume 2

db2cli.ini keyword syntax:
TracePIDTID = 0 | 1

Default setting:
The process ID and thread ID for the trace entries are not captured.

Only applicable when:
the Trace option is turned on.

Usage notes:

When TracePIDTID is set to 1, the process ID and thread ID for each captured item
will be recorded in the trace file. This effect is helpful when the Trace keyword is
enabled and multiple applications are executing. This is because Trace writes trace
information for all executing applications to a single file. Enabling TracePIDTID
differentiates the recorded information by process and thread.

This option is only used when the CLI/ODBC Trace option is turned on.

(This option is contained in the Common section of the initialization file and
therefore applies to all connections to DB2.)

TracePathName CLI/ODBC configuration keyword
Specifies the subdirectory to be used to store individual CLI/ODBC trace files.

db2cli.ini keyword syntax:
TracePathName = < fully qualified subdirectory name >

Default setting:
None

Only applicable when:
the Trace option is turned on.

Not applicable when:
the TraceFileName option is turned on.

Usage notes:

Each thread or process that uses the same DLL or shared library will have a
separate CLI/ODBC trace file created in the specified directory. A concatenation of
the application process ID and the thread sequence number is automatically used
to name trace files.

No trace will occur, and no error message will be returned, if the subdirectory
given is invalid or if it cannot be written to.

This option is only used when the Trace option is turned on. This will be done
automatically when you set this option in the CLI/ODBC Configuration utility.

It will be ignored if the CLI/ODBC option TraceFileName is used.

CLI trace should only be used for debugging purposes. It will slow down the
execution of the CLI/ODBC driver, and the trace information can grow quite large
if it is left on for extended periods of time.

TracePIDTID CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 417

If both TraceFileName and TracePathName are specified, the TraceFileName
keyword takes precedence and TracePathName will be ignored.

(This option is contained in the Common section of the initialization file and
therefore applies to all connections to DB2.)

TraceRefreshInterval CLI/ODBC configuration keyword
Sets the interval (in seconds) at which the Trace and TracePIDList keywords are
read from the Common section of the db2cli.ini file.

db2cli.ini keyword syntax:
TraceRefreshInterval = 0 | positive integer

Default setting:
The Trace and TracePIDList keywords will only be read from the
db2cli.ini file when the application is initialized.

Usage notes:

Setting this keyword before an application is initialized allows you to
dynamically turn off the CLI/ODBC trace within n seconds.

Note: Setting TraceRefreshInterval while the application is running will
have no effect. For this keyword to take effect, it must be set before the
application is initialized.

Only the Trace and TracePIDList keywords will be refreshed from the
db2cli.ini file if this keyword is set. No other CLI or ODBC configuration
keywords will be reread.

When TraceRefreshInterval is set to a nonzero positive integer value, a
thread is spawned to monitor the db2cli.ini. In this situation, the
applications connected to the database need to be multithread safe;
otherwise the application might behave in an unexpected manner.

This keyword is contained in the Common section of the initialization file
and therefore applies to all connections to DB2.

Note: This CLI keyword is ignored if it is used inside a stored procedure
or routine that uses CLI API calls.

TraceStmtOnly CLI/ODBC configuration keyword
Only trace dynamic SQL statements in the CLI/ODBC trace.

db2cli.ini keyword syntax:
TraceStmtOnly = 0 | 1

Default setting:
Trace information is not limited to only dynamic SQL statements.

Only applicable when:
the Trace option is turned on.

Usage notes:

When TraceStmtOnly is set to 1, only dynamic SQL statements will be recorded in
the trace file.

TracePathName CLI/ODBC configuration keyword

418 Call Level Interface Guide and Reference, Volume 2

This option is only used when the CLI/ODBC Trace option is turned on.

(This option is contained in the Common section of the initialization file and
therefore applies to all connections to DB2.)

TraceTime CLI/ODBC configuration keyword
Captures elapsed time counters in the trace file.

db2cli.ini keyword syntax:
TraceTime = 1 | 0

Default setting:
Elapsed time counters are included in the trace file.

Only applicable when:
the Trace option is turned on.

Usage notes:

When TraceTime is set to 1, elapsed time counters will be captured in the trace file.
For example:
SQLPrepare(hStmt=1:1, pszSqlStr="SELECT * FROM ORG", cbSqlStr=-3)

–––> Time elapsed – +6.785751E+000 seconds (StmtOut="SELECT * FROM ORG")
SQLPrepare()

<––– SQL_SUCCESS Time elapsed – +2.527400E–002 seconds

Turn TraceTime off, by setting it to 0, to improve performance or to generate
smaller trace files. For example:
SQLPrepare(hStmt=1:1, pszSqlStr="SELECT * FROM ORG", cbSqlStr=-3)
(StmtOut="SELECT * FROM ORG")
SQLPrepare()

<––– SQL_SUCCESS

This option is only used when the CLI/ODBC Trace option is turned on.

(This option is contained in the Common section of the initialization file and
therefore applies to all connections to DB2.)

TraceTimestamp CLI/ODBC configuration keyword
Specifies what type of timestamp information (if any) is recorded in the
CLI/ODBC trace.

db2cli.ini keyword syntax:
TraceTimestamp = 0 | 1 | 2 | 3

Default setting:
No timestamp information is written to the trace file.

Only applicable when:
the Trace option is turned on.

Usage notes:

Setting TraceTimeStamp to a value other than the default of 0 means the current
timestamp or absolute execution time is added to the beginning of each line of

TraceStmtOnly CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 419

trace information as it is being written to the DB2 CLI trace file. The following
settings indicate what type of timestamp information is captured in the trace file:
v 0 = no timestamp information
v 1 = processor ticks and ISO timestamp (absolute execution time in seconds and

milliseconds, followed by a timestamp)
v 2 = processor ticks (absolute execution time in seconds and milliseconds)
v 3 = ISO timestamp

This option is only used when the CLI/ODBC Trace option is turned on.

(This option is contained in the Common section of the initialization file and
therefore applies to all connections to DB2.)

Trusted_Connection CLI/ODBC configuration keyword
Specifies whether a connection made with the current authenticated user is
allowed.

Syntax:
Trusted_Connection=Yes

Note: This keyword will have no effect if set in the db2cli.ini file. It
should instead be provided in the connection string to
SQLDriverConnect().

Default setting:
CLI uses the user ID and password information provided in the connection
string to SQLDriverConnect(), not the current authenticated user.

Usage notes:

CLI applications that connect to a database will typically connect using the
function SQLDriverConnect(). One of the input arguments for this function
is the DriverCompletion value, which determines when a dialog will be
opened. The following are the values of DriverCompletion :
v SQL_DRIVER_PROMPT: A dialog is always initiated.
v SQL_DRIVER_COMPLETE: A dialog is only initiated if there is

insufficient information in the connection string.
v SQL_DRIVER_COMPLETE_REQUIRED: A dialog is only initiated if

there is insufficient information in the connection string. Only
mandatory information is requested. The user is prompted for required
information only.

v SQL_DRIVER_NOPROMPT: The user is not prompted for any
information. A connection is attempted with the information contained
in the connection string. If there is not enough information, SQL_ERROR
is returned.

Note: More details on DriverCompletion can be found in the documentation
for SQLDriverConnect().

Some applications, for example, those in a Kerberos environment, might
require that a user be able to connect to a DB2 server without providing a
user ID or password. If the application uses the
SQL_DRIVER_NO_PROMPT option on the SQLDriverConnect() call, the
connection will be attempted without the user authentication. This
keyword is then not required.

TraceTimestamp CLI/ODBC configuration keyword

420 Call Level Interface Guide and Reference, Volume 2

In the case where a third party application is involved and the prompt
level used by the application is something other than
SQL_DRIVER_NO_PROMPT, CLI will open a dialog to request the missing
information from the user. Setting Trusted_Connection to Yes, by providing
it to the input connection string for SQLDriverConnect()
(“Trusted_Connection=Yes”), causes CLI to ignore any user ID or password
string (including blank strings) from the connection string and ignore the
prompt level of the connection function. CLI will use the current
authenticated user to attempt the connection to the database. If the
connection attempt fails, the user will be prompted for the user ID and
password.

This keyword is used only in the connection string for SQLDriverConnect();
setting it in the db2cli.ini file will have no effect.

TxnIsolation CLI/ODBC configuration keyword
Sets the default isolation level.

db2cli.ini keyword syntax:
For Version 9.7 Fix Pack 4 or earlier fix packs:
TxnIsolation = 1 | 2 | 4 | 8 | 32

For Version 9.7 Fix Pack 5 or later fix packs:
TxnIsolation = ReadUncommitted | ReadCommitted | RepeatableRead | Serializable | NoCommit | 1 | 2 | 4 | 8 | 32

Default setting:
2 or ReadCommitted (Cursor Stability)

Equivalent statement attribute:
SQL_ATTR_TXN_ISOLATION

Usage notes:

Sets the isolation level to:
v 1 = SQL_TXN_READ_UNCOMMITTED - Read uncommitted (Uncommitted

read)
v 2 = SQL_TXN_READ_COMMITTED (default) - Read committed (Cursor

stability)
v 4 = SQL_TXN_REPEATABLE_READ - Repeatable read (Read stability)
v 8 = SQL_TXN_SERIALIZABLE - Serializable (Repeatable read)
v 32 = SQL_TXN_NOCOMMIT - (No commit, DB2 Universal Database for AS/400

only; this setting is similar to autocommit).

The words in parentheses are the IBM terminology for the equivalent SQL92
isolation levels. Note that no commit is not an SQL92 isolation level and is
supported on IBM DB2 for IBM i only.

Table 165. Supported isolation levels

Isolation
level Keyword SQL92 IBM terminology

1 SQL_TXN_READ_UNCOMMITTEDRead
uncommitted

Uncommitted read

2 SQL_TXN_READ_COMMITTED
(default)

Read committed Cursor stability

4 SQL_TXN_REPEATABLE_READRepeatable read Read stability

Trusted_Connection CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 421

Table 165. Supported isolation levels (continued)

Isolation
level Keyword SQL92 IBM terminology

8 SQL_TXN_SERIALIZABLESerializable Repeatable read

32 SQL_TXN_NOCOMMIT Not an SQL92
isolation level

No commit

In Version 9.7 Fix Pack 5 and later Fix Packs, you can use the listed textual values
to set the TxnIsolation keyword in the db2cli.ini file:
v ReadUncommitted
v ReadCommitted
v RepeatableRead
v Serializable
v NoCommit

If you use a text value that is not in the list, the value is ignored and TxnIsolation is
set to the default value.

This keyword is only applicable if you use the default isolation level. If the
application has explicitly set the isolation level for a connection or statement
handle, this keyword setting is ignored.

UID CLI/ODBC configuration keyword
Defines a default user ID.

db2cli.ini keyword syntax:
UID = userid

Default setting:
None

Usage notes:

The specified userid value is used if a userid is not provided by the application at
connect time.

Underscore CLI/ODBC configuration keyword
Specifies whether the underscore character '_' is treated as a wildcard.

db2cli.ini keyword syntax:
Underscore = 0 | 1

Default setting:
The underscore character matches any single character or no character.

Usage notes:

This keyword specifies if the underscore character '_' will be recognized as a
wildcard or only as the underscore character. The possible settings are as follows:
v 0 - The underscore character is treated only as the underscore character.
v 1 - The underscore character is treated as a wildcard that matches any single

character, including no character.

TxnIsolation CLI/ODBC configuration keyword

422 Call Level Interface Guide and Reference, Volume 2

Setting Underscore to 0 can improve performance when there are database objects
with names that contain underscores.

This keyword applies only to the following catalog functions that accept search
patterns as arguments:
v SQLColumnPrivileges()

v SQLColumns()

v SQLProcedureColumns()

v SQLProcedures()

v SQLTablePrivileges()

v SQLTables()

Note that catalog functions may only accept search patterns on particular
arguments. Refer to the documentation of the specific function for details.

UseOldStpCall CLI/ODBC configuration keyword
Controls how cataloged procedures are invoked.

db2cli.ini keyword syntax:
UseOldStpCall = 0 | 1

Default setting:
Invokes procedures using the new CALL method where GRANT
EXECUTE must be granted on the procedure.

Usage notes:

Prior to DB2 Universal Database Version 8, the invoker of a procedure had to have
EXECUTE privilege on any package invoked from the procedure. Now, the invoker
must have EXECUTE privilege on the procedure and only the definer of the
procedure has to have EXECUTE privilege on any required packages.

This keyword controls which method is used to invoke the procedure. Setting
UseOldStpCall on causes the procedure to be invoked using the deprecated
sqleproc() API when the precompiler fails to resolve a procedure on a CALL
statement. Turning this keyword off will invoke procedures where GRANT
EXECUTE must be granted on the procedure.

UseServerMsgSP CLI/ODBC configuration keyword
Specifies whether a stored procedure is called to retrieve message text when
connected to DB2 for z/OS servers.

db2cli.ini keyword syntax:
UseServerMsgSP = 0 | 1

Default setting:
CLI does not use the server stored procedure to return messages, but uses
the local message files.

Equivalent connection attribute:
SQL_ATTR_SERVER_MSGTXT_SP

Usage notes:
CLI calls the stored procedure indicated by the
SQL_ATTR_SERVER_MSGTXT_SP connection attribute. If this attribute is

Underscore CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 423

not set, CLIcalls the SYSIBM.SQLCAMESSAGE stored procedure. If this
attribute is set to DSNACCMG, CLI calls DSNACCMG when connected to
DB2 for z/OS Version 7 servers and calls SYSIBM.SQLCAMESSAGE when
connected to DB2 for z/OS Version 8 or later.

Applications using this keyword should also set the “ServerMsgMask
CLI/ODBC configuration keyword” on page 397 to indicate when CLI
should call this procedure to retrieve the message information from the
server. If the “ServerMsgMask CLI/ODBC configuration keyword” on page
397 is not set, then the default is to check the local message files first. See
the “ServerMsgMask CLI/ODBC configuration keyword” on page 397 for
more details on the options available.

DSNACCMG has been deprecated in DB2 for z/OS Version 9 and might be
removed in a future release. If SQL_ATTR_SERVER_MSGTXT_SP is set to
DSNACCMG, set this attribute to a different store procedure to retrieve
messages text. Alternatively, use local message files or use the
ServerMsgTextSP configuration keyword.

ServerMsgTextSP CLI/ODBC configuration keyword
Specifies which stored procedure is used to retrieve message text from DB2 for
z/OS.

db2cli.ini keyword syntax:
ServerMsgTextSP = stored procedure name

Default setting:
CLI does not use the server stored procedure to return messages, but uses
the local message files.

Equivalent connection attribute:
SQL_ATTR_SERVER_MSGTXT_SP

Usage notes:
Applications using this keyword should also set the “ServerMsgMask
CLI/ODBC configuration keyword” on page 397 to indicate when CLI
should call this procedure to retrieve the message information from the
server. If the “ServerMsgMask CLI/ODBC configuration keyword” on page
397 is not set, then the default is to check the local message files first. See
the “ServerMsgMask CLI/ODBC configuration keyword” on page 397 for
more details on the options available.

The difference between ServerMsgTextSP and “UseServerMsgSP CLI/ODBC
configuration keyword” on page 423 is that UseServerMsgSP can be turned
on and off to call the procedure specified in the
SQL_ATTR_SERVER_MSGTXT_SP connection attribute, while
ServerMsgTextSP needs to have the procedure explicitly specified.

WarningList CLI/ODBC configuration keyword
Specifies which errors to downgrade to warnings.

db2cli.ini keyword syntax:
WarningList = " 'xxxxx', 'yyyyy', ..."

Default setting:
Do not downgrade any SQLSTATEs.

Usage notes:

UseServerMsgSP CLI/ODBC configuration keyword

424 Call Level Interface Guide and Reference, Volume 2

Any number of SQLSTATEs returned as errors can be downgraded to warnings.
Each must be delimited with single quotes, separated by commas, and in
uppercase. The entire string must also be enclosed in double quotes. For example:

WarningList=" ’01S02’, ’HY090’ "

XMLDeclaration CLI/ODBC configuration keyword
Controls the generation of an XML declaration when XML data is implicitly
serialized to an application variable.

db2cli.ini keyword syntax:
XMLDeclaration = non-negative integer < 7 | 7

Default setting:
A BOM and an XML declaration containing the XML version and encoding
attribute are generated during implicit serialization.

Usage notes:

The XMLDeclaration keyword controls which elements of an XML declaration are
prepended to an application buffer when XML data is implicitly serialized to an
application buffer. This setting does not affect the result of the XMLSERIALIZE
function.

The following values represent components to be generated during implicit
serialization. Set this keyword by adding together the value of each component
required.

0 No declarations or byte order marks (BOMs) are added to the output
buffer.

1 A byte order mark (BOM) in the appropriate endianness is prepended to
the output buffer if the target encoding is UTF-16 or UTF-32. (Although a
UTF-8 BOM exists, the database server does not generate it, even if the
target encoding is UTF-8.)

2 A minimal XML declaration is generated, containing only the XML version.

4 An encoding attribute that identifies the target encoding is added to any
generated XML declaration. Therefore, this setting only has effect when the
setting of 2 is also included when computing the value of this keyword.

For example, if you wanted a BOM and minimal XML declaration (without an
encoding attribute) to be generated during implicit serialization, you would set
XMLDeclaration = 3, where 3 is the sum of 1 (the value to indicate generation of a
BOM) and 2 (the value to indicate generation of a minimal XML declaration).

To prevent any declarations or BOM from being generated, set XMLDeclaration as
follows: XMLDeclaration = 0.

WarningList CLI/ODBC configuration keyword

Chapter 3. CLI/ODBC configuration keywords 425

426 Call Level Interface Guide and Reference, Volume 2

Chapter 4. Environment, connection, and statement attributes
in CLI applications

Environments, connections, and statements each have a defined set of attributes (or
options). All attributes can be queried by the application, but only some attributes
can be changed from their default values. By changing attribute values, the
application can change the behavior of CLI.

An environment handle has attributes which affect the behavior of CLI functions
under that environment. The application can specify the value of an attribute by
calling SQLSetEnvAttr() and can obtain the current attribute value by calling
SQLGetEnvAttr(). SQLSetEnvAttr() can only be called before any connection
handles have been allocated for the environment handle. For details on each
environment attribute, refer to the list of CLI environment attributes.

A connection handle has attributes which affect the behavior of CLI functions
under that connection. Of the attributes that can be changed:
v Some can be set any time once the connection handle is allocated.
v Some can be set only before the actual connection has been established.
v Some can be set any time after the connection has been established.
v Some can be set after the connection has been established, but only while there

are no outstanding transactions or open cursors.

The application can change the value of connection attributes by calling
SQLSetConnectAttr() and can obtain the current value of an attribute by calling
SQLGetConnectAttr(). An example of a connection attribute which can be set any
time after a handle is allocated is the auto-commit option
SQL_ATTR_AUTOCOMMIT. For details on each connection attribute, refer to the
list of CLI connection attributes.

A statement handle has attributes which affect the behavior of CLI functions
executed using that statement handle. Of the statement attributes that can be
changed:
v Some attributes can be set, but currently are limited to only one specific value.
v Some attributes can be set any time after the statement handle has been

allocated.
v Some attributes can only be set if there is no open cursor on that statement

handle.

The application can specify the value of any statement attribute that can be set by
calling SQLSetStmtAttr() and can obtain the current value of an attribute by
calling SQLGetStmtAttr(). For details on each statement attribute, refer to the list of
CLI statement attributes.

The SQLSetConnectAttr() function cannot be used to set statement attributes. This
was supported in versions of CLI prior to version 5.

Many applications just use the default attribute settings; however, there may be
situations where some of these defaults are not suitable for a particular user of the
application. Some default values can be changed by setting the CLI/ODBC
configuration keywords. CLI provides end users with two methods of setting some

© Copyright IBM Corp. 1993, 2012 427

configuration keywords. The first method is to specify the keyword and its new
default attribute value(s) in the connection string input to the SQLDriverConnect()
and SQLBrowseConnect() functions. The second method involves the specification
of the new default attribute value(s) in a CLI initialization file using CLI/ODBC
configuration keywords.

The CLI initialization file can be used to change default values for all CLI
applications on that workstation. This may be the end user's only means of
changing the defaults if the application does not provide a means for the user to
provide default attribute values in the SQLDriverConnect() connection string.
Default attribute values that are specified on SQLDriverConnect() override the
values in the CLI initialization file for that particular connection.

The mechanisms for changing defaults are intended for end user tuning;
application developers must use the appropriate set-attribute function. If an
application does call a set-attribute or option function with a value different from
the initialization file or the connection string specification, then the initial default
value is overridden and the new value takes effect.

The diagram below shows the addition of the attribute functions to the basic
connect scenario.

Environment, connection, and statement attributes in CLI applications

428 Call Level Interface Guide and Reference, Volume 2

Environment attributes (CLI) list
CLI environment attributes that can be set using the SQLSetEnvAttr().

ODBC does not support setting driver-specific environment attributes using
SQLSetEnvAttr(). Only CLI applications can set the CLI-specific environment
attributes using this function.

SQL_ATTR_CONNECTION_POOLING
This attribute was deprecated in DB2 UDB for Linux, UNIX, and Windows
Version 8.

This attribute is not supported when accessing the Informix database
server.

Some options can only
be changed after the connect

Optionally set
keyword values

Environment attributes can
only be set before a
connection is allocated

SQLAllocHandle
(Connection)

SQLAllocHandle
(Environment)

SQLGetStmtAttr
(optional)

SQLSetStmtAttr

SQLSetConnectOption

SQLAllocHandle
(Statement)

SQLDriverConnectSQLConnect

SQLGetConnectAttr

SQLGetEnvAttr

(optional)

(optional)

SQLSetConnectAttr

SQLSetEnvAttr

SQLSetConnectAttr

Figure 1. Setting and retrieving attributes (options)

Environment attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 429

SQL_ATTR_CONNECTTYPE
This attribute replaces the SQL_CONNECTTYPE attribute. A 32-bit integer
value that specifies whether this application is to operate in a coordinated
or uncoordinated distributed environment. The possible values are:
v SQL_CONCURRENT_TRANS: The application can have concurrent

multiple connections to any one database or to multiple databases. Each
connection has its own commit scope. No effort is made to enforce the
coordination of the transaction. If an application issues a commit by
using the environment handle on SQLEndTran() and not all of the
connections commit successfully, the application is responsible for
recovery. This is the default.

v SQL_COORDINATED_TRANS: The application can coordinate commit
and rollbacks among multiple database connections. This option setting
corresponds to the specification of the Type 2 CONNECT in embedded
SQL. In contrast to the SQL_CONCURRENT_TRANS setting that was
previously described, the application is permitted only one open
connection per database.

Note: This connection type results in the default for the
SQL_ATTR_AUTOCOMMIT connection option to be
SQL_AUTOCOMMIT_OFF.

If you change this attribute from the default, you must set it before any
connections are established on the environment handle.

Application typically set this attribute as an environment attribute with a
call to SQLSetEnvAttr() function. The SQLSetEnvAttr() function is called as
soon as the environment handle is allocated. However, because ODBC
applications cannot access SQLSetEnvAttr() function, ODBC applications
must set this attribute using SQLSetConnectAttr() function after each
connection handle is allocated, but before any connections are established.

All connections on an environment handle must have the same
SQL_ATTR_CONNECTTYPE setting. An environment cannot have both
concurrent and coordinated connections. The type of the first connection
determines the type of all subsequent connections. SQLSetEnvAttr() returns
an error if an application attempts to change the connection type while
there is an active connection.

You can also set the default connect type by using the “ConnectType
CLI/ODBC configuration keyword” on page 343.

The SQL_ATTR_CONNECTTYPE attribute is an IBM defined extension.

SQL_ATTR_CP_MATCH
This attribute was deprecated in DB2 database version 8.

This attribute is not supported when accessing the Informix database
server.

SQL_ATTR_DIAGLEVEL

Description
A 32-bit integer value which represents the diagnostic level. This is
equivalent to the database manager DIAGLEVELparameter.

Values
Valid values are: 0, 1, 2, 3, or 4. (The default value is 3.)

Environment attributes (CLI) list

430 Call Level Interface Guide and Reference, Volume 2

Usage notes
You must set this attribute before any connection handles are
created.

SQL_ATTR_DIAGPATH

Description
A pointer to a null-terminated character string that contains the
name of the directory where diagnostic data is to be placed. This is
equivalent to the database manager DIAGPATH parameter.

Values
The default value is the db2dump directory on UNIX and Linux
operating systems, and the db2 directory on Windows operating
systems.

Usage notes
You must set this attribute before any connection handles are
created.

SQL_ATTR_INFO_ACCTSTR

Description
A pointer to a null-terminated character string that is used to
identify the client accounting string that is sent to the data server
when DB2 Connect or DB2 for Linux, UNIX, and Windows is used.

Values
Some servers might not be able to handle the entire length of the
value and might truncate the value. DB2 for z/OS and DB2
Universal Database for z/OS and OS/390 servers support up to
200 characters. In DB2 Version 9.7 Fix Pack 6 and later, a CLI
application can set the SQL_ATTR_INFO_ACCTSTR attribute on
DB2 for i V6R1 and later servers. DB2 for i servers support a
length of up to 255 characters. To ensure that the data is converted
correctly when transmitted to a host system, use only the
characters A - Z and 0 - 9 and the underscore (_) or period (.).

The SQL_ATTR_INFO_ACCTSTR attribute is an IBM-defined
extension.

SQL_ATTR_INFO_APPLNAME

Description
A pointer to a null-terminated character string that is used to
identify the client application name that is sent to the data server
when DB2 Connect or DB2 for Linux, UNIX, and Windows is used.

Values
Some servers might not be able to handle the entire length of the
value and might truncate the value. DB2 for z/OS and DB2
Universal Database for z/OS and OS/390 servers support up to 32
characters. In DB2 Version 9.7 Fix Pack 6 and later, a CLI
application can set the SQL_ATTR_INFO_APPLNAME attribute on
DB2 for i V6R1 and later servers. DB2 for i servers support a
length of up to 255 characters. To ensure that the data is converted
correctly when transmitted to a host system, use only the
characters A - Z and 0 - 9 and the underscore (_) or period (.).

The SQL_ATTR_INFO_APPLNAME attribute is an IBM defined
extension.

Environment attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 431

SQL_ATTR_INFO_USERID

Description
A pointer to a null-terminated character string that is used to
identify the client user ID that is sent to the data server when DB2
Connect or DB2 for Linux, UNIX, and Windows is used.

Values
Some servers might not be able to handle the entire length of the
value and might truncate the value. DB2 for z/OS and DB2
Universal Database for z/OS and OS/390 servers support up to 16
characters. In DB2 Version 9.7 Fix Pack 6 and later, a CLI
application can set the SQL_ATTR_INFO_USERID attribute on DB2
for i V6R1 and later servers. DB2 for i servers support a length of
up to 255 characters.

Do not confuse the client user ID with the authentication user ID.
The client user ID is for identification purposes only and is not
used for any authorization. To ensure that the data is converted
correctly when transmitted to a host system, use only the
characters A - Z and 0 - 9 and the underscore (_) or period (.).

The SQL_ATTR_INFO_USERID attribute is an IBM defined
extension.

SQL_ATTR_INFO_WRKSTNNAME

Description
A pointer to a null-terminated character string that is used to
identify the client workstation name that is sent to the data server
when using DB2 Connect or DB2 for Linux, UNIX, and Windows is
used.

Values
Some servers might not be able to handle the entire length of the
value and might truncate the value. DB2 for z/OS and DB2
Universal Database for z/OS and OS/390 servers support up to 18
characters. In DB2 Version 9.7 Fix Pack 6 and later, a CLI
application can set the SQL_ATTR_INFO_WRKSTNNAME
attribute on DB2 for i V6R1 and later servers. DB2 for i servers
support a length of up to 255 characters. To ensure that the data is
converted correctly when transmitted to a host system, use only
the characters A - Z and 0 - 9 and the underscore (_) or period (.).

The SQL_ATTR_INFO_WRKSTNNAME attribute is an IBM
defined extension.

In DB2 Version 9.7 Fix pack 6 and later, if
SQL_ATTR_INFO_WRKSTNNAME attribute is not specified, default value
that consists of the host name is used. The host name is obtained
by gethostname() function call. If host name is not configured or
an error is encountered during the gethostname() function call, no
value for the SQL_ATTR_INFO_WRKSTNNAME attribute is sent to the
server.

SQL_ATTR_MAXCONN
This attribute was deprecated in DB2 Version 8.

This attribute is not supported when accessing the Informix database
servers.

SQL_ATTR_NOTIFYLEVEL

Environment attributes (CLI) list

432 Call Level Interface Guide and Reference, Volume 2

Description
A 32-bit integer value that represents the notification level. This is
equivalent to the database manager NOTIFYLEVEL parameter.

Values
Valid values are: 0, 1, 2, 3, or 4. (The default value is 3.)

Usage notes
You must set this attribute value before any connection handles are
created.

This attribute is not supported when accessing the Informix database
servers.

SQL_ATTR_ODBC_VERSION

Description
A 32-bit integer that determines whether certain functionality
exhibits ODBC 2.x (CLI v2) behavior or ODBC 3.0 (CLI v5)
behavior. ODBC applications must set this environment attribute
before calling any function that has an SQLHENV argument, or the
call will return SQLSTATE HY010 (Function sequence error.).

Values
The listed values are used to set the value of this attribute:
v SQL_OV_ODBC3: Causes the listed ODBC 3.0 (CLI v5) behavior:

– CLI returns and expects ODBC 3.0 (CLI v5) codes for date,
time, and timestamp.

– CLI returns ODBC 3.0 (CLI v5) SQLSTATE codes when
SQLError(), SQLGetDiagField(), or SQLGetDiagRec() functions
are called.

– The CatalogName argument in a call to SQLTables() function
accepts a search pattern.

v SQL_OV_ODBC2: Causes the listed ODBC 2.x (CLI v2) behavior:
– CLI returns and expects ODBC 2.x (CLI v2) codes for date,

time, and timestamp.
– CLI returns ODBC 2.0 (CLI v2) SQLSTATE codes when

SQLError(), SQLGetDiagField(), or SQLGetDiagRec() functions
are called.

– The CatalogName argument in a call to SQLTables() function
does not accept a search pattern.

v SQL_OV_ODBC3_80: Causes the listed ODBC 3.0 (CLI v5)
behavior:
– CLI returns and expects ODBC 3.x codes for date, time, and

timestamp.
– CLI returns ODBC 3.x SQLSTATE codes when SQLError(),

SQLGetDiagField(), or SQLGetDiagRec() functions are called.
– The CatalogName argument in a call to SQLTables() function

accepts a search pattern.

SQL_ATTR_OUTPUT_NTS

Description
A 32-bit integer value that controls the use of null-termination in
output arguments.

Values
The possible values are:

Environment attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 433

v SQL_TRUE: CLI uses null termination to indicate the length of
output character strings (default).

v SQL_FALSE: CLI does not use null termination in output
character strings.

The CLI functions that are affected by this attribute are all of the
functions that are called for the environment (and for any
connections and statements that are allocated under the
environment) that have character string parameters.

You can only set this attribute when there are no connection
handles that are allocated under this environment.

SQL_ATTR_PROCESSCTL

Description
A 32-bit mask that sets process-level attributes, which affect all
environments and connections for the process. You must set this
attribute before the environment handle is allocated.

The call to SQLSetEnvAttr() must have the EnvironmentHandle
argument set to SQL_NULL_HANDLE. The settings remain in
effect for the duration of the process. Generally, use this attribute
only for performance sensitive applications, where large numbers
of CLI function calls are being made. Before setting any of these
bits, ensure that the application, and any other libraries that the
application calls, comply with the restrictions that are listed.

Values

You can combine the listed values to form a bit mask:
v SQL_PROCESSCTL_NOTHREAD - This bit indicates that the

application does not use multiple threads, or if it does use
multiple threads, guarantees that all DB2 calls are serialized by
the application. If set, CLI does not make any system calls to
serialize calls to CLI, and sets the DB2 context type to
SQL_CTX_ORIGINAL.

v SQL_PROCESSCTL_NOFORK - This bit indicates that the
application will never fork a child process. By default, CLI does
not check to see if an application forks a child process. However,
if the CheckForFork CLI/ODBC configuration keyword is set,
CLI checks the current process ID for each function call for all
applications that are connecting to the database for which the
keyword is enabled. You can set this attribute so that CLI does
not check for forked processes for that application.

The SQL_ATTR_PROCESSCTL attribute is an IBM defined
extension.

SQL_ATTR_RESET_CONNECTION

Description
A 32-bit unsigned integer value that specifies whether the ODBC
Driver Manager notifies the ODBC drivers that a connection has
been placed in the connection pool on Windows operating systems.
If the SQL_ATTR_ODBC_VERSION environment attribute is set to
SQL_OV_ODBC3_80, the ODBC Driver Manager sets this attribute
before placing a connection in the connection pool so that the

Environment attributes (CLI) list

434 Call Level Interface Guide and Reference, Volume 2

driver can reset the other connection attributes to their default
values. This connection attribute is available in Version 9.7 Fix Pack
5 and later fix packs.

Values
The only possible value is:
v SQL_RESET_CONNECTION_YES (default): The ODBC Driver

Manager notifies the ODBC drivers that a connection has been
placed in the connection pool.

Note: You should use SQL_ATTR_RESET_CONNECTION only for
communication between the ODBC Driver Manager and an ODBC driver.
You should not set this attribute from an application because all connection
attributes will be reset to their default value. For example, any connection
attribute values that you set by using the SQLSetConnectAttr () function
will be reset to CLI default values and your application could behave
unexpectedly.

SQL_ATTR_SYNC_POINT
This attribute was deprecated in DB2 database version 8.

This attribute is not supported when accessing the Informix database
servers.

SQL_ATTR_TRACE

Description
A pointer to a null-terminated character string that is used to turn
on the CLI/ODBC trace facility.

Values
The string must include the CLI keywords TRACE and
TRACEPATHNAME. For example:
"TRACE=1; TRACEPATHNAME=<dir>;"

Usage notes

This attribute is not supported when accessing the Informix
database servers.

SQL_ATTR_TRACENOHEADER

Description
A 32-bit integer value that specifies whether header information is
included in the CLI trace file.

Values
The possible values are:
v 0 - Header information is included in the CLI trace file.
v 1 - No header information is included in the CLI trace file.

You can use the SQL_ATTR_TRACENOHEADER attribute with an
SQL_NULL_HANDLE or with a valid environment handle.

SQL_ATTR_USE_2BYTES_OCTET_LENGTH
This attribute is deprecated in DB2 database version 8.

This attribute is not supported when accessing the Informix database
servers.

SQL_ATTR_USE_LIGHT_OUTPUT_SQLDA
Setting this attribute is equivalent to setting the connection attribute
SQL_ATTR_DESCRIBE_OUTPUT_LEVEL to 0.

Environment attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 435

SQL_ATTR_USE_LIGHT_OUTPUT_SQLDA is deprecated and applications
should now use the connection attribute
SQL_ATTR_DESCRIBE_OUTPUT_LEVEL.

SQL_ATTR_USER_REGISTRY_NAME

Description
This attribute is used only when authenticating a user on a server
that is using an identity mapping service.

Values
The SQL_ATTR_USER_REGISTRY_NAME attribute is set to a user
defined string that names an identity mapping registry. The format
of the name varies depending on the identity mapping service. By
providing this attribute you tell the server that the user name that
is provided can be found in this registry.

After setting this attribute, the value is used on subsequent
attempts to establish a normal connection, establish a trusted
connection, or switch the user ID on a trusted connection.

Usage notes

This attribute is not supported when accessing the Informix
database servers.

SQL_CONNECTTYPE
This Attribute is replaced with SQL_ATTR_CONNECTTYPE.

SQL_MAXCONN
This Attribute is replaced with SQL_ATTR_MAXCONN.

SQL_SYNC_POINT
This Attribute is replaced with SQL_ATTR_SYNC_POINT.

This attribute is not supported when accessing the Informix database
servers.

Connection attributes (CLI) list

The following table indicates when each of the CLI connection attributes can be
set. A "Yes" in the "After statements allocated" column means that the connection
attribute can be set both before and after the statements are allocated.

Table 166. When connection attributes can be set

Attribute
Before
connection

After
connection

After
statements
allocated

SQL_ATTR_ACCESS_MODE Yes Yes Yes a

SQL_ATTR_ALLOW_INTERLEAVED_GETDATA Yes Yes Yes
SQL_ATTR_ANSI_APP Yes No No
SQL_ATTR_APP_USES_LOB_LOCATOR Yes Yes Yesc

SQL_ATTR_APPEND_FOR_FETCH_ONLY Yes Yes No
SQL_ATTR_ASYNC_ENABLE Yes Yes Yesa

SQL_ATTR_AUTO_IPD (read-only) No No No
SQL_ATTR_AUTOCOMMIT Yes Yes Yes b

SQL_ATTR_CLIENT_CODEPAGE Yes No No
SQL_ATTR_COLUMNWISE_MRI Yes Yes Yes a

SQL_ATTR_COMMITONEOF Yes Yes No
SQL_ATTR_CONCURRENT_ACCESS_RESOLUTION Yes Yes Yes a

Environment attributes (CLI) list

436 Call Level Interface Guide and Reference, Volume 2

Table 166. When connection attributes can be set (continued)

Attribute
Before
connection

After
connection

After
statements
allocated

SQL_ATTR_CONN_CONTEXT Yes No No
SQL_ATTR_CONNECT_NODE Yes No No
SQL_ATTR_CONNECTION_DEAD (read-only) No No No
SQL_ATTR_CONNECTTYPE Yes No No
SQL_ATTR_CURRENT_CATALOG (read-only) No No No
SQL_ATTR_CURRENT_IMPLICIT_XMLPARSE_OPTION Yes Yes Yes
SQL_ATTR_CURRENT_PACKAGE_PATH Yes Yes Yes
SQL_ATTR_CURRENT_PACKAGE_SET Yes Yes a No *

SQL_ATTR_CURRENT_SCHEMA Yes Yes Yes
SQL_ATTR_DB2_APPLICATION_HANDLE (read-only) No No No
SQL_ATTR_DB2_APPLICATION_ID (read-only) No No No
SQL_ATTR_DB2_SQLERRP (read-only) No No No
SQL_ATTR_DB2EXPLAIN No Yes Yes
SQL_ATTR_DECFLOAT_ROUNDING_MODE Yes Yes Yes
SQL_ATTR_DESCRIBE_CALL Yes Yes Yesa

SQL_ATTR_DESCRIBE_OUTPUT_LEVEL Yes Yes No
SQL_ATTR_ENLIST_IN_DTC No Yes Yes
SQL_ATTR_EXTENDED_INDICATORS No Yes Yes
SQL_ATTR_FET_BUF_SIZE Yes No No
SQL_ATTR_FREE_LOCATORS_ON_FETCH Yes Yes Yes
SQL_ATTR_FORCE_ROLLBACK Yes Yes Yes
SQL_ATTR_GET_LATEST_MEMBER No Yes Yes
SQL_ATTR_INFO_ACCTSTR Yes d Yes Yes
SQL_ATTR_INFO_APPLNAME Yes d Yes Yes
SQL_ATTR_INFO_PROGRAMID Yes d Yes Yes a

SQL_ATTR_INFO_PROGRAMNAME Yes No No
SQL_ATTR_INFO_USERID Yes d Yes Yes
SQL_ATTR_INFO_WRKSTNNAME Yes d Yes Yes
SQL_ATTR_KEEP_DYNAMIC No Yes Yes
SQL_ATTR_LOB_CACHE_SIZE Yes Yes Yesc

SQL_ATTR_LOGIN_TIMEOUT Yes No No
SQL_ATTR_LONGDATA_COMPAT Yes Yes Yes
SQL_ATTR_MAX_LOB_BLOCK_SIZE Yes Yes Yesc

SQL_ATTR_MAPCHAR Yes Yes Yes
SQL_ATTR_NETWORK_STATISTICS Yes Yes Yes
SQL_ATTR_OVERRIDE_CHARACTER_CODEPAGE No Yes No
SQL_ATTR_OVERRIDE_CODEPAGE No Yes No
SQL_ATTR_PARC_BATCH Yes Yes Yes*

SQL_ATTR_PING_DB (read only) No No No
SQL_ATTR_PING_NTIMES Yes Yes Yes
SQL_ATTR_PING_REQUEST_PACKET_SIZE Yes Yes Yes
SQL_ATTR_QUIET_MODE Yes Yes Yes
SQL_ATTR_RECEIVE_TIMEOUT Yes Yes Yes
SQL_ATTR_REOPT No Yes Yesc

SQL_ATTR_REPORT_ISLONG_FOR_LONGTYPES_OLEDB Yes Yes Yes
SQL_ATTR_REPORT_SEAMLESSFAILOVER_WARNING Yes Yes Yes*

SQL_ATTR_REPORT_TIMESTAMP_TRUNC_AS_WARN Yes Yes Yes
SQL_ATTR_RETRYONERROR Yes Yes Yes
SQL_ATTR_SERVER_MSGTXT_MASK Yes Yes Yes
SQL_ATTR_SERVER_MSGTXT_SP Yes Yes Yes
SQL_ATTR_SESSION_TIME_ZONE Yes No No

Connection attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 437

Table 166. When connection attributes can be set (continued)

Attribute
Before
connection

After
connection

After
statements
allocated

SQL_ATTR_SQLCODEMAP Yes No No
SQL_ATTR_SQLCOLUMNS_SORT_BY_ORDINAL_OLEDB Yes Yes Yes
SQL_ATTR_STMT_CONCENTRATOR Yes Yes Yes
SQL_ATTR_STREAM_GETDATA Yes Yes Yesc

SQL_ATTR_TRUSTED_CONTEXT_PASSWORD No Yes Yes
SQL_ATTR_TRUSTED_CONTEXT_USERID No Yes Yes
SQL_ATTR_TXN_ISOLATION No Yes b Yes a

SQL_ATTR_USE_TRUSTED_CONTEXT Yes No No
SQL_ATTR_USER_REGISTRY_NAME Yes No No
SQL_ATTR_WCHARTYPE Yes Yes b Yes b

SQL_ATTR_XML_DECLARATION Yes Yes Yes a

a Only affect subsequently allocated statements.
b Attribute can be set only if there are no open transactions on the connection.
c Attribute can be set only if there are no open cursors on the connection. The attribute affects all statements.
d In DB2 Version 9.7 Fix Pack 6 and later client, you can set the attribute on DB2 for i V6R1 and later. The

attribute can also be set on DB2 for z/OS, DB2 for Linux, UNIX, and Windows, and IBM Informix from the
DB2 Version 9.7 GA client.

* Setting this attribute after statements have been allocated will not result in an error. However, determining
which packages are used by which statements are ambiguous and unexpected behavior might occur. You
should not set this attribute after statements have been allocated.

Attribute
ValuePtr contents

SQL_ATTR_ACCESS_MODE
A 32-bit integer value which can be either:
v SQL_MODE_READ_ONLY: the application is indicating that it will not

be performing any updates on data from this point on. Therefore, a less
restrictive isolation level and locking can be used on transactions:
uncommitted read (SQL_TXN_READ_UNCOMMITTED). CLI does not
ensure that requests to the database are read-only. If an update request is
issued, CLI will process it using the transaction isolation level it has
selected as a result of the SQL_MODE_READ_ONLY setting.

v SQL_MODE_READ_WRITE (default): the application is indicating that
it will be making updates on data from this point on. CLI will go back
to using the default transaction isolation level for this connection.

There must not be any outstanding transactions on this connection.

SQL_ATTR_ALLOW_INTERLEAVED_GETDATA
Specifies whether the application can call SQLGetData() for previously
accessed LOB columns and maintain the data offset position from the
previous call to SQLGetData() when querying data servers that support
Dynamic Data Format. This attribute has one of the following values:
v SQL_ALLOW_INTERLEAVED_GETDATA_OFF - This default setting

does not allow applications to call SQLGetData() for previously accessed
LOB columns.

v SQL_ALLOW_INTERLEAVED_GETDATA_ON - This keyword only
affects connections to database servers that support Dynamic Data
Format, also known as progressive streaming. Specify this option to

Connection attributes (CLI) list

438 Call Level Interface Guide and Reference, Volume 2

allow applications to call SQLGetData() for previously accessed LOB
columns and start reading LOB data from where the application stopped
reading during the previous read.

Setting the “AllowInterleavedGetData CLI/ODBC configuration keyword”
on page 325 is an alternative method of specifying this behavior at the
connection level.

SQL_ATTR_ANSI_APP
A 32-bit unsigned integer that identifies an application as an ANSI or
Unicode application. This attribute has either of the following values:
v SQL_AA_TRUE (default): the application is an ANSI application. All

character data is passed to and from the application in the native
application (client) codepage using the ANSI version of the CLI/ODBC
functions.

v SQL_AA_FALSE: the application is a Unicode application. All character
data is passed to and from the application in Unicode when the Unicode
(W) versions of the CLI/ODBC functions are called.

SQL_ATTR_APP_USES_LOB_LOCATOR
A 32-bit unsigned integer that indicates if applications are using LOB
locators. This attribute has either of the following values:
v 1 (default): Indicates that applications are using LOB locators.
v 0: For applications that do not use LOB locators and are querying data

on a server that supports Dynamic Data Format, also known as
progressive streaming, specify 0 to indicate that LOB locators are not
used and allow the return of LOB data to be optimized.

This keyword is ignored for stored procedure result sets.

If the keyword is set to 0 and an application binds a LOB locator to a
result set using SQLBindCol(), an Invalid conversion error will be returned
by the SQLFetch() function.

Setting the “AppUsesLOBLocator CLI/ODBC configuration keyword” on
page 327 is an alternative method of specifying this behavior.

SQL_ATTR_APPEND_FOR_FETCH_ONLY
By default, CLI appends the "FOR FETCH ONLY" clause to read SELECT
statements when connected to DB2 for z/OS or IBM DB2 for IBM i (DB2
for i) databases.

This attribute allows an application to control at a connection level when
CLI appends the "FOR FETCH ONLY" clause. For example, an application
is binding the CLI packages using different bind BLOCKING options (for
example, BLOCKING UNAMBIG) and wants to suppress the blocking in
order to keep positioned on a given row.

To change the default CLI behavior, the keyword is set as follows:
v 0: CLI never appends the "FOR FETCH ONLY" clause to read SELECT

statements regardless of the server type it is connecting to.
v 1: CLI always appends the "FOR FETCH ONLY" clause to read SELECT

statements regardless of the server type it is connecting to.

The attribute should be set either after the connection is allocated or
immediately after it is established and should be set once for the duration
of the execution of the application. Application can query the attribute
with SQLGetConnectAttr() after connection is established or after this
attribute is set.

Connection attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 439

Setting the “AppendForFetchOnly CLI/ODBC configuration keyword” on
page 328 is an alternative method of specifying this behavior.

SQL_ATTR_ASYNC_ENABLE
A 32-bit integer value that specifies whether a function called with a
statement on the specified connection is executed asynchronously:
v SQL_ASYNC_ENABLE_OFF (default) = Off
v SQL_ASYNC_ENABLE_ON = On

Setting SQL_ASYNC_ENABLE_ON enables asynchronous execution for all
statement handles allocated on this connection. An error is returned if
asynchronous execution is turned on while there is an active statement on
the connection.

This attribute can be set whether SQLGetInfo(), called with the InfoType
SQL_ASYNC_MODE, returns SQL_AM_CONNECTION or
SQL_AM_STATEMENT.

Once a function has been called asynchronously, only the original function,
SQLAllocHandle(), SQLCancel(), SQLGetDiagField(), or SQLGetDiagRec()
can be called on the statement or the connection associated with
StatementHandle, until the original function returns a code other than
SQL_STILL_EXECUTING. Any other function called on StatementHandle or
the connection associated with StatementHandle returns SQL_ERROR with
an SQLSTATE of HY010 (Function sequence error).

The following functions can be executed asynchronously:
SQLBulkOperations(), SQLColAttribute(), SQLColumnPrivileges(),
SQLColumns(), SQLDescribeCol(), SQLDescribeParam(), SQLExecDirect(),
SQLExecute(), SQLExtendedFetch(), SQLExtendedPrepare(), SQLFetch(),
SQLFetchScroll(), SQLForeignKeys(), SQLGetData(), SQLGetLength(),
SQLGetPosition(), SQLMoreResults(), SQLNumResultCols(), SQLParamData(),
SQLPrepare(), SQLPrimaryKeys(), SQLProcedureColumns(), SQLProcedures(),
SQLRowCount(), SQLSetPos(), SQLSpecialColumns(), SQLStatistics(),
SQLTablePrivileges(), SQLTables().

Note: Any Unicode equivalent of a function stated above can be called
asynchronously.

SQL_ATTR_AUTO_IPD
A read-only 32-bit unsigned integer value that specifies whether automatic
population of the IPD after a call to SQLPrepare() is supported:
v SQL_TRUE = Automatic population of the IPD after a call to

SQLPrepare() is supported by the server.
v SQL_FALSE = Automatic population of the IPD after a call to

SQLPrepare() is not supported by the server. Servers that do not support
prepared statements will not be able to populate the IPD automatically.

If SQL_TRUE is returned for the SQL_ATTR_AUTO_IPD connection
attribute, the statement attribute SQL_ATTR_ENABLE_AUTO_IPD can be
set to turn automatic population of the IPD on or off. If
SQL_ATTR_AUTO_IPD is SQL_FALSE, SQL_ATTR_ENABLE_AUTO_IPD
cannot be set to SQL_TRUE.

The default value of SQL_ATTR_ENABLE_AUTO_IPD is equal to the value
of SQL_ATTR_AUTO_IPD.

This connection attribute can be returned by SQLGetConnectAttr(), but
cannot be set by SQLSetConnectAttr().

Connection attributes (CLI) list

440 Call Level Interface Guide and Reference, Volume 2

SQL_ATTR_AUTOCOMMIT
A 32-bit unsigned integer value that specifies whether to use auto-commit
or manual commit mode:
v SQL_AUTOCOMMIT_OFF: the application must manually, explicitly

commit or rollback transactions with SQLEndTran() calls.
v SQL_AUTOCOMMIT_ON (default): CLI operates in auto-commit mode

by default. Each statement is implicitly committed. Each statement that
is not a query is committed immediately after it has been executed or
rolled back if failure occurred. Each query is committed immediately
after the associated cursor is closed.

Note: If this is a coordinated distributed unit of work connection, then
the default is SQL_AUTOCOMMIT_OFF

Since in many DB2 environments, the execution of the SQL statements and
the commit might be flowed separately to the database server, autocommit
can be expensive. It is recommended that the application developer take
this into consideration when selecting the auto-commit mode.

Note: Changing from manual commit to auto-commit mode will commit
any open transaction on the connection.

SQL_ATTR_CLIENT_CODEPAGE
A 32-bit unsigned integer value that specifies connection level codepage.
Specifying this attribute will override any environment level default
codepage setting.

Example 1: Setting the codepage to be used by this database connection
SQLINTEGER iUnicode = 1208;
cliRC = SQLSetConnectAttr(hdbc,

SQL_ATTR_CLIENT_CODEPAGE,
(SQLPOINTER)iUnicode,

SQL_IS_INTEGER);

SQL_ATTR_CLIENT_LOB_BUFFERING

Specifies whether LOB locators or the underlying LOB data is returned in a
result set for LOB columns that are not bound. By default, locators are
returned. If an application usually fetches unbound LOBs and then must
retrieve the underlying LOB data, the application's performance can be
improved by retrieving the LOB data from the outset; this reduces the
number of synchronous waits and network flows. The possible values for
this attribute are:
v SQL_CLIENTLOB_USE_LOCATORS (default) - LOB locators are

returned
v SQL_CLIENTLOB_BUFFER_UNBOUND_LOBS - actual LOB data is

returned

SQL_ATTR_CLIENT_TIME_ZONE
A null-terminated character string in the format ±hh:mm, containing the
Time Zone information. Specifying this attribute will override the default
Operating System Time Zone value of Client host.

SQL_ATTR_COLUMNWISE_MRI
A 32-bit unsigned integer that enables CLI applications connected to DB2
for z/OS servers to convert array input chaining into column-wise array
input for INSERT operations. This attribute is available starting in Version
9.7 Fix Pack 5. The possible values are as follows:

Connection attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 441

v SQL_COLUMNWISE_MRI_OFF (default): CLI does not convert
chaining data to column-wise array input.

v SQL_COLUMNWISE_MRI_ON: CLI converts array input chaining to
column-wise array input. The Multi-Row Insert (MRI) feature in DB2 for
z/OS expects data to be in column-wise array form. If your application
uses array input chaining, this conversion helps you optimize your
application performance because data is sent in a compact array form
each time you call SQLExecute (). For more information about array
input chaining, see SQL_ATTR_CHAINING_BEGIN.

For non-DB2 for z/OS servers, CLI automatically converts chaining data to
row-wise array input and setting this attribute has no effect.

The conversion is not performed in the following cases:
v Bind parameters with a LOB data type such as SQL_CLOB, SQL_BLOB,

SQL_LONGVARBINARY, SQL_LONGVARGRAPHIC, SQL_DBCLOB, or
SQL_XML.

v Bind input data-at-execute parameters by setting their value to
SQL_DATA_AT_EXEC to pass data to INSERT operations by calling the
SQLPutData() and SQLParamData() functions.

v Space to store all the application data in the internal buffers is not
available.

SQL_ATTR_COMMITONEOF
A 32-bit integer value that specifies whether or not to issue an implicit
COMMIT immediately after reading the an entire result set and receiving
an EOF. This connection attribute is available starting in Version 9.7 Fix
Pack 5. The possible values for this attribute are:
v SQL_ COMMITONEOF_OFF (default): A COMMIT is not implicitly

issued after reading the entire result set. You have to explicitly call the
SQLFreeStmt() function to close the cursor and release resources.

v SQL_ COMMITONEOF_ON: An implicit COMMIT is issued after
reading the entire result set.

Note: Usage of this attribute does not replace the required call to the
SQLFreeStmt() function.

SQL_ATTR_CONCURRENT_ACCESS_RESOLUTION
A 32-bit integer value that specifies the concurrent access resolution to use
at the statement level. This setting overrides the default behavior specified
for cursor stability (CS) scans.
v 0 = No setting. The client does not supply a prepare option.
v 1 = Use currently committed semantics. CLI flows "currently committed"

on every prepare, which means that the database manager can use the
currently committed version of the data for applicable scans when the
data is in the process of being updated or deleted. Rows in the process
of being inserted can be skipped. This setting applies when the isolation
level in effect is Cursor Stability or Read Stability (for Read Stability it
skips uncommitted inserts only) and is ignored otherwise. Applicable
scans include read-only scans that can be part of a read-only statement
as well as a non read-only statement. The settings for the registry
variables DB2_EVALUNCOMMITTED, DB2_SKIPDELETED, and DB2_SKIPINSERTED
do not apply to scans using currently committed. However, the settings
for these registry variables still apply to scans that do not use currently
committed.

Connection attributes (CLI) list

442 Call Level Interface Guide and Reference, Volume 2

v 2 = Wait for outcome. CLI flows "wait for outcome" on every prepare,
which means that Cursor Stability and higher scans wait for the commit
or rollback when encountering data in the process of being updated or
deleted. Rows in the process of being inserted are not skipped. The
settings for the registry variables DB2_EVALUNCOMMITTED,
DB2_SKIPDELETED, and DB2_SKIPINSERTED no longer apply.

v 3 = Skip locked data. CLI flows "skip locked data" on every prepare,
which means that currently committed semantics are used and rows in
the process of being inserted are skipped. This option is not supported
on DB2 Database for Linux, UNIX, and Windows. If specified, this
setting is ignored.

For DB2 Database for Linux, UNIX, and Windows, use this attribute to
override the default behavior for currently committed that is defined by
the cur_commit configuration parameter. For DB2 for z/OS, use this
attribute to enable currently committed behavior. There is no equivalent
database configuration parameter available on DB2 for z/OS for specifying
this behavior.

Setting the “ConcurrentAccessResolution CLI/ODBC configuration
keyword” on page 340 is an alternative method of specifying this behavior.

SQL_ATTR_CONN_CONTEXT
Indicates which context the connection should use. An SQLPOINTER to
either:
v a valid context (allocated by the sqleBeginCtx() DB2 API) to set the

context
v a NULL pointer to reset the context

This attribute can only be used when the application is using the DB2
context APIs to manage multi-threaded applications. By default, CLI
manages contexts by allocating one context per connection handle, and
ensuring that any executing thread is attached to the correct context.

For more information about contexts, refer to the sqleBeginCtx() API.

This attribute is not supported when accessing Informix database server.

SQL_ATTR_CONNECT_NODE
A 32-bit integer that specifies the target logical partition of a DB2
Enterprise Server Edition database partition server that you want to
connect to. The possible values for this attribute are:
v an integer between 0 and 999
v SQL_CONN_CATALOG_NODE

If this variable is not set, the target logical node defaults to the logical
node which is defined with port 0 on the machine.

This attribute is not supported when accessing Informix database server.

There is also a corresponding keyword, the “ConnectNode CLI/ODBC
configuration keyword” on page 341.

SQL_ATTR_CONNECTION_DEAD
A read only 32-bit integer value that indicates whether or not the
connection is still active. CLI will return one of the following values:
v SQL_CD_FALSE - the connection is still active.
v SQL_CD_TRUE - an error has already happened and caused the

connection to the server to be terminated. The application should still
perform a disconnect to clean up any CLI resources.

Connection attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 443

This attribute is used mainly by the Microsoft ODBC Driver Manager 3.5x
before pooling the connection.

SQL_ATTR_CONNECTION_TIMEOUT
This connection attribute is defined by ODBC, but is not supported by CLI.
Any attempt to set or get this attribute will result in an SQLSTATE of
HYC00 (Driver not capable).

SQL_ATTR_CONNECTTYPE
A 32-bit integer value that specifies whether this application is to operate
in a coordinated or uncoordinated distributed environment. The possible
values are as follows:
v SQL_CONCURRENT_TRANS (default): The application can have

concurrent multiple connections to any one database or to multiple
databases. Each connection has its own commit scope. No effort is made
to enforce coordination of transactions. If an application issues a commit
using the environment handle on SQLEndTran() and not all of the
connections commit successfully, the application is responsible for
recovery.

v SQL_COORDINATED_TRANS: The application wishes to have commit
and rollbacks coordinated among multiple database connections. This
option setting corresponds to the specification of the Type 2 CONNECT
in embedded SQL. In contrast to the SQL_CONCURRENT_TRANS
setting described above, the application is permitted only one open
connection per database.

Note: This connection type results in the default for
SQL_ATTR_AUTOCOMMIT connection option to be
SQL_AUTOCOMMIT_OFF.

If changing this attribute from the default then it must be set before any
connections have been established on the environment handle.

It is recommended that the application set this attribute as an environment
attribute with a call to SQLSetEnvAttr(), if necessary, as soon as the
environment handle has been allocated. However, since ODBC applications
cannot access SQLSetEnvAttr(), they must set this attribute using
SQLSetConnectAttr() after each connection handle is allocated, but before
any connections have been established.

All connections on an environment handle must have the same
SQL_ATTR_CONNECTTYPE setting. An environment cannot have a
mixture of concurrent and coordinated connections. The type of the first
connection will determine the type of all subsequent connections.
SQLSetEnvAttr() will return an error if an application attempts to change
the connection type while there is an active connection.

The default connect type can also be set using the “ConnectType
CLI/ODBC configuration keyword” on page 343.

Note: This is an IBM defined extension.

SQL_ATTR_CURRENT_CATALOG
A null-terminated character string containing the name of the catalog used
by the data source. The catalog name is typically the same as the database
name.

Connection attributes (CLI) list

444 Call Level Interface Guide and Reference, Volume 2

This connection attribute can be returned by SQLGetConnectAttr(), but
cannot be set by SQLSetConnectAttr(). Any attempt to set this attribute
will result in an SQLSTATE of HYC00 (Driver not capable).

SQL_ATTR_CURRENT_IMPLICIT_XMLPARSE_OPTION
A null-terminated character string that is the string constant used to set the
CURRENT IMPLICIT XMLPARSE OPTION special register. Setting this
attribute causes the SET CURRENT IMPLICIT XMLPARSE OPTION SQL
statement to be issued. If this attribute is set before a connection has been
established, the SET CURRENT IMPLICIT XMLPARSE OPTION SQL
statement will be issued when the connection is made.

This attribute is not supported when accessing Informix database server.

SQL_ATTR_CURRENT_PACKAGE_PATH
A null-terminated character string of package qualifiers that the DB2
database server uses to try to resolve the package when multiple packages
have been configured. Setting this attribute causes the "SET CURRENT
PACKAGE PATH = schema1, schema2, ..." statement to be issued after every
connection to the database server.

This attribute is best suited for use with ODBC static processing
applications, rather than CLI applications.

This attribute is not supported when accessing Informix database server.

Note: This is an IBM defined extension.

SQL_ATTR_CURRENT_PACKAGE_SET

A null-terminated character string that indicates the schema name
(collection identifier) that is used to select the package for subsequent SQL
statements. Setting this attribute causes the SET CURRENT PACKAGESET
SQL statement to be issued. If this attribute is set before a connection, the
SET CURRENT PACKAGESET SQL statement will be issued at connection
time.

CLI/ODBC applications issue dynamic SQL statements. Using this
connection attribute, you can control the privileges used to run these
statements:
v Choose a schema to use when running SQL statements from CLI/ODBC

applications.
v Ensure the objects in the schema have the desired privileges and then

rebind accordingly. This typically means binding the CLI packages
(sqllib/bnd/db2cli.lst) using the COLLECTION <collid> option. Refer to
the BIND command for further details.

v Set the CURRENTPACKAGESET option to this schema.

The SQL statements from the CLI/ODBC applications will now run under
the specified schema and use the privileges defined there.

Setting the “CurrentPackageSet CLI/ODBC configuration keyword” on
page 346 is an alternative method of specifying the schema name.

The following package set names are reserved: NULLID, NULLIDR1,
NULLIDRA.

SQL_ATTR_REOPT and SQL_ATTR_CURRENT_PACKAGE_SET are
mutually exclusive, therefore, if one is set, the other is not allowed.

This attribute is not supported when accessing Informix database server.

Connection attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 445

SQL_ATTR_CURRENT_SCHEMA
A null-terminated character string containing the name of the schema to be
used by CLI for the SQLColumns() call if the szSchemaName pointer is set to
null.

To reset this option, specify this option with a zero length string or a null
pointer for the ValuePtr argument.

This option is useful when the application developer has coded a generic
call to SQLColumns() that does not restrict the result set by schema name,
but needs to constrain the result set at isolated places in the code.

This option can be set at any time and will be effective on the next
SQLColumns() call where the szSchemaName pointer is null.

Note: This is an IBM defined extension.

SQL_ATTR_DB2_APPLICATION_HANDLE
A user-defined character string that returns the application handle of the
connection. If the string is not large enough to contain the complete
application handle, it will be truncated.

This connection attribute can be returned by SQLGetConnectAttr(), but
cannot be set by SQLSetConnectAttr().

This attribute is not supported when accessing Informix database server.

SQL_ATTR_DB2_APPLICATION_ID
A user-defined character string that returns the application identifier of the
connection. If the string is not large enough to contain the complete
application identifier, it will be truncated.

This connection attribute can be returned by SQLGetConnectAttr(), but
cannot be set by SQLSetConnectAttr().

This attribute is not supported when accessing Informix database server.

SQL_ATTR_DB2_SQLERRP
A sqlpointer to a null-terminated string containing the sqlerrp field of the
sqlca.

Begins with a three-letter identifier indicating the product, followed by five
alphanumeric characters indicating the version, release, and modification
level of the product. The characters A-Z indicate a modification level
higher than 9. A indicates modification level 10, B indicates modification
level 11, and so on. For example, SQL0907C means DB2 Version 9 Release 7
Modification level 12.

If SQLCODE indicates an error condition, then this field identifies the
module that returned the error.

This field is also used when a successful connection is completed.

Note: This is an IBM defined extension.

SQL_ATTR_DB2ESTIMATE
This attribute has been deprecated in DB2 UDB Version 8.

SQL_ATTR_DB2EXPLAIN
A 32-bit integer that specifies whether Explain snapshot, Explain mode
information, or both should be generated by the server. Permitted values
are:

Connection attributes (CLI) list

446 Call Level Interface Guide and Reference, Volume 2

v SQL_DB2EXPLAIN_OFF: Both the Explain Snapshot and the Explain
table option facilities are disabled (a SET CURRENT EXPLAIN
SNAPSHOT=NO and a SET CURRENT EXPLAIN MODE=NO are sent
to the server).

v SQL_DB2EXPLAIN_SNAPSHOT_ON: The Explain Snapshot facility is
enabled, and the Explain table option facility is disabled (a SET
CURRENT EXPLAIN SNAPSHOT=YES and a SET CURRENT EXPLAIN
MODE=NO are sent to the server).

v SQL_DB2EXPLAIN_MODE_ON: The Explain Snapshot facility is
disabled, and the Explain table option facility is enabled (a SET
CURRENT EXPLAIN SNAPSHOT=NO and a SET CURRENT EXPLAIN
MODE=YES are sent to the server).

v SQL_DB2EXPLAIN_SNAPSHOT_MODE_ON: Both the Explain Snapshot
and the Explain table option facilities are enabled (a SET CURRENT
EXPLAIN SNAPSHOT=YES and a SET CURRENT EXPLAIN
MODE=YES are sent to the server).

Before the explain information can be generated, the explain tables must be
created.

This statement is not under transaction control and is not affected by a
ROLLBACK. The new SQL_ATTR_DB2EXPLAIN setting is effective on the
next statement preparation for this connection.

The current authorization ID must have INSERT privilege for the Explain
tables.

The default value can also be set using the “DB2Explain CLI/ODBC
configuration keyword” on page 349.

This attribute is not supported when accessing Informix database server.

Note: This is an IBM defined extension.

SQL_ATTR_DECFLOAT_ROUNDING_MODE

The decimal float rounding mode determines what type of rounding will
be used if a value is put into a DECFLOAT variable or column but the
value has more digits than are allowed in the DECFLOAT data type. This
can occur when inserting, updating, selecting, converting from another
type, or as the result of a mathematical operation.

The value of SQL_ATTR_DECFLOAT_ROUNDING_MODE determines the
decimal float rounding mode that will be used for new connections unless
another mode is specified by a connection attribute for that connection. For
any given connection both CLI and DB2 will use the same decimal float
rounding mode for all action initiated as part of that connection.

When your applications are connecting to a DB2 Database for Linux,
UNIX, and Windows Version 9.5 server, you must set the decimal float
rounding mode on the database client to the same mode that is set on the
server. If you set the decimal float rounding mode on the client to a value
that is different from the decimal float rounding mode that is set on the
database server, the database server will return SQL0713N on connection.

The settings correspond to these decimal float rounding modes:
v 0 = Half even (default)
v 1 = Half up
v 2 = Down

Connection attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 447

v 3 = Ceiling
v 4 = Floor

The different modes are:

Half even (default)
In this mode CLI and DB2 use the number that will fit in the target
variable and that is closest to the original value. If two numbers
are equally close, they use the one that is even. This mode
produces the smallest rounding errors over large amounts of data.

Half up
In this mode CLI and DB2 use the number that will fit in the target
variable and that is closest to the original value. If two numbers
are equally close, they use the one that is greater than the original
value.

Down In this mode CLI and DB2 use the number that will fit in the target
variable and that is closest to the original value and for which the
absolute value is not greater than the absolute value of the original
value. You can also think of this as rounding toward zero or as
using ceiling for negative values and using floor for positive
values.

Ceiling
In this mode CLI and DB2 use the smallest number that will fit in
the target variable and that is greater than or equal to the original
value.

Floor In this mode CLI and DB2 use the largest number that will fit in
the target variable and that is less than or equal to the original
value.

This attribute is not supported when accessing IDS data servers.

SQL_ATTR_DESCRIBE_CALL
A 32-bit integer value that indicates when stored procedure arguments are
described. By default, CLI does not request input parameter describe
information when it prepares a CALL statement. If an application has
correctly bound parameters to a statement, then this describe information
is unnecessary and not requesting it improves performance. The option
values are:
v 1 = SQL_DESCRIBE_CALL_BEFORE.
v -1 = SQL_DESCRIBE_CALL_DEFAULT.

Setting this attribute can be done using the “DescribeCall CLI/ODBC
configuration keyword” on page 355. Refer to the keyword for usage
information and descriptions of the available options.

Note: This is an IBM defined extension.

SQL_ATTR_DESCRIBE_OUTPUT_LEVEL
A null-terminated character string that controls the amount of information
the CLI driver requests on a prepare or describe request. By default, when
the server receives a describe request, it returns the information contained
in level 2 of Table 167 on page 450 for the result set columns. An
application, however, might not need all of this information or might need
additional information. Setting the
SQL_ATTR_DESCRIBE_OUTPUT_LEVEL attribute to a level that suits the
needs of the client application might improve performance because the

Connection attributes (CLI) list

448 Call Level Interface Guide and Reference, Volume 2

describe data transferred between the client and server is limited to the
minimum amount that the application requires. If the
SQL_ATTR_DESCRIBE_OUTPUT_LEVEL setting is set too low, it might
impact the functionality of the application (depending on the application's
requirements). The CLI functions to retrieve the describe information might
not fail in this case, but the information returned might be incomplete.
Supported settings for SQL_ATTR_DESCRIBE_OUTPUT_LEVEL are:
v 0 - no describe information is returned to the client application
v 1 - describe information categorized in level 1 (see Table 167 on page

450) is returned to the client application
v 2 - (default) describe information categorized in level 2 (see Table 167 on

page 450) is returned to the client application
v 3 - describe information categorized in level 3 (see Table 167 on page

450) is returned to the client application

The following table lists the fields that form the describe information that
the server returns when it receives a prepare or describe request. These
fields are grouped into levels, and the
SQL_ATTR_DESCRIBE_OUTPUT_LEVEL attribute controls which levels of
describe information the CLI driver requests.

Note:

1. Not all levels of describe information are supported by all DB2 servers.
All levels of describe information are supported on the following DB2
servers: DB2 on Linux, UNIX, and Windows Version 8 and later, DB2
for z/OS Version 8 and later, and DB2 for i Version 5 Release 3 and
later. All other DB2 servers support only the 2 or 0 setting for
SQL_ATTR_DESCRIBE_OUTPUT_LEVEL.

2. The default behavior will allow CLI to promote the level to 3 if the
application asks for describe information that was not initially retrieved
using the default level 2. This might result in two network flows to the
server. If an application uses this attribute to explicitly set a describe
level, then no promotion will occur. Therefore, if the attribute is used to
set the describe level to 2, then CLI will not promote to level 3 even if
the application asks for extended information.

Connection attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 449

Table 167. Levels of describe information

Level 1 Level 2 Level 3

SQL_DESC_COUNT
SQL_COLUMN_COUNT
SQL_DESC_TYPE
SQL_DESC_CONCISE_TYPE
SQL_COLUMN_LENGTH
SQL_DESC_OCTET_LENGTH
SQL_DESC_LENGTH
SQL_DESC_PRECISION
SQL_COLUMN_PRECISION
SQL_DESC_SCALE
SQL_COLUMN_SCALE
SQL_DESC_DISPLAY_SIZE
SQL_DESC_NULLABLE
SQL_COLUMN_NULLABLE
SQL_DESC_UNSIGNED
SQL_DESC_SEARCHABLE
SQL_DESC_LITERAL_SUFFIX
SQL_DESC_LITERAL_PREFIX
SQL_DESC_CASE_SENSITIVE
SQL_DESC_FIXED_PREC_SCALE

all fields of level 1 and:
SQL_DESC_NAME
SQL_DESC_LABEL
SQL_COLUMN_NAME
SQL_DESC_UNNAMED
SQL_DESC_TYPE_NAME
SQL_DESC_DISTINCT_TYPE
SQL_DESC_REFERENCE_TYPE
SQL_DESC_STRUCTURED_TYPE
SQL_DESC_USER_TYPE
SQL_DESC_LOCAL_TYPE_NAME
SQL_DESC_USER_DEFINED_

TYPE_CODE

all fields of levels 1
and 2 and:
SQL_DESC_BASE_COLUMN_NAME
SQL_DESC_UPDATABLE
SQL_DESC_AUTO_UNIQUE_VALUE
SQL_DESC_SCHEMA_NAME
SQL_DESC_CATALOG_NAME
SQL_DESC_TABLE_NAME
SQL_DESC_BASE_TABLE_NAME

Setting the “DescribeOutputLevel CLI/ODBC configuration keyword” on
page 356 is an alternative method of specifying this behavior.

SQL_ATTR_ENLIST_IN_DTC
An SQLPOINTER which can be either of the following:
v non-null transaction pointer: The application requests to CLI to change

the state of the connection from non-distributed transaction state to
distributed state. The connection is enlisted with the Distributed
Transaction Coordinator (DTC).

v null: The application requests to CLI to change the state of the
connection from distributed transaction state to a non-distributed
transaction state.

This attribute is only used in a Microsoft Transaction Server (MTS)
environment to enlist or un-enlist a connection with MTS.

Each time this attribute is used with a non-null transaction pointer, the
previous transaction is assumed to be ended and a new transaction is
initiated. The application must call the ITransaction member function
Endtransaction before calling this API with a non-null pointer. Otherwise
the previous transaction will be aborted. The application can enlist
multiple connections with the same transaction pointer.

Note: This connection attribute is specified by MTS automatically for each
transaction and is not coded by the user application.
It is imperative for CLI/ODBC applications that there will be no
concurrent SQL statements executing on 2 different connections into the
same database that are enlisted in the same transaction.

SQL_ATTR_EXTENDED_INDICATORS
A 32-bit integer that allows users to use the extended indicator feature
from the supported server. If the user attempts to set this attribute against
the data server which does not support extended indicators, an appropriate
error is returned to the CLI application. This attribute can take the
following value:

Connection attributes (CLI) list

450 Call Level Interface Guide and Reference, Volume 2

v SQL_EXTENDED_INDICATOR_ENABLE: Enables users to specify
values to signify SQL_UNASSIGNED and SQL_DEFAULT_PARAM on
the SQLBindParameter() / SQLExtendedBind() methods.

v SQL_EXTENDED_INDICATOR_NOT_SET (default): This feature is
disabled by default. The user gets an InvalidArgument value error,
CLI0124E, if the SQL_UNASSIGNED and SQL_DEFAULT_PARAM are
used before enabling this feature using
SQL_ATTR_EXTENDED_INDICATORS.

v Extended indicators support DB2 for Linux, UNIX, and Windows and
for DB2 10 for z/OS data servers starts in DB2 Version 9.7 Fix Pack 2.
Extended indicators support DB2 for IBM i 7.1 data servers starts in DB2
Version 9.7 Fix Pack 5.

SQL_ATTR_FET_BUF_SIZE
A connection level attribute to allow applications to set the default query
block size to an optimum value in range of 64K-256K. This attribute should
be set before a connection is made. CLI will also provide a db2cli.ini level
keyword, FET_BUF_SIZE, which can be set in db2cli.ini file and
connection string.

An equivalent db2dsdriver.cfg keyword, FetchBufferSize is also available,
which can be set in the db2dsdriver.cfg file.

SQL_ATTR_FREE_LOCATORS_ON_FETCH
A boolean attribute that specifies if LOB locators are freed when
SQLFetch() is executed, rather than when a COMMIT is issued. Setting this
attribute to 1 (true) frees the locators that are used internally when
applications fetch LOB data without binding the LOB columns with
SQLBindCol() (or equivalent descriptor APIs). Locators that are explicitly
returned to the application must still be freed by the application. This
attribute value can be used to avoid scenarios where an application
receives SQLCODE = -429 (no more locators). The default for this attribute
is 0 (false).

Note: This is an IBM defined extension.

SQL_ATTR_FORCE_ROLLBACK
A 32-bit unsigned integer value that allows calls to the SQLEndTran()
function in a data-at-execution flow for connections to DB2 for z/OS and
OS/390 servers.

To call the SQLEndTran() function specifying SQL_ROLLBACK as
CompletionType in your applications during a data-at-execution flow, the
StreamPutData configuration keyword must be set to 1, and the
SQL_ATTR_FORCE_ROLLBACK connection attribute must also be set.

The CLI0150E error message is returned for connections to data servers
that are not DB2 for z/OS and OS/390 servers.

Note: This is an IBM defined extension.

SQL_ATTR_GET_LATEST_MEMBER
A connection level attribute, which is available starting in Version 9.7 Fix
Pack 3, enables CLI applications to retrieve the latest member (being) used
for the given connection.

CLI applications can retrieve the currently connected or last connected
member on a connection, by calling the SQLGetConnectAttr() function.

Connection attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 451

The CLI0126E error message is returned if you try to use this attribute
before establishing a database connection.

SQL_ATTR_INFO_ACCTSTR
A pointer to a null-terminated character string used to identify the client
accounting string sent to the data server when using DB2 Connect or DB2
Database for Linux, UNIX, and Windows.

Note:
v When the value is being set, some servers might not handle the entire

length provided and might truncate the value.
v DB2 for z/OS and OS/390 servers support up to a length of 200

characters.
v In DB2 Version 9.7 Fix Pack 6 and later, CLI applications can set the

SQL_ATTR_INFO_ACCTSTR attribute on DB2 for i V6R1 and later
servers. DB2 for i servers support a length of up to 255 characters.

v To ensure that the data is converted correctly when transmitted to a host
system, use only the characters A to Z, 0 - 9, and the underscore (_) or
period (.)

Note: This is an IBM defined extension.

SQL_ATTR_INFO_APPLNAME
A pointer to a null-terminated character string used to identify the client
application name sent to the data server when using DB2 Connect or DB2
database products for Linux, UNIX and Windows.

Note:
v When the value is being set, some servers might not handle the entire

length provided and might truncate the value.
v DB2 for z/OS and OS/390 servers support up to a length of 32

characters.
v In DB2 Version 9.7 Fix Pack 6 and later, CLI applications can set the

SQL_ATTR_INFO_APPLNAME attribute on DB2 for i V6R1 and later
servers. DB2 for i servers support a length of up to 255 characters.

v To ensure that the data is converted correctly when transmitted to a host
system, use only the characters A to Z, 0 - 9, and the underscore (_) or
period (.).

Note: This is an IBM defined extension.

SQL_ATTR_INFO_PROGRAMID
A user-defined character string, with a maximum length of 80 bytes, that
associates an application with a connection. Once this attribute is set, DB2
for z/OS Version 8 and later associates this attribute with any statements
inserted into the dynamic SQL statement cache.

This attribute is supported for CLI applications accessing DB2 for z/OS
Version 8 and later or IBM Informix database server.

Also, in DB2 Version 9.7 Fix Pack 6 and later, CLI applications can set the
SQL_ATTR_INFO_PROGRAMID attribute on DB2 for i V6R1 and later
servers. DB2 for i servers support a length of up to 255 characters.

Note: This is an IBM defined extension.

Connection attributes (CLI) list

452 Call Level Interface Guide and Reference, Volume 2

SQL_ATTR_INFO_PROGRAMNAME
A null-terminated user-defined character string, up to 20 bytes in length,
used to specify the name of the application running on the client.

When this attribute is set before the connection to the server is established,
the value specified overrides the actual client application name and will be
the value that is displayed in the appl_name monitor element. When
connecting to a DB2 for z/OS server, the first 12 characters of this setting
are used as the CORRELATION IDENTIFIER of the associated DB2 for
z/OS thread.

Note: This is an IBM defined extension.

SQL_ATTR_INFO_USERID
A pointer to a null-terminated character string used to identify the client
user ID sent to the data server when using DB2 Connect or DB2 database
products for Linux, UNIX and Windows.

Note:
v When the value is being set, some servers might not handle the entire

length provided and might truncate the value.
v DB2 for z/OS and OS/390 servers support up to a length of 16

characters.
v This user ID is not to be confused with the authentication user ID. This

user ID is for identification purposes only and is not used for any
authorization.

v In DB2 Version 9.7 Fix Pack 6 and later, CLI applications can set the
SQL_ATTR_INFO_USERID attribute on DB2 for i V6R1 and later servers.
DB2 for i servers support a length of up to 255 characters.

v To ensure that the data is converted correctly when transmitted to a host
system, use only the characters A to Z, 0 - 9, and the underscore (_) or
period (.).

Note: This is an IBM defined extension.

SQL_ATTR_INFO_WRKSTNNAME
A pointer to a null-terminated character string used to identify the client
workstation name sent to the data server when using DB2 Connect or DB2
database products for Linux, UNIX and Windows. In Version 9.7 Fix pack 6
and later, if SQL_ATTR_INFO_WRKSTNNAME attribute is not specified,
default value that consists of the host name is used. The host name is
obtained by gethostname() function call. If host name is not configured or
an error is encountered during a gethostname() function call, no value for
the SQL_ATTR_INFO_WRKSTNNAME attribute is sent to the server.

Note:
v When the value is being set, some servers might not handle the entire

length provided and might truncate the value.
v DB2 for z/OS and OS/390 servers support up to a length of 18

characters.
v In DB2 Version 9.7 Fix Pack 6 and later, CLI applications can set the

SQL_ATTR_INFO_WRKSTNNAME attribute on DB2 for i V6R1 and
later servers. DB2 for i servers support a length of up to 255 characters.

v To ensure that the data is converted correctly when transmitted to a host
system, use only the characters A to Z, 0 - 9, and the underscore (_) or
period (.).

Connection attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 453

Note: This is an IBM defined extension.

SQL_ATTR_KEEP_DYNAMIC
A 32-bit unsigned integer value which specifies whether the
KEEPDYNAMIC option has been enabled. If enabled, the server will keep
dynamically prepared statements in a prepared state across transaction
boundaries.
v 0 - KEEPDYNAMIC functionality is not available; CLI packages were

bound with the KEEPDYNAMIC NO option
v 1 - KEEPDYNAMIC functionality is available; CLI packages were bound

with the KEEPDYNAMIC YES option

It is recommended that when this attribute is set, the
SQL_ATTR_CURRENT_PACKAGE_SET attribute also be set.

This attribute is not supported when accessing Informix database server.

Note: This is an IBM defined extension.

SQL_ATTR_LOB_CACHE_SIZE
A 32-bit unsigned integer that specifies maximum cache size (in bytes) for
LOBs. By default, LOBs are not cached.

See the “LOBCacheSize CLI/ODBC configuration keyword” on page 366
for further usage information.

SQL_ATTR_LOGIN_TIMEOUT
A 32-bit integer value corresponding to the number of seconds to wait for
a reply when trying to establish a connection to a server before terminating
the attempt and generating a communication timeout. Specify a positive
integer, up to 32 767. The default setting of 0 will allow the client to wait
indefinitely.

Setting a connection timeout value can also be done using the
“ConnectTimeout CLI/ODBC configuration keyword” on page 342. Refer
to the keyword for usage information.

SQL_ATTR_LONGDATA_COMPAT
A 32-bit integer value indicating whether the character, double byte
character and binary large object data types should be reported
respectively as SQL_LONGVARCHAR, SQL_LONGVARGRAPHIC or
SQL_LONGBINARY, enabling existing applications to access large object
data types seamlessly. The option values are:
v SQL_LD_COMPAT_NO (default): The large object data types are

reported as their respective IBM-defined types (SQL_BLOB, SQL_CLOB,
SQL_DBCLOB).

v SQL_LD_COMPAT_YES: The IBM large object data types (SQL_BLOB,
SQL_CLOB and SQL_DBCLOB) are mapped to SQL_LONGVARBINARY,
SQL_LONGVARCHAR and SQL_LONGVARGRAPHIC;
SQLGetTypeInfo() returns one entry each for SQL_LONGVARBINARY
SQL_LONGVARCHAR, and SQL_LONGVARGRAPHIC.

Note: This is an IBM defined extension.

SQL_ATTR_MAPCHAR
A 32-bit integer value used to specify the default SQL type associated with
SQL_CHAR, SQL_VARCHAR, SQL_LONGVARCHAR. The option values
are:

Connection attributes (CLI) list

454 Call Level Interface Guide and Reference, Volume 2

v SQL_MAPCHAR_DEFAULT (default): return the default SQL type
representation

v SQL_MAPCHAR_WCHAR: return SQL_CHAR as SQL_WCHAR,
SQL_VARCHAR as SQL_WVARCHAR, and SQL_LONGVARCHAR as
SQL_WLONGVARCHAR

Only the following CLI functions are affected by setting this attribute:
v SQLColumns()
v SQLColAttribute()
v SQLDescribeCol()
v SQLDescribeParam()
v SQLGetDescField()
v SQLGetDescRec()
v SQLProcedureColumns()

Setting the default SQL type associated with SQL_CHAR, SQL_VARCHAR,
SQL_LONGVARCHAR can also be done using the “MapCharToWChar
CLI/ODBC configuration keyword” on page 369.

Note: This is an IBM defined extension.

SQL_ATTR_MAXCONN
This attribute has been deprecated in DB2 UDB Version 8.

SQL_ATTR_MAX_LOB_BLOCK_SIZE
A 32-bit unsigned integer that indicates the maximum size of LOB or XML
data block. Specify a positive integer, up to 2 147 483 647. The default
setting of 0 indicates that there is no limit to the data block size for LOB or
XML data.

During data retrieval, the server will include all of the information for the
current row in its reply to the client even if the maximum block size has
been reached.

If both MaxLOBBlockSize and the db2set registry variable
DB2_MAX_LOB_BLOCK_SIZE are specified, the value for
MaxLOBBlockSize will be used.

Setting the “MaxLOBBlockSize CLI/ODBC configuration keyword” on
page 376 is an alternative method of specifying this behavior.

SQL_ATTR_METADATA_ID
This connection attribute is defined by ODBC, but is not supported by CLI.
Any attempt to set or get this attribute will result in an SQLSTATE of
HYC00 (Driver not capable).

SQL_ATTR_NETWORK_STATISTICS
Starting in Version 9.7 Fix Pack 3, this 32-bit integer connection attribute
controls whether CLI collects network statistics for a connection. An
application can retrieve the network statistics for a connection by calling
the SQLGetDiagField() function and specifying
SQL_DIAG_NETWORK_STATISTICS for the DiagIdentifier argument.

In Version 9.7 Fix pack 6 and later, you can obtain the server time for
COMMIT or ROLLBACK SQL operations on DB2 for z/OS Version 10 and
later by calling the SQLGetDiagField() function and specifying
SQL_DIAG_NETWORK_STATISTICS for DiagIdentifier argument after the
SQLEndTran() function call. You must enable
SQL_ATTR_NETWORK_STATISTICS attribute and DB2 for z/OS Version

Connection attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 455

10 and later server must have fix for APAR PM53243 to obtain server time
for COMMIT or ROLLBACK SQL operations.

The permitted values are as follows:

SQL_NETWORK_STATISTICS_OFF (default)
Disables network statistics collection for a connection.

SQL_NETWORK_STATISTICS_ON
Enables network statistics collection for a connection.

SQL_NETWORK_STATISTICS_ON_SKIP_NOSERVER
In addition to enabling network statistics collection for a
connection, network flows are omitted that are known to have no
server time reported, for example explicit COMMIT and
ROLLBACK statements.

Requests that have no server time reported can affect the
usefulness of returned information, if calculations are made that
subtract the server time from the network time. The
SQL_NETWORK_STATISTICS_ON_SKIP_NOSERVER option
excludes these requests from the values reported. Only explicit,
unchained requests are excluded; autocommit and chained
COMMIT statements are not skipped.

Starting in Version 9.7 Fix Pack 5, CLI collects statistics for server time
reported on COMMIT and ROLLBACK. The DB2 server must be at a level
that supports reporting server time for COMMIT and ROLLBACK.

SQL_ATTR_ODBC_CURSORS
This connection attribute is defined by ODBC, but is not supported by CLI.
Any attempt to set or get this attribute will result in an SQLSTATE of
HYC00 (Driver not capable).

SQL_ATTR_OVERRIDE_CODEPAGE
This connection attribute, which is available starting in Version 9.7 Fix Pack
5, enables CLI applications to fetch or insert data of CHARACTER or
GRAPHIC data type without code page conversions. The possible values
are as follows:
v SQL_OVERRIDE_CODEPAGE_ON: CLI does not perform codepage

conversions for binding of character or graphic data.
v SQL_OVERRIDE_CODEPAGE_OFF (default): CLI performs codepage

conversions for binding of character or graphic data.

If you set this attribute to SQL_OVERRIDE_CODEPAGE_ON, you must
ensure that data is in the correct code page.

If you set SQL_ATTR_OVERRIDE_CODEPAGE to
SQL_OVERRIDE_CODEPAGE_ON after setting
SQL_ATTR_OVERRIDE_CHARACTER_CODEPAGE, CLI returns the
CLI0126E error message.

SQL_ATTR_OVERRIDE_CHARACTER_CODEPAGE
This connection attribute, which is available starting in Version 9.7 Fix Pack
3, enables CLI applications to specify the database code page. The code
page does not have to be available at the client end.

If you specify the same code page as the database code page, applications
can fetch or insert data of CHARACTER data type without any code page
conversions.

Connection attributes (CLI) list

456 Call Level Interface Guide and Reference, Volume 2

Setting this attribute after allocating statement handles results in error
CLI0126E (invalid operation). Setting the attribute to a value that is not
supported by the database results in error CLI0210E (inconsistent code
page value error).

If you set SQL_ATTR_OVERRIDE_CHARACTER_CODEPAGE after setting
SQL_ATTR_OVERRIDE_CODEPAGE to
SQL_OVERRIDE_CODEPAGE_ON, CLI returns the CLI0126E error
message.

During a bind-out operation, ensure that the CLI applications allocate
buffers large enough to hold the retrieved data during bind-out operations.
If there is insufficient space, error CLI0002W is returned.

Restriction: This attribute is supported only for DB2 for z/OS data
servers. If you attempt to set the value of this attribute for other data
servers, error CLI0150E (driver not capable) is returned.

SQL_ATTR_PACKET_SIZE
This connection attribute is defined by ODBC, but is not supported by CLI.
Any attempt to set or get this attribute will result in an SQLSTATE of
HYC00 (Driver not capable).

SQL_ATTR_PARC_BATCH
For applications that use array input to achieve bulk inserts, deletes, or
updates, this 32-bit unsigned integer connection attribute indicates whether
the application receives the number of rows in a table that were affected by
the each parameter set or the cumulative number of rows that were
affected for the entire parameter set. This connection attribute is available
starting in DB2 Version 9.7 Fix Pack 5 for non-atomic operations. The
possible values are as follows:
v SQL_PARC_BATCH_ENABLE: CLI returns the number of rows in a

table that were affected by the each parameter set.
v SQL_PARC_BATCH_DISABLE (default): CLI returns the total number

of rows that were affected for the entire parameter set.

If you set this connection attribute to SQL_PARCH_BATCH_ENABLE, you
must indicate an array as the RowCountPtr parameter in the SQLRowCount
() function and you must set SQL_ATTR_PARAMOPT_ATOMIC to
SQL_ATOMIC_NO. If SQL_ATTR_PARAMOPT_ATOMIC is set to
SQL_ATOMIC_YES, the CLI0150E error message is returned when you call
the SQLExecute () function.

SQL_ATTR_PING_DB
A 32-bit integer which is used with SQLGetConnectAttr() to get the ping
time in microseconds.

If a connection has previously been established and has been dropped by
the database, a value of 0 is reported. If the connection has been closed by
the application, then an SQLSTATE of 08003 is reported. This connection
attribute can be returned by SQLGetConnectAttr(), but cannot be set by
SQLSetConnectAttr(). Any attempt to set this attribute will result in an
SQLSTATE of 7HYC00 (Driver not capable)

Note: This is an IBM defined extension.

SQL_ATTR_PING_NTIMES
A 32-bit integer that is used with SQLGetConnectAttr() that sets the
number of ping iterations that CLI performs when the application uses

Connection attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 457

SQL_ATTR_PING_DB. If you set SQL_ATTR_PING_NTIMES to a value
greater than 1, SQL_ATTR_PING_DB returns the average time that CLI
took to ping the database for the set of iterations.

This attribute has a valid range from 1 to 32767 (inclusive).
SQLGetConnectAttr() checks the value and returns the appropriate error
code when the value is outside this range.

SQL_ATTR_PING_REQUEST_PACKET_SIZE
A 32-bit integer that is used with SQLGetConnectAttr() that sets the size of
the ping packet that CLI uses when the application uses
SQL_ATTR_PING_DB.

This attribute has a valid range from 1 to 32767
(inclusive).SQLGetConnectAttr() checks the value and returns the
appropriate error code when the value is outside this range.

SQL_ATTR_QUIET_MODE
A 32-bit platform specific window handle.

If the application has never made a call to SQLSetConnectAttr() with this
option, then CLI would return a null parent window handle on
SQLGetConnectAttr() for this option and use a null parent window handle
to display dialogue boxes. For example, if the end user has asked for (via
an entry in the CLI initialization file) optimizer information to be
displayed, CLI would display the dialogue box containing this information
using a null window handle. (For some platforms, this means the dialogue
box would be centered in the middle of the screen.)

If ValuePtr is set to null , then CLI does not display any dialogue boxes. In
the above example where the end user has asked for the optimizer
estimates to be displayed, CLI would not display these estimates because
the application explicitly wants to suppress all such dialogue boxes.

If ValuePtr is not null, then it should be the parent window handle of the
application. CLI uses this handle to display dialogue boxes. (For some
platforms, this means the dialogue box would be centered with respect to
the active window of the application.)

Note: This connection option cannot be used to suppress the
SQLDriverConnect() dialogue box (which can be suppressed by setting the
fDriverCompletion argument to SQL_DRIVER_NOPROMPT).

SQL_ATTR_RECEIVE_TIMEOUT

A 32-bit integer value that is the number of seconds a client waits for a
reply from a server on an established connection before terminating the
attempt and generating a communication timeout error. The default value
of 0 indicates the client waits indefinitely for a reply. The receive timeout
has no effect during connection establishment; it is only supported for
TCP/IP, and is ignored for any other protocol. Supported values are
integers from 0 to 32767.

Note: This is an IBM defined extension.

SQL_ATTR_REOPT

A 32-bit integer value that enables query optimization for SQL statements
that contain special registers or parameter markers. Optimization occurs by
using the values available at query execution time for special registers or

Connection attributes (CLI) list

458 Call Level Interface Guide and Reference, Volume 2

parameter markers, instead of the default estimates that are chosen by the
compiler. The valid values of the attribute are:
v 2 = SQL_REOPT_NONE (default): No query optimization occurs at

query execution time. The default estimates chosen by the compiler are
used for the special registers or parameter markers. The default NULLID
package set is used to execute dynamic SQL statements.

v 3 = SQL_REOPT_ONCE: Query optimization occurs once at query
execution time, when the query is executed for the first time. The
NULLIDR1 package set, which is bound with the REOPT ONCE bind
option, is used.

v 4 = SQL_REOPT_ALWAYS: Query optimization or reoptimization occurs
at query execution time every time the query is executed. The
NULLIDRA package set, which is bound with the REOPT ALWAYS bind
option, is used.

The NULLIDR1 and NULLIDRA are reserved package set names, and
when used, REOPT ONCE and REOPT ALWAYS are implied respectively.
These package sets have to be explicitly created with these commands:
db2 bind db2clipk.bnd collection NULLIDR1
db2 bind db2clipk.bnd collection NULLIDRA

SQL_ATTR_REOPT and SQL_ATTR_CURRENT_PACKAGE_SET are
mutually exclusive, therefore, if one is set, the other is not allowed.

This attribute is not supported when accessing Informix database server.

Note: This is an IBM defined extension.

SQL_ATTR_REPORT_ISLONG_FOR_LONGTYPES_OLEDB
A 32-bit integer value. The OLE DB client cursor engine and the OLE DB
.NET Data Provider CommandBuilder object generate UPDATE and
DELETE statements based on column information provided by the IBM
DB2 OLE DB Provider. If the generated statement contains a LONG type in
the WHERE clause, the statement will fail because LONG types cannot be
used in a search with an equality operator. The possible values are as
follows:
v 0 (default): LONG types (LONG VARCHAR, LONG VARCHAR FOR

BIT DATA, LONG VARGRAPHIC and LONG VARGRAPHIC FOR BIT
DATA) do not have the DBCOLUMNFLAGS_ISLONG flag set, which
might cause the columns to be used in the WHERE clause.

v 1: The IBM DB2 OLE DB Provider reports LONG types (LONG
VARCHAR, LONG VARCHAR FOR BIT DATA, LONG VARGRAPHIC
and LONG VARGRAPHIC FOR BIT DATA) with the
DBCOLUMNFLAGS_ISLONG flag set. This will prevent the long
columns from being used in the WHERE clause.

This attribute is supported by the following database servers:
v DB2 for z/OS

– Version 6 with PTF UQ93891
– Version 7 with PTF UQ93889
– Version 8 with PTF UQ93890
– Versions later than version 8, PTFs are not required

v DB2 Database for Linux, UNIX, and Windows
– Version 8.2 (equivalent to Version 8.1, Fix Pack 7) and later

Connection attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 459

This attribute is not supported when accessing Informix database server.

Note: This is an IBM defined extension.

SQL_ATTR_REPORT_SEAMLESSFAILOVER_WARNING
A 32-bit unsigned integer value that specifies whether to return a warning
message on execute requests if a seamless failover occurred during the
request. This connection attribute is available starting in DB2 Version 9.7
Fix Pack 5. The possible values are as follows:
v SQL_REPORT_SEAMLESSFAILOVER_WARNING_YES: If a seamless

failover occurred during an execute request, a warning message is
returned.

v SQL_REPORT_SEAMLESSFAILOVER_WARNING_NO (default): If a
seamless failover occurred during an execute request, a warning
message is not returned.

SQL_ATTR_REPORT_TIMESTAMP_TRUNC_AS_WARN
A 32-bit unsigned integer value that specifies whether a datetime overflow
results in an error (SQLSTATE 22008) or warning (SQLSTATE 01S07). The
possible values are as follows:
v 0 (default): Datetime overflow results in an error (SQLSTATE 22008).
v 1: Datetime overflow results in a warning (SQLSTATE 01S07).

SQL_ATTR_RETRYONERROR
CLI attempts to recover from non-fatal errors, such as incorrect binding of
application parameters, by retrieving additional information on the failing
SQL statement and then executing the statement again. The additional
information retrieved includes input parameter information from the
database catalog tables. If CLI is able to recover successfully from the error,
by default, it does not report the error to the application. The CLI/ODBC
configuration keyword ReportRetryErrorsAsWarnings allows you to set
whether error recovery warnings are returned to the application or not.

Note: Once CLI has successfully completed the error recovery, the
application may behave differently, because CLI uses the catalog
information gathered during the recovery for subsequent executions of that
particular SQL statement, rather than the information provided in the
original SQLBindParameter() function calls. If you do not want this
behavior, set RetryOnError to 0, forcing CLI not to attempt recovery. You
should, however, modify the application to correctly bind statement
parameters.

SQL_ATTR_SERVER_MSGTXT_MASK
A 32-bit integer value used to indicate when CLI should request the error
message from the server. This attribute is used in conjunction with the
SQL_ATTR_SERVER_MSGTXT_SP attribute. The attribute can be set to:
v SQL_ATTR_SERVER_MSGTXT_MASK_LOCAL_FIRST (default): CLI

will check the local message files first to see if the message can be
retrieved. If no matching SQLCODE is found, then CLI will request the
information from the server.

v SQL_ATTR_SERVER_MSGTXT_MASK_WARNINGS: CLI always
requests the message information from the server for warnings but error
messages are retrieved from the local message files.

v SQL_ATTR_SERVER_MSGTXT_MASK_ERRORS: CLI always requests
the message information from the server for errors but warning
messages are retrieved from the local message files.

Connection attributes (CLI) list

460 Call Level Interface Guide and Reference, Volume 2

v SQL_ATTR_SERVER_MSGTXT_MASK_ALL: CLI always requests the
message information from the server for both error and warning
messages.

Setting the “ServerMsgMask CLI/ODBC configuration keyword” on page
397 is an alternative method of specifying this behavior.

Note: This is an IBM defined extension.

SQL_ATTR_SERVER_MSGTXT_SP
A pointer to a character string used to identify a stored procedure that is
used for generating an error message based on an SQLCA. This can be
useful when retrieving error information from a server such as DB2 for
z/OS. The attribute can be set to:
v SYSIBM.SQLCAMESSAGE: The default procedure called to retrieve the

message text from DB2 for z/OS servers. If you do not set this attribute,
this procedure is called.

v DSNACCMG: The default procedure called to retrieve the message text
from DB2 for z/OS Version 7 servers. The SYSIBM.SQLCAMESSAGE
procedure is called to retrieve the message text from DB2 for z/OS
Version 8 or later. DSNACCMG has been deprecated in DB2 for z/OS
Version 9 and might be removed in a future release.

v Any user-created stored procedure.

Applications using this attribute can also set the
SQL_ATTR_SERVER_MSGTXT_MASK attribute to indicate when CLI
should call this procedure to retrieve the message information from the
server. If the SQL_ATTR_SERVER_MSGTXT_MASK is not set, then the
default is to check the local message files first (see
SQL_ATTR_SERVER_MSGTXT_MASK_LOCAL_FIRST in
SQL_ATTR_SERVER_MSGTXT_MASK).

Setting the “UseServerMsgSP CLI/ODBC configuration keyword” on page
423 is an alternative method of specifying this behavior.

Note: This is an IBM defined extension.

SQL_ATTR_SESSION_TIME_ZONE
A null-terminated character string in the format ±hh:mm, containing the
server session time zone information. This is a set-only attribute. The
supported time zone values range from -12:59 through +14:00.

SQL_ATTR_SQLCODEMAP
Specifies whether SQLCODE mapping should be set to default or turned
off. The possible values are as follows:
v MAP (default): SQLCODE mapping is set.
v NOMAP: SQLCODEMapping is turned off.

SQL_ATTR_SQLCOLUMNS_SORT_BY_ORDINAL_OLEDB
A 32–bit integer value. The Microsoft OLE DB specification requires that
IDBSchemaRowset::GetRowset(DBSCHEMA_COLUMNS) returns the row
set sorted by the columns TABLE_CATALOG, TABLE_SCHEMA,
TABLE_NAME, COLUMN_NAME. The IBM DB2 OLE DB Provider
conforms to the specification, however, applications that use the Microsoft
ODBC Bridge provider (MSDASQL) have been typically coded to get the
row set sorted by ORDINAL_POSITION. The possible values are as
follows:

Connection attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 461

v 0 (default): The IBM DB2 OLE DB Provider returns a row set sorted by
the columns TABLE_CATALOG, TABLE_SCHEMA, TABLE_NAME,
COLUMN_NAME.

v 1: The IBM DB2 OLE DB Provider returns a row set sorted by
ORDINAL_POSITION.

This attribute is supported by the following database servers:
v DB2 for z/OS

– Version 6 with PTF UQ93891
– Version 7 with PTF UQ93889
– Version 8 with PTF UQ93890
– Versions later than version 8, PTFs are not required

v DB2 Database for Linux, UNIX, and Windows
– Version 8.2 (equivalent to Version 8.1, Fix Pack 7) and later

This attribute is not supported when accessing Informix database server.

Note: This is an IBM defined extension.

SQL_ATTR_STMT_CONCENTRATOR
Specifies whether dynamic statements that contain literal values use the
statement cache.
v SQL_STMT_CONCENTRATOR_OFF - The statement concentrator

behavior is disabled.
v SQL_STMT_CONCENTRATOR_WITH_LITERALS - The statement

concentrator with literal behavior is enabled for situations that are
supported by the server. For example, the statement concentrator is not
enabled if the statement has parameter markers, named parameter
markers, or a mix of literals, parameter markers, and named parameter
markers.

Setting the “StmtConcentrator CLI/ODBC configuration keyword” on page
403 is an alternative method of specifying this behavior.

SQL_ATTR_STREAM_GETDATA
A 32-bit unsigned integer that indicates if the data output stream for the
SQLGetData() function will be optimized. The values are:
v 0 (default): CLI buffers all the data on the client.
v 1: For applications that do not need to buffer data and are querying data

on a server that supports Dynamic Data Format, also known as
progressive streaming, specify 1 to indicate that data buffering is not
required. The CLI client will optimize the data output stream.

This keyword is ignored if Dynamic Data Format is not supported by the
server.

If StreamGetData is set to 1 and CLI cannot determine the number of bytes
still available to return in the output buffer, SQLGetData() returns
SQL_NO_TOTAL (-4) as the length when truncation occurs. Otherwise,
SQLGetData() returns the number of bytes still available.

Setting the “StreamGetData CLI/ODBC configuration keyword” on page
403 is an alternative method of specifying this behavior.

SQL_ATTR_SYNC_POINT
This attribute is deprecated in DB2 UDB Version 8.

Connection attributes (CLI) list

462 Call Level Interface Guide and Reference, Volume 2

SQL_ATTR_TRACE
This connection attribute can be set by an application for the ODBC Driver
Manager. Any attempt to set this connection attribute for the CLI Driver
will result in an SQLSTATE of HYC00 (Driver not capable).

Instead of using this connection attribute, the CLI trace facility can be set
using the “Trace CLI/ODBC configuration keyword” on page 407.
Alternatively, the environment attribute SQL_ATTR_TRACE can be used to
configure tracing features. Note that the environment attribute does not
use the same syntax as the ODBC Driver Manager's connection attribute.

SQL_ATTR_TRACEFILE
This connection attribute is defined by ODBC, but is not supported by CLI.
Any attempt to set or get this attribute will result in an SQLSTATE of
HYC00 (Driver not capable).

Instead of using this attribute, the CLI trace file name is set using the
“TraceFileName CLI/ODBC configuration keyword” on page 413.

SQL_ATTR_TRANSLATE_LIB
This connection attribute is defined by ODBC, but is not supported by CLI.
Any attempt to set or get this attribute on other platforms will result in an
SQLSTATE of HYC00 (Driver not capable).

SQL_ATTR_TRANSLATE_OPTION
This connection attribute is defined by ODBC, but is not supported by CLI.
Any attempt to set or get this attribute on other platforms will result in an
SQLSTATE of HYC00 (Driver not capable).

SQL_ATTR_TRUSTED_CONTEXT_PASSWORD
A user-defined string containing a password. Use this attribute if the
database server requires a password when switching users on a trusted
connection. Set this attribute after setting the attribute
SQL_ATTR_TRUSTED_CONTEXT_USERID and before executing any SQL
statements that access the database server. If
SQL_ATTR_TRUSTED_CONTEXT_USERID is not set before setting this
attribute, an error (CLI0198E) is returned.

This attribute is not supported when accessing Informix database server.

SQL_ATTR_TRUSTED_CONTEXT_USERID

A user-defined string containing a user ID. Use this on existing trusted
connections to switch users. Do not use it when creating a trusted
connection.

When SQL_ATTR_TRUSTED_CONTEXT_USERID attribute is set, the user
switch will occur next time that you execute an SQL statement that
accesses the database server. (SQLSetConnectAttr does not access the
database server.) If the user switch is successful the user ID in this attribute
becomes the new user of the connection. If the user switch fails the call
that initiated the switch will return an error indicating the reason for the
failure.

The user ID must be a valid authorization ID on the database server unless
you are using an identity server, in which case you can use any user name
recognized by the identity server. (If you are using an identity server see
also SQL_ATTR_USER_REGISTRY_NAME.)

If you set this attribute while the connection handle is not yet connected to
a database or if the connection is not a trusted connection then an error
(CLI0197E) is returned.

Connection attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 463

This attribute is not supported when accessing Informix database server.

SQL_ATTR_TXN_ISOLATION
A 32-bit bitmask that sets the transaction isolation level for the current
connection referenced by ConnectionHandle. The valid values for ValuePtr
can be determined at run time by calling SQLGetInfo() with fInfoType set to
SQL_TXN_ISOLATION_OPTIONS. The following values are accepted by
CLI, but each server might support only a subset of these isolation levels:
v SQL_TXN_READ_UNCOMMITTED - Dirty reads, non-repeatable reads,

and phantom reads are possible.
v SQL_TXN_READ_COMMITTED (default) - Dirty reads are not

possible. Non-repeatable reads and phantom reads are possible.
v SQL_TXN_REPEATABLE_READ - Dirty reads and reads that cannot be

repeated are not possible. Phantoms are possible.
v SQL_TXN_SERIALIZABLE - Transactions can be serialized. Dirty reads,

non-repeatable reads, and phantoms are not possible.
v SQL_TXN_NOCOMMIT - Any changes are effectively committed at the

end of a successful operation; no explicit commit or rollback is allowed.
This is analogous to autocommit. This is not an SQL92 isolation level,
but an IBM defined extension, supported only by DB2 UDB for AS/400.

In IBM terminology,
v SQL_TXN_READ_UNCOMMITTED is Uncommitted Read;
v SQL_TXN_READ_COMMITTED is Cursor Stability;
v SQL_TXN_REPEATABLE_READ is Read Stability;
v SQL_TXN_SERIALIZABLE is Repeatable Read.

This option cannot be specified while there is an open cursor on any
statement handle, or an outstanding transaction for this connection;
otherwise, SQL_ERROR is returned on the function call (SQLSTATE S1011).

This attribute (or corresponding keyword) is only applicable if the default
isolation level is used. If the application specifically set the isolation level
then this attribute has no effect.

Note: There is an IBM extension that permits the setting of transaction
isolation levels on a per statement handle basis. See the
SQL_ATTR_STMTTXN_ISOLATION statement attribute.

SQL_ATTR_USE_TRUSTED_CONTEXT
When connecting to a DB2 database server that supports trusted contexts,
set this attribute if you want the connection you are creating to be a
trusted connection. If this attribute is set to SQL_TRUE and the database
server determines that the connection can be trusted then the connection is
a trusted connection. If this attribute is not set, if it is set to SQL_FALSE, if
the database server does not support trusted contexts, or if the database
server determines that the connection cannot be trusted then a regular
connection is created instead and a warning (SQLSTATE 01679) is returned.
This value can only be specified before the connection is established either
for the first time or following a call to the SQLDisconnect() function.

SQL_ATTR_USER_REGISTRY_NAME

This attribute is only used when authenticating a user on a server that is
using an identity mapping service. It is set to a user-defined string that
names an identity mapping registry. The format of the registry name varies

Connection attributes (CLI) list

464 Call Level Interface Guide and Reference, Volume 2

depending on the identity mapping service used. By providing this
attribute you tell the server that the user name provided can be found in
this registry.

The SQL_ATTR_USER_REGISTRY_NAME attribute is used on subsequent
attempts to establish a normal connection, establish a trusted connection,
or switch the user ID on a trusted connection.

This attribute is not supported when accessing Informix database server.

SQL_ATTR_WCHARTYPE
A 32-bit integer that specifies, in a double-byte environment, which
wchar_t (SQLDBCHAR) character format you want to use in your
application. This option provides you the flexibility to choose between
having your wchar_t data in multi-byte format or in wide-character format.
There two possible values for this option:
v SQL_WCHARTYPE_CONVERT: character codes are converted between

the graphic SQL data in the database and the application variable. This
allows your application to fully exploit the ANSI C mechanisms for
dealing with wide character strings (for example, L-literals, 'wc' string
functions) without having to explicitly convert the data to multi-byte
format before communicating with the database. The disadvantage is
that the implicit conversions might have an impact on the runtime
performance of your application, and might increase memory
requirements. If you want WCHARTYPE CONVERT behavior then
define the C preprocessor macro SQL_WCHART_CONVERT at compile
time. This ensures that certain definitions in the DB2 header files use the
data type wchar_t instead of sqldbchar.

v SQL_WCHARTYPE_NOCONVERT (default): no implicit character code
conversion occurs between the application and the database. Data in the
application variable is sent to and received from the database as
unaltered DBCS characters. This allows the application to have improved
performance, but the disadvantage is that the application must either
refrain from using wide-character data in wchar_t (SQLDBCHAR)
application variables, or it must explicitly call the wcstombs() and
mbstowcs() ANSI C functions to convert the data to and from multi-byte
format when exchanging data with the database.

Note: This is an IBM defined extension.

SQL_ATTR_XML_DECLARATION
A 32-bit unsigned integer that specifies which elements of an XML
declaration are added to XML data when it is implicitly serialized. This
attribute does not affect the result of the XMLSERIALIZE function. Set this
attribute to the sum of each component required:
v 0: No declarations or byte order marks (BOMs) are added to the output

buffer.
v 1: A byte order mark (BOM) in the appropriate endianness is prepended

to the output buffer if the target encoding is UTF-16 or UTF-32.
(Although a UTF-8 BOM exists, DB2 does not generate it, even if the
target encoding is UTF-8.)

v 2: A minimal XML declaration is generated, containing only the XML
version.

Connection attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 465

v 4: An encoding attribute that identifies the target encoding is added to
any generated XML declaration. Therefore, this setting only has effect
when the setting of 2 is also included when computing the value of this
attribute.

Attempts to set any other value using SQLSetConnectAttr() or
SQLSetConnectOption() results in a CLI0191E (SQLSTATE HY024) error,
and the value remains unchanged.

The default setting is 7, which indicates that a BOM and an XML
declaration containing the XML version and encoding attribute are
generated during implicit serialization.

This setting affects any statement handles allocated after the value is
changed. Existing statement handles retain their original values.

This attribute is not supported when accessing Informix database server.

Statement attributes (CLI) list

The currently defined attributes and the version of CLI or ODBC in which they
were introduced are shown below; it is expected that more will be defined to take
advantage of different data sources.

SQL_ATTR_ALLOW_INTERLEAVED_GETDATA
Specifies whether the application can call SQLGetData() for previously
accessed LOB columns and maintain the data offset position from the
previous call to SQLGetData() when querying data servers that support
Dynamic Data Format. This attribute has one of the following values:
v SQL_ALLOW_INTERLEAVED_GETDATA_OFF - This default setting

does not allow applications to call SQLGetData() for previously accessed
LOB columns.

v SQL_ALLOW_INTERLEAVED_GETDATA_ON - This keyword only
affects connections to database servers that support Dynamic Data
Format, also known as progressive streaming. Specify this option to
allow applications to call SQLGetData() for previously accessed LOB
columns and start reading LOB data from where the application stopped
reading during the previous read.

Setting the “AllowInterleavedGetData CLI/ODBC configuration keyword”
on page 325 is an alternative method of specifying this behavior at the
connection level.

SQL_ATTR_ALLOW_INTERLEAVED_GETDATA connection attribute is
not supported with an IDS data server.

SQL_ATTR_APP_PARAM_DESC
The handle to the APD for subsequent calls to SQLExecute() and
SQLExecDirect() on the statement handle. The initial value of this attribute
is the descriptor implicitly allocated when the statement was initially
allocated. If this attribute is set to SQL_NULL_DESC, an explicitly
allocated APD handle that was previously associated with the statement
handle is dissociated from it, and the statement handle reverts to the
implicitly allocated APD handle.

This attribute cannot be set to a descriptor handle that was implicitly
allocated for another statement or to another descriptor handle that was
implicitly set on the same statement; implicitly allocated descriptor handles
cannot be associated with more than one statement or descriptor handle.

Connection attributes (CLI) list

466 Call Level Interface Guide and Reference, Volume 2

This attribute cannot be set at the connection level.

SQL_ATTR_APP_ROW_DESC
The handle to the ARD for subsequent fetches on the statement handle.
The initial value of this attribute is the descriptor implicitly allocated when
the statement was initially allocated. If this attribute is set to
SQL_NULL_DESC, an explicitly allocated ARD handle that was previously
associated with the statement handle is dissociated from it, and the
statement handle reverts to the implicitly allocated ARD handle.

This attribute cannot be set to a descriptor handle that was implicitly
allocated for another statement or to another descriptor handle that was
implicitly set on the same statement; implicitly allocated descriptor handles
cannot be associated with more than one statement or descriptor handle.

This attribute cannot be set at the connection level.

SQL_ATTR_APP_USES_LOB_LOCATOR
A 32-bit unsigned integer that indicates if applications are using LOB
locators. This attribute has either of the following values:
v 1 (default): Indicates that applications are using LOB locators.
v 0: For applications that do not use LOB locators and are querying data

on a server that supports Dynamic Data Format, also known as
progressive streaming, specify 0 to indicate that LOB locators are not
used and allow the return of LOB data to be optimized.

This keyword is ignored for stored procedure result sets.

If the keyword is set to 0 and an application binds a LOB locator to a
result set that uses SQLBindCol(), an Invalid conversion error is returned
by the SQLFetch() function.

Setting the “AppUsesLOBLocator CLI/ODBC configuration keyword” on
page 327 is an alternative method of specifying this behavior.

SQL_ATTR_ASYNC_ENABLE
A 32-bit integer value that specifies whether a function called with the
specified statement is executed asynchronously:
v SQL_ASYNC_ENABLE_OFF = Off (the default)
v SQL_ASYNC_ENABLE_ON = On

After a function has been called asynchronously, only the original function,
SQLAllocHandle(), SQLCancel(), SQLSetStmtAttr(), SQLGetDiagField(),
SQLGetDiagRec(), or SQLGetFunctions() can be called on the statement
handle, until the original function returns a code other than
SQL_STILL_EXECUTING. Any other function called on any other
statement handle under the same connection returns SQL_ERROR with an
SQLSTATE of HY010 (Function sequence error).

Because CLI supports statement level asynchronous-execution, the
statement attribute SQL_ATTR_ASYNC_ENABLE can be set. Its initial
value is the same as the value of the connection level attribute with the
same name at the time the statement handle was allocated.

The following functions can be executed asynchronously:
SQLBulkOperations(), SQLColAttribute(), SQLColumnPrivileges(),
SQLColumns(), SQLDescribeCol(), SQLDescribeParam(), SQLExecDirect(),
SQLExecute(), SQLExtendedFetch(), SQLExtendedPrepare(), SQLFetch(),
SQLFetchScroll(), SQLForeignKeys(), SQLGetData(), SQLGetLength(),
SQLGetPosition(), SQLMoreResults(), SQLNumResultCols(), SQLParamData(),

Statement attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 467

SQLPrepare(), SQLPrimaryKeys(), SQLProcedureColumns(), SQLProcedures(),
SQLRowCount(), SQLSetPos(), SQLSpecialColumns(), SQLStatistics(),
SQLTablePrivileges(), SQLTables().

Note: Any Unicode equivalent of a function stated above can be called
asynchronously. Starting from Version 9.7, Fix Pack 4, this attribute can
also be used with SQL_ATTR_USE_LOAD_API.

SQL_ATTR_BLOCK_FOR_NROWS
A 32-bit integer that specifies the desired block size, in rows, to be
returned by the server when fetching a result set. For large read-only result
sets consisting of one or more data blocks, a large block size can improve
performance by reducing the number of synchronous server block requests
made by the client. The default value is 0 which means the default block
size is returned by the server.

SQL_ATTR_BLOCK_LOBS
A Boolean attribute that specifies if blocking of result sets returning LOB
data types is enabled. By default, this attribute is set to 0 (false), however,
when set to 1 (true) and when accessing a server that supports blocking of
result sets returning LOB data types, all of the LOB data associated with
rows that fit completely within a single query block are returned in a
single fetch request.

This attribute is not supported when accessing IDS data servers.

SQL_ATTR_CALL_RETURN
A read-only attribute to be retrieved after executing a stored procedure.
The value returned from this attribute is -1 if the stored procedure failed to
execute (for example, if the library containing the stored procedure
executable cannot be found). If the stored procedure executed successfully
but has a negative return code (for example, if data truncation occurred
when inserting data into a table), then SQL_ATTR_CALL_RETURN returns
the value that was set in the sqlerrd (1) field of the SQLCA when the
stored procedure was executed.

SQL_ATTR_CHAINING_BEGIN
A 32-bit integer which specifies that DB2 chains together SQLExecute()
requests for a single prepared statement before sending the requests to the
server; this feature is referred to as CLI array input chaining. All
SQLExecute() requests associated with a prepared statement are not sent to
the server until either the SQL_ATTR_CHAINING_END statement
attribute is set, or the available buffer space is consumed by rows that have
been chained. The size of this buffer is defined by the aslheapsz database
manager configuration parameter for local client applications, or the
rqrioblk database manager configuration parameter for client/server
configurations.

This attribute can be used with the CLI/ODBC configuration keyword
ArrayInputChain to effect array input without needing to specify the array
size. See the documentation for ArrayInputChain for more information.

Note: The specific 32-bit integer value that is set with this attribute is not
significant to CLI. Setting this attribute to any 32-bit integer value enables
the CLI array input chaining feature.

SQL_ATTR_CHAINING_END
A 32-bit integer which specifies that the CLI array input chaining behavior
enabled earlier, with the setting of the SQL_ATTR_CHAINING_BEGIN

Statement attributes (CLI) list

468 Call Level Interface Guide and Reference, Volume 2

statement attribute, ends. Setting SQL_ATTR_CHAINING_END causes all
chained SQLExecute() requests to be sent to the server. After this attribute
is set, SQLRowCount() can be called to determine the total row count for all
SQLExecute() statements that were chained between the
SQL_ATTR_CHAINING_BEGIN and SQL_ATTR_CHAINING_END pair.
Error diagnostic information for the chained statements becomes available
after the SQL_ATTR_CHAINING_END attribute is set.

This attribute can be used with the CLI configuration keyword
ArrayInputChain to affect array input without needing to specify the array
size. See the documentation for ArrayInputChain for more information.

Note: The specific 32-bit integer value that is set with this attribute is not
significant to CLI. Setting this attribute to any 32-bit integer value disables
the CLI array input chaining feature that was enabled when
SQL_ATTR_CHAINING_BEGIN was set.

SQL_ATTR_CLIENT_LOB_BUFFERING
Specifies whether LOB locators or the underlying LOB data is returned in a
result set for LOB columns that are not bound. By default, locators are
returned. If an application usually fetches unbound LOBs and then must
retrieve the underlying LOB data, the application performance can be
improved by retrieving the LOB data from the outset. This action reduces
the number of synchronous waits and network flows. The possible values
for this attribute are:
v SQL_CLIENTLOB_USE_LOCATORS (default) - LOB locators are

returned
v SQL_CLIENTLOB_BUFFER_UNBOUND_LOBS - actual LOB data is

returned

SQL_ATTR_CLOSE_BEHAVIOR
A 32-bit integer that specifies whether the DB2 server should attempt to
release read locks acquired during a cursor's operation when the cursor is
closed. It can be set to either:
v SQL_CC_NO_RELEASE - read locks are not released. This is the

default.
v SQL_CC_RELEASE - read locks are released.

For cursors opened with isolation UR or CS, read locks are not held after a
cursor moves off a row. For cursors opened with isolation RS or RR,
SQL_ATTR_CLOSE_BEHAVIOR modifies some of those isolation levels,
and an RR cursor might experience nonrepeatable reads or phantom reads.

If a cursor that is originally RR or RS is reopened after being closed with
SQL_ATTR_CLOSE_BEHAVIOR then new read locks are acquired.

This attribute can also be set at the connection level, however when set at
the connection level, it only affects cursor behavior for statement handles
that are opened after this attribute is set.

See the SQLCloseCursor() function for more information.

This attribute is not supported when accessing IDS data servers.

SQL_ATTR_CLOSEOPEN
To reduce the time it takes to open and close cursors, DB2 automatically
closes an open cursor if a second cursor is opened using the same handle.
Network flow is therefore reduced when the close request is chained with
the open request and the two statements are combined into one network
request (instead of two requests).

Statement attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 469

v 0 = DB2 acts as a regular ODBC data source: Do not chain the close and
open statements, return an error if there is an open cursor. This behavior
is the default.

v 1 = Chain the close and open statements.

Previous CLI applications do not benefit from this default because they are
designed to explicitly close the cursor. New applications, however, can take
advantage of this behavior by not closing the cursors explicitly, but by
allowing CLI to close the cursor on subsequent open requests.

SQL_ATTR_COLUMNWISE_MRI
A 32-bit unsigned integer that enables CLI applications connected to DB2
for z/OS servers to convert array input chaining into column-wise array
input for INSERT operations. This attribute is available starting in Version
9.7 Fix Pack 5. The possible values are as follows:
v SQL_COLUMNWISE_MRI_OFF (default): CLI does not convert

chaining data to column-wise array input.
v SQL_COLUMNWISE_MRI_ON: CLI converts array input chaining to

column-wise array input. The Multi-Row Insert (MRI) feature in DB2 for
z/OS expects data to be in column-wise array form. If your application
uses array input chaining, this conversion helps you optimize your
application performance because data is sent in a compact array form
each time you call SQLExecute (). For more information about array
input chaining, see SQL_ATTR_CHAINING_BEGIN.

For non-DB2 for z/OS servers, CLI automatically converts chaining data to
row-wise array input and setting this attribute has no effect.

The conversion is not performed in the following cases:
v Bind parameters with a LOB data type such as SQL_CLOB, SQL_BLOB,

SQL_LONGVARBINARY, SQL_LONGVARGRAPHIC, SQL_DBCLOB, or
SQL_XML.

v Bind input data-at-execute parameters by setting their value to
SQL_DATA_AT_EXEC to pass data to INSERT operations by calling the
SQLPutData() and SQLParamData() functions.

v Space to store all the application data in the internal buffers is not
available.

SQL_ATTR_CONCURRENCY
A 32-bit integer value that specifies the cursor concurrency:
v SQL_CONCUR_READ_ONLY = Cursor is read-only. No updates are

allowed. Supported by forward-only, static and keyset cursors.
v SQL_CONCUR_LOCK = Cursor uses the lowest level of locking

sufficient to ensure that the row can be updated. Supported by
forward-only and keyset cursors.

v SQL_CONCUR_VALUES = Cursor uses optimistic concurrency control,
comparing values.

The default value for SQL_ATTR_CONCURRENCY is
SQL_CONCUR_READ_ONLY for static and forward-only cursors. The
default for a keyset cursor is SQL_CONCUR_VALUES.

This attribute cannot be specified for an open cursor.

If the SQL_ATTR_CURSOR_TYPE Attribute is changed to a type that does
not support the current value of SQL_ATTR_CONCURRENCY, the value of
SQL_ATTR_CONCURRENCY is changed at execution time, and a warning
issued when SQLExecDirect() or SQLPrepare() is called.

Statement attributes (CLI) list

470 Call Level Interface Guide and Reference, Volume 2

If a SELECT FOR UPDATE statement is executed while the value of
SQL_ATTR_CONCURRENCY is set to SQL_CONCUR_READ_ONLY, an
error is returned. If the value of SQL_ATTR_CONCURRENCY is changed
to a value that is supported for some value of SQL_ATTR_CURSOR_TYPE,
but not for the current value of SQL_ATTR_CURSOR_TYPE, the value of
SQL_ATTR_CURSOR_TYPE is changed at execution time, and SQLSTATE
01S02 (Option value changed) is issued when SQLExecDirect() or
SQLPrepare() is called.

If the value of SQL_ATTR_CONCURRENCY is set to
SQL_CONCUR_LOCK, this value is promoted to SQL_CONCUR_VALUES
when all the following conditions are met:
v SQL_ROWSET_SIZE OR SQL_ATTR_ROW_ARRAY_SIZE is greater than

1.
v The data source is a database on a DB2 Database for Linux, UNIX, and

Windows server.
v The PATCH2 configuration keyword is set to 73.

If the specified concurrency is not supported by the data source, then CLI
substitutes a different concurrency and returns SQLSTATE 01S02 (Option
value changed). The order of substitution depends on the cursor type:
v Forward-Only: SQL_CONCUR_LOCK is substituted for

SQL_CONCUR_ROWVER and SQL_CONCUR_VALUES
v Static: only SQL_CONCUR_READ_ONLY is valid
v Keyset: SQL_CONCUR_VALUES is substituted for

SQL_CONCUR_ROWVER

Note: The following value has also been defined by ODBC, but is not
supported by CLI
v SQL_CONCUR_ROWVER = Cursor uses optimistic concurrency control.

SQL_ATTR_CURSOR_HOLD
A 32-bit integer which specifies whether the cursor associated with this
StatementHandle is preserved in the same position as before the COMMIT
operation, and whether the application can fetch without executing the
statement again.
v SQL_CURSOR_HOLD_ON (this is the default)
v SQL_CURSOR_HOLD_OFF

The default value when an StatementHandle is first allocated is
SQL_CURSOR_HOLD_ON.

This option cannot be specified while there is an open cursor on this
StatementHandle.

The default cursor hold mode can also be set using the CURSORHOLD
CLI/ODBC configuration keyword.

Note: This option is an IBM extension.

SQL_ATTR_CURSOR_SCROLLABLE
A 32-bit integer that specifies the level of support that the application
requires. Setting this attribute affects subsequent calls to SQLExecute() and
SQLExecDirect(). The supported values are:
v SQL_NONSCROLLABLE = Scrollable cursors are not required on the

statement handle. If the application calls SQLFetchScroll() on this
handle, the only valid value of FetchOrientation() is SQL_FETCH_NEXT.
This value is the default.

Statement attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 471

v SQL_SCROLLABLE = Scrollable cursors are required on the statement
handle. When calling SQLFetchScroll(), the application can specify any
valid value of FetchOrientation, achieving cursor positioning in modes
other than the sequential mode.

SQL_ATTR_CURSOR_SENSITIVITY
A 32-bit integer that specifies whether cursors on the statement handle
make visible the changes made to a result set by another cursor. Setting
this attribute affects subsequent calls to SQLExecute() and
SQLExecDirect(). The supported values are:
v SQL_UNSPECIFIED = It is unspecified what the cursor type is and

whether cursors on the statement handle make visible the changes made
to a result set by another cursor. Cursors on the statement handle might
make visible none, some or all such changes. This value is the default.

v SQL_INSENSITIVE = All cursors on the statement handle show the
result set without reflecting any changes made to it by any other cursor.
Insensitive cursors are read-only. This corresponds to a static cursor
which has a concurrency that is read-only.

v SQL_SENSITIVE = All cursors on the statement handle make visible all
changes made to a result by another cursor.

SQL_ATTR_CURSOR_TYPE
A 32-bit integer value that specifies the cursor type. The supported values
are:
v SQL_CURSOR_FORWARD_ONLY = The cursor only scrolls forward.

This is the default.
v SQL_CURSOR_STATIC = The data in the result set is static.
v SQL_CURSOR_KEYSET_DRIVEN = CLI supports a pure keyset cursor.

The SQL_KEYSET_SIZE statement attribute is ignored. To limit the size
of the keyset the application must limit the size of the result set by
setting the SQL_ATTR_MAX_ROWS attribute to a value other than 0.

v SQL_CURSOR_DYNAMIC = A dynamic scrollable cursor detects all
changes (inserts, deletes and updates) to the result set, and make
insertions, deletions and updates to the result set. Dynamic cursors are
only supported when accessing servers which are DB2 for z/OS Version
8.1 and later.

This option cannot be specified for an open cursor.

If the specified cursor type is not supported by the data source, CLI
substitutes a different cursor type and returns SQLSTATE 01S02 (Option
value changed). For a mixed or dynamic cursor, CLI substitutes, in order, a
keyset-driven or static cursor.

SQL_ATTR_DB2_NOBINDOUT
A Boolean attribute that specifies when and where the client performs data
conversion and related tasks during a fetch operation. The default value of
this attribute is 0 (false) and should only be set to 1 (true) when connected
to a federated database.

This attribute is not supported when accessing IDS data servers.

SQL_ATTR_DEFERRED_PREPARE
Specifies whether the PREPARE request is deferred until the corresponding
execute request is issued.
v SQL_DEFERRED_PREPARE_OFF = Disable deferred prepare. The

PREPARE request is executed the moment it is issued.

Statement attributes (CLI) list

472 Call Level Interface Guide and Reference, Volume 2

v SQL_DEFERRED_PREPARE_ON (default) = Enable deferred prepare.
Defer the execution of the PREPARE request until the corresponding
execute request is issued. The two requests are then combined into one
command/reply flow (instead of two) to minimize network flow and to
improve performance.
If the target DB2 database or the DDCS gateway does not support
deferred prepare, the client disables deferred prepare for that connection.

Note: When deferred prepare is enabled, the row and cost estimates
normally returned in the SQLERRD(3) and SQLERRD(4) of the SQLCA of a
PREPARE statement might become zeros. This might be of concern to users
who want to use these values to decide whether to continue the SQL
statement.

The default deferred prepare mode can also be set using the
DEFERREDPREPARE CLI/ODBC configuration keyword.

Note: This is an IBM defined extension.

SQL_ATTR_EARLYCLOSE
Specifies whether the temporary cursor on the server can be automatically
closed, without closing the cursor on the client, when the last record is sent
to the client.
v SQL_EARLYCLOSE_OFF = Do not close the temporary cursor on the

server early.
v SQL_EARLYCLOSE_ON = Close the temporary cursor on the server

early (default).
This saves a network request by not issuing the statement to explicitly
close the cursor because it knows that it has already been closed.
Having this option on speeds up applications that use many small result
sets.
The EARLYCLOSE feature is not used if the cursor type is anything
other than SQL_CURSOR_FORWARD_ONLY.

Note: This is an IBM defined extension.

SQL_ATTR_ENABLE_AUTO_IPD
A 32-bit integer value that specifies whether automatic population of the
IPD is performed:
v SQL_TRUE = Turns on automatic population of the IPD after a call to

SQLPrepare().
v SQL_FALSE = Turns off automatic population of the IPD after a call to

SQLPrepare().

The default value of the statement attribute
SQL_ATTR_ENABLE_AUTO_IPD is equal to the value of the connection
attribute SQL_ATTR_AUTO_IPD.

If the connection attribute SQL_ATTR_ AUTO_IPD is SQL_FALSE, the
statement attribute SQL_ATTR_ENABLE_AUTO_IPD cannot be set to
SQL_TRUE.

SQL_ATTR_EXTENDED_INDICATORS
A 32-bit integer that eliminates the need to indicate the position in the SQL
statement where the contents of the application variables are substituted
when the statement is executed. This attribute has the following values:

Statement attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 473

v SQL_EXTENDED_INDICATOR_ENABLE: Enables users to specify
values to signify SQL_UNASSIGNED and SQL_DEFAULT_PARAM on
the SQLBindParameter / SQLExtendedBind methods.

v SQL_EXTENDED_INDICATOR_NOT_SET (default): The user gets an
InvalidArgument value error if the SQL_UNASSIGNED and
SQL_DEFAULT_PARAM are not enabled before an application tries to
use them.

v Extended indicators support DB2 for Linux, UNIX, and Windows and
for DB2 10 for z/OS data servers starts in DB2 Version 9.7 Fix Pack 2.
Extended indicators support DB2 for IBM i 7.1 data servers starts in DB2
Version 9.7 Fix Pack 5.

SQL_ATTR_FETCH_BOOKMARK_PTR
A pointer that points to a binary bookmark value. When SQLFetchScroll()
is called with FetchOrientation equal to SQL_FETCH_BOOKMARK, CLI picks up
the bookmark value from this field. This field defaults to a null pointer.

SQL_ATTR_IMP_PARAM_DESC
The handle to the IPD. The value of this attribute is the descriptor
allocated when the statement was initially allocated. The application
cannot set this attribute.

This attribute can be retrieved by a call to SQLGetStmtAttr(), but not set by
a call to SQLSetStmtAttr().

SQL_ATTR_IMP_ROW_DESC
The handle to the IRD. The value of this attribute is the descriptor
allocated when the statement was initially allocated. The application
cannot set this attribute.

This attribute can be retrieved by a call to SQLGetStmtAttr(), but not set by
a call to SQLSetStmtAttr().

SQL_ATTR_INFO_PROGRAMID
A user-defined character string, with a maximum length of 80 bytes, that
associates an application with a statement. Once this attribute is set, DB2
UDB for z/OS Version 8 and later associates this identifier with any
statements inserted into the dynamic SQL statement cache.

This attribute is only supported for CLI applications accessing DB2 UDB
for z/OS Version 8 and later or IBM Informix Dynamic Servers (IDS).

SQL_ATTR_INSERT_BUFFERING
This attribute enables buffering insert optimization of partitioned database
environments. The possible values are:
SQL_ATTR_INSERT_BUFFERING_OFF (default),
SQL_ATTR_INSERT_BUFFERING_ON, and
SQL_ATTR_INSERT_BUFFERING_IGD (duplicates are ignored).

This attribute is not supported when accessing IDS data servers.

SQL_ATTR_INTERLEAVED_PUTDATA
This attribute allows inserting LOB data with SQLParamData and
SQLPutData in an interleaving fashion. For example:
// Set the attribute
SQLSetStmtAttr(hstmt,

SQL_ATTR_INTERLEAVED_PUTDATA,
TRUE,
0);

//Bind the parameters with DATA_AT_EXEC indicator
blobInd = SQL_DATA_AT_EXEC;

Statement attributes (CLI) list

474 Call Level Interface Guide and Reference, Volume 2

cliRC = SQLBindParameter (hstmt, /* statement handle */
1, /* parameter marker index */
SQL_PARAM_INPUT, /* it’s input parameter */
SQL_C_CHAR, /* CLI variable is CHARACTER*/
SQL_CLOB, /* table column is CLOB*/
10, /* length of CLI variable */
0, /* scale of decimal digits*/
&data1, /* pointer to CLI variable*/
10, /* buffer length */
&blobInd);

cliRC = SQLBindParameter (hstmt, /* statement handle */
2, /* parameter marker index */
SQL_PARAM_INPUT, /* it’s input parameter */
SQL_C_CHAR, /* CLI variable is CHARACTER*/
SQL_CLOB, /* table column is CLOB*/
10, /* length of CLI variable */
0, /* scale of decimal digits*/
&data2, /* pointer to CLI variable*/
10, /* buffer length */
&blobInd);

SQLExecute (hstmt);
valuePtr = (SQLPOINTER) 2;
SQLParamData (hstmt, (SQLPOINTER *)&valuePtr);
//update buffer data2
SQLPutData (hstmt, data2, strlen(data2));
valuePtr = (SQLPOINTER) 1;
SQLParamData (hstmt, (SQLPOINTER *)&valuePtr);
//update buffer data1
SQLPutData (hstmt, data1, strlen(data2));
valuePtr = (SQLPOINTER) 2;
SQLParamData (hstmt, (SQLPOINTER *)&valuePtr);
//update buffer data2
SQLPutData (hstmt, data2, strlen(data2));
valuePtr = (SQLPOINTER) 1;
SQLParamData (hstmt, (SQLPOINTER *)&valuePtr);
//update buffer data1
SQLPutData (hstmt, data1, strlen(data2));

valuePtr = (SQLPOINTER) 0;
SQLParamData (hstmt, (SQLPOINTER *)&valuePtr);

This attribute disables any SQLPutData function streaming that is in effect
and causes each of the parameter values to be buffered on the client until
the data at the SQL_DATA_AT_EXEC is closed with SQLParamData(0).

SQL_ATTR_INTERLEAVED_STREAM_PUTDATA
This attribute allows inserting LOB data with SQLParamData and
SQLPutData in an interleaving fashion with function streaming. Streaming
writes the LOB data directly to the connection-level buffer, bypassing the
internal statement-level buffer, for improved performance.

Applications get a "Function Sequence Error (CLI0125E)" error if a new
attribute is set in middle of SQLExecute, SQLParamData or SQLPutData.
This error is also returned whenever there is an incorrect sequence of
SQLParamData and SQLPutData.

If this attribute is set for a statement handle of a connection, any other
statement handle of the same connection gets a "Function Sequence Error
(CLI0125E)" if an operation is performed that uses the connection buffer
until all the data has been sent to the server for that statement handle with

Statement attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 475

the SQL_ATTR_INTERLEAVED_STREAM_PUTDATA attribute enabled. All
SQLParamData and SQLPutData calls must be complete for the statement
handle with the SQL_ATTR_INTERLEAVED_STREAM_PUTDATA attribute
enabled before any other statement handle may perform an operation that
uses the connection buffer. For more information on limitations when using
streaming, see the “StreamPutData CLI/ODBC configuration keyword” on
page 404.

To indicate the end of data for all parameters in a set of interleaved
parameters, call SQLParamData with a parameter number of (0).
Applications should explicitly indicate the end of data for all parameters
by calling SQLParamData with a parameter number of 0.

The end of data for a single parameter is indicated by calling
SQLParamData with the equivalent negative parameter number. For
example, to indicate the end of the data stream for parameter number 4,
the application should specify SQLParamData(-4). Applications should
always indicate end of data for a parameter using the negative of the
parameter number. If applications indicate the end of data for a parameter
which is being streamed , CLI is able to stream data for the next parameter.
This may result in better performance.

The following example shows interleaving LOB data, how to mark the end
of data for a single parameter using negative parameter numbers, and how
to indicate the end of data for all parameters using a parameter number of
(0):
// Set the SQL_ATTR_INTERLEAVED_STREAM_PUTDATA attribute
SQLSetStmtAttr(hstmt, SQL_ATTR_INTERLEAVED_STREAM_PUTDATA, TRUE, 0);

//Bind the parameters with DATA_AT_EXEC indicator
blobInd = SQL_DATA_AT_EXEC;

//declare the statement handle with parameter marker
index value of 1,
//input parameter SQL_PARAM_INPUT, CLI variable type SQL_C_CHAR,
table column type CLOB,
//length of CLI variable 10, scale of decimal digits 10,
and DATA_AT_EXEC indicator
cliRC = SQLBindParameter (hstmt, 1, SQL_PARAM_INPUT,
SQL_C_CHAR, SQL_CLOB,
10, 0, &data1, 10, &blobInd);

//declare the next statement handle with
parameter marker index value of 2
cliRC = SQLBindParameter (hstmt, 2, SQL_PARAM_INPUT,
SQL_C_CHAR, SQL_CLOB,
10, 0, &data2, 10, &blobInd);

//declare the next statement handle with
parameter marker index value of 3
cliRC = SQLBindParameter (hstmt, 3, SQL_PARAM_INPUT,
SQL_C_CHAR, SQL_CLOB,
10, 0, &data3, 10, &blobInd);

SQLExecute (hstmt);

//make parameter 2 active
valuePtr = (SQLPOINTER) 2;
SQLParamData (hstmt, (SQLPOINTER *)&valuePtr);

//buffer data for parameter 2
SQLPutData (hstmt, data2, strlen(data2));

Statement attributes (CLI) list

476 Call Level Interface Guide and Reference, Volume 2

//make parameter 1 active
valuePtr = (SQLPOINTER) 1;
SQLParamData (hstmt, (SQLPOINTER *)&valuePtr);

// stream data for parameter 1
SQLPutData (hstmt, data1, strlen(data2));

//make parameter 2 active
valuePtr = (SQLPOINTER) 2;
SQLParamData (hstmt, (SQLPOINTER *)&valuePtr);

//buffer data for parameter 2
SQLPutData (hstmt, data2, strlen(data2));

//make parameter 3 active
valuePtr = (SQLPOINTER) 3;
SQLParamData (hstmt, (SQLPOINTER *)&valuePtr);

//buffer data for parameter 3
SQLPutData (hstmt, data1, strlen(data2));

//end of data for parameter 1
valuePtr = (SQLPOINTER) -1;
SQLParamData (hstmt, (SQLPOINTER *)&valuePtr);

//make parameter 2 active
valuePtr = (SQLPOINTER) 2;
SQLParamData (hstmt, (SQLPOINTER *)&valuePtr);

//stream the buffered data for parameter 2
SQLPutData (hstmt, data2, strlen(data2));

//make parameter 3 active valuePtr = (SQLPOINTER) 3;
SQLParamData (hstmt, (SQLPOINTER *)&valuePtr);

//buffer data for parameter 3
SQLPutData (hstmt, data1, strlen(data2));

//end of data for parameter 3
valuePtr = (SQLPOINTER) -3;
SQLParamData (hstmt, (SQLPOINTER *)&valuePtr);

// indicate end of data for all parameters.
// CLI streams the buffered data for all parameters
valuePtr = (SQLPOINTER) 0;
SQLParamData (hstmt, (SQLPOINTER *)&valuePtr);

SQL_ATTR_KEYSET_SIZE
CLI supports a pure keyset cursor, therefore the SQL_KEYSET_SIZE
statement attribute is ignored. To limit the size of the keyset the application
must limit the size of the result set by setting the SQL_ATTR_MAX_ROWS
attribute to a value other than 0.

This attribute is not supported when accessing IDS data servers.

SQL_ATTR_LOAD_INFO
A pointer to a structure of type db2LoadStruct. The db2LoadStruct
structure is used to specify all applicable LOAD options that should be
used during CLI LOAD. Note that this pointer and all of its embedded
pointers should be valid during every CLI function call from the time the
SQL_ATTR_USE_LOAD_API statement attribute is set to the time it is
turned off. For this reason, it is recommended that this pointer and its
embedded pointers point to dynamically allocated memory rather than
locally declared structures.

This attribute is not supported when accessing IDS data servers.

Statement attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 477

SQL_ATTR_LOAD_MODIFIED_BY
A pointer to a char string that specifies the file type modifier option to be
used during CLI LOAD.

SQL_ATTR_LOAD_ROWS_COMMITTED_PTR
A pointer to an integer that represents the total number of rows processed.
This value equals the number of rows successfully loaded and committed
to the database, plus the number of skipped and rejected rows. The integer
is 32-bit on 32-bit platforms and 64-bit on 64-bit platforms.

This attribute is not supported when accessing IDS data servers.

SQL_ATTR_LOAD_ROWS_DELETED_PTR
A pointer to an integer that represents the number of duplicate rows
deleted. The integer is 32-bit on 32-bit platforms and 64-bit on 64-bit
platforms.

This attribute is not supported when accessing IDS data servers.

SQL_ATTR_LOAD_ROWS_LOADED_PTR
A pointer to an integer that represents the number of rows loaded into the
target table. The integer is 32-bit on 32-bit platforms and 64-bit on 64-bit
platforms.

This attribute is not supported when accessing IDS data servers.

SQL_ATTR_LOAD_ROWS_READ_PTR
A pointer to an integer that represents the number of rows read. The
integer is 32-bit on 32-bit platforms and 64-bit on 64-bit platforms.

This attribute is not supported when accessing IDS data servers.

SQL_ATTR_LOAD_ROWS_REJECTED_PTR
A pointer to an integer that represents the number of rows that could not
be loaded. The integer is 32-bit on 32-bit platforms and 64-bit on 64-bit
platforms.

This attribute is not supported when accessing IDS data servers.

SQL_ATTR_LOAD_ROWS_SKIPPED_PTR
A pointer to an integer that represents the number of rows skipped before
the CLI LOAD operation began. The integer is 32-bit on 32-bit platforms
and 64-bit on 64-bit platforms.

This attribute is not supported when accessing IDS data servers.

SQL_ATTR_LOB_CACHE_SIZE
A 32-bit unsigned integer that specifies maximum cache size (in bytes) for
LOBs. By default, LOBs are not cached.

See the “LOBCacheSize CLI/ODBC configuration keyword” on page 366
for further usage information.

SQL_ATTR_MAX_LENGTH
A 32-bit integer value corresponding to the maximum amount of data that
can be retrieved from a single character or binary column.

Note: SQL_ATTR_MAX_LENGTH should not be used to truncate data.
The BufferLength argument of SQLBindCol() or SQLGetData() should be
used instead for truncating data.
If data is truncated because the value specified for
SQL_ATTR_MAX_LENGTH is less than the amount of data available, a
SQLGetData() call or fetch returns SQL_SUCCESS instead of returning

Statement attributes (CLI) list

478 Call Level Interface Guide and Reference, Volume 2

SQL_SUCCESS_WITH_INFO and SQLSTATE 01004 (Data Truncated). The
default value for SQL_ATTR_MAX_LENGTH is 0; 0 means that CLI
attempts to return all available data for character or binary type data.

SQL_ATTR_MAX_LOB_BLOCK_SIZE
A 32-bit unsigned integer that indicates the maximum size of LOB or XML
data block. Specify a positive integer, up to 2 147 483 647. The default
setting of 0 indicates that there is no limit to the data block size for LOB or
XML data.

During data retrieval, the server includes all of the information for the
current row in its reply to the client even if the maximum block size has
been reached.

If both MaxLOBBlockSize and the db2set registry variable
DB2_MAX_LOB_BLOCK_SIZE are specified, the value for MaxLOBBlockSize is
used.

Setting the “MaxLOBBlockSize CLI/ODBC configuration keyword” on
page 376 is an alternative method of specifying this behavior.

SQL_ATTR_MAX_ROWS
A 32-bit integer value corresponding to the maximum number of rows to
return to the application from a query. The default value for
SQL_ATTR_MAX_ROWS is 0; 0 means all rows are returned.

SQL_ATTR_METADATA_ID
This statement attribute is defined by ODBC, but is not supported by CLI.
Any attempt to set or get this attribute results in an SQLSTATE of HYC00
(Driver not capable).

This attribute is not supported when accessing IDS data servers.

SQL_ATTR_NOSCAN
A 32-bit integer value that specifies whether CLI scans SQL strings for
escape clauses. The two permitted values are:
v SQL_NOSCAN_OFF - SQL strings are scanned for escape clause

sequences. This is the default.
v SQL_NOSCAN_ON - SQL strings are not scanned for escape clauses.

Everything is sent directly to the server for processing.

This application can choose to turn off the scanning if it never uses vendor
escape sequences in the SQL strings that it sends. Turning off the scanning
eliminates some of the overhead processing associated with scanning.

SQL_ATTR_OPTIMIZE_FOR_NROWS
A 32-bit integer value. If it is set to an integer larger than 0, "OPTIMIZE
FOR n ROWS" clause is appended to every select statement If set to 0 (the
default) this clause is not appended.

The default value can also be set using the OPTIMIZEFORNROWS CLI/ODBC
configuration keyword.

SQL_ATTR_OPTIMIZE_SQLCOLUMNS
This attribute has been deprecated.

SQL_ATTR_PARAM_BIND_OFFSET_PTR
A 32-bit integer * value that points to an offset added to pointers to change
binding of dynamic parameters. If this field is non-null, CLI dereferences
the pointer, adds the dereferenced value to each of the deferred fields in
the descriptor record (SQL_DESC_DATA_PTR,

Statement attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 479

SQL_DESC_INDICATOR_PTR, and SQL_DESC_OCTET_LENGTH_PTR),
and uses the resulting pointer values at execute time. It is set to null by
default.

The bind offset is always added directly to the SQL_DESC_DATA_PTR,
SQL_DESC_INDICATOR_PTR, and SQL_DESC_OCTET_LENGTH_PTR
fields. If the offset is changed to a different value, the new value is added
directly to the value in the descriptor field. The new offset is not added to
the field value plus any earlier offsets.

Setting this statement attribute sets the SQL_DESC_BIND_OFFSET_PTR
field in the APD header.

SQL_ATTR_PARAM_BIND_TYPE
A 32-bit integer value that indicates the binding orientation to be used for
dynamic parameters.

This field is set to SQL_PARAM_BIND_BY_COLUMN (the default) to
select column-wise binding.

To select row-wise binding, this field is set to the length of the structure or
an instance of a buffer that is bound to a set of dynamic parameters. This
length must include space for all of the bound parameters and any
padding of the structure or buffer to ensure that when the address of a
bound parameter is incremented with the specified length, the result points
to the beginning of the same parameter in the next set of parameters.
When using the sizeof operator in ANSI C, this behavior is guaranteed.

Setting this statement attribute sets the SQL_DESC_ BIND_TYPE field in
the APD header.

SQL_ATTR_PARAM_OPERATION_PTR
A 16-bit unsigned integer * value that points to an array of 16-bit unsigned
integer values used to specify whether or not a parameter should be
ignored during execution of an SQL statement. Each value is set to either
SQL_PARAM_PROCEED (for the parameter to be executed) or
SQL_PARAM_IGNORE (for the parameter to be ignored).

A set of parameters can be ignored during processing by setting the status
value in the array pointed to by SQL_DESC_ARRAY_STATUS_PTR in the
APD to SQL_PARAM_IGNORE. A set of parameters is processed if its
status value is set to SQL_PARAM_PROCEED, or if no elements in the
array are set.

This statement attribute can be set to a null pointer, in which case CLI does
not return parameter status values. This attribute can be set at any time,
but the new value is not used until the next time SQLExecDirect() or
SQLExecute() is called.

Setting this statement attribute sets the SQL_DESC_ARRAY_STATUS_PTR
field in the APD.

SQL_ATTR_PARAM_STATUS_PTR
A 16-bit unsigned integer * value that points to an array of UWORD values
containing status information for each row of parameter values after a call
to SQLExecDirect() or SQLExecute(). This field is used only if
SQL_ATTR_PARAMSET_SIZE is greater than 1.

The status values can contain the following values:
v SQL_PARAM_SUCCESS: The SQL statement was successfully executed

for this set of parameters.

Statement attributes (CLI) list

480 Call Level Interface Guide and Reference, Volume 2

v SQL_PARAM_SUCCESS_WITH_INFO: The SQL statement was
successfully executed for this set of parameters; however, warning
information is available in the diagnostics data structure.

v SQL_PARAM_ERROR: There was an error in processing this set of
parameters. Additional error information is available in the diagnostics
data structure.

v SQL_PARAM_UNUSED: This parameter set was unused, possibly due to
the fact that some previous parameter set caused an error that aborted
further processing.

v SQL_PARAM_DIAG_UNAVAILABLE: CLI treats arrays of parameters as
a monolithic unit and so does not generate this level of error
information.

This statement attribute can be set to a null pointer, in which case CLI does
not return parameter status values. This attribute can be set at any time,
but the new value is not used until the next time SQLFetch(),
SQLFetchScroll(), or SQLSetPos() is called.

Setting this statement attribute sets the SQL_DESC_ARRAY_STATUS_PTR
field in the IPD header.

SQL_ATTR_PARAMOPT_ATOMIC
This is a 32-bit integer value which determines, when SQLParamOptions()
has been used to specify multiple values for parameter markers, whether
the underlying processing should be done via ATOMIC or NOT-ATOMIC
Compound SQL. The possible values are:
v SQL_ATOMIC_YES - The underlying processing makes use of ATOMIC

Compound SQL. This is the default if the target database supports
ATOMIC compound SQL.

v SQL_ATOMIC_NO - The underlying processing makes use of
NON-ATOMIC Compound SQL.

Specifying SQL_ATOMIC_YES when connected to a server that does not
support ATOMIC compound SQL results in an error (SQLSTATE is S1C00).

Specifying SQL_ATOMIC_YES when SQL_PARC_BATCH is set to
SQL_PARC_BATCH_ENABLE returns the CLI0150E error message. If you
want to set SQL_PARC_BATCH to SQL_PARC_BATCH_ENABLE, you
must specify SQL_ATOMIC_NO.

SQL_ATTR_PARAMS_PROCESSED_PTR
A 32-bit unsigned integer * record field that points to a buffer in which to
return the current row number. As each row of parameters is processed,
this is set to the number of that row. No row number is returned if this is a
null pointer.

Setting this statement attribute sets the
SQL_DESC_ROWS_PROCESSED_PTR field in the IPD header.

If the call to SQLExecDirect() or SQLExecute() that fills in the buffer
pointed to by this attribute does not return SQL_SUCCESS or
SQL_SUCCESS_WITH_INFO, the contents of the buffer are undefined.

SQL_ATTR_PARAMSET_SIZE
A 32-bit unsigned integer value that specifies the number of values for
each parameter. If SQL_ATTR_PARAMSET_SIZE is greater than 1,
SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, and
SQL_DESC_OCTET_LENGTH_PTR of the APD point to arrays. The
cardinality of each array is equal to the value of this field.

Statement attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 481

Setting this statement attribute sets the SQL_DESC_ARRAY_SIZE field in
the APD header.

Starting in DB2 Version 9.7 Fix Pack 6, array input using
SQL_ATTR_PARAMSET_SIZE, inside a trusted procedure body, is
supported.

SQL_ATTR_PREFETCH
This attribute has been deprecated.

SQL_ATTR_QUERY_OPTIMIZATION_LEVEL
A 32-bit integer value that sets the query optimization level to be used on
the next call to SQLPrepare(), SQLExtendedPrepare(), or SQLExecDirect().

Supported values to use are: -1 (default), 0, 1, 2, 3, 5, 7, and 9.

The SQL_ATTR_QUERY_OPTIMIZATION_LEVEL statement attribute does
not set the optimization level for IDS data servers. Informix optimizer
directives should be used instead. For more information, see Optimizer
directives

SQL_ATTR_QUERY_TIMEOUT
A 32-bit integer value that is the number of seconds to wait for an SQL
statement or XQuery expression to execute before aborting the execution
and returning to the application. This option can be set and used to
terminate long running queries. The default value of 0 means CLI waits
indefinitely for the server to complete execution of the SQL statement. CLI
supports non-zero values for all platforms that support multithreading.

When using this attribute against a server which does not have native
interrupt support (such as DB2 for z/OS and OS/390, Version 7 and
earlier, and DB2 for i), the INTERRUPT_ENABLED option must be set
when cataloging the DCS database entry for the server.

When the INTERRUPT_ENABLED option is set and this attribute is set to
a non-zero value, the DB2 for i server drops the connection and rolls back
the unit of work. The application receives an SQL30081N error indicating
that the connection to the server has been terminated. In order for the
application to process additional database requests, the application must
establish a new connection with the database server.

The SQL_ATTR_QUERY_TIMEOUT can also interrupt a LOAD, which
returns SQL3005N instead of SQL0952N.

SQL_ATTR_REOPT
A 32-bit integer value that enables query optimization for SQL statements
that contain special registers or parameter markers. Optimization occurs by
using the values available at query execution time for special registers or
parameter markers, instead of the default estimates that are chosen by the
compiler. The valid values of the attribute are:
v 2 = SQL_REOPT_NONE. This is the default. No query optimization

occurs at query execution time. The default estimates chosen by the
compiler are used for the special registers or parameter markers. The
default NULLID package set is used to execute dynamic SQL statements.

v 3 = SQL_REOPT_ONCE. Query optimization occurs once at query
execution time, when the query is executed for the first time. The
NULLIDR1 package set, which is bound with the REOPT ONCE bind
option, is used.

Statement attributes (CLI) list

482 Call Level Interface Guide and Reference, Volume 2

http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.perf.doc/ids_prf_554.htm
http://publib.boulder.ibm.com/infocenter/idshelp/v115/topic/com.ibm.perf.doc/ids_prf_554.htm

v 4 = SQL_REOPT_ALWAYS. Query optimization or reoptimization occurs
at query execution time every time the query is executed. The
NULLIDRA package set, which is bound with the REOPT ALWAYS bind
option, is used.

The NULLIDR1 and NULLIDRA are reserved package set names, and
when used, REOPT ONCE and REOPT ALWAYS are implied respectively.
These package sets have to be explicitly created with these commands:
db2 bind db2clipk.bnd collection NULLIDR1
db2 bind db2clipk.bnd collection NULLIDRA

SQL_ATTR_REOPT and SQL_ATTR_CURRENT_PACKAGE_SET are
mutually exclusive, therefore, if one is set, the other is not allowed.

This attribute is not supported when accessing IDS data servers.

SQL_ATTR_RETRIEVE_DATA
A 32-bit integer value:
v SQL_RD_ON = SQLFetchScroll() and in DB2 CLI/v5 and later,

SQLFetch(), retrieve data after it positions the cursor to the specified
location. This is the default.

v SQL_RD_OFF = SQLFetchScroll() and in DB2 CLI/v5 and later,
SQLFetch(), do not retrieve data after it positions the cursor.

By setting SQL_RETRIEVE_DATA to SQL_RD_OFF, an application can
verify if a row exists or retrieve a bookmark for the row without incurring
the overhead of retrieving rows.

SQL_ATTR_RETURN_USER_DEFINED_TYPES
A Boolean attribute that specifies whether user-defined type columns are
reported as the user-defined type or the underlying base type when
queried by functions such as SQLDescribeCol(). The default value is 0
(false), where columns are reported as the underlying base type.

This attribute is not supported when accessing IDS data servers.

SQL_ATTR_ROW_ARRAY_SIZE
A 32-bit integer value that specifies the number of rows in the rowset. This
is the number of rows returned by each call to SQLFetch() or
SQLFetchScroll(). The default value is 1.

If the specified rowset size exceeds the maximum rowset size supported by
the data source, CLI substitutes that value and returns SQLSTATE 01S02
(Option value changed).

This option can be specified for an open cursor.

Setting this statement attribute sets the SQL_DESC_ARRAY_SIZE field in
the ARD header.

SQL_ATTR_ROW_BIND_OFFSET_PTR
A 32-bit integer * value that points to an offset added to pointers to change
binding of column data. If this field is non-null, CLI dereferences the
pointer, adds the dereferenced value to each of the deferred fields in the
descriptor record (SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR,
and SQL_DESC_OCTET_LENGTH_PTR), and uses the new pointer values
when binding. It is set to null by default.

Setting this statement attribute sets the SQL_DESC_BIND_OFFSET_PTR
field in the ARD header.

Statement attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 483

SQL_ATTR_ROW_BIND_TYPE
A 32-bit integer value that sets the binding orientation to be used when
SQLFetch() or SQLFetchScroll() is called on the associated statement.
Column-wise binding is selected by supplying the defined constant
SQL_BIND_BY_COLUMN in *ValuePtr. Row-wise binding is selected by
supplying a value in *ValuePtr specifying the length of a structure or an
instance of a buffer into which result columns are bound.

The length specified in *ValuePtr must include space for all of the bound
columns and any padding of the structure or buffer to ensure that when
the address of a bound column is incremented with the specified length,
the result points to the beginning of the same column in the next row.
When using the sizeof operator with structures or unions in ANSI C, this
behavior is guaranteed.

Column-wise binding is the default binding orientation for SQLFetch() and
SQLFetchScroll().

Setting this statement attribute sets the SQL_DESC_BIND_TYPE field in
the ARD header.

SQL_ATTR_ROW_NUMBER
A 32-bit integer value that is the number of the current row in the entire
result set. If the number of the current row cannot be determined or there
is no current row, CLI returns 0.

This attribute can be retrieved by a call to SQLGetStmtAttr(), but not set by
a call to SQLSetStmtAttr().

SQL_ATTR_ROW_OPERATION_PTR
A 16-bit unsigned integer * value that points to an array of UDWORD
values used to ignore a row during a bulk operation using SQLSetPos().
Each value is set to either SQL_ROW_PROCEED (for the row to be
included in the bulk operation) or SQL_ROW_IGNORE (for the row to be
excluded from the bulk operation).

This statement attribute can be set to a null pointer, in which case CLI does
not return row status values. This attribute can be set at any time, but the
new value is not used until the next time SQLFetch(), SQLFetchScroll(), or
SQLSetPos() is called.

Setting this statement attribute sets the SQL_DESC_ARRAY_STATUS_PTR
field in the ARD.

SQL_ATTR_ROW_STATUS_PTR
A 16-bit unsigned integer * value that points to an array of UWORD values
containing row status values after a call to SQLFetch() or
SQLFetchScroll(). The array has as many elements as there are rows in the
rowset.

This statement attribute can be set to a null pointer, in which case CLI does
not return row status values. This attribute can be set at any time, but the
new value is not used until the next time SQLFetch(), SQLFetchScroll(), or
SQLSetPos() is called.

Setting this statement attribute sets the SQL_DESC_ARRAY_STATUS_PTR
field in the IRD header.

SQL_ATTR_ROWS_FETCHED_PTR
A 32-bit unsigned integer * value that points to a buffer in which to return
the number of rows fetched after a call to SQLFetch() or SQLFetchScroll().

Statement attributes (CLI) list

484 Call Level Interface Guide and Reference, Volume 2

Setting this statement attribute sets the
SQL_DESC_ROWS_PROCESSED_PTR field in the IRD header.

This attribute is mapped by CLI to the RowCountPtr array in a call to
SQLExtendedFetch().

SQL_ATTR_ROWCOUNT_PREFETCH
This attribute enables CLI to determine the number of rows so that the
entire result set can be prefetched. This attribute has one of the following
values:
v 0 (default): Off
v 1: On

If you set SQL_ATTR_ROWCOUNT_PREFETCH to 0 and call
SQLRowCount() using a non-scrollable SELECT-only cursor, the function
sets the contents of RowCountPtr to -1 because the number of rows is not
available until all of the data has been fetched.

If you set SQL_ATTR_ROWCOUNT_PREFETCH to 1 and call
SQLRowCount() using a non-scrollable SELECT-only cursor, the following
occurs:
v If you use SELECT * FROM INSERT | UPDATE | DELETE statements

with forward-only cursors, the row count comes from the SELECT
statements. This is different than the rows-affected count that is
provided with these cursors without this attribute set.

v All cursor data is prefetched. This might take several round trips to the
server and a considerable amount of memory on the client.

v The prefetched data is not discarded; instead, it is used to satisfy the
fetch requests by the application.

This attribute is not applicable to scrollable cursors because they can
provide a row count.

Specify this attribute before preparing a statement.

Restriction: SQL_ATTR_ROWCOUNT_PREFETCH is not supported when
the cursor contains LOBs or XML.

SQL_ROWSET_SIZE
CLI applications should now use SQLFetchScroll() rather than
SQLExtendedFetch(). Applications should also use the statement attribute
SQL_ATTR_ROW_ARRAY_SIZE to set the number of rows in the rowset.

A 32-bit integer value that specifies the number of rows in the rowset. A
rowset is the array of rows returned by each call to SQLExtendedFetch().
The default value is 1, which is equivalent to making a single SQLFetch()
call. This option can be specified even when the cursor is open and
becomes effective on the next SQLExtendedFetch() call.

SQL_ATTR_SIMULATE_CURSOR (ODBC 2.0)
This statement attribute is not supported by CLI but is defined by ODBC.

This attribute is not supported when accessing IDS data servers.

SQL_ATTR_STMT_CONCENTRATOR
Starting in Version 9.7 Fix Pack 3a, DB2 supports this statement attribute,
which specifies whether dynamic statements that contain literal values use
the statement cache.
v SQL_STMT_CONCENTRATOR_OFF - The statement concentrator

behavior is disabled.

Statement attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 485

v SQL_STMT_CONCENTRATOR_WITH_LITERALS - The statement
concentrator with literal behavior is enabled for situations that are
supported by the server. For example, the statement concentrator is not
enabled if the statement has parameter markers, named parameter
markers, or a mix of literals, parameter markers, and named parameter
markers.

Setting the “StmtConcentrator CLI/ODBC configuration keyword” on page
403 is an alternative method of specifying this behavior.

Note: When this attribute is used against DB2® for z/OS® servers older
than Version 10, the request is ignored.

SQL_ATTR_STMTTXN_ISOLATION
See SQL_ATTR_TXN_ISOLATION.

SQL_ATTR_STREAM_GETDATA
A 32-bit unsigned integer that indicates if the data output stream for the
SQLGetData() function is optimized. The values are:
v 0 (default): CLI buffers all the data on the client.
v 1: For applications that do not need to buffer data and are querying data

on a server that supports Dynamic Data Format, specify 1 to indicate
that data buffering is not required. The CLI client optimizes the data
output stream.

This keyword is ignored if Dynamic Data Format is not supported by the
server.

If StreamGetData is set to 1 and CLI cannot determine the number of bytes
still available to return in the output buffer, SQLGetData() returns
SQL_NO_TOTAL (-4) as the length when truncation occurs. Otherwise,
SQLGetData() returns the number of bytes still available.

Setting the “StreamGetData CLI/ODBC configuration keyword” on page
403 is an alternative method of specifying this behavior.

SQL_ATTR_TXN_ISOLATION
A 32-bit integer value that sets the transaction isolation level for the
current StatementHandle.

This option cannot be set if there is an open cursor on this statement
handle (SQLSTATE 24000).

The value SQL_ATTR_STMTTXN_ISOLATION is synonymous with
SQL_ATTR_TXN_ISOLATION. However, since the ODBC Driver Manager
rejects the setting of SQL_ATTR_TXN_ISOLATION as a statement option,
ODBC applications that need to set translation isolation level on a per
statement basis must use the manifest constant
SQL_ATTR_STMTTXN_ISOLATION instead on the SQLSetStmtAttr() call.

The default transaction isolation level can also be set using the
TXNISOLATION CLI/ODBC configuration keyword.

This attribute (or corresponding keyword) is only applicable if the default
isolation level is used for the statement handle. If the application has
specifically set the isolation level for the statement handle, then this
attribute does not have effect.

Note: It is an IBM extension to allow setting this option at the statement
level.

Statement attributes (CLI) list

486 Call Level Interface Guide and Reference, Volume 2

SQL_ATTR_USE_BOOKMARKS
A 32-bit integer value that specifies whether an application CLI0150E is
returned use bookmarks with a cursor:
v SQL_UB_OFF = Off (the default)
v SQL_UB_VARIABLE = An application uses bookmarks with a cursor,

and CLI provides variable-length bookmarks if they are supported.

To use bookmarks with a cursor, the application must specify this option
with the SQL_UB_VARIABLE value before opening the cursor.

SQL_ATTR_USE_LOAD_API
A 32-bit integer that indicates if the LOAD utility replaces the regular CLI
array insert for inserting data. The possible values are:

SQL_USE_LOAD_OFF
(Default) Use regular CLI array insert to insert data.

SQL_USE_LOAD_INSERT
Use the LOAD utility to append to existing data in the table.

SQL_USE_LOAD_REPLACE
Use the LOAD utility to replace existing data in the table.

SQL_USE_LOAD_RESTART
Resume a previously failed CLI LOAD operation. If the previous CLI
LOAD operation failed while rows were being inserted (that is, before
the SQL_ATTR_USE_LOAD_API statement attribute was set to
SQL_USE_LOAD_OFF), the CLI LOAD feature remains active, and
subsequent rows are inserted by the CLI LOAD utility. Otherwise, if
the operation failed while CLI LOAD was being turned off, regular
CLI array inserts resume after the restarted load completes.

SQL_USE_LOAD_TERMINATE
Clean up and undo a previously failed CLI LOAD operation. After
setting the statement attribute to this value, regular CLI array inserts
resume.

This attribute is not supported when accessing IDS data servers.

Note: Starting from Version 9.7, Fix Pack 4, this attribute can be used with
SQL_ATTR_ASYNC_ENABLE.

SQL_ATTR_XML_DECLARATION
A 32-bit unsigned integer that specifies which elements of an XML
declaration are added to XML data when it is implicitly serialized. This
attribute does not affect the result of the XMLSERIALIZE function.

This attribute can only be specified on a statement handle that has no open
cursors associated with it. Attempting to update the value of this attribute
while there are open cursors on the statement handle results in a CLI0126E
(SQLSTATE HY011) error, and the value remains unchanged.

Set this attribute to the sum of each component required:

0 No declarations or byte order marks (BOMs) are added to the output
buffer.

1 A byte order mark (BOM) in the appropriate endianness is prepended
to the output buffer if the target encoding is UTF-16 or UTF-32.
(Although a UTF-8 BOM exists, DB2 does not generate it, even if the
target encoding is UTF-8.)

Statement attributes (CLI) list

Chapter 4. Setting CLI environment, connection, and statement attributes 487

2 A minimal XML declaration is generated, containing only the XML
version.

4 An encoding attribute that identifies the target encoding is added to
any generated XML declaration. Therefore, this setting only has effect
when the setting of 2 is also included when computing the value of
this attribute.

Attempts to set any other value using SQLSetStmtAttr() or
SQLSetStmtOption() results in a CLI0191E (SQLSTATE HY024) error, and
the value remains unchanged.

The default setting is 7, which indicates that a BOM and an XML
declaration containing the XML version and encoding attribute are
generated during implicit serialization.

This attribute can also be specified on a connection handle and affects any
statement handles allocated after the value is changed. Existing statement
handles retain their original values.

This attribute is not supported when accessing IDS data servers.

SQL_ATTR_XQUERY_STATEMENT
A 32-bit integer value that specifies whether the statement associated with
the current statement handle is an XQuery expression or an SQL statement
or query. This can be used by CLI applications that do not want to prefix
an XQuery expression with the "XQUERY" keyword. The supported values
are:

SQL_TRUE
The next statement executed on the current statement handle is
processed as an XQuery expression. If the server does not support
XQuery, setting this attribute to SQL_TRUE results in a warning,
CLI0005W (SQLSTATE 01S02), and the attribute's value is unchanged.

SQL_FALSE (default)
The next statement executed on the current statement handle is
processed as an SQL statement.

This attribute takes effect on the next SQLPrepare() or SQLExecDirect()
function call.

This attribute is not supported when accessing IDS data servers.

Statement attributes (CLI) list

488 Call Level Interface Guide and Reference, Volume 2

Chapter 5. Descriptor values

Descriptor FieldIdentifier argument values (CLI)

The FieldIdentifier argument indicates the descriptor field to be set. A descriptor
contains the descriptor header, consisting of the header fields described in the next
section, and zero or more descriptor records, consisting of the record fields
described in the following section.

Header fields

Each descriptor has a header consisting of the following fields.

SQL_DESC_ALLOC_TYPE [All] This read-only SQLSMALLINT header field
specifies whether the descriptor was allocated automatically by CLI or explicitly by
the application. The application can obtain, but not modify, this field. The field is
set to SQL_DESC_ALLOC_AUTO if the descriptor was automatically allocated. It
is set to SQL_DESC_ALLOC_USER if the descriptor was explicitly allocated by the
application.

SQL_DESC_ARRAY_SIZE [Application descriptors] In ARDs, this
SQLUINTEGER header field specifies the number of rows in the rowset. This is the
number of rows to be returned by a call to SQLFetch(), SQLFetchScroll(), or
SQLSetPos(). The default value is 1. This field can also be set by calling
SQLSetStmtAttr() with the SQL_ATTR_ROW_ARRAY_SIZE attribute.

In APDs, this SQLUINTEGER header field specifies the number of values for each
parameter.

The default value of this field is 1. If SQL_DESC_ARRAY_SIZE is greater than 1,
SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, and
SQL_DESC_OCTET_LENGTH_PTR of the APD or ARD point to arrays. The
cardinality of each array is equal to the value of this field.

This field in the ARD can also be set by calling SQLSetStmtAttr() with the
SQL_ROWSET_SIZE attribute. This field in the APD can also be set by calling
SQLSetStmtAttr() with the SQL_ATTR_PARAMSET_SIZE attribute.

SQL_DESC_ARRAY_STATUS_PTR [All] For each descriptor type, this
SQLUSMALLINT * header field points to an array of SQLUSMALLINT values.
This array is referred to as:
v row status array (IRD)
v parameter status array (IPD)
v row operation array (ARD)
v parameter operation array (APD)

In the IRD, this header field points to a row status array containing status values
after a call to SQLFetch(), SQLFetchScroll(), or SQLSetPos(). The array has as
many elements as there are rows in the rowset. The application must allocate an
array of SQLUSMALLINTs and set this field to point to the array. The field is set
to a null pointer by default. CLI will populate the array, unless the
SQL_DESC_ARRAY_STATUS_PTR field is set to a null pointer, in which case no
status values are generated and the array is not populated.

© Copyright IBM Corp. 1993, 2012 489

Note: Behavior is undefined if the application sets the elements of the row status
array pointed to by the SQL_DESC_ARRAY_STATUS_PTR field of the IRD. The
array is initially populated by a call to SQLFetch(), SQLFetchScroll(), or
SQLSetPos(). If the call did not return SQL_SUCCESS or
SQL_SUCCESS_WITH_INFO, the contents of the array pointed to by this field are
undefined.

The elements in the array can contain the following values:
v SQL_ROW_SUCCESS: The row was successfully fetched and has not changed

since it was last fetched.
v SQL_ROW_SUCCESS_WITH_INFO: The row was successfully fetched and has

not changed since it was last fetched. However, a warning was returned about
the row.

v SQL_ROW_ERROR: An error occurred while fetching the row.
v SQL_ROW_UPDATED: The row was successfully fetched and has been updated

since it was last fetched. If the row is fetched again, its status is
SQL_ROW_SUCCESS.

v SQL_ROW_DELETED: The row has been deleted since it was last fetched.
v SQL_ROW_ADDED: The row was inserted by SQLSetPos(). If the row is fetched

again, its status is SQL_ROW_SUCCESS.
v SQL_ROW_NOROW: The rowset overlapped the end of the result set and no

row was returned that corresponded to this element of the row status array.

This field in the ARD can also be set by calling SQLSetStmtAttr() with the
SQL_ATTR_ROW_STATUS_PTR attribute.

In the IPD, this header field points to a parameter status array containing status
information for each set of parameter values after a call to SQLExecute() or
SQLExecDirect(). If the call to SQLExecute() or SQLExecDirect() did not return
SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the contents of the array pointed
to by this field are undefined. The application must allocate an array of
SQLUSMALLINTs and set this field to point to the array. The driver will populate
the array, unless the SQL_DESC_ARRAY_STATUS_PTR field is set to a null pointer,
in which case no status values are generated and the array is not populated.

The elements in the array can contain the following values:
v SQL_PARAM_SUCCESS: The SQL statement was successfully executed for this

set of parameters.
v SQL_PARAM_SUCCESS_WITH_INFO: The SQL statement was successfully

executed for this set of parameters; however, warning information is available in
the diagnostics data structure.

v SQL_PARAM_ERROR: An error occurred in processing this set of parameters.
Additional error information is available in the diagnostics data structure.

v SQL_PARAM_UNUSED: This parameter set was unused, possibly due to the
fact that some previous parameter set caused an error that aborted further
processing.

v SQL_PARAM_DIAG_UNAVAILABLE: Diagnostic information is not available.
An example of this is when CLI treats arrays of parameters as a monolithic unit
and so does not generate this level of error information.

This field in the APD can also be set by calling SQLSetStmtAttr() with the
SQL_ATTR_PARAM_STATUS_PTR attribute.

Descriptor FieldIdentifier argument values (CLI)

490 Call Level Interface Guide and Reference, Volume 2

In the ARD, this header field points to a row operation array of values that can be
set by the application to indicate whether this row is to be ignored for SQLSetPos()
operations.

The elements in the array can contain the following values:
v SQL_ROW_PROCEED: The row is included in the bulk operation using

SQLSetPos(). (This setting does not guarantee that the operation will occur on
the row. If the row has the status SQL_ROW_ERROR in the IRD row status
array, CLI may not be able to perform the operation in the row.)

v SQL_ROW_IGNORE: The row is excluded from the bulk operation using
SQLSetPos().

If no elements of the array are set, all rows are included in the bulk operation. If
the value in the SQL_DESC_ARRAY_STATUS_PTR field of the ARD is a null
pointer, all rows are included in the bulk operation; the interpretation is the same
as if the pointer pointed to a valid array and all elements of the array were
SQL_ROW_PROCEED. If an element in the array is set to SQL_ROW_IGNORE, the
value in the row status array for the ignored row is not changed.

This field in the ARD can also be set by calling SQLSetStmtAttr() with the
SQL_ATTR_ROW_OPERATION_PTR attribute.

In the APD, this header field points to a parameter operation array of values that
can be set by the application to indicate whether this set of parameters is to be
ignored when SQLExecute() or SQLExecDirect() is called. The elements in the
array can contain the following values:
v SQL_PARAM_PROCEED: The set of parameters is included in the SQLExecute()

or SQLExecDirect() call.
v SQL_PARAM_IGNORE: The set of parameters is excluded from the

SQLExecute() or SQLExecDirect() call.

If no elements of the array are set, all sets of parameters in the array are used in
the SQLExecute() or SQLExecDirect() calls. If the value in the
SQL_DESC_ARRAY_STATUS_PTR field of the APD is a null pointer, all sets of
parameters are used; the interpretation is the same as if the pointer pointed to a
valid array and all elements of the array were SQL_PARAM_PROCEED.

This field in the APD can also be set by calling SQLSetStmtAttr() with the
SQL_ATTR_PARAM_OPERATION_PTR attribute.

SQL_DESC_BIND_OFFSET_PTR [Application descriptors] This SQLINTEGER *
header field points to the bind offset. It is set to a null pointer by default. If this
field is not a null pointer, CLI dereferences the pointer and adds the dereferenced
value to each of the deferred fields that has a non-null value in the descriptor
record (SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, and
SQL_DESC_OCTET_LENGTH_PTR) at fetch time, and uses the new pointer values
when binding.

The bind offset is always added directly to the values in the
SQL_DESC_DATA_PTR, SQL_DESC_INDICATOR_PTR, and
SQL_DESC_OCTET_LENGTH_PTR fields. If the offset is changed to a different
value, the new value is still added directly to the value in each descriptor field.
The new offset is not added to the field value plus any earlier offset.

Descriptor FieldIdentifier argument values (CLI)

Chapter 5. Descriptor values 491

This field is a deferred field: it is not used at the time it is set, but is used at a later
time by CLI to retrieve data.

This field in the ARD can also be set by calling SQLSetStmtAttr() with the
SQL_ATTR_ROW_BIND_OFFSET_PTR attribute. This field in the ARD can also be
set by calling SQLSetStmtAttr() with the SQL_ATTR_PARAM_BIND_OFFSET_PTR
attribute.

SQL_DESC_BIND_TYPE [Application descriptors] This SQLINTEGER header
field sets the binding orientation to be used for either binding columns or
parameters.

In ARDs, this field specifies the binding orientation when SQLFetchScroll() is
called on the associated statement handle.

To select column-wise binding for columns, this field is set to
SQL_BIND_BY_COLUMN (the default).

This field in the ARD can also be set by calling SQLSetStmtAttr() with
SQL_ATTR_ROW_BIND_TYPE Attribute.

In APDs, this field specifies the binding orientation to be used for dynamic
parameters.

To select column-wise binding for parameters, this field is set to
SQL_BIND_BY_COLUMN (the default).

This field in the APD can also be set by calling SQLSetStmtAttr() with
SQL_ATTR_PARAM_BIND_TYPE Attribute.

SQL_DESC_COUNT [All] This SQLSMALLINT header field specifies the
one-based index of the highest-numbered record that contains data. When CLI sets
the data structure for the descriptor, it must also set the COUNT field to show
how many records are significant. When an application allocates an instance of this
data structure, it does not have to specify how many records to reserve room for.
As the application specifies the contents of the records, CLI takes any required
action to ensure that the descriptor handle refers to a data structure of adequate
size.

SQL_DESC_COUNT is not a count of all data columns that are bound (if the field
is in an ARD), or all parameters that are bound (in an APD), but the number of the
highest-numbered record. If a column or a parameter with a number that is less
than the number of the highest-numbered column is unbound (by calling
SQLBindCol() with the Target ValuePtr argument set to a null pointer, or
SQLBindParameter() with the Parameter ValuePtr argument set to a null pointer),
SQL_DESC_COUNT is not changed. If additional columns or parameters are
bound with numbers greater than the highest-numbered record that contains data,
CLI automatically increases the value in the SQL_DESC_COUNT field. If all
columns or parameters are unbound by calling SQLFreeStmt() with the
SQL_UNBIND option, SQL_DESC_COUNT is set to 0.

The value in SQL_DESC_COUNT can be set explicitly by an application by calling
SQLSetDescField(). If the value in SQL_DESC_COUNT is explicitly decreased, all
records with numbers greater than the new value in SQL_DESC_COUNT are
removed, unbinding the columns. If the value in SQL_DESC_COUNT is explicitly
set to 0, and the field is in an APD, all parameters are unbound. If the value in

Descriptor FieldIdentifier argument values (CLI)

492 Call Level Interface Guide and Reference, Volume 2

SQL_DESC_COUNT is explicitly set to 0, and the field is in an ARD, all data
buffers except a bound bookmark column are released.

The record count in this field of an ARD does not include a bound bookmark
column.

SQL_DESC_ROWS_PROCESSED_PTR [Implementation descriptors] In an IRD,
this SQLUINTEGER * header field points to a buffer containing the number of
rows fetched after a call to SQLFetch() or SQLFetchScroll(), or the number of rows
affected in a bulk operation performed by a call to SQLSetPos().

In an IPD, this SQLUINTEGER * header field points to a buffer containing the
number of the row as each row of parameters is processed. No row number will be
returned if this is a null pointer.

SQL_DESC_ROWS_PROCESSED_PTR is valid only after SQL_SUCCESS or
SQL_SUCCESS_WITH_INFO has been returned after a call to SQLFetch() or
SQLFetchScroll() (for an IRD field) or SQLExecute() or SQLExecDirect() (for an
IPD field). If the return code is not one of the above, the location pointed to by
SQL_DESC_ROWS_PROCESSED_PTR is undefined. If the call that fills in the
buffer pointed to by this field did not return SQL_SUCCESS or
SQL_SUCCESS_WITH_INFO, the contents of the buffer are undefined, unless it
returns SQL_NO_DATA, in which case the value in the buffer is set to 0.

This field in the ARD can also be set by calling SQLSetStmtAttr() with the
SQL_ATTR_ROWS_FETCHED_PTR attribute. This field in the ARD can also be set
by calling SQLSetStmtAttr() with the SQL_ATTR_PARAMS_PROCESSED_PTR
attribute.

The buffer pointed to by this field is allocated by the application. It is a deferred
output buffer that is set by CLI. It is set to a null pointer by default.

Record fields

Each descriptor contains one or more records consisting of fields that define either
column data or dynamic parameters, depending on the type of descriptor. Each
record is a complete definition of a single column or parameter.

SQL_DESC_AUTO_UNIQUE_VALUE [IRDs] This read-only SQLINTEGER record
field contains SQL_TRUE if the column is an auto-incrementing column, or
SQL_FALSE if the column is not an auto-incrementing column. This field is
read-only, but the underlying auto-incrementing column is not necessarily
read-only.

SQL_DESC_BASE_COLUMN_NAME [IRDs] This read-only SQLCHAR record
field contains the base column name for the result set column. If a base column
name does not exist (as in the case of columns that are expressions), then this
variable contains an empty string.

SQL_DESC_BASE_TABLE_NAME [IRDs] This read-only SQLCHAR record field
contains the base table name for the result set column. If a base table name cannot
be defined or is not applicable, then this variable contains an empty string.

SQL_DESC_CASE_SENSITIVE [Implementation descriptors] This read-only
SQLINTEGER record field contains SQL_TRUE if the column or parameter is

Descriptor FieldIdentifier argument values (CLI)

Chapter 5. Descriptor values 493

treated as case-sensitive for collations and comparisons, or SQL_FALSE if the
column is not treated as case-sensitive for collations and comparisons, or if it is a
non-character column.

SQL_DESC_CATALOG_NAME [IRDs] This read-only SQLCHAR record field
contains the catalog or qualifier name for the base table that contains the column.
The return value is driver-dependent if the column is an expression or if the
column is part of a view. If the data source does not support catalogs (or
qualifiers) or the catalog or qualifier name cannot be determined, this variable
contains an empty string.

SQL_DESC_CONCISE_TYPE [All] This SQLSMALLINT header field specifies the
concise data type for all data types.

The values in the SQL_DESC_CONCISE_TYPE and SQL_DESC_TYPE fields are
interdependent. Each time one of the fields is set, the other must also be set.
SQL_DESC_CONCISE_TYPE can be set by a call to SQLBindCol() or
SQLBindParameter(), or SQLSetDescField(). SQL_DESC_TYPE can be set by a call
to SQLSetDescField() or SQLSetDescRec().

If SQL_DESC_CONCISE_TYPE is set to a concise data type, SQL_DESC_TYPE field
is set to the same value, and the SQL_DESC_DATETIME_INTERVAL_CODE field
is set to 0.

SQL_DESC_DATA_PTR [Application descriptors and IPDs] This SQLPOINTER
record field points to a variable that will contain the parameter value (for APDs) or
the column value (for ARDs). The descriptor record (and either the column or
parameter that it represents) is unbound if TargetValuePtr in a call to either
SQLBindCol() or SQLBindParameter() is a null pointer, or the
SQL_DESC_DATA_PTR field in a call to SQLSetDescField() or SQLSetDescRec() is
set to a null pointer. Other fields are not affected if the SQL_DESC_DATA_PTR
field is set to a null pointer. If the call to SQLFetch() or SQLFetchScroll() that fills
in the buffer pointed to by this field did not return SQL_SUCCESS or
SQL_SUCCESS_WITH_INFO, the contents of the buffer are undefined.

This field is a deferred field: it is not used at the time it is set, but is used at a later
time by CLI to retrieve data.

Whenever the SQL_DESC_DATA_PTR field is set, CLI checks that the value in the
SQL_DESC_TYPE field contains valid CLI or ODBC data types, and that all other
fields affecting the data types are consistent. Refer to the consistency checks
information for more detail.

SQL_DESC_DATETIME_INTERVAL_CODE [All] This SQLSMALLINT record
field contains the subcode for the specific datetime data type when the
SQL_DESC_TYPE field is SQL_DATETIME. This is true for both SQL and C data
types.

This field can be set to the following for datetime data types:

Table 168. Datetime subcodes

Datetime types DATETIME_INTERVAL_CODE

SQL_TYPE_DATE/SQL_C_TYPE_DATE SQL_CODE_DATE
SQL_TYPE_TIME/SQL_C_TYPE_TIME SQL_CODE_TIME

Descriptor FieldIdentifier argument values (CLI)

494 Call Level Interface Guide and Reference, Volume 2

Table 168. Datetime subcodes (continued)

Datetime types DATETIME_INTERVAL_CODE

SQL_TYPE_TIMESTAMP/
SQL_C_TYPE_TIMESTAMP

SQL_CODE_TIMESTAMP

ODBC 3.0 defines other values (not listed here) for interval data types, which CLI
does not support. If any other value is specified in a SQLSetDescRec() or
SQLSetDescField() call, an error will be generated indicating HY092 (Option type
out of range).

SQL_DESC_DATETIME_INTERVAL_PRECISION [All] ODBC 3.0 defines this
SQLINTEGER record field, however, CLI does not support interval data types. The
fixed value returned is 0. Any attempt to set this field will result in 01S02 (Option
value changed).

SQL_DESC_DISPLAY_SIZE [IRDs] This read-only SQLINTEGER record field
contains the maximum number of characters required to display the data from the
column. The value in this field is not the same as the descriptor field
SQL_DESC_LENGTH because the LENGTH field is undefined for all numeric
types.

SQL_DESC_FIXED_PREC_SCALE [Implementation descriptors] This read-only
SQLSMALLINT record field is set to SQL_TRUE if the column is an exact numeric
column and has a fixed precision and non-zero scale, or SQL_FALSE if the column
is not an exact numeric column with a fixed precision and scale.

SQL_DESC_INDICATOR_PTR [Application descriptors] In ARDs, this
SQLINTEGER * record field points to the indicator variable. This variable contains
SQL_NULL_DATA if the column value is NULL. For APDs, the indicator variable
is set to SQL_NULL_DATA to specify NULL dynamic arguments. Otherwise, the
variable is zero (unless the values in SQL_DESC_INDICATOR_PTR and
SQL_DESC_OCTET_LENGTH_PTR are the same pointer).

If the SQL_DESC_INDICATOR_PTR field in an ARD is a null pointer, CLI is
prevented from returning information about whether the column is NULL or not.
If the column is NULL and INDICATOR_PTR is a null pointer, SQLSTATE 22002,
Indicator variable required but not supplied, is returned when CLI attempts to
populate the buffer after a call to SQLFetch() or SQLFetchScroll(). If the call to
SQLFetch() or SQLFetchScroll() did not return SQL_SUCCESS or
SQL_SUCCESS_WITH_INFO, the contents of the buffer are undefined.

The SQL_DESC_INDICATOR_PTR field determines whether the field pointed to by
SQL_DESC_OCTET_LENGTH_PTR is set. If the data value for a column is NULL,
CLI sets the indicator variable to SQL_NULL_DATA. The field pointed to by
SQL_DESC_OCTET_LENGTH_PTR is then not set. If a NULL value is not
encountered during the fetch, the buffer pointed to by
SQL_DESC_INDICATOR_PTR is set to zero, and the buffer pointed to by
SQL_DESC_OCTET_LENGTH_PTR is set to the length of the data.

If the INDICATOR_PTR field in an APD is a null pointer, the application cannot
use this descriptor record to specify NULL arguments.

Descriptor FieldIdentifier argument values (CLI)

Chapter 5. Descriptor values 495

This field is a deferred field: it is not used at the time it is set, but is used at a later
time by CLI to store data.

SQL_DESC_LABEL [IRDs] This read-only SQLCHAR record field contains the
column label or title. If the column does not have a label, this variable contains the
column name. If the column is unnamed and unlabeled, this variable contains an
empty string.

SQL_DESC_LENGTH [All] This SQLUINTEGER record field is either the
maximum or actual character length of a character string or a binary data type. It
is the maximum character length for a fixed-length data type, or the actual
character length for a variable-length data type. Its value always excludes the null
termination character that ends the character string. Note that this field is a count
of characters, not a count of bytes.

SQL_DESC_LITERAL_PREFIX [IRDs] This read-only SQLCHAR record field
contains the character or characters that CLI recognizes as a prefix for a literal of
this data type. This variable contains an empty string for a data type for which a
literal prefix is not applicable.

SQL_DESC_LITERAL_SUFFIX [IRDs] This read-only SQLCHAR record field
contains the character or characters that CLI recognizes as a suffix for a literal of
this data type. This variable contains an empty string for a data type for which a
literal suffix is not applicable.

SQL_DESC_LOCAL_TYPE_NAME [Implementation descriptors] This read-only
SQLCHAR record field contains any localized (native language) name for the data
type that may be different from the regular name of the data type. If there is no
localized name, then an empty string is returned. This field is for display purposes
only.

SQL_DESC_NAME [Implementation descriptors] This SQLCHAR record field in
a row descriptor contains the column alias, if it applies. If the column alias does
not apply, the column name is returned. In either case, the UNNAMED field is set
to SQL_NAMED. If there is no column name or a column alias, an empty string is
returned in the NAME field and the UNNAMED field is set to SQL_UNNAMED.

An application can set the SQL_DESC_NAME field of an IPD to a parameter name
or alias to specify stored procedure parameters by name. The SQL_DESC_NAME
field of an IRD is a read-only field; SQLSTATE HY091 (Invalid descriptor field
identifier) will be returned if an application attempts to set it.

In IPDs, this field is undefined if dynamic parameters are not supported. If named
parameters are supported and the version of CLI is capable of describing
parameters, then the parameter name is returned in this field.

The column name value can be affected by the environment attribute
SQL_ATTR_USE_LIGHT_OUTPUT_SQLDA set by SQLSetEnvAttr().

SQL_DESC_NULLABLE [Implementation descriptors] In IRDs, this read-only
SQLSMALLINT record field is SQL_NULLABLE if the column can have NULL
values; SQL_NO_NULLS if the column cannot have NULL values; or
SQL_NULLABLE_UNKNOWN if it is not known whether the column accepts
NULL values. This field pertains to the result set column, not the base column.

Descriptor FieldIdentifier argument values (CLI)

496 Call Level Interface Guide and Reference, Volume 2

In IPDs, this field is always set to SQL_NULLABLE, since dynamic parameters are
always nullable, and cannot be set by an application.

SQL_DESC_NUM_PREC_RADIX [All] This SQLINTEGER field contains a value
of 2 if the data type in the SQL_DESC_TYPE field is an approximate numeric data
type, because the SQL_DESC_PRECISION field contains the number of bits. This
field contains a value of 10 if the data type in the SQL_DESC_TYPE field is an
exact numeric data type, because the SQL_DESC_PRECISION field contains the
number of decimal digits. This field is set to 0 for all non-numeric data types.

SQL_DESC_OCTET_LENGTH [All] This SQLINTEGER record field contains the
length, in bytes, of a character string or binary data type. For fixed-length character
types, this is the actual length in bytes. For variable-length character or binary
types, this is the maximum length in bytes. This value always excludes space for
the null termination character for implementation descriptors and always includes
space for the null termination character for application descriptors. For application
data, this field contains the size of the buffer. For APDs, this field is defined only
for output or input/output parameters.

SQL_DESC_OCTET_LENGTH_PTR [Application descriptors] This SQLINTEGER
* record field points to a variable that will contain the total length in bytes of a
dynamic argument (for parameter descriptors) or of a bound column value (for
row descriptors).

For an APD, this value is ignored for all arguments except character string and
binary; if this field points to SQL_NTS, the dynamic argument must be
null-terminated. To indicate that a bound parameter will be a data-at-execute
parameter, an application sets this field in the appropriate record of the APD to a
variable that, at execute time, will contain the value SQL_DATA_AT_EXEC. If there
is more than one such field, SQL_DESC_DATA_PTR can be set to a value uniquely
identifying the parameter to help the application determine which parameter is
being requested.

If the OCTET_LENGTH_PTR field of an ARD is a null pointer, CLI does not return
length information for the column. If the SQL_DESC_OCTET_LENGTH_PTR field
of an APD is a null pointer, CLI assumes that character strings and binary values
are null terminated. (Binary values should not be null terminated, but should be
given a length, in order to avoid truncation.)

If the call to SQLFetch() or SQLFetchScroll() that fills in the buffer pointed to by
this field did not return SQL_SUCCESS or SQL_SUCCESS_WITH_INFO, the
contents of the buffer are undefined.

This field is a deferred field: it is not used at the time it is set, but is used at a later
time by CLI to buffer data.

By default this is a pointer to a 4-byte value.

SQL_DESC_PARAMETER_TYPE [IPDs] This SQLSMALLINT record field is set to
SQL_PARAM_INPUT for an input parameter, SQL_PARAM_INPUT_OUTPUT for
an input/output parameter, or SQL_PARAM_OUTPUT for an output parameter.
Set to SQL_PARAM_INPUT by default.

Descriptor FieldIdentifier argument values (CLI)

Chapter 5. Descriptor values 497

For an IPD, the field is set to SQL_PARAM_INPUT by default if the IPD is not
automatically populated by CLI (the SQL_ATTR_ENABLE_AUTO_IPD statement
attribute is SQL_FALSE). An application should set this field in the IPD for
parameters that are not input parameters.

SQL_DESC_PRECISION [All] This SQLSMALLINT record field contains the
number of digits for an exact numeric type, the number of bits in the mantissa
(binary precision) for an approximate numeric type, or the numbers of digits in the
fractional seconds component for the SQL_TYPE_TIME or
SQL_TYPE_TIMESTAMP data types. This field is undefined for all other data
types.

SQL_DESC_SCALE [All] This SQLSMALLINT record field contains the defined
scale for DECIMAL and NUMERIC data types. The field is undefined for all other
data types.

SQL_DESC_SCHEMA_NAME [IRDs] This read-only SQLCHAR record field
contains the schema name of the base table that contains the column. For many
DBMS's, this is the owner name. If the data source does not support schemas (or
owners) or the schema name cannot be determined, this variable contains an
empty string.

SQL_DESC_SEARCHABLE [IRDs] This read-only SQLSMALLINT record field is
set to one of the following values:
v SQL_PRED_NONE if the column cannot be used in a WHERE clause. (This is

the same as the SQL_UNSEARCHABLE value defined in ODBC 2.0.)
v SQL_PRED_CHAR if the column can be used in a WHERE clause, but only with

the LIKE predicate. (This is the same as the SQL_LIKE_ONLY value defined in
ODBC 2.0.)

v SQL_PRED_BASIC if the column can be used in a WHERE clause with all the
comparison operators except LIKE. (This is the same as the SQL_EXCEPT_LIKE
value defined in ODBC 2.0.)

v SQL_PRED_SEARCHABLE if the column can be used in a WHERE clause with
any comparison operator.

SQL_DESC_TABLE_NAME [IRDs] This read-only SQLCHAR record field
contains the name of the base table that contains this column.

SQL_DESC_TYPE [All] This SQLSMALLINT record field specifies the concise SQL
or C data type for all data types.

Note: ODBC 3.0 defines the SQL_INTERVAL data type which is not supported by
CLI. Any behavior associated with this data type is not present in CLI.

The values in the SQL_DESC_TYPE and SQL_DESC_CONCISE_TYPE fields are
interdependent. Each time one of the fields is set, the other must also be set.
SQL_DESC_TYPE can be set by a call to SQLSetDescField() or SQLSetDescRec().
SQL_DESC_CONCISE_TYPE can be set by a call to SQLBindCol() or
SQLBindParameter(), or SQLSetDescField().

If SQL_DESC_TYPE is set to a concise data type, the SQL_DESC_CONCISE_TYPE
field is set to the same value, and the SQL_DESC_DATETIME_INTERVAL_CODE
field is set to 0.

Descriptor FieldIdentifier argument values (CLI)

498 Call Level Interface Guide and Reference, Volume 2

When the SQL_DESC_TYPE field is set by a call to SQLSetDescField(), the
following fields are set to the following default values. The values of the remaining
fields of the same record are undefined:

Table 169. Default values

SQL_DESC_TYPE Other fields Implicitly Set

SQL_CHAR,
SQL_VARCHAR

SQL_DESC_LENGTH is set to 1. SQL_DESC_PRECISION is set to 0.

SQL_DECIMAL,
SQL_NUMERIC

SQL_DESC_SCALE is set to 0. SQL_DESC_PRECISION is set to the
precision for the respective data type.

SQL_FLOAT SQL_DESC_PRECISION is set to the default precision for
SQL_FLOAT.

SQL_DATETIME SQL_DESC_CONCISE_TYPE and/or
SQL_DESC_DATETIME_INTERVAL_CODE may be set implicitly to
indicate a DATE SQL or C type.

SQL_INTERVAL This data type is not supported by CLI.

When an application calls SQLSetDescField() to set fields of a descriptor, rather
than calling SQLSetDescRec(), the application must first declare the data type. If
the values implicitly set are unacceptable, the application can then call
SQLSetDescField() to set the unacceptable value explicitly.

SQL_DESC_TYPE_NAME [Implementation descriptors] This read-only
SQLCHAR record field contains the data-source-dependent type name (for
example, CHAR, VARCHAR, and so on). If the data type name is unknown, this
variable contains an empty string.

SQL_DESC_UNNAMED [Implementation descriptors] This SQLSMALLINT
record field in a row descriptor is set to either SQL_NAMED or SQL_UNNAMED.
If the NAME field contains a column alias, or if the column alias does not apply,
the UNNAMED field is set to SQL_NAMED. If there is no column name or a
column alias, the UNNAMED field is set to SQL_UNNAMED.

An application can set the SQL_DESC_UNNAMED field of an IPD to
SQL_UNNAMED. SQLSTATE HY091 (Invalid descriptor field identifier) is returned
if an application attempts to set the SQL_DESC_UNNAMED field of an IPD to
SQL_NAMED. The SQL_DESC_UNNAMED field of an IRD is read-only;
SQLSTATE HY091 (Invalid descriptor field identifier) will be returned if an
application attempts to set it.

SQL_DESC_UNSIGNED [Implementation descriptors] This read-only
SQLSMALLINT record field is set to SQL_TRUE if the column type is unsigned or
non-numeric, or SQL_FALSE if the column type is signed.

SQL_DESC_UPDATABLE [IRDs] This read-only SQLSMALLINT record field is
set to one of the following values:
v SQL_ATTR_READONLY if the result set column is read-only.
v SQL_ATTR_WRITE if the result set column is read-write.
v SQL_ATTR_READWRITE_UNKNOWN if it is not known whether the result set

column is updatable or not.

SQL_DESC_UPDATABLE describes the updatability of the column in the result set,
not the column in the base table. The updatability of the column in the base table

Descriptor FieldIdentifier argument values (CLI)

Chapter 5. Descriptor values 499

on which this result set column is based may be different than the value in this
field. Whether a column is updatable can be based on the data type, user
privileges, and the definition of the result set itself. If it is unclear whether a
column is updatable, SQL_UPDT_READWRITE_UNKNOWN should be returned.

SQL_DESC_USER_DEFINED_TYPE_CODE [IRDs] This read-only SQLINTEGER
returns information that describes the nature of a column's data type. Four values
may be returned:
v SQL_TYPE_BASE: the column data type is a base data type, such as CHAR,

DATE, or DOUBLE.
v SQL_TYPE_DISTINCT: the column data type is a distinct user-defined type.
v SQL_TYPE_REFERENCE: the column data type is a reference user-defined type.
v SQL_TYPE_STRUCTURED: the column data type is a structured user-defined

type.

SQL_DESC_CARDINALITY [APD, IPD] This SQLLEN record field indicates the
maximum cardinality of the array value for the specified parameter marker. The
IPD value indicates the maximum cardinality that can be sent to the database for
an array value. The APD value indicates the maximum cardinality for an array
value which is how the application indicates the maximum amount of allocated
storage for output parameter array values for a CALL statement.

SQL_DESC_CARDINALITY_PTR [APD] This SQLLEN * record field points to a
variable that will contain the cardinality of a parameter when the statement is
executed. For input parameter markers, this is how the application provides the
actual cardinality of an array value. For output parameter markers, this is the
location where CLI will indicate the cardinality of the returned array value. Note
that for output parameters, this value indicates the cardinality of the array
returned by the stored procedure - not necessarily the cardinality written to the
application, since it's possible for SQL_DESC_CARDINALITY(APD) to be less than
the actual cardinality returned from the procedure. This is a deferred field - it is
not used at the time it is set, but is used at a later time by DB2 CLI.

Descriptor header and record field initialization values (CLI)

The following tables list the initialization of each field for each type of descriptor,
with D indicating that the field is initialized with a default, and ND indicating that
the field is initialized without a default. If a number is shown, the default value of
the field is that number. The tables also indicate whether a field is read/write
(R/W) or read-only (R).

The initialization of header fields is as follows:

Descriptor FieldIdentifier argument values (CLI)

500 Call Level Interface Guide and Reference, Volume 2

Table 170. Initialization of header fields

Descriptor header field Type

Readable and
writable (R/W) or
read-only (R) Initialization value

SQL_DESC_ALLOC_TYPE SQLSMALLINT v ARD: R
v APD: R
v IRD: R
v IPD: R

v ARD: SQL_DESC_ALLOC_AUTO
for implicit or
SQL_DESC_ALLOC_USER for
explicit

v APD: SQL_DESC_ALLOC_AUTO
for implicit or
SQL_DESC_ALLOC_USER for
explicit

v IRD: SQL_DESC_ALLOC_AUTO
v IPD: SQL_DESC_ALLOC_AUTO

SQL_DESC_ARRAY_SIZE SQLUINTEGER v ARD: R/W
v APD: R/W
v IRD: Unused
v IPD: Unused

v ARD: a

v APD: a

v IRD: Unused
v IPD: Unused

SQL_DESC_ARRAY_STATUS_PTR SQLUSMALLINT
*

v ARD: R/W
v APD: R/W
v IRD: R/W
v IPD: R/W

v ARD: Null ptr
v APD: Null ptr
v IRD: Null ptr
v IPD: Null ptr

SQL_DESC_BIND_OFFSET_PTR SQLINTEGER * v ARD: R/W
v APD: R/W
v IRD: Unused
v IPD: Unused

v ARD: Null ptr
v APD: Null ptr
v IRD: Unused
v IPD: Unused

SQL_DESC_BIND_TYPE SQLINTEGER v ARD: R/W
v APD: R/W
v IRD: Unused
v IPD: Unused

v ARD: SQL_BIND_BY_COLUMN
v APD: SQL_BIND_BY_COLUMN
v IRD: Unused
v IPD: Unused

SQL_DESC_COUNT SQLSMALLINT v ARD: R/W
v APD: R/W
v IRD: R
v IPD: R/W

v ARD: 0
v APD: 0
v IRD: D
v IPD: 0

SQL_DESC_ROWS_
PROCESSED_PTR

SQLUINTEGER * v ARD: Unused
v APD: Unused
v IRD: R/W
v IPD: R/W

v ARD: Unused
v APD: Unused
v IRD: Null Ptr
v IPD: Null Ptr

a These fields are defined only when the IPD is automatically populated by
CLI. If the fields are not automatically populated then they are undefined.
If an application attempts to set these fields, SQLSTATE HY091 (Invalid
descriptor field identifier.) will be returned.

The initialization of record fields is as follows:

Table 171. Initialization of record fields

Descriptor record field Type

Readable and
writable (R/W) or
read-only (R) Initialization value

SQL_DESC_AUTO_UNIQUE_VALUE SQLINTEGER v ARD: Unused
v APD: Unused
v IRD: R
v IPD: Unused

v ARD: Unused
v APD: Unused
v IRD: D
v IPD: Unused

Descriptor header and record field initialization values (CLI)

Chapter 5. Descriptor values 501

Table 171. Initialization of record fields (continued)

Descriptor record field Type

Readable and
writable (R/W) or
read-only (R) Initialization value

SQL_DESC_BASE_COLUMN_NAME SQLCHAR * v ARD: Unused
v APD: Unused
v IRD: R
v IPD: Unused

v ARD: Unused
v APD: Unused
v IRD: D
v IPD: Unused

SQL_DESC_BASE_TABLE_NAME SQLCHAR * v ARD: Unused
v APD: Unused
v IRD: R
v IPD: Unused

v ARD: Unused
v APD: Unused
v IRD: D
v IPD: Unused

SQL_DESC_CASE_SENSITIVE SQLINTEGER v ARD: Unused
v APD: Unused
v IRD: R
v IPD: R

v ARD: Unused
v APD: Unused
v IRD: D
v IPD: D a

SQL_DESC_CATALOG_NAME SQLCHAR * v ARD: Unused
v APD: Unused
v IRD: R
v IPD: Unused

v ARD: Unused
v APD: Unused
v IRD: D
v IPD: Unused

SQL_DESC_CONCISE_TYPE SQLSMALLINT v ARD: R/W
v APD: R/W
v IRD: R
v IPD: R/W

v ARD: SQL_C_DEFAULT
v APD: SQL_C_DEFAULT
v IRD: D
v IPD: ND

SQL_DESC_DATA_PTR SQLPOINTER v ARD: R/W
v APD: R/W
v IRD: Unused
v IPD: Unused

v ARD: Null ptr
v APD: Null ptr
v IRD: Unused
v IPD: Unused b

SQL_DESC_DATETIME_
INTERVAL_CODE

SQLSMALLINT v ARD: R/W
v APD: R/W
v IRD: R
v IPD: R/W

v ARD: ND
v APD: ND
v IRD: D
v IPD: ND

SQL_DESC_DATETIME_
INTERVAL_PRECISION

SQLINTEGER v ARD: R/W
v APD: R/W
v IRD: R
v IPD: R/W

v ARD: ND
v APD: ND
v IRD: D
v IPD: ND

SQL_DESC_DISPLAY_SIZE SQLINTEGER v ARD: Unused
v APD: Unused
v IRD: R
v IPD: Unused

v ARD: Unused
v APD: Unused
v IRD: D
v IPD: Unused

SQL_DESC_FIXED_PREC_SCALE SQLSMALLINT v ARD: Unused
v APD: Unused
v IRD: R
v IPD: R

v ARD: Unused
v APD: Unused
v IRD: D
v IPD: D a

SQL_DESC_INDICATOR_PTR SQLINTEGER * v ARD: R/W
v APD: R/W
v IRD: Unused
v IPD: Unused

v ARD: Null ptr
v APD: Null ptr
v IRD: Unused
v IPD: Unused

SQL_DESC_LABEL SQLCHAR * v ARD: Unused
v APD: Unused
v IRD: R
v IPD: Unused

v ARD: Unused
v APD: Unused
v IRD: D
v IPD: Unused

Descriptor header and record field initialization values (CLI)

502 Call Level Interface Guide and Reference, Volume 2

Table 171. Initialization of record fields (continued)

Descriptor record field Type

Readable and
writable (R/W) or
read-only (R) Initialization value

SQL_DESC_LENGTH SQLUINTEGER v ARD: R/W
v APD: R/W
v IRD: R
v IPD: R/W

v ARD: ND
v APD: ND
v IRD: D
v IPD: ND

SQL_DESC_LITERAL_PREFIX SQLCHAR * v ARD: Unused
v APD: Unused
v IRD: R
v IPD: Unused

v ARD: Unused
v APD: Unused
v IRD: D
v IPD: Unused

SQL_DESC_LITERAL_SUFFIX SQLCHAR * v ARD: Unused
v APD: Unused
v IRD: R
v IPD: Unused

v ARD: Unused
v APD: Unused
v IRD: D
v IPD: Unused

SQL_DESC_LOCAL_TYPE_NAME SQLCHAR * v ARD: Unused
v APD: Unused
v IRD: R
v IPD: R

v ARD: Unused
v APD: Unused
v IRD: D
v IPD: D a

SQL_DESC_NAME SQLCHAR * v ARD: Unused
v APD: Unused
v IRD: R
v IPD: R/W

v ARD: ND
v APD: ND
v IRD: D
v IPD: ND

SQL_DESC_NULLABLE SQLSMALLINT v ARD: Unused
v APD: Unused
v IRD: R
v IPD: R

v ARD: ND
v APD: ND
v IRD: N
v IPD: ND

SQL_DESC_NUM_PREC_RADIX SQLINTEGER v ARD: R/W
v APD: R/W
v IRD: R
v IPD: R/W

v ARD: ND
v APD: ND
v IRD: D
v IPD: ND

SQL_DESC_OCTET_LENGTH SQLINTEGER v ARD: R/W
v APD: R/W
v IRD: R
v IPD: R/W

v ARD: ND
v APD: ND
v IRD: D
v IPD: ND

SQL_DESC_OCTET_LENGTH_PTR SQLINTEGER * v ARD: R/W
v APD: R/W
v IRD: Unused
v IPD: Unused

v ARD: Null ptr
v APD: Null ptr
v IRD: Unused
v IPD: Unused

SQL_DESC_PARAMETER_TYPE SQLSMALLINT v ARD: Unused
v APD: Unused
v IPD: Unused
v IRD: R/W

v ARD: Unused
v APD: Unused
v IPD: Unused
v IRD: D=SQL_PARAM_INPUT

SQL_DESC_PRECISION SQLSMALLINT v ARD: R/W
v APD: R/W
v IRD: R
v IPD: R/W

v ARD: ND
v APD: ND
v IRD: D
v IPD: ND

SQL_DESC_SCALE SQLSMALLINT v ARD: R/W
v APD: R/W
v IRD: R
v IPD: R/W

v ARD: ND
v APD: ND
v IRD: D
v IPD: ND

Descriptor header and record field initialization values (CLI)

Chapter 5. Descriptor values 503

Table 171. Initialization of record fields (continued)

Descriptor record field Type

Readable and
writable (R/W) or
read-only (R) Initialization value

SQL_DESC_SCHEMA_NAME SQLCHAR * v ARD: Unused
v APD: Unused
v IRD: R
v IPD: Unused

v ARD: Unused
v APD: Unused
v IRD: D
v IPD: Unused

SQL_DESC_SEARCHABLE SQLSMALLINT v ARD: Unused
v APD: Unused
v IRD: R
v IPD: Unused

v ARD: Unused
v APD: Unused
v IRD: D
v IPD: Unused

SQL_DESC_TABLE_NAME SQLCHAR * v ARD: Unused
v APD: Unused
v IRD: R
v IPD: Unused

v ARD: Unused
v APD: Unused
v IRD: D
v IPD: Unused

SQL_DESC_TYPE SQLSMALLINT v ARD: R/W
v APD: R/W
v IRD: R
v IPD: R/W

v ARD: SQL_C_DEFAULT
v APD: SQL_C_DEFAULT
v IRD: D
v IPD: ND

SQL_DESC_TYPE_NAME SQLCHAR * v ARD: Unused
v APD: Unused
v IRD: R
v IPD: R

v ARD: Unused
v APD: Unused
v IRD: D
v IPD: D a

SQL_DESC_UNNAMED SQLSMALLINT v ARD: Unused
v APD: Unused
v IRD: R
v IPD: R/W

v ARD: ND
v APD: ND
v IRD: D
v IPD: ND

SQL_DESC_UNSIGNED SQLSMALLINT v ARD: Unused
v APD: Unused
v IRD: R
v IPD: R

v ARD: Unused
v APD: Unused
v IRD: D
v IPD: D a

SQL_DESC_UPDATABLE SQLSMALLINT v ARD: Unused
v APD: Unused
v IRD: R
v IPD: Unused

v ARD: Unused
v APD: Unused
v IRD: D
v IPD: Unused

SQL_DESC_CARDINALITY SQLLEN v ARD: Unused
v APD: R/W
v IRD: Unused
v IPD: R/W

v ARD: Unused
v APD: D
v IRD: Unused
v IPD: D

SQL_DESC_CARDINALITY_PTR SQLLEN * v ARD: Unused
v APD: R/W
v IRD: Unused
v IPD: Unused

v ARD: Unused
v APD: D
v IRD: Unused
v IPD: Unused

a These fields are defined only when the IPD is automatically populated by
CLI. If the fields are not automatically populated then they are undefined.
If an application attempts to set these fields, SQLSTATE HY091 (Invalid
descriptor field identifier.) will be returned.

b The SQL_DESC_DATA_PTR field in the IPD can be set to force a
consistency check. In a subsequent call to SQLGetDescField() or
SQLGetDescRec(), CLI is not required to return the value that
SQL_DESC_DATA_PTR was set to.

Descriptor header and record field initialization values (CLI)

504 Call Level Interface Guide and Reference, Volume 2

Chapter 6. Header and record fields for the DiagIdentifier
argument (CLI)

Header fields

You can specify the following header fields for the DiagIdentifier argument. The
only diagnostic header fields that you can define for a descriptor field are
SQL_DIAG_NUMBER and SQL_DIAG_RETURNCODE.

Table 172. Header fields for the DiagIdentifier argument

Header field Return type Description

SQL_DIAG_CURSOR_ROW_
COUNT

SQLINTEGER The count of rows in the cursor. The
semantics of the field depend upon the
SQLGetInfo() information types, which
indicate which row counts are available for
each cursor type (in the
SQL_CA2_CRC_EXACT and
SQL_CA2_CRC_APPROXIMATE bits):
v

SQL_DYNAMIC_CURSOR_
ATTRIBUTES2

v

SQL_FORWARD_ONLY_
CURSOR_ATTRIBUTES2

v

SQL_KEYSET_CURSOR_
ATTRIBUTES2

v

SQL_STATIC_CURSOR_
ATTRIBUTES2

A value is defined in this field only for
statement handles and only after a call to the
SQLExecute(), SQLExecDirect(), or
SQLMoreResults() function.

Calling the SQLGetDiagField() function with
a DiagIdentifier argument value of
SQL_DIAG_CURSOR_ROW_COUNT on a
handle other than a statement handle returns
SQL_ERROR.

SQL_DIAG_DYNAMIC_
FUNCTION

CHAR * A string that describes the SQL statement that
the underlying function executed (for the
values that CLI supports, see Dynamic
function fields). A value is defined in this
field only for statement handles, and only
after a call to the SQLExecute(),
SQLExecDirect(), or SQLMoreResults()
function.

© Copyright IBM Corp. 1993, 2012 505

Table 172. Header fields for the DiagIdentifier argument (continued)

Header field Return type Description

SQL_DIAG_DYNAMIC_
FUNCTION_CODE

A numeric code that describes the SQL
statement that was executed by the
underlying function (for the values that CLI
supports, see Dynamic function fields). A
value is defined in this field only for
statement handles, and only after a call to the
SQLExecute(), SQLExecDirect(), or
SQLMoreResults() function.

Calling the SQLGetDiagField() function with
a DiagIdentifier argument value of
SQL_DIAG_DYNAMIC_FUNCTION_CODE
on a handle other than a statement handle
returns SQL_ERROR.

SQL_DIAG_NETWORK_STATISTICS SQLINTEGER A structure containing network statistics for a
connection.

The statistics include the following:

v Database processing time in microseconds

v Network time (including database
processing time) in microseconds

v Number of bytes that are sent to the
database server

v Number of bytes that are received from the
database server

v Number of DRDA round trips

This field is available starting in Version 9.7,
Fix Pack 3.

CLI accumulates statistics for a connection
when the
SQL_ATTR_NETWORK_STATISTICS
connection attribute is enabled. After an
application calls the SQLGetDiagField()
function to retrieve the statistics, CLI resets
the internal counters that the connection uses
to accumulate the statistics. A value is
defined in this field only for connection
handles, SQL_HANDLE_DBC.

v Calling the SQLGetDiagField() function
with a DiagIdentifier argument of
SQL_DIAG_NETWORK_STATISTICS with
an SQL_HANDLE_ENV returns ERROR.

v Calling the SQLGetDiagField() function
with a DiagIdentifier argument of
SQL_DIAG_NETWORK_STATISTICS and a
SQL_HANDLE_STMT or
SQL_HANDLE_DESC returns the
diagnostic identifier field for the
underlying connection handle associated
with the specified statement or descriptor
handle.

Header and record fields for the DiagIdentifier argument (CLI)

506 Call Level Interface Guide and Reference, Volume 2

Table 172. Header fields for the DiagIdentifier argument (continued)

Header field Return type Description

SQL_DIAG_NUMBER SQL_NET_STATS
Note: The
SQL_NET_STATS
structure is defined in
the sqlcli1.h file.

The number of status records that are
available for the specified handle.

SQL_DIAG_RELATIVE_
COST_ESTIMATE

SQLINTEGER A relative cost estimate of the resources that
are required to process a statement if the
SQLPrepare() function is invoked and
successful. If deferred prepare is enabled, this
field has the value 0 until the statement is
executed.

SQL_DIAG_RETURNCODE RETCODE The return code of the last executed function
that is associated with the specified handle. If
a function has not been called on the Handle,
SQL_SUCCESS is returned in the
SQL_DIAG_RETURNCODE field.

SQL_DIAG_ROW_COUNT SQLINTEGER The number of rows that are affected by an
insert, delete, or update performed by the
SQLExecute(), SQLExecDirect(), or
SQLSetPos() function. The value of this field
is defined after a cursor specification has
been executed and only for statement
handles. The data in this field is returned in
the RowCountPtr argument of the
SQLRowCount() function. The data in this
field is reset after every function call, whereas
the row count returned by
theSQLRowCount() function remains the
same until the statement state is reset to the
prepared or allocated state.

SQL_DIAG_TOLERATED_ERROR Beginning with WebSphere® Federated Server
V9.1, you can specify an Error Tolerant
Nested Table Expression (ETNTE). This
allows you to specify errors that can be
tolerated and is of particular use when one or
more data sources are unavailable during a
UNION ALL query. By tolerating the absence of
one of the unions (because the source is
offline) a result set can still be processed and
SQLFetch can be called repeatedly until it
returns SQL_NO_DATA_FOUND(100).

If tolerate errors are encountered then a CLI
application can discover this by doing one of
two things:

v Call the SQLGetDiagField() function with a
DiagIdentifier argument value of
SQL_DIAG_TOLERATED_ERROR. If a
tolerated error was processed, TRUE is
returned. Otherwise, FALSE is returned.

v Call the SQLGetDiagRec() function. If a
tolerated error was processed, the
diagnostic record displays error
SQL20383W. Otherwise, error SQL0100W is
displayed.

Header and record fields for the DiagIdentifier argument (CLI)

Chapter 6. DiagIdentifier argument values 507

Record fields

You can specify the following record fields for the DiagIdentifier argument.

Table 173. Record fields for the DiagIdentifier argument

Record field Return type Description

SQL_DIAG_CLASS_ORIGIN CHAR * A string that indicates the document that
defines the class and subclass portions of the
SQLSTATE value in a record.

CLI always returns an empty string in the
SQL_DIAG_CLASS_ORIGIN field.

SQL_DIAG_COLUMN_NUMBER SQLINTEGER A value that represents the column number
in a result set if the value of the
SQL_DIAG_ROW_NUMBER field is a valid
row number in a rowset or set of parameters.
Result set column numbers always start at 1;
if the status record pertains to a bookmark
column, the value of the field can be zero.
The field has the value
SQL_NO_COLUMN_NUMBER if the status
record is not associated with a column
number. If CLI cannot determine the column
number that a record is associated with, this
field has the value
SQL_COLUMN_NUMBER_UNKNOWN. A
value is defined in this field only for
statement handles.

SQL_DIAG_CONNECTION_NAME CHAR * A string that indicates the name of the
connection that a diagnostic record relates to.

CLI always returns an empty string in the
SQL_DIAG_CONNECTION_NAME field.

SQL_DIAG_ERRMC CHAR * A string containing one or more message
tokens that are separated by X'FF'.

SQL_DIAG_MESSAGE_TEXT CHAR * An informational message about an error or
warning.

SQL_DIAG_NATIVE SQLINTEGER A native error code that is specific to a driver
or data source, if a code exists; otherwise, the
driver returns 0.

SQL_DIAG_ROW_NUMBER SQLINTEGER The row number in the rowset, or the
parameter number in the set of parameters,
with which the status record is associated.
This field has the value
SQL_NO_ROW_NUMBER if the status record
is not associated with a row number. If CLI
cannot determine the row number that a
record is associated with, this field has the
value SQL_ROW_NUMBER_UNKNOWN. A
value is defined in this field only for
statement handles.

Header and record fields for the DiagIdentifier argument (CLI)

508 Call Level Interface Guide and Reference, Volume 2

Table 173. Record fields for the DiagIdentifier argument (continued)

Record field Return type Description

SQL_DIAG_SERVER_NAME CHAR * A string that indicates the server name that a
diagnostic record relates to. The string is the
same as the value returned for a call to the
SQLGetInfo() function with an InfoType
argument value of
SQL_DATA_SOURCE_NAME. For diagnostic
data structures associated with an
environment handle and for diagnostics that
do not relate to any server, this field is a
0-length string.

SQL_DIAG_SQLSTATE CHAR * A 5-character SQLSTATE diagnostic code.

SQL_DIAG_SUBCLASS_ORIGIN CHAR * A string, with the same format and valid
values as the SQL_DIAG_CLASS_ORIGIN
field, that identifies the defining portion of
the subclass portion of the SQLSTATE code.

Values of the dynamic function fields

The following table describes the values of SQL_DIAG_DYNAMIC_FUNCTION
and SQL_DIAG_DYNAMIC_FUNCTION_CODE that apply to each type of SQL
statement that is executed by a call to the SQLExecute() or SQLExecDirect()
function. CLI uses the values in this table; ODBC specifies other values.

Table 174. Values of dynamic function fields

SQL statement executed
Value of SQL_DIAG_
DYNAMIC_FUNCTION

Value of SQL_DIAG_DYNAMIC_
FUNCTION_CODE

alter-table-statement ALTER TABLE SQL_DIAG_ALTER_TABLE

create-index-statement CREATE INDEX SQL_DIAG_CREATE_INDEX

create-table-statement CREATE TABLE SQL_DIAG_CREATE_TABLE

create-view-statement CREATE VIEW SQL_DIAG_CREATE_VIEW

cursor-specification SELECT CURSOR SQL_DIAG_SELECT_CURSOR

delete-statement-positioned DYNAMIC DELETE CURSOR SQL_DIAG_DYNAMIC_DELETE_
CURSOR

delete-statement-searched DELETE WHERE SQL_DIAG_DELETE_WHERE

drop-index-statement DROP INDEX SQL_DIAG_DROP_INDEX

drop-table-statement DROP TABLE SQL_DIAG_DROP_TABLE

drop-view-statement DROP VIEW SQL_DIAG_DROP_VIEW

grant-statement GRANT SQL_DIAG_GRANT

insert-statement INSERT SQL_DIAG_INSERT

ODBC-procedure-extension CALL SQL_DIAG_PROCEDURE_CALL

revoke-statement REVOKE SQL_DIAG_REVOKE

update-statement-positioned DYNAMIC UPDATE CURSOR
SQL_DIAG_DYNAMIC_UPDATE_

CURSOR

update--statement-searched UPDATE WHERE SQL_DIAG_UPDATE_WHERE

merge-statement MERGE SQL_DIAG_MERGE

Header and record fields for the DiagIdentifier argument (CLI)

Chapter 6. DiagIdentifier argument values 509

Table 174. Values of dynamic function fields (continued)

SQL statement executed
Value of SQL_DIAG_
DYNAMIC_FUNCTION

Value of SQL_DIAG_DYNAMIC_
FUNCTION_CODE

Unknown empty string SQL_DIAG_UNKNOWN_
STATEMENT

Header and record fields for the DiagIdentifier argument (CLI)

510 Call Level Interface Guide and Reference, Volume 2

Chapter 7. CLI data type attributes

SQL symbolic and default data types for CLI applications
The table lists each of the SQL data types that are used by Call Level Interface
(CLI) applications, with its corresponding symbolic name, and the default C
symbolic name.

SQL data type
This column contains the SQL data types as they would display in an SQL
CREATE statement. The SQL data types are dependent on the DBMS.

Symbolic SQL data type
This column contains SQL symbolic names that are defined (in sqlcli.h)
as an integer value. Various functions use these values to identify the SQL
data types that are listed in the first column.

Default C symbolic data type
This column contains C symbolic names, which are also defined as integer
values. These values are used in various function arguments to identify the
C data type. Various functions use the symbolic names, such as
SQLBindParameter(), SQLGetData(), and SQLBindCol(), to indicate the C
data types of the application variables. Instead of explicitly identifying C
data types when calling these functions, you can specify SQL_C_DEFAULT
instead, and CLI assumes a default C data type based on the SQL data
type of the parameter or column as shown by the following table. For
example, the default C data type of SQL_DECIMAL is SQL_C_CHAR.

Applications should not use the SQL_C_DEFAULT data type to define C data
types because it is less efficient for CLI. Explicitly indicating the C data
type in the application is preferred, because it yields better performance
than using SQL_C_DEFAULT.

Table 175. SQL symbolic and default data types

SQL data type Symbolic SQL data type Default symbolic C data type

BIGINT SQL_BIGINT SQL_C_SBIGINT

BINARY f SQL_BINARY SQL_C_BINARY

BLOB SQL_BLOB SQL_C_BINARY

BLOB LOCATOR a SQL_BLOB_LOCATOR SQL_C_BLOB_LOCATOR

BOOLEAN d SQL_BOOLEAN SQL_C_DEFAULT

CHAR SQL_CHAR SQL_C_CHAR

CHAR SQL_TINYINT SQL_C_TINYINT

CHAR FOR BIT DATA b SQL_BINARY SQL_C_BINARY

CHAR FOR BIT DATA SQL_BIT SQL_C_BINARY

CLOB SQL_CLOB SQL_C_CHAR

CLOB LOCATOR a SQL_CLOB_LOCATOR SQL_C_CLOB_LOCATOR

CURSOR d SQL_CURSORHANDLE SQL_C_CURSORHANDLE

DATE SQL_TYPE_DATE SQL_C_TYPE_DATE

DBCLOB SQL_DBCLOB SQL_C_DBCHAR

DBCLOB LOCATOR a SQL_DBCLOB_LOCATOR SQL_C_DBCLOB_LOCATOR

DECIMAL SQL_DECIMAL SQL_C_CHAR

DECFLOAT(16) SQL_DECFLOAT SQL_C_CHAR

© Copyright IBM Corp. 1993, 2012 511

Table 175. SQL symbolic and default data types (continued)

SQL data type Symbolic SQL data type Default symbolic C data type

DECFLOAT(34) SQL_DECFLOAT SQL_C_CHAR

DOUBLE SQL_DOUBLE SQL_C_DOUBLE

FLOAT SQL_FLOAT SQL_C_DOUBLE

GRAPHIC SQL_GRAPHIC SQL_C_DBCHAR

INTEGER SQL_INTEGER SQL_C_LONG

LONG VARCHAR b SQL_LONGVARCHAR SQL_C_CHAR

LONG VARCHAR FOR BIT
DATA b

SQL_LONGVARBINARY SQL_C_BINARY

LONG VARGRAPHIC b SQL_LONGVARGRAPHIC SQL_C_DBCHAR

LONG VARGRAPHIC b SQL_WLONGVARCHAR SQL_C_DBCHAR

NUMERIC c SQL_NUMERIC c SQL_C_CHAR

REAL SQL_REAL SQL_C_FLOAT

ROW d SQL_ROW SQL_C_DEFAULT

SMALLINT SQL_SMALLINT SQL_C_SHORT

TIME SQL_TYPE_TIME SQL_C_TYPE_TIME

TIMESTAMP SQL_TYPE_TIMESTAMP SQL_C_TYPE_TIMESTAMP

TIMESTAMP WITH TIMEZONE SQL_TYPE_TIMESTAMP_
WITH_ TIMEZONE

SQL_C_TYPE_TIMESTAMP_
EXT_TZ

VARBINARY f SQL_VARBINARY SQL_C_BINARY

VARCHAR SQL_VARCHAR SQL_C_CHAR

VARCHAR FOR BIT DATA b SQL_VARBINARY SQL_C_BINARY

VARGRAPHIC SQL_VARGRAPHIC SQL_C_DBCHAR

VARGRAPHIC SQL_WVARCHAR SQL_C_DBCHAR

WCHAR SQL_WCHAR SQL_C_WCHAR

XML e SQL_XML SQL_C_BINARY

v a LOB locator types are not persistent SQL data types. Columns cannot be defined with a locator type
as they are only used to describe parameter markers, or to represent a LOB value.

v b LONG data types and FOR BIT DATA data types should be replaced by an appropriate LOB type
whenever possible.

v c NUMERIC is a synonym for DECIMAL on DB2 for z/OS (Version 9.1 and later), DB2 Server for
VSE & VM and DB2 Database for Linux, UNIX, and Windows.

v d BOOLEAN, CURSOR, and ROW types are only supported to provide applications with correct
DESCRIBE information for database table columns or procedure parameters. No bind-in or bind-out
is supported for these types. These types are recognized by the following CLI/ODBC APIs only:
SQLExtendedDescribe() and SQLDescribeParam().

v e Starting in DB2 Version 9.7 Fix Pack 5, the SQL_XML data type is supported for DB2 for i Version 7
Release 1 servers or later releases.

v f Starting in DB2 Version 9.7 Fix Pack 6, SQL_BINARY and SQL_VARBINARY data types are
supported for DB2 for i Version 6 Release 1 servers or later releases.

Note:

You cannot transfer the data types DATE, DECIMAL, DECFLOAT(16), DECFLOAT(34), NUMERIC,
TIME, and TIMESTAMP to their default C buffer types without a conversion.

C data types for CLI applications

The following table lists the generic type definitions for each symbolic C type that
is used in CLI applications.

SQL symbolic and default data types for CLI applications

512 Call Level Interface Guide and Reference, Volume 2

C symbolic data type
This column contains C symbolic names, defined as integer values. These
values are used in various function arguments to identify the C data type
shown in the last column.

C type
This column contains C defined types, defined in sqlcli.h using a C
typedef statement. The values in this column should be used to declare all
CLI related variables and arguments, in order to make the application
more portable. Refer to Table 178 on page 516 for a list of additional
symbolic data types used for function arguments.

Base C type
This column is shown for reference only. All variables and arguments
should be defined using the symbolic types in the previous column since
the base C type is platform dependent. Some of the values are C structures
that are described in Table 177 on page 514.

Table 176. C data types

C symbolic data type C type Base C type

SQL_C_BINARY SQLCHAR unsigned char

SQL_C_BINARYXML SQLCHAR unsigned char

SQL_C_BIT SQLCHAR unsigned char or char (Value 1 or 0)

SQL_C_BLOB_LOCATOR a SQLINTEGER 32-bit integer

SQL_C_CLOB_LOCATOR a SQLINTEGER 32-bit integer

SQL_C_CHAR SQLCHAR unsigned char

SQL_C_DBCHAR SQLDBCHAR wchar_t

SQL_C_DBCLOB_LOCATOR SQLINTEGER 32-bit integer

SQL_C_DECIMAL64 SQLDECIMAL64 see Table 177 on page 514

SQL_C_DECIMAL128 SQLDECIMAL128 see Table 177 on page 514

SQL_C_DOUBLE SQLDOUBLE double

SQL_C_FLOAT SQLREAL float

SQL_C_LONG SQLINTEGER 32-bit integer

SQL_C_NUMERIC b SQL_NUMERIC_STRUCT see Table 177 on page 514

SQL_C_SBIGINT SQLBIGINT 64-bit integer

SQL_C_SHORT SQLSMALLINT 16-bit integer

SQL_C_TINYINT SQLSCHAR signed char (Range -128 to 127)

SQL_C_TYPE_DATE DATE_STRUCT see Table 177 on page 514

SQL_C_TYPE_TIME TIME_STRUCT see Table 177 on page 514

SQL_C_TYPE_TIMESTAMP TIMESTAMP_STRUCT see Table 177 on page 514

SQL_C_TYPE_TIMESTAMP_EXT TIMESTAMP_STRUCT_EXT see Table 177 on page 514

SQL_C_TYPE_TIMESTAMP_EXT_TZ TIMESTAMP_STRUCT_EXT_TZ see Table 177 on page 514

SQL_C_UBIGINT SQLUBIGINT unsigned 64-bit integer

SQL_C_ULONG SQLUINTEGER unsigned 32-bit integer

SQL_C_USHORT SQLUSMALLINT unsigned 16-bit integer

SQL_C_UTINYINT SQLUCHAR unsigned char

SQL_C_WCHAR SQLWCHAR wchar_t

C data types for CLI applications

Chapter 7. CLI data type attributes 513

Table 176. C data types (continued)

C symbolic data type C type Base C type

v a LOB Locator Types.

v b Windows only.

Note: SQL file reference data types (used in embedded SQL) are not needed in CLI.
Note: You use the SQL_C_BINARYXML C data type with the binary XML data transmission format, which is
supported by DB2 CLI starting in DB2 z/OS Version 9.7 Fixpack 1, and in DB2 LUW Version 9.7 Fixpack 5. The DB2
server must also be at a level that supports the binary XML format.

Table 177. C structures

C type Generic structure Windows structure

DATE_STRUCT
typedef struct DATE_STRUCT

{
SQLSMALLINT year;
SQLUSMALLINT month;
SQLUSMALLINT day;

} DATE_STRUCT;

typedef struct tagDATE_STRUCT
{

SWORD year;
UWORD month;
UWORD day;

} DATE_STRUCT;

TIME_STRUCT
typedef struct TIME_STRUCT

{
SQLUSMALLINT hour;
SQLUSMALLINT minute;
SQLUSMALLINT second;

} TIME_STRUCT;

typedef struct tagTIME_STRUCT
{

UWORD hour;
UWORD minute;
UWORD second;

} TIME_STRUCT;

TIMESTAMP_STRUCT
typedef struct TIMESTAMP_STRUCT

{
SQLUSMALLINT year;
SQLUSMALLINT month;
SQLUSMALLINT day;
SQLUSMALLINT hour;
SQLUSMALLINT minute;
SQLUSMALLINT second;
SQLINTEGER fraction;

} TIMESTAMP_STRUCT;

typedef struct tagTIMESTAMP_STRUCT
{

SWORD year;
UWORD month;
UWORD day;
UWORD hour;
UWORD minute;
UWORD second;
UDWORD fraction;

} TIMESTAMP_STRUCT;

TIMESTAMP_STRUCT_EXT typedef struct TIMESTAMP_STRUCT_EXT
{

SQLSMALLINT year;
SQLUSMALLINT month;
SQLUSMALLINT day;
SQLUSMALLINT hour;
SQLUSMALLINT minute;
SQLUSMALLINT second;
SQLUINTEGER fraction;

/* 1-9 digits */
SQLUINTEGER fraction2;

/* 10-12 digits */ }
TIMESTAMP_STRUCT_EXT;

(No Windows structure. Only a generic
structure.)

C data types for CLI applications

514 Call Level Interface Guide and Reference, Volume 2

Table 177. C structures (continued)

C type Generic structure Windows structure

TIMESTAMP_STRUCT_EXT
_TZ

typedef struct TIMESTAMP_STRUCT
{

SQLSMALLINT year;
SQLUSMALLINT month;
SQLUSMALLINT day;
SQLUSMALLINT hour;
SQLUSMALLINT minute;
SQLUSMALLINT second;
SQLUINTEGER fraction;
SQLUINTEGER fraction2;
SQLSMALLINT timezone_hour;

/*-12 to 14*/
SQLUSMALLINT timezone_minute;

/*-59 to 59*/
}

TIMESTAMP_STRUCT_EXT_TZ;

(No Windows structure. Only a generic
structure.)

SQLDECIMAL64 typedef struct tagSQLDECIMAL64
{

union {
SQLDOUBLE dummy;
SQLCHAR dec64
[SQL_DECFLOAT16_

COEFFICIENT_LEN];
} udec64;

} SQLDECIMAL64;

(No Windows structure. Only a generic
structure.)

SQLDECIMAL128 typedef struct tagSQLDECIMAL128
{

union {
SQLDOUBLE dummy;
SQLCHAR dec128
[SQL_DECFLOAT34_

COEFFICIENT_LEN];
} udec128;

} SQLDECIMAL128;

(No Windows structure. Only a generic
structure.)

SQL_NUMERIC_STRUCT (No generic structure. Only a Windows
structure.) typedef struct tagSQL_NUMERIC_STRUCT

{
SQLCHAR precision;
SQLCHAR scale;
SQLCHAR sign; a

SQLCHAR
val[SQL_MAX_NUMERIC_LEN];b c

} SQL_NUMERIC_STRUCT;

Refer to Table 178 on page 516 for more information on the SQLUSMALLINT C data type.

v a Sign field: 1 = positive, 2 = negative

v b A number is stored in the val field of the SQL_NUMERIC_STRUCT structure as a scaled integer, in little endian
mode (the leftmost byte being the least-significant byte). For example, the number 10.001 base 10, with a scale of 4,
is scaled to an integer of 100010. Because this is 186AA in hexadecimal format, the value in
SQL_NUMERIC_STRUCT would be “AA 86 01 00 00 ... 00”, with the number of bytes defined by the
SQL_MAX_NUMERIC_LEN #define.

v c The precision and scale fields of the SQL_C_NUMERIC data type are never used for input from an application,
only for output from the driver to the application. When the driver writes a numeric value into the
SQL_NUMERIC_STRUCT, it will use its own default as the value for the precision field, and it will use the value
in the SQL_DESC_SCALE field of the application descriptor (which defaults to 0) for the scale field. An application
can provide its own values for precision and scale by setting the SQL_DESC_PRECISION and SQL_DESC_SCALE
fields of the application descriptor.

C data types for CLI applications

Chapter 7. CLI data type attributes 515

As well as the data types that map to SQL data types, there are also C symbolic
types used for other function arguments such as pointers and handles. Both the
generic and ODBC data types are shown below.

Note: There are two kinds of drivers that ship with the product: the CLI driver,
and the 64-bit ODBC driver. The 64-bit ODBC Driver handles the differences with
type definitions between various ODBC Managers.

Table 178. C Data types and base C data types

Defined C type Base C type Typical usage

SQLPOINTER void * Pointer to storage for data and parameters.

SQLHANDLE 1. 1. void *

2. 32-bit integer

Handle used to reference all 4 types of handle
information.

1. 64-bit value for Windows 64-bit ODBC Driver
and UNIX 64-bit ODBC Driver

2. 32-bit value for all 32-bit platforms and 64-bit
CLI Drivers

SQLHENV 1. 1. void *

2. 32-bit integer

Handle referencing environment information.

1. 64-bit value for Windows 64-bit ODBC Driver
and UNIX 64-bit ODBC Driver

2. 32-bit value for all 32-bit platforms and 64-bit
CLI Drivers

SQLHDBC 1. 1. void *

2. 32-bit integer

Handle referencing database connection
information.

1. 64-bit value for Windows 64-bit ODBC Driver
and UNIX 64-bit ODBC Driver

2. 32-bit value for all 32-bit platforms and 64-bit
CLI Drivers

SQLHSTMT 1. 1. void *

2. 32-bit integer

Handle referencing statement information.

1. 64-bit value for Windows 64-bit ODBC Driver
and UNIX 64-bit ODBC Driver

2. 32-bit value for all 32-bit platforms and 64-bit
CLI Drivers

SQLUSMALLINT unsigned 16-bit
integer

Function input argument for unsigned short
integer values.

SQLUINTEGER unsigned 32-bit
integer

Function input argument for unsigned long
integer values.

SQLRETURN 16-bit integer Return code from CLI functions.

SQLULEN 1. unsigned 64-bit
integer

2. unsigned 32-bit
integer

1. Function input or output argument for
unsigned 64-bit integer values (64-bit ODBC
driver).

2. Function input or output argument for
unsigned 32-bit integer values (all other
drivers).

SQLLEN 1. 64-bit integer

2. 32-bit integer

1. Function input or output argument for 64-bit
integer values (64-bit ODBC driver).

2. Function input or output argument for 32-bit
integer values (all other drivers).

C data types for CLI applications

516 Call Level Interface Guide and Reference, Volume 2

Table 178. C Data types and base C data types (continued)

Defined C type Base C type Typical usage

SQLSETPOSIROW 1. 64-bit integer

2. 16-bit integer

1. Function input or output argument for 64-bit
integer values (Windows 64-bit ODBC driver).

2. Function input or output argument for 16-bit
integer values (all other drivers).

Data conversions supported in CLI
The table lists data type conversions supported by CLI.

The first column contains the data type of the SQL data type. The remaining
columns represent the C data types. If the C data type columns contain:

D The conversion is supported and this is the default conversion for the SQL
data type.

X All IBM DBMSs support the conversion.

blank No IBM DBMS supports the conversion.

See the tables of data type attributes (precision, scale, length, and display) for more
information about the data type formats.

Table 179. Supported data conversions

SQL
data type

S
Q
L
_
C
_
C
H
A
R

S
Q
L
_
C
_
W
C
H
A
R

S
Q
L
_
C
_
B
I
N
A
R
Y
X
M
L

S
Q
L
_
C
_
D
B
C
H
A
R

S
Q
L
_
C
_
B
I
T

S
Q
L
_
C
_
T
I
N
Y
I
N
T

S
Q
L
_
C
_
S
T
I
N
Y
I
N
T

S
Q
L
_
C
_
U
T
I
N
Y
I
N
T

S
Q
L
_
C
_
S
H
O
R
T

S
Q
L
_
C
_
S
S
H
O
R
T

S
Q
L
_
C
_
U
S
H
O
R
T

S
Q
L
_
C
_
L
O
N
G

S
Q
L
_
C
_
S
L
O
N
G

S
Q
L
_
C
_
U
L
O
N
G

S
Q
L
_
C
_
S
B
I
G
I
N
T

S
Q
L
_
C
_
U
B
I
G
I
N
T

S
Q
L
_
C
_
F
L
O
A
T

S
Q
L
_
C
_
D
O
U
B
L
E

S
Q
L
_
C
_
N
U
M
E
R
I
C

S
Q
L
_
C
_
D
E
C
I
M
A
L
_
I
B
M

S
Q
L
_
C
_
D
E
C
I
M
A
L
6
4

S
Q
L
_
C
_
D
E
C
I
M
A
L
1
2
8

S
Q
L
_
C
_
T
Y
P
E
_
D
A
T
E

S
Q
L
_
C
_
T
Y
P
E
_
T
I
M
E

S
Q
L
_
C
_
T
Y
P
E
_
T
I
M
E
S
T
A
M
P

S
Q
L
_
C
_
D
A
T
A
L
I
N
K

S
Q
L
_
C
_
B
I
N
A
R
Y

S
Q
L
_
C
_
C
L
O
B
_
L
O
C
A
T
O
R

S
Q
L
_
C
_
B
L
O
B
_
L
O
C
A
T
O
R

S
Q
L
_
C
_
D
B
C
L
O
B
_
L
O
C
A
T
O
R

SQL_CHAR D X

SQL_WCHAR4 D X

SQL_
VARCHAR

D X

SQL_
WVARCHAR4

D X

SQL_
LONG
VARCHAR

D X

SQL_
BINARY

X X D

SQL_
VARBINARY

X X D

C data types for CLI applications

Chapter 7. CLI data type attributes 517

Table 179. Supported data conversions (continued)

SQL
data type

S
Q
L
_
C
_
C
H
A
R

S
Q
L
_
C
_
W
C
H
A
R

S
Q
L
_
C
_
B
I
N
A
R
Y
X
M
L

S
Q
L
_
C
_
D
B
C
H
A
R

S
Q
L
_
C
_
B
I
T

S
Q
L
_
C
_
T
I
N
Y
I
N
T

S
Q
L
_
C
_
S
T
I
N
Y
I
N
T

S
Q
L
_
C
_
U
T
I
N
Y
I
N
T

S
Q
L
_
C
_
S
H
O
R
T

S
Q
L
_
C
_
S
S
H
O
R
T

S
Q
L
_
C
_
U
S
H
O
R
T

S
Q
L
_
C
_
L
O
N
G

S
Q
L
_
C
_
S
L
O
N
G

S
Q
L
_
C
_
U
L
O
N
G

S
Q
L
_
C
_
S
B
I
G
I
N
T

S
Q
L
_
C
_
U
B
I
G
I
N
T

S
Q
L
_
C
_
F
L
O
A
T

S
Q
L
_
C
_
D
O
U
B
L
E

S
Q
L
_
C
_
N
U
M
E
R
I
C

S
Q
L
_
C
_
D
E
C
I
M
A
L
_
I
B
M

S
Q
L
_
C
_
D
E
C
I
M
A
L
6
4

S
Q
L
_
C
_
D
E
C
I
M
A
L
1
2
8

S
Q
L
_
C
_
T
Y
P
E
_
D
A
T
E

S
Q
L
_
C
_
T
Y
P
E
_
T
I
M
E

S
Q
L
_
C
_
T
Y
P
E
_
T
I
M
E
S
T
A
M
P

S
Q
L
_
C
_
D
A
T
A
L
I
N
K

S
Q
L
_
C
_
B
I
N
A
R
Y

S
Q
L
_
C
_
C
L
O
B
_
L
O
C
A
T
O
R

S
Q
L
_
C
_
B
L
O
B
_
L
O
C
A
T
O
R

S
Q
L
_
C
_
D
B
C
L
O
B
_
L
O
C
A
T
O
R

SQL_
LONG
VARBINARY

X X D

SQL_
GRAPHIC

X X D X X X X X X X X X

SQL_
VARGRAPHIC

X X D X X X X X X X X X

SQL_
LONG
VARGRAPHIC

X X D X X X X X X X X X

SQL_CLOB D X X X

SQL_BLOB X X D X

SQL_DBCLOB X X D X X

SQL_
CLOB_
LOCATOR

D

SQL_
BLOB_
LOCATOR

D

SQL_
DBCLOB_
LOCATOR

D

SQL_NUMERIC D X X5 X X X X X X X X X X X X X X X X X X X

SQL_DECIMAL D X X5 X X X X X X X X X X X X X X X X X X X

SQL_DECFLOAT D X X5 X X X X X X X X X X X X X X X X X

SQL_INTEGER X X X5 X X X X X X X D3 D3 X X X X X X X X X

SQL_
SMALLINT

X X X5 X X X X D2 D2 X X X X X X X X X X X X

SQL_FLOAT X X X5 X X X X X X X X X X X X X D X X X X

SQL_DOUBLE X X X5 X X X X X X X X X X X X X D X X X X

SQL_REAL X X X5 X X X X X X X X X X X X D X X X X X

SQL_BIGINT X X X5 X X X X X X X X X X D X X X X X X X

Data conversions supported in CLI

518 Call Level Interface Guide and Reference, Volume 2

Table 179. Supported data conversions (continued)

SQL
data type

S
Q
L
_
C
_
C
H
A
R

S
Q
L
_
C
_
W
C
H
A
R

S
Q
L
_
C
_
B
I
N
A
R
Y
X
M
L

S
Q
L
_
C
_
D
B
C
H
A
R

S
Q
L
_
C
_
B
I
T

S
Q
L
_
C
_
T
I
N
Y
I
N
T

S
Q
L
_
C
_
S
T
I
N
Y
I
N
T

S
Q
L
_
C
_
U
T
I
N
Y
I
N
T

S
Q
L
_
C
_
S
H
O
R
T

S
Q
L
_
C
_
S
S
H
O
R
T

S
Q
L
_
C
_
U
S
H
O
R
T

S
Q
L
_
C
_
L
O
N
G

S
Q
L
_
C
_
S
L
O
N
G

S
Q
L
_
C
_
U
L
O
N
G

S
Q
L
_
C
_
S
B
I
G
I
N
T

S
Q
L
_
C
_
U
B
I
G
I
N
T

S
Q
L
_
C
_
F
L
O
A
T

S
Q
L
_
C
_
D
O
U
B
L
E

S
Q
L
_
C
_
N
U
M
E
R
I
C

S
Q
L
_
C
_
D
E
C
I
M
A
L
_
I
B
M

S
Q
L
_
C
_
D
E
C
I
M
A
L
6
4

S
Q
L
_
C
_
D
E
C
I
M
A
L
1
2
8

S
Q
L
_
C
_
T
Y
P
E
_
D
A
T
E

S
Q
L
_
C
_
T
Y
P
E
_
T
I
M
E

S
Q
L
_
C
_
T
Y
P
E
_
T
I
M
E
S
T
A
M
P

S
Q
L
_
C
_
D
A
T
A
L
I
N
K

S
Q
L
_
C
_
B
I
N
A
R
Y

S
Q
L
_
C
_
C
L
O
B
_
L
O
C
A
T
O
R

S
Q
L
_
C
_
B
L
O
B
_
L
O
C
A
T
O
R

S
Q
L
_
C
_
D
B
C
L
O
B
_
L
O
C
A
T
O
R

SQL_TINYINT X X X D1 D1 X X X X X X X X X X X X X X X

SQL_BIT X X D

SQL_
TYPE_DATE

X X D X

SQL_
TYPE_TIME

X X D X

SQL_
TYPE_
TIMESTAMP

X X X X D

SQL_XML X X D X D

Note:

1. The C type SQL_C_TINYINT is treated by CLI as the type SQL_C_STINYINT
so either type can be considered to be the default.

2. The C type SQL_C_SHORT is treated by CLI as the type SQL_C_SSHORT so
either type can be considered to be the default.

3. The C type SQL_C_LONG is treated by CLI as the type SQL_C_SLONG so
either type can be considered to be the default.

4. This type is not supported in the DB2 database but other supported types can
be returned to the client as this type because of the setting of a configuration
keyword, such as MAPCharToWChar.

5. This type conversion is restricted to Unicode.

Starting in V9.7 fix pack 1, the SQL_C_BINARYXML C data type is available for
use with the binary XML data in DB2 for z/OS. Starting in V9.7 Fix Pack 5,
SQL_C_BINARYXML C data type can be used with binary XML data in DB2 for
Linux, UNIX, and Windows. The DB2 server must also be at a level that supports
the binary XML data type. The SQL_XML data type is not supported for use with
an Informix data server.
v Starting in DB2 Version 9.7 Fix Pack 5, the SQL_XML data type is supported for

DB2 for i Version 7 Release 1 servers or later releases.
v Starting in DB2 Version 9.7 Fix Pack 6, SQL_BINARY and SQL_VARBINARY

data types are supported for DB2 for i Version 6 Release 1 servers or later
releases.

Data conversions supported in CLI

Chapter 7. CLI data type attributes 519

SQL to C data conversion in CLI

For a given SQL data type:
v the first column of the table lists the legal input values of the fCType argument

in SQLBindCol() and SQLGetData().
v the second column lists the outcomes of a test, often using the cbValueMax

argument specified in SQLBindCol() or SQLGetData(), which the driver performs
to determine if it can convert the data.

v the third and fourth columns list the values (for each outcome) of the rgbValue
and pcbValue arguments specified in the SQLBindCol() or SQLGetData() after the
driver has attempted to convert the data.

v the last column lists the SQLSTATE returned for each outcome by SQLFetch(),
SQLExtendedFetch(), SQLGetData() or SQLGetSubString().

The tables list the conversions defined by ODBC to be valid for a given SQL data
type.

If the fCType argument in SQLBindCol() or SQLGetData() contains a value not
shown in the table for a given SQL data type, SQLFetch(), or SQLGetData() returns
the SQLSTATE 07006 (Restricted data type attribute violation).

If the fCType argument contains a value shown in the table but which specifies a
conversion not supported by the driver, SQLFetch(), or SQLGetData() returns
SQLSTATE HYC00 (Driver not capable).

Though it is not shown in the tables, the pcbValue argument contains
SQL_NULL_DATA when the SQL data value is NULL. For an explanation of the
use of pcbValue when multiple calls are made to retrieve data, see SQLGetData().

When SQL data is converted to character C data, the character count returned in
pcbValue does not include the null termination byte. If rgbValue is a null pointer,
SQLBindCol() or SQLGetData() returns SQLSTATE HY009 (Invalid argument value).

In the following tables:

Length of data
the total length of the data after it has been converted to the specified C
data type (excluding the null termination byte if the data was converted to
a string). This is true even if data is truncated before it is returned to the
application.

Significant digits
the minus sign (if needed) and the digits to the left of the decimal point.

Display size
the total number of bytes needed to display data in the character format.

Converting character SQL data to C data

The character SQL data types are:
v SQL_CHAR
v SQL_VARCHAR
v SQL_LONGVARCHAR
v SQL_CLOB

SQL to C data conversion in CLI

520 Call Level Interface Guide and Reference, Volume 2

Table 180. Converting character SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Length of data <
cbValueMax

Data Length of
data

00000

Length of data >=
cbValueMax

Truncated
data

Length of
data

01004

SQL_C_BINARY Length of data <=
cbValueMax

Data Length of
data

00000

Length of data >
cbValueMax

Truncated
data

Length of
data

01004

SQL_C_SHORT
SQL_C_LONG
SQL_C_FLOAT
SQL_C_FLOAT
SQL_C_TINYINT
SQL_C_BIT
SQL_C_UBIGINT
SQL_C_SBIGINT
SQL_C_NUMERIC c

Data converted without
truncation a

Data Size of the C
data type 00000

Data converted with
truncation, but without loss
of significant digits a

Data Size of the C
data type

01004

Conversion of data would
result in loss of significant
digitsa

Untouched Size of the C
data type

22003

Data is not a number a Untouched Size of the C
data type

22005

SQL_C_TYPE_DATE Data value is a valid date a Data 6 b 00000

Data value is not a valid
date a

Untouched 6 b 22007

SQL_C_TYPE_TIME Data value is a valid time a Data 6 b 00000

Data value is not a valid
time a

Untouched 6 b 22007

SQL_C_TYPE_TIMESTAMP Data value is a valid
timestamp a

Data 16 b 00000

Data value is not a valid
timestamp a

Untouched 16 b 22007

SQL_C_TIMESTAMP_EXT Data value is a valid
timestamp a

Data 20 00000

Data value is not a valid
timestamp a

Untouched 20 22007

Note:

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

b This is the size of the corresponding C data type.

c SQL_C_NUMERIC is only supported on Windows platforms.

SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

Converting graphic SQL data to C data

The graphic SQL data types are:
v SQL_GRAPHIC
v SQL_VARGRAPHIC
v SQL_LONGVARGRAPHIC
v SQL_DBCLOB

SQL to C data conversion in CLI

Chapter 7. CLI data type attributes 521

Table 181. Converting GRAPHIC SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Number of double byte
characters * 2 <=
cbValueMax

Data Length of
data(octects)

00000

Number of double byte
characters * 2 >
cbValueMax

Truncated
data, to the
nearest even
byte that is
less than
cbValueMax.

Length of
data(octects)

01004

SQL_C_DBCHAR Number of double byte
characters * 2 <
cbValueMax

Data Length of
data(octects)

00000

Number of double byte
characters * 2 >=
cbValueMax

Truncated
data, to the
nearest even
byte that is
less than
cbValueMax.

Length of
data(octects)

01004

Note: SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function
returns SQL_SUCCESS.

When converting to floating point values, SQLSTATE 22003 will not be returned if non-significant digits
of the resulting value are lost.

Converting numeric SQL data to C data

The numeric SQL data types are:
v SQL_DECIMAL
v SQL_NUMERIC
v SQL_SMALLINT
v SQL_INTEGER
v SQL_BIGINT
v SQL_REAL
v SQL_DECFLOAT
v SQL_FLOAT
v SQL_DOUBLE

Table 182. Converting numeric SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Display size < cbValueMax Data Length of
data

00000

Number of significant
digits < cbValueMax

Truncated
data

Length of
data

01004

Number of significant
digits >= cbValueMax

Untouched Length of
data

22003

SQL_C_DBCHAR
SQL_C_WCHAR

Display size * 2 <
cbValueMax

Data Length of
data

00000

Number of significant
digits * 2 < cbValueMax

Truncated
Data

Length of
Data

01004

Number of significant
digits * 2 >= cbValueMax

Untouched Length of
Data

22003

SQL to C data conversion in CLI

522 Call Level Interface Guide and Reference, Volume 2

Table 182. Converting numeric SQL data to C data (continued)

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_SHORT
SQL_C_LONG
SQL_C_FLOAT
SQL_C_DOUBLE
SQL_C_TINYINT
SQL_C_BIT
SQL_C_UBIGINT
SQL_C_SBIGINT
SQL_C_NUMERIC b

Data converted without
truncation a

Data Size of the C
data type

00000

Data converted with
truncation, but without loss
of significant digits a

Truncated
data

Size of the C
data type

01004

Conversion of data would
result in loss of significant
digits a

Untouched Size of the C
data type

22003

Note:

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

b SQL_C_NUMERIC is only supported on Windows platforms.

SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

Converting binary SQL data to C data

The binary SQL data types are:
v SQL_BINARY
v SQL_VARBINARY
v SQL_LONGVARBINARY
v SQL_BLOB

Table 183. Converting binary SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR (Length of data) <
cbValueMax

Data Length of
data

N/A

(Length of data) >=
cbValueMax

Truncated
data

Length of
data

01004

SQL_C_BINARY Length of data <=
cbValueMax

Data Length of
data

N/A

Length of data >
cbValueMax

Truncated
data

Length of
data

01004

Note: Starting in DB2 Version 9.7 Fix Pack 6, SQL_BINARY and SQL_VARBINARY
data types are supported for DB2 for i Version 6 Release 1 servers or later releases.

Converting XML SQL data to C data

The XML SQL data type is:
SQL_XML

Table 184. Converting XML SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Length of data <
cbValueMax

Data Length of
data

00000

Length of data >=
cbValueMax

Truncated
data

Length of
data

01004

SQL to C data conversion in CLI

Chapter 7. CLI data type attributes 523

Table 184. Converting XML SQL data to C data (continued)

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_BINARY Length of data <=
cbValueMax

Data Length of
data

00000

Length of data >
cbValueMax

Truncated
data

Length of
data

01004

SQL_C_BINARYXML Length of data <=
cbValueMax

Data Length of
data

00000

Length of data >
cbValueMax

Truncated
data

Length of
data

01004

SQL_C_DBCHAR Number of double-byte
characters * 2 <
cbValueMax

Data Length of
data

00000

Number of double-byte
characters * 2 >=
cbValueMax

Truncated
data, to the
nearest even
byte that is
less than
cbValueMax

Length of
data

01004

SQL_C_WCHAR Number of double-byte
characters * 2 <
cbValueMax

Data Length of
data

00000

Number of double-byte
characters * 2 >=
cbValueMax

Truncated
data, to the
nearest even
byte that is
less than
cbValueMax

Length of
data

01004

Note:

1. SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function
returns SQL_SUCCESS.

2. Length of data includes any XML declaration in the target encoding.

3. The SQL_XML data type is not supported for use with an Informix data server.

Converting date SQL data to C data

The date SQL data type is:
v SQL_TYPE_DATE

Table 185. Converting date SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR cbValueMax >= 11 Data 10 00000

cbValueMax < 11 Untouched 10 22003

SQL_C_TYPE_DATE None a Data 6 b 00000

SQL_C_TYPE_TIMESTAMP None a Data c 16 b 00000

SQL_C_TIMESTAMP_EXT None a Data c 20 00000

Note:

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

b This is the size of the corresponding C data type.

c The time fields of the TIMESTAMP_STRUCT or TIMESTAMP_STRUCT_EXT structure are set
to zero.

SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

SQL to C data conversion in CLI

524 Call Level Interface Guide and Reference, Volume 2

When the date SQL data type is converted to the character C data type, the
resulting string is in the "yyyy-mm-dd” format.

Converting Time SQL Data to C Data

The time SQL data type is:
v SQL_TYPE_TIME

Table 186. Converting time SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR cbValueMax >= 9 Data 8 00000

cbValueMax < 9 Untouched 8 22003

SQL_C_TYPE_TIME None a Data 6 b 00000

SQL_C_TYPE_TIMESTAMP None a Data c 16 b 00000

SQL_C_TIMESTAMP_EXT None a Data c 20 00000

Note:

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

b This is the size of the corresponding C data type.

c The date fields of the TIMESTAMP_STRUCT or TIMESTAMP_STRUCT_EXT structure are set
to the current system date of the machine that the application is running, and the time
fraction is set to zero.

SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

When the time SQL data type is converted to the character C data type, the
resulting string is in the "hh:mm:ss” format.

Converting timestamp SQL data to C data

The timestamp SQL data type is:
v SQL_TYPE_TIMESTAMP

Table 187. Converting timestamp SQL data to C data

fCType Test rgbValue pcbValue SQLSTATE

SQL_C_CHAR Display size < cbValueMax Data Length of
data

00000

19 <= cbValueMax <=
Display size

Truncated
Data b

Length of
data

01004

cbValueMax < 19 Untouched Length of
data

22003

SQL_C_TYPE_DATE None a Truncated
data c

6 e 01S07

SQL_C_TYPE_TIME None a Truncated
data d

6 e 01S07

SQL_C_TYPE_TIMESTAMP None a Data 16 e 00000

SQL_C_TIMESTAMP_EXT None a Data 20 00000

SQL to C data conversion in CLI

Chapter 7. CLI data type attributes 525

Table 187. Converting timestamp SQL data to C data (continued)

fCType Test rgbValue pcbValue SQLSTATE

Note:

a The value of cbValueMax is ignored for this conversion. The driver assumes that the size of
rgbValue is the size of the C data type.

b The fractional seconds of the timestamp are truncated.

c The time portion of the timestamp is deleted.

d The date portion of the timestamp is deleted.

e This is the size of the corresponding C data type.

SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

When the timestamp SQL data type is converted to the character C data type, the
resulting string is in the "yyyy-mm-dd hh:mm:ss.ffffffffffff” format where fractional
second digits range from 0 to 12 (regardless of the precision of the timestamp SQL
data type). If an application requires the ISO format, set the CLI/ODBC
configuration keyword PATCH2=33.

Converting timestamp(p) with timezone SQL data to C data

The timestamp SQL data type is:
v SQL_TYPE_TIMESTAMP_WITH_TIMEZONE

Table 188. Converting timestamp(p) with timezone SQL data to C data

fCType SQL Type Test/Result SQLSTATE

SQL_C_TYPE_TIMESTAMP_
EXT_TZ

SQL_CHAR Data value is a
valid timestamp
with timezone

N/A

Data value is
not a valid
timestamp with
timezone

22007

SQL_C_TYPE_DATE SQL_TYPE_TIMESTAMP_
WITH_TIMEZONE

Truncated data 01S07

SQL_C_TYPE_TIME SQL_TYPE_TIMESTAMP_
WITH_TIMEZONE

Truncated data 01S07

SQL_C_TYPE_TIMESTAMP SQL_TYPE_TIMESTAMP_
WITH_TIMEZONE

Truncated data 01S07

SQL to C data conversion examples

Table 189. SQL to C data conversion examples

SQL data type
SQL data
value C data type

cbValue
max rgbValue

SQL
STATE

SQL_CHAR abcdef SQL_C_CHAR 7 abcdef\0 a 00000

SQL_CHAR abcdef SQL_C_CHAR 6 abcde\0 a 01004

SQL_DECIMAL 1234.56 SQL_C_CHAR 8 1234.56\0 a 00000

SQL_DECIMAL 1234.56 SQL_C_CHAR 5 1234\0 a 01004

SQL_DECIMAL 1234.56 SQL_C_CHAR 4 --- 22003

SQL_DECIMAL 1234.56 SQL_C_FLOAT ignored 1234.56 00000

SQL to C data conversion in CLI

526 Call Level Interface Guide and Reference, Volume 2

Table 189. SQL to C data conversion examples (continued)

SQL data type
SQL data
value C data type

cbValue
max rgbValue

SQL
STATE

SQL_DECIMAL 1234.56 SQL_C_SHORT ignored 1234 01004

SQL_TYPE_DATE 1992-12-31 SQL_C_CHAR 11 1992-12-31\0 a 00000

SQL_TYPE_DATE 1992-12-31 SQL_C_CHAR 10 --- 22003

SQL_TYPE_DATE 1992-12-31 SQL_C_TYPE_
TIMESTAMP

ignored 1992,12,31, 0,0,0,0
b

00000

SQL_TYPE_
TIMESTAMP

1992-12-31
23:45:55.12

SQL_C_CHAR 23 1992-12-31
23:45:55.12\0 a

00000

SQL_TYPE_
TIMESTAMP

1992-12-31
23:45:55.12

SQL_C_CHAR 22 1992-12-31
23:45:55.1\0 a

01004

SQL_TYPE_
TIMESTAMP

1992-12-31
23:45:55.12

SQL_C_CHAR 18 --- 22003

Note:

a "\0" represents a null termination character.

b The numbers in this list are the numbers stored in the fields of the TIMESTAMP_STRUCT or
TIMESTAMP_STRUCT_EXT structure.

SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns
SQL_SUCCESS.

C to SQL data conversion in CLI

For a given C data type:
v the first column of the table lists the legal input values of the fSqlType argument

in SQLBindParameter() or SQLSetParam().
v the second column lists the outcomes of a test, often using the length of the

parameter data as specified in the pcbValue argument in SQLBindParameter() or
SQLSetParam(), which the driver performs to determine if it can convert the
data.

v the third column lists the SQLSTATE returned for each outcome by
SQLExecDirect() or SQLExecute().

The tables list the conversions defined by ODBC to be valid for a given SQL data
type.

If the fSqlType argument in SQLBindParameter() or SQLSetParam() contains a value
not shown in the table for a given C data type, SQLSTATE 07006 is returned
(Restricted data type attribute violation).

If the fSqlType argument contains a value shown in the table but which specifies a
conversion not supported by the driver, SQLBindParameter() or SQLSetParam()
returns SQLSTATE HYC00 (Driver not capable).

If the rgbValue and pcbValue arguments specified in SQLBindParameter() or
SQLSetParam() are both null pointers, that function returns SQLSTATE HY009
(Invalid argument value).

Note:

v The SQL_XML data type is not supported for use with an Informix data server.

SQL to C data conversion in CLI

Chapter 7. CLI data type attributes 527

v Starting in DB2 Version 9.7 Fix Pack 6, SQL_BINARY and SQL_VARBINARY
data types are supported for DB2 for i Version 6 Release 1 servers or later
releases.

Length of data
the total length of the data after it has been converted to the specified SQL
data type (excluding the null termination byte if the data was converted to
a string). This is true even if data is truncated before it is sent to the data
source.

Column length
the maximum number of bytes returned to the application when data is
transferred to its default C data type. For character data, the length does
not include the null termination byte.

Display size
the maximum number of bytes needed to display data in character form.

Significant digits
the minus sign (if needed) and the digits to the left of the decimal point.

Converting character C data to SQL data

The character C data type is:
v SQL_C_CHAR

Table 190. Converting character C data to SQL data
fSQLType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR
SQL_CLOB

Length of data <= Column length N/A

Length of data > Column length 22001

SQL_DECIMAL
SQL_NUMERIC
SQL_SMALLINT
SQL_INTEGER
SQL_BIGINT
SQL_REAL
SQL_FLOAT
SQL_DOUBLE

Data converted without truncation N/A

Data converted with truncation, but without loss of significant digits 22001

Conversion of data would result in loss of significant digits 22003

Data value is not a numeric value 22005

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY
SQL_BLOB

(Length of data) < Column length N/A

(Length of data) >= Column length 22001

Data value is not a hexadecimal value 22005

SQL_TYPE_DATE Data value is a valid date N/A

Data value is not a valid date 22007

Data value is a valid timestamp 22008

Data value is a valid timestamp and the connection attribute
SQL_ATTR_REPORT_TIMESTAMP_TRUNC_AS_WARN is set to 1

01S07 (Fractional
truncation warning)

SQL_TYPE_TIME Data value is a valid time N/A

Data value is not a valid time 22007

Data value is a valid timestamp 22008

Data value is a valid timestamp and the connection attribute
SQL_ATTR_REPORT_TIMESTAMP_TRUNC_AS_WARN is set to 1

01S07 (Fractional
truncation warning)

SQL_TYPE_TIMESTAMP Data value is a valid timestamp N/A

Data value is not a valid timestamp 22007

Data value is a valid date N/A

SQL_GRAPHIC
SQL_VARGRAPHIC
SQL_LONGVARGRAPHIC
SQL_DBCLOB

Length of data / 2 <= Column length N/A

Length of data / 2 < Column length 22001

SQL_XML Data can be implicitly parsed (several
SQLSTATES can be
returned)

C to SQL data conversion in CLI

528 Call Level Interface Guide and Reference, Volume 2

Converting numeric C data to SQL data

The numeric C data types are:
v SQL_C_SHORT
v SQL_C_LONG
v SQL_C_FLOAT
v SQL_C_DOUBLE
v SQL_C_TINYINT
v SQL_C_SBIGINT
v SQL_C_BIT

Table 191. Converting numeric C data to SQL data
fSQLType Test SQLSTATE

SQL_DECIMAL
SQL_NUMERIC
SQL_SMALLINT
SQL_INTEGER
SQL_BIGINT
SQL_REAL
SQL_FLOAT
SQL_DOUBLE

Data converted without truncation N/A

Data converted with truncation, but without loss of significant digits 22001

Conversion of data would result in loss of significant digits 22003

SQL_CHAR
SQL_VARCHAR

Data converted without truncation. N/A

Conversion of data would result in loss of significant digits. 22003

Note: When converting to floating point values, SQLSTATE 22003 will not be returned if non-significant digits of the resulting value are lost.

Converting binary C data to SQL data

The binary C data type is:
v SQL_C_BINARY

Table 192. Converting binary C data to SQL data
fSQLType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR
SQL_CLOB

Length of data <= Column length N/A

Length of data > Column length 22001

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY
SQL_BLOB

Length of data <= Column length N/A

Length of data > Column length 22001

SQL_XML Data can be implicitly parsed (several SQLSTATES
can be returned)

Converting binary XML C data to SQL data

The binary XML C data type is:
v SQL_C_BINARYXML

Table 193. Converting binary XML C data to SQL data
fSQLType Test SQLSTATE

SQL_XML Data can be implicitly parsed (several SQLSTATES
can be returned)

Converting DBCHAR C data to SQL data

The double byte C data type is:
v SQL_C_DBCHAR

C to SQL data conversion in CLI

Chapter 7. CLI data type attributes 529

Table 194. Converting DBCHAR C data to SQL data
fSQLType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR
SQL_CLOB

Length of data <= Column length x 2 N/A

Length of data > Column length x 2 22001

SQL_DECIMAL
SQL_NUMERIC
SQL_SMALLINT
SQL_INTEGER
SQL_BIGINT
SQL_REAL
SQL_FLOAT
SQL_DECFLOAT
SQL_DOUBLE

Length of data <= Column length x 2 N/A

Length of data > Column length x 2 22001

Data is non-Unicode 07006

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY
SQL_BLOB

Length of data <= Column length x 2 N/A

Length of data > Column length x 2 22001

SQL_XML Data can be implicitly parsed (several SQLSTATES
can be returned)

Converting date C data to SQL data

The date C data type is:
v SQL_C_DATE

Table 195. Converting date C data to SQL data
fSQLType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR

Column length >= 10 N/A

Column length < 10 22001

SQL_TYPE_DATE Data value is a valid date N/A

Data value is not a valid date 22007

SQL_TYPE_TIMESTAMPa Data value is a valid date N/A

Data value is not a valid date 22007

Note: SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns SQL_SUCCESS.

Note: a, the time component of TIMESTAMP is set to zero.

Converting time C data to SQL data

The time C data type is:
v SQL_C_TIME

Table 196. Converting time C data to SQL data
fSQLType Test SQLSTATE

SQL_CHAR
SQL_VARCHAR

Column length >= 8 N/A

Column length < 8 22001

SQL_TYPE_TIME Data value is a valid time N/A

Data value is not a valid time 22007

SQL_TYPE_TIMESTAMP a Data value is a valid time N/A

Data value is not a valid time 22007

Note: SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns SQL_SUCCESS.

Note: a The date component of TIMESTAMP is set to the system date of the machine at which the application is running.

Converting timestamp C data to SQL data

The timestamp C data type is:
v SQL_C_TIMESTAMP

C to SQL data conversion in CLI

530 Call Level Interface Guide and Reference, Volume 2

Table 197. Converting timestamp C data to SQL data
fSQLType Test SQLSTATE

SQL_CHAR SQL_VARCHAR Column length >= Display size N/A

26 <= Column length < Display size a N/A

Column length < 26 22001

SQL_TYPE_DATE Time fields are zero N/A

Time fields are non-zero 22008

Data value does not contain a valid date b 22007

Time fields are non-zero and the connection attribute
SQL_ATTR_REPORT_TIMESTAMP_TRUNC_AS_WARN is set to 1

01S07 (Fractional
truncation warning)

SQL_TYPE_TIME Fractional seconds fields are zero N/A

Fractional seconds fields are non-zero 22008

Data value does not contain a valid time 22007

Time fields are non-zero and the connection attribute
SQL_ATTR_REPORT_TIMESTAMP_TRUNC_AS_WARN is set to 1

01S07 (Fractional
truncation warning)

SQL_TYPE_TIMESTAMP Data value is a valid timestamp N/A

Data value is not a valid timestamp 22007

Note:

a The fractional seconds of the timestamp are truncated.

b The timestamp_struct must reset the hour, minute, second, and fraction to 0, otherwise SQLSTATE 22008 will be returned.

SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns SQL_SUCCESS.

Converting variable timestamp C data to SQL data

The timestamp C data type is:
v SQL_C_TIMESTAMP_EXT

Table 198. Converting variable timestamp C data to SQL data
fSQLType Test SQLSTATE

SQL_CHAR SQL_VARCHAR Column length >= Display size N/A

26 <= Column length < Display size a N/A

Column length < 26 22001

Fractional seconds fields > 12 22007

SQL_TYPE_DATE Time fields are zero N/A

Time fields are non-zero 22008

Data value does not contain a valid date b 22007

SQL_TYPE_TIME Fractional seconds fields are zero N/A

Fractional seconds fields are non-zero 22008

Data value does not contain a valid time 22007

SQL_TYPE_TIMESTAMP Data value is a valid timestamp N/A

Data value is not a valid timestamp 22007

Precision specified by TIMESTAMP(p) <= fractional seconds fields <= 12 a N/A

Note:

a The fractional seconds of the timestamp are truncated.

b The timestamp_struct must reset the hour, minute, second, and fraction to 0, otherwise SQLSTATE 22008 will be returned.

SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns SQL_SUCCESS.

Converting timestamp(p) with timezone C data to SQL data

The timestamp with timezone C data type is:
v SQL_C_TIMESTAMP_EXT_TZ

Table 199. Converting timestamp with timezone C data to SQL data
fSQLType Test SQLSTATE

SQL_CHAR /SQL_VARCHAR
SQL_WCHAR/SQL_WVARCHAR
SQL_LONGVARCHAR

Column length >= Display size N/A

Column length < 27+p 22001

SQL_TYPE_DATE Time fields are zero N/A

Time fields are non-zero 22008

Data value does not contain a valid date 22007

Time zone fields are non-zero 22008

C to SQL data conversion in CLI

Chapter 7. CLI data type attributes 531

Table 199. Converting timestamp with timezone C data to SQL data (continued)
fSQLType Test SQLSTATE

SQL_TYPE_TIME Fractional seconds fields are zero N/A

Fractional seconds fields are non-zero 22008

Data value does not contain a valid time 22007

Time zone fields are non-zero 22008

SQL_TYPE_TIMESTAMP Data value is a valid timestamp N/A

Data value is not a valid timestamp 22007

Time zone fields are non-zero 22008

SQL_TYPE_TIMESTAMP_WITH_TIMEZONE Data value is a valid timestamp N/A

Data value is a valid timestamp with time zone 22007

C to SQL data conversion examples

Table 200. C to SQL data conversion examples
C data type C data value SQL data type Column length SQL data value SQL STATE

SQL_C_CHAR abcdef\0 SQL_CHAR 6 abcdef N/A

SQL_C_CHAR abcdef\0 SQL_CHAR 5 abcde 22001

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 6 1234.56 N/A

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 5 1234.5 22001

SQL_C_CHAR 1234.56\0 SQL_DECIMAL 3 --- 22003

SQL_C_CHAR 4.46.32 SQL_TYPE_TIME 6 4.46.32 N/A

SQL_C_CHAR 4-46-32 SQL_TYPE_TIME 6

not
applicable

22007

SQL_C_DOUBLE 123.45 SQL_CHAR 22

1.23450000
000000e+02

N/A

SQL_C_FLOAT 1234.56 SQL_FLOAT

not
applicable

1234.56 N/A

SQL_C_FLOAT 1234.56 SQL_INTEGER

not
applicable

1234 22001

SQL_C_
TIMESTAMP

1992-12-31
23:45:55.
123456

SQL_TYPE_DATE 6 1992-12-31 01004

SQL_C_
TIMESTAMP_EXT

2009-06-06
23:45:55.
123456789876

SQL_TYPE_DATE 6 2009-06-06 01004

Note: SQLSTATE 00000 is not returned by SQLGetDiagRec(), rather it is indicated when the function returns SQL_SUCCESS.

Data type attributes

Data type precision (CLI) table

The precision of a numeric column or parameter refers to the maximum number of
digits used by the data type of the column or parameter. The precision of a
non-numeric column or parameter generally refers to the maximum or the defined
number of characters of the column or parameter. The following table defines the
precision for each SQL data type.

Table 201. Precision

fSqlType Precision

SQL_CHAR
SQL_VARCHAR
SQL_CLOB

The defined length of the column or parameter. For
example, the precision of a column defined as CHAR(10) is
10.

SQL_LONGVARCHAR The maximum length of the column or parameter. a

C to SQL data conversion in CLI

532 Call Level Interface Guide and Reference, Volume 2

Table 201. Precision (continued)

fSqlType Precision

SQL_DECIMAL
SQL_DECFLOAT
SQL_NUMERIC

The defined maximum number of digits. For example, the
precision of a column defined as NUMERIC(10,3) is 10 and
the precision of a column defined as DECFLOAT(34) is 34.

SQL_SMALLINT b 5

SQL_BIGINT 19

SQL_INTEGER b 10

SQL_FLOAT b 15

SQL_REAL b 7

SQL_DOUBLE b 15

SQL_BINARY
SQL_VARBINARY
SQL_BLOB

The defined length of the column or parameter. For
example, the precision of a column defined as CHAR(10)
FOR BIT DATA, is 10.

SQL_LONGVARBINARY
The maximum length of the column or parameter.

SQL_TYPE_DATE b 10 (the number of characters in the yyyy-mm-dd format).

SQL_TYPE_TIME b 8 (the number of characters in the hh:mm:ss format).

SQL_TYPE_TIMESTAMP The number of characters in the "yyyy-mm-dd
hh:mm:ss[.ffffffffffff]" format used by the TIMESTAMP data
type. For example, if a timestamp does not use seconds or
fractional seconds, the precision is 16 (the number of
characters in the "yyyy-mm-dd hh:mm" format). If a
timestamp uses thousandths of a second, the precision is 23
(the number of characters in the "yyyy-mm-dd hh:mm:ss.fff"
format).

SQL_TYPE_TIMESTAMP_
WITH_TIMEZONE

The number of characters in the "yyyy-mm-dd
hh:mm:ss[.ffffffffffff]" format used by the
TIMESTAMP_WITH_TIMEZONE data type. The valid range
for the time zone is -12:59~ +14:00. If the timezone_hour is
negative, the timezone_minute must be negative or zero. If
the timezone_hour is positive, the timezone_minute must be
positive or zero. If the timezone_hour is zero, the
timezone_minute can have any value in the range -59
through +59.

SQL_GRAPHIC
SQL_VARGRAPHIC
SQL_DBCLOB

The defined length of the column or parameter. For
example, the precision of a column defined as
GRAPHIC(10) is 10.

SQL_LONGVARGRAPHIC The maximum length of the column or parameter.

SQL_WCHAR
SQL_WVARCHAR
SQL_WLONGVARCHAR

The defined length of the column or parameter. For
example, the precision of a column defined as WCHAR(10)
is 10.

SQL_XML 0, unless the XML value is an argument to external routines.
For external routines, the precision is the defined length, n,
of an XML AS CLOB(n) argument.

Data type precision (CLI) table

Chapter 7. CLI data type attributes 533

Table 201. Precision (continued)

fSqlType Precision

Note:
a When defining the precision of a parameter of this data type with

SQLBindParameter() or SQLSetParam(), cbParamDef should be set to the total length
of the data, not the precision as defined in this table.

b The cbColDef argument of SQLBindParameter() is ignored for this data type.

Data type scale (CLI) table

The scale of a numeric column or parameter refers to the maximum number of
digits to the right of the decimal point. Note that, for approximate floating point
number columns or parameters, the scale is undefined, since the number of digits
to the right of the decimal place is not fixed. The following table defines the scale
for each SQL data type.

Table 202. Scale

fSqlType Scale

SQL_CHAR
SQL_VARCHAR
SQL_LONGVARCHAR
SQL_CLOB

Not applicable.

SQL_DECIMAL
SQL_NUMERIC

The defined number of digits to the right of the decimal
place. For example, the scale of a column defined as
NUMERIC(10, 3) is 3.

SQL_SMALLINT
SQL_INTEGER
SQL_BIGINT

0

SQL_REAL
SQL_FLOAT
SQL_DECFLOAT
SQL_DOUBLE

Not applicable.

SQL_BINARY
SQL_VARBINARY
SQL_LONGVARBINARY
SQL_BLOB

Not applicable.

SQL_TYPE_DATE
SQL_TYPE_TIME

Not applicable.

SQL_TYPE_TIMESTAMP
The number of digits to the right of the decimal point in
the "yyyy-mm-dd hh:mm:ss[.ffffffffffff]” format. For
example, if the TIMESTAMP data type uses the
"yyyy-mm-dd hh:mm:ss.fff” format, the scale is 3.

Data type precision (CLI) table

534 Call Level Interface Guide and Reference, Volume 2

Table 202. Scale (continued)

fSqlType Scale

SQL_GRAPHIC
SQL_VARGRAPHIC
SQL_LONGVARGRAPHIC
SQL_DBCLOB

Not applicable.

SQL_WCHAR
SQL_WVARCHAR
SQL_WLONGVARCHAR

Not applicable.

SQL_XML Not applicable.

Data type length (CLI) table

The length of a column is the maximum number of bytes returned to the
application when data is transferred to its default C data type. For character data,
the length does not include the null termination byte. Note that the length of a
column might be different than the number of bytes required to store the data on
the data source.

The following table defines the length for each SQL data type.

Table 203. Length

fSqlType Length

SQL_CHAR
SQL_VARCHAR
SQL_CLOB

The defined length of the column. For example, the length
of a column defined as CHAR(10) is 10.

SQL_LONGVARCHAR The maximum length of the column.

SQL_DECIMAL
SQL_NUMERIC

The maximum number of digits plus two. Since these data
types are returned as character strings, characters are
needed for the digits, a sign, and a decimal point. For
example, the length of a column defined as
NUMERIC(10,3) is 12.

SQL_DECFLOAT If the column is defined as DECFLOAT(16) then the length
is 8. If the column is defined as DECFLOAT(34) then the
length is 16.

SQL_SMALLINT
2 (two bytes).

SQL_INTEGER
4 (four bytes).

SQL_BIGINT
8 (eight bytes).

SQL_REAL 4 (four bytes).

Data type scale (CLI) table

Chapter 7. CLI data type attributes 535

Table 203. Length (continued)

fSqlType Length

SQL_FLOAT 8 (eight bytes).

SQL_DOUBLE 8 (eight bytes).

SQL_BINARY
SQL_VARBINARY
SQL_BLOB

The defined length of the column. For example, the length
of a column defined as CHAR(10) FOR BIT DATA is 10.

SQL_LONGVARBINARY
The maximum length of the column.

SQL_TYPE_DATE
SQL_TYPE_TIME

6 (the size of the DATE_STRUCT or TIME_STRUCT
structure).

SQL_TYPE_TIMESTAMP
16 (the size of the TIMESTAMP_STRUCT structure).

SQL_GRAPHIC
SQL_VARGRAPHIC
SQL_DBCLOB

The defined length of the column times 2. For example, the
length of a column defined as GRAPHIC(10) is 20.

SQL_LONGVARGRAPHIC
The maximum length of the column times 2.

SQL_WCHAR
SQL_WVARCHAR
SQL_WLONGVARCHAR

The defined length of the column times 2. For example, the
length of a column defined as WCHAR(10) is 20.

SQL_XML
0 (stored XML documents are limited to 2GB in size
however)

Data type display (CLI) table

The display size of a column is the maximum number of bytes needed to display
data in character form. The following table defines the display size for each SQL
data type.

Table 204. Display size

fSqlType Display size

SQL_CHAR
SQL_VARCHAR
SQL_CLOB

The defined length of the column. For example, the display
size of a column defined as CHAR(10) is 10.

SQL_LONGVARCHAR
The maximum length of the column.

SQL_DECIMAL
SQL_NUMERIC

The precision of the column plus two (a sign, precision
digits, and a decimal point). For example, the display size
of a column defined as NUMERIC(10,3) is 12.

Data type length (CLI) table

536 Call Level Interface Guide and Reference, Volume 2

Table 204. Display size (continued)

fSqlType Display size

SQL_DECFLOAT If the column is defined as DECFLOAT(16) then the display
length is 24. If the column is defined as DECFLOAT(34)
then the display length is 42.

SQL_SMALLINT 6 (a sign and 5 digits).

SQL_INTEGER 11 (a sign and 10 digits).

SQL_BIGINT 20 (a sign and 19 digits).

SQL_REAL
13 (a sign, 7 digits, a decimal point, the letter E, a sign, and
2 digits).

SQL_FLOAT
SQL_DOUBLE

22 (a sign, 15 digits, a decimal point, the letter E, a sign,
and 3 digits).

SQL_BINARY
SQL_VARBINARY
SQL_BLOB

The defined maximum length of the column times 2 (each
binary byte is represented by a 2 digit hexadecimal
number). For example, the display size of a column defined
as CHAR(10) FOR BIT DATA is 20.

SQL_LONGVARBINARY
The maximum length of the column times 2.

SQL_TYPE_DATE
10 (a date in the format yyyy-mm-dd).

SQL_TYPE_TIME
8 (a time in the format hh:mm:ss).

SQL_TYPE_TIMESTAMP
19 (if the scale of the timestamp is 0) or 20 plus the scale of
the timestamp (if the scale is greater than 0). This is the
number of characters in the "yyyy-mm-dd
hh:mm:ss[.ffffffffffff]" format. For example, the display size
of a column storing thousandths of a second is 23 (the
number of characters in "yyyy-mm-dd hh:mm:ss.fff").

SQL_GRAPHIC
SQL_VARGRAPHIC
SQL_DBCLOB

Twice the defined length of the column or parameter. For
example, the display size of a column defined as
GRAPHIC(10) is 20.

SQL_LONGVARGRAPHIC The maximum length of the column or parameter.

SQL_XML 0

Data type display (CLI) table

Chapter 7. CLI data type attributes 537

Data type display (CLI) table

538 Call Level Interface Guide and Reference, Volume 2

Appendix A. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:
v DB2 Information Center

– Topics (Task, concept and reference topics)
– Help for DB2 tools
– Sample programs
– Tutorials

v DB2 books
– PDF files (downloadable)
– PDF files (from the DB2 PDF DVD)
– printed books

v Command line help
– Command help
– Message help

Note: The DB2 Information Center topics are updated more frequently than either
the PDF or the hardcopy books. To get the most current information, install the
documentation updates as they become available, or refer to the DB2 Information
Center at ibm.com.

You can access additional DB2 technical information such as technotes, white
papers, and IBM Redbooks® publications online at ibm.com. Access the DB2
Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for
how to improve the DB2 documentation, send an email to db2docs@ca.ibm.com.
The DB2 documentation team reads all of your feedback, but cannot respond to
you directly. Provide specific examples wherever possible so that we can better
understand your concerns. If you are providing feedback on a specific topic or
help file, include the topic title and URL.

Do not use this e-mail address to contact DB2 Customer Support. If you have a
DB2 technical issue that the documentation does not resolve, contact your local
IBM service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications
Center at www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss.
English Version 9.7 manuals in PDF format can be downloaded from
www.ibm.com/support/docview.wss?uid=swg27015148 and translated DB2
manuals in PDF format can be downloaded from www.ibm.com/support/
docview.wss?uid=swg27015149.

© Copyright IBM Corp. 1993, 2012 539

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27015148
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27015149
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27015149

Although the tables identify books available in print, the books might not be
available in your country or region.

The form number increases each time a manual is updated. Ensure that you are
reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF
or the hard-copy books.

Table 205. DB2 technical information

Name Form Number Available in print Last updated

Administrative API
Reference

SC27-2435-03 Yes July, 2012

Administrative Routines
and Views

SC27-2436-03 No July, 2012

Call Level Interface
Guide and Reference,
Volume 1

SC27-2437-03 Yes July, 2012

Call Level Interface
Guide and Reference,
Volume 2

SC27-2438-03 Yes July, 2012

Command Reference SC27-2439-03 Yes July, 2012

Data Movement Utilities
Guide and Reference

SC27-2440-01 Yes July, 2012

Data Recovery and High
Availability Guide and
Reference

SC27-2441-03 Yes July, 2012

Database Administration
Concepts and
Configuration Reference

SC27-2442-03 Yes July, 2012

Database Monitoring
Guide and Reference

SC27-2458-03 Yes July, 2012

Database Security Guide SC27-2443-02 Yes July, 2012

DB2 Text Search Guide SC27-2459-03 Yes July, 2012

Developing ADO.NET
and OLE DB
Applications

SC27-2444-02 Yes July, 2012

Developing Embedded
SQL Applications

SC27-2445-02 Yes July, 2012

Developing Java
Applications

SC27-2446-03 Yes July, 2012

Developing Perl, PHP,
Python, and Ruby on
Rails Applications

SC27-2447-02 No July, 2012

Developing User-defined
Routines (SQL and
External)

SC27-2448-02 Yes July, 2012

Getting Started with
Database Application
Development

GI11-9410-02 Yes July, 2012

DB2 technical library in hardcopy or PDF format

540 Call Level Interface Guide and Reference, Volume 2

Table 205. DB2 technical information (continued)

Name Form Number Available in print Last updated

Getting Started with
DB2 Installation and
Administration on Linux
and Windows

GI11-9411-00 Yes August, 2009

Globalization Guide SC27-2449-00 Yes August, 2009

Installing DB2 Servers GC27-2455-03 Yes July, 2012

Installing IBM Data
Server Clients

GC27-2454-02 No July, 2012

Message Reference
Volume 1

SC27-2450-01 No August, 2009

Message Reference
Volume 2

SC27-2451-01 No August, 2009

Net Search Extender
Administration and
User's Guide

SC27-2469-02 No September, 2010

Partitioning and
Clustering Guide

SC27-2453-02 Yes July, 2012

pureXML Guide SC27-2465-02 Yes July, 2012

Query Patroller
Administration and
User's Guide

SC27-2467-00 No August, 2009

Spatial Extender and
Geodetic Data
Management Feature
User's Guide and
Reference

SC27-2468-02 No July, 2012

SQL Procedural
Languages: Application
Enablement and Support

SC27-2470-03 Yes July, 2012

SQL Reference, Volume 1 SC27-2456-03 Yes July, 2012

SQL Reference, Volume 2 SC27-2457-03 Yes July, 2012

Troubleshooting and
Tuning Database
Performance

SC27-2461-03 Yes July, 2012

Upgrading to DB2
Version 9.7

SC27-2452-03 Yes July, 2012

Visual Explain Tutorial SC27-2462-00 No August, 2009

What's New for DB2
Version 9.7

SC27-2463-03 Yes July, 2012

Workload Manager
Guide and Reference

SC27-2464-03 Yes July, 2012

XQuery Reference SC27-2466-01 No November, 2009

DB2 technical library in hardcopy or PDF format

Appendix A. Overview of the DB2 technical information 541

Table 206. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

Installing and
Configuring DB2
Connect Personal Edition

SC27-2432-03 Yes July, 2012

Installing and
Configuring DB2
Connect Servers

SC27-2433-03 Yes July, 2012

DB2 Connect User's
Guide

SC27-2434-02 Yes July, 2012

Table 207. Information Integration technical information

Name Form Number Available in print Last updated

Information Integration:
Administration Guide for
Federated Systems

SC19-1020-02 Yes August, 2009

Information Integration:
ASNCLP Program
Reference for Replication
and Event Publishing

SC19-1018-04 Yes August, 2009

Information Integration:
Configuration Guide for
Federated Data Sources

SC19-1034-02 No August, 2009

Information Integration:
SQL Replication Guide
and Reference

SC19-1030-02 Yes August, 2009

Information Integration:
Introduction to
Replication and Event
Publishing

GC19-1028-02 Yes August, 2009

Ordering printed DB2 books

About this task

If you require printed DB2 books, you can buy them online in many but not all
countries or regions. You can always order printed DB2 books from your local IBM
representative. Keep in mind that some softcopy books on the DB2 PDF
Documentation DVD are unavailable in print. For example, neither volume of the
DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF
Documentation DVD can be ordered for a fee from IBM. Depending on where you
are placing your order from, you may be able to order books online, from the IBM
Publications Center. If online ordering is not available in your country or region,
you can always order printed DB2 books from your local IBM representative. Note
that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the
DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r7.

DB2 technical library in hardcopy or PDF format

542 Call Level Interface Guide and Reference, Volume 2

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7

To order printed DB2 books:

Procedure
v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access
publication ordering information and then follow the ordering instructions for
your location.

v To order printed DB2 books from your local IBM representative:
1. Locate the contact information for your local representative from one of the

following websites:
– The IBM directory of world wide contacts at www.ibm.com/planetwide
– The IBM Publications website at http://www.ibm.com/shop/

publications/order. You will need to select your country, region, or
language to the access appropriate publications home page for your
location. From this page, follow the "About this site" link.

2. When you call, specify that you want to order a DB2 publication.
3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical
library in hardcopy or PDF format” on page 539.

Displaying SQL state help from the command line processor
DB2 products return an SQLSTATE value for conditions that can be the result of an
SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state
class codes.

Procedure

To start SQL state help, open the command line processor and enter:
? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the
first two digits of the SQL state.
For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help
for the 08 class code.

Accessing different versions of the DB2 Information Center
About this task

For DB2 Version 9.8 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r8/.

For DB2 Version 9.7 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r7/.

For DB2 Version 9.5 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9r5.

For DB2 Version 9.1 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/.

Ordering printed DB2 books

Appendix A. Overview of the DB2 technical information 543

http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r8/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the DB2 Information Center URL at:
http://publib.boulder.ibm.com/infocenter/db2luw/v8/.

Displaying topics in your preferred language in the DB2 Information
Center

About this task

The DB2 Information Center attempts to display topics in the language specified in
your browser preferences. If a topic has not been translated into your preferred
language, the DB2 Information Center displays the topic in English.

Procedure
v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...
button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of
languages.
– To add a new language to the list, click the Add... button.

Note: Adding a language does not guarantee that the computer has the
fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the
Move Up button until the language is first in the list of languages.

3. Refresh the page to display the DB2 Information Center in your preferred
language.

v To display topics in your preferred language in a Firefox or Mozilla browser:
1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences
window.

2. Ensure your preferred language is specified as the first entry in the list of
languages.
– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.
– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Refresh the page to display the DB2 Information Center in your preferred

language.

Results

On some browser and operating system combinations, you must also change the
regional settings of your operating system to the locale and language of your
choice.

Updating the DB2 Information Center installed on your computer or
intranet server

A locally installed DB2 Information Center must be updated periodically.

Accessing different versions of the DB2 Information Center

544 Call Level Interface Guide and Reference, Volume 2

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Before you begin

A DB2 Version 9.7 Information Center must already be installed. For details, see
the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in
Installing DB2 Servers. All prerequisites and restrictions that applied to installing
the Information Center also apply to updating the Information Center.

About this task

An existing DB2 Information Center can be updated automatically or manually:
v Automatic updates - updates existing Information Center features and

languages. An additional benefit of automatic updates is that the Information
Center is unavailable for a minimal period of time during the update. In
addition, automatic updates can be set to run as part of other batch jobs that run
periodically.

v Manual updates - should be used when you want to add features or languages
during the update process. For example, a local Information Center was
originally installed with both English and French languages, and now you want
to also install the German language; a manual update will install German, as
well as, update the existing Information Center features and languages.
However, a manual update requires you to manually stop, update, and restart
the Information Center. The Information Center is unavailable during the entire
update process.

This topic details the process for automatic updates. For manual update
instructions, see the “Manually updating the DB2 Information Center installed on
your computer or intranet server” topic.

Procedure

To automatically update the DB2 Information Center installed on your computer or
intranet server:
1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,
the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the update-ic script:

update-ic

2. On Windows operating systems,
a. Open a command window.
b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2
Information Center\Version 9.7 directory, where <Program Files>
represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the update-ic.bat file:

update-ic.bat

Results

The DB2 Information Center restarts automatically. If updates were available, the
Information Center displays the new and updated topics. If Information Center

Updating the DB2 Information Center installed on your computer or intranet server

Appendix A. Overview of the DB2 technical information 545

updates were not available, a message is added to the log. The log file is located in
doc\eclipse\configuration directory. The log file name is a randomly generated
number. For example, 1239053440785.log.

Manually updating the DB2 Information Center installed on your
computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install
documentation updates from IBM.

About this task

Updating your locally-installed DB2 Information Center manually requires that you:
1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone
mode prevents other users on your network from accessing the Information
Center, and allows you to apply updates. The Workstation version of the DB2
Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates
that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center
updates on a machine that is not connected to the internet, mirror the update
site to a local file system using a machine that is connected to the internet and
has the DB2 Information Center installed. If many users on your network will be
installing the documentation updates, you can reduce the time required for
individuals to perform the updates by also mirroring the update site locally
and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.
However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information Center
on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later
in this section must be run as an administrator. To open a command prompt or
graphical tool with full administrator privileges, right-click the shortcut and then
select Run as administrator.

Procedure

To update the DB2 Information Center installed on your computer or intranet server:
1. Stop the DB2 Information Center.

v On Windows, click Start > Control Panel > Administrative Tools > Services.
Then right-click DB2 Information Center service and select Stop.

v On Linux, enter the following command:
/etc/init.d/db2icdv97 stop

2. Start the Information Center in stand-alone mode.
v On Windows:

a. Open a command window.
b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

Updating the DB2 Information Center installed on your computer or intranet server

546 Call Level Interface Guide and Reference, Volume 2

Program_Files\IBM\DB2 Information Center\Version 9.7 directory,
where Program_Files represents the location of the Program Files
directory.

c. Navigate from the installation directory to the doc\bin directory.
d. Run the help_start.bat file:

help_start.bat

v On Linux:
a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7
directory.

b. Navigate from the installation directory to the doc/bin directory.
c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information
Center.

3. Click the Update button (). (JavaScript must be enabled in your browser.)
On the right panel of the Information Center, click Find Updates. A list of
updates for existing documentation displays.

4. To initiate the installation process, check the selections you want to install, then
click Install Updates.

5. After the installation process has completed, click Finish.
6. Stop the stand-alone Information Center:

v On Windows, navigate to the installation directory's doc\bin directory, and
run the help_end.bat file:
help_end.bat

Note: The help_end batch file contains the commands required to safely stop
the processes that were started with the help_start batch file. Do not use
Ctrl-C or any other method to stop help_start.bat.

v On Linux, navigate to the installation directory's doc/bin directory, and run
the help_end script:
help_end

Note: The help_end script contains the commands required to safely stop the
processes that were started with the help_start script. Do not use any other
method to stop the help_start script.

7. Restart the DB2 Information Center.
v On Windows, click Start > Control Panel > Administrative Tools > Services.

Then right-click DB2 Information Center service and select Start.
v On Linux, enter the following command:

/etc/init.d/db2icdv97 start

Results

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials
The DB2 tutorials help you learn about various aspects of DB2 products. Lessons
provide step-by-step instructions.

Manually updating the DB2 Information Center installed on your computer or intranet
server

Appendix A. Overview of the DB2 technical information 547

Before you begin

You can view the XHTML version of the tutorial from the Information Center at
http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any
prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML®” in pureXML Guide
Set up a DB2 database to store XML data and to perform basic operations
with the native XML data store.

“Visual Explain” in Visual Explain Tutorial
Analyze, optimize, and tune SQL statements for better performance using
Visual Explain.

DB2 troubleshooting information
A wide variety of troubleshooting and problem determination information is
available to assist you with using DB2 database products.

DB2 documentation
Troubleshooting information can be found in the Troubleshooting and Tuning
Database Performance or the Database fundamentals section of the DB2
Information Center. The troubleshooting information contains topics that can
help you isolate and identify problems with DB2 diagnostic tools and
utilities. There are also solutions to some of the most common problems
and advice on how to solve problems you might encounter with your DB2
database products.

IBM Support Portal
See the IBM Support Portal if you are experiencing problems and want
help finding possible causes and solutions. The Technical Support site has
links to the latest DB2 publications, TechNotes, Authorized Program
Analysis Reports (APARs or bug fixes), fix packs, and other resources. You
can search through this knowledge base to find possible solutions to your
problems.

Access the IBM Support Portal at http://www.ibm.com/support/entry/
portal/Overview/Software/Information_Management/
DB2_for_Linux,_UNIX_and_Windows.

Terms and Conditions
Permissions for the use of these publications is granted subject to the following
terms and conditions.

Personal use: You may reproduce these Publications for your personal, non
commercial use provided that all proprietary notices are preserved. You may not
distribute, display or make derivative work of these Publications, or any portion
thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications
solely within your enterprise provided that all proprietary notices are preserved.

DB2 tutorials

548 Call Level Interface Guide and Reference, Volume 2

http://publib.boulder.ibm.com/infocenter/db2luw/v9
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows
http://www.ibm.com/support/entry/portal/Overview/Software/Information_Management/DB2_for_Linux,_UNIX_and_Windows

You may not make derivative works of these Publications, or reproduce, distribute
or display these Publications or any portion thereof outside your enterprise,
without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the Publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the Publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Terms and Conditions

Appendix A. Overview of the DB2 technical information 549

550 Call Level Interface Guide and Reference, Volume 2

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.
Information about non-IBM products is based on information available at the time
of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information about the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country/region where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions; therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements,
changes, or both in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 1993, 2012 551

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information that has been exchanged, should contact:

IBM Canada Limited
U59/3600
3600 Steeles Avenue East
Markham, Ontario L3R 9Z7
CANADA

Such information may be available, subject to appropriate terms and conditions,
including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems, and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements, or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility, or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious, and any similarity to the names and addresses used by an actual
business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating

Notices

552 Call Level Interface Guide and Reference, Volume 2

platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies
v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.
v Java and all Java-based trademarks and logos are trademarks or registered

trademarks of Oracle, its affiliates, or both.
v UNIX is a registered trademark of The Open Group in the United States and

other countries.
v Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,

Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

v Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of
others.

Notices

Appendix B. Notices 553

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

554 Call Level Interface Guide and Reference, Volume 2

Index

A
about this book

Call Level Interface Guide and Reference, Volume 1 ix
AllowGetDataColumnReaccess CLI/ODBC configuration

keyword 325
AllowInterleavedGetData CLI/ODBC configuration

keyword 326
AltHostName CLI/ODBC keyword 326
AltPort CLI/ODBC keyword 327
AppendAPIName CLI/ODBC configuration keyword 327
AppendForFetchOnly CLI/ODBC configuration keyword 328
AppendRowColToErrorMessage CLI/ODBC configuration

keyword 328
AppUsesLobLocator CLI/ODBC configuration keyword 327
ArrayInputChain CLI/ODBC configuration keyword 329
AsyncEnable CLI/ODBC configuration keyword 330
Attach CLI/ODBC configuration keyword 330
attributes

connection 427
environment 427
querying 427
setting 427
statement

CLI 427
Authentication CLI/ODBC keyword 331
AutoCommit CLI/ODBC configuration keyword 332

B
BIDI CLI/ODBC keyword 333
BIGINT data type

conversion to C 520
display size 536
length 535
precision 532
scale 534

BINARY data type
conversion to C 520
display size 536
length 535
precision 532
scale 534

bind packages CLI function 76
binding

application variables 106
array of columns 106
column bindings 10
file references

LOB columns 16
LOB parameters 19

parameter markers
function 22

BitData CLI/ODBC configuration keyword 333
BLOB data type

conversion to C 520
display size 536
length 535
precision 532
scale 534

BlockForNRows CLI/ODBC configuration keyword 333

BlockLobs CLI/ODBC configuration keyword 334
books

ordering 542
bulk operations CLI function 41

C
C language

data types 512
call level interface (CLI)

compound SQL (CLI) statements
return codes 315

configuration
keywords 317

diagnostics overview 313
functions

summary 1
supported 178
Unicode 5

handles
allocating 7

initializing 427
keywords 317
options 427
Unicode

functions 5
vendor escape clauses 229

CHAR data type
conversion to C 520
display size 536
length 535
precision 532
scale 534

CheckForFork CLI/ODBC configuration keyword 335
CLI function details

SQLColumns 63
SQLProcedures 252

CLI functions
return codeSQLSTATE 313

CLI/ODBC configuration keywords
SchemaList 396

CLI/ODBC keywords
AllowGetDataColumnReaccess 325
AllowInterleavedGetData 326
AltHostName 326
AltPort 327
AppendAPIName 327
AppendForFetchOnly 328
AppendRowColToErrorMessage 328
AppUsesLobLocator 327
ArrayInputChain 329
AsyncEnable 330
Attach 330
Authentication 331
AutoCommit 332
BIDI 333
BitData 333
BlockForNRows 333
BlockLobs 334
CheckForFork 335
ClientAcctStr 336

© Copyright IBM Corp. 1993, 2012 555

CLI/ODBC keywords (continued)
ClientApplName 336
ClientBuffersUnboundLOBS 337
ClientEncAlg 337
ClientUserID 338
ClientWrkStnName 339
CLIPkg 335
ConcurrentAccessResolution 340
ConnectNode 341
ConnectTimeout 342
ConnectType 343
CurrentFunctionPath 343
CurrentImplicitXMLParseOption 344
CurrentMaintainedTableTypesForOpt 344
CURRENTOPTIMIZATIONPROFILE 345
CurrentPackagePath 345
CurrentPackageSet 346
CurrentRefreshAge 346
CurrentSchema 347
CurrentSQLID 347
CursorHold 347
CursorTypes 348
Database 352
DateTimeStringFormat 352
DB2Degree 349
DB2Explain 349
DB2NETNamedParam 350
DB2Optimization 350
DBAlias 351
DBName 351
DecimalFloatRoundingMode 353
DeferredPrepare 354
DescribeCall 355
DescribeInputOnPrepare 355
DescribeOutputLevel 356
DescribeParam 357
DiagLevel 358
DiagPath 358
DisableKeysetCursor 358
DisableMultiThread 359
DisableUnicode 359
DSN 352
EnableNamedParameterSupport 359
FET_BUF_SIZE 360
FileDSN 360
FloatPrecRadix 361
GetDataLobNoTotal 361
GranteeList 362
GrantorList 362
Graphic 363
Hostname 363
IgnoreWarnings 364
IgnoreWarnList 364
initialization file 322
Instance 364
Interrupt 365
KeepDynamic 366
KRBPlugin 365
listing by category 317
LoadXAInterceptor 368
LOBCacheSize 366
LOBFileThreshold 367
LOBMaxColumnSize 367
LockTimeout 368
LongDataCompat 368
MapBigintCDefault 369
MapCharToWChar 369

CLI/ODBC keywords (continued)
MapDateCDefault 370
MapDateDescribe 370
MapDecimalFloatDescribe 371
MapGraphicDescribe 372
MapTimeCDefault 372
MapTimeDescribe 373
MapTimestampCDefault 374
MapTimestampDescribe 374
MapXMLCDefault 375
MapXMLDescribe 375
MaxLOBBlockSize CLI/ODBC keyword 376
Mode 376
NotifyLevel 377
OleDbReportIsLongForLongTypes 377
OleDbReturnCharAsWChar 377
OleDbSQLColumnsSortByOrdinal 378
OnlyUseBigPackages 379
OptimizeForNRows 379
Patch1 380
Patch2 383
Port 386
ProgramID 387
ProgramName 387
PromoteLONGVARtoLOB 388
Protocol 388
PWD 379
PWDPlugin 380
QueryTimeoutInterval 389
ReadCommonSectionOnNullConnect 390
ReceiveTimeout 390
Reopt 390
ReportPublicPrivileges 391
ReportRetryErrorsAsWarnings 391
RetCatalogAsCurrServer 392
RetOleDbConnStr 392
RetryOnError 393
ReturnAliases 394
ReturnSynonymSchema 394
SaveFile 396
security 397
ServerMsgMask 398
ServerMsgTextSP 424
ServiceName 398
SkipTrace 399
SQLCODEMAP 399
SQLOverrideFileName 395
SSLClientKeystash 400
SSLClientKeystoredb 400
SSLClientKeystoreDBPassword 401
SSLClientLabel 399
StaticCapFile 401
StaticLogFile 402
StaticMode 402
StaticPackage 402
StmtConcentrator 403
StreamGetData 403
StreamPutData 404
SysSchema 404
TableType 405
TargetPrincipal 406
TempDir 406
TimestampTruncErrToWarning 407
Trace 407
TraceAPIList 408
TraceAPIList! 410
TraceComm 412

556 Call Level Interface Guide and Reference, Volume 2

CLI/ODBC keywords (continued)
TraceErrImmediate 413
TraceFileName 413
TraceFlush 414
TraceFlushOnError 415
TraceLocks 415
TracePathName 417
TracePIDList 416
TracePIDTID 417
TraceRefreshInterval 418
TraceStmtOnly 418
TraceTime 419
TraceTimestamp 419
Trusted_Connection 420
TxnIsolation 421
UID 422
Underscore 422
UseOldStpCall 423
UseServerMsgSP 423
WarningList 424
XMLDeclaration 425

ClientAcctStr CLI/ODBC configuration keyword 336
ClientApplName CLI/ODBC configuration keyword 336
ClientBuffersUnboundLOBS CLI/ODBC configuration

keyword 337
ClientEncAlgr CLI/ODBC configuration keyword 337
ClientUserID CLI/ODBC configuration keyword 338
ClientWrkStnName CLI/ODBC configuration keyword 339
CLIPkg CLI/ODBC configuration keyword 335
CLOB data type

conversion to C 520
display size 536
length 535
precision 532
scale 534

closing cursor CLI function 48
columns

attributes 50
CLI column attribute function 50
data retrieval 156
obtaining list 63
obtaining list and privileges 59

ColumnwiseMRI CLI/ODBC configuration keyword 339
ColumnwiseMRI keywords

PWD 339
CommitOnEOF CLI/ODBC configuration keyword 340
CommitOnEOF keywords

PWD 340
compound SQL (CLI) statement

return codes 315
ConcurrentAccessResolution CLI/ODBC configuration

keyword 340
connection handles

allocating 7
freeing 146

connections
attributes

changing 427
determining 36
getting 151
list 436
setting 264

connection strings 427
SQLConnect function 69
SQLDriverConnect function 88
switching in mixed applications 267

ConnectNode CLI/ODBC configuration keyword 341

ConnectTimeout CLI/ODBC configuration keyword
details 342

ConnectType CLI/ODBC configuration keyword 343
conversion

CLI applications
C to SQL data types 527
display sizes of SQL data types 536
lengths of SQL data types 535
precisions of SQL data types 532
scales of SQL data types 534
SQL to C data types 520
summary 517
summary of SQL data types 511

data types in CLI 517
copying descriptors CLI function 71
CurrentFunctionPath CLI/ODBC configuration keyword 343
CurrentImplicitXMLParseOption CLI/ODBC configuration

keyword 344
CurrentMaintainedTableTypesForOpt CLI/ODBC

configuration keyword 344
CURRENTOPTIMIZATIONPROFILE CLI/ODBC configuration

parameter 345
CurrentPackagePath CLI/ODBC configuration keyword 345
CurrentPackageSet CLI/ODBC configuration keyword 346
CurrentRefreshAge CLI/ODBC configuration keyword 346
CurrentSchema CLI/ODBC configuration keyword 347
CurrentSQLID CLI/ODBC configuration keyword 347
CursorHold CLI/ODBC configuration keyword 347
cursors

call level interface (CLI)
closing 48

names
getting 154
setting 269

positioning
rules for SQLFetchScroll 138

CursorTypes CLI/ODBC configuration keyword 348

D
data sources

connecting to
SQLBrowseConnect function 36
SQLConnect function 69
SQLDriverConnect function 88

disconnecting from using CLI function 86
data types

C
CLI applications 511, 512

conversion
CLI 517

SQL
CLI applications 511

supported by database management systems 222
Database CLI/ODBC configuration keyword 352
database systems

retrieving information about 180
databases

creating
SQLCreateDb function 74

retrieving list 77
DATE data type

SQL
conversion to C 520
display size 536
length 535
precision 532

Index 557

DATE data type (continued)
SQL (continued)

scale 534
DateTimeStringFormat CLI/ODBC configuration

keyword 352
DB2 Information Center

languages 544
updating 545, 546
versions 543

db2cli.ini file
attributes 427
details 322

DB2Degree CLI/ODBC configuration keyword 349
DB2Explain CLI/ODBC configuration keyword 349
DB2NETNamedParam CLI/ODBC configuration

keyword 350
DB2NODE environment variable

ConnectNode CLI/ODBC configuration keyword
impact 341

DB2Optimization CLI/ODBC configuration keyword 350
DBAlias CLI/ODBC configuration keyword 351
DBCLOB data type

conversion to C 520
display size 536
length 535
precision 532
scale 534

DBName CLI/ODBC configuration keyword 351
DECIMAL data type

conversion
C/C++ 520

display size 536
length 535
precision 532
scale 534

DecimalFloatRoundingMode CLI/ODBC configuration
keyword 353

DeferredPrepare CLI/ODBC configuration keyword 354
deprecated functionality

CLI functions
SQLAllocConnect 6
SQLAllocEnv 7
SQLAllocStmt 10
SQLColAttributes 58
SQLError 98
SQLExtendedFetch 109
SQLFreeConnect 145
SQLFreeEnv 146
SQLGetConnectOption 154
SQLGetSQLCA 216
SQLGetStmtOption 219
SQLParamOptions 238
SQLSetColAttributes 264
SQLSetConnectOption 269
SQLSetParam 281
SQLSetStmtOption 293
SQLTransact 312

DescribeCall CLI/ODBC configuration keyword 355
DescribeInputOnPrepare CLI/ODBC configuration

keyword 355
DescribeOutputLevel CLI/ODBC configuration keyword 356
DescribeParam CLI/ODBC configuration keyword 357
descriptor handles

allocating 7
freeing 146

descriptors
copying

SQLCopyDesc function 71
FieldIdentifier argument values 489
values

getting from multiple fields 166
getting from single field 162
header fields 489, 500
record fields 489, 500
setting for multiple fields 276
setting for single field 272

details
SQLReloadConfig function 259

DiagIdentifier argument 505
DiagLevel CLI/ODBC keyword 358
diagnostic information

CLI applications 313
diagnostic data structures

getting value from single field 170
getting values from multiple fields 174

DiagPath CLI/ODBC keyword 358
DisableKeysetCursor CLI/ODBC configuration keyword 358
DisableMultiThread CLI/ODBC configuration keyword 359
DisableUnicode CLI/ODBC configuration keyword 359
disconnect from a data source CLI function 86
documentation

overview 539
PDF files 539
printed 539
terms and conditions of use 548

DOUBLE data type
conversion to C 520
display size 536
length 535
precision 532
scale 534

drop a database CLI function 93
DSN CLI/ODBC keyword 352

E
EnableNamedParameterSupport CLI/ODBC configuration

keyword 359
environment attributes

changing 427
obtaining current 177
setting 280

environment handles
allocating 7
freeing 146

F
FET_BUF_SIZE CLI/ODBC configuration keyword 360
fetching

next row CLI function 125
rowset CLI function 132

File DSN
database to connect 352
host name 363
IP address 363
protocol used 388
service name 398

FileDSN CLI/ODBC keyword 360
FLOAT data type

conversion to C 520

558 Call Level Interface Guide and Reference, Volume 2

FLOAT data type (continued)
display size 536
length 535
precision 532
scale 534

FloatPrecRadix CLI/ODBC configuration keyword 361
foreign keys

getting list of columns 141
freeing CLI handles

SQLFreeHandle function 146
SQLFreeStmt function 149

functions
querying whether supported 178

G
GetDataLobNoTotal CLI/ODBC configuration keyword 361
GranteeList CLI/ODBC configuration keyword 362
GrantorList CLI/ODBC configuration keyword 362
Graphic CLI/ODBC configuration keyword 363
GRAPHIC data type

conversion to C 520
display size 536
length 535
precision 532
scale 534

H
handles

freeing
SQLFreeHandle function 146

help
configuring language 544
SQL statements 543

Hostname CLI/ODBC configuration keyword 363

I
IgnoreWarnings CLI/ODBC configuration keyword 364
IgnoreWarnList CLI/ODBC configuration keyword 364
IN DATABASE statement 351
indexes

statistics
obtaining 299

INI file 322
Instance CLI/ODBC keyword 364
INTEGER data type

conversion to C 520
display size 536
length 535
precision 532
scale 534

Interrupt CLI/ODBC keyword 365
INVALID_HANDLE return code 313

K
KeepDynamic CLI/ODBC configuration keyword 366
KRBPlugin CLI/ODBC keyword 365

L
large objects (LOBs)

length 210

large objects (LOBs) (continued)
obtaining portion of value 219

LoadXAInterceptor CLI/ODBC configuration keyword 368
LOBCacheSize CLI/ODBC configuration keyword 366
LOBFileThreshold CLI/ODBC configuration keyword 367
LOBMaxColumnSize CLI/ODBC configuration keyword 367
LockTimeout CLI/ODBC configuration keyword 368
LongDataCompat CLI/ODBC configuration keyword

details 368
LONGVARBINARY data type

conversion to C 520
display size 536
length 535
precision 532
scale 534

LONGVARCHAR data type
conversion to C 520
display size 536
length 535
precision 532
scale 534

LONGVARGRAPHIC data type
conversion to C 520
display size 536
length 535
precision 532
scale 534

M
MapBigintCDefault CLI/ODBC configuration keyword 369
MapCharToWChar CLI/ODBC configuration keyword 369
MapDateCDefault CLI/ODBC configuration keyword 370
MapDateDescribe CLI/ODBC configuration keyword 370
MapDecimalFloatDescribe CLI/ODBC configuration

keyword 371
MapGraphicDescribe CLI/ODBC configuration keyword 372
MapTimeCDefault CLI/ODBC configuration keyword 372
MapTimeDescribe CLI/ODBC configuration keyword 373
MapTimestampCDefault CLI/ODBC configuration

keyword 374
MapTimestampDescribe CLI/ODBC configuration

keyword 374
MapXMLCDefault CLI/ODBC configuration keyword 375
MapXMLDescribe CLI/ODBC configuration keyword 375
MaxLOBBlockSize CLI/ODBC configuration keyword 376
Mode CLI/ODBC configuration keyword 376
more result sets CLI function 227

N
native error codes 314
native SQL text CLI function 229
notices 551
NotifyLevel CLI/ODBC keyword 377
NUMERIC data type

conversion to C 520
display size 536
length 535
precision 532
scale 534

O
OleDbReportIsLongForLongTypes CLI/ODBC configuration

keyword 377

Index 559

OleDbReturnCharAsWChar CLI/ODBC configuration
keyword 377

OleDbSQLColumnsSortByOrdinal CLI/ODBC configuration
keyword 378

OnlyUseBigPackages CLI/ODBC configuration keyword 379
OptimizeForNRows CLI/ODBC configuration keyword 379
ordering DB2 books 542

P
packages

binding
SQLCreatePkg function 76

parallelism
degree 349

parameter markers
obtaining description 84
obtaining number 230

parameters
data value passing 256
getting next 236
input/output

obtaining information 119, 246
Patch1 CLI/ODBC configuration keyword 380
Patch2 CLI/ODBC configuration keyword 383
port CLI/ODBC configuration keyword 386
precision

SQL data types 532
prepared SQL statements

CLI applications
extended 110
syntax 239

primary keys
columns

obtaining using CLI function 243
problem determination

information available 548
tutorials 548

procedures
names

obtaining list 115, 252
ProgramID CLI/ODBC configuration keyword 387
ProgramName CLI/ODBC configuration keyword 387
PromoteLONGVARtoLOB CLI/ODBC configuration

keyword 388
Protocol CLI/ODBC configuration keyword 388
PWD CLI/ODBC configuration keyword 379
PWDPlugin CLI/ODBC keyword 380

Q
QueryTimeoutInterval CLI/ODBC configuration

keyword 389

R
ReadCommonSectionOnNullConnect CLI/ODBC configuration

keyword 390
REAL SQL data type

conversion
to C data type 520

display size 536
length 535
precision 532
scale 534

ReceiveTimeout CLI/ODBC configuration keyword 390

Reopt CLI/ODBC configuration keyword 390
ReportPublicPrivileges CLI/ODBC configuration

keyword 391
ReportRetryErrorsAsWarnings CLI/ODBC configuration

keyword 391
result columns

getting number 234
result sets

associating with handle 232
CLI

SQLMoreResults function 227
RetCatalogAsCurrServer CLI/ODBC configuration

keyword 392
RetOleDbConnStr CLI/ODBC configuration keyword 392
RetryOnError CLI/ODBC configuration keyword 393
return codes

CLI
compound SQL 315
functions 313

ReturnAliases CLI/ODBC configuration keyword 394
ReturnSynonymSchema CLI/ODBC configuration

keyword 394
row identifiers

getting information by using CLI function 294
row sets

CLI functions
fetching 132
setting cursor position 282

rows
count retrieval

SQLRowCount function 262

S
SaveFile CLI/ODBC keyword 396
scale

SQL data types 534
SchemaList CLI/ODBC configuration keyword 396
security configuration parameter for CLI/ODBC

applications 397
ServerMsgMask CLI/ODBC configuration keyword 398
ServerMsgTextSP CLI/ODBC configuration keyword 424
ServiceName CLI/ODBC configuration keyword 398
SET CURRENT SCHEMA statement 347
SkipTrace CLI/ODBC configuration keyword 399
SMALLINT data type

conversion to C/C++ 520
display size 536
length 535
precision 532
scale 534

SQL data types
display size 536
lengths 535
precision 532
scale 534

SQL statements
help

displaying 543
SQL_

ROWSET_SIZE statement attribute 466
SQL_ATTR_

ACCESS_MODE connection attribute 436
ALLOW_INTERLEAVED_GETDATA

AllowInterleavedGetData CLI/ODBC configuration
keyword 326

connection attribute 436

560 Call Level Interface Guide and Reference, Volume 2

SQL_ATTR_ (continued)
ALLOW_INTERLEAVED_GETDATA (continued)

statement attribute 466
ANSI_APP connection attribute 436
APP_PARAM_DESC statement attribute 466
APP_ROW_DESC statement attribute 466
APP_USES_LOB_LOCATOR

AppUsesLOBLocator CLI/ODBC configuration
keyword 327

connection attribute 436
statement attribute 466

APPEND_FOR_FETCH_ONLY
AppendForFetchOnly CLI/ODBC configuration

keyword 328
connection attribute 436

ASYNC_ENABLE
AsyncEnable CLI/ODBC configuration keyword 330
connection attribute 436
statement attribute 466

AUTO_IPD
connection attribute 436

AUTOCOMMIT
AutoCommit CLI/ODBC configuration keyword 332
connection attribute 436

BLOCK_FOR_NROWS statement attribute 466
BLOCK_LOBS

BlockLobs CLI/ODBC configuration keyword 334
statement attribute 466

CALL_RETURN statement attribute 466
CHAINING_BEGIN statement attribute 466
CHAINING_END statement attribute 466
CLIENT_ENCALG 337
CLIENT_LOB_BUFFERING

connection attribute 436
statement attribute 466

CLOSE_BEHAVIOR statement attribute 466
CLOSEOPEN statement attribute 466
COLUMNWISE_MRI

connection attribute 436
statement attribute 466

COMMITONEOF
connection attribute 436

CONCURRENCY statement attribute 466
CONCURRENT_ACCESS_RESOLUTION

ConcurrentAccessResolution CLI/ODBC configuration
keyword 340

connection attribute 436
CONN_CONTEXT connection attribute 436
CONNECT_NODE

connection attribute 436
ConnectNode CLI/ODBC configuration keyword 341

CONNECTION_DEAD connection attribute 436
CONNECTION_POOLING environment attribute 429
CONNECTION_TIMEOUT connection attribute 436
CONNECTTYPE

connection attribute 436
ConnectType CLI/ODBC configuration keyword 343
environment attribute 429

CP_MATCH environment attribute 429
CURRENT_CATALOG connection attribute 436
CURRENT_IMPLICIT_XMLPARSE_OPTION connection

attribute 436
CURRENT_PACKAGE_PATH

connection attribute 436
CurrentPackagePath CLI/ODBC configuration

keyword 345

SQL_ATTR_ (continued)
CURRENT_PACKAGE_SET

connection attribute 436
CurrentPackageSet CLI/ODBC configuration

keyword 346
CURRENT_SCHEMA connection attribute 436
CURSOR_HOLD

CursorHold CLI/ODBC configuration keyword 347
statement attribute 466

CURSOR_SCROLLABLE statement attribute 466
CURSOR_SENSITIVITY statement attribute 466
CURSOR_TYPE statement attribute 466
DB2_APPLICATION_HANDLE connection attribute 436
DB2_APPLICATION_ID connection attribute 436
DB2_NOBINDOUT statement attribute 466
DB2_SQLERRP connection attribute 436
DB2ESTIMATE connection attribute 436
DB2EXPLAIN

connection attribute 436
DB2Explain CLI/ODBC configuration keyword 349

DECFLOAT_ROUNDING_MODE
connection attribute 436
DecimalFloatRoundingMode CLI/ODBC configuration

keyword 353
DEFERRED_PREPARE

DeferredPrepare CLI/ODBC configuration
keyword 354

statement attribute 466
DESCRIBE_CALL

connection attribute 436
DescribeCall CLI/ODBC configuration keyword 355

DESCRIBE_OUTPUT_LEVEL 356
connection attribute 436

DIAGLEVEL environment attribute 429
DIAGPATH environment attribute 429
EARLYCLOSE

connection attribute 436
EARLYCLOSE statement attribute 466
ENABLE_AUTO_IPD statement attribute 466
ENLIST_IN_DTC connection attribute 436
FET_BUF_SIZE

FET_BUF_SIZE CLI/ODBC configuration keyword 360
FETCH_BOOKMARK_PTR statement attribute 466
FREE_LOCATORS_ON_FETCH connection attribute 436
GET_LATEST_MEMBER

connection attribute 436
IMP_PARAM_DESC statement attribute 466
IMP_ROW_DESC statement attribute 466
INFO_ACCTSTR

ClientAcctStr CLI/ODBC configuration keyword 336
connection attribute 436
environment attribute 429

INFO_APPLNAME
ClientApplName CLI/ODBC configuration

keyword 336
connection attribute 436
environment attribute 429

INFO_PROGRAMID
ProgramID CLI/ODBC configuration keyword 387

INFO_PROGRAMID connection attribute 436
INFO_PROGRAMNAME

connection attribute 436
ProgramName CLI/ODBC configuration keyword 387

INFO_USERID
ClientUserID CLI/ODBC configuration keyword 338
connection attribute 436
environment attribute 429

Index 561

SQL_ATTR_ (continued)
INFO_WRKSTNNAME

ClientWrkStnName CLI/ODBC configuration
keyword 339

connection attribute 436
environment attribute 429

INSERT_BUFFERING statement attribute 466
KEEP_DYNAMIC

connection attribute 436
KeepDynamic CLI/ODBC configuration keyword 366

KEYSET_SIZE statement attribute 466
LOAD_INFO statement attribute 466
LOAD_ROWS_COMMITTED_PTR statement attribute 466
LOAD_ROWS_DELETED_PTR statement attribute 466
LOAD_ROWS_LOADED_PTR statement attribute 466
LOAD_ROWS_READ_PTR statement attribute 466
LOAD_ROWS_REJECTED_PTR statement attribute 466
LOAD_ROWS_SKIPPED_PTR statement attribute 466
LOB_CACHE_SIZE

connection attribute 436
LOBCacheSize CLI/ODBC configuration keyword 366
statement attribute 466

LOGIN_TIMEOUT
connection attribute 436
ConnectTimeout CLI/ODBC configuration

keyword 342
LONGDATA_COMPAT

connection attribute 436
LongDataCompat CLI/ODBC configuration

keyword 368
MAPCHAR

connection attribute 436
MapCharToWChar CLI/ODBC configuration

keyword 369
MAX_LENGTH

statement attribute 466
MAX_LOB_BLOCK_SIZE

connection attribute 436
MaxLOBBlockSize CLI/ODBC configuration

keyword 376
statement attribute 466

MAX_ROWS statement attribute 466
MAXCONN

connection attribute 436
environment attribute 429

METADATA_ID
connection attribute 436
statement attribute 466

MODIFIED_BY statement attribute 466
NOSCAN statement attribute 466
NOTIFYLEVEL environment attribute 429
ODBC_CURSORS connection attribute 436
ODBC_VERSION environment attribute 429
OPTIMIZE_FOR_NROWS

OptimizeForNRows CLI/ODBC configuration
keyword 379

statement attribute 466
OPTIMIZE_SQLCOLUMNS statement attribute 466
OUTPUT_NTS 429
OVERRIDE_CODEPAGE

connection attribute 436
PACKET_SIZE connection attribute 436
PARAM_BIND_OFFSET_PTR statement attribute 466
PARAM_BIND_TYPE statement attribute 466
PARAM_OPERATION_PTR statement attribute 466
PARAM_STATUS_PTR statement attribute 466
PARAMOPT_ATOMIC statement attribute 466

SQL_ATTR_ (continued)
PARAMS_PROCESSED_PTR statement attribute 466
PARAMSET_SIZE statement attribute 466
PARC_BATCH

connection attribute 436
PING_DB connection attribute 436
PING_NTIMES connection attribute 436
PING_REQUEST_PACKET_SIZE connection attribute 436
PREFETCH statement attribute 466
PROCESSCTRL

CheckForFork CLI/ODBC configuration keyword 335
environment attribute 429

QUERY_OPTIMIZATION_LEVEL statement attribute 466
QUERY_TIMEOUT

QueryTimeoutInterval CLI/ODBC configuration
keyword 389

statement attribute 466
QUIET_MODE connection attribute 436
RECEIVE_TIMEOUT

connection attribute 436
ReceiveTimeout CLI/ODBC configuration

keyword 390
REOPT

connection attribute 436
Reopt CLI/ODBC configuration keyword 390
statement attribute 466

REPORT_ISLONG_FOR_LONGTYPES_OLEDB
connection attribute 436
OleDbReportIsLongForLongTypes CLI/ODBC

configuration keyword 377
REPORT_SEAMLESSFAILOVER_WARNING

connection attribute 436
REPORT_TIMESTAMP_TRUNC_AS_WARN connection

attribute 436
RESET_CONNECTION

environment attribute 429
RETRIEVE_DATA statement attribute 466
RETURN_USER_DEFINED_TYPES

statement attribute 466
ROW_ARRAY_SIZE statement attribute 466
ROW_BIND_OFFSET_PTR statement attribute 466
ROW_BIND_TYPE statement attribute 466
ROW_NUMBER statement attribute 466
ROW_OPERATION_PTR statement attribute 466
ROW_STATUS_PTR statement attribute 466
ROWCOUNT_PREFETCH

statement attribute 466
ROWS_FETCHED_PTR statement attribute 466
SERVER_MSGTXT_MASK

connection attribute 436
ServerMsgMask CLI/ODBC configuration

keyword 398
SERVER_MSGTXT_SP

connection attribute 436
ServerMsgTextSP CLI/ODBC configuration

keyword 424
UseServerMsgSP CLI/ODBC configuration

keyword 423
SESSION_TIME_ZONE

connection attribute 436
SIMULATE_CURSOR statement attribute 466
SQLCOLUMNS_SORT_BY_ORDINAL_OLEDB

connection attribute 436
OleDbSQLColumnsSortByOrdinal CLI/ODBC

configuration keyword 378
STMT_CONCENTRATOR

connection attribute 436

562 Call Level Interface Guide and Reference, Volume 2

SQL_ATTR_ (continued)
STMT_CONCENTRATOR (continued)

statement attribute 466
StmtConcentrator CLI/ODBC configuration

keyword 403
STMTTXN_ISOLATION statement attribute 466
STREAM_GETDATA

connection attribute 436
statement attribute 466
StreamGetData CLI/ODBC configuration keyword 403

SYNC_POINT
connection attribute 436
environment attribute 429

TRACE
connection attribute 436
environment attribute 429
Trace CLI/ODBC configuration keyword 407

TRACEFILE connection attribute 436
TRACENOHEADER environment attribute 429
TRANSLATE_LIB connection attribute 436
TRANSLATE_OPTION connection attribute 436
TRUSTED_CONTEXT_PASSWORD

connection attribute 436
TRUSTED_CONTEXT_USERID

connection attribute 436
TXN_ISOLATION

connection attribute 436
statement attribute 466
TxnIsolation CLI/ODBC configuration keyword 421

USE_2BYTES_OCTET_LENGTH environment
attribute 429

USE_BOOKMARKS statement attribute 466
USE_LIGHT_INPUT_SQLDA environment attribute 429
USE_LIGHT_OUTPUT_SQLDA environment attribute 429
USE_LOAD_API statement attribute 466
USE_TRUSTED_CONTEXT

connection attribute 436
USER_REGISTRY_NAME

connection attribute 436
environment attribute 429

WCHARTYPE connection attribute 436
XML_DECLARATION

connection attribute 436
statement attribute 466

XQUERY_STATEMENT statement attribute 466
SQL_C_BINARY data type 527
SQL_C_BIT data type 527
SQL_C_CHAR 527
SQL_C_DATE data type 527
SQL_C_DBCHAR data type 527
SQL_C_DOUBLE data type 527
SQL_C_FLOAT data type 527
SQL_C_LONG data type 527
SQL_C_SHORT data type 527
SQL_C_TIME data type 527
SQL_C_TIMESTAMP data type 527
SQL_C_TIMESTAMP_EXT data type 527
SQL_C_TINYINT data type 527
SQL_DESC_

ALLOC_TYPE
details 489
initialization value 500

ARRAY_SIZE
details 489
initialization value 500

ARRAY_STATUS_PTR
details 489

SQL_DESC_ (continued)
ARRAY_STATUS_PTR (continued)

initialization value 500
AUTO_UNIQUE_VALUE

details 50, 489
initialization value 500

BASE_COLUMN_NAME 489
details 50
initialization value 500

BASE_TABLE_NAME
details 50, 489
initialization value 500

BIND_OFFSET_PTR
details 489
initialization value 500

BIND_TYPE
details 489
initialization value 500

CASE_SENSITIVE
details 50, 489
initialization value 500

CATALOG_NAME
details 50, 489
initialization value 500

CONCISE_TYPE
details 50, 489
initialization value 500

COUNT 50
COUNT_ALL 489
DATA_PTR

details 489
initialization value 500

DATETIME_INTERVAL_ CODE
details 489
initialization value 500

DATETIME_INTERVAL_ PRECISION
details 489
initialization value 500

DISPLAY_SIZE
details 50, 489
initialization value 500

DISTINCT_TYPE 50
FIXED_PREC_SCALE

details 50, 489
initialization value 500

INDICATOR_PTR
details 489
initialization value 500

LABEL
details 50, 489

LENGTH
details 50, 489
initialization value 500

LITERAL_PREFIX
details 50, 489
initialization value 500

LITERAL_SUFFIX
details 50, 489
initialization value 500

LOCAL_TYPE_NAME
details 50, 489
initialization value 500

NAME
details 50, 489
initialization value 500

NULLABLE
details 50, 489

Index 563

SQL_DESC_ (continued)
NULLABLE (continued)

initialization value 500
NUM_PREC_RADIX

details 489
initialization value 500

NUM_PREX_RADIX
details 50

OCTET_LENGTH
details 50, 489
initialization value 500

OCTET_LENGTH_PTR
details 489
initialization value 500

PARAMETER_TYPE
details 489
initialization value 500

PRECISION
details 50, 489
initialization value 500

ROWS_PROCESSED_PTR
details 489
initialization value 500

SCALE
details 50, 489
initialization value 500

SCHEMA_NAME
details 50, 489
initialization value 500

SEARCHABLE
details 50, 489
initialization value 500

TABLE_NAME
details 50, 489
initialization value 500

TYPE
details 50, 489
initialization value 500

TYPE_NAME
details 50, 489
initialization value 500

UNNAMED
details 50, 489
initialization value 500

UNSIGNED
details 50, 489
initialization value 500

UPDATABLE
details 50, 489
initialization value 500

SQL_DIAG_
header fields 505
record fields 505

SQL_ERROR return code 313
SQL_NEED_DATA return code 313
SQL_NO_DATA_FOUND return code 313
SQL_STILL_EXECUTING return code 313
SQL_SUCCESS return code 313
SQL_SUCCESS_WITH_INFO return code 313
SQLAllocConnect deprecated CLI function 6
SQLAllocEnv deprecated CLI function 7
SQLAllocHandle CLI function 7
SQLAllocStmt deprecated CLI function 10
SQLBindCol CLI function

details 10
SQLBindFileToCol CLI function 16
SQLBindFileToParam CLI function 19

SQLBindParameter CLI function
details 22

SQLBrowseConnect CLI function
details 36
Unicode version 5

SQLBrowseConnectW CLI function 5
SQLBulkOperations CLI function

details 41
SQLCancel CLI function 46
SQLCloseCursor CLI function 48
SQLCODEMAP configuration parameter

details 399
SQLColAttribute CLI function

details 50
Unicode version 5

SQLColAttributes CLI function
deprecated 58
Unicode version 5

SQLColAttributesW CLI function 5
SQLColAttributeW CLI function 5
SQLColumnPrivileges CLI function

details 59
Unicode version 5

SQLColumnPrivilegesW CLI function 5
SQLColumns CLI function

Unicode version 5
SQLColumnsW CLI function 5
SQLConnect CLI function

details 69
Unicode version 5

SQLConnectW CLI function 5
SQLCopyDesc CLI function 71
SQLCreateDb CLI function 74

Unicode version 5
SQLCreateDbW CLI function 5
SQLCreatePkg CLI function 76
SQLDataSources CLI function

details 77
Unicode version 5

SQLDataSourcesW CLI function 5
SQLDescribeCol CLI function

details 80
Unicode version 5

SQLDescribeColW CLI function 5
SQLDescribeParam CLI function 84
SQLDisconnect CLI function 86
SQLDriverConnect CLI function

default values 427
details 88
Trusted_connection CLI/ODBC configuration

keyword 420
Unicode version 5

SQLDriverConnectW CLI function 5
SQLDropDb CLI function 93

Unicode version 5
SQLDropDbW CLI function 5
SQLEndTran CLI function

details 95
SQLError deprecated CLI function

details 98
Unicode version 5

SQLErrorW CLI function 5
SQLExecDirect CLI function

details 98
Unicode version 5

SQLExecDirectW CLI function 5

564 Call Level Interface Guide and Reference, Volume 2

SQLExecute CLI function
details 103

SQLExtendedBind CLI function 106
SQLExtendedFetch deprecated CLI function 109
SQLExtendedPrepare CLI function

details 110
Unicode version 5

SQLExtendedPrepareW CLI function 5
SQLExtendedProcedureColumns

Unicode version 5
SQLExtendedProcedureColumns CLI function

details 119
SQLExtendedProcedureColumnsW CLI function 5
SQLExtendedProcedures

Unicode version 5
SQLExtendedProcedures CLI function

details 115
SQLExtendedProceduresW CLI function 5
SQLFetch CLI function

details 125
SQLFetchScroll CLI function

cursor positioning rules 138
details 132

SQLForeignKeys CLI function
details 141
Unicode version 5

SQLForeignKeysW CLI function 5
SQLFreeConnect deprecated CLI function 145
SQLFreeEnv deprecated CLI function 146
SQLFreeHandle CLI function 146
SQLFreeStmt CLI function 149
SQLGetConnectAttr CLI function

details 151
Unicode version 5

SQLGetConnectAttrW CLI function 5
SQLGetConnectOption deprecated CLI function

details 154
Unicode version 5

SQLGetConnectOptionW CLI function 5
SQLGetCursorName CLI function

details 154
Unicode version 5

SQLGetCursorNameW CLI function 5
SQLGetData CLI function

details 156
SQLGetDescField CLI function

details 162
Unicode version 5

SQLGetDescFieldW CLI function 5
SQLGetDescRec CLI function

details 166
Unicode version 5

SQLGetDescRecW CLI function 5
SQLGetDiagField CLI function

details 170
Unicode version 5

SQLGetDiagFieldW CLI function 5
SQLGetDiagRec CLI function

details 174
Unicode version 5

SQLGetDiagRecW CLI function 5
SQLGetEnvAttr CLI function 177
SQLGetFunctions CLI function 178
SQLGetInfo CLI function

details 180
Unicode version 5

SQLGetInfoW CLI function 5

SQLGetLength CLI function 210
SQLGetPosition CLI function 212

Unicode version 5
SQLGetPositionW CLI function 5
SQLGetSQLCA deprecated CLI function 216
SQLGetStmtAttr CLI function

details 216
Unicode version 5

SQLGetStmtAttrW CLI function 5
SQLGetStmtOption deprecated CLI function 219
SQLGetSubString CLI function 219
SQLGetTypeInfo CLI function 222
SQLMoreResults CLI function 227
SQLNativeSql CLI function

details 229
Unicode version 5

SQLNativeSqlW CLI function 5
SQLNextResult CLI function 232
SQLNumParams CLI function 230
SQLNumResultCols CLI function

details 234
SQLOverrideFileName CLI/ODBC configuration

keyword 395
SQLParamData CLI function 236
SQLParamOptions deprecated CLI function 238
SQLPrepare CLI function

details 239
Unicode version 5

SQLPrepareW CLI function 5
SQLPrimaryKeys CLI function

details 243
Unicode version 5

SQLPrimaryKeysW CLI function 5
SQLProcedureColumns CLI function

details 246
Unicode version 5

SQLProcedureColumnsW CLI function 5
SQLProcedures CLI function

Unicode version 5
SQLProceduresW CLI function 5
SQLPutData CLI function 256
SQLReloadConfig CLI function

Unicode version 5
SQLReloadConfigW CLI function 5
SQLRowCount CLI function

details 262
SQLSetColAttributes deprecated CLI function 264
SQLSetConnectAttr CLI function

details 264
Unicode version 5

SQLSetConnectAttrW CLI function 5
SQLSetConnection CLI function 267
SQLSetConnectOption deprecated CLI function

details 269
Unicode version 5

SQLSetConnectOptionW CLI function 5
SQLSetCursorName CLI function

details 269
Unicode version 5

SQLSetCursorNameW CLI function 5
SQLSetDescField CLI function

details 272
Unicode version 5

SQLSetDescFieldW CLI function 5
SQLSetDescRec CLI function 276
SQLSetEnvAttr CLI function 280
SQLSetParam deprecated CLI function 281

Index 565

SQLSetPos CLI function 282
SQLSetStmtAttr CLI function

details 289
Unicode version 5

SQLSetStmtAttrW CLI function 5
SQLSetStmtOption deprecated CLI function 293
SQLSpecialColumns CLI function

details 294
Unicode version 5

SQLSpecialColumnsW CLI function 5
SQLSTATE

format 314
SQLStatistics CLI function

details 299
Unicode version 5

SQLStatisticsW CLI function 5
SQLTablePrivileges CLI function

details 304
Unicode version 5

SQLTablePrivilegesW CLI function 5
SQLTables CLI function

details 307
Unicode version 5

SQLTablesW CLI function 5
SQLTransact deprecated CLI function 312
SSLClientKeystash configuration parameter

details 400
SSLClientKeystoredb configuration parameter

details 400
SSLClientKeystoreDBPassword configuration parameter

details 401
SSLClientLabel configuration parameter

details 399
statement attributes

CLI
changing 427
getting 216
list 466
setting 289

statement handles
allocating 7
freeing 146

StaticCapFile CLI/ODBC configuration keyword 401
StaticLogFile CLI/ODBC configuration keyword 402
StaticMode CLI/ODBC configuration keyword 402
StaticPackage CLI/ODBC configuration keyword 402
statistics

CLI function 299
getting 299

StmtConcentrator CLI/ODBC configuration keyword 403
StreamGetData CLI/ODBC configuration keyword 403
StreamPutData CLI/ODBC configuration keyword 404
strings

obtaining start position 212
SysSchema CLI/ODBC configuration keyword 404

T
table privileges CLI function 304
tables

getting table information by using CLI function 307
TableType CLI/ODBC configuration keyword 405
target database partition servers

logical nodes 341
TargetPrincipal CLI/ODBC configuration keyword 406
TempDir CLI/ODBC configuration keyword 406

terms and conditions
publications 548

TIME data types
conversion to C 520
display size 536
length 535
precision 532
scale 534

TIMESTAMP data type
conversion to C 520
display size 536
length 535
precision 532
scale 534

TimestampTruncErrToWarning CLI/ODBC configuration
keyword 407

Trace CLI/ODBC configuration keyword 407
TraceAPIList CLI/ODBC configuration keyword 408
TraceAPIList! CLI/ODBC configuration keyword 410
TraceComm CLI/ODBC configuration keyword 412
TraceErrImmediate CLI/ODBC configuration keyword 413
TraceFileName CLI/ODBC configuration keyword 413
TraceFlush CLI/ODBC configuration keyword 414
TraceFlushOnError CLI/ODBC configuration keyword 415
TraceLocks CLI/ODBC configuration keyword 415
TracePathName CLI/ODBC configuration keyword 417
TracePIDList CLI/ODBC configuration keyword 416
TracePIDTID CLI/ODBC configuration keyword 417
TraceRefreshInterval CLI/ODBC configuration keyword 418
TraceStmtOnly CLI/ODBC configuration keyword 418
TraceTime CLI/ODBC configuration keyword 419
TraceTimestamp CLI/ODBC configuration keyword 419
transactions

ending in CLI 95
troubleshooting

online information 548
tutorials 548

Trusted_Connection CLI/ODBC configuration keyword 420
tutorials

list 547
problem determination 548
troubleshooting 548
Visual Explain 547

TxnIsolation CLI/ODBC configuration keyword 421

U
UID CLI/ODBC configuration keyword 422
Underscore CLI/ODBC configuration keyword 422
Unicode UCS-2 encoding

CLI
functions 5

updates
DB2 Information Center 545, 546

UseOldStpCall CLI/ODBC configuration keyword 423
UseServerMsgSP CLI/ODBC configuration keyword 423

V
VARBINARY data type

conversion to C 520
display size 536
length 535
precision 532
scale 534

566 Call Level Interface Guide and Reference, Volume 2

VARCHAR data type
conversion to C 520
display size 536
length 535
precision 532
scale 534

VARGRAPHIC data type
conversion to C 520
display size 536
length 535
precision 532
scale 534

W
WarningList CLI/ODBC configuration keyword 424
WCHAR SQL data type

display size 536
length 535
precision 532
scale 534

WLONGVARCHAR SQL data type
display size 536
length 535
precision 532
scale 534

WVARCHAR SQL data type
display size 536
length 535
precision 532
scale 534

X
X/Open CAE 314
XMLDeclaration CLI/ODBC configuration keyword 425

Index 567

568 Call Level Interface Guide and Reference, Volume 2

����

Printed in USA

SC27-2438-03

Sp
in
e
in
fo
rm
at
io
n:

DB
2

fo
rL

in
ux

,U
NI

X,
an

d
W

in
do

w
s

Ve
rs

io
n

9
Re

le
as

e
7

Ca
ll

Le
ve

lI
nt

er
fa

ce
Gu

id
e

an
d

Re
fe

re
nc

e,
Vo

lu
m

e
2

�
�

�

	Contents
	About this book
	Chapter 1. CLI and ODBC function summary
	Unicode functions (CLI)
	SQLAllocConnect function (CLI) - Allocate connection handle
	SQLAllocEnv function (CLI) - Allocate environment handle
	SQLAllocHandle function (CLI) - Allocate handle
	SQLAllocStmt function (CLI) - Allocate a statement handle
	SQLBindCol function (CLI) - Bind a column to an application variable or LOB locator
	SQLBindFileToCol function (CLI) - Bind LOB file reference to LOB column
	SQLBindFileToParam function (CLI) - Bind LOB file reference to LOB parameter
	SQLBindParameter function (CLI) - Bind a parameter marker to a buffer or LOB locator
	SQLBrowseConnect function (CLI) - Get required attributes to connect to data source
	SQLBulkOperations function (CLI) - Add, update, delete or fetch a set of rows
	SQLCancel function (CLI) - Cancel statement
	SQLCloseCursor function (CLI) - Close cursor and discard pending results
	SQLColAttribute function (CLI) - Return a column attribute
	SQLColAttributes function (CLI) - Get column attributes
	SQLColumnPrivileges function (CLI) - Get privileges associated with the columns of a table
	SQLColumns function (CLI) - Get column information for a table
	SQLConnect function (CLI) - Connect to a data source
	SQLCopyDesc function (CLI) - Copy descriptor information between handles
	SQLCreateDb function (CLI) - Create a database
	SQLCreatePkg
	SQLDataSources function (CLI) - Get list of data sources
	SQLDescribeCol function (CLI) - Return a set of attributes for a column
	SQLDescribeParam function (CLI) - Return description of a parameter marker
	SQLDisconnect function (CLI) - Disconnect from a data source
	SQLDriverConnect function (CLI) - (Expanded) Connect to a data source
	SQLDropDb function (CLI) - Drop a database
	SQLEndTran function (CLI) - End transactions of a connection or an environment
	SQLError function (CLI) - Retrieve error information
	SQLExecDirect function (CLI) - Execute a statement directly
	SQLExecute function (CLI) - Execute a statement
	SQLExtendedBind function (CLI) - Bind an array of columns
	SQLExtendedFetch function (CLI) - Extended fetch (fetch array of rows)
	SQLExtendedPrepare function (CLI) - Prepare a statement and set statement attributes
	SQLExtendedProcedures function (CLI) - Get list of procedure names
	SQLExtendedProcedureColumns function (CLI) - Get input/output parameter information for a procedure
	SQLFetch function (CLI) - Fetch next row
	SQLFetchScroll function (CLI) - Fetch rowset and return data for all bound columns
	Cursor positioning rules for SQLFetchScroll() (CLI)

	SQLForeignKeys function (CLI) - Get the list of foreign key columns
	SQLFreeConnect function (CLI) - Free connection handle
	SQLFreeEnv function (CLI) - Free environment handle
	SQLFreeHandle function (CLI) - Free handle resources
	SQLFreeStmt function (CLI) - Free (or reset) a statement handle
	SQLGetConnectAttr function (CLI) - Get current attribute setting
	SQLGetConnectOption function (CLI) - Return current setting of a connect option
	SQLGetCursorName function (CLI) - Get cursor name
	SQLGetData function (CLI) - Get data from a column
	SQLGetDescField function (CLI) - Get single field settings of descriptor record
	SQLGetDescRec function (CLI) - Get multiple field settings of descriptor record
	SQLGetDiagField function (CLI) - Get a field of diagnostic data
	SQLGetDiagRec function (CLI) - Get multiple fields settings of diagnostic record
	SQLGetEnvAttr function (CLI) - Retrieve current environment attribute value
	SQLGetFunctions function (CLI) - Get functions
	SQLGetInfo function (CLI) - Get general information
	SQLGetLength function (CLI) - Retrieve length of a string value
	SQLGetPosition function (CLI) - Return starting position of string
	SQLGetSQLCA function (CLI) - Get SQLCA data structure
	SQLGetStmtAttr function (CLI) - Get current setting of a statement attribute
	SQLGetStmtOption function (CLI) - Return current setting of a statement option
	SQLGetSubString function (CLI) - Retrieve portion of a string value
	SQLGetTypeInfo function (CLI) - Get data type information
	SQLMoreResults function (CLI) - Determine if there are more result sets
	SQLNativeSql function (CLI) - Get native SQL text
	SQLNumParams function (CLI) - Get number of parameters in a SQL statement
	SQLNextResult function (CLI) - Associate next result set with another statement handle
	SQLNumResultCols function (CLI) - Get number of result columns
	SQLParamData function (CLI) - Get next parameter for which a data value is needed
	SQLParamOptions function (CLI) - Specify an input array for a parameter
	SQLPrepare function (CLI) - Prepare a statement
	SQLPrimaryKeys function (CLI) - Get primary key columns of a table
	SQLProcedureColumns function (CLI) - Get input/output parameter information for a procedure
	SQLProcedures function (CLI) - Get list of procedure names
	SQLPutData function (CLI) - Passing data value for a parameter
	SQLReloadConfig function (CLI) - Reload a configuration property from the client configuration file
	SQLRowCount function (CLI) - Get row count
	SQLSetColAttributes function (CLI) - Set column attributes
	SQLSetConnectAttr function (CLI) - Set connection attributes
	SQLSetConnection function (CLI) - Set connection handle
	SQLSetConnectOption function (CLI) - Set connection option
	SQLSetCursorName function (CLI) - Set cursor name
	SQLSetDescField function (CLI) - Set a single field of a descriptor record
	SQLSetDescRec function (CLI) - Set multiple descriptor fields for a column or parameter data
	SQLSetEnvAttr function (CLI) - Set environment attribute
	SQLSetParam function (CLI) - Bind a parameter marker to a buffer or LOB locator
	SQLSetPos function (CLI) - Set the cursor position in a rowset
	SQLSetStmtAttr function (CLI) - Set options related to a statement
	SQLSetStmtOption function (CLI) - Set statement option
	SQLSpecialColumns function (CLI) - Get special (row identifier) columns
	SQLStatistics function (CLI) - Get index and statistics information for a base table
	SQLTablePrivileges function (CLI) - Get privileges associated with a table
	SQLTables function (CLI) - Get table information
	SQLTransact function (CLI) - Transaction management

	Chapter 2. Return codes and SQLSTATES for CLI
	CLI function return codes
	SQLSTATES for CLI
	Return codes for compound SQL (CLI) in CLI applications

	Chapter 3. CLI/ODBC configuration keywords listing by category
	db2cli.ini initialization file
	AllowGetDataLOBReaccess CLI/ODBC configuration keyword
	AllowInterleavedGetData CLI/ODBC configuration keyword
	AltHostName CLI/ODBC configuration keyword
	AltPort CLI/ODBC configuration keyword
	AppUsesLOBLocator CLI/ODBC configuration keyword
	AppendAPIName CLI/ODBC configuration keyword
	AppendForFetchOnly CLI/ODBC configuration keyword
	AppendRowColToErrorMessage CLI/ODBC configuration keyword
	ArrayInputChain CLI/ODBC configuration keyword
	AsyncEnable CLI/ODBC configuration keyword
	Attach CLI/ODBC configuration keyword
	Authentication CLI/ODBC configuration keyword
	AutoCommit CLI/ODBC configuration keyword
	BIDI CLI/ODBC configuration keyword
	BitData CLI/ODBC configuration keyword
	BlockForNRows CLI/ODBC configuration keyword
	BlockLobs CLI/ODBC configuration keyword
	CLIPkg CLI/ODBC configuration keyword
	CheckForFork CLI/ODBC configuration keyword
	ClientAcctStr CLI/ODBC configuration keyword
	ClientApplName CLI/ODBC configuration keyword
	ClientBuffersUnboundLOBS CLI/ODBC configuration keyword
	ClientEncAlg CLI/ODBC configuration keyword
	ClientUserID CLI/ODBC configuration keyword
	ClientWrkStnName CLI/ODBC configuration keyword
	ColumnwiseMRI CLI/ODBC configuration keyword
	CommitOnEOF CLI/ODBC configuration keyword
	ConcurrentAccessResolution CLI/ODBC configuration keyword
	ConnectNode CLI/ODBC configuration keyword
	ConnectTimeout CLI/ODBC configuration keyword
	ConnectType CLI/ODBC configuration keyword
	CurrentFunctionPath CLI/ODBC configuration keyword
	CurrentImplicitXMLParseOption CLI/ODBC configuration keyword
	CurrentMaintainedTableTypesForOpt CLI/ODBC configuration keyword
	CURRENTOPTIMIZATIONPROFILE CLI/ODBC configuration keyword
	CurrentPackagePath CLI/ODBC configuration keyword
	CurrentPackageSet CLI/ODBC configuration keyword
	CurrentRefreshAge CLI/ODBC configuration keyword
	CurrentSQLID CLI/ODBC configuration keyword
	CurrentSchema CLI/ODBC configuration keyword
	CursorHold CLI/ODBC configuration keyword
	CursorTypes CLI/ODBC configuration keyword
	DB2Degree CLI/ODBC configuration keyword
	DB2Explain CLI/ODBC configuration keyword
	DB2NETNamedParam CLI/ODBC configuration keyword
	DB2Optimization CLI/ODBC configuration keyword
	DBAlias CLI/ODBC configuration keyword
	DBName CLI/ODBC configuration keyword
	DSN CLI/ODBC configuration keyword
	Database CLI/ODBC configuration keyword
	DateTimeStringFormat CLI/ODBC configuration keyword
	DecimalFloatRoundingMode CLI/ODBC configuration keyword
	DeferredPrepare CLI/ODBC configuration keyword
	DescribeCall CLI/ODBC configuration keyword
	DescribeInputOnPrepare CLI/ODBC configuration keyword
	DescribeOutputLevel CLI/ODBC configuration keyword
	DescribeParam CLI/ODBC configuration keyword
	DiagLevel CLI/ODBC configuration keyword
	DiagPath CLI/ODBC configuration keyword
	DisableKeysetCursor CLI/ODBC configuration keyword
	DisableMultiThread CLI/ODBC configuration keyword
	DisableUnicode CLI/ODBC configuration keyword
	EnableNamedParameterSupport CLI/ODBC configuration keyword
	FET_BUF_SIZE CLI/ODBC configuration keyword
	FileDSN CLI/ODBC configuration keyword
	FloatPrecRadix CLI/ODBC configuration keyword
	GetDataLobNoTotal CLI/ODBC configuration keyword
	GranteeList CLI/ODBC configuration keyword
	GrantorList CLI/ODBC configuration keyword
	Graphic CLI/ODBC configuration keyword
	Hostname CLI/ODBC configuration keyword
	IgnoreWarnList CLI/ODBC configuration keyword
	IgnoreWarnings CLI/ODBC configuration keyword
	Instance CLI/ODBC configuration keyword
	Interrupt CLI/ODBC configuration keyword
	KRBPlugin CLI/ODBC configuration keyword
	KeepDynamic CLI/ODBC configuration keyword
	LOBCacheSize CLI/ODBC configuration keyword
	LOBFileThreshold CLI/ODBC configuration keyword
	LOBMaxColumnSize CLI/ODBC configuration keyword
	LoadXAInterceptor CLI/ODBC configuration keyword
	LockTimeout CLI/ODBC configuration keyword
	LongDataCompat CLI/ODBC configuration keyword
	MapBigintCDefault CLI/ODBC configuration keyword
	MapCharToWChar CLI/ODBC configuration keyword
	MapDateCDefault CLI/ODBC configuration keyword
	MapDateDescribe CLI/ODBC configuration keyword
	MapDecimalFloatDescribe CLI/ODBC configuration keyword
	MapGraphicDescribe CLI/ODBC configuration keyword
	MapTimeCDefault CLI/ODBC configuration keyword
	MapTimeDescribe CLI/ODBC configuration keyword
	MapTimestampCDefault CLI/ODBC configuration keyword
	MapTimestampDescribe CLI/ODBC configuration keyword
	MapXMLCDefault CLI/ODBC configuration keyword
	MapXMLDescribe CLI/ODBC configuration keyword
	MaxLOBBlockSize CLI/ODBC configuration keyword
	Mode CLI/ODBC configuration keyword
	NotifyLevel CLI/ODBC configuration keyword
	OleDbReportIsLongForLongTypes CLI/ODBC configuration keyword
	OleDbReturnCharAsWChar CLI/ODBC configuration keyword
	OleDbSQLColumnsSortByOrdinal CLI/ODBC configuration keyword
	OnlyUseBigPackages CLI/ODBC configuration keyword
	OptimizeForNRows CLI/ODBC configuration keyword
	PWD CLI/ODBC configuration keyword
	PWDPlugin CLI/ODBC configuration keyword
	Patch1 CLI/ODBC configuration keyword
	Patch2 CLI/ODBC configuration keyword
	Port CLI/ODBC configuration keyword
	ProgramID CLI/ODBC configuration keyword
	ProgramName CLI/ODBC configuration keyword
	PromoteLONGVARtoLOB CLI/ODBC configuration keyword
	Protocol CLI/ODBC configuration keyword
	QueryTimeoutInterval CLI/ODBC configuration keyword
	ReadCommonSectionOnNullConnect CLI/ODBC configuration keyword
	ReceiveTimeout CLI/ODBC configuration keyword
	Reopt CLI/ODBC configuration keyword
	ReportPublicPrivileges CLI/ODBC configuration keyword
	ReportRetryErrorsAsWarnings CLI/ODBC configuration keyword
	RetCatalogAsCurrServer CLI/ODBC configuration keyword
	RetOleDbConnStr CLI/ODBC configuration keyword
	RetryOnError CLI/ODBC configuration keyword
	ReturnAliases CLI/ODBC configuration keyword
	ReturnSynonymSchema CLI/ODBC configuration keyword
	SQLOverrideFileName CLI/ODBC configuration keyword
	SaveFile CLI/ODBC configuration keyword
	SchemaList CLI/ODBC configuration keyword
	security CLI/ODBC configuration keyword
	ServerMsgMask CLI/ODBC configuration keyword
	ServiceName CLI/ODBC configuration keyword
	SkipTrace CLI/ODBC configuration keyword
	SQLCODEMAP CLI/ODBC configuration keyword
	SSLClientLabel CLI/ODBC configuration keyword
	SSLClientKeystash CLI/ODBC configuration keyword
	SSLClientKeystoredb CLI/ODBC configuration keyword
	SSLClientKeystoreDBPassword CLI/ODBC configuration keyword
	StaticCapFile CLI/ODBC configuration keyword
	StaticLogFile CLI/ODBC configuration keyword
	StaticMode CLI/ODBC configuration keyword
	StaticPackage CLI/ODBC configuration keyword
	StmtConcentrator CLI/ODBC configuration keyword
	StreamGetData CLI/ODBC configuration keyword
	StreamPutData CLI/ODBC configuration keyword
	SysSchema CLI/ODBC Configuration Keyword
	TableType CLI/ODBC configuration keyword
	TargetPrincipal CLI/ODBC configuration keyword
	TempDir CLI/ODBC configuration keyword
	TimestampTruncErrToWarning CLI/ODBC configuration keyword
	Trace CLI/ODBC configuration keyword
	TraceAPIList CLI/ODBC configuration keyword
	TraceAPIList! CLI/ODBC configuration keyword
	TraceComm CLI/ODBC configuration keyword
	TraceErrImmediate CLI/ODBC configuration keyword
	TraceFileName CLI/ODBC configuration keyword
	TraceFlush CLI/ODBC configuration keyword
	TraceFlushOnError CLI/ODBC configuration keyword
	TraceLocks CLI/ODBC configuration keyword
	TracePIDList CLI/ODBC configuration keyword
	TracePIDTID CLI/ODBC configuration keyword
	TracePathName CLI/ODBC configuration keyword
	TraceRefreshInterval CLI/ODBC configuration keyword
	TraceStmtOnly CLI/ODBC configuration keyword
	TraceTime CLI/ODBC configuration keyword
	TraceTimestamp CLI/ODBC configuration keyword
	Trusted_Connection CLI/ODBC configuration keyword
	TxnIsolation CLI/ODBC configuration keyword
	UID CLI/ODBC configuration keyword
	Underscore CLI/ODBC configuration keyword
	UseOldStpCall CLI/ODBC configuration keyword
	UseServerMsgSP CLI/ODBC configuration keyword
	ServerMsgTextSP CLI/ODBC configuration keyword
	WarningList CLI/ODBC configuration keyword
	XMLDeclaration CLI/ODBC configuration keyword

	Chapter 4. Environment, connection, and statement attributes in CLI applications
	Environment attributes (CLI) list
	Connection attributes (CLI) list
	Statement attributes (CLI) list

	Chapter 5. Descriptor values
	Descriptor FieldIdentifier argument values (CLI)
	Descriptor header and record field initialization values (CLI)

	Chapter 6. Header and record fields for the DiagIdentifier argument (CLI)
	Chapter 7. CLI data type attributes
	SQL symbolic and default data types for CLI applications
	C data types for CLI applications
	Data conversions supported in CLI
	SQL to C data conversion in CLI
	C to SQL data conversion in CLI
	Data type attributes
	Data type precision (CLI) table
	Data type scale (CLI) table
	Data type length (CLI) table
	Data type display (CLI) table

	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

