
IBM DB2 9.7

for Linux, UNIX, and Windows

Developing Java Applications

SC27-2446-00

���

IBM DB2 9.7

for Linux, UNIX, and Windows

Developing Java Applications

SC27-2446-00

���

Note

Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on

page 497.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006, 2009.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book vii

Who should use this book vii

Chapter 1. Java application development

for IBM data servers 1

Supported drivers for JDBC and SQLJ 2

JDBC driver and database version compatibility . 3

Chapter 2. Installing the IBM Data Server

Driver for JDBC and SQLJ 5

DB2Binder utility 8

DB2LobTableCreator utility 15

Customization of IBM Data Server Driver for JDBC

and SQLJ configuration properties 16

Special setup for accessing DB2 for z/OS servers

from Java programs 16

DB2T4XAIndoubtUtil for distributed transactions

with DB2 UDB for OS/390 and z/OS Version 7

servers 18

Special setup for running Java routines in the

HP-UX environment 20

Chapter 3. JDBC application

programming 23

Example of a simple JDBC application 23

How JDBC applications connect to a data source . . 25

How DB2 applications connect to a data source

using the DriverManager interface with the DB2

JDBC Type 2 Driver 27

Connecting to a data source using the

DriverManager interface with the IBM Data

Server Driver for JDBC and SQLJ 28

Connecting to a data source using the

DataSource interface 32

How to determine which type of IBM Data

Server Driver for JDBC and SQLJ connectivity to

use 34

JDBC connection objects 35

Creating and deploying DataSource objects . . . 35

Java packages for JDBC support 36

Learning about a data source using

DatabaseMetaData methods 37

DatabaseMetaData methods for identifying the

type of data source 38

Variables in JDBC applications 39

JDBC interfaces for executing SQL 39

Creating and modifying database objects using

the Statement.executeUpdate method 40

Updating data in tables using the

PreparedStatement.executeUpdate method . . . 40

JDBC executeUpdate methods against a DB2 for

z/OS server 42

Making batch updates in JDBC applications . . 43

Learning about parameters in a

PreparedStatement using ParameterMetaData

methods 45

Data retrieval in JDBC applications 46

Calling stored procedures in JDBC applications 58

LOBs in JDBC applications with the IBM Data

Server Driver for JDBC and SQLJ 66

ROWIDs in JDBC with the IBM Data Server

Driver for JDBC and SQLJ 71

Distinct types in JDBC applications 73

Invocation of stored procedures with ARRAY

parameters in JDBC applications 74

Savepoints in JDBC applications 75

Retrieving automatically generated keys in JDBC

applications 76

Using named parameter markers in JDBC

applications 78

Providing extended client information to the data

source with IBM Data Server Driver for JDBC

and SQLJ-only methods 81

Providing extended client information to the data

source with client info properties 82

Optimistic locking in JDBC applications 85

XML data in JDBC applications 87

XML column updates in JDBC applications . . . 88

XML data retrieval in JDBC applications 90

Invocation of routines with XML parameters in

Java applications 93

Java support for XML schema registration and

removal 94

Transaction control in JDBC applications 97

IBM Data Server Driver for JDBC and SQLJ

isolation levels 97

Committing or rolling back JDBC transactions . . 97

Default JDBC autocommit modes 98

Exceptions and warnings under the IBM Data

Server Driver for JDBC and SQLJ 98

Handling an SQLException under the IBM Data

Server Driver for JDBC and SQLJ 101

Handling an SQLWarning under the IBM Data

Server Driver for JDBC and SQLJ 104

Retrieving information from a

BatchUpdateException 105

Handling an SQLException under the DB2 JDBC

Type 2 Driver (deprecated) 107

Handling an SQLWarning under the DB2 JDBC

Type 2 Driver 107

JDBC and SQLJ client reroute support for DB2

Database for Linux, UNIX, and Windows and IDS . 108

Enabling IBM Data Server Driver for JDBC and

SQLJ client reroute for connections to DB2

Database for Linux, UNIX, and Windows

servers 109

Enabling IBM Data Server Driver for JDBC and

SQLJ client reroute for connections to IDS

servers 111

© Copyright IBM Corp. 2006, 2009 iii

JDBC and SQLJ client reroute support with

JNDI for DB2 Database for Linux, UNIX, and

Windows and IDS 113

JDBC and SQLJ client reroute operation for DB2

Database for Linux, UNIX, and Windows and

IDS 114

Sysplex support for high availability for

connections from IBM Data Server Driver for JDBC

and SQLJ clients to DB2 for z/OS servers 119

Configuration of Sysplex support for high

availability at the client 120

Example of enabling DB2 for z/OS Sysplex

support in JDBC or SQLJ applications 122

Operation of Sysplex support for direct

connections from IBM Data Server Driver for

JDBC and SQLJ clients to DB2 for z/OS . . . 123

Application programming for Sysplex support

for direct connections to DB2 for z/OS 124

IBM Data Server Driver for JDBC and SQLJ

support for client affinities for seamless failover . . 124

JDBC connection concentrator and workload

balancing for IDS servers 126

Example of enabling IBM Data Server Driver for

JDBC and SQLJ workload balancing for IDS

servers 126

Disconnecting from data sources in JDBC

applications 128

Chapter 4. SQLJ application

programming 129

Example of a simple SQLJ application 129

Connecting to a data source using SQLJ 131

SQLJ connection technique 1: JDBC

DriverManager interface 131

SQLJ connection technique 2: JDBC

DriverManager interface 133

SQLJ connection technique 3: JDBC DataSource

interface 134

SQLJ connection technique 4: JDBC DataSource

interface 136

SQLJ connection technique 5: Use a previously

created connection context 136

SQLJ connection technique 6: Use the default

connection 137

Java packages for SQLJ support 137

Variables in SQLJ applications 138

Comments in an SQLJ application 139

SQL statement execution in SQLJ applications . . 140

Creating and modifying DB2 objects in an SQLJ

application 140

Performing positioned UPDATE and DELETE

operations in an SQLJ application 140

Data retrieval in SQLJ applications 148

Calling stored procedures in SQLJ applications 158

LOBs in SQLJ applications with the IBM Data

Server Driver for JDBC and SQLJ 163

SQLJ and JDBC in the same application . . . 165

Controlling the execution of SQL statements in

SQLJ 167

ROWIDs in SQLJ with the IBM Data Server

Driver for JDBC and SQLJ 168

Distinct types in SQLJ applications 170

Invocation of stored procedures with ARRAY

parameters in SQLJ applications 170

Savepoints in SQLJ applications 171

XML data in SQLJ applications 172

XML column updates in SQLJ applications . . 173

XML data retrieval in SQLJ applications . . . 174

XMLCAST in SQLJ applications 176

SQLJ utilization of SDK for Java Version 5 function 177

Transaction control in SQLJ applications 179

Setting the isolation level for an SQLJ

transaction 179

Committing or rolling back SQLJ transactions 180

Handling SQL errors and warnings in SQLJ

applications 180

Handling SQL errors in an SQLJ application . . 180

Handling SQL warnings in an SQLJ application 181

Closing the connection to a data source in an SQLJ

application 181

Chapter 5. Security under the IBM

Data Server Driver for JDBC and

SQLJ 183

User ID and password security under the IBM

Data Server Driver for JDBC and SQLJ 185

User ID-only security under the IBM Data Server

Driver for JDBC and SQLJ 186

Encrypted password, user ID, or user ID and

password security under the IBM Data Server

Driver for JDBC and SQLJ 187

Kerberos security under the IBM Data Server

Driver for JDBC and SQLJ 189

IBM Data Server Driver for JDBC and SQLJ

security plugin support 192

Use of alternative security mechanisms with the

IBM Data Server Driver for JDBC and SQLJ . . . 194

IBM Data Server Driver for JDBC and SQLJ trusted

context support 196

IBM Data Server Driver for JDBC and SQLJ

support for SSL 198

Configuring connections under the IBM Data

Server Driver for JDBC and SQLJ to use SSL . . 198

Configuring the Java Runtime Environment to

use SSL 199

Security for preparing SQLJ applications with the

IBM Data Server Driver for JDBC and SQLJ . . . 202

Chapter 6. Security under the DB2

JDBC Type 2 Driver 205

Chapter 7. Building Java database

applications 207

Building JDBC applets 207

Building JDBC applications 207

Building JDBC routines 208

Building SQLJ applets 209

Building SQLJ applications 209

Java applet considerations 210

SQLJ application and applet options for UNIX . . 211

iv Developing Java Applications

SQLJ application and applet options for Windows 211

Building SQL routines 212

SQLJ routine options for UNIX 212

SQLJ routine options for Windows 213

Chapter 8. Problem diagnosis with the

IBM Data Server Driver for JDBC and

SQLJ 215

Example of using configuration properties to start

a JDBC trace 217

Example of a trace program under the IBM Data

Server Driver for JDBC and SQLJ 217

Techniques for monitoring IBM Data Server Driver

for JDBC and SQLJ Sysplex support 221

Chapter 9. System monitoring for the

IBM Data Server Driver for JDBC and

SQLJ 225

IBM Data Server Driver for JDBC and SQLJ remote

trace controller 227

Enabling the remote trace controller 227

Accessing the remote trace controller 228

Chapter 10. Java 2 Platform,

Enterprise Edition 231

Application components of Java 2 Platform,

Enterprise Edition support 231

Java 2 Platform, Enterprise Edition containers . . 232

Java 2 Platform, Enterprise Edition Server 232

Java 2 Platform, Enterprise Edition database

requirements 232

Java Naming and Directory Interface (JNDI) . . . 233

Java transaction management 233

Example of a distributed transaction that uses

JTA methods 234

Setting the transaction timeout value for an

XAResource instance 238

Enterprise Java Beans 238

Chapter 11. JDBC and SQLJ

connection pooling support 241

Chapter 12. JDBC and SQLJ reference

information 243

Data types that map to database data types in Java

applications 243

Date, time, and timestamp values that can cause

problems in JDBC and SQLJ applications . . . 249

Data loss for timestamp data in JDBC and SQLJ

applications 252

Properties for the IBM Data Server Driver for JDBC

and SQLJ 253

Common IBM Data Server Driver for JDBC and

SQLJ properties for all supported database

products 254

Common IBM Data Server Driver for JDBC and

SQLJ properties for DB2 servers 270

Common IBM Data Server Driver for JDBC and

SQLJ properties for DB2 for z/OS and IDS . . 278

Common IBM Data Server Driver for JDBC and

SQLJ properties for IDS and DB2 Database for

Linux, UNIX, and Windows 280

IBM Data Server Driver for JDBC and SQLJ

properties for DB2 Database for Linux, UNIX,

and Windows 281

IBM Data Server Driver for JDBC and SQLJ

properties for DB2 for z/OS 284

IBM Data Server Driver for JDBC and SQLJ

properties for IDS 288

IBM Data Server Driver for JDBC and SQLJ

configuration properties 293

Driver support for JDBC APIs 307

SQLJ statement reference information 335

SQLJ clause 336

SQLJ host-expression 336

SQLJ implements-clause 336

SQLJ with-clause 337

SQLJ connection-declaration-clause 339

SQLJ iterator-declaration-clause 339

SQLJ executable-clause 341

SQLJ context-clause 341

SQLJ statement-clause 342

SQLJ SET-TRANSACTION-clause 344

SQLJ assignment-clause 345

SQLJ iterator-conversion-clause 345

Interfaces and classes in the sqlj.runtime package 346

sqlj.runtime.ConnectionContext interface . . . 347

sqlj.runtime.ForUpdate interface 351

sqlj.runtime.NamedIterator interface 352

sqlj.runtime.PositionedIterator interface 352

sqlj.runtime.ResultSetIterator interface 353

sqlj.runtime.Scrollable interface 355

sqlj.runtime.AsciiStream class 358

sqlj.runtime.BinaryStream class 358

sqlj.runtime.CharacterStream class 359

sqlj.runtime.ExecutionContext class 360

sqlj.runtime.SQLNullException class 368

sqlj.runtime.StreamWrapper class 368

sqlj.runtime.UnicodeStream class 369

IBM Data Server Driver for JDBC and SQLJ

extensions to JDBC 369

DBBatchUpdateException interface 371

DB2Administrator class 372

DB2BaseDataSource class 372

DB2CallableStatement interface 378

DB2CataloguedDatabase class 379

DB2ClientRerouteServerList class 380

DB2Connection interface 381

DB2ConnectionPoolDataSource class 399

DB2DatabaseMetaData interface 401

DB2Diagnosable interface 402

DB2ExceptionFormatter class 403

DB2JCCPlugin class 403

DB2PooledConnection class 404

DB2PoolMonitor class 406

DB2PreparedStatement interface 409

DB2ResultSet interface 418

DB2ResultSetMetaData interface 419

Contents v

DB2RowID interface 420

DB2SimpleDataSource class 420

DB2Sqlca class 421

DB2Statement interface 422

DB2SystemMonitor interface 424

DB2TraceManager class 427

DB2TraceManagerMXBean interface 431

DB2Types class 434

DB2XADataSource class 435

DB2Xml interface 437

JDBC differences between the current IBM Data

Server Driver for JDBC and SQLJ and earlier DB2

JDBC drivers 439

JDBC differences between versions of the IBM Data

Server Driver for JDBC and SQLJ 448

Examples of ResultSetMetaData.getColumnName

and ResultSetMetaData.getColumnLabel values . . 450

SQLJ differences between the IBM Data Server

Driver for JDBC and SQLJ and other DB2 JDBC

drivers 452

SDK for Java differences that affect the IBM Data

Server Driver for JDBC and SQLJ 454

Error codes issued by the IBM Data Server Driver

for JDBC and SQLJ 455

SQLSTATEs issued by the IBM Data Server Driver

for JDBC and SQLJ 461

How to find IBM Data Server Driver for JDBC and

SQLJ version and environment information . . . 463

Commands for SQLJ program preparation 464

sqlj - SQLJ translator 464

db2sqljcustomize - SQLJ profile customizer . . 467

db2sqljbind - SQLJ profile binder 479

db2sqljprint - SQLJ profile printer 484

Appendix A. Overview of the DB2

technical information 487

DB2 technical library in hardcopy or PDF format 487

Ordering printed DB2 books 490

Displaying SQL state help from the command line

processor 491

Accessing different versions of the DB2

Information Center 491

Displaying topics in your preferred language in the

DB2 Information Center 491

Updating the DB2 Information Center installed on

your computer or intranet server 492

Manually updating the DB2 Information Center

installed on your computer or intranet server . . 493

DB2 tutorials 495

DB2 troubleshooting information 495

Terms and Conditions 496

Appendix B. Notices 497

Index 501

vi Developing Java Applications

About this book

This book describes DB2® for Linux®, UNIX®, and Windows® support for Java™.

This support lets you access relational databases from Java application programs.

Who should use this book

This book is for the following users:

v DB2 for Linux, UNIX, and Windows application developers who are familiar

with Structured Query Language (SQL) and who know the Java programming

language.

v DB2 for Linux, UNIX, and Windows system programmers who are installing

JDBC and SQLJ support.

© Copyright IBM Corp. 2006, 2009 vii

viii Developing Java Applications

Chapter 1. Java application development for IBM data servers

The DB2 and IBM® Informix® Dynamic Server (IDS) database systems provide

driver support for client applications and applets that are written in Java.

You can access data in DB2 and IDS database systems using JDBC, SQL, or

pureQuery.

JDBC

JDBC is an application programming interface (API) that Java applications use to

access relational databases. IBM data server support for JDBC lets you write Java

applications that access local DB2 or IDS data or remote relational data on a server

that supports DRDA®.

SQLJ

SQLJ provides support for embedded static SQL in Java applications. SQLJ was

initially developed by IBM, Oracle, and Tandem to complement the dynamic SQL

JDBC model with a static SQL model.

For connections to DB2, in general, Java applications use JDBC for dynamic SQL

and SQLJ for static SQL.

For connections to IDS, SQL statements in JDBC or SQLJ applications run

dynamically.

Because SQLJ can inter-operate with JDBC, an application program can use JDBC

and SQLJ within the same unit of work.

pureQuery

pureQuery is a high-performance data access platform that makes it easier to

develop, optimize, secure, and manage data access. It consists of:

v Application programming interfaces that are built for ease of use and for

simplifying the use of best practices

v Development tools, which are delivered in IBM Optim Development Studio, for

Java and SQL development

v A runtime, which is delivered in IBM Optim pureQuery Runtime, for optimizing

and securing database access and simplifying management tasks

With pureQuery, you can write Java applications that treat relational data as

objects, whether that data is in databases or JDBC DataSource objects. Your

applications can also treat objects that are stored in in-memory Java collections as

though those objects are relational data. To query or update your relational data or

Java objects, you use SQL.

For more information on pureQuery, see the Integrated Data Management

Information Center.

© Copyright IBM Corp. 2006, 2009 1

Supported drivers for JDBC and SQLJ

The DB2 product includes support for two types of JDBC driver architecture.

According to the JDBC specification, there are four types of JDBC driver

architectures:

Type 1

Drivers that implement the JDBC API as a mapping to another data access API,

such as Open Database Connectivity (ODBC). Drivers of this type are generally

dependent on a native library, which limits their portability. The DB2 database

system does not provide a type 1 driver.

Type 2

Drivers that are written partly in the Java programming language and partly in

native code. The drivers use a native client library specific to the data source to

which they connect. Because of the native code, their portability is limited.

Type 3

Drivers that use a pure Java client and communicate with a database using a

database-independent protocol. The database then communicates the client’s

requests to the data source. The DB2 database system does not provide a type

3 driver.

Type 4

Drivers that are pure Java and implement the network protocol for a specific

data source. The client connects directly to the data source.

DB2 Database for Linux, UNIX, and Windows supports the following drivers:

 Driver name Packaged as Driver type

DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows

db2java.zip Type 2

IBM Data Server Driver for

JDBC and SQLJ

v db2jcc.jar and sqlj.zip for

JDBC 3.0 support

v db2jcc4.jar and sqlj4.zip for

support of some JDBC 4.0

functions

Type 2 and Type 4

IBM Data Server Driver for JDBC and SQLJ (type 2 and type 4)

The IBM Data Server Driver for JDBC and SQLJ is a single driver that includes

JDBC type 2 and JDBC type 4 behavior. When an application loads the IBM Data

Server Driver for JDBC and SQLJ, a single driver instance is loaded for type 2 and

type 4 implementations. The application can make type 2 and type 4 connections

using this single driver instance. The type 2 and type 4 connections can be made

concurrently. IBM Data Server Driver for JDBC and SQLJ type 2 driver behavior is

referred to as IBM Data Server Driver for JDBC and SQLJ type 2 connectivity. IBM

Data Server Driver for JDBC and SQLJ type 4 driver behavior is referred to as IBM

Data Server Driver for JDBC and SQLJ type 4 connectivity.

Two versions of the IBM Data Server Driver for JDBC and SQLJ are available. IBM

Data Server Driver for JDBC and SQLJ version 3.5x is JDBC 3.0-compliant. IBM

Data Server Driver for JDBC and SQLJ version 4.x is JDBC 4.0-compliant.

The IBM Data Server Driver for JDBC and SQLJ supports these JDBC and SQLJ

functions:

2 Developing Java Applications

v Version 3.5x supports all of the methods that are described in the JDBC 3.0

specifications.

v Version 4.x supports all of the methods that are described in the JDBC 4.0

specifications.

v SQLJ application programming interfaces, as defined by the SQLJ standards, for

simplified data access from Java applications.

v Connections that are enabled for connection pooling. WebSphere® Application

Server or another application server does the connection pooling.

v Connections to a database within Java user-defined functions and stored

procedures (IBM Data Server Driver for JDBC and SQLJ type 2 connectivity

only. Calling applications can use type 2 connectivity or type 4 connectivity.)

The IBM Data Server Driver for JDBC and SQLJ is the default driver for Java

routines.

v Support for distributed transaction management. This support implements the

Java 2 Platform, Enterprise Edition (J2EE) Java Transaction Service (JTS) and Java

Transaction API (JTA) specifications, which conform to the X/Open standard for

distributed transactions (Distributed Transaction Processing: The XA Specification,

available from http://www.opengroup.org).

DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2

JDBC type 2 driver) (deprecated)

The DB2 JDBC type 2 driver lets Java applications make calls to DB2 through

JDBC. Calls to the DB2 JDBC type 2 driver are implemented with Java native

methods. The DB2 JDBC Type 2 Driver uses the DB2 CLI interface to communicate

with DB2 databases. The Java applications that use this driver must run on a DB2

client, through which JDBC requests flow to the DB2 database. DB2® Connect™

must be installed before the DB2 JDBC application driver can be used to access

DB2 for i data sources or data sources in the DB2 for z/OS® environments.

The DB2 JDBC type 2 driver supports these JDBC and SQLJ functions:

v Most of the methods that are described in the JDBC 1.2 specification, and some

of the methods that are described in the JDBC 2.0 specification.

v SQLJ statements that perform equivalent operations to all JDBC methods

v Connection pooling

v Distributed transactions

v Java user-defined functions and stored procedures

The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows will not be supported

in future releases. You should therefore consider moving to the IBM Data Server

Driver for JDBC and SQLJ.

JDBC driver and database version compatibility

The compatibility of a particular version of the IBM Data Server Driver for JDBC

and SQLJ with a database version depends on the type of driver connectivity that

you are using and the type of data source to which you are connecting.

Compatibility for IBM Data Server Driver for JDBC and SQLJ type

4 connectivity

The IBM Data Server Driver for JDBC and SQLJ is always downward compatible

with DB2 databases at the previous release level. For example, IBM Data Server

Driver for JDBC and SQLJ type 4 connectivity from the IBM Data Server Driver for

JDBC and SQLJ version 3.50, which is shipped with DB2 Database for Linux,

Chapter 1. Java application development for IBM data servers 3

UNIX, and Windows Version 9.5, to a DB2 Database for Linux, UNIX, and

Windows Version 8 database is supported.

The IBM Data Server Driver for JDBC and SQLJ is upward compatible with the

next version of a DB2 database if the applications under which the driver runs use

no new features. For example, IBM Data Server Driver for JDBC and SQLJ type 4

connectivity from the IBM Data Server Driver for JDBC and SQLJ version 2.x,

which is shipped with DB2 for z/OS Version 8, to a DB2 for z/OS Version 9.1

database is supported, if the applications under which the driver runs contain no

DB2 for z/OS Version 9.1 features.

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to IBM Informix

Dynamic Server is supported only for IDS Version 11 and later.

Compatibility for IBM Data Server Driver for JDBC and SQLJ type

2 connectivity

In general, IBM Data Server Driver for JDBC and SQLJ type 2 connectivity is

intended for connections to the local database system, using the driver version that

is shipped with that database version. For example, version 3.5x of the IBM Data

Server Driver for JDBC and SQLJ is shipped with DB2 Database for Linux, UNIX,

and Windows Version 9.5 and DB2 for z/OS Version 8 and Version 9.1.

However, for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to a

local DB2 Database for Linux, UNIX, and Windows database, the database version

can be one version earlier or one version later than the DB2 Database for Linux,

UNIX, and Windows version with which the driver was shipped. For IBM Data

Server Driver for JDBC and SQLJ type 2 connectivity to a local DB2 for z/OS

subsystem, the subsystem version can be one version later than the DB2 for z/OS

version with which the driver was shipped.

If the database version to which your applications are connecting is later than the

database version with which the driver was shipped, the applications cannot use

features of the later database version.

4 Developing Java Applications

Chapter 2. Installing the IBM Data Server Driver for JDBC and

SQLJ

After you install the IBM Data Server Driver for JDBC and SQLJ, you can prepare

and run JDBC or SQLJ applications.

Before you install the IBM Data Server Driver for JDBC and SQLJ, you need the

following software.

v An SDK for Java, 1.4.2 or later.

For all DB2 products except the IBM Data Server Runtime Client and the IBM

Data Server Driver Package, the DB2 Database for Linux, UNIX, and Windows

installation process automatically installs the SDK for Java, Version 5.

If you want to use JDBC 4.0 functions, you need to install an SDK for Java, 6 or

later.

If you plan to run JDBC or SQLJ applications on your system, but not to prepare

them, you need a Java run-time environment only.

Important: Support for the SDK for Java 1.4.2 is deprecated for Java routines,

and might be discontinued in a future release.

v JVM native threads support

Any JVMs that run Java applications that access DB2 databases must include

native threads support. You can specify native threads as the default thread

support for some JVMs by setting the THREADS_FLAG environment variable to

″native″. Refer to the documentation for your Java environment for instructions

on making native threads the default on your system.

v Unicode support for System i® servers

If any SQLJ or JDBC programs will use IBM Data Server Driver for JDBC and

SQLJ type 4 connectivity to connect to a DB2 for i server, the System i operating

system must support the Unicode UTF-8 encoding scheme. The following table

lists the System i PTFs that you need for Unicode UTF-8 support:

 Table 1. System i PTFs for Unicode UTF-8 support

System i version PTF numbers

V5R3 or later None (support is included)

v Java support for HP-UX clients and servers

HP-UX servers: The IBM Data Server Driver for JDBC and SQLJ does not support

databases that are in the HP-UX default character set, Roman8. Therefore, when

you create a database on an HP-UX server that you plan to access with the IBM

Data Server Driver for JDBC and SQLJ, you need to create the database with a

different character set.

HP-UX clients and servers: The Java environment on an HP-UX system requires

special setup to run stored procedures under the IBM Data Server Driver for

JDBC and SQLJ.

Restriction: If you install the IBM Data Server Driver for JDBC and SQLJ on a

Windows 64-bit operating system, you cannot use IBM Data Server Driver for

JDBC and SQLJ type 2 connectivity to connect to a DB2 Database for Linux, UNIX,

and Windows instance from a 32-bit Java application.

© Copyright IBM Corp. 2006, 2009 5

Follow these steps to install the IBM Data Server Driver for JDBC and SQLJ.

1. During the DB2 Database for Linux, UNIX, and Windows installation process,

select Java support on UNIX or Linux, or JDBC support on Windows. These

selections are defaults. If you have already installed DB2 Database for Linux,

UNIX, and Windows without JDBC support, you can run the installation

process in Custom mode to add JDBC support.

Selection of Java support or JDBC support causes the installation process to

perform the following actions:

v Installs the IBM Data Server Driver for JDBC and SQLJ class files.

The files are placed in the sqllib\java directory for Windows systems, or the

sqllib/java directory for UNIX or Linux systems.

The files names are:

db2jcc.jar or db2jcc4.jar

Include db2jcc.jar in the CLASSPATH if you plan to use the version

of the IBM Data Server Driver for JDBC and SQLJ that includes only

JDBC 3.0 and earlier functions.

 Include db2jcc4.jar in the CLASSPATH if you plan to use the version

of the IBM Data Server Driver for JDBC and SQLJ that includes

JDBC 4.0 and earlier functions.

sqlj.zip or sqlj4.zip

Include sqlj.zip in the CLASSPATH if you plan to prepare SQLJ

applications that include only JDBC 3.0 and earlier functions.

 Include sqlj4.zip in the CLASSPATH if you plan to prepare SQLJ

applications that include JDBC 4.0 and earlier functions.

v Modifies the CLASSPATH to include the IBM Data Server Driver for JDBC

and SQLJ class files.

Important: This step is performed automatically only for the db2jcc.jar and

sqlj.zip file. If you are using the db2jcc4.jar file or the sqlj4.zip file, you must

modify the CLASSPATH manually. Change db2jcc.jar to db2jcc4.jar or sqlj.zip

to sqlj4.zip in the CLASSPATH.

Important: Include db2jcc.jar or db2jcc4.jar in the CLASSPATH. Do not

include both files.

Important: Include sqlj.zip or sqlj4.zip in the CLASSPATH. Do not include

both files. Do not include db2jcc.jar with sqlj4.zip, or db2jcc4.jar with sqlj.zip.

v Installs IBM Data Server Driver for JDBC and SQLJ license files, and

modifies the CLASSPATH to include them.

The files are placed in the sqllib\java directory for Windows systems, or the

sqllib/java directory for UNIX or Linux systems. The file names are:

 Table 2. IBM Data Server Driver for JDBC and SQLJ license files

License file

Server to which license file permits

a connection Product that includes license file

db2jcc_license_cisuz.jar DB2 for z/OS

 DB2 for i

All DB2 Connect products

License files are not required for connections to DB2 Database for Linux,

UNIX, and Windows, Cloudscape®, or IBM Informix Dynamic Server (IDS)

databases from the IBM Data Server Driver for JDBC and SQLJ version 3.50

or later.

6 Developing Java Applications

v Installs IBM Data Server Driver for JDBC and SQLJ native libraries for

support of IBM Data Server Driver for JDBC and SQLJ type 2 connectivity.

The files are placed in the sqllib\bin directory for Windows systems, or the

sqllib/lib directory for UNIX or Linux systems.

The file names are:

libdb2jcct2.so

For AIX®, HP-UX on IPF, Linux, and Solaris

libdb2jcct2.sl

For HP-UX on PA-RISC

db2jcct2.dll

For Windows
2. Customize the driver-wide configuration properties, if any of the defaults are

inappropriate.

3. Configure TCP/IP.

Servers must be configured for TCP/IP communication in the following cases:

v JDBC or SQLJ applications that use IBM Data Server Driver for JDBC and

SQLJ type 4 connectivity.

v JDBC or SQLJ applications that use IBM Data Server Driver for JDBC and

SQLJ type 2 connectivity, and specify server and port in the connection URL.

Ensure that the TCP/IP listener is running. To activate the TCP/IP listener:

a. Set the environment variable DB2COMM to TCPIP:

 db2set DB2COMM=TCPIP

b. Update the database manager configuration file with the TCP/IP service

name as specified in the services file:

 db2 update dbm cfg using SVCENAME TCP/IP-service-name

The port number used for applets and SQLJ programs needs to be the same

as the TCP/IP SVCENAME number used in the database manager

configuration file.

c. Execute the db2stop and db2start commands for the service name setting to

take effect.
4. On DB2 Database for Linux, UNIX, and Windows servers on which you plan to

run Java stored procedures or user-defined functions, ensure that the

DB2_USE_DB2JCCT2_JROUTINE environment variable is not set, or is set to its

default value of YES, yes, ON, on, TRUE, true, or 1 on those database servers. This

setting indicates that Java stored procedures run under the IBM Data Server

Driver for JDBC and SQLJ.

If you need to run stored procedures under the DB2 JDBC Type 2 Driver for

Linux, UNIX and Windows, set the DB2_USE_DB2JCCT2_JROUTINE

environment variable to OFF.

5. On DB2 Database for Linux, UNIX, and Windows servers on which you plan to

run Java stored procedures or user-defined functions, update the database

manager configuration to include the path where the SDK for Java is located.

You can do this by entering commands similar to these on the server command

line:

v For database systems on UNIX or Linux:

db2 update dbm cfg using JDK_PATH /home/db2inst/jdk15

/home/db2inst/jdk15 is the path where the SDK for Java is installed.

v For database systems on Windows:

Chapter 2. Installing the IBM Data Server Driver for JDBC and SQLJ 7

db2 update dbm cfg using JDK_PATH c:\Program Files\jdk15

c:\Program Files\jdk15 is the path where the SDK for Java is installed.

To verify the correct value for the JDK_PATH field in the DB2 database manager

configuration, enter the following command on the database server:

db2 get dbm cfg

You might want to redirect the output to a file for easier viewing. The JDK_PATH

field appears near the beginning of the output.

6. If you plan to call SQL procedures that are on DB2 Database for Linux, UNIX,

and Windows servers from Java programs, and the date and time format that is

associated with the territory code of the database servers is not the USA

format, take the following actions:

a. Set the DB2_SQLROUTINE_PREPOPTS registry variable on the database

servers to indicate that the default datetime format is ISO:

 db2set DB2_SQLROUTINE_PREPOPTS="DATETIME ISO"

b. Redefine any existing SQL procedures that you plan to call from Java

programs.

These steps are necessary to ensure that the calling application receives date

and time values correctly.

7. If you plan to access DB2 for z/OS database servers with your Java

applications, follow the instructions in Special setup for accessing DB2 for z/OS

servers from Java programs.

DB2Binder utility

The DB2Binder utility binds the DB2 packages that are used at the database server

by the IBM Data Server Driver for JDBC and SQLJ, and grants EXECUTE authority

on the packages to PUBLIC. Optionally, the DB2Binder utility can rebind DB2

packages that are not part of the IBM Data Server Driver for JDBC and SQLJ.

DB2Binder syntax

�� java com.ibm.db2.jcc.DB2Binder -url jdbc : db2 : // server / database

:

port
 �

� -user user-ID -password password

-size

integer
 �

�

-collection

collection-name

�

,

-tracelevel

trace-option

 -action add

-action

replace

-action

drop

-action

rebind

�

�

-reopt

none

-reopt

always

-reopt

once

-reopt

auto

 -blocking all

-blocking

unambig

-blocking

no

-optprofile

profile-name

�

8 Developing Java Applications

�
-owner

authorization-ID

-sqlid

authorization-ID

-generic
 �

�
-package

package-name

-version

version-id

-bindoptions

″

options-string

″
 �

�
-verbose

-help
 ��

DB2Binder option descriptions

-url

Specifies the data source at which the IBM Data Server Driver for JDBC and

SQLJ packages are to be bound. The variable parts of the -url value are:

server

The domain name or IP address of the operating system on which the

database server resides.

port

The TCP/IP server port number that is assigned to the database server.

The default is 446.

database

The location name for the database server, as defined in the

SYSIBM.LOCATIONS catalog table.

-user

Specifes the user ID under which the packages are to be bound. This user must

have BIND authority on the packages.

-action

Specifies the action to perform on the packages.

add Indicates that a package can be created only if it does not already exist.

Add is the default.

replace

Indicates that a package can be created even if a package with the

same name already exists. The new package replaces the old package.

rebind

Indicates that the existing package should be rebound. This option

does not apply to IBM Data Server Driver for JDBC and SQLJ

packages. If -action rebind is specified, -generic must also be specified.

drop Indicates that packages should be dropped:

v For IBM Data Server Driver for JDBC and SQLJ packages, -action

drop indicates that some or all IBM Data Server Driver for JDBC and

SQLJ packages should be dropped. The number of packages

depends on the -size parameter.

v For user packages, -action drop indicates that the specified package

should be dropped.

-action drop applies only if the target database server is DB2 for z/OS.

-size

Controls the number of Statement, PreparedStatement, or CallableStatement

Chapter 2. Installing the IBM Data Server Driver for JDBC and SQLJ 9

objects that can be open concurrently, or the number of IBM Data Server

Driver for JDBC and SQLJ packages that are dropped.

 The meaning of the -size parameter depends on the -action parameter:

v If the value of -action is add or replace, the value of -size is an integer that

is used to calculate the number of DB2 packages that the IBM Data Server

Driver for JDBC and SQLJ binds. If the value of -size is integer, the total

number of packages is:

number-of-isolation-levels*

number-of-holdability-values*

integer+

number-of-packages-for-static-SQL

= 4*2*integer+1

The default -size value for -action add or -action replace is 3.

In most cases, the default of 3 is adequate. If your applications throw

SQLExceptions with -805 SQLCODEs, check that the applications close all

unused resources. If they do, increase the -size value.

If the value of -action is replace, and the value of -size results in fewer

packages than already exist, no packages are dropped.

v If the value of -action is drop, the value of -size is the number of packages

that are dropped. If -size is not specified, all IBM Data Server Driver for

JDBC and SQLJ packages are dropped.

v If the value of -action is rebind, -size is ignored.

-collection

Specifies the collection ID for IBM Data Server Driver for JDBC and SQLJ or

user packages. The default is NULLID. DB2Binder translates this value to

uppercase.

 You can create multiple instances of the IBM Data Server Driver for JDBC and

SQLJ packages on a single database server by running

com.ibm.db2.jcc.DB2Binder multiple times, and specifying a different value for

-collection each time. At run time, you select a copy of the IBM Data Server

Driver for JDBC and SQLJ by setting the currentPackageSet property to a

value that matches a -collection value.

-tracelevel

Specifies what to trace while DB2Binder runs.

-reopt

Specifies whether DB2 for z/OS database servers determine access paths at run

time. This option is valid only for connections to DB2 for z/OS database

servers. This option is not sent to the database server if it is not specified. In

that case, the database server determines the reoptimization behavior.

none Specifies that access paths are not determined at run time.

always

Specifies that access paths are determined each time a statement is run.

once Specifies that DB2 determines and caches the access path for a

dynamic statement only once at run time. DB2 uses this access path

until the prepared statement is invalidated, or until the statement is

removed from the dynamic statement cache and needs to be prepared

again.

auto Specifies that access paths are automatically determined by the

database server.

10 Developing Java Applications

-blocking

Specifies the type of row blocking for cursors.

ALL For cursors that are specified with the FOR READ ONLY clause or are

not specified as FOR UPDATE, blocking occurs.

UNAMBIG

For cursors that are specified with the FOR READ ONLY clause,

blocking occurs.

 Cursors that are not declared with the FOR READ ONLY or FOR

UPDATE clause which are not ambiguous and are read-only will be

blocked. Ambiguous cursors will not be blocked

NO Blocking does not occur for any cursor.

 For the definition of a read-only cursor and an ambiguous cursor, refer

to ″DECLARE CURSOR″.

-optprofile

Specifies an optimization profile that is used for optimization of data change

statements in the packages. This profile is an XML file that must exist on the

target server. If -optprofile is not specified, and the CURRENT

OPTIMIZATION PROFILE special register is set, the value of CURRENT

OPTIMIZATION PROFILE is used. If -optprofile is not specified, and

CURRENT OPTIMIZATION PROFILE is not set, no optimization profile is

used.

 -optprofile is valid only for connections to DB2 Database for Linux, UNIX, and

Windows database servers.

-owner

Specifies the authorization ID of the owner of the packages. The default value

is set by the database server.

 -owner applies only to IBM Data Server Driver for JDBC and SQLJ packages.

-sqlid

Specifies a value to which the CURRENT SQLID special register is set before

DB2Binder executes GRANT operations on the IBM Data Server Driver for

JDBC and SQLJ packages. If the primary authorization ID does not have a

sufficient level of authority to grant privileges on the packages, and the

primary authorization ID has an associated secondary authorization ID that

has those privileges, set -sqlid to the secondary authorization ID.

 -sqlid is valid only for connections to DB2 for z/OS database servers.

-generic

Specifies that DB2Binder rebinds a user package instead of the IBM Data

Server Driver for JDBC and SQLJ packages. If -generic is specified, -action

rebind and -package must also be specified.

-package

Specifies the name of the package that is to be rebound. This option applies

only to user packages. If -package is specified, -action rebind and -generic

must also be specified.

-version

Specifies the version ID of the package that is to be rebound. If -version is

specified, -action rebind, -package, and -generic must also be specified.

-bindoptions

Specifies a string that is enclosed in quotation marks. The contents of that

Chapter 2. Installing the IBM Data Server Driver for JDBC and SQLJ 11

string are one or more parameter and value pairs that represent options for

rebinding a user package. All items in the string are delimited with spaces:

"parm1 value1 parm2 value2 ... parmn valuen"

-bindoptions does not apply to IBM Data Server Driver for JDBC and SQLJ

packages.

Possible parameters and values are:

bindObjectExistenceRequired

Specifies whether the database server issues an error and does not

rebind the package, if all objects or needed privileges do not exist at

rebind time. Possible values are:

true This option corresponds to the SQLERROR(NOPACKAGE)

bind option.

false This option corresponds to the SQLERROR(CONTINUE) bind

option.

degreeIOParallelism

Specifies whether to attempt to run static queries using parallel

processing to maximize performance. Possible values are:

1 No parallel processing.

 This option corresponds to the DEGREE(1) bind option.

-1 Allow parallel processing.

 This option corresponds to the DEGREE(ANY) bind option.

packageAuthorizationRules

Determines the values that apply at run time for the following

dynamic SQL attributes:

v The authorization ID that is used to check authorization

v The qualifier that is used for unqualified objects

v The source for application programming options that the database

server uses to parse and semantically verify dynamic SQL statements

v Whether dynamic SQL statements can include GRANT, REVOKE,

ALTER, CREATE, DROP, and RENAME statements

Possible values are:

0 Use run behavior. This is the default.

 This option corresponds to the DYNAMICRULES(RUN) bind

option.

1 Use bind behavior.

 This option corresponds to the DYNAMICRULES(BIND) bind

option.

2 When the package is run as or runs under a stored procedure

or user-defined function package, the database server processes

dynamic SQL statements using invoke behavior. Otherwise, the

database server processes dynamic SQL statements using run

behavior.

 This option corresponds to the

DYNAMICRULES(INVOKERUN) bind option.

3 When the package is run as or runs under a stored procedure

12 Developing Java Applications

or user-defined function package, the database server processes

dynamic SQL statements using invoke behavior. Otherwise, the

database server processes dynamic SQL statements using bind

behavior.

 This option corresponds to the

DYNAMICRULES(INVOKEBIND) bind option.

4 When the package is run as or runs under a stored procedure

or user-defined function package, the database server processes

dynamic SQL statements using define behavior. Otherwise, the

database server processes dynamic SQL statements using run

behavior.

 This option corresponds to the

DYNAMICRULES(DEFINERUN) bind option.

5 When the package is run as or runs under a stored procedure

or user-defined function package, the database server processes

dynamic SQL statements using define behavior. Otherwise, the

database server processes dynamic SQL statements using bind

behavior.

 This option corresponds to the

DYNAMICRULES(DEFINEBIND) bind option.

packageOwnerIdentifier

Specifies the authorization ID of the owner of the packages.

isolationLevel

Specifies how far to isolate an application from the effects of other

running applications. Possible values are:

1 Uncommitted read

 This option corresponds to the ISOLATION(UR) bind option.

2 Cursor stability

 This option corresponds to the ISOLATION(CS) bind option.

3 Read stability

 This option corresponds to the ISOLATION(RS) bind option.

4 Repeatable read

 This option corresponds to the ISOLATION(RR) bind option.

releasePackageResourcesAtCommit

Specifies when to release resources that a program uses at each commit

point. Possible values are:

true This option corresponds to the RELEASE(COMMIT) bind

option.

false This option corresponds to the RELEASE(DEALLOCATE) bind

option.

If -bindoptions is specified, -generic must also be specified.

-verbose

Specifies that the DB2Binder utility displays detailed information about the

bind process.

Chapter 2. Installing the IBM Data Server Driver for JDBC and SQLJ 13

-help

Specifies that the DB2Binder utility describes each of the options that it

supports. If any other options are specified with -help, they are ignored.

DB2Binder return codes when the target operating system is not

Windows

If the target data source for DB2Binder is not on the Windows operating system,

DB2Binder returns one of the following return codes.

 Table 3. DB2Binder return codes when the target operating system is not Windows

Return

code Meaning

0 Successful execution.

1 An error occurred during DB2Binder execution.

DB2Binder return codes when the target operating system is

Windows

If the target data source for DB2Binder is on the Windows operating system,

DB2Binder returns one of the following return codes.

 Table 4. DB2Binder return codes when the target operating system is Windows

Return

code Meaning

0 Successful execution.

-100 No bind options were specified.

-101 -url value was not specified.

-102 -user value was not specified.

-103 -password value was not specified.

-200 No valid bind options were specified.

-114 The -package option was not specified, but the -generic option was specified.

-201 -url value is invalid.

-204 -action value is invalid.

-205 -blocking value is invalid.

-206 -collection value is invalid.

-207 -dbprotocol value is invalid.

-208 -keepdynamic value is invalid.

-210 -reopt value is invalid.

-211 -size value is invalid.

-212 -tracelevel value is invalid.

-307 -dbprotocol value is not supported by the target database server.

-308 -keepdynamic value is not supported by the target database server.

-310 -reopt value is not supported by the target database server.

-313 -optprofile value is not supported by the target database server.

-401 The Binder class was not found.

-402 Connection to the database server failed.

14 Developing Java Applications

Table 4. DB2Binder return codes when the target operating system is Windows (continued)

Return

code Meaning

-403 DatabaseMetaData retrieval for the database server failed.

-501 No more packages are available in the cluster.

-502 An existing package is not valid.

-503 The bind process returned an error.

-999 An error occurred during processing of an undocumented bind option.

DB2LobTableCreator utility

The DB2LobTableCreator utility creates tables on a DB2 for z/OS database server.

Those tables are required by JDBC or SQLJ applications that use LOB locators to

access data in DBCLOB or CLOB columns.

DB2LobTableCreator syntax

�� java com.ibm.db2.jcc.DB2LobTableCreator -url jdbc:db2: //server / database

:port
 �

� -user user-ID -password password

-help
 ��

DB2LobTableCreator option descriptions

-url

Specifies the data source at which DB2LobTableCreator is to run. The variable

parts of the -url value are:

jdbc:db2:

Indicates that the connection is to a server in the DB2 family.

server

The domain name or IP address of the database server.

port

The TCP/IP server port number that is assigned to the database server.

This is an integer between 0 and 65535. The default is 446.

database

A name for the database server.

 database is the DB2 location name that is defined during installation. All

characters in this value must be uppercase characters. You can determine

the location name by executing the following SQL statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

-user

Specifes the user ID under which DB2LobTableCreator is to run. This user

must have authority to create tables in the DSNATPDB database.

-password

Specifes the password for the user ID.

-help

Specifies that the DB2LobTableCreator utility describes each of the options that

it supports. If any other options are specified with -help, they are ignored.

Chapter 2. Installing the IBM Data Server Driver for JDBC and SQLJ 15

Customization of IBM Data Server Driver for JDBC and SQLJ

configuration properties

The IBM Data Server Driver for JDBC and SQLJ configuration properties let you

set property values that have driver-wide scope. Those settings apply across

applications and DataSource instances. You can change the settings without having

to change application source code or DataSource characteristics.

Each IBM Data Server Driver for JDBC and SQLJ configuration property setting is

of this form:

property=value

You can set configuration properties in the following ways:

v Set the configuration properties as Java system properties. Configuration

property values that are set as Java system properties override configuration

property values that are set in any other ways.

For stand-alone Java applications, you can set the configuration properties as

Java system properties by specifying -Dproperty=value for each configuration

property when you execute the java command.

v Set the configuration properties in a resource whose name you specify in the

db2.jcc.propertiesFile Java system property. For example, you can specify an

absolute path name for the db2.jcc.propertiesFile value.

For stand-alone Java applications, you can set the configuration properties by

specifying the -Ddb2.jcc.propertiesFile=path option when you execute the java

command.

v Set the configuration properties in a resource named

DB2JccConfiguration.properties. A standard Java resource search is used to find

DB2JccConfiguration.properties. The IBM Data Server Driver for JDBC and SQLJ

searches for this resource only if you have not set the db2.jcc.propertiesFile Java

system property.

DB2JccConfiguration.properties can be a stand-alone file, or it can be included in

a JAR file.

If the DB2JccConfiguration.properties file is in the ISO 8859-1 (Latin-1) encoding

scheme, or is in the Latin-1 encoding scheme with some Unicode-encoded

(\udddd) characters, you do not need to do character conversion before the IBM

Data Server Driver for JDBC and SQLJ can use the file. If the

DB2JccConfiguration.properties file is in some other encoding scheme, you need

to use the Java native2ascii converter to convert the contents to Latin-1 or

Unicode-encoded characters.

If DB2JccConfiguration.properties is a stand-alone file, the path for

DB2JccConfiguration.properties must be in the CLASSPATH concatenation.

If DB2JccConfiguration.properties is in a JAR file, the JAR file must be in the

CLASSPATH concatenation.

Special setup for accessing DB2 for z/OS servers from Java programs

If you plan to write JDBC or SQLJ applications that access DB2 for z/OS database

servers, your IBM Data Server Driver for JDBC and SQLJ installation process

requires additional steps.

Follow these steps to allow connectivity to DB2 for z/OS servers:

1. If you plan to connect to any DB2 for z/OS Version 7 or Version 8 database

servers, install these PTFs on those database servers.

16 Developing Java Applications

Table 5. PTFs for DB2 for z/OS stored procedures

DB2 for z/OS PTF or APAR numbers

Version 7 UQ72083, UQ93889, UK21848

Version 8 UQ93890, UK21849

Version 9 PK44166

2. Run the com.ibm.db2.jcc.DB2Binder utility to bind the DB2 packages that are

used at the server by the IBM Data Server Driver for JDBC and SQLJ.

3. On DB2 for z/OS database servers, customize and run job DSNTIJMS.

DSNTIJMS is located in data set prefix.SDSNSAMP. It performs the following

functions:

v Creates the following stored procedures to support DatabaseMetaData

methods, tracing, and error message formatting.

– SQLCOLPRIVILEGES

– SQLCOLUMNS

– SQLFOREIGNKEYS

– SQLFUNCTIONS

– SQLFUNCTIONCOLUMNS

– SQLGETTYPEINFO

– SQLPRIMARYKEYS

– SQLPROCEDURECOLS

– SQLPROCEDURES

– SQLSPECIALCOLUMNS

– SQLSTATISTICS

– SQLTABLEPRIVILEGES

– SQLTABLES

– SQLUDTS

– SQLCAMESSAGE
v Creates the following tables to support efficient storing of data in CLOB or

DBCLOB columns and the use of LOB locators for CLOB or DBCLOB

retrieval:

– SYSIBM.SYSDUMMYU

– SYSIBM.SYSDUMMYA

– SYSIBM.SYSDUMMYE

An alternative way to create those tables is to run the

com.ibm.db2.jcc.DB2LobTableCreator utility on the client, against each of the

DB2 for z/OS servers.
4. Enable Unicode support for OS/390® and z/OS servers.

If any SQLJ or JDBC programs will use IBM Data Server Driver for JDBC and

SQLJ type 4 connectivity to connect to a DB2 for z/OS Version 7 server, the

OS/390 or z/OS operating system must support the Unicode UTF-8 encoding

scheme. This support requires OS/390 Version 2 Release 9 with APAR

OW44581, or a later release of OS/390 or z/OS, plus the OS/390 R8/R9/R10

Support for Unicode. Information APARs II13048 and II13049 contain additional

information.

5. If you plan to use IBM Data Server Driver for JDBC and SQLJ type 4

connectivity to implement distributed transactions against DB2 for z/OS

Version 7 servers, run the DB2T4XAIndoubtUtil utility once for each of those

DB2 for z/OS Version 7 servers.

Chapter 2. Installing the IBM Data Server Driver for JDBC and SQLJ 17

DB2T4XAIndoubtUtil for distributed transactions with DB2 UDB for

OS/390 and z/OS Version 7 servers

If you plan to implement distributed transactions using IBM Data Server Driver for

JDBC and SQLJ type 4 connectivity that include DB2 UDB for OS/390 and z/OS

Version 7 servers, you need to run the DB2T4XAIndoubtUtil utility against those

servers.

DB2T4XAIndoubtUtil allows Version 7 servers, which do not have built-in support

for distributed transactions that implement the XA specification, to emulate that

support.

DB2T4XAIndoubtUtil performs one or both of the following tasks:

v Creates a table named SYSIBM.INDOUBT and an associated index

v Binds DB2 packages named T4XAIN01, T4XAIN02, T4XAIN03, and T4XAIN04

You should create and drop packages T4XAIN01, T4XAIN02, T4XAIN03, and

T4XAIN04 only by running DB2T4XAIndoubtUtil. You can create and drop

SYSTEM.INDOUBT and its index manually, but it is recommended that you use

the utility. See DB2T4XAIndoubtUtil usage notes for instructions on how to create

those objects manually.

DB2T4XAIndoubtUtil authorization

To run the DB2T4XAIndoubtUtil utility to create SYSTEM.INDOUBT and bind

packages T4XAIN01, T4XAIN02, T4XAIN03, and T4XAIN04, you need SYSADM

authority.

To run the DB2T4XAIndoubtUtil only to bind packages T4XAIN01, T4XAIN02,

T4XAIN03, and T4XAIN04, you need BIND authority on the packages.

DB2T4XAIndoubtUtil syntax

�� java com.ibm.db2.jcc.DB2T4XAIndoubtUtil -url jdbc:db2: //server / database

:port
 �

� -user user-ID -password password

-owner

owner-ID

-help

-delete
 �

�
-priqty

integer

-secqty

integer

-bindonly

-showSQL
 �

�
 -jdbcCollection NULLID

-jdbcCollection

collection-ID

��

DB2T4XAIndoubtUtil parameter descriptions

-url

Specifies the data source at which DB2T4XAIndoubtUtil is to run. The variable

parts of the -url value are:

jdbc:db2:

Indicates that the connection is to a server in the DB2 family.

18 Developing Java Applications

server

The domain name or IP address of the database server.

port

The TCP/IP server port number that is assigned to the database server.

This is an integer between 0 and 65535. The default is 446.

database

A name for the database server.

 database is the DB2 location name that is defined during installation. All

characters in this value must be uppercase characters. You can determine

the location name by executing the following SQL statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

-user

Specifes the user ID under which DB2T4XAIndoubtUtil is to run. This user

must have SYSADM authority or must be a member of a RACF® group that

corresponds to a secondary authorization ID with SYSADM authority.

-password

Specifes the password for the user ID.

-owner

Specifies a secondary authorization ID that has SYSADM authority. Use the

-owner parameter if the -user parameter value does not have SYSADM

authority. The -user parameter value must be a member of a RACF group

whose name is owner-ID.

 When the -owner parameter is specified, DB2T4XAIndoubtUtil uses owner-ID

as:

v The authorization ID for creating the SYSIBM.INDOUBT table.

v The authorization ID of the owner of the T4XAIN01, T4XAIN02, T4XAIN03,

and T4XAIN04 packages. SQL statements in those packages are executed

using the authority of owner-ID.

-help

Specifies that the DB2T4XAIndoubtUtil utility describes each of the options

that it supports. If any other options are specified with -help, they are ignored.

-delete

Specifies that the DB2T4XAIndoubtUtil utility deletes the objects that were

created when DB2T4XAIndoubtUtil was run previously.

-priqty

Specifies the primary space allocation, in kilobytes, for the table space that

contains the SYSIBM.INDOUBT table. The default value for -priqty is 1000.

 Important: The -priqty value divided by the page size for the table space in

which SYSIBM.INDOUBT resides must be greater than the maximum number

of indoubt transactions that are allowed at a given time. For example, for a 4

KB page size, the default -priqty value of 1000 allows about 250 concurrent

indoubt transactions.

-secqty

Specifies the secondary space allocation, in kilobytes, for the table space that

contains the SYSIBM.INDOUBT table. The default value for -secqty is 0.

 Recommendation: Always use the default value of 0 for the -secqty value, and

specify a -priqty value that is large enough to accommodate the maximum

number of concurrent indoubt transactions.

Chapter 2. Installing the IBM Data Server Driver for JDBC and SQLJ 19

-bindonly

Specifies that the DB2T4XAIndoubtUtil utility binds the T4XAIN01, T4XAIN02,

T4XAIN03, and T4XAIN04 packages and grants permission to PUBLIC to

execute the packages, but does not create the SYSIBM.INDOUBT table.

-showSQL

Specifies that the DB2T4XAIndoubtUtil utility displays the SQL statements that

it executes.

-jdbcCollection collection-name|NULLID

Specifies the value of the -collection parameter that was used when the IBM

Data Server Driver for JDBC and SQLJ packages were bound with the

DB2Binder utility. The -jdbcCollection parameter must be specified if the

explicitly or implicitly specified value of the -collection parameter was not

NULLID.

 The default is -jdbcCollection NULLID.

DB2T4XAIndoubtUtil usage notes

To create the SYSTEM.INDOUBT table and its index manually, use these SQL

statements:

CREATE TABLESPACE INDBTTS

 USING STOGROUP

 LOCKSIZE ROW

 BUFFERPOOL BP0

 SEGSIZE 32

 CCSID EBCDIC;

CREATE TABLE SYSIBM.INDOUBT(indbtXid VARCHAR(140) FOR BIT DATA NOT NULL,

 uowId VARCHAR(25) FOR BIT DATA NOT NULL,

 pSyncLog VARCHAR(150) FOR BIT DATA,

 cSyncLog VARCHAR(150) FOR BIT DATA)

 IN INDBTTS;

CREATE UNIQUE INDEX INDBTIDX ON SYSIBM.INDOUBT(indbtXid, uowId);

DB2T4XAIndoubtUtil example

Run the DB2T4XAIndoubtUtil to allow a DB2 for OS/390 and z/OS Version 7

subsystem that has IP address mvs1, port number 446, and DB2 location name

SJCEC1 to participate in XA distributed transactions.

java com.ibm.db2.jcc.DB2T4XAIndoubtUtil -url jdbc:db2://mvs1:446/SJCEC1 \

 -user SYSADM -password mypass

Special setup for running Java routines in the HP-UX environment

For the HP-UX operating system on PA-RISC processors, you have extra

prerequisites for running Java stored procedures and user-defined functions.

In addition to the prerequisites in ″Installing the IBM Data Server Driver for JDBC

and SQLJ″, you need to perform the following prerequisite steps:

1. Enable the db2hpjv tool by issuing the following commands on the command

line:

db2hpjv -e

db2stop

db2start

If you need to disable db2hpjv, issue these commands:

20 Developing Java Applications

db2hpjv -d

db2stop

db2start

An SDK for Java must be installed on the operating system before you issue

db2hpjv -e.

2. Give the HP-UX run-time linker access to Java shared libraries.

To run Java stored procedures or user-defined functions, the HP-UX run-time

linker must be able to access certain Java shared libraries, and the DB2 system

must be able to load these libraries and the JVM. Because the program that

does this loading runs with setuid privileges, it looks for the dependent

libraries only in /usr/lib/pa20_64. To create access to the Java shared libraries,

choose one of the following methods:

v Create symbolic links to the Java shared libraries. To do that, log in as root,

and issue the following commands to create symbolic links to the Java

shared libraries:

ln -s /opt/java1.4/jre/lib/PA_RISC2.0W/*.sl /usr/lib/pa20_64

ln -s /opt/java1.4/jre/lib/PA_RISC2.0W/hotspot/*.sl /usr/lib/pa20_64

These commands create symbolic links to the following libraries:

/opt/java1.4/jre/lib/PA_RISC2.0W/libnet.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libzip.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/librmi.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libnio.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libverify.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libmlib_image.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libhprof.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libjaas_unix.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libawt.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libcmm.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libdcpr.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libdt_socket.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libfontmanager.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libioser12.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libmawt.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libjsound.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libjava.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libjawt.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libjcov.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libjcpm.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libjdwp.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/libjpeg.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/hotspot/libjsig.sl

/opt/java1.4/jre/lib/PA_RISC2.0W/hotspot/libjvm.sl

v Add the /opt/java1.4/jre/lib/PA_RISC2.0W and opt/java1.4/jre/lib/
PA_RISC2.0W/hotspot directories to the /etc/dld.sl.conf file, and to the

SHLIB_PATH environment.
3. Give the HP-UX run-time linker access to Java shared libraries.

If the DB2 server cannot find the shared Java libraries when it executes a Java

routine, it generates a -4300 error.

Chapter 2. Installing the IBM Data Server Driver for JDBC and SQLJ 21

22 Developing Java Applications

Chapter 3. JDBC application programming

Writing a JDBC application has much in common with writing an SQL application

in any other language.

In general, you need to do the following things:

v Access the Java packages that contain JDBC methods.

v Declare variables for sending data to or retrieving data from DB2 tables.

v Connect to a data source.

v Execute SQL statements.

v Handle SQL errors and warnings.

v Disconnect from the data source.

Although the tasks that you need to perform are similar to those in other

languages, the way that you execute those tasks is somewhat different.

Example of a simple JDBC application

A simple JDBC application demonstrates the basic elements that JDBC applications

need to include.

import java.sql.*; �1�

public class EzJava

{

 public static void main(String[] args)

 {

 String urlPrefix = "jdbc:db2:";

 String url;

 String empNo; �2�

 Connection con;

 Statement stmt;

 ResultSet rs;

 System.out.println ("**** Enter class EzJava");

 // Check the that first argument has the correct form for the portion

 // of the URL that follows jdbc:db2:,

 // as described

 // in the Connecting to a data source using the DriverManager

 // interface with the IBM Data Server Driver for JDBC and SQLJ topic.

 // For example, for IBM Data Server Driver for

 // JDBC and SQLJ type 2 connectivity,

 // args[0] might be MVS1DB2M. For

 // type 4 connectivity, args[0] might

 // be //stlmvs1:10110/MVS1DB2M.

 if (args.length==0)

 {

 System.err.println ("Invalid value. First argument appended to "+

 "jdbc:db2: must specify a valid URL.");

 System.exit(1);

 }

 url = urlPrefix + args[0];

Figure 1. Simple JDBC application

© Copyright IBM Corp. 2006, 2009 23

try

 {

 // Load the driver

 Class.forName("com.ibm.db2.jcc.DB2Driver"); �3a�

 System.out.println("**** Loaded the JDBC driver");

 // Create the connection using the IBM Data Server Driver for JDBC and SQLJ

 con = DriverManager.getConnection (url); �3b�

 // Commit changes manually

 con.setAutoCommit(false);

 System.out.println("**** Created a JDBC connection to the data source");

 // Create the Statement

 stmt = con.createStatement(); �4a�

 System.out.println("**** Created JDBC Statement object");

 // Execute a query and generate a ResultSet instance

 rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE"); �4b�

 System.out.println("**** Created JDBC ResultSet object");

 // Print all of the employee numbers to standard output device

 while (rs.next()) {

 empNo = rs.getString(1);

 System.out.println("Employee number = " + empNo);

 }

 System.out.println("**** Fetched all rows from JDBC ResultSet");

 // Close the ResultSet

 rs.close();

 System.out.println("**** Closed JDBC ResultSet");

 // Close the Statement

 stmt.close();

 System.out.println("**** Closed JDBC Statement");

 // Connection must be on a unit-of-work boundary to allow close

 con.commit();

 System.out.println ("**** Transaction committed");

 // Close the connection

 con.close(); �6�

 System.out.println("**** Disconnected from data source");

 System.out.println("**** JDBC Exit from class EzJava - no errors");

 }

 catch (ClassNotFoundException e)

 {

 System.err.println("Could not load JDBC driver");

 System.out.println("Exception: " + e);

 e.printStackTrace();

 }

 catch(SQLException ex) �5�

 {

 System.err.println("SQLException information");

 while(ex!=null) {

 System.err.println ("Error msg: " + ex.getMessage());

 System.err.println ("SQLSTATE: " + ex.getSQLState());

 System.err.println ("Error code: " + ex.getErrorCode());

 ex.printStackTrace();

 ex = ex.getNextException(); // For drivers that support chained exceptions

 }

 }

 } // End main

} // End EzJava

24 Developing Java Applications

Notes to Figure 1 on page 23:

 Note Description

1 This statement imports the java.sql package, which contains the JDBC core API.

For information on other Java packages that you might need to access, see ″Java

packages for JDBC support″.

2 String variable empNo performs the function of a host variable. That is, it is

used to hold data retrieved from an SQL query. See ″Variables in JDBC

applications″ for more information.

3a and 3b These two sets of statements demonstrate how to connect to a data source using

one of two available interfaces. See ″How JDBC applications connect to a data

source″ for more details.

Step 3a (loading the JDBC driver) is not necessary if you use JDBC 4.0.

4a and 4b These two sets of statements demonstrate how to perform a SELECT in JDBC.

For information on how to perform other SQL operations, see ″JDBC interfaces

for executing SQL″.

5 This try/catch block demonstrates the use of the SQLException class for SQL

error handling. For more information on handling SQL errors, see ″Handling an

SQLException under the IBM Data Server Driver for JDBC and SQLJ″. For

information on handling SQL warnings, see ″Handling an SQLWarning under

the IBM Data Server Driver for JDBC and SQLJ″.

6 This statement disconnects the application from the data source. See

″Disconnecting from data sources in JDBC applications″.

How JDBC applications connect to a data source

Before you can execute SQL statements in any SQL program, you must be

connected to a data source.

The IBM Data Server Driver for JDBC and SQLJ supports type 2 and type 4

connectivity. Connections to DB2 databases can use type 2 or type 4 connectivity.

Connections to IBM Informix Dynamic Server (IDS) databases can use type 4

connectivity.

The following figure shows how a Java application connects to a data source using

IBM Data Server Driver for JDBC and SQLJ type 2 connectivity.

Chapter 3. JDBC application programming 25

The following figure shows how a Java application connects to a data source using

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity.

Java application

DriverManager
or

DataSource

Local database
or DB2

subsystem

JDBC driver*

Database
server

*Java byte code executed under JVM,
and native code

Figure 2. Java application flow for IBM Data Server Driver for JDBC and SQLJ type 2

connectivity

Java application

DriverManager
or

DataSource

JDBC driver*

Database
server

*Java byte code executed under JVM

DRDA

Figure 3. Java application flow for IBM Data Server Driver for JDBC and SQLJ type 4

connectivity

26 Developing Java Applications

How DB2 applications connect to a data source using the

DriverManager interface with the DB2 JDBC Type 2 Driver

A JDBC application can establish a connection to a data source using the JDBC

DriverManager interface, which is part of the java.sql package.

The Java application first loads the JDBC driver by invoking the Class.forName

method. After the application loads the driver, it connects to a data source by

invoking the DriverManager.getConnection method.

For the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2 JDBC Type 2

Driver), you load the driver by invoking the Class.forName method with the

following argument:

COM.ibm.db2.jdbc.app.DB2Driver

The following code demonstrates loading the DB2 JDBC Type 2 Driver:

try {

 // Load the DB2 JDBC Type 2 Driver with DriverManager

 Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");

} catch (ClassNotFoundException e) {

 e.printStackTrace();

}

The catch block is used to print an error if the driver is not found.

After you load the driver, you connect to the data source by invoking the

DriverManager.getConnection method. You can use one of the following forms of

getConnection:

getConnection(String url);

getConnection(String url, user, password);

getConnection(String url, java.util.Properties info);

The url argument represents a data source.

For the DB2 JDBC Type 2 Driver, specify a URL of the following form:

Syntax for a URL for the DB2 JDBC Type 2 Driver:

�� jdbc : db2 : database ��

The parts of the URL have the following meanings:

jdbc:db2:

jdbc:db2: indicates that the connection is to a DB2 data source.

database

A database alias. The alias refers to the DB2 database catalog entry on the DB2

client.

The info argument is an object of type java.util.Properties that contains a set of

driver properties for the connection. Specifying the info argument is an alternative

to specifying property=value strings in the URL.

Specifying a user ID and password for a connection: There are several ways to specify a

user ID and password for a connection:

v Use the form of the getConnection method that specifies user and password.

Chapter 3. JDBC application programming 27

v Use the form of the getConnection method that specifies info, after setting the

user and password properties in a java.util.Properties object.

Example: Setting the user ID and password in user and password parameters:

String url = "jdbc:db2:toronto";

 // Set URL for data source

String user = "db2adm";

String password = "db2adm";

Connection con = DriverManager.getConnection(url, user, password);

 // Create connection

Example: Setting the user ID and password in a java.util.Properties object:

Properties properties = new Properties(); // Create Properties object

properties.put("user", "db2adm"); // Set user ID for connection

properties.put("password", "db2adm"); // Set password for connection

String url = "jdbc:db2:toronto";

 // Set URL for data source

Connection con = DriverManager.getConnection(url, properties);

 // Create connection

Connecting to a data source using the DriverManager

interface with the IBM Data Server Driver for JDBC and SQLJ

A JDBC application can establish a connection to a data source using the JDBC

DriverManager interface, which is part of the java.sql package.

The steps for establishing a connection are:

1. Load the JDBC driver by invoking the Class.forName method.

If you are using JDBC 4.0, you do not need to explicitly load the JDBC driver.

For the IBM Data Server Driver for JDBC and SQLJ, you load the driver by

invoking the Class.forName method with the following argument:

com.ibm.db2.jcc.DB2Driver

For compatibility with previous JDBC drivers, you can use the following

argument instead:

COM.ibm.db2os390.sqlj.jdbc.DB2SQLJDriver

The following code demonstrates loading the IBM Data Server Driver for JDBC

and SQLJ:

try {

 // Load the IBM Data Server Driver for JDBC and SQLJ with DriverManager

 Class.forName("com.ibm.db2.jcc.DB2Driver");

} catch (ClassNotFoundException e) {

 e.printStackTrace();

}

The catch block is used to print an error if the driver is not found.

2. Connect to a data source by invoking the DriverManager.getConnection

method.

You can use one of the following forms of getConnection:

getConnection(String url);

getConnection(String url, user, password);

getConnection(String url, java.util.Properties info);

For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity, the

getConnection method must specify a user ID and password, through

parameters or through property values.

28 Developing Java Applications

The url argument represents a data source, and indicates what type of JDBC

connectivity you are using.

The info argument is an object of type java.util.Properties that contains a set of

driver properties for the connection. Specifying the info argument is an

alternative to specifying property=value; strings in the URL. See ″Properties for

the IBM Data Server Driver for JDBC and SQLJ″ for the properties that you can

specify.

There are several ways to specify a user ID and password for a connection:

v Use the form of the getConnection method that specifies url with

property=value; clauses, and include the user and password properties in the

URL.

v Use the form of the getConnection method that specifies user and password.

v Use the form of the getConnection method that specifies info, after setting the

user and password properties in a java.util.Properties object.

Example: Establishing a connection and setting the user ID and password in a URL:

String url = "jdbc:db2://myhost:5021/mydb:" +

 "user=dbadm;password=dbadm;";

 // Set URL for data source

Connection con = DriverManager.getConnection(url);

 // Create connection

Example: Establishing a connection and setting the user ID and password in user and

password parameters:

String url = "jdbc:db2://myhost:5021/mydb";

 // Set URL for data source

String user = "dbadm";

String password = "dbadm";

Connection con = DriverManager.getConnection(url, user, password);

 // Create connection

Example: Establishing a connection and setting the user ID and password in a

java.util.Properties object:

Properties properties = new Properties(); // Create Properties object

properties.put("user", "dbadm"); // Set user ID for connection

properties.put("password", "dbadm"); // Set password for connection

String url = "jdbc:db2://myhost:5021/mydb";

 // Set URL for data source

Connection con = DriverManager.getConnection(url, properties);

 // Create connection

URL format for IBM Data Server Driver for JDBC and SQLJ type

4 connectivity

If you are using type 4 connectivity in your JDBC application, and you are making

a connection using the DriverManager interface, you need to specify a URL in the

DriverManager.getConnection call that indicates type 4 connectivity.

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity URL

syntax

�� jdbc:db2: // server

jdbc:db2j:net:

jdbc:ids:

:

port
 / database

�

:

property

=

value

;

 ��

Chapter 3. JDBC application programming 29

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity URL

option descriptions

The parts of the URL have the following meanings:

jdbc:db2: or jdbc:db2j:net:

The meanings of the initial portion of the URL are:

jdbc:db2:

Indicates that the connection is to a DB2 for z/OS, DB2 Database for

Linux, UNIX, and Windows.

 jdbc:db2: can also be used for a connection to an IBM Informix

Dynamic Server (IDS) database, for application portability.

jdbc:db2j:net:

Indicates that the connection is to a remote IBM Cloudscape server.

jdbc:ids:

Indicates that the connection is to an IDS data source.

jdbc:informix-sqli: also indicates that the connection is to an IDS data

source, but jdbc:ids: should be used.

server

The domain name or IP address of the data source.

port

The TCP/IP server port number that is assigned to the data source. This is an

integer between 0 and 65535. The default is 446.

database

A name for the data source.

v If the connection is to a DB2 for z/OS server, database is the DB2 location

name that is defined during installation. All characters in the DB2 location

name must be uppercase characters. The IBM Data Server Driver for JDBC

and SQLJ does not convert lowercase characters in the database value to

uppercase for IBM Data Server Driver for JDBC and SQLJ type 4

connectivity.

You can determine the location name by executing the following SQL

statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

v If the connection is to a DB2 for z/OS server or a DB2 for i server, all

characters in database must be uppercase characters.

v If the connection is to a DB2 Database for Linux, UNIX, and Windows

server, database is the database name that is defined during installation.

v If the connection is to an IDS server, database is the database name. The

name is case-insensitive. The server converts the name to lowercase.

v If the connection is to an IBM Cloudscape server, the database is the

fully-qualified name of the file that contains the database. This name must

be enclosed in double quotation marks (″). For example:

"c:/databases/testdb"

property=value;

A property and its value for the JDBC connection. You can specify one or more

property and value pairs. Each property and value pair, including the last one,

must end with a semicolon (;). Do not include spaces or other white space

characters anywhere within the list of property and value strings.

30 Developing Java Applications

Some properties with an int data type have predefined constant field values.

You must resolve constant field values to their integer values before you can

use those values in the url parameter. For example, you cannot use

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL in a url parameter. However,

you can build a URL string that includes

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL, and assign the URL string

to a String variable. Then you can use the String variable in the url parameter:

 String url =

 "jdbc:db2://sysmvs1.stl.ibm.com:5021" +

 "user=dbadm;password=dbadm;" +

 "traceLevel=" +

 (com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL) + ";";

 Connection con =

 java.sql.DriverManager.getConnection(url);

URL format for IBM Data Server Driver for JDBC and SQLJ type

2 connectivity

If you are using type 2 connectivity in your JDBC application, and you are making

a connection using the DriverManager interface, you need to specify a URL in the

DriverManager.getConnection call that indicates type 2 connectivity.

IBM Data Server Driver for JDBC and SQLJ type 2 connectivity URL

syntax

�� jdbc : db2 : database

jdbc

:

db2os390

:

database

jdbc

:

db2os390sqlj

:

database

jdbc

:

default

:

connection

jdbc

:

db2os390

jdbc

:

db2os390sqlj

�

:

property

=

value

;

 ��

IBM Data Server Driver for JDBC and SQLJ type 2 connectivity URL

options descriptions

The parts of the URL have the following meanings:

jdbc:db2: or jdbc:db2os390: or jdbc:db2os390sqlj: or jdbc:default:connection

The meanings of the initial portion of the URL are:

jdbc:db2: or jdbc:db2os390: or jdbc:db2os390sqlj:

Indicates that the connection is to a DB2 for z/OS or DB2 Database for

Linux, UNIX, and Windows server. jdbc:db2os390: and

jdbc:db2os390sqlj: are for compatibility of programs that were written

for older drivers, and apply to IBM Data Server Driver for JDBC and

SQLJ type 2 connectivity to DB2 for z/OS only.

jdbc:default:connection

Indicates that the URL is for a connection to the local subsystem

through a DB2 thread that is controlled by CICS®, IMS™, or the Java

stored procedure environment.

database

A name for the database server.

v database is the database name that is defined during installation, if the value

of the serverName connection property is null. If the value of serverName

property is not null, database is a database alias.

Chapter 3. JDBC application programming 31

property=value;

A property and its value for the JDBC connection. You can specify one or more

property and value pairs. Each property and value pair, including the last one,

must end with a semicolon (;). Do not include spaces or other white space

characters anywhere within the list of property and value strings.

 Some properties with an int data type have predefined constant field values.

You must resolve constant field values to their integer values before you can

use those values in the url parameter. For example, you cannot use

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL in a url parameter. However,

you can build a URL string that includes

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL, and assign the URL string

to a String variable. Then you can use the String variable in the url parameter:

 String url =

 "jdbc:db2:STLEC1" +

 "user=dbadm;password=dbadm;" +

 "traceLevel=" +

 (com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL) + ";";

 Connection con =

 java.sql.DriverManager.getConnection(url);

Connecting to a data source using the DataSource interface

If your applications need to be portable among data sources, you should use the

DataSource interface.

Using DriverManager to connect to a data source reduces portability because the

application must identify a specific JDBC driver class name and driver URL. The

driver class name and driver URL are specific to a JDBC vendor, driver

implementation, and data source.

When you connect to a data source using the DataSource interface, you use a

DataSource object.

The simplest way to use a DataSource object is to create and use the object in the

same application, as you do with the DriverManager interface. However, this

method does not provide portability.

The best way to use a DataSource object is for your system administrator to create

and manage it separately, using WebSphere Application Server or some other tool.

The program that creates and manages a DataSource object also uses the Java

Naming and Directory Interface (JNDI) to assign a logical name to the DataSource

object. The JDBC application that uses the DataSource object can then refer to the

object by its logical name, and does not need any information about the underlying

data source. In addition, your system administrator can modify the data source

attributes, and you do not need to change your application program.

To learn more about using WebSphere to deploy DataSource objects, go to this

URL on the Web:

http://www.ibm.com/software/webservers/appserv/

To learn about deploying DataSource objects yourself, see ″Creating and deploying

DataSource objects″.

You can use the DataSource interface and the DriverManager interface in the same

application, but for maximum portability, it is recommended that you use only the

DataSource interface to obtain connections.

32 Developing Java Applications

To obtain a connection using a DataSource object that the system administrator has

already created and assigned a logical name to, follow these steps:

1. From your system administrator, obtain the logical name of the data source to

which you need to connect.

2. Create a Context object to use in the next step. The Context interface is part of

the Java Naming and Directory Interface (JNDI), not JDBC.

3. In your application program, use JNDI to get the DataSource object that is

associated with the logical data source name.

4. Use the DataSource.getConnection method to obtain the connection.

You can use one of the following forms of the getConnection method:

getConnection();

getConnection(String user, String password);

Use the second form if you need to specify a user ID and password for the

connection that are different from the ones that were specified when the

DataSource was deployed.

Example of obtaining a connection using a DataSource object that was created by the

system administrator: In this example, the logical name of the data source that you

need to connect to is jdbc/sampledb. The numbers to the right of selected

statements correspond to the previously-described steps.

Example of creating and using a DataSource object in the same application:

import java.sql.*; // JDBC base

import javax.sql.*; // Addtional methods for JDBC

import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC and SQLJ �1�

 // interfaces

DB2SimpleDataSource dbds=new DB2SimpleDataSource(); �2�

dbds.setDatabaseName("dbloc1"); �3�

 // Assign the location name

dbds.setDescription("Our Sample Database");

 // Description for documentation

dbds.setUser("john");

 // Assign the user ID

dbds.setPassword("dbadm");

 // Assign the password

Connection con=dbds.getConnection(); �4�

 // Create a Connection object

 Note Description

1 Import the package that contains the implementation of the DataSource interface.

2 Creates a DB2SimpleDataSource object. DB2SimpleDataSource is one of the IBM

Data Server Driver for JDBC and SQLJ implementations of the DataSource

interface. See ″Creating and deploying DataSource objects″ for information on

DB2’s DataSource implementations.

import java.sql.*;

import javax.naming.*;

import javax.sql.*;

...

Context ctx=new InitialContext(); �2�

DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb"); �3�

Connection con=ds.getConnection(); �4�

Figure 4. Obtaining a connection using a DataSource object

Figure 5. Creating and using a DataSource object in the same application

Chapter 3. JDBC application programming 33

Note Description

3 The setDatabaseName, setDescription, setUser, and setPassword methods assign

attributes to the DB2SimpleDataSource object. See ″Properties for the IBM Data

Server Driver for JDBC and SQLJ″ for information about the attributes that you

can set for a DB2SimpleDataSource object under the IBM Data Server Driver for

JDBC and SQLJ.

4 Establishes a connection to the data source that DB2SimpleDataSource object dbds

represents.

How to determine which type of IBM Data Server Driver for

JDBC and SQLJ connectivity to use

The IBM Data Server Driver for JDBC and SQLJ supports two types of

connectivity: type 2 connectivity and type 4 connectivity.

For the DriverManager interface, you specify the type of connectivity through the

URL in the DriverManager.getConnection method. For the DataSource interface,

you specify the type of connectivity through the driverType property.

The following table summarizes the differences between type 2 connectivity and

type 4 connectivity:

 Table 6. Comparison of IBM Data Server Driver for JDBC and SQLJ type 2 connectivity and IBM Data Server Driver

for JDBC and SQLJ type 4 connectivity

Function

IBM Data Server Driver for JDBC

and SQLJ type 2 connectivity

support

IBM Data Server Driver for JDBC

and SQLJ type 4 connectivity

support

Sysplex workload balancing and

connection concentrator

Supported through DB2 Connect Supported directly by the driver for a

connection within a single JVM

Supported through DB2 Connect

across JVMs

Communication protocols TCP/IP TCP/IP

Performance Better for accessing a local DB2 server Better for accessing a remote DB2

server

Installation Requires installation of native

libraries in addition to Java classes

Requires installation of Java classes

only

Stored procedures Can be used to call or execute stored

procedures

Can be used only to call stored

procedures

Distributed transaction processing

(XA)

Supported Supported

J2EE 1.4 compliance Compliant Compliant

The following points can help you determine which type of connectivity to use.

Use IBM Data Server Driver for JDBC and SQLJ type 2 connectivity under these

circumstances:

v Your JDBC or SQLJ application runs locally most of the time.

Local applications have better performance with type 2 connectivity.

v You are running a Java stored procedure.

A stored procedure environment consists of two parts: a client program, from

which you call a stored procedure, and a server program, which is the stored

34 Developing Java Applications

procedure. You can call a stored procedure in a JDBC or SQLJ program that uses

type 2 or type 4 connectivity, but you must run a Java stored procedure using

type 2 connectivity.

Use IBM Data Server Driver for JDBC and SQLJ type 4 connectivity under these

circumstances:

v Your JDBC or SQLJ application runs remotely most of the time.

Remote applications have better performance with type 4 connectivity.

v You are using IBM Data Server Driver for JDBC and SQLJ connection

concentrator and Sysplex workload balancing support.

JDBC connection objects

When you connect to a data source by either connection method, you create a

Connection object, which represents the connection to the data source.

You use this Connection object to do the following things:

v Create Statement, PreparedStatement, and CallableStatement objects for

executing SQL statements. These are discussed in ″Executing SQL statements in

JDBC applications″.

v Gather information about the data source to which you are connected. This

process is discussed in ″Learning about a data source using DatabaseMetaData

methods″.

v Commit or roll back transactions. You can commit transactions manually or

automatically. These operations are discussed in ″Commit or roll back a JDBC

transaction″.

v Close the connection to the data source. This operation is discussed in

″Disconnecting from data sources in JDBC applications″.

Creating and deploying DataSource objects

JDBC versions starting with version 2.0 provide the DataSource interface for

connecting to a data source. Using the DataSource interface is the preferred way to

connect to a data source.

Using the DataSource interface involves two parts:

v Creating and deploying DataSource objects. This is usually done by a system

administrator, using a tool such as WebSphere Application Server.

v Using the DataSource objects to create a connection. This is done in the

application program.

This topic contains information that you need if you create and deploy the

DataSource objects yourself.

The IBM Data Server Driver for JDBC and SQLJ provides the following DataSource

implementations:

v com.ibm.db2.jcc.DB2SimpleDataSource, which does not support connection

pooling. You can use this implementation with IBM Data Server Driver for JDBC

and SQLJ type 2 connectivity or IBM Data Server Driver for JDBC and SQLJ

type 4 connectivity.

v com.ibm.db2.jcc.DB2ConnectionPoolDataSource, which supports connection

pooling. You can use this implementation with IBM Data Server Driver for JDBC

and SQLJ type 2 connectivity or IBM Data Server Driver for JDBC and SQLJ

type 4 connectivity.

Chapter 3. JDBC application programming 35

v com.ibm.db2.jcc.DB2XADataSource, which supports connection pooling and

distributed transactions. The connection pooling is provided by WebSphere

Application Server or another application server. You can use this

implementation only with IBM Data Server Driver for JDBC and SQLJ type 4

connectivity.

The DB2 JDBC Type 2 Driver provides the following DataSource implementations:

v COM.ibm.db2.jdbc.DB2DataSource, which is enabled for connection pooling.

With this implementation, connection pooling is handled internally and is

transparent to the application.

v COM.ibm.db2.jdbc.DB2XADataSource, which does not have built-in support for

distributed transactions and connection pooling. With this implementation, you

must manage the distributed transactions and connection pooling yourself,

either by writing your own code or by using a tool such as WebSphere

Application Server.

When you create and deploy a DataSource object, you need to perform these tasks:

1. Create an instance of the appropriate DataSource implementation.

2. Set the properties of the DataSource object.

3. Register the object with the Java Naming and Directory Interface (JNDI)

naming service.

The following example shows how to perform these tasks.

 Note Description

1 Creates an instance of the DB2SimpleDataSource class.

2 This statement and the next three statements set values for properties of this

DB2SimpleDataSource object.

3 Creates a context for use by JNDI.

4 Associates DBSimple2DataSource object dbds with the logical name

jdbc/sampledb. An application that uses this object can refer to it by the name

jdbc/sampledb.

Java packages for JDBC support

Before you can invoke JDBC methods, you need to be able to access all or parts of

various Java packages that contain those methods.

import java.sql.*; // JDBC base

import javax.naming.*; // JNDI Naming Services

import javax.sql.*; // Additional methods for JDBC

import com.ibm.db2.jcc.*; // IBM Data Server Driver for

 // JDBC and SQLJ

 // implementation of JDBC

 // standard extension APIs

DB2SimpleDataSource dbds = new com.ibm.db2.jcc.DB2SimpleDataSource(); �1�

dbds.setDatabaseName("db2loc1"); �2�

dbds.setDescription("Our Sample Database");

dbds.setUser("john");

dbds.setPassword("mypw");

...

Context ctx=new InitialContext(); �3�

Ctx.bind("jdbc/sampledb",dbds); �4�

Figure 6. Example of creating and deploying a DataSource object

36 Developing Java Applications

You can do that either by importing the packages or specific classes, or by using

the fully-qualified class names. You might need the following packages or classes

for your JDBC program:

java.sql

Contains the core JDBC API.

javax.naming

Contains classes and interfaces for Java Naming and Directory Interface

(JNDI), which is often used for implementing a DataSource.

javax.sql

Contains methods for producing server-side applications using Java

javax.transaction

Contains JDBC support for distributed transactions for the DB2 JDBC Type

2 Driver for Linux, UNIX and Windows (DB2 JDBC Type 2 Driver).

com.ibm.db2.jcc

Contains the implementation of JDBC for the IBM Data Server Driver for

JDBC and SQLJ.

COM.ibm.db2.jdbc

Contains the implementation of the JDBC for the DB2 JDBC Type 2 Driver.

Learning about a data source using DatabaseMetaData methods

The DatabaseMetaData interface contains methods that retrieve information about

a data source. These methods are useful when you write generic applications that

can access various data sources.

In generic applications that can access various data sources, you need to test

whether a data source can handle various database operations before you execute

them. For example, you need to determine whether the driver at a data source is at

the JDBC 3.0 level before you invoke JDBC 3.0 methods against that driver.

DatabaseMetaData methods provide the following types of information:

v Features that the data source supports, such as the ANSI SQL level

v Specific information about the JDBC driver, such as the driver level

v Limits, such as the maximum number of columns that an index can have

v Whether the data source supports data definition statements (CREATE, ALTER,

DROP, GRANT, REVOKE)

v Lists of objects at the data source, such as tables, indexes, or procedures

v Whether the data source supports various JDBC functions, such as batch updates

or scrollable ResultSets

v A list of scalar functions that the driver supports

To invoke DatabaseMetaData methods, you need to perform these basic steps:

1. Create a DatabaseMetaData object by invoking the getMetaData method on the

connection.

2. Invoke DatabaseMetaData methods to get information about the data source.

3. If the method returns a ResultSet:

a. In a loop, position the cursor using the next method, and retrieve data from

each column of the current row of the ResultSet object using getXXX

methods.

b. Invoke the close method to close the ResultSet object.

Chapter 3. JDBC application programming 37

Example: The following code demonstrates how to use DatabaseMetaData methods

to determine the driver version, to get a list of the stored procedures that are

available at the data source, and to get a list of datetime functions that the driver

supports. The numbers to the right of selected statements correspond to the

previously-described steps.

Connection con;

DatabaseMetaData dbmtadta;

ResultSet rs;

int mtadtaint;

String procSchema;

String procName;

String dtfnList;

...

dbmtadta = con.getMetaData(); // Create the DatabaseMetaData object �1�

mtadtaint = dmtadta.getDriverVersion(); �2�

 // Check the driver version

System.out.println("Driver version: " + mtadtaint);

rs = dbmtadta.getProcedures(null, null, "%");

 // Get information for all procedures

while (rs.next()) { // Position the cursor �3a�

 procSchema = rs.getString("PROCEDURE_SCHEM");

 // Get procedure schema

 procName = rs.getString("PROCEDURE_NAME");

 // Get procedure name

 System.out.println(procSchema + "." + procName);

 // Print the qualified procedure name

}

dtfnList = dbmtadta.getTimeDateFunctions();

 // Get list of supported datetime functions

System.out.println("Supported datetime functions:");

System.out.println(dtfnList); // Print the list of datetime functions

rs.close(); // Close the ResultSet �3b�

DatabaseMetaData methods for identifying the type of data

source

You can use the DatabaseMetaData.getDatabaseProductName and

DatabaseMetaData.getProductVersion methods to identify the type and level of the

database manager to which you are connected, and the operating system on which

the database manager is running.

DatabaseMetaData.getDatabaseProductName returns a string that identifies the

database manager and the operating system. The string has one of the following

formats:

database-productdatabase-product/operating-system

The following table shows examples of values that are returned by

DatabaseMetaData.getDatabaseProductName.

 Table 7. Examples of DatabaseMetaData.getDatabaseProductName values

getDatabaseProductName value Database product

DB2 DB2 for z/OS

DB2/LINUXX8664 DB2 Database for Linux, UNIX, and Windows on Linux

on x86

IDS/UNIX64 IBM Informix Dynamic Server (IDS) on UNIX

Figure 7. Using DatabaseMetaData methods to get information about a data source

38 Developing Java Applications

DatabaseMetaData.getDatabaseVersionName returns a string that contains the

database product indicator and the version number, release number, and

maintenance level of the data source.

The following table shows examples of values that are returned by

DatabaseMetaData.getDatabaseProductVersion.

 Table 8. Examples of DatabaseMetaData.getDatabaseProductVersion values

getDatabaseProductVersion value Database product version

DSN09015 DB2 for z/OS Version 9.1 in new-function mode

SQL09010 DB2 Database for Linux, UNIX, and Windows Version 9.1

IFX11100 IDS Version 11.10

Variables in JDBC applications

As in any other Java application, when you write JDBC applications, you declare

variables. In Java applications, those variables are known as Java identifiers.

Some of those identifiers have the same function as host variables in other

languages: they hold data that you pass to or retrieve from database tables.

Identifier empNo in the following code holds data that you retrieve from the

EMPNO table column, which has the CHAR data type.

String empNo;

// Execute a query and generate a ResultSet instance

rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE");

while (rs.next()) {

 String empNo = rs.getString(1);

 System.out.println("Employee number = " + empNo);

}

Your choice of Java data types can affect performance because DB2 picks better

access paths when the data types of your Java variables map closely to the DB2

data types.

JDBC interfaces for executing SQL

You execute SQL statements in a traditional SQL program to update data in tables,

retrieve data from the tables, or call stored procedures. To perform the same

functions in a JDBC program, you invoke methods.

Those methods are defined in the following interfaces:

v The Statement interface supports all SQL statement execution. The following

interfaces inherit methods from the Statement interface:

– The PreparedStatement interface supports any SQL statement containing

input parameter markers. Parameter markers represent input variables. The

PreparedStatement interface can also be used for SQL statements with no

parameter markers.

With the IBM Data Server Driver for JDBC and SQLJ, the PreparedStatement

interface can be used to call stored procedures that have input parameters

and no output parameters, and that return no result sets. However, the

preferred interface is CallableStatement.

– The CallableStatement interface supports the invocation of a stored procedure.

The CallableStatement interface can be used to call stored procedures with

input parameters, output parameters, or input and output parameters, or no

Chapter 3. JDBC application programming 39

parameters. With the IBM Data Server Driver for JDBC and SQLJ, you can

also use the Statement interface to call stored procedures, but those stored

procedures must have no parameters.
v The ResultSet interface provides access to the results that a query generates. The

ResultSet interface has the same purpose as the cursor that is used in SQL

applications in other languages.

Creating and modifying database objects using the

Statement.executeUpdate method

The Statement.executeUpdate is one of the JDBC methods that you can use to

update tables and call stored procedures.

You can use the Statement.executeUpdate method to do the following things:

v Execute data definition statements, such as CREATE, ALTER, DROP, GRANT,

REVOKE

v Execute INSERT, UPDATE, DELETE, and MERGE statements that do not contain

parameter markers.

v With the IBM Data Server Driver for JDBC and SQLJ, execute the CALL

statement to call stored procedures that have no parameters and that return no

result sets.

To execute these SQL statements, you need to perform these steps:

1. Invoke the Connection.createStatement method to create a Statement object.

2. Invoke the Statement.executeUpdate method to perform the SQL operation.

3. Invoke the Statement.close method to close the Statement object.

Suppose that you want to execute this SQL statement:

UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’

The following code creates Statement object stmt, executes the UPDATE statement,

and returns the number of rows that were updated in numUpd. The numbers to the

right of selected statements correspond to the previously-described steps.

Updating data in tables using the

PreparedStatement.executeUpdate method

The Statement.executeUpdate method works if you update DB2 tables with

constant values. However, updates often need to involve passing values in

variables to DB2 tables. To do that, you use the PreparedStatement.executeUpdate

method.

With the IBM Data Server Driver for JDBC and SQLJ, you can also use

PreparedStatement.executeUpdate to call stored procedures that have input

parameters and no output parameters, and that return no result sets.

Connection con;

Statement stmt;

int numUpd;

...

stmt = con.createStatement(); // Create a Statement object �1�

numUpd = stmt.executeUpdate(

 "UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’"); �2�

 // Perform the update

stmt.close(); // Close Statement object �3�

Figure 8. Using Statement.executeUpdate

40 Developing Java Applications

DB2 for z/OS does not support dynamic execution of the CALL statement. For

calls to stored procedures that are on DB2 for z/OS data sources, the parameters

can be parameter markers or literals, but not expressions. The following types of

literals are supported:

v Integer

v Double

v Decimal

v Character

v Hexadecimal

v Graphic

For calls to stored procedures that are on IBM Informix Dynamic Server data

sources, the PreparedStatement object can be a CALL statement or an EXECUTE

PROCEDURE statement.

When you execute an SQL statement many times, you can get better performance

by creating the SQL statement as a PreparedStatement.

For example, the following UPDATE statement lets you update the employee table

for only one phone number and one employee number:

UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’

Suppose that you want to generalize the operation to update the employee table

for any set of phone numbers and employee numbers. You need to replace the

constant phone number and employee number with variables:

UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?

Variables of this form are called parameter markers. To execute an SQL statement

with parameter markers, you need to perform these steps:

1. Invoke the Connection.prepareStatement method to create a PreparedStatement

object.

2. Invoke the PreparedStatement.setXXX methods to pass values to the input

variables.

This step assumes that you use standard parameter markers. Alternatively, if

you use named parameter markers, you use IBM Data Server Driver for JDBC

and SQLJ-only methods to pass values to the input parameters.

3. Invoke the PreparedStatement.executeUpdate method to update the table with

the variable values.

4. Invoke the PreparedStatement.close method to close the PreparedStatement

object when you have finished using that object.

The following code performs the previous steps to update the phone number to

’4657’ for the employee with employee number ’000010’. The numbers to the right

of selected statements correspond to the previously-described steps.

Chapter 3. JDBC application programming 41

You can also use the PreparedStatement.executeUpdate method for statements that

have no parameter markers. The steps for executing a PreparedStatement object

with no parameter markers are similar to executing a PreparedStatement object

with parameter markers, except you skip step 2 on page 41. The following example

demonstrates these steps.

JDBC executeUpdate methods against a DB2 for z/OS server

The JDBC standard states that the executeUpdate method returns a row count or 0.

However, if the executeUpdate method is executed against a DB2 for z/OS server,

it can return a value of -1.

For executeUpdate statements against a DB2 for z/OS server, the value that is

returned depends on the type of SQL statement that is being executed:

v For an SQL statement that can have an update count, such as an INSERT,

UPDATE, DELETE, or MERGE statement, the returned value is the number of

affected rows. It can be:

– A positive number, if a positive number of rows are affected by the operation,

and the operation is not a mass delete on a segmented table space.

– 0, if no rows are affected by the operation.

– -1, if the operation is a mass delete on a segmented table space.
v For an SQL CALL statement, a value of -1 is returned, because the data source

cannot determine the number of affected rows. Calls to getUpdateCount or

getMoreResults for a CALL statement also return -1.

v For any other SQL statement, a value of -1 is returned.

Connection con;

PreparedStatement pstmt;

int numUpd;

...

pstmt = con.prepareStatement(

 "UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?");

 // Create a PreparedStatement object �1�

pstmt.setString(1,"4657"); // Assign first value to first parameter �2�

pstmt.setString(2,"000010"); // Assign first value to second parameter

numUpd = pstmt.executeUpdate(); // Perform first update �3�

pstmt.setString(1,"4658"); // Assign second value to first parameter

pstmt.setString(2,"000020"); // Assign second value to second parameter

numUpd = pstmt.executeUpdate(); // Perform second update

pstmt.close(); // Close the PreparedStatement object �4�

Figure 9. Using PreparedStatement.executeUpdate for an SQL statement with parameter

markers

Connection con;

PreparedStatement pstmt;

int numUpd;

...

pstmt = con.prepareStatement(

 "UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’");

 // Create a PreparedStatement object �1�

numUpd = pstmt.executeUpdate(); // Perform the update �3�

pstmt.close(); // Close the PreparedStatement object �4�

Figure 10. Using PreparedStatement.executeUpdate for an SQL statement without parameter

markers

42 Developing Java Applications

Making batch updates in JDBC applications

With batch updates, instead of updating rows of a table one at a time, you can

direct JDBC to execute a group of updates at the same time. Statements that can be

included in the same batch of updates are known as batchable statements.

If a statement has input parameters or host expressions, you can include that

statement only in a batch that has other instances of the same statement. This type

of batch is known as a homogeneous batch. If a statement has no input parameters,

you can include that statement in a batch only if the other statements in the batch

have no input parameters or host expressions. This type of batch is known as a

heterogeneous batch. Two statements that can be included in the same batch are

known as batch compatible.

Use the following Statement methods for creating, executing, and removing a batch

of SQL updates:

v addBatch

v executeBatch

v clearBatch

Use the following PreparedStatement and CallableStatement method for creating a

batch of parameters so that a single statement can be executed multiple times in a

batch, with a different set of parameters for each execution.

v addBatch

Restrictions on executing statements in a batch:

v If you try to execute a SELECT statement in a batch, a BatchUpdateException is

thrown.

v A CallableStatement object that you execute in a batch can contain output

parameters. However, you cannot retrieve the values of the output parameters. If

you try to do so, a BatchUpdateException is thrown.

v You cannot retrieve ResultSet objects from a CallableStatement object that you

execute in a batch. A BatchUpdateException is not thrown, but the getResultSet

method invocation returns a null value.

To make batch updates using several statements with no input parameters, follow

these basic steps:

1. For each SQL statement that you want to execute in the batch, invoke the

addBatch method.

2. Invoke the executeBatch method to execute the batch of statements.

3. Check for errors. If no errors occurred:

a. Get the number of rows that were affect by each SQL statement from the

array that the executeBatch invocation returns. This number does not

include rows that were affected by triggers or by referential integrity

enforcement.

b. If AutoCommit is disabled for the Connection object, invoke the commit

method to commit the changes.

If AutoCommit is enabled for the Connection object, the IBM Data Server

Driver for JDBC and SQLJ adds a commit method at the end of the batch.

To make batch updates using a single statement with several sets of input

parameters, follow these basic steps:

1. Invoke the prepareStatement method to create a PreparedStatement object.

2. For each set of input parameter values:

a. Execute setXXX methods to assign values to the input parameters.

Chapter 3. JDBC application programming 43

b. Invoke the addBatch method to add the set of input parameters to the

batch.
3. Invoke the executeBatch method to execute the statements with all sets of

parameters.

4. If no errors occurred:

a. Get the number of rows that were updated by each execution of the SQL

statement from the array that the executeBatch invocation returns.

b. If AutoCommit is disabled for the Connection object, invoke the commit

method to commit the changes.

If AutoCommit is enabled for the Connection object, the IBM Data Server

Driver for JDBC and SQLJ adds a commit method at the end of the batch.

c. If the PreparedStatement object returns automatically generated keys, call

DB2PreparedStatement.getDBGeneratedKeys to retrieve an array of

ResultSet objects that contains the automatically generated keys.

Check the length of the returned array. If the length of the returned array is

0, an error occurred during retrieval of the automatically generated keys.
5. If errors occurred, process the BatchUpdateException.

In the following code fragment, two sets of parameters are batched. An UPDATE

statement that takes two input parameters is then executed twice, once with each

set of parameters. The numbers to the right of selected statements correspond to

the previously-described steps.

try {

...

 PreparedStatement prepStmt = con.prepareStatement(

 "UPDATE DEPT SET MGRNO=? WHERE DEPTNO=?"); �1�

 prepStmt.setString(1,mgrnum1); �2a�

 prepStmt.setString(2,deptnum1);

 prepStmt.addBatch(); �2b�

 prepStmt.setString(1,mgrnum2);

 prepStmt.setString(2,deptnum2);

 prepStmt.addBatch();

 int [] numUpdates=prepStmt.executeBatch(); �3�

 for (int i=0; i < numUpdates.length; i++) { �4a�

 if (numUpdates[i] == SUCCESS_NO_INFO)

 System.out.println("Execution " + i +

 ": unknown number of rows updated");

 else

 System.out.println("Execution " + i +

 "successful: " numUpdates[i] + " rows updated");

 }

 con.commit(); �4b�

} catch(BatchUpdateException b) { �5�

 // process BatchUpdateException

}

In the following code fragment, a batched statement returns automatically

generated keys.

try {

...

 PreparedStatement pStmt = con.prepareStatement(�1�

 "INSERT INTO DEPT (DEPTNO, DEPTNAME, ADMRDEPT) " +

 "VALUES (?,?,?)",

 Statement.RETURN_GENERATED_KEYS);

 pStmt.setString(1,"X01"); �2a�

 pStmt.setString(2,"Finance");

 pStmt.setString(3,"A00");

 pStmt.addBatch(); �2b�

44 Developing Java Applications

pStmt.setString(1,"Y01");

 pStmt.setString(2,"Accounting");

 pStmt.setString(3,"A00");

 pStmt.addBatch();

 int [] numUpdates=prepStmt.executeBatch(); �3�

 for (int i=0; i < numUpdates.length; i++) { �4a�

 if (numUpdates[i] == SUCCESS_NO_INFO)

 System.out.println("Execution " + i +

 ": unknown number of rows updated");

 else

 System.out.println("Execution " + i +

 "successful: " numUpdates[i] + " rows updated");

 }

 con.commit(); �4b�

 ResultSet[] resultList =

 ((DB2PreparedStatement)pStmt).getDBGeneratedKeys(); �4c�

 if (resultList.length != 0) {

 for (i = 0; i < resultList.length; i++) {

 while (resultList[i].next()) {

 java.math.BigDecimal idColVar = rs.getBigDecimal(1);

 // Get automatically generated key

 // value

 System.out.println("Automatically generated key value = "

 + idColVar);

 }

 }

 }

 else {

 System.out.println("Error retrieving automatically generated keys");

 }

} catch(BatchUpdateException b) { �5�

 // process BatchUpdateException

}

Learning about parameters in a PreparedStatement using

ParameterMetaData methods

The IBM Data Server Driver for JDBC and SQLJ includes support for the

ParameterMetaData interface. The ParameterMetaData interface contains methods

that retrieve information about the parameter markers in a PreparedStatement

object.

ParameterMetaData methods provide the following types of information:

v The data types of parameters, including the precision and scale of decimal

parameters.

v The parameters’ database-specific type names. For parameters that correspond to

table columns that are defined with distinct types, these names are the distinct

type names.

v Whether parameters are nullable.

v Whether parameters are input or output parameters.

v Whether the values of a numeric parameter can be signed.

v The fully-qualified Java class name that PreparedStatement.setObject uses when

it sets a parameter value.

To invoke ParameterMetaData methods, you need to perform these basic steps:

1. Invoke the Connection.prepareStatement method to create a PreparedStatement

object.

2. Invoke the PreparedStatement.getParameterMetaData method to retrieve a

ParameterMetaData object.

Chapter 3. JDBC application programming 45

3. Invoke ParameterMetaData.getParameterCount to determine the number of

parameters in the PreparedStatement.

4. Invoke ParameterMetaData methods on individual parameters.

The following code demonstrates how to use ParameterMetaData methods to

determine the number and data types of parameters in an SQL UPDATE statement.

The numbers to the right of selected statements correspond to the

previously-described steps.

Data retrieval in JDBC applications

In JDBC applications, you retrieve data using ResultSet objects. A ResultSet

represents the result set of a query.

Retrieving data from tables using the Statement.executeQuery

method

To retrieve data from a table using a SELECT statement with no parameter

markers, you can use the Statement.executeQuery method.

This method returns a result table in a ResultSet object. After you obtain the result

table, you need to use ResultSet methods to move through the result table and

obtain the individual column values from each row.

With the IBM Data Server Driver for JDBC and SQLJ, you can also use the

Statement.executeQuery method to retrieve a result set from a stored procedure

call, if that stored procedure returns only one result set. If the stored procedure

returns multiple result sets, you need to use the Statement.execute method.

This topic discusses the simplest kind of ResultSet, which is a read-only ResultSet

in which you can only move forward, one row at a time. The IBM Data Server

Driver for JDBC and SQLJ also supports updatable and scrollable ResultSets.

To retrieve rows from a table using a SELECT statement with no parameter

markers, you need to perform these steps:

1. Invoke the Connection.createStatement method to create a Statement object.

2. Invoke the Statement.executeQuery method to obtain the result table from the

SELECT statement in a ResultSet object.

Connection con;

ParameterMetaData pmtadta;

int mtadtacnt;

String sqlType;

...

pstmt = con.prepareStatement(

 "UPDATE EMPLOYEE SET PHONENO=? WHERE EMPNO=?");

 // Create a PreparedStatement object �1�

pmtadta = pstmt.getParameterMetaData(); �2�

 // Create a ParameterMetaData object

mtadtacnt = pmtadta.getParameterCount(); �3�

 // Determine the number of parameters

System.out.println("Number of statement parameters: " + mtadtacnt);

for (int i = 1; i <= mtadtacnt; i++) {

 sqlType = pmtadta.getParameterTypeName(i); �4�

 // Get SQL type for each parameter

 System.out.println("SQL type of parameter " + i " is " + sqlType);

}

...

pstmt.close(); // Close the PreparedStatement

Figure 11. Using ParameterMetaData methods to get information about a PreparedStatement

46 Developing Java Applications

3. In a loop, position the cursor using the next method, and retrieve data from

each column of the current row of the ResultSet object using getXXX methods.

XXX represents a data type.

4. Invoke the ResultSet.close method to close the ResultSet object.

5. Invoke the Statement.close method to close the Statement object when you have

finished using that object.

The following code demonstrates how to retrieve all rows from the employee table.

The numbers to the right of selected statements correspond to the

previously-described steps.

Retrieving data from tables using the

PreparedStatement.executeQuery method

To retrieve data from a table using a SELECT statement with parameter markers,

you use the PreparedStatement.executeQuery method.

This method returns a result table in a ResultSet object. After you obtain the result

table, you need to use ResultSet methods to move through the result table and

obtain the individual column values from each row.

With the IBM Data Server Driver for JDBC and SQLJ, you can also use the

PreparedStatement.executeQuery method to retrieve a result set from a stored

procedure call, if that stored procedure returns only one result set and has only

input parameters. If the stored procedure returns multiple result sets, you need to

use the PreparedStatement.execute method.

You can also use the PreparedStatement.executeQuery method for statements that

have no parameter markers. When you execute a query many times, you can get

better performance by creating the SQL statement as a PreparedStatement.

To retrieve rows from a table using a SELECT statement with parameter markers,

you need to perform these steps:

1. Invoke the Connection.prepareStatement method to create a PreparedStatement

object.

2. Invoke PreparedStatement.setXXX methods to pass values to the input

parameters.

3. Invoke the PreparedStatement.executeQuery method to obtain the result table

from the SELECT statement in a ResultSet object.

String empNo;

Connection con;

Statement stmt;

ResultSet rs;

...

stmt = con.createStatement(); // Create a Statement object �1�

rs = stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE"); �2�

 // Get the result table from the query

while (rs.next()) { // Position the cursor �3�

 empNo = rs.getString(1); // Retrieve only the first column value

 System.out.println("Employee number = " + empNo);

 // Print the column value

}

rs.close(); // Close the ResultSet �4�

stmt.close(); // Close the Statement �5�

Figure 12. Using Statement.executeQuery

Chapter 3. JDBC application programming 47

4. In a loop, position the cursor using the ResultSet.next method, and retrieve

data from each column of the current row of the ResultSet object using getXXX

methods.

5. Invoke the ResultSet.close method to close the ResultSet object.

6. Invoke the PreparedStatement.close method to close the PreparedStatement

object when you have finished using that object.

The following code demonstrates how to retrieve rows from the employee table for

a specific employee. The numbers to the right of selected statements correspond to

the previously-described steps.

Making batch queries in JDBC applications

The IBM Data Server Driver for JDBC and SQLJ provides a IBM Data Server

Driver for JDBC and SQLJ-only DB2PreparedStatement interface that lets you

perform batch queries on a homogeneous batch.

To make batch queries using a single statement with several sets of input

parameters, follow these basic steps:

1. Invoke the prepareStatement method to create a PreparedStatement object for

the SQL statement with input parameters.

2. For each set of input parameter values:

a. Execute PreparedStatement.setXXX methods to assign values to the input

parameters.

b. Invoke the PreparedStatement.addBatch method to add the set of input

parameters to the batch.
3. Cast the PreparedStatement object to a DB2PreparedStatement object, and

invoke the DB2PreparedStatement.executeDB2QueryBatch method to execute

the statement with all sets of parameters.

4. Retrieve the first ResultSet object that is associated with the PreparedStatement

object.

5. Retrieve all the rows from the first ResultSet object.

6. In a loop retrieve the rest of the ResultSet objects:

a. Retrieve each ResultSet object.

b. Retrieve all the rows from each ResultSet object.

String empnum, phonenum;

Connection con;

PreparedStatement pstmt;

ResultSet rs;

...

pstmt = con.prepareStatement(

 "SELECT EMPNO, PHONENO FROM EMPLOYEE WHERE EMPNO=?");

 // Create a PreparedStatement object �1�

pstmt.setString(1,"000010"); // Assign value to input parameter �2�

rs = pstmt.executeQuery(); // Get the result table from the query �3�

while (rs.next()) { // Position the cursor �4�

 empnum = rs.getString(1); // Retrieve the first column value

 phonenum = rs.getString(2); // Retrieve the first column value

 System.out.println("Employee number = " + empnum +

 "Phone number = " + phonenum);

 // Print the column values

}

rs.close(); // Close the ResultSet �5�

pstmt.close(); // Close the PreparedStatement �6�

Figure 13. Example of using PreparedStatement.executeQuery

48 Developing Java Applications

Example: In the following code fragment, two sets of parameters are batched. A

SELECT statement that takes one input parameter is then executed twice, once

with each parameter value. The numbers to the right of selected statements

correspond to the previously described steps.

java.sql.Connection con = java.sql.DriverManager.getConnection(url, properties);

java.sql.Statement s = con.createStatement();

// Clean up from previous executions

try {

 s.executeUpdate ("drop table TestQBatch");

}

catch (Exception e) {

}

// Create and populate a test table

s.executeUpdate ("create table TestQBatch (col1 int, col2 char(10))");

s.executeUpdate ("insert into TestQBatch values (1, ’test1’)");

s.executeUpdate ("insert into TestQBatch values (2, ’test2’)");

s.executeUpdate ("insert into TestQBatch values (3, ’test3’)");

s.executeUpdate ("insert into TestQBatch values (4, ’test4’)");

s.executeUpdate ("insert into TestQBatch values (1, ’test5’)");

s.executeUpdate ("insert into TestQBatch values (2, ’test6’)");

try {

 PreparedStatement pstmt = �1�

 con.prepareStatement("Select * from TestQBatch where col1 = ?");

 pstmt.setInt(1,1); �2a�

 pstmt.addBatch(); �2b�

 // Add some more values to the batch

 pstmt.setInt(1,2);

 pstmt.addBatch();

 pstmt.setInt(1,3);

 pstmt.addBatch();

 pstmt.setInt(1,4);

 pstmt.addBatch();

 ((com.ibm.db2.jcc.DB2PreparedStatement)prepStmt).executeDB2QueryBatch();

 �3�

} catch(BatchUpdateException b) {

 // process BatchUpdateException

}

ResultSet rs = pstmt.getResultSet(); �4�

while(rs.next()) { �5�

 System.out.print (rs.getInt (1) + " ");

 System.out.println (rs.getString (2));

}

rs.close ();

while(pstmt.getMoreResults()) { �6�

 rs = pstmt.getResultSet(); �6a�

 while (rs.next()) { �6b�

 System.out.print (rs.getInt (1) + " ");

 System.out.println (rs.getString (2));

 }

 System.out.println ();

 rs.close ();

}

// Clean up

s.close ();

pstmt.close ();

con.close ();

Learning about a ResultSet using ResultSetMetaData methods

You cannot always know the number of columns and data types of the columns in

a table or result set. This is true especially when you are retrieving data from a

remote data source.

Chapter 3. JDBC application programming 49

When you write programs that retrieve unknown ResultSets, you need to use

ResultSetMetaData methods to determine the characteristics of the ResultSets

before you can retrieve data from them.

ResultSetMetaData methods provide the following types of information:

v The number of columns in a ResultSet

v The qualifier for the underlying table of the ResultSet

v Information about a column, such as the data type, length, precision, scale, and

nullability

v Whether a column is read-only

After you invoke the executeQuery method to generate a ResultSet for a query on

a table, follow these basic steps to determine the contents of the ResultSet:

1. Invoke the getMetaData method on the ResultSet object to create a

ResultSetMetaData object.

2. Invoke the getColumnCount method to determine how many columns are in

the ResultSet.

3. For each column in the ResultSet, execute ResultSetMetaData methods to

determine column characteristics.

The results of ResultSetMetaData.getColumnName call reflects the column

name information that is stored in the DB2 catalog for that data source.

The following code demonstrates how to determine the data types of all the

columns in the employee table. The numbers to the right of selected statements

correspond to the previously-described steps.

Characteristics of a JDBC ResultSet under the IBM Data Server

Driver for JDBC and SQLJ

The IBM Data Server Driver for JDBC and SQLJ provides support for scrollable,

updatable, and holdable cursors.

String s;

Connection con;

Statement stmt;

ResultSet rs;

ResultSetMetaData rsmtadta;

int colCount

int mtadtaint;

int i;

String colName;

String colType;

...

stmt = con.createStatement(); // Create a Statement object

rs = stmt.executeQuery("SELECT * FROM EMPLOYEE");

 // Get the ResultSet from the query

rsmtadta = rs.getMetaData(); // Create a ResultSetMetaData object �1�

colCount = rsmtadta.getColumnCount(); �2�

 // Find number of columns in EMP

for (i=1; i<= colCount; i++) { �3�

 colName = rsmtadta.getColumnName(); // Get column name

 colType = rsmtadta.getColumnTypeName();

 // Get column data type

 System.out.println("Column = " + colName +

 " is data type " + colType);

 // Print the column value

}

Figure 14. Using ResultSetMetaData methods to get information about a ResultSet

50 Developing Java Applications

In addition to moving forward, one row at a time, through a ResultSet, you might

want to do the following things:

v Move backward or go directly to a specific row

v Update, delete, or insert rows in a ResultSet

v Leave the ResultSet open after a COMMIT

The following terms describe characteristics of a ResultSet:

scrollability

Whether the cursor for the ResultSet can move forward only, or forward one or

more rows, backward one or more rows, or to a specific row.

 If a cursor for a ResultSet is scrollable, it also has a sensitivity attribute, which

describes whether the cursor is sensitive to changes to the underlying table.

updatability

Whether the cursor can be used to update or delete rows. This characteristic

does not apply to a ResultSet that is returned from a stored procedure, because

a stored procedure ResultSet cannot be updated.

holdability

Whether the cursor stays open after a COMMIT.

You set the updatability, scrollability, and holdability characteristics of a ResultSet

through parameters in the Connection.prepareStatement or

Connection.createStatement methods. The ResultSet settings map to attributes of a

cursor in the database. The following table lists the JDBC scrollability, updatability,

and holdability settings, and the corresponding cursor attributes.

 Table 9. JDBC ResultSet characteristics and SQL cursor attributes

JDBC setting DB2 cursor setting

IBM Informix Dynamic Server

cursor setting

CONCUR_READ_ONLY FOR READ ONLY FOR READ ONLY

CONCUR_UPDATABLE FOR UPDATE FOR UPDATE

HOLD_CURSORS_OVER_COMMIT WITH HOLD WITH HOLD

TYPE_FORWARD_ONLY SCROLL not specified SCROLL not specified

TYPE_SCROLL_INSENSITIVE INSENSITIVE SCROLL SCROLL

TYPE_SCROLL_SENSITIVE SENSITIVE STATIC, SENSITIVE

DYNAMIC, or ASENSITIVE,

depending on the cursorSensitvity

Connection and DataSource property

Not supported

If a JDBC ResultSet is static, the size of the result table and the order of the rows in

the result table do not change after the cursor is opened. This means that if you

insert rows into the underlying table, the result table for a static ResultSet does not

change. If you delete a row of a result table, a delete hole occurs. You cannot

update or delete a delete hole.

Specifying updatability, scrollability, and holdability for ResultSets in JDBC

applications:

You use special parameters in the Connection.prepareStatement or

Connection.createStatement methods to specify the updatability, scrollability, and

holdability of a ResultSet.

Chapter 3. JDBC application programming 51

By default, ResultSet objects are not scrollable and not updatable. The default

holdability depends on the data source, and can be determined from the

DatabaseMetaData.getResultSetHoldability method. To change the scrollability,

updatability, and holdability attributes for a ResultSet, follow these steps:

1. If the SELECT statement that defines the ResultSet has no input parameters,

invoke the createStatement method to create a Statement object. Otherwise,

invoke the prepareStatement method to create a PreparedStatement object. You

need to specify forms of the createStatement or prepareStatement methods that

include the resultSetType, resultSetConcurrency, or resultSetHoldability parameters.

The form of the createStatement method that supports scrollability and

updatability is:

createStatement(int resultSetType, int resultSetConcurrency);

The form of the createStatement method that supports scrollability, updatability,

and holdability is:

createStatement(int resultSetType, int resultSetConcurrency,

 int resultSetHoldability);

The form of the prepareStatement method that supports scrollability and

updatability is:

prepareStatement(String sql, int resultSetType,

 int resultSetConcurrency);

The form of the prepareStatement method that supports scrollability,

updatability, and holdability is:

prepareStatement(String sql, int resultSetType,

 int resultSetConcurrency, int resultSetHoldability);

The following table contains a list of valid values for resultSetType and

resultSetConcurrency.

 Table 10. Valid combinations of resultSetType and resultSetConcurrency for ResultSets

resultSetType value resultSetConcurrency value

TYPE_FORWARD_ONLY CONCUR_READ_ONLY

TYPE_FORWARD_ONLY CONCUR_UPDATABLE

TYPE_SCROLL_INSENSITIVE CONCUR_READ_ONLY

TYPE_SCROLL_SENSITIVE1 CONCUR_READ_ONLY

TYPE_SCROLL_SENSITIVE1 CONCUR_UPDATABLE

Note:

1. This value does not apply to connections to IBM Informix Dynamic Server.

resultSetHoldability has two possible values: HOLD_CURSORS_OVER_COMMIT and

CLOSE_CURSORS_AT_COMMIT. Either of these values can be specified with any

valid combination of resultSetConcurrency and resultSetHoldability. The value that

you set overrides the default holdability for the connection.

Restriction: If the ResultSet is scrollable, and the ResultSet is used to select

columns from a table on a DB2 Database for Linux, UNIX, and Windows

server, the SELECT list of the SELECT statement that defines the ResultSet

cannot include columns with the following data types:

v LONG VARCHAR

v LONG VARGRAPHIC

v BLOB

v CLOB

v XML

52 Developing Java Applications

v A distinct type that is based on any of the previous data types in this list

v A structured type
2. If the SELECT statement has input parameters, invoke setXXX methods to pass

values to the input parameters.

3. Invoke the executeQuery method to obtain the result table from the SELECT

statement in a ResultSet object.

4. For each row that you want to access:

a. Position the cursor using one of the methods that are listed in the following

table.

 Table 11. ResultSet methods for positioning a scrollable cursor

Method Positions the cursor

first1 On the first row of the ResultSet

last1 On the last row of the ResultSet

next2 On the next row of the ResultSet

previous1,3 On the previous row of the ResultSet

absolute(int n)1,4 If n>0, on row n of the ResultSet. If n<0, and m is the

number of rows in the ResultSet, on row m+n+1 of

the ResultSet.

relative(int n)1,5,6, If n>0, on the row that is n rows after the current row.

If n<0, on the row that is n rows before the current

row. If n=0, on the current row.

afterLast1 After the last row in the ResultSet

beforeFirst1 Before the first row in the ResultSet

Notes:

1. This method does not apply to connections to IBM Informix Dynamic Server.

2. If the cursor is before the first row of the ResultSet, this method positions the cursor on

the first row.

3. If the cursor is after the last row of the ResultSet, this method positions the cursor on the

last row.

4. If the absolute value of n is greater than the number of rows in the result set, this

method positions the cursor after the last row if n is positive, or before the first row if n

is negative.

5. The cursor must be on a valid row of the ResultSet before you can use this method. If

the cursor is before the first row or after the last row, the method throws an

SQLException.

6. Suppose that m is the number of rows in the ResultSet and x is the current row number

in the ResultSet. If n>0 and x+n>m, the driver positions the cursor after the last row. If

n<0 and x+n<1, the driver positions the cursor before the first row.

b. If you need to know the current cursor position, use the getRow, isFirst,

isLast, isBeforeFirst, or isAfterLast method to obtain this information.

c. If you specified a resultSetType value of TYPE_SCROLL_SENSITIVE in step 1 on

page 52, and you need to see the latest values of the current row, invoke the

refreshRow method.

Recommendation: Because refreshing the rows of a ResultSet can have a

detrimental effect on the performance of your applications, you should

invoke refreshRow only when you need to see the latest data.

d. Perform one or more of the following operations:

v To retrieve data from each column of the current row of the ResultSet

object, use getXXX methods.

Chapter 3. JDBC application programming 53

v To update the current row from the underlying table, use updateXXX

methods to assign column values to the current row of the ResultSet.

Then use updateRow to update the corresponding row of the underlying

table. If you decide that you do not want to update the underlying table,

invoke the cancelRowUpdates method instead of the updateRow method.

The resultSetConcurrency value for the ResultSet must be

CONCUR_UPDATABLE for you to use these methods.

v To delete the current row from the underlying table, use the deleteRow

method. Invoking deleteRow causes the driver to replace the current row

of the ResultSet with a hole.

The resultSetConcurrency value for the ResultSet must be

CONCUR_UPDATABLE for you to use this method.
5. Invoke the close method to close the ResultSet object.

6. Invoke the close method to close the Statement or PreparedStatement object.

The following code demonstrates how to retrieve all rows from the employee table

in reverse order, and update the phone number for employee number ″000010″.

The numbers to the right of selected statements correspond to the

previously-described steps.

Multi-row SQL operations with the IBM Data Server Driver for JDBC and SQLJ:

IBM Data Server Driver for JDBC and SQLJ supports multi-row INSERT, UPDATE,

and FETCH for connections to data sources that support these operations.

String s;

String stmtsrc;

Connection con;

Statement stmt;

ResultSet rs;

...

stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

 ResultSet.CONCUR_UPDATABLE); �1�

 // Create a Statement object

 // for a scrollable, updatable

 // ResultSet

stmtsrc = "SELECT EMPNO, PHONENO FROM EMPLOYEE " +

 "FOR UPDATE OF PHONENO";

rs = stmt.executeQuery(stmtsrc); // Create the ResultSet �3�

rs.afterLast(); // Position the cursor at the end of

 // the ResultSet �4a�

while (rs.previous()) { // Position the cursor backward

 s = rs.getString("EMPNO"); // Retrieve the employee number �4d�

 // (column 1 in the result

 // table)

 System.out.println("Employee number = " + s);

 // Print the column value

 if (s.compareTo("000010") == 0) { // Look for employee 000010

 rs.updateString("PHONENO","4657"); // Update their phone number

 rs.updateRow(); // Update the row

 }

}

rs.close(); // Close the ResultSet �5�

stmt.close(); // Close the Statement �6�

Figure 15. Using a scrollable cursor

54 Developing Java Applications

Multi-row INSERT

Multi-row FETCH can provide better performance than retrieving one row with

each FETCH statement. For IBM Data Server Driver for JDBC and SQLJ type 2

connectivity on DB2 for z/OS, multi-row FETCH can be used for forward-only

cursors and scrollable cursors. For IBM Data Server Driver for JDBC and SQLJ type

4 connectivity, multi-row FETCH can be used in the following situations:

v For scrollable cursors in JDBC or SQLJ programs

v For forward-only cursors, in customized SQLJ programs

You cannot execute a multi-row insert operation by including a multi-row INSERT

statement in your JDBC application.

Multi-row FETCH

Multi-row FETCH can provide better performance than retrieving one row with

each FETCH statement. For IBM Data Server Driver for JDBC and SQLJ type 2

connectivity on DB2 for z/OS, multi-row FETCH can be used for forward-only

cursors and scrollable cursors. For IBM Data Server Driver for JDBC and SQLJ type

4 connectivity, multi-row FETCH can be used only for scrollable cursors.

When you retrieve data in your applications, the IBM Data Server Driver for JDBC

and SQLJ determines whether to use multi-row FETCH, depending on several

factors:

v The settings of the enableRowsetSupport and useRowsetCursor properties

v The type of IBM Data Server Driver for JDBC and SQLJ connectivity that is

being used

v The version of the IBM Data Server Driver for JDBC and SQLJ

For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2 for

z/OS, one of the following sets of conditions must be true for multi-row FETCH to

be used.

v First set of conditions:

– The IBM Data Server Driver for JDBC and SQLJ version is 3.51 or later.

– The enableRowsetSupport property value is

com.ibm.db2.jcc.DB2BaseDataSource.YES (1), or the enableRowsetSupport

property value is com.ibm.db2.jcc.DB2BaseDataSource.NOT_SET (0) and the

useRowsetCursor property value is com.ibm.db2.jcc.DB2BaseDataSource.YES

(1).

– The FETCH operation uses a scrollable cursor.

For forward-only cursors, fetching of multiple rows might occur through

DRDA block FETCH. However, this behavior does not utilize the data

source’s multi-row FETCH capability.
v Second set of conditions:

– The IBM Data Server Driver for JDBC and SQLJ version is 3.1.

– The useRowsetCursor property value is

com.ibm.db2.jcc.DB2BaseDataSource.YES (1).

– The FETCH operation uses a scrollable cursor.

For forward-only cursors, fetching of multiple rows might occur through

DRDA block FETCH. However, this behavior does not utilize the data

source’s multi-row FETCH capability.

Chapter 3. JDBC application programming 55

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for

z/OS the following conditions must be true for multi-row FETCH to be used.

v The IBM Data Server Driver for JDBC and SQLJ version is 3.51 or later.

v The enableRowsetSupport property value is

com.ibm.db2.jcc.DB2BaseDataSource.YES (1).

v The FETCH operation uses a scrollable cursor or a forward-only cursor.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for

z/OS, you can control the maximum size of a rowset for each statement by setting

the maxRowsetSize property.

Multi-row positioned UPDATE or DELETE

The IBM Data Server Driver for JDBC and SQLJ supports a technique for

performing positioned update or delete operations that follows the JDBC 1

standard. That technique involves using the ResultSet.getCursorName method to

obtain the name of the cursor for the ResultSet, and defining a positioned UPDATE

or positioned DELETE statement of the following form:

UPDATE table SET col1=value1,...coln=valueN WHERE CURRENT OF cursorname

DELETE FROM table WHERE CURRENT OF cursorname

Multi-row UPDATE or DELETE when useRowsetCursor is set to true: If you use the

JDBC 1 technique to update or delete data on a database server that supports

multi-row FETCH, and multi-row FETCH is enabled through the useRowsetCursor

property, the positioned UPDATE or DELETE statement might update or delete

multiple rows, when you expect it to update or delete a single row. To avoid

unexpected updates or deletes, you can take one of the following actions:

v Use an updatable ResultSet to retrieve and update one row at a time, as shown

in the previous example.

v Set useRowsetCursor to false.

Multi-row UPDATE or DELETE when enableRowsetSupport is set to

com.ibm.db2.jcc.DB2BaseDataSource.YES (1): The JDBC 1 technique for updating or

deleting data is incompatible with multi-row FETCH that is enabled through the

enableRowsetSupport property.

Recommendation: If your applications use the JDBC 1 technique, update them to

use the JDBC 2.0 ResultSet.updateRow or ResultSet.deleteRow methods for

positioned update or delete activity.

Testing whether the current row of a ResultSet is a delete hole or update hole in

a JDBC application:

If a ResultSet has the TYPE_SCROLL_SENSITIVE attribute, and the underlying

cursor is SENSITIVE STATIC, you need to test for delete holes or update holes

before you attempt to retrieve rows of the ResultSet.

 After a SENSITIVE STATIC ResultSet is opened, it does not change size. This

means that deleted rows are replaced by placeholders, which are also called holes.

If updated rows no longer fit the criteria for the ResultSet, those rows also become

holes. You cannot retrieve rows that are holes.

To test whether the current row in a ResultSet is a delete hole or update hole,

follow these steps:

56 Developing Java Applications

1. Call the DatabaseMetaData.deletesAreDetected or

DatabaseMetaData.updatesAreDetected method with the

TYPE_SCROLL_SENSITIVE argument to determine whether the data source

creates holes for a TYPE_SCROLL_SENSITIVE ResultSet.

2. If DatabaseMetaData.deletesAreDetected or

DatabaseMetaData.updatesAreDetected returns true, which means that the data

source can create holes, call the ResultSet.rowDeleted or ResultSet.rowUpdated

method to determine whether the current row is a delete or update hole. If the

method returns true, the current row is a hole.

The following code tests whether the current row is a delete hole.

Statement stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

 ResultSet.CONCUR_UPDATABLE);

 // Create a Statement object

 // for a scrollable, updatable

 // ResultSet

ResultSet rs =

 stmt.executeQuery("SELECT EMPNO FROM EMPLOYEE FOR UPDATE OF PHONENO");

 // Create the ResultSet

DatabaseMetaData dbmd = con.getMetaData();

 // Create the DatabaseMetaData object

boolean dbSeesDeletes =

 dbmd.deletesAreDetected(ResultSet.TYPESCROLL_SENSITIVE);

 // Can the database see delete holes?

rs.afterLast(); // Position the cursor at the end of

 // the ResultSet

while (rs.previous()) { // Position the cursor backward

 if (dbSeesDeletes) { // If delete holes can be detected

 if (!(rs.rowDeleted())) // If this row is not a delete hole

 {

 s = rs.getString("EMPNO"); // Retrieve the employee number

 System.out.println("Employee number = " + s);

 // Print the column value

 }

 }

}

rs.close(); // Close the ResultSet

stmt.close(); // Close the Statement

Inserting a row into a ResultSet in a JDBC application:

If a ResultSet has a resultSetConcurrency attribute of CONCUR_UPDATABLE, you

can insert rows into the ResultSet.

 To insert a row into a ResultSet, follow these steps:

1. Perform the following steps for each row that you want to insert.

a. Call the ResultSet.moveToInsertRow method to create the row that you

want to insert. The row is created in a buffer outside the ResultSet.

If an insert buffer already exists, all old values are cleared from the buffer.

b. Call ResultSet.updateXXX methods to assign values to the row that you

want to insert.

You need to assign a value to at least one column in the ResultSet. If you do

not do so, an SQLException is thrown when the row is inserted into the

ResultSet.

If you do not assign a value to a column of the ResultSet, when the

underlying table is updated, the data source inserts the default value for the

associated table column.

Chapter 3. JDBC application programming 57

If you assign a null value to a column that is defined as NOT NULL, the

JDBC driver throws and SQLException.

c. Call ResultSet.insertRow to insert the row into the ResultSet.

After you call ResultSet.insertRow, all values are always cleared from the

insert buffer, even if ResultSet.insertRow fails.
2. Reposition the cursor within the ResultSet.

To move the cursor from the insert row to the ResultSet, you can invoke any of

the methods that position the cursor at a specific row, such as ResultSet.first,

ResultSet.absolute, or ResultSet.relative. Alternatively, you can call

ResultSet.moveToCurrentRow to move the cursor to the row in the ResultSet

that was the current row before the insert operation occurred.

After you call ResultSet.moveToCurrentRow, all values are cleared from the

insert buffer.

Example: The following code illustrates inserting a row into a ResultSet that

consists of all rows in the sample DEPARTMENT table. After the row is inserted,

the code places the cursor where it was located in the ResultSet before the insert

operation. The numbers to the right of selected statements correspond to the

previously-described steps.

stmt = con.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,

 ResultSet.CONCUR_UPDATABLE);

ResultSet rs = stmt.executeQuery("SELECT * FROM DEPARTMENT");

rs.moveToInsertRow(); �1a�

rs.updateString("DEPT_NO", "M13"); �1b�

rs.updateString("DEPTNAME", "TECHNICAL SUPPORT");

rs.updateString("MGRNO", "000010");

rs.updateString("ADMRDEPT", "A00");

rs.insertRow(); �1c�

rs.moveToCurrentRow(); �2�

Testing whether the current row was inserted into a ResultSet in a JDBC

application:

If a ResultSet is dynamic, you can insert rows into it. After you insert rows into a

ResultSet you might need to know which rows were inserted.

 To test whether the current row in a ResultSet was inserted, follow these steps:

1. Call the DatabaseMetaData.ownInsertsAreVisible and

DatabaseMetaData.othersInsertsAreVisible methods to determine whether

inserts can be visible to the given type of ResultSet.

2. If inserts can be visible to the ResultSet, call the

DatabaseMetaData.insertsAreDetected method to determine whether the given

type of ResultSet can detect inserts.

3. If the ResultSet can detect inserts, call the ResultSet.rowInserted method to

determine whether the current row was inserted.

Calling stored procedures in JDBC applications

To call stored procedures, you invoke methods in the CallableStatement class.

The basic steps for calling a stored procedures using standard CallableStatement

methods are:

1. Invoke the Connection.prepareCall method with the CALL statement as its

argument to create a CallableStatement object.

58 Developing Java Applications

You can represent parameters with standard parameter markers (?), named

parameter markers, or named parameters. You can mix named parameters and

standard parameter markers in the same CALL statement, but you cannot mix

named parameter markers with standard parameter markers or named

parameters.

Restriction: The parameter types that are permitted depend on whether the

data source supports dynamic execution of the CALL statement. DB2 for z/OS

does not support dynamic execution of the CALL statement. For a call to a

stored procedure that is on a DB2 for z/OS database server, the parameters can

be parameter markers or literals, but not expressions. The following table lists

the types of literals that are supported, and the JDBC types to which they map.

 Table 12. Supported literal types in parameters in DB2 for z/OS stored procedure calls

Literal parameter type JDBC type Examples

Integer java.sql.Types.INTEGER -122, 40022, +27

Floating-point decimal java.sql.Types.DOUBLE 23E12, 40022E-4, +2723E+15, 1E+23, 0E0

Fixed-point decimal java.sql.Types.DECIMAL -23.12, 40022.4295, 0.0, +2723.23, 10000000000

Character java.sql.Types.VARCHAR ’Grantham Lutz’, ’O’’Conner’, ’ABcde?z?’

Hexadecimal java.sql.Types.VARBINARY X’C1C30427’, X’00CF18E0’

Unicode string java.sql.Types.VARCHAR UX’0041’, UX’0054006500730074’

2. Invoke the CallableStatement.setXXX methods to pass values to the input

parameters (parameters that are defined as IN or INOUT in the CREATE

PROCEDURE statement).

This step assumes that you use standard parameter markers or named

parameters. Alternatively, if you use named parameter markers, you use IBM

Data Server Driver for JDBC and SQLJ-only methods to pass values to the

input parameters.

Restriction: If the data source does not support dynamic execution of the

CALL statement, you must specify the data types for CALL statement input

parameters exactly as they are specified in the stored procedure definition.

3. Invoke the CallableStatement.registerOutParameter method to register

parameters that are defined as OUT in the CREATE PROCEDURE statement

with specific data types.

This step assumes that you use standard parameter markers or named

parameters. Alternatively, if you use named parameter markers, you use IBM

Data Server Driver for JDBC and SQLJ-only methods to register OUT

parameters with specific data types.

Restriction: If the data source does not support dynamic execution of the

CALL statement, you must specify the data types for CALL statement OUT, IN,

or INOUT parameters exactly as they are specified in the stored procedure

definition.

4. Invoke one of the following methods to call the stored procedure:

CallableStatement.executeUpdate

Invoke this method if the stored procedure does not return result sets.

CallableStatement.executeQuery

Invoke this method if the stored procedure returns one result set.

Chapter 3. JDBC application programming 59

CallableStatement.execute

Invoke this method if the stored procedure returns multiple result sets, or

an unknown number of result sets.

Restriction: IBM Informix Dynamic Server (IDS) data sources do not

support multiple result sets.
5. If the stored procedure returns multiple result sets, retrieve the result sets.

Restriction: IDS data sources do not support multiple result sets.

6. Invoke the CallableStatement.getXXX methods to retrieve values from the OUT

parameters or INOUT parameters.

7. Invoke the CallableStatement.close method to close the CallableStatement object

when you have finished using that object.

Example: The following code illustrates calling a stored procedure that has one

input parameter, four output parameters, and no returned ResultSets. The numbers

to the right of selected statements correspond to the previously-described steps.

int ifcaret;

int ifcareas;

int xsbytes;

String errbuff;

Connection con;

CallableStatement cstmt;

ResultSet rs;

...

cstmt = con.prepareCall("CALL DSN8.DSN8ED2(?,?,?,?,?)"); �1�

 // Create a CallableStatement object

cstmt.setString (1, "DISPLAY THREAD(*)"); �2�

 // Set input parameter (DB2 command)

cstmt.registerOutParameter (2, Types.INTEGER); �3�

 // Register output parameters

cstmt.registerOutParameter (3, Types.INTEGER);

cstmt.registerOutParameter (4, Types.INTEGER);

cstmt.registerOutParameter (5, Types.VARCHAR);

cstmt.executeUpdate(); // Call the stored procedure �4�

ifcaret = cstmt.getInt(2); // Get the output parameter values �6�

ifcareas = cstmt.getInt(3);

xsbytes = cstmt.getInt(4);

errbuff = cstmt.getString(5);

cstmt.close(); �7�

Using named parameters in CALL statements in JDBC

applications

The IBM Data Server Driver for JDBC and SQLJ provides several ways to use

named parameters when you call stored procedures. Named parameters use a

different syntax from named parameter markers.

You can use named parameters in either or both of the following places in a JDBC

application:

v In the CALL statement

With named parameters, you do not need to specify parameters in the CALL

statement in the same order that they appear in the stored procedure definition.

In addition, you do not need to specify all parameters in the CALL statement.

Unspecified parameters take the default values that are specified in the stored

procedure definition.

v In CallableStatement.setXXX, CallableStatement.getXXX, and

CallableStatement.registerOutParameter methods

60 Developing Java Applications

You can make your programs easier to read by specifying parameter names as

they appear in the stored procedure definition, rather than the positions of the

parameters in the definition.

To use named parameters with CALL statements, follow these steps.

1. Invoke the Connection.prepareCall method with the CALL statement as its

argument to create a CallableStatement object.

To indicate each parameter, you can use a parameter markers (?), or this syntax:

parameter-name=>?

parameter-name identifies a parameter in the CREATE PROCEDURE statement.

You can explicitly assign the default value or the null value to a named

parameter by specifying the DEFAULT keyword or the NULL keyword. For

parameters for which a default value is specified in the CREATE PROCEDURE

statement, you can implicitly assign the default values to named parameters by

omitting those parameters from the CALL statement. You can omit parameters

only if all of the omitted parameters have default values in the stored

procedure definition.

You cannot mix named parameters and named parameter markers in the same

CALL statement.

2. Invoke the CallableStatement.setXXX methods to pass values to the input

parameters (parameters that are defined as IN or INOUT in the CREATE

PROCEDURE statement).

You can assign values in either of the following ways:

v By position, using CallableStatement.setXXX(parameterIndex,...)

v By name, using CallableStatement.setXXX(parameterName,...)

parameterName is a string that is enclosed in double quotation marks, whose

value matches a parameter name in the CREATE PROCEDURE statement.
3. Invoke the CallableStatement.registerOutParameter method to register

parameters that are defined as OUT in the CREATE PROCEDURE statement

with specific data types.

4. Invoke CallableStatement.executeUpdate, CallableStatement.executeQuery, or

CallableStatement.execute to execute the stored procedure.

5. If the stored procedure returns multiple result sets, retrieve those result sets.

You can register the output parameters in either of the following ways:

v By position, using CallableStatement.registerOutParameter(parameterIndex,...)

v By name, using CallableStatement.registerOutParameter(parameterName,...)

parameterName is a string that is enclosed in double quotation marks, whose

value matches a parameter name in the CREATE PROCEDURE statement.
6. Invoke the CallableStatement.getXXX methods to retrieve values from the OUT

parameters or INOUT parameters.

You can retrieve values in either of the following ways:

v By position, using CallableStatement.getXXX(parameterIndex,...)

v By name, using CallableStatement.getXXX(parameterName,...)

parameterName is a string that is enclosed in double quotation marks, whose

value matches a parameter name in the CREATE PROCEDURE statement.
7. Invoke the CallableStatement.close method to close the CallableStatement object

when you have finished using that object.

Chapter 3. JDBC application programming 61

The following code illustrates calling a stored procedure that has the following

definition:

CREATE PROCEDURE SALS (

 OUT retcode INTEGER,

 IN lowsal DOUBLE,

 IN medsal DOUBLE,

 IN highsal DOUBLE DEFAULT 100000,

 IN department CHAR(3) DEFAULT ’---’)

SPECIFIC JDBC_SALS

DYNAMIC RESULT SETS 0

DETERMINISTIC

LANGUAGE JAVA

PARAMETER STYLE JAVA

NO DBINFO

FENCED

THREADSAFE

MODIFIES SQL DATA

PROGRAM TYPE SUB

EXTERNAL NAME ’MYJAR:MyClass.sals’

The input parameters in the CALL statement are represented by named

parameters. The third and fourth parameters are called with the default values for

the stored procedure. The numbers to the right of selected statements correspond

to the previously-described steps.

int hvRetCode; // Host variable for output parameter

Connection con;

CallableStatement cstmt;

ResultSet rs;

...

cstmt = con.prepareCall(

 "CALL SALS(retcode=>?,lowsal=>?,medsal=>?,highsal=>DEFAULT)"); �1�

 // Prepare the Call statement.

 // Implicitly use the default

 // value for the last parameter

 // by omitting it.

cstmt.setDouble ("lowsal", 10000); �2�

cstmt.setDouble ("medsal", 50000);

cstmt.registerOutParameter ("retcode", Types.INTEGER); �3�

 // Register output parameter

cstmt.executeUpdate(); // Call the stored procedure �4�

hvRetCode = cstmt.getInt("retcode"); �6�

System.out.println("Return code from SALS call: " + hvRetCode);

cstmt.close(); �7�

Retrieving data from cursor output parameters in JDBC

applications

DB2 Database for Linux, UNIX, and Windows stored procedures can have OUT

parameters of the cursor type. To retrieve data from those parameters in JDBC

applications, you use ResultSet objects.

To retrieve data from cursor variables, follow these steps.

1. Define a ResultSet object for each OUT parameter that has the cursor data type.

2. Invoke the Connection.prepareCall method with the CALL statement as its

argument to create a CallableStatement object.

3. Invoke the CallableStatement.registerOutParameter method to register the data

types of parameters that are defined as OUT in the CREATE PROCEDURE

statement.

The data type for cursor type output parameters is

com.ibm.db2.jcc.DB2Types.CURSOR.

62 Developing Java Applications

4. Call the stored procedure.

5. Invoke the CallableStatement.getObject method to retrieve the ResultSet for

each OUT cursor parameter.

You can call only CallableStatement.getObject or CallableStatement.getString on

a cursor parameter. Calling CallableStatement.getString returns a name that is

associated with the result set that is returned for the parameter.

If more than one OUT cursor parameter references the same cursor at the data

source, the same ResultSet instance is returned for all parameters.

6. Retrieve rows from the ResultSet object for each OUT cursor parameter.

7. Close the ResultSet.

If the autocommit value is true, a commit operation occurs only when all of

the result sets that are returned by cursor type output parameters or by the

stored procedure are closed.

A cursor data type and a stored procedure have the following definitions:

CREATE TYPE myRowType AS ROW (name VARCHAR(128))

CREATE TYPE myCursorType AS myRowType CURSOR

CREATE PROCEDURE MYPROC(IN pempNo VARCHAR(6), OUT pcv1 myCursorType)

 RESULT SETS 0

 LANGUAGE SQL

 BEGIN

 DECLARE c1 CURSOR WITH RETURN FOR

 SELECT empno FROM EMPLOYEE;

 OPEN c1;

 SET pcv1 = CURSOR FOR SELECT name FROM employee WHERE empNo = pempNo;

 OPEN pcv1;

 END

The following code calls stored procedure MYPROC and uses a ResultSet object to

retrieve data from cursor pcv1. The numbers to the right of selected statements

correspond to the previously-described steps.

Connection con;

ResultSet rs = null; // Output parameter �1�

...

CallableStatement cstmt = conn.prepareCall("CALL MYPROC(?, ?)"); �2�

String hvEmpNo="000500";

cstmt.setString (1, hvEmpNo);

cstmt.registerOutParameter (2, DB2Types.CURSOR); �3�

cstmt.executeUpdate(); // Call the stored procedure �4�

String hvEmpName = null;

rs = (java.sql.ResultSet)cstmt.getObject(2); �5�

while (rs.next()) { // Retrieve result set rows �6�

 hvEmpName=rs.getString(1);

 System.out.println("Employee name for " + hvEmpNo

 + ": " + hvEmpName);

}

rs.close(); // Close the ResultSet �7�

Retrieving multiple result sets from a stored procedure in a

JDBC application

If you call a stored procedure that returns result sets, you need to include code to

retrieve the result sets.

The steps that you take depend on whether you know how many result sets are

returned, and whether you know the contents of those result sets.

Retrieving a known number of result sets from a stored procedure in a JDBC

application:

Chapter 3. JDBC application programming 63

Retrieving a known number of result sets from a stored procedure is a simpler

procedure than retrieving an unknown number of result sets.

 To retrieve result sets when you know the number of result sets and their contents,

follow these steps:

1. Invoke the Statement.execute method, the PreparedStatement.execute method,

or the CallableStatement.execute method to call the stored procedure.

Use PreparedStatement.execute if the stored procedure has input parameters.

2. Invoke the getResultSet method to obtain the first result set, which is in a

ResultSet object.

3. In a loop, position the cursor using the next method, and retrieve data from

each column of the current row of the ResultSet object using getXXX methods.

4. If there are n result sets, repeat the following steps n-1 times:

a. Invoke the getMoreResults method to close the current result set and point

to the next result set.

b. Invoke the getResultSet method to obtain the next result set, which is in a

ResultSet object.

c. In a loop, position the cursor using the next method, and retrieve data from

each column of the current row of the ResultSet object using getXXX

methods.

Example: The following code illustrates retrieving two result sets. The first result

set contains an INTEGER column, and the second result set contains a CHAR

column. The numbers to the right of selected statements correspond to the

previously described steps.

CallableStatement cstmt;

ResultSet rs;

int i;

String s;

...

cstmt.execute(); // Call the stored procedure �1�

rs = cstmt.getResultSet(); // Get the first result set �2�

while (rs.next()) { // Position the cursor �3�

 i = rs.getInt(1); // Retrieve current result set value

 System.out.println("Value from first result set = " + i);

 // Print the value

}

cstmt.getMoreResults(); // Point to the second result set �4a�

 // and close the first result set

rs = cstmt.getResultSet(); // Get the second result set �4b�

while (rs.next()) { // Position the cursor �4c�

 s = rs.getString(1); // Retrieve current result set value

 System.out.println("Value from second result set = " + s);

 // Print the value

}

rs.close(); // Close the result set

cstmt.close(); // Close the statement

Retrieving an unknown number of result sets from a stored procedure in a

JDBC application:

Retrieving an unknown number of result sets from a stored procedure is a more

complicated procedure than retrieving a known number of result sets.

 To retrieve result sets when you do not know the number of result sets or their

contents, you need to retrieve ResultSets, until no more ResultSets are returned.

For each ResultSet, use ResultSetMetaData methods to determine its contents.

64 Developing Java Applications

After you call a stored procedure, follow these basic steps to retrieve the contents

of an unknown number of result sets.

1. Check the value that was returned from the execute statement that called the

stored procedure.

If the returned value is true, there is at least one result set, so you need to go

to the next step.

2. Repeat the following steps in a loop:

a. Invoke the getResultSet method to obtain a result set, which is in a

ResultSet object. Invoking this method closes the previous result set.

b. Use ResultSetMetaData methods to determine the contents of the ResultSet,

and retrieve data from the ResultSet.

c. Invoke the getMoreResults method to determine whether there is another

result set. If getMoreResults returns true, go to step 1 to get the next result

set.

Example: The following code illustrates retrieving result sets when you do not

know the number of result sets or their contents. The numbers to the right of

selected statements correspond to the previously described steps.

CallableStatement cstmt;

ResultSet rs;

...

boolean resultsAvailable = cstmt.execute(); // Call the stored procedure

while (resultsAvailable) { // Test for result sets �1�

 ResultSet rs = cstmt.getResultSet(); // Get a result set �2a�

 ... // Process the ResultSet

 // as you would process

 // a ResultSet from a table

 resultsAvailable = cstmt.getMoreResults(); // Check for next result set �2c�

 // (Also closes the

 // previous result set)

}

Keeping result sets open when retrieving multiple result sets from a stored

procedure in a JDBC application:

The getMoreResults method has a form that lets you leave the current ResultSet

open when you open the next ResultSet.

 To specify whether result sets stay open, follow this process:

When you call getMoreResults to check for the next ResultSet, use this form:

CallableStatement.getMoreResults(int current);

v To keep the current ResultSet open when you check for the next ResultSet,

specify a value of Statement.KEEP_CURRENT_RESULT for current.

v To close the current ResultSet when you check for the next ResultSet, specify a

value of Statement.CLOSE_CURRENT_RESULT for current.

v To close all ResultSet objects, specify a value of Statement.CLOSE_ALL_RESULTS

for current.

Example: The following code keeps all ResultSets open until the final ResultSet has

been retrieved, and then closes all ResultSets.

CallableStatement cstmt;

...

boolean resultsAvailable = cstmt.execute(); // Call the stored procedure

if (resultsAvailable==true) { // Test for result set

 ResultSet rs1 = cstmt.getResultSet(); // Get a result set

Chapter 3. JDBC application programming 65

...

 resultsAvailable = cstmt.getMoreResults(Statement.KEEP_CURRENT_RESULT);

 // Check for next result set

 // but do not close

 // previous result set

 if (resultsAvailable==true) { // Test for another result set

 ResultSet rs2 = cstmt.getResultSet(); // Get next result set

 ... // Process either ResultSet

 }

}

resultsAvailable = cstmt.getMoreResults(Statement.CLOSE_ALL_RESULTS);

 // Close the result sets

LOBs in JDBC applications with the IBM Data Server Driver

for JDBC and SQLJ

The IBM Data Server Driver for JDBC and SQLJ supports methods for updating

and retrieving data from BLOB, CLOB, and DBCLOB columns in a table, and for

calling stored procedures or user-defined functions with BLOB or CLOB

parameters.

Progressive streaming with the IBM Data Server Driver for JDBC

and SQLJ

If the data source supports progressive streaming, also known as dynamic data

format, the IBM Data Server Driver for JDBC and SQLJ can use progressive

streaming to retrieve data in LOB or XML columns.

DB2 for z/OS Version 9.1 and later supports progressive streaming for LOBs and

XML objects. DB2 Database for Linux, UNIX, and Windows Version 9.5 and later,

IBM Informix Dynamic Server (IDS) Version 11.50 and later, and DB2 for i V6R1

and later support progressive streaming for LOBs.

With progressive streaming, the data source dynamically determines the most

efficient mode in which to return LOB or XML data, based on the size of the LOBs

or XML objects.

Progressive streaming is the default behavior in the following environments:

 Minimum IBM Data Server

Driver for JDBC and SQLJ

version

Minimum data server

version Types of objects

3.53 DB2 for i V6R1 LOB, XML

3.50 DB2 Database for Linux,

UNIX, and Windows Version

9.5

LOB

3.50 IDS Version 11.50 LOB

3.2 DB2 for z/OS Version 9 LOB, XML

You set the progressive streaming behavior on new connections using the IBM

Data Server Driver for JDBC and SQLJ progressiveStreaming property.

For DB2 for z/OS Version 9.1 and later data sources, or DB2 Database for Linux,

UNIX, and Windows Version 9.5 and later data sources, you can set the

progressive streaming behavior for existing connections with the

DB2Connection.setDBProgressiveStreaming(DB2BaseDataSource.YES) method. If

66 Developing Java Applications

you call DB2Connection.setDBProgressiveStreaming(DB2BaseDataSource.YES),

all ResultSet objects that are created on the connection use progressive streaming

behavior.

When progressive streaming is enabled, you can control when the JDBC driver

materializes LOBs with the streamBufferSize property. If a LOB or XML object is

less than or equal to the streamBufferSize value, the object is materialized.

Important: With progressive streaming, when you retrieve a LOB or XML value

from a ResultSet into an application variable, you can manipulate the contents of

that application variable until you move the cursor or close the cursor on the

ResultSet. After that, the contents of the application variable are no longer

available to you. If you perform any actions on the LOB in the application variable,

you receive an SQLException. For example, suppose that progressive streaming is

enabled, and you execute statements like this:

...

ResultSet rs = stmt.executeQuery("SELECT CLOBCOL FROM MY_TABLE");

rs.next(); // Retrieve the first row of the ResultSet

Clob clobFromRow1 = rs.getClob(1);

 // Put the CLOB from the first column of

 // the first row in an application variable

String substr1Clob = clobFromRow1.getSubString(1,50);

 // Retrieve the first 50 bytes of the CLOB

rs.next(); // Move the cursor to the next row.

 // clobFromRow1 is no longer available.

// String substr2Clob = clobFromRow1.getSubString(51,100);

 // This statement would yield an SQLException

Clob clobFromRow2 = rs.getClob(1);

 // Put the CLOB from the first column of

 // the second row in an application variable

rs.close(); // Close the ResultSet.

 // clobFromRow2 is also no longer available.

After you execute rs.next() to position the cursor at the second row of the

ResultSet, the CLOB value in clobFromRow1 is no longer available to you.

Similarly, after you execute rs.close() to close the ResultSet, the values in

clobFromRow1 and clobFromRow2 are no longer available.

If you disable progressive streaming, the way in which the IBM Data Server Driver

for JDBC and SQLJ handles LOBs depends on the value of the

fullyMaterializeLobData property.

Use of progressive streaming is the preferred method of LOB or XML data

retrieval.

LOB locators with the IBM Data Server Driver for JDBC and

SQLJ

The IBM Data Server Driver for JDBC and SQLJ can use LOB locators to retrieve

data in LOB columns.

To cause JDBC to use LOB locators to retrieve data from LOB columns, you need

to set the fullyMaterializeLobData property to false and set the

progressiveStreaming property to NO (DB2BaseDataSource.NO in an application

program).

The effect of fullyMaterializeLobData depends on whether the data source

supports progressive streaming and the value of the progressiveStreaming

property:

Chapter 3. JDBC application programming 67

v If the data source does not support progressive locators:

If the value of fullyMaterializeLobData is true, LOB data is fully materialized

within the JDBC driver when a row is fetched. If the value is false, LOB data is

streamed. The driver uses locators internally to retrieve LOB data in chunks on

an as-needed basis It is highly recommended that you set this value to false

when you retrieve LOBs that contain large amounts of data. The default is true.

v If the data source supports progressive streaming, also known as dynamic data

format:

The JDBC driver ignores the value of fullyMaterializeLobData if the

progressiveStreaming property is set to YES (DB2BaseDataSource.YES in an

application program) or is not set.

fullyMaterializeLobData has no effect on stored procedure parameters.

As in any other language, a LOB locator in a Java application is associated with

only one data source. You cannot use a single LOB locator to move data between

two different data sources. To move LOB data between two data sources, you need

to materialize the LOB data when you retrieve it from a table in the first data

source and then insert that data into the table in the second data source.

LOB operations with the IBM Data Server Driver for JDBC and

SQLJ

The IBM Data Server Driver for JDBC and SQLJ supports methods for updating

and retrieving data from BLOB, CLOB, and DBCLOB columns in a table, and for

calling stored procedures or user-defined functions with BLOB or CLOB

parameters.

Among the operations that you can perform on LOB data under the IBM Data

Server Driver for JDBC and SQLJ are:

v Specify a BLOB or column as an argument of the following ResultSet methods to

retrieve data from a BLOB or CLOB column:

For BLOB columns:

– getBinaryStream

– getBlob

– getBytes

For CLOB columns:

– getAsciiStream

– getCharacterStream

– getClob

– getString
v Call the following ResultSet methods to update a BLOB or CLOB column in an

updatable ResultSet:

For BLOB columns:

– updateBinaryStream

– updateBlob

For CLOB columns:

– updateAsciiStream

– updateCharacterStream

– updateClob

If you specify -1 for the length parameter in any of the previously listed

methods, the IBM Data Server Driver for JDBC and SQLJ reads the input data

until it is exhausted.

68 Developing Java Applications

v Use the following PreparedStatement methods to set the values for parameters

that correspond to BLOB or CLOB columns:

For BLOB columns:

– setBytes

– setBlob

– setBinaryStream

– setObject, where the Object parameter value is an InputStream.

For CLOB columns:

– setString

– setAsciiStream

– setClob

– setCharacterStream

– setObject, where the Object parameter value is a Reader.

If you specify -1 for length, the IBM Data Server Driver for JDBC and SQLJ reads

the input data until it is exhausted.

v Retrieve the value of a JDBC CLOB parameter using the

CallableStatement.getString method.

Restriction: With IBM Data Server Driver for JDBC and SQLJ type 2 connectivity,

you cannot call a stored procedure that has DBCLOB OUT or INOUT parameters.

If you are using the IBM Data Server Driver for JDBC and SQLJ version 4.0 or

later, you can perform the following additional operations:

v Use ResultSet.updateXXX or PreparedStatement.setXXX methods to update a

BLOB or CLOB with a length value of up to 2GB for a BLOB or CLOB. For

example, these methods are defined for BLOBs:

ResultSet.updateBlob(int columnIndex, InputStream x, long length)

ResultSet.updateBlob(String columnLabel, InputStream x, long length)

ResultSet.updateBinaryStream(int columnIndex, InputStream x, long length)

ResultSet.updateBinaryStream(String columnLabel, InputStream x, long length)

PreparedStatement.setBlob(int columnIndex, InputStream x, long length)

PreparedStatement.setBlob(String columnLabel, InputStream x, long length)

PreparedStatement.setBinaryStream(int columnIndex, InputStream x, long length)

PreparedStatement.setBinaryStream(String columnLabel, InputStream x, long length)

v Use ResultSet.updateXXX or PreparedStatement.setXXX methods without the

length parameter when you update a BLOB or CLOB, to cause the IBM Data

Server Driver for JDBC and SQLJ to read the input data until it is exhausted. For

example:

ResultSet.updateBlob(int columnIndex, InputStream x)

ResultSet.updateBlob(String columnLabel, InputStream x)

ResultSet.updateBinaryStream(int columnIndex, InputStream x)

ResultSet.updateBinaryStream(String columnLabel, InputStream x)

PreparedStatement.setBlob(int columnIndex, InputStream x)

PreparedStatement.setBlob(String columnLabel, InputStream x)

PreparedStatement.setBinaryStream(int columnIndex, InputStream x)

PreparedStatement.setBinaryStream(String columnLabel, InputStream x)

v Create a Blob or Clob object that contains no data, using the

Connection.createBlob or Connection.createClob method.

v Materialize a Blob or Clob object on the client, when progressive streaming or

locators are in use, using the Blob.getBinaryStream or Clob.getCharacterStream

method.

v Free the resources that a Blob or Clob object holds, using the Blob.free or

Clob.free method.

Chapter 3. JDBC application programming 69

Java data types for retrieving or updating LOB column data in

JDBC applications

When the JDBC driver cannot immediately determine the data type of a parameter

that is used with a LOB column, you need to choose a parameter data type that is

compatible with the LOB data type.

When the deferPrepares property is set to true, and the IBM Data Server Driver for

JDBC and SQLJ processes a PreparedStatement.setXXX call, the driver might need

to do extra processing to determine data types. This extra processing can impact

performance.

Input parameters for BLOB columns

For IN parameters for BLOB columns, or INOUT parameters that are used for

input to BLOB columns, you can use one of the following techniques:

v Use a java.sql.Blob input variable, which is an exact match for a BLOB column:

cstmt.setBlob(parmIndex, blobData);

v Use a CallableStatement.setObject call that specifies that the target data type is

BLOB:

byte[] byteData = {(byte)0x1a, (byte)0x2b, (byte)0x3c};

cstmt.setObject(parmInd, byteData, java.sql.Types.BLOB);

v Use an input parameter of type of java.io.ByteArrayInputStream with a

CallableStatement.setBinaryStream call. A java.io.ByteArrayInputStream object is

compatible with a BLOB data type. For this call, you need to specify the exact

length of the input data:

java.io.ByteArrayInputStream byteStream =

 new java.io.ByteArrayInputStream(byteData);

int numBytes = byteData.length;

cstmt.setBinaryStream(parmIndex, byteStream, numBytes);

Output parameters for BLOB columns

For OUT parameters for BLOB columns, or INOUT parameters that are used for

output from BLOB columns, you can use the following technique:

v Use the CallableStatement.registerOutParameter call to specify that an output

parameter is of type BLOB. Then you can retrieve the parameter value into any

variable that has a data type that is compatible with a BLOB data type. For

example, the following code lets you retrieve a BLOB value into a byte[]

variable:

cstmt.registerOutParameter(parmIndex, java.sql.Types.BLOB);

cstmt.execute();

byte[] byteData = cstmt.getBytes(parmIndex);

Input parameters for CLOB columns

For IN parameters for CLOB columns, or INOUT parameters that are used for

input to CLOB columns, you can use one of the following techniques:

v Use a java.sql.Clob input variable, which is an exact match for a CLOB column:

cstmt.setClob(parmIndex, clobData);

v Use a CallableStatement.setObject call that specifies that the target data type is

CLOB:

String charData = "CharacterString";

cstmt.setObject(parmInd, charData, java.sql.Types.CLOB);

v Use one of the following types of stream input parameters:

70 Developing Java Applications

– A java.io.StringReader input parameter with a cstmt.setCharacterStream call:

java.io.StringReader reader = new java.io.StringReader(charData);

cstmt.setCharacterStream(parmIndex, reader, charData.length);

– A java.io.ByteArrayInputStream parameter with a cstmt.setAsciiStream call,

for ASCII data:

byte[] charDataBytes = charData.getBytes("US-ASCII");

java.io.ByteArrayInputStream byteStream =

 new java.io.ByteArrayInputStream (charDataBytes);

cstmt.setAsciiStream(parmIndex, byteStream, charDataBytes.length);

For these calls, you need to specify the exact length of the input data.

v Use a String input parameter with a cstmt.setString call:

cstmt.setString(parmIndex, charData);

If the length of the data is greater than 32KB, and the JDBC driver has no

DESCRIBE information about the parameter data type, the JDBC driver assigns

the CLOB data type to the input data.

v Use a String input parameter with a cstmt.setObject call, and specify the target

data type as VARCHAR or LONGVARCHAR:

cstmt.setObject(parmIndex, charData, java.sql.Types.VARCHAR);

If the length of the data is greater than 32KB, and the JDBC driver has no

DESCRIBE information about the parameter data type, the JDBC driver assigns

the CLOB data type to the input data.

Output parameters for CLOB columns

For OUT parameters for CLOB columns, or INOUT parameters that are used for

output from CLOB columns, you can use one of the following techniques:

v Use the CallableStatement.registerOutParameter call to specify that an output

parameter is of type CLOB. Then you can retrieve the parameter value into a

Clob variable. For example:

cstmt.registerOutParameter(parmIndex, java.sql.Types.CLOB);

cstmt.execute();

Clob clobData = cstmt.getClob(parmIndex);

v Use the CallableStatement.registerOutParameter call to specify that an output

parameter is of type VARCHAR or LONGVARCHAR:

cstmt.registerOutParameter(parmIndex, java.sql.Types.VARCHAR);

cstmt.execute();

String charData = cstmt.getString(parmIndex);

This technique should be used only if you know that the length of the retrieved

data is less than or equal to 32KB. Otherwise, the data is truncated.

ROWIDs in JDBC with the IBM Data Server Driver for JDBC

and SQLJ

DB2 for z/OS and DB2 for i support the ROWID data type for a column in a

database table. A ROWID is a value that uniquely identifies a row in a table.

Although IBM Informix Dynamic Server (IDS) also supports rowids, those rowids

have the INTEGER data type. You can select an IDS rowid column into a variable

with a four-byte integer data type.

You can use the following ResultSet methods to retrieve data from a ROWID

column:

Chapter 3. JDBC application programming 71

v getRowId (JDBC 4.0 and later)

v getBytes

v getObject

You can use the following ResultSet method to update a ROWID column of an

updatable ResultSet:

v updateRowId (JDBC 4.0 and later)

updateRowId is valid only if the target database system supports updating of

ROWID columns.

If you are using JDBC 3.0, for getObject, the IBM Data Server Driver for JDBC and

SQLJ returns an instance of the IBM Data Server Driver for JDBC and SQLJ-only

class com.ibm.db2.jcc.DB2RowID.

If you are using JDBC 4.0, for getObject, the IBM Data Server Driver for JDBC and

SQLJ returns an instance of the class java.sql.RowId.

You can use the following PreparedStatement methods to set a value for a

parameter that is associated with a ROWID column:

v setRowId (JDBC 4.0 and later)

v setBytes

v setObject

If you are using JDBC 3.0, for setObject, use the IBM Data Server Driver for JDBC

and SQLJ-only type com.ibm.db2.jcc.Types.ROWID or an instance of the

com.ibm.db2.jcc.DB2RowID class as the target type for the parameter.

If you are using JDBC 4.0, for setObject, use the type java.sql.Types.RowId or an

instance of the java.sql.ROWID class as the target type for the parameter.

You can use the following CallableStatement methods to retrieve a ROWID column

as an output parameter from a stored procedure call:

v getRowId (JDBC 4.0 and later)

v getObject

To call a stored procedure that is defined with a ROWID output parameter, register

that parameter to be of the java.sql.Types.ROWID type.

ROWID values are valid for different periods of time, depending on the data

source on which those ROWID values are defined. Use the

DatabaseMetaData.getRowIdLifetime method to determine the time period for

which a ROWID value is valid. The values that are returned for the data sources

are listed in the following table.

 Table 13. DatabaseMetaData.getRowIdLifetime values for supported data sources

Database server DatabaseMetaData.getRowIdLifetime

DB2 for z/OS ROWID_VALID_TRANSACTION

DB2 Database for Linux, UNIX, and Windows ROWID_UNSUPPORTED

DB2 for i ROWID_VALID_FOREVER

IDS ROWID_VALID_FOREVER

Example: Using PreparedStatement.setRowId with a java.sql.RowId target type: Suppose

that rwid is a RowId object. To set parameter 1, use this form of the setRowId

method:

72 Developing Java Applications

ps.setRowId(1, rid);

Example: Using ResultSet.getRowId to retrieve a ROWID value from a data source: To

retrieve a ROWID value from the first column of a result set into RowId object

rwid, use this form of the ResultSet.getRowId method:

java.sql.RowId rwid = rs.getRowId(1);

Example: Using CallableStatement.registerOutParameter with a java.sql.Types.ROWID

parameter type: To register parameter 1 of a CALL statement as a

java.sql.Types.ROWID data type, use this form of the registerOutParameter

method:

cs.registerOutParameter(1, java.sql.Types.ROWID)

Distinct types in JDBC applications

A distinct type is a user-defined data type that is internally represented as a

built-in SQL data type. You create a distinct type by executing the SQL statement

CREATE DISTINCT TYPE.

In a JDBC program, you can create a distinct type using the executeUpdate method

to execute the CREATE DISTINCT TYPE statement. You can also use

executeUpdate to create a table that includes a column of that type. When you

retrieve data from a column of that type, or update a column of that type, you use

Java identifiers with data types that correspond to the built-in types on which the

distinct types are based.

The following example creates a distinct type that is based on an INTEGER type,

creates a table with a column of that type, inserts a row into the table, and

retrieves the row from the table:

Connection con;

Statement stmt;

ResultSet rs;

String empNumVar;

int shoeSizeVar;

...

stmt = con.createStatement(); // Create a Statement object

stmt.executeUpdate(

 "CREATE DISTINCT TYPE SHOESIZE AS INTEGER");

 // Create distinct type

stmt.executeUpdate(

 "CREATE TABLE EMP_SHOE (EMPNO CHAR(6), EMP_SHOE_SIZE SHOESIZE)");

 // Create table with distinct type

stmt.executeUpdate("INSERT INTO EMP_SHOE " +

 "VALUES (’000010’, 6)"); // Insert a row

rs=stmt.executeQuery("SELECT EMPNO, EMP_SHOE_SIZE FROM EMP_SHOE);

 // Create ResultSet for query

while (rs.next()) {

 empNumVar = rs.getString(1); // Get employee number

 shoeSizeVar = rs.getInt(2); // Get shoe size (use int

 // because underlying type

 // of SHOESIZE is INTEGER)

 System.out.println("Employee number = " + empNumVar +

 " Shoe size = " + shoeSizeVar);

}

rs.close(); // Close ResultSet

stmt.close(); // Close Statement

Figure 16. Creating and using a distinct type

Chapter 3. JDBC application programming 73

Invocation of stored procedures with ARRAY parameters in

JDBC applications

JDBC applications that run under the IBM Data Server Driver for JDBC and SQLJ

can call stored procedures that have ARRAY parameters. ARRAY parameters are

supported in stored procedures on DB2 Database for Linux, UNIX, and Windows

Version 9.5 and later.

You can use java.sql.Array objects as IN, OUT, or INOUT parameters in a stored

procedure.

For IN or INOUT parameters, use the DB2Connection.createArrayOf method

(JDBC 3.0 or earlier) or the Connection.createArrayOf method (JDBC 4.0 or later) to

create a java.sql.Array object. Use the CallableStatement.setArray method or the

CallableStatement.setObject method to assign a java.sql.Array object to an ARRAY

stored procedure parameter.

You can register an OUT ARRAY parameter for a stored procedure call by

specifying java.sql.Types.ARRAY as the parameter type in a

CallableStatement.registerOutParameter call.

There are two ways to retrieve data from an ARRAY output parameter:

v Use the CallableStatement.getArray method to retrieve the data into a

java.sql.Array object, and use the java.sql.Array.getArray method to retrieve the

contents of the java.sql.Array object into a Java array.

v Use the CallableStatement.getArray method to retrieve the data into a

java.sql.Array object. Use the java.sql.Array.getResultSet() method to retrieve the

data into a ResultSet object. Use ResultSet methods to retrieve elements of the

array. Each row of the ResultSet contains two columns:

– An index into the array, which starts at 1

– The array element

Example: Suppose that input and output parameters IN_PHONE and

OUT_PHONE in stored procedure GET_EMP_DATA are arrays that are defined

like this:

CREATE TYPE PHONENUMBERS AS VARCHAR(10) ARRAY[5]

Call GET_EMP_DATA with the two parameters.

Connection con;

CallableStatement cstmt;

ResultSet rs;

java.sql.Array inPhoneData;

...

stmt = con.prepareCall("CALL GET_EMP_DATA(?,?)");

 // Create a CallableStatement object

cstmt.setObject (1, inPhoneData); // Set input parameter

cstmt.registerOutParameter (2, java.sql.Types.ARRAY);

 // Register out parameters

cstmt.executeUpdate(); // Call the stored procedure

Array outPhoneData = cstmt.getArray(2);

 // Get the output parameter array

System.out.println("Parameter values from GET_EMP_DATA call: ");

String [] outPhoneNums = (String [])outPhoneData.getArray();

 // Retrieve output data from the JDBC Array object

 // into a Java String array

74 Developing Java Applications

for(int i=0; i<outPhoneNums.length; i++) {

 System.out.print(outPhoneNums[i]);

 System.out.println();

}

Savepoints in JDBC applications

An SQL savepoint represents the state of data and schemas at a particular point in

time within a unit of work. There are SQL statements to set a savepoint, release a

savepoint, and restore data and schemas to the state that the savepoint represents.

The IBM Data Server Driver for JDBC and SQLJ supports the following methods

for using savepoints:

Connection.setSavepoint() or Connection.setSavepoint(String name)

Sets a savepoint. These methods return a Savepoint object that is used in later

releaseSavepoint or rollback operations.

 When you execute either of these methods, DB2 executes the form of the

SAVEPOINT statement that includes ON ROLLBACK RETAIN CURSORS.

Connection.releaseSavepoint(Savepoint savepoint)

Releases the specified savepoint, and all subsequently established savepoints.

Connection.rollback(Savepoint savepoint)

Rolls back work to the specified savepoint.

DatabaseMetaData.supportsSavepoints()

Indicates whether a data source supports savepoints.

You can indicate whether savepoints are unique by calling the method

DB2Connection.setSavePointUniqueOption. If you call this method with a value of

true, the application cannot set more than one savepoint with the same name

within the same unit of recovery. If you call this method with a value of false (the

default), multiple savepoints with the same name can be created within the same

unit of recovery, but creation of a savepoint destroys a previously created

savepoint with the same name.

The following example demonstrates how to set a savepoint, roll back to the

savepoint, and release the savepoint.

Chapter 3. JDBC application programming 75

Retrieving automatically generated keys in JDBC applications

With the IBM Data Server Driver for JDBC and SQLJ, you can retrieve

automatically generated keys (also called auto-generated keys) from a table using

JDBC 3.0 methods.

Automatically generated keys correspond to the contents of an identity column. An

identity column is a table column that provides a way for the data source to

automatically generate a numeric value for each row. You define an identity

column in a CREATE TABLE or ALTER TABLE statement by specifying the AS

IDENTITY clause when you define a column that has an exact numeric type with a

scale of 0 (SMALLINT, INTEGER, BIGINT, DECIMAL with a scale of zero, or a

distinct type based on one of these types).

To enable retrieval of automatically generated keys from a table, you need to

indicate when you insert rows that you will want to retrieve automatically

generated key values. You do that by setting a flag in a

Connection.prepareStatement, Statement.executeUpdate, or Statement.execute

method call. The statement that is executed must be a single-row INSERT

statement or a multiple-row INSERT statement, such as an INSERT with a

subselect clause. Otherwise, the JDBC driver ignores the parameter that sets the

flag.

Restriction: If the Connection or DataSource property atomicMultiRowInsert is set

to DB2BaseDataSource.YES (1), you cannot prepare an SQL statement for retrieval of

automatically generated keys and use the PreparedStatement object for batch

updates. The IBM Data Server Driver for JDBC and SQLJ version 3.50 or later

throws an SQLException when you call the addBatch or executeBatch method on a

PreparedStatement object that is prepared to return automatically generated keys.

Connection con;

Statement stmt;

ResultSet rs;

String empNumVar;

int shoeSizeVar;

...

con.setAutoCommit(false); // set autocommit OFF

stmt = con.createStatement(); // Create a Statement object

... // Perform some SQL

con.commit(); // Commit the transaction

stmt.executeUpdate("INSERT INTO EMP_SHOE " +

 "VALUES (’000010’, 6)"); // Insert a row

((com.ibm.db2.jcc.DB2Connection)con).setSavePointUniqueOption(true);

 // Indicate that savepoints

 // are unique within a unit

 // of recovery

Savepoint savept = con.setSavepoint("savepoint1");

 // Create a savepoint

...

stmt.executeUpdate("INSERT INTO EMP_SHOE " +

 "VALUES (’000020’, 10)"); // Insert another row

conn.rollback(savept); // Roll back work to the point

 // after the first insert

...

con.releaseSavepoint(savept); // Release the savepoint

stmt.close(); // Close the Statement

conn.commit(); // Commit the transaction

Figure 17. Setting, rolling back to, and releasing a savepoint in a JDBC application

76 Developing Java Applications

To retrieve automatically generated keys from a table, you need to perform these

steps:

1. Use one of the following methods to indicate that you want to return

automatically generated keys:

v If you plan to use the PreparedStatement.executeUpdate method to insert

rows, invoke one of these forms of the Connection.prepareStatement method

to create a PreparedStatement object:

The following form is valid for a table on any data source that supports

identity columns. sql-statement must be a single-row INSERT statement.

Connection.prepareStatement(sql-statement,

 Statement.RETURN_GENERATED_KEYS);

The following forms are valid only if the data source supports INSERT

within SELECT statements. sql-statement can be a single-row INSERT

statement or a multiple-row INSERT statement. With the first form, you

specify the names of the columns for which you want automatically

generated keys. With the second form, you specify the positions in the table

of the columns for which you want automatically generated keys.

Connection.prepareStatement(sql-statement, String [] columnNames);

Connection.prepareStatement(sql-statement, int [] columnIndexes);

v If you use the Statement.executeUpdate method to insert rows, invoke one of

these forms of the Statement.executeUpdate method:

The following form is valid for a table on any data source that supports

identity columns. sql-statement must be a single-row INSERT statement.

Statement.executeUpdate(sql-statement, Statement.RETURN_GENERATED_KEYS);

The following forms are valid only if the data source supports INSERT

within SELECT statements. sql-statement can be a single-row INSERT

statement or a multiple-row INSERT statement. With the first form, you

specify the names of the columns for which you want automatically

generated keys. With the second form, you specify the positions in the table

of the columns for which you want automatically generated keys.

Statement.executeUpdate(sql-statement, String [] columnNames);

Statement.executeUpdate(sql-statement, int [] columnIndexes);

2. Invoke the PreparedStatement.getGeneratedKeys method or the

Statement.getGeneratedKeys method to retrieve a ResultSet object that contains

the automatically generated key values.

If you include the Statement.RETURN_GENERATED_KEYS parameter, the data

type of the automatically generated keys in the ResultSet is DECIMAL,

regardless of the data type of the corresponding column.

The following code creates a table with an identity column, inserts a row into the

table, and retrieves the automatically generated key value for the identity column.

The numbers to the right of selected statements correspond to the previously

described steps.

import java.sql.*;

import java.math.*;

import com.ibm.db2.jcc.*;

Connection con;

Statement stmt;

ResultSet rs;

java.math.BigDecimal iDColVar;

...

stmt = con.createStatement(); // Create a Statement object

stmt.executeUpdate(

Chapter 3. JDBC application programming 77

"CREATE TABLE EMP_PHONE (EMPNO CHAR(6), PHONENO CHAR(4), " +

 "IDENTCOL INTEGER GENERATED ALWAYS AS IDENTITY)");

 // Create table with identity column

stmt.executeUpdate("INSERT INTO EMP_PHONE (EMPNO, PHONENO) " + �1�

 "VALUES (’000010’, ’5555’)", // Insert a row

 Statement.RETURN_GENERATED_KEYS); // Indicate you want automatically

 // generated keys

rs = stmt.getGeneratedKeys(); // Retrieve the automatically �2�

 // generated key value in a ResultSet.

 // Only one row is returned.

 // Create ResultSet for query

while (rs.next()) {

 java.math.BigDecimal idColVar = rs.getBigDecimal(1);

 // Get automatically generated key

 // value

 System.out.println("automatically generated key value = " + idColVar);

}

rs.close(); // Close ResultSet

stmt.close(); // Close Statement

The following code creates a table with an identity column, inserts two rows into

the table using a multiple-row INSERT statement, and retrieves the automatically

generated key values for the identity column. The numbers to the right of selected

statements correspond to the previously-described steps.

import java.sql.*;

import java.math.*;

import com.ibm.db2.jcc.*;

Connection con;

Statement stmt;

ResultSet rs;

...

stmt = con.createStatement();

stmt.executeUpdate(

 "CREATE TABLE EMP_PHONE (EMPNO CHAR(6), PHONENO CHAR(4), " +

 "IDENTCOL INTEGER GENERATED ALWAYS AS IDENTITY)");

 // Create table with identity column

String[] id_col = {"IDENTCOL"};

int updateCount = �1�

 stmt.executeUpdate("INSERT INTO EMP_PHONE (EMPNO, PHONENO)" +

 "VALUES (’000010’, ’5555’), (’000020’, ’5556’)", id_col);

 // Insert two rows

 // Indicate you want automatically

 // generated keys

rs = stmt.getGeneratedKeys(); // Retrieve the automatically �2�

 // generated key values in a ResultSet.

 // Two rows are returned.

 // Create ResultSet for query

while (rs.next()) {

 int idColVar = rs.getInt(1);

 // Get automatically generated key

 // values

 System.out.println("automatically generated key value = " + idColVar);

}

stmt.close();

con.close();

Using named parameter markers in JDBC applications

You can use named parameter markers instead of standard parameter markers in

PreparedStatement and CallableStatement objects to assign values to the input

parameter markers. You can also use named parameter markers instead of

standard parameter markers in CallableStatement objects to register named OUT

parameters.

78 Developing Java Applications

Named parameter markers make your JDBC applications more readable. If the

data source does not support named parameter markers, you can set the IBM Data

Server Driver for JDBC and SQLJ enableNamedParameterMarkers property to

DB2BaseDataSource.YES (1) to direct the driver to accept named parameter markers

and send them to the data source as standard parameter markers, which are

indicated by a question mark (?).

Using named parameter markers with PreparedStatement objects

You can use named parameter markers instead of standard parameter markers in

PreparedStatement objects to assign values to the parameter markers.

To use named parameter markers with PreparedStatement objects, follow these

steps.

1. Execute the Connection.prepareStatement method on an SQL statement string

that contains named parameter markers. The named parameter markers must

follow the rules for SQL host variable names.

You cannot mix named parameter markers and standard parameter markers in

the same SQL statement string.

Named parameter markers are case-insensitive.

2. For each named parameter marker, use a

DB2PreparedStatement.setJccXXXAtName method to assign a value to each

named input parameter.

If you use the same named parameter marker more than once in the same SQL

statement string, you need to call a setJccXXXAtName method for that

parameter marker only once.

Recommendation: Do not use the same named parameter marker more than

once in the same SQL statement string if the input to that parameter marker is

a stream. Doing so can cause unexpected results.

Restriction: You cannot use standard JDBC PreparedStatement.setXXX methods

with named parameter markers. Doing so causes an exception to be thrown.

3. Execute the PreparedStatement.

The following code uses named parameter markers to update the phone number to

’4657’ for the employee with employee number ’000010’. The numbers to the right

of selected statements correspond to the previously described steps.

Connection con;

PreparedStatement pstmt;

int numUpd;

...

pstmt = con.prepareStatement(

 "UPDATE EMPLOYEE SET PHONENO=:phonenum WHERE EMPNO=:empnum");

 // Create a PreparedStatement object �1�

((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setJccStringAtName

 ("phonenum", "4567");

 // Assign a value to phonenum parameter �2�

((com.ibm.db2.jcc.DB2PreparedStatement)pstmt).setJccStringAtName

 ("empnum", "000010");

 // Assign a value to empnum parameter

numUpd = pstmt.executeUpdate(); // Perform the update �3�

pstmt.close(); // Close the PreparedStatement object

Using named parameter markers with CallableStatement objects

You can use named parameter markers instead of standard parameter markers in

CallableStatement objects to assign values to IN or INOUT parameters and to

register OUT parameters.

Chapter 3. JDBC application programming 79

To use named parameter markers with CallableStatement objects, follow these

steps.

1. Execute the Connection.prepareCall method on an SQL statement string that

contains named parameter markers.

The named parameter markers must follow the rules for SQL host variable

names.

You cannot mix named parameter markers and standard parameter markers in

the same SQL statement string.

Named parameter markers are case-insensitive.

2. For each named parameter marker that represents an OUT parameter, use a

DB2CallableStatement.registerJccOutParameterAtName method to register the

OUT parameter with a data type.

If you use the same named parameter marker more than once in the same SQL

statement string, you need to call a registerJccOutParameterAtName method for

that parameter marker only once. All parameters with the same name are

registered as the same data type.

Restriction: You cannot use standard JDBC

CallableStatement.registerOutParameter methods with named parameter

markers. Doing so causes an exception to be thrown.

3. For each named parameter marker for an input parameter, use a

DB2CallableStatement.setJccXXXAtName method to assign a value to each

named input parameter.

setJccXXXAtName methods are inherited from DB2PreparedStatement.

If you use the same named parameter marker more than once in the same SQL

statement string, you need to call a setJccXXXAtName method for that

parameter marker only once.

Recommendation: Do not use the same named parameter marker more than

once in the same SQL statement string if the input to that parameter marker is

a stream. Doing so can cause unexpected results.

4. Execute the CallableStatement.

5. Call CallableStatement.getXXX methods to retrieve output parameter values.

The following code illustrates calling a stored procedure that has one input

VARCHAR parameter and one output INTEGER parameter, which are represented

by named parameter markers. The numbers to the right of selected statements

correspond to the previously described steps.

...

CallableStatement cstmt =

 con.prepareCall("CALL MYSP(:inparm,:outparm)");

 // Create a CallableStatement object �1�

 // Register OUT parameter data type �2�

((com.ibm.db2.jcc.DB2CallableStatement)cstmt).

 registerOutParameterAtName("outparm", java.sql.Types.INTEGER);

((com.ibm.db2.jcc.DB2CallableStatement)cstmt).setJccStringAtName("inparm", "4567");

 // Assign a value to inparm parameter �3�

cstmt.executeUpdate(); // Call the stored procedure �4�

int outssid = cstmt.getInt(2); // Get the output parameter value �5�

cstmt.close();

80 Developing Java Applications

Providing extended client information to the data source with

IBM Data Server Driver for JDBC and SQLJ-only methods

A set of IBM Data Server Driver for JDBC and SQLJ-only methods provide extra

information about the client to the server. This information can be used for

accounting, workload management, or debugging.

Extended client information is sent to the database server when the application

performs an action that accesses the server, such as executing SQL.

In the IBM Data Server Driver for JDBC and SQLJ version 4.0, the IBM Data Server

Driver for JDBC and SQLJ-only methods are deprecated. You should use

java.sql.Connection.setClientInfo instead.

The IBM Data Server Driver for JDBC and SQLJ-only methods are listed in the

following table.

 Table 14. Methods that provide client information to the DB2 server

Method Information provided

setDB2ClientAccountingInformation Accounting information

setDB2ClientApplicationInformation Name of the application that is working with

a connection

setDB2ClientDebugInfo The CLIENT DEBUGINFO connection

attribute for the Unified debugger

setDB2ClientProgramId A caller-specified string that helps the caller

identify which program is associated with a

particular SQL statement

setDB2ClientUser User name for a connection

setDB2ClientWorkstation Client workstation name for a connection

To set the extended client information, follow these steps:

1. Create a Connection.

2. Cast the java.sql.Connection object to a com.ibm.db2.jcc.DB2Connection.

3. Call any of the methods shown in Table 14.

4. Execute an SQL statement to cause the information to be sent to the DB2 server.

The following code performs the previous steps to pass a user name and a

workstation name to the DB2 server. The numbers to the right of selected

statements correspond to the previously-described steps.

Chapter 3. JDBC application programming 81

Providing extended client information to the data source with

client info properties

The IBM Data Server Driver for JDBC and SQLJ version 4.0 supports JDBC 4.0

client info properties, which you can use to provide extra information about the

client to the server. This information can be used for accounting, workload

management, or debugging.

Extended client information is sent to the database server when the application

performs an action that accesses the server, such as executing SQL.

The application can also use the Connection.getClientInfo method to retrieve client

information from the database server, or execute the

DatabaseMetaData.getClientInfoProperties method to determine which client

information the driver supports.

The JDBC 4.0 client info properties should be used instead IBM Data Server Driver

for JDBC and SQLJ-only methods, which are deprecated.

To set client info properties, follow these steps:

1. Create a Connection.

2. Call the java.sql.setClientInfo method to set any of the client info properties

that the database server supports.

3. Execute an SQL statement to cause the information to be sent to the database

server.

The following code performs the previous steps to pass a client’s user name and

host name to the DB2 server. The numbers to the right of selected statements

correspond to the previously-described steps.

public class ClientInfoTest {

 public static void main(String[] args) {

 String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose";

 try {

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 String user = "db2adm";

 String password = "db2adm";

 Connection conn = DriverManager.getConnection(url, �1�

 user, password);

 if (conn instanceof DB2Connection) {

 DB2Connection db2conn = (DB2Connection) conn; �2�

 db2conn.setDB2ClientUser("Michael L Thompson"); �3�

 db2conn.setDB2ClientWorkstation("sjwkstn1");

 // Execute SQL to force extended client information to be sent

 // to the server

 conn.prepareStatement("SELECT * FROM SYSIBM.SYSDUMMY1"

 + "WHERE 0 = 1").executeQuery(); �4�

 }

 } catch (Throwable e) {

 e.printStackTrace();

 }

 }

}

Figure 18. Example of passing extended client information to a DB2 server

82 Developing Java Applications

Client info properties support by the IBM Data Server Driver for

JDBC and SQLJ

JDBC 4.0 includes client info properties, which contain information about a

connection to a data source. The DatabaseMetaData.getClientInfoProperties method

returns a list of client info properties that the IBM Data Server Driver for JDBC

and SQLJ supports.

When you call DatabaseMetaData.getClientInfoProperties, a result set is returned

that contains the following columns:

v NAME

v MAX_LEN

v DEFAULT_VALUE

v DESCRIPTION

The following table lists the client info property values that the IBM Data Server

Driver for JDBC and SQLJ returns for DB2 Database for Linux, UNIX, and

Windows and for DB2 for i.

 Table 15. Client info property values for DB2 Database for Linux, UNIX, and Windows and for DB2 for i

NAME

MAX_LEN

(bytes) DEFAULT_VALUE DESCRIPTION

ApplicationName 255 Empty string The name of the application

that is currently using the

connection. This value is stored

in DB2 special register

CURRENT

CLIENT_APPLNAME.

ClientAccountingInformation 255 Empty string The value of the accounting

string from the client

information that is specified for

the connection. This value is

stored in DB2 special register

CURRENT CLIENT_ACCTNG.

public class ClientInfoTest {

 public static void main(String[] args) {

 String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose";

 try {

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 String user = "db2adm";

 String password = "db2adm";

 Connection conn = DriverManager.getConnection(url, �1�

 user, password);

 conn.setClientInfo("ClientUser", "Michael L Thompson"); �2�

 conn.setClientInfo("ClientHostname, "sjwkstn1");

 // Execute SQL to force extended client information to be sent

 // to the server

 conn.prepareStatement("SELECT * FROM SYSIBM.SYSDUMMY1"

 + "WHERE 0 = 1").executeQuery(); �3�

 } catch (Throwable e) {

 e.printStackTrace();

 }

 }

}

Figure 19. Example of passing extended client information to a DB2 server

Chapter 3. JDBC application programming 83

Table 15. Client info property values for DB2 Database for Linux, UNIX, and Windows and for DB2 for i (continued)

NAME

MAX_LEN

(bytes) DEFAULT_VALUE DESCRIPTION

ClientHostname 255 The value that is set by

DB2Connection.setDB2ClientWorkstation. If

the value is not set, the default is the host

name of the local host.

The host name of the computer

on which the application that is

using the connection is running.

This value is stored in DB2

special register CURRENT

CLIENT_WRKSTNNAME.

ClientUser 255 Empty string The name of the user on whose

behalf the application that is

using the connection is running.

This value is stored in DB2

special register CURRENT

CLIENT_USERID.

The following table lists the client info property values that the IBM Data Server

Driver for JDBC and SQLJ returns for DB2 for z/OS when the connection uses

type 4 connectivity.

 Table 16. Client info property values for type 4 connectivity to DB2 for z/OS

NAME

MAX_LEN

(bytes) DEFAULT_VALUE DESCRIPTION

ApplicationName 32 clientProgramName property value, if set.

″db2jcc_application″ otherwise.

The name of the application that is

currently using the connection. This

value is stored in DB2 special

register CURRENT

CLIENT_APPLNAME.

ClientAccountingInformation 200 A string that is the concatenation of the

following values:

v ″JCCnnnnn″, where nnnnn is the driver

level, such as 04000.

v The value that is set by

DB2Connection.setDB2ClientWorkstation.

If the value is not set, the default is the

host name of the local host.

v applicationName property value, if set. 20

blanks otherwise.

v clientUser property value, if set. Eight

blanks otherwise.

The value of the accounting string

from the client information that is

specified for the connection. This

value is stored in DB2 special

register CURRENT

CLIENT_ACCTNG.

ClientHostname 18 The value that is set by

DB2Connection.setDB2ClientWorkstation. If

the value is not set, the default is the host

name of the local host.

The host name of the computer on

which the application that is using

the connection is running. This

value is stored in DB2 special

register CURRENT

CLIENT_WRKSTNNAME.

ClientUser 16 The value that is set by

DB2Connection.setDB2ClientUser. If the

value is not set, the default is the current

user ID that is used to connect to the

database.

The name of the user on whose

behalf the application that is using

the connection is running. This

value is stored in DB2 special

register CURRENT

CLIENT_USERID.

The following table lists the client info property values that the IBM Data Server

Driver for JDBC and SQLJ returns for DB2 for z/OS when the connection uses

type 2 connectivity.

84 Developing Java Applications

Table 17. Client info property values for type 2 connectivity to DB2 for z/OS

NAME

MAX_LEN

(bytes) DEFAULT_VALUE DESCRIPTION

ApplicationName 32 Empty string The name of the application that is currently

using the connection. This value is stored in

DB2 special register CURRENT

CLIENT_APPLNAME.

ClientAccountingInformation 200 Empty string The value of the accounting string from the

client information that is specified for the

connection. This value is stored in DB2

special register CURRENT

CLIENT_ACCTNG.

ClientHostname 18 Empty string The host name of the computer on which

the application that is using the connection

is running. This value is stored in DB2

special register CURRENT

CLIENT_WRKSTNNAME.

ClientUser 16 Empty string The name of the user on whose behalf the

application that is using the connection is

running. This value is stored in DB2 special

register CURRENT CLIENT_USERID.

The following table lists the client info property values that the IBM Data Server

Driver for JDBC and SQLJ returns for IBM Informix Dynamic Server

 Table 18. Client info property values for IBM Informix Dynamic Server

NAME

MAX_LEN

(bytes) DEFAULT_VALUE DESCRIPTION

ApplicationName 20 Empty string The name of the application

that is currently using the

connection.

ClientAccountingInformation 199 Empty string The value of the accounting

string from the client

information that is specified for

the connection.

ClientHostname 20 The value that is set by

DB2Connection.setDB2ClientWorkstation. If

the value is not set, the default is the host

name of the local host.

The host name of the computer

on which the application that is

using the connection is

running.

ClientUser 1024 Empty string The name of the user on whose

behalf the application that is

using the connection is

running.

Optimistic locking in JDBC applications

You can write JDBC applications to take advantage of optimistic locking on a data

source.

Optimistic locking is a technique that applications can use to release locks between

SELECT and UPDATE or DELETE operations. If the selected rows change before

that application updates or deletes them, the UPDATE or DELETE operation fails.

Optimistic locking minimizes the time during which a given resource is

unavailable for use by other transactions.

For connections to a DB2 for i data source, use of optimistic locking requires DB2

for i V6R1 or later.

Chapter 3. JDBC application programming 85

In general, an application performs these steps to use optimistic locking:

1. Select rows from a table.

2. Release locks on the table.

3. Update the selected rows, if they have not changed.

To check whether the row has changed, the application queries the row change

token. The row change token is not always a completely accurate indicator of

whether the row has changed. If you create a table with a row change timestamp

column, the row change token is completely accurate. If you create the table

without a row change timestamp column, or alter a table to add a row change

timestamp column, the row change token might not accurately reflect updates to a

row. This means that the row change token might indicate that a row has changed,

even though it has not. This condition is called a false negative condition.

When you write a JDBC application to perform optimistic locking you follow

similar steps:

1. Prepare and execute a query.

Indicate whether you want optimistic locking information, and whether that

information can include false negatives.

2. Determine whether the ResultSet has optimistic locking information, and

whether that information can produce false negatives.

Based on the type of optimistic locking information, you can decide whether to

continue with optimistic locking.

3. Release locks on the table.

4. Update the selected rows, if the row change token indicates that they have not

changed.

The following code demonstrates how a JDBC application can perform optimistic

locking. The numbers in the example correspond to the previously listed steps.

com.ibm.db2.jcc.DB2Statement s1 =

 (com.ibm.db2.jcc.DB2Statement)conn.createStatement();

ResultSet rs =

 ((com.ibm.db2.jcc.DB2Statement)s1).executeDB2OptimisticLockingQuery

 ("SELECT EMPNO, SALARY FROM EMP WHERE EMP.LASTNAME = ’HAAS’",

 com.ibm.db2.jcc.DB2Statement.RETURN_OPTLOCK_COLUMN_NO_FALSE_NEGATIVES); �1�

 // Indicate that you plan to do

 // optimistic locking, and that you

 // want optimistic locking information

 // that does not generate

 // false negatives

ResultSetMetaData rsmd = rs.getMetaData();

int optColumns = �2�

 ((com.ibm.db2.jcc.DB2ResultSetMetaData)rsmd).getDB2OptimisticLockingColumns();

 // Retrieve the optimistic locking

 // information.

boolean optColumnsReturned = false;

if (optColumns == 0); // If optimistic locking information is not

 // returned, do not attempt to do

 // optimistic locking.

else if (optColumns == 1); // A value of 1 is never returned if

 // RETURN_OPTLOCK_COLUMN_NO_FALSE_NEGATIVES

 // is specified, because 1 indicates

 // that there could be false negatives.

else if (optColumns == 2) // If optimistic locking information is

 optColumnsReturned = true; // returned, and false negatives will not

 // occur, try optimistic locking.

rs.next(); // Retrieve the contents of the ResultSet

int emp_id = rs.getInt(1);

double salary = rs.getDouble(2);

long rowChangeToken = 0;

Object rid = null;

86 Developing Java Applications

int type = -1;

if (optColumnsReturned) {

 rowChangeToken = // Get the row change token.

 ((com.ibm.db2.jcc.DB2ResultSet)rs).getDB2RowChangeToken();

 rid = ((com.ibm.db2.jcc.DB2ResultSet)rs).getDB2RID();

 // Get the RID, which uniquely identifies

 // the row.

 int type = ((com.ibm.db2.jcc.DB2ResultSet)rs).getDB2RIDType ();

 // Get the data type of the RID.

}

// ***

// Release the locks or disconnect from the database.

// Perform some work on the retrieved data.

// Reconnect to the data source.

// ***

...

PreparedStatement s2 =

 conn.prepareStatement ("UPDATE EMP SET SALARY = ? " +

 "WHERE EMPNO = ? AND ROW CHANGE TOKEN FOR EMP = ? and " +

 "RID_BIT(EMP) = ?");

 // Statement for updating the

 // previously selected rows that

 // have not changed.

s2.setDouble(1, salary+10000);

s2.setInt(2, emp_id);

 // Set the new row values.

s2.setLong(3, rowChangeToken);

 // Set the row change token of the

 // previously retrieved row.

if (type == java.sql.Types.BIGINT)

 s2.setLong (4, ((Long)rid).longValue());

else if (type == java.sql.Types.VARBINARY)

 s2.setBytes (4, (byte[])rid);

 // Set the RID of the previously

 // retrieved row.

 // Use the correct setXXX method

 // for the data type of the RID.

int updateCount = s2.executeUpdate(); �3�

 // Perform the update.

if (updateCount == 1); // Update is successful.

else // Update failed.

...

XML data in JDBC applications

In JDBC applications, you can store data in XML columns and retrieve data from

XML columns.

In database tables, the XML built-in data type is used to store XML data in a

column as a structured set of nodes in a tree format.

In applications, XML data is in the serialized string format.

In JDBC applications that connect to DB2 Database for Linux, UNIX, and

Windows, XML data is in textual XML format. In JDBC applications that connect to

DB2 for z/OS, XML data can be in textual XML format or binary XML format.

In JDBC applications, you can:

v Store an entire XML document in an XML column using setXXX methods.

v Retrieve an entire XML document from an XML column using getXXX methods.

v Retrieve a sequence from a document in an XML column by using the SQL

XMLQUERY function to retrieve the sequence into a serialized sequence in the

database, and then using getXXX methods to retrieve the data into an

application variable.

v Retrieve a sequence from a document in an XML column by using an XQuery

expression, prepended with the string ’XQUERY’, to retrieve the elements of the

Chapter 3. JDBC application programming 87

sequence into a result table in the database, in which each row of the result table

represents an item in the sequence. Then use getXXX methods to retrieve the

data into application variables.

v Retrieve a sequence from a document in an XML column as a user-defined table

by using the SQL XMLTABLE function to define the result table and retrieve it.

Then use getXXX methods to retrieve the data from the result table into

application variables.

JDBC 4.0 java.sql.SQLXML objects can be used to retrieve and update data in XML

columns. Invocations of metadata methods, such as

ResultSetMetaData.getColumnTypeName return the integer value

java.sql.Types.SQLXML for an XML column type.

XML column updates in JDBC applications

When you update or insert data into XML columns of a database table, the input

data in your JDBC applications must be in the serialized string format.

The following table lists the methods and corresponding input data types that you

can use to put data in XML columns.

 Table 19. Methods and data types for updating XML columns

Method Input data type

PreparedStatement.setAsciiStream InputStream

PreparedStatement.setBinaryStream InputStream

PreparedStatement.setBlob Blob

PreparedStatement.setBytes byte[]

PreparedStatement.setCharacterStream Reader

PreparedStatement.setClob Clob

PreparedStatement.setObject byte[], Blob, Clob, SQLXML, DB2Xml (deprecated), InputStream,

Reader, String

PreparedStatement.setSQLXML SQLXML

PreparedStatement.setString String

The encoding of XML data can be derived from the data itself, which is known as

internally encoded data, or from external sources, which is known as externally

encoded data. XML data that is sent to the database server as binary data is treated

as internally encoded data. XML data that is sent to the data source as character

data is treated as externally encoded data.

External encoding for Java applications is always Unicode encoding.

Externally encoded data can have internal encoding. That is, the data might be sent

to the data source as character data, but the data contains encoding information.

The data source handles incompatibilities between internal and external encoding

as follows:

v If the data source is DB2 Database for Linux, UNIX, and Windows, the database

source generates an error if the external and internal encoding are incompatible,

unless the external and internal encoding are Unicode. If the external and

internal encoding are Unicode, the database source ignores the internal

encoding.

88 Developing Java Applications

v If the database source is DB2 for z/OS, the database source ignores the internal

encoding.

Data in XML columns is stored in UTF-8 encoding. The database source handles

conversion of the data from its internal or external encoding to UTF-8.

Example: The following example demonstrates inserting data from an SQLXML

object into an XML column. The data is String data, so the database source treats

the data as externally encoded.

 public void insertSQLXML()

 {

 Connection con = DriverManager.getConnection(url);

 SQLXML info = con.createSQLXML();

 // Create an SQLXML object

 PreparedStatement insertStmt = null;

 String infoData =

 "<customerinfo xmlns=""http://posample.org"" " +

 "Cid=""1000"">...</customerinfo>";

 info.setString(infoData);

 // Populate the SQLXML object

 int cid = 1000;

 try {

 sqls = "INSERT INTO CUSTOMER (CID, INFO) VALUES (?, ?)";

 insertStmt = con.prepareStatement(sqls);

 insertStmt.setInt(1, cid);

 insertStmt.setSQLXML(2, info);

 // Assign the SQLXML object value

 // to an input parameter

 if (insertStmt.executeUpdate() != 1) {

 System.out.println("insertSQLXML: No record inserted.");

 }

 }

 catch (IOException ioe) {

 ioe.printStackTrace();

 }

 catch (SQLException sqle) {

 System.out.println("insertSQLXML: SQL Exception: " +

 sqle.getMessage());

 System.out.println("insertSQLXML: SQL State: " +

 sqle.getSQLState());

 System.out.println("insertSQLXML: SQL Error Code: " +

 sqle.getErrorCode());

 }

 }

Example: The following example demonstrates inserting data from a file into an

XML column. The data is inserted as binary data, so the database server honors the

internal encoding.

 public void insertBinStream(Connection conn)

 {

 PreparedStatement insertStmt = null;

 String sqls = null;

 int cid = 0;

 Statement stmt=null;

 try {

 sqls = "INSERT INTO CUSTOMER (CID, INFO) VALUES (?, ?)";

 insertStmt = conn.prepareStatement(sqls);

 insertStmt.setInt(1, cid);

 File file = new File(fn);

 insertStmt.setBinaryStream(2,

 new FileInputStream(file), (int)file.length());

 if (insertStmt.executeUpdate() != 1) {

 System.out.println("insertBinStream: No record inserted.");

Chapter 3. JDBC application programming 89

}

 }

 catch (IOException ioe) {

 ioe.printStackTrace();

 }

 catch (SQLException sqle) {

 System.out.println("insertBinStream: SQL Exception: " +

 sqle.getMessage());

 System.out.println("insertBinStream: SQL State: " +

 sqle.getSQLState());

 System.out.println("insertBinStream: SQL Error Code: " +

 sqle.getErrorCode());

 }

 }

XML data retrieval in JDBC applications

In JDBC applications, you use ResultSet.getXXX or ResultSet.getObject methods to

retrieve data from XML columns.

When you retrieve data from XML columns of a DB2 table, the output data is in

the serialized string format. This is true whether you retrieve the entire contents of

an XML column or a sequence from the column.

You can use one of the following techniques to retrieve XML data:

v Use the ResultSet.getSQLXML method to retrieve the data. Then use a

SQLXML.getXXX method to retrieve the data into a compatible output data

type. This technique requires JDBC 4.0 or later.

v Use a ResultSet.getXXX method other than ResultSet.getObject to retrieve the

data into a compatible data type.

v Use the ResultSet.getObject method to retrieve the data, and then cast it to the

DB2Xml type and assign it to a DB2Xml object. Then use a DB2Xml.getDB2XXX

or DB2Xml.getDB2XmlXXX method to retrieve the data into a compatible output

data type.

This technique uses the deprecated DB2Xml objects. Use of the previously

described technique is preferable.

The following table lists the ResultSet methods and corresponding output data

types for retrieving XML data.

 Table 20. ResultSet methods and data types for retrieving XML data

Method Output data type

ResultSet.getAsciiStream InputStream

ResultSet.getBinaryStream InputStream

ResultSet.getBytes byte[]

ResultSet.getCharacterStream Reader

ResultSet.getObject Object

ResultSet.getSQLXML SQLXML

ResultSet.getString String

The following table lists the methods that you can call to retrieve data from a

java.sql.SQLXML or a com.ibm.db2.jcc.DB2Xml object, and the corresponding

output data types and type of encoding in the XML declarations.

90 Developing Java Applications

Table 21. SQLXML and DB2Xml methods, data types, and added encoding specifications

Method Output data type Type of XML internal encoding declaration added

SQLXML.getBinaryStream InputStream None

SQLXML.getCharacterStream Reader None

SQLXML.getSource Source1 None

SQLXML.getString String None

DB2Xml.getDB2AsciiStream InputStream None

DB2Xml.getDB2BinaryStream InputStream None

DB2Xml.getDB2Bytes byte[] None

DB2Xml.getDB2CharacterStream Reader None

DB2Xml.getDB2String String None

DB2Xml.getDB2XmlAsciiStream InputStream US-ASCII

DB2Xml.getDB2XmlBinaryStream InputStream Specified by getDB2XmlBinaryStream targetEncoding

parameter

DB2Xml.getDB2XmlBytes byte[] Specified by DB2Xml.getDB2XmlBytes targetEncoding

parameter

DB2Xml.getDB2XmlCharacterStream Reader ISO-10646-UCS-2

DB2Xml.getDB2XmlString String ISO-10646-UCS-2

Note:

1. The class that is returned is specified by the invoker of getSource, but the class must extend

javax.xml.transform.Source.

If the application executes the XMLSERIALIZE function on the data that is to be

returned, after execution of the function, the data has the data type that is specified

in the XMLSERIALIZE function, not the XML data type. Therefore, the driver

handles the data as the specified type and ignores any internal encoding

declarations.

Example: The following example demonstrates retrieving data from an XML

column into an SQLXML object, and then using the SQLXML.getString method to

retrieve the data into a string.

public void fetchToSQLXML(long cid, java.sql.Connection conn)

 {

 System.out.println(">> fetchToSQLXML: Get XML data as an SQLXML object " +

 "using getSQLXML");

 PreparedStatement selectStmt = null;

 String sqls = null, stringDoc = null;

 ResultSet rs = null;

 try{

 sqls = "SELECT info FROM customer WHERE cid = " + cid;

 selectStmt = conn.prepareStatement(sqls);

 rs = selectStmt.executeQuery();

 // Get metadata

 // Column type for XML column is the integer java.sql.Types.OTHER

 ResultSetMetaData meta = rs.getMetaData();

 int colType = meta.getColumnType(1);

 System.out.println("fetchToSQLXML: Column type = " + colType);

 while (rs.next()) {

 // Retrieve the XML data with getSQLXML.

 // Then write it to a string with

 // explicit internal ISO-10646-UCS-2 encoding.

Chapter 3. JDBC application programming 91

java.sql.SQLXML xml = rs.getSQLXML(1);

 System.out.println (xml.getString());

 }

 rs.close();

 }

 catch (SQLException sqle) {

 System.out.println("fetchToSQLXML: SQL Exception: " +

 sqle.getMessage());

 System.out.println("fetchToSQLXML: SQL State: " +

 sqle.getSQLState());

 System.out.println("fetchToSQLXML: SQL Error Code: " +

 sqle.getErrorCode());

 }

 }

Example: The following example demonstrates retrieving data from an XML

column into a String variable.

public void fetchToString(long cid, java.sql.Connection conn)

 {

 System.out.println(">> fetchToString: Get XML data " +

 "using getString");

 PreparedStatement selectStmt = null;

 String sqls = null, stringDoc = null;

 ResultSet rs = null;

 try{

 sqls = "SELECT info FROM customer WHERE cid = " + cid;

 selectStmt = conn.prepareStatement(sqls);

 rs = selectStmt.executeQuery();

 // Get metadata

 // Column type for XML column is the integer java.sql.Types.OTHER

 ResultSetMetaData meta = rs.getMetaData();

 int colType = meta.getColumnType(1);

 System.out.println("fetchToString: Column type = " + colType);

 while (rs.next()) {

 stringDoc = rs.getString(1);

 System.out.println("Document contents:");

 System.out.println(stringDoc);

 }

 catch (SQLException sqle) {

 System.out.println("fetchToString: SQL Exception: " +

 sqle.getMessage());

 System.out.println("fetchToString: SQL State: " +

 sqle.getSQLState());

 System.out.println("fetchToString: SQL Error Code: " +

 sqle.getErrorCode());

 }

 }

Example: The following example demonstrates retrieving data from an XML

column into a DB2Xml object, and then using the DB2Xml.getDB2XmlString

method to retrieve the data into a string with an added XML declaration with an

ISO-10646-UCS-2 encoding specification.

public void fetchToDB2Xml(long cid, java.sql.Connection conn)

 {

 System.out.println(">> fetchToDB2Xml: Get XML data as a DB2XML object " +

 "using getObject");

 PreparedStatement selectStmt = null;

 String sqls = null, stringDoc = null;

 ResultSet rs = null;

 try{

 sqls = "SELECT info FROM customer WHERE cid = " + cid;

92 Developing Java Applications

selectStmt = conn.prepareStatement(sqls);

 rs = selectStmt.executeQuery();

 // Get metadata

 // Column type for XML column is the integer java.sql.Types.OTHER

 ResultSetMetaData meta = rs.getMetaData();

 int colType = meta.getColumnType(1);

 System.out.println("fetchToDB2Xml: Column type = " + colType);

 while (rs.next()) {

 // Retrieve the XML data with getObject, and cast the object

 // as a DB2Xml object. Then write it to a string with

 // explicit internal ISO-10646-UCS-2 encoding.

 com.ibm.db2.jcc.DB2Xml xml =

 (com.ibm.db2.jcc.DB2Xml) rs.getObject(1);

 System.out.println (xml.getDB2XmlString());

 }

 rs.close();

 }

 catch (SQLException sqle) {

 System.out.println("fetchToDB2Xml: SQL Exception: " +

 sqle.getMessage());

 System.out.println("fetchToDB2Xml: SQL State: " +

 sqle.getSQLState());

 System.out.println("fetchToDB2Xml: SQL Error Code: " +

 sqle.getErrorCode());

 }

 }

Invocation of routines with XML parameters in Java

applications

Java applications can call stored procedures at DB2 Database for Linux, UNIX, and

Windows data sources that have XML parameters.

For native SQL procedures, XML parameters in the stored procedure definition

have the XML type. For external stored procedures and user-defined functions on

DB2 Database for Linux, UNIX, and Windows data sources, XML parameters in the

routine definition have the XML AS CLOB type. When you call a stored procedure

or user-defined function that has XML parameters, you need to use a compatible

data type in the invoking statement.

To call a routine with XML input parameters from a JDBC program, use

parameters of the java.sql.SQLXML or com.ibm.db2.jcc.DB2Xml type. To register

XML output parameters, register the parameters as the java.sql.Types.SQLXML or

com.ibm.db2.jcc.DB2Types.XML type. (The com.ibm.db2.jcc.DB2Xml and

com.ibm.db2.jcc.DB2Types.XML types are deprecated.)

Example: JDBC program that calls a stored procedure that takes three XML

parameters: an IN parameter, an OUT parameter, and an INOUT parameter. This

example requires JDBC 4.0.

java.sql.SQLXML in_xml = xmlvar;

java.sql.SQLXML out_xml = null;

java.sql.SQLXML inout_xml = xmlvar;

 // Declare an input, output, and

 // INOUT XML parameter

Connection con;

CallableStatement cstmt;

ResultSet rs;

...

cstmt = con.prepareCall("CALL SP_xml(?,?,?)");

 // Create a CallableStatement object

cstmt.setObject (1, in_xml); // Set input parameter

Chapter 3. JDBC application programming 93

cstmt.setObject (3, inout_xml); // Set inout parameter

cstmt.registerOutParameter (2, java.sql.Types.SQLXML);

 // Register out and input parameters

cstmt.registerOutParameter (3, java.sql.Types.SQLXML);

cstmt.executeUpdate(); // Call the stored procedure

out_xml = cstmt.getSQLXML(2); // Get the OUT parameter value

inout_xml = cstmt.getSQLXML(3); // Get the INOUT parameter value

System.out.println("Parameter values from SP_xml call: ");

System.out.println("Output parameter value ");

MyUtilities.printString(out_xml.getString());

 // Use the SQLXML.getString

 // method to convert the out_xml

 // value to a string for printing.

 // Call a user-defined method called

 // printString (not shown) to print

 // the value.

System.out.println("INOUT parameter value ");

MyUtilities.printString(inout_xml.getString());

 // Use the SQLXML.getString

 // method to convert the inout_xml

 // value to a string for printing.

 // Call a user-defined method called

 // printString (not shown) to print

 // the value.

To call a routine with XML parameters from an SQLJ program, use parameters of

the java.sql.SQLXML or com.ibm.db2.jcc.DB2Xml type.

Example: SQLJ program that calls a stored procedure that takes three XML

parameters: an IN parameter, an OUT parameter, and an INOUT parameter. This

example requires JDBC 4.0.

java.sql.SQLXML in_xml = xmlvar;

java.sql.SQLXML out_xml = null;

java.sql.SQLXML inout_xml = xmlvar;

 // Declare an input, output, and

 // INOUT XML parameter

...

#sql [myConnCtx] {CALL SP_xml(:IN in_xml,

 :OUT out_xml,

 :INOUT inout_xml)};

 // Call the stored procedure

System.out.println("Parameter values from SP_xml call: ");

System.out.println("Output parameter value ");

MyUtilities.printString(out_xml.getString());

 // Use the SQLXML.getString

 // method toconvert the out_xml value

 // to a string for printing.

 // Call a user-defined method called

 // printString (not shown) to print

 // the value.

System.out.println("INOUT parameter value ");

MyUtilities.printString(inout_xml.getString());

 // Use the SQLXML.getString

 // method to convert the inout_xml

 // value to a string for printing.

 // Call a user-defined method called

 // printString (not shown) to print

 // the value.

Java support for XML schema registration and removal

The IBM Data Server Driver for JDBC and SQLJ provides methods that let you

write Java application programs to register and remove XML schemas and their

components.

94 Developing Java Applications

The methods are:

DB2Connection.registerDB2XMLSchema

Registers an XML schema in DB2, using one or more XML schema documents.

There are two forms of this method: one form for XML schema documents that

are input from InputStream objects, and one form for XML schema documents

that are in a String.

DB2Connection.deregisterDB2XMLObject

Removes an XML schema definition from DB2.

DB2Connection.updateDB2XmlSchema

Replaces the XML schema documents in a registered XML schema with the

XML schema documents from another registered XML schema. Optionally

drops the XML schema whose contents are copied. This method is available

only for connections to DB2 Database for Linux, UNIX, and Windows.

Before you can invoke these methods, the stored procedures that support these

methods must be installed on the DB2 database server.

Example: Registration of an XML schema: The following example demonstrates the

use of registerDB2XmlSchema to register an XML schema in DB2 using a single

XML schema document (customer.xsd) that is read from an input stream. The SQL

schema name for the registered schema is SYSXSR. The xmlSchemaLocations value is

null, so DB2 will not find this XML schema on an invocation of

DSN_XMLVALIDATE that supplies a non-null XML schema location value. No

additional properties are registered.

public static void registerSchema(

 Connection con,

 String schemaName)

 throws SQLException {

 // Define the registerDB2XmlSchema parameters

 String[] xmlSchemaNameQualifiers = new String[1];

 String[] xmlSchemaNames = new String[1];

 String[] xmlSchemaLocations = new String[1];

 InputStream[] xmlSchemaDocuments = new InputStream[1];

 int[] xmlSchemaDocumentsLengths = new int[1];

 java.io.InputStream[] xmlSchemaDocumentsProperties = new InputStream[1];

 int[] xmlSchemaDocumentsPropertiesLengths = new int[1];

 InputStream xmlSchemaProperties;

 int xmlSchemaPropertiesLength;

 //Set the parameter values

 xmlSchemaLocations[0] = "";

 FileInputStream fi = null;

 xmlSchemaNameQualifiers[0] = "SYSXSR";

 xmlSchemaNames[0] = schemaName;

 try {

 fi = new FileInputStream("customer.xsd");

 xmlSchemaDocuments[0] = new BufferedInputStream(fi);

 } catch (FileNotFoundException e) {

 e.printStackTrace();

 }

 try {

 xmlSchemaDocumentsLengths[0] = (int) fi.getChannel().size();

 System.out.println(xmlSchemaDocumentsLengths[0]);

 } catch (IOException e1) {

 e1.printStackTrace();

 }

 xmlSchemaDocumentsProperties[0] = null;

Figure 20. Example of registration of an XML schema with DB2 using an XML document from an input stream

Chapter 3. JDBC application programming 95

xmlSchemaDocumentsPropertiesLengths[0] = 0;

 xmlSchemaProperties = null;

 xmlSchemaPropertiesLength = 0;

 DB2Connection ds = (DB2Connection) con;

 // Invoke registerDB2XmlSchema

 ds.registerDB2XmlSchema(

 xmlSchemaNameQualifiers,

 xmlSchemaNames,

 xmlSchemaLocations,

 xmlSchemaDocuments,

 xmlSchemaDocumentsLengths,

 xmlSchemaDocumentsProperties,

 xmlSchemaDocumentsPropertiesLengths,

 xmlSchemaProperties,

 xmlSchemaPropertiesLength,

 false);

}

Example: Removal of an XML schema: The following example demonstrates the use of

deregisterDB2XmlObject to remove an XML schema from DB2. The SQL schema

name for the registered schema is SYSXSR.

public static void deregisterSchema(

 Connection con,

 String schemaName)

 throws SQLException {

 // Define and assign values to the deregisterDB2XmlObject parameters

 String xmlSchemaNameQualifier = "SYSXSR";

 String xmlSchemaName = schemaName;

 DB2Connection ds = (DB2Connection) con;

 // Invoke deregisterDB2XmlObject

 ds.deregisterDB2XmlObject(

 xmlSchemaNameQualifier,

 xmlSchemaName);

}

Example: Update of an XML schema: The following example applies only to

connections to DB2 Database for Linux, UNIX, and Windows. It demonstrates the

use of updateDB2XmlSchema to update the contents of an XML schema with the

contents of another XML schema. The schema that is copied is kept in the

repository. The SQL schema name for both registered schemas is SYSXSR.

public static void updateSchema(

 Connection con,

 String schemaNameTarget,

 String schemaNameSource)

 throws SQLException {

 // Define and assign values to the updateDB2XmlSchema parameters

 String xmlSchemaNameQualifierTarget = "SYSXSR";

 String xmlSchemaNameQualifierSource = "SYSXSR";

 String xmlSchemaNameTarget = schemaNameTarget;

 String xmlSchemaNameSource = schemaNameSource;

 boolean dropSourceSchema = false;

 DB2Connection ds = (DB2Connection) con;

 // Invoke updateDB2XmlSchema

 ds.updateDB2XmlSchema(

 xmlSchemaNameQualifierTarget,

 xmlSchemaNameTarget,

Figure 21. Example of removal of an XML schema from DB2

Figure 22. Example of updating an XML schema

96 Developing Java Applications

xmlSchemaNameQualifierSource,

 xmlSchemaNameSource,

 dropSourceSchema);

}

Transaction control in JDBC applications

In JDBC applications, as in other types of SQL applications, transaction control

involves explicitly or implicitly committing and rolling back transactions, and

setting the isolation level for transactions.

IBM Data Server Driver for JDBC and SQLJ isolation levels

The IBM Data Server Driver for JDBC and SQLJ supports a number of isolation

levels, which correspond to database server isolation levels.

JDBC isolation levels can be set for a unit of work within a JDBC program, using

the Connection.setTransactionIsolation method. The default isolation level can be

set with the defaultIsolationLevel property.

The following table shows the values of level that you can specify in the

Connection.setTransactionIsolation method and their DB2 database server

equivalents.

 Table 22. Equivalent JDBC and DB2 isolation levels

JDBC value DB2 isolation level

java.sql.Connection.TRANSACTION_SERIALIZABLE Repeatable read

java.sql.Connection.TRANSACTION_REPEATABLE_READ Read stability

java.sql.Connection.TRANSACTION_READ_COMMITTED Cursor stability

java.sql.Connection.TRANSACTION_READ_UNCOMMITTED Uncommitted read

The following table shows the values of level that you can specify in the

Connection.setTransactionIsolation method and their IBM Informix Dynamic Server

(IDS) equivalents.

 Table 23. Equivalent JDBC and IDS isolation levels

JDBC value IDS isolation level

java.sql.Connection.TRANSACTION_SERIALIZABLE Repeatable read

java.sql.Connection.TRANSACTION_REPEATABLE_READ Repeatable read

java.sql.Connection.TRANSACTION_READ_COMMITTED Committed read

java.sql.Connection.TRANSACTION_READ_UNCOMMITTED Dirty read

com.ibm.db2.jcc.DB2Connection.TRANSACTION_IDS_CURSOR_STABILITY IDS cursor stability

com.ibm.db2.jcc.DB2Connection.TRANSACTION_IDS_LAST_COMMITTED Committed read, last committed

Committing or rolling back JDBC transactions

In JDBC, to commit or roll back transactions explicitly, use the commit or rollback

methods.

For example:

 Connection con;

 ...

con.commit();

Chapter 3. JDBC application programming 97

If autocommit mode is on, the database manager performs a commit operation

after every SQL statement completes. To set autocommit mode on, invoke the

Connection.setAutoCommit(true) method. To set autocommit mode off, invoke the

Connection.setAutoCommit(false) method. To determine whether autocommit

mode is on, invoke the Connection.getAutoCommit method.

Connections that participate in distributed transactions cannot invoke the

setAutoCommit(true) method.

When you change the autocommit state, the database manager executes a commit

operation, if the application is not already on a transaction boundary.

While a connection is participating in a distributed transaction, the associated

application cannot issue the commit or rollback methods.

Default JDBC autocommit modes

The default autocommit mode depends on the data source to which the JDBC

application connects.

Autocommit default for DB2 data sources

For connections to DB2 data sources, the default autocommit mode is true.

Autocommit default for IDS data sources

For connections to IDS data sources, the default autocommit mode depends on the

type of data source. The following table shows the defaults.

 Table 24. Default autocommit modes for IDS data sources

Type of data source

Default autocommit mode

for local transactions

Default autocommit mode

for global transactions

ANSI-compliant database true false

Non-ANSI-compliant

database without logging

false not applicable

Non-ANSI-compliant

database with logging

true false

Exceptions and warnings under the IBM Data Server Driver for JDBC

and SQLJ

In JDBC applications, SQL errors throw exceptions, which you handle using

try/catch blocks. SQL warnings do not throw exceptions, so you need to invoke

methods to check whether warnings occurred after you execute SQL statements.

The IBM Data Server Driver for JDBC and SQLJ provides the following classes and

interfaces, which provide information about errors and warnings.

SQLException

The SQLException class for handling errors. All JDBC methods throw an instance

of SQLException when an error occurs during their execution. According to the

JDBC specification, an SQLException object contains the following information:

98 Developing Java Applications

v An int value that contains an error code. SQLException.getErrorCode retrieves

this value.

v A String object that contains the SQLSTATE, or null. SQLException.getSQLState

retrieves this value.

v A String object that contains a description of the error, or null.

SQLException.getMessage retrieves this value.

v A pointer to the next SQLException, or null. SQLException.getNextException

retrieves this value.

When a JDBC method throws a single SQLException, that SQLException might be

caused by an underlying Java exception that occurred when the IBM Data Server

Driver for JDBC and SQLJ processed the method. In this case, the SQLException

wraps the underlying exception, and you can use the SQLException.getCause

method to retrieve information about the error.

DB2Diagnosable

The IBM Data Server Driver for JDBC and SQLJ-only interface

com.ibm.db2.jcc.DB2Diagnosable extends the SQLException class. The

DB2Diagnosable interface gives you more information about errors that occur

when the data source is accessed. If the JDBC driver detects an error,

DB2Diagnosable gives you the same information as the standard SQLException

class. However, if the database server detects the error, DB2Diagnosable adds the

following methods, which give you additional information about the error:

getSqlca

Returns an DB2Sqlca object with the following information:

v An SQL error code

v The SQLERRMC values

v The SQLERRP value

v The SQLERRD values

v The SQLWARN values

v The SQLSTATE

getThrowable

Returns a java.lang.Throwable object that caused the SQLException, or null, if

no such object exists.

printTrace

Prints diagnostic information.

SQLException subclasses

If you are using JDBC 4.0 or later, you can obtain more specific information than

an SQLException provides by catching the following exception classes:

v SQLNonTransientException

An SQLNonTransientException is thrown when an SQL operation that failed

previously cannot succeed when the operation is retried, unless some corrective

action is taken. The SQLNonTransientException class has these subclasses:

– SQLFeatureNotSupportedException

– SQLNonTransientConnectionException

– SQLDataException

– SQLIntegrityConstraintViolationException

– SQLInvalidAuthorizationSpecException

– SQLSyntaxException
v SQLTransientException

Chapter 3. JDBC application programming 99

An SQLTransientException is thrown when an SQL operation that failed

previously might succeed when the operation is retried, without intervention

from the application. A connection is still valid after an SQLTransientException is

thrown. The SQLTransientException class has these subclasses:

– SQLTransientConnectionException

– SQLTransientRollbackException

– SQLTimeoutException
v SQLRecoverableException

An SQLRecoverableException is thrown when an operation that failed

previously might succeed if the application performs some recovery steps, and

retries the transaction. A connection is no longer valid after an

SQLRecoverableException is thrown.

v SQLClientInfoException

A SQLClientInfoException is thrown by the Connection.setClientInfo method

when one or more client properties cannot be set. The SQLClientInfoException

indicates which properties cannot be set.

BatchUpdateException

A BatchUpdateException object contains the following items about an error that

occurs during execution of a batch of SQL statements:

v A String object that contains a description of the error, or null.

v A String object that contains the SQLSTATE for the failing SQL statement, or

null

v An integer value that contains the error code, or zero

v An integer array of update counts for SQL statements in the batch, or null

v A pointer to an SQLException object, or null

One BatchUpdateException is thrown for the entire batch. At least one

SQLException object is chained to the BatchUpdateException object. The

SQLException objects are chained in the same order as the corresponding

statements were added to the batch. To help you match SQLException objects to

statements in the batch, the error description field for each SQLException object

begins with this string:

Error for batch element #n:

n is the number of the statement in the batch.

SQL warnings during batch execution do not throw BatchUpdateExceptions. To

obtain information about warnings, use the Statement.getWarnings method on the

object on which you ran the executeBatch method. You can then retrieve an error

description, SQLSTATE, and error code for each SQLWarning object.

SQLWarning

The IBM Data Server Driver for JDBC and SQLJ accumulates warnings when SQL

statements return positive SQLCODEs, and when SQL statements return 0

SQLCODEs with non-zero SQLSTATEs.

Calling getWarnings retrieves an SQLWarning object.

Important: When a call to Statement.executeUpdate or

PreparedStatement.executeUpdate affects no rows, the IBM Data Server Driver for

JDBC and SQLJ generates an SQLWarning with error code +100.

100 Developing Java Applications

When a call to ResultSet.next returns no rows, the IBM Data Server Driver for

JDBC and SQLJ does not generate an SQLWarning.

A generic SQLWarning object contains the following information:

v A String object that contains a description of the warning, or null

v A String object that contains the SQLSTATE, or null

v An int value that contains an error code

v A pointer to the next SQLWarning, or null

Under the IBM Data Server Driver for JDBC and SQLJ, like an SQLException

object, an SQLWarning object can also contain DB2-specific information. The

DB2-specific information for an SQLWarning object is the same as the DB2-specific

information for an SQLException object.

Handling an SQLException under the IBM Data Server Driver

for JDBC and SQLJ

As in all Java programs, error handling for JDBC applications is done using

try/catch blocks. Methods throw exceptions when an error occurs, and the code in

the catch block handles those exceptions.

The basic steps for handling an SQLException in a JDBC program that runs under

the IBM Data Server Driver for JDBC and SQLJ are:

1. Give the program access to the com.ibm.db2.jcc.DB2Diagnosable interface and

the com.ibm.db2.jcc.DB2Sqlca class. You can fully qualify all references to them,

or you can import them:

import com.ibm.db2.jcc.DB2Diagnosable;

import com.ibm.db2.jcc.DB2Sqlca;

2. Optional: During a connection to a DB2 for z/OS or IBM Informix Dynamic

Server (IDS) data source, set the retrieveMessagesFromServerOnGetMessage

property to true if you want full message text from an

SQLException.getMessage call.

3. Optional: During a IBM Data Server Driver for JDBC and SQLJ type 2

connectivity connection to a DB2 for z/OS data source, set the

extendedDiagnosticLevel property to EXTENDED_DIAG_MESSAGE_TEXT (241) if you

want extended diagnostic information similar to the information that is

provided by the SQL GET DIAGNOSTICS statement from an

SQLException.getMessage call.

4. Put code that can generate an SQLException in a try block.

5. In the catch block, perform the following steps in a loop:

a. Test whether you have retrieved the last SQLException. If not, continue to

the next step.

b. Optional: For an SQL statement that executes on an IDS data source,

execute the com.ibm.db2.jcc.DB2Statement.getIDSSQLStatementOffSet

method to determine which columns have syntax errors.

DB2Statement.getIDSSQLStatementOffSet returns the offset into the SQL

statement of the first syntax error.

c. Optional: For an SQL statement that executes on an IDS data source, execute

the SQLException.getCause method to retrieve any ISAM error messages.

1) If the Throwable that is returned by SQLException.getCause is not null,

perform one of the following sets of steps:

Chapter 3. JDBC application programming 101

v Issue SQLException.printStackTrace to print an error message that

includes the ISAM error message text. The ISAM error message text is

preceded by the string ″Caused by:″.

v Retrieve the error code and message text for the ISAM message:

a) Test whether the Throwable is an instance of an SQLException. If

so, retrieve the SQL error code from that SQLException.

b) Execute the Throwable.getMessage method to retrieve the text of

the ISAM message.
d. Check whether any IBM Data Server Driver for JDBC and SQLJ-only

information exists by testing whether the SQLException is an instance of

DB2Diagnosable. If so:

 1) Cast the object to a DB2Diagnosable object.

 2) Optional: Invoke the DB2Diagnosable.printTrace method to write all

SQLException information to a java.io.PrintWriter object.

 3) Invoke the DB2Diagnosable.getThrowable method to determine

whether an underlying java.lang.Throwable caused the SQLException.

 4) Invoke the DB2Diagnosable.getSqlca method to retrieve the DB2Sqlca

object.

 5) Invoke the DB2Sqlca.getSqlCode method to retrieve an SQL error code

value.

 6) Invoke the DB2Sqlca.getSqlErrmc method to retrieve a string that

contains all SQLERRMC values, or invoke the

DB2Sqlca.getSqlErrmcTokens method to retrieve the SQLERRMC

values in an array.

 7) Invoke the DB2Sqlca.getSqlErrp method to retrieve the SQLERRP

value.

 8) Invoke the DB2Sqlca.getSqlErrd method to retrieve the SQLERRD

values in an array.

 9) Invoke the DB2Sqlca.getSqlWarn method to retrieve the SQLWARN

values in an array.

10) Invoke the DB2Sqlca.getSqlState method to retrieve the SQLSTATE

value.

11) Invoke the DB2Sqlca.getMessage method to retrieve error message text

from the data source.
e. Invoke the SQLException.getNextException method to retrieve the next

SQLException.

The following code demonstrates how to obtain IBM Data Server Driver for JDBC

and SQLJ-specific information from an SQLException that is provided with the

IBM Data Server Driver for JDBC and SQLJ. The numbers to the right of selected

statements correspond to the previously-described steps.

import java.sql.*; // Import JDBC API package

import com.ibm.db2.jcc.DB2Diagnosable; // Import packages for DB2 �1�

import com.ibm.db2.jcc.DB2Sqlca; // SQLException support

java.io.PrintWriter printWriter; // For dumping all SQLException

 // information

String url = "jdbc:db2://myhost:9999/myDB:" + �2�

 "retrieveMessagesFromServerOnGetMessage=true;";

 // Set properties to retrieve full message

Figure 23. Processing an SQLException under the IBM Data Server Driver for JDBC and

SQLJ

102 Developing Java Applications

// text

String user = "db2adm";

String password = "db2adm";

java.sql.Connection con =

 java.sql.DriverManager.getConnection (url, user, password)

 // Connect to a DB2 for z/OS data source

...

try { �4�

 // Code that could generate SQLExceptions

 ...

} catch(SQLException sqle) {

 while(sqle != null) { // Check whether there are more �5a�

 // SQLExceptions to process

 //=====> Optional IBM Data Server Driver for JDBC and SQLJ-only

 // error processing

 if (sqle instanceof DB2Diagnosable) { �5d�

 // Check if IBM Data Server Driver for JDBC and SQLJ-only

 // information exists

 com.ibm.db2.jcc.DB2Diagnosable diagnosable =

 (com.ibm.db2.jcc.DB2Diagnosable)sqle; �5d1�

 diagnosable.printTrace (printWriter, ""); �5d2�

 java.lang.Throwable throwable =

 diagnosable.getThrowable(); �5d3�

 if (throwable != null) {

 // Extract java.lang.Throwable information

 // such as message or stack trace.

 ...

 }

 DB2Sqlca sqlca = diagnosable.getSqlca(); �5d4�

 // Get DB2Sqlca object

 if (sqlca != null) { // Check that DB2Sqlca is not null

 int sqlCode = sqlca.getSqlCode(); // Get the SQL error code �5d5�

 String sqlErrmc = sqlca.getSqlErrmc(); �5d6�

 // Get the entire SQLERRMC

 String[] sqlErrmcTokens = sqlca.getSqlErrmcTokens();

 // You can also retrieve the

 // individual SQLERRMC tokens

 String sqlErrp = sqlca.getSqlErrp(); �5d7�

 // Get the SQLERRP

 int[] sqlErrd = sqlca.getSqlErrd(); �5d8�

 // Get SQLERRD fields

 char[] sqlWarn = sqlca.getSqlWarn(); �5d9�

 // Get SQLWARN fields

 String sqlState = sqlca.getSqlState(); �5d10�

 // Get SQLSTATE

 String errMessage = sqlca.getMessage(); �5d11�

 // Get error message

 System.err.println ("Server error message: " + errMessage);

 System.err.println ("--------------- SQLCA ---------------");

 System.err.println ("Error code: " + sqlCode);

 System.err.println ("SQLERRMC: " + sqlErrmc);

 If (sqlErrmcTokens != null) {

 for (int i=0; i< sqlErrmcTokens.length; i++) {

 System.err.println (" token " + i + ": " + sqlErrmcTokens[i]);

 }

 }

 System.err.println ("SQLERRP: " + sqlErrp);

 System.err.println (

 "SQLERRD(1): " + sqlErrd[0] + "\n" +

 "SQLERRD(2): " + sqlErrd[1] + "\n" +

 "SQLERRD(3): " + sqlErrd[2] + "\n" +

 "SQLERRD(4): " + sqlErrd[3] + "\n" +

 "SQLERRD(5): " + sqlErrd[4] + "\n" +

Chapter 3. JDBC application programming 103

"SQLERRD(6): " + sqlErrd[5]);

 System.err.println (

 "SQLWARN1: " + sqlWarn[0] + "\n" +

 "SQLWARN2: " + sqlWarn[1] + "\n" +

 "SQLWARN3: " + sqlWarn[2] + "\n" +

 "SQLWARN4: " + sqlWarn[3] + "\n" +

 "SQLWARN5: " + sqlWarn[4] + "\n" +

 "SQLWARN6: " + sqlWarn[5] + "\n" +

 "SQLWARN7: " + sqlWarn[6] + "\n" +

 "SQLWARN8: " + sqlWarn[7] + "\n" +

 "SQLWARN9: " + sqlWarn[8] + "\n" +

 "SQLWARNA: " + sqlWarn[9]);

 System.err.println ("SQLSTATE: " + sqlState);

 // portion of SQLException

 }

 sqle=sqle.getNextException(); // Retrieve next SQLException �5e�

 }

}

Handling an SQLWarning under the IBM Data Server Driver for

JDBC and SQLJ

Unlike SQL errors, SQL warnings do not cause JDBC methods to throw exceptions.

Instead, the Connection, Statement, PreparedStatement, CallableStatement, and

ResultSet classes contain getWarnings methods, which you need to invoke after

you execute SQL statements to determine whether any SQL warnings were

generated.

The basic steps for retrieving SQL warning information are:

1. Optional: During connection to the database server, set properties that affect

SQLWarning objects.

If you want full message text from a DB2 for z/OS or IBM Informix Dynamic

Server (IDS) data source when you execute SQLWarning.getMessage calls, set

the retrieveMessagesFromServerOnGetMessage property to true.

If you are using IBM Data Server Driver for JDBC and SQLJ type 2 connectivity

to a DB2 for z/OS data source, and you want extended diagnostic information

that is similar to the information that is provided by the SQL GET

DIAGNOSTICS statement when you execute SQLWarning.getMessage calls, set

the extendedDiagnosticLevel property to EXTENDED_DIAG_MESSAGE_TEXT (241).

2. Immediately after invoking a method that connects to a database server or

executes an SQL statement, invoke the getWarnings method to retrieve an

SQLWarning object.

3. Perform the following steps in a loop:

a. Test whether the SQLWarning object is null. If not, continue to the next step.

b. Invoke the SQLWarning.getMessage method to retrieve the warning

description.

c. Invoke the SQLWarning.getSQLState method to retrieve the SQLSTATE

value.

d. Invoke the SQLWarning.getErrorCode method to retrieve the error code

value.

e. If you want DB2-specific warning information, perform the same steps that

you perform to get DB2-specific information for an SQLException.

f. Invoke the SQLWarning.getNextWarning method to retrieve the next

SQLWarning.

104 Developing Java Applications

The following code illustrates how to obtain generic SQLWarning information. The

numbers to the right of selected statements correspond to the previously-described

steps.

Retrieving information from a BatchUpdateException

When an error occurs during execution of a statement in a batch, processing

continues. However, executeBatch throws a BatchUpdateException.

To retrieve information from the BatchUpdateException, follow these steps:

1. Use the BatchUpdateException.getUpdateCounts method to determine the

number of rows that each SQL statement in the batch updated before the

exception was thrown.

getUpdateCount returns an array with an element for each statement in the

batch. An element has one of the following values:

n The number of rows that the statement updated.

Statement.SUCCESS_NO_INFO

This value is returned if the number of updated rows cannot be

determined.

Statement.EXECUTE_FAILED

This value is returned if the statement did not execute successfully.
2. If the batched statement can return automatically generated keys:

a. Cast the BatchUpdateException to a

com.ibm.db2.jcc.DBBatchUpdateException.

b. Call the DBBatchUpdateException.getDBGeneratedKeys method to retrieve

an array of ResultSet objects that contains the automatically generated keys

for each execution of the batched SQL statement.

c. Test whether each ResultSet in the array is null.

Each ResultSet contains:

String url = "jdbc:db2://myhost:9999/myDB:" + �1�

 "retrieveMessagesFromServerOnGetMessage=true;";

 // Set properties to retrieve full message

 // text

String user = "db2adm";

String password = "db2adm";

java.sql.Connection con =

 java.sql.DriverManager.getConnection (url, user, password)

 // Connect to a DB2 for z/OS data source

Statement stmt;

ResultSet rs;

SQLWarning sqlwarn;

...

stmt = con.createStatement(); // Create a Statement object

rs = stmt.executeQuery("SELECT * FROM EMPLOYEE");

 // Get the result table from the query

sqlwarn = stmt.getWarnings(); // Get any warnings generated �2�

while (sqlwarn != null) { // While there are warnings, get and �3a�

 // print warning information

 System.out.println ("Warning description: " + sqlwarn.getMessage()); �3b�

 System.out.println ("SQLSTATE: " + sqlwarn.getSQLState()); �3c�

 System.out.println ("Error code: " + sqlwarn.getErrorCode()); �3d�

 sqlwarn=sqlwarn.getNextWarning(); // Get next SQLWarning �3f�

}

Figure 24. Example of processing an SQLWarning

Chapter 3. JDBC application programming 105

v If the ResultSet is not null, it contains the automatically generated keys

for an execution of the batched SQL statement.

v If the ResultSet is null, execution of the batched statement failed.
3. Use SQLException methods getMessage, getSQLState, and getErrorCode to

retrieve the description of the error, the SQLSTATE, and the error code for the

first error.

4. Use the BatchUpdateException.getNextException method to get a chained

SQLException.

5. In a loop, execute the getMessage, getSQLState, getErrorCode, and

getNextException method calls to obtain information about an SQLException

and get the next SQLException.

The following code fragment demonstrates how to obtain the fields of a

BatchUpdateException and the chained SQLException objects for a batched

statement that returns automatically generated keys. The example assumes that

there is only one column in the automatically generated key, and that there is

always exactly one key value, whose data type is numeric. The numbers to the

right of selected statements correspond to the previously-described steps.

try {

 // Batch updates

} catch(BatchUpdateException buex) {

 System.err.println("Contents of BatchUpdateException:");

 System.err.println(" Update counts: ");

 int [] updateCounts = buex.getUpdateCounts(); �1�

 for (int i = 0; i < updateCounts.length; i++) {

 System.err.println(" Statement " + i + ":" + updateCounts[i]);

 }

 ResultSet[] resultList =

 ((DBBatchUpdateException)buex).getDBGeneratedKeys(); �2�

 for (i = 0; i < resultList.length; i++)

 {

 if (resultList[i] == null)

 continue; // Skip the ResultSet for which there was a failure

 else {

 rs.next();

 java.math.BigDecimal idColVar = rs.getBigDecimal(1);

 // Get automatically generated key

 // value

 System.out.println("Automatically generated key value = " + idColVar);

 }

 }

 System.err.println(" Message: " + buex.getMessage()); �3�

 System.err.println(" SQLSTATE: " + buex.getSQLState());

 System.err.println(" Error code: " + buex.getErrorCode());

 SQLException ex = buex.getNextException(); �4�

 while (ex != null) { �5�

 System.err.println("SQL exception:");

 System.err.println(" Message: " + ex.getMessage());

 System.err.println(" SQLSTATE: " + ex.getSQLState());

 System.err.println(" Error code: " + ex.getErrorCode());

 ex = ex.getNextException();

 }

}

106 Developing Java Applications

Handling an SQLException under the DB2 JDBC Type 2 Driver

(deprecated)

As in all Java programs, error handling under the DB2 JDBC Type 2 Driver for

Linux, UNIX, and Windows is done using try/catch blocks. Methods throw

exceptions when an error occurs, and the code in the catch block handles those

exceptions.

The DB2 JDBC Type 2 Driver for Linux, UNIX, and Windows uses the

SQLException class for handling errors. All JDBC methods throw an instance of

SQLException when an error occurs during their execution. According to the JDBC

specification, an SQLException object contains the following information:

v A String object that contains a description of the error, or null

v A String object that contains the SQLSTATE, or null

v An int value that contains an error code

v A pointer to the next SQLException, or null

The basic steps for handling an SQLException in a JDBC program that runs under

the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2 JDBC Type 2

Driver) are:

1. Put code that can generate an SQLException in a try block.

2. In the catch block, perform the following steps in a loop:

a. Test whether you have retrieved the last SQLException. If not, continue to

the next step.

b. Retrieve error information from the SQLException.

c. Invoke the SQLException.getNextException method to retrieve the next

SQLException.

The following code illustrates a catch block that uses the DB2 version of

SQLException that is provided with the DB2 JDBC Type 2 Driver. The numbers to

the right of selected statements correspond to the previously-described steps.

Handling an SQLWarning under the DB2 JDBC Type 2 Driver

Unlike SQL errors, SQL warnings do not cause JDBC methods to throw exceptions.

Instead, the Connection, Statement, PreparedStatement, CallableStatement, and

ResultSet classes contain getWarnings methods, which you need to invoke after

you execute SQL statements to determine whether any SQL warnings were

generated.

Calling getWarnings retrieves an SQLWarning object.

import java.sql.*; // Import JDBC API package

...

try {

 // Code that could generate SQLExceptions �1�

 ...

} catch(SQLException sqle) {

 while(sqle != null) { // Check whether there are more �2a�

 System.out.println("Message: " + sqle.getMessage()); �2b�

 System.out.println("SQLSTATE: " + sqle.getSQLState());

 System.out.println("SQL error code: " + sqle.getErrorCode());

 sqle=sqle.getNextException(); // Retrieve next SQLException �2c�

 }

}

Figure 25. Processing an SQLException under the IBM Data Server Driver for JDBC and

SQLJ

Chapter 3. JDBC application programming 107

The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2 JDBC Type 2

Driver) generates generic SQLWarning objects. A generic SQLWarning object

contains the following information:

v A String object that contains a description of the warning, or null

v A String object that contains the SQLSTATE, or null

v An int value that contains an error code

v A pointer to the next SQLWarning, or null

The basic steps for retrieving SQL warning information are:

1. Immediately after invoking a method that executes an SQL statement, invoke

the getWarnings method to retrieve an SQLWarning object.

2. Perform the following steps in a loop:

a. Test whether the SQLWarning object is null. If not, continue to the next step.

b. Invoke the SQLWarning.getMessage method to retrieve the warning

description.

c. Invoke the SQLWarning.getSQLState method to retrieve the SQLSTATE

value.

d. Invoke the SQLWarning.getErrorCode method to retrieve the error code

value.

e. Invoke the SQLWarning.getNextWarning method to retrieve the next

SQLWarning.

The following code illustrates how to obtain generic SQLWarning information. The

numbers to the right of selected statements correspond to the previously-described

steps.

JDBC and SQLJ client reroute support for DB2 Database for Linux,

UNIX, and Windows and IDS

The automatic client reroute features on DB2 Database for Linux, UNIX, and

Windows and IBM Informix Dynamic Server allow client applications to recover

from a loss of communication with the server so that they can continue to work

with minimal interruption. JDBC and SQLJ client applications can take advantage

of that support.

Whenever a server crashes, each client that is connected to that server receives a

communication error, which terminates the connection and results in an application

error. When availability is important, you should have a redundant setup or

Connection con;

Statement stmt;

ResultSet rs;

SQLWarning sqlwarn;

...

stmt = con.createStatement(); // Create a Statement object

rs = stmt.executeQuery("SELECT * FROM EMPLOYEE");

 // Get the result table from the query

sqlwarn = stmt.getWarnings(); // Get any warnings generated �1�

while (sqlwarn != null) { // While there are warnings, get and �2a�

 // print warning information

 System.out.println ("Warning description: " + sqlwarn.getMessage()); �2b�

 System.out.println ("SQLSTATE: " + sqlwarn.getSQLState()); �2c�

 System.out.println ("Error code: " + sqlwarn.getErrorCode()); �2d�

 sqlwarn=sqlwarn.getNextWarning(); // Get next SQLWarning �2e�

}

Figure 26. Processing an SQLWarning

108 Developing Java Applications

failover support. Failover is the ability of a server to take over operations when

another server fails. In either case, the IBM Data Server Driver for JDBC and SQLJ

client attempts to reestablish the connection to the original server or to a new

server. When the connection is reestablished, the application can continue with the

next transaction.

IBM Data Server Driver for JDBC and SQLJ client reroute support for DB2

Database for Linux, UNIX, and Windows and IBM Informix Dynamic Server works

for connections that are obtained using the javax.sql.DataSource,

javax.sql.ConnectionPoolDataSource, javax.sql.XADataSource, or

java.sql.DriverManager interface.

Restriction: The IBM Data Server Driver for JDBC and SQLJ does not support

client reroute for an alternate DB2 Connect gateway, with the following exception:

If you set the alternate DB2 Connect gateway on the client side in one of the

following ways, the driver fails over to an alternate DB2 Connect gateway for the

initial connection only:

v Through a DB2ClientRerouteServerList instance

v By setting the clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber properties

Restriction: The IBM Data Server Driver for JDBC and SQLJ does not support

client reroute when the user that is associated with a trusted connection is

switched without authentication. If the primary server is down after a program

executes a trusted user switch without authentication, client reroute to the

alternative server fails, and an SQLException is thrown.

Restriction: Client reroute support for connections that are made with the

DriverManager interface has the following restrictions:

v Alternate server information is shared between DriverManager connections only

if you create the connections with the same URL and properties.

v You cannot set the clientRerouteServerListJNDIName property or the

clientRerouteServerListJNDIContext properties for a DriverManager connection.

v Client reroute is not enabled for default connections (jdbc:default:connection).

Enabling IBM Data Server Driver for JDBC and SQLJ client

reroute for connections to DB2 Database for Linux, UNIX, and

Windows servers

To enable client reroute for IBM Data Server Driver for JDBC and SQLJ

applications that connect to DB2 Database for Linux, UNIX, and Windows servers,

you need to set properties to indicate to the driver which servers are the primary

and alternate servers.

Before you can enable IBM Data Server Driver for JDBC and SQLJ client reroute

for connections to DB2 Database for Linux, UNIX, and Windows, your installation

must have a primary server and an alternate server.

After the primary and alternate servers are set up, follow these steps:

1. Set the appropriate properties to specify the primary and alternate server

addresses.

v If your application is using the DriverManager interface for connections:

Chapter 3. JDBC application programming 109

a. Specify the server name and port number of the primary server that you

want to use in the connection URL.

b. Set the clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber properties to the server name and port

number of the alternate server that you want to use.
v If your application is using the DataSource interface for connections, use one

of the following techniques:

– Set the server names and port numbers in DataSource properties:

a. Set the serverName and portNumber properties to the server name

and port number of the primary server that you want to use.

b. Set the clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber properties to the server name and

port number of the alternate server that you want to use.
– Configure JNDI for client reroute by using a DB2ClientRerouteServerList

instance to identify the primary server and alternate server.

a. Create an instance of DB2ClientRerouteServerList.

b. Set the

com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryServerName and

com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryPortNumber

properties to the server name and port number of the primary server

that you want to use.

c. Set the

com.ibm.db2.jcc.DB2ClientRerouteServerList.alternateServerName and

com.ibm.db2.jcc.DB2ClientRerouteServerList.alternatePortNumber

properties to the server name and port number of the alternate server

that you want to use.

d. To make the DB2ClientRerouteServerList persistent:

1) Bind the DB2ClientRerouteServerList instance to the JNDI registry.

2) Assign the JNDI name of the DB2ClientRerouteServerList object to

the IBM Data Server Driver for JDBC and SQLJ

clientRerouteServerListJNDIName property.
2. Connect to the data source that represents the primary server.

Examples

Suppose that your installation has a primary server and an alternate server with

the following server names and port numbers:

 Server name Port number

srv1.sj.ibm.com 50000

srv3.sj.ibm.com 50002

The following code sets up DataSource properties in an application so that the

application connects to srv1.sj.ibm.com as the primary server, and srv3.sj.ibm.com

as the alternative server. That is, if srv1.sj.ibm.com is down during the initial

connection, the driver should connect to srv3.sj.ibm.com.

 ds.setDriverType(4);

 ds.setServerName("srv1.sj.ibm.com");

 ds.setPortNumber("50000");

 ds.setClientRerouteAlternateServerName("srv3.sj.ibm.com");

 ds.setClientRerouteAlternatePortNumber("50002");

110 Developing Java Applications

The following code configures JNDI for client reroute. It creates an instance of

DB2ClientRerouteServerList, binds that instance to the JNDI registry, and assigns

the JNDI name of the DB2ClientRerouteServerList object to the

clientRerouteServerListJNDIName property.

// Create a starting context for naming operations

InitialContext registry = new InitialContext();

// Create a DB2ClientRerouteServerList object

DB2ClientRerouteServerList address = new DB2ClientRerouteServerList();

// Set the port number and server name for the primary server

address.setPrimaryPortNumber(50000);

address.setPrimaryServerName("srv1.sj.ibm.com");

// Set the port number and server name for the alternate server

int[] port = {50002};

String[] server = {"srv3.sj.ibm.com"};

address.setAlternatePortNumber(port);

address.setAlternateServerName(server);

registry.rebind("serverList", address);

// Assign the JNDI name of the DB2ClientRerouteServerList object to the

// clientRerouteServerListJNDIName property

datasource.setClientRerouteServerListJNDIName("serverList");

Enabling IBM Data Server Driver for JDBC and SQLJ client

reroute for connections to IDS servers

To enable client reroute for IBM Data Server Driver for JDBC and SQLJ

applications that connect to IBM Informix Dynamic Server (IDS) servers, you need

to connect to a Connection Manager.

Before you can enable IBM Data Server Driver for JDBC and SQLJ client reroute

for connections to IBM Informix Dynamic Server, your installation must have one

or more Connection Managers, a primary server, and one or more alternate servers.

After the Connection Managers, primary server, and alternate servers are set up,

follow these steps:

1. Set the appropriate properties to specify the Connection Manager addresses.

v If your installation is using a single Connection manager for client reroute,

and your application is using the DataSource interface for connections, set

the serverName and portNumber properties to the server name and port

number of the Connection Manager.

v If your installation is using a single Connection manager for client reroute,

and your application is using the DriverManager interface for connections,

specify the server name and port number of the Connection manager in the

connection URL.

v If your installation is using more than one Connection manager for client

reroute, and your application is using the DriverManager interface for

connections:

a. Specify the server name and port number of the main Connection

manager that you want to use in the connection URL.

b. Set the clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber properties to the server names and

port numbers of the alternative Connection Managers that you want to

use.

Chapter 3. JDBC application programming 111

v If your installation is using more than one Connection manager for client

reroute, and your application is using the DataSource interface for

connections, use one of the following techniques:

– Set the server names and port numbers in DataSource properties:

a. Set the serverName and portNumber properties to the server name

and port number of the main Connection Manager that you want to

use.

b. Set the clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber properties to the server names and

port numbers of the alternative Connection Managers that you want to

use.
– Configure JNDI for client reroute by using a DB2ClientRerouteServerList

instance to identify the main Connection Manager and alternative

Connection Managers.

a. Create an instance of DB2ClientRerouteServerList.

b. Set the

com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryServerName and

com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryPortNumber

properties to the server name and port number of the main Connection

Manager that you want to use.

c. Set the

com.ibm.db2.jcc.DB2ClientRerouteServerList.alternateServerName and

com.ibm.db2.jcc.DB2ClientRerouteServerList.alternatePortNumber

properties to the server names and port numbers of the alternative

Connection Managers that you want to use.

d. To make the DB2ClientRerouteServerList persistent:

1) Bind the DB2ClientRerouteServerList instance to the JNDI registry.

2) Assign the JNDI name of the DB2ClientRerouteServerList object to

the IBM Data Server Driver for JDBC and SQLJ

clientRerouteServerListJNDIName property.
2. Connect to the data source that represents the main Connection Manager.

The alternative Connection Managers are used for the initial connection only,

unless seamless failover is enabled. For the initial connection, if the main

Connection Manager is down, the IBM Data Server Driver for JDBC and SQLJ

attempts to make a connection to the Connection Manager that is specified by the

first set of values in clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber or

com.ibm.db2.jcc.DB2ClientRerouteServerList.alternateServerName and

com.ibm.db2.jcc.DB2ClientRerouteServerList.alternatePortNumber.

Examples

Suppose that your installation has two Connection Managers with the following

server names and port numbers:

 Server name Port number

cm1.sf.ibm.com 50000

cm2.sf.ibm.com 50002

The following code sets up DataSource properties in an application so that the

application connects to cm2.sf.ibm.com as the main Connection Manager, and

112 Developing Java Applications

cm1.sf.ibm.com as the alternative Connection Manager. That is, if cm2.sf.ibm.com is

down during the initial connection, the driver should connect to cm1.sf.ibm.com.

 ds.setDriverType(4);

 ds.setServerName("cm2.sf.ibm.com");

 ds.setPortNumber("50002");

 ds.setClientRerouteAlternateServerName("cm1.sf.ibm.com");

 ds.setClientRerouteAlternatePortNumber("50000");

The following code configures JNDI for client reroute. It creates an instance of

DB2ClientRerouteServerList, binds that instance to the JNDI registry, and assigns

the JNDI name of the DB2ClientRerouteServerList object to the

clientRerouteServerListJNDIName property.

// Create a starting context for naming operations

InitialContext registry = new InitialContext();

// Create a DB2ClientRerouteServerList object

DB2ClientRerouteServerList address = new DB2ClientRerouteServerList();

// Set the port number and server name for the main Configuration Manager

address.setPrimaryPortNumber(50002);

address.setPrimaryServerName("cm2.sf.ibm.com");

// Set the port number and server name for the alternative Configuration Manager

int[] port = {50000};

String[] server = {"cm1.sf.ibm.com"};

address.setAlternatePortNumber(port);

address.setAlternateServerName(server);

registry.rebind("serverList", address);

// Assign the JNDI name of the DB2ClientRerouteServerList object to the

// clientRerouteServerListJNDIName property

datasource.setClientRerouteServerListJNDIName("serverList");

JDBC and SQLJ client reroute support with JNDI for DB2

Database for Linux, UNIX, and Windows and IDS

If you make connections with the javax.sql.DataSource,

javax.sql.ConnectionPoolDataSource, or javax.sql.XADataSource interface, you

indicate to the IBM Data Server Driver for JDBC and SQLJ that JNDI is configured

for client reroute by setting the clientRerouteServerListJNDIName property.

You can also specify the clientRerouteServerListJNDIContext property, which

provides the JNDI context that is used for binding and lookup of a

DB2ClientRerouteServerList instance.

For client reroute with JNDI, the in-memory primary and alternate server

information is an instance of the DB2ClientRerouteServerList class, which

implements the javax.naming.Referenceable interface.

DB2ClientRerouteServerList is a serializable Java bean with the following

properties:

 Property name Data type

com.ibm.db2.jcc.DB2ClientRerouteServerList.alternateServerName String[]

com.ibm.db2.jcc.DB2ClientRerouteServerList.alternatePortNumber int[]

com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryServerName String[]

com.ibm.db2.jcc.DB2ClientRerouteServerList.primaryPortNumber int[]

Chapter 3. JDBC application programming 113

getXXX and setXXX methods are defined for each property.

When a DataSource is configured to use JNDI for storing client reroute alternate

information, the standard server and port properties of the DataSource are not

used for a getConnection request. Instead, the primary server address is obtained

from the transient clientRerouteServerList information. If the JNDI store is not

available due to a JNDI bind or lookup failure, the IBM Data Server Driver for

JDBC and SQLJ attempts to make a connection using the standard server and port

properties of the DataSource. Warnings are accumulated to indicate that a JNDI

bind or lookup failure occurred.

After a failover:

v The IBM Data Server Driver for JDBC and SQLJ attempts to propagate the

updated server information to the JNDI store.

v primaryServerName and primaryPortNumber values that are specified in

DB2ClientRerouteServerList are used for the connection. If primaryServerName

is not specified, the serverName value for the DataSource instance is used.

JDBC and SQLJ client reroute operation for DB2 Database for

Linux, UNIX, and Windows and IDS

When IBM Data Server Driver for JDBC and SQLJ client reroute support is

enabled, a Java application that is connected to a DB2 Database for Linux, UNIX,

and Windows server can continue to run when the primary server has a failure.

Client reroute for a Java application that is connected to a DB2 server operates in

the following way when support for client affinities for cascaded failover is

disabled:

1. During each connection to the data source, the IBM Data Server Driver for

JDBC and SQLJ obtains primary and alternate server information.

v For the first connection to a DB2 Database for Linux, UNIX, and Windows

server:

a. If the clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber properties are set, the IBM Data

Server Driver for JDBC and SQLJ loads those values into memory as the

alternate server values, along with the primary server values serverName

and portNumber.

b. If the clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber properties are not set, and a JNDI

store is configured by setting the property

clientRerouteServerListJNDIName on the DB2BaseDataSource, the IBM

Data Server Driver for JDBC and SQLJ loads the primary and alternate

server information from the JNDI store into memory.

c. If no DataSource properties are set for the alternate servers, and JNDI is

not configured, the IBM Data Server Driver for JDBC and SQLJ checks

DNS tables for primary and alternate server information. If DNS

information exists, the IBM Data Server Driver for JDBC and SQLJ loads

those values into memory.

d. If no primary or alternate server information is available, a connection

cannot be established, and the IBM Data Server Driver for JDBC and

SQLJ throws an exception.
v For the first connection to IBM Informix Dynamic Server:

a. The application specifies a server and port for the initial connection.

Those values identify a Connection Manager.

114 Developing Java Applications

b. The IBM Data Server Driver for JDBC and SQLJ uses the information

from the Connection Manager to obtain information about the primary

and alternate servers. IBM Data Server Driver for JDBC and SQLJ loads

those values into memory.

c. If the initial connection to the Connection Manager fails:

– If the clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber properties are set, the IBM Data

Server Driver for JDBC and SQLJ connects to the Connection Manager

that is identified by clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber, and obtains information about

primary and alternate servers from that Connection Manager. The IBM

Data Server Driver for JDBC and SQLJ loads those values into memory

as the primary and alternate server values.

– If the clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber properties are not set, and a JNDI

store is configured by setting the property

clientRerouteServerListJNDIName on the DB2BaseDataSource, the IBM

Data Server Driver for JDBC and SQLJ connects to the Connection

Manager that is identified by

DB2ClientRerouteServerList.alternateServerName and

DB2ClientRerouteServerList.alternatePortNumber, and obtains

information about primary and alternate servers from that Connection

Manager. IBM Data Server Driver for JDBC and SQLJ loads the

primary and alternate server information from the Connection

Manager into memory.
d. If clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber are not set, and JNDI is not

configured, the IBM Data Server Driver for JDBC and SQLJ checks DNS

tables for Connection Manager server and port information. If DNS

information exists, the IBM Data Server Driver for JDBC and SQLJ

connects to the Connection Manager, obtains information about primary

and alternate servers, and loads those values into memory.

e. If no primary or alternate server information is available, a connection

cannot be established, and the IBM Data Server Driver for JDBC and

SQLJ throws an exception.
v For subsequent connections, the IBM Data Server Driver for JDBC and SQLJ

obtains primary and alternate server values from driver memory.
2. The IBM Data Server Driver for JDBC and SQLJ attempts to connect to the data

source using the primary server name and port number.

If the connection is through the DriverManager interface, the IBM Data Server

Driver for JDBC and SQLJ creates a DataSource object for client reroute

processing.

3. If the connection to the primary server fails:

a. If this is the first connection, the IBM Data Server Driver for JDBC and

SQLJ attempts to reconnect to the original primary server.

b. If this is not the first connection, the IBM Data Server Driver for JDBC and

SQLJ attempts to reconnect to the new primary server, whose server name

and port number were provided by the server.

c. If reconnection to the primary server fails, the IBM Data Server Driver for

JDBC and SQLJ attempts to connect to the alternate servers.

If this is not the first connection, the latest alternate server list is used to

find the next alternate server.

Chapter 3. JDBC application programming 115

Reconnection to the primary server is called failback. Connection to an alternate

server is called failover.

The IBM Data Server Driver for JDBC and SQLJ uses the

maxRetriesForClientReroute and retryIntervalForClientReroute properties to

determine how many times to retry the connection and how long to wait

between retries. An attempt to connect to the primary server and alternate

servers counts as one retry.

4. If the connection is not established, maxRetriesForClientReroute and

retryIntervalForClientReroute are not set, and the original serverName and

portNumber values that are defined on the DataSource are different from the

serverName and portNumber values that were used for the original connection,

retry the connection with the serverName and portNumber values that are

defined on the DataSource.

5. If failover is successful during the initial connection, the driver generates an

SQLWarning. If a successful failover occurs after the initial connection:

v If seamless failover is enabled, the driver retries the transaction on the new

server, without notifying the application.

The following conditions must be satisfied for seamless failover to occur:

– The enableSeamlessFailover property is set to DB2BaseDataSource.YES (1).

If Sysplex workload balancing is in effect (the value of the

enableSysplexWLB is true), seamless failover is attempted, regardless of

the enableSeamlessFailover setting.

– The connection is not in a transaction. That is, the failure occurs when the

first SQL statement in the transaction is executed.

– There are no global temporary tables in use on the server.

– There are no open, held cursors.
v If seamless failover is not in effect, the driver throws an SQLException to the

application with error code -4498, to indicate to the application that the

connection was automatically reestablished and the transaction was implicitly

rolled back. The application can then retry its transaction without doing an

explicit rollback first.

A reason code that is returned with error code -4498 indicates whether any

database server special registers that were modified during the original

connection are reestablished in the failover connection.

You can determine whether alternate server information was used in

establishing the initial connection by calling the

DB2Connection.alternateWasUsedOnConnect method.

6. After failover, driver memory is updated with new primary and alternate

server information from the new primary server.

Examples

Example: Client reroute to a DB2 Database for Linux, UNIX, and Windows server when

maxRetriesForClientReroute and retryIntervalForClientReroute are not set: Suppose that

the following properties are set for a connection to a database:

 Property Value

enableClientAffinitiesList DB2BaseDataSource.NO (2)

serverName host1

portNumber port1

clientRerouteAlternateServerName host2

116 Developing Java Applications

Property Value

clientRerouteAlternatePortNumber port2

The following steps demonstrate a client reroute scenario for a connection to a DB2

Database for Linux, UNIX, and Windows server:

 1. The IBM Data Server Driver for JDBC and SQLJ loads host1:port1 into its

memory as the primary server address, and host2:port2 into its memory as the

alternate server address.

 2. On the initial connection, the driver tries to connect to host1:port1.

 3. The connection to host1:port1 fails, so the driver tries another connection to

host1:port1.

 4. The reconnection to host1:port1 fails, so the driver tries to connect to

host2:port2.

 5. The connection to host2:port2 succeeds.

 6. The driver retrieves alternate server information that was received from server

host2:port2, and updates its memory with that information.

Assume that the driver receives a server list that contains host2a:port2a,

host2:port2. host2a:port2a is stored as the new primary server, and host2:port2

is stored as the new alternative server. If another communication failure is

detected on this same connection, or on another connection that is created

from the same DataSource, the driver tries to connect to host2a:port2a as the

new primary server. If that connection fails, the driver tries to connect to the

new alternate server host2:port2.

 7. A communication failure occurs during the connection to host2:port2.

 8. The driver tries to connect to host2a:port2a.

 9. The connection to host2a:port2a is successful.

10. The driver retrieves alternate server information that was received from server

host2a:port2a, and updates its memory with that information.

The following steps demonstrate a client reroute scenario for a connection to IBM

Informix Dynamic Server:

1. The IBM Data Server Driver for JDBC and SQLJ tries to connect to the

Connection Manager that is identified by host1:port1.

2. The connection to host1:port1 fails, so the driver tries to connect to the

Connection Manager that is identified by host2:port2.

3. The connection to host2:port2 succeeds.

4. The driver retrieves alternate server information that was received from server

host2:port2, and updates its memory with that information.

Assume that the driver receives a server list that contains host1a:port1a,

host2a:port2a. host1a:port1a is stored as the new primary server, and

host2a:port2a is stored as the new alternative server. If another communication

failure is detected on this same connection, or on another connection that is

created from the same DataSource, the driver tries to connect to host1a:port1a

as the new primary server. If that connection fails, the driver tries to connect to

the new alternate server host2a:port2a.

5. The driver connects to host1a:port1a.

6. A failure occurs during the connection to host1a:port1a.

7. The driver tries to connect to host2a:port2a.

8. The connection to host2a:port2a is successful.

Chapter 3. JDBC application programming 117

9. The driver retrieves alternate server information that was received from server

host2a:port2a, and updates its memory with that information.

Example: Client reroute to a DB2 Database for Linux, UNIX, and Windows server when

maxRetriesForClientReroute and retryIntervalForClientReroute are set for multiple retries:

Suppose that the following properties are set for a connection to a database:

 Property Value

enableClientAffinitiesList DB2BaseDataSource.NO (2)

serverName host1

portNumber port1

clientRerouteAlternateServerName host2

clientRerouteAlternatePortNumber port2

maxRetriesForClientReroute 3

retryIntervalForClientReroute 2

The following steps demonstrate a client reroute scenario for a connection to a DB2

Database for Linux, UNIX, and Windows server:

 1. The IBM Data Server Driver for JDBC and SQLJ loads host1:port1 into its

memory as the primary server address, and host2:port2 into its memory as the

alternate server address.

 2. On the initial connection, the driver tries to connect to host1:port1.

 3. The connection to host1:port1 fails, so the driver tries another connection to

host1:port1.

 4. The connection to host1:port1 fails again, so the driver tries to connect to

host2:port2.

 5. The connection to host2:port2 fails.

 6. The driver waits two seconds.

 7. The driver tries to connect to host1:port1 and fails.

 8. The driver tries to connect to host2:port2 and fails.

 9. The driver waits two seconds.

10. The driver tries to connect to host1:port1 and fails.

11. The driver tries to connect to host2:port2 and fails.

12. The driver waits two seconds.

13. The driver throws an SQLException with error code -4499.

The following steps demonstrate a client reroute scenario for a connection to IBM

Informix Dynamic Server:

 1. The IBM Data Server Driver for JDBC and SQLJ tries to connect to the

Connection Manager that is identified by host1:port1.

 2. The connection to host1:port1 fails, so the driver tries to connect to the

Connection Manager that is identified by host2:port2.

 3. The connection to host2:port2 succeeds.

 4. The driver retrieves alternate server information from the connection manager

that is identified by host2:port2, and updates its memory with that

information. Assume that the Connection Manager identifies host1a:port1a as

the new primary server, and host2a:port2a as the new alternate server.

 5. The driver tries to connect to host1a:port1a.

118 Developing Java Applications

6. The connection to host1a:port1a fails.

 7. The driver tries to connect to host2a:port2a.

 8. The connection to host2a:port2a fails.

 9. The driver waits two seconds.

10. The driver tries to connect to host1a:port1a.

11. The connection to host1a:port1a fails.

12. The driver tries to connect to host2a:port2a.

13. The connection to host2a:port2a fails.

14. The driver waits two seconds.

15. The driver tries to connect to host1a:port1a.

16. The connection to host1a:port1a fails.

17. The driver tries to connect to host2a:port2a.

18. The connection to host2a:port2a fails.

19. The driver waits two seconds.

20. The driver throws an SQLException with error code -4499.

Sysplex support for high availability for connections from IBM Data

Server Driver for JDBC and SQLJ clients to DB2 for z/OS servers

Sysplex support for high availability allows client applications to recover from a

loss of communication with the server so that they can continue to work with

minimal interruption. For Java applications, this support requires IBM Data Server

Driver for JDBC and SQLJ type 4 connectivity.

Sysplex support for connections from IBM Data Server Driver for JDBC and SQLJ

clients to DB2 for z/OS servers includes:

Automatic client reroute

This support enables a client to recover from a failure by attempting to

reconnect to the database through any available member of a Sysplex. You

enable automatic client reroute on the client by enabling Sysplex workload

balancing on the client. By default, automatic client reroute for a Sysplex is

seamless, which means that no error is returned to the application when

reroute occurs.

Connection concentrator

This support reduces the resources that are required on DB2 for z/OS database

servers to support large numbers of workstation and web users. With the

connection concentrator, only a few concurrent, active physical connections are

needed to support many applications that concurrently access the database

server. When you enable Sysplex workload balancing on the client, you

automatically enable the connection concentrator.

Sysplex workload balancing on DB2 for z/OS involves a data sharing group. The

access method that is set up for requesters to communicate with the data sharing

group determines whether client reroute is possible. The following table lists the

access methods and indicates whether data sharing is possible.

Chapter 3. JDBC application programming 119

Table 25. Client reroute access methods and client reroute capability

Data sharing access

method1 Description

Client reroute

possible?

Group access A requester uses the group’s dynamic virtual IP

address (DVIPA) to make an initial connection

to the DB2 for z/OS location. A connection to

the data sharing group that uses the group IP

address is always successful if at least one

member is started. The group IP address is

configured using the z/OS Sysplex distributor.

To clients that are outside the Sysplex, the

Sysplex distributor provides a single IP address

that represents a DB2 location. In addition to

providing fault tolerance, the Sysplex distributor

can be configured to provide connection load

balancing.

Yes

Member-specific access A requester uses a location alias to make an

initial connection to one of the members that is

represented by the alias. DB2 for z/OS returns a

list of members that are currently active and can

perform work. It also returns a weight for each

active member that indicates the member’s

current capacity. The requester uses this

information to connect to the member or

members with the most capacity that are also

associated with the location alias.

Member-specific access is used when requesters

need to take advantage of workload balancing

and client reroute among a subset of members

of a data sharing group.

Yes

Single-member access Single-member access is used when requesters

need to access only one member of a data

sharing group.

No

Client affinities The DB2 server provides no support for this

option. All rerouting is controlled by the driver.

If failover occurs because a data sharing group

member fails, the member that fails might have

retained locks that can severely affect

transactions on the member to which failover

occurs. You should use client affinities for client

reroute only if one of the other methods does

not work in your environment. See the topic on

IBM Data Server Driver for JDBC and SQLJ

support for client affinities for cascaded failover

for more information.

Yes

Note:

1. For more information on data sharing access methods, see http://
publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.dshare/
db2z_tcpipaccessmethods.htm.

Configuration of Sysplex support for high availability at the

client

To configure a IBM Data Server Driver for JDBC and SQLJ client application that

connects directly to DB2 for z/OS to use Sysplex support, you need to connect to

an address that represents the data sharing group (for group access) or a subset of

120 Developing Java Applications

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.dshare/db2z_tcpipaccessmethods.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.dshare/db2z_tcpipaccessmethods.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db29.doc.dshare/db2z_tcpipaccessmethods.htm

the data sharing group (for member-specific access), and set the properties that

enable workload balancing and the maximum number of connections.

The following table describes the basic settings, for Java applications.

 Table 26. Basic settings to enable Sysplex support in Java applications

Data sharing

access

method

IBM Data Server Driver for JDBC

and SQLJ setting Value

Group access enableSysplexWLB property true

maxTransportObjects property The maximum number of

connections that the requester can

make to the data sharing group

Connection address:

server The group IP address or domain

name of the data sharing group

port The SQL port number

database The DB2 location name that is

defined during installation

Member-
specific access

enableSysplexWLB property true

maxTransportObjects property The maximum number of

connections that the requester can

make to the subset of the data

sharing group

Connection address:

server The DB2 location alias that represents

the subset of the data sharing group

port The SQL port number

database The DB2 location name of the data

sharing member for the initial

connection

If you want to fine-tune the connection concentrator function of Sysplex support,

additional properties are available. The properties for the IBM Data Server Driver

for JDBC and SQLJ are listed in the following table. Those properties are

configuration properties, and not Connection or DataSource properties.

 Table 27. Properties for fine-tuning Sysplex support for direct connections from the IBM Data Server Driver for JDBC

and SQLJ to DB2 for z/OS

IBM Data Server Driver for JDBC and SQLJ

configuration property Description

db2.jcc.maxTransportObjectIdleTime Specifies the maximum elapsed time in number of seconds

before an idle transport is dropped. The default is 600. The

minimum supported value is 0.

db2.jcc.maxTransportObjectWaitTime Specifies the number of seconds that the client will wait for a

transport to become available. The default is -1 (unlimited).

The minimum supported value is 0.

db2.jcc.minTransportObjects Specifies the lower limit for the number of transport objects in

a global transport object pool. The default value is 0. Any

value that is less than or equal to 0 means that the global

transport object pool can become empty.

Chapter 3. JDBC application programming 121

Example of enabling DB2 for z/OS Sysplex support in JDBC or

SQLJ applications

Before you can use Sysplex support in applications that use the IBM Data Server

Driver for JDBC and SQLJ with WebSphere Application Server and DB2 for z/OS

servers, you need to configure these functions.

Server requirements:

v WLM for z/OS

For workload balancing to work efficiently, you need to classify the work on

DB2. Among the areas by which you need to classify the work are:

– Authorization ID

– Client info properties

– Store procedure name

The stored procedure name is used for classification only if the first statement

that is issued by the client in the transaction is an SQL CALL statement.
v DB2 for z/OS Version 8 or later, set up for data sharing

Client requirements:

v IBM Data Server Driver for JDBC and SQLJ version 2.7 or later

v WebSphere Application Server, Version 5.1 or later

The following procedure is an example of enabling the IBM Data Server Driver for

JDBC and SQLJ connection concentrator and workload balancing functions with

WebSphere Application Server. The values that are specified are not intended to be

recommended values. You need to determine values based on factors such as the

number of transport objects that are available. The number of transport objects

must be equal to or greater than the number of connection objects.

1. Verify that the IBM Data Server Driver for JDBC and SQLJ is at the correct level

to support the Sysplex workload balancing by following these steps:

a. Issue the following command in a command line window

java com.ibm.db2.jcc.DB2Jcc -version

b. Find a line in the output like this, and check that nnn is 2.7 or later.

[jcc] Driver: IBM Data Server Driver for JDBC and SQLJ Architecture nnn xxx

2. Set IBM Data Server Driver for JDBC and SQLJ data source properties to enable

the connection concentrator or workload balancing:

In the WebSphere Application Server administrative console, set the following

properties for the DataSource that your application uses to connect to the data

source:

v enableSysplexWLB

v maxTransportObjects

Start with settings similar to these:

 Table 28. Example of data source property settings for IBM Data Server Driver for JDBC and

SQLJ connection concentrator and workload balancing for DB2 for z/OS

Property Setting

enableSysplexWLB true

maxTransportObjects 80

3. Set IBM Data Server Driver for JDBC and SQLJ configuration properties to

fine-tune the connection concentrator for all DataSource or Connection

instances that are created under the driver. Set the configuration properties in a

DB2JccConfiguration.properties file by following these steps:

122 Developing Java Applications

a. Create a DB2JccConfiguration.properties file or edit the existing

DB2JccConfiguration.properties file.

b. Set the following configuration property:

v db2.jcc.maxTransportObjects

Start with a setting similar to this one:

db2.jcc.maxTransportObjects=500

c. Add the directory path for DB2JccConfiguration.properties to the

WebSphere Application Server IBM Data Server Driver for JDBC and SQLJ

classpath.
4. Restart WebSphere Application Server.

Operation of Sysplex support for direct connections from IBM

Data Server Driver for JDBC and SQLJ clients to DB2 for z/OS

Sysplex support for direct connections to DB2 for z/OS includes Sysplex workload

balancing capability.

The following overview describes the steps that occur when a client connects to a

DB2 for z/OS Sysplex, and Sysplex workload balancing is enabled:

1. When the client first establishes a connection using the sysplex-wide IP address

called the group IP address, or when a connection is reused by another

connection object, the server returns member workload distribution

information.

The server list is cached by the client and has a lifespan of 30 seconds.

2. At the start of a new transaction, the client reads the cached server list to

identify a member that has untapped capacity, and looks in the transport pool

for an idle transport that is tied to the under-utilized member. (An idle

transport is a transport that has no associated connection object.)

v If an idle transport is available, the client associates the connection object

with the transport.

v If, after a user-configurable timeout, no idle transport is available in the

transport pool and no new transport can be allocated because the transport

pool has reached its limit, an error is returned to the application.
3. When the transaction runs, it accesses the member that is tied to the transport.

4. When the transaction ends, the client verifies with the server that transport

reuse is still allowed for the connection object.

5. If transport reuse is allowed, the server returns a list of SET statements for

special registers that apply to the execution environment for the connection

object.

The client caches these statements, which it replays in order to reconstruct the

execution environment when the connection object is associated with a new

transport.

6. The connection object is then disassociated from the transport.

7. The client copy of the server list is refreshed when a new connection is made,

or every 30 seconds.

8. When workload balancing is required for a new transaction, the client uses the

same process to associate the connection object with a transport.

Chapter 3. JDBC application programming 123

Application programming for Sysplex support for direct

connections to DB2 for z/OS

Sysplex support for direct connections to DB2 for z/OS is designed to be seamless.

This means that in most circumstances, an application should not need to add any

code to account for this support.

The following conditions must be satisfied for Sysplex support to provide seamless

automatic client reroute:

v The connection is not in a transaction. That is, the failure occurs when the first

SQL statement in the transaction is executed.

v All global session data is closed or dropped.

v There are no open, held cursors, and no open result sets.

In addition, seamless automatic client reroute might not be successful if the

application:

v Has autocommit enabled. With autocommit enabled, a statement might be

executed and committed multiple times.

v Is executing certain types of SQL operations, such as compound SQL or

processing array input

If any of those conditions are not satisfied, and a connection is reestablished with

the server, SQLCODE -30108 (SQL30108N) is returned to the application, and all

work that occurred within the current transaction is rolled back. The application

needs to:

v Check the reason code that is returned with the -30108 error to determine

whether special register settings on the failing data sharing member are carried

over to the new (failover) data sharing member. Reset any special register values

that are not current.

v Execute all SQL operations that occurred since the previous COMMIT operation.

IBM Data Server Driver for JDBC and SQLJ support for client affinities

for seamless failover

Client affinities for seamless failover is supported for IBM Data Server Driver for

JDBC and SQLJ type 4 connectivity.

If you want to enforce a specific failover order for certain applications, you can

enable support for client affinities for seamless failover.

In an IBM Informix Dynamic Server environment, primary and standby servers

correspond to members of a high-availability cluster that is controlled by a

Connection Manager. If multiple Connection Managers exist, the IBM Data Server

Driver for JDBC and SQLJ can use them to determine primary and alternate server

information if the clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber properties are set. The IBM Data Server Driver

for JDBC and SQLJ uses the alternative Connection Managers only for the initial

connection unless you enable support for client affinities for seamless failover.

You enable support for client affinities for seamless failover by setting the

enableClientAffinitiesList property. That property specifies a client affinities list,

which specifies the order in which connections should be attempted after a failure.

124 Developing Java Applications

If client affinities for seamless failover is enabled, the IBM Data Server Driver for

JDBC and SQLJ retries connections to only those servers that are identified by the

clientRerouteAlternateServerName and clientRerouteAlternatePortNumber

properties. The clientRerouteAlternateServerName list also includes the primary

server.

Example

Suppose that the following properties are set for a connection to a database:

 Property Value

enableClientAffinitiesList DB2BaseDataSource.YES (1)

clientRerouteAlternateServername host1,host2,host3

clientRerouteAlternatePortNumber port1,port2,port3

maxRetriesForClientReroute 3

retryIntervalForClientReroute 2

Suppose that a communication failure occurs during a connection to the server that

is identified by host1:port1. The following steps demonstrate a client reroute

scenario when seamless failover is in effect.

 1. The driver tries to connect to host1:port1.

 2. The connection to host1:port1 fails.

 3. The driver waits two seconds.

 4. The driver tries to connect to host1:port1.

 5. The connection to host1:port1 fails.

 6. The driver waits two seconds.

 7. The driver tries to connect to host1:port1.

 8. The connection to host1:port1 fails.

 9. The driver waits two seconds.

10. The driver tries to connect to host2:port2.

11. The connection to host2:port2 fails.

12. The driver waits two seconds.

13. The driver tries to connect to host2:port2.

14. The connection to host2:port2 fails.

15. The driver waits two seconds.

16. The driver tries to connect to host2:port2.

17. The connection to host2:port2 fails.

18. The driver waits two seconds.

19. The driver tries to connect to host3:port3.

20. The connection to host3:port3 fails.

21. The driver waits two seconds.

22. The driver tries to connect to host3:port3.

23. The connection to host3:port3 fails.

24. The driver waits two seconds.

25. The driver tries to connect to host3:port3.

26. The connection to host3:port3 fails.

27. The driver waits two seconds.

Chapter 3. JDBC application programming 125

28. The driver throws an SQLException with error code -4499.

JDBC connection concentrator and workload balancing for IDS servers

Java applications that use IBM Data Server Driver for JDBC and SQLJ type 4

connectivity to access IBM Informix Dynamic Server can take advantage of the

connection concentrator and workload balancing functions.

The IBM Data Server Driver for JDBC and SQLJ connection concentrator function

can reduce the resources that IBM Informix Dynamic Server data sources require to

support large numbers of client applications. The IBM Data Server Driver for JDBC

and SQLJ connection concentrator function lets many connection objects use the

same physical connection, which reduces the total number of physical connections

to the data source.

Workload balancing advantages for IBM Informix Dynamic Server: IBM Data

Server Driver for JDBC and SQLJ workload balancing can improve availability of a

high-availability cluster. When workload balancing is enabled, the driver gets

frequent status information about the servers in the cluster. The driver uses this

information to determine the server to which the next transaction should be

routed. With workload balancing, the Connection Manager ensures that work is

distributed efficiently among servers in the cluster and that work is transferred to

another server if one server has a failure.

The IBM Data Server Driver for JDBC and SQLJ uses transport objects and a global

transport objects pool to support the connection concentrator and workload

balancing. There is one transport object for each physical connection to the data

source. When you enable the connection concentrator and workload balancing, you

set the maximum number of physical connections to the data source at any point

in time by setting the maximum number of transport objects.

At the driver level, you set limits on the number of transport objects using IBM

Data Server Driver for JDBC and SQLJ configuration properties.

At the connection level, you can use DataSource properties to enable and disable

the IBM Data Server Driver for JDBC and SQLJ connection concentrator and

workload balancing and set limits on the number of transport objects. You can set

these properties when you obtain a connection using the DataSource interface or

the DriverManager interface.

Example of enabling IBM Data Server Driver for JDBC and

SQLJ workload balancing for IDS servers

Before you can use the IBM Data Server Driver for JDBC and SQLJ workload

balancing functions with WebSphere Application Server and IDS servers, you need

to configure these functions.

Server requirements:

v At least one Connection Manager configuration

Each Connection Manager configuration requires:

– IBM Informix Dynamic Server Version 11.50 or later

– IBM Informix Connect or the IBM Informix Client Software Development Kit

(Client SDK), Version 3.50 or later

– A primary server and one or more secondary servers of any type (HDR

secondary, SD secondary, or RS secondary)

126 Developing Java Applications

Client requirements:

v IBM Data Server Driver for JDBC and SQLJ version 3.52 or later

v WebSphere Application Server, Version 5.1 or later

The following procedure is an example of enabling the IBM Data Server Driver for

JDBC and SQLJ the workload balancing function with WebSphere Application

Server. The values that are specified are not intended to be recommended values.

You need to determine values based on factors like these:

v Availability of system resources

v The number of physical connections available

v The desired ratio of connection objects to transport objects
1. Verify that the IBM Data Server Driver for JDBC and SQLJ is at the correct level

to support workload balancing by following these steps:

a. Issue the following command in a command line window:

java com.ibm.db2.jcc.DB2Jcc -version

b. Find a line in the output like this, and check that nnn is 3.52 or later.

[jcc] Driver: IBM Data Server Driver for JDBC and SQLJ Architecture nnn xxx

2. Set IBM Data Server Driver for JDBC and SQLJ properties to enable workload

balancing. You can set the properties in the following ways.

v Set IBM Data Server Driver for JDBC and SQLJ configuration properties to

enable the same workload balancing behavior for all DataSource or

Connection instances that are created under the driver. To do that:

a. Create a DB2JccConfiguration.properties file or edit the existing

DB2JccConfiguration.properties file.

b. Set the following configuration properties:

– db2.jcc.minTransportObjects

– db2.jcc.maxTransportObjects

– db2.jcc.maxTransportObjectWaitTime

– db2.jcc.dumpPool

– db2.jcc.dumpPoolStatisticsOnSchedule

– db2.jcc.dumpPoolStatisticsOnScheduleFile

Start with settings similar to these:

db2.jcc.minTransportObjects=0

db2.jcc.maxTransportObjects=1500

db2.jcc.maxTransportObjectWaitTime=-1

db2.jcc.dumpPool=0

db2.jcc.dumpPoolStatisticsOnSchedule=60

db2.jcc.dumpPoolStatisticsOnScheduleFile=/home/WAS/logs/srv1/poolstats

c. Add the directory path for DB2JccConfiguration.properties to the

WebSphere Application Server IBM Data Server Driver for JDBC and

SQLJ classpath.
v If you do not want the same workload balancing behavior for all DataSource

or Connection instances, you can set the workload balancing properties on

individual Connection or DataSource instances.
3. Set IBM Data Server Driver for JDBC and SQLJ data source properties to enable

workload balancing:

In the WebSphere Application Server administrative console, set the following

properties for the DataSource that your application uses to connect to the data

source:

Chapter 3. JDBC application programming 127

Table 29. Example of data source property settings for IBM Data Server Driver for JDBC and

SQLJ connection concentrator and workload balancing for IBM Informix Dynamic Server

Property Setting

enableSysplexWLB true

maxTransportObjects 100

4. Restart WebSphere Application Server.

Disconnecting from data sources in JDBC applications

When you have finished with a connection to a data source, it is essential that you

close the connection to the data source. Doing this releases the Connection object’s

database and JDBC resources immediately.

To close the connection to the data source, use the close method. For example:

 Connection con;

 ...

con.close();

For a connection to a DB2 data source, if autocommit mode is not on, the

connection needs to be on a unit-of-work boundary before you close the

connection.

For a connection to an IBM Informix Dynamic Server database, if the database

supports logging, and autocommit mode is not on, the connection needs to be on a

unit-of-work boundary before you close the connection.

128 Developing Java Applications

Chapter 4. SQLJ application programming

Writing a SQLJ application has much in common with writing an SQL application

in any other language.

In general, you need to do the following things:

v Import the Java packages that contain SQLJ and JDBC methods.

v Declare variables for sending data to or retrieving data from DB2 tables.

v Connect to a data source.

v Execute SQL statements.

v Handle SQL errors and warnings.

v Disconnect from the data source.

Although the tasks that you need to perform are similar to those in other

languages, the way that you execute those tasks, and the order in which you

execute those tasks, is somewhat different.

Example of a simple SQLJ application

A simple SQLJ application demonstrates the basic elements that JDBC applications

need to include.

import sqlj.runtime.*; �1�

import java.sql.*;

#sql context EzSqljCtx; �3a�

#sql iterator EzSqljNameIter (String LASTNAME); �4a�

public class EzSqlj {

 public static void main(String args[])

 throws SQLException

 {

 EzSqljCtx ctx = null;

 String URLprefix = "jdbc:db2:";

 String url;

 url = new String(URLprefix + args[0]);

 // Location name is an input parameter

 String hvmgr="000010"; �2�

 String hvdeptno="A00";

 try { �3b�

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 } catch (Exception e)

 {

 throw new SQLException("Error in EzSqlj: Could not load the driver");

 }

 try

 {

 System.out.println("About to connect using url: " + url);

 Connection con0 = DriverManager.getConnection(url); �3c�

 // Create a JDBC Connection

 con0.setAutoCommit(false); // set autocommit OFF

 ctx = new EzSqljCtx(con0); �3d�

 try

 {

Figure 27. Simple SQLJ application

© Copyright IBM Corp. 2006, 2009 129

EzSqljNameIter iter;

 int count=0;

 #sql [ctx] iter =

 {SELECT LASTNAME FROM EMPLOYEE}; �4b�

 // Create result table of the SELECT

 while (iter.next()) { �4c�

 System.out.println(iter.LASTNAME());

 // Retrieve rows from result table

 count++;

 }

 System.out.println("Retrieved " + count + " rows of data");

 iter.close(); // Close the iterator

 }

 catch(SQLException e) �5�

 {

 System.out.println ("**** SELECT SQLException...");

 while(e!=null) {

 System.out.println ("Error msg: " + e.getMessage());

 System.out.println ("SQLSTATE: " + e.getSQLState());

 System.out.println ("Error code: " + e.getErrorCode());

 e = e.getNextException(); // Check for chained exceptions

 }

 }

 catch(Exception e)

 {

 System.out.println("**** NON-SQL exception = " + e);

 e.printStackTrace();

 }

 try

 {

 #sql [ctx] �4d�

 {UPDATE DEPARTMENT SET MGRNO=:hvmgr

 WHERE DEPTNO=:hvdeptno}; // Update data for one department

 �6�

 #sql [ctx] {COMMIT}; // Commit the update

 }

 catch(SQLException e)

 {

 System.out.println ("**** UPDATE SQLException...");

 System.out.println ("Error msg: " + e.getMessage() + ". SQLSTATE=" +

 e.getSQLState() + " Error code=" + e.getErrorCode());

 e.printStackTrace();

 }

 catch(Exception e)

 {

 System.out.println("**** NON-SQL exception = " + e);

 e.printStackTrace();

 }

 ctx.close(); �7�

 }

 catch(SQLException e)

 {

 System.out.println ("**** SQLException ...");

 System.out.println ("Error msg: " + e.getMessage() + ". SQLSTATE=" +

 e.getSQLState() + " Error code=" + e.getErrorCode());

 e.printStackTrace();

 }

 catch(Exception e)

 {

 System.out.println ("**** NON-SQL exception = " + e);

 e.printStackTrace();

 }

}

130 Developing Java Applications

Notes to Figure 27 on page 129:

 Note Description

1 These statements import the java.sql package, which contains the JDBC core

API, and the sqlj.runtime package, which contains the SQLJ API. For

information on other packages or classes that you might need to access, see

″Java packages for SQLJ support″.

2 String variables hvmgr and hvdeptno are host identifiers, which are equivalent

to DB2 host variables. See ″Variables in SQLJ applications″ for more

information.

3a, 3b, 3c,

and 3d

These statements demonstrate how to connect to a data source using one of the

three available techniques. See ″Connecting to a data source using SQLJ″ for

more details.

Step 3b (loading the JDBC driver) is not necessary if you use JDBC 4.0.

4a , 4b, 4c,

and 4d

These statements demonstrate how to execute SQL statements in SQLJ.

Statement 4a demonstrates the SQLJ equivalent of declaring an SQL cursor.

Statements 4b and 4c show one way of doing the SQLJ equivalent of executing

an SQL OPEN CURSOR and SQL FETCHes. Statement 4d shows how to do the

SQLJ equivalent of performing an SQL UPDATE. For more information, see

″SQL statements in an SQLJ application″.

5 This try/catch block demonstrates the use of the SQLException class for SQL

error handling. For more information on handling SQL errors, see ″Handling

SQL errors in an SQLJ application″. For more information on handling SQL

warnings, see ″Handling SQL warnings in an SQLJ application″.

6 This is an example of a comment. For rules on including comments in SQLJ

programs, see ″Comments in an SQLJ application″.

7 This statement closes the connection to the data source. See ″Closing the

connection to the data source in an SQLJ application″.

Connecting to a data source using SQLJ

In an SQLJ application, as in any other DB2 application, you must be connected to

a data source before you can execute SQL statements.

You can use one of six techniques to connect to a data source in an SQLJ program.

Two use the JDBC DriverManager interface, two use the JDBC DataSource

interface, one uses a previously created connection context, and one uses the

default connection.

SQLJ connection technique 1: JDBC DriverManager interface

SQLJ connection technique 1 uses the JDBC DriverManager interface as the

underlying means for creating the connection.

To use SQLJ connection technique 1, follow these steps:

1. Execute an SQLJ connection declaration clause.

Doing this generates a connection context class. The simplest form of the

connection declaration clause is:

#sql context context-class-name;

The name of the generated connection context class is context-class-name.

2. Load a JDBC driver by invoking the Class.forName method.

v For the IBM Data Server Driver for JDBC and SQLJ, invoke Class.forName

this way:

Class.forName("com.ibm.db2.jcc.DB2Driver");

Chapter 4. SQLJ application programming 131

This step is unnecessary if you use the JDBC 4.0 driver.

v For the DB2 JDBC Type 2 Driver for Linux, UNIX, and Windows, which is

deprecated, invoke Class.forName this way:

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");

3. Invoke the constructor for the connection context class that you created in step

1 on page 131.

Doing this creates a connection context object that you specify in each SQL

statement that you execute at the associated data source. The constructor

invocation statement needs to be in one of the following forms:

connection-context-class connection-context-object=

 new connection-context-class(String url, boolean autocommit);

connection-context-class connection-context-object=

 new connection-context-class(String url, String user,

 String password, boolean autocommit);

connection-context-class connection-context-object=

 new connection-context-class(String url, Properties info,

 boolean autocommit);

The meanings of the parameters are:

url A string that specifies the location name that is associated with the data

source. That argument has one of the forms that are specified in ″Connect

to a data source using the DriverManager interface with the IBM Data

Server Driver for JDBC and SQLJ″. The form depends on which JDBC

driver you are using.

user and password

Specify a user ID and password for connection to the data source, if the

data source to which you are connecting requires them.

info

Specifies an object of type java.util.Properties that contains a set of driver

properties for the connection. For the DB2 JDBC Type 2 Driver for Linux,

UNIX and Windows (DB2 JDBC Type 2 Driver), you should specify only

the user and password properties. For the IBM Data Server Driver for JDBC

and SQLJ, you can specify any of the properties listed in ″Properties for the

IBM Data Server Driver for JDBC and SQLJ″.

autocommit

Specifies whether you want the database manager to issue a COMMIT after

every statement. Possible values are true or false. If you specify false,

you need to do explicit commit operations.

The following code uses connection technique 1 to create a connection to location

NEWYORK. The connection requires a user ID and password, and does not require

autocommit. The numbers to the right of selected statements correspond to the

previously-described steps.

132 Developing Java Applications

SQLJ connection technique 2: JDBC DriverManager interface

SQLJ connection technique 2 uses the JDBC DriverManager interface as the

underlying means for creating the connection.

To use SQLJ connection technique 2, follow these steps:

1. Execute an SQLJ connection declaration clause.

Doing this generates a connection context class. The simplest form of the

connection declaration clause is:

#sql context context-class-name;

The name of the generated connection context class is context-class-name.

2. Load a JDBC driver by invoking the Class.forName method.

v For the IBM Data Server Driver for JDBC and SQLJ, invoke Class.forName

this way:

Class.forName("com.ibm.db2.jcc.DB2Driver");

This step is unnecessary if you use the JDBC 4.0 driver.

v For the DB2 JDBC Type 2 Driver for Linux, UNIX, and Windows, which is

deprecated, invoke Class.forName this way:

Class.forName("COM.ibm.db2.jdbc.app.DB2Driver");

3. Invoke the JDBC DriverManager.getConnection method.

Doing this creates a JDBC connection object for the connection to the data

source. You can use any of the forms of getConnection that are specified in

″Connect to a data source using the DriverManager interface with the IBM Data

Server Driver for JDBC and SQLJ″.

The meanings of the url, user, and password parameters are:

url A string that specifies the location name that is associated with the data

source. That argument has one of the forms that are specified in ″Connect

to a data source using the DriverManager interface with the IBM Data

Server Driver for JDBC and SQLJ″. The form depends on which JDBC

driver you are using.

#sql context Ctx; // Create connection context class Ctx �1�

String userid="dbadm"; // Declare variables for user ID and password

String password="dbadm";

String empname; // Declare a host variable

...

try { // Load the JDBC driver

 Class.forName("com.ibm.db2.jcc.DB2Driver"); �2�

}

catch (ClassNotFoundException e) {

 e.printStackTrace();

}

Ctx myConnCtx= �3�

 new Ctx("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",

 userid,password,false); // Create connection context object myConnCtx

 // for the connection to NEWYORK

#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

 WHERE EMPNO=’000010’};

 // Use myConnCtx for executing an SQL statement

Figure 28. Using connection technique 1 to connect to a data source

Chapter 4. SQLJ application programming 133

user and password

Specify a user ID and password for connection to the data source, if the

data source to which you are connecting requires them.
4. Invoke the constructor for the connection context class that you created in step

1 on page 133

Doing this creates a connection context object that you specify in each SQL

statement that you execute at the associated data source. The constructor

invocation statement needs to be in the following form:

connection-context-class connection-context-object=

 new connection-context-class(Connection JDBC-connection-object);

The JDBC-connection-object parameter is the Connection object that you created

in step 3 on page 133.

The following code uses connection technique 2 to create a connection to location

NEWYORK. The connection requires a user ID and password, and does not require

autocommit. The numbers to the right of selected statements correspond to the

previously-described steps.

SQLJ connection technique 3: JDBC DataSource interface

SQLJ connection technique 3 uses the JDBC DataSource as the underlying means

for creating the connection.

To use SQLJ connection technique 3, follow these steps:

1. Execute an SQLJ connection declaration clause.

Doing this generates a connection context class. The simplest form of the

connection declaration clause is:

#sql context context-class-name;

The name of the generated connection context class is context-class-name.

2. If your system administrator created a DataSource object in a different

program, follow these steps. Otherwise, create a DataSource object and assign

properties to it.

a. Obtain the logical name of the data source to which you need to connect.

#sql context Ctx; // Create connection context class Ctx �1�

String userid="dbadm"; // Declare variables for user ID and password

String password="dbadm";

String empname; // Declare a host variable

...

try { // Load the JDBC driver

 Class.forName("com.ibm.db2.jcc.DB2Driver"); �2�

}

catch (ClassNotFoundException e) {

 e.printStackTrace();

}

Connection jdbccon= �3�

 DriverManager.getConnection("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",

 userid,password);

 // Create JDBC connection object jdbccon

jdbccon.setAutoCommit(false); // Do not autocommit

Ctx myConnCtx=new Ctx(jdbccon); �4�

 // Create connection context object myConnCtx

 // for the connection to NEWYORK

#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

 WHERE EMPNO=’000010’};

 // Use myConnCtx for executing an SQL statement

Figure 29. Using connection technique 2 to connect to a data source

134 Developing Java Applications

b. Create a context to use in the next step.

c. In your application program, use the Java Naming and Directory Interface

(JNDI) to get the DataSource object that is associated with the logical data

source name.
3. Invoke the JDBC DataSource.getConnection method.

Doing this creates a JDBC connection object for the connection to the data

source. You can use one of the following forms of getConnection:

getConnection();

getConnection(user, password);

The meanings of the user and password parameters are:

user and password

Specify a user ID and password for connection to the data source, if the

data source to which you are connecting requires them.
4. If the default autocommit mode is not appropriate, invoke the JDBC

Connection.setAutoCommit method.

Doing this indicates whether you want the database manager to issue a

COMMIT after every statement. The form of this method is:

setAutoCommit(boolean autocommit);

5. Invoke the constructor for the connection context class that you created in step

1 on page 134.

Doing this creates a connection context object that you specify in each SQL

statement that you execute at the associated data source. The constructor

invocation statement needs to be in the following form:

connection-context-class connection-context-object=

 new connection-context-class(Connection JDBC-connection-object);

The JDBC-connection-object parameter is the Connection object that you created

in step 3.

The following code uses connection technique 3 to create a connection to a location

with logical name jdbc/sampledb. This example assumes that the system

administrator created and deployed a DataSource object that is available through

JNDI lookup. The numbers to the right of selected statements correspond to the

previously-described steps.

import java.sql.*;

import javax.naming.*;

import javax.sql.*;

...

#sql context CtxSqlj; // Create connection context class CtxSqlj �1�

Context ctx=new InitialContext(); �2b�

DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb"); �2c�

Connection con=ds.getConnection(); �3�

String empname; // Declare a host variable

...

con.setAutoCommit(false); // Do not autocommit �4�

CtxSqlj myConnCtx=new CtxSqlj(con); �5�

 // Create connection context object myConnCtx

#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

 WHERE EMPNO=’000010’};

 // Use myConnCtx for executing an SQL statement

Figure 30. Using connection technique 3 to connect to a data source

Chapter 4. SQLJ application programming 135

SQLJ connection technique 4: JDBC DataSource interface

SQLJ connection technique 4 uses the JDBC DataSource as the underlying means

for creating the connection. This technique requires that the DataSource is

registered with JNDI.

To use SQLJ connection technique 4, follow these steps:

1. From your system administrator, obtain the logical name of the data source to

which you need to connect.

2. Execute an SQLJ connection declaration clause.

For this type of connection, the connection declaration clause needs to be of

this form:

#sql public static context context-class-name

 with (dataSource="logical-name");

The connection context must be declared as public and static. logical-name is the

data source name that you obtained in step 1.

3. Invoke the constructor for the connection context class that you created in step

2.

Doing this creates a connection context object that you specify in each SQL

statement that you execute at the associated data source. The constructor

invocation statement needs to be in one of the following forms:

connection-context-class connection-context-object=

 new connection-context-class();

connection-context-class connection-context-object=

 new connection-context-class (String user,

 String password);

The meanings of the user and password parameters are:

user and password

Specify a user ID and password for connection to the data source, if the

data source to which you are connecting requires them.

The following code uses connection technique 4 to create a connection to a location

with logical name jdbc/sampledb. The connection requires a user ID and password.

SQLJ connection technique 5: Use a previously created

connection context

SQLJ connection technique 5 uses a previously created connection context to

connect to the data source.

#sql public static context Ctx

 with (dataSource="jdbc/sampledb"); �2�

 // Create connection context class Ctx

String userid="dbadm"; // Declare variables for user ID and password

String password="dbadm";

String empname; // Declare a host variable

...

Ctx myConnCtx=new Ctx(userid, password); �3�

 // Create connection context object myConnCtx

 // for the connection to jdbc/sampledb

#sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

 WHERE EMPNO=’000010’};

 // Use myConnCtx for executing an SQL statement

Figure 31. Using connection technique 4 to connect to a data source

136 Developing Java Applications

In general, one program declares a connection context class, creates connection

contexts, and passes them as parameters to other programs. A program that uses

the connection context invokes a constructor with the passed connection context

object as its argument.

Program CtxGen.sqlj declares connection context Ctx and creates instance oldCtx:

#sql context Ctx;

...

// Create connection context object oldCtx

Program test.sqlj receives oldCtx as a parameter and uses oldCtx as the argument

of its connection context constructor:

void useContext(sqlj.runtime.ConnectionContext oldCtx)

 // oldCtx was created in CtxGen.sqlj

{

 Ctx myConnCtx=

 new Ctx(oldCtx); // Create connection context object myConnCtx

 // from oldCtx

 #sql [myConnCtx] {SELECT LASTNAME INTO :empname FROM EMPLOYEE

 WHERE EMPNO=’000010’};

 // Use myConnCtx for executing an SQL statement

...

}

SQLJ connection technique 6: Use the default connection

SQLJ connection technique 6 uses the default connection to connect to the data

source. It should be used only in situations where the database thread is controlled

by another resource manager, such as the Java stored procedure environment.

You use the default connection by specifying your SQL statements without a

connection context object. When you use this technique, you do not need to load a

JDBC driver unless you explicitly use JDBC interfaces in your program.

The default connection context can be:

v The connection context that is associated with the data source that is bound to

the logical name jdbc/defaultDataSource

v An explicitly created connection context that has been set as the default

connection context with the ConnectionContext.setDefaultContext method. This

method of creating a default connection context is not recommended.

The following SQLJ execution clause does not have a connection context, so it uses

the default connection context.

#sql {SELECT LASTNAME INTO :empname FROM EMPLOYEE

 WHERE EMPNO=’000010’}; // Use default connection for

 // executing an SQL statement

Java packages for SQLJ support

Before you can execute SQLJ statements or invoke JDBC methods in your SQLJ

program, you need to be able to access all or parts of various Java packages that

contain support for those statements.

You can do that either by importing the packages or specific classes, or by using

fully-qualified class names. You might need the following packages or classes for

your SQLJ program:

Chapter 4. SQLJ application programming 137

sqlj.runtime

Contains the SQLJ run-time API.

java.sql

Contains the core JDBC API.

com.ibm.db2.jcc

Contains the driver-specific implementation of JDBC and SQLJ.

javax.naming

Contains methods for performing Java Naming and Directory Interface

(JNDI) lookup.

javax.sql

Contains methods for creating DataSource objects.

Variables in SQLJ applications

In DB2 programs in other languages, you use host variables to pass data between

the application program and DB2. In SQLJ programs, In SQLJ programs, you can

use host variables or host expressions.

A host expression begins with a colon (:). The colon is followed by an optional

parameter mode identifier (IN, OUT, or INOUT), which is followed by a

parenthesized expression clause.

Host variables and host expressions are case sensitive.

A complex expression is an array element or Java expression that evaluates to a

single value. A complex expression in an SQLJ clause must be surrounded by

parentheses.

The following examples demonstrate how to use host expressions.

Example: Declaring a Java identifier and using it in a SELECT statement:

In this example, the statement that begins with #sql has the same function as a

SELECT statement in other languages. This statement assigns the last name of the

employee with employee number 000010 to Java identifier empname.

String empname;

...

#sql [ctxt]

 {SELECT LASTNAME INTO :empname FROM EMPLOYEE WHERE EMPNO=’000010’};

Example: Declaring a Java identifier and using it in a stored procedure call:

In this example, the statement that begins with #sql has the same function as an

SQL CALL statement in other languages. This statement uses Java identifier empno

as an input parameter to stored procedure A. The keyword IN, which precedes

empno, specifies that empno is an input parameter. For a parameter in a CALL

statement, IN is the default. The explicit or default qualifier that indicates how the

parameter is used (IN, OUT, or INOUT) must match the corresponding value in

the parameter definition that you specified in the CREATE PROCEDURE statement

for the stored procedure.

String empno = "0000010";

...

#sql [ctxt] {CALL A (:IN empno)};

138 Developing Java Applications

Example: Using a complex expression as a host identifier:

This example uses complex expression (((int)yearsEmployed++/5)*500) as a host

expression.

#sql [ctxt] {UPDATE EMPLOYEE

 SET BONUS=:(((int)yearsEmployed++/5)*500) WHERE EMPNO=:empID};

SQLJ performs the following actions when it processes a complex host expression:

v Evaluates each of the host expressions in the statement, from left to right, before

assigning their respective values to the database.

v Evaluates side effects, such as operations with postfix operators, according to

normal Java rules. All host expressions are fully evaluated before any of their

values are passed to DB2.

v Uses Java rules for rounding and truncation.

Therefore, if the value of yearsEmployed is 6 before the UPDATE statement is

executed, the value that is assigned to column BONUS by the UPDATE statement

is ((int)6/5)*500, or 500. After 500 is assigned to BONUS, the value of

yearsEmployed is incremented.

Restrictions on variable names: Two strings have special meanings in SQLJ

programs. Observe the following restrictions when you use these strings in your

SQLJ programs:

v The string __sJT_ is a reserved prefix for variable names that are generated by

SQLJ. Do not begin the following types of names with __sJT_:

– Host expression names

– Java variable names that are declared in blocks that include executable SQL

statements

– Names of parameters for methods that contain executable SQL statements

– Names of fields in classes that contain executable SQL statements, or in

classes with subclasses or enclosed classes that contain executable SQL

statements
v The string _SJ is a reserved suffix for resource files and classes that are

generated by SQLJ. Avoid using the string _SJ in class names and input source

file names.

Comments in an SQLJ application

To document your SQLJ program, you need to include comments. To do that, use

Java comments. Java comments are denoted by /* */ or //.

You can include Java comments outside SQLJ clauses, wherever the Java language

permits them. Within an SQLJ clause, you can use Java comments in the following

places:

v Within a host expression (/* */ or //).

v Within an SQL statement in an executable clause, if the data source supports a

comment within the SQL statement (/* */ or --).

/* and */ pairs in an SQL statement can be nested.

Chapter 4. SQLJ application programming 139

SQL statement execution in SQLJ applications

You execute SQL statements in a traditional SQL program to create tables, update

data in tables, retrieve data from the tables, call stored procedures, or commit or

roll back transactions. In an SQLJ program, you also execute these statements,

within SQLJ executable clauses.

An executable clause can have one of the following general forms:

#sql [connection-context] {sql-statement};

#sql [connection-context,execution-context] {sql-statement};

#sql [execution-context] {sql-statement};

execution-context specification

In an executable clause, you should always specify an explicit connection

context, with one exception: you do not specify an explicit connection context

for a FETCH statement. You include an execution context only for specific

cases. See ″Control the execution of SQL statements in SQLJ″ for information

about when you need an execution context.

connection-context specification

In an executable clause, if you do not explicitly specify a connection context,

the executable clause uses the default connection context.

Creating and modifying DB2 objects in an SQLJ application

Use SQLJ executable clauses to execute data definition statements (CREATE,

ALTER, DROP, GRANT, REVOKE) or to execute INSERT, searched or positioned

UPDATE, and searched or positioned DELETE statements.

The following executable statements demonstrate an INSERT, a searched UPDATE,

and a searched DELETE:

#sql [myConnCtx] {INSERT INTO DEPARTMENT VALUES

 ("X00","Operations 2","000030","E01",NULL)};

#sql [myConnCtx] {UPDATE DEPARTMENT

 SET MGRNO="000090" WHERE MGRNO="000030"};

#sql [myConnCtx] {DELETE FROM DEPARTMENT

 WHERE DEPTNO="X00"};

Performing positioned UPDATE and DELETE operations in an

SQLJ application

As in DB2 applications in other languages, performing positioned UPDATEs and

DELETEs with SQLJ is an extension of retrieving rows from a result table.

The basic steps are:

1. Declare the iterator.

The iterator can be positioned or named. For positioned UPDATE or DELETE

operations, declare the iterator as updatable, using one or both of the following

clauses:

implements sqlj.runtime.ForUpdate

This clause causes the generated iterator class to include methods for

using updatable iterators. This clause is required for programs with

positioned UPDATE or DELETE operations.

with (updateColumns=″column-list″)

This clause specifies a comma-separated list of the columns of the result

table that the iterator will update. This clause is optional.

140 Developing Java Applications

You need to declare the iterator as public, so you need to follow the rules for

declaring and using public iterators in the same file or different files.

If you declare the iterator in a file by itself, any SQLJ source file that has

addressability to the iterator and imports the generated class can retrieve data

and execute positioned UPDATE or DELETE statements using the iterator.

The authorization ID under which a positioned UPDATE or DELETE statement

executes depends on whether the statement executes statically or dynamically.

If the statement executes statically, the authorization ID is the owner of the plan

or package that includes the statement. If the statement executes dynamically

the authorization ID is determined by the DYNAMICRULES behavior that is in

effect. For the IBM Data Server Driver for JDBC and SQLJ, the behavior is

always DYNAMICRULES BIND.

2. Disable autocommit mode for the connection.

If autocommit mode is enabled, a COMMIT operation occurs every time the

positioned UPDATE statement executes, which causes the iterator to be

destroyed unless the iterator has the with (holdability=true) attribute.

Therefore, you need to turn autocommit off to prevent COMMIT operations

until you have finished using the iterator. If you want a COMMIT to occur

after every update operation, an alternative way to keep the iterator from being

destroyed after each COMMIT operation is to declare the iterator with

(holdability=true).

3. Create an instance of the iterator class.

This is the same step as for a non-updatable iterator.

4. Assign the result table of a SELECT to an instance of the iterator.

This is the same step as for a non-updatable iterator. The SELECT statement

must not include a FOR UPDATE clause.

5. Retrieve and update rows.

For a positioned iterator, do this by performing the following actions in a loop:

a. Execute a FETCH statement in an executable clause to obtain the current

row.

b. Test whether the iterator is pointing to a row of the result table by invoking

the PositionedIterator.endFetch method.

c. If the iterator is pointing to a row of the result table, execute an SQL

UPDATE... WHERE CURRENT OF :iterator-object statement in an executable

clause to update the columns in the current row. Execute an SQL DELETE...

WHERE CURRENT OF :iterator-object statement in an executable clause to

delete the current row.
For a named iterator, do this by performing the following actions in a loop:

a. Invoke the next method to move the iterator forward.

b. Test whether the iterator is pointing to a row of the result table by checking

whether next returns true.

c. Execute an SQL UPDATE... WHERE CURRENT OF iterator-object statement

in an executable clause to update the columns in the current row. Execute

an SQL DELETE... WHERE CURRENT OF iterator-object statement in an

executable clause to delete the current row.
6. Close the iterator.

Use the close method to do this.

The following code shows how to declare a positioned iterator and use it for

positioned UPDATEs. The numbers to the right of selected statements correspond

to the previously described steps.

Chapter 4. SQLJ application programming 141

First, in one file, declare positioned iterator UpdByPos, specifying that you want to

use the iterator to update column SALARY:

 Then, in another file, use UpdByPos for a positioned UPDATE, as shown in the

following code fragment:

The following code shows how to declare a named iterator and use it for

positioned UPDATEs. The numbers to the right of selected statements correspond

to the previously described steps.

import java.math.*; // Import this class for BigDecimal data type

#sql public iterator UpdByPos implements sqlj.runtime.ForUpdate �1�

 with(updateColumns="SALARY") (String, BigDecimal);

Figure 32. Example of declaring a positioned iterator for a positioned UPDATE

import sqlj.runtime.*; // Import files for SQLJ and JDBC APIs

import java.sql.*;

import java.math.*; // Import this class for BigDecimal data type

import UpdByPos; // Import the generated iterator class that

 // was created by the iterator declaration clause

 // for UpdByName in another file

#sql context HSCtx; // Create a connnection context class HSCtx

public static void main (String args[])

{

 try {

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 }

 catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 Connection HSjdbccon=

 DriverManager.getConnection("jdbc:db2:SANJOSE");

 // Create a JDBC connection object

 HSjdbccon.setAutoCommit(false);

 // Set autocommit off so automatic commits �2�

 // do not destroy the cursor between updates

 HSCtx myConnCtx=new HSCtx(HSjdbccon);

 // Create a connection context object

 UpdByPos upditer; // Declare iterator object of UpdByPos class �3�

 String empnum; // Declares host variable to receive EMPNO

 BigDecimal sal; // and SALARY column values

 #sql [myConnCtx]

 upditer = {SELECT EMPNO, SALARY FROM EMPLOYEE �4�

 WHERE WORKDEPT=’D11’};

 // Assign result table to iterator object

 #sql {FETCH :upditer INTO :empnum,:sal}; �5a�

 // Move cursor to next row

 while (!upditer.endFetch()) �5b�

 // Check if on a row

 {

 #sql [myConnCtx] {UPDATE EMPLOYEE SET SALARY=SALARY*1.05

 WHERE CURRENT OF :upditer}; �5c�

 // Perform positioned update

 System.out.println("Updating row for " + empnum);

 #sql {FETCH :upditer INTO :empnum,:sal};

 // Move cursor to next row

 }

 upditer.close(); // Close the iterator �6�

 #sql [myConnCtx] {COMMIT};

 // Commit the changes

 myConnCtx.close(); // Close the connection context

}

Figure 33. Example of performing a positioned UPDATE with a positioned iterator

142 Developing Java Applications

First, in one file, declare named iterator UpdByName, specifying that you want to use

the iterator to update column SALARY:

 Then, in another file, use UpdByName for a positioned UPDATE, as shown in the

following code fragment:

Iterators as passed variables for positioned UPDATE or DELETE

operations in an SQLJ application

SQLJ allows iterators to be passed between methods as variables.

import java.math.*; // Import this class for BigDecimal data type

#sql public iterator UpdByName implements sqlj.runtime.ForUpdate �1�

 with(updateColumns="SALARY") (String EmpNo, BigDecimal Salary);

Figure 34. Example of declaring a named iterator for a positioned UPDATE

import sqlj.runtime.*; // Import files for SQLJ and JDBC APIs

import java.sql.*;

import java.math.*; // Import this class for BigDecimal data type

import UpdByName; // Import the generated iterator class that

 // was created by the iterator declaration clause

 // for UpdByName in another file

#sql context HSCtx; // Create a connnection context class HSCtx

public static void main (String args[])

{

 try {

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 }

 catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 Connection HSjdbccon=

 DriverManager.getConnection("jdbc:db2:SANJOSE");

 // Create a JDBC connection object

 HSjdbccon.setAutoCommit(false);

 // Set autocommit off so automatic commits �2�

 // do not destroy the cursor between updates

 HSCtx myConnCtx=new HSCtx(HSjdbccon);

 // Create a connection context object

 UpdByName upditer; �3�

 // Declare iterator object of UpdByName class

 String empnum; // Declare host variable to receive EmpNo

 // column values

 #sql [myConnCtx]

 upditer = {SELECT EMPNO, SALARY FROM EMPLOYEE �4�

 WHERE WORKDEPT=’D11’};

 // Assign result table to iterator object

 while (upditer.next()) �5a,5b�

 // Move cursor to next row and

 // check ifon a row

 {

 empnum = upditer.EmpNo(); // Get employee number from current row

 #sql [myConnCtx]

 {UPDATE EMPLOYEE SET SALARY=SALARY*1.05

 WHERE CURRENT OF :upditer}; �5c�

 // Perform positioned update

 System.out.println("Updating row for " + empnum);

 }

 upditer.close(); // Close the iterator �6�

 #sql [myConnCtx] {COMMIT};

 // Commit the changes

 myConnCtx.close(); // Close the connection context

}

Figure 35. Example of performing a positioned UPDATE with a named iterator

Chapter 4. SQLJ application programming 143

An iterator that is used for a positioned UPDATE or DELETE statement can be

identified only at runtime. The same SQLJ positioned UPDATE or DELETE

statement can be used with different iterators at runtime. If you specify a value of

YES for -staticpositioned when you customize your SQLJ application as part of the

program preparation process, the SQLJ customizer prepares positioned UPDATE or

DELETE statements to execute statically. In this case, the customizer must

determine which iterators belong with which positioned UPDATE or DELETE

statements. The SQLJ customizer does this by matching iterator data types to data

types in the UPDATE or DELETE statements. However, if there is not a unique

mapping of tables in UPDATE or DELETE statements to iterator classes, the SQLJ

customizer cannot determine exactly which iterators and UPDATE or DELETE

statements go together. The SQLJ customizer must arbitrarily pair iterators with

UPDATE or DELETE statements, which can sometimes result in SQL errors. The

following code fragments illustrate this point.

In this example, only one iterator is declared. Two instances of that iterator are

declared, and each is associated with a different SELECT statement that retrieves

data from a different table. During customization and binding with

-staticpositioned YES, SQLJ creates two DECLARE CURSOR statements, one for

each SELECT statement, and attempts to bind an UPDATE statement for each

cursor. However, the bind process fails with SQLCODE -509 when UPDATE TABLE1

... WHERE CURRENT OF :iter is bound for the cursor for SELECT CHAR_COL2 FROM

TABLE2 because the table for the UPDATE does not match the table for the cursor.

You can avoid a bind time error for a program like the one in Figure 36 by

specifying the bind option SQLERROR(CONTINUE). However, this technique has

the drawback that it causes the DB2 database manager to build a package,

regardless of the SQL errors that are in the program. A better technique is to write

the program so that there is a one-to-one mapping between tables in positioned

UPDATE or DELETE statements and iterator classes. Figure 37 on page 145 shows

an example of how to do this.

#sql iterator GeneralIter implements sqlj.runtime.ForUpdate

 (String);

 public static void main (String args[])

 {

...

 GeneralIter iter1 = null;

 #sql [ctxt] iter1 = { SELECT CHAR_COL1 FROM TABLE1 };

 GeneralIter iter2 = null;

 #sql [ctxt] iter2 = { SELECT CHAR_COL2 FROM TABLE2 };

...

 doUpdate (iter1);

 }

 public static void doUpdate (GeneralIter iter)

 {

 #sql [ctxt] { UPDATE TABLE1 ... WHERE CURRENT OF :iter };

 }

Figure 36. Static positioned UPDATE that fails

144 Developing Java Applications

With this method of coding, each iterator class is associated with only one table.

Therefore, the DB2 bind process can always associate the positioned UPDATE

statement with a valid iterator.

Making batch updates in SQLJ applications

The IBM Data Server Driver for JDBC and SQLJ supports batch updates in SQLJ.

With batch updates, instead of updating rows of a table one at a time, you can

direct SQLJ to execute a group of updates at the same time.

You can include the following types of statements in a batch update:

v Searched INSERT, UPDATE, or DELETE, or MERGE statements

v CREATE, ALTER, DROP, GRANT, or REVOKE statements

v CALL statements with input parameters only

Unlike JDBC, SQLJ allows heterogeneous batches that contain statements with

input parameters or host expressions. You can therefore combine any of the

following items in an SQLJ batch:

v Instances of the same statement

v Different statements

v Statements with different numbers of input parameters or host expressions

v Statements with different data types for input parameters or host expressions

v Statements with no input parameters or host expressions

When an error occurs during execution of a statement in a batch, the remaining

statements are executed, and a BatchUpdateException is thrown after all the

statements in the batch have executed.

#sql iterator Table2Iter(String);

#sql iterator Table1Iter(String);

 public static void main (String args[])

 {

...

 Table2Iter iter2 = null;

 #sql [ctxt] iter2 = { SELECT CHAR_COL2 FROM TABLE2 };

 Table1Iter iter1 = null;

 #sql [ctxt] iter1 = { SELECT CHAR_COL1 FROM TABLE1 };

...

 doUpdate(iter1);

 }

 public static void doUpdate (Table1Iter iter)

 {

 ...

 #sql [ctxt] { UPDATE TABLE1 ... WHERE CURRENT OF :iter };

 ...

 }

 public static void doUpdate (Table2Iter iter)

 {

 ...

 #sql [ctxt] { UPDATE TABLE2 ... WHERE CURRENT OF :iter };

 ...

 }

Figure 37. Static positioned UPDATE that succeeds

Chapter 4. SQLJ application programming 145

To obtain information about warnings, use the ExecutionContext.getWarnings

method on the ExecutionContext that you used to submit statements to be batched.

You can then retrieve an error description, SQLSTATE, and error code for each

SQLWarning object.

When a batch is executed implicitly because the program contains a statement that

cannot be added to the batch, the batch is executed before the new statement is

processed. If an error occurs during execution of the batch, the statement that

caused the batch to execute does not execute.

The basic steps for creating, executing, and deleting a batch of statements are:

1. Disable AutoCommit for the connection.

Do this so that you can control whether to commit changes to already-executed

statements when an error occurs during batch execution.

2. Acquire an execution context.

All statements that execute in a batch must use this execution context.

3. Invoke the ExecutionContext.setBatching(true) method to create a batch.

Subsequent batchable statements that are associated with the execution context

that you created in step 2 are added to the batch for later execution.

If you want to batch sets of statements that are not batch compatible in parallel,

you need to create an execution context for each set of batch compatible

statements.

4. Include SQLJ executable clauses for SQL statements that you want to batch.

These clauses must include the execution context that you created in step 2.

If an SQLJ executable clause has input parameters or host expressions, you can

include the statement in the batch multiple times with different values for the

input parameters or host expressions.

To determine whether a statement was added to an existing batch, was the first

statement in a new batch, or was executed inside or outside a batch, invoke the

ExecutionContext.getUpdateCount method. This method returns one of the

following values:

ExecutionContext.ADD_BATCH_COUNT

This is a constant that is returned if the statement was added to an existing

batch.

ExecutionContext.NEW_BATCH_COUNT

This is a constant that is returned if the statement was the first statement in

a new batch.

ExecutionContext.EXEC_BATCH_COUNT

This is a constant that is returned if the statement was part of a batch, and

the batch was executed.

Other integer

This value is the number of rows that were updated by the statement. This

value is returned if the statement was executed rather than added to a

batch.
5. Execute the batch explicitly or implicitly.

v Invoke the ExecutionContext.executeBatch method to execute the batch

explicitly.

146 Developing Java Applications

executeBatch returns an integer array that contains the number of rows that

were updated by each statement in the batch. The order of the elements in

the array corresponds to the order in which you added statements to the

batch.

v Alternatively, a batch executes implicitly under the following circumstances:

– You include a batchable statement in your program that is not compatible

with statements that are already in the batch. In this case, SQLJ executes

the statements that are already in the batch and creates a new batch that

includes the incompatible statement.

– You include a statement in your program that is not batchable. In this

case, SQLJ executes the statements that are already in the batch. SQLJ also

executes the statement that is not batchable.

– After you invoke the ExecutionContext.setBatchLimit(n) method, you

add a statement to the batch that brings the number of statements in the

batch to n or greater. n can have one of the following values:

ExecutionContext.UNLIMITED_BATCH

This constant indicates that implicit execution occurs only when SQLJ

encounters a statement that is batchable but incompatible, or not

batchable. Setting this value is the same as not invoking setBatchLimit.

ExecutionContext.AUTO_BATCH

This constant indicates that implicit execution occurs when the

number of statements in the batch reaches a number that is set by

SQLJ.

Positive integer

When this number of statements have been added to the batch, SQLJ

executes the batch implicitly. However, the batch might be executed

before this many statements have been added if SQLJ encounters a

statement that is batchable but incompatible, or not batchable.
To determine the number of rows that were updated by a batch that was

executed implicitly, invoke the ExecutionContext.getBatchUpdateCounts

method. getBatchUpdateCounts returns an integer array that contains the

number of rows that were updated by each statement in the batch. The order

of the elements in the array corresponds to the order in which you added

statements to the batch. Each array element can be one of the following

values:

-2 This value indicates that the SQL statement executed successfully, but the

number of rows that were updated could not be determined.

-3 This value indicates that the SQL statement failed.

Other integer

This value is the number of rows that were updated by the statement.
6. Optionally, when all statements have been added to the batch, disable batching.

Do this by invoking the ExecutionContext.setBatching(false) method. When you

disable batching, you can still execute the batch implicitly or explicitly, but no

more statements are added to the batch. Disabling batching is useful when a

batch already exists, and you want to execute a batch compatible statement,

rather than adding it to the batch.

If you want to clear a batch without executing it, invoke the

ExecutionContext.cancel method.

7. If batch execution was implicit, perform a final, explicit executeBatch to ensure

that all statements have been executed.

Chapter 4. SQLJ application programming 147

In the following code fragment, raises are given to all managers by performing

UPDATEs in a batch. The numbers to the right of selected statements correspond

to the previously-described steps.

Data retrieval in SQLJ applications

SQLJ applications use a result set iterator to retrieve result sets. Like a cursor, a

result set iterator can be non-scrollable or scrollable.

Just as in DB2 applications in other languages, if you want to retrieve a single row

from a table in an SQLJ application, you can write a SELECT INTO statement with

a WHERE clause that defines a result table that contains only that row:

#sql [myConnCtx] {SELECT DEPTNO INTO :hvdeptno

 FROM DEPARTMENT WHERE DEPTNAME="OPERATIONS"};

However, most SELECT statements that you use create result tables that contain

many rows. In DB2 applications in other languages, you use a cursor to select the

individual rows from the result table. That cursor can be non-scrollable, which

means that when you use it to fetch rows, you move the cursor serially, from the

beginning of the result table to the end. Alternatively, the cursor can be scrollable,

which means that when you use it to fetch rows, you can move the cursor

forward, backward, or to any row in the result table.

This topic discusses how to use non-scrollable iterators. For information on using

scrollable iterators, see ″Use scrollable iterators in an SQLJ application″.

#sql iterator GetMgr(String); // Declare positioned iterator

...

{

 GetMgr deptiter; // Declare object of GetMgr class

 String mgrnum = null; // Declare host variable for manager number

 int raise = 400; // Declare raise amount

 int currentSalary; // Declare current salary

 String url, username, password; // Declare url, user ID, password

 ...

 TestContext c1 = new TestContext (url, username, password, false); �1�

 ExecutionContext ec = new ExecutionContext(); �2�

 ec.setBatching(true); �3�

 #sql [c1] deptiter =

 {SELECT MGRNO FROM DEPARTMENT};

 // Assign the result table of the SELECT

 // to iterator object deptiter

 #sql {FETCH :deptiter INTO :mgrnum};

 // Retrieve the first manager number

 while (!deptiter.endFetch()) { // Check whether the FETCH returned a row

 #sql [c1]

 {SELECT SALARY INTO :currentSalary FROM EMPLOYEE

 WHERE EMPNO=:mgrnum};

 #sql [c1, ec] �4�

 {UPDATE EMPLOYEE SET SALARY=:(currentSalary+raise)

 WHERE EMPNO=:mgrnum};

 #sql {FETCH :deptiter INTO :mgrnum };

 // Fetch the next row

 }

 ec.executeBatch(); �5�

 ec.setBatching(false); �6�

 #sql [c1] {COMMIT};

 deptiter.close(); // Close the iterator

 c1.close(); // Close the connection

}

Figure 38. Example of performing a batch update

148 Developing Java Applications

A result set iterator is a Java object that you use to retrieve rows from a result

table. Unlike a cursor, a result set iterator can be passed as a parameter to a

method.

The basic steps in using a result set iterator are:

1. Declare the iterator, which results in an iterator class

2. Define an instance of the iterator class.

3. Assign the result table of a SELECT to an instance of the iterator.

4. Retrieve rows.

5. Close the iterator.

There are two types of iterators: positioned iterators and named iterators. Postitioned

iterators extend the interface sqlj.runtime.PositionedIterator. Positioned iterators

identify the columns of a result table by their position in the result table. Named

iterators extend the interface sqlj.runtime.NamedIterator. Named iterators identify

the columns of the result table by result table column names.

Using a named iterator in an SQLJ application

Use a named iterator to refer to each of the columns in a result table by name.

The steps in using a named iterator are:

1. Declare the iterator.

You declare any result set iterator using an iterator declaration clause. This causes

an iterator class to be created that has the same name as the iterator. For a

named iterator, the iterator declaration clause specifies the following

information:

v The name of the iterator

v A list of column names and Java data types

v Information for a Java class declaration, such as whether the iterator is

public or static

v A set of attributes, such as whether the iterator is holdable, or whether its

columns can be updated

When you declare a named iterator for a query, you specify names for each of

the iterator columns. Those names must match the names of columns in the

result table for the query. An iterator column name and a result table column

name that differ only in case are considered to be matching names. The named

iterator class that results from the iterator declaration clause contains accessor

methods. There is one accessor method for each column of the iterator. Each

accessor method name is the same as the corresponding iterator column name.

You use the accessor methods to retrieve data from columns of the result table.

You need to specify Java data types in the iterators that closely match the

corresponding DB2 column data types. See ″Java, JDBC, and SQL data types″

for a list of the best mappings between Java data types and DB2 data types.

You can declare an iterator in a number of ways. However, because a Java class

underlies each iterator, you need to ensure that when you declare an iterator,

the underlying class obeys Java rules. For example, iterators that contain a

with-clause must be declared as public. Therefore, if an iterator needs to be

public, it can be declared only where a public class is allowed. The following

list describes some alternative methods of declaring an iterator:

v As public, in a source file by itself

Chapter 4. SQLJ application programming 149

This method lets you use the iterator declaration in other code modules, and

provides an iterator that works for all SQLJ applications. In addition, there

are no concerns about having other top-level classes or public classes in the

same source file.

v As a top-level class in a source file that contains other top-level class

definitions

Java allows only one public, top-level class in a code module. Therefore, if

you need to declare the iterator as public, such as when the iterator includes

a with-clause, no other classes in the code module can be declared as public.

v As a nested static class within another class

Using this alternative lets you combine the iterator declaration with other

class declarations in the same source file, declare the iterator and other

classes as public, and make the iterator class visible to other code modules or

packages. However, when you reference the iterator from outside the nesting

class, you must fully-qualify the iterator name with the name of the nesting

class.

v As an inner class within another class

When you declare an iterator in this way, you can instantiate it only within

an instance of the nesting class. However, you can declare the iterator and

other classes in the file as public.

You cannot cast a JDBC ResultSet to an iterator if the iterator is declared as

an inner class. This restriction does not apply to an iterator that is declared

as a static nested class. See ″Use SQLJ and JDBC in the same application″ for

more information on casting a ResultSet to a iterator.
2. Create an instance of the iterator class.

You declare an object of the named iterator class to retrieve rows from a result

table.

3. Assign the result table of a SELECT to an instance of the iterator.

To assign the result table of a SELECT to an iterator, you use an SQLJ

assignment clause. The format of the assignment clause for a named iterator is:

#sql context-clause iterator-object={select-statement};

See ″SQLJ assignment-clause″ and ″SQLJ context-clause″ for more information.

4. Retrieve rows.

Do this by invoking accessor methods in a loop. Accessor methods have the

same names as the corresponding columns in the iterator, and have no

parameters. An accessor method returns the value from the corresponding

column of the current row in the result table. Use the NamedIterator.next()

method to move the cursor forward through the result table.

To test whether you have retrieved all rows, check the value that is returned

when you invoke the next method. next returns a boolean with a value of

false if there is no next row.

5. Close the iterator.

Use the NamedIterator.close method to do this.

The following code demonstrates how to declare and use a named iterator. The

numbers to the right of selected statements correspond to the previously-described

steps.

150 Developing Java Applications

Using a positioned iterator in an SQLJ application

Use a positioned iterator to refer to columns in a result table by their position in

the result set.

The steps in using a positioned iterator are:

1. Declare the iterator.

You declare any result set iterator using an iterator declaration clause. This causes

an iterator class to be created that has the same name and attributes as the

iterator. For a positioned iterator, the iterator declaration clause specifies the

following information:

v The name of the iterator

v A list of Java data types

v Information for a Java class declaration, such as whether the iterator is

public or static

v A set of attributes, such as whether the iterator is holdable, or whether its

columns can be updated

The data type declarations represent columns in the result table and are

referred to as columns of the result set iterator. The columns of the result set

iterator correspond to the columns of the result table, in left-to-right order. For

example, if an iterator declaration clause has two data type declarations, the

first data type declaration corresponds to the first column in the result table,

and the second data type declaration corresponds to the second column in the

result table.

You need to specify Java data types in the iterators that closely match the

corresponding DB2 column data types. See ″Java, JDBC, and SQL data types″

for a list of the best mappings between Java data types and DB2 data types.

You can declare an iterator in a number of ways. However, because a Java class

underlies each iterator, you need to ensure that when you declare an iterator,

the underlying class obeys Java rules. For example, iterators that contain a

with-clause must be declared as public. Therefore, if an iterator needs to be

public, it can be declared only where a public class is allowed. The following

list describes some alternative methods of declaring an iterator:

v As public, in a source file by itself

#sql iterator ByName(String LastName, Date HireDate); �1�

 // Declare named iterator ByName

{

 ...

 ByName nameiter; // Declare object of ByName class �2�

 #sql [ctxt]

 nameiter={SELECT LASTNAME, HIREDATE FROM EMPLOYEE}; �3�

 // Assign the result table of the SELECT

 // to iterator object nameiter

 while (nameiter.next()) // Move the iterator through the result �4�

 // table and test whether all rows retrieved

 {

 System.out.println(nameiter.LastName() + " was hired on "

 + nameiter.HireDate()); // Use accessor methods LastName and

 // HireDate to retrieve column values

 }

 nameiter.close(); // Close the iterator �5�

}

Figure 39. Example of using a named iterator

Chapter 4. SQLJ application programming 151

This is the most versatile method of declaring an iterator. This method lets

you use the iterator declaration in other code modules, and provides an

iterator that works for all SQLJ applications. In addition, there are no

concerns about having other top-level classes or public classes in the same

source file.

v As a top-level class in a source file that contains other top-level class

definitions

Java allows only one public, top-level class in a code module. Therefore, if

you need to declare the iterator as public, such as when the iterator includes

a with-clause, no other classes in the code module can be declared as public.

v As a nested static class within another class

Using this alternative lets you combine the iterator declaration with other

class declarations in the same source file, declare the iterator and other

classes as public, and make the iterator class visible from other code modules

or packages. However, when you reference the iterator from outside the

nesting class, you must fully-qualify the iterator name with the name of the

nesting class.

v As an inner class within another class

When you declare an iterator in this way, you can instantiate it only within

an instance of the nesting class. However, you can declare the iterator and

other classes in the file as public.

You cannot cast a JDBC ResultSet to an iterator if the iterator is declared as

an inner class. This restriction does not apply to an iterator that is declared

as a static nested class. See ″Use SQLJ and JDBC in the same application″ for

more information on casting a ResultSet to a iterator.
2. Create an instance of the iterator class.

You declare an object of the positioned iterator class to retrieve rows from a

result table.

3. Assign the result table of a SELECT to an instance of the iterator.

To assign the result table of a SELECT to an iterator, you use an SQLJ

assignment clause. The format of the assignment clause for a positioned iterator

is:

#sql context-clause iterator-object={select-statement};

4. Retrieve rows.

Do this by executing FETCH statements in executable clauses in a loop. The

FETCH statements looks the same as a FETCH statements in other languages.

To test whether you have retrieved all rows, invoke the

PositionedIterator.endFetch method after each FETCH. endFetch returns a

boolean with the value true if the FETCH failed because there are no rows to

retrieve.

5. Close the iterator.

Use the PositionedIterator.close method to do this.

The following code demonstrates how to declare and use a positioned iterator. The

numbers to the right of selected statements correspond to the previously-described

steps.

152 Developing Java Applications

Multiple open iterators for the same SQL statement in an SQLJ

application

With the IBM Data Server Driver for JDBC and SQLJ, your application can have

multiple concurrently open iterators for a single SQL statement in an SQLJ

application. With this capability, you can perform one operation on a table using

one iterator while you perform a different operation on the same table using

another iterator.

When you use concurrently open iterators in an application, you should close

iterators when you no longer need them to prevent excessive storage consumption

in the Java heap.

The following examples demonstrate how to perform the same operations on a

table without concurrently open iterators on a single SQL statement and with

concurrently open iterators on a single SQL statement. These examples use the

following iterator declaration:

import java.math.*;

#sql public iterator MultiIter(String EmpNo, BigDecimal Salary);

Without the capability for multiple, concurrently open iterators for a single SQL

statement, if you want to select employee and salary values for a specific employee

number, you need to define a different SQL statement for each employee number,

as shown in Figure 41 on page 154.

#sql iterator ByPos(String,Date); // Declare positioned iterator ByPos �1�

{

 ...

 ByPos positer; // Declare object of ByPos class �2�

 String name = null; // Declare host variables

 Date hrdate;

 #sql [ctxt] positer =

 {SELECT LASTNAME, HIREDATE FROM EMPLOYEE}; �3�

 // Assign the result table of the SELECT

 // to iterator object positer

 #sql {FETCH :positer INTO :name, :hrdate }; �4�

 // Retrieve the first row

 while (!positer.endFetch()) // Check whether the FETCH returned a row

 { System.out.println(name + " was hired in " +

 hrdate);

 #sql {FETCH :positer INTO :name, :hrdate };

 // Fetch the next row

 }

 positer.close(); // Close the iterator �5�

}

Figure 40. Example of using a positioned iterator

Chapter 4. SQLJ application programming 153

Figure 42 demonstrates how you can perform the same operations when you have

the capability for multiple, concurrently open iterators for a single SQL statement.

Multiple open instances of an iterator in an SQLJ application

Multiple instances of an iterator can be open concurrently in a single SQLJ

application. One application for this ability is to open several instances of an

iterator that uses host expressions. Each instance can use a different set of host

expression values.

The following example shows an application with two concurrently open instances

of an iterator.

MultiIter iter1 = null; // Iterator instance for retrieving

 // data for first employee

String EmpNo1 = "000100"; // Employee number for first employee

#sql [ctx] iter1 =

 {SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo1};

 // Assign result table to first iterator

MultiIter iter2 = null; // Iterator instance for retrieving

 // data for second employee

String EmpNo2 = "000200"; // Employee number for second employee

#sql [ctx] iter2 =

 {SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo2};

 // Assign result table to second iterator

// Process with iter1

// Process with iter2

iter1.close(); // Close the iterators

iter2.close();

Figure 41. Example of concurrent table operations using iterators with different SQL

statements

...

MultiIter iter1 = openIter("000100"); // Invoke openIter to assign the result table

 // (for employee 100) to the first iterator

MultiIter iter2 = openIter("000200"); // Invoke openIter to assign the result

 // table to the second iterator

 // iter1 stays open when iter2 is opened

// Process with iter1

// Process with iter2

...

iter1.close(); // Close the iterators

iter2.close();

...

public MultiIter openIter(String EmpNo)

 // Method to assign a result table

 // to an iterator instance

{

 MultiIter iter;

 #sql [ctxt] iter =

 {SELECT EMPNO, SALARY FROM EMPLOYEE WHERE EMPNO = :EmpNo};

 return iter; // Method returns an iterator instance

}

Figure 42. Example of concurrent table operations using iterators with the same SQL

statement

154 Developing Java Applications

As with any other iterator, you need to remember to close this iterator after the last

time you use it to prevent excessive storage consumption.

Using scrollable iterators in an SQLJ application

In addition to moving forward, one row at a time, through a result table, you

might want to move backward or go directly to a specific row. The IBM Data

Server Driver for JDBC and SQLJ provides this capability.

An iterator in which you can move forward, backward, or to a specific row is

called a scrollable iterator. A scrollable iterator in SQLJ is equivalent to the result

table of a database cursor that is declared as SCROLL.

Like a scrollable cursor, a scrollable iterator can be insensitive or sensitive. A

sensitive scrollable iterator can be static or dynamic. Insensitive means that changes

to the underlying table after the iterator is opened are not visible to the iterator.

Insensitive iterators are read-only. Sensitive means that changes that the iterator or

other processes make to the underlying table are visible to the iterator. Asensitive

means that if the cursor is a read-only cursor, it behaves as an insensitive cursor. If

it is not a read-only cursor, it behaves as a sensitive cursor.

If a scrollable iterator is static, the size of the result table and the order of the rows

in the result table do not change after the iterator is opened. This means that you

cannot insert into result tables, and if you delete a row of a result table, a delete

hole occurs. If you update a row of the result table so that the row no longer

qualifies for the result table, an update hole occurs. Fetching from a hole results in

an SQLException.

If a scrollable iterator is dynamic, the size of the result table and the order of the

rows in the result table can change after the iterator is opened. Rows that are

inserted or deleted with INSERT and DELETE statements that are executed by the

same application process are immediately visible. Rows that are inserted or deleted

with INSERT and DELETE statements that are executed by other application

processes are visible after the changes are committed.

Important: DB2 Database for Linux, UNIX, and Windows servers do not support

dynamic scrollable cursors. You can use dynamic scrollable iterators in your SQLJ

applications only if those applications access data on DB2 for z/OS servers, at

Version 9 or later.

Important:

To create and use a scrollable iterator, you need to follow these steps:

...

ResultSet myFunc(String empid) // Method to open an iterator and get a resultSet

{

 MyIter iter;

 #sql iter = {SELECT * FROM EMPLOYEE WHERE EMPNO = :empid};

 return iter.getResultSet();

}

// An application can call this method to get a resultSet for each

// employee ID. The application can process each resultSet separately.

...

ResultSet rs1 = myFunc("000100"); // Get employee record for employee ID 000100

...

ResultSet rs2 = myFunc("000200"); // Get employee record for employee ID 000200

Figure 43. Example of opening more than one instance of an iterator in a single application

Chapter 4. SQLJ application programming 155

1. Specify an iterator declaration clause that includes the following clauses:

v implements sqlj.runtime.Scrollable

This indicates that the iterator is scrollable.

v with (sensitivity=INSENSITIVE|SENSITIVE|ASENSITIVE) or with

(sensitivity=SENSITIVE, dynamic=true|false)

sensitivity=INSENSITIVE|SENSITIVE|ASENSITIVE indicates whether update or

delete operations on the underlying table can be visible to the iterator. The

default sensitivity is INSENSITIVE.

dynamic=true|false indicates whether the size of the result table or the order

of the rows in the result table can change after the iterator is opened. The

default value of dynamic is false.

The iterator can be a named or positioned iterator.

Example: The following iterator declaration clause declares a positioned,

sensitive, dynamic, scrollable iterator:

#sql public iterator ByPos

 implements sqlj.runtime.Scrollable

 with (sensitivity=SENSITIVE, dynamic=true) (String);

Example: The following iterator declaration clause declares a named,

insensitive, scrollable iterator:

#sql public iterator ByName

 implements sqlj.runtime.Scrollable

 with (sensitivity=INSENSITIVE) (String EmpNo);

Restriction: You cannot use a scrollable iterator to select columns with the

following data types from a table on a DB2 Database for Linux, UNIX, and

Windows server:

v LONG VARCHAR

v LONG VARGRAPHIC

v BLOB

v CLOB

v XML

v A distinct type that is based on any of the previous data types in this list

v A structured type
2. Create an iterator object, which is an instance of your iterator class.

3. If you want to give the SQLJ runtime environment a hint about the initial fetch

direction, use the setFetchDirection(int direction) method. direction can be

FETCH_FORWARD or FETCH_REVERSE. If you do not invoke setFetchDirection, the

fetch direction is FETCH_FORWARD.

4. For each row that you want to access:

For a named iterator, perform the following steps:

a. Position the cursor using one of the methods listed in the following table.

 Table 30. sqlj.runtime.Scrollable methods for positioning a scrollable cursor

Method Positions the cursor

first1 On the first row of the result table

last1 On the last row of the result table

previous1,2 On the previous row of the result table

next On the next row of the result table

absolute(int n)1,3 If n>0, on row n of the result table. If n<0, and m is

the number of rows in the result table, on row m+n+1

of the result table.

156 Developing Java Applications

Table 30. sqlj.runtime.Scrollable methods for positioning a scrollable cursor (continued)

Method Positions the cursor

relative(int n)1,4 If n>0, on the row that is n rows after the current row.

If n<0, on the row that is n rows before the current

row. If n=0, on the current row.

afterLast1 After the last row in the result table

beforeFirst1 Before the first row in the result table

Notes:

1. This method does not apply to connections to IBM Informix Dynamic Server.

2. If the cursor is after the last row of the result table, this method positions the cursor on

the last row.

3. If the absolute value of n is greater than the number of rows in the result table, this

method positions the cursor after the last row if n is positive, or before the first row if n

is negative.

4. Suppose that m is the number of rows in the result table and x is the current row

number in the result table. If n>0 and x+n>m, the iterator is positioned after the last row.

If n<0 and x+n<1, the iterator is positioned before the first row.

b. If you need to know the current cursor position, use the getRow, isFirst,

isLast, isBeforeFirst, or isAfterLast method to obtain this information.

If you need to know the current fetch direction, invoke the

getFetchDirection method.

c. Use accessor methods to retrieve the current row of the result table.

d. If update or delete operations by the iterator or by other means are visible

in the result table, invoke the getWarnings method to check whether the

current row is a hole.
For a positioned iterator, perform the following steps:

a. Use a FETCH statement with a fetch orientation clause to position the

iterator and retrieve the current row of the result table. Table 31 lists the

clauses that you can use to position the cursor.

 Table 31. FETCH clauses for positioning a scrollable cursor

Method Positions the cursor

FIRST1 On the first row of the result table

LAST1 On the last row of the result table

PRIOR1,2 On the previous row of the result table

NEXT On the next row of the result table

ABSOLUTE(n)1,3 If n>0, on row n of the result table. If n<0, and m is

the number of rows in the result table, on row m+n+1

of the result table.

RELATIVE(n)1,4 If n>0, on the row that is n rows after the current row.

If n<0, on the row that is n rows before the current

row. If n=0, on the current row.

AFTER1,5 After the last row in the result table

BEFORE1,5 Before the first row in the result table

Chapter 4. SQLJ application programming 157

Table 31. FETCH clauses for positioning a scrollable cursor (continued)

Method Positions the cursor

Notes:

1. This value is not supported for connections to IBM Informix Dynamic Server

2. If the cursor is after the last row of the result table, this method positions the cursor on

the last row.

3. If the absolute value of n is greater than the number of rows in the result table, this

method positions the cursor after the last row if n is positive, or before the first row if n

is negative.

4. Suppose that m is the number of rows in the result table and x is the current row

number in the result table. If n>0 and x+n>m, the iterator is positioned after the last row.

If n<0 and x+n<1, the iterator is positioned before the first row.

5. Values are not assigned to host expressions.

b. If update or delete operations by the iterator or by other means are visible

in the result table, invoke the getWarnings method to check whether the

current row is a hole.
5. Invoke the close method to close the iterator.

The following code demonstrates how to use a named iterator to retrieve the

employee number and last name from all rows from the employee table in reverse

order. The numbers to the right of selected statements correspond to the

previously-described steps.

#sql context Ctx; // Create connection context class Ctx

#sql iterator ScrollIter implements sqlj.runtime.Scrollable �1�

 (String EmpNo, String LastName);

{

 ...

 Ctx ctxt =

 new Ctx("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",

 userid,password,false); // Create connection context object ctxt

 // for the connection to NEWYORK

 ScrollIter scrliter; �2�

 #sql [ctxt]

 scrliter={SELECT EMPNO, LASTNAME FROM EMPLOYEE};

 scrliter.afterLast();

 while (scrliter.previous()) �4a�

 {

 System.out.println(scrliter.EmpNo() + " " �4c�

 + scrliter.LastName());

 }

 scrliter.close(); �5�

}

Calling stored procedures in SQLJ applications

To call a stored procedure, you use an executable clause that contains an SQL

CALL statement.

You can execute the CALL statement with host identifier parameters. You can

execute the CALL statement with literal parameters only if the DB2 server on

which the CALL statement runs supports execution of the CALL statement

dynamically.

The basic steps in calling a stored procedure are:

1. Assign values to input (IN or INOUT) parameters.

2. Call the stored procedure.

158 Developing Java Applications

3. Process output (OUT or INOUT) parameters.

4. If the stored procedure returns multiple result sets, retrieve those result sets.

The following code illustrates calling a stored procedure that has three input

parameters and three output parameters. The numbers to the right of selected

statements correspond to the previously-described steps.

Using named parameters in CALL statements in SQLJ

applications

You can use named parameters to map host variable names in a CALL statement

to the parameter names in the stored procedure definition.

With named parameters, you do not need to specify parameters in the CALL

statement in the same order that they appear in the stored procedure definition. In

addition, you do not need to specify all parameters in the CALL statement.

Unspecified parameters take the default values that are specified in the stored

procedure definition.

To use named parameters with CALL statements, follow these steps.

1. In the CALL statement, assign values to IN or INOUT host variables.

The named parameters point to the host variables. The rules for naming of

named parameters and assignment to named parameters must follow the rules

for named parameters in SQL CALL statements. You can explicitly assign the

default value or the null value to a named parameter by specifying the

DEFAULT keyword or the NULL keyword. For parameters for which a default

value is specified in the CREATE PROCEDURE statement, you can implicitly

assign the default values to named parameters by omitting those parameters

from the CALL statement. You can omit parameters only if all of the omitted

parameters have default values in the stored procedure definition.

You cannot mix named parameters and unnamed parameters in the same

CALL statement.

2. Process output (OUT or INOUT) parameters.

3. If the stored procedure returns multiple result sets, retrieve those result sets.

The following code illustrates calling a stored procedure that has the following

definition:

String FirstName="TOM"; // Input parameters �1�

String LastName="NARISINST";

String Address="IBM";

int CustNo; // Output parameters

String Mark;

String MarkErrorText;

...

#sql [myConnCtx] {CALL ADD_CUSTOMER(:IN FirstName, �2�

 :IN LastName,

 :IN Address,

 :OUT CustNo,

 :OUT Mark,

 :OUT MarkErrorText)};

 // Call the stored procedure

System.out.println("Output parameters from ADD_CUSTOMER call: ");

System.out.println("Customer number for " + LastName + ": " + CustNo); �3�

System.out.println(Mark);

If (MarkErrorText != null)

 System.out.println(" Error messages:" + MarkErrorText);

Figure 44. Example of calling a stored procedure in an SQLJ application

Chapter 4. SQLJ application programming 159

CREATE PROCEDURE SALS (

 OUT retcode INTEGER,

 IN lowsal DOUBLE,

 IN medsal DOUBLE,

 IN highsal DOUBLE DEFAULT 100000,

 IN department CHAR(3) DEFAULT ’---’)

SPECIFIC JDBC_SALS

DYNAMIC RESULT SETS 0

DETERMINISTIC

LANGUAGE JAVA

PARAMETER STYLE JAVA

NO DBINFO

FENCED

THREADSAFE

MODIFIES SQL DATA

PROGRAM TYPE SUB

EXTERNAL NAME ’MYJAR:MyClass.sals’

The input parameters in the CALL statement are represented by named

parameters. The third and fourth parameters are called with the default values for

the stored procedure. The numbers to the right of selected statements correspond

to the previously-described steps.

double hvLowSal=10000; // Host variables for input parameters

double hvMedSal=50000;

int hvRetCode; // Host variable for output parameter

...

#sql [myConnCtx] {CALL SALS(retcode=>:OUT hvRetCode, �1�

 lowsal=>:IN hvLowSal,

 medsal=>:IN hvMedSal,

 highsal=>DEFAULT)};

 // Call the stored procedure.

 // Implicitly use the default

 // value for the last parameter

 // by omitting it.

System.out.println("Return code from SALS call: " + hvRetCode); �2�

Retrieving data from cursor output parameters in SQLJ

applications

DB2 Database for Linux, UNIX, and Windows stored procedures can have OUT

parameters of the cursor type. To retrieve data from those parameters in SQLJ

applications, you use iterators or ResultSet objects.

To retrieve data from cursor variables, follow these steps.

1. Define an iterator or ResultSet object for each OUT parameter that has the

CURSOR data type in the stored procedure definition.

Iterators for retrieving cursor OUT parameters can be named or positioned.

2. Assign values to input parameters.

3. Call the stored procedure.

4. Retrieve rows from the cursor parameters.

v If you declare a positioned iterator for the cursor parameter, use FETCH

statements to retrieve the data.

v If you declare a named iterator for the cursor parameter, use NamedIterator

methods to retrieve the data.

v If you define a ResultSet object for the cursor parameter, use ResultSet

methods to position the cursor and retrieve values from result set rows.
5. If the stored procedure returns multiple result sets by opening cursors that are

defined as WITH RETURN, retrieve those result sets.

160 Developing Java Applications

A single stored procedure can return data through multiple result sets as well

as CURSOR parameters.

A cursor data type and a stored procedure have the following definitions:

CREATE TYPE myRowType AS ROW (name VARCHAR(128))

CREATE TYPE myCursorType AS myRowType CURSOR

CREATE PROCEDURE MYPROC(IN pempNo VARCHAR(6), OUT pcv1 myCursorType)

 RESULT SETS 0

 LANGUAGE SQL

 BEGIN

 SET pcv1 = CURSOR FOR SELECT name FROM employee WHERE empNo = pempNo;

 OPEN pcv1;

 END

The following code calls stored procedure MYPROC and uses a positioned iterator

to retrieve data from cursor pcv1. The numbers to the right of selected statements

correspond to the previously-described steps.

#sql iterator Iter (String); // Declare a positioned iterator

...

Iter iter = null; // Output parameter �1�

String hvPempNo="000500"; // Input parameter �2�

#sql [ctx] {CALL MYPROC (:IN hvPempNo, :OUT iter)}; �3�

 // Call the stored procedure

String hvEmpName = null;

while (true) { // Retrieve rows from the result set

 #sql { FETCH :iter into :hvName }; �4�

 if (iter.endFetch()) break;

 System.out.println("Employee name for " + hvPempNo

 + ": " + hvEmpName);

}

The following code calls stored procedure MYPROC and uses a ResultSet object to

retrieve data from cursor pcv1. The numbers to the right of selected statements

correspond to the previously-described steps.

...

ResultSet rs = null; // Output parameter �1�

String hvPempNo="000500"; // Input parameter �2�

#sql [ctx] {CALL MYPROC (:IN hvPempNo, :OUT rs)}; �3�

 // Call the stored procedure

String hvEmpName = null;

while (rs.next()) { // Retrieve result set rows �4�

 hvEmpName=rs.getString(1);

 System.out.println("Employee name for " + hvPempNo

 + ": " + hvEmpName);

}

Retrieving multiple result sets from a stored procedure in an

SQLJ application

Some stored procedures return one or more result sets to the calling program by

including the DYNAMIC RESULT SETS n clause in the definition, with n>0, and

opening cursors that are defined with the WITH RETURN clause. The calling

program needs to retrieve the contents of those result sets.

To retrieve the rows from those result sets, you execute these steps:

1. Acquire an execution context for retrieving the result set from the stored

procedure.

2. Associate the execution context with the CALL statement for the stored

procedure.

Do not use this execution context for any other purpose until you have

retrieved and processed the last result set.

Chapter 4. SQLJ application programming 161

3. For each result set:

a. Use the ExecutionContext method getNextResultSet to retrieve the result set.

b. If you do not know the contents of the result set, use ResultSetMetaData

methods to retrieve this information.

c. Use an SQLJ result set iterator or JDBC ResultSet to retrieve the rows from

the result set.

Result sets are returned to the calling program in the same order that their cursors

are opened in the stored procedure. When there are no more result sets to retrieve,

getNextResultSet returns a null value.

getNextResultSet has two forms:

getNextResultSet();

getNextResultSet(int current);

When you invoke the first form of getNextResultSet, SQLJ closes the

currently-open result set and advances to the next result set. When you invoke the

second form of getNextResultSet, the value of current indicates what SQLJ does

with the currently-open result set before it advances to the next result set:

java.sql.Statement.CLOSE_CURRENT_RESULT

Specifies that the current ResultSet object is closed when the next ResultSet

object is returned.

java.sql.Statement.KEEP_CURRENT_RESULT

Specifies that the current ResultSet object stays open when the next ResultSet

object is returned.

java.sql.Statement.CLOSE_ALL_RESULTS

Specifies that all open ResultSet objects are closed when the next ResultSet

object is returned.

The following code calls a stored procedure that returns multiple result sets. For

this example, it is assumed that the caller does not know the number of result sets

to be returned or the contents of those result sets. It is also assumed that

autoCommit is false. The numbers to the right of selected statements correspond to

the previously-described steps.

ExecutionContext execCtx=myConnCtx.getExecutionContext(); �1�

#sql [myConnCtx, execCtx] {CALL MULTRSSP()}; �2�

 // MULTRSSP returns multiple result sets

ResultSet rs;

while ((rs = execCtx.getNextResultSet()) != null) �3a�

{

 ResultSetMetaData rsmeta=rs.getMetaData(); �3b�

 int numcols=rsmeta.getColumnCount();

 while (rs.next()) �3c�

 {

 for (int i=1; i<=numcols; i++)

 {

 String colval=rs.getString(i);

 System.out.println("Column " + i + "value is " + colval);

 }

 }

}

Figure 45. Retrieving result sets from a stored procedure

162 Developing Java Applications

LOBs in SQLJ applications with the IBM Data Server Driver for

JDBC and SQLJ

With the IBM Data Server Driver for JDBC and SQLJ, you can retrieve LOB data

into Clob or Blob host expressions or update CLOB, BLOB, or DBCLOB columns

from Clob or Blob host expressions. You can also declare iterators with Clob or

Blob data types to retrieve data from CLOB, BLOB, or DBCLOB columns.

Retrieving or updating LOB data: To retrieve data from a BLOB column, declare

an iterator that includes a data type of Blob or byte[]. To retrieve data from a

CLOB or DBCLOB column, declare an iterator in which the corresponding column

has a Clob data type.

To update data in a BLOB column, use a host expression with data type Blob. To

update data in a CLOB or DBCLOB column, use a host expression with data type

Clob.

Progressive streaming or LOB locators: In SQLJ applications, you can use

progressive streaming, also known as dynamic data format, or LOB locators in the

same way that you use them in JDBC applications.

Java data types for retrieving or updating LOB column data in

SQLJ applications

When the deferPrepares property is set to true, and the IBM Data Server Driver for

JDBC and SQLJ processes an uncustomized SQLJ statement that includes host

expressions, the driver might need to do extra processing to determine data types.

This extra processing can impact performance.

When the JDBC driver cannot immediately determine the data type of a parameter

that is used with a LOB column, you need to choose a parameter data type that is

compatible with the LOB data type.

Input parameters for BLOB columns

For input parameters for BLOB columns, you can use either of the following

techniques:

v Use a java.sql.Blob input variable, which is an exact match for a BLOB column:

java.sql.Blob blobData;

#sql {CALL STORPROC(:IN blobData)};

Before you can use a java.sql.Blob input variable, you need to create a

java.sql.Blob object, and then populate that object.

v Use an input parameter of type of sqlj.runtime.BinaryStream. A

sqlj.runtime.BinaryStream object is compatible with a BLOB data type. For

example:

java.io.ByteArrayInputStream byteStream =

 new java.io.ByteArrayInputStream(byteData);

int numBytes = byteData.length;

sqlj.runtime.BinaryStream binStream =

 new sqlj.runtime.BinaryStream(byteStream, numBytes);

#sql {CALL STORPROC(:IN binStream)};

You cannot use this technique for INOUT parameters.

Chapter 4. SQLJ application programming 163

Output parameters for BLOB columns

For output or INOUT parameters for BLOB columns, you can use the following

technique:

v Declare the output parameter or INOUT variable with a java.sql.Blob data type:

java.sql.Blob blobData = null;

#sql CALL STORPROC (:OUT blobData)};

java.sql.Blob blobData = null;

#sql CALL STORPROC (:INOUT blobData)};

Input parameters for CLOB columns

For input parameters for CLOB columns, you can use one of the following

techniques:

v Use a java.sql.Clob input variable, which is an exact match for a CLOB column:

#sql CALL STORPROC(:IN clobData)};

Before you can use a java.sql.Clob input variable, you need to create a

java.sql.Clob object, and then populate that object.

v Use one of the following types of stream IN parameters:

– A sqlj.runtime.CharacterStream input parameter:

java.lang.String charData;

java.io.StringReader reader = new java.io.StringReader(charData);

sqlj.runtime.CharacterStream charStream =

 new sqlj.runtime.CharacterStream (reader, charData.length);

#sql {CALL STORPROC(:IN charStream)};

– A sqlj.runtime.UnicodeStream parameter, for Unicode UTF-16 data:

byte[] charDataBytes = charData.getBytes("UnicodeBigUnmarked");

java.io.ByteArrayInputStream byteStream =

 new java.io.ByteArrayInputStream(charDataBytes);

sqlj.runtime.UnicodeStream uniStream =

 new sqlj.runtime.UnicodeStream(byteStream, charDataBytes.length);

#sql {CALL STORPROC(:IN uniStream)};

– A sqlj.runtime.AsciiStream parameter, for ASCII data:

byte[] charDataBytes = charData.getBytes("US-ASCII");

java.io.ByteArrayInputStream byteStream =

 new java.io.ByteArrayInputStream (charDataBytes);

sqlj.runtime.AsciiStream asciiStream =

 new sqlj.runtime.AsciiStream (byteStream, charDataBytes.length);

#sql {CALL STORPROC(:IN asciiStream)};

For these calls, you need to specify the exact length of the input data. You

cannot use this technique for INOUT parameters.

v Use a java.lang.String input parameter:

java.lang.String charData;

#sql {CALL STORPROC(:IN charData)};

Output parameters for CLOB columns

For output or INOUT parameters for CLOB columns, you can use one of the

following techniques:

v Use a java.sql.Clob output variable, which is an exact match for a CLOB column:

java.sql.Clob clobData = null;

#sql CALL STORPROC(:OUT clobData)};

v Use a java.lang.String output variable:

164 Developing Java Applications

java.lang.String charData = null;

#sql CALL STORPROC(:OUT charData)};

This technique should be used only if you know that the length of the retrieved

data is less than or equal to 32KB. Otherwise, the data is truncated.

Output parameters for DBCLOB columns

DBCLOB output or INOUT parameters for stored procedures are not supported.

SQLJ and JDBC in the same application

You can combine SQLJ clauses and JDBC calls in a single program.

To do this effectively, you need to be able to do the following things:

v Use a JDBC Connection to build an SQLJ ConnectionContext, or obtain a JDBC

Connection from an SQLJ ConnectionContext.

v Use an SQLJ iterator to retrieve data from a JDBC ResultSet or generate a JDBC

ResultSet from an SQLJ iterator.

Building an SQLJ ConnectionContext from a JDBC Connection: To do that:

1. Execute an SQLJ connection declaration clause to create a ConnectionContext

class.

2. Load the driver or obtain a DataSource instance.

3. Invoke the SQLJ DriverManager.getConnection or DataSource.getConnection

method to obtain a JDBC Connection.

4. Invoke the ConnectionContext constructor with the Connection as its argument

to create the ConnectionContext object.

Obtaining a JDBC Connection from an SQLJ ConnectionContext: To do this,

1. Execute an SQLJ connection declaration clause to create a ConnectionContext

class.

2. Load the driver or obtain a DataSource instance.

3. Invoke the ConnectionContext constructor with the URL of the driver and any

other necessary parameters as its arguments to create the ConnectionContext

object.

4. Invoke the JDBC ConnectionContext.getConnection method to create the JDBC

Connection object.

See ″Connect to a data source using SQLJ″ for more information on SQLJ

connections.

Retrieving JDBC result sets using SQLJ iterators: Use the iterator conversion

statement to manipulate a JDBC result set as an SQLJ iterator. The general form of

an iterator conversion statement is:

#sql iterator={CAST :result-set};

Before you can successfully cast a result set to an iterator, the iterator must

conform to the following rules:

v The iterator must be declared as public.

v If the iterator is a positioned iterator, the number of columns in the result set

must match the number of columns in the iterator. In addition, the data type of

each column in the result set must match the data type of the corresponding

column in the iterator.

Chapter 4. SQLJ application programming 165

v If the iterator is a named iterator, the name of each accessor method must match

the name of a column in the result set. In addition, the data type of the object

that an accessor method returns must match the data type of the corresponding

column in the result set.

The code in Figure 46 builds and executes a query using a JDBC call, executes an

iterator conversion statement to convert the JDBC result set to an SQLJ iterator,

and retrieves rows from the result table using the iterator.

 Notes to Figure 46:

 Note Description

�1� This SQLJ clause creates the named iterator class ByName, which has accessor

methods LastName() and HireDate() that return the data from result table columns

LASTNAME and HIREDATE.

�2� This statement and the following two statements build and prepare a query for

dynamic execution using JDBC.

�3� This JDBC statement executes the SELECT statement and assigns the result table

to result set rs.

�4� This iterator conversion clause converts the JDBC ResultSet rs to SQLJ iterator

nameiter, and the following statements use nameiter to retrieve values from the

result table.

�5� The nameiter.close() method closes the SQLJ iterator and JDBC ResultSet rs.

Generating JDBC ResultSets from SQLJ iterators: Use the getResultSet method to

generate a JDBC ResultSet from an SQLJ iterator. Every SQLJ iterator has a

getResultSet method. After you access the ResultSet that underlies an iterator, you

need to fetch rows using only the ResultSet.

The code in Figure 47 on page 167 generates a positioned iterator for a query,

converts the iterator to a result set, and uses JDBC methods to fetch rows from the

table.

#sql public iterator ByName(String LastName, Date HireDate); �1�

public void HireDates(ConnectionContext connCtx, String whereClause)

{

 ByName nameiter; // Declare object of ByName class

 Connection conn=connCtx.getConnection();

 // Create JDBC connection

 Statement stmt = conn.createStatement(); �2�

 String query = "SELECT LASTNAME, HIREDATE FROM EMPLOYEE";

 query+=whereClause; // Build the query

 ResultSet rs = stmt.executeQuery(query); �3�

 #sql [connCtx] nameiter = {CAST :rs}; �4�

 while (nameiter.next())

 {

 System.out.println(nameiter.LastName() + " was hired on "

 + nameiter.HireDate());

 }

 nameiter.close(); �5�

 stmt.close();

}

Figure 46. Converting a JDBC result set to an SQLJ iterator

166 Developing Java Applications

Notes to Figure 47:

 Note Description

�1� This SQLJ clause executes the SELECT statement, constructs an iterator object that

contains the result table for the SELECT statement, and assigns the iterator object

to variable iter.

�2� The getResultSet() method accesses the ResultSet that underlies iterator iter.

�3� The JDBC getString() and getDate() methods retrieve values from the ResultSet.

The next() method moves the cursor to the next row in the ResultSet.

�4� The rs.close() method closes the SQLJ iterator as well as the ResultSet.

Rules and restrictions for using JDBC ResultSets in SQLJ applications: When you

write SQLJ applications that include JDBC result sets, observe the following rules

and restrictions:

v You cannot cast a ResultSet to an SQLJ iterator if the ResultSet and the iterator

have different holdability attributes.

A JDBC ResultSet or an SQLJ iterator can remain open after a COMMIT

operation. For a JDBC ResultSet, this characteristic is controlled by the IBM Data

Server Driver for JDBC and SQLJ property resultSetHoldability. For an SQLJ

iterator, this characteristic is controlled by the with holdability parameter of

the iterator declaration. Casting a ResultSet that has holdability to an SQLJ

iterator that does not, or casting a ResultSet that does not have holdability to an

SQLJ iterator that does, is not supported.

v Close the iterator or the underlying ResultSet object as soon as the program no

longer uses the iterator or ResultSet, and before the end of the program.

Closing the iterator also closes the ResultSet object. Closing the ResultSet object

also closes the iterator object. In general, it is best to close the object that is used

last.

v For the IBM Data Server Driver for JDBC and SQLJ, which supports scrollable

iterators and scrollable and updatable ResultSet objects, the following restrictions

apply:

– Scrollable iterators have the same restrictions as their underlying JDBC

ResultSet objects.

– You cannot cast a JDBC ResultSet that is not updatable to an SQLJ iterator

that is updatable.

Controlling the execution of SQL statements in SQLJ

You can use selected methods of the SQLJ ExecutionContext class to control or

monitor the execution of SQL statements.

#sql iterator EmpIter(String, java.sql.Date);

{

...

 EmpIter iter=null;

 #sql [connCtx] iter=

 {SELECT LASTNAME, HIREDATE FROM EMPLOYEE}; �1�

 ResultSet rs=iter.getResultSet(); �2�

 while (rs.next()) �3�

 { System.out.println(rs.getString(1) + " was hired in " +

 rs.getDate(2));

 }

 rs.close(); �4�

}

Figure 47. Converting an SQLJ iterator to a JDBC ResultSet

Chapter 4. SQLJ application programming 167

To use ExecutionContext methods, follow these steps:

1. Acquire the default execution context from the connection context.

There are two ways to acquire an execution context:

v Acquire the default execution context from the connection context. For

example:

ExecutionContext execCtx = connCtx.getExecutionContext();

v Create a new execution context by invoking the constructor for

ExecutionContext. For example:

ExecutionContext execCtx=new ExecutionContext();

2. Associate the execution context with an SQL statement.

To do that, specify an execution context after the connection context in the

execution clause that contains the SQL statement.

3. Invoke ExecutionContext methods.

Some ExecutionContext methods are applicable before the associated SQL

statement is executed, and some are applicable only after their associated SQL

statement is executed.

For example, you can use method getUpdateCount to count the number of

rows that are deleted by a DELETE statement after you execute the DELETE

statement.

The following code demonstrates how to acquire an execution context, and then

use the getUpdateCount method on that execution context to determine the

number of rows that were deleted by a DELETE statement. The numbers to the

right of selected statements correspond to the previously-described steps.

ExecutionContext execCtx=new ExecutionContext(); �1�

#sql [connCtx, execCtx] {DELETE FROM EMPLOYEE WHERE SALARY > 10000}; �2�

System.out.println("Deleted " + execCtx.getUpdateCount() + " rows"); �3�

ROWIDs in SQLJ with the IBM Data Server Driver for JDBC

and SQLJ

DB2 for z/OS and DB2 for i support the ROWID data type for a column in a table.

A ROWID is a value that uniquely identifies a row in a table.

Although IBM Informix Dynamic Server (IDS) also supports rowids, those rowids

have the INTEGER data type. You can select an IDS rowid column into a variable

with a four-byte integer data type.

If you use columns with the ROWID data type in SQLJ programs, you need to

customize those programs.

JDBC 4.0 includes interface java.sql.RowId that you can use in iterators and in

CALL statement parameters. If you do not have JDBC 4.0, you can use the IBM

Data Server Driver for JDBC and SQLJ-only class com.ibm.db2.jcc.DB2RowID. For

an iterator, you can also use the byte[] object type to retrieve ROWID values.

The following code shows an example of an iterator that is used to select values

from a ROWID column:

168 Developing Java Applications

The following code shows an example of calling a stored procedure that takes

three ROWID parameters: an IN parameter, an OUT parameter, and an INOUT

parameter.

#sql iterator PosIter(int,String,java.sql.RowId);

 // Declare positioned iterator

 // for retrieving ITEM_ID (INTEGER),

 // ITEM_FORMAT (VARCHAR), and ITEM_ROWID (ROWID)

 // values from table ROWIDTAB

{

 PosIter positrowid; // Declare object of PosIter class

 java.sql.RowId rowid = null;

 int id = 0;

 String i_fmt = null;

 // Declare host expressions

 #sql [ctxt] positrowid =

 {SELECT ITEM_ID, ITEM_FORMAT, ITEM_ROWID FROM ROWIDTAB

 WHERE ITEM_ID=3};

 // Assign the result table of the SELECT

 // to iterator object positrowid

 #sql {FETCH :positrowid INTO :id, :i_fmt, :rowid};

 // Retrieve the first row

 while (!positrowid.endFetch())

 // Check whether the FETCH returned a row

 {System.out.println("Item ID " + id + " Item format " +

 i_fmt + " Item ROWID ");

 MyUtilities.printBytes(rowid.getBytes());

 // Use the getBytes method to

 // convert the value to bytes for printing.

 // Call a user-defined method called

 // printBytes (not shown) to print

 // the value.

 #sql {FETCH :positrowid INTO :id, :i_fmt, :rowid};

 // Retrieve the next row

 }

 positrowid.close(); // Close the iterator

}

Figure 48. Example of using an iterator to retrieve ROWID values

java.sql.RowId in_rowid = rowid;

java.sqlRowId out_rowid = null;

java.sql.RowId inout_rowid = rowid;

 // Declare an IN, OUT, and

 // INOUT ROWID parameter

...

#sql [myConnCtx] {CALL SP_ROWID(:IN in_rowid,

 :OUT out_rowid,

 :INOUT inout_rowid)};

 // Call the stored procedure

System.out.println("Parameter values from SP_ROWID call: ");

System.out.println("OUT parameter value ");

MyUtilities.printBytes(out_rowid.getBytes());

 // Use the getBytes method to

 // convert the value to bytes for printing

 // Call a user-defined method called

 // printBytes (not shown) to print

 // the value.

System.out.println("INOUT parameter value ");

MyUtilities.printBytes(inout_rowid.getBytes());

Figure 49. Example of calling a stored procedure with a ROWID parameter

Chapter 4. SQLJ application programming 169

Distinct types in SQLJ applications

In an SQLJ program, you can create a distinct type using the CREATE DISTINCT

TYPE statement in an executable clause.

You can also use CREATE TABLE in an executable clause to create a table that

includes a column of that type. When you retrieve data from a column of that

type, or update a column of that type, you use Java host variables or expressions

with data types that correspond to the built-in types on which the distinct types

are based.

The following example creates a distinct type that is based on an INTEGER type,

creates a table with a column of that type, inserts a row into the table, and

retrieves the row from the table:

Invocation of stored procedures with ARRAY parameters in

SQLJ applications

SQLJ applications that run under the IBM Data Server Driver for JDBC and SQLJ

and connect to DB2 Database for Linux, UNIX, and Windows data sources can call

stored procedures that have ARRAY parameters.

You can use java.sql.Array objects as IN, OUT, or INOUT parameters in a stored

procedure.

For IN or INOUT parameters, use the DB2Connection.createArrayOf method

(JDBC 3.0 or earlier) or the Connection.createArrayOf method (JDBC 4.0 or later) to

create a java.sql.Array object.

There are two ways to retrieve data from an ARRAY output stored procedure

parameter:

v Use the java.sql.Array.getArray method to retrieve the contents of output

parameter into a Java array.

v Use a java.sql.Array.getResultSet method to retrieve the output parameter data

into a ResultSet object. Then use ResultSet methods to retrieve elements of the

array. Each row of the ResultSet contains two columns:

– An index into the array, which starts at 1

– The array element

String empNumVar;

int shoeSizeVar;

...

#sql [myConnCtx] {CREATE DISTINCT TYPE SHOESIZE AS INTEGER WITH COMPARISONS};

 // Create distinct type

#sql [myConnCtx] {COMMIT}; // Commit the create

#sql [myConnCtx] {CREATE TABLE EMP_SHOE

 (EMPNO CHAR(6), EMP_SHOE_SIZE SHOESIZE)};

 // Create table using distinct type

#sql [myConnCtx] {COMMIT}; // Commit the create

#sql [myConnCtx] {INSERT INTO EMP_SHOE

 VALUES(’000010’,6)}; // Insert a row in the table

#sql [myConnCtx] {COMMIT}; // Commit the INSERT

#sql [myConnCtx] {SELECT EMPNO, EMP_SHOE_SIZE

 INTO :empNumVar, :shoeSizeVar

 FROM EMP_SHOE}; // Retrieve the row

System.out.println("Employee number: " + empNumVar +

 " Shoe size: " + shoeSizeVar);

Figure 50. Defining and using a distinct type

170 Developing Java Applications

You need to retrieve the array elements from the ResultSet using the getObject

method.

Example: Suppose that input and output parameters IN_PHONE and

OUT_PHONE in stored procedure GET_EMP_DATA are arrays that are defined

like this:

CREATE TYPE PHONENUMBERS AS VARCHAR(10) ARRAY[5]

Call GET_EMP_DATA with the two parameters.

Connection con;

String type = "CHAR";

String [] contents = {"1234", "5678", "9101"};

...

com.ibm.db2.jcc.DB2Connection db2con = (com.ibm.db2.jcc.DB2Connection) con;

 // Cast the Connection as a DB2Connection

 // so you can use the

 // DB2Connection.createArrayOf method

java.sql.Array inPhoneData = db2con.createArrayOf(type, contents);

java.sql.Array outPhoneData;

try {

 #sql [db2con] {CALL GET_EMP_DATA(:IN inPhoneData, :OUT outPhoneData) };

}

catch(SQLException e)

{

 throw e;

}

ResultSet rs = outPhoneData.getResultSet();

while (rs.next()) {

 String phoneNum = (String)rs.getObject(2); // Get phone number

 System.out.println("Phone number = " + phoneNum);

}

Savepoints in SQLJ applications

Under the IBM Data Server Driver for JDBC and SQLJ, you can include any form

of the SQL SAVEPOINT statement in your SQLJ program.

An SQL savepoint represents the state of data and schemas at a particular point in

time within a unit of work. SQL statements exist to set a savepoint, release a

savepoint, and restore data and schemas to the state that the savepoint represents.

The following example demonstrates how to set a savepoint, roll back to the

savepoint, and release the savepoint.

#sql context Ctx; // Create connection context class Ctx

String empNumVar;

int shoeSizeVar;

...

try { // Load the JDBC driver

 Class.forName("com.ibm.db2.jcc.DB2Driver");

}

catch (ClassNotFoundException e) {

 e.printStackTrace();

}

Connection jdbccon=

 DriverManager.getConnection("jdbc:db2://sysmvs1.stl.ibm.com:5021/NEWYORK",

 userid,password);

 // Create JDBC connection object jdbccon

jdbccon.setAutoCommit(false); // Do not autocommit

Ctx ctxt=new Ctx(jdbccon);

Figure 51. Setting, rolling back to, and releasing a savepoint in an SQLJ application

Chapter 4. SQLJ application programming 171

// Create connection context object myConnCtx

 // for the connection to NEWYORK

... // Perform some SQL

#sql [ctxt] {COMMIT}; // Commit the transaction

 // Commit the create

#sql [ctxt]

 {INSERT INTO EMP_SHOE VALUES (’000010’, 6)};

 // Insert a row

#sql [ctxt]

 {SAVEPOINT SVPT1 ON ROLLBACK RETAIN CURSORS};

 // Create a savepoint

...

#sql [ctxt]

 {INSERT INTO EMP_SHOE VALUES (’000020’, 10)};

 // Insert another row

#sql [ctxt] {ROLLBACK TO SAVEPOINT SVPT1};

 // Roll back work to the point

 // after the first insert

...

#sql [ctxt] {RELEASE SAVEPOINT SVPT1};

 // Release the savepoint

ctx.close(); // Close the connection context

XML data in SQLJ applications

In SQLJ applications, you can store data in XML columns and retrieve data from

XML columns.

In DB2 tables, the XML built-in data type is used to store XML data in a column as

a structured set of nodes in a tree format.

In applications, XML data is in the serialized string format.

In SQLJ applications that connect to DB2 Database for Linux, UNIX, and Windows,

XML data is in textual XML format. In SQLJ applications that connect to DB2 for

z/OS, XML data can be in textual XML format or binary XML format.

In SQLJ applications, you can:

v Store an entire XML document in an XML column using INSERT, UPDATE, or

MERGE statements.

v Retrieve an entire XML document from an XML column using single-row

SELECT statements or iterators.

v Retrieve a sequence from a document in an XML column by using the SQL

XMLQUERY function to retrieve the sequence in the database, and then using

single-row SELECT statements or iterators to retrieve the serialized XML string

data into an application variable.

v Retrieve a sequence from a document in an XML column by using an XQuery

expression, prepended with the string ’XQUERY’, to retrieve the elements of the

sequence into a result table in the database, in which each row of the result table

represents an item in the sequence. Then use using single-row SELECT

statements or iterators to retrieve the data into application variables.

v Retrieve a sequence from a document in an XML column as a user-defined table

by using the SQL XMLTABLE function to define the result table and retrieve it.

Then use using single-row SELECT statements or iterators to retrieve the data

from the result table into application variables.

JDBC 4.0 java.sql.SQLXML objects can be used to retrieve and update data in XML

columns. Invocations of metadata methods, such as

172 Developing Java Applications

ResultSetMetaData.getColumnTypeName return the integer value

java.sql.Types.SQLXML for an XML column type.

XML column updates in SQLJ applications

When you update or insert data into XML columns of a database table, the input

data in your SQLJ applications must be in the serialized string format.

The host expression data types that you can use to update XML columns are:

v java.sql.SQLXML (requires an SDK for Java Version 6 or later, and the IBM Data

Server Driver for JDBC and SQLJ version 4.0 or later)

v com.ibm.db2.jcc.DB2Xml (deprecated)

v String

v byte

v Blob

v Clob

v sqlj.runtime.AsciiStream

v sqlj.runtime.BinaryStream

v sqlj.runtime.CharacterStream

The encoding of XML data can be derived from the data itself, which is known as

internally encoded data, or from external sources, which is known as externally

encoded data. XML data that is sent to the database server as binary data is treated

as internally encoded data. XML data that is sent to the data source as character

data is treated as externally encoded data. The external encoding is the default

encoding for the JVM.

External encoding for Java applications is always Unicode encoding.

Externally encoded data can have internal encoding. That is, the data might be sent

to the data source as character data, but the data contains encoding information.

The data source handles incompatibilities between internal and external encoding

as follows:

v If the data source is DB2 Database for Linux, UNIX, and Windows, the data

source generates an error if the external and internal encoding are incompatible,

unless the external and internal encoding are Unicode. If the external and

internal encoding are Unicode, the data source ignores the internal encoding.

v If the data source is DB2 for z/OS, the data source ignores internal encoding.

Data in XML columns is stored in UTF-8 encoding.

Example: Suppose that you use the following statement to insert data from String

host expression xmlString into an XML column in a table. xmlString is a character

type, so its external encoding is used, whether or not it has an internal encoding

specification.

#sql [ctx] {INSERT INTO CUSTACC VALUES (1, :xmlString)};

Example: Suppose that you copy the data from xmlString into a byte array with

CP500 encoding. The data contains an XML declaration with an encoding

declaration for CP500. Then you insert the data from the byte[] host expression

into an XML column in a table.

byte[] xmlBytes = xmlString.getBytes("CP500");

#sql[ctx] {INSERT INTO CUSTACC VALUES (4, :xmlBytes)};

Chapter 4. SQLJ application programming 173

A byte string is considered to be internally encoded data. The data is converted

from its internal encoding scheme to UTF-8, if necessary, and stored in its

hierarchical format on the data source.

Example: Suppose that you copy the data from xmlString into a byte array with

US-ASCII encoding. Then you construct an sqlj.runtime.AsciiStream host

expression, and insert data from the sqlj.runtime.AsciiStream host expression into

an XML column in a table on a data source.

byte[] b = xmlString.getBytes("US-ASCII");

java.io.ByteArrayInputStream xmlAsciiInputStream =

 new java.io.ByteArrayInputStream(b);

sqlj.runtime.AsciiStream sqljXmlAsciiStream =

 new sqlj.runtime.AsciiStream(xmlAsciiInputStream, b.length);

#sql[ctx] {INSERT INTO CUSTACC VALUES (4, :sqljXmlAsciiStream)};

sqljXmlAsciiStream is a stream type, so its internal encoding is used. The data is

converted from its internal encoding to UTF-8 encoding and stored in its

hierarchical form on the data source.

Example: sqlj.runtime.CharacterStream host expression: Suppose that you

construct an sqlj.runtime.CharacterStream host expression, and insert data from the

sqlj.runtime.CharacterStream host expression into an XML column in a table.

java.io.StringReader xmlReader =

 new java.io.StringReader(xmlString);

sqlj.runtime.CharacterStream sqljXmlCharacterStream =

 new sqlj.runtime.CharacterStream(xmlReader, xmlString.length());

#sql [ctx] {INSERT INTO CUSTACC VALUES (4, :sqljXmlCharacterStream)};

sqljXmlCharacterStream is a character type, so its external encoding is used,

whether or not it has an internal encoding specification.

Example: Suppose that you retrieve a document from an XML column into a

java.sql.SQLXML host expression, and insert the data into an XML column in a

table.

java.sql.ResultSet rs = s.executeQuery ("SELECT * FROM CUSTACC");

rs.next();

java.sql.SQLXML xmlObject = (java.sql.SQLXML)rs.getObject(2);

#sql [ctx] {INSERT INTO CUSTACC VALUES (6, :xmlObject)};

After you retrieve the data it is still in UTF-8 encoding, so when you insert the

data into another XML column, no conversion occurs.

Example: Suppose that you retrieve a document from an XML column into a

com.ibm.db2.jcc.DB2Xml host expression, and insert the data into an XML column

in a table.

java.sql.ResultSet rs = s.executeQuery ("SELECT * FROM CUSTACC");

rs.next();

com.ibm.db2.jcc.DB2Xml xmlObject = (com.ibm.db2.jcc.DB2Xml)rs.getObject(2);

#sql [ctx] {INSERT INTO CUSTACC VALUES (6, :xmlObject)};

After you retrieve the data it is still in UTF-8 encoding, so when you insert the

data into another XML column, no conversion occurs.

XML data retrieval in SQLJ applications

When you retrieve data from XML columns of a database table in an SQLJ

application, the output data must be explicitly or implicitly serialized.

174 Developing Java Applications

The host expression or iterator data types that you can use to retrieve data from

XML columns are:

v java.sql.SQLXML (requires an SDK for Java Version 6 or later, and the IBM Data

Server Driver for JDBC and SQLJ version 4.0 or later)

v com.ibm.db2.jcc.DB2Xml (deprecated)

v String

v byte[]

v sqlj.runtime.AsciiStream

v sqlj.runtime.BinaryStream

v sqlj.runtime.CharacterStream

If the application does not call the XMLSERIALIZE function before data retrieval,

the data is converted from UTF-8 to the external application encoding for the

character data types, or the internal encoding for the binary data types. No XML

declaration is added. If the host expression is an object of the java.sql.SQLXML or

com.ibm.db2.jcc.DB2Xml type, you need to call an additional method to retrieve

the data from this object. The method that you call determines the encoding of the

output data and whether an XML declaration with an encoding specification is

added.

The following table lists the methods that you can call to retrieve data from a

java.sql.SQLXML or a com.ibm.db2.jcc.DB2Xml object, and the corresponding

output data types and type of encoding in the XML declarations.

 Table 32. SQLXML and DB2Xml methods, data types, and added encoding specifications

Method Output data type Type of XML internal encoding declaration added

SQLXML.getBinaryStream InputStream None

SQLXML.getCharacterStream Reader None

SQLXML.getSource Source None

SQLXML.getString String None

DB2Xml.getDB2AsciiStream InputStream None

DB2Xml.getDB2BinaryStream InputStream None

DB2Xml.getDB2Bytes byte[] None

DB2Xml.getDB2CharacterStream Reader None

DB2Xml.getDB2String String None

DB2Xml.getDB2XmlAsciiStream InputStream US-ASCII

DB2Xml.getDB2XmlBinaryStream InputStream Specified by getDB2XmlBinaryStream targetEncoding

parameter

DB2Xml.getDB2XmlBytes byte[] Specified by DB2Xml.getDB2XmlBytes targetEncoding

parameter

DB2Xml.getDB2XmlCharacterStream Reader ISO-10646-UCS-2

DB2Xml.getDB2XmlString String ISO-10646-UCS-2

If the application executes the XMLSERIALIZE function on the data that is to be

returned, after execution of the function, the data has the data type that is specified

in the XMLSERIALIZE function, not the XML data type. Therefore, the driver

handles the data as the specified type and ignores any internal encoding

declarations.

Example: Suppose that you retrieve data from an XML column into a String host

expression.

Chapter 4. SQLJ application programming 175

#sql iterator XmlStringIter (int, String);

#sql [ctx] siter = {SELECT C1, CADOC from CUSTACC};

#sql {FETCH :siter INTO :row, :outString};

The String type is a character type, so the data is converted from UTF-8 to the

external encoding, which is the default JVM encoding, and returned without any

XML declaration.

Example: Suppose that you retrieve data from an XML column into a byte[] host

expression.

#sql iterator XmlByteArrayIter (int, byte[]);

XmlByteArrayIter biter = null;

#sql [ctx] biter = {SELECT c1, CADOC from CUSTACC};

#sql {FETCH :biter INTO :row, :outBytes};

The byte[] type is a binary type, so no data conversion from UTF-8 encoding

occurs, and the data is returned without any XML declaration.

Example: Suppose that you retrieve a document from an XML column into a

java.sql.SQLXML host expression, but you need the data in a binary stream.

#sql iterator SqlXmlIter (int, java.sql.SQLXML);

SqlXmlIter SQLXMLiter = null;

java.sql.SQLXML outSqlXml = null;

#sql [ctx] SqlXmlIter = {SELECT c1, CADOC from CUSTACC};

#sql {FETCH :SqlXmlIter INTO :row, :outSqlXml};

java.io.InputStream XmlStream = outSqlXml.getBinaryStream();

The FETCH statement retrieves the data into the SQLXML object in UTF-8

encoding. The SQLXML.getBinaryStream stores the data in a binary stream.

Example: Suppose that you retrieve a document from an XML column into a

com.ibm.db2.jcc.DB2Xml host expression, but you need the data in a byte string

with an XML declaration that includes an internal encoding specification for

UTF-8.

#sql iterator DB2XmlIter (int, com.ibm.db2.jcc.DB2Xml);

DB2XmlIter db2xmliter = null;

com.ibm.db2.jcc.DB2Xml outDB2Xml = null;

#sql [ctx] db2xmliter = {SELECT c1, CADOC from CUSTACC};

#sql {FETCH :db2xmliter INTO :row, :outDB2Xml};

byte[] byteArray = outDB2XML.getDB2XmlBytes("UTF-8");

The FETCH statement retrieves the data into the DB2Xml object in UTF-8

encoding. The getDB2XmlBytes method with the UTF-8 argument adds an XML

declaration with a UTF-8 encoding specification and stores the data in a byte array.

XMLCAST in SQLJ applications

Before you can use XMLCAST to cast a host variable to the XML data type in an

SQLJ application, you need to cast the host variable to the corresponding SQL data

type.

Example: The following code demonstrates a situation in which it is necessary to

cast a String host variable to an SQL character type, such as VARCHAR, before

you use XMLCAST to cast the value to the XML data type.

String xmlresult = null;

String varchar_hv = "San Jose";

...

#sql [con] {SELECT XMLCAST(CAST(:varchar_hv AS VARCHAR(32)) AS XML) INTO

 :xmlresult FROM SYSIBM.SYSDUMMY1};

176 Developing Java Applications

SQLJ utilization of SDK for Java Version 5 function

Your SQLJ applications can use a number of functions that were introduced with

the SDK for Java Version 5.

Static import

The static import construct lets you access static members without qualifying those

members with the name of the class to which they belong. For SQLJ applications,

this means that you can use static members in host expressions without qualifying

them.

Example: Suppose that you want to declare a host expression of this form:

double r = cos(PI * E);

cos, PI, and E are members of the java.lang.Math class. To declare r without

explicitly qualifying cos, PI, and E, include the following static import statement in

your program:

import static java.lang.Math.*;

Annotations

Java annotations are a means for adding metadata to Java programs that can also

affect the way that those programs are treated by tools and libraries. Annotations

are declared with annotation type declarations, which are similar to interface

declarations. Java annotations can appear in the following types of classes or

interfaces:

v Class declaration

v Interface declaration

v Nested class declaration

v Nested interface declaration

You cannot include Java annotations directly in SQLJ programs, but you can

include annotations in Java source code, and then include that source code in your

SQLJ programs.

Example: Suppose that you declare the following marker annotation in a program

called MyAnnot.java:

public @interface MyAnot { }

You also declare the following marker annotation in a program called

MyAnnot2.java:

public @interface MyAnot2 { }

You can then use those annotations in an SQLJ program:

// Class annotations

@MyAnot2 public @MyAnot class TestAnnotation

{

 // Field annotation

 @MyAnot

 private static final int field1 = 0;

 // Constructor annotation

 @MyAnot2 public @MyAnot TestAnnotation () { }

 // Method annotation

 @MyAnot

 public static void main (String a[])

 {

Chapter 4. SQLJ application programming 177

TestAnnotation TestAnnotation_o = new TestAnnotation();

 TestAnnotation_o.runThis();

 }

 // Inner class annotation

 public static @MyAnot class TestAnotherInnerClass { }

 // Inner interface annotation

 public static @MyAnot interface TestAnotInnerInterface { }

}

Enumerated types

An enumerated type is a data type that consists of a set of ordered values. The

SDK for Java version 5 introduces the enum type for enumerated types.

You can include enums in the following places:

v In Java source files (.java files) that you include in an SQLJ program

v In SQLJ class declarations

Example: The TestEnum.sqlj class declaration includes an enum type:

public class TestEnum2

{

 public enum Color {

 RED,ORANGE,YELLOW,GREEN,BLUE,INDIGO,VIOLET}

 Color color;

 ... // Get the value of color

 switch (color) {

 case RED:

 System.out.println("Red is at one end of the spectrum.");

 #sql[ctx] { INSERT INTO MYTABLE VALUES (:color) };

 break;

 case VIOLET:

 System.out.println("Violet is on the other end of the spectrum.");

 break;

 case ORANGE:

 case YELLOW:

 case GREEN:

 case BLUE:

 case INDIGO:

 System.out.println("Everything else is in the middle.");

 break;

}

Generics

You can use generics in your Java programs to assign a type to a Java collection.

The SQLJ translator tolerates Java generic syntax. Examples of generics that you

can use in SQLJ programs are:

v A List of List objects:

List <List<String>> strList2 = new ArrayList<List<String>>();

v A HashMap in which the key/value pair has the String type:

Map <String,String> map = new HashMap<String,String>();

v A method that takes a List with elements of any type:

public void mthd(List <?> obj) {

...

}

Although you can use generics in SQLJ host variables, the value of doing so is

limited because the SQLJ translator cannot determine the types of those host

variables.

178 Developing Java Applications

Enhanced for loop

The enhanced for lets you specify that a set of operations is performed on each

member of a collection or array. You can use the iterator in the enhanced for loop

in host expressions.

Example: INSERT each of the items in array names into table TAB.

String[] names = {"ABC","DEF","GHI"};

for (String n : names)

{

 #sql {INSERT INTO TAB (VARCHARCOL) VALUES(:n) };

}

Varargs

Varargs make it easier to pass an arbitrary number of values to a method. A Vararg

in the last argument position of a method declaration indicates that the last

arguments are an array or a sequence of arguments. An SQLJ program can use the

passed arguments in host expressions.

Example: Pass an arbitrary number of parameters of type Object, to a method that

inserts each parameter value into table TAB.

public void runThis(Object... objects) throws SQLException

{

 for (Object obj : objects)

 {

 #sql { INSERT INTO TAB (VARCHARCOL) VALUES(:obj) };

 }

}

Transaction control in SQLJ applications

In SQLJ applications, as in other types of SQL applications, transaction control

involves explicitly or implicitly committing and rolling back transactions, and

setting the isolation level for transactions.

Setting the isolation level for an SQLJ transaction

To set the isolation level for a unit of work within an SQLJ program, use the SET

TRANSACTION ISOLATION LEVEL clause.

The following table shows the values that you can specify in the SET

TRANSACTION ISOLATION LEVEL clause and their DB2 equivalents.

 Table 33. Equivalent SQLJ and DB2 isolation levels

SET TRANSACTION value DB2 isolation level

SERIALIZABLE Repeatable read

REPEATABLE READ Read stability

READ COMMITTED Cursor stability

READ UNCOMMITTED Uncommitted read

The isolation level affects the underlying JDBC connection as well as the SQLJ

connection.

Chapter 4. SQLJ application programming 179

Committing or rolling back SQLJ transactions

If you disable autocommit for an SQLJ connection, you need to perform explicit

commit or rollback operations.

You do this using execution clauses that contain the SQL COMMIT or ROLLBACK

statements.

To commit a transaction in an SQLJ program, use a statement like this:

#sql [myConnCtx] {COMMIT};

To roll back a transaction in an SQLJ program, use a statement like this:

#sql [myConnCtx] {ROLLBACK};

Handling SQL errors and warnings in SQLJ applications

SQLJ clauses throw SQLExceptions when SQL errors occur, but not when most

SQL warnings occur.

SQLJ generates an SQLException under the following circumstances:

v When any SQL statement returns a negative SQL error code

v When a SELECT INTO SQL statement returns a +100 SQL error code

You need to explicitly check for other SQL warnings.

v For SQL error handling, include try/catch blocks around SQLJ statements.

v For SQL warning handling, invoke the getWarnings method after every SQLJ

statement.

Handling SQL errors in an SQLJ application

SQLJ clauses use the JDBC class java.sql.SQLException for error handling.

To handle SQL errors in SQLJ applications, following these steps:

1. Import the java.sql.SQLException class.

2. Use the Java error handling try/catch blocks to modify program flow when an

SQL error occurs.

3. Obtain error information from the SQLException.

You can use the getErrorCode method to retrieve SQL error codes and the

getSQLState method to retrieve SQLSTATEs.

If you are using the IBM Data Server Driver for JDBC and SQLJ, obtain

additional information from the SQLException by casting it to a

DB2Diagnosable object, in the same way that you obtain this information in a

JDBC application.

For the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2 JDBC

Type 2 Driver), use the standard SQLException to retrieve SQL error

information.

The following code prints out the SQL error that occurred if a SELECT statement

fails.

try {

 #sql [ctxt] {SELECT LASTNAME INTO :empname

 FROM EMPLOYEE WHERE EMPNO=’000010’};

180 Developing Java Applications

}

catch(SQLException e) {

 System.out.println("Error code returned: " + e.getErrorCode());

}

Handling SQL warnings in an SQLJ application

Other than a +100 SQL error code on a SELECT INTO statement, DB2 warnings do

not throw SQLExceptions. To handle DB2 warnings, you need to give the program

access to the java.sql.SQLWarning class.

If you want to retrieve DB2-specific information about a warning, you also need to

give the program access to the com.ibm.db2.jcc.DB2Diagnosable interface and the

com.ibm.db2.jcc.DB2Sqlca class. Then follow these steps:

1. Set up an execution context for that SQL clause. See ″Control the execution of

SQL statements in SQLJ″ for information on how to set up an execution

context.

2. To check for a DB2 warning, invoke the getWarnings method after you execute

an SQLJ clause.

getWarnings returns the first SQLWarning object that an SQL statement

generates. Subsequent SQLWarning objects are chained to the first one.

3. To retrieve DB2-specific information from the SQLWarning object with the IBM

Data Server Driver for JDBC and SQLJ, follow the instructions in ″Handle an

SQLException under the IBM Data Server Driver for JDBC and SQLJ″.

The following example demonstrates how to retrieve an SQLWarning object for an

SQL clause with execution context execCtx. The numbers to the right of selected

statements correspond to the previously-described steps.

ExecutionContext execCtx=myConnCtx.getExecutionContext(); �1�

 // Get default execution context from

 // connection context

SQLWarning sqlWarn;

...

#sql [myConnCtx,execCtx] {SELECT LASTNAME INTO :empname

 FROM EMPLOYEE WHERE EMPNO=’000010’};

if ((sqlWarn = execCtx.getWarnings()) != null) �2�

System.out.println("SQLWarning " + sqlWarn);

Closing the connection to a data source in an SQLJ application

When you have finished with a connection to a data source, you need to close the

connection to the data source. Doing so releases the connection context object’s

DB2 and SQLJ resources immediately.

To close the connection to the data source, use one of the ConnectionContext.close

methods.

v If you execute ConnectionContext.close() or

ConnectionContext.close(ConnectionContext.CLOSE_CONNECTION), the

connection context, as well as the connection to the data source, are closed.

v If you execute

ConnectionContext.close(ConnectionContext.KEEP_CONNECTION) the

connection context is closed, but the connection to the data source is not.

The following code closes the connection context, but does not close the connection

to the data source.

Chapter 4. SQLJ application programming 181

...

ctx = new EzSqljctx(con0); // Create a connection context object

 // from JDBC connection con0

... // Perform various SQL operations

 EzSqljctx.close(ConnectionContext.KEEP_CONNECTION);

 // Close the connection context but keep

 // the connection to the data source open

182 Developing Java Applications

Chapter 5. Security under the IBM Data Server Driver for

JDBC and SQLJ

When you use the IBM Data Server Driver for JDBC and SQLJ, you choose a

security mechanism by specifying a value for the securityMechanism property.

You can set this property in one of the following ways:

v If you use the DriverManager interface, set securityMechanism in a

java.util.Properties object before you invoke the form of the getConnection

method that includes the java.util.Properties parameter.

v If you use the DataSource interface, and you are creating and deploying your

own DataSource objects, invoke the DataSource.setSecurityMechanism method

after you create a DataSource object.

You can determine the security mechanism that is in effect for a connection by

calling the DB2Connection.getDB2SecurityMechanism method.

The following table lists the security mechanisms that the IBM Data Server Driver

for JDBC and SQLJ supports, and the data sources that support those security

mechanisms.

 Table 34. Database server support for IBM Data Server Driver for JDBC and SQLJ security mechanisms

Security mechanism Supported by

DB2 Database for

Linux, UNIX, and

Windows

DB2 for z/OS IBM Informix

Dynamic Server

DB2 for i

User ID and password Yes Yes Yes Yes

User ID only Yes Yes Yes Yes

User ID and encrypted

password

Yes Yes Yes Yes2

Encrypted user ID Yes Yes No No

Encrypted user ID and

encrypted password

Yes Yes Yes Yes2

Encrypted user ID and

encrypted security-sensitive

data

No Yes No No

Encrypted user ID,

encrypted password, and

encrypted security-sensitive

data

Yes Yes No No

Kerberos1 Yes Yes No Yes

Plugin1 Yes No No No

Note:

1. Available for IBM Data Server Driver for JDBC and SQLJ type 4 connectivity only.

2. The version of the data source must be DB2 for i V6R1 or later.

© Copyright IBM Corp. 2006, 2009 183

The following table lists the security mechanisms that the IBM Data Server Driver

for JDBC and SQLJ supports, and the value that you need to specify for the

securityMechanism property to specify each security mechanism.

The default security mechanism is CLEAR_TEXT_PASSWORD_SECURITY. If the

server does not support CLEAR_TEXT_PASSWORD_SECURITY but supports

ENCRYPTED_USER_AND_PASSWORD_SECURITY, the IBM Data Server Driver

for JDBC and SQLJ driver updates the security mechanism to

ENCRYPTED_USER_AND_PASSWORD_SECURITY and attempts to connect to the

server. Any other mismatch in security mechanism support between the requester

and the server results in an error.

 Table 35. Security mechanisms supported by the IBM Data Server Driver for JDBC and SQLJ

Security mechanism securityMechanism property value

User ID and password DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY

User ID only DB2BaseDataSource.USER_ONLY_SECURITY

User ID and encrypted password DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY

Encrypted user ID DB2BaseDataSource.ENCRYPTED_USER_ONLY_SECURITY

Encrypted user ID and encrypted

password

DB2BaseDataSource.ENCRYPTED_USER_AND_PASSWORD_SECURITY

Encrypted user ID and encrypted

security-sensitive data

DB2BaseDataSource.ENCRYPTED_USER_AND_DATA_SECURITY

Encrypted user ID, encrypted

password, and encrypted

security-sensitive data

DB2BaseDataSource.ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

Kerberos DB2BaseDataSource.KERBEROS_SECURITY

Plugin DB2BaseDataSource.PLUGIN_SECURITY

The following table shows possible DB2 Database for Linux, UNIX, and Windows

server authentication types and the compatible IBM Data Server Driver for JDBC

and SQLJ securityMechanism property values.

 Table 36. Compatible DB2 Database for Linux, UNIX, and Windows server authentication types and IBM Data Server

Driver for JDBC and SQLJ securityMechanism values

DB2 Database for Linux, UNIX, and

Windows server authentication type securityMechanism setting

CLIENT USER_ONLY_SECURITY

SERVER CLEAR_TEXT_PASSWORD_SECURITY

SERVER_ENCRYPT CLEAR_TEXT_PASSWORD_SECURITY,

ENCRYPTED_PASSWORD_SECURITY, or

ENCRYPTED_USER_AND_PASSWORD_SECURITY

DATA_ENCRYPT ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

KERBEROS KERBEROS_SECURITY or PLUGIN_SECURITY2

KRB_SERVER_ENCRYPT KERBEROS_SECURITY , PLUGIN_SECURITY1,

ENCRYPTED_PASSWORD_SECURITY, or

ENCRYPTED_USER_AND_PASSWORD_SECURITY

GSSPLUGIN PLUGIN_SECURITY1 or KERBEROS_SECURITY

184 Developing Java Applications

Table 36. Compatible DB2 Database for Linux, UNIX, and Windows server authentication types and IBM Data Server

Driver for JDBC and SQLJ securityMechanism values (continued)

DB2 Database for Linux, UNIX, and

Windows server authentication type securityMechanism setting

GSS_SERVER_ENCRYPT3 CLEAR_TEXT_PASSWORD_SECURITY,

ENCRYPTED_PASSWORD_SECURITY,

ENCRYPTED_USER_AND_PASSWORD_SECURITY,

PLUGIN_SECURITY, or KERBEROS_SECURITY

Notes:

1. For PLUGIN_SECURITY, the plugin must be a Kerberos plugin.

2. For PLUGIN_SECURITY, one of the plugins at the server identifies itself as supporting Kerberos.

3. GSS_SERVER_ENCRYPT is a combination of GSSPLUGIN and SERVER_ENCRYPT.

User ID and password security under the IBM Data Server Driver for

JDBC and SQLJ

With the IBM Data Server Driver for JDBC and SQLJ, one of the available security

methods is user ID and password security.

To specify user ID and password security for a JDBC connection, use one of the

following techniques.

For the DriverManager interface: You can specify the user ID and password

directly in the DriverManager.getConnection invocation. For example:

import java.sql.*; // JDBC base

...

String id = "dbadm"; // Set user ID

String pw = "dbadm"; // Set password

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, id, pw);

 // Create connection

Another method is to set the user ID and password directly in the URL string. For

example:

import java.sql.*; // JDBC base

...

String url =

 "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose:user=dbadm;password=dbadm;";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url);

 // Create connection

Alternatively, you can set the user ID and password by setting the user and

password properties in a Properties object, and then invoking the form of the

getConnection method that includes the Properties object as a parameter.

Optionally, you can set the securityMechanism property to indicate that you are

using user ID and password security. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

 // and SQLJ implementation of JDBC

...

Properties properties = new java.util.Properties();

 // Create Properties object

Chapter 5. Security under the IBM Data Server Driver for JDBC and SQLJ 185

properties.put("user", "dbadm"); // Set user ID for the connection

properties.put("password", "dbadm"); // Set password for the connection

properties.put("securityMechanism",

 new String("" + com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY +

 ""));

 // Set security mechanism to

 // user ID and password

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create connection

For the DataSource interface: you can specify the user ID and password directly in

the DataSource.getConnection invocation. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

 // and SQLJ implementation of JDBC

...

Context ctx=new InitialContext(); // Create context for JNDI

DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb");

 // Get DataSource object

String id = "dbadm"; // Set user ID

String pw = "dbadm"; // Set password

Connection con = ds.getConnection(id, pw);

 // Create connection

Alternatively, if you create and deploy the DataSource object, you can set the user

ID and password by invoking the DataSource.setUser and DataSource.setPassword

methods after you create the DataSource object. Optionally, you can invoke the

DataSource.setSecurityMechanism method property to indicate that you are using

user ID and password security. For example:

...

com.ibm.db2.jcc.DB2SimpleDataSource ds = // Create DB2SimpleDataSource object

 new com.ibm.db2.jcc.DB2SimpleDataSource();

ds.setDriverType(4); // Set driver type

ds.setDatabaseName("san_jose"); // Set location

ds.setServerName("mvs1.sj.ibm.com"); // Set server name

ds.setPortNumber(5021); // Set port number

ds.setUser("dbadm"); // Set user ID

ds.setPassword("dbadm"); // Set password

ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.CLEAR_TEXT_PASSWORD_SECURITY);

 // Set security mechanism to

 // user ID and password

User ID-only security under the IBM Data Server Driver for JDBC and

SQLJ

With the IBM Data Server Driver for JDBC and SQLJ, one of the available security

methods is user-ID only security.

To specify user ID security for a JDBC connection, use one of the following

techniques.

For the DriverManager interface: Set the user ID and security mechanism by

setting the user and securityMechanism properties in a Properties object, and then

invoking the form of the getConnection method that includes the Properties object

as a parameter. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver

 // for JDBC and SQLJ

186 Developing Java Applications

// implementation of JDBC

...

Properties properties = new Properties();

 // Create a Properties object

properties.put("user", "db2adm"); // Set user ID for the connection

properties.put("securityMechanism",

 new String("" + com.ibm.db2.jcc.DB2BaseDataSource.USER_ONLY_SECURITY + ""));

 // Set security mechanism to

 // user ID only

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create the connection

For the DataSource interface: If you create and deploy the DataSource object, you

can set the user ID and security mechanism by invoking the DataSource.setUser

and DataSource.setSecurityMechanism methods after you create the DataSource

object. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver

 // for JDBC and SQLJ

 // implementation of JDBC

...

com.ibm.db2.jcc.DB2SimpleDataSource db2ds =

 new com.ibm.db2.jcc.DB2SimpleDataSource();

 // Create DB2SimpleDataSource object

db2ds.setDriverType(4); // Set the driver type

db2ds.setDatabaseName("san_jose"); // Set the location

db2ds.setServerName("mvs1.sj.ibm.com");

 // Set the server name

db2ds.setPortNumber(5021); // Set the port number

db2ds.setUser("db2adm"); // Set the user ID

db2ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.USER_ONLY_SECURITY);

 // Set security mechanism to

 // user ID only

Encrypted password, user ID, or user ID and password security under

the IBM Data Server Driver for JDBC and SQLJ

IBM Data Server Driver for JDBC and SQLJ supports encrypted password security,

encrypted user ID security, or encrypted user ID and encrypted password security

for accessing data sources.

The IBM Data Server Driver for JDBC and SQLJ supports 56-bit DES (weak)

encryption or 256-bit AES (strong) encryption. AES encryption is available with

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity only. You set the

encryptionAlgorithm driver property to choose between 56-bit DES encryption

(encryptionAlgorithm value of 1) and 256-bit AES encryption (encryptionAlgorithm

value of 2). 256-bit AES encryption is used for a connection only if the database

server supports it and is configured to use it.

If you use encrypted password security, encrypted user ID security, or encrypted

user ID and encrypted password security, the IBM Java Cryptography Extension

(JCE) needs to be enabled on your client. The IBM JCE is part of the IBM SDK for

Java, Version 1.4.2 or later.

The IBM JCE needs to use 56-bit DES or 256-bit AES encrypted client/server

communication from the IBM Data Server Driver for JDBC and SQLJ driver to DB2

Database for Linux, UNIX, and Windows servers.

Chapter 5. Security under the IBM Data Server Driver for JDBC and SQLJ 187

For AES encryption, you need to get the unrestricted policy file for JCE. It is

available at the following URL: https://www14.software.ibm.com/webapp/iwm/
web/preLogin.do?source=jcesdk

Connections to DB2 for i V6R1 or later servers can use encrypted password

security or encrypted user ID and encrypted password security. For encrypted

password security or encrypted user ID and encrypted password security, the IBM

Java Cryptography Extension (ibmjceprovidere.jar) must be installed on your client.

The IBM JCE is part of the IBM SDK for Java, Version 1.4.2 or later.

You can also use encrypted security-sensitive data in addition to encrypted user ID

security or encrypted user ID and encrypted password security. You specify

encryption of security-sensitive data through the

ENCRYPTED_USER_AND_DATA_SECURITY or

ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY securityMechanism value.

ENCRYPTED_USER_AND_DATA_SECURITY is valid for connections to DB2 for z/OS

servers only, and only for DES encryption (encryptionAlgorithm value of 1).

DB2 for z/OS or DB2 Database for Linux, UNIX, and Windows database servers

encrypt the following data when you specify encryption of security-sensitive data:

v SQL statements that are being prepared, executed, or bound into a package

v Input and output parameter information

v Result sets

v LOB data

v XML data

v Results of describe operations

Before you can use encrypted security-sensitive data, the z/OS Integrated

Cryptographic Services Facility needs to be installed and enabled on the z/OS

operating system.

To specify encrypted user ID or encrypted password security for a JDBC

connection, use one of the following techniques.

For the DriverManager interface: Set the user ID, password, and security

mechanism by setting the user, password, and securityMechanism properties in a

Properties object, and then invoking the form of the getConnection method that

includes the Properties object as a parameter. For example, use code like this to set

the user ID and encrypted password security mechanism, with AES encryption:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

 // and SQLJ implementation of JDBC

...

Properties properties = new Properties(); // Create a Properties object

properties.put("user", "dbadm"); // Set user ID for the connection

properties.put("password", "dbadm"); // Set password for the connection

properties.put("securityMechanism", "2");

 new String("" + com.ibm.db2.jcc.DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY +

 ""));

 // Set security mechanism to

 // user ID and encrypted password

properties.put("encryptionAlgorithm", "2");

 // Request AES security

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create the connection

188 Developing Java Applications

https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk
https://www14.software.ibm.com/webapp/iwm/web/preLogin.do?source=jcesdk

For the DataSource interface: If you create and deploy the DataSource object, you

can set the user ID, password, and security mechanism by invoking the

DataSource.setUser, DataSource.setPassword, and

DataSource.setSecurityMechanism methods after you create the DataSource object.

For example, use code like this to set the encrypted user ID and encrypted

password security mechanism, with AES encryption:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

 // and SQLJ implementation of JDBC

...

com.ibm.db2.jcc.DB2SimpleDataSource ds =

 new com.ibm.db2.jcc.DB2SimpleDataSource();

 // Create the DataSource object

ds.setDriverType(4); // Set the driver type

ds.setDatabaseName("san_jose"); // Set the location

ds.setServerName("mvs1.sj.ibm.com");

 // Set the server name

ds.setPortNumber(5021); // Set the port number

ds.setUser("db2adm"); // Set the user ID

ds.setPassword("db2adm"); // Set the password

ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.ENCRYPTED_PASSWORD_SECURITY);

 // Set security mechanism to

 // User ID and encrypted password

ds.setEncryptionAlgorithm(2); // Request AES encryption

Kerberos security under the IBM Data Server Driver for JDBC and

SQLJ

JDBC support for Kerberos security is available for IBM Data Server Driver for

JDBC and SQLJ type 4 connectivity only.

To enable JDBC support for Kerberos security, you also need to enable the

following components of your software development kit (SDK) for Java:

v Java Cryptography Extension

v Java Generic Security Service (JGSS)

v Java Authentication and Authorization Service (JAAS)

See the documentation for your SDK for Java for information on how to enable

these components.

There are three ways to specify Kerberos security for a connection:

v With a user ID and password

v Without a user ID or password

v With a delegated credential

Kerberos security with a user ID and password

For this case, Kerberos uses the specified user ID and password to obtain a

ticket-granting ticket (TGT) that lets you authenticate to the database server.

You need to set the user, password, kerberosServerPrincipal, and

securityMechanism properties. Set the securityMechanism property to

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY (11). The

kerberosServerPrincipal property specifies the principal name that the database

server registers with a Kerberos Key Distribution Center (KDC).

Chapter 5. Security under the IBM Data Server Driver for JDBC and SQLJ 189

For the DriverManager interface: Set the user ID, password, Kerberos server, and

security mechanism by setting the user, password, kerberosServerPrincipal, and

securityMechanism properties in a Properties object, and then invoking the form of

the getConnection method that includes the Properties object as a parameter. For

example, use code like this to set the Kerberos security mechanism with a user ID

and password:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

 // and SQLJ implementation of JDBC

...

Properties properties = new Properties(); // Create a Properties object

properties.put("user", "db2adm"); // Set user ID for the connection

properties.put("password", "db2adm"); // Set password for the connection

properties.put("kerberosServerPrincipal",

 "sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");

 // Set the Kerberos server

properties.put("securityMechanism",

 new String("" +

 com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY + ""));

 // Set security mechanism to

 // Kerberos

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create the connection

For the DataSource interface: If you create and deploy the DataSource object, set

the Kerberos server and security mechanism by invoking the

DataSource.setKerberosServerPrincipal and DataSource.setSecurityMechanism

methods after you create the DataSource object. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

 // and SQLJ implementation of JDBC

...

com.ibm.db2.jcc.DB2SimpleDataSource db2ds =

 new com.ibm.db2.jcc.DB2SimpleDataSource();

 // Create the DataSource object

db2ds.setDriverType(4); // Set the driver type

db2ds.setDatabaseName("san_jose"); // Set the location

db2ds.setUser("db2adm"); // Set the user

db2ds.setPassword("db2adm"); // Set the password

db2ds.setServerName("mvs1.sj.ibm.com");

 // Set the server name

db2ds.setPortNumber(5021); // Set the port number

db2ds.setKerberosServerPrincipal(

 "sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");

 // Set the Kerberos server

db2ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

 // Set security mechanism to

 // Kerberos

Kerberos security with no user ID or password

For this case, the Kerberos default credentials cache must contain a ticket-granting

ticket (TGT) that lets you authenticate to the database server.

You need to set the kerberosServerPrincipal and securityMechanism properties.

Set the securityMechanism property to

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY (11).

190 Developing Java Applications

For the DriverManager interface: Set the Kerberos server and security mechanism

by setting the kerberosServerPrincipal and securityMechanism properties in a

Properties object, and then invoking the form of the getConnection method that

includes the Properties object as a parameter. For example, use code like this to set

the Kerberos security mechanism without a user ID and password:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

 // and SQLJ implementation of JDBC

...

Properties properties = new Properties(); // Create a Properties object

properties.put("kerberosServerPrincipal",

 “sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");

 // Set the Kerberos server

properties.put("securityMechanism",

 new String("" +

 com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY + ""));

 // Set security mechanism to

 // Kerberos

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create the connection

For the DataSource interface: If you create and deploy the DataSource object, set

the Kerberos server and security mechanism by invoking the

DataSource.setKerberosServerPrincipal and DataSource.setSecurityMechanism

methods after you create the DataSource object. For example:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

 // and SQLJ implementation of JDBC

...

DB2SimpleDataSource db2ds =

 new com.ibm.db2.jcc.DB2SimpleDataSource();

 // Create the DataSource object

db2ds.setDriverType(4); // Set the driver type

db2ds.setDatabaseName("san_jose"); // Set the location

db2ds.setServerName("mvs1.sj.ibm.com");

 // Set the server name

db2ds.setPortNumber(5021); // Set the port number

db2ds.setKerberosServerPrincipal(

 "sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");

 // Set the Kerberos server

db2ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

 // Set security mechanism to

 // Kerberos

Kerberos security with a delegated credential from another

principal

For this case, you authenticate to the database server using a delegated credential

that another principal passes to you.

You need to set the kerberosServerPrincipal, gssCredential, and

securityMechanism properties. Set the securityMechanism property to

com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY (11).

For the DriverManager interface: Set the Kerberos server, delegated credential, and

security mechanism by setting the kerberosServerPrincipal, and

securityMechanism properties in a Properties object. Then invoke the form of the

Chapter 5. Security under the IBM Data Server Driver for JDBC and SQLJ 191

getConnection method that includes the Properties object as a parameter. For

example, use code like this to set the Kerberos security mechanism without a user

ID and password:

import java.sql.*; // JDBC base

import com.ibm.db2.jcc.*; // IBM Data Server Driver for JDBC

 // and SQLJ implementation of JDBC

...

Properties properties = new Properties(); // Create a Properties object

properties.put("kerberosServerPrincipal",

 “sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");

 // Set the Kerberos server

properties.put("gssCredential",delegatedCredential);

 // Set the delegated credential

properties.put("securityMechanism",

 new String("" +

 com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY + ""));

 // Set security mechanism to

 // Kerberos

String url = "jdbc:db2://mvs1.sj.ibm.com:5021/san_jose";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create the connection

For the DataSource interface: If you create and deploy the DataSource object, set

the Kerberos server, delegated credential, and security mechanism by invoking the

DataSource.setKerberosServerPrincipal, DataSource.setGssCredential, and

DataSource.setSecurityMechanism methods after you create the DataSource object.

For example:

DB2SimpleDataSource db2ds = new com.ibm.db2.jcc.DB2SimpleDataSource();

 // Create the DataSource object

db2ds.setDriverType(4); // Set the driver type

db2ds.setDatabaseName("san_jose"); // Set the location

db2ds.setServerName("mvs1.sj.ibm.com"); // Set the server name

db2ds.setPortNumber(5021); // Set the port number

db2ds.setKerberosServerPrincipal(

 "sample/srvlsj.ibm.com@SRVLSJ.SJ.IBM.COM");

 // Set the Kerberos server

db2ds.setGssCredential(delegatedCredential);

 // Set the delegated credential

db2ds.setSecurityMechanism(

 com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY);

 // Set security mechanism to

 // Kerberos

IBM Data Server Driver for JDBC and SQLJ security plugin support

You can create your own authentication mechanisms in the form of loadable

libraries, or plugins, that DB2 Database for Linux, UNIX, and Windows loads to

perform user authentication. To support development of security plugins in Java,

the IBM Data Server Driver for JDBC and SQLJ provides security plugin support.

IBM Data Server Driver for JDBC and SQLJ security plugin support is available for

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2 Database

for Linux, UNIX, and Windows servers only.

To use plugin security, you need a security plugin on the client and another plugin

on the server.

The security plugins need to include the following things:

v A class that extends the com.ibm.db2.jcc.DB2JCCPlugin abstract class

192 Developing Java Applications

The com.ibm.db2.jcc.DB2JCCPlugin abstract class is provided with the IBM Data

Server Driver for JDBC and SQLJ.

v Within the com.ibm.db2.jcc.DB2JCCPlugin class, a

com.ibm.db2.jcc.DB2JCCPlugin.getTicket method

This method retrieves a Kerberos ticket for a user and returns security context

information in a byte array. The information in the byte array is used by the

IBM Data Server Driver for JDBC and SQLJ to access the DB2 database server.

v Implementations of several methods that are defined in the

org.ietf.jgss.GSSContext and org.ietf.jgss.GSSCredential interfaces

These method implementations need to follow the Generic Security Service

Application Program Interface, Version 2 (IETF RFC2743) and Generic Security

Service API Version 2: Java-Bindings (IETF RFC2853) specifications. The plugin

must implement and call the following methods:

GSSContext.dispose

Releases any system resources and cryptographic information that are

stored in a context object, and invalidates the context.

GSSContext.getCredDelegState

Determines wheter credential delegation is enabled on a context.

GSSContext.getMutualAuthState

Determines whether mutual authentication is enabled on the context.

GSSContext.initSecContext

Starts the context creation phase, and processes any tokens that are

generated by the peer’s acceptSecContext method.

GSSContext.requestCredDeleg

Requests that the credentials of the initiator are delegated to the acceptor

when a context is established.

GSSContext.requestMutualAuth

Requests mutual authentication when a context is established.

GSSCredential.dispose

Releases any sensitive information that the GSSCredential object

contains.

Two Java plugin samples are provided in sqllib/samples/java/jdbc to help you

write Java security plugins:

JCCSimpleGSSPlugin.java

An implementation of a GSS-API plugin for the server, which performs user ID

and password checking. This sample is a Java version of the C language

sample program gssapi_simple.c.

JCCKerberosPlugin.java

A Kerberos security plugin for the client. This sample is a Java version of the C

language sample program IBMkrb5.c.

When an application program obtains a connection using JDBC plugin security, it

needs to set the following Connection or DataSource properties:

 Table 37. Connection or DataSource property settings for Java security plugin use

Property Setting

com.ibm.db2.jcc.DB2BaseDataSource.user The user ID under which the Connection is to be

obtained

com.ibm.db2.jcc.DB2BaseDataSource.password The password for the user ID

Chapter 5. Security under the IBM Data Server Driver for JDBC and SQLJ 193

Table 37. Connection or DataSource property settings for Java security plugin use (continued)

Property Setting

com.ibm.db2.jcc.DB2BaseDataSource.securityMechanism com.ibm.db2.jcc.DB2BaseDataSource.PLUGIN_SECURITY

com.ibm.db2.jcc.DB2BaseDataSource.pluginName The name of the plugin module for a server-side security

plugin

com.ibm.db2.jcc.DB2BaseDataSource.plugin The plugin object for a client-side security plugin

Example: The following code sets the properties for a connection that uses GSS-API

plugin security. The connection uses the JCCSimpleGSSPlugin sample plugin on

the client side, and the gssapi_simple sample plugin on the server side.

java.util.Properties properties = new java.util.Properties();

properties.put("user", "db2admin");

properties.put("password", "admindb2");

properties.put("pluginName", "gssapi_simple");

properties.put("securityMechanism",

 new String(""+com.ibm.db2.jcc.DB2BaseDataSource.PLUGIN_SECURITY+""));

com.ibm.db2.jcc.DB2JCCPlugin plugin =

 new com.ibm.db2.jcc.samples.plugins.JCCSimpleGSSplugin();

properties.put("plugin", plugin);

Connection con = java.sql.DriverManager.getConnection(url,

 properties);

Use of alternative security mechanisms with the IBM Data Server

Driver for JDBC and SQLJ

If you are using IBM Data Server Driver for JDBC and SQLJ type 4 connectivity,

and you set the retryWithAlternativeSecurityMechanism to

com.ibm.db2.jcc.DB2BaseDataSource.YES (1), and the original security mechanism

for a connection fails, the driver retries the connection with the most secure

alternative security mechanism.

The following table lists the IBM Data Server Driver for JDBC and SQLJ security

mechanisms, and the alternative security mechanisms that are used when the

original connection has an authorization failure.

 Table 38. Original and alternative IBM Data Server Driver for JDBC and SQLJ security mechanisms

Server authentication type

IBM Data Server Driver for JDBC and SQLJ authentication type for the

original connection

IBM Data Server Driver for JDBC and SQLJ authentication type

for retrying the connection

CLIENT

v CLEAR_TEXT_PASSWORD_SECURITY

v ENCRYPTED_PASSWORD_SECURITY

v ENCRYPTED_USER_AND_PASSWORD_SECURITY

v KERBEROS_SECURITY

v ENCRYPTED_USER_AND_DATA_SECURITY

v ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

v PLUGIN_SECURITY

v ENCRYPTED_USER_ONLY_SECURITY

USER_ONLY_SECURITY

USER_ONLY_SECURITY None. USER_ONLY_SECURITY does not fail on the original

connection.

194 Developing Java Applications

Table 38. Original and alternative IBM Data Server Driver for JDBC and SQLJ security mechanisms (continued)

Server authentication type

IBM Data Server Driver for JDBC and SQLJ authentication type for the

original connection

IBM Data Server Driver for JDBC and SQLJ authentication type

for retrying the connection

SERVER

v USER_ONLY_SECURITY

v ENCRYPTED_PASSWORD_SECURITY

v ENCRYPTED_USER_AND_PASSWORD_SECURITY

v KERBEROS_SECURITY

v ENCRYPTED_USER_AND_DATA_SECURITY

v ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

v PLUGIN_SECURITY

v ENCRYPTED_USER_ONLY_SECURITY

CLEAR_TEXT_PASSWORD_SECURITY

CLEAR_TEXT_PASSWORD_SECURITY None. CLEAR_TEXT_PASSWORD_SECURITY does not fail on the

original connection.

SERVER_ENCRYPT for DB2

Database for Linux, UNIX,

and Windows Version 8 Fix

Pack 9 or earlier

v CLEAR_TEXT_PASSWORD_SECURITY

v USER_ONLY_SECURITY

v KERBEROS_SECURITY

v ENCRYPTED_USER_AND_DATA_SECURITY

v ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

v PLUGIN_SECURITY

v ENCRYPTED_USER_ONLY_SECURITY

ENCRYPTED_USER_AND_PASSWORD_SECURITY

v ENCRYPTED_PASSWORD_SECURITY

v ENCRYPTED_USER_AND_PASSWORD_SECURITY

None. ENCRYPTED_PASSWORD_SECURITY and

ENCRYPTED_USER_AND_PASSWORD_SECURITY do not fail on

the original connection.

SERVER_ENCRYPT for DB2

Database for Linux, UNIX,

and Windows Version 8 Fix

Pack 10 or later

v USER_ONLY_SECURITY

v KERBEROS_SECURITY

v ENCRYPTED_USER_AND_DATA_SECURITY

v ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

v PLUGIN_SECURITY

v ENCRYPTED_USER_ONLY_SECURITY

ENCRYPTED_USER_AND_PASSWORD_SECURITY

v CLEAR_TEXT_PASSWORD_SECURITY

v ENCRYPTED_PASSWORD_SECURITY

v ENCRYPTED_USER_AND_PASSWORD_SECURITY

None. CLEAR_TEXT_PASSWORD_SECURITY,

ENCRYPTED_PASSWORD_SECURITY, and

ENCRYPTED_USER_AND_PASSWORD_SECURITY do not fail on

the original connection.

DATA_ENCRYPT

v CLEAR_TEXT_PASSWORD_SECURITY

v USER_ONLY_SECURITY

v ENCRYPTED_PASSWORD_SECURITY

v ENCRYPTED_USER_AND_PASSWORD_SECURITY

v KERBEROS_SECURITY

v ENCRYPTED_USER_AND_DATA_SECURITY

v PLUGIN_SECURITY

v ENCRYPTED_USER_ONLY_SECURITY

ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY None. ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

does not fail on the original connection.

KERBEROS

v CLEAR_TEXT_PASSWORD_SECURITY

v USER_ONLY_SECURITY

v ENCRYPTED_PASSWORD_SECURITY

v ENCRYPTED_USER_AND_PASSWORD_SECURITY

v ENCRYPTED_USER_AND_DATA_SECURITY

v ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

v PLUGIN_SECURITY

v ENCRYPTED_USER_ONLY_SECURITY

KERBEROS_SECURITY

KERBEROS_SECURITY None. KERBEROS_SECURITY does not fail on the original

connection.

Chapter 5. Security under the IBM Data Server Driver for JDBC and SQLJ 195

Table 38. Original and alternative IBM Data Server Driver for JDBC and SQLJ security mechanisms (continued)

Server authentication type

IBM Data Server Driver for JDBC and SQLJ authentication type for the

original connection

IBM Data Server Driver for JDBC and SQLJ authentication type

for retrying the connection

GSSPLUGIN

v CLEAR_TEXT_PASSWORD_SECURITY

v USER_ONLY_SECURITY

v ENCRYPTED_PASSWORD_SECURITY

v ENCRYPTED_USER_AND_PASSWORD_SECURITY

v KERBEROS_SECURITY

v ENCRYPTED_USER_AND_DATA_SECURITY

v ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

v ENCRYPTED_USER_ONLY_SECURITY

PLUGIN_SECURITY

PLUGIN_SECURITY None. PLUGIN_SECURITY does not fail on the original

connection.

KRB_SERVER_ENCRYPT

v USER_ONLY_SECURITY

v ENCRYPTED_USER_AND_DATA_SECURITY

v ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

v ENCRYPTED_USER_ONLY_SECURITY

KERBEROS_SECURITY

v CLEAR_TEXT_PASSWORD_SECURITY

v ENCRYPTED_PASSWORD_SECURITY

v ENCRYPTED_USER_AND_PASSWORD_SECURITY

v KERBEROS_SECURITY

v PLUGIN_SECURITY

None. CLEAR_TEXT_PASSWORD_SECURITY,

ENCRYPTED_PASSWORD_SECURITY,

ENCRYPTED_USER_AND_PASSWORD_SECURITY,

KERBEROS_SECURITY, and PLUGIN_SECURITY do not fail on

the original connection.

GSS_SERVER_ENCRYPT

v USER_ONLY_SECURITY

v ENCRYPTED_USER_AND_DATA_SECURITY

v ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY

v ENCRYPTED_USER_ONLY_SECURITY

KERBEROS_SECURITY

v CLEAR_TEXT_PASSWORD_SECURITY

v ENCRYPTED_PASSWORD_SECURITY

v ENCRYPTED_USER_AND_PASSWORD_SECURITY

v KERBEROS_SECURITY

v PLUGIN_SECURITY

None. CLEAR_TEXT_PASSWORD_SECURITY,

ENCRYPTED_PASSWORD_SECURITY,

ENCRYPTED_USER_AND_PASSWORD_SECURITY,

KERBEROS_SECURITY, and PLUGIN_SECURITY do not fail on

the original connection.

IBM Data Server Driver for JDBC and SQLJ trusted context support

The IBM Data Server Driver for JDBC and SQLJ provides methods that allow you

to establish and use trusted connections in Java programs.

Trusted connections are supported for:

v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2

Database for Linux, UNIX, and Windows Version 9.5 or later, and DB2 for z/OS

Version 9.1 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for z/OS

Version 9.1 or later

A three-tiered application model consists of a database server, a middleware server

such as WebSphere Application Server, and end users. With this model, the

middleware server is responsible for accessing the database server on behalf of end

users. Trusted context support ensures that an end user’s database identity and

database privileges are used when the middleware server performs any database

requests on behalf of that end user.

A trusted context is an object that the database administrator defines that contains

a system authorization ID and a set of trust attributes. Currently, for DB2 database

servers, a database connection is the only type of context that is supported. The

trust attributes identify a set of characteristics of a connection that are required for

the connection to be considered a trusted connection. The relationship between a

196 Developing Java Applications

database connection and a trusted context is established when the connection to

the database server is first created, and that relationship remains for the life of the

database connection.

After a trusted context is defined, and an initial trusted connection to the DB2

database server is made, the middleware server can use that database connection

under a different user without reauthenticating the new user at the database

server.

To avoid vulnerability to security breaches, an application server that uses these

trusted methods should not use untrusted connection methods.

The DB2ConnectionPoolDataSource class provides several versions of the

getDB2TrustedPooledConnection method, and the DB2XADataSource class

provides several versions of the getDB2TrustedXAConnection method, which allow

an application server to establish the initial trusted connection. You choose a

method based on the types of connection properties that you pass and whether

you use Kerberos security. When an application server calls one of these methods,

the IBM Data Server Driver for JDBC and SQLJ returns an Object[] array with two

elements:

v The first element contains a connection instance for the initial connection.

v The second element contains a unique cookie for the connection instance. The

cookie is generated by the JDBC driver and is used for authentication during

subsequent connection reuse.

The DB2PooledConnection class provides several versions of the getDB2Connection

method, and the DB2Connection class provides several versions of the

reuseDB2Connection method, which allow an application server to reuse an

existing trusted connection on behalf of a new user. The application server uses the

method to pass the following items to the new user:

v The cookie from the initial connection

v New connection properties for the reused connection

The JDBC driver checks that the supplied cookie matches the cookie of the

underlying trusted physical connection, to ensure that the connection request

originates from the application server that established the trusted physical

connection. If the cookies match, the connection becomes available for immediate

use by this new user, with the new properties.

Example: Obtain the initial trusted connection:

// Create a DB2ConnectionPoolDataSource instance

com.ibm.db2.jcc.DB2ConnectionPoolDataSource dataSource =

 new com.ibm.db2.jcc.DB2ConnectionPoolDataSource();

// Set properties for this instance

dataSource.setDatabaseName ("STLEC1");

dataSource.setServerName ("v7ec167.svl.ibm.com");

dataSource.setDriverType (4);

dataSource.setPortNumber(446);

java.util.Properties properties = new java.util.Properties();

// Set other properties using

// properties.put("property", "value");

// Supply the user ID and password for the connection

String user = "user";

String password = "password";

// Call getDB2TrustedPooledConnection to get the trusted connection

// instance and the cookie for the connection

Object[] objects = dataSource.getDB2TrustedPooledConnection(

 user,password, properties);

Chapter 5. Security under the IBM Data Server Driver for JDBC and SQLJ 197

Example: Reuse an existing trusted connection:

// The first item that was obtained from the previous getDB2TrustedPooledConnection

// call is a connection object. Cast it to a PooledConnection object.

javax.sql.PooledConnection pooledCon =

 (javax.sql.PooledConnection)objects[0];

properties = new java.util.Properties();

// Set new properties for the reused object using

// properties.put("property", "value");

// The second item that was obtained from the previous getDB2TrustedPooledConnection

// call is the cookie for the connection. Cast it as a byte array.

byte[] cookie = ((byte[])(objects[1]);

// Supply the user ID for the new connection.

String newuser = "newuser";

// Supply the name of a mapping service that maps a workstation user

// ID to a z/OS RACF ID

String userRegistry = "registry";

// Do not supply any security token data to be traced.

byte[] userSecTkn = null;

// Do not supply a previous user ID.

String originalUser = null;

// Call getDB2Connection to get the connection object for the new

// user.

java.sql.Connection con =

 ((com.ibm.db2.jcc.DB2PooledConnection)pooledCon).getDB2Connection(

 cookie,newuser,password,userRegistry,userSecTkn,originalUser,properties);

IBM Data Server Driver for JDBC and SQLJ support for SSL

The IBM Data Server Driver for JDBC and SQLJ provides support for the Secure

Sockets Layer (SSL) through the Java Secure Socket Extension (JSSE).

You can use SSL support in your Java applications if you use IBM Data Server

Driver for JDBC and SQLJ type 4 connectivity to DB2 for z/OS Version 9 or later,

to DB2 Database for Linux, UNIX, and Windows Version 9.1, Fix Pack 2 or later, or

to IBM Informix Dynamic Server (IDS) Version 11.50 or later.

If you use SSL support for a connection to a DB2 for z/OS data source, and the

z/OS version is V1.8, V1.9, or V1.10, the appropriate PTF for APAR PK72201 must

be applied to Communication Server for z/OS IP Services.

To use SSL connections, you need to:

v Configure connections to the data source to use SSL.

v Configure your Java Runtime Environment to use SSL.

Configuring connections under the IBM Data Server Driver for

JDBC and SQLJ to use SSL

To configure database connections under the IBM Data Server Driver for JDBC and

SQLJ to use SSL, you need to set the DB2BaseDataSource.sslConnection property to

true.

Prerequisite: Before a connection to a data source can use SSL, the port to which

the application connects must be configured in the database server as the SSL

listener port.

1. Set DB2BaseDataSource.sslConnection on a Connection or DataSource instance.

2. Optional: Set DB2BaseDataSource.sslTrustStoreLocation on a Connection or

DataSource instance to identify the location of the truststore. Setting the

sslTrustStoreLocation property is an alternative to setting the Java

198 Developing Java Applications

javax.net.ssl.trustStore property. If you set

DB2BaseDataSource.sslTrustStoreLocation, javax.net.ssl.trustStore is not used.

3. Optional: Set DB2BaseDataSource.sslTrustStorePassword on a Connection or

DataSource instance to identify the truststore password. Setting the

sslTrustStorePassword property is an alternative to setting the Java

javax.net.ssl.trustStorePassword property. If you set

DB2BaseDataSource.sslTrustStorePassword, javax.net.ssl.trustStorePassword is

not used.

The following example demonstrates how to set the sslConnection property on a

Connection instance:

java.util.Properties properties = new java.util.Properties();

properties.put("user", "xxxx");

properties.put("password", "yyyy");

properties.put("sslConnection", "true");

java.sql.Connection con =

 java.sql.DriverManager.getConnection(url, properties);

Configuring the Java Runtime Environment to use SSL

Before you can use Secure Sockets Layer (SSL) connections in your JDBC and SQLJ

applications, you need to configure the Java Runtime Environment to use SSL.

Before you can configure your Java Runtime Environment for SSL, you need to

satisfy the following prerequisites:

v The Java Runtime Environment must include a Java security provider. The IBM

JSSE provider or the Sun JSSE provider must be installed. The IBM JSSE

provider is automatically installed with the IBM SDK for Java.

Restriction: You can only use the Sun JSSE provider only with a Sun Java

Runtime Environment. The Sun JSSE provider does not work with an IBM Java

Runtime Environment.

v SSL support must be configured on the database server.

To configure your Java Runtime Environment to use SSL, follow these steps.

1. Import a certificate from the database server to a Java truststore on the client.

Use the Java keytool utility to import the certificate into the truststore.

For example, suppose that the server certificate is stored in a file named

jcc.cacert. Issue the following keytool utility statement to read the certificate

from file jcc.cacert, and store it in a truststore named cacerts.

keytool -import -file jcc.cacert -keystore cacerts

2. Configure the Java Runtime Environment for the Java security providers by

adding entries to the java.security file.

The format of a security provider entry is:

security.provider.n=provider-package-name

A provider with a lower value of n takes precedence over a provider with a

higher value of n.

The Java security provider entries that you add depend on whether you use the

IBM JSSE provider or the Sun JSSE provider.

v If you use the Sun JSSE provider, add entries for the Sun security providers

to your java.security file.

v If you use the IBM JSSE provider, use one of the following methods:

– Use the IBMJSSE2 provider (supported for the IBM SDK for Java 1.4.2

and later):

Chapter 5. Security under the IBM Data Server Driver for JDBC and SQLJ 199

Recommendation: Use the IBMJSSE2 provider, and use it in FIPS mode.

- If you do not need to operate in FIPS-compliant mode:

v For the IBM SDK for Java 1.4.2, add an entry for the

IBMJSSE2Provider to the java.security file. Ensure that an entry for

the IBMJCE provider is in the java.security file. The java.security file

that is shipped with the IBM SDK for Java contains an entry for

entries for IBMJCE.

v For later versions of the IBM SDK for Java, ensure that entries for the

IBMJSSE2Provider and the IBMJCE provider are in the java.security

file. The java.security file that is shipped with the IBM SDK for Java

contains entries for those providers.
- If you need to operate in FIPS-compliant mode:

v Add an entry for the IBMJCEFIPS provider to your java.security file

before the entry for the IBMJCE provider. Do not remove the entry

for the IBMJCE provider.

v Enable FIPS mode in the IBMJSSE2 provider. See step 3 on page 201.
– Use the IBMJSSE provider (supported for the IBM SDK for Java 1.4.2

only):

- If you do not need to operate in FIPS-compliant mode, ensure that

entries for the IBMJSSEProvider and the IBMJCE provider are in the

java.security file. The java.security file that is shipped with the IBM

SDK for Java contains entries for those providers.

- If you need to operate in FIPS-compliant mode, add entries for the

FIPS-approved provider IBMJSSEFIPSProvider and the IBMJCEFIPS

provider to your java.security file, before the entry for the IBMJCE

provider.

Restriction: If you use the IBMJSSE provider on the Solaris operating

system, you need to include an entry for the SunJSSE provider before entries

for the IBMJCE, IBMJCEFIPS, IBMJSSE, or IBMJSSE2 providers.
Example: Use a java.security file similar to this one if you need to run in

FIPS-compliant mode, and you enable FIPS mode in the IBMJSSE2 provider:

Set the Java security providers

security.provider.1=com.ibm.jsse2.IBMJSSEProvider2

security.provider.2=com.ibm.crypto.fips.provider.IBMJCEFIPS

security.provider.3=com.ibm.crypto.provider.IBMJCE

security.provider.4=com.ibm.security.jgss.IBMJGSSProvider

security.provider.5=com.ibm.security.cert.IBMCertPath

security.provider.6=com.ibm.security.sasl.IBMSASL

Example: Use a java.security file similar to this one if you need to run in

FIPS-compliant mode, and you use the IBMJSSE provider:

Set the Java security providers

security.provider.1=com.ibm.fips.jsse.IBMJSSEFIPSProvider

security.provider.2=com.ibm.crypto.fips.provider.IBMJCEFIPS

security.provider.3=com.ibm.crypto.provider.IBMJCE

security.provider.4=com.ibm.security.jgss.IBMJGSSProvider

security.provider.5=com.ibm.security.cert.IBMCertPath

security.provider.6=com.ibm.security.sasl.IBMSASL

Example: Use a java.security file similar to this one if you use the Sun JSSE

provider:

Set the Java security providers

security.provider.1=sun.security.provider.Sun

security.provider.2=com.sun.rsajca.Provider

security.provider.3=com.sun.crypto.provider.SunJCE

security.provider.4=com.sun.net.ssl.internal.ssl.Provider

200 Developing Java Applications

3. If you plan to use the IBM Data Server Driver for JDBC and SQLJ in

FIPS-compliant mode, you need to set the com.ibm.jsse2.JSSEFIPS Java system

property:

com.ibm.jsse2.JSSEFIPS=true

Restriction: Non-FIPS-mode JSSE applications cannot run in a JVM that is in

FIPS mode.

Restriction: When the IBMJSSE2 provider runs in FIPS mode, it cannot use

hardware cryptography.

4. Configure the Java Runtime Environment for the SSL socket factory providers

by adding entries to the java.security file.

The format of SSL socket factory provider entries are:

ssl.SocketFactory.provider=provider-package-name

ssl.ServerSocketFactory.provider=provider-package-name

Specify the SSL socket factory provider for the Java security provider that you

are using.

Example: Include SSL socket factory provider entries like these in the

java.security file when you enable FIPS mode in the IBMJSSE2 provider:

Set the SSL socket factory provider

ssl.SocketFactory.provider=com.ibm.jsse2.SSLSocketFactoryImpl

ssl.ServerSocketFactory.provider=com.ibm.jsse2.SSLServerSocketFactoryImpl

Example: Include SSL socket factory provider entries like these in the

java.security file when you enable FIPS mode in the IBMJSSE provider:

Set the SSL socket factory provider

ssl.SocketFactory.provider=com.ibm.fips.jsse.JSSESocketFactory

ssl.ServerSocketFactory.provider=com.ibm.fips.jsse.JSSEServerSocketFactory

Example: Include SSL socket factory provider entries like these when you use

the Sun JSSE provider:

Set the SSL socket factory provider

ssl.SocketFactory.provider=com.sun.net.ssl.internal.ssl.SSLSocketFactoryImpl

ssl.ServerSocketFactory.provider=com.sun.net.ssl.internal.ssl.SSLServerSocketFactoryImpl

5. Configure Java system properties to use the truststore.

To do that, set the following Java system properties:

javax.net.ssl.trustStore

Specifies the name of the truststore that you specified with the

-keystore parameter in the keytool utility in step 1 on page 199.

 If the IBM Data Server Driver for JDBC and SQLJ property

DB2BaseDataSource.sslTrustStoreLocation is set, its value overrides the

javax.net.ssl.trustStore property value.

javax.net.ssl.trustStorePassword (optional)

Specifies the password for the truststore. You do not need to set a

truststore password. However, if you do not set the password, you

cannot protect the integrity of the truststore.

 If the IBM Data Server Driver for JDBC and SQLJ property

DB2BaseDataSource.sslTrustStorePassword is set, its value overrides the

javax.net.ssl.trustStorePassword property value.
Example: One way that you can set Java system properties is to specify them as

the arguments of the -D option when you run a Java application. Suppose that

you want to run a Java application named MySSL.java, which accesses a data

source using an SSL connection. You have defined a truststore named cacerts.

The following command sets the truststore name when you run the application.

Chapter 5. Security under the IBM Data Server Driver for JDBC and SQLJ 201

java -Djavax.net.ssl.trustStore=cacerts MySSL

Security for preparing SQLJ applications with the IBM Data Server

Driver for JDBC and SQLJ

Two ways to provide security during SQLJ application preparation are to allow

users to customize applications only, and to limit access to a specific set of tables

during customization.

Allowing users to customize only

You can use one of the following techniques to allow a set of users to customize

SQLJ applications, but not to bind or run those applications:

v Create a database system for customization only (recommended solution):

Follow these steps:

1. Create a new database manager instance. This is the customization-only

system.

2. On the customization-only system, define all the tables and views that are

accessed by the SQLJ applications. The table or view definitions must be the

same as the definitions on the database manager instance where the

application will be bound and will run (the bind-and-run system). Executing

the DESCRIBE statement on the tables or views must give the same results

on the customization-only system and the bind-and-run system.

3. On the customization-only system, grant the necessary table or view

privileges to users who will customize SQLJ applications.

4. On the customization-only system, users run the sqlj command with the

-compile=true option to create Java byte codes and serialized profiles for

their programs. Then they run the db2sqljcustomize command with the

-automaticbind NO option to create customized serialized profiles.

5. Copy the java byte code files and customized serialized profiles to the

bind-and-run system.

6. A user with authority to bind packages on the bind-and-run system runs the

db2sqljbind command on the customized serialized profiles that were copied

from the customization-only system.
v Use a stored procedure to do customization: Write a Java stored procedure that

customizes serialized profiles and binds packages for SQLJ applications on

behalf of the end user. This Java stored procedure needs to use a JDBC driver

package that was bound with one of the DYNAMICRULES options that causes

dynamic SQL to be performed under a different user ID from the end user’s

authorization ID. For example, you might use the DYNAMICRULES option

DEFINEBIND or DEFINERUN to execute dynamic SQL under the authorization

ID of the creator of the Java stored procedure. You need to grant EXECUTE

authority on the stored procedure to users who need to do SQLJ customization.

The stored does the following things:

1. Receives the compiled SQLJ program and serialized profiles in BLOB input

parameters

2. Copies the input parameters to its file system

3. Runs db2sqljcustomize to customize the serialized profiles and bind the

packages for the SQLJ program

4. Returns the customized serialized profiles in output parameters
v Use a stand-alone program to do customization: This technique involves

writing a program that performs the same steps as a Java stored procedure that

202 Developing Java Applications

customizes serialized profiles and binds packages for SQLJ applications on

behalf of the end user. However, instead of running the program as a stored

procedure, you run the program as a stand-alone program under a library

server.

Restricting table access during customization

When you customize serialized profiles, you should do online checking, to give the

application program information about the data types and lengths of table columns

that the program accesses. By default, customization includes online checking.

Online checking requires that the user who customizes a serialized profile has

authorization to execute PREPARE and DESCRIBE statements against SQL

statements in the SQLJ program. That authorization includes the SELECT privilege

on tables and views that are accessed by the SQL statements. If SQL statements

contain unqualified table names, the qualifier that is used during online checking

is the value of the db2sqljcustomize -qualifier parameter. Therefore, for online

checking of tables and views with unqualified names in an SQLJ application, you

can grant the SELECT privilege only on tables and views with a qualifier that

matches the value of the -qualifier parameter.

Chapter 5. Security under the IBM Data Server Driver for JDBC and SQLJ 203

204 Developing Java Applications

Chapter 6. Security under the DB2 JDBC Type 2 Driver

The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2 JDBC Type 2

Driver) supports user ID and password security.

You must set the user ID and the password, or set neither. If you do not set a user

ID and password, the driver uses the user ID and password of the user who is

currently logged on to the operating system.

To specify user ID and password security for a JDBC connection, use one of the

following techniques.

For the DriverManager interface: you can specify the user ID and password

directly in the DriverManager.getConnection invocation. For example:

import java.sql.*; // JDBC base

...

String id = "db2adm"; // Set user ID

Sring pw = "db2adm"; // Set password

String url = "jdbc:db2:toronto";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, id, pw);

 // Create connection

Alternatively, you can set the user ID and password by setting the user and

password properties in a Properties object, and then invoking the form of the

getConnection method that includes the Properties object as a parameter. For

example:

import java.sql.*; // JDBC base

import COM.ibm.db2.jdbc.*; // DB2 JDBC Type 2 driver

 // implementation of JDBC

...

Properties properties = new java.util.Properties();

 // Create Properties object

properties.put("user", "db2adm"); // Set user ID for the connection

properties.put("password", "db2adm"); // Set password for the connection

String url = "jdbc:db2:toronto";

 // Set URL for the data source

Connection con = DriverManager.getConnection(url, properties);

 // Create connection

For the DataSource interface: you can specify the user ID and password directly in

the DataSource.getConnection invocation. For example:

import java.sql.*; // JDBC base

import COM.ibm.db2.jdbc.*; // DB2 JDBC Type 2 driver

 // implementation of JDBC

...

Context ctx=new InitialContext(); // Create context for JNDI

DataSource ds=(DataSource)ctx.lookup("jdbc/sampledb");

 // Get DataSource object

String id = "db2adm"; // Set user ID

Sring pw = "db2adm"; // Set password

Connection con = ds.getConnection(id, pw);

 // Create connection

Alternatively, if you create and deploy the DataSource object, you can set the user

ID and password by invoking the DataSource.setUser and DataSource.setPassword

methods after you create the DataSource object. For example:

© Copyright IBM Corp. 2006, 2009 205

import java.sql.*; // JDBC base

import COM.ibm.db2.jdbc.*; // DB2 JDBC Type 2 driver

 // implementation of JDBC

...

DB2DataSource db2ds = new DB2DataSource();

 // Create DataSource object

db2ds.setDatabaseName("toronto"); // Set location

db2ds.setUser("db2adm"); // Set user ID

db2ds.setPassword("db2adm"); // Set password

206 Developing Java Applications

Chapter 7. Building Java database applications

You can build JDBC and SQLJ database applications manually. Alternatively, you

can use a Java makefile to build JDBC applications, and use the bldsqlj build file

that is shipped with DB2 Database for Linux, UNIX, and Windows to build SQLJ

applications.

Building JDBC applets

You can use a Java makefile or manually execute the javac command to build

JDBC applications.

The following steps demonstrate how to build and run the Applt.java sample

JDBC applet.

1. Compile Applt.java to produce the file Applt.class with this command:

 javac Applt.java

2. Ensure that your working directory is accessible by your web browser, or by

your Java applet viewer, if you are using it. If your directory is not accessible,

copy the following files into a directory that is accessible:

v Applt.html

v Applt.class
3. Copy sqllib\java\db2jcc.jar on Windows or sqllib/java/db2jcc.jar on

UNIX, into the same directory as Applt.class and Applt.html.

If you are using any JDBC 4.0 functions, copy db2jcc4.jar instead of db2jcc.jar.

4. If you are using the IBM Data Server Driver for JDBC and SQLJ, connect with

that driver by modifying the Applt.html file according to the instructions in the

file. For the TCP/IP port number, you should use the database port number

50000.

5. To run this applet, either ensure that a web server is installed and running on

your DB2 machine (server or client), or you can use the applet viewer that

comes with the SDK for Java by entering the following command in the

working directory of your client machine:

 appletviewer Applt.html

Building JDBC applications

You can use a Java makefile or manually execute the javac command to build

JDBC applications.

The following steps demonstrate how to build and run the DbInfo sample JDBC

application.

1. Compile DbInfo.java to produce the file DbInfo.class with this command:

 javac DbInfo.java

2. If you are running a Java application on UNIX in a 64-bit DB2 instance but the

software development kit for Java is 32-bit, you need to change the DB2 library

path before running the application. For example, on AIX:

v If using bash or Korn shell:

 export LIBPATH=$HOME/sqllib/lib32

v If using C shell:

 setenv LIBPATH $HOME/sqllib/lib32

© Copyright IBM Corp. 2006, 2009 207

3. Run the Java interpreter on the application with this command:

 java DbInfo

Building JDBC routines

You can use a Java makefile or the javac command to build JDBC routines. After

you build those routines, you need to catalog them.

The following steps demonstrate how to build and run these routines:

v The SpServer sample JDBC stored procedure

v The UDFsrv sample user-defined function, which has no SQL statements

v The UDFsqlsv sample user-defined function, which has SQL statements
v To build and run the SpServer.java stored procedure on the server, from the

command line:

1. Compile SpServer.java to produce the file SpServer.class with this command:

 javac SpServer.java

2. Copy SpServer.class to the sqllib\function directory on Windows

operating systems, or to the sqllib/function directory on UNIX.

3. Catalog the routines by running the spcat script on the server. The spcat

script connects to the sample database, uncatalogs the routines if they were

previously cataloged by calling SpDrop.db2, then catalogs them by calling

SpCreate.db2, and finally disconnects from the database. You can also run the

SpDrop.db2 and SpCreate.db2 scripts individually.

4. Stop and restart the database to allow the new class file to be recognized. If

necessary, set the file mode for the class file to ″read″ so it is readable by the

fenced user.

5. Compile and run the SpClient client application to access the stored

procedure class.
v To build and run the UDFsrv.java user-defined function program (user-defined

function with no SQL statements) on the server, from the command line:

1. Compile UDFsrv.java to produce the file UDFsrv.class with this command:

 javac UDFsrv.java

2. Copy UDFsrv.class to the sqllib\function directory on Windows operating

systems, or to the sqllib/function directory on UNIX.

3. Compile and run a client program that calls UDFsrv.

To access the UDFsrv library, you can use the UDFcli.java JDBC application,

or the UDFcli.sqlj SQLJ client application. Both versions of the client program

contain the CREATE FUNCTION SQL statement that you use to register the

user-defined functions with the database, and also contain SQL statements

that use the user-defined functions.
v To build and run the UDFsqlsv.java user-defined function program (user-defined

function with SQL statements) on the server, from the command line:

1. Compile UDFsqlsv.java to produce the file UDFsqlsv.class with this

command:

 javac UDFsqlsv.java

2. Copy UDFsqlsv.class to the sqllib\function directory on Windows

operating systems, or to the sqllib/function directory on UNIX.

3. Compile and run a client program that calls UDFsqlsv.

To access the UDFsqlsv library, you can use the UDFsqlcl.java JDBC

application. The client program contains the CREATE FUNCTION SQL

208 Developing Java Applications

statement that you use to register the user-defined functions with the

database, and also contains SQL statements that use the user-defined

functions.

Building SQLJ applets

You can use a Java makefile or the bldsqlj build file to build SQLJ applets.

The following steps demonstrate how to build and run the Applt sample SQLJ

applet. These steps use the build file, bldsqlj (UNIX), or bldsqlj.bat (Windows),

which contains commands to build either an SQLJ applet or application.

The build file takes up to six parameters: $1, $2, $3, $4, $5, and $6 on UNIX, and

%1, %2, %3, %4, %5, and %6 on Windows. The first parameter specifies the name

of your program. The second parameter specifies the user ID for the database

instance, the third parameter specifies the password. The fourth parameter

specifies the server name. The fifth parameter specifies the port number. And the

sixth parameter specifies the database name. For all but the first parameter,

program name, default values can be used. See the build file for details about

using default parameter values.

1. Build the applet with this command:

 bldsqlj Applt <userid> <password> <server_name> <port_number> <db_name>

2. Ensure that your working directory is accessible by your web browser, or by

your Java applet viewer, if you are using it. If your directory is not accessible,

copy the following files into a directory that is accessible:

v Applt.html

v Applt.class

v Applt_Cursor1.class

v Applt_Cursor2.class

v Applt_SJProfileKeys.class

v Applt_SJProfile0.ser
3. Copy sqllib\java\db2jcc.jar on Windows or sqllib/java/db2jcc.jar on

UNIX, into the same directory as Applt.class and Applt.html.

If you are using any JDBC 4.0 functions, copy db2jcc4.jar instead of db2jcc.jar.

4. If you are using the IBM Data Server Driver for JDBC and SQLJ, connect with

that driver by modifying the Applt.html file according to the instructions in the

file. For the TCP/IP port number, you should use the database port number

50000.

5. To run this applet, either ensure that a web server is installed and running on

your DB2 machine (server or client), or you can use the applet viewer that

comes with the SDK for Java by entering the following command in the

working directory of your client machine:

 appletviewer Applt.html

Building SQLJ applications

You can use a Java makefile or the bldsqlj build file to build SQLJ applications.

The following steps demonstrate how to build and run the TbMod sample SQLJ

application. These steps use the build file, bldsqlj (UNIX), or bldsqlj.bat

(Windows), which contains commands to build either an SQLJ applet or

application.

Chapter 7. Building Java database applications 209

The build file takes up to six parameters: $1, $2, $3, $4, $5, and $6 on UNIX, and

%1, %2, %3, %4, %5, and %6 on Windows. The first parameter specifies the name

of your program. The second parameter specifies the user ID for the database

instance, the third parameter specifies the password. The fourth parameter

specifies the server name. The fifth parameter specifies the port number. And the

sixth parameter specifies the database name. For all but the first parameter,

program name, default values can be used. See the build file for details about

using default parameter values.

1. Build the application with this command:

 bldsqlj TbMod <userid> <password> <server_name> <port_number> <db_name>

2. If you are running a Java application on UNIX in a 64-bit DB2 instance but the

software development kit for Java is 32-bit, you need to change the DB2 library

path before running the application. For example, on AIX:

v If using bash or Korn shell:

 export LIBPATH=$HOME/sqllib/lib32

v If using C shell:

 setenv LIBPATH $HOME/sqllib/lib32

3. Run the Java interpreter on the application with this command:

 java TbMod

Java applet considerations

DB2 databases can be accessed by using Java applets.

Keep the following points in mind when using them:

v For a larger JDBC or SQLJ applet that consists of several Java classes, you might

choose to package all its classes in a single JAR file. For an SQLJ applet, you

would also have to package its serialized profiles along with its classes. If you

choose to do this, add your JAR file into the archive parameter in the ″applet″

tag. For details, see the documentation for your software development kit for

Java.

For SQLJ applets, some browsers do not yet have support for loading a

serialized object from a resource file associated with the applet. For example,

you will get the following error message when trying to load the supplied

sample applet Applt in those browsers:

 java.lang.ClassNotFoundException: Applt_SJProfile0

As a workaround, there is a utility which converts a serialized profile into a

profile stored in Java class format. The utility is a Java class called

sqlj.runtime.profile.util.SerProfileToClass. It takes a serialized profile resource file

as input and produces a Java class containing the profile as output. Your profile

can be converted using one of the following commands:

 profconv Applt_SJProfile0.ser

or

 java sqlj.runtime.profile.util.SerProfileToClass Applt_SJProfile0.ser

The class Applt_SJProfile0.class is created as a result. Replace all profiles in .ser

format used by the applet with profiles in .class format, and the problem

should go away.

v You can place the file db2jcc.jar into a directory that is shared by several

applets that might be loaded from your Web site. db2jcc.jar is for applets using

the IBM Data Server Driver for JDBC and SQLJ or for any SQLJ applet. This file

210 Developing Java Applications

is in the sqllib\java directory on Windows operating systems, and in the

sqllib/java directory on UNIX. You might need to add a codebase parameter

into the ″applet″ tag in the HTML file to identify the directory. For details, see

the documentation for your software development kit for Java.

If you are using any JDBC 4.0 functions, copy db2jcc4.jar instead of db2jcc.jar.

v The JDBC applet server (listener), db2jd, contains signal handling to make it

more robust. As a result, you cannot use the CTRL-C key sequence to terminate

db2jd. Therefore, the only way to terminate the listener is to kill the process by

using kill -9 (for UNIX) or the Task Manager (for Windows).

SQLJ application and applet options for UNIX

The bldsqlj build script builds SQLJ applications and applets on UNIX operating

systems. bldsqlj specifies a set of SQLJ translator and customizer options.

Recommendation: Use the same SQLJ translator and customizer options that

bldsqlj uses when you build your SQLJ applications and applets on UNIX

platforms.

The options that bldsqlj includes are:

sqlj The SQLJ translator (also compiles the program).

"${progname}.sqlj"

The SQLJ source file. The progname=${1%.sqlj} command removes the

extension if it was included in the input file name, so when the extension

is added back again, it is not duplicated.

db2sqljcustomize

The SQLJ profile customizer.

-url Specifies a JDBC URL for establishing a database connection, such as

jdbc:db2://servername:50000/sample.

-user Specifies a user ID.

-password

Specifies a password.

"${progname}_SJProfile0"

Specifies a serialized profile for the program.

SQLJ application and applet options for Windows

The bldsqlj.bat batch file builds SQLJ applications and applets on Windows

operating systems. bldsqlj.bat specifies a set of SQLJ translator and customizer

options.

Recommendation: Use the same SQLJ translator and customizer options that

bldsqlj.bat uses when you build your SQLJ applications and applets on Windows

operating systems.

The options that bldsqlj.bat includes are:

sqlj The SQLJ translator (also compiles the program).

%1.sqlj

The SQLJ source file.

Chapter 7. Building Java database applications 211

db2sqljcustomize

The SQLJ profile customizer.

-url Specifies a JDBC URL for establishing a database connection, such as

jdbc:db2://servername:50000/sample.

-user Specifies a user ID.

-password

Specifies a password.

%1_SJProfile0

Specifies a serialized profile for the program.

Building SQL routines

You can use a Java makefile or the bldsqljs build file to build SQLJ routines.

After you build those routines, you need to catalog them.

The following steps demonstrate how to build and run the SpServer sample SQLJ

stored procedure. These steps use the build file, bldsqljs (UNIX), or bldsqljs.bat

(Windows), which contains commands to build either an SQLJ applet or

application.

The build file takes up to six parameters: $1, $2, $3, $4, $5, and $6 on UNIX, and

%1, %2, %3, %4, %5, and %6 on Windows. The first parameter specifies the name

of your program. The second parameter specifies the user ID for the database

instance, the third parameter specifies the password. The fourth parameter

specifies the server name. The fifth parameter specifies the port number. And the

sixth parameter specifies the database name. For all but the first parameter,

program name, default values can be used. See the build file for details about

using default parameter values.

1. Build the stored procedure application with this command:

 bldsqljs SpServer <userid> <password> <server_name> <port_number> <db_name>

2. Catalog the stored procedure with this command:

 spcat

This script connects to the sample database, uncatalogs the routines if they

were previously cataloged by calling SpDrop.db2, then catalogs them by calling

SpCreate.db2, and finally disconnects from the database. You can also run the

SpDrop.db2 and SpCreate.db2 scripts individually.

3. Stop and restart the database to allow the new class file to be recognized. If

necessary, set the file mode for the class file to read, so it is readable by the

fenced user.

4. Compile and run the SpClient client application to access the stored procedure

class. You can build SpClient with the application build file, bldsqlj (UNIX) or

bldsqlj.bat (Windows).

SQLJ routine options for UNIX

The bldsqljs build script builds SQLJ routines on UNIX operating systems.

bldsqljs specifies a set of SQLJ translator and customizer options.

Recommendation: Use the same SQLJ translator and customizer options that

bldsqljs uses when you build your SQLJ routines on UNIX platforms.

212 Developing Java Applications

The options that bldsqljs includes are:

sqlj The SQLJ translator (also compiles the program).

"${progname}.sqlj"

The SQLJ source file. The progname=${1%.sqlj} command removes the

extension if it was included in the input file name, so when the extension

is added back again, it is not duplicated.

db2sqljcustomize

The SQLJ profile customizer.

-url Specifies a JDBC URL for establishing a database connection, such as

jdbc:db2://servername:50000/sample.

-user Specifies a user ID.

-password

Specifies a password.

"${progname}_SJProfile0"

Specifies a serialized profile for the program.

SQLJ routine options for Windows

The bldsqljs.bat batch file builds SQLJ routines on Windows operating systems.

bldsqljs.bat specifies a set of SQLJ translator and customizer options.

Recommendation: Use the same SQLJ translator and customizer options that

bldsqljs.bat uses when you build your SQLJ routines on Windows operating

systems.

The following SQLJ translator and customizer options are used in the bldsqljs.bat

batch file on Windows operating systems. These are the options DB2 recommends

that you use to build SQLJ routines (stored procedures and user-defined functions).

sqlj The SQLJ translator (also compiles the program).

%1.sqlj

The SQLJ source file.

db2sqljcustomize

The DB2 for Java profile customizer.

-url Specifies a JDBC URL for establishing a database connection, such as

jdbc:db2://servername:50000/sample.

-user Specifies a user ID.

-password

Specifies a password.

%1_SJProfile0

Specifies a serialized profile for the program.

Chapter 7. Building Java database applications 213

214 Developing Java Applications

Chapter 8. Problem diagnosis with the IBM Data Server Driver

for JDBC and SQLJ

To obtain data for diagnosing SQLJ or JDBC problems with the IBM Data Server

Driver for JDBC and SQLJ, collect trace data and run utilities that format the trace

data.

You should run the trace and diagnostic utilities only under the direction of IBM

software support.

Collecting JDBC trace data

Use one of the following procedures to start the trace:

Procedure 1: For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity or

IBM Data Server Driver for JDBC and SQLJ type 2 connectivity for DB2 for Linux,

UNIX and Windows, the recommended method is to start the trace by setting the

db2.jcc.override.traceFile property or the db2.jcc.override.traceDirectory property in

the IBM Data Server Driver for JDBC and SQLJ configuration properties file. You

can set the db2.jcc.tracePolling and db2.jcc.tracePollingInterval properties before

you start the driver to allow you to change global configuration trace properties

while the driver is running.

Procedure 2: If you use the DataSource interface to connect to a data source, follow

this method to start the trace:

1. Invoke the DB2BaseDataSource.setTraceLevel method to set the type of tracing

that you need. The default trace level is TRACE_ALL. See ″Properties for the IBM

Data Server Driver for JDBC and SQLJ″ for information on how to specify more

than one type of tracing.

2. Invoke the DB2BaseDataSource.setJccLogWriter method to specify the trace

destination and turn the trace on.

Procedure 3:

If you use the DataSource interface to connect to a data source, invoke the

javax.sql.DataSource.setLogWriter method to turn the trace on. With this method,

TRACE_ALL is the only available trace level.

If you use the DriverManager interface to connect to a data source, follow this

procedure to start the trace.

1. Invoke the DriverManager.getConnection method with the traceLevel property

set in the info parameter or url parameter for the type of tracing that you need.

The default trace level is TRACE_ALL. See ″Properties for the IBM Data Server

Driver for JDBC and SQLJ″ for information on how to specify more than one

type of tracing.

2. Invoke the DriverManager.setLogWriter method to specify the trace destination

and turn the trace on.

After a connection is established, you can turn the trace off or back on, change the

trace destination, or change the trace level with the DB2Connection.setJccLogWriter

method. To turn the trace off, set the logWriter value to null.

© Copyright IBM Corp. 2006, 2009 215

The logWriter property is an object of type java.io.PrintWriter. If your application

cannot handle java.io.PrintWriter objects, you can use the traceFile property to

specify the destination of the trace output. To use the traceFile property, set the

logWriter property to null, and set the traceFile property to the name of the file

to which the driver writes the trace data. This file and the directory in which it

resides must be writable. If the file already exists, the driver overwrites it.

Procedure 4: If you are using the DriverManager interface, specify the traceFile

and traceLevel properties as part of the URL when you load the driver. For

example:

String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose" +

 ":traceFile=/u/db2p/jcctrace;" +

 "traceLevel=" + com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS + ";";

Procedure 5: Use DB2TraceManager methods. The DB2TraceManager class provides

the ability to suspend and resume tracing of any type of log writer.

Example of starting a trace using configuration properties: For a complete example of

using configuration parameters to collect trace data, see ″Example of using

configuration properties to start a JDBC trace″.

Trace example program: For a complete example of a program for tracing under the

IBM Data Server Driver for JDBC and SQLJ, see ″Example of a trace program

under the IBM Data Server Driver for JDBC and SQLJ″.

Collecting SQLJ trace data during customization or bind

To collect trace data to diagnose problems during the SQLJ customization or bind

process, specify the -tracelevel and -tracefile options when you run the

db2sqljcustomize or db2sqljbind bind utility.

Formatting information about an SQLJ serialized profile

The profp utility formats information about each SQLJ clause in a serialized

profile. The format of the profp utility is:

�� profp serialized-profile-name ��

Run the profp utility on the serialized profile for the connection in which the error

occurs. If an exception is thrown, a Java stack trace is generated. You can

determine which serialized profile was in use when the exception was thrown

from the stack trace.

Formatting information about an SQLJ customized serialized

profile

The db2sqljprint utility formats information about each SQLJ clause in a

serialized profile that is customized for the IBM Data Server Driver for JDBC and

SQLJ.

Run the db2sqljprint utility on the customized serialized profile for the

connection in which the error occurs.

216 Developing Java Applications

Example of using configuration properties to start a JDBC trace

You can control tracing of JDBC applications without modifying those applications.

Suppose that you want to collect trace data for a program named Test.java, which

uses IBM Data Server Driver for JDBC and SQLJ type 4 connectivity. Test.java does

no tracing, and you do not want to modify the program, so you enable tracing

using configuration properties. You want your trace output to have the following

characteristics:

v Trace information for each connection on the same DataSource is written to a

separate trace file. Output goes into a directory named /Trace.

v Each trace file name begins with jccTrace1.

v If trace files with the same names already exist, the trace data is appended to

them.

Although Test1.java does not contain any code to do tracing, you want to set the

configuration properties so that if the application is modified in the future to do

tracing, the settings within the program will take precedence over the settings in

the configuration properties. To do that, use the set of configuration properties that

begin with db2.jcc, not db2.jcc.override.

The configuration property settings look like this:

v db2.jcc.override.traceDirectory=/Trace

v db2.jcc.traceFile=jccTrace1

v db2.jcc.traceFileAppend=true

You want the trace settings to apply only to your stand-alone program Test1.java,

so you create a file with these settings, and then refer to the file when you invoke

the Java program by specifying the -Ddb2.jcc.propertiesFile option. Suppose that

the file that contains the settings is /Test/jcc.properties. To enable tracing when

you run Test1.java, you issue a command like this:

java -Ddb2.jcc.propertiesFile=/Test/jcc.properties Test1

Suppose that Test1.java creates two connections for one DataSource. The program

does not define a logWriter object, so the driver creates a global logWriter object

for the trace output. When the program completes, the following files contain the

trace data:

v /Trace/jccTrace1_global_0

v /Trace/jccTrace1_global_1

Example of a trace program under the IBM Data Server Driver for

JDBC and SQLJ

You might want to write a single class that includes methods for tracing under the

DriverManager interface, as well as the DataSource interface.

The following example shows such a class. The example uses IBM Data Server

Driver for JDBC and SQLJ type 4 connectivity.

public class TraceExample

{

 public static void main(String[] args)

Figure 52. Example of tracing under the IBM Data Server Driver for JDBC and SQLJ

Chapter 8. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ 217

{

 sampleConnectUsingSimpleDataSource();

 sampleConnectWithURLUsingDriverManager();

 }

 private static void sampleConnectUsingSimpleDataSource()

 {

 java.sql.Connection c = null;

 java.io.PrintWriter printWriter =

 new java.io.PrintWriter(System.out, true);

 // Prints to console, true means

 // auto-flush so you don’t lose trace

 try {

 javax.sql.DataSource ds =

 new com.ibm.db2.jcc.DB2SimpleDataSource();

 ((com.ibm.db2.jcc.DB2BaseDataSource) ds).setServerName("sysmvs1.stl.ibm.com");

 ((com.ibm.db2.jcc.DB2BaseDataSource) ds).setPortNumber(5021);

 ((com.ibm.db2.jcc.DB2BaseDataSource) ds).setDatabaseName("san_jose");

 ((com.ibm.db2.jcc.DB2BaseDataSource) ds).setDriverType(4);

 ds.setLogWriter(printWriter); // This turns on tracing

 // Refine the level of tracing detail

 ((com.ibm.db2.jcc.DB2BaseDataSource) ds).

 setTraceLevel(com.ibm.db2.jcc.DB2SimpleDataSource.TRACE_CONNECTS |

 com.ibm.db2.jcc.DB2SimpleDataSource.TRACE_DRDA_FLOWS);

 // This connection request is traced using trace level

 // TRACE_CONNECTS | TRACE_DRDA_FLOWS

 c = ds.getConnection("myname", "mypass");

 // Change the trace level to TRACE_ALL

 // for all subsequent requests on the connection

 ((com.ibm.db2.jcc.DB2Connection) c).setJccLogWriter(printWriter,

 com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL);

 // The following INSERT is traced using trace level TRACE_ALL

 java.sql.Statement s1 = c.createStatement();

 s1.executeUpdate("INSERT INTO sampleTable(sampleColumn) VALUES(1)");

 s1.close();

 // This code disables all tracing on the connection

 ((com.ibm.db2.jcc.DB2Connection) c).setJccLogWriter(null);

 // The following INSERT statement is not traced

 java.sql.Statement s2 = c.createStatement();

 s2.executeUpdate("INSERT INTO sampleTable(sampleColumn) VALUES(1)");

 s2.close();

 c.close();

 }

 catch(java.sql.SQLException e) {

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,

 printWriter, "[TraceExample]");

 }

 finally {

 cleanup(c, printWriter);

 printWriter.flush();

 }

 }

 // If the code ran successfully, the connection should

 // already be closed. Check whether the connection is closed.

 // If so, just return.

 // If a failure occurred, try to roll back and close the connection.

 private static void cleanup(java.sql.Connection c,

 java.io.PrintWriter printWriter)

218 Developing Java Applications

{

 if(c == null) return;

 try {

 if(c.isClosed()) {

 printWriter.println("[TraceExample] " +

 "The connection was successfully closed");

 return;

 }

 // If we get to here, something has gone wrong.

 // Roll back and close the connection.

 printWriter.println("[TraceExample] Rolling back the connection");

 try {

 c.rollback();

 }

 catch(java.sql.SQLException e) {

 printWriter.println("[TraceExample] " +

 "Trapped the following java.sql.SQLException while trying to roll back:");

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,

 "[TraceExample]");

 printWriter.println("[TraceExample] " +

 "Unable to roll back the connection");

 }

 catch(java.lang.Throwable e) {

 printWriter.println("[TraceExample] Trapped the " +

 "following java.lang.Throwable while trying to roll back:");

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e,

 printWriter, "[TraceExample]");

 printWriter.println("[TraceExample] Unable to " +

 "roll back the connection");

 }

 // Close the connection

 printWriter.println("[TraceExample] Closing the connection");

 try {

 c.close();

 }

 catch(java.sql.SQLException e) {

 printWriter.println("[TraceExample] Exception while " +

 "trying to close the connection");

 printWriter.println("[TraceExample] Deadlocks could " +

 "occur if the connection is not closed.");

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,

 "[TraceExample]");

 }

 catch(java.lang.Throwable e) {

 printWriter.println("[TraceExample] Throwable caught " +

 "while trying to close the connection");

 printWriter.println("[TraceExample] Deadlocks could " +

 "occur if the connection is not closed.");

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,

 "[TraceExample]");

 }

 }

 catch(java.lang.Throwable e) {

 printWriter.println("[TraceExample] Unable to " +

 "force the connection to close");

 printWriter.println("[TraceExample] Deadlocks " +

 "could occur if the connection is not closed.");

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,

 "[TraceExample]");

 }

 }

 private static void sampleConnectWithURLUsingDriverManager()

 {

 java.sql.Connection c = null;

Chapter 8. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ 219

// This time, send the printWriter to a file.

 java.io.PrintWriter printWriter = null;

 try {

 printWriter =

 new java.io.PrintWriter(

 new java.io.BufferedOutputStream(

 new java.io.FileOutputStream("/temp/driverLog.txt"), 4096), true);

 }

 catch(java.io.FileNotFoundException e) {

 java.lang.System.err.println("Unable to establish a print writer for trace");

 java.lang.System.err.flush();

 return;

 }

 try {

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 }

 catch(ClassNotFoundException e) {

 printWriter.println("[TraceExample] " +

 "IBM Data Server Driver for JDBC and SQLJ type 4 connectivity " +

 "is not in the application classpath. Unable to load driver.");

 printWriter.flush();

 return;

 }

 // This URL describes the target data source for Type 4 connectivity.

 // The traceLevel property is established through the URL syntax,

 // and driver tracing is directed to file "/temp/driverLog.txt"

 // The traceLevel property has type int. The constants

 // com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS and

 // com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS represent

 // int values. Those constants cannot be used directly in the

 // first getConnection parameter. Resolve the constants to their

 // int values by assigning them to a variable. Then use the

 // variable as the first parameter of the getConnection method.

 String databaseURL =

 "jdbc:db2://sysmvs1.stl.ibm.com:5021" +

 "/sample:traceFile=/temp/driverLog.txt;traceLevel=" +

 (com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS |

 com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS) + ";";

 // Set other properties

 java.util.Properties properties = new java.util.Properties();

 properties.setProperty("user", "myname");

 properties.setProperty("password", "mypass");

 try {

 // This connection request is traced using trace level

 // TRACE_CONNECTS | TRACE_DRDA_FLOWS

 c = java.sql.DriverManager.getConnection(databaseURL, properties);

 // Change the trace level for all subsequent requests

 // on the connection to TRACE_ALL

 ((com.ibm.db2.jcc.DB2Connection) c).setJccLogWriter(printWriter,

 com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL);

 // The following INSERT is traced using trace level TRACE_ALL

 java.sql.Statement s1 = c.createStatement();

 s1.executeUpdate("INSERT INTO sampleTable(sampleColumn) VALUES(1)");

 s1.close();

 // Disable all tracing on the connection

 ((com.ibm.db2.jcc.DB2Connection) c).setJccLogWriter(null);

 // The following SQL insert code is not traced

 java.sql.Statement s2 = c.createStatement();

220 Developing Java Applications

s2.executeUpdate("insert into sampleTable(sampleColumn) values(1)");

 s2.close();

 c.close();

 }

 catch(java.sql.SQLException e) {

 com.ibm.db2.jcc.DB2ExceptionFormatter.printTrace(e, printWriter,

 "[TraceExample]");

 }

 finally {

 cleanup(c, printWriter);

 printWriter.flush();

 }

 }

}

Techniques for monitoring IBM Data Server Driver for JDBC and SQLJ

Sysplex support

To monitor IBM Data Server Driver for JDBC and SQLJ Sysplex support, you need

to monitor the global transport objects pool.

You can monitor the global transport objects pool in either of the following ways:

v Using traces that you start by setting IBM Data Server Driver for JDBC and

SQLJ configuration properties

v Using an application programming interface

Configuration properties for monitoring the global transport

objects pool

The db2.jcc.dumpPool, db2.jcc.dumpPoolStatisticsOnSchedule, and

db2.jcc.dumpPoolStatisticsOnScheduleFile configuration properties control tracing

of the global transport objects pool.

For example, the following set of configuration property settings cause error

messages and dump pool error messages to be written every 60 seconds to a file

named /home/WAS/logs/srv1/poolstats:

db2.jcc.dumpPool=DUMP_SYSPLEX_MSG|DUMP_POOL_ERROR

db2.jcc.dumpPoolStatisticsOnSchedule=60

db2.jcc.dumpPoolStatisticsOnScheduleFile=/home/WAS/logs/srv1/poolstats

An entry in the pool statistics file looks like this:

time Scheduled PoolStatistics npr:2575 nsr:2575 lwroc:439 hwroc:1764 coc:372

aooc:362 rmoc:362 nbr:2872 tbt:857520 tpo:10

The meanings of the fields are:

npr

The total number of requests that the IBM Data Server Driver for JDBC and

SQLJ has made to the pool since the pool was created.

nsr

The number of successful requests that the IBM Data Server Driver for JDBC

and SQLJ has made to the pool since the pool was created. A successful

request means that the pool returned an object.

lwroc

The number of objects that were reused but were not in the pool. This can

happen if a Connection object releases a transport object at a transaction

Chapter 8. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ 221

boundary. If the Connection object needs a transport object later, and the

original transport object has not been used by any other Connection object, the

Connection object can use that transport object.

hwroc

The number of objects that were reused from the pool.

coc

The number of objects that the IBM Data Server Driver for JDBC and SQLJ

created since the pool was created.

aooc

The number of objects that exceeded the idle time that was specified by

db2.jcc.maxTransportObjectIdleTime and were deleted from the pool.

rmoc

The number of objects that have been deleted from the pool since the pool was

created.

nbr

The number of requests that the IBM Data Server Driver for JDBC and SQLJ

made to the pool that the pool blocked because the pool reached its maximum

capacity. A blocked request might be successful if an object is returned to the

pool before the db2.jcc.maxTransportObjectWaitTime is exceeded and an

exception is thrown.

tbt

The total time in milliseconds for requests that were blocked by the pool. This

time can be much larger than the elapsed execution time of the application if

the application uses multiple threads.

sbt

The shortest time in milliseconds that a thread waited to get a transport object

from the pool. If the time is under one millisecond, the value in this field is

zero.

lbt

The longest time in milliseconds that a thread waited to get a transport object

from the pool.

abt

The average amount of time in milliseconds that threads waited to get a

transport object from the pool. This value is tbt/nbr.

tpo

The number of objects that are currently in the pool.

Application programming interfaces for monitoring the global

transport objects pool

You can write applications to gather statistics on the global transport objects pool.

Those applications create objects in the DB2PoolMonitor class and invoke methods

to retrieve information about the pool.

For example, the following code creates an object for monitoring the global

transport objects pool:

import com.ibm.db2.jcc.DB2PoolMonitor;

DB2PoolMonitor transportObjectPoolMonitor =

 DB2PoolMonitor.getPoolMonitor (DB2PoolMonitor.TRANSPORT_OBJECT);

222 Developing Java Applications

After you create the DB2PoolMonitor object, you can use methods in the

DB2PoolMonitor class to monitor the pool.

Chapter 8. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ 223

224 Developing Java Applications

Chapter 9. System monitoring for the IBM Data Server Driver

for JDBC and SQLJ

To assist you in monitoring the performance of your applications with the IBM

Data Server Driver for JDBC and SQLJ, the driver provides two methods to collect

information for a connection.

That information is:

Core driver time

The sum of elapsed monitored API times that were collected while system

monitoring was enabled, in microseconds. In general, only APIs that might

result in network I/O or database server interaction are monitored.

Network I/O time

The sum of elapsed network I/O times that were collected while system

monitoring was enabled, in microseconds.

Server time

The sum of all reported database server elapsed times that were collected

while system monitoring was enabled, in microseconds.

 Currently, IBM Informix Dynamic Server databases do not support this

function.

Application time

The sum of the application, JDBC driver, network I/O, and database server

elapsed times, in milliseconds.

The two methods are:

v The DB2SystemMonitor interface

v The TRACE_SYSTEM_MONITOR trace level

To collect system monitoring data using the DB2SystemMonitor interface: Perform these

basic steps:

1. Invoke the DB2Connection.getDB2SystemMonitor method to create a

DB2SystemMonitor object.

2. Invoke the DB2SystemMonitor.enable method to enable the DB2SystemMonitor

object for the connection.

3. Invoke the DB2SystemMonitor.start method to start system monitoring.

4. When the activity that is to be monitored is complete, invoke

DB2SystemMonitor.stop to stop system monitoring.

5. Invoke the DB2SystemMonitor.getCoreDriverTimeMicros,

DB2SystemMonitor.getNetworkIOTimeMicros,

DB2SystemMonitor.getServerTimeMicros, or

DB2SystemMonitor.getApplicationTimeMillis methods to retrieve the elapsed

time data.

For example, the following code demonstrates how to collect each type of elapsed

time data. The numbers to the right of selected statements correspond to the

previously described steps.

© Copyright IBM Corp. 2006, 2009 225

To collect system monitoring information using the trace method: Start a JDBC trace,

using configuration properties or Connection or DataSource properties. Include

TRACE_SYSTEM_MONITOR when you set the traceLevel property. For example:

String url = "jdbc:db2://sysmvs1.stl.ibm.com:5021/san_jose" +

 ":traceFile=/u/db2p/jcctrace;" +

 "traceLevel=" + com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SYSTEM_MONITOR + ";";

The trace records with system monitor information look similar to this:

import java.sql.*;

import com.ibm.db2.jcc.*;

public class TestSystemMonitor

{

 public static void main(String[] args)

 {

 String url = "jdbc:db2://sysmvs1.svl.ibm.com:5021/san_jose";

 String user="db2adm";

 String password="db2adm";

 try

 {

 // Load the IBM Data Server Driver for JDBC and SQLJ

 Class.forName("com.ibm.db2.jcc.DB2Driver");

 System.out.println("**** Loaded the JDBC driver");

 // Create the connection using the IBM Data Server Driver for JDBC and SQLJ

 Connection conn = DriverManager.getConnection (url,user,password);

 // Commit changes manually

 conn.setAutoCommit(false);

 System.out.println("**** Created a JDBC connection to the data source");

 DB2SystemMonitor systemMonitor = �1�

 ((DB2Connection)conn).getDB2SystemMonitor();

 systemMonitor.enable(true); �2�

 systemMonitor.start(DB2SystemMonitor.RESET_TIMES); �3�

 Statement stmt = conn.createStatement();

 int numUpd = stmt.executeUpdate(

 "UPDATE EMPLOYEE SET PHONENO=’4657’ WHERE EMPNO=’000010’");

 systemMonitor.stop(); �4�

 System.out.println("Server elapsed time (microseconds)="

 + systemMonitor.getServerTimeMicros()); �5�

 System.out.println("Network I/O elapsed time (microseconds)="

 + systemMonitor.getNetworkIOTimeMicros());

 System.out.println("Core driver elapsed time (microseconds)="

 + systemMonitor.getCoreDriverTimeMicros());

 System.out.println("Application elapsed time (milliseconds)="

 + systemMonitor.getApplicationTimeMillis());

 conn.rollback();

 stmt.close();

 conn.close();

 }

 // Handle errors

 catch(ClassNotFoundException e)

 {

 System.err.println("Unable to load the driver, " + e);

 }

 catch(SQLException e)

 {

 System.out.println("SQLException: " + e);

 e.printStackTrace();

 }

 }

}

Figure 53. Example of using DB2SystemMonitor methods to collect system monitoring data

226 Developing Java Applications

[jcc][SystemMonitor:start]

...

[jcc][SystemMonitor:stop] core: 565.67ms | network: 211.695ms | server: 207.771ms

IBM Data Server Driver for JDBC and SQLJ remote trace controller

The IBM Data Server Driver for JDBC and SQLJ provides a facility for controlling

IBM Data Server Driver for JDBC and SQLJ traces dynamically.

This remote trace controller lets you perform operations like these for multiple

driver instances:

v Start, stop, or resume a trace

v Change the output trace file or directory location

v Change the trace level

The remote trace controller uses the Java Management Extensions (JMX)

architecture, which is part of the Java Standard Edition, Version 6, or later. The

JMX consists of:

v A set of built-in management utilities, which let you do monitoring from a

management console such as the Java Monitoring and Management Console

(JConsole).

v A set of APIs that let you write applications to perform the same functions.

Enabling the remote trace controller

Enabling the remote trace controller involves enabling Java Management

Extensions (JMX) in the IBM Data Server Driver for JDBC and SQLJ, and making

the JMX agent available to clients.

The remote trace controller requires Java Standard Edition, Version 6 or later.

The steps for enabling the remote trace controller are:

1. Enable JMX to the IBM Data Server Driver for JDBC and SQLJ by setting the

db2.jcc.jmxEnabled global configuration property to true or yes.

For example, include this string in DB2JccConfiguration.properties:

db2.jcc.jmxEnabled=true

2. Make the JMX agent (the platform MBean server) available to local or remote

clients.

v For local clients:

Monitoring and management capabilities are automatically made available

when the JVM is started. After your application is started, you can use a JMX

client such as JConsole to connect locally to your Java process.

v For remote clients, use one of the following methods:

– Use the out-of-the-box JMX agent.

Out-of-the-box management uses JMX built-in management utilities. To

enable out-of-the-box management, you need to set a number of Java

system properties. You must at least set the following property:

com.sun.management.jmxremote.port=portNum

In addition, you should ensure that authentication and SSL are properly

configured.

Full information on enabling out-of-the-box management is at the

following URL:

http://java.sun.com/javase/6/docs/technotes/guides/management/agent.html

Chapter 9. System monitoring for the IBM Data Server Driver for JDBC and SQLJ 227

http://java.sun.com/javase/6/docs/technotes/guides/management/agent.html

– Write a JMX agent. This technique is also discussed at:

http://java.sun.com/javase/6/docs/technotes/guides/management/agent.html

In the following example, an RMI connector server is created for the

PlatformMBeanServer using the MyCustomJMXAuthenticator object. The

MyCustomJMXAuthenticator class defines how remote credentials are

converted into a JAAS Subject by implementing the JMXAuthenticator

interface:

...

HashMap<String> env = new HashMap<String>();

env.put(JMXConnectorServer.AUTHENTICATOR, new MyCustomJMXAuthenticator());

env.put("jmx.remote.x.access.file", "my.access.file");

MBeanServer mbs =

 java.lang.management.ManagementFactory.getPlatformMBeanServer();

JMXServiceURL url =

 new JMXServiceURL("service:jmx:rmi:///jndi/rmi://:9999/jmxrmi");

JMXConnectorServer cs =

 JMXConnectorServerFactory.newJMXConnectorServer(url, env, mbs);

cs.start();

...

public class MyCustomJMXAuthenticator implements JMXAuthenticator {

 public Subject authenticate(Object credentials) {

 // the hash contains username, password, etc...

 Hashtable <String> credentialsHash

 = (Hashtable <String>) credentials;

 ...

 // Authenticate using the provided credentials

 ...

 if (authentication-successful) {

 return new Subject(true,

 Collections.singleton

 (new JMXPrincipal(credentialsHash.get("username"))),

 Collections.EMPTY_SET,

 Collections.EMPTY_SET);

 }

 throw new SecurityException("Invalid credentials");

 }

}

Accessing the remote trace controller

You can access the remote trace controller through out-of-the-box management

tools, or through an application.

You use out-of-the-box management through a JMX-compliant management client,

such as JConsole, which is part of Java Standard Edition, Version 6. Information on

using JConsole for out-of-the-box management is at the following URL:

http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html

In an application that accesses the remote trace controller, the remote trace

controller is a managed bean (MBean). JMX manages resources through JMX

agents. A JMX agent is an MBean server. Each MBean represents a resource. Every

MBean has a name, which you define through an object of class

javax.management.ObjectName. You use the ObjectName object to register and

retrieve MBeans in the MBeanServer.

228 Developing Java Applications

http://java.sun.com/javase/6/docs/technotes/guides/management/agent.html
http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html

The MBean name has two parts: the domain and the key properties. For the

ObjectName for the IBM Data Server Driver for JDBC and SQLJ remote trace

controller, the domain is com.ibm.db2.jcc, and the key properties are

name=DB2TraceManager.

An application that accesses the remote trace controller must include these steps:

1. Establish a Remote Method Invocation (RMI) connection to an MBean server.

2. Perform a lookup on the remote trace controller in the MBean server.

3. Invoke trace operations on the MBean.

You can operate on the MBean in the following ways:

v Using an MBean proxy

v Without a proxy, through an MBeanServerConnection.

Example: accessing the remote trace controller without proxies: This example

demonstrates accessing MBeans directly from an MBeanServerConnection. This

method is the most generic because it does not require matching interface

definitions on the JMX client application.

Hashtable<String> env = new Hashtable<String>();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.sun.jndi.fscontext.RefFSContextFactory");

try {

 System.out.println ("");

 System.out.println ("---");

 System.out.println ("Establish an RMI connection to an MBeanServer");

 System.out.println ("---");

 JMXServiceURL url =

 new JMXServiceURL ("service:jmx:rmi:///jndi/rmi://localhost:9999/jmxrmi");

 JMXConnector jmxc = JMXConnectorFactory.connect (url, env);

 MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

 System.out.println ("");

 System.out.println ("---");

 System.out.println ("Processing MBean");

 System.out.println ("---");

 String objectNameString = "com.ibm.db2.jcc:name=DB2TraceManager";

 ObjectName name = new ObjectName(objectNameString);

 System.out.println ("ObjectName="+objectNameString);

 System.out.println ("");

 System.out.println ("---");

 System.out.println ("Print all attributes of the MBean");

 System.out.println ("---");

 System.out.println(

 "TraceDirectory = "+mbsc.getAttribute (name, "TraceDirectory"));

 System.out.println(

 "TraceFile = "+mbsc.getAttribute (name, "TraceFile"));

 System.out.println(

 "TraceFileAppend = "+mbsc.getAttribute (name, "TraceFileAppend"));

 System.out.println(

 "TraceLevel = "+mbsc.getAttribute (name, "TraceLevel"));

 System.out.println ("");

 System.out.println ("---");

 System.out.println ("Invoke some operations on the MBean");

 System.out.println ("---");

 System.out.print ("Invoking suspendTrace()...");

 mbsc.invoke (name, "suspendTrace", null , null);

 System.out.println ("success");

 System.out.print ("Invoking resumeTrace()...");

Chapter 9. System monitoring for the IBM Data Server Driver for JDBC and SQLJ 229

mbsc.invoke (name, "resumeTrace", null , null);

 System.out.println ("success");

}

catch (Exception e) {

 System.out.println ("failure");

 e.printStackTrace ();

}

Example: accessing the remote trace controller with proxies: This example

demonstrates the creation of a proxy to an MBean. The proxy implements the

com.ibm.db2.jcc.mx.DB2TraceManagerMXBean interface. The application makes

calls directly on the proxy, and the underlying proxy implementation invokes the

MBean operation on the remote MBean server.

Hashtable<String> env = new Hashtable<String>();

env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.sun.jndi.fscontext.RefFSContextFactory");

try {

 System.out.println ("");

 System.out.println ("---");

 System.out.println ("Establish an RMI connection to an MBeanServer");

 System.out.println ("---");

 JMXServiceURL url =

 new JMXServiceURL ("service:jmx:rmi:///jndi/rmi://localhost:9999/jmxrmi");

 JMXConnector jmxc = JMXConnectorFactory.connect (url, env);

 MBeanServerConnection mbsc = jmxc.getMBeanServerConnection();

 System.out.println ("");

 System.out.println ("---");

 System.out.println ("Processing MBean");

 System.out.println ("---");

 String objectNameString = "com.ibm.db2.jcc:name=DB2TraceManager";

 ObjectName name = new ObjectName(objectNameString);

 System.out.println ("ObjectName="+objectNameString);

 System.out.println ("");

 System.out.println ("---");

 System.out.println ("Print all attributes of the MBean");

 System.out.println ("---");

 com.ibm.db2.jcc.mx.DB2TraceManagerMXBean mbeanProxy =

 JMX.newMBeanProxy(mbsc, name,

 com.ibm.db2.jcc.mx.DB2TraceManagerMXBean.class, true);

 System.out.println ("TraceDirectory = "+mbeanProxy.getTraceDirectory ());

 System.out.println ("TraceFile = "+mbeanProxy.getTraceFile ());

 System.out.println ("TraceFileAppend = "+mbeanProxy.getTraceFileAppend ());

 System.out.println ("TraceLevel = "+mbeanProxy.getTraceLevel ());

 System.out.println ("");

 System.out.println ("---");

 System.out.println ("Invoke some operations on the MBean");

 System.out.println ("---");

 System.out.print ("Invoking suspendTrace()...");

 mbeanProxy.suspendTrace();

 System.out.println ("success");

 System.out.print ("Invoking resumeTrace()...");

 mbeanProxy.resumeTrace();

 System.out.println ("success");

}

catch (Exception e) {

 System.out.println ("failure");

 e.printStackTrace ();

}

230 Developing Java Applications

Chapter 10. Java 2 Platform, Enterprise Edition

The Java 2 Platform, Enterprise Edition (J2EE), reduces the cost and complexity of

developing these multi-tier services, resulting in services that can be rapidly

deployed and easily enhanced based on the requirements of the enterprise.

In today’s global business environment, organizations need to extend their reach,

lower their costs, and lower their response times by providing services that are

easily accessible to their customers, employees, suppliers, and other business

partners. These services need to have the following characteristics:

v Highly available, to meet the requirements of global business environment

v Secure, to protect the privacy of the users and the integrity of the enterprise

v Reliable and scalable, so that business transactions are accurately and promptly

processed

In most cases, these services are provided with the help of multi-tier applications

with each tier serving a specific purpose.

J2EE achieves these benefits by defining a standard architecture that is delivered as

the following elements:

v J2EE Application Model, a standard application model for developing multi-tier,

thin-client services

v J2EE Platform, a standard platform for hosting J2EE applications

v J2EE Compatibility Test Suite for verifying that a J2EE platform product

complies with the J2EE platform standard

v J2EE Reference Implementation for demonstrating the capabilities of J2EE, and

for providing an operational definition of the J2EE platform

Application components of Java 2 Platform, Enterprise Edition support

The Java 2 Platform, Enterprise Edition (J2EE) provides the runtime environment

for hosting J2EE applications.

The runtime environment defines four application component types that a J2EE

product must support:

v Application clients are Java programming language programs that are typically

GUI programs that execute on a desktop computer. Application clients have

access to all of the facilities of the J2EE middle tier.

v Applets are GUI components that typically execute in a web browser, but can

execute in a variety of other applications or devices that support the applet

programming model.

v Servlets, JavaServer Pages (JSPs), filters, and web event listeners typically

execute in a web server and might respond to HTTP requests from web clients.

Servlets, JSPs, and filters can be used to generate HTML pages that are an

application’s user interface. They can also be used to generate XML or other

format data that is consumed by other application components. Servlets, pages

created with the JSP technology, web filters, and web event listeners are referred

to collectively in this specification as web components. Web applications are

composed of web components and other data such as HTML pages.

© Copyright IBM Corp. 2006, 2009 231

v Enterprise JavaBeans™ (EJB) components execute in a managed environment that

supports transactions. Enterprise beans typically contain the business logic for a

J2EE application.

The application components listed above can divided into three categories, based

on how they can be deployed and managed:

v Components that are deployed, managed, and executed on a J2EE server.

v Components that are deployed, managed on a J2EE server, but are loaded to and

executed on a client machine.

v Components whose deployment and management are not completely defined by

this specification. Application clients can be under this category.

The runtime support for these components is provided by containers.

Java 2 Platform, Enterprise Edition containers

A container provides a federated view of the underlying Java 2 Platform,

Enterprise Edition (J2EE) APIs to the application components.

A typical J2EE product will provide a container for each application component

type; application client container, applet container, web container, and enterprise

bean container. The container tools also understand the file formats for packaging

the application components for deployment.

The specification requires that these containers provide a Java-compatible runtime

environment. This specification defines a set of standard services that each J2EE

product must support. These standard services are:

v HTTP service

v HTTPS service

v Java transaction API

v Remote invocation method

v Java IDL

v JDBC API

v Java message service

v Java naming and directory interface

v JavaMail

v JavaBeans activation framework

v Java API for XML parsing

v Connector architecture

v Java authentication and authorization service

Java 2 Platform, Enterprise Edition Server

Underlying a Java 2 Platform, Enterprise Edition (J2EE) container is the server of

which the container is a part.

A J2EE Product Provider typically implements the J2EE server-side functionality.

The J2EE client functionality is typically built on J2SE technology.

The IBM WebSphere Application Server is a J2EE-compliant server.

Java 2 Platform, Enterprise Edition database requirements

Java 2 Platform, Enterprise Edition requires a database, accessible through the

JDBC API, for the storage of business data.

232 Developing Java Applications

The database is accessible from web components, enterprise beans, and application

client components. The database need not be accessible from applets.

Java Naming and Directory Interface (JNDI)

JNDI enables Java platform-based applications to access multiple naming and

directory services.

It is a part of the Java Enterprise application programming interface (API) set.

JNDI makes it possible for developers to create portable applications that are

enabled for a number of different naming and directory services, including: file

systems; directory services such as Lightweight Directory Access Protocol (LDAP)

and Novell Directory Services, and distributed object systems such as the Common

Object Request Broker Architecture (CORBA), Java Remote Method Invocation

(RMI), and Enterprise JavaBeans (EJB).

The JNDI API has two parts: an application-level interface used by the application

components to access naming and directory services and a service provider

interface to attach a provider of a naming and directory service.

Java transaction management

Java 2 Platform, Enterprise Edition (J2EE) simplifies application programming for

distributed transaction management.

J2EE includes support for distributed transactions through two specifications, Java

Transaction API (JTA) and Java Transaction Service (JTS). JTA is a high-level,

implementation-independent, protocol-independent API that allows applications

and application servers to access transactions. In addition, the JTA is always

enabled.

The IBM Data Server Driver for JDBC and SQLJ and the DB2 JDBC Type 2 Driver

for Linux, UNIX and Windows implement the JTA and JTS specifications.

For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity distributed

transactions are supported to DB2 Database for Linux, UNIX, and Windows, DB2

for z/OS, and DB2 for i servers.

JTA specifies standard Java interfaces between a transaction manager and the

parties involved in a distributed transaction system: the resource manager, the

application server, and the transactional applications.

JTS specifies the implementation of a Transaction Manager which supports JTA and

implements the Java mapping of the OMG Object Transaction Service (OTS) 1.1

specification at the level below the API. JTS propagates transactions using IIOP.

JTA and JTS allow application J2EE servers to take the burden of transaction

management off of the component developer. Developers can define the

transactional properties of EJB technology based components during design or

deployment using declarative statements in the deployment descriptor. The

application server takes over the transaction management responsibilities.

In the DB2 and WebSphere Application Server environment, WebSphere

Application Server assumes the role of transaction manager, and DB2 acts as a

resource manager. WebSphere Application Server implements JTS and part of JTA,

Chapter 10. Java 2 Platform, Enterprise Edition 233

and the JDBC drivers also implement part of JTA so that WebSphere Application

Server and DB2 can provide coordinated distributed transactions.

It is not necessary to configure DB2 to be JTA-enabled in the WebSphere

Application Server environment because the JDBC drivers automatically detect this

environment.

The DB2 JDBC Type 2 Driver provides these two DataSource classes:

v COM.ibm.db2.jdbc.DB2ConnectionPoolDataSource

v COM.ibm.db2.jdbc.DB2XADataSource

The IBM Data Server Driver for JDBC and SQLJ provides these two DataSource

classes:

v com.ibm.db2.jcc.DB2ConnectionPoolDataSource

v com.ibm.db2.jcc.DB2XADataSource

WebSphere Application Server provides pooled connections to databases. If the

application will be involved in a distributed transaction, the

com.ibm.db2.jdbc.DB2XADataSource class should be used when defining DB2 data

sources within the WebSphere Application Server.

For the detail information about how to configure the WebSphere Application

Server with DB2, refer to WebSphere Application Server InfoCenter at:

http://www.ibm.com/software/webservers/appserv/library.html

Example of a distributed transaction that uses JTA methods

Distributed transactions typically involve multiple connections to the same data

source or different data sources, which can include data sources from different

manufacturers.

The best way to demonstrate distributed transactions is to contrast them with local

transactions. With local transactions, a JDBC application makes changes to a

database permanent and indicates the end of a unit of work in one of the

following ways:

v By calling the Connection.commit or Connection.rollback methods after

executing one or more SQL statements

v By calling the Connection.setAutoCommit(true) method at the beginning of the

application to commit changes after every SQL statement

Figure 54 outlines code that executes local transactions.

 In contrast, applications that participate in distributed transactions cannot call the

Connection.commit, Connection.rollback, or Connection.setAutoCommit(true)

methods within the distributed transaction. With distributed transactions, the

con1.setAutoCommit(false); // Set autocommit off

// execute some SQL

...

con1.commit(); // Commit the transaction

// execute some more SQL

...

con1.rollback(); // Roll back the transaction

con1.setAutoCommit(true); // Enable commit after every SQL statement

...

// Execute some more SQL, which is automatically committed after

// every SQL statement.

Figure 54. Example of a local transaction

234 Developing Java Applications

Connection.commit or Connection.rollback methods do not indicate transaction

boundaries. Instead, your applications let the application server manage

transaction boundaries.

Figure 55 demonstrates an application that uses distributed transactions. While the

code in the example is running, the application server is also executing other EJBs

that are part of this same distributed transaction. When all EJBs have called

utx.commit(), the entire distributed transaction is committed by the application

server. If any of the EJBs are unsuccessful, the application server rolls back all the

work done by all EJBs that are associated with the distributed transaction.

 Figure 56 illustrates a program that uses JTA methods to execute a distributed

transaction. This program acts as the transaction manager and a transactional

application. Two connections to two different data sources do SQL work under a

single distributed transaction.

class XASample

{

 javax.sql.XADataSource xaDS1;

 javax.sql.XADataSource xaDS2;

 javax.sql.XAConnection xaconn1;

 javax.sql.XAConnection xaconn2;

 javax.transaction.xa.XAResource xares1;

 javax.transaction.xa.XAResource xares2;

 java.sql.Connection conn1;

 java.sql.Connection conn2;

 public static void main (String args []) throws java.sql.SQLException

 {

 XASample xat = new XASample();

 xat.runThis(args);

 }

 // As the transaction manager, this program supplies the global

 // transaction ID and the branch qualifier. The global

 // transaction ID and the branch qualifier must not be

 // equal to each other, and the combination must be unique for

 // this transaction manager.

 public void runThis(String[] args)

 {

 byte[] gtrid = new byte[] { 0x44, 0x11, 0x55, 0x66 };

 byte[] bqual = new byte[] { 0x00, 0x22, 0x00 };

 int rc1 = 0;

 int rc2 = 0;

javax.transaction.UserTransaction utx;

// Use the begin method on a UserTransaction object to indicate

// the beginning of a distributed transaction.

utx.begin();

...

// Execute some SQL with one Connection object.

// Do not call Connection methods commit or rollback.

...

// Use the commit method on the UserTransaction object to

// drive all transaction branches to commit and indicate

// the end of the distributed transaction.

utx.commit();

...

Figure 55. Example of a distributed transaction under an application server

Figure 56. Example of a distributed transaction that uses the JTA

Chapter 10. Java 2 Platform, Enterprise Edition 235

try

 {

 javax.naming.InitialContext context = new javax.naming.InitialContext();

 /*

 * Note that javax.sql.XADataSource is used instead of a specific

 * driver implementation such as com.ibm.db2.jcc.DB2XADataSource.

 */

 xaDS1 = (javax.sql.XADataSource)context.lookup("checkingAccounts");

 xaDS2 = (javax.sql.XADataSource)context.lookup("savingsAccounts");

 // The XADatasource contains the user ID and password.

 // Get the XAConnection object from each XADataSource

 xaconn1 = xaDS1.getXAConnection();

 xaconn2 = xaDS2.getXAConnection();

 // Get the java.sql.Connection object from each XAConnection

 conn1 = xaconn1.getConnection();

 conn2 = xaconn2.getConnection();

 // Get the XAResource object from each XAConnection

 xares1 = xaconn1.getXAResource();

 xares2 = xaconn2.getXAResource();

 // Create the Xid object for this distributed transaction.

 // This example uses the com.ibm.db2.jcc.DB2Xid implementation

 // of the Xid interface. This Xid can be used with any JDBC driver

 // that supports JTA.

 javax.transaction.xa.Xid xid1 =

 new com.ibm.db2.jcc.DB2Xid(100, gtrid, bqual);

 // Start the distributed transaction on the two connections.

 // The two connections do NOT need to be started and ended together.

 // They might be done in different threads, along with their SQL operations.

 xares1.start(xid1, javax.transaction.xa.XAResource.TMNOFLAGS);

 xares2.start(xid1, javax.transaction.xa.XAResource.TMNOFLAGS);

...

 // Do the SQL operations on connection 1.

 // Do the SQL operations on connection 2.

...

 // Now end the distributed transaction on the two connections.

 xares1.end(xid1, javax.transaction.xa.XAResource.TMSUCCESS);

 xares2.end(xid1, javax.transaction.xa.XAResource.TMSUCCESS);

 // If connection 2 work had been done in another thread,

 // a thread.join() call would be needed here to wait until the

 // connection 2 work is done.

 try

 { // Now prepare both branches of the distributed transaction.

 // Both branches must prepare successfully before changes

 // can be committed.

 // If the distributed transaction fails, an XAException is thrown.

 rc1 = xares1.prepare(xid1);

 if(rc1 == javax.transaction.xa.XAResource.XA_OK)

 { // Prepare was successful. Prepare the second connection.

 rc2 = xares2.prepare(xid1);

 if(rc2 == javax.transaction.xa.XAResource.XA_OK)

 { // Both connections prepared successfully and neither was read-only.

 xares1.commit(xid1, false);

 xares2.commit(xid1, false);

 }

 else if(rc2 == javax.transaction.xa.XAException.XA_RDONLY)

 { // The second connection is read-only, so just commit the

 // first connection.

 xares1.commit(xid1, false);

 }

236 Developing Java Applications

}

 else if(rc1 == javax.transaction.xa.XAException.XA_RDONLY)

 { // SQL for the first connection is read-only (such as a SELECT).

 // The prepare committed it. Prepare the second connection.

 rc2 = xares2.prepare(xid1);

 if(rc2 == javax.transaction.xa.XAResource.XA_OK)

 { // The first connection is read-only but the second is not.

 // Commit the second connection.

 xares2.commit(xid1, false);

 }

 else if(rc2 == javax.transaction.xa.XAException.XA_RDONLY)

 { // Both connections are read-only, and both already committed,

 // so there is nothing more to do.

 }

 }

 } catch (javax.transaction.xa.XAException xae)

 { // Distributed transaction failed, so roll it back.

 // Report XAException on prepare/commit.

 System.out.println("Distributed transaction prepare/commit failed. " +

 "Rolling it back.");

 System.out.println("XAException error code = " + xae.errorCode);

 System.out.println("XAException message = " + xae.getMessage());

 xae.printStackTrace();

 try

 {

 xares1.rollback(xid1);

 }

 catch (javax.transaction.xa.XAException xae1)

 { // Report failure of rollback.

 System.out.println("distributed Transaction rollback xares1 failed");

 System.out.println("XAException error code = " + xae1.errorCode);

 System.out.println("XAException message = " + xae1.getMessage());

 }

 try

 {

 xares2.rollback(xid1);

 }

 catch (javax.transaction.xa.XAException xae2)

 { // Report failure of rollback.

 System.out.println("distributed Transaction rollback xares2 failed");

 System.out.println("XAException error code = " + xae2.errorCode);

 System.out.println("XAException message = " + xae2.getMessage());

 }

 }

 try

 {

 conn1.close();

 xaconn1.close();

 }

 catch (Exception e)

 {

 System.out.println("Failed to close connection 1: " + e.toString());

 e.printStackTrace();

 }

 try

 {

 conn2.close();

 xaconn2.close();

 }

 catch (Exception e)

 {

 System.out.println("Failed to close connection 2: " + e.toString());

 e.printStackTrace();

 }

 }

 catch (java.sql.SQLException sqe)

Chapter 10. Java 2 Platform, Enterprise Edition 237

{

 System.out.println("SQLException caught: " + sqe.getMessage());

 sqe.printStackTrace();

 }

 catch (javax.transaction.xa.XAException xae)

 {

 System.out.println("XA error is " + xae.getMessage());

 xae.printStackTrace();

 }

 catch (javax.naming.NamingException nme)

 {

 System.out.println(" Naming Exception: " + nme.getMessage());

 }

 }

}

Recommendation: For better performance, complete a distributed transaction

before you start another distributed or local transaction.

Setting the transaction timeout value for an XAResource

instance

Use the XAResource.setTransactionTimeout method to reduce occurrences of

deadlocks in a DB2 database that is the target of distributed transactions.

A distributed transaction to DB2 Database for Linux, UNIX, and Windows that

ends, but cannot be prepared, is not an indoubt transaction. Therefore, the

transaction manager cannot recover the transaction, and the DB2 resource manager

does not put the transaction in its list of indoubt transactions. The DB2 resource

manager does not roll back the transaction immediately, but waits until all

connections to the database are released. During this period of inactivity, the

transaction continues to hold locks on the database. If the transaction manager

does not disconnect all connections to the database to allow rollback, the ended

transaction continues to lock database records. If another application attempts to

access those locked records, a deadlock can occur.

In a Java application that uses distributed transactions and IBM Data Server Driver

for JDBC and SQLJ type 4 connectivity, you can prevent a transaction from holding

locks on a database indefinitely by calling the XAResource.setTransactionTimeout

method to set a timeout value on transactions. To do that, follow these steps:

1. On the DB2 Database for Linux, UNIX, and Windows instance, issue this

command to cause the instance to check for timeout values.

DB2 UPDATE DBM CFG USING RESYNC_INTERVAL seconds

seconds needs to be less than the minimum timeout value that you set for a

transaction.

2. In your application, after you create an XAResource object, call the

XAResource.setTransactionTimeout method to set the timeout value.

You can check the current timeout value by calling

XAResource.getTransactionTimeout.

Enterprise Java Beans

The Enterprise Java beans architecture is a component architecture for the

development and deployment of component-based distributed business

applications.

238 Developing Java Applications

Applications that are written using the Enterprise Java beans architecture can be

written once, and then deployed on any server platform that supports the

Enterprise Java beans specification. Java 2 Platform, Enterprise Edition (J2EE)

applications implement server-side business components using Enterprise Java

beans (EJBs) that include session beans and entity beans.

Session beans represent business services and are not shared between users. Entity

beans are multi-user, distributed transactional objects that represent persistent data.

The transactional boundaries of a EJB application can be set by specifying either

container-managed or bean-managed transactions.

The sample program AccessEmployee.ear uses Enterprise Java beans to implement

a J2EE application to access a data source. You can find this sample in the

SQLLIB/samples/websphere directory.

The EJB sample application provides two business services. One service allows the

user to access information about an employee (which is stored in the EMPLOYEE

table of the sample database) through that employee’s employee number. The

other service allows the user to retrieve a list of the employee numbers, so that the

user can obtain an employee number to use for querying employee data.

The following sample uses EJBs to implement a J2EE application to access a data

source. The sample utilizes the Model-View-Controller (MVC) architecture, which

is a commonly-used GUI architecture. The JSP is used to implement the view (the

presentation component). A servlet acts as the controller in the sample. It controls

the workflow and delegates the user’s request to the model, which is implemented

using EJBs. The model component of the sample consists of two EJBs, one session

bean and one entity bean. The container-managed persistence (CMP) bean,

Employee, represents the distributed transactional objects that represent the

persistent data in the EMPLOYEE table of the sample database. The term

container-managed persistence means that the EJB container handles all database

access required by the entity bean. The bean’s code contains no database access

(SQL) calls. As a result, the bean’s code is not tied to a specific persistent storage

mechanism (database). The session bean, AccessEmployee, acts as the Façade of the

entity bean and provides provide a uniform client access strategy. This Façade

design reduces the network traffic between the EJB client and the entity bean and

is more efficient in distributed transactions than if the EJB client accesses the entity

bean directly. Access to the database server can be provided from the session bean

or entity bean. The two services of the sample application demonstrate both

approaches to accessing the database server. In the first service, the entity bean is

used:

//==

// This method returns an employee’s information by

// interacting with the entity bean located by the

// provided employee number

public EmployeeInfo getEmployeeInfo(String empNo)

throws java.rmi.RemoteException

}

Employee employee = null;

try

}

employee = employeeHome.findByPrimaryKey(new EmployeeKey(empNo));

EmployeeInfo empInfo = new EmployeeInfo(empNo);

//set the employee’s information to the dependent value object

empInfo.setEmpno(employee.getEmpno());

empInfo.setFirstName (employee.getFirstName());

empInfo.setMidInit(employee.getMidInit());

empInfo.setLastName(employee.getLastName());

empInfo.setWorkDept(employee.getWorkDept());

Chapter 10. Java 2 Platform, Enterprise Edition 239

empInfo.setPhoneNo(employee.getPhoneNo());

empInfo.setHireDate(employee.getHireDate());

empInfo.setJob(employee.getJob());

empInfo.setEdLevel(employee.getEdLevel());

empInfo.setSex(employee.getSex());

empInfo.setBirthDate(employee.getBirthDate());

empInfo.setSalary(employee.getSalary());

empInfo.setBonus(employee.getBonus());

empInfo.setComm(employee.getComm());

return empInfo;

}

catch (java.rmi.RemoteException rex)

{

......

In the second service, which displays employee numbers, the session bean,

AccessEmployee, directly accesses the database table.

/===

* Get the employee number list.

* @return Collection

*/

public Collection getEmpNoList()

{

ResultSet rs = null;

PreparedStatement ps = null;

Vector list = new Vector();

DataSource ds = null;

Connection con = null;

try

{

ds = getDataSource();

con = ds.getConnection();

String schema = getEnvProps(DBschema);

String query = "Select EMPNO from " + schema + ".EMPLOYEE";

ps = con.prepareStatement(query);

ps.executeQuery();

rs = ps.getResultSet();

EmployeeKey pk;

while (rs.next())

{

pk = new EmployeeKey();

pk.employeeId = rs.getString(1);

list.addElement(pk.employeeId);

}

rs.close();

return list;

240 Developing Java Applications

Chapter 11. JDBC and SQLJ connection pooling support

Connection pooling is part of JDBC DataSource support, and is supported by the

IBM Data Server Driver for JDBC and SQLJ.

The IBM Data Server Driver for JDBC and SQLJ provides a factory of pooled

connections that are used by WebSphere Application Server or other application

servers. The application server actually does the pooling. Connection pooling is

completely transparent to a JDBC or SQLJ application.

Connection pooling is a framework for caching physical data source connections,

which are equivalent to DB2 threads. When JDBC reuses physical data source

connections, the expensive operations that are required for the creation and

subsequent closing of java.sql.Connection objects are minimized.

Without connection pooling, each java.sql.Connection object represents a physical

connection to the data source. When the application establishes a connection to a

data source, DB2 creates a new physical connection to the data source. When the

application calls the java.sql.Connection.close method, DB2 terminates the physical

connection to the data source.

In contrast, with connection pooling, a java.sql.Connection object is a temporary,

logical representation of a physical data source connection. The physical data

source connection can be serially reused by logical java.sql.Connection instances.

The application can use the logical java.sql.Connection object in exactly the same

manner as it uses a java.sql.Connection object when there is no connection pooling

support.

With connection pooling, when a JDBC application invokes the

DataSource.getConnection method, the data source determines whether an

appropriate physical connection exists. If an appropriate physical connection exists,

the data source returns a java.sql.Connection instance to the application. When the

JDBC application invokes the java.sql.Connection.close method, JDBC does not

close the physical data source connection. Instead, JDBC closes only JDBC

resources, such as Statement or ResultSet objects. The data source returns the

physical connection to the connection pool for reuse.

Connection pooling can be homogeneous or heterogeneous.

With homogeneous pooling, all Connection objects that come from a connection

pool should have the same properties. The first logical Connection that is created

with the DataSource has the properties that were defined for the DataSource.

However, an application can change those properties. When a Connection is

returned to the connection pool, an application server or a pooling module should

reset the properties to their original values. However, an application server or

pooling module might not reset the changed properties. The JDBC driver does not

modify the properties. Therefore, depending on the application server or pool

module design, a reused logical Connection might have the same properties as

those that are defined for the DataSource or different properties.

With heterogeneous pooling, Connection objects with different properties can share

the same connection pool.

© Copyright IBM Corp. 2006, 2009 241

242 Developing Java Applications

Chapter 12. JDBC and SQLJ reference information

The IBM implementations of JDBC and SQLJ provide a number of application

programming interfaces, properties, and commands for developing JDBC and SQLJ

applications.

Data types that map to database data types in Java applications

To write efficient JDBC and SQLJ programs, you need to use the best mappings

between Java data types and table column data types.

The following tables summarize the mappings of Java data types to JDBC and

database data types for a DB2 Database for Linux, UNIX, and Windows, DB2 for

z/OS, or IBM Informix Dynamic Server (IDS) system.

Data types for updating table columns

The following table summarizes the mappings of Java data types to database data

types for PreparedStatement.setXXX or ResultSet.updateXXX methods in JDBC

programs, and for input host expressions in SQLJ programs. When more than one

Java data type is listed, the first data type is the recommended data type.

 Table 39. Mappings of Java data types to database server data types for updating database tables

Java data type Database data type

short SMALLINT

boolean1, byte1, java.lang.Boolean SMALLINT

int, java.lang.Integer INTEGER

long, java.lang.Long BIGINT11

float, java.lang.Float REAL

double, java.lang.Double DOUBLE

java.math.BigDecimal DECIMAL(p,s)2

java.math.BigDecimal DECFLOAT(n)3,4

java.lang.String CHAR(n)5

java.lang.String GRAPHIC(m)6

java.lang.String VARCHAR(n)7

java.lang.String VARGRAPHIC(m)8

java.lang.String CLOB9

java.lang.String XML10

byte[] CHAR(n) FOR BIT DATA5

byte[] VARCHAR(n) FOR BIT DATA7

byte[] BINARY(n)5, 12

byte[] VARBINARY(n)7, 12

byte[] BLOB9

byte[] ROWID

byte[] XML10

© Copyright IBM Corp. 2006, 2009 243

Table 39. Mappings of Java data types to database server data types for updating database tables (continued)

Java data type Database data type

java.sql.Blob BLOB

java.sql.Blob XML10

java.sql.Clob CLOB

java.sql.Clob DBCLOB9

java.sql.Clob XML10

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP or TIMESTAMP(p)13

java.io.ByteArrayInputStream BLOB

java.io.StringReader CLOB

java.io.ByteArrayInputStream CLOB

java.io.InputStream XML10

com.ibm.db2.jcc.DB2RowID (deprecated) ROWID

java.sql.RowId ROWID

com.ibm.db2.jcc.DB2Xml (deprecated) XML10

java.sql.SQLXML XML10

Notes:

 1. The database server has no exact equivalent for the Java boolean or byte data types, but the best fit is

SMALLINT.

 2. p is the decimal precision and s is the scale of the table column.

You should design financial applications so that java.math.BigDecimal columns map to DECIMAL columns. If

you know the precision and scale of a DECIMAL column, updating data in the DECIMAL column with data in a

java.math.BigDecimal variable results in better performance than using other combinations of data types.

 3. n=16 or n=34.

 4. DECFLOAT is valid for connections to DB2 Version 9.1 for z/OS, DB2 V9.5 for Linux, UNIX, and Windows, or

DB2 for i V6R1, or later database servers. Use of DECFLOAT requires the SDK for Java Version 5 (1.5) or later.

 5. n<=254.

 6. m<=127.

 7. n<=32672.

 8. m<=16336.

 9. This mapping is valid only if the database server can determine the data type of the column.

10. XML is valid for connections to DB2 Version 9.1 for z/OS or later database servers or DB2 V9.1 for Linux, UNIX,

and Windows or later database servers.

11. BIGINT is valid for connections to DB2 Version 9.1 for z/OS or later database servers, DB2 V9.1 for Linux,

UNIX, and Windows or later database servers, and all supported DB2 for i database servers.

12. BINARY and VARBINARY are valid for connections to DB2 Version 9.1 for z/OS or later database servers, DB2

V9.1 for Linux, UNIX, and Windows or later database servers, and DB2 for i5/OS® V5R3 and later database

servers.

13. p indicates the timestamp precision, which is the number of digits in the fractional part of the timestamp.

0<=p<=12. The default is 6. TIMESTAMP(p) is supported for connections to DB2 Database for Linux, UNIX, and

Windows V9.7 and later only.

244 Developing Java Applications

Data types for retrieval from table columns

The following table summarizes the mappings of DB2 or IDS data types to Java

data types for ResultSet.getXXX methods in JDBC programs, and for iterators in

SQLJ programs. This table does not list Java numeric wrapper object types, which

are retrieved using ResultSet.getObject.

 Table 40. Mappings of database server data types to Java data types for retrieving data from database server tables

SQL data type

Recommended Java data type or

Java object type Other supported Java data types

SMALLINT short byte, int, long, float, double,

java.math.BigDecimal, boolean,

java.lang.String

INTEGER int short, byte, long, float, double,

java.math.BigDecimal, boolean,

java.lang.String

BIGINT5 long int, short, byte, float, double,

java.math.BigDecimal, boolean,

java.lang.String

DECIMAL(p,s) or NUMERIC(p,s) java.math.BigDecimal long, int, short, byte, float, double,

boolean, java.lang.String

DECFLOAT(n)1,2 java.math.BigDecimal long, int, short, byte, float, double,

java.math.BigDecimal, boolean,

java.lang.String

REAL float long, int, short, byte, double,

java.math.BigDecimal, boolean,

java.lang.String

DOUBLE double long, int, short, byte, float,

java.math.BigDecimal, boolean,

java.lang.String

CHAR(n) java.lang.String long, int, short, byte, float, double,

java.math.BigDecimal, boolean,

java.sql.Date, java.sql.Time,

java.sql.Timestamp,

java.io.InputStream, java.io.Reader

VARCHAR(n) java.lang.String long, int, short, byte, float, double,

java.math.BigDecimal, boolean,

java.sql.Date, java.sql.Time,

java.sql.Timestamp,

java.io.InputStream, java.io.Reader

CHAR(n) FOR BIT DATA byte[] java.lang.String,

java.io.InputStream, java.io.Reader

VARCHAR(n) FOR BIT DATA byte[] java.lang.String,

java.io.InputStream, java.io.Reader

BINARY(n)6 byte[] None

VARBINARY(n)6 byte[] None

GRAPHIC(m) java.lang.String long, int, short, byte, float, double,

java.math.BigDecimal, boolean,

java.sql.Date, java.sql.Time,

java.sql.Timestamp,

java.io.InputStream, java.io.Reader

Chapter 12. JDBC and SQLJ reference information 245

Table 40. Mappings of database server data types to Java data types for retrieving data from database server

tables (continued)

SQL data type

Recommended Java data type or

Java object type Other supported Java data types

VARGRAPHIC(m) java.lang.String long, int, short, byte, float, double,

java.math.BigDecimal, boolean,

java.sql.Date, java.sql.Time,

java.sql.Timestamp,

java.io.InputStream, java.io.Reader

CLOB(n) java.sql.Clob java.lang.String

BLOB(n) java.sql.Blob byte[]3

DBCLOB(m) No exact equivalent. Use

java.sql.Clob.

ROWID java.sql.RowId byte[], com.ibm.db2.jcc.DB2RowID

(deprecated)

XML4 java.sql.SQLXML byte[], java.lang.String,

java.io.InputStream, java.io.Reader

DATE java.sql.Date java.sql.String, java.sql.Timestamp

TIME java.sql.Time java.sql.String, java.sql.Timestamp

TIMESTAMP or TIMESTAMP(p)7 java.sql.Timestamp java.sql.String, java.sql.Date,

java.sql.Time, java.sql.Timestamp

Notes:

1. n=16 or n=34.

2. DECFLOAT is valid for connections to DB2 Version 9.1 for z/OS, DB2 V9.5 for Linux, UNIX, and Windows, or

DB2 for i V6R1, or later database servers. Use of DECFLOAT requires the SDK for Java Version 5 (1.5) or later.

3. This mapping is valid only if the database server can determine the data type of the column.

4. XML is valid for connections to DB2 Version 9.1 for z/OS or later database servers or DB2 V9.1 for Linux, UNIX,

and Windows or later database servers.

5. BIGINT is valid for connections to DB2 Version 9.1 for z/OS or later database servers, DB2 V9.1 for Linux, UNIX,

and Windows or later database servers, and all supported DB2 for i database servers.

6. BINARY and VARBINARY are valid for connections to DB2 Version 9.1 for z/OS or later database servers, DB2

V9.1 for Linux, UNIX, and Windows or later database servers, and DB2 for i5/OS V5R3 or later database servers.

7. p indicates the timestamp precision, which is the number of digits in the fractional part of the timestamp.

0<=p<=12. The default is 6. TIMESTAMP(p) is supported for connections to DB2 Database for Linux, UNIX, and

Windows V9.7 and later only.

Data types for calling stored procedures and user-defined

functions

The following table summarizes mappings of Java data types to JDBC data types

and DB2 or IDS data types for calling user-defined function and stored procedure

parameters. The mappings of Java data types to JDBC data types are for

CallableStatement.registerOutParameter methods in JDBC programs. The mappings

of Java data types to database server data types are for parameters in stored

procedure or user-defined function invocations.

If more than one Java data type is listed in the following table, the first data type

is the recommended data type.

246 Developing Java Applications

Table 41. Mappings of Java, JDBC, and SQL data types for calling stored procedures and user-defined functions

Java data type JDBC data type SQL data type

boolean1 BIT SMALLINT

byte1 TINYINT SMALLINT

short, java.lang.Short SMALLINT SMALLINT

int, java.lang.Integer INTEGER INTEGER

long BIGINT BIGINT5

float, java.lang.Float REAL REAL

float, java.lang.Float FLOAT REAL

double, java.lang.Double DOUBLE DOUBLE

java.math.BigDecimal NUMERIC DECIMAL

java.math.BigDecimal DECIMAL DECIMAL

java.math.BigDecimal java.types.OTHER DECFLOATn2

java.math.BigDecimal com.ibm.db2.jcc.DB2Types.DECFLOAT DECFLOATn2

java.lang.String CHAR CHAR

java.lang.String CHAR GRAPHIC

java.lang.String VARCHAR VARCHAR

java.lang.String VARCHAR VARGRAPHIC

java.lang.String LONGVARCHAR VARCHAR

java.lang.String VARCHAR CLOB

java.lang.String LONGVARCHAR CLOB

java.lang.String CLOB CLOB

byte[] BINARY CHAR FOR BIT DATA

byte[] VARBINARY VARCHAR FOR BIT

DATA

byte[] BINARY BINARY4

byte[] VARBINARY VARBINARY4

byte[] LONGVARBINARY VARCHAR FOR BIT

DATA

byte[] VARBINARY BLOB3

byte[] LONGVARBINARY BLOB3

java.sql.Date DATE DATE

java.sql.Time TIME TIME

java.sql.Timestamp TIMESTAMP TIMESTAMP

java.sql.Blob BLOB BLOB

java.sql.Clob CLOB CLOB

java.sql.Clob CLOB DBCLOB

java.io.ByteArrayInputStream None BLOB

java.io.StringReader None CLOB

java.io.ByteArrayInputStream None CLOB

com.ibm.db2.jcc.DB2RowID

(deprecated)

com.ibm.db2.jcc.DB2Types.ROWID ROWID

java.sql.RowId java.sql.Types.ROWID ROWID

Chapter 12. JDBC and SQLJ reference information 247

Table 41. Mappings of Java, JDBC, and SQL data types for calling stored procedures and user-defined

functions (continued)

Java data type JDBC data type SQL data type

com.ibm.db2.jcc.DB2Xml (deprecated) com.ibm.db2.jcc.DB2Types.XML XML AS CLOB

java.sql.SQLXML java.sql.Types.SQLXML XML

java.sql.SQLXML java.sql.Types.SQLXML XML AS CLOB

java.sql.Array6 java.sql.Types.ARRAY ARRAY

java.sql.ResultSet com.ibm.db2.jcc.DB2Types.CURSOR CURSOR type

Notes:

1. A stored procedure or user-defined function that is defined with a SMALLINT parameter can be invoked with a

boolean or byte parameter. However, this is not recommended.

2. DECFLOAT parameters in Java routines are valid only for connections to DB2 Version 9.1 for z/OS or later

database servers. DECFLOAT parameters in Java routines are not supported for connections to for Linux, UNIX,

and Windows or DB2 for i. Use of DECFLOAT requires the SDK for Java Version 5 (1.5) or later.

3. This mapping is valid only if the database server can determine the data type of the column.

4. BINARY and VARBINARY are valid for connections to DB2 Version 9.1 for z/OS or later database servers, DB2

V9.1 for Linux, UNIX, and Windows or later database servers, and DB2 for i5/OS V5R3 and later database

servers.

5. BIGINT is valid for connections to DB2 Version 9.1 for z/OS or later database servers, DB2 V9.1 for Linux, UNIX,

and Windows or later database servers, and all supported DB2 for i database servers.

6. ARRAY parameters are supported for stored procedures only.

Data types in Java stored procedures and user-defined functions

The following table summarizes mappings of the SQL parameter data types in a

CREATE PROCEDURE or CREATE FUNCTION statement to the data types in the

corresponding Java stored procedure or user-defined function method.

For DB2 Database for Linux, UNIX, and Windows, if more than one Java data type

is listed for an SQL data type, only the first Java data type is valid.

For DB2 for z/OS, if more than one Java data type is listed, and you use a data

type other than the first data type as a method parameter, you need to include a

method signature in the EXTERNAL clause of your CREATE PROCEDURE or

CREATE FUNCTION statement that specifies the Java data types of the method

parameters.

 Table 42. Mappings of SQL data types in a CREATE PROCEDURE or CREATE FUNCTION statement to data types in

the corresponding Java stored procedure or user-defined function program

SQL data type in CREATE PROCEDURE or CREATE

FUNCTION

Data type in Java stored procedure or

user-defined function method1

SMALLINT short, java.lang.Integer

INTEGER int, java.lang.Integer

BIGINT3 long, java.lang.Long

REAL float, java.lang.Float

DOUBLE double, java.lang.Double

DECIMAL java.math.BigDecimal

DECFLOAT2 java.math.BigDecimal

CHAR java.lang.String

248 Developing Java Applications

Table 42. Mappings of SQL data types in a CREATE PROCEDURE or CREATE FUNCTION statement to data types in

the corresponding Java stored procedure or user-defined function program (continued)

SQL data type in CREATE PROCEDURE or CREATE

FUNCTION

Data type in Java stored procedure or

user-defined function method1

VARCHAR java.lang.String

CHAR FOR BIT DATA byte[]

VARCHAR FOR BIT DATA byte[]

BINARY3 byte[]

VARBINARY3 byte[]

DATE java.sql.Date

TIME java.sql.Time

TIMESTAMP java.sql.Timestamp

BLOB java.sql.Blob

CLOB java.sql.Clob

DBCLOB java.sql.Clob

ROWID java.sql.Types.ROWID

XML AS CLOB java.sql.Types.SQLXML

Notes:

1. For a stored procedure or user-defined function on a DB2 Database for Linux, UNIX, and Windows server, only

the first data type is valid.

2. DECFLOAT parameters in Java routines are valid only for connections to DB2 Version 9.1 for z/OS or later

database servers. DECFLOAT parameters in Java routines are not supported for connections to for Linux, UNIX,

and Windows or DB2 for i. Use of DECFLOAT requires the SDK for Java Version 5 (1.5) or later.

3. BIGINT, BINARY, and VARBINARY are valid for connections to DB2 Version 9.1 for z/OS or later database

servers or DB2 V9.1 for Linux, UNIX, and Windows or later database servers.

Date, time, and timestamp values that can cause problems in

JDBC and SQLJ applications

You might receive unexpected results in JDBC and SQLJ applications if you use

date, time, and timestamp values that do not correspond to real dates and times.

The following items might cause problems:

v Use of the hour ’24’ to represent midnight

v Use of a date between October 5, 1582, and October 14, 1582, inclusive

Problems with using the hour ’24’ as midnight

The IBM Data Server Driver for JDBC and SQLJ uses Java data types for its

internal processing of input and output parameters and ResultSet content in JDBC

and SQLJ applications. The Java data type that is used by the driver is based on

the best match for the corresponding SQL type when the target SQL type is known

to the driver.

For values that are assigned to or retrieved from DATE, TIME, or TIMESTAMP

SQL types, the IBM Data Server Driver for JDBC and SQLJ uses java.sql.Date for

DATE SQL types, java.sql.Time for TIME SQL types, and java.sql.Timestamp for

TIMESTAMP SQL types.

Chapter 12. JDBC and SQLJ reference information 249

When you assign a string value to a DATE, TIME, or TIMESTAMP target, the IBM

Data Server Driver for JDBC and SQLJ uses Java facilities to convert the string

value to a java.sql.Date, java.sql.Time, or java.sql.Timestamp value. If a string

representation of a date, time, or timestamp value does not correspond to a real

date or time, Java adjusts the value to a real date or time value. In particular, Java

adjusts an hour value of ’24’ to ’00’ of the next day. This adjustment can result in

an exception for a timestamp value of ’9999-12-31 24:00:00.0’, because the adjusted

year value becomes ’10000’.

Important: To avoid unexpected results when you assign or retrieve date, time, or

timestamp values in JDBC or SQLJ applications, ensure that the values are real

date, time, or timestamp values. In addition, do not use ’24’ as the hour

component of a time or timestamp value.

If a value that does not correspond to a real date or time, such as a value with an

hour component of ’24’, is stored in a TIME or TIMESTAMP column, you can

avoid adjustment during retrieval by executing the SQL CHAR function against

that column in the SELECT statement that defines a ResultSet. Executing the

CHAR function converts the date or time value to a character string value on the

database side. However, if you use the getTime or getTimestamp method to

retrieve that value from the ResultSet, the IBM Data Server Driver for JDBC and

SQLJ converts the value to a java.sql.Time or java.sql.Timestamp type, and Java

adjusts the value. To avoid date adjustment, execute the CHAR function against

the column value, and retrieve the value from the ResultSet with the getString

method.

The following examples show the results of updating DATE, TIME, or

TIMESTAMP columns in JDBC or SQLJ applications, when the application data

does not represent real dates or times.

 Table 43. Examples of updating DATE, TIME, or TIMESTAMP SQL values with Java date, time, or timestamp values

that do not represent real dates or times

String input value

Target type in

database Value sent to table column, or exception

2008-13-35 DATE 2009-02-04

25:00:00 TIME 01:00:00

24:00:00 TIME 00:00:00

2008-15-36

28:63:74.0

TIMESTAMP 2009-04-06 05:04:14.0

9999-12-31

24:00:00.0

TIMESTAMP Exception, because the adjusted value (10000-01-01 00:00:00.0) exceeds the

maximum year of 9999.

The following examples demonstrate the results of retrieving data from

TIMESTAMP columns in JDBC or SQLJ applications, when the values in those

columns do not represent real dates or times.

 Table 44. Results of retrieving DATE, TIME, or TIMESTAMP SQL values that do not represent real dates or times into

Java application variables

SELECT statement

Value in TIMESTAMP

column TS_COL

Target type in

application (getXXX

method for retrieval) Value retrieved from table column

SELECT TS_COL

FROM TABLE1

2000-01-01 24:00:00.000000 java.sql.Timestamp

(getTimestamp)

2000-01-02 00:00:00.000000

250 Developing Java Applications

Table 44. Results of retrieving DATE, TIME, or TIMESTAMP SQL values that do not represent real dates or times into

Java application variables (continued)

SELECT statement

Value in TIMESTAMP

column TS_COL

Target type in

application (getXXX

method for retrieval) Value retrieved from table column

SELECT TS_COL

FROM TABLE1

2000-01-01 24:00:00.000000 String (getString) 2000-01-02 00:00:00.000000

SELECT

CHAR(TS_COL)

FROM TABLE1

2000-01-01 24:00:00.000000 java.sql.Timestamp

(getTimestamp)

2000-01-02 00:00:00.000000

SELECT

CHAR(TS_COL)

FROM TABLE1

2000-01-01 24:00:00.000000 String (getString) 2000-01-01 24:00:00.000000 (no adjustment

by Java)

Problems with using dates in the range October 5, 1582, through

October 14, 1582

The Java java.util.Date and java.util.Timestamp classes use the Julian calendar for

dates before October 4, 1582, and the Gregorian calendar for dates starting with

October 4, 1582. In the Gregorian calendar, October 4, 1582, is followed by October

15, 1582. If a Java program encounters a java.util.Date or java.util.Timestamp value

that is between October 5, 1582, and October 14, 1582, inclusive, Java adds 10 days

to that date. Therefore, a DATE or TIMESTAMP value in a DB2 table that has a

value between October 5, 1582, and October 14, 1582, inclusive, is retrieved in a

Java program as a java.util.Date or java.util.Timestamp value between October 15,

1582, and October 24, 1582, inclusive. A java.util.Date or java.util.Timestamp value

in a Java program that is between October 5, 1582, and October 14, 1582, inclusive,

is stored in a DB2 table as a DATE or TIMESTAMP value between October 15,

1582, and October 24, 1582, inclusive.

Example: Retrieve October 10, 1582, from a DATE column.

// DATETABLE has one date column with one row.

// Its value is 1582-10-10.

java.sql.ResultSet rs =

 statement.executeQuery(select * from DATETABLE);

rs.next();

System.out.println(rs.getDate(1)); // Value is retrieved as 1582-10-20

Example: Store October 10, 1582, in a DATE column.

java.sql.Date d = java.sql.Date.valueOf("1582-10-10");

java.sql.PreparedStatement ps =

 c.prepareStatement("Insert into DATETABLE values(?)");

ps.setDate(1, d);

ps.executeUpdate(); // Value is inserted as 1582-10-20

To retrieve a value in the range October 5, 1582, to October 14, 1582, from a DB2

table without date adjustment, execute the SQL CHAR function against the DATE

or TIMESTAMP column in the SELECT statement that defines a ResultSet.

Executing the CHAR function converts the date or time value to a character string

value on the database side.

To store a value in the range October 5, 1582, to October 14, 1582 in a DB2 table

without date adjustment, you can use one of the following techniques:

v For a JDBC or an SQLJ application, use the setString method to assign the value

to a String input parameter. Cast the input parameter as VARCHAR, and execute

Chapter 12. JDBC and SQLJ reference information 251

the DATE or TIMESTAMP function against the result of the cast. Then store the

result of the DATE or TIMESTAMP function in the DATE or TIMESTAMP

column.

v For a JDBC application, set the Connection or DataSource property

sendDataAsIs to true, and use the setString method to assign the date or

timestamp value to the input parameter. Then execute an SQL statement to

assign the String value to the DATE or TIMESTAMP column.

Example: Retrieve October 10, 1582, from a DATE column without date

adjustment.

// DATETABLE has one date column called DATECOL with one row.

// Its value is 1582-10-10.

java.sql.ResultSet rs =

 statement.executeQuery(SELECT CHAR(DATECOL) FROM DATETABLE);

rs.next();

System.out.println(rs.getString(1)); // Value is retrieved as 1582-10-10

Example: Store October 10, 1582, in a DATE column without date adjustment.

String s = "1582-10-10";

java.sql.Statement stmt = c.createStatement;

java.sql.PreparedStatement ps =

 c.prepareStatement("Insert INTO DATETABLE VALUES " +

 "(DATE(CAST (? AS VARCHAR)))");

ps.setString(1, s);

ps.executeUpdate(); // Value is inserted as 1582-10-10

Data loss for timestamp data in JDBC and SQLJ applications

The fractional part of a TIMESTAMP(p) column can have up to 12 digits of

precision. The fractional part of a Java timestamp value can have up to 9 digits of

precision. Depending on the column definition, data loss can occur when you

update a TIMESTAMP(p) column or retrieve data from a TIMESTAMP(p) column.

Data loss for input data

If you use a setTimestamp call to pass a timestamp value to a TIMESTAMP(p)

column, the maximum precision of the Java value that is sent to the data source is

9. If you use a setTimestamp call to pass a timestamp value to a TIMESTAMP

column at a data source that does not support TIMESTAMP(p), the maximum

precision of the Java value that is sent to the data source is 6. For input to a

TIMESTAMP(p) column, if the precision of the target column is less than the

precision of the input value, the data source truncates the excess digits in the

fractional part of the timestamp.

If you use a setString call to pass the input value, it is possible to send a value

with a precision of greater than 9 to the data source. Data loss depends on the

setting of the deferPrepares property and the sendDataAsIs property:

v If sendDataAsIs is set to true, the IBM Data Server Driver for JDBC and SQLJ

sends the string to the data source as-is, so the fractional part of the timestamp

value can be more than 9 digits. If the value of p in the TIMESTAMP(p) column

is greater than or equal to the number of digits in the fractional part of the input

data, no data loss occurs.

v If deferPrepares is set to true, the first time that an UPDATE statement is

executed, the IBM Data Server Driver for JDBC and SQLJ sends the string to the

data source as-is, so the fractional part of the timestamp value can be more than

252 Developing Java Applications

9 digits. If the value of p in the TIMESTAMP(p) column is greater than or equal

to the number of digits in the fractional part of the input data, no data loss

occurs.

For subsequent executions of the UPDATE statement, the IBM Data Server

Driver for JDBC and SQLJ can determine that the target data type is a

TIMESTAMP data type. If the data source supports TIMESTAMP(p) columns, the

driver converts the input value to a java.sql.Timestamp value with a maximum

precision of 9. If the data source does not support TIMESTAMP(p) columns, the

driver converts the input value to a java.sql.Timestamp value with a maximum

precision of 6. Data loss occurs if the original value has more precision than the

converted java.sql.Timestamp value, or if the java.sql.Timestamp value has more

precision than the TIMESTAMP(p) column.

v If deferPrepares is set to false, the IBM Data Server Driver for JDBC and SQLJ

can determine that the target data type is a TIMESTAMP data type. If the data

source supports TIMESTAMP(p) columns, the driver converts the input value to

a java.sql.Timestamp value with a maximum precision of 9. If the data source

does not support TIMESTAMP(p) columns, the driver converts the input value

to a java.sql.Timestamp value with a maximum precision of 6. Data loss occurs if

the original value has more precision than the converted java.sql.Timestamp

value, or if the java.sql.Timestamp value has more precision than the

TIMESTAMP(p) column.

v If sendDataAsIs is set to false, data loss depends on the deferPrepares setting.

You can lessen data loss for input timestamp values by using a setString call and

setting sendDataAsIs to true. However, if you set sendDataAsIs to true, you need

to ensure that application data types are compatible with data source data types.

Data loss for output data

When you use a getTimestamp or getString call to retrieve data from a

TIMESTAMP(p) column, the IBM Data Server Driver for JDBC and SQLJ converts

the value to a java.sql.Timestamp value with a maximum precision of 9. If the

source value has a precision of greater than 9, the driver truncates the fractional

part of the retrieved value to nine digits.

Properties for the IBM Data Server Driver for JDBC and SQLJ

IBM Data Server Driver for JDBC and SQLJ properties define how the connection

to a particular data source should be made. Most properties can be set for a

DataSource object or for a Connection object.

Methods for setting the properties

Properties can be set in one of the following ways:

v Using setXXX methods, where XXX is the unqualified property name, with the

first character capitalized.

Properties are applicable to the following IBM Data Server Driver for JDBC and

SQLJ-specific implementations that inherit from

com.ibm.db2.jcc.DB2BaseDataSource:

– com.ibm.db2.jcc.DB2SimpleDataSource

– com.ibm.db2.jcc.DB2ConnectionPoolDataSource

– com.ibm.db2.jcc.DB2XADataSource
v In a java.util.Properties value in the info parameter of a

DriverManager.getConnection call.

Chapter 12. JDBC and SQLJ reference information 253

v In a java.lang.String value in the url parameter of a

DriverManager.getConnection call.

Some properties with an int data type have predefined constant field values. You

must resolve constant field values to their integer values before you can use

those values in the url parameter. For example, you cannot use

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL in a url parameter. However,

you can build a URL string that includes

com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL, and assign the URL string to

a String variable. Then you can use the String variable in the url parameter:

 String url =

 "jdbc:db2://sysmvs1.stl.ibm.com:5021" +

 "user=dbadm;password=dbadm;" +

 "traceLevel=" +

 (com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL) + ";";

 Connection con =

 java.sql.DriverManager.getConnection(url);

Common IBM Data Server Driver for JDBC and SQLJ

properties for all supported database products

Most of the IBM Data Server Driver for JDBC and SQLJ properties apply to all

database products that the driver supports.

Unless otherwise noted, all properties are in com.ibm.db2.jcc.DB2BaseDataSource.

Those properties are:

allowNextOnExhaustedResultSet

Specifies how the IBM Data Server Driver for JDBC and SQLJ handles a

ResultSet.next() call for a forward-only cursor that is positioned after the last

row of the ResultSet. The data type of this property is int.

 Possible values are:

DB2BaseDataSource.YES (1)

For a ResultSet that is defined as TYPE_FORWARD_ONLY,

ResultSet.next() returns false if the cursor was previously positioned

after the last row of the ResultSet. false is returned, regardless of

whether the cursor is open or closed.

DB2BaseDataSource.NO (2)

For a ResultSet that is defined as TYPE_FORWARD_ONLY, when

ResultSet.next() is called, and the cursor was previously positioned

after the last row of the ResultSet, the driver throws a

java.sql.SQLException with error text ″Invalid operation: result set is

closed.″ This is the default.

atomicMultiRowInsert

Specifies whether batch operations that use PreparedStatement methods to

modify a table are atomic or non-atomic. The data type of this property is int.

 For connections to DB2 for z/OS, this property applies only to batch INSERT

or MERGE operations.

For connections to DB2 Database for Linux, UNIX, and Windows or IBM

Informix Dynamic Server, this property applies to batch INSERT, MERGE,

UPDATE or DELETE operations.

Possible values are:

254 Developing Java Applications

DB2BaseDataSource.YES (1)

Batch operations are atomic. Insertion of all rows in the batch is

considered to be a single operation. If insertion of a single row fails,

the entire operation fails with a BatchUpdateException. Use of a batch

statement that returns auto-generated keys fails with a

BatchUpdateException.

 If atomicMultiRowInsert is set to DB2BaseDataSource.YES (1):

v Execution of statements in a heterogeneous batch is not allowed.

v If the target data source is DB2 for z/OS the following operations

are not allowed:

– Insertion of more than 32767 rows in a batch results in a

BatchUpdateException.

– Calling more than one of the following methods against the same

parameter in different rows results in a BatchUpdateException:

- PreparedStatement.setAsciiStream

- PreparedStatement.setCharacterStream

- PreparedStatement.setUnicodeStream

DB2BaseDataSource.NO (2)

Batch inserts are non-atomic. Insertion of each row is considered to be

a separate execution. Information on the success of each insert

operation is provided by the int[] array that is returned by

Statement.executeBatch.

DB2BaseDataSource.NOT_SET (0)

Batch inserts are non-atomic. Insertion of each row is considered to be

a separate execution. Information on the success of each insert

operation is provided by the int[] array that is returned by

Statement.executeBatch. This is the default.

This property has no effect on SQLJ applications.

blockingReadConnectionTimeout

The amount of time in seconds before a connection socket read times out. This

property applies only to IBM Data Server Driver for JDBC and SQLJ type 4

connectivity, and affects all requests that are sent to the data source after a

connection is successfully established. The default is 0. A value of 0 means that

there is no timeout.

clientRerouteAlternateServerName

Specifies one or more server names for client reroute. The data type of this

property is String.

 When enableClientAffinitiesList=DB2BaseDataSource.YES (1),

clientRerouteAlternateServerName must contain the name of the primary

server as well as alternate server names. The server that is identified by

serverName and portNumber is the primary server. That server name must

appear at the beginning of the clientRerouteAlternateServerName list.

If more than one server name is specified, delimit the server names with

commas (,) or spaces. The number of values that is specified for

clientRerouteAlternateServerName must match the number of values that is

specified for clientRerouteAlternatePortNumber.

clientRerouteAlternateServerName applies to IBM Data Server Driver for JDBC

and SQLJ type 2 connectivity to DB2 Database for Linux, UNIX, and Windows

and IBM Data Server Driver for JDBC and SQLJ type 4 connectivity.

Chapter 12. JDBC and SQLJ reference information 255

clientRerouteAlternatePortNumber

Specifies one or more port numbers for client reroute. The data type of this

property is String.

 When enableClientAffinitiesList=DB2BaseDataSource.YES (1),

clientRerouteAlternatePortNumber must contain the port number for the

primary server as well as port numbers for alternate servers. The server that is

identified by serverName and portNumber is the primary server. That port

number must appear at the beginning of the

clientRerouteAlternatePortNumber list.

If more than one port number is specified, delimit the port numbers with

commas (,) or spaces. The number of values that is specified for

clientRerouteAlternatePortNumber must match the number of values that is

specified for clientRerouteAlternateServerName.

clientRerouteAlternatePortNumber applies to IBM Data Server Driver for JDBC

and SQLJ type 2 connectivity to DB2 Database for Linux, UNIX, and Windows

and IBM Data Server Driver for JDBC and SQLJ type 4 connectivity.

clientRerouteServerListJNDIName

Identifies a JNDI reference to a DB2ClientRerouteServerList instance in a JNDI

repository of reroute server information. clientRerouteServerListJNDIName

applies only to IBM Data Server Driver for JDBC and SQLJ type 4 connectivity,

and to connections that are established through the DataSource interface.

 If the value of clientRerouteServerListJNDIName is not null,

clientRerouteServerListJNDIName provides the following functions:

v Allows information about reroute servers to persist across JVMs

v Provides an alternate server location if the first connection to the data source

fails

clientRerouteServerListJNDIContext

Specifies the JNDI context that is used for binding and lookup of the

DB2ClientRerouteServerList instance. clientRerouteServerListJNDIContext

applies only to IBM Data Server Driver for JDBC and SQLJ type 4 connectivity,

and to connections that are established through the DataSource interface.

 If clientRerouteServerListJNDIContext is not set, the IBM Data Server Driver

for JDBC and SQLJ creates an initial context using system properties or the

jndi.properties file.

clientRerouteServerListJNDIContext can be set only by using the following

method:

public void setClientRerouteServerListJNDIContext(javax.naming.Context registry)

databaseName

Specifies the name for the data source. This name is used as the database

portion of the connection URL. The name depends on whether IBM Data

Server Driver for JDBC and SQLJ type 4 connectivity or IBM Data Server

Driver for JDBC and SQLJ type 2 connectivity is used.

 For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity:

v If the connection is to a DB2 for z/OS server, the databaseName value is the

DB2 location name that is defined during installation. All characters in this

value must be uppercase characters. You can determine the location name by

executing the following SQL statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

256 Developing Java Applications

v If the connection is to a DB2 Database for Linux, UNIX, and Windows

server, the databaseName value is the database name that is defined during

installation.

v If the connection is to an IDS server, database is the database name. The

name is case-insensitive. The server converts the name to lowercase.

v If the connection is to an IBM Cloudscape server, the databaseName value is

the fully-qualified name of the file that contains the database. This name

must be enclosed in double quotation marks (″). For example:

"c:/databases/testdb"

If this property is not set, connections are made to the local site.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity:

v The databaseName value is the database name that is defined during

installation, if the value of the serverName connection property is null. If the

value of serverName property is not null, the databaseName value is a

database alias.

decimalSeparator

Specifies the decimal separator for input and output, for decimal, floating

point, or decimal floating-point data values. The data type of this property is

int.

 If the value of the sendDataAsIs property is true, decimalSeparator affects only

output values.

Possible values are:

DB2BaseDataSource.DECIMAL_SEPARATOR_NOT_SET (0)

A period is used as the decimal separator. This is the default.

DB2BaseDataSource.DECIMAL_SEPARATOR_PERIOD (1)

A period is used as the decimal separator.

DB2BaseDataSource.DECIMAL_SEPARATOR_COMMA (2)

A comma is used as the decimal separator.

 When DECIMAL_SEPARATOR_COMMA is set, the result of

ResultSet.getString on a decimal, floating point, or decimal

floating-point value has a comma as a separator. However, if the

toString method is executed on a value that is retrieved with a

ResultSet.getXXX method that returns a decimal, floating point, or

decimal floating-point value, the result has a decimal point as the

decimal separator.

decimalStringFormat

Specifies the string format for data that is retrieved from a DECIMAL or

DECFLOAT column when the SDK for Java is Version 1.5 or later. The data

type of this property is int. Possible values are:

DB2BaseDataSource.DECIMAL_STRING_FORMAT_NOT_SET (0)

The IBM Data Server Driver for JDBC and SQLJ returns decimal values

in the format that the java.math.BigDecimal.toString method returns

them. This is the default.

 For example, the value 0.0000000004 is returned as 4E-10.

DB2BaseDataSource.DECIMAL_STRING_FORMAT_TO_STRING (1)

The IBM Data Server Driver for JDBC and SQLJ returns decimal values

in the format that the java.math.BigDecimal.toString method returns

them.

Chapter 12. JDBC and SQLJ reference information 257

For example, the value 0.0000000004 is returned as 4E-10.

DB2BaseDataSource.DECIMAL_STRING_FORMAT_TO_PLAIN_STRING (2)

The IBM Data Server Driver for JDBC and SQLJ returns decimal values

in the format that the java.math.BigDecimal.toPlainString method

returns them.

 For example, the value 0.0000000004 is returned as 0.0000000004.

This property has no effect for earlier versions of the SDK for Java. For those

versions, the IBM Data Server Driver for JDBC and SQLJ returns decimal

values in the format that the java.math.BigDecimal.toPlainString method

returns them.

defaultIsolationLevel

Specifies the default transaction isolation level for new connections. The data

type of this property is int. When defaultIsolationLevel is set on a DataSource,

all connections that are created from that DataSource have the default isolation

level that is specified by defaultIsolationLevel.

 For DB2 data sources, the default is

java.sql.Connection.TRANSACTION_READ_COMMITTED.

For IBM Informix Dynamic Server (IDS) databases, the default depends on the

type of data source. The following table shows the defaults.

 Table 45. Default isolation levels for IDS databases

Type of data source Default isolation level

ANSI-compliant database with logging java.sql.Connection.TRANSACTION_SERIALIZABLE

Database without logging java.sql.Connection.TRANSACTION_READ_UNCOMMITTED

Non-ANSI-compliant database with

logging

java.sql.Connection.TRANSACTION_READ_COMMITTED

deferPrepares

Specifies whether invocation of the Connection.prepareStatement method

results in immediate preparation of an SQL statement on the data source, or

whether statement preparation is deferred until the PreparedStatement.execute

method is executed. The data type of this property is boolean.

 deferPrepares is supported for IBM Data Server Driver for JDBC and SQLJ

type 2 connectivity to DB2 Database for Linux, UNIX, and Windows, and for

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity.

Possible values are:

true Statement preparation on the data source does not occur until the

PreparedStatement.execute method is executed. This is the default.

false Statement preparation on the data source occurs when the

Connection.prepareStatement method is executed.

Deferring prepare operations can reduce network delays. However, if you defer

prepare operations, you need to ensure that input data types match table

column types.

description

A description of the data source. The data type of this property is String.

downgradeHoldCursorsUnderXa

Specifies whether cursors that are defined WITH HOLD can be opened under

XA connections.

258 Developing Java Applications

downgradeHoldCursorsUnderXa applies to:

v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2 for

z/OS servers.

v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity or IBM Data

Server Driver for JDBC and SQLJ type 2 connectivity to DB2 Database for

Linux, UNIX, and Windows servers.

The default is false, which means that a cursor that is defined WITH HOLD

cannot be opened under an XA connection. An exception is thrown when an

attempt is made to open that cursor.

If downgradeHoldCursorsUnderXa is set to true, a cursor that is defined

WITH HOLD can be opened under an XA connection. However, the cursor has

the following restrictions:

v When the cursor is opened under an XA connection, the cursor does not

have WITH HOLD behavior. The cursor is closed at XA End.

v A cursor that is open before XA Start on a local transaction is closed at XA

Start.

driverType

For the DataSource interface, determines which driver to use for connections.

The data type of this property is int. Valid values are 2 or 4. 2 is the default.

enableClientAffinitiesList

Specifies whether the IBM Data Server Driver for JDBC and SQLJ enables

client affinities for cascaded failover support. The data type of this property is

int. Possible values are:

DB2BaseDataSource.YES (1)

The IBM Data Server Driver for JDBC and SQLJ enables client affinities

for cascaded failover support. This means that only servers that are

specified in the clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber properties are retried. The driver

does not attempt to reconnect to any other servers.

 For example, suppose that clientRerouteAlternateServerName contains

the following string:

host1,host2,host3

Also suppose that clientRerouteAlternatePortNumber contains the

following string:

port1,port2,port3

When client affinities are enabled, the retry order is:

1. host1:port1

2. host2:port2

3. host3:port3

DB2BaseDataSource.NO (2)

The IBM Data Server Driver for JDBC and SQLJ does not enable client

affinities for cascaded failover support.

DB2BaseDataSource.NOT_SET (0)

The IBM Data Server Driver for JDBC and SQLJ does not enable client

affinities for cascaded failover support. This is the default.

The effect of the maxRetriesForClientReroute and retryIntervalForClientReroute

properties differs depending on whether enableClientAffinitiesList is enabled.

Chapter 12. JDBC and SQLJ reference information 259

This property applies only to IBM Data Server Driver for JDBC and SQLJ type

4 connectivity.

enableNamedParameterMarkers

Specifies whether support for named parameter markers is enabled in the IBM

Data Server Driver for JDBC and SQLJ. The data type of this property is int.

Possible values are:

DB2BaseDataSource.YES (1)

Named parameter marker support is enabled in the IBM Data Server

Driver for JDBC and SQLJ.

DB2BaseDataSource.NO (2)

Named parameter marker support is not enabled in the IBM Data

Server Driver for JDBC and SQLJ.

 The driver sends an SQL statement with named parameter markers to

the target data source without modification. The success or failure of

the statement depends on a number of factors, including the following

ones:

v Whether the target data source supports named parameter markers

v Whether the deferPrepares property value is true of false

v Whether the sendDataAsIs property value is true of false

Recommendation: To avoid unexpected behavior in an application

that uses named parameter markers, set

enableNamedParameterMarkers to YES.

DB2BaseDataSource.NOT_SET (0)

The behavior is the same as the behavior for DB2BaseDataSource.NO (2).

This is the default.

enableSeamlessFailover

Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses

seamless failover for client reroute. The data type of this property is int.

 For connections to DB2 for z/OS, if enableSysplexWLB is set to true,

enableSeamlessFailover has no effect. The IBM Data Server Driver for JDBC

and SQLJ uses seamless failover regardless of the enableSeamlessFailover

setting.

Possible values of enableSeamlessFailover are:

DB2BaseDataSource.YES (1)

The IBM Data Server Driver for JDBC and SQLJ uses seamless failover.

This means that the driver does not throw an SQLException with error

code -4498 after a failed connection has been successfully re-established

if the following conditions are true:

v The connection was not being used for a transaction at the time the

failure occurred.

v There are no outstanding global resources, such as global temporary

tables or open, held cursors, or connection states that prevent a

seamless failover to another server.

When seamless failover occurs, after the connection to a new data

source has been established, the driver re-issues the SQL statement that

was being processed when the original connection failed.

260 Developing Java Applications

Recommendation: Set the queryCloseImplicit property to

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_NO (2) when you set

enableSeamlessFailover to DB2BaseDataSource.YES, if the application

uses held cursors.

DB2BaseDataSource.NO (2)

The IBM Data Server Driver for JDBC and SQLJ does not use seamless

failover.

 When this setting is in effect, if a server goes down, the driver tries to

fail back or fail over to an alternate server. If failover or failback is

successful, the driver throws an SQLException with error code -4498,

which indicates that a connection failed but was successfully

reestablished. An SQLException with error code -4498 informs the

application that it should retry the transaction during which the

connection failure occurred. If the driver cannot reestablish a

connection, it throws an SQLException with error code -4499.

DB2BaseDataSource.NOT_SET (0)

The IBM Data Server Driver for JDBC and SQLJ does not use seamless

failover. This is the default.

fetchSize

Specifies the default fetch size for ResultSet objects that are generated from

Statement objects. The data type of this property is int.

 The fetchSize default can be overridden by the Statement.setFetchSize method.

The fetchSize property does not affect Statement objects that already exist

when fetchSize is set. For IBM Data Server Driver for JDBC and SQLJ type 4

connectivity, and for IBM Data Server Driver for JDBC and SQLJ type 2

connectivity to DB2 Database for Linux, UNIX, and Windows data sources,

fetchSize affects only scrollable cursors. For IBM Data Server Driver for JDBC

and SQLJ type 2 connectivity to DB2 for z/OS data sources, fetchSize affects

scrollable cursors and forward-only cursors.

Possible values of fetchSize are:

0 or positive-integer

The default fetchSize value for newly created Statement objects. If the

fetchSize property value is invalid, the IBM Data Server Driver for

JDBC and SQLJ sets the default fetchSize value to 0.

DB2BaseDataSource.FETCHSIZE_NOT_SET (-1)

Indicates that the default fetchSize value for Statement objects is 0. This

is the property default.

The fetchSize property differs from the queryDataSize property in the

following ways:

v The fetchSize property applies to connections to all data sources that are

supported by the IBM Data Server Driver for JDBC and SQLJ. The

queryDataSize property applies only to IBM Data Server Driver for JDBC

and SQLJ type 4 connectivity to DB2 for z/OS and DB2 Database for Linux,

UNIX, and Windows, and to IBM Data Server Driver for JDBC and SQLJ

type 2 connectivity to DB2 Database for Linux, UNIX, and Windows.

v For scrollable cursors, fetchSize controls the amount of data that is returned

from the data source. A single response from the data source always

contains up to fetchSize rows. The queryDataSize property has no impact on

the total amount of data that is returned.

Chapter 12. JDBC and SQLJ reference information 261

v For forward-only cursors, the amount of data that is returned from the data

source in a single response is determined only by queryDataSize. The

fetchSize property has no impact on forward-only cursors.

fullyMaterializeLobData

Indicates whether the driver retrieves LOB locators for FETCH operations. The

data type of this property is boolean.

 The effect of fullyMaterializeLobData depends on whether the data source

supports progressive streaming, which is also known as dynamic data format:

v If the data source does not support progressive streaming:

If the value of fullyMaterializeLobData is true, LOB data is fully

materialized within the JDBC driver when a row is fetched. If the value is

false, LOB data is streamed. The driver uses locators internally to retrieve

LOB data in chunks on an as-needed basis It is highly recommended that

you set this value to false when you retrieve LOBs that contain large

amounts of data. The default is true.

v If the data source supports progressive streaming:

The JDBC driver ignores the value of fullyMaterializeLobData if the

progressiveStreaming property is set to DB2BaseDataSource.YES or

DB2BaseDataSource.NOT_SET.

This property has no effect on stored procedure parameters or on LOBs that

are fetched using scrollable cursors. LOB stored procedure parameters are

always fully materialized. LOBs that are fetched using scrollable cursors use

LOB locators if progressive streaming is not in effect.

loginTimeout

The maximum time in seconds to wait for a connection to a data source. After

the number of seconds that are specified by loginTimeout have elapsed, the

driver closes the connection to the data source. The data type of this property

is int. The default is 0. A value of 0 means that the timeout value is the default

system timeout value. This property is not supported for IBM Data Server

Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.

logWriter

The character output stream to which all logging and trace messages for the

DataSource object are printed. The data type of this property is

java.io.PrinterWriter. The default value is null, which means that no logging or

tracing for the DataSource is output.

maxRetriesForClientReroute

During automatic client reroute, limit the number of retries if the primary

connection to the data source fails.

 The data type of this property is int.

The IBM Data Server Driver for JDBC and SQLJ uses the

maxRetriesForClientReroute property only if the retryIntervalForClientReroute

property is also set.

If the enableClientAffinitiesList is set to DB2BaseDataSource.NO (2), an attempt

to connect to the primary server and alternate servers counts as one retry. If

enableClientAffinitiesList is set to DB2BaseDataSource.YES (1), each server that

is specified by the clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber values is retried the number of times that is

specified by maxRetriesForClientReroute.

262 Developing Java Applications

The default value for maxRetriesForClientReroute is 0 if

enableClientAffinitiesList is DB2BaseDataSource.NO (2), or 3 if

enableClientAffinitiesList is DB2BaseDataSource.YES (1).

password

The password to use for establishing connections. The data type of this

property is String. When you use the DataSource interface to establish a

connection, you can override this property value by invoking this form of the

DataSource.getConnection method:

getConnection(user, password);

portNumber

The port number where the DRDA server is listening for requests. The data

type of this property is int.

progressiveStreaming

Specifies whether the JDBC driver uses progressive streaming when

progressive streaming is supported on the data source.

 DB2 for z/OS Version 9.1 and later supports progressive streaming for LOBs

and XML objects. DB2 Database for Linux, UNIX, and Windows Version 9.5

and later, and IBM Informix Dynamic Server (IDS) Version 11.50 and later

support progressive streaming for LOBs.

With progressive streaming, also known as dynamic data format, the data

source dynamically determines the most efficient mode in which to return LOB

or XML data, based on the size of the LOBs or XML objects. The value of the

streamBufferSize parameter determines whether the data is materialized when

it is returned.

The data type of progressiveStreaming is int. Valid values are

DB2BaseDataSource.YES (1) and DB2BaseDataSource.NO (2). If the

progressiveStreaming property is not specified, the progressiveStreaming value

is DB2BaseDataSource.NOT_SET (0).

If the connection is to a data source that supports progressive streaming, and

the value of progressiveStreaming is DB2BaseDataSource.YES or

DB2BaseDataSource.NOT_SET, the JDBC driver uses progressive streaming to

return LOBs and XML data.

If the value of progressiveStreaming is DB2BaseDataSource.NO, or the data

source does not support progressive streaming, the way in which the JDBC

driver returns LOB or XML data depends on the value of the

fullyMaterializeLobData property.

queryCloseImplicit

Specifies whether cursors are closed immediately after all rows are fetched.

queryCloseImplicit applies only to connections to IBM Data Server Driver for

JDBC and SQLJ type 4 connectivity to DB2 for z/OS Version 8 or later, and

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity or IBM Data

Server Driver for JDBC and SQLJ type 2 connectivity DB2 Database for Linux,

UNIX, and Windows Version 9.7 or later. Possible values are:

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_YES (1)

Close cursors immediately after all rows are fetched.

 A value of DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_YES can provide

better performance because this setting results in less network traffic.

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_NO (2)

Do not close cursors immediately after all rows are fetched.

Chapter 12. JDBC and SQLJ reference information 263

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_COMMIT (3)

Perform these actions:

v Implicitly close the cursor after all rows are fetched.

v If the application is in autocommit mode, implicitly send a commit

request to the data source for the current unit of work.

Important: When this value is set, there might be impacts on other

resources, just as an explicit commit operation might impact other

resources. For example, other non-held cursors are closed, LOB locators

go out of scope, progressive references are reset, and scrollable cursors

lose their position.

Restriction: The following restrictions apply to

QUERY_CLOSE_IMPLICIT_COMMIT behavior:

v This behavior applies only to SELECT statements that are issued by

the application. It does not apply to SELECT statements that are

generated by the IBM Data Server Driver for JDBC and SQLJ.

v If QUERY_CLOSE_IMPLICIT_COMMIT is set, and the application is

not in autocommit mode, the driver uses the default behavior

(QUERY_CLOSE_IMPLICIT_NOT_SET behavior). If

QUERY_CLOSE_IMPLICIT_COMMIT is the default behavior, the

driver uses QUERY_CLOSE_IMPLICIT_YES behavior.

v If QUERY_CLOSE_IMPLICIT_COMMIT is set, and the data source

does not support QUERY_CLOSE_IMPLICIT_COMMIT behavior, the

driver uses QUERY_CLOSE_IMPLICIT_YES behavior.

v This behavior is not supported for batched statements.

v This behavior is supported on an XA Connection only when the

connection is in a local transaction.

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_NOT_SET (0)

This is the default. The following table describes the behavior for a

connection to each type of data source.

 Data source Version Data sharing environment Behavior

DB2 for z/OS Version 9 with

APAR PK68746

Non-data sharing, or in a data

sharing group but not in

coexistence mode with Version 8

members

QUERY_CLOSE_IMPLICIT_COMMIT

DB2 for z/OS Version 9

without APAR

PK68746

Non-data sharing, or in a data

sharing group but not in

coexistence mode with Version 8

members

QUERY_CLOSE_IMPLICIT_YES

DB2 for z/OS Version 9 with

APAR PK68746

In a data sharing group in

coexistence mode with Version 8

members

QUERY_CLOSE_IMPLICIT_COMMIT

DB2 for z/OS Version 9

without APAR

PK68746

In a data sharing group in

coexistence mode with Version 8

members

QUERY_CLOSE_IMPLICIT_YES

DB2 for z/OS Version 8 with

or without

APAR PK68746

QUERY_CLOSE_IMPLICIT_YES

DB2 Database for

Linux, UNIX, and

Windows

Version 9.7 QUERY_CLOSE_IMPLICIT_YES

264 Developing Java Applications

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_YES (1) and

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_NO (2). The default is

DB2BaseDataSource.QUERY_CLOSE_IMPLICIT_YES.

resultSetHoldability

Specifies whether cursors remain open after a commit operation. The data type

of this property is int. Valid values are:

DB2BaseDataSource.HOLD_CURSORS_OVER_COMMIT (1)

Leave cursors open after a commit operation.

 This setting is not valid for a connection that is part of a distributed

(XA) transaction.

DB2BaseDataSource.CLOSE_CURSORS_AT_COMMIT (2)

Close cursors after a commit operation.

DB2BaseDataSource.NOT_SET (0)

This is the default value. The behavior is:

v For connections that are part of distributed (XA) transactions,

cursors are closed after a commit operation.

v For connections that are not part of a distributed transaction:

– For connections to all versions of DB2 for z/OS, DB2 Database for

Linux, UNIX, and Windows, or DB2 for i servers, or to

Cloudscape Version 8.1 or later servers, cursors remain open after

a commit operation.

– For connections to all versions of IBM Informix Dynamic Server,

or to Cloudscape versions earlier than Version 8.1, cursors are

closed after a commit operation.

retryIntervalForClientReroute

For automatic client reroute, specifies the amount of time in seconds between

connection retries.

 The data type of this property is int.

The IBM Data Server Driver for JDBC and SQLJ uses the

retryIntervalForClientReroute property only if the maxRetriesForClientReroute

property is also set.

If maxRetriesForClientReroute or retryIntervalForClientReroute is not set, the

IBM Data Server Driver for JDBC and SQLJ performs retries for 10 minutes.

If the enableClientAffinitiesList is set to DB2BaseDataSource.NO (2), an attempt

to connect to the primary server and alternate servers counts as one retry. The

driver waits the number of seconds that is specified by

retryIntervalForClientReroute before retrying the connection. If

enableClientAffinitiesList is set to DB2BaseDataSource.YES (1), each server that

is specified by the clientRerouteAlternateServerName and

clientRerouteAlternatePortNumber values is retried after the number of

seconds that is specified by retryIntervalForClientReroute.

The default value for retryIntervalForClientReroute is 0.

securityMechanism

Specifies the DRDA security mechanism. The data type of this property is int.

Possible values are:

CLEAR_TEXT_PASSWORD_SECURITY (3)

User ID and password

Chapter 12. JDBC and SQLJ reference information 265

USER_ONLY_SECURITY (4)

User ID only

ENCRYPTED_PASSWORD_SECURITY (7)

User ID, encrypted password

ENCRYPTED_USER_AND_PASSWORD_SECURITY (9)

Encrypted user ID and password

KERBEROS_SECURITY (11)

Kerberos. This value does not apply to connections to IDS.

ENCRYPTED_USER_AND_DATA_SECURITY (12)

Encrypted user ID and encrypted security-sensitive data. This value

applies to connections to DB2 for z/OS only.

ENCRYPTED_USER_PASSWORD_AND_DATA_SECURITY (13)

Encrypted user ID and password, and encrypted security-sensitive

data. This value does not apply to connections to IDS.

PLUGIN_SECURITY (15)

Plug-in security. This value applies to connections to DB2 Database for

Linux, UNIX, and Windows only.

ENCRYPTED_USER_ONLY_SECURITY (16)

Encrypted user ID. This value does not apply to connections to IDS.

If this property is specified, the specified security mechanism is the only

mechanism that is used. If the security mechanism is not supported by the

connection, an exception is thrown.

The default value for securityMechanism is

CLEAR_TEXT_PASSWORD_SECURITY. If the server does not support

CLEAR_TEXT_PASSWORD_SECURITY but supports

ENCRYPTED_USER_AND_PASSWORD_SECURITY, the IBM Data Server

Driver for JDBC and SQLJ driver updates the security mechanism to

ENCRYPTED_USER_AND_PASSWORD_SECURITY and attempts to connect to

the server. Any other mismatch in security mechanism support between the

requester and the server results in an error.

sendDataAsIs

Specifies that the IBM Data Server Driver for JDBC and SQLJ does not convert

input parameter values to the target column data types. The data type of this

property is boolean. The default is false.

 You should use this property only for applications that always ensure that the

data types in the application match the data types in the corresponding

database tables.

serverName

The host name or the TCP/IP address of the data source. The data type of this

property is String.

sslConnection

Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses an SSL

socket to connect to the data source. If sslConnection is set to true, the

connection uses an SSL socket. If sslConnection is set to false, the connection

uses a plain socket.

 This property is applicable only to IBM Data Server Driver for JDBC and SQLJ

type 4 connectivity.

266 Developing Java Applications

sslTrustStoreLocation

Specifies the name of the Java truststore on the client that contains the server

certificate for an SSL connection.

 The IBM Data Server Driver for JDBC and SQLJ uses this option only if the

sslConnection property is set to true.

If sslTrustStore is set, and sslConnection is set to true, the IBM Data Server

Driver for JDBC and SQLJ uses the sslTrustStoreLocation value instead of the

value in the javax.net.ssl.trustStore Java property.

This property is applicable only to IBM Data Server Driver for JDBC and SQLJ

type 4 connectivity.

sslTrustStorePassword

Specifies the password for the Java truststore on the client that contains the

server certificate for an SSL connection.

 The IBM Data Server Driver for JDBC and SQLJ uses this option only if the

sslConnection property is set to true.

If sslTrustStorePassword is set, and sslConnection is set to true, the IBM Data

Server Driver for JDBC and SQLJ uses the sslTrustStorePassword value instead

of the value in the javax.net.ssl.trustStorePassword Java property.

This property is applicable only to IBM Data Server Driver for JDBC and SQLJ

type 4 connectivity.

timestampFormat

Specifies the format in which the result of the ResultSet.getString or

CallableStatement.getString method against a TIMESTAMP column is

returned. The data type of timestampFormat is int.

 Possible values of timestampFormat are:

Constant

Integer

value Format

com.ibm.db2.jcc.DB2BaseDataSource.ISO 1 yyyy-mm-dd-
hh.mm.ss.nnnnnnnnn1

com.ibm.db2.jcc.DB2BaseDataSource.JDBC 5 yyyy-mm-dd

hh:mm:ss.nnnnnnnnn1

Note:

1. The number of digits in the fractional part of the timestamp depends on the precision of

the TIMESTAMP(p) column in the source table. If p<9, p digits are returned. If p>=9, 9

digits are returned, and the remaining digits are truncated.

The default is com.ibm.db2.jcc.DB2BaseDataSource.JDBC.

timestampFormat affects the format of output only.

timestampPrecisionReporting

Specifies whether trailing zeroes are truncated in the result of a

Resultset.getString call for a TIMESTAMP value. The data type of this property

is int. Possible values are:

TIMESTAMP_JDBC_STANDARD (1)

Trailing zeroes are truncated in the result of a Resultset.getString call

for a TIMESTAMP value. This is the default.

 For example:

v A TIMESTAMP value of 2009-07-19-10.12.00.000000 is truncated to

2009-07-19-10.12.00.0 after retrieval.

Chapter 12. JDBC and SQLJ reference information 267

v A TIMESTAMP value of 2009-12-01-11.30.00.100000 is truncated to

2009-12-01-11.30.00.1 after retrieval.

TIMESTAMP_ZERO_PADDING (2)

Trailing zeroes are not truncated in the result of a Resultset.getString

call for a TIMESTAMP value.

traceDirectory

Specifies a directory into which trace information is written. The data type of

this property is String. When traceDirectory is specified, trace information for

multiple connections on the same DataSource is written to multiple files.

 When traceDirectory is specified, a connection is traced to a file named

traceFile_origin_n.

n is the nth connection for a DataSource.

origin indicates the origin of the log writer that is in use. Possible values of

origin are:

cpds The log writer for a DB2ConnectionPoolDataSource object.

driver The log writer for a DB2Driver object.

global The log writer for a DB2TraceManager object.

sds The log writer for a DB2SimpleDataSource object.

xads The log writer for a DB2XADataSource object.

If the traceFile property is also specified, the traceDirectory value is not used.

traceFile

Specifies the name of a file into which the IBM Data Server Driver for JDBC

and SQLJ writes trace information. The data type of this property is String.

The traceFile property is an alternative to the logWriter property for directing

the output trace stream to a file.

traceFileAppend

Specifies whether to append to or overwrite the file that is specified by the

traceFile property. The data type of this property is boolean. The default is

false, which means that the file that is specified by the traceFile property is

overwritten.

traceLevel

Specifies what to trace. The data type of this property is int.

 You can specify one or more of the following traces with the traceLevel

property:

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_NONE (X’00’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTION_CALLS (X’01’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_STATEMENT_CALLS (X’02’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_CALLS (X’04’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRIVER_CONFIGURATION (X’10’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS (X’20’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS (X’40’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_META_DATA (X’80’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_PARAMETER_META_DATA (X’100’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DIAGNOSTICS (X’200’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SQLJ (X’400’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_XA_CALLS (IBM Data

Server Driver for JDBC and SQLJ type 2 connectivity for DB2

Database for Linux, UNIX, and Windows only) (X’800’)

268 Developing Java Applications

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_META_CALLS (X’2000’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DATASOURCE_CALLS (X’4000’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_LARGE_OBJECT_CALLS (X’8000’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SYSTEM_MONITOR (X’20000’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_TRACEPOINTS () (X’40000’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL (X’FFFFFFFF’)

To specify more than one trace, use one of these techniques:

v Use bitwise OR (|) operators with two or more trace values. For example, to

trace DRDA flows and connection calls, specify this value for traceLevel:

TRACE_DRDA_FLOWS|TRACE_CONNECTION_CALLS

v Use a bitwise complement (~) operator with a trace value to specify all

except a certain trace. For example, to trace everything except DRDA flows,

specify this value for traceLevel:

 ~TRACE_DRDA_FLOWS

user

The user ID to use for establishing connections. The data type of this property

is String. When you use the DataSource interface to establish a connection, you

can override this property value by invoking this form of the

DataSource.getConnection method:

getConnection(user, password);

xaNetworkOptimization

Specifies whether XA network optimization is enabled for IBM Data Server

Driver for JDBC and SQLJ type 4 connectivity. You might need to disable XA

network optimization in an environment in which an XA Start and XA End are

issued from one Java process, and an XA Prepare and an XA Commit are

issued from another Java process. With XA network optimization, the XA

Prepare can reach the data source before the XA End, which results in an

XAER_PROTO error. To prevent the XAER_PROTO error, disable XA network

optimization.

 The default is true, which means that XA network optimization is enabled. If

xaNetworkOptimization is false, which means that XA network optimization

is disabled, the driver closes any open cursors at XA End time.

xaNetworkOptimization can be set on a DataSource object, or in the url

parameter in a getConnection call. The value of xaNetworkOptimization

cannot be changed after a connection is obtained.

com.ibm.db2.jcc.DB2ConnectionPoolDataSource.maxStatements

Controls an internal statement cache that is associated with a

PooledConnection. The data type of this property is int. Possible values are:

positive integer

Enables the internal statement cache for a PooledConnection, and

specifies the number of statements that the IBM Data Server Driver for

JDBC and SQLJ keeps open in the cache.

0 or negative integer

Disables internal statement caching for the PooledConnection. 0 is the

default.

maxStatements controls the internal statement cache that is associated with a

PooledConnection only when the PooledConnection object is created.

maxStatements has no effect on caching in an already existing

PooledConnection object.

Chapter 12. JDBC and SQLJ reference information 269

maxStatements applies only to IBM Data Server Driver for JDBC and SQLJ

type 4 connectivity.

Common IBM Data Server Driver for JDBC and SQLJ

properties for DB2 servers

Some of the IBM Data Server Driver for JDBC and SQLJ properties apply to DB2

for z/OS and DB2 Database for Linux, UNIX, and Windows only.

Unless otherwise noted, all properties are in com.ibm.db2.jcc.DB2BaseDataSource.

Those properties are:

clientAccountingInformation

Specifies accounting information for the current client for the connection. This

information is for client accounting purposes. This value can change during a

connection. The data type of this property is String. For a DB2 for z/OS server,

the maximum length is 255 bytes. A Java empty string (″″) is valid for this

value, but a Java null value is not valid.

 This property applies only to IBM Data Server Driver for JDBC and SQLJ type

2 connectivity on DB2 for z/OS.

clientApplicationInformation

Specifies the application or transaction name of the end user’s application. You

can use this property to provide the identity of the client end user for

accounting and monitoring purposes. This value can change during a

connection. The data type of this property is String. For a DB2 for z/OS server,

the maximum length is 32 bytes. A Java empty string (″″) is valid for this

value, but a Java null value is not valid.

 This property applies only to IBM Data Server Driver for JDBC and SQLJ type

2 connectivity on DB2 for z/OS.

clientDebugInfo

Specifies a value for the CLIENT DEBUGINFO connection attribute, to notify

the DB2 for z/OS server that stored procedures and user-defined functions that

are using the connection are running in debug mode. CLIENT DEBUGINFO is

used by the DB2 Unified Debugger. The data type of this property is String.

The maximum length is 254 bytes.

 This property applies only to IBM Data Server Driver for JDBC and SQLJ type

4 connectivity.

clientProgramId

Specifies a value for the client program ID that can be used to identify the end

user. The data type of this property is String, and the length is 80 bytes. If the

program ID value is less than 80 bytes, the value must be padded with blanks.

clientProgramName

Specifies an application ID that is fixed for the duration of a physical

connection for a client. The value of this property becomes the correlation ID

on a DB2 for z/OS server. Database administrators can use this property to

correlate work on a DB2 for z/OS server to client applications. The data type

of this property is String. The maximum length is 12 bytes. If this value is

null, the IBM Data Server Driver for JDBC and SQLJ supplies a value of

db2jccthread-name.

 This property applies only to IBM Data Server Driver for JDBC and SQLJ type

4 connectivity.

270 Developing Java Applications

currentDegree

Specifies the degree of parallelism for the execution of queries that are

dynamically prepared. The type of this property is String. The currentDegree

value is used to set the CURRENT DEGREE special register on the data source.

If currentDegree is not set, no value is passed to the data source.

currentFunctionPath

Specifies the SQL path that is used to resolve unqualified data type names and

function names in SQL statements that are in JDBC programs. The data type of

this property is String. For a DB2 Database for Linux, UNIX, and Windows

server, the maximum length is 254 bytes. For a DB2 for z/OS server, the

maximum length is 2048 bytes. The value is a comma-separated list of schema

names. Those names can be ordinary or delimited identifiers.

currentMaintainedTableTypesForOptimization

Specifies a value that identifies the types of objects that can be considered

when the data source optimizes the processing of dynamic SQL queries. This

register contains a keyword representing table types. The data type of this

property is String.

 Possible values of currentMaintainedTableTypesForOptimization are:

ALL

Indicates that all materialized query tables will be considered.

NONE

Indicates that no materialized query tables will be considered.

SYSTEM

Indicates that only system-maintained materialized query tables that are

refresh deferred will be considered.

USER

Indicates that only user-maintained materialized query tables that are

refresh deferred will be considered.

currentPackagePath

Specifies a comma-separated list of collections on the server. The database

server searches these collections for JDBC and SQLJ packages.

 The precedence rules for the currentPackagePath and currentPackageSet

properties follow the precedence rules for the CURRENT PACKAGESET and

CURRENT PACKAGE PATH special registers.

currentPackageSet

Specifies the collection ID to search for JDBC and SQLJ packages. The data

type of this property is String. The default is NULLID. If currentPackageSet is

set, its value overrides the value of jdbcCollection.

 Multiple instances of the IBM Data Server Driver for JDBC and SQLJ can be

installed at a database server by running the DB2Binder utility multiple times.

The DB2binder utility includes a -collection option that lets the installer specify

the collection ID for each IBM Data Server Driver for JDBC and SQLJ instance.

To choose an instance of the IBM Data Server Driver for JDBC and SQLJ for a

connection, you specify a currentPackageSet value that matches the collection

ID for one of the IBM Data Server Driver for JDBC and SQLJ instances.

The precedence rules for the currentPackagePath and currentPackageSet

properties follow the precedence rules for the CURRENT PACKAGESET and

CURRENT PACKAGE PATH special registers.

Chapter 12. JDBC and SQLJ reference information 271

currentRefreshAge

Specifies a timestamp duration value that is the maximum duration since a

REFRESH TABLE statement was processed on a system-maintained REFRESH

DEFERRED materialized query table such that the materialized query table can

be used to optimize the processing of a query. This property affects dynamic

statement cache matching. The data type of this property is long.

currentSchema

Specifies the default schema name that is used to qualify unqualified database

objects in dynamically prepared SQL statements. The value of this property

sets the value in the CURRENT SCHEMA special register on the database

server. The schema name is case-sensitive, and must be specified in uppercase

characters.

cursorSensitivity

Specifies whether the java.sql.ResultSet.TYPE_SCROLL_SENSITIVE value for a

JDBC ResultSet maps to the SENSITIVE DYNAMIC attribute, the SENSITIVE

STATIC attribute, or the ASENSITIVE attribute for the underlying database

cursor. The data type of this property is int. Possible values are

TYPE_SCROLL_SENSITIVE_STATIC (0), TYPE_SCROLL_SENSITIVE_DYNAMIC (1), or

TYPE_SCROLL_ASENSITIVE (2). The default is TYPE_SCROLL_SENSITIVE_STATIC.

 If the data source does not support sensitive dynamic scrollable cursors, and

TYPE_SCROLL_SENSITIVE_DYNAMIC is requested, the JDBC driver accumulates a

warning and maps the sensitivity to SENSITIVE STATIC. For DB2 for i

database servers, which do not support sensitive static cursors,

java.sql.ResultSet.TYPE_SCROLL_SENSITIVE always maps to SENSITIVE

DYNAMIC.

dateFormat

Specifies:

v The format in which the String argument of the PreparedStatement.setString

method against a DATE column must be specified.

v The format in which the result of the ResultSet.getString or

CallableStatement.getString method against a DATE column is returned.

The data type of dateFormat is int.

Possible values of dateFormat are:

Constant

Integer

value Format

com.ibm.db2.jcc.DB2BaseDataSource.ISO 1 yyyy-mm-dd

com.ibm.db2.jcc.DB2BaseDataSource.USA 2 mm/dd/yyyy

com.ibm.db2.jcc.DB2BaseDataSource.EUR 3 dd.mm.yyyy

com.ibm.db2.jcc.DB2BaseDataSource.JIS 4 yyyy-mm-dd

The default is com.ibm.db2.jcc.DB2BaseDataSource.ISO.

decimalRoundingMode

Specifies the rounding mode for decimal floating-point values on DB2 for

z/OS Version 9 or later, or DB2 Database for Linux, UNIX, and Windows

database servers.

 Possible values are:

DB2BaseDataSource.ROUND_DOWN (1)

Rounds the value towards 0 (truncation). The discarded digits are

ignored.

272 Developing Java Applications

DB2BaseDataSource.ROUND_CEILING (2)

Rounds the value towards positive infinity. If all of the discarded digits

are zero or if the sign is negative the result is unchanged other than

the removal of the discarded digits. Otherwise, the result coefficient is

incremented by 1.

DB2BaseDataSource.ROUND_HALF_EVEN (3)

Rounds the value to the nearest value; if the values are equidistant,

rounds the value so that the final digit is even. If the discarded digits

represents greater than half (0.5) of the value of one in the next left

position then the result coefficient is incremented by 1. If they

represent less than half, then the result coefficient is not adjusted (that

is, the discarded digits are ignored). Otherwise the result coefficient is

unaltered if its rightmost digit is even, or is incremented by 1 if its

rightmost digit is odd (to make an even digit).

DB2BaseDataSource.ROUND_HALF_UP (4)

Rounds the value to the nearest value; if the values are equidistant,

rounds the value away from zero. If the discarded digits represent

greater than or equal to half (0.5) of the value of one in the next left

position then the result coefficient is incremented by 1. Otherwise the

discarded digits are ignored.

DB2BaseDataSource.ROUND_FLOOR (6)

Rounds the value towards negative infinity. If all of the discarded

digits are zero or if the sign is positive the result is unchanged other

than the removal of discarded digits. Otherwise, the sign is negative

and the result coefficient is incremented by 1.

DB2BaseDataSource.ROUND_UNSET (-2147483647)

No rounding mode was explicitly set. The IBM Data Server Driver for

JDBC and SQLJ does not use the decimalRoundingMode to set the

rounding mode on the data source.

 The IBM Data Server Driver for JDBC and SQLJ uses the following

values for its rounding mode:

v For DB2 for z/OS or DB2 Database for Linux, UNIX, and Windows

database servers, the rounding mode is ROUND_HALF_EVEN for

decimal floating-point values.

If decimalRoundingMode is set, the decimalRoundingMode value is used to set

the CURRENT DECFLOAT ROUNDING MODE special register on DB2 for

z/OS database servers.

enableRowsetSupport

Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses

multiple-row FETCH for forward-only cursors or scrollable cursors, if the data

source supports multiple-row FETCH. The data type of this property is int.

 When enableRowsetSupport is set, its value overrides the useRowsetCursor

property value.

Possible values are:

DB2BaseDataSource.YES (1)

Specifies that:

v For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity

to DB2 for z/OS, multiple-row FETCH is used for scrollable cursors

and forward-only cursors, if the data source supports multiple-row

FETCH.

Chapter 12. JDBC and SQLJ reference information 273

v For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity,

or IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to

DB2 Database for Linux, UNIX, and Windows, multiple-row fetch is

used for scrollable cursors, if the data source supports multiple-row

FETCH.

DB2BaseDataSource.NO (2)

Specifies that multiple-row fetch is not used.

DB2BaseDataSource.NOT_SET (0)

Specifies that if the enableRowsetSupport property is not set:

v For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity

to DB2 for z/OS, multiple-row fetch is not used.

v For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity,

or IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to

DB2 Database for Linux, UNIX, and Windows, the useRowsetCursor

property determines whether multiple-row fetch is used for

scrollable cursors.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for

z/OS, multiple-row fetch is not compatible with progressive streaming.

Therefore, if progressive streaming is used for a FETCH operation,

multiple-row FETCH is not used.

encryptionAlgorithm

Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses 56-bit

DES (weak) encryption or 256-bit AES (strong) encryption. The data type of

this property is int. Possible values are:

1 The driver uses 56-bit DES encryption.

2 The driver uses 256-bit AES encryption, if the database server supports

it. 256-bit AES encryption is available for IBM Data Server Driver for

JDBC and SQLJ type 4 connectivity only.

encryptionAlgorithm can be specified only if the securityMechanism value is

ENCRYPTED_PASSWORD_SECURITY (7) or ENCRYPTED_USER_AND_PASSWORD_SECURITY

(9).

fullyMaterializeInputStreams

Indicates whether streams are fully materialized before they are sent from the

client to a data source. The data type of this property is boolean. The default is

false.

 If the value of fullyMaterializeInputStreams is true, the JDBC driver fully

materialized the streams before sending them to the server.

gssCredential

For a data source that uses Kerberos security, specifies a delegated credential

that is passed from another principal. The data type of this property is

org.ietf.jgss.GSSCredential. Delegated credentials are used in multi-tier

environments, such as when a client connects to WebSphere Application Server,

which, in turn, connects to the data source. You obtain a value for this

property from the client, by invoking the GSSContext.getDelegCred method.

GSSContext is part of the IBM Java Generic Security Service (GSS) API. If you

set this property, you also need to set the Mechanism and

KerberosServerPrincipal properties.

 This property is applicable only to IBM Data Server Driver for JDBC and SQLJ

type 4 connectivity.

274 Developing Java Applications

For more information on using Kerberos security with the IBM Data Server

Driver for JDBC and SQLJ, see ″Using Kerberos security under the IBM Data

Server Driver for JDBC and SQLJ″.

kerberosServerPrincipal

For a data source that uses Kerberos security, specifies the name that is used

for the data source when it is registered with the Kerberos Key Distribution

Center (KDC). The data type of this property is String.

 This property is applicable only to IBM Data Server Driver for JDBC and SQLJ

type 4 connectivity.

pdqProperties

Specifies properties that control the interaction between the IBM Data Server

Driver for JDBC and SQLJ and the client optimization feature of pureQuery.

 The data type of this property is String.

Set the pdqProperties property only if you are using the client optimization

feature of pureQuery. See the Integrated Data Management Information Center

for information about valid values for pdqProperties.

readOnly

Specifies whether the connection is read-only. The data type of this property is

boolean. The default is false.

resultSetHoldabilityForCatalogQueries

Specifies whether cursors for queries that are executed on behalf of

DatabaseMetaData methods remain open after a commit operation. The data

type of this property is int.

 When an application executes DatabaseMetaData methods, the IBM Data

Server Driver for JDBC and SQLJ executes queries against the catalog of the

target data source. By default, the holdability of those cursors is the same as

the holdability of application cursors. To use different holdability for catalog

queries, use the resultSetHoldabilityForCatalogQueries property. Possible

values are:

DB2BaseDataSource.HOLD_CURSORS_OVER_COMMIT (1)

Leave cursors for catalog queries open after a commit operation,

regardless of the resultSetHoldability setting.

DB2BaseDataSource.CLOSE_CURSORS_AT_COMMIT (2)

Close cursors for catalog queries after a commit operation, regardless

of the resultSetHoldability setting.

DB2BaseDataSource.NOT_SET (0)

Use the resultSetHoldability setting for catalog queries. This is the

default value.

returnAlias

Specifies whether the JDBC driver returns rows for table aliases and synonyms

for DatabaseMetaData methods that return table information, such as

getTables. The data type of returnAlias is int. Possible values are:

0 Do not return rows for aliases or synonyms of tables in output from

DatabaseMetaData methods that return table information.

1 For tables that have aliases or synonyms, return rows for aliases and

synonyms of those tables, as well as rows for the tables, in output from

DatabaseMetaData methods that return table information. This is the

default.

Chapter 12. JDBC and SQLJ reference information 275

streamBufferSize

Specifies the size, in bytes, of the JDBC driver buffers for chunking LOB or

XML data. The JDBC driver uses the streamBufferSize value whether or not it

uses progressive streaming. The data type of streamBufferSize is int. The

default is 1048576.

 If the JDBC driver uses progressive streaming, LOB or XML data is

materialized if it fits in the buffers, and the driver does not use the

fullyMaterializeLobData property.

DB2 for z/OS Version 9.1 and later supports progressive streaming for LOBs

and XML objects. DB2 Database for Linux, UNIX, and Windows Version 9.5

and later, and IBM Informix Dynamic Server (IDS) Version 11.50 and later

support progressive streaming for LOBs.

supportsAsynchronousXARollback

Specifies whether the IBM Data Server Driver for JDBC and SQLJ supports

asynchronous XA rollback operations. The data type of this property is int. The

default is DB2BaseDataSource.NO (2). If the application runs against a BEA

WebLogic Server application server, set supportsAsynchronousXARollback to

DB2BaseDataSource.YES (1).

sysSchema

Specifies the schema of the shadow catalog tables or views that are searched

when an application invokes a DatabaseMetaData method. The sysSchema

property was formerly called cliSchema.

timeFormat

Specifies:

v The format in which the String argument of the PreparedStatement.setString

method against a TIME column must be specified.

v The format in which the result of the ResultSet.getString or

CallableStatement.getString method against a TIME column is returned.

The data type of timeFormat is int.

Possible values of timeFormat are:

Constant

Integer

value Format

com.ibm.db2.jcc.DB2BaseDataSource.ISO 1 hh:mm:ss

com.ibm.db2.jcc.DB2BaseDataSource.USA 2 hh:mm am or

hh:mm pm

com.ibm.db2.jcc.DB2BaseDataSource.EUR 3 hh.mm.ss

com.ibm.db2.jcc.DB2BaseDataSource.JIS 4 hh:mm:ss

The default is com.ibm.db2.jcc.DB2BaseDataSource.ISO.

useCachedCursor

Specifies whether the underlying cursor for PreparedStatement objects is

cached and reused on subsequent executions of the PreparedStatement. The

data type of useCachedCursor is boolean.

 If useCachedCursor is set to true, the cursor for PreparedStatement objects is

cached, which can improve performance. true is the default.

Set useCachedCursor to false if PreparedStatement objects access tables whose

column types or lengths change between executions of those

PreparedStatement objects.

276 Developing Java Applications

useJDBC4ColumnNameAndLabelSemantics

Specifies how the IBM Data Server Driver for JDBC and SQLJ handles column

labels in ResultSetMetaData.getColumnName,

ResultSetMetaData.getColumnLabel, and ResultSet.findColumn method calls.

 Possible values are:

DB2BaseDataSource.YES (1)

The IBM Data Server Driver for JDBC and SQLJ uses the following

rules, which conform to the JDBC 4.0 specification, to determine the

value that ResultSetMetaData.getColumnName,

ResultSetMetaData.getColumnLabel, and ResultSet.findColumn return:

v The column name that is returned by

ResultSetMetaData.getColumnName is its name from the database.

v The column label that is returned by

ResultSetMetaData.getColumnLabel is the label that is specified with

the SQL AS clause. If the SQL AS clause is not specified, the label is

the name of the column.

v ResultSet.findColumn takes the label for the column, as specified

with the SQL AS clause, as input. If the SQL AS clause was not

specified, the label is the column name.

v The IBM Data Server Driver for JDBC and SQLJ does not use a

column label that is assigned by the SQL LABEL ON statement.

These rules apply to IBM Data Server Driver for JDBC and SQLJ

version 3.50 and later, for connections to the following database

systems:

v DB2 for z/OS Version 8 or later

v DB2 Database for Linux, UNIX, and Windows Version 8.1 or later

v DB2 UDB for iSeries® V5R3 or later

For earlier versions of the driver or the database systems, the rules for

a useJDBC4ColumnNameAndLabelSemantics value of

DB2BaseDataSource.NO apply, even if

useJDBC4ColumnNameAndLabelSemantics is set to

DB2BaseDataSource.YES.

DB2BaseDataSource.NO (2)

The IBM Data Server Driver for JDBC and SQLJ uses the following

rules to determine the values that ResultSetMetaData.getColumnName,

ResultSetMetaData.getColumnLabel, and ResultSet.findColumn return:

 If the data source does not support the LABEL ON statement, or the

source column is not defined with the LABEL ON statement:

v The value that is returned by ResultSetMetaData.getColumnName is

its name from the database, if no SQL AS clause is specified. If the

SQL AS clause is specified, the value that is returned is the column

label.

v The value that is returned by ResultSetMetaData.getColumnLabel is

the label that is specified with the SQL AS clause. If the SQL AS

clause is not specified, the value that is returned is the name of the

column.

v ResultSet.findColumn takes the column name as input.

If the source column is defined with the LABEL ON statement:

v The value that is returned by ResultSetMetaData.getColumnName is

the column name from the database, if no SQL AS clause is

Chapter 12. JDBC and SQLJ reference information 277

specified. If the SQL AS clause is specified, the value that is returned

is the column label that is specified in the AS clause.

v The value that is returned by ResultSetMetaData.getColumnLabel is

the label that is specified in the LABEL ON statement.

v ResultSet.findColumn takes the column name as input.

These rules conform to the behavior of the IBM Data Server Driver for

JDBC and SQLJ before Version 3.50.

DB2BaseDataSource.NOT_SET (0)

This is the default behavior.

 For the IBM Data Server Driver for JDBC and SQLJ version 3.50 and

earlier, the default behavior for

useJDBC4ColumnNameAndLabelSemantics is the same as the behavior

for DB2BaseDataSource.NO.

For the IBM Data Server Driver for JDBC and SQLJ version 4.0 and

later:

v The default behavior for useJDBC4ColumnNameAndLabelSemantics

is the same as the behavior for DB2BaseDataSource.YES, for

connections to the following database systems:

– DB2 for z/OS Version 8 or later

– DB2 Database for Linux, UNIX, and Windows Version 8.1 or later

– DB2 UDB for iSeries V5R3 or later
v For connections to earlier versions of these database systems, the

default behavior for useJDBC4ColumnNameAndLabelSemantics is

DB2BaseDataSource.NO.

com.ibm.db2.jcc.DB2ConnectionPoolDataSource.maxStatements

Controls an internal statement cache that is associated with a

PooledConnection. The data type of this property is int. Possible values are:

positive integer

Enables the internal statement cache for a PooledConnection, and

specifies the number of statements that the IBM Data Server Driver for

JDBC and SQLJ keeps open in the cache.

0 or negative integer

Disables internal statement caching for the PooledConnection. 0 is the

default.

maxStatements controls the internal statement cache that is associated with a

PooledConnection only when the PooledConnection object is created.

maxStatements has no effect on caching in an already existing

PooledConnection object.

maxStatements applies only to IBM Data Server Driver for JDBC and SQLJ

type 2 connectivity on DB2 for z/OS, and to IBM Data Server Driver for JDBC

and SQLJ type 4 connectivity.

Common IBM Data Server Driver for JDBC and SQLJ

properties for DB2 for z/OS and IDS

Some of the IBM Data Server Driver for JDBC and SQLJ properties apply to IBM

Informix Dynamic Server (IDS) and DB2 for z/OS database servers.

Properties that apply to IDS and DB2 for z/OS are:

278 Developing Java Applications

enableConnectionConcentrator

Indicates whether the connection concentrator function of the IBM Data Server

Driver for JDBC and SQLJ is enabled. The connection concentrator function is

available only for connections to DB2 for z/OS servers.

 The data type of enableConnectionConcentrator is boolean. The default is

false. However, if enableSysplexWLB is set to true, the default is true.

enableSysplexWLB

Indicates whether the Sysplex workload balancing function of the IBM Data

Server Driver for JDBC and SQLJ is enabled. The data type of

enableSysplexWLB is boolean. The default is false.

keepDynamic

Specifies whether the data source keeps already prepared dynamic SQL

statements in the dynamic statement cache after commit points so that those

prepared statements can be reused. The data type of this property is int. Valid

values are DB2BaseDataSource.YES (1) and DB2BaseDataSource.NO (2).

 If the keepDynamic property is not specified, the keepDynamic value is

DB2BaseDataSource.NOT_SET (0). If the connection is to a DB2 for z/OS server,

caching of dynamic statements for a connection is not done if the property is

not set. If the connection is to an IDS data source, caching of dynamic

statements for a connection is done if the property is not set.

keepDynamic is used with the DB2Binder -keepdynamic option. The

keepDynamic property value that is specified must match the -keepdynamic

value that was specified when DB2Binder was run.

For a DB2 for z/OS database server, dynamic statement caching can be done

only if the EDM dynamic statement cache is enabled on the data source. The

CACHEDYN subsystem parameter must be set to DB2BaseDataSource.YES to

enable the dynamic statement cache.

maxTransportObjects

Specifies the maximum number of transport objects that can be used for all

connections with the associated DataSource object. The IBM Data Server Driver

for JDBC and SQLJ uses transport objects and a global transport objects pool to

support the connection concentrator and Sysplex workload balancing. There is

one transport object for each physical connection to the data source.

 The data type of this property is int.

The maxTransportObjects value is ignored if the enableConnectionConcentrator

or enableSysplexWLB properties are not set to enable the use of the connection

concentrator or Sysplex workload balancing.

If the maxTransportObjects value has not been reached, and a transport object

is not available in the global transport objects pool, the pool creates a new

transport object. If the maxTransportObjects value has been reached, the

application waits for the amount of time that is specified by the

db2.jcc.maxTransportObjectWaitTime configuration property. After that amount

of time has elapsed, if there is still no available transport object in the pool, the

pool throws an SQLException.

maxTransportObjects does not override the db2.jcc.maxTransportObjects

configuration property. maxTransportObjects has no effect on connections from

other DataSource objects. If the maxTransportObjects value is larger than the

db2.jcc.maxTransportObjects value, maxTransportObjects does not increase the

db2.jcc.maxTransportObjects value.

Chapter 12. JDBC and SQLJ reference information 279

The default value for maxTransportObjects is -1, which means that the number

of transport objects for the DataSource is limited only by the

db2.jcc.maxTransportObjects value for the driver.

retrieveMessagesFromServerOnGetMessage

Specifies whether JDBC SQLException.getMessage or SQLWarning.getMessage

calls cause the IBM Data Server Driver for JDBC and SQLJ to invoke a DB2 for

z/OS stored procedure that retrieves the message text for the error. The data

type of this property is boolean. The default is false, which means that the full

message text is not returned to the client.

 For example, if retrieveMessagesFromServerOnGetMessage is set to true, a

message similar to this one is returned by SQLException.getMessage after an

attempt to perform an SQL operation on nonexistent table

ADMF001.NO_TABLE:

ADMF001.NO_TABLE IS AN UNDEFINED NAME. SQLCODE=-204,

SQLSTATE=42704, DRIVER=3.50.54

If retrieveMessagesFromServerOnGetMessage is set to false, a message similar

to this one is returned:

DB2 SQL Error: SQLCODE=-204, SQLSTATE=42704, DRIVER=3.50.54

An alternative to setting this property to true is to use the IBM Data Server

Driver for JDBC and SQLJ-only DB2Sqlca.getMessage method in applications.

Both techniques result in a stored procedure call, which starts a unit of work.

Common IBM Data Server Driver for JDBC and SQLJ

properties for IDS and DB2 Database for Linux, UNIX, and

Windows

Some of the IBM Data Server Driver for JDBC and SQLJ properties apply to IBM

Informix Dynamic Server (IDS) and DB2 Database for Linux, UNIX, and Windows

database servers.

Properties that apply to IDS and DB2 Database for Linux, UNIX, and Windows are:

currentLockTimeout

Specifies whether DB2 Database for Linux, UNIX, and Windows servers wait

for a lock when the lock cannot be obtained immediately. The data type of this

property is int. Possible values are:

integer Wait for integer seconds. integer is between -1 and 32767, inclusive.

LOCK_TIMEOUT_NO_WAIT

Do not wait for a lock. This is the default.

LOCK_TIMEOUT_WAIT_INDEFINITELY

Wait indefinitely for a lock.

LOCK_TIMEOUT_NOT_SET

Use the default for the data source.

queryDataSize

Specifies a hint that is used to control the amount of query data, in bytes, that

is returned from the data source on each fetch operation. This value can be

used to optimize the application by controlling the number of trips to the data

source that are required to retrieve data.

 Use of a larger value for queryDataSize can result in less network traffic,

which can result in better performance. For example, if the result set size is 50

KB, and the value of queryDataSize is 32768 (32KB), two trips to the database

280 Developing Java Applications

server are required to retrieve the result set. However, if queryDataSize is set

to 61440 (60 KB), only one trip to the data source is required to retrieve the

result set.

The following table lists minimum, maximum, and default values of

queryDataSize for each data source.

 Table 46. Minimum, maximum, and default values of queryDataSize

Data source

Minimum

queryDataSize value

Maximum

queryDataSize value

Default

queryDataSize value

DB2 Database for

Linux, UNIX, and

Windows

4096 65535 32767

IDS 4096 10485760 32767

DB2 for i 4096 65535 32767

DB2 for z/OS Not applicable Not applicable Query data size is

always 32767.

IBM Data Server Driver for JDBC and SQLJ properties for DB2

Database for Linux, UNIX, and Windows

Some of the IBM Data Server Driver for JDBC and SQLJ properties apply only to

DB2 Database for Linux, UNIX, and Windows servers.

Those properties are:

connectNode

Specifies the target database partition server that an application connects to.

The data type of this property is int. The value can be between 0 and 999. The

default is database partition server that is defined with port 0. connectNode

applies to IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to

DB2 Database for Linux, UNIX, and Windows servers only.

concurrentAccessResolution

Specifies whether the IBM Data Server Driver for JDBC and SQLJ requests that

a read transaction can access a committed and consistent image of rows that

are incompatibly locked by write transactions, if the data source supports

accessing currently committed data, and the application isolation level is cursor

stability (CS) or read stability (RS). This option has the same effect as the DB2

CONCURRENTACCESSRESOLUTION bind option. Possible values are:

DB2BaseDataSource.-
CONCURRENTACCESS_USE_CURRENTLY_COMMITTED (1)

The IBM Data Server Driver for JDBC and SQLJ requests that:

v Read transactions access the currently committed data when the data

is being updated or deleted.

v Read transactions skip rows that are being inserted.

DB2BaseDataSource.CONCURRENTACCESS_WAIT_FOR_OUTCOME (2)

The IBM Data Server Driver for JDBC and SQLJ requests that:

v Read transactions wait for a commit or rollback operation when they

encounter data that is being updated or deleted.

v Read transactions do not skip rows that are being inserted.

Chapter 12. JDBC and SQLJ reference information 281

DB2BaseDataSource.CONCURRENTACCESS_NOT_SET (0)

Enables the data server’s default behavior for read transactions when

lock contention occurs. This is the default value.

currentExplainMode

Specifies the value for the CURRENT EXPLAIN MODE special register. The

CURRENT EXPLAIN MODE special register enables and disables the Explain

facility. The data type of this property is String. The maximum length is 254

bytes. This property applies only to connections to data sources that support

the CURRENT EXPLAIN MODE special register, such as DB2 Database for

Linux, UNIX, and Windows.

currentExplainSnapshot

Specifies the value for the CURRENT EXPLAIN SNAPSHOT special register.

The CURRENT EXPLAIN SNAPSHOT special register enables and disables the

Explain snapshot facility. The data type of this property is String. The

maximum length is eight bytes. This property applies only to connections to

data sources that support the CURRENT EXPLAIN SNAPSHOT special

register, such as DB2 Database for Linux, UNIX, and Windows.

currentQueryOptimization

Specifies a value that controls the class of query optimization that is performed

by the database manager when it binds dynamic SQL statements. The data

type of this property is int. The possible values of currentQueryOptimization

are:

0 Specifies that a minimal amount of optimization is performed to

generate an access plan. This class is most suitable for simple dynamic

SQL access to well-indexed tables.

1 Specifies that optimization roughly comparable to DB2 Database for

Linux, UNIX, and Windows Version 1 is performed to generate an

access plan.

2 Specifies a level of optimization higher than that of DB2 Database for

Linux, UNIX, and Windows Version 1, but at significantly less

optimization cost than levels 3 and above, especially for very complex

queries.

3 Specifies that a moderate amount of optimization is performed to

generate an access plan.

5 Specifies a significant amount of optimization is performed to generate

an access plan. For complex dynamic SQL queries, heuristic rules are

used to limit the amount of time spent selecting an access plan. Where

possible, queries will use materialized query tables instead of the

underlying base tables.

7 Specifies a significant amount of optimization is performed to generate

an access plan. This value is similar to 5 but without the heuristic

rules.

9 Specifies the maximum amount of optimization is performed to

generate an access plan. This can greatly expand the number of

possible access plans that are evaluated. This class should be used to

determine if a better access plan can be generated for very complex

and very long-running queries using large tables. Explain and

performance measurements can be used to verify that a better plan has

been generated.

282 Developing Java Applications

optimizationProfile

Specifies an optimization profile that is used during SQL optimization. The

data type of this property is String. The optimizationProfile value is used to set

the OPTIMIZATION PROFILE special register. The default is null.

 optimizationProfile applies to DB2 Database for Linux, UNIX, and Windows

servers only.

optimizationProfileToFlush

Specifies the name of an optimization profile that is to be removed from the

optimization profile cache. The data type of this property is String. The default

is null.

plugin

The name of a client-side JDBC security plug-in. This property has the Object

type and contains a new instance of the JDBC security plug-in method.

pluginName

The name of a server-side security plug-in module.

retryWithAlternativeSecurityMechanism

Specifies whether the IBM Data Server Driver for JDBC and SQLJ retries a

connection with an alternative security mechanism if the security mechanism

that is specified by property securityMechanism is not supported by the data

source. The data type of this property is int. Possible values are:

com.ibm.db2.jcc.DB2BaseDataSource.YES (1)

Retry the connection using an alternative security mechanism. The IBM

Data Server Driver for JDBC and SQLJ issues warning code +4222 and

retries the connection with the most secure available security

mechanism.

com.ibm.db2.jcc.DB2BaseDataSource.NO (2) or

com.ibm.db2.jcc.DB2BaseDataSource.NOT_SET (0)

Do not retry the connection using an alternative security mechanism.

retryWithAlternativeSecurityMechanism applies to IBM Data Server Driver for

JDBC and SQLJ type 4 connectivity connections to DB2 Database for Linux,

UNIX, and Windows only.

statementConcentrator

Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses the data

source’s statement concentrator functionality. The statement concentrator is the

ability to bypass preparation of a statement when it is the same as a statement

in the dynamic statement cache, except for literal values. Statement

concentrator functionality applies only to SQL statements that have literals but

no parameter markers. Possible values are:

DB2BaseDataSource.STATEMENT_CONCENTRATOR_OFF (1)

The IBM Data Server Driver for JDBC and SQLJ does not use the data

source’s statement concentrator functionality.

DB2BaseDataSource.STATEMENT_CONCENTRATOR_WITH_LITERALS (2)

The IBM Data Server Driver for JDBC and SQLJ uses the data source’s

statement concentrator functionality.

DB2BaseDataSource.STATEMENT_CONCENTRATOR_NOT_SET (0)

The data source determines whether statement concentrator

functionality is used. This is the default value.

 For DB2 Database for Linux, UNIX, and Windows data sources that

support statement concentrator functionality, the functionality is used if

Chapter 12. JDBC and SQLJ reference information 283

the STMT_CONC configuration parameter is set to ON. Otherwise,

statement concentrator functionality is not used.

useTransactionRedirect

Specifies whether the DB2 system directs SQL statements to different database

partitions for better performance. The data type of this property is boolean.

The default is false.

 This property is applicable only under the following conditions:

v The connection is to a DB2 Database for Linux, UNIX, and Windows server

that uses the Database Partitioning Feature (DPF).

v The partitioning key remains constant throughout a transaction.

If useTransactionRedirect is true, the IBM Data Server Driver for JDBC and

SQLJ sends connection requests to the DPF node that contains the target data

of the first directable statement in the transaction. DB2 Database for Linux,

UNIX, and Windows then directs the SQL statement to different partitions as

needed.

IBM Data Server Driver for JDBC and SQLJ properties for DB2

for z/OS

Some of the IBM Data Server Driver for JDBC and SQLJ properties apply only to

DB2 for z/OS servers.

Those properties are:

accountingInterval

Specifies whether DB2 accounting records are produced at commit points or on

termination of the physical connection to the data source. The data type of this

property is String.

 If the value of accountingInterval is ″COMMIT″, and there are no open, held

cursors, DB2 writes an accounting record each time that the application

commits work. If the value of accountingInterval is ″COMMIT″, and the

application performs a commit operation while a held cursor is open, the

accounting interval spans that commit point and ends at the next valid

accounting interval end point. If the value of accountingInterval is not

″COMMIT″, accounting records are produced on termination of the physical

connection to the data source.

The accountingInterval property sets the accounting-interval parameter for an

underlying RRSAF signon call. If the value of subsystem parameter

ACCUMACC is not NO, the ACCUMACC value overrides the

accountingInterval setting.

accountingInterval applies only to IBM Data Server Driver for JDBC and SQLJ

type 2 connectivity on DB2 for z/OS. accountingInterval is not applicable to

connections under CICS or IMS, or for Java stored procedures.

The accountingInterval property overrides the db2.jcc.accountingInterval

configuration property.

charOutputSize

Specifies the maximum number of bytes to use for INOUT or OUT stored

procedure parameters that are registered as Types.CHAR charOutputSize applies

only to IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2

for z/OS database servers.

 Because DESCRIBE information for stored procedure INOUT and OUT

parameters is not available at run time, by default, the IBM Data Server Driver

284 Developing Java Applications

for JDBC and SQLJ sets the maximum length of each character INOUT or OUT

parameter to 32767. For stored procedures with many Types.CHAR parameters,

this maximum setting can result in allocation of much more storage than is

necessary.

To use storage more efficiently, set charOutputSize to the largest expected

length for any Types.CHAR INOUT or OUT parameter.

charOutputSize has no effect on INOUT or OUT parameters that are registered

as Types.VARCHAR or Types.LONGVARCHAR. The driver uses the default length of

32767 for Types.VARCHAR and Types.LONGVARCHAR parameters.

The value that you choose for charOutputSize needs to take into account the

possibility of expansion during character conversion. Because the IBM Data

Server Driver for JDBC and SQLJ has no information about the server-side

CCSID that is used for output parameter values, the driver requests the stored

procedure output data in UTF-8 Unicode. The charOutputSize value needs to

be the maximum number of bytes that are needed after the parameter value is

converted to UTF-8 Unicode. UTF-8 Unicode characters can require up to three

bytes. (The euro symbol is an example of a three-byte UTF-8 character.) To

ensure that the value of charOutputSize is large enough, if you have no

information about the output data, set charOutputSize to three times the

defined length of the largest CHAR parameter.

clientUser

Specifies the current client user name for the connection. This information is

for client accounting purposes. Unlike the JDBC connection user name, this

value can change during a connection. For a DB2 for z/OS server, the

maximum length is 16 bytes.

 This property applies only to IBM Data Server Driver for JDBC and SQLJ type

2 connectivity on DB2 for z/OS.

clientWorkstation

Specifies the workstation name for the current client for the connection. This

information is for client accounting purposes. This value can change during a

connection. The data type of this property is String. For a DB2 for z/OS server,

the maximum length is 18 bytes. A Java empty string (″″) is valid for this

value, but a Java null value is not valid.

 This property applies only to IBM Data Server Driver for JDBC and SQLJ type

2 connectivity on DB2 for z/OS.

currentSQLID

Specifies:

v The authorization ID that is used for authorization checking on dynamically

prepared CREATE, GRANT, and REVOKE SQL statements.

v The owner of a table space, database, storage group, or synonym that is

created by a dynamically issued CREATE statement.

v The implicit qualifier of all table, view, alias, and index names specified in

dynamic SQL statements.

currentSQLID sets the value in the CURRENT SQLID special register on a DB2

for z/OS server. If the currentSQLID property is not set, the default schema

name is the value in the CURRENT SQLID special register.

jdbcCollection

Specifies the collection ID for the packages that are used by an instance of the

IBM Data Server Driver for JDBC and SQLJ at run time. The data type of

jdbcCollection is String. The default is NULLID.

Chapter 12. JDBC and SQLJ reference information 285

This property is used with the DB2Binder -collection option. The DB2Binder

utility must have previously bound IBM Data Server Driver for JDBC and

SQLJ packages at the server using a -collection value that matches the

jdbcCollection value.

The jdbcCollection setting does not determine the collection that is used for

SQLJ applications. For SQLJ, the collection is determined by the -collection

option of the SQLJ customizer.

jdbcCollection does not apply to IBM Data Server Driver for JDBC and SQLJ

type 2 connectivity on DB2 for z/OS.

maxRowsetSize

Specifies the maximum number of bytes that are used for rowset buffering for

each statement, when the IBM Data Server Driver for JDBC and SQLJ uses

multiple-row FETCH for cursors. The data type of this property is int. The

default is 32767.

 maxRowsetSize applies only to IBM Data Server Driver for JDBC and SQLJ

type 2 connectivity on DB2 for z/OS.

reportLongTypes

Specifies whether DatabaseMetaData methods report LONG VARCHAR and

LONG VARGRAPHIC column data types as long data types. The data type of

this property is short. Possible values are:

com.ibm.db2.jcc.DB2BaseDataSource.NO (2) or

com.ibm.db2.jcc.DB2BaseDataSource.NOT_SET (0)

Specifies that DatabaseMetaData methods that return information

about a LONG VARCHAR or LONG VARGRAPHIC column return

java.sql.Types.VARCHAR in the DATA_TYPE column and VARCHAR

or VARGRAPHIC in the TYPE_NAME column of the result set. This is

the default for DB2 for z/OS Version 9 or later.

com.ibm.db2.jcc.DB2BaseDataSource.YES (1)

Specifies that DatabaseMetaData methods that return information

about a LONG VARCHAR or LONG VARGRAPHIC column return

java.sql.Types.LONGVARCHAR in the DATA_TYPE column and

LONG VARCHAR or LONG VARGRAPHIC in the TYPE_NAME

column of the result set.

sendCharInputsUTF8

Specifies whether the IBM Data Server Driver for JDBC and SQLJ converts

character input data to the CCSID of the DB2 for z/OS database server, or

sends the data in UTF-8 encoding for conversion by the database server.

sendCharInputsUTF8 applies to IBM Data Server Driver for JDBC and SQLJ

type 2 connectivity to DB2 for z/OS database servers only. The data type of

this property is int. If this property is also set at the driver level

(db2.jcc.sendCharInputsUTF8), this value overrides the driver-level value.

 Possible values are:

com.ibm.db2.jcc.DB2BaseDataSource.NO (2)

Specifies that the IBM Data Server Driver for JDBC and SQLJ converts

character input data to the target encoding before the data is sent to

the DB2 for z/OS database server.

com.ibm.db2.jcc.DB2BaseDataSource.NO is the default.

com.ibm.db2.jcc.DB2BaseDataSource.YES (1)

Specifies that the IBM Data Server Driver for JDBC and SQLJ sends

286 Developing Java Applications

character input data to the DB2 for z/OS database server in UTF-8

encoding. The database server converts the data from UTF-8 encoding

to the target CCSID.

 Specify com.ibm.db2.jcc.DB2BaseDataSource.YES only if conversion to

the target CCSID by the SDK for Java causes character conversion

problems. The most common problem occurs when you use IBM Data

Server Driver for JDBC and SQLJ type 2 connectivity to insert a

Unicode line feed character (U+000A) into a table column that has

CCSID 37, and then retrieve that data from a non-z/OS client. If the

SDK for Java does the conversion during insertion of the character into

the column, the line feed character is converted to the EBCDIC new

line character X’15’. However, during retrieval, some SDKs for Java on

operating systems other than z/OS convert the X’15’ character to the

Unicode next line character (U+0085) instead of the line feed character

(U+000A). The next line character causes unexpected behavior for some

XML parsers. If you set sendCharInputsUTF8 to

com.ibm.db2.jcc.DB2BaseDataSource.YES, the DB2 for z/OS database

server converts the U+000A character to the EBCDIC line feed

character X’25’ during insertion into the column, so the character is

always retrieved as a line feed character.

Conversion of data to the target CCSID on the database server might

cause the IBM Data Server Driver for JDBC and SQLJ to use more

memory than conversion by the driver. The driver allocates memory

for conversion of character data from the source encoding to the

encoding of the data that it sends to the database server. The amount

of space that the driver allocates for character data that is sent to a

table column is based on the maximum possible length of the data.

UTF-8 data can require up to three bytes for each character. Therefore,

if the driver sends UTF-8 data to the database server, the driver needs

to allocate three times the maximum number of characters in the input

data. If the driver does the conversion, and the target CCSID is a

single-byte CCSID, the driver needs to allocate only the maximum

number of characters in the input data.

sqljEnableClassLoaderSpecificProfiles

Specifies whether the IBM Data Server Driver for JDBC and SQLJ allows using

and loading of SQLJ profiles with the same Java name in multiple J2EE

application (.ear) files. The data type of this property is boolean. The default is

false. sqljEnableClassLoaderSpecificProfiles is a DataSource property. This

property is primarily intended for use with WebSphere Application Server.

ssid

Specifies the name of the local DB2 for z/OS subsystem to which a connection

is established using IBM Data Server Driver for JDBC and SQLJ type 2

connectivity on DB2 for z/OS. The data type of this property is String.

 The ssid property overrides the db2.jcc.ssid configuration property.

ssid can be the subsystem name for a local subsystem or a group attachment

name.

Specification of a single local subsystem name allows more than one subsystem

on a single LPAR to be accessed as a local subsystem for connections that use

IBM Data Server Driver for JDBC and SQLJ type 2 connectivity.

Specification of a group attachment name allows failover processing to occur if

a data sharing group member fails. If the DB2 subsystem to which an

application is connected fails, the connection terminates. However, when new

Chapter 12. JDBC and SQLJ reference information 287

connections use that group attachment name, DB2 for z/OS uses group

attachment processing to find an active DB2 subsystem to which to connect.

ssid applies only to IBM Data Server Driver for JDBC and SQLJ type 2

connectivity to DB2 for z/OS.

useRowsetCursor

Specifies whether the IBM Data Server Driver for JDBC and SQLJ always uses

multiple-row FETCH for scrollable cursors if the data source supports

multiple-row fetch. The data type of this property is boolean.

 This property applies only to IBM Data Server Driver for JDBC and SQLJ type

4 connectivity, or to IBM Data Server Driver for JDBC and SQLJ type 2

connectivity to DB2 for z/OS. If the enableRowsetSupport property is not set,

the default for useRowsetCursor is true. If the enableRowsetSupport property

is set, the useRowsetCursor property is not used.

Applications that use the JDBC 1 technique for performing positioned update

or delete operations should set useRowSetCursor to false. Those applications

do not operate properly if the IBM Data Server Driver for JDBC and SQLJ uses

multiple-row FETCH.

IBM Data Server Driver for JDBC and SQLJ properties for IDS

Some of the IBM Data Server Driver for JDBC and SQLJ properties apply only to

IBM Informix Dynamic Server (IDS) databases. Those properties correspond to IDS

environment variables.

Properties that are shown in uppercase characters in the following information

must be specified in uppercase. For those properties, getXXX and setXXX methods

are formed by prepending the uppercase property name with get or set. For

example:

boolean dbDate = DB2BaseDateSource.getDBDATE();

The IDS-specific properties are:

DBANSIWARN

Specifies whether the IBM Data Server Driver for JDBC and SQLJ instructs the

IDS database to return an SQLWarning to the application if an SQL statement

does not use ANSI-standard syntax. The data type of this property is boolean.

Possible values are:

false or 0

Do not send a value to the IDS database that instructs the database to

return an SQLWarning to the application if an SQL statement does not

use ANSI-standard syntax. This is the default.

true or 1

Send a value to the IDS database that instructs the database to return

an SQLWarning to the application if an SQL statement does not use

ANSI-standard syntax.

You can use the DBANSIWARN IBM Data Server Driver for JDBC and SQLJ

property to set the DBANSIWARN IDS property, but you cannot use the

DBANSIWARN IBM Data Server Driver for JDBC and SQLJ property to reset

the DBANSIWARN IDS property.

DBDATE

Specifies the end-user format of DATE values. The data type of this property is

String. Possible values are in the description of the DBDATE environment

variable in IBM Informix Guide to SQL: Reference.

288 Developing Java Applications

The default value is ″Y4MD-″.

DBPATH

Specifies a colon-separated list of values that identify the database servers that

contain databases. The date type of this property is String. Each value can be:

v A full path name

v A relative path name

v The server name of an IDS database server

v A server name and full path name

The default ″.″.

DBSPACETEMP

Specifies a comma-separated or colon-separated list of existing dbspaces in

which temporary tables are placed. The data type of this property is String.

 If this property is not set, no value is sent to the server. The value for the

DBSPACETEMP environment variable is used.

DBTEMP

Specifies the full path name of an existing directory in which temporary files

and temporary tables are placed. The data type of this property is String. The

default is ″/tmp″.

DBUPSPACE

Specifies the maximum amount of system disk space and maximum amount of

memory, in kilobytes, that the UPDATE STATISTICS statement can use when it

constructs multiple column distributions simultaneously. The data type of this

property is String.

 The format of DBUPSPACE is ″maximum-disk-space:maximum-memory″.

If this property is not set, no value is sent to the server. The value for the

DBUPSPACE environment variable is used.

DB_LOCALE

Specifies the database locale, which the database server uses to process

locale-sensitive data. The data type of this property is String. Valid values are

the same as valid values for the DB_LOCALE environment variable. The

default value is null.

DELIMIDENT

Specifies whether delimited SQL identifiers can be used in an application. The

data type of this property is boolean. Possible values are:

false The application cannot contain delimited SQL identifiers. Double

quotation marks (″) or single quotation marks (’) delimit literal strings.

This is the default.

true The application can contain delimited SQL identifiers. Delimited SQL

identifiers must be enclosed in double quotation marks (″). Single

quotation marks (’) delimit literal strings.

IFX_DIRECTIVES

Specifies whether the optimizer allows query optimization directives from

within a query. The data type of this property is String. Possible values are:

″1″ or ″ON″

Optimization directives are accepted.

″0″ or ″OFF″

Optimization directives are not accepted.

Chapter 12. JDBC and SQLJ reference information 289

If this property is not set, no value is sent to the server. The value for the

IFX_DIRECTIVES environment variable is used.

IFX_EXTDIRECTIVES

Specifies whether the optimizer allows external query optimization directives

from the sysdirectives system catalog table to be applied to queries in existing

applications. Possible values are:

″1″ or ″ON″

External query optimization directives are accepted.

″0″ or ″OFF″

External query optimization are not accepted.

If this property is not set, no value is sent to the server. The value for the

IFX_EXTDIRECTIVES environment variable is used.

IFX_UPDDESC

Specifies whether a DESCRIBE of an UPDATE statement is permitted. The data

type of this property is String.

 Any non-null value indicates that a DESCRIBE of an UPDATE statement is

permitted. The default is ″1″.

IFX_XASTDCOMPLIANCE_XAEND

Specifies whether global transactions are freed only after an explicit rollback, or

after any rollback. The data type of this property is String. Possible values are:

″0″ Global transactions are freed only after an explicit rollback. This

behavior conforms to the X/Open XA standard.

″1″ Global transactions are freed after any rollback.

If this property is not set, no value is sent to the server. The value for the

IFX_XASTDCOMPLIANCE_XAEND environment variable is used.

INFORMIXOPCACHE

Specifies the size of the memory cache, in kilobytes, for the staging-area

blobspace of the client application. The data type of this property is String. A

value of ″0″ indicates that the cache is not used.

 If this property is not set, no value is sent to the server. The value for the

INFORMIXOPCACHE environment variable is used.

INFORMIXSTACKSIZE

Specifies the stack size, in kilobytes, that the database server uses for the

primary thread of a client session. The data type of this property is String.

 If this property is not set, no value is sent to the server. The value for the

INFORMIXSTACKSIZE environment variable is used.

NODEFDAC

Specifies whether the database server prevents default table privileges

(SELECT, INSERT, UPDATE, and DELETE) from being granted to PUBLIC

when a new table is created during the current session, in a database that is

not ANSI compliant. The data type of this property is String. Possible values

are:

″yes″ The database server prevents default table privileges from being

granted to PUBLIC when a new table is created during the current

session, in a database that is not ANSI compliant.

″no″ The database server does not prevent default table privileges from

290 Developing Java Applications

being granted to PUBLIC when a new table is created during the

current session, in a database that is not ANSI compliant. This is the

default.

OPTCOMPIND

Specifies the preferred method for performing a join operation on an ordered

pair of tables. The data type of this property is String. Possible values are:

″0″ The optimizer chooses a nested-loop join, where possible, over a

sort-merge join or a hash join.

″1″ When the isolation level is repeatable read, the optimizer chooses a

nested-loop join, where possible, over a sort-merge join or a hash join.

When the isolation level is not repeatable read, the optimizer chooses a

join method based on costs.

″2″ The optimizer chooses a join method based on costs, regardless of the

transaction isolation mode.

If this property is not set, no value is sent to the server. The value for the

OPTCOMPIND environment variable is used.

OPTOFC

Specifies whether to enable optimize-OPEN-FETCH-CLOSE functionality. The

data type of this property is String. Possible values are:

″0″ Disable optimize-OPEN-FETCH-CLOSE functionality for all threads of

applications.

″1″ Enable optimize-OPEN-FETCH-CLOSE functionality for all cursors in

all threads of applications.

If this property is not set, no value is sent to the server. The value for the

OPTOFCD environment variable is used.

PDQPRIORITY

Specifies the degree of parallelism that the database server uses. The

PDQPRIORITY value affects how the database server allocates resources,

including memory, processors, and disk reads. The data type of this property is

String. Possible values are:

″HIGH″

When the database server allocates resources among all users, it gives

as many resources as possible to queries.

″LOW″ or ″1″

The database server fetches values from fragmented tables in parallel.

″OFF″ or ″0″

Parallel processing is disabled.

If this property is not set, no value is sent to the server. The value for the

PDQPRIORITY environment variable is used.

PSORT_DBTEMP

Specifies the full path name of a directory in which the database server writes

temporary files that are used for a sort operation. The data type of this

property is String.

 If this property is not set, no value is sent to the server. The value for the

PSORT_DBTEMP environment variable is used.

Chapter 12. JDBC and SQLJ reference information 291

PSORT_NPROCS

Specifies the maximum number of threads that the database server can use to

sort a query. The data type of this property is String. The maximum value of

PSORT_NPROCS is ″10″.

 If this property is not set, no value is sent to the server. The value for the

PSORT_NPROCS environment variable is used.

STMT_CACHE

Specifies whether the shared-statement cache is enabled. The data type of this

property is String. Possible values are:

″0″ The shared-statement cache is disabled.

″1″ A 512 KB shared-statement cache is enabled.

If this property is not set, no value is sent to the server. The value for the

STMT_CACHE environment variable is used.

dumpPool

Specifies the types of statistics on global transport pool events that are written,

in addition to summary statistics. The global transport pool is used for the

connection concentrator and Sysplex workload balancing.

 The data type of dumpPool is int. dumpPoolStatisticsOnSchedule and

dumpPoolStatisticsOnScheduleFile must also be set for writing statistics before

any statistics are written.

You can specify one or more of the following types of statistics with the

db2.jcc.dumpPool property:

v DUMP_REMOVE_OBJECT (hexadecimal: X’01’, decimal: 1)

v DUMP_GET_OBJECT (hexadecimal: X’02’, decimal: 2)

v DUMP_WAIT_OBJECT (hexadecimal: X’04’, decimal: 4)

v DUMP_SET_AVAILABLE_OBJECT (hexadecimal: X’08’, decimal: 8)

v DUMP_CREATE_OBJECT (hexadecimal: X’10’, decimal: 16)

v DUMP_SYSPLEX_MSG (hexadecimal: X’20’, decimal: 32)

v DUMP_POOL_ERROR (hexadecimal: X’80’, decimal: 128)

To trace more than one type of event, add the values for the types of events

that you want to trace. For example, suppose that you want to trace

DUMP_GET_OBJECT and DUMP_CREATE_OBJECT events. The numeric

equivalents of these values are 2 and 16, so you specify 18 for the dumpPool

value.

The default is 0, which means that only summary statistics for the global

transport pool are written.

This property does not have a setXXX or a getXXX method.

dumpPoolStatisticsOnSchedule

Specifies how often, in seconds, global transport pool statistics are written to

the file that is specified by dumpPoolStatisticsOnScheduleFile. The global

transport object pool is used for the connection concentrator and Sysplex

workload balancing.

 The default is -1. -1 means that global transport pool statistics are not written.

This property does not have a setXXX or a getXXX method.

dumpPoolStatisticsOnScheduleFile

Specifies the name of the file to which global transport pool statistics are

written. The global transport pool is used for the connection concentrator and

Sysplex workload balancing.

292 Developing Java Applications

If dumpPoolStatisticsOnScheduleFile is not specified, global transport pool

statistics are not written.

This property does not have a setXXX or a getXXX method.

maxTransportObjectIdleTime

Specifies the amount of time in seconds that an unused transport object stays

in a global transport object pool before it can be deleted from the pool.

Transport objects are used for the connection concentrator and Sysplex

workload balancing.

 The default value for maxTransportObjectIdleTime is 60. Setting

maxTransportObjectIdleTime to a value less than 0 causes unused transport

objects to be deleted from the pool immediately. Doing this is not

recommended because it can cause severe performance degradation.

This property does not have a setXXX or a getXXX method.

maxTransportObjectWaitTime

Specifies the maximum amount of time in seconds that an application waits for

a transport object if the maxTransportObjects value has been reached. Transport

objects are used for the connection concentrator and Sysplex workload

balancing. When an application waits for longer than the

maxTransportObjectWaitTime value, the global transport object pool throws an

SQLException.

 The default value for maxTransportObjectWaitTime is -1. Any negative value

means that applications wait forever.

This property does not have a setXXX or a getXXX method.

minTransportObjects

Specifies the lower limit for the number of transport objects in a global

transport object pool for the connection concentrator and Sysplex workload

balancing. When a JVM is created, there are no transport objects in the pool.

Transport objects are added to the pool as they are needed. After the

minTransportObjects value is reached, the number of transport objects in the

global transport object pool never goes below the minTransportObjects value

for the lifetime of that JVM.

 The default value for minTransportObjects is 0. Any value that is less than or

equal to 0 means that the global transport object pool can become empty.

This property does not have a setXXX or a getXXX method.

IBM Data Server Driver for JDBC and SQLJ configuration properties

The IBM Data Server Driver for JDBC and SQLJ configuration properties have

driver-wide scope.

The following table summarizes the configuration properties and corresponding

Connection or DataSource properties, if they exist.

 Table 47. Summary of Configuration properties and corresponding Connection and DataSource properties

Configuration property name

Connection or DataSource property name:

com.ibm.db2.jcc.DB2BaseDataSource. ... Notes

db2.jcc.accountingInterval accountingInterval 1 on page 295, 4 on page

295

db2.jcc.allowSqljDuplicateStaticQueries 4 on page 295

db2.jcc.charOutputSize charOutputSize 1 on page 295, 4 on page

295

Chapter 12. JDBC and SQLJ reference information 293

Table 47. Summary of Configuration properties and corresponding Connection and DataSource properties (continued)

Configuration property name

Connection or DataSource property name:

com.ibm.db2.jcc.DB2BaseDataSource. ... Notes

db2.jcc.currentSchema currentSchema 1 on page 295, 4 on page

295, 6 on page 295

db2.jcc.override.currentSchema currentSchema 2 on page 295, 4 on page

295, 6 on page 295

db2.jcc.currentSQLID currentSQLID 1 on page 295, 4 on page

295

db2.jcc.override.currentSQLID currentSQLID 2 on page 295, 4 on page

295

db2.jcc.decimalRoundingMode decimalRoundingMode 1 on page 295, 4 on page

295, 6 on page 295

db2.jcc.override.decimalRoundingMode decimalRoundingMode 2 on page 295, 4 on page

295, 6 on page 295

db2.jcc.defaultSQLState 4 on page 295

db2.jcc.disableSQLJProfileCaching 4 on page 295

db2.jcc.dumpPool dumpPool 1 on page 295, 3 on page

295, 4 on page 295, 5 on

page 295

db2.jcc.dumpPoolStatisticsOnSchedule dumpPoolStatisticsOnSchedule 1 on page 295, 3 on page

295, 4 on page 295, 5 on

page 295

db2.jcc.dumpPoolStatisticsOnScheduleFile dumpPoolStatisticsOnScheduleFile 1 on page 295, 3 on page

295, 4 on page 295, 5 on

page 295

db2.jcc.jmxEnabled 4 on page 295, 5 on page

295, 6 on page 295

db2.jcc.lobOutputSize 4 on page 295

db2.jcc.maxTransportObjectIdleTime maxTransportObjectIdleTime 1 on page 295, 4 on page

295, 5 on page 295

db2.jcc.maxTransportObjectWaitTime maxTransportObjectWaitTime 1 on page 295, 4 on page

295, 5 on page 295

db2.jcc.maxTransportObjects maxTransportObjects 1 on page 295, 4 on page

295, 5 on page 295

db2.jcc.minTransportObjects minTransportObjects 1 on page 295, 4 on page

295, 5 on page 295

db2.jcc.pkList pkList 1 on page 295, 4 on page

295

db2.jcc.planName planName 1 on page 295, 4 on page

295

db2.jcc.progressiveStreaming progressiveStreaming 1 on page 295, 4 on page

295, 5 on page 295, 6 on

page 295

db2.jcc.override.progressiveStreaming progressiveStreaming 2 on page 295, 4 on page

295, 5 on page 295, 6 on

page 295

db2.jcc.rollbackOnShutdown 4 on page 295

db2.jcc.sendCharInputsUTF8 sendCharInputsUTF8 4 on page 295

db2.jcc.sqljUncustomizedWarningOrException 4 on page 295, 6 on page

295

db2.jcc.ssid ssid 1 on page 295, 4 on page

295

db2.jcc.traceDirectory traceDirectory 1 on page 295, 4 on page

295, 5 on page 295, 6 on

page 295

294 Developing Java Applications

Table 47. Summary of Configuration properties and corresponding Connection and DataSource properties (continued)

Configuration property name

Connection or DataSource property name:

com.ibm.db2.jcc.DB2BaseDataSource. ... Notes

db2.jcc.override.traceDirectory traceDirectory 2, 4, 5, 6

db2.jcc.traceFile traceFile 1, 4, 5, 6

db2.jcc.override.traceFile traceFile 2, 4, 5, 6

db2.jcc.traceFileAppend traceFileAppend 1, 4, 5, 6

db2.jcc.override.traceFileAppend traceFileAppend 2, 4, 5, 6

db2.jcc.traceLevel traceLevel 1, 4, 5, 6

db2.jcc.override.traceLevel traceLevel 2, 4, 5, 6

db2.jcc.tracePolling 4, 5, 6

db2.jcc.tracePollingInterval 4, 5, 6

db2.jcc.t2zosTraceFile 4

db2.jcc.t2zosTraceBufferSize 4

db2.jcc.t2zosTraceWrap 4

db2.jcc.useCcsid420ShapedConverter 4

Note:

1. The Connection or DataSource property setting overrides the configuration property setting. The configuration property provides

a default value for the Connection or DataSource property.

2. The configuration property setting overrides the Connection or DataSource property.

3. The corresponding Connection or DataSource property is defined only for IBM Informix Dynamic Server.

4. The configuration property applies to DB2 for z/OS.

5. The configuration property applies to IBM Informix Dynamic Server.

6. The configuration property applies to DB2 Database for Linux, UNIX, and Windows.

The meanings of the configuration properties are:

db2.jcc.accountingInterval

Specifies whether DB2 accounting records are produced at commit points or on

termination of the physical connection to the data source. If the value of

db2.jcc.accountingInterval is COMMIT, DB2 accounting records are produced at

commit points. For example:

db2.jcc.accountingInterval=COMMIT

Otherwise, accounting records are produced on termination of the physical

connection to the data source.

 db2.jcc.accountingInterval applies only to IBM Data Server Driver for JDBC

and SQLJ type 2 connectivity on DB2 for z/OS. db2.jcc.accountingInterval is

not applicable to connections under CICS or IMS, or for Java stored

procedures.

You can override db2.jcc.accountingInterval by setting the accountingInterval

property for a Connection or DataSource object.

This configuration property applies only to DB2 for z/OS.

db2.jcc.allowSqljDuplicateStaticQueries

Specifies whether multiple open iterators on a single SELECT statement in an

SQLJ application are allowed under IBM Data Server Driver for JDBC and

SQLJ type 2 connectivity.

 To enable this support, set db2.jcc.allowSqljDuplicateStaticQueries to YES or

true.

Chapter 12. JDBC and SQLJ reference information 295

db2.jcc.charOutputSize

Specifies the maximum number of bytes to use for INOUT or OUT stored

procedure parameters that are registered as Types.CHAR.

 Because DESCRIBE information for stored procedure INOUT and OUT

parameters is not available at run time, by default, the IBM Data Server Driver

for JDBC and SQLJ sets the maximum length of each character INOUT or OUT

parameter to 32767. For stored procedures with many Types.CHAR parameters,

this maximum setting can result in allocation of much more storage than is

necessary.

To use storage more efficiently, set db2.jcc.charOutputSize to the largest

expected length for any Types.CHAR INOUT or OUT parameter.

db2.jcc.charOutputSize has no effect on INOUT or OUT parameters that are

registered as Types.VARCHAR or Types.LONGVARCHAR. The driver uses the default

length of 32767 for Types.VARCHAR and Types.LONGVARCHAR parameters.

The value that you choose for db2.jcc.charOutputSize needs to take into

account the possibility of expansion during character conversion. Because the

IBM Data Server Driver for JDBC and SQLJ has no information about the

server-side CCSID that is used for output parameter values, the driver requests

the stored procedure output data in UTF-8 Unicode. The

db2.jcc.charOutputSize value needs to be the maximum number of bytes that

are needed after the parameter value is converted to UTF-8 Unicode. UTF-8

Unicode characters can require up to three bytes. (The euro symbol is an

example of a three-byte UTF-8 character.) To ensure that the value of

db2.jcc.charOutputSize is large enough, if you have no information about the

output data, set db2.jcc.charOutputSize to three times the defined length of the

largest CHAR parameter.

This configuration property applies only to DB2 for z/OS.

db2.jcc.currentSchema or db2.jcc.override.currentSchema

Specifies the default schema name that is used to qualify unqualified database

objects in dynamically prepared SQL statements. This value of this property

sets the value in the CURRENT SCHEMA special register on the database

server. The schema name is case-sensitive, and must be specified in uppercase

characters.

 This configuration property applies only to DB2 for z/OS or DB2 Database for

Linux, UNIX, and Windows.

db2.jcc.currentSQLID or db2.jcc.override.currentSQLID

Specifies:

v The authorization ID that is used for authorization checking on dynamically

prepared CREATE, GRANT, and REVOKE SQL statements.

v The owner of a table space, database, storage group, or synonym that is

created by a dynamically issued CREATE statement.

v The implicit qualifier of all table, view, alias, and index names specified in

dynamic SQL statements.

currentSQLID sets the value in the CURRENT SQLID special register on a DB2

for z/OS server. If the currentSQLID property is not set, the default schema

name is the value in the CURRENT SQLID special register.

 This configuration property applies only to DB2 for z/OS.

db2.jcc.decimalRoundingMode or db2.jcc.override.decimalRoundingMode

Specifies the rounding mode for decimal or decimal floating-point values on

296 Developing Java Applications

DB2 for z/OS or DB2 Database for Linux, UNIX, and Windows database

servers, and for decimal values on all other data sources that support the

decimal data type.

 Possible values are:

com.ibm.db2.jcc.DB2BaseDataSource.ROUND_DOWN (1)

Rounds the value towards 0 (truncation). The discarded digits are

ignored.

com.ibm.db2.jcc.DB2BaseDataSource.ROUND_CEILING (2)

Rounds the value towards positive infinity. If all of the discarded digits

are zero or if the sign is negative the result is unchanged other than

the removal of the discarded digits. Otherwise, the result coefficient is

incremented by 1.

com.ibm.db2.jcc.DB2BaseDataSource.ROUND_HALF_EVEN (3)

Rounds the value to the nearest value; if the values are equidistant,

rounds the value so that the final digit is even. If the discarded digits

represents greater than half (0.5) of the value of one in the next left

position then the result coefficient is incremented by 1. If they

represent less than half, then the result coefficient is not adjusted (that

is, the discarded digits are ignored). Otherwise the result coefficient is

unaltered if its rightmost digit is even, or is incremented by 1 if its

rightmost digit is odd (to make an even digit).

com.ibm.db2.jcc.DB2BaseDataSource.ROUND_HALF_UP (4)

Rounds the value to the nearest value; if the values are equidistant,

rounds the value away from zero. If the discarded digits represent

greater than or equal to half (0.5) of the value of one in the next left

position then the result coefficient is incremented by 1. Otherwise the

discarded digits are ignored.

com.ibm.db2.jcc.DB2BaseDataSource.ROUND_FLOOR (6)

Rounds the value towards negative infinity. If all of the discarded

digits are zero or if the sign is positive the result is unchanged other

than the removal of discarded digits. Otherwise, the sign is negative

and the result coefficient is incremented by 1.

com.ibm.db2.jcc.DB2BaseDataSource.ROUND_UNSET (-2147483647)

No rounding mode was explicitly set. The IBM Data Server Driver for

JDBC and SQLJ does not use the decimalRoundingMode to set the

rounding mode on the data source.

 The IBM Data Server Driver for JDBC and SQLJ uses the following

values for its rounding mode:

v If the data source is DB2 for z/OS or DB2 Database for Linux,

UNIX, and Windows, the rounding mode is ROUND_HALF_EVEN

for decimal or decimal floating-point values.

v For any other data source, the rounding mode is ROUND_DOWN

for decimal values.

This configuration property applies only to DB2 for z/OS Version 9 or later, or

DB2 Database for Linux, UNIX, and Windows Version 9.1 or later.

db2.jcc.defaultSQLState

Specifies the SQLSTATE value that the IBM Data Server Driver for JDBC and

SQLJ returns to the client for SQLException or SQLWarning objects that have

null SQLSTATE values. This configuration property can be specified in the

following ways:

Chapter 12. JDBC and SQLJ reference information 297

db2.jcc.defaultSQLState

If db2.jcc.defaultSQLState is specified with no value, the IBM Data

Server Driver for JDBC and SQLJ returns ’FFFFF’.

db2.jcc.defaultSQLState=xxxxx

xxxxx is the value that the IBM Data Server Driver for JDBC and SQLJ

returns when the SQLSTATE value is null. If xxxxx is longer than five

bytes, the driver truncates the value to five bytes. If xxxxx is shorter

than five bytes, the driver pads xxxxx on the right with blanks.

If db2.jcc.defaultSQLState is not specified, the IBM Data Server Driver for

JDBC and SQLJ returns a null SQLSTATE value.

This configuration property applies only to DB2 for z/OS.

db2.jcc.disableSQLJProfileCaching

Specifies whether serialized profiles are cached when the JVM under which

their application is running is reset. db2.jcc.disableSQLJProfileCaching applies

only to applications that run in a resettable JVM (applications that run in the

CICS, IMS, or Java stored procedure environment), and use IBM Data Server

Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS. Possible

values are:

YES SQLJ serialized profiles are not cached every time the JVM is reset, so

that new versions of the serialized profiles are loaded when the JVM is

reset. Use this option when an application is under development, and

new versions of the application and its serialized profiles are produced

frequently.

NO SQLJ serialized profiles are cached when the JVM is reset. NO is the

default.

This configuration property applies only to DB2 for z/OS.

db2.jcc.dumpPool

Specifies the types of statistics on global transport pool events that are written,

in addition to summary statistics. The global transport pool is used for the

connection concentrator and Sysplex workload balancing.

 db2.jcc.dumpPoolStatisticsOnSchedule and

db2.jcc.dumpPoolStatisticsOnScheduleFile must also be set for writing statistics

before any statistics are written.

You can specify one or more of the following types of statistics with the

db2.jcc.dumpPool property:

v DUMP_REMOVE_OBJECT (hexadecimal: X’01’, decimal: 1)

v DUMP_GET_OBJECT (hexadecimal: X’02’, decimal: 2)

v DUMP_WAIT_OBJECT (hexadecimal: X’04’, decimal: 4)

v DUMP_SET_AVAILABLE_OBJECT (hexadecimal: X’08’, decimal: 8)

v DUMP_CREATE_OBJECT (hexadecimal: X’10’, decimal: 16)

v DUMP_SYSPLEX_MSG (hexadecimal: X’20’, decimal: 32)

v DUMP_POOL_ERROR (hexadecimal: X’80’, decimal: 128)

To trace more than one type of event, add the values for the types of events

that you want to trace. For example, suppose that you want to trace

DUMP_GET_OBJECT and DUMP_CREATE_OBJECT events. The numeric

equivalents of these values are 2 and 16, so you specify 18 for the

db2.jcc.dumpPool value.

The default is 0, which means that only summary statistics for the global

transport pool are written.

298 Developing Java Applications

This configuration property applies only to DB2 for z/OS or IBM Informix

Dynamic Server.

db2.jcc.dumpPoolStatisticsOnSchedule

Specifies how often, in seconds, global transport pool statistics are written to

the file that is specified by db2.jcc.dumpPoolStatisticsOnScheduleFile. The

global transport object pool is used for the connection concentrator and

Sysplex workload balancing.

 The default is -1. -1 means that global transport pool statistics are not written.

This configuration property applies only to DB2 for z/OS or IBM Informix

Dynamic Server.

db2.jcc.dumpPoolStatisticsOnScheduleFile

Specifies the name of the file to which global transport pool statistics are

written. The global transport pool is used for the connection concentrator and

Sysplex workload balancing.

 If db2.jcc.dumpPoolStatisticsOnScheduleFile is not specified, global transport

pool statistics are not written.

This configuration property applies only to DB2 for z/OS or IBM Informix

Dynamic Server.

db2.jcc.jmxEnabled

Specifies whether the Java Management Extensions (JMX) is enabled for the

IBM Data Server Driver for JDBC and SQLJ instance. JMX must be enabled

before applications can use the remote trace controller.

 Possible values are:

true or yes

Indicates that JMX is enabled.

Any other value

Indicates that JMX is disabled. This is the default.

db2.jcc.lobOutputSize

Specifies the number of bytes of storage that the IBM Data Server Driver for

JDBC and SQLJ needs to allocate for output LOB values when the driver

cannot determine the size of those LOBs. This situation occurs for LOB stored

procedure output parameters. db2.jcc.lobOutputSize applies only to IBM Data

Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.

 The default value for db2.jcc.lobOutputSize is 1048576. For systems with

storage limitations and smaller LOBs, set the db2.jcc.lobOutputSize value to a

lower number.

For example, if you know that the output LOB size is at most 64000, set

db2.jcc.lobOutputSize to 64000.

This configuration property applies only to DB2 for z/OS.

db2.jcc.maxTransportObjectIdleTime

Specifies the amount of time in seconds that an unused transport object stays

in a global transport object pool before it can be deleted from the pool.

Transport objects are used for the connection concentrator and Sysplex

workload balancing.

 The default value for db2.jcc.maxTransportObjectIdleTime is 60. Setting

db2.jcc.maxTransportObjectIdleTime to a value less than 0 causes unused

transport objects to be deleted from the pool immediately. Doing this is not

recommended because it can cause severe performance degradation.

Chapter 12. JDBC and SQLJ reference information 299

This configuration property applies only to DB2 for z/OS or IBM Informix

Dynamic Server.

db2.jcc.maxTransportObjects

Specifies the upper limit for the number of transport objects in a global

transport object pool for the connection concentrator and Sysplex workload

balancing. When the number of transport objects in the pool reaches the

db2.jcc.maxTransportObjects value, transport objects that have not been used

for longer than the db2.jcc.maxTransportObjectIdleTime value are deleted from

the pool.

 The default value for db2.jcc.maxTransportObjects is -1. Any value that is less

than or equal to 0 means that there is no limit to the number of transport

objects in the global transport object pool.

This configuration property applies only to DB2 for z/OS or IBM Informix

Dynamic Server.

db2.jcc.maxTransportObjectWaitTime

Specifies the maximum amount of time in seconds that an application waits for

a transport object if the db2.jcc.maxTransportObjects value has been reached.

Transport objects are used for the connection concentrator and Sysplex

workload balancing. When an application waits for longer than the

db2.jcc.maxTransportObjectWaitTime value, the global transport object pool

throws an SQLException.

 The default value for db2.jcc.maxTransportObjectWaitTime is -1. Any negative

value means that applications wait forever.

This configuration property applies only to DB2 for z/OS or IBM Informix

Dynamic Server.

db2.jcc.minTransportObjects

Specifies the lower limit for the number of transport objects in a global

transport object pool for the connection concentrator and Sysplex workload

balancing. When a JVM is created, there are no transport objects in the pool.

Transport objects are added to the pool as they are needed. After the

db2.jcc.minTransportObjects value is reached, the number of transport objects

in the global transport object pool never goes below the

db2.jcc.minTransportObjects value for the lifetime of that JVM.

 The default value for db2.jcc.minTransportObjects is 0. Any value that is less

than or equal to 0 means that the global transport object pool can become

empty.

This configuration property applies only to DB2 for z/OS or IBM Informix

Dynamic Server.

db2.jcc.pkList

Specifies a package list that is used for the underlying RRSAF CREATE

THREAD call when a JDBC or SQLJ connection to a data source is established.

Specify this property if you do not bind plans for your SQLJ programs or for

the JDBC driver. If you specify this property, do not specify db2.jcc.planName.

 db2.jcc.pkList applies only to IBM Data Server Driver for JDBC and SQLJ type

2 connectivity on DB2 for z/OS. db2.jcc.pkList does not apply to applications

that run under CICS or IMS, or to Java stored procedures. The JDBC driver

ignores the db2.jcc.pkList setting in those cases.

Recommendation: Use db2.jcc.pkList instead of db2.jcc.planName.

The format of the package list is:

300 Developing Java Applications

��

�

 ,

collection-ID.*

��

The default value of db2.jcc.pkList is NULLID.*.

If you specify the -collection parameter when you run

com.ibm.db2.jcc.DB2Binder, the collection ID that you specify for IBM Data

Server Driver for JDBC and SQLJ packages when you run

com.ibm.db2.jcc.DB2Binder must also be in the package list for the

db2.jcc.pkList property.

You can override db2.jcc.pkList by setting the pkList property for a Connection

or DataSource object.

The following example specifies a package list for a IBM Data Server Driver

for JDBC and SQLJ instance whose packages are in collection JDBCCID. SQLJ

applications that are prepared under this driver instance are bound into

collections SQLJCID1, SQLJCID2, or SQLJCID3.

db2.jcc.pkList=JDBCCID.*,SQLJCID1.*,SQLJCID2.*,SQLJCID3.*

This configuration property applies only to DB2 for z/OS.

db2.jcc.planName

Specifies a DB2 for z/OS plan name that is used for the underlying RRSAF

CREATE THREAD call when a JDBC or SQLJ connection to a data source is

established. Specify this property if you bind plans for your SQLJ programs

and for the JDBC driver packages. If you specify this property, do not specify

db2.jcc.pkList.

 db2.jcc.planName applies only to IBM Data Server Driver for JDBC and SQLJ

type 2 connectivity on DB2 for z/OS. db2.jcc.planName does not apply to

applications that run under CICS or IMS, or to Java stored procedures. The

JDBC driver ignores the db2.jcc.planName setting in those cases.

If you do not specify this property or the db2.jcc.pkList property, the IBM Data

Server Driver for JDBC and SQLJ uses the db2.jcc.pkList default value of

NULLID.*.

If you specify db2.jcc.planName, you need to bind the packages that you

produce when you run com.ibm.db2.jcc.DB2Binder into a plan whose name is

the value of this property. You also need to bind all SQLJ packages into a plan

whose name is the value of this property.

You can override db2.jcc.planName by setting the planName property for a

Connection or DataSource object.

The following example specifies a plan name of MYPLAN for the IBM Data

Server Driver for JDBC and SQLJ JDBC packages and SQLJ packages.

db2.jcc.planName=MYPLAN

This configuration property applies only to DB2 for z/OS.

db2.jcc.progressiveStreaming or db2.jcc.override.progressiveStreaming

Specifies whether the JDBC driver uses progressive streaming when

progressive streaming is supported on the data source.

 With progressive streaming, also known as dynamic data format, the data

source dynamically determines the most efficient mode in which to return LOB

or XML data, based on the size of the LOBs or XML objects.

Chapter 12. JDBC and SQLJ reference information 301

Valid values are:

1 Use progressive streaming, if the data source supports it.

2 Do not use progressive streaming.

db2.jcc.rollbackOnShutdown

Specifies whether DB2 for z/OS forces a rollback operation and disables

further operations on JDBC connections that are in a unit of work during

processing of JVM shutdown hooks.

 db2.jcc.rollbackOnShutdown applies to IBM Data Server Driver for JDBC and

SQLJ type 2 connectivity only.

db2.jcc.rollbackOnShutdown does not apply to the CICS, IMS, stored

procedure, or WebSphere Application Server environments.

Possible values are:

yes or true

The IBM Data Server Driver for JDBC and SQLJ directs DB2 for z/OS

to force a rollback operation and disables further operations on JDBC

connections that are in a unit of work during processing of JVM

shutdown hooks.

Any other value

The IBM Data Server Driver for JDBC and SQLJ takes no action with

respect to rollback processing during processing of JVM shutdown

hooks. This is the default.

This configuration property applies only to DB2 for z/OS.

db2.jcc.sendCharInputsUTF8

Specifies whether the IBM Data Server Driver for JDBC and SQLJ converts

character input data to the CCSID of the DB2 for z/OS database server, or

sends the data in UTF-8 encoding for conversion by the database server.

db2.jcc.sendCharInputsUTF8 applies to IBM Data Server Driver for JDBC and

SQLJ type 2 connectivity to DB2 for z/OS database servers only. If this

property is also set at the connection level, the connection-level setting

overrides this value.

 Possible values are:

no, false, or 2

Specifies that the IBM Data Server Driver for JDBC and SQLJ converts

character input data to the target encoding before the data is sent to

the DB2 for z/OS database server. This is the default.

yes, true, or 1

Specifies that the IBM Data Server Driver for JDBC and SQLJ sends

character input data to the DB2 for z/OS database server in UTF-8

encoding. The data source converts the data from UTF-8 encoding to

the target CCSID.

 Specify yes, true, or 1 only if conversion to the target CCSID by the

SDK for Java causes character conversion problems. The most common

problem occurs when you use IBM Data Server Driver for JDBC and

SQLJ type 2 connectivity to insert a Unicode line feed character

(U+000A) into a table column that has CCSID 37, and then retrieve that

data from a non-z/OS client. If the SDK for Java does the conversion

during insertion of the character into the column, the line feed

character is converted to the EBCDIC new line character X’15’.

However, during retrieval, some SDKs for Java on operating systems

302 Developing Java Applications

other than z/OS convert the X’15’ character to the Unicode next line

character (U+0085) instead of the line feed character (U+000A). The

next line character causes unexpected behavior for some XML parsers.

If you set db2.jcc.sendCharInputsUTF8 to yes, the DB2 for z/OS

database server converts the U+000A character to the EBCDIC line feed

character X’25’ during insertion into the column, so the character is

always retrieved as a line feed character.

Conversion of data to the target CCSID on the data source might cause

the IBM Data Server Driver for JDBC and SQLJ to use more memory

than conversion by the driver. The driver allocates memory for

conversion of character data from the source encoding to the encoding

of the data that it sends to the data source. The amount of space that

the driver allocates for character data that is sent to a table column is

based on the maximum possible length of the data. UTF-8 data can

require up to three bytes for each character. Therefore, if the driver

sends UTF-8 data to the data source, the driver needs to allocate three

times the maximum number of characters in the input data. If the

driver does the conversion, and the target CCSID is a single-byte

CCSID, the driver needs to allocate only the maximum number of

characters in the input data.

For example, any of the following settings for db2.jcc.sendCharInputsUTF8

causes the IBM Data Server Driver for JDBC and SQLJ to convert input

character strings to UTF-8, rather than the target encoding, before sending the

data to the data source:

db2.jcc.sendCharInputsUTF8=yes

db2.jcc.sendCharInputsUTF8=true

db2.jcc.sendCharInputsUTF8=1

This configuration property applies only to DB2 for z/OS.

db2.jcc.sqljUncustomizedWarningOrException

Specifies the action that the IBM Data Server Driver for JDBC and SQLJ takes

when an uncustomized SQLJ application runs.

db2.jcc.sqljUncustomizedWarningOrException can have the following values:

0 The IBM Data Server Driver for JDBC and SQLJ does not throw a

Warning or Exception when an uncustomized SQLJ application is run.

This is the default.

1 The IBM Data Server Driver for JDBC and SQLJ throws a Warning

when an uncustomized SQLJ application is run.

2 The IBM Data Server Driver for JDBC and SQLJ throws an Exception

when an uncustomized SQLJ application is run.

This configuration property applies only to DB2 for z/OS or DB2 Database for

Linux, UNIX, and Windows.

db2.jcc.traceDirectory or db2.jcc.override.traceDirectory

Enables the IBM Data Server Driver for JDBC and SQLJ trace for Java driver

code, and specifies a directory into which trace information is written. When

db2.jcc.override.traceDirectory is specified, trace information for multiple

connections on the same DataSource is written to multiple files.

 When db2.jcc.override.traceDirectory is specified, a connection is traced to a

file named file-name_origin_n.

v n is the nth connection for a DataSource.

v If neither db2.jcc.traceFileName nor db2.jcc.override.traceFileName is

specified, file-name is traceFile. If db2.jcc.traceFileName or

Chapter 12. JDBC and SQLJ reference information 303

db2.jcc.override.traceFileName is also specified, file-name is the value of

db2.jcc.traceFileName or db2.jcc.override.traceFileName.

v origin indicates the origin of the log writer that is in use. Possible values of

origin are:

cpds The log writer for a DB2ConnectionPoolDataSource object.

driver The log writer for a DB2Driver object.

global The log writer for a DB2TraceManager object.

sds The log writer for a DB2SimpleDataSource object.

xads The log writer for a DB2XADataSource object.

The db2.jcc.override.traceDirectory property overrides the traceDirectory

property for a Connection or DataSource object.

For example, specifying the following setting for db2.jcc.override.traceDirectory

enables tracing of the IBM Data Server Driver for JDBC and SQLJ Java code to

files in a directory named /SYSTEM/tmp:

db2.jcc.override.traceDirectory=/SYSTEM/tmp

You should set the trace properties under the direction of IBM Software

Support.

db2.jcc.traceLevel or db2.jcc.override.traceLevel

Specifies what to trace.

 The db2.jcc.override.traceLevel property overrides the traceLevel property for

a Connection or DataSource object.

You specify one or more trace levels by specifying a decimal value. The trace

levels are the same as the trace levels that are defined for the traceLevel

property on a Connection or DataSource object.

To specify more than one trace level, do an OR (|) operation on the values,

and specify the result in decimal in the db2.jcc.traceLevel or

db2.jcc.override.traceLevel specification.

For example, suppose that you want to specify TRACE_DRDA_FLOWS and

TRACE_CONNECTIONS for db2.jcc.override.traceLevel.

TRACE_DRDA_FLOWS has a hexadecimal value of X’40’.

TRACE_CONNECTION_CALLS has a hexadecimal value of X’01’. To specify

both traces, do a bitwise OR operation on the two values, which results in

X’41’. The decimal equivalent is 65, so you specify:

db2.jcc.override.traceLevel=65

db2.jcc.ssid

Specifies the DB2 for z/OS subsystem to which applications make connections

with IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2

for z/OS.

 The db2.jcc.ssid value can be the name of the local DB2 subsystem or a group

attachment name.

For example:

db2.jcc.ssid=DB2A

The ssid Connection and DataSource property overrides db2.jcc.ssid.

If you specify a group attachment name, and the DB2 subsystem to which an

application is connected fails, the connection terminates. However, when new

304 Developing Java Applications

connections use that group attachment name, DB2 for z/OS uses group

attachment processing to find an active DB2 subsystem to which to connect.

If you do not specify the db2.jcc.ssid property, the IBM Data Server Driver for

JDBC and SQLJ uses the SSID value from the DSNHDECP data-only load

module. When you install DB2 for z/OS, a DSNHDECP module is created in

the prefix.SDSNEXIT data set and the prefix.SDSNLOAD data set. Other

DSNHDECP load modules might be created in other data sets for selected

applications.

The IBM Data Server Driver for JDBC and SQLJ must load a DSNHDECP

module before it can read the SSID value. z/OS searches data sets in the

following places, and in the following order, for the DSNHDECP module:

1. Job pack area (JPA)

2. TASKLIB

3. STEPLIB or JOBLIB

4. LPA

5. Libraries in the link list

You need to ensure that if your system has more than one copy of the

DSNHDECP module, z/OS finds the data set that contains the correct copy for

the IBM Data Server Driver for JDBC and SQLJ first.

This configuration property applies only to DB2 for z/OS.

db2.jcc.traceFile or db2.jcc.override.traceFile

Enables the IBM Data Server Driver for JDBC and SQLJ trace for Java driver

code, and specifies the name on which the trace file names are based.

 Specify a fully qualified z/OS UNIX System Services file name for the

db2.jcc.override.traceFile property value.

The db2.jcc.override.traceFile property overrides the traceFile property for a

Connection or DataSource object.

For example, specifying the following setting for db2.jcc.override.traceFile

enables tracing of the IBM Data Server Driver for JDBC and SQLJ Java code to

a file named /SYSTEM/tmp/jdbctrace:

db2.jcc.override.traceFile=/SYSTEM/tmp/jdbctrace

You should set the trace properties under the direction of IBM Software

Support.

db2.jcc.traceFileAppend or db2.jcc.override.traceFileAppend

Specifies whether to append to or overwrite the file that is specified by the

db2.jcc.override.traceFile property. Valid values are true or false. The default

is false, which means that the file that is specified by the traceFile property is

overwritten.

 The db2.jcc.override.traceFileAppend property overrides the traceFileAppend

property for a Connection or DataSource object.

For example, specifying the following setting for

db2.jcc.override.traceFileAppend causes trace data to be added to the existing

trace file:

db2.jcc.override.traceFileAppend=true

You should set the trace properties under the direction of IBM Software

Support.

db2.jcc.tracePolling

Indicates whether the IBM Data Server Driver for JDBC and SQLJ polls the

global configuration file for changes in trace directives and modifies the trace

Chapter 12. JDBC and SQLJ reference information 305

behavior to match the new trace directives. The driver modifies the trace

behavior at the beginning of the next polling interval after the configuration

properties file is changed. Possible values are true or false. False is the default.

For trace polling to be enabled, the db2.jcc.tracePolling property must be

enabled before the driver is loaded and initialized.

 db2.jcc.tracePolling polls the following global configuration properties:

v db2.jcc.override.traceLevel

v db2.jcc.override.traceFile

v db2.jcc.override.traceDirectory

v db2.jcc.override.traceFileAppend

db2.jcc.tracePollingInterval

Specifies the interval, in seconds, for polling the IBM Data Server Driver for

JDBC and SQLJ global configuration file for changes in trace directives. The

property value is a positive integer. The default is 60. For the specified trace

polling interval to be used, the db2.jcc.tracePollingInterval property must be

set before the driver is loaded and initialized. Changes to

db2.jcc.tracePollingInterval after the driver is loaded and initialized have no

effect.

db2.jcc.t2zosTraceFile

Enables the IBM Data Server Driver for JDBC and SQLJ trace for C/C++ native

driver code for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity,

and specifies the name on which the trace file names are based. This property

is required for collecting trace data for C/C++ native driver code.

 Specify a fully qualified z/OS UNIX System Services file name for the

db2.jcct.t2zosTraceFile property value.

For example, specifying the following setting for db2.jcct.t2zosTraceFile enables

tracing of the IBM Data Server Driver for JDBC and SQLJ C/C++ native code

to a file named /SYSTEM/tmp/jdbctraceNative:

db2.jcc.t2zosTraceFile=/SYSTEM/tmp/jdbctraceNative

You should set the trace properties under the direction of IBM Software

Support.

This configuration property applies only to DB2 for z/OS.

db2.jcc.t2zosTraceBufferSize

Specifies the size, in kilobytes, of a trace buffer in virtual storage that is used

for tracing the processing that is done by the C/C++ native driver code. This

value is also the maximum amount of C/C++ native driver trace information

that can be collected.

 Specify an integer between 64 (64 KB) and 4096 (4096 KB). The default is 256

(256 KB).

The JDBC driver determines the trace buffer size as shown in the following

table:

 Specified value (n) Trace buffer size (KB)

<64 64

64<=n<128 64

128<=n<256 128

256<=n<512 256

512<=n<1024 512

1024<=n<2048 1024

306 Developing Java Applications

Specified value (n) Trace buffer size (KB)

2048<=n<4096 2048

n>=4096 4096

db2.jcc.t2zosTraceBufferSize is used only if the db2.jcc.t2zosTraceFile property

is set.

Recommendation: To avoid a performance impact, specify a value of 1024 or

less.

For example, to set a trace buffer size of 1024 KB, use this setting:

db2.jcc.t2zosTraceBufferSize=1024

You should set the trace properties under the direction of IBM Software

Support.

This configuration property applies only to DB2 for z/OS.

db2.jcc.t2zosTraceWrap

Enables or disables wrapping of the SQLJ trace. db2.jcc.t2zosTraceWrap can

have one of the following values:

1 Wrap the trace

0 Do not wrap the trace

The default is 1. This parameter is optional. For example:

DB2SQLJ_TRACE_WRAP=0

You should set db2.jcc.t2zosTraceWrap only under the direction of IBM

Software Support.

This configuration property applies only to DB2 for z/OS.

db2.jcc.useCcsid420ShapedConverter

Specifies whether Arabic character data that is in EBCDIC CCSID 420 maps to

Cp420S encoding.

 db2.jcc.useCcsid420ShapedConverter applies only to connections to DB2 for

z/OS database servers.

If the value of db2.jcc.useCcsid420ShapedConverter is true, CCSID 420 maps

to Cp420S encoding. If the value of db2.jcc.useCcsid420ShapedConverter is

false, CCSID 420 maps to Cp420 encoding. false is the default.

This configuration property applies only to DB2 for z/OS.

Driver support for JDBC APIs

The JDBC drivers that are supported by DB2 and IBM Informix Dynamic Server

(IDS) database systems have different levels of support for JDBC methods.

The following tables list the JDBC interfaces and indicate which drivers supports

them. The drivers and their supported platforms are:

Chapter 12. JDBC and SQLJ reference information 307

Table 48. JDBC drivers for DB2 and IDS database systems

JDBC driver name Associated data source

IBM Data Server Driver for JDBC and SQLJ DB2 Database for Linux, UNIX, and

Windows, DB2 for z/OS, or IBM Informix

Dynamic Server (IDS)

DB2 JDBC Type 2 Driver for Linux, UNIX

and Windows (deprecated)

DB2 Database for Linux, UNIX, and

Windows

IBM Informix JDBC Driver (IDS JDBC

Driver)

IDS

If a method has JDBC 2.0 and JDBC 3.0 forms, the IBM Data Server Driver for

JDBC and SQLJ supports all forms. The DB2 JDBC Type 2 Driver for Linux, UNIX

and Windows supports only the JDBC 2.0 forms.

 Table 49. Support for Array methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ1 support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

free2 Yes No No

getArray Yes No Yes

getBaseType Yes No Yes

getBaseTypeName Yes No Yes

getResultSet Yes No Yes

Notes:

1. Under the IBM Data Server Driver for JDBC and SQLJ, Array methods are supported for connections to DB2

Database for Linux, UNIX, and Windows data sources only.

2. This is a JDBC 4.0 method.

 Table 50. Support for BatchUpdateException methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Methods inherited from

java.lang.Exception

Yes Yes Yes

getUpdateCounts Yes Yes Yes

 Table 51. Support for Blob methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

free1 Yes No No

getBinaryStream Yes2 Yes Yes

getBytes Yes Yes Yes

length Yes Yes Yes

position Yes Yes Yes

setBinaryStream3 Yes No No

setBytes3 Yes No No

truncate3 Yes No No

308 Developing Java Applications

Table 51. Support for Blob methods (continued)

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Notes:

1. This is a JDBC 4.0 method.

2. Supported forms of this method include the following JDBC 4.0 form:

getBinaryStream(long pos, long length)

3. For versions of the IBM Data Server Driver for JDBC and SQLJ before version 3.50, these methods cannot be used

if a Blob is passed to a stored procedure as an IN or INOUT parameter, and the methods are used on the Blob in

the stored procedure.

 Table 52. Support for CallableStatement methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Methods inherited from

java.sql.Statement

Yes Yes Yes

Methods inherited from

java.sql.PreparedStatement

Yes1 Yes Yes

getArray No No No

getBigDecimal Yes3 Yes Yes

getBlob Yes3 Yes Yes

getBoolean Yes3 Yes Yes

getByte Yes3 Yes Yes

getBytes Yes3 Yes Yes

getClob Yes3 Yes Yes

getDate Yes3,4 Yes4 Yes

getDouble Yes3 Yes Yes

getFloat Yes3 Yes Yes

getInt Yes3 Yes Yes

getLong Yes3 Yes Yes

getObject Yes3,5 Yes5 Yes

getRef No No No

getRowId2 Yes No No

getShort Yes3 Yes Yes

getString Yes3 Yes Yes

getTime Yes3,4 Yes4 Yes

getTimestamp Yes3,4 Yes4 Yes

getURL Yes No No

registerOutParameter Yes6 Yes6 Yes6

setAsciiStream Yes7 No Yes

setBigDecimal Yes7 No Yes

setBinaryStream Yes7 No Yes

setBoolean Yes7 No Yes

Chapter 12. JDBC and SQLJ reference information 309

Table 52. Support for CallableStatement methods (continued)

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

setByte Yes7 No Yes

setBytes Yes7 No Yes

setCharacterStream Yes7 No Yes

setDate Yes7 No Yes

setDouble Yes7 No Yes

setFloat Yes7 No Yes

setInt Yes7 No Yes

setLong Yes7 No Yes

setNull Yes7,,8 No Yes

setObject Yes7, No Yes

setShort Yes7 No Yes

setString Yes7 No Yes

setTime Yes7 No Yes

setTimestamp Yes7 No Yes

setURL Yes No No

wasNull Yes Yes Yes

Notes:

1. The inherited getParameterMetaData method is not supported if the data source is DB2 for z/OS.

2. This is a JDBC 4.0 method.

3. The following forms of CallableStatement.getXXX methods are not supported if the data source is DB2 for z/OS:

getXXX(String parameterName)

4. The database server does no timezone adjustment for datetime values. The JDBC driver adjusts a value for the

local timezone after retrieving the value from the server if you specify a form of the getDate, getTime, or

getTimestamp method that includes a java.util.Calendar parameter.

5. The following form of the getObject method is not supported:

getObject(int parameterIndex, java.util.Map map)

6. The following form of the registerOutParameter method is not supported:

registerOutParameter(int parameterIndex, int jdbcType, String typeName)

7. The following forms of CallableStatement.setXXX methods are not supported if the data source is DB2 for z/OS:

setXXX(String parameterName,...)

8. The following form of setNull is not supported:

setNull(int parameterIndex, int jdbcType, String typeName)

 Table 53. Support for Clob methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

free1 Yes No No

getAsciiStream Yes Yes Yes

getCharacterStream Yes2 on page 311 Yes Yes

310 Developing Java Applications

Table 53. Support for Clob methods (continued)

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

getSubString Yes Yes Yes

length Yes Yes Yes

position Yes Yes Yes

setAsciiStream
3

Yes No Yes

setCharacterStream3 Yes No Yes

setString3 Yes No Yes

truncate3 Yes No Yes

Notes:

1. This is a JDBC 4.0 method.

2. Supported forms of this method include the following JDBC 4.0 form:

getCharacterStream(long pos, long length)

3. For versions of the IBM Data Server Driver for JDBC and SQLJ before version 3.50, these methods cannot be used

if a Clob is passed to a stored procedure as an IN or INOUT parameter, and the methods are used on the Clob in

the stored procedure.

 Table 54. Support for Connection methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

clearWarnings Yes Yes Yes

close Yes Yes Yes

commit Yes Yes Yes

createStatement Yes Yes2 Yes

createBlob1 Yes No No

createClob1 Yes No No

getAutoCommit Yes Yes Yes

getCatalog Yes Yes Yes

getClientInfo3 Yes No No

getHoldability Yes No No

getMetaData Yes Yes Yes

getTransactionIsolation Yes Yes Yes

getTypeMap No No Yes

getWarnings Yes Yes Yes

isClosed Yes Yes Yes

isReadOnly Yes Yes Yes

isValid3,4 Yes No No

nativeSQL Yes Yes Yes

prepareCall Yes5 Yes Yes

prepareStatement Yes Yes2 Yes

releaseSavepoint Yes No No

Chapter 12. JDBC and SQLJ reference information 311

Table 54. Support for Connection methods (continued)

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

rollback Yes Yes2 Yes

setAutoCommit Yes Yes Yes

setCatalog Yes Yes No

setClientInfo3 Yes No No

setReadOnly Yes6 Yes No

setSavepoint Yes No No

setTransactionIsolation Yes Yes Yes

setTypeMap No No Yes

Notes:

1. This is a JDBC 4.0 method.

2. The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows does not support the JDBC 3.0 forms of this method.

3. This is a JDBC 4.0 method.

4. Under IBM Data Server Driver for JDBC and SQLJ type 4 connectivity, an SQLException is thrown if the timeout

parameter value is less than 0. Under IBM Data Server Driver for JDBC and SQLJ type 2 connectivity, an

SQLException is thrown if the if the timeout parameter value is not 0.

5. If the stored procedure in the CALL statement is on DB2 for z/OS, the parameters of the CALL statement cannot

be expressions.

6. The driver does not use the setting. For the IBM Data Server Driver for JDBC and SQLJ, a connection can be set

as read-only through the readOnly property for a Connection or DataSource object.

 Table 55. Support for ConnectionEvent methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Methods inherited from

java.util.EventObject

Yes Yes Yes

getSQLException Yes Yes Yes

 Table 56. Support for ConnectionEventListener methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

connectionClosed Yes Yes Yes

connectionErrorOccurred Yes Yes Yes

 Table 57. Support for ConnectionPoolDataSource methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

getLoginTimeout Yes Yes Yes

getLogWriter Yes Yes Yes

getPooledConnection Yes Yes Yes

setLoginTimeout Yes1 Yes Yes

312 Developing Java Applications

Table 57. Support for ConnectionPoolDataSource methods (continued)

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

setLogWriter Yes Yes Yes

Note:

1. This method is not supported for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for

z/OS.

 Table 58. Support for DatabaseMetaData methods

JDBC method

IBM Data

Server Driver

for JDBC and

SQLJ support

DB2 JDBC

Type 2 Driver

for Linux,

UNIX and

Windows

support

IDS JDBC

Driver support

allProceduresAreCallable Yes Yes Yes

allTablesAreSelectable Yes1 Yes Yes1

dataDefinitionCausesTransactionCommit Yes Yes Yes

dataDefinitionIgnoredInTransactions Yes Yes Yes

deletesAreDetected Yes Yes Yes

doesMaxRowSizeIncludeBlobs Yes Yes Yes

getAttributes Yes2 No No

getBestRowIdentifier Yes Yes Yes

getCatalogs Yes Yes Yes

getCatalogSeparator Yes Yes Yes

getCatalogTerm Yes Yes Yes

getClientInfoProperties6 Yes No No

getColumnPrivileges Yes Yes Yes

getColumns Yes7 Yes10 Yes10

getConnection Yes Yes Yes

getCrossReference Yes Yes Yes

getDatabaseMajorVersion Yes No No

getDatabaseMinorVersion Yes No No

getDatabaseProductName Yes Yes Yes

getDatabaseProductVersion Yes Yes Yes

getDefaultTransactionIsolation Yes Yes Yes

getDriverMajorVersion Yes Yes Yes

getDriverMinorVersion Yes Yes Yes

getDriverName Yes8 Yes Yes

getDriverVersion Yes Yes Yes

getExportedKeys Yes Yes Yes

getFunctionColumns6 Yes No No

getFunctions6 Yes No No

getExtraNameCharacters Yes Yes Yes

Chapter 12. JDBC and SQLJ reference information 313

Table 58. Support for DatabaseMetaData methods (continued)

JDBC method

IBM Data

Server Driver

for JDBC and

SQLJ support

DB2 JDBC

Type 2 Driver

for Linux,

UNIX and

Windows

support

IDS JDBC

Driver support

getIdentifierQuoteString Yes Yes Yes

getImportedKeys Yes Yes Yes

getIndexInfo Yes Yes Yes

getJDBCMajorVersion Yes No No

getJDBCMinorVersion Yes No No

getMaxBinaryLiteralLength Yes Yes Yes

getMaxCatalogNameLength Yes Yes Yes

getMaxCharLiteralLength Yes Yes Yes

getMaxColumnNameLength Yes Yes Yes

getMaxColumnsInGroupBy Yes Yes Yes

getMaxColumnsInIndex Yes Yes Yes

getMaxColumnsInOrderBy Yes Yes Yes

getMaxColumnsInSelect Yes Yes Yes

getMaxColumnsInTable Yes Yes Yes

getMaxConnections Yes Yes Yes

getMaxCursorNameLength Yes Yes Yes

getMaxIndexLength Yes Yes Yes

getMaxProcedureNameLength Yes Yes Yes

getMaxRowSize Yes Yes Yes

getMaxSchemaNameLength Yes Yes Yes

getMaxStatementLength Yes Yes Yes

getMaxStatements Yes Yes Yes

getMaxTableNameLength Yes Yes Yes

getMaxTablesInSelect Yes Yes Yes

getMaxUserNameLength Yes Yes Yes

getNumericFunctions Yes Yes Yes

getPrimaryKeys Yes Yes Yes

getProcedureColumns Yes7 on page

318

Yes Yes

getProcedures Yes7 on page

318

Yes Yes

getProcedureTerm Yes Yes Yes

getResultSetHoldability Yes No No

getRowIdLifetime6 Yes No No

getSchemas Yes9 on page

318

Yes10 Yes10

getSchemaTerm Yes Yes Yes

314 Developing Java Applications

Table 58. Support for DatabaseMetaData methods (continued)

JDBC method

IBM Data

Server Driver

for JDBC and

SQLJ support

DB2 JDBC

Type 2 Driver

for Linux,

UNIX and

Windows

support

IDS JDBC

Driver support

getSearchStringEscape Yes Yes Yes

getSQLKeywords Yes Yes Yes

getSQLStateType Yes No No

getStringFunctions Yes Yes Yes

getSuperTables Yes2 No No

getSuperTypes Yes2 No No

getSystemFunctions Yes Yes Yes

getTablePrivileges Yes Yes Yes

getTables Yes Yes10 Yes10

getTableTypes Yes Yes Yes

getTimeDateFunctions Yes Yes Yes

getTypeInfo Yes Yes Yes

getUDTs No Yes11 Yes11

getURL Yes Yes Yes

getUserName Yes Yes Yes

getVersionColumns Yes Yes Yes

insertsAreDetected Yes Yes Yes

isCatalogAtStart Yes Yes Yes

isReadOnly Yes Yes Yes

locatorsUpdateCopy Yes3 Yes Yes3

nullPlusNonNullIsNull Yes Yes Yes

nullsAreSortedAtEnd Yes4 Yes Yes4

nullsAreSortedAtStart Yes Yes Yes

nullsAreSortedHigh Yes5 Yes Yes5

nullsAreSortedLow Yes1 Yes Yes1

othersDeletesAreVisible Yes Yes Yes

othersInsertsAreVisible Yes Yes Yes

othersUpdatesAreVisible Yes Yes Yes

ownDeletesAreVisible Yes Yes Yes

ownInsertsAreVisible Yes Yes Yes

ownUpdatesAreVisible Yes Yes Yes

storesLowerCaseIdentifiers Yes1 Yes Yes1

storesLowerCaseQuotedIdentifiers Yes4 Yes Yes4

storesMixedCaseIdentifiers Yes Yes Yes

storesMixedCaseQuotedIdentifiers Yes Yes Yes

storesUpperCaseIdentifiers Yes5 Yes Yes5

Chapter 12. JDBC and SQLJ reference information 315

Table 58. Support for DatabaseMetaData methods (continued)

JDBC method

IBM Data

Server Driver

for JDBC and

SQLJ support

DB2 JDBC

Type 2 Driver

for Linux,

UNIX and

Windows

support

IDS JDBC

Driver support

storesUpperCaseQuotedIdentifiers Yes Yes Yes

supportsAlterTableWithAddColumn Yes Yes Yes

supportsAlterTableWithDropColumn Yes1 Yes Yes1

supportsANSI92EntryLevelSQL Yes Yes Yes

supportsANSI92FullSQL Yes Yes Yes

supportsANSI92IntermediateSQL Yes Yes Yes

supportsBatchUpdates Yes Yes Yes

supportsCatalogsInDataManipulation Yes1 Yes Yes1

supportsCatalogsInIndexDefinitions Yes Yes Yes

supportsCatalogsInPrivilegeDefinitions Yes Yes Yes

supportsCatalogsInProcedureCalls Yes1 Yes Yes1

supportsCatalogsInTableDefinitions Yes Yes Yes

SupportsColumnAliasing Yes Yes Yes

supportsConvert Yes Yes Yes

supportsCoreSQLGrammar Yes Yes Yes

supportsCorrelatedSubqueries Yes Yes Yes

supportsDataDefinitionAndDataManipulationTransactions Yes Yes Yes

supportsDataManipulationTransactionsOnly Yes Yes Yes

supportsDifferentTableCorrelationNames Yes4 Yes Yes4

supportsExpressionsInOrderBy Yes Yes Yes

supportsExtendedSQLGrammar Yes Yes Yes

supportsFullOuterJoins Yes3 Yes Yes3

supportsGetGeneratedKeys Yes No No

supportsGroupBy Yes Yes Yes

supportsGroupByBeyondSelect Yes Yes Yes

supportsGroupByUnrelated Yes Yes Yes

supportsIntegrityEnhancementFacility Yes Yes Yes

supportsLikeEscapeClause Yes Yes Yes

supportsLimitedOuterJoins Yes Yes Yes

supportsMinimumSQLGrammar Yes Yes Yes

supportsMixedCaseIdentifiers Yes Yes Yes

supportsMixedCaseQuotedIdentifiers Yes3 Yes Yes3

supportsMultipleOpenResults Yes5 No Yes5

supportsMultipleResultSets Yes5 Yes Yes5

supportsMultipleTransactions Yes Yes Yes

supportsNamedParameters Yes No No

316 Developing Java Applications

Table 58. Support for DatabaseMetaData methods (continued)

JDBC method

IBM Data

Server Driver

for JDBC and

SQLJ support

DB2 JDBC

Type 2 Driver

for Linux,

UNIX and

Windows

support

IDS JDBC

Driver support

supportsNonNullableColumns Yes Yes Yes

supportsOpenCursorsAcrossCommit Yes3 Yes Yes3

supportsOpenCursorsAcrossRollback Yes Yes Yes

supportsOpenStatementsAcrossCommit Yes3 Yes Yes3

supportsOpenStatementsAcrossRollback Yes3 Yes Yes3

supportsOrderByUnrelated Yes Yes Yes

supportsOuterJoins Yes Yes Yes

supportsPositionedDelete Yes Yes Yes

supportsPositionedUpdate Yes Yes Yes

supportsResultSetConcurrency Yes Yes Yes

supportsResultSetHoldability Yes No No

supportsResultSetType Yes Yes Yes

supportsSavepoints Yes No Yes

supportsSchemasInDataManipulation Yes Yes Yes

supportsSchemasInIndexDefinitions Yes Yes Yes

supportsSchemasInPrivilegeDefinitions Yes Yes Yes

supportsSchemasInProcedureCalls Yes Yes Yes

supportsSchemasInTableDefinitions Yes Yes Yes

supportsSelectForUpdate Yes Yes Yes

supportsStoredProcedures Yes Yes Yes

supportsSubqueriesInComparisons Yes Yes Yes

supportsSubqueriesInExists Yes Yes Yes

supportsSubqueriesInIns Yes Yes Yes

supportsSubqueriesInQuantifieds Yes Yes Yes

supportsSuperTables Yes No No

supportsSuperTypes Yes No No

supportsTableCorrelationNames Yes Yes Yes

supportsTransactionIsolationLevel Yes Yes Yes

supportsTransactions Yes Yes Yes

supportsUnion Yes Yes Yes

supportsUnionAll Yes Yes Yes

updatesAreDetected Yes Yes Yes

usesLocalFilePerTable Yes Yes Yes

usesLocalFiles Yes Yes Yes

Chapter 12. JDBC and SQLJ reference information 317

Table 58. Support for DatabaseMetaData methods (continued)

JDBC method

IBM Data

Server Driver

for JDBC and

SQLJ support

DB2 JDBC

Type 2 Driver

for Linux,

UNIX and

Windows

support

IDS JDBC

Driver support

Notes:

 1. DB2 data sources return false for this method. IDS data sources return true.

 2. This method is supported for connections to DB2 Database for Linux, UNIX, and Windows and IDS only.

 3. Under the IBM Data Server Driver for JDBC and SQLJ, DB2 data sources and IDS data sources return true for

this method. Under the IDS JDBC Driver, IDS data sources return false.

 4. Under the IBM Data Server Driver for JDBC and SQLJ, DB2 data sources and IDS data sources return false for

this method. Under the IDS JDBC Driver, IDS data sources return true.

 5. DB2 data sources return true for this method. IDS data sources return false.

 6. This is a JDBC 4.0 method.

 7. This method returns the additional column that is described by the JDBC 4.0 specification.

 8. JDBC 3.0 and earlier implementations of the IBM Data Server Driver for JDBC and SQLJ return ″IBM DB2 JDBC

Universal Driver Architecture.″

The JDBC 4.0 implementation of the IBM Data Server Driver for JDBC and SQLJ returns ″ IBM Data Server

Driver for JDBC and SQLJ.″

 9. The JDBC 4.0 form and previous forms of this method are supported.

10. The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows does not support the JDBC 3.0 form of this

method.

11. The method can be executed, but it returns an empty ResultSet.

 Table 59. Support for DataSource methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

getConnection Yes Yes Yes

getLoginTimeout Yes Yes1 Yes

getLogWriter Yes Yes Yes

setLoginTimeout Yes2 Yes1 Yes

setLogWriter Yes Yes Yes

Notes:

1. The DB2 JDBC Type 2 Driver does not use this setting.

2. This method is not supported for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for

z/OS.

 Table 60. Support for DataTruncation methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Methods inherited from

java.lang.Throwable

Yes Yes Yes

Methods inherited from

java.sql.SQLException

Yes Yes Yes

Methods inherited from

java.sql.SQLWarning

Yes Yes Yes

318 Developing Java Applications

Table 60. Support for DataTruncation methods (continued)

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

getDataSize Yes Yes Yes

getIndex Yes Yes Yes

getParameter Yes Yes Yes

getRead Yes Yes Yes

getTransferSize Yes Yes Yes

 Table 61. Support for Driver methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

acceptsURL Yes Yes Yes

connect Yes Yes Yes

getMajorVersion Yes Yes Yes

getMinorVersion Yes Yes Yes

getPropertyInfo Yes Yes Yes

jdbcCompliant Yes Yes Yes

 Table 62. Support for DriverManager methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

deregisterDriver Yes Yes Yes

getConnection Yes Yes Yes

getDriver Yes Yes Yes

getDrivers Yes Yes Yes

getLoginTimeout Yes Yes1 Yes1

getLogStream Yes Yes Yes

getLogWriter Yes Yes Yes

println Yes Yes Yes

registerDriver Yes Yes Yes

setLoginTimeout Yes2 Yes1 Yes1

setLogStream Yes Yes Yes

setLogWriter Yes Yes Yes

Notes:

1. The DB2 JDBC Type 2 Driver does not use this setting.

2. This method is not supported for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for

z/OS.

Chapter 12. JDBC and SQLJ reference information 319

Table 63. Support for ParameterMetaData methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

getParameterClassName No No No

getParameterCount Yes No No

getParameterMode Yes No No

getParameterType Yes No No

getParameterTypeName Yes No No

getPrecision Yes No No

getScale Yes No No

isNullable Yes No No

isSigned Yes No No

 Table 64. Support for PooledConnection methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

addConnectionEventListener Yes Yes Yes

addStatementEventListener1 Yes No No

close Yes Yes Yes

getConnection Yes Yes Yes

removeConnectionEventListener Yes Yes Yes

removeStatementEventListener1 Yes No No

Notes:

1. This is a JDBC 4.0 method.

 Table 65. Support for PreparedStatement methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Methods inherited from

java.sql.Statement

Yes Yes Yes

addBatch Yes Yes Yes

clearParameters Yes Yes Yes

execute Yes Yes Yes

executeQuery Yes Yes Yes

executeUpdate Yes Yes Yes

getMetaData Yes Yes Yes

getParameterMetaData Yes Yes Yes

setArray No No No

setAsciiStream Yes1,2 Yes Yes

setBigDecimal Yes Yes Yes

setBinaryStream Yes1,3 Yes Yes

320 Developing Java Applications

Table 65. Support for PreparedStatement methods (continued)

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

setBlob Yes4 Yes Yes

setBoolean Yes Yes Yes

setByte Yes Yes Yes

setBytes Yes Yes Yes

setCharacterStream Yes1,5 Yes Yes

setClob Yes6 Yes Yes

setDate Yes8 Yes8 Yes8

setDouble Yes Yes Yes

setFloat Yes Yes Yes

setInt Yes Yes Yes

setLong Yes Yes Yes

setNull Yes9 Yes9 Yes9

setObject Yes Yes Yes

setRef No No No

setRowId7 Yes No No

setShort Yes Yes Yes

setString Yes10 Yes10 Yes10

setTime Yes8 Yes8 Yes8

setTimestamp Yes8 Yes8 Yes8

setUnicodeStream Yes Yes Yes

setURL Yes Yes Yes

Chapter 12. JDBC and SQLJ reference information 321

Table 65. Support for PreparedStatement methods (continued)

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Notes:

 1. If the value of the length parameter is -1, all of the data from the InputStream or Reader is read and sent to the

data source.

 2. Supported forms of this method include the following JDBC 4.0 forms:

setAsciiStream(int parameterIndex, InputStream x, long length)

setAsciiStream(int parameterIndex, InputStream x)

 3. Supported forms of this method include the following JDBC 4.0 forms:

setBinaryStream(int parameterIndex, InputStream x, long length)

setBinaryStream(int parameterIndex, InputStream x)

 4. Supported forms of this method include the following JDBC 4.0 form:

setBlob(int parameterIndex, InputStream inputStream, long length)

 5. Supported forms of this method include the following JDBC 4.0 forms:

setCharacterStream(int parameterIndex, Reader reader, long length)

setCharacterStream(int parameterIndex, Reader reader)

 6. Supported forms of this method include the following JDBC 4.0 form:

setClob(int parameterIndex, Reader reader, long length)

 7. This is a JDBC 4.0 method.

 8. The database server does no timezone adjustment for datetime values. The JDBC driver adjusts a value for the

local timezone before sending the value to the server if you specify a form of the setDate, setTime, or

setTimestamp method that includes a java.util.Calendar parameter.

 9. The following form of setNull is not supported:

setNull(int parameterIndex, int jdbcType, String typeName)

10. setString is not supported if the column has the FOR BIT DATA attribute or the data type is BLOB.

 Table 66. Support for Ref methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

get BaseTypeName No No No

 Table 67. Support for ResultSet methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

absolute Yes Yes Yes

afterLast Yes Yes Yes

beforeFirst Yes Yes Yes

cancelRowUpdates Yes No No

clearWarnings Yes Yes Yes

close Yes Yes Yes

deleteRow Yes No No

findColumn Yes Yes Yes

first Yes Yes Yes

getArray No No No

322 Developing Java Applications

Table 67. Support for ResultSet methods (continued)

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

getAsciiStream Yes Yes Yes

getBigDecimal Yes Yes Yes

getBinaryStream Yes1 Yes Yes

getBlob Yes Yes Yes

getBoolean Yes Yes Yes

getByte Yes Yes Yes

getBytes Yes Yes Yes

getCharacterStream Yes Yes Yes

getClob Yes Yes Yes

getConcurrency Yes Yes Yes

getCursorName Yes Yes Yes

getDate Yes3 Yes3 Yes3

getDouble Yes Yes Yes

getFetchDirection Yes Yes Yes

getFetchSize Yes Yes Yes

getFloat Yes Yes Yes

getInt Yes Yes Yes

getLong Yes Yes Yes

getMetaData Yes Yes Yes

getObject Yes4 Yes4 Yes4

getRef No No No

getRow Yes Yes Yes

getRowId10 Yes No No

getShort Yes Yes Yes

getStatement Yes Yes Yes

getString Yes Yes Yes

getTime Yes3 Yes3 Yes3

getTimestamp Yes3 Yes3 Yes3

getType Yes Yes Yes

getUnicodeStream Yes Yes Yes

getURL Yes Yes Yes

getWarnings Yes Yes Yes

insertRow Yes No No

isAfterLast Yes Yes Yes

isBeforeFirst Yes Yes Yes

isFirst Yes Yes Yes

isLast Yes Yes Yes

last Yes Yes Yes

Chapter 12. JDBC and SQLJ reference information 323

Table 67. Support for ResultSet methods (continued)

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

moveToCurrentRow Yes No No

moveToInsertRow Yes No No

next Yes Yes Yes

previous Yes Yes Yes

refreshRow Yes No No

relative Yes Yes Yes

rowDeleted Yes No No

rowInserted Yes No No

rowUpdated Yes No No

setFetchDirection Yes Yes Yes

setFetchSize Yes Yes Yes

updateArray No No No

updateAsciiStream Yes5 No No

updateBigDecimal Yes No No

updateBinaryStream Yes6 No No

updateBlob Yes7 No No

updateBoolean Yes No No

updateByte Yes No No

updateBytes Yes No No

updateCharacterStream Yes8 No No

updateClob Yes9 No No

updateDate Yes No No

updateDouble Yes No No

updateFloat Yes No No

updateInt Yes No No

updateLong Yes No No

updateNull Yes No No

updateObject Yes No No

updateRef No No No

updateRow Yes No No

updateRowId10 Yes No No

updateShort Yes No No

updateString Yes No No

updateTime Yes No No

updateTimestamp Yes No No

wasNull Yes Yes Yes

324 Developing Java Applications

Table 67. Support for ResultSet methods (continued)

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Notes:

 1. getBinaryStream is not supported for CLOB columns.

 2. getMetaData pads the schema name, if the returned schema name is less than 8 characters, to fill 8 characters.

 3. The database server does no timezone adjustment for datetime values. The JDBC driver adjusts a value for the

local timezone after retrieving the value from the server if you specify a form of the getDate, getTime, or

getTimestamp method that includes a java.util.Calendar parameter.

 4. The following form of the getObject method is not supported:

getObject(int parameterIndex, java.util.Map map)

 5. Supported forms of this method include the following JDBC 4.0 forms:

updateAsciiStream(int columnIndex, InputStream x)

updateAsciiStream(String columnLabel, InputStream x)

updateAsciiStream(int columnIndex, InputStream x, long length)

updateAsciiStream(String columnLabel, InputStream x, long length)

 6. Supported forms of this method include the following JDBC 4.0 forms:

updateBinaryStream(int columnIndex, InputStream x)

updateBinaryStream(String columnLabel, InputStream x)

updateBinaryStream(int columnIndex, InputStream x, long length)

updateBinaryStream(String columnLabel, InputStream x, long length)

 7. Supported forms of this method include the following JDBC 4.0 forms:

updateBlob(int columnIndex, InputStream x)

updateBlob(String columnLabel, InputStream x)

updateBlob(int columnIndex, InputStream x, long length)

updateBlob(String columnLabel, InputStream x, long length)

 8. Supported forms of this method include the following JDBC 4.0 forms:

updateCharacterStream(int columnIndex, Reader reader)

updateCharacterStream(String columnLabel, Reader reader)

updateCharacterStream(int columnIndex, Reader reader, long length)

updateCharacterStream(String columnLabel, Reader reader, long length)

 9. Supported forms of this method include the following JDBC 4.0 forms:

updateClob(int columnIndex, Reader reader)

updateClob(String columnLabel, Reader reader)

updateClob(int columnIndex, Reader reader, long length)

updateClob(String columnLabel, Reader reader, long length)

10. This is a JDBC 4.0 method.

 Table 68. Support for ResultSetMetaData methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

getCatalogName Yes Yes Yes

getColumnClassName No Yes Yes

getColumnCount Yes Yes Yes

getColumnDisplaySize Yes Yes Yes

getColumnLabel Yes Yes Yes

getColumnName Yes Yes Yes

getColumnType Yes Yes Yes

getColumnTypeName Yes Yes Yes

Chapter 12. JDBC and SQLJ reference information 325

Table 68. Support for ResultSetMetaData methods (continued)

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

getPrecision Yes Yes Yes

getScale Yes Yes Yes

getSchemaName Yes Yes Yes

getTableName Yes1 Yes Yes

isAutoIncrement Yes Yes Yes

isCaseSensitive Yes Yes Yes

isCurrency Yes Yes Yes

isDefinitelyWritable Yes Yes Yes

isNullable Yes Yes Yes

isReadOnly Yes Yes Yes

isSearchable Yes Yes Yes

isSigned Yes Yes Yes

isWritable Yes Yes Yes

Notes:

1. For IDS data sources, getTableName does not return a value.

2. getSchemaName pads the schema name, if the returned schema name is less than 8 characters, to fill 8 characters.

 Table 69. Support for RowId methods1

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support2

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

equals Yes No No

getBytes Yes No No

hashCode No No No

toString Yes No No

Notes:

1. These methods are JDBC 4.0 methods.

2. These methods are supported for connections to DB2 for z/OS, DB2 for i, and IDS data sources.

 Table 70. Support for SQLClientInfoException methods1

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Methods inherited from

java.lang.Exception

Yes No No

Methods inherited from

java.lang.Throwable

Yes No No

Methods inherited from

java.lang.Object

Yes No No

getFailedProperties Yes No No

Note:

1. This is a JDBC 4.0 class.

326 Developing Java Applications

Table 71. Support for SQLData methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

getSQLTypeName No No No

readSQL No No No

writeSQL No No No

 Table 72. Support for SQLDataException methods1

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Methods inherited from

java.lang.Exception

Yes No No

Methods inherited from

java.lang.Throwable

Yes No No

Methods inherited from

java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

 Table 73. Support for SQLException methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Methods inherited from

java.lang.Exception

Yes Yes Yes

getSQLState Yes Yes Yes

getErrorCode Yes Yes Yes

getNextException Yes Yes Yes

setNextException Yes Yes Yes

 Table 74. Support for SQLFeatureNotSupported methods1

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Methods inherited from

java.lang.Exception

Yes No No

Methods inherited from

java.lang.Throwable

Yes No No

Methods inherited from

java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

Chapter 12. JDBC and SQLJ reference information 327

Table 75. Support for SQLInput methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

readArray No No No

readAsciiStream No No No

readBigDecimal No No No

readBinaryStream No No No

readBlob No No No

readBoolean No No No

readByte No No No

readBytes No No No

readCharacterStream No No No

readClob No No No

readDate No No No

readDouble No No No

readFloat No No No

readInt No No No

readLong No No No

readObject No No No

readRef No No No

readShort No No No

readString No No No

readTime No No No

readTimestamp No No No

wasNull No No No

 Table 76. Support for SQLIntegrityConstraintViolationException methods1

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Methods inherited from

java.lang.Exception

Yes No No

Methods inherited from

java.lang.Throwable

Yes No No

Methods inherited from

java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

328 Developing Java Applications

Table 77. Support for SQLInvalidAuthorizationSpecException methods1

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Methods inherited from

java.lang.Exception

Yes No No

Methods inherited from

java.lang.Throwable

Yes No No

Methods inherited from

java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

 Table 78. Support for SQLNonTransientConnectionException methods1

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Methods inherited from

java.lang.Exception

Yes No No

Methods inherited from

java.lang.Throwable

Yes No No

Methods inherited from

java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

 Table 79. Support for SQLNonTransientException methods1

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Methods inherited from

java.lang.Exception

Yes No No

Methods inherited from

java.lang.Throwable

Yes No No

Methods inherited from

java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

 Table 80. Support for SQLOutput methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

writeArray No No No

writeAsciiStream No No No

writeBigDecimal No No No

writeBinaryStream No No No

writeBlob No No No

Chapter 12. JDBC and SQLJ reference information 329

Table 80. Support for SQLOutput methods (continued)

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

writeBoolean No No No

writeByte No No No

writeBytes No No No

writeCharacterStream No No No

writeClob No No No

writeDate No No No

writeDouble No No No

writeFloat No No No

writeInt No No No

writeLong No No No

writeObject No No No

writeRef No No No

writeShort No No No

writeString No No No

writeStruct No No No

writeTime No No No

writeTimestamp No No No

 Table 81. Support for SQLRecoverableException methods1

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Methods inherited from

java.lang.Exception

Yes No No

Methods inherited from

java.lang.Throwable

Yes No No

Methods inherited from

java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

 Table 82. Support for SQLSyntaxErrorException methods1

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Methods inherited from

java.lang.Exception

Yes No No

Methods inherited from

java.lang.Throwable

Yes No No

Methods inherited from

java.lang.Object

Yes No No

330 Developing Java Applications

Table 82. Support for SQLSyntaxErrorException methods1 (continued)

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Note:

1. This is a JDBC 4.0 class.

 Table 83. Support for SQLTimeoutException methods1

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Methods inherited from

java.lang.Exception

Yes No No

Methods inherited from

java.lang.Throwable

Yes No No

Methods inherited from

java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

 Table 84. Support for SQLTransientConnectionException methods1

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Methods inherited from

java.lang.Exception

Yes No No

Methods inherited from

java.lang.Throwable

Yes No No

Methods inherited from

java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

 Table 85. Support for SQLTransientException methods1

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Methods inherited from

java.lang.Exception

Yes No No

Methods inherited from

java.lang.Throwable

Yes No No

Methods inherited from

java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

Chapter 12. JDBC and SQLJ reference information 331

Table 86. Support for SQLTransientRollbackException methods1

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Methods inherited from

java.lang.Exception

Yes No No

Methods inherited from

java.lang.Throwable

Yes No No

Methods inherited from

java.lang.Object

Yes No No

Note:

1. This is a JDBC 4.0 class.

 Table 87. Support for SQLXML methods1

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

free Yes No No

getBinaryStream Yes No No

getCharacterStream Yes No No

getSource Yes No No

getString Yes No No

setBinaryStream Yes No No

setCharacterStream Yes No No

setResult Yes No No

setString Yes No No

Notes:

1. These are JDBC 4.0 methods. These methods are not supported for connections to IBM Informix Dynamic Server

servers.

 Table 88. Support for Statement methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

addBatch Yes Yes Yes

cancel Yes1 Yes2 Yes

clearBatch Yes Yes Yes

clearWarnings Yes Yes Yes

close Yes Yes Yes

execute Yes Yes3 Yes3

executeBatch Yes Yes Yes

executeQuery Yes Yes Yes

executeUpdate Yes Yes3 Yes3

getConnection Yes Yes Yes

getFetchDirection Yes Yes Yes

getFetchSize Yes Yes Yes

332 Developing Java Applications

Table 88. Support for Statement methods (continued)

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

getGeneratedKeys Yes No No

getMaxFieldSize Yes Yes Yes

getMaxRows Yes Yes Yes

getMoreResults Yes Yes3 Yes3

getQueryTimeout Yes2 Yes Yes

getResultSet Yes Yes Yes

getResultSetConcurrency Yes Yes Yes

getResultSetHoldability Yes No No

getResultSetType Yes Yes Yes

getUpdateCount4 Yes Yes Yes

getWarnings Yes Yes Yes

isClosed7 Yes No No

isPoolable7 Yes No No

setCursorName Yes Yes Yes

setEscapeProcessing Yes Yes Yes

setFetchDirection Yes Yes Yes

setFetchSize Yes Yes Yes

setMaxFieldSize Yes Yes Yes

setMaxRows Yes Yes Yes

setPoolable7 Yes No No

setQueryTimeout Yes5,6 Yes Yes

Chapter 12. JDBC and SQLJ reference information 333

Table 88. Support for Statement methods (continued)

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Notes:

1. For the IBM Data Server Driver for JDBC and SQLJ, Statement.cancel() is supported only in the following

environments:

v Type 2 and type 4 connectivity from a Linux, UNIX, or Windows client to a DB2 Database for Linux, UNIX,

and Windows server, Version 8 or later

v Type 2 and type 4 connectivity from a Linux, UNIX, or Windows client to a DB2 for z/OS server, Version 9 or

later

v Type 4 connectivity from a z/OS client to a DB2 Database for Linux, UNIX, and Windows server, Version 8 or

later

v Type 4 connectivity from a z/OS client to a DB2 for z/OS server, Version 9 or later

2. For the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows, Statement.cancel() is supported only in the

following environments:

v Connections to a DB2 Database for Linux, UNIX, and Windows server, Version 8 or later

v Connections to a DB2 for z/OS server, Version 9 or later

3. The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows does not support the JDBC 3.0 form of this method.

4. Not supported for stored procedure ResultSets.

5. For DB2 for i and for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS, this

method is supported only for a seconds value of 0.

6. For the IBM Data Server Driver for JDBC and SQLJ Version 4.0 and later, Statement.setQueryTimeout is supported

for the following methods:

v Statement.execute

v Statement.executeUpdate

v Statement.executeQuery

Statement.setQueryTimeout is not supported for the Statement.executeBatch method.

7. This is a JDBC 4.0 method.

 Table 89. Support for Struct methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

getSQLTypeName No No No

getAttributes No No No

 Table 90. Support for Wrapper methods

JDBC method1

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

isWrapperFor Yes No No

unWrap Yes No No

Notes:

1. These are JDBC 4.0 methods.

334 Developing Java Applications

Table 91. Support for javax.sql.XAConnection methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support1

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

Methods inherited from

javax.sql.PooledConnection

Yes Yes Yes

getXAResource Yes Yes Yes

Notes:

1. These methods are supported for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to a DB2

Database for Linux, UNIX, and Windows server or IBM Data Server Driver for JDBC and SQLJ type 4

connectivity.

 Table 92. Support for XADataSource methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

getLoginTimeout Yes Yes Yes

getLogWriter Yes Yes Yes

getXAConnection Yes Yes Yes

setLoginTimeout Yes Yes Yes

setLogWriter Yes Yes Yes

 Table 93. Support for javax.transaction.xa.XAResource methods

JDBC method

IBM Data Server

Driver for JDBC and

SQLJ support

DB2 JDBC Type 2

Driver for Linux, UNIX

and Windows support

IDS JDBC Driver

support

commit Yes1 Yes Yes

end Yes1 Yes Yes

forget Yes1 Yes Yes

getTransactionTimeout Yes2 Yes Yes

isSameRM Yes1 Yes Yes

prepare Yes1 Yes Yes

recover Yes1 Yes Yes

rollback Yes1 Yes Yes

setTransactionTimeout Yes2 Yes Yes

start Yes1 Yes Yes

Notes:

1. This method is supported for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to a DB2 Database

for Linux, UNIX, and Windows server or IBM Data Server Driver for JDBC and SQLJ type 4 connectivity.

2. This method is supported for IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2 Database for

Linux, UNIX, and Windows Version 9.1 or later.

SQLJ statement reference information

SQLJ statements are used for transaction control and SQL statement execution.

Chapter 12. JDBC and SQLJ reference information 335

SQLJ clause

The SQL statements in an SQLJ program are in SQLJ clauses.

Syntax

�� #sql connection-declaration-clause

iterator-declaration-clause

executable-clause

 ; ��

Usage notes

Keywords in an SQLJ clause are case sensitive, unless those keywords are part of

an SQL statement in an executable clause.

SQLJ host-expression

A host expression is a Java variable or expression that is referenced by SQLJ

clauses in an SQLJ application program.

Syntax

�� : simple-variable

IN

(complex-expression)

OUT

INOUT

 ��

Description

: Indicates that the variable or expression that follows is a host expression. The

colon must immediately precede the variable or expression.

IN|OUT|INOUT

For a host expression that is used as a parameter in a stored procedure call,

identifies whether the parameter provides data to the stored procedure (IN),

retrieves data from the stored procedure (OUT), or does both (INOUT). The

default is IN.

simple-variable

Specifies a Java unqualified identifier.

complex-expression

Specifies a Java expression that results in a single value.

Usage notes

v A complex expression must be enclosed in parentheses.

v ANSI/ISO rules govern where a host expression can appear in a static SQL

statement.

SQLJ implements-clause

The implements clause derives one or more classes from a Java interface.

336 Developing Java Applications

Syntax

��

implements

�

 ,

interface-element

��

interface-element:

�� sqlj.runtime.ForUpdate

sqlj.runtime.Scrollable

user-specified-interface-class

 ��

Description

interface-element

Specifies a user-defined Java interface, the SQLJ interface

sqlj.runtime.ForUpdate or the SQLJ interface sqlj.runtime.Scrollable.

 You need to implement sqlj.runtime.ForUpdate when you declare an iterator

for a positioned UPDATE or positioned DELETE operation. See ″Perform

positioned UPDATE and DELETE operations in an SQLJ application″ for

information on performing a positioned UPDATE or positioned DELETE

operation in SQLJ.

You need to implement sqlj.runtime.Scrollable when you declare a scrollable

iterator. See ″Use scrollable iterators in an SQLJ application″ for information on

scrollable iterators.

SQLJ with-clause

The with clause specifies a set of one or more attributes for an iterator or a

connection context.

Syntax

��

with

�

 ,

(

with-element

)

��

with-element:

��

�

 holdability=true

holdability=false

sensitivity=ASENSITIVE

sensitivity=INSENSITIVE

sensitivity=SENSITIVE

dynamic=false

,

dynamic=true

,

updateColumns=

″

column-name

″

Java-ID=Java-constant-expression

dataSource=

″

logical-datasource-name

″

 ��

Chapter 12. JDBC and SQLJ reference information 337

Description

holdability

For an iterator, specifies whether an iterator keeps its position in a table after a

COMMIT is executed. The value for holdability must be true or false.

sensitivity

For an iterator, specifies whether changes that are made to the underlying table

can be visible to the iterator after it is opened. The value must be

INSENSITIVE, SENSITIVE, or ASENSITIVE. The default is ASENSITIVE.

 For connections to IBM Informix Dynamic Server (IDS), only INSENSITIVE is

supported.

dynamic

For an iterator that is defined with sensitivity=SENSITIVE, specifies whether

the following cases are true:

v When the application executes positioned UPDATE and DELETE statements

with the iterator, those changes are visible to the iterator.

v When the application executes INSERT, UPDATE, and DELETE statements

within the application but outside the iterator, those changes are visible to

the iterator.

The value for dynamic must be true or false. The default is false.

 DB2 Database for Linux, UNIX, and Windows servers do not support dynamic

scrollable cursors. Specify true only if your application accesses data on DB2

for z/OS servers, at Version 9 or later.

For connections to IDS, only false is supported. IDS does not support

dynamic cursors.

updateColumns

For an iterator, specifies the columns that are to be modified when the iterator

is used for a positioned UPDATE statement. The value for updateColumns

must be a literal string that contains the column names, separated by commas.

column-name

For an iterator, specifies a column of the result table that is to be updated

using the iterator.

Java-ID

For an iterator or connection context, specifies a Java variable that identifies a

user-defined attribute of the iterator or connection context. The value of

Java-constant-expression is also user-defined.

dataSource

For a connection context, specifies the logical name of a separately-created

DataSource object that represents the data source to which the application will

connect. This option is available only for the IBM Data Server Driver for JDBC

and SQLJ.

Usage notes

v The value on the left side of a with element must be unique within its with

clause.

v If you specify updateColumns in a with element of an iterator declaration

clause, the iterator declaration clause must also contain an implements clause

that specifies the sqlj.runtime.ForUpdate interface.

338 Developing Java Applications

v If you do not customize your SQLJ program, the JDBC driver ignores the value

of holdability that is in the with clause. Instead, the driver uses the JDBC driver

setting for holdability.

SQLJ connection-declaration-clause

The connection declaration clause declares a connection to a data source in an

SQLJ application program.

Syntax

��

Java-modifiers
 context Java-class-name

implements-clause

with-clause
 ��

Description

Java-modifiers

Specifies modifiers that are valid for Java class declarations, such as static,

public, private, or protected.

Java-class-name

Specifies a valid Java identifier. During the program preparation process, SQLJ

generates a connection context class whose name is this identifier.

implements-clause

See ″SQLJ implements-clause″ for a description of this clause. In a connection

declaration clause, the interface class to which the implements clause refers

must be a user-defined interface class.

with-clause

See ″SQLJ with-clause″ for a description of this clause.

Usage notes

v SQLJ generates a connection class declaration for each connection declaration

clause you specify. SQLJ data source connections are objects of those generated

connection classes.

v You can specify a connection declaration clause anywhere that a Java class

definition can appear in a Java program.

SQLJ iterator-declaration-clause

An iterator declaration clause declares a positioned iterator class or a named

iterator class in an SQLJ application program.

An iterator contains the result table from a query. SQLJ generates an iterator class

for each iterator declaration clause you specify. An iterator is an object of an

iterator class.

An iterator declaration clause has a form for a positioned iterator and a form for a

named iterator. The two kinds of iterators are distinct and incompatible Java types

that are implemented with different interfaces.

Syntax

��

Java-modifiers
 iterator Java-class-name

implements-clause

with-clause
 �

Chapter 12. JDBC and SQLJ reference information 339

� (positioned-iterator-column-declarations)

named-iterator-column-declarations
 ��

positioned-iterator-column declarations:

��

�

 ,

Java-data-type

��

named-iterator-column-declarations:

��

�

 ,

Java-data-type

Java-ID

��

Description

Java-modifiers

Any modifiers that are valid for Java class declarations, such as static, public,

private, or protected.

Java-class-name

Any valid Java identifier. During the program preparation process, SQLJ

generates an iterator class whose name is this identifier.

implements-clause

See ″SQLJ implements-clause″ for a description of this clause. For an iterator

declaration clause that declares an iterator for a positioned UPDATE or

positioned DELETE operation, the implements clause must specify interface

sqlj.runtime.ForUpdate. For an iterator declaration clause that declares a

scrollable iterator, the implements clause must specify interface

sqlj.runtime.Scrollable.

with-clause

See ″SQLJ with-clause″ for a description of this clause.

positioned-iterator-column-declarations

Specifies a list of Java data types, which are the data types of the columns in

the positioned iterator. The data types in the list must be separated by

commas. The order of the data types in the positioned iterator declaration is

the same as the order of the columns in the result table. For online checking

during serialized profile customization to succeed, the data types of the

columns in the iterator must be compatible with the data types of the columns

in the result table. See ″Java, JDBC, and SQL data types″ for a list of

compatible data types.

named-iterator-column-declarations

Specifies a list of Java data types and Java identifiers, which are the data types

and names of the columns in the named iterator. Pairs of data types and names

must be separated by commas. The name of a column in the iterator must

match, except for case, the name of a column in the result table. For online

checking during serialized profile customization to succeed, the data types of

the columns in the iterator must be compatible with the data types of the

columns in the result table. See ″Java, JDBC, and SQL data types″ for a list of

compatible data types.

340 Developing Java Applications

Usage notes

v An iterator declaration clause can appear anywhere in a Java program that a

Java class declaration can appear.

v When a named iterator declaration contains more than one pair of Java data

types and Java IDs, all Java IDs within the list must be unique. Two Java IDs are

not unique if they differ only in case.

SQLJ executable-clause

An executable clause contains an SQL statement or an assignment statement. An

assignment statement assigns the result of an SQL operation to a Java variable.

This topic describes the general form of an executable clause.

Syntax

��

context-clause
 statement-clause

assignment-clause
 ��

Usage notes

v An executable clause can appear anywhere in a Java program that a Java

statement can appear.

v SQLJ reports negative SQL codes from executable clauses through class

java.sql.SQLException.

If SQLJ raises a run-time exception during the execution of an executable clause,

the value of any host expression of type OUT or INOUT is undefined.

SQLJ context-clause

A context clause specifies a connection context, an execution context, or both. You

use a connection context to connect to a data source. You use an execution context

to monitor and modify SQL statement execution.

Syntax

�� [connection-context]

execution-context

connection-context

,

execution context

 ��

Description

connection-context

Specifies a valid Java identifier that is declared earlier in the SQLJ program.

That identifier must be declared as an instance of the connection context class

that SQLJ generates for a connection declaration clause.

execution-context

Specifies a valid Java identifier that is declared earlier in the SQLJ program.

That identifier must be declared as an instance of class

sqlj.runtime.ExecutionContext.

Usage notes

v If you do not specify a connection context in an executable clause, SQLJ uses the

default connection context.

Chapter 12. JDBC and SQLJ reference information 341

v If you do not specify an execution context, SQLJ obtains the execution context

from the connection context of the statement.

SQLJ statement-clause

A statement clause contains an SQL statement or a SET TRANSACTION clause.

Syntax

�� { SQL-statement }

SET-TRANSACTION-clause
 ��

Description

SQL-statement

You can include SQL statements in Table 94 in a statement clause.

SET-TRANSACTION-clause

Sets the isolation level for SQL statements in the program and the access mode

for the connection. The SET TRANSACTION clause is equivalent to the SET

TRANSACTION statement, which is described in the ANSI/ISO SQL standard

of 1992 and is supported in some implementations of SQL.

 Table 94. Valid SQL statements in an SQLJ statement clause

Statement Applicable data sources

ALTER DATABASE 1 on page 344, 2 on page 344

ALTER FUNCTION 1 on page 344, 2 on page 344, 3 on page 344

ALTER INDEX 1 on page 344, 2 on page 344, 3 on page 344

ALTER PROCEDURE 1 on page 344, 2 on page 344, 3 on page 344

ALTER STOGROUP 1 on page 344, 2 on page 344

ALTER TABLE 1 on page 344, 2 on page 344, 3 on page 344

ALTER TABLESPACE 1 on page 344, 2 on page 344

CALL 1 on page 344, 2 on page 344, 3 on page 344

COMMENT ON 1 on page 344, 2 on page 344

COMMIT 1 on page 344, 2 on page 344, 3 on page 344

Compound SQL (BEGIN ATOMIC...END) 2 on page 344

CREATE ALIAS 1 on page 344, 2 on page 344

CREATE DATABASE 1 on page 344, 2 on page 344, 3a on page 344

CREATE DISTINCT TYPE 1 on page 344, 2 on page 344, 3 on page 344

CREATE FUNCTION 1 on page 344, 2 on page 344, 3 on page 344

CREATE GLOBAL TEMPORARY TABLE 1 on page 344, 2 on page 344

CREATE TEMP TABLE 3 on page 344

CREATE INDEX 1 on page 344, 2 on page 344, 3 on page 344

CREATE PROCEDURE 1 on page 344, 2 on page 344, 3 on page 344

CREATE STOGROUP 1 on page 344, 2 on page 344

CREATE SYNONYM 1 on page 344, 2 on page 344, 3 on page 344

CREATE TABLE 1 on page 344, 2 on page 344, 3 on page 344

CREATE TABLESPACE 1 on page 344, 2 on page 344

342 Developing Java Applications

Table 94. Valid SQL statements in an SQLJ statement clause (continued)

Statement Applicable data sources

CREATE TYPE (cursor) 2 on page 344

CREATE TRIGGER 1 on page 344, 2 on page 344, 3 on page 344

CREATE VIEW 1 on page 344, 2 on page 344, 3 on page 344

DECLARE GLOBAL TEMPORARY TABLE 1 on page 344, 2 on page 344

DELETE 1 on page 344, 2 on page 344, 3 on page 344

DROP ALIAS 1 on page 344, 2 on page 344

DROP DATABASE 1 on page 344, 2 on page 344, 3a on page 344

DROP DISTINCT TYPE 1 on page 344, 2 on page 344

DROP TYPE 3 on page 344

DROP FUNCTION 1 on page 344, 2 on page 344, 3 on page 344

DROP INDEX 1 on page 344, 2 on page 344, 3 on page 344

DROP PACKAGE 1 on page 344, 2 on page 344

DROP PROCEDURE 1 on page 344, 2 on page 344, 3 on page 344

DROP STOGROUP 1 on page 344, 2 on page 344

DROP SYNONYM 1 on page 344, 2 on page 344, 3 on page 344

DROP TABLE 1 on page 344, 2 on page 344, 3 on page 344

DROP TABLESPACE 1 on page 344, 2 on page 344

DROP TRIGGER 1 on page 344, 2 on page 344, 3 on page 344

DROP VIEW 1 on page 344, 2 on page 344, 3 on page 344

FETCH 1 on page 344, 2 on page 344, 3 on page 344

GRANT 1 on page 344, 2 on page 344, 3 on page 344

INSERT 1 on page 344, 2 on page 344, 3 on page 344

LOCK TABLE 1 on page 344, 2 on page 344, 3 on page 344

MERGE 1 on page 344, 2 on page 344

REVOKE 1 on page 344, 2 on page 344, 3 on page 344

ROLLBACK 1 on page 344, 2 on page 344, 3 on page 344

SAVEPOINT 1 on page 344, 2 on page 344, 3 on page 344

SELECT INTO 1 on page 344, 2 on page 344, 3 on page 344

SET CURRENT APPLICATION ENCODING SCHEME 1 on page 344

SET CURRENT DEBUG MODE 1 on page 344

SET CURRENT DEFAULT TRANSFORM GROUP 2 on page 344

SET CURRENT DEGREE 1 on page 344, 2 on page 344

SET CURRENT EXPLAIN MODE 2 on page 344

SET CURRENT EXPLAIN SNAPSHOT 2 on page 344

SET CURRENT ISOLATION 1 on page 344, 2 on page 344

SET CURRENT LOCALE LC_CTYPE 1 on page 344

SET CURRENT MAINTAINED TABLE TYPES FOR

OPTIMIZATION

1 on page 344, 2 on page 344

SET CURRENT OPTIMIZATION HINT 1 on page 344, 2 on page 344

SET CURRENT PACKAGE PATH 1 on page 344

Chapter 12. JDBC and SQLJ reference information 343

Table 94. Valid SQL statements in an SQLJ statement clause (continued)

Statement Applicable data sources

SET CURRENT PACKAGESET (USER is not supported) 1, 2

SET CURRENT PRECISION 1, 2

SET CURRENT QUERY OPTIMIZATION 2

SET CURRENT REFRESH AGE 1, 2

SET CURRENT ROUTINE VERSION 1

SET CURRENT RULES 1

SET CURRENT SCHEMA 2

SET CURRENT SQLID 1

SET PATH 1, 2

TRUNCATE 1

UPDATE 1, 2, 3

Note: The SQL statement applies to connections to the following data sources:

1. DB2 for z/OS

2. DB2 Database for Linux, UNIX, and Windows

3. IBM Informix Dynamic Server

a. IBM Informix Dynamic Server, for the SYSMASTER database only.

Usage notes

v SQLJ supports both positioned and searched DELETE and UPDATE operations.

v For a FETCH statement, a positioned DELETE statement, or a positioned

UPDATE statement, you must use an iterator to refer to rows in a result table.

SQLJ SET-TRANSACTION-clause

The SET TRANSACTION clause sets the isolation level for the current unit of

work.

Syntax

�� SET TRANSACTION ISOLATION LEVEL READ COMMITTED

READ UNCOMMITTED

REPEATABLE READ

SERIALIZABLE

 ��

Description

ISOLATION LEVEL

Specifies one of the following isolation levels:

READ COMMITTED

Specifies that the current DB2 isolation level is cursor stability.

READ UNCOMMITTED

Specifies that the current DB2 isolation level is uncommitted read.

REPEATABLE READ

Specifies that the current DB2 isolation level is read stability.

SERIALIZABLE

Specifies that the current DB2 isolation level is repeatable read.

344 Developing Java Applications

Usage notes

You can execute SET TRANSACTION only at the beginning of a transaction.

SQLJ assignment-clause

The assignment clause assigns the result of an SQL operation to a Java variable.

Syntax

�� Java-ID = { fullselect }

order-by-clause

optimize-for-clause

isolation-clause

queryno-clause

fetch-first-clause

iterator-conversion-clause

 ��

Description

Java-ID

Identifies an iterator that was declared previously as an instance of an iterator

class.

fullselect

Generates a result table.

iterator-conversion-clause

See ″SQLJ iterator-conversion-clause″ for a description of this clause.

Usage notes

v If the object that is identified by Java-ID is a positioned iterator, the number of

columns in the result set must match the number of columns in the iterator. In

addition, the data type of each column in the result set must be compatible with

the data type of the corresponding column in the iterator. See ″Java, JDBC, and

SQL data types″ for a list of compatible Java and SQL data types.

v If the object that is identified by Java-ID is a named iterator, the name of each

accessor method must match, except for case, the name of a column in the result

set. In addition, the data type of the object that an accessor method returns must

be compatible with the data type of the corresponding column in the result set.

v You can put an assignment clause anywhere in a Java program that a Java

assignment statement can appear. However, you cannot put an assignment

clause where a Java assignment expression can appear. For example, you cannot

specify an assignment clause in the control list of a for statement.

SQLJ iterator-conversion-clause

The iterator conversion clause converts a JDBC ResultSet to an iterator.

Syntax

�� CAST host-expression ��

Description

host-expression

Identifies the JDBC ResultSet that is to be converted to an SQLJ iterator.

Chapter 12. JDBC and SQLJ reference information 345

Usage notes

v If the iterator to which the JDBC ResultSet is to be converted is a positioned

iterator, the number of columns in the ResultSet must match the number of

columns in the iterator. In addition, the data type of each column in the

ResultSet must be compatible with the data type of the corresponding column in

the iterator.

v If the iterator is a named iterator, the name of each accessor method must match,

except for case, the name of a column in the ResultSet. In addition, the data type

of the object that an accessor method returns must be compatible with the data

type of the corresponding column in the ResultSet.

v When an iterator that is generated through the iterator conversion clause is

closed, the ResultSet from which the iterator is generated is also closed.

Interfaces and classes in the sqlj.runtime package

The sqlj.runtime package defines the run-time classes and interfaces that are used

directly or indirectly by the SQLJ programmer.

Classes such as AsciiStream are used directly by the SQLJ programmer. Interfaces

such as ResultSetIterator are implemented as part of generated class declarations.

sqlj.runtime interfaces

The following table summarizes the interfaces in sqlj.runtime.

 Table 95. Summary of sqlj.runtime interfaces

Interface name Purpose

ConnectionContext Manages the SQL operations that are performed during a connection to a data

source.

ForUpdate Implemented by iterators that are used in a positioned UPDATE or DELETE

statement.

NamedIterator Implemented by iterators that are declared as named iterators.

PositionedIterator Implemented by iterators that are declared as positioned iterators.

ResultSetIterator Implemented by all iterators to allow query results to be processed using a JDBC

ResultSet.

Scrollable Provides a set of methods for manipulating scrollable iterators.

sqlj.runtime classes

The following table summarizes the classes in sqlj.runtime.

 Table 96. Summary of sqlj.runtime classes

Class name Purpose

AsciiStream A class for handling an input stream whose bytes should be interpreted as ASCII.

BinaryStream A class for handling an input stream whose bytes should be interpreted as binary.

CharacterStream A class for handling an input stream whose bytes should be interpreted as

Character.

DefaultRuntime Implemented by SQLJ to satisfy the expected runtime behavior of SQLJ for most

JVM environments. This class is for internal use only and is not described in this

documentation.

346 Developing Java Applications

Table 96. Summary of sqlj.runtime classes (continued)

Class name Purpose

ExecutionContext Implemented when an SQLJ execution context is declared, to control the execution

of SQL operations.

RuntimeContext Defines system-specific services that are provided by the runtime environment. This

class is for internal use only and is not described in this documentation.

SQLNullException Derived from the java.sql.SQLException class. An sqlj.runtime.SQLNullException is

thrown when an SQL NULL value is fetched into a host identifier with a Java

primitive type.

StreamWrapper Wraps a java.io.InputStream instance.

UnicodeStream A class for handling an input stream whose bytes should be interpreted as Unicode.

sqlj.runtime.ConnectionContext interface

The sqlj.runtime.ConnectionContext interface provides a set of methods that

manage SQL operations that are performed during a session with a specific data

source.

Translation of an SQLJ connection declaration clause causes SQLJ to create a

connection context class. A connection context object maintains a JDBC Connection

object on which dynamic SQL operations can be performed. A connection context

object also maintains a default ExecutionContext object.

Variables

CLOSE_CONNECTION

Format:

public static final boolean CLOSE_CONNECTION=true;

A constant that can be passed to the close method. It indicates that the

underlying JDBC Connection object should be closed.

KEEP_CONNECTION

Format:

public static final boolean KEEP_CONNECTION=false;

A constant that can be passed to the close method. It indicates that the

underlying JDBC Connection object should not be closed.

Methods

close()

Format:

public abstract void close() throws SQLException

Performs the following functions:

v Releases all resources that are used by the given connection context object

v Closes any open ConnectedProfile objects

v Closes the underlying JDBC Connection object

close() is equivalent to close(CLOSE_CONNECTION).

close(boolean)

Format:

public abstract void close (boolean close-connection)

 throws SQLException

Chapter 12. JDBC and SQLJ reference information 347

Performs the following functions:

v Releases all resources that are used by the given connection context object

v Closes any open ConnectedProfile objects

v Closes the underlying JDBC Connection object, depending on the value of

the close-connection parameter

Parameters:

close-connection

Specifies whether the underlying JDBC Connection object is closed when a

connection context object is closed:

CLOSE_CONNECTION

Closes the underlying JDBC Connection object.

KEEP_CONNECTION

Does not close the underlying JDBC Connection object.

getConnectedProfile

Format:

public abstract ConnectedProfile getConnectedProfile(Object profileKey)

 throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

getConnection

Format:

public abstract Connection getConnection()

Returns the underlying JDBC Connection object for the given connection

context object.

getExecutionContext

Format:

public abstract ExecutionContext getExecutionContect()

Returns the default ExecutionContext object that is associated with the given

connection context object.

isClosed

Format:

public abstract boolean isClosed()

Returns true if the given connection context object has been closed. Returns

false if the connection context object has not been closed.

Constructors

The following constructors are defined in a concrete implementation of the

ConnectionContext interface that results from translation of the statement #sql

context Ctx;:

Ctx(String, boolean)

Format:

public Ctx(String url, boolean autocommit)

 throws SQLException

Parameters:

348 Developing Java Applications

url The representation of a data source, as specified in the JDBC getConnection

method.

autocommit

Whether autocommit is enabled for the connection. A value of true means

that autocommit is enabled. A value of false means that autocommit is

disabled.

Ctx(String, String, String, boolean)

Format:

public Ctx(String url, String user, String password,

 boolean autocommit)

 throws SQLException

Parameters:

url The representation of a data source, as specified in the JDBC getConnection

method.

user

The user ID under which the connection to the data source is made.

password

The password for the user ID under which the connection to the data

source is made.

autocommit

Whether autocommit is enabled for the connection. A value of true means

that autocommit is enabled. A value of false means that autocommit is

disabled.

Ctx(String, Properties, boolean)

Format:

public Ctx(String url, Properties info, boolean autocommit)

 throws SQLException

Parameters:

url The representation of a data source, as specified in the JDBC getConnection

method.

info

An object that contains a set of driver properties for the connection. Any of

the IBM Data Server Driver for JDBC and SQLJ properties can be specified.

autocommit

Whether autocommit is enabled for the connection. A value of true means

that autocommit is enabled. A value of false means that autocommit is

disabled.

Ctx(Connection)

Format:

public Ctx(java.sql.Connection JDBC-connection-object)

 throws SQLException

Parameters:

JDBC-connection-object

A previously created JDBC Connection object.

If the constructor call throws an SQLException, the JDBC Connection object

remains open.

Chapter 12. JDBC and SQLJ reference information 349

Ctx(ConnectionContext)

Format:

public Ctx(sqlj.runtime.ConnectionContext SQLJ-connection-context-object)

 throws SQLException

Parameters:

SQLJ-connection-context-object

A previously created SQLJ ConnectionContext object.

The following constructors are defined in a concrete implementation of the

ConnectionContext interface that results from translation of the statement #sql

context Ctx with (dataSource ="jdbc/TestDS");:

Ctx()

Format:

public Ctx()

 throws SQLException

Ctx(String, String)

Format:

public Ctx(String user, String password,

)

 throws SQLException

Parameters:

user

The user ID under which the connection to the data source is made.

password

The password for the user ID under which the connection to the data

source is made.

Ctx(Connection)

Format:

public Ctx(java.sql.Connection JDBC-connection-object)

 throws SQLException

Parameters:

JDBC-connection-object

A previously created JDBC Connection object.

If the constructor call throws an SQLException, the JDBC Connection object

remains open.

Ctx(ConnectionContext)

Format:

public Ctx(sqlj.runtime.ConnectionContext SQLJ-connection-context-object)

 throws SQLException

Parameters:

SQLJ-connection-context-object

A previously created SQLJ ConnectionContext object.

350 Developing Java Applications

Methods

The following additional methods are generated in a concrete implementation of

the ConnectionContext interface that results from translation of the statement #sql

context Ctx;:

getDefaultContext

Format:

public static Ctx getDefaultContext()

Returns the default connection context object for the Ctx class.

getProfileKey

Format:

public static Object getProfileKey(sqlj.runtime.profile.Loader loader,

String profileName) throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

getProfile

Format:

public static sqlj.runtime.profile.Profile getProfile(Object key)

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

getTypeMap

Format:

public static java.util.Map getTypeMap()

Returns an instance of a class that implements java.util.Map, which is the

user-defined type map that is associated with the ConnectionContext. If there

is no associated type map, Java null is returned.

This method is used by code that is generated by the SQLJ translator for

executable clauses and iterator declaration clauses, but it can also be invoked

in an SQLJ application for direct use in JDBC statements.

SetDefaultContext

Format:

public static void Ctx setDefaultContext(Ctx default-context)

Sets the default connection context object for the Ctx class.

Recommendation: Do not use this method for multithreaded applications.

Instead, use explicit contexts.

sqlj.runtime.ForUpdate interface

SQLJ implements the sqlj.runtime.ForUpdate interface in SQLJ programs that

contain an iterator declaration clause with implements sqlj.runtime.ForUpdate.

An SQLJ program that does positioned UPDATE or DELETE operations

(UPDATE...WHERE CURRENT OF or DELETE...WHERE CURRENT OF) must

include an iterator declaration clause with implements sqlj.runtime.ForUpdate.

Chapter 12. JDBC and SQLJ reference information 351

Methods

getCursorName

Format:

public abstract String getCursorName() throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

sqlj.runtime.NamedIterator interface

The sqlj.runtime.NamedIterator interface is implemented when an SQLJ application

executes an iterator declaration clause for a named iterator.

A named iterator includes result table column names, and the order of the columns

in the iterator is not important.

An implementation of the sqlj.runtime.NamedIterator interface includes an

accessor method for each column in the result table. An accessor method returns

the data from its column of the result table. The name of an accessor method

matches the name of the corresponding column in the named iterator.

Methods (inherited from the ResultSetIterator interface)

close

Format:

public abstract void close() throws SQLException

Releases database resources that the iterator uses.

isClosed

Format:

public abstract boolean isClosed() throws SQLException

Returns a value of true if the close method has been invoked. Returns false if

the close method has not been invoked.

next

Format:

public abstract boolean next() throws SQLException

Advances the iterator to the next row. Before an instance of the next method is

invoked for the first time, the iterator is positioned before the first row of the

result table. next returns a value of true when a next row is available and

false when all rows have been retrieved.

sqlj.runtime.PositionedIterator interface

The sqlj.runtime.PositionedIterator interface is implemented when an SQLJ

application executes an iterator declaration clause for a positioned iterator.

The order of columns in a positioned iterator must be the same as the order of

columns in the result table, and a positioned iterator does not include result table

column names.

352 Developing Java Applications

Methods

sqlj.runtime.PositionedIterator inherits all ResultSetIterator methods, and includes

the following additional method:

endFetch

Format:

public abstract boolean endFetch() throws SQLException

Returns a value of true if the iterator is not positioned on a row. Returns a

value of false if the iterator is positioned on a row.

sqlj.runtime.ResultSetIterator interface

The sqlj.runtime.ResultSetIterator interface is implemented by SQLJ for all iterator

declaration clauses.

An untyped iterator can be generated by declaring an instance of the

sqlj.runtime.ResultSetIterator interface directly. In general, use of untyped iterators

is not recommended.

Variables

ASENSITIVE

Format:

public static final int ASENSITIVE

A constant that can be returned by the getSensitivity method. It indicates that

the iterator is defined as ASENSITIVE.

This value is not returned by IBM Informix Dynamic Server.

FETCH_FORWARD

Format:

public static final int FETCH_FORWARD

A constant that can be used by the following methods:

v Set by sqlj.runtime.Scrollable.setFetchDirection and

sqlj.runtime.ExecutionContext.setFetchDirection

v Returned by sqlj.runtime.ExecutionContext.getFetchDirection

It indicates that the iterator fetches rows in a result table in the forward

direction, from first to last.

FETCH_REVERSE

Format:

public static final int FETCH_REVERSE

A constant that can be used by the following methods:

v Set by sqlj.runtime.Scrollable.setFetchDirection and

sqlj.runtime.ExecutionContext.setFetchDirection

v Returned by sqlj.runtime.ExecutionContext.getFetchDirection

It indicates that the iterator fetches rows in a result table in the backward

direction, from last to first.

This value is not returned by IBM Informix Dynamic Server.

FETCH_UNKNOWN

Format:

Chapter 12. JDBC and SQLJ reference information 353

public static final int FETCH_UNKNOWN

A constant that can be used by the following methods:

v Set by sqlj.runtime.Scrollable.setFetchDirection and

sqlj.runtime.ExecutionContext.setFetchDirection

v Returned by sqlj.runtime.ExecutionContext.getFetchDirection

It indicates that the iterator fetches rows in a result table in an unknown order.

This value is not returned by IBM Informix Dynamic Server.

INSENSITIVE

Format:

public static final int INSENSITIVE

A constant that can be returned by the getSensitivity method. It indicates that

the iterator is defined as INSENSITIVE.

SENSITIVE

Format:

public static final int SENSITIVE

A constant that can be returned by the getSensitivity method. It indicates that

the iterator is defined as SENSITIVE.

This value is not returned by IBM Informix Dynamic Server.

Methods

clearWarnings

Format:

public abstract void clearWarnings() throws SQLException

After clearWarnings is called, getWarnings returns null until a new warning is

reported for the iterator.

close

Format:

public abstract void close() throws SQLException

 Closes the iterator and releases underlying database resources.

getFetchSize

Format:

synchronized public int getFetchSize() throws SQLException

Returns the number of rows that should be fetched by SQLJ when more rows

are needed. The returned value is the value that was set by the setFetchSize

method, or 0 if no value was set by setFetchSize.

getResultSet

Format:

public abstract ResultSet getResultSet() throws SQLException

Returns the JDBC ResultSet object that is associated with the iterator.

getRow

Format:

synchronized public int getRow() throws SQLException

354 Developing Java Applications

Returns the current row number. The first row is number 1, the second is

number 2, and so on. If the iterator is not positioned on a row, 0 is returned.

getSensitivity

Format:

synchronized public int getSensitivity() throws SQLException

Returns the sensitivity of the iterator. The sensitivity is determined by the

sensitivity value that was specified or defaulted in the with clause of the

iterator declaration clause.

getWarnings

Format:

public abstract SQLWarning getWarnings() throws SQLException

Returns the first warning that is reported by calls on the iterator. Subsequent

iterator warnings are be chained to this SQLWarning. The warning chain is

automatically cleared each time the iterator moves to a new row.

isClosed

Format:

public abstract boolean isClosed() throws SQLException

Returns a value of true if the iterator is closed. Returns false otherwise.

next

Format:

public abstract boolean next() throws SQLException

Advances the iterator to the next row. Before next is invoked for the first time,

the iterator is positioned before the first row of the result table. next returns a

value of true when a next row is available and false when all rows have been

retrieved.

setFetchSize

Format:

synchronized public void setFetchSize(int number-of-rows) throws SQLException

Gives SQLJ a hint as to the number of rows that should be fetched when more

rows are needed.

Parameters:

number-of-rows

The expected number of rows that SQLJ should fetch for the iterator that is

associated with the given execution context.

If number-of-rows is less than 0 or greater than the maximum number of rows

that can be fetched, an SQLException is thrown.

sqlj.runtime.Scrollable interface

sqlj.runtime.Scrollable provides methods to move around in the result table and to

check the position in the result table.

sqlj.runtime.Scrollable is implemented when a scrollable iterator is declared.

Chapter 12. JDBC and SQLJ reference information 355

Methods

absolute(int)

Format:

public abstract boolean absolute (int n) throws SQLException

Moves the iterator to a specified row.

If n>0, positions the iterator on row n of the result table. If n<0, and m is the

number of rows in the result table, positions the iterator on row m+n+1 of the

result table.

If the absolute value of n is greater than the number of rows in the result table,

positions the cursor after the last row if n is positive, or before the first row if

n is negative.

absolute(0) is the same as beforeFirst(). absolute(1) is the same as first().

absolute(-1) is the same as last().

Returns true if the iterator is on a row. Otherwise, returns false.

afterLast()

Format:

public abstract void afterLast() throws SQLException

Moves the iterator after the last row of the result table.

beforeFirst()

Format:

public abstract void beforeFirst() throws SQLException

Moves the iterator before the first row of the result table.

first()

Format:

public abstract boolean first() throws SQLException

Moves the iterator to the first row of the result table.

Returns true if the iterator is on a row. Otherwise, returns false.

getFetchDirection()

Format:

public abstract int getFetchDirection() throws SQLException

Returns the fetch direction of the iterator. Possible values are:

sqlj.runtime.ResultSetIterator.FETCH_FORWARD

Rows are processed in a forward direction, from first to last.

sqlj.runtime.ResultSetIterator.FETCH_REVERSE

Rows are processed in a backward direction, from last to first.

sqlj.runtime.ResultSetIterator.FETCH_UNKNOWN

The order of processing is not known.

isAfterLast()

Format:

public abstract boolean isAfterLast() throws SQLException

Returns true if the iterator is positioned after the last row of the result table.

Otherwise, returns false.

356 Developing Java Applications

isBeforeFirst()

Format:

public abstract boolean isBeforeFirst() throws SQLException

Returns true if the iterator is positioned before the first row of the result table.

Otherwise, returns false.

isFirst()

Format:

public abstract boolean isFirst() throws SQLException

Returns true if the iterator is positioned on the first row of the result table.

Otherwise, returns false.

isLast()

Format:

public abstract boolean isLast() throws SQLException

Returns true if the iterator is positioned on the last row of the result table.

Otherwise, returns false.

last()

Format:

public abstract boolean last() throws SQLException

Moves the iterator to the last row of the result table.

Returns true if the iterator is on a row. Otherwise, returns false.

previous()

Format:

public abstract boolean previous() throws SQLException

Moves the iterator to the previous row of the result table.

Returns true if the iterator is on a row. Otherwise, returns false.

relative(int)

Format:

public abstract boolean relative(int n) throws SQLException

If n>0, positions the iterator on the row that is n rows after the current row. If

n<0, positions the iterator on the row that is n rows before the current row. If

n=0, positions the iterator on the current row.

The cursor must be on a valid row of the result table before you can use this

method. If the cursor is before the first row or after the last throw, the method

throws an SQLException.

Suppose that m is the number of rows in the result table and x is the current

row number in the result table. If n>0 and x+n>m, the iterator is positioned

after the last row. If n<0 and x+n<1, the iterator is positioned before the first

row.

Returns true if the iterator is on a row. Otherwise, returns false.

setFetchDirection(int)

Format:

public abstract void setFetchDirection (int) throws SQLException

Chapter 12. JDBC and SQLJ reference information 357

Gives the SQLJ runtime environment a hint as to the direction in which rows

of this iterator object are processed. Possible values are:

sqlj.runtime.ResultSetIterator.FETCH_FORWARD

Rows are processed in a forward direction, from first to last.

sqlj.runtime.ResultSetIterator.FETCH_REVERSE

Rows are processed in a backward direction, from last to first.

sqlj.runtime.ResultSetIterator.FETCH_UNKNOWN

The order of processing is not known.

sqlj.runtime.AsciiStream class

The sqlj.runtime.AsciiStream class is for an input stream of ASCII data with a

specified length.

The sqlj.runtime.AsciiStream class is derived from the java.io.InputStream class,

and extends the sqlj.runtime.StreamWrapper class. SQLJ interprets the bytes in an

sqlj.runtime.AsciiStream object as ASCII characters. An InputStream object with

ASCII characters needs to be passed as a sqlj.runtime.AsciiStream object.

Constructors

AsciiStream(InputStream)

Format:

public AsciiStream(java.io.InputStream input-stream)

Creates an ASCII java.io.InputStream object with an unspecified length.

Parameters:

input-stream

The InputStream object that SQLJ interprets as an AsciiStream object.

AsciiStream(InputStream, int)

Format:

public AsciiStream(java.io.InputStream input-stream, int length)

Creates an ASCII java.io.InputStream object with a specified length.

Parameters:

input-stream

The InputStream object that SQLJ interprets as an AsciiStream object.

length

The length of the InputStream object that SQLJ interprets as an AsciiStream

object.

sqlj.runtime.BinaryStream class

The sqlj.runtime.BinaryStream class is for an input stream of binary data with a

specified length.

The sqlj.runtime.BinaryStream class is derived from the java.io.InputStream class,

and extends the sqlj.runtime.StreamWrapper class. SQLJ interprets the bytes in an

sqlj.runtime.BinaryStream object are interpreted as Binary characters. An

InputStream object with Binary characters needs to be passed as a

sqlj.runtime.BinaryStream object.

358 Developing Java Applications

Constructors

BinaryStream(InputStream)

Format:

public BinaryStream(java.io.InputStream input-stream)

Creates an Binary java.io.InputStream object with an unspecified length.

Parameters:

input-stream

The InputStream object that SQLJ interprets as an BinaryStream object.

BinaryStream(InputStream, int)

Format:

public BinaryStream(java.io.InputStream input-stream, int length)

Creates an Binary java.io.InputStream object with a specified length.

Parameters:

input-stream

The InputStream object that SQLJ interprets as an BinaryStream object.

length

The length of the InputStream object that SQLJ interprets as an

BinaryStream object.

sqlj.runtime.CharacterStream class

The sqlj.runtime.CharacterStream class is for an input stream of character data with

a specified length.

The sqlj.runtime.CharacterStream class is derived from the java.io.Reader class, and

extends the java.io.FilterReader class. SQLJ interprets the bytes in an

sqlj.runtime.CharacterStream object are interpreted as Unicode data. A Reader

object with Unicode data needs to be passed as a sqlj.runtime.CharacterStream

object.

Constructors

CharacterStream(InputStream)

Format:

public CharacterStream(java.io.Reader input-stream)

Creates a character java.io.Reader object with an unspecified length.

Parameters:

input-stream

The Reader object that SQLJ interprets as an CharacterStream object.

CharacterStream(InputStream, int)

Format:

public CharacterStream(java.io.Reader input-stream, int length)

Creates a character java.io.Reader object with a specified length.

Parameters:

input-stream

The Reader object that SQLJ interprets as an CharacterStream object.

Chapter 12. JDBC and SQLJ reference information 359

length

The length of the Reader object that SQLJ interprets as an CharacterStream

object.

Methods

getReader

Format:

public Reader getReader()

Returns the underlying Reader object that is wrapped by the CharacterStream

object.

getLength

Format:

public void getLength()

Returns the length in characters of the wrapped Reader object, as specified by

the constructor or in the last call to setLength.

setLength

Format:

public void setLength (int length)

Sets the number of characters that are read from the Reader object when the

object is passed as an input argument to an SQL operation.

Parameters:

length

The number of characters that are read from the Reader object.

sqlj.runtime.ExecutionContext class

The sqlj.runtime.ExecutionContext class is defined for execution contexts. An

execution context is used to control the execution of SQL statements.

Variables

ADD_BATCH_COUNT

Format:

public static final int ADD_BATCH_COUNT

A constant that can be returned by the getUpdateCount method. It indicates

that the previous statement was not executed but was added to the existing

statement batch.

AUTO_BATCH

Format:

public static final int AUTO_BATCH

A constant that can be passed to the setBatchLimit method. It indicates that

implicit batch execution should be performed, and that SQLJ should determine

the batch size.

EXEC_BATCH_COUNT

Format:

public static final int EXEC_BATCH_COUNT

360 Developing Java Applications

A constant that can be returned from the getUpdateCount method. It indicates

that a statement batch was just executed.

EXCEPTION_COUNT

Format:

public static final int EXCEPTION_COUNT

A constant that can be returned from the getUpdateCount method. It indicates

that an exception was thrown before the previous execution completed, or that

no operation has been performed on the execution context object.

NEW_BATCH_COUNT

Format:

public static final int NEW_BATCH_COUNT

A constant that can be returned from the getUpdateCount method. It indicates

that the previous statement was not executed, but was added to a new

statement batch.

QUERY_COUNT

Format:

public static final int QUERY_COUNT

A constant that can be passed to the setBatchLimit method. It indicates that the

previous execution produced a result set.

UNLIMITED_BATCH

Format:

public static final int UNLIMITED_BATCH

A constant that can be returned from the getUpdateCount method. It indicates

that statements should continue to be added to a statement batch, regardless of

the batch size.

Constructors:

ExecutionContext

Format:

public ExecutionContext()

Creates an ExecutionContext instance.

Methods

cancel

Format:

public void cancel() throws SQLException

Cancels an SQL operation that is currently being executed by a thread that

uses the execution context object. If there is a pending statement batch on the

execution context object, the statement batch is canceled and cleared.

The cancel method throws an SQLException if the statement cannot be

canceled.

execute

Format:

public boolean execute () throws SQLException

Chapter 12. JDBC and SQLJ reference information 361

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

executeBatch

Format:

public synchronized int[] executeBatch() throws SQLException

Executes the pending statement batch and returns an array of update counts. If

no pending statement batch exists, null is returned. When this method is

called, the statement batch is cleared, even if the call results in an exception.

Each element in the returned array can be one of the following values:

-2 This value indicates that the SQL statement executed successfully, but the

number of rows that were updated could not be determined.

-3 This value indicates that the SQL statement failed.

Other integer

This value is the number of rows that were updated by the statement.

The executeBatch method throws an SQLException if a database error occurs

while the statement batch executes.

executeQuery

Format:

public RTResultSet executeQuery () throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

executeUpdate

Format:

public int executeUpdate() throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

getBatchLimit

Format:

synchronized public int getBatchLimit()

Returns the number of statements that are added to a batch before the batch is

implicitly executed.

The returned value is one of the following values:

UNLIMITED_BATCH

This value indicates that the batch size is unlimited.

AUTO_BATCH

This value indicates that the batch size is finite but unknown.

Other integer

The current batch limit.

getBatchUpdateCounts

Format:

public synchronized int[] getBatchUpdateCounts()

Returns an array that contains the number of rows that were updated by each

statement that successfully executed in a batch. The order of elements in the

362 Developing Java Applications

array corresponds to the order in which statements were inserted into the

batch. Returns null if no statements in the batch completed successfully.

Each element in the returned array can be one of the following values:

-2 This value indicates that the SQL statement executed successfully, but the

number of rows that were updated could not be determined.

-3 This value indicates that the SQL statement failed.

Other integer

This value is the number of rows that were updated by the statement.

getFetchDirection

Format:

synchronized public int getFetchDirection() throws SQLException

Returns the current fetch direction for scrollable iterator objects that were

generated from the given execution context. If a fetch direction was not set for

the execution context, sqlj.runtime.ResultSetIterator.FETCH_FORWARD is

returned.

getFetchSize

Format:

synchronized public int getFetchSize() throws SQLException

Returns the number of rows that should be fetched by SQLJ when more rows

are needed. This value applies only to iterator objects that were generated from

the given execution context. The returned value is the value that was set by the

setFetchSize method, or 0 if no value was set by setFetchSize.

getMaxFieldSize

Format:

public synchronized int getMaxFieldSize()

Returns the maximum number of bytes that are returned for any string

(character, graphic, or varying-length binary) column in queries that use the

given execution context. If this limit is exceeded, SQLJ discards the remaining

bytes. A value of 0 means that the maximum number of bytes is unlimited.

getMaxRows

Format:

public synchronized int getMaxRows()

Returns the maximum number of rows that are returned for any query that

uses the given execution context. If this limit is exceeded, SQLJ discards the

remaining rows. A value of 0 means that the maximum number of rows is

unlimited.

getNextResultSet()

Format:

public ResultSet getNextResultSet() throws SQLException

After a stored procedure call, returns a result set from the stored procedure.

A null value is returned if any of the following conditions are true:

v There are no more result sets to be returned.

v The stored procedure call did not produce any result sets.

v A stored procedure call has not been executed under the execution context.

Chapter 12. JDBC and SQLJ reference information 363

When you invoke getNextResultSet(), SQLJ closes the currently-open result set

and advances to the next result set.

If an error occurs during a call to getNextResultSet, resources for the current

JDBC ResultSet object are released, and an SQLException is thrown.

Subsequent calls to getNextResultSet return null.

getNextResultSet(int)

Formats:

public ResultSet getNextResultSet(int current)

After a stored procedure call, returns a result set from the stored procedure.

A null value is returned if any of the following conditions are true:

v There are no more result sets to be returned.

v The stored procedure call did not produce any result sets.

v A stored procedure call has not been executed under the execution context.

If an error occurs during a call to getNextResultSet, resources for the current

JDBC ResultSet object are released, and an SQLException is thrown.

Subsequent calls to getNextResultSet return null.

Parameters:

current

Indicates what SQLJ does with the currently open result set before it

advances to the next result set:

java.sql.Statement.CLOSE_CURRENT_RESULT

Specifies that the current ResultSet object is closed when the next

ResultSet object is returned.

java.sql.Statement.KEEP_CURRENT_RESULT

Specifies that the current ResultSet object stays open when the next

ResultSet object is returned.

java.sql.Statement.CLOSE_ALL_RESULTS

Specifies that all open ResultSet objects are closed when the next

ResultSet object is returned.

getQueryTimeout

Format:

public synchronized int getQueryTimeout()

Returns the maximum number of seconds that SQL operations that use the

given execution context object can execute. If an SQL operation exceeds the

limit, an SQLException is thrown. The returned value is the value that was set

by the setQueryTimeout method, or 0 if no value was set by setQueryTimeout.

0 means that execution time is unlimited.

getUpdateCount

Format:

public abstract int getUpdateCount() throws SQLException

Returns:

ExecutionContext.ADD_BATCH_COUNT

If the statement was added to an existing batch.

ExecutionContext.NEW_BATCH_COUNT

If the statement was the first statement in a new batch.

364 Developing Java Applications

ExecutionContext.EXCEPTION_COUNT

If the previous statement generated an SQLException, or no previous

statement was executed.

ExecutionContext.EXEC_BATCH_COUNT

If the statement was part of a batch, and the batch was executed.

ExecutionContext.QUERY_COUNT

If the previous statement created an iterator object or JDBC ResultSet.

Other integer

If the statement was executed rather than added to a batch. This value is

the number of rows that were updated by the statement.

getWarnings

Format:

public synchronized SQLWarning getWarnings()

Returns the first warning that was reported by the last SQL operation that was

executed using the given execution context. Subsequent warnings are chained

to the first warning. If no warnings occurred, null is returned.

getWarnings is used to retrieve positive SQLCODEs.

isBatching

Format:

public synchronized boolean isBatching()

Returns true if batching is enabled for the execution context. Returns false if

batching is disabled.

registerStatement

Format:

public RTStatement registerStatement(ConnectionContext connCtx,

 Object profileKey, int stmtNdx)

 throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

releaseStatement

Format:

public void releaseStatement() throws SQLException

This method is used by code that is generated by the SQLJ translator. It is not

intended for direct use by application programs.

setBatching

Format:

public synchronized void setBatching(boolean batching)

Parameters:

batching

Indicates whether batchable statements that are registered with the given

execution context can be added to a statement batch:

true

Statements can be added to a statement batch.

Chapter 12. JDBC and SQLJ reference information 365

false

Statements are executed individually.

setBatching affects only statements that occur in the program after setBatching

is called. It does not affect previous statements or an existing statement batch.

setBatchLimit

Format:

public synchronized void setBatchLimit(int batch-size)

Sets the maximum number of statements that are added to a batch before the

batch is implicitly executed.

Parameters:

batch-size

One of the following values:

ExecutionContext.UNLIMITED_BATCH

Indicates that implicit execution occurs only when SQLJ encounters a

statement that is batchable but incompatible, or not batchable. Setting

this value is the same as not invoking setBatchLimit.

ExecutionContext.AUTO_BATCH

Indicates that implicit execution occurs when the number of statements

in the batch reaches a number that is set by SQLJ.

Positive integer

The number of statements that are added to the batch before SQLJ

executes the batch implicitly. The batch might be executed before this

many statements have been added if SQLJ encounters a statement that

is batchable but incompatible, or not batchable.

setBatchLimit affects only statements that occur in the program after

setBatchLimit is called. It does not affect an existing statement batch.

setFetchDirection

Format:

public synchronized void setFetchDirection(int direction) throws SQLException

Gives SQLJ a hint as to the current fetch direction for scrollable iterator objects

that were generated from the given execution context.

Parameters:

direction

One of the following values:

sqlj.runtime.ResultSetIterator.FETCH_FORWARD

Rows are fetched in a forward direction. This is the default.

sqlj.runtime.ResultSetIterator.FETCH_REVERSE

Rows are fetched in a backward direction.

sqlj.runtime.ResultSetIterator.FETCH_UNKNOWN

The order of fetching is unknown.

Any other input value results in an SQLException.

setFetchSize

Format:

synchronized public void setFetchSize(int number-of-rows) throws SQLException

366 Developing Java Applications

Gives SQLJ a hint as to the number of rows that should be fetched when more

rows are needed.

Parameters:

number-of-rows

The expected number of rows that SQLJ should fetch for the iterator that is

associated with the given execution context.

If number-of-rows is less than 0 or greater than the maximum number of rows

that can be fetched, an SQLException is thrown.

setMaxFieldSize

Format:

public void setMaxFieldSize(int max-bytes)

Specifies the maximum number of bytes that are returned for any string

(character, graphic, or varying-length binary) column in queries that use the

given execution context. If this limit is exceeded, SQLJ discards the remaining

bytes.

Parameters:

max-bytes

The maximum number of bytes that SQLJ should return from a BINARY,

VARBINARY, CHAR, VARCHAR, GRAPHIC, or VARGRAPHIC column. A

value of 0 means that the number of bytes is unlimited. 0 is the default.

setMaxRows

Format:

public synchronized void setMaxRows(int max-rows)

Specifies the maximum number of rows that are returned for any query that

uses the given execution context. If this limit is exceeded, SQLJ discards the

remaining rows.

Parameters:

max-rows

The maximum number of rows that SQLJ should return for a query that

uses the given execution context. A value of 0 means that the number of

rows is unlimited. 0 is the default.

setQueryTimeout

Format:

public synchronized void setQueryTimeout(int timeout-value)

Specifies the maximum number of seconds that SQL operations that use the

given execution context object can execute. If an SQL operation exceeds the

limit, an SQLException is thrown.

Parameters:

timeout-value

The maximum number of seconds that SQL operations that use the given

execution context object can execute. 0 means that execution time is

unlimited. 0 is the default.

Chapter 12. JDBC and SQLJ reference information 367

sqlj.runtime.SQLNullException class

The sqlj.runtime.SQLNullException class is derived from the java.sql.SQLException

class.

An sqlj.runtime.SQLNullException is thrown when an SQL NULL value is fetched

into a host identifier with a Java primitive type. The SQLSTATE value for an

instance of SQLNullException is ’22002’.

sqlj.runtime.StreamWrapper class

The sqlj.runtime.StreamWrapper class wraps a java.io.InputStream instance and

extends the java.io.InputStream class.

The sqlj.runtime.AsciiStream, sqlj.runtime.BinaryStream, and

sqlj.runtime.UnicodeStream classes extend sqlj.runtime.StreamWrapper.

sqlj.runtime.StreamWrapper supports methods for specifying the length of

sqlj.runtime.AsciiStream, sqlj.runtime.BinaryStream, and

sqlj.runtime.UnicodeStream objects.

Constructors

StreamWrapper(InputStream)

Format:

protected StreamWrapper(InputStream input-stream)

Creates an sqlj.runtime.StreamWrapper object with an unspecified length.

Parameters:

input-stream

The InputStream object that the sqlj.runtime.StreamWrapper object wraps.

StreamWrapper(InputStream, int)

Format:

protected StreamWrapper(java.io.InputStream input-stream, int length)

Creates an sqlj.runtime.StreamWrapper object with a specified length.

Parameters:

input-stream

The InputStream object that the sqlj.runtime.StreamWrapper object wraps.

length

The length of the InputStream object in bytes.

Methods

getInputStream

Format:

public InputStream getInputStream()

Returns the underlying InputStream object that is wrapped by the

StreamWrapper object.

getLength

Format:

public void getLength()

368 Developing Java Applications

Returns the length in bytes of the wrapped InputStream object, as specified by

the constructor or in the last call to setLength.

setLength

Format:

public void setLength (int length)

Sets the number of bytes that are read from the wrapped InputStream object

when the object is passed as an input argument to an SQL operation.

Parameters:

length

The number of bytes that are read from the wrapped InputStream object.

sqlj.runtime.UnicodeStream class

The sqlj.runtime.UnicodeStream class is for an input stream of Unicode data with a

specified length.

The sqlj.runtime.UnicodeStream class is derived from the java.io.InputStream class,

and extends the sqlj.runtime.StreamWrapper class. SQLJ interprets the bytes in an

sqlj.runtime.UnicodeStream object as Unicode characters. An InputStream object

with Unicode characters needs to be passed as a sqlj.runtime.UnicodeStream object.

Constructors

UnicodeStream(InputStream)

Format:

public UnicodeStream(java.io.InputStream input-stream)

Creates a Unicode java.io.InputStream object with an unspecified length.

Parameters:

input-stream

The InputStream object that SQLJ interprets as an UnicodeStream object.

UnicodeStream(InputStream, int)

Format:

public UnicodeStream(java.io.InputStream input-stream, int length)

Creates a Unicode java.io.InputStream object with a specified length.

Parameters:

input-stream

The InputStream object that SQLJ interprets as an UnicodeStream object.

length

The length of the InputStream object that SQLJ interprets as an

UnicodeStream object.

IBM Data Server Driver for JDBC and SQLJ extensions to JDBC

The IBM Data Server Driver for JDBC and SQLJ provides a set of extensions to the

support that is provided by the JDBC specification.

Chapter 12. JDBC and SQLJ reference information 369

To use IBM Data Server Driver for JDBC and SQLJ-only methods in classes that

have corresponding, standard classes, cast an instance of the related, standard

JDBC class to an instance of the IBM Data Server Driver for JDBC and SQLJ-only

class. For example:

javax.sql.DataSource ds =

 new com.ibm.db2.jcc.DB2SimpleDataSource();

((com.ibm.db2.jcc.DB2BaseDataSource) ds).setServerName("sysmvs1.stl.ibm.com");

Table 97 summarizes the IBM Data Server Driver for JDBC and SQLJ-only

interfaces.

 Table 97. Summary of IBM Data Server Driver for JDBC and SQLJ-only interfaces provided by the IBM Data Server

Driver for JDBC and SQLJ

Interface name Applicable data sources Purpose

DB2CallableStatement 2 Extends the java.sql.CallableStatement and the

com.ibm.db2.jcc.DB2PreparedStatement interfaces.

DB2Connection 1, 2, 3 Extends the java.sql.Connection interface.

DB2DatabaseMetaData 1, 2, 3 Extends the java.sql.DatabaseMetaData interface.

DB2Diagnosable 1, 2, 3 Provides a mechanism for getting DB2

diagnostics from a DB2 SQLException.

DB2PreparedStatement 1, 2, 3 Extends the com.ibm.db2.jcc.DB2Statement and

java.sql.PreparedStatement interfaces.

DB2RowID 1, 2 Used for declaring Java objects for use with the

ROWID data type.

DB2Statement 1, 2, 3 Extends the java.sql.Statement interface.

DB2SystemMonitor 1, 2, 3 Used for collecting system monitoring data for a

connection.

DB2TraceManagerMXBean 1, 2, 3 Provides the MBean interface for the remote trace

controller.

DB2Xml 1, 2 Used for updating data in XML columns and

retrieving data from XML columns.

DBBatchUpdateException 1, 2, 3 Used for retrieving error information about batch

execution of statements that return automatically

generated keys.

Note: The interface applies to connections to the following data sources:

1. DB2 for z/OS

2. DB2 Database for Linux, UNIX, and Windows

3. IBM Informix Dynamic Server

Table 98 summarizes the IBM Data Server Driver for JDBC and SQLJ-only classes.

 Table 98. Summary of IBM Data Server Driver for JDBC and SQLJ-only classes provided by the IBM Data Server

Driver for JDBC and SQLJ

Class name Applicable data sources Purpose

DB2Administrator (DB2 Database

for Linux, UNIX, and Windows

only)

2 on page 371 Instances of the DB2Administrator class are used

to retrieve DB2CataloguedDatabase objects.

370 Developing Java Applications

Table 98. Summary of IBM Data Server Driver for JDBC and SQLJ-only classes provided by the IBM Data Server

Driver for JDBC and SQLJ (continued)

Class name Applicable data sources Purpose

DB2BaseDataSource 1, 2, 3 The abstract data source parent class for all IBM

Data Server Driver for JDBC and SQLJ-specific

implementations of javax.sql.DataSource,

javax.sql.ConnectionPoolDataSource, and

javax.sql.XADataSource.

DB2CataloguedDatabase 2 Contains methods that retrieve information about

a local DB2 Database for Linux, UNIX, and

Windows database.

DB2ClientRerouteServerList 1, 2 Implements the java.io.Serializable and

javax.naming.Referenceable interfaces.

DB2ConnectionPoolDataSource 1, 2, 3 A factory for PooledConnection objects.

DB2ExceptionFormatter 1, 2, 3 Contains methods for printing diagnostic

information to a stream.

DB2JCCPlugin 2 The abstract class for implementation of JDBC

security plug-ins.

DB2PooledConnection 1, 2, 3 Provides methods that an application server can

use to switch users on a preexisting trusted

connection.

DB2PoolMonitor 1, 2 Provides methods for monitoring the global

transport objects pool for the connection

concentrator and Sysplex workload balancing.

DB2SimpleDataSource 1, 2, 3 Extends the DataBaseDataSource class. Does not

support connection pooling or distributed

transactions.

DB2Sqlca 1, 2, 3 An encapsulation of the DB2 SQLCA.

DB2TraceManager 1, 2, 3 Controls the global log writer.

DB2Types 1 on page 370 Defines data type constants.

DB2XADataSource 1, 2, 3 A factory for XADataSource objects. An object

that implements this interface is registered with a

naming service that is based on the Java Naming

and Directory Interface (JNDI).

Note: The class applies to connections to the following data sources:

1. DB2 for z/OS

2. DB2 Database for Linux, UNIX, and Windows

3. IBM Informix Dynamic Server

DBBatchUpdateException interface

The com.ibm.db2.jcc.DBBatchUpdateException interface is used for retrieving error

information about batch execution of statements that return automatically

generated keys.

DBBatchUpdateException methods

The following methods are defined only for the IBM Data Server Driver for JDBC

and SQLJ.

getDBGeneratedKeys

Format:

Chapter 12. JDBC and SQLJ reference information 371

public java.sql.ResultSet[] getDBGeneratedKeys()

 throws java.sql.SQLException

Retrieves automatically generated keys that were created when INSERT

statements were executed in a batch. Each ResultSet object that is returned

contains the automatically generated keys for a single statement in the batch.

ResultSet objects that are null correspond to failed statements.

DB2Administrator class

Instances of the com.ibm.db2.jcc.DB2Administrator class are used to retrieve

DB2CataloguedDatabase objects. DB2Administrator applies to DB2 Database for

Linux, UNIX, and Windows databases only.

DB2Administrator methods

getInstance

Format:

public static DB2Administrator getInstance()

Returns an instance of the DB2Administrator class.

getCataloguedDatabases

Format:

public DB2CataloguedDatabase[] getCataloguedDatabases()

 throws java.sql.SQLException

Retrieves an array that contains a DB2CataloguedDatabase object for each local

database in the local database directory.

If a local DB2 system is available, and the catalog contains no databases, an

array with length zero is returned. If no local DB2 system is available, null is

returned. If the local system is not a DB2 Database for Linux, UNIX, and

Windows system, an SQLException is thrown.

DB2BaseDataSource class

The com.ibm.db2.jcc.DB2BaseDataSource class is the abstract data source parent

class for all IBM Data Server Driver for JDBC and SQLJ-specific implementations

of javax.sql.DataSource, javax.sql.ConnectionPoolDataSource, and

javax.sql.XADataSource.

DB2BaseDataSource implements the java.sql.Wrapper interface.

DB2BaseDataSource properties

The following properties are defined only for the IBM Data Server Driver for JDBC

and SQLJ.

You can set all properties on a DataSource or in the url parameter in a

DriverManager.getConnection call.

All properties except the following properties have a setXXX method to set the

value of the property and a getXXX method to retrieve the value:

v minTransportObjects

v maxTransportObjectIdleTime

v maxTransportObjectWaitTime

v dumpPool

v dumpPoolStatisticsOnSchedule

372 Developing Java Applications

v dumpPoolStatisticsOnScheduleFile

A setXXX method has this form:

void setProperty-name(data-type property-value)

A getXXX method has this form:

data-type getProperty-name()

Property-name is the unqualified property name. For properties that are not specific

to IBM Informix Dynamic Server (IDS), the first character of the property name is

capitalized. For properties that are used only by IDS, all characters of the property

name are capitalized.

The following table lists the IBM Data Server Driver for JDBC and SQLJ properties

and their data types.

 Table 99. DB2BaseDataSource properties and their data types

Property name

Applicable data

sources Data type

com.ibm.db2.jcc.DB2BaseDataSource.accountingInterval 1 on page 378 String

com.ibm.db2.jcc.DB2BaseDataSource.allowNextOnExhaustedResultSet 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.atomicMultiRowInsert 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.blockingReadConnectionTimeout 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.charOutputSize 1 on page 378 short

com.ibm.db2.jcc.DB2BaseDataSource.clientAccountingInformation 1 on page 378, 2

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.clientApplicationInformation 1 on page 378, 2

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.clientDebugInfo (IBM Data Server Driver for JDBC

and SQLJ type 4 connectivity)

1 on page 378, 2

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.clientProgramId 1 on page 378, 2

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.clientProgramName (IBM Data Server Driver for

JDBC and SQLJ type 4 connectivity)

1 on page 378, 2

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.clientRerouteAlternateServerName 1 on page 378, 2

on page 378, 3

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.clientRerouteAlternatePortNumber 1 on page 378, 2

on page 378, 3

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.clientRerouteServerListJNDIContext 1 on page 378, 2

on page 378, 3

on page 378

javax.naming.Context

com.ibm.db2.jcc.DB2BaseDataSource.clientRerouteServerListJNDIName 1 on page 378, 2

on page 378, 3

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.clientUser (IBM Data Server Driver for JDBC and

SQLJ type 2 connectivity on DB2 for z/OS only)

1 on page 378 String

com.ibm.db2.jcc.DB2BaseDataSource.clientWorkstation (IBM Data Server Driver for

JDBC and SQLJ type 2 connectivity on DB2 for z/OS only)

1 on page 378 String

Chapter 12. JDBC and SQLJ reference information 373

Table 99. DB2BaseDataSource properties and their data types (continued)

Property name

Applicable data

sources Data type

com.ibm.db2.jcc.DB2BaseDataSource.concurrentAccessResolution 2 on page 378 int

com.ibm.db2.jcc.DB2BaseDataSource.connectNode 2 on page 378 int

com.ibm.db2.jcc.DB2BaseDataSource.currentDegree 1 on page 378, 2

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.currentExplainMode 2 on page 378 String

com.ibm.db2.jcc.DB2BaseDataSource.currentExplainSnapshot 2 on page 378 String

com.ibm.db2.jcc.DB2BaseDataSource.currentFunctionPath 1 on page 378, 2

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.currentLockTimeout 2 on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.currentMaintainedTableTypesForOptimization 1 on page 378, 2

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.currentPackagePath 1 on page 378, 2

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.currentPackageSet 1 on page 378, 2

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.currentQueryOptimization 2 on page 378 int

com.ibm.db2.jcc.DB2BaseDataSource.currentRefreshAge 1 on page 378, 2

on page 378

long

com.ibm.db2.jcc.DB2BaseDataSource.currentSchema 1 on page 378, 2

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.cursorSensitivity 1 on page 378, 2

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.currentSQLID 1 on page 378 String

com.ibm.db2.jcc.DB2BaseDataSource.databaseName 1 on page 378, 2

on page 378, 3

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.dateFormat 1 on page 378, 2

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.decimalRoundingMode 1 on page 378, 2

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.decimalSeparator 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.decimalStringFormat 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.defaultIsolationLevel 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.deferPrepares 1 on page 378, 2

on page 378, 3

on page 378

boolean

com.ibm.db2.jcc.DB2BaseDataSource.description 1 on page 378, 2

on page 378, 3

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.downgradeHoldCursorsUnderXa 1 on page 378, 2

on page 378,3

on page 378

boolean

com.ibm.db2.jcc.DB2BaseDataSource.driverType 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.dumpPool 3 on page 378 int

374 Developing Java Applications

Table 99. DB2BaseDataSource properties and their data types (continued)

Property name

Applicable data

sources Data type

com.ibm.db2.jcc.DB2BaseDataSource.dumpPoolStatisticsOnSchedule 3 on page 378 int

com.ibm.db2.jcc.DB2BaseDataSource.dumpPoolStatisticsOnScheduleFile 3 on page 378 String

com.ibm.db2.jcc.DB2BaseDataSource.enableClientAffinitiesList 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.enableNamedParameterMarkers 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.enableConnectionConcentrator 1 on page 378, 3

on page 378

boolean

com.ibm.db2.jcc.DB2BaseDataSource.enableRowsetSupport 1 on page 378, 2

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.enableSeamlessFailover 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.enableSysplexWLB 1 on page 378, 3

on page 378

boolean

com.ibm.db2.jcc.DB2BaseDataSource.encryptionAlgorithm 1 on page 378, 2

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.fetchSize 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.fullyMaterializeInputStreams 1 on page 378, 2

on page 378

boolean

com.ibm.db2.jcc.DB2BaseDataSource.fullyMaterializeLobData 1 on page 378, 2

on page 378, 3

on page 378

boolean

com.ibm.db2.jcc.DB2BaseDataSource.gssCredential 1 on page 378, 2

on page 378

Object

com.ibm.db2.jcc.DB2BaseDataSource.jdbcCollection 1 on page 378 String

com.ibm.db2.jcc.DB2BaseDataSource.keepDynamic 1 on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.kerberosServerPrincipal 1 on page 378, 2

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.loginTimeout (not supported for IBM Data Server

Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS)

1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.logWriter 1 on page 378, 2

on page 378, 3

on page 378

PrintWriter

com.ibm.db2.jcc.DB2BaseDataSource.maxRetriesForClientReroute 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.maxRowsetSize (IBM Data Server Driver for JDBC

and SQLJ type 2 connectivity on DB2 for z/OS only)

1 on page 378 int

com.ibm.db2.jcc.DB2BaseDataSource.maxTransportObjectIdleTime 3 on page 378 int

com.ibm.db2.jcc.DB2BaseDataSource.maxTransportObjectWaitTime 3 on page 378 int

com.ibm.db2.jcc.DB2BaseDataSource.maxTransportObjects 1 on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.minTransportObjects 3 on page 378 int

com.ibm.db2.jcc.DB2BaseDataSource.optimizationProfile 2 on page 378 String

com.ibm.db2.jcc.DB2BaseDataSource.optimizationProfileToFlush 2 on page 378 String

Chapter 12. JDBC and SQLJ reference information 375

Table 99. DB2BaseDataSource properties and their data types (continued)

Property name

Applicable data

sources Data type

com.ibm.db2.jcc.DB2BaseDataSource.password 1 on page 378, 2

on page 378, 3

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.pdqProperties 1 on page 378, 2

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.pkList (IBM Data Server Driver for JDBC and SQLJ

type 2 connectivity)

1 on page 378 String

com.ibm.db2.jcc.DB2BaseDataSource.planName (IBM Data Server Driver for JDBC and

SQLJ type 2 connectivity only)

1 on page 378 String

com.ibm.db2.jcc.DB2BaseDataSource.plugin 2 on page 378 Object

com.ibm.db2.jcc.DB2BaseDataSource.pluginName 2 on page 378 String

com.ibm.db2.jcc.DB2BaseDataSource.portNumber 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.progressiveStreaming 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.queryDataSize 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.queryCloseImplicit 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.readOnly 1 on page 378, 2

on page 378

boolean

com.ibm.db2.jcc.DB2BaseDataSource.reportLongTypes 1 on page 378 short

com.ibm.db2.jcc.DB2BaseDataSource.resultSetHoldability 1 on page 378, 2

on page 378,3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.resultSetHoldabilityForCatalogQueries 1 on page 378, 2

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.retrieveMessagesFromServerOnGetMessage 1 on page 378, 3

on page 378

boolean

com.ibm.db2.jcc.DB2BaseDataSource.retryIntervalForClientReroute 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.retryWithAlternativeSecurityMechanism (IBM Data

Server Driver for JDBC and SQLJ type 4 connectivity)

2 on page 378 int

com.ibm.db2.jcc.DB2BaseDataSource.returnAlias 1 on page 378, 2

on page 378

short

com.ibm.db2.jcc.DB2BaseDataSource.securityMechanism 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.sendCharInputsUTF8 1 on page 378 int

com.ibm.db2.jcc.DB2BaseDataSource.sendDataAsIs 1 on page 378, 2

on page 378, 3

on page 378

boolean

com.ibm.db2.jcc.DB2BaseDataSource.serverName 1 on page 378, 2

on page 378, 3

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.sqljEnableClassLoaderSpecificProfiles 1 on page 378 boolean

com.ibm.db2.jcc.DB2BaseDataSource.ssid (IBM Data Server Driver for JDBC and SQLJ

type 2 connectivity on DB2 for z/OS only)

1 on page 378 String

376 Developing Java Applications

Table 99. DB2BaseDataSource properties and their data types (continued)

Property name

Applicable data

sources Data type

com.ibm.db2.jcc.DB2BaseDataSource.sslConnection (IBM Data Server Driver for JDBC

and SQLJ type 4 connectivity)

1 on page 378, 2

on page 378, 3

on page 378

boolean

com.ibm.db2.jcc.DB2BaseDataSource.sslTrustStoreLocation (IBM Data Server Driver for

JDBC and SQLJ type 4 connectivity)

1 on page 378, 2

on page 378, 3

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.sslTrustStorePassword (IBM Data Server Driver for

JDBC and SQLJ type 4 connectivity)

1 on page 378, 2

on page 378, 3

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.statementConcentrator 2 on page 378 int

com.ibm.db2.jcc.DB2BaseDataSource.streamBufferSize 1 on page 378, 2

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.supportsAsynchronousXARollback 1 on page 378, 2

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.sysSchema 1 on page 378, 2

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.timeFormat 1 on page 378, 2

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.timestampFormat 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.timestampPrecisionReporting 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.traceDirectory 1 on page 378, 2

on page 378, 3

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.traceFile 1 on page 378, 2

on page 378, 3

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.traceFileAppend 1 on page 378, 2

on page 378, 3

on page 378

boolean

com.ibm.db2.jcc.DB2BaseDataSource.traceLevel 1 on page 378, 2

on page 378, 3

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.useCachedCursor 1 on page 378, 2

on page 378

boolean

com.ibm.db2.jcc.DB2BaseDataSource.useJDBC4ColumnNameAndLabelSemantics 1 on page 378, 2

on page 378

int

com.ibm.db2.jcc.DB2BaseDataSource.user 1 on page 378, 2

on page 378, 3

on page 378

String

com.ibm.db2.jcc.DB2BaseDataSource.useRowsetCursor 1 on page 378 boolean

com.ibm.db2.jcc.DB2BaseDataSource.useTransactionRedirect 2 on page 378 boolean

com.ibm.db2.jcc.DB2BaseDataSource.xaNetworkOptimization 1 on page 378, 2

on page 378, 3

on page 378

boolean

com.ibm.db2.jcc.DB2BaseDataSource.DBANSIWARN 3 on page 378 boolean

com.ibm.db2.jcc.DB2BaseDataSource.DBDATE 3 on page 378 String

com.ibm.db2.jcc.DB2BaseDataSource.DBPATH 3 on page 378 String

com.ibm.db2.jcc.DB2BaseDataSource.DBSPACETEMP 3 on page 378 String

com.ibm.db2.jcc.DB2BaseDataSource.DBTEMP 3 on page 378 String

Chapter 12. JDBC and SQLJ reference information 377

Table 99. DB2BaseDataSource properties and their data types (continued)

Property name

Applicable data

sources Data type

com.ibm.db2.jcc.DB2BaseDataSource.DBUPSPACE 3 String

com.ibm.db2.jcc.DB2BaseDataSource.DELIMIDENT 3 boolean

com.ibm.db2.jcc.DB2BaseDataSource.IFX_DIRECTIVES 3 String

com.ibm.db2.jcc.DB2BaseDataSource.IFX_EXTDIRECTIVES 3 String

com.ibm.db2.jcc.DB2BaseDataSource.IFX_UPDDESC 3 String

com.ibm.db2.jcc.DB2BaseDataSource.IFX_XASTDCOMPLIANCE_XAEND 3 String

com.ibm.db2.jcc.DB2BaseDataSource.INFORMIXOPCACHE 3 String

com.ibm.db2.jcc.DB2BaseDataSource.INFORMIXSTACKSIZE 3 String

com.ibm.db2.jcc.DB2BaseDataSource.NODEFDAC 3 String

com.ibm.db2.jcc.DB2BaseDataSource.OPTCOMPIND 3 String

com.ibm.db2.jcc.DB2BaseDataSource.OPTOFC 3 String

com.ibm.db2.jcc.DB2BaseDataSource.PDQPRIORITY 3 String

com.ibm.db2.jcc.DB2BaseDataSource.PSORT_DBTEMP 3 String

com.ibm.db2.jcc.DB2BaseDataSource.PSORT_NPROCS 3 String

com.ibm.db2.jcc.DB2BaseDataSource.STMT_CACHE 3 String

Note: The property applies to connections to the following data sources:

1. DB2 for z/OS

2. DB2 Database for Linux, UNIX, and Windows

3. IBM Informix Dynamic Server

DB2BaseDataSource methods

In addition to the getXXX and setXXX methods for the DB2BaseDataSource

properties, the following methods are defined only for the IBM Data Server Driver

for JDBC and SQLJ.

getReference

Format:

public javax.naming.Reference getReference()

 throws javax.naming.NamingException

Retrieves the Reference of a DataSource object. For an explanation of a

Reference, see the description of javax.naming.Referenceable in the JNDI

documentation at:

http://java.sun.com/products/jndi/docs.html

DB2CallableStatement interface

The com.ibm.db2.jcc.DB2CallableStatement interface extends the

java.sql.CallableStatement and the com.ibm.db2.jcc.DB2PreparedStatement

interfaces.

DB2CallableStatement methods

The following methods are defined only for the IBM Data Server Driver for JDBC

and SQLJ.

registerJccOutParameterAtName

Formats:

378 Developing Java Applications

public void registerJccOutParameterAtName(String parameterMarkerName,

 int sqlType)

 throws java.sql.SQLException

public void registerJccOutParameterAtName(String parameterMarkerName,

 int sqlType,

 int scale)

 throws java.sql.SQLException

public void registerJccOutParameterAtName(String parameterMarkerName,

 int sqlType,

 String typeName)

 throws java.sql.SQLException

Registers an OUT parameter that is identified by parameterMarkerName as the

JDBC type sqlType.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker for the parameter that is to be

registered.

sqlType

The JDBC type code, as defined in java.sql.Types, of the parameter that is

to be registered.

scale

The scale of the parameter that is to be registered. This parameter applies

only to this case:

v If sqlType is java.sql.Types.DECIMAL or java.sql.Types.NUMERIC, scale is

the number of digits to the right of the decimal point.

typeName

If jdbcType is java.sql.Types.DISTINCT or java.sql.Types.REF, the

fully-qualified name of the SQL user-defined type of the parameter that is

to be registered.

setJccXXXAtName methods

These methods are inherited from DB2PreparedStatement.

DB2CataloguedDatabase class

The com.ibm.db2.jcc.DB2CataloguedDatabase class contains methods that retrieve

information about a local DB2 Database for Linux, UNIX, and Windows database.

No database connection is needed for calling DB2CataloguedDatabase methods.

DB2CataloguedDatabase methods

getServerName

Format:

public String getServerName()

Retrieves the name of the server on which the database resides.

getPortNumber

Format:

public int getPortNumber()

Retrieves the port number that is associated with the DB2 instance.

Chapter 12. JDBC and SQLJ reference information 379

getDatabaseName

Format:

public String getDatabaseName()

Retrieves the database name.

getDatabaseAlias

Format:

public String getDatabaseAlias()

Retrieves the database alias.

DB2ClientRerouteServerList class

The com.ibm.db2.jcc.DB2ClientRerouteServerList class implements the

java.io.Serializable and javax.naming.Referenceable interfaces.

DB2ClientRerouteServerList methods

getAlternatePortNumber

Format:

public int[] getAlternatePortNumber()

Retrieves the port numbers that are associated with the alternate servers.

getAlternateServerName

Format:

public String[] getAlternateServerName()

Retrieves an array that contains the names of the alternate servers. These

values are IP addresses or DNS server names.

getPrimaryPortNumber

Format:

public int getPrimaryPortNumber()

Retrieves the port number that is associated with the primary server.

getPrimaryServerName

Format:

public String[] getPrimaryServerName()

Retrieves the name of the primary server. This value is an IP address or a DNS

server name.

setAlternatePortNumber

Format:

public void setAlternatePortNumber(int[] alternatePortNumberList)

Sets the port numbers that are associated with the alternate servers.

setAlternateServerName

Format:

public void setAlternateServerName(String[] alternateServer)

Sets the alternate server names for servers. These values are IP addresses or

DNS server names.

380 Developing Java Applications

setPrimaryPortNumber

Format:

public void setPrimaryPortNumber(int primaryPortNumber)

Sets the port number that is associated with the primary server.

setPrimaryServerName

Format:

public void setPrimaryServerName(String primaryServer)

Sets the primary server name for a server. This value is an IP address or a

DNS server name.

DB2Connection interface

The com.ibm.db2.jcc.DB2Connection interface extends the java.sql.Connection

interface.

DB2Connection implements the java.sql.Wrapper interface.

DB2Connection methods

The following methods are defined only for the IBM Data Server Driver for JDBC

and SQLJ.

alternateWasUsedOnConnect

Format:

public boolean alternateWasUsedOnConnect()

 throws java.sql.SQLException

Returns true if the driver used alternate server information to obtain the

connection. The alternate server information is available in the transient

clientRerouteServerList information on the DB2BaseDataSource, which the

database server updates as primary and alternate servers change.

changeDB2Password

Format:

public abstract void changeDB2Password(String oldPassword,

 String newPassword)

 throws java.sql.SQLException

Changes the password for accessing the data source, for the user of the

Connection object.

Parameter descriptions:

oldPassword

The original password for the Connection.

newPassword

The new password for the Connection.

createArrayOf

Format:

Array createArrayOf(String typeName,

 Object[] elements)

 throws SQLException;

Creates a java.sql.Array object.

Chapter 12. JDBC and SQLJ reference information 381

Parameter descriptions:

typeName

The SQL data type of the elements of the array map to. typeName can be a

built-in data type or a distinct type.

elements

The elements that populate the Array object.

deregisterDB2XmlObject

Formats:

public void deregisterDB2XmlObject(String sqlIdSchema,

 String sqlIdName)

 throws SQLException

Removes a previously registered XML schema from the data source.

Parameter descriptions:

sqlIdSchema

The SQL schema name for the XML schema. sqlIdSchema is a String value

with a maximum length of 128 bytes. The value of sqlIdSchema must

conform to the naming rules for any SQL schema name. The name cannot

begin with the string ’SYS’. If the value of sqlIdSchema is null, the

database system uses the value in the CURRENT SCHEMA special register.

sqlIdName

The SQL name for the XML schema. sqlIdName is a String value with a

maximum length of 128 bytes. The value of sqlIdName must conform to

the rules for an SQL identifier. If the value of sqlIdSchema is null, the

value of sqlIdName can be null, In that case, the database system generates

the value for sqlIdName.

getDB2ClientProgramId

Format:

public String getDB2ClientProgramId()

 throws java.sql.SQLException

Returns the user-defined program identifier for the client. The program

identifier can be used to identify the application at the data source.

getDB2ClientAccountingInformation

Format:

public String getDB2ClientAccountingInformation()

 throws SQLException

Returns accounting information for the current client.

Important: getDB2ClientAccountingInformation is deprecated in the JDBC 4.0

implementation of the IBM Data Server Driver for JDBC and SQLJ. Use

java.sql.Connection.getClientInfo instead.

getDB2ClientApplicationInformation

Format:

public String getDB2ClientApplicationInformation()

 throws java.sql.SQLException

Returns application information for the current client.

Important: getDB2ClientApplicationInformation is deprecated in the JDBC 4.0

implementation of the IBM Data Server Driver for JDBC and SQLJ. Use

java.sql.Connection.getClientInfo instead.

382 Developing Java Applications

getDB2ClientUser

Format:

public String getDB2ClientUser()

 throws java.sql.SQLException

Returns the current client user name for the connection. This name is not the

user value for the JDBC connection.

Important: getDB2ClientUser is deprecated in the JDBC 4.0 implementation of

the IBM Data Server Driver for JDBC and SQLJ. Use

java.sql.Connection.getClientInfo instead.

getDB2ClientWorkstation

Format:

public String getDB2ClientWorkstation()

 throws java.sql.SQLException

Returns current client workstation name for the current client.

Important: getDB2ClientWorkstation is deprecated in the JDBC 4.0

implementation of the IBM Data Server Driver for JDBC and SQLJ. Use

java.sql.Connection.getClientInfo instead.

getDB2Correlator

Format:

String getDB2Correlator()

 throws java.sql.SQLException

Returns the value of the crrtkn (correlation token) instance variable that DRDA

sends with the ACCRDB command. The correlation token uniquely identifies a

logical connection to a server.

getDB2CurrentPackagePath

Format:

public String getDB2CurrentPackagePath()

 throws java.sql.SQLException

Returns the list of DB2 package collections that are searched for JDBC and

SQLJ packages.

The getDB2CurrentPackagePath method applies only to connections to DB2

database systems.

getDB2CurrentPackageSet

Format:

public String getDB2CurrentPackageSet()

 throws java.sql.SQLException

Returns the collection ID for the connection.

The getDB2CurrentPackageSet method applies only to connections to DB2

database systems.

getDB2ProgressiveStreaming

Format:

public int getDB2ProgressiveStreaming()

 throws java.sql.SQLException

Returns the current progressive streaming setting for the connection.

Chapter 12. JDBC and SQLJ reference information 383

The returned value depends on whether the data source supports progressive

streaming, how the progressiveStreaming property is set, and whether

DB2Connection.setProgressiveStreaming was called:

v If the data source does not support progressive streaming, 2 (NO) is always

returned, regardless of the progressiveStreaming property setting.

v If the data source supports progressive streaming, and

DB2Connection.setProgressiveStreaming was called, the returned value is the

value that DB2Connection.setProgressiveStreaming set.

v If the data source supports progressive streaming, and

DB2Connection.setProgressiveStreaming was not called, the returned value is

2 (NO) if progressiveStreaming was set to DB2BaseDataSource.NO. If

progressiveStreaming was set to DB2BaseDataSource.YES or was not set, the

returned value is 1 (YES).

getDB2SecurityMechanism

Format:

public int getDB2SecurityMechanism()

 throws java.sql.SQLException

Returns the security mechanism that is in effect for the connection:

3 Clear text password security

4 User ID-only security

7 Encrypted password security

9 Encrypted user ID and password security

11 Kerberos security

12 Encrypted user ID and data security

13 Encrypted user ID, password, and data security

15 Plugin security

16 Encrypted user ID-only security

getDB2SystemMonitor

Format:

public abstract DB2SystemMonitor getDB2SystemMonitor()

 throws java.sql.SQLException

Returns the system monitor object for the connection. Each IBM Data Server

Driver for JDBC and SQLJ connection can have a single system monitor.

getDBConcurrentAccessResolution

Format:

public int getDBConcurrentAccessResolution()

 throws java.sql.SQLException

Returns the concurrent access setting for the connection. The concurrent access

setting is set by the setDBConcurrentAccessResolution method or by the

concurrentAccessResolution property.

getDBProgressiveStreaming

Format:

public int getDB2ProgressiveStreaming()

 throws java.sql.SQLException

Returns the current progressive streaming setting for the connection.

384 Developing Java Applications

The returned value depends on whether the data source supports progressive

streaming, how the progressiveStreaming property is set, and whether

DB2Connection.setProgressiveStreaming was called:

v If the data source does not support progressive streaming, 2 (NO) is always

returned, regardless of the progressiveStreaming property setting.

v If the data source supports progressive streaming, and

DB2Connection.setProgressiveStreaming was called, the returned value is the

value that DB2Connection.setProgressiveStreaming set.

v If the data source supports progressive streaming, and

DB2Connection.setProgressiveStreaming was not called, the returned value is

2 (NO) if progressiveStreaming was set to DB2BaseDataSource.NO. If

progressiveStreaming was set to DB2BaseDataSource.YES or was not set, the

returned value is 1 (YES).

getDBStatementConcentrator

Format:

public int getDBStatementConcentrator()

 throws java.sql.SQLException

Returns the statement concentrator use setting for the connection. The

statement concentrator use setting is set by the setDBStatementConcentrator

method or by the statementConcentrator property.

getJccLogWriter

Format:

public PrintWriter getJccLogWriter()

 throws java.sql.SQLException

Returns the current trace destination for the IBM Data Server Driver for JDBC

and SQLJ trace.

getJccSpecialRegisterProperties

Format:

public java.util.Properties getJccSpecialRegisterProperties()

 throws java.sql.SQLException

Returns a java.util.Properties object, in which the keys are the special registers

that are supported at the target data source, and the key values are the current

values of those special registers.

This method does not apply to connections to IBM Informix Dynamic Server

data sources.

getSavePointUniqueOption

Format:

public boolean getSavePointUniqueOption()

 throws java.sql.SQLException

Returns true if a unique savepoint was previously set. Returns false

otherwise.

installDB2JavaStoredProcedure

Format:

public void DB2Connection.installDB2JavaStoredProcedure(

 java.io.InputStream jarFile,

 int jarFileLength,

 String jarId)

 throws java.sql.SQLException

Chapter 12. JDBC and SQLJ reference information 385

Invokes the sqlj.install_jar stored procedure on a DB2 Database for Linux,

UNIX, and Windows server to create a new definition of a JAR file in the

catalog for that server.

Parameter descriptions:

jarFile

The contents of the JAR file that is to be defined to the server.

jarFileLength

The length of the JAR file that is to be defined to the server.

jarId

The name of the JAR in the database, in the form schema.JAR-id or JAR-id.

This is the name that you use when you refer to the JAR in SQL

statements. If you omit schema, the database system uses the SQL

authorization ID that is in the CURRENT SCHEMA special register. The

owner of the JAR is the authorization ID in the CURRENT SQLID special

register.

This method does not apply to connections to IBM Informix Dynamic Server

data sources.

isDB2Alive

Format:

public boolean DB2Connection.isDB2Alive()

 throws java.sql.SQLException

Returns true if the socket for a connection to the data source is still active.

Important: isDB2Alive is deprecated in the JDBC 4.0 implementation of the

IBM Data Server Driver for JDBC and SQLJ. Use Connection.isValid instead.

isDBValid

Format:

public boolean DB2Connection.isDBValid(boolean throwException, int timeout)

 throws java.sql.SQLException

Returns true if the connection has not been closed and is still valid. Returns

false otherwise.

Parameter descriptions:

throwException

Specifies whether isDBValid throws an SQLException if the connection is

not valid. Possible values are:

true isDBValid throws an SQLException if the connection is not valid.

false isDBValid throws an SQLException only if the value of timeout is

less than 0.

timeout

The time in seconds to wait for a database operation that the driver

submits to complete. The driver submits that database operation to the

data source to validate the connection. If the timeout period expires before

the database operation completes, isDBValid returns false. A value of 0

indicates that there is no timeout period for the database operation.

This method does not apply to connections to IBM Informix Dynamic Server

data sources.

386 Developing Java Applications

prepareDB2OptimisticLockingQuery

Format:

public java.sql.PreparedStatement

 DB2Connection.prepareDB2OptimisticLockingQuery(String sql,

 int returnOptimisticLockingColumns)

 throws SQLException

Creates a PreparedStatement object that can request optimistic locking

information.

Parameter descriptions:

sql

The SQL statement that is to be prepared.

returnOptimisticLockingColumns

Specifies whether optimistic locking columns are returned. Possible values

are:

 Value Description

DB2Statement.RETURN_OPTLOCK_COLUMN_NONE (0) Do not return optimistic locking columns.

DB2Statement.RETURN_OPTLOCK_COLUMN_ALWAYS (1) Add row change columns to the result set even if

they do not uniquely represent a single row. This

setting is equivalent to the database prepare attribute

WITH ROW CHANGE COLUMNS POSSIBLY

DISTINCT.

DB2Statement.RETURN_OPTLOCK_COLUMN_NO_FALSE_NEGATIVES (2) Add row change columns to the result set only if they

uniquely represent a single row. This setting is

equivalent to the database prepare attribute WITH

ROW CHANGE COLUMNS ALWAYS DISTINCT.

reconfigureDB2Connection

Format:

public void reconfigureDB2Connection(java.util.Properties properties)

 throws SQLException

Reconfigures a connection with new settings. The connection does not need to

be returned to a connection pool before it is reconfigured. This method can be

called while a transaction is in progress, and can be used for trusted or

untrusted connections.

Trusted connections are supported for:

v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2

Database for Linux, UNIX, and Windows Version 9.5 or later, and DB2 for

z/OS Version 9.1 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for

z/OS Version 9.1 or later

Parameter descriptions:

properties

New properties for the connection. These properties override any

properties that are already defined on the DB2Connection instance.

registerDB2XmlSchema

Formats:

public void registerDB2XmlSchema(String[] sqlIdSchema,

 String[] sqlIdName,

 String[] xmlSchemaLocations,

 InputStream[] xmlSchemaDocuments,

Chapter 12. JDBC and SQLJ reference information 387

int[] xmlSchemaDocumentsLengths,

 InputStream[] xmlSchemaDocumentsProperties,

 int[] xmlSchemaDocumentsPropertiesLengths,

 InputStream xmlSchemaProperties,

 int xmlSchemaPropertiesLength,

 boolean isUsedForShredding)

 throws SQLException

public void registerDB2XmlSchema(String[] sqlIdSchema,

 String[] sqlIdName,

 String[] xmlSchemaLocations,

 String[] xmlSchemaDocuments,

 String[] xmlSchemaDocumentsProperties,

 String xmlSchemaProperties,

 boolean isUsedForShredding)

 throws SQLException

Registers an XML schema with one or more XML schema documents. If

multiple XML schema documents are processed with one call to

registerDB2XmlSchema, those documents are processed as part of a single

transaction.

The first form of registerDB2XmlSchema is for XML schema documents that

are read from an input stream. The second form of registerDB2XmlSchema is

for XML schema documents that are read from strings.

Parameter descriptions:

sqlIdSchema

The SQL schema name for the XML schema. Only the first element of the

sqlIdSchema array is used. sqlIdSchema is a String value with a maximum

length of 128 bytes. The value of sqlIdSchema must conform to the naming

rules for any SQL schema name. The name cannot begin with the string

’SYS’. If the value of sqlIdSchema is null, the database system uses the

value in the CURRENT SCHEMA special register.

sqlIdName

The SQL name for the XML schema. Only the first element of the

sqlIdName array is used. sqlIdName is a String value with a maximum

length of 128 bytes. The value of sqlIdName must conform to the rules for

an SQL identifier. If the value of sqlIdSchema is null, the value of

sqlIdName can be null, In that case, the database system generates the

value for sqlIdName.

xmlSchemaLocations

XML schema locations for the primary XML schema documents of the

schemas that are being registered. XML schema location values are

normally in URI format. Each xmlSchemaLocations value is a String value

with a maximum length of 1000 bytes. The value is used only to match the

information that is specified in the XML schema document that references

this document. The database system does no validation of the format, and

no attempt is made to resolve the URI.

xmlSchemaDocuments

The content of the primary XML schema documents. Each

xmlSchemaDocuments value is a String or InputStream value with a

maximum length of 30MB. The values must not be null.

xmlSchemaDocumentsLengths

The lengths of the XML schema documents in the xmlSchemaDocuments

parameter, if the first form of registerDB2XmlSchema is used. Each

xmlSchemaDocumentsLengths value is an int value.

388 Developing Java Applications

xmlSchemaDocumentsProperties

Contains properties of the primary XML schema documents, such as

properties that are used by an external XML schema versioning system.

The database system does no validation of the contents of these values.

They are stored in the XSR table for retrieval and used in other tools and

XML schema repository implementations. Each

xmlSchemaDocumentsProperties value is a String or InputStream value

with a maximum length of 5MB. A value is null if there are no properties

to be passed.

xmlSchemaDocumentsPropertiesLengths

The lengths of the XML schema properties in the

xmlSchemaDocumentsProperties parameter, if the first form of

registerDB2XmlSchema is used. Each

xmlSchemaDocumentsPropertiesLengths value is an int value.

xmlSchemaProperties

Contains properties of the entire XML schema, such as properties that are

used by an external XML schema versioning system. The database system

does no validation of the contents of this value. They are stored in the XSR

table for retrieval and used in other tools and XML schema repository

implementations. The xmlSchemaProperties value is a String or

InputStream value with a maximum length of 5MB. The value is null if

there are no properties to be passed.

xmlSchemaPropertiesLengths

The length of the XML schema property in the xmlSchemaProperties

parameter, if the first form of registerDB2XmlSchema is used. The

xmlSchemaPropertiesLengths value is an int value.

isUsedForShredding

Indicates whether there are annotations in the schema that are to be used

for XML decomposition. isUsedForShredding is a boolean value.

This method does not apply to connections to IBM Informix Dynamic Server

data sources.

setDBConcurrentAccessResolution

Format:

public void setDBConcurrentAccessResolution(int concurrentAccessResolution)

 throws java.sql.SQLException

Specifies whether the IBM Data Server Driver for JDBC and SQLJ requests that

a read transaction can access a committed and consistent image of rows that

are incompatibly locked by write transactions, if the data source supports

accessing currently committed data, and the application isolation level is cursor

stability (CS) or read stability (RS). This option has the same effect as the DB2

CONCURRENTACCESSRESOLUTION bind option.

setDBConcurrentAccessResolution affects only statements that are created after

setDBConcurrentAccessResolution is executed.

 Parameter descriptions:

concurrentAccessResolution

One of the following integer values:

DB2BaseDataSource.-
CONCURRENTACCESS_USE_CURRENTLY_COMMITTED (1)

The IBM Data Server Driver for JDBC and SQLJ requests that:

Chapter 12. JDBC and SQLJ reference information 389

v Read transactions access the currently committed data when the

data is being updated or deleted.

v Read transactions skip rows that are being inserted.

DB2BaseDataSource.CONCURRENTACCESS_WAIT_FOR_OUTCOME

(2) The IBM Data Server Driver for JDBC and SQLJ requests that:

v Read transactions wait for a commit or rollback operation when

they encounter data that is being updated or deleted.

v Read transactions do not skip rows that are being inserted.

DB2BaseDataSource.CONCURRENTACCESS_NOT_SET (0)

Enables the data server’s default behavior for read transactions

when lock contention occurs. This is the default value.

setDBProgressiveStreaming

Format:

public void setDB2ProgressiveStreaming(int newSetting)

 throws java.sql.SQLException

Sets the progressive streaming setting for all ResultSet objects that are created

on the connection.

Parameter descriptions:

newSetting

The new progresssive streaming setting. Possible values are:

DB2BaseDataSource.YES (1)

Enable progressive streaming. If the data source does not support

progressive streaming, this setting has no effect.

DB2BaseDataSource.NO (2)

Disable progressive streaming.

setDBStatementConcentrator

Format:

public void setDBStatementConcentrator(int statementConcentratorUse)

 throws java.sql.SQLException

Specifies whether the IBM Data Server Driver for JDBC and SQLJ uses the data

source’s statement concentrator functionality. The statement concentrator is the

ability to bypass preparation of a statement when it is the same as a statement

in the dynamic statement cache, except for literal values. Statement

concentrator functionality applies only to SQL statements that have literals but

no parameter markers. setDBStatementConcentrator overrides the setting of the

statementConcentrator Connection or DataSource property.

setDBStatementConcentrator affects only statements that are created after

setDBStatementConcentrator is executed.

 Parameter descriptions:

statementConcentratorUse

One of the following integer values:

DB2BaseDataSource.STATEMENT_CONCENTRATOR_OFF (1)

The IBM Data Server Driver for JDBC and SQLJ does not use the

data source’s statement concentrator functionality.

DB2BaseDataSource.STATEMENT_CONCENTRATOR_WITH_LITERALS

(2) The IBM Data Server Driver for JDBC and SQLJ uses the data

source’s statement concentrator functionality.

390 Developing Java Applications

DB2BaseDataSource.STATEMENT_CONCENTRATOR_NOT_SET (0)

The data source determines whether statement concentrator

functionality is used. This is the default value.

 For DB2 Database for Linux, UNIX, and Windows data sources

that support statement concentrator functionality, the functionality

is used if the STMT_CONC configuration parameter is set to ON.

Otherwise, statement concentrator functionality is not used.

updateDB2XmlSchema

Format:

public void updateDB2XmlSchema(String[] targetSqlIdSchema,

 String[] targetSqlIdName,

 String[] sourceSqlIdSchema,

 String[] sourceSqlIdName,

 String[] xmlSchemaLocations,

 boolean dropSourceSchema)

 throws SQLException

Updates the contents of an XML schema with the contents of another XML

schema in the XML schema repository, and optionally drops the source

schema. The schema documents in the target XML schema are replaced with

the schema documents from the source XML schema. Before

updateDB2XmlSchema can be called, registration of the source and target XML

schemas must be completed.

The SQL ALTERIN privilege is required for updating the target XML schema.

The SQL DROPIN privilege is required for dropping the source XML schema.

Parameter descriptions:

targetSqlIdSchema

The SQL schema name for a registered XML schema that is to be updated.

targetSqlIdSchema is a String value with a maximum length of 128 bytes.

targetSqlIdName

The name of the registered XML schema that is to be updated.

targetSqlIdName is a String value with a maximum length of 128 bytes.

sourceSqlIdSchema

The SQL schema name for a registered XML schema that is used to update

the target XML schema. sourceSqlIdSchema is a String value with a

maximum length of 128 bytes.

sourceSqlIdName

The name of the registered XML schema that is used to update the target

XML schema. sourceSqlIdName is a String value with a maximum length

of 128 bytes.

dropSourceSchema

Indicates whether the source XML schema is to be dropped after the target

XML schema is updated. dropSourceSchema is a boolean value. false is

the default.

This method does not apply to connections to IBM Informix Dynamic Server

data sources.

removeDB2JavaStoredProcedure

Format:

public void DB2Connection.removeDB2JavaStoredProcedure(

 String jarId)

 throws java.sql.SQLException

Chapter 12. JDBC and SQLJ reference information 391

Invokes the sqlj.remove_jar stored procedure on a DB2 Database for Linux,

UNIX, and Windows server to delete the definition of a JAR file from the

catalog for that server.

Parameter descriptions:

jarId

The name of the JAR in the database, in the form schema.JAR-id or JAR-id.

This is the name that you use when you refer to the JAR in SQL

statements. If you omit schema, the database system uses the SQL

authorization ID that is in the CURRENT SCHEMA special register.

This method does not apply to connections to IBM Informix Dynamic Server

data sources.

replaceDB2JavaStoredProcedure

Format:

public void DB2Connection.replaceDB2JavaStoredProcedure(

 java.io.InputStream jarFile,

 int jarFileLength,

 String jarId)

 throws java.sql.SQLException

Invokes the sqlj.replace_jar stored procedure on a DB2 Database for Linux,

UNIX, and Windows server to replace the definition of a JAR file in the catalog

for that server.

Parameter descriptions:

jarFile

The contents of the JAR file that is to be replaced on the server.

jarFileLength

The length of the JAR file that is to be replace on the server.

jarId

The name of the JAR in the database, in the form schema.JAR-id or JAR-id.

This is the name that you use when you refer to the JAR in SQL

statements. If you omit schema, the database system uses the SQL

authorization ID that is in the CURRENT SCHEMA special register. The

owner of the JAR is the authorization ID in the CURRENT SQLID special

register.

This method does not apply to connections to IBM Informix Dynamic Server

data sources.

reuseDB2Connection (trusted connection reuse)

Formats:

public void reuseDB2Connection(byte[] cookie,

 String user,

 String password,

 String usernameRegistry,

 byte[] userSecToken,

 String originalUser,

 java.util.Properties properties)

 throws java.sql.SQLException

public void reuseDB2Connection(byte[] cookie,

 org.ietf.GSSCredential gssCredential,

 String usernameRegistry,

 byte[] userSecToken,

 String originalUser,

 java.util.Properties properties)

 throws java.sql.SQLException

392 Developing Java Applications

Trusted connections are supported for:

v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2

Database for Linux, UNIX, and Windows Version 9.5 or later, and DB2 for

z/OS Version 9.1 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for

z/OS Version 9.1 or later

The second of these forms of reuseDB2Connection does not apply to IBM Data

Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.

These forms of reuseDB2Connection are used by a trusted application server to

reuse a preexisting trusted connection on behalf of a new user. Properties that

can be reset are passed, including the new user ID. The database server resets

the associated physical connection. If reuseDB2Connection executes

successfully, the connection becomes available for immediate use, with

different properties, by the new user.

Parameter descriptions:

cookie

A unique cookie that the JDBC driver generates for the Connection

instance. The cookie is known only to the application server and the

underlying JDBC driver that established the initial trusted connection. The

application server passes the cookie that was created by the driver when

the pooled connection instance was created. The JDBC driver checks that

the supplied cookie matches the cookie of the underlying trusted physical

connection to ensure that the request originated from the application server

that established the trusted physical connection. If the cookies match, the

connection becomes available for immediate use, with different properties,

by the new user .

user

The client ID that the database system uses to establish the database

authorization ID. If the user was not authenticated by the application

server, the application server needs to pass a client ID that represents an

unauthenticated user.

password

The password for user.

gssCredential

If the data source uses Kerberos security, specifies a delegated credential

that is passed from another principal.

userNameRegistry

A name that identifies a mapping service that maps a workstation user ID

to a z/OS RACF ID. An example of a mapping service is the Integrated

Security Services Enterprise Identity Mapping (EIM). The mapping service

is defined by a plugin. Valid values for userNameRegistry are defined by the

plugin providers. If userNameRegistry is null, no mapping of user is done.

userSecToken

The client’s security tokens. This value is traced as part of DB2 for z/OS

accounting data. The content of userSecToken is described by the application

server and is referred to by the database system as an application server

security token.

originalUser

The original user ID that was used by the application server.

Chapter 12. JDBC and SQLJ reference information 393

properties

Properties for the reused connection.

reuseDB2Connection (untrusted reuse with reauthentication)

Formats:

public void reuseDB2Connection(String user,

 String password,

 java.util.Properties properties)

 throws java.sql.SQLException

public void reuseDB2Connection(

 org.ietf.jgss.GSSCredential gssCredential,

 java.util.Properties properties)

 throws java.sql.SQLException

The first of these forms of reuseDB2Connection is not supported for IBM Data

Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.

The second of these forms of reuseDB2Connection does not apply to IBM Data

Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for z/OS.

In a heterogeneous pooling environment, these forms of reuseDB2Connection

reuse an existing Connection instance after reauthentication.

Parameter description:

user

The authorization ID that is used to establish the connection.

password

The password for the authorization ID that is used to establish the

connection.

gssCredential

If the data source uses Kerberos security, specifies a delegated credential

that is passed from another principal.

properties

Properties for the reused connection. These properties override any

properties that are already defined on the DB2Connection instance.

reuseDB2Connection (untrusted or trusted reuse without reauthentication)

Formats:

public void reuseDB2Connection(java.util.Properties properties)

 throws java.sql.SQLException

Reuses an existing Connection instance without reauthentication. This method

is intended for reuse of a Connection instance when the properties do not

change.

Trusted connections are supported for:

v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2

Database for Linux, UNIX, and Windows Version 9.5 or later, and DB2 for

z/OS Version 9.1 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for

z/OS Version 9.1 or later

This method is for dirty reuse of a connection. This means that the connection

state is not reset when the object is reused from the pool. Special register

settings and property settings remain in effect unless they are overridden by

passed properties. Global temporary tables are not deleted. Properties that are

not specified are not re-initialized. All JDBC standard transient properties, such

as the isolation level, autocommit mode, and read-only mode are reset to their

394 Developing Java Applications

JDBC defaults. Certain properties, such as user, password, databaseName,

serverName, portNumber, planName, and pkList remain unchanged.

Parameter description:

properties

Properties for the reused connection. These properties override any

properties that are already defined on the DB2Connection instance.

setDB2ClientAccountingInformation

Format:

public void setDB2ClientAccountingInformation(String info)

 throws java.sql.SQLException

Specifies accounting information for the connection. This information is for

client accounting purposes. This value can change during a connection.

Parameter description:

info

User-specified accounting information. The maximum length depends on

the server. For a DB2 Database for Linux, UNIX, and Windows server, the

maximum length is 255 bytes. For a DB2 for z/OS server, the maximum

length is 22 bytes. A Java empty string (″″) is valid for this parameter

value, but a Java null value is not valid.

Important: setDB2ClientAccountingInformation is deprecated in the JDBC 4.0

implementation of the IBM Data Server Driver for JDBC and SQLJ. Use

java.sql.Connection.setClientInfo instead.

setDB2ClientApplicationInformation

Format:

public String setDB2ClientApplicationInformation(String info)

 throws java.sql.SQLException

Specifies application information for the current client.

Important: setDB2ClientApplicationInformation is deprecated in the JDBC 4.0

implementation of the IBM Data Server Driver for JDBC and SQLJ. Use

java.sql.Connection.setClientInfo instead.

Parameter description:

info

User-specified application information. The maximum length depends on

the server. For a DB2 Database for Linux, UNIX, and Windows server, the

maximum length is 255 bytes. For a DB2 for z/OS server, the maximum

length is 32 bytes. A Java empty string (″″) is valid for this parameter

value, but a Java null value is not valid.

setDB2ClientDebugInfo

Formats:

public void setDB2ClientDebugInformation(String debugInfo)

 throws java.sql.SQLException

public void setDB2ClientDebugInformation(String mgrInfo,

 String traceInfo)

 throws java.sql.SQLException

Sets a value for the CLIENT DEBUGINFO connection attribute, to notify the

database system that stored procedures and user-defined functions that are

using the connection are running in debug mode. CLIENT DEBUGINFO is

used by the DB2 Unified Debugger. Use the first form to set the entire CLIENT

Chapter 12. JDBC and SQLJ reference information 395

DEBUGINFO string. Use the second form to modify only the session manager

and trace information in the CLIENT DEBUGINFO string.

The setDB2ClientDebugInfo method applies only to connections to DB2 for

z/OS database systems.

Setting the CLIENT DEBUGINFO attribute to a string of length greater than

zero requires one of the following privileges:

v The DEBUGSESSION privilege

v SYSADM authority

Parameter description:

debugInfo

A string of up to 254 bytes, in the following form:

Mip:port,Iip,Ppid,Ttid,Cid,Llvl

The parts of the string are:

Mip:port

Session manager IP address and port number

Iip Client IP address

Ppid Client process ID

Ttid Client thread ID (optional)

Cid Data connection generated ID

Llvl Debug library diagnostic trace level

For example:

M9.72.133.89:8355,I9.72.133.89,P4552,T123,C1,L0

See the description of SET CLIENT DEBUGINFO for a detailed description

of this string.

mgrInfo

A string of the following form, which specifies the IP address and port

number for the Unified Debugger session manager.

Mip:port

For example:

M9.72.133.89:8355

See the description of SET CLIENT DEBUGINFO for a detailed description

of this string.

trcInfo

A string of the following form, which specifies the debug library

diagnostics trace level.

Llvl

For example:

L0

See the description of SET CLIENT DEBUGINFO for a detailed description

of this string.

396 Developing Java Applications

This method does not apply to connections to IBM Informix Dynamic Server

data sources.

setDB2ClientProgramId

Format:

public abstract void setDB2ClientProgramId(String program-ID)

 throws java.sql.SQLException

Sets a user-defined program identifier for the connection, on DB2 for z/OS

servers. That program identifier is an 80-byte string that is used to identify the

caller. The DB2 for z/OS server places the string in IFCID 316 trace records

along with other statistics, so that you can identify which program is

associated with a particular SQL statement.

setDB2ClientUser

Format:

public void setDB2ClientUser(String user)

 throws java.sql.SQLException

Specifies the current client user name for the connection. This name is for

client accounting purposes, and is not the user value for the JDBC connection.

Unlike the user for the JDBC connection, the current client user name can

change during a connection.

Parameter description:

user

The user ID for the current client.The maximum length depends on the

server. For a DB2 Database for Linux, UNIX, and Windows server, the

maximum length is 255 bytes. For a DB2 for z/OS server, the maximum

length is 16 bytes. A Java empty string (″″) is valid for this parameter

value, but a Java null value is not valid.

Important: getDB2ClientUser is deprecated in the JDBC 4.0 implementation of

the IBM Data Server Driver for JDBC and SQLJ. Use

java.sql.Connection.getClientInfo instead.

setDB2ClientWorkstation

Format:

public void setDB2ClientWorkstation(String name)

 throws java.sql.SQLException

Specifies the current client workstation name for the connection. This name is

for client accounting purposes. The current client workstation name can change

during a connection.

Parameter description:

name

The workstation name for the current client.The maximum length depends

on the server. For a DB2 Database for Linux, UNIX, and Windows server,

the maximum length is 255 bytes. For a DB2 for z/OS server, the

maximum length is 18 bytes. A Java empty string (″″) is valid for this

parameter value, but a Java null value is not valid.

Important: getDB2ClientWorkstation is deprecated in the JDBC 4.0

implementation of the IBM Data Server Driver for JDBC and SQLJ. Use

java.sql.Connection.getClientInfo instead.

setDB2CurrentPackagePath

Format:

Chapter 12. JDBC and SQLJ reference information 397

public void setDB2CurrentPackagePath(String packagePath)

 throws java.sql.SQLException

Specifies a list of collection IDs that the database system searches for JDBC and

SQLJ packages.

The setDB2CurrentPackagePath method applies only to connections to DB2

database systems.

Parameter description:

packagePath

A comma-separated list of collection IDs.

setDB2CurrentPackageSet

Format:

public void setDB2CurrentPackageSet(String packageSet)

 throws java.sql.SQLException

Specifies the collection ID for the connection. When you set this value, you

also set the collection ID of the IBM Data Server Driver for JDBC and SQLJ

instance that is used for the connection.

The setDB2CurrentPackageSet method applies only to connections to DB2

database systems.

Parameter description:

packageSet

The collection ID for the connection. The maximum length for the

packageSet value is 18 bytes. You can invoke this method as an alternative

to executing the SQL SET CURRENT PACKAGESET statement in your

program.

setDB2ProgressiveStreaming

Format:

public void setDB2ProgressiveStreaming(int newSetting)

 throws java.sql.SQLException

Sets the progressive streaming setting for all ResultSet objects that are created

on the connection.

Parameter descriptions:

newSetting

The new progresssive streaming setting. Possible values are:

DB2BaseDataSource.YES (1)

Enable progressive streaming. If the data source does not support

progressive streaming, this setting has no effect.

DB2BaseDataSource.NO (2)

Disable progressive streaming.

setJccLogWriter

Formats:

public void setJccLogWriter(PrintWriter logWriter)

 throws java.sql.SQLException

public void setJccLogWriter(PrintWriter logWriter, int traceLevel)

 throws java.sql.SQLException

398 Developing Java Applications

Enables or disables the IBM Data Server Driver for JDBC and SQLJ trace, or

changes the trace destination during an active connection.

Parameter descriptions:

logWriter

An object of type java.io.PrintWriter to which the IBM Data Server Driver

for JDBC and SQLJ writes trace output. To turn off the trace, set the value

of logWriter to null.

traceLevel

Specifies the types of traces to collect. See the description of the traceLevel

property in ″Properties for the IBM Data Server Driver for JDBC and SQLJ″

for valid values.

setSavePointUniqueOption

Format:

public void setSavePointUniqueOption(boolean flag)

 throws java.sql.SQLException

Specifies whether an application can reuse a savepoint name within a unit of

recovery. Possible values are:

true A Connection.setSavepoint(savepoint-name) method cannot specify the

same value for savepoint-name more than once within the same unit of

recovery.

false A Connection.setSavepoint(savepoint-name) method can specify the

same value for savepoint-name more than once within the same unit of

recovery.

 When false is specified, if the Connection.setSavepoint(savepoint-
name) method is executed, and a savepoint with the name

savepoint-name already exists within the unit of recovery, the database

manager destroys the existing savepoint, and creates a new savepoint

with the name savepoint-name.

Reuse of a savepoint is not the same as executing

Connection.releaseSavepoint(savepoint-name).

Connection.releaseSavepoint(savepoint-name) releases savepoint-name,

and any savepoints that were subsequently set.

DB2ConnectionPoolDataSource class

DB2ConnectionPoolDataSource is a factory for PooledConnection objects. An object

that implements this interface is registered with a naming service that is based on

the Java Naming and Directory Interface (JNDI).

The com.ibm.db2.jcc.DB2ConnectionPoolDataSource class extends the

com.ibm.db2.jcc.DB2BaseDataSource class, and implements the

javax.sql.ConnectionPoolDataSource, java.io.Serializable, and

javax.naming.Referenceable interfaces.

DB2ConnectionPoolDataSource properties

These properties are defined only for the IBM Data Server Driver for JDBC and

SQLJ. ″Properties for the IBM Data Server Driver for JDBC and SQLJ″ for

explanations of these properties.

Chapter 12. JDBC and SQLJ reference information 399

These properties have a setXXX method to set the value of the property and a

getXXX method to retrieve the value. A setXXX method has this form:

void setProperty-name(data-type property-value)

A getXXX method has this form:

data-type getProperty-name()

Property-name is the unqualified property name, with the first character capitalized.

The following table lists the IBM Data Server Driver for JDBC and SQLJ properties

and their data types.

 Table 100. DB2ConnectionPoolDataSource properties and their data types

Property name Data type

com.ibm.db2.jcc.DB2ConnectionPoolDataSource.maxStatements int

DB2ConnectionPoolDataSource methods

getDB2PooledConnection

Formats:

public DB2PooledConnection getDB2PooledConnection(String user,

 String password,

 java.util.Properties properties)

 throws java.sql.SQLException

public DB2PooledConnection getDB2PooledConnection(

 org.ietf.jgss.GSSCredential gssCredential,

 java.util.Properties properties)

 throws java.sql.SQLException

Establishes the initial untrusted connection in a heterogeneous pooling

environment.

The first form getDB2PooledConnection provides a user ID and password. The

second form of getDB2PooledConnection is for connections that use Kerberos

security.

Parameter descriptions:

user

The authorization ID that is used to establish the connection.

password

The password for the authorization ID that is used to establish the

connection.

gssCredential

If the data source uses Kerberos security, specifies a delegated credential

that is passed from another principal.

properties

Properties for the connection.

getDB2TrustedPooledConnection

Formats:

public Object[] getDB2TrustedPooledConnection(String user,

 String password,

 java.util.Properties properties)

 throws java.sql.SQLException

public Object[] getDB2TrustedPooledConnection(

 java.util.Properties properties)

400 Developing Java Applications

throws java.sql.SQLException

public Object[] getDB2TrustedPooledConnection(

 org.ietf.jgss.GSSCredential gssCredential,

 java.util.Properties properties)

 throws java.sql.SQLException

An application server using a system authorization ID uses this method to

establish a trusted connection.

Trusted connections are supported for:

v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2

Database for Linux, UNIX, and Windows Version 9.5 or later, and DB2 for

z/OS Version 9.1 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for

z/OS Version 9.1 or later

The following elements are returned in Object[]:

v The first element is a trusted DB2PooledConnection instance.

v The second element is a unique cookie for the generated pooled connection

instance.

The first form getDB2TrustedPooledConnection provides a user ID and

password, while the second form of getDB2TrustedPooledConnection uses the

user ID and password of the DB2ConnectionPoolDataSource object. The third

form of getDB2TrustedPooledConnection is for connections that use Kerberos

security.

Parameter descriptions:

user

The DB2 authorization ID that is used to establish the trusted connection to

the database server.

password

The password for the authorization ID that is used to establish the trusted

connection.

gssCredential

If the data source uses Kerberos security, specifies a delegated credential

that is passed from another principal.

properties

Properties for the connection.

DB2DatabaseMetaData interface

The com.ibm.db2.jcc.DB2DatabasemetaData extends the java.sql.DatabaseMetaData

interface.

DB2DatabaseMetaData implements the java.sql.Wrapper interface.

DB2DatabaseMetaData methods:

The following methods are defined only for the IBM Data Server Driver for JDBC

and SQLJ.

isIDSDatabaseAnsiCompliant

Format:

public boolean isIDSDatabaseAnsiCompliant();

Chapter 12. JDBC and SQLJ reference information 401

Returns true if the current active IBM Informix Dynamic Server (IDS) database

is ANSI-compliant. Returns false otherwise.

An ANSI-compliant database is a database that was created with the WITH

LOG MODE ANSI option.

This method applies to connections to IDS data sources only. An SQLException

is thrown if the data source is not an IDS data source.

isIDSDatabaseLogging

Format:

public boolean isIDSDatabaseLogging();

Returns true if the current active IDS database supports logging. Returns false

otherwise.

An IDS database that supports logging is a database that was created with the

WITH LOG MODE ANSI option, the WITH BUFFERED LOG, or the WITH

LOG option.

This method applies to connections to IDS data sources only. An SQLException

is thrown if the data source is not an IDS data source.

isResetRequiredForDB2eWLM

Format:

public boolean isResetRequiredForDB2eWLM();

Returns true if the target database server requires clean reuse to support

eWLM. Returns false otherwise.

supportsDB2ProgressiveStreaming

Format:

public boolean supportsDB2ProgressiveStreaming();

Returns true if the target data source supports progressive streaming. Returns

false otherwise.

DB2Diagnosable interface

The com.ibm.db2.jcc.DB2Diagnosable interface provides a mechanism for getting

DB2 diagnostics from an SQLException.

DB2Diagnosable methods

The following methods are defined only for the IBM Data Server Driver for JDBC

and SQLJ.

getSqlca

Format:

public DB2Sqlca getSqlca();

Returns a DB2Sqlca object from a java.sql.Exception that is produced under a

IBM Data Server Driver for JDBC and SQLJ.

getThrowable

Format:

public Throwable getThrowable();

Returns a java.lang.Throwable object from a java.sql.Exception that is produced

under a IBM Data Server Driver for JDBC and SQLJ.

402 Developing Java Applications

printTrace

Format:

static public void printTrace(java.io.PrintWriter printWriter,

 String header);

Prints diagnostic information after a java.sql.Exception is thrown under a IBM

Data Server Driver for JDBC and SQLJ.

Parameter descriptions:

printWriter

The destination for the diagnostic information.

header

User-defined information that is printed at the beginning of the output.

DB2ExceptionFormatter class

The com.ibm.db2.jcc.DB2ExceptionFormatter class contains methods for printing

diagnostic information to a stream.

DB2ExceptionFormatter methods

The following methods are defined only for the IBM Data Server Driver for JDBC

and SQLJ.

printTrace

Formats:

static public void printTrace(java.sql.SQLException sqlException,

 java.io.PrintWriter printWriter, String header)

static public void printTrace(DB2Sqlca sqlca,

 java.io.PrintWriter printWriter, String header)

static public void printTrace(java.lang.Throwable throwable,

 java.io.PrintWriter printWriter, String header)

Prints diagnostic information after an exception is thrown.

Parameter descriptions:

sqlException|sqlca|throwable

The exception that was thrown during a previous JDBC or Java operation.

printWriter

The destination for the diagnostic information.

header

User-defined information that is printed at the beginning of the output.

DB2JCCPlugin class

The com.ibm.db2.jcc.DB2JCCPlugin class is an abstract class that defines methods

that can be implemented to provide DB2 Database for Linux, UNIX, and Windows

plug-in support. This class applies only to DB2 Database for Linux, UNIX, and

Windows.

DB2JCCPlugin methods

The following methods are defined only for the IBM Data Server Driver for JDBC

and SQLJ.

Chapter 12. JDBC and SQLJ reference information 403

getTicket

Format:

public abstract byte[] getTicket(String user,

 String password,

 byte[] returnedToken)

 throws org.ietf.jgss.GSSException

Retrieves a Kerberos ticket for a user.

Parameter descriptions:

user

The user ID for which the Kerberos ticket is to be retrieved.

password

The password for user.

returnedToken

DB2PooledConnection class

The com.ibm.db2.jcc.DB2PooledConnection class provides methods that an

application server can use to switch users on a preexisting trusted connection.

Trusted connections are supported for:

v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2

Database for Linux, UNIX, and Windows Version 9.5 or later, and DB2 for z/OS

Version 9.1 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for z/OS

Version 9.1 or later

DB2PooledConnection methods

The following methods are defined only for the IBM Data Server Driver for JDBC

and SQLJ.

getConnection (untrusted or trusted reuse without reauthentication)

Format:

public DB2Connection getConnection()

 throws java.sql.SQLException

 This method is for dirty reuse of a connection. This means that the connection

state is not reset when the object is reused from the pool. Special register

settings and property settings remain in effect unless they are overridden by

passed properties. Global temporary tables are not deleted. Properties that are

not specified are not re-initialized. All JDBC standard transient properties, such

as the isolation level, autocommit mode, and read-only mode are reset to their

JDBC defaults. Certain properties, such as user, password, databaseName,

serverName, portNumber, planName, and pkList remain unchanged.

getDB2Connection (trusted reuse)

Formats:

public DB2Connection getDB2Connection(byte[] cookie,

 String user,

 String password,

 String userRegistry,

 byte[] userSecToken,

 String originalUser,

 java.util.Properties properties)

 throws java.sql.SQLException

404 Developing Java Applications

public Connection getDB2Connection(byte[] cookie,

 org.ietf.GSSCredential gssCredential,

 String usernameRegistry,

 byte[] userSecToken,

 String originalUser,

 java.util.Properties properties)

 throws java.sql.SQLException

Switches the user that is associated with a trusted connection without

authentication.

The second form of getDB2Connection is supported only for IBM Data Server

Driver for JDBC and SQLJ type 4 connectivity.

Parameter descriptions:

cookie

A unique cookie that the JDBC driver generates for the Connection

instance. The cookie is known only to the application server and the

underlying JDBC driver that established the initial trusted connection. The

application server passes the cookie that was created by the driver when

the pooled connection instance was created. The JDBC driver checks that

the supplied cookie matches the cookie of the underlying trusted physical

connection to ensure that the request originated from the application server

that established the trusted physical connection. If the cookies match, the

connection can become available, with different properties, for immediate

use by a new user .

user

The client identity that is used by the data source to establish the

authorization ID for the database server. If the user was not authenticated

by the application server, the application server must pass a user identity

that represents an unauthenticated user.

password

The password for user.

gssCredential

If the data source uses Kerberos security, specifies a delegated credential

that is passed from another principal.

userNameRegistry

A name that identifies a mapping service that maps a workstation user ID

to a z/OS RACF ID. An example of a mapping service is the Integrated

Security Services Enterprise Identity Mapping (EIM). The mapping service

is defined by a plugin. Valid values for userNameRegistry are defined by the

plugin providers. If userNameRegistry is null, the connection does not use a

mapping service.

userSecToken

The client’s security tokens. This value is traced as part of DB2 for z/OS

accounting data. The content of userSecToken is described by the application

server and is referred to by the data source as an application server

security token.

originalUser

The client identity that sends the original request to the application server.

originalUser is included in DB2 for z/OS accounting data as the original

user ID that was used by the application server.

Chapter 12. JDBC and SQLJ reference information 405

properties

Properties for the reused connection. These properties override any

properties that are already defined on the DB2PooledConnection instance.

getDB2Connection (untrusted reuse with reauthentication)

Formats:

public DB2Connection getDB2Connection(

 String user,

 String password,

 java.util.Properties properties)

 throws java.sql.SQLException

public DB2Connection getDB2Connection(org.ietf.jgss.GSSCredential gssCredential,

 java.util.Properties properties)

 throws java.sql.SQLException

Switches the user that is associated with a untrusted connection, with

authentication.

The first form getDB2Connection provides a user ID and password. The

second form of getDB2Connection is for connections that use Kerberos security.

Parameter descriptions:

user

The user ID that is used by the data source to establish the authorization

ID for the database server.

password

The password for user.

properties

Properties for the reused connection. These properties override any

properties that are already defined on the DB2PooledConnection instance.

getDB2Connection (untrusted or trusted reuse without reauthentication)

Formats:

public java.sql.Connection getDB2Connection(

 java.util.Properties properties)

 throws java.sql.SQLException

Reuses an untrusted connection, without reauthentication.

This method is for dirty reuse of a connection. This means that the connection

state is not reset when the object is reused from the pool. Special register

settings and property settings remain in effect unless they are overridden by

passed properties. Global temporary tables are not deleted. Properties that are

not specified are not re-initialized. All JDBC standard transient properties, such

as the isolation level, autocommit mode, and read-only mode are reset to their

JDBC defaults. Certain properties, such as user, password, databaseName,

serverName, portNumber, planName, and pkList remain unchanged.

Parameter descriptions:

properties

Properties for the reused connection. These properties override any

properties that are already defined on the DB2PooledConnection instance.

DB2PoolMonitor class

The com.ibm.db2.jcc.DB2PoolMonitor class provides methods for monitoring the

global transport objects pool that is used for the connection concentrator and

Sysplex workload balancing.

406 Developing Java Applications

DB2PoolMonitor fields

The following fields are defined only for the IBM Data Server Driver for JDBC and

SQLJ.

public static final int TRANSPORT_OBJECT = 1

This value is a parameter for the DB2PoolMonitor.getPoolMonitor method.

DB2PoolMonitor methods

The following methods are defined only for the IBM Data Server Driver for JDBC

and SQLJ.

agedOutObjectCount

Format:

public abstract int agedOutObjectCount()

Retrieves the number of objects that exceeded the idle time that was specified

by db2.jcc.maxTransportObjectIdleTime and were deleted from the pool.

createdObjectCount

Format:

public abstract int createdObjectCount()

Retrieves the number of objects that the IBM Data Server Driver for JDBC and

SQLJ created since the pool was created.

getMonitorVersion

Format:

public int getMonitorVersion()

Retrieves the version of the DB2PoolMonitor class that is shipped with the IBM

Data Server Driver for JDBC and SQLJ.

getPoolMonitor

Format:

public static DB2PoolMonitor getPoolMonitor(int monitorType)

Retrieves an instance of the DB2PoolMonitor class.

Parameter descriptions:

monitorType

The monitor type. This value must be

DB2PoolMonitor.TRANSPORT_OBJECT.

heavyWeightReusedObjectCount

Format:

public abstract int heavyWeightReusedObjectCount()

Retrieves the number of objects that were reused from the pool.

lightWeightReusedObjectCount

Format:

public abstract int lightWeightReusedObjectCount()

Retrieves the number of objects that were reused but were not in the pool. This

can happen if a Connection object releases a transport object at a transaction

boundary. If the Connection object needs a transport object later, and the

Chapter 12. JDBC and SQLJ reference information 407

original transport object has not been used by any other Connection object, the

Connection object can use that transport object.

longestBlockedRequestTime

Format:

public abstract long longestBlockedRequestTime()

Retrieves the longest amount of time that a request was blocked, in

milliseconds.

numberOfConnectionReleaseRefused

Format:

public abstract int numberOfConnectionReleaseRefused()

Retrieves the number of times that the release of a connection was refused.

numberOfRequestsBlocked

Format:

public abstract int numberOfRequestsBlocked()

Retrieves the number of requests that the IBM Data Server Driver for JDBC

and SQLJ made to the pool that the pool blocked because the pool reached its

maximum capacity. A blocked request might be successful if an object is

returned to the pool before the db2.jcc.maxTransportObjectWaitTime is

exceeded and an exception is thrown.

numberOfRequestsBlockedDataSourceMax

Format:

public abstract int numberOfRequestsBlockedDataSourceMax()

Retrieves the number of requests that the IBM Data Server Driver for JDBC

and SQLJ made to the pool that the pool blocked because the pool reached the

maximum for the DataSource object.

numberOfRequestsBlockedPoolMax

Format:

public abstract int numberOfRequestsBlockedPoolMax()

Retrieves the number of requests that the IBM Data Server Driver for JDBC

and SQLJ made to the pool that the pool blocked because the maximum

number for the pool was reached.

removedObjectCount

Format:

public abstract int removedObjectCount()

Retrieves the number of objects that have been deleted from the pool since the

pool was created.

shortestBlockedRequestTime

Format:

public abstract long shortestBlockedRequestTime()

Retrieves the shortest amount of time that a request was blocked, in

milliseconds.

successfullRequestsFromPool

Format:

public abstract int successfullRequestsFromPool()

408 Developing Java Applications

Retrieves the number of successful requests that the IBM Data Server Driver

for JDBC and SQLJ has made to the pool since the pool was created. A

successful request means that the pool returned an object.

totalPoolObjects

Format:

public abstract int totalPoolObjects()

Retrieves the number of objects that are currently in the pool.

totalRequestsToPool

Format:

public abstract int totalRequestsToPool()

Retrieves the total number of requests that the IBM Data Server Driver for

JDBC and SQLJ has made to the pool since the pool was created.

totalTimeBlocked

Format:

public abstract long totalTimeBlocked()

Retrieves the total time in milliseconds for requests that were blocked by the

pool. This time can be much larger than the elapsed execution time of the

application if the application uses multiple threads.

DB2PreparedStatement interface

The com.ibm.db2.jcc.DB2PreparedStatement interface extends the

com.ibm.db2.jcc.DB2Statement and java.sql.PreparedStatement interfaces.

DB2PreparedStatement methods

The following methods are defined only for the IBM Data Server Driver for JDBC

and SQLJ.

executeDB2QueryBatch

Format:

public void executeDB2QueryBatch()

 throws java.sql.SQLException

Executes a statement batch that contains queries with parameters.

This method is not supported for connections to IBM Informix Dynamic Server

data sources.

getDBGeneratedKeys

Format:

public java.sql.ResultSet[] getDBGeneratedKeys()

 throws java.sql.SQLException

Retrieves automatically generated keys that were created when INSERT

statements were executed in a batch. Each ResultSet object that is returned

contains the automatically generated keys for a single statement in the batch.

getDBGeneratedKeys returns an array of length 0 under the following

conditions:

v getDBGeneratedKeys is called out of sequence. For example, if

getDBGeneratedKeys is called before executeBatch, an array of length 0 is

returned.

Chapter 12. JDBC and SQLJ reference information 409

v The PreparedStatement that is executed in a batch was not created using one

of the following methods:

Connection.prepareStatement(String sql, int[] autoGeneratedKeys)

Connection.prepareStatement(String sql, String[] autoGeneratedColumnNames)

Connection.prepareStatement(String sql, Statement.RETURN_GENERATED_KEYS)

If getDBGeneratedKeys is called against a PreparedStatement that was created

using one of the previously listed methods, and the PreparedStatement is not

in a batch, a single ResultSet is returned.

setJccArrayAtName

Format:

public void setJccArrayAtName(String parameterMarkerName,

 java.sql.Array x)

 throws java.sql.SQLException

Assigns a java.sql.Array value to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The java.sql.Array value that is assigned to the parameter marker.

setJccAsciiStreamAtName

Formats:

 Supported by the IBM Data Server Driver for JDBC and SQLJ version 3.57 and

later:

public void setJccAsciiStreamAtName(String parameterMarkerName,

 java.io.InputStream x, int length)

 throws java.sql.SQLException

Supported by the IBM Data Server Driver for JDBC and SQLJ version 4.7 and

later:

public void setJccAsciiStreamAtName(String parameterMarkerName,

 java.io.InputStream x)

 throws java.sql.SQLException

public void setJccAsciiStreamAtName(String parameterMarkerName,

 java.io.InputStream x, long length)

 throws java.sql.SQLException

Assigns an ASCII value in a java.io.InputStream to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The ASCII java.io.InputStream value that is assigned to the parameter

marker.

length

The length in bytes of the java.io.InputStream value that is assigned to the

parameter marker.

410 Developing Java Applications

setJccBigDecimalAtName

Format:

public void setJccBigDecimalAtName(String parameterMarkerName,

 java.math.BigDecimal x)

 throws java.sql.SQLException

Assigns a java.math.BigDecimal value to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The java.math.BigDecimal value that is assigned to the parameter marker.

setJccBinaryStreamAtName

Formats:

 Supported by the IBM Data Server Driver for JDBC and SQLJ version 3.57 and

later:

public void setJccBinaryStreamAtName(String parameterMarkerName,

 java.io.InputStream x, int length)

 throws java.sql.SQLException

Supported by the IBM Data Server Driver for JDBC and SQLJ version 4.7 and

later:

public void setJccBinaryStreamAtName(String parameterMarkerName,

 java.io.InputStream x)

 throws java.sql.SQLException

public void setJccBinaryStreamAtName(String parameterMarkerName,

 java.io.InputStream x, long length)

 throws java.sql.SQLException

Assigns a binary value in a java.io.InputStream to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The binary java.io.InputStream value that is assigned to the parameter

marker.

length

The number of bytes of the java.io.InputStream value that are assigned to

the parameter marker.

setJccBlobAtName

Formats:

 Supported by the IBM Data Server Driver for JDBC and SQLJ version 3.57 and

later:

public void setJccBlobAtName(String parameterMarkerName,

 java.sql.Blob x)

 throws java.sql.SQLException

Supported by the IBM Data Server Driver for JDBC and SQLJ version 4.7 and

later:

Chapter 12. JDBC and SQLJ reference information 411

public void setJccBlobAtName(String parameterMarkerName,

 java.io.InputStream x)

 throws java.sql.SQLException

public void setJccBlobAtName(String parameterMarkerName,

 java.io.InputStream x, long length)

 throws java.sql.SQLException

Assigns a BLOB value to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The java.sql.Blob value or java.io.InputStream value that is assigned to the

parameter marker.

length

The number of bytes of the java.io.InputStream value that are assigned to

the parameter marker.

setJccBooleanAtName

Format:

public void setJccBooleanAtName(String parameterMarkerName,

 boolean x)

 throws java.sql.SQLException

Assigns a boolean value to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The boolean value that is assigned to the parameter marker.

setJccByteAtName

Format:

public void setJccByteAtName(String parameterMarkerName,

 byte x)

 throws java.sql.SQLException

Assigns a byte value to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The byte value that is assigned to the parameter marker.

setJccBytesAtName

Format:

public void setJccBytesAtName(String parameterMarkerName,

 byte[] x)

 throws java.sql.SQLException

412 Developing Java Applications

Assigns an array of byte values to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The byte array that is assigned to the parameter marker.

setJccCharacterStreamAtName

Formats:

 Supported by the IBM Data Server Driver for JDBC and SQLJ version 3.57 and

later:

public void setJccCharacterStreamAtName(String parameterMarkerName,

 java.io.Reader x, int length)

 throws java.sql.SQLException

Supported by the IBM Data Server Driver for JDBC and SQLJ version 4.7 and

later:

public void setJccCharacterStreamAtName(String parameterMarkerName,

 java.io.Reader x)

 throws java.sql.SQLException

public void setJccCharacterStreamAtName(String parameterMarkerName,

 java.io.Reader x, long length)

 throws java.sql.SQLException

Assigns a Unicode value in a java.io.Reader to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The Unicode java.io.Reader value that is assigned to the parameter marker.

length

The number of characters of the java.io.InputStream value that are assigned

to the parameter marker.

setJccClobAtName

Formats:

 Supported by the IBM Data Server Driver for JDBC and SQLJ version 3.57 and

later:

public void setJccClobAtName(String parameterMarkerName,

 java.sql.Blob x)

 throws java.sql.SQLException

Supported by the IBM Data Server Driver for JDBC and SQLJ version 4.7 and

later:

public void setJccClobAtName(String parameterMarkerName,

 java.io.InputStream x)

 throws java.sql.SQLException

public void setJccClobAtName(String parameterMarkerName,

 java.io.InputStream x, long length)

 throws java.sql.SQLException

Chapter 12. JDBC and SQLJ reference information 413

Assigns a CLOB value to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The java.sql.Clob value or java.io.Reader value that is assigned to the

parameter marker.

length

The number of bytes of the java.io.InputStream value that are assigned to

the parameter marker.

setJccDateAtName

Formats:

public void setJccDateAtName(String parameterMarkerName,

 java.sql.Date x)

 throws java.sql.SQLException

public void setJccDateAtName(String parameterMarkerName,

 java.sql.Date x,

 java.util.Calendar cal)

 throws java.sql.SQLException

Assigns a java.sql.Date value to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The java.sql.Date value that is assigned to the parameter marker.

cal The java.util.Calendar object that the IBM Data Server Driver for JDBC and

SQLJ uses to construct the date.

setJccDoubleAtName

Format:

public void setJccDoubleAtName(String parameterMarkerName,

 double x)

 throws java.sql.SQLException

Assigns a value of type double to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The value of type double that is assigned to the parameter marker.

setJccFloatAtName

Format:

public void setJccFloatAtName(String parameterMarkerName,

 double x)

 throws java.sql.SQLException

414 Developing Java Applications

Assigns a value of type float to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The value of type float that is assigned to the parameter marker.

setJccIntAtName

Format:

public void setJccIntAtName(String parameterMarkerName,

 int x)

 throws java.sql.SQLException

Assigns a value of type int to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The value of type int that is assigned to the parameter marker.

setJccLongAtName

Format:

public void setJccLongAtName(String parameterMarkerName,

 long x)

 throws java.sql.SQLException

Assigns a value of type long to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The value of type long that is assigned to the parameter marker.

setJccNullAtName

Format:

public void setJccNullAtName(String parameterMarkerName,

 int jdbcType)

 throws java.sql.SQLException

public void setJccNullAtName(String parameterMarkerName,

 int jdbcType,

 String typeName)

 throws java.sql.SQLException

Assigns the SQL NULL value to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

Chapter 12. JDBC and SQLJ reference information 415

parameterMarkerName

The name of the parameter marker to which a value is assigned.

jdbcType

The JDBC type code of the NULL value that is assigned to the parameter

marker, as defined in java.sql.Types.

typeName

If jdbcType is java.sql.Types.DISTINCT or java.sql.Types.REF, the

fully-qualified name of the SQL user-defined type of the NULL value that

is assigned to the parameter marker.

setJccObjectAtName

Formats:

public void setJccObjectAtName(String parameterMarkerName,

 java.sql.Object x)

 throws java.sql.SQLException

public void setJccObjectAtName(String parameterMarkerName,

 java.sql.Object x,

 int targetJdbcType)

 throws java.sql.SQLException

public void setJccObjectAtName(String parameterMarkerName,

 java.sql.Object x,

 int targetJdbcType,

 int scale)

 throws java.sql.SQLException

Assigns a value with type java.lang.Object to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The value with type Object that is assigned to the parameter marker.

targetJdbcType

The data type, as defined in java.sql.Types, that is assigned to the input

value when it is sent to the data source.

scale

The scale of the value that is assigned to the parameter marker. This

parameter applies only to these cases:

v If targetJdbcType is java.sql.Types.DECIMAL or java.sql.Types.NUMERIC,

scale is the number of digits to the right of the decimal point.

v If x has type java.io.InputStream or java.io.Reader, scale is the this is the

length of the data in the Stream or Reader object.

setJccShortAtName

Format:

public void setJccShortAtName(String parameterMarkerName,

 long x)

 throws java.sql.SQLException

Assigns a value of type short to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

416 Developing Java Applications

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The value of type short that is assigned to the parameter marker.

setJccSQLXMLAtName

Format:

public void setJccSQLXMLAtName(String parameterMarkerName,

 long x)

 throws java.sql.SQLException

Assigns a value of type java.sql.SQLXML to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The value of type java.sql.SQLXML that is assigned to the parameter

marker.

setJccStringAtName

Format:

public void setJccStringAtName(String parameterMarkerName,

 long x)

 throws java.sql.SQLException

Assigns a value of type String to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The value of type String that is assigned to the parameter marker.

setJccTimeAtName

Formats:

public void setJccTimeAtName(String parameterMarkerName,

 java.sql.Time x)

 throws java.sql.SQLException

public void setJccTimeAtName(String parameterMarkerName,

 java.sql.Time x,

 java.util.Calendar cal)

 throws java.sql.SQLException

Assigns a java.sql.Time value to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The java.sql.Time value that is assigned to the parameter marker.

cal The java.util.Calendar object that the IBM Data Server Driver for JDBC and

SQLJ uses to construct the time.

Chapter 12. JDBC and SQLJ reference information 417

setJccTimestampAtName

Formats:

public void setJccTimestampAtName(String parameterMarkerName,

 java.sql.Timestamp x)

 throws java.sql.SQLException

public void setJccTimestampAtName(String parameterMarkerName,

 java.sql.Timestamp x,

 java.util.Calendar cal)

 throws java.sql.SQLException

Assigns a java.sql.Timestamp value to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The java.sql.Timestamp value that is assigned to the parameter marker.

cal The java.util.Calendar object that the IBM Data Server Driver for JDBC and

SQLJ uses to construct the timestamp.

setJccUnicodeStreamAtName

Format:

public void setJccUnicodeStreamAtName(String parameterMarkerName,

 java.io.InputStream x, int length)

 throws java.sql.SQLException

Assigns a Unicode value in a java.io.InputStream to a named parameter.

This method is supported only for connections to DB2 Database for Linux,

UNIX, and Windows data sources.

Parameters:

parameterMarkerName

The name of the parameter marker to which a value is assigned.

x The Unicode java.io.InputStream value that is assigned to the parameter

marker.

length

The number of bytes of the java.io.InputStream value that are assigned to

the parameter marker.

DB2ResultSet interface

The com.ibm.db2.jcc.DB2ResultSet interface is used to create objects from which

IBM Data Server Driver for JDBC and SQLJ-only query information can be

obtained.

DB2ResultSet implements the java.sql.Wrapper interface.

DB2ResultSet methods:

The following methods are defined only for the IBM Data Server Driver for JDBC

and SQLJ.

getDB2RowChangeToken

Format:

418 Developing Java Applications

public long DB2ResultSet.getDB2RowChangeToken()

 throws java.sql.SQLException

Returns the row change token for the current row, if it is available. Returns 0 if

optimistic locking columns were not requested or are not available.

getDB2RID

Format:

public Object DB2ResultSet.getDB2RID()

 throws java.sql.SQLException

Returns the RID for the current row, if it is available. The RID is available if

optimistic locking columns were requested and are available. Returns null if

optimistic locking columns were not requested or are not available.

getDB2RIDType

Format:

public int DB2ResultSet.getDB2RIDType()

 throws java.sql.SQLException

Returns the data type of the RID column in a DB2ResultSet. The returned

value maps to a java.sql.Types constant. If the DB2ResultSet does not contain

a RID column, java.sql.Types.NULL is returned.

DB2ResultSetMetaData interface

The com.ibm.db2.jcc.DB2ResultSetMetaData interface provides methods that

provide information about a ResultSet object.

Before a com.ibm.db2.jcc.DB2ResultSetMetaData method can be used, a

java.sql.ResultSetMetaData object that is returned from a

java.sql.ResultSet.getMetaData call needs to be cast to

com.ibm.db2.jcc.DB2ResultSetMetaData.

DB2ResultSetMetaData methods:

The following methods are defined only for the IBM Data Server Driver for JDBC

and SQLJ.

getDB2OptimisticLockingColumns

Format:

public int getDB2OptimisticLockingColumns()

 throws java.sql.SQLException

Returns a value that indicates whether optimistic locking columns are

available. Possible values are:

0 Optimistic locking columns are not available.

1 Optimistic locking columns are available, but the change token might

not have the granularity to prevent false negatives.

2 Optimistic locking columns are available, and the change token has the

granularity to prevent false negatives.

isDB2ColumnNameDerived

Format:

public boolean isDB2ColumnNameDerived (int column)

 throws java.sql.SQLException

Chapter 12. JDBC and SQLJ reference information 419

Returns true if the name of a ResultSet column is in the SQL SELECT list that

generated the ResultSet.

For example, suppose that a ResultSet is generated from the SQL statement

SELECT EMPNAME, SUM(SALARY) FROM EMP. Column name EMPNAME

is derived from the SQL SELECT list, but the name of the column in the

ResultSet that corresponds to SUM(SALARY) is not derived from the SELECT

list.

Parameter descriptions:

column

The name of a column in the ResultSet.

DB2RowID interface

The com.ibm.db2.jcc.DB2RowID interface is used for declaring Java objects for use

with the SQL ROWID data type.

The com.ibm.db2.jcc.DB2RowID interface does not apply to connection to IBM

Informix Dynamic Server.

DB2RowID methods

The following method is defined only for the IBM Data Server Driver for JDBC

and SQLJ.

getBytes

Format:

public byte[] getBytes()

Converts a com.ibm.jcc.DB2RowID object to bytes.

DB2SimpleDataSource class

The com.ibm.db2.jcc.DB2SimpleDataSource class extends the DB2BaseDataSource

class.

A DB2BaseDataSource object does not support connection pooling or distributed

transactions. It contains all of the properties and methods that the

DB2BaseDataSource class contains. In addition, DB2SimpleDataSource contains the

following IBM Data Server Driver for JDBC and SQLJ-only properties.

DB2SimpleDataSource implements the java.sql.Wrapper interface.

DB2SimpleDataSource properties

The following property is defined only for the IBM Data Server Driver for JDBC

and SQLJ. See ″Properties for the IBM Data Server Driver for JDBC and SQLJ″ for

an explanation of this property.

 String com.ibm.db2.jcc.DB2SimpleDataSource.password

DB2SimpleDataSource methods

The following method is defined only for the IBM Data Server Driver for JDBC

and SQLJ.

setPassword

Format:

420 Developing Java Applications

public void setPassword(String password)

Sets the password for the DB2SimpleDataSource object. There is no

corresponding getPassword method. Therefore, the password cannot be

encrypted because there is no way to retrieve the password so that you can

decrypt it.

DB2Sqlca class

The com.ibm.db2.jcc.DB2Sqlca class is an encapsulation of the SQLCA.

DB2Sqlca methods

The following methods are defined only for the IBM Data Server Driver for JDBC

and SQLJ.

getMessage

Format:

public abstract String getMessage()

Returns error message text.

getSqlCode

Format:

public abstract int getSqlCode()

Returns an SQL error code value.

getSqlErrd

Format:

public abstract int[] getSqlErrd()

Returns an array, each element of which contains an SQLCA SQLERRD.

getSqlErrmc

Format:

public abstract String getSqlErrmc()

Returns a string that contains the SQLCA SQLERRMC values, delimited with

spaces.

getSqlErrmcTokens

Format:

public abstract String[] getSqlErrmcTokens()

Returns an array, each element of which contains an SQLCA SQLERRMC

token.

getSqlErrp

Format:

public abstract String getSqlErrp()

Returns the SQLCA SQLERRP value.

getSqlState

Format:

public abstract String getSqlState()

Returns the SQLCA SQLSTATE value.

Chapter 12. JDBC and SQLJ reference information 421

getSqlWarn

Format:

public abstract char[] getSqlWarn()

Returns an array, each element of which contains an SQLCA SQLWARN value.

DB2Statement interface

The com.ibm.db2.jcc.DB2Statement interface extends the java.sql.Statement

interface.

DB2Statement implements the java.sql.Wrapper interface.

DB2Statement fields

The following fields are defined only for the IBM Data Server Driver for JDBC and

SQLJ.

public static final int RETURN_OPTLOCK_COLUMN_NONE = 0

public static final int RETURN_OPTLOCK_COLUMN_ALWAYS = 1

public static final int RETURN_OPTLOCK_COLUMN_NO_FALSE_NEGATIVES

= 2

These values are arguments for the

DB2Statement.executeDB2OptimisticLockingQuery method.

DB2Statement methods

The following methods are defined only for the IBM Data Server Driver for JDBC

and SQLJ.

executeDB2OptimisticLockingQuery

Format:

public java.sql.ResultSet DB2Statement.executeDB2OptimisticLockingQuery(

 String sql,

 int returnOptLockingColumn)

 throws java.sql.SQLException

Executes an SQL query statement, and returns a ResultSet that contains

optimistic locking information, if it is requested.

Parameter descriptions:

sql

An SQL SELECT statement that returns a single ResultSet.

returnOptimisticLockingColumns

Specifies whether optimistic locking columns are returned. Possible values

are:

 Value Description

DB2Statement.RETURN_OPTLOCK_COLUMN_NONE (0) Do not return optimistic locking columns.

DB2Statement.RETURN_OPTLOCK_COLUMN_ALWAYS (1) Add row change columns to the result set even if

they do not uniquely represent a single row. This

setting is equivalent to the database prepare attribute

WITH ROW CHANGE COLUMNS POSSIBLY

DISTINCT.

DB2Statement.RETURN_OPTLOCK_COLUMN_NO_FALSE_NEGATIVES (2) Add row change columns to the result set only if they

uniquely represent a single row. This setting is

equivalent to the database prepare attribute WITH

ROW CHANGE COLUMNS ALWAYS DISTINCT.

422 Developing Java Applications

getDB2ClientProgramId

Format:

public String getDB2ClientProgramId()

 throws java.sql.SQLException

Returns the user-defined client program identifier for the connection, which is

stored on the data source.

setDB2ClientProgramId

Format:

public abstract void setDB2ClientProgramId(String program-ID)

 throws java.sql.SQLException

Sets a user-defined program identifier for the connection, on DB2 for z/OS

servers. That program identifier is an 80-byte string that is used to identify the

caller. The DB2 for z/OS server places the string in IFCID 316 trace records

along with other statistics, so that you can identify which program is

associated with a particular SQL statement.

getIDSBigSerial

Format:

public int getIDSBigSerial()

 throws java.sql.SQLException

Retrieves an automatically generated key from a BIGSERIAL column after the

automatically generated key was inserted by a previously executed INSERT

statement.

The following conditions must be true for getIDSBigSerial to execute

successfully:

v The INSERT statement is the last SQL statement that is executed before this

method is called.

v The table into which the row is inserted contains a BIGSERIAL column.

v The form of the JDBC Connection.prepareStatement method or

Statement.executeUpdate method that prepares or executes the INSERT

statement does not have parameters that request automatically generated

keys.

This method applies only to connections to IBM Informix Dynamic Server

(IDS) databases.

getIDSSerial

Format:

public int getIDSSerial()

 throws java.sql.SQLException

Retrieves an automatically generated key from a SERIAL column after the

automatically generated key was inserted by a previously executed INSERT

statement.

The following conditions must be true for getIDSSerial to execute successfully:

v The INSERT statement is the last SQL statement that is executed before this

method is called.

v The table into which the row is inserted contains a SERIAL column.

Chapter 12. JDBC and SQLJ reference information 423

v The form of the JDBC Connection.prepareStatement method or

Statement.executeUpdate method that prepares or executes the INSERT

statement does not have parameters that request automatically generated

keys.

This method applies only to connections to IBM Informix Dynamic Server

(IDS) databases.

getIDSSerial8

Format:

public long getIDSSerial8()

 throws java.sql.SQLException

Retrieves an automatically generated key from a SERIAL8 column after the

automatically generated key was inserted by a previously executed INSERT

statement.

The following conditions must be true for getIDSSerial8 to execute successfully:

v The INSERT statement is the last SQL statement that is executed before this

method is called.

v The table into which the row is inserted contains a SERIAL8 column.

v The form of the JDBC Connection.prepareStatement method or

Statement.executeUpdate method that prepares or executes the INSERT

statement does not have parameters that request automatically generated

keys.

This method applies only to connections to IDS data sources.

getIDSSQLStatementOffSet

Format:

public int getIDSSQLStatementOffSet()

 throws java.sql.SQLException

After an SQL statement executes on an IDS data source, if the statement has a

syntax error, getIDSSQLStatementOffSet returns the offset into the statement

text of the syntax error.

getIDSSQLStatementOffSet returns:

v 0, if the statement does not have a syntax error.

v -1, if the data source is not IDS.

This method applies only to connections to IDS data sources.

DB2SystemMonitor interface

The com.ibm.db2.jcc.DB2SystemMonitor interface is used for collecting system

monitoring data for a connection. Each connection can have one

DB2SystemMonitor instance.

DB2SystemMonitor fields

The following fields are defined only for the IBM Data Server Driver for JDBC and

SQLJ.

public final static int RESET_TIMES

public final static int ACCUMULATE_TIMES

These values are arguments for the DB2SystemMonitor.start method.

RESET_TIMES sets time counters to zero before monitoring starts.

ACCUMULATE_TIMES does not set time counters to zero.

424 Developing Java Applications

DB2SystemMonitor methods

The following methods are defined only for the IBM Data Server Driver for JDBC

and SQLJ.

enable

Format:

public void enable(boolean on)

 throws java.sql.SQLException

Enables the system monitor that is associated with a connection. This method

cannot be called during monitoring. All times are reset when enable is

invoked.

getApplicationTimeMillis

Format:

public long getApplicationTimeMillis()

 throws java.sql.SQLException

Returns the sum of the application, JDBC driver, network I/O, and database

server elapsed times. The time is in milliseconds.

A monitored elapsed time interval is the difference, in milliseconds, between

these points in the JDBC driver processing:

Interval beginning

When start is called.

Interval end

When stop is called.

getApplicationTimeMillis returns 0 if system monitoring is disabled. Calling

this method without first calling the stop method results in an SQLException.

getCoreDriverTimeMicros

Format:

public long getCoreDriverTimeMicros()

 throws java.sql.SQLException

Returns the sum of elapsed monitored API times that were collected while

system monitoring was enabled. The time is in microseconds.

A monitored API is a JDBC driver method for which processing time is

collected. In general, elapsed times are monitored only for APIs that might

result in network I/O or database server interaction. For example,

PreparedStatement.setXXX methods and ResultSet.getXXX methods are not

monitored.

Monitored API elapsed time includes the total time that is spent in the driver

for a method call. This time includes any network I/O time and database

server elapsed time.

A monitored API elapsed time interval is the difference, in microseconds,

between these points in the JDBC driver processing:

Interval beginning

When a monitored API is called by the application.

Interval end

Immediately before the monitored API returns control to the application.

Chapter 12. JDBC and SQLJ reference information 425

getCoreDriverTimeMicros returns 0 if system monitoring is disabled. Calling

this method without first calling the stop method, or calling this method when

the underlying JVM does not support reporting times in microseconds results

in an SQLException.

getNetworkIOTimeMicros

Format:

public long getNetworkIOTimeMicros()

 throws java.sql.SQLException

Returns the sum of elapsed network I/O times that were collected while

system monitoring was enabled. The time is in microseconds.

Elapsed network I/O time includes the time to write and read DRDA data

from network I/O streams. A network I/O elapsed time interval is the time

interval to perform the following operations in the JDBC driver:

v Issue a TCP/IP command to send a DRDA message to the database server.

This time interval is the difference, in microseconds, between points

immediately before and after a write and flush to the network I/O stream is

performed.

v Issue a TCP/IP command to receive DRDA reply messages from the

database server. This time interval is the difference, in microseconds,

between points immediately before and after a read on the network I/O

stream is performed.

Network I/O time intervals are captured for all send and receive operations,

including the sending of messages for commits and rollbacks.

The time spent waiting for network I/O might be impacted by delays in CPU

dispatching at the database server for low-priority SQL requests.

getNetworkIOTimeMicros returns 0 if system monitoring is disabled. Calling

this method without first calling the stop method, or calling this method when

the underlying JVM does not support reporting times in microseconds results

in an SQLException.

getServerTimeMicros

Format:

public long getServerTimeMicros()

 throws java.sql.SQLException

Returns the sum of all reported database server elapsed times that were

collected while system monitoring was enabled. The time is in microseconds.

The database server reports elapsed times under these conditions:

v The database server supports returning elapsed time data to the client.

DB2 Database for Linux, UNIX, and Windows Version 9.5 and later and DB2

for z/OS support this function.

v The database server performs operations that can be monitored. For

example, database server elapsed time is not returned for commits or

rollbacks.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2

Database for Linux, UNIX, and Windows, and IBM Data Server Driver for JDBC and

SQLJ type 4 connectivity: The database server elapsed time is defined as the

elapsed time to parse the request data stream, process the command, and

generate the reply data stream at the database server. Network time to receive

426 Developing Java Applications

or send the data stream is not included. The database server elapsed time

interval is the difference, in microseconds, between these points in the database

server processing:

Interval beginning

When the operating system dispatches the database server to process a

TCP/IP message that is received from the JDBC driver.

Interval end

When the database server is ready to issue the TCP/IP command to return

the reply message to the client.

For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for

z/OS: The database server elapsed time interval is the difference, in

microseconds, between these points in the JDBC driver native processing:

Interval beginning

The z/OS Store Clock (STCK) value when a JDBC driver native method

calls the RRS attachment facility to process an SQL request.

Interval end

The z/OS Store Clock (STCK) value when control returns to the JDBC

driver native method following an RRS attachment facility call to process

an SQL request.

getServerTimeMicros returns 0 if system monitoring is disabled. Calling this

method without first calling the stop method results in an SQLException.

start

Format:

public void start (int lapMode)

 throws java.sql.SQLException

If the system monitor is enabled, start begins the collection of system

monitoring data for a connection. Valid values for lapMode are RESET_TIMES

or ACCUMULATE_TIMES.

Calling this method with system monitoring disabled does nothing. Calling

this method more than once without an intervening stop call results in an

SQLException.

stop

Format:

public void stop()

 throws java.sql.SQLException

If the system monitor is enabled, stop ends the collection of system monitoring

data for a connection. After monitoring is stopped, monitored times can be

obtained with the getXXX methods of DB2SystemMonitor.

Calling this method with system monitoring disabled does nothing. Calling

this method without first calling start, or calling this method more than once

without an intervening start call results in an SQLException.

DB2TraceManager class

The com.ibm.db2.jcc.DB2TraceManager class controls the global log writer.

The global log writer is driver-wide, and applies to all connections. The global log

writer overrides any other JDBC log writers. In addition to starting the global log

writer, the DB2TraceManager class provides the ability to suspend and resume

Chapter 12. JDBC and SQLJ reference information 427

tracing of any type of log writer. That is, the suspend and resume methods of the

DB2TraceManager class apply to all current and future DriverManager log writers,

DataSource log writers, or IBM Data Server Driver for JDBC and SQLJ-only

connection-level log writers.

DB2TraceManager methods

getTraceManager

Format:

static public DB2TraceManager getTraceManager()

 throws java.sql.SQLException

Gets an instance of the global log writer.

setLogWriter

Formats:

public abstract void setLogWriter(String traceDirectory,

 String baseTraceFileName, int traceLevel)

 throws java.sql.SQLException

public abstract void setLogWriter(String traceFile,

 boolean fileAppend, int traceLevel)

 throws java.sql.SQLException

public abstract void setLogWriter(java.io.PrintWriter logWriter,

 int traceLevel)

 throws java.sql.SQLException

Enables a global trace. After setLogWriter is called, all calls for DataSource or

Connection traces are discarded until DB2TraceManager.unsetLogWriter is

called.

When setLogWriter is called, all future Connection or DataSource traces are

redirected to a trace file or PrintWriter, depending on the form of setLogWriter

that you use. If the global trace is suspended when setLogWriter is called, the

specified settings take effect when the trace is resumed.

Parameter descriptions:

traceDirectory

Specifies a directory into which global trace information is written. This

setting overrides the settings of the traceDirectory and logWriter properties

for a DataSource or DriverManager connection.

 When the form of setLogWriter with the traceDirectory parameter is used,

the JDBC driver sets the traceFileAppend property to false when

setLogWriter is called, which means that the existing log files are

overwritten. Each JDBC driver connection is traced to a different file in the

specified directory. The naming convention for the files in that directory

depends on whether a non-null value is specified for baseTraceFileName:

v If a null value is specified for baseTraceFileName, a connection is traced

to a file named traceFile_global_n.

n is the nth JDBC driver connection.

v If a non-null value is specified for baseTraceFileName, a connection is

traced to a file named baseTraceFileName_global_n.

baseTraceFileName is the value of the baseTraceFileName parameter.

n is the nth JDBC driver connection.

baseTraceFileName

Specifies the stem for the names of the files into which global trace

428 Developing Java Applications

information is written. The combination of baseTraceFileName and

traceDirectory determines the full path name for the global trace log files.

traceFileName

Specifies the file into which global trace information is written. This setting

overrides the settings of the traceFile and logWriter properties for a

DataSource or DriverManager connection.

 When the form of setLogWriter with the traceFileName parameter is used,

only one log file is written.

traceFileName can include a directory path.

logWriter

Specifies a character output stream to which all global log records are

written.

 This value overrides the logWriter property on a DataSource or

DriverManager connection.

traceLevel

Specifies what to trace.

 You can specify one or more of the following traces with the traceLevel

parameter:

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_NONE (X’00’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTION_CALLS (X’01’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_STATEMENT_CALLS (X’02’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_CALLS (X’04’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRIVER_CONFIGURATION

(X’10’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS (X’20’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS (X’40’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_META_DATA

(X’80’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_PARAMETER_META_DATA

(X’100’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DIAGNOSTICS (X’200’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SQLJ (X’400’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_XA_CALLS (IBM Data

Server Driver for JDBC and SQLJ type 2 connectivity for DB2

Database for Linux, UNIX, and Windows only) (X’800’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_META_CALLS (X’2000’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DATASOURCE_CALLS (X’4000’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_LARGE_OBJECT_CALLS

(X’8000’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SYSTEM_MONITOR (X’20000’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_TRACEPOINTS () (X’40000’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL (X’FFFFFFFF’)

To specify more than one trace, use one of these techniques:

v Use bitwise OR (|) operators with two or more trace values. For

example, to trace DRDA flows and connection calls, specify this value

for traceLevel:

TRACE_DRDA_FLOWS|TRACE_CONNECTION_CALLS

v Use a bitwise complement (tilde (~)) operator with a trace value to

specify all except a certain trace. For example, to trace everything except

DRDA flows, specify this value for traceLevel:

 ~TRACE_DRDA_FLOWS

Chapter 12. JDBC and SQLJ reference information 429

fileAppend

Specifies whether to append to or overwrite the file that is specified by the

traceFile parameter. true means that the existing file is not overwritten.

unsetLogWriter

Format:

public abstract void unsetLogWriter()

 throws java.sql.SQLException

Disables the global log writer override for future connections.

suspendTrace

Format:

public void suspendTrace()

 throws java.sql.SQLException

Suspends all global, Connection-level, or DataSource-level traces for current

and future connections. suspendTrace can be called when the global log writer

is enabled or disabled.

resumeTrace

Format:

public void resumeTrace()

 throws java.sql.SQLException

Resumes all global, Connection-level, or DataSource-level traces for current and

future connections. resumeTrace can be called when the global log writer is

enabled or disabled. If the global log writer is disabled, resumeTrace resumes

Connection-level or DataSource-level traces. If the global log writer is enabled,

resumeTrace resumes the global trace.

getLogWriter

Format:

public abstract java.io.PrintWriter getLogWriter()

 throws java.sql.SQLException

Returns the PrintWriter for the global log writer, if it is set. Otherwise,

getLogWriter returns null.

getTraceFile

Format:

public abstract String getTraceFile()

 throws java.sql.SQLException

Returns the name of the destination file for the global log writer, if it is set.

Otherwise, getTraceFile returns null.

getTraceDirectory

Format:

public abstract String getTraceDirectory()

 throws java.sql.SQLException

Returns the name of the destination directory for global log writer files, if it is

set. Otherwise, getTraceDirectory returns null.

getTraceLevel

Format:

public abstract int getTraceLevel()

 throws java.sql.SQLException

430 Developing Java Applications

Returns the trace level for the global trace, if it is set. Otherwise, getTraceLevel

returns -1 (TRACE_ALL).

getTraceFileAppend

Format:

public abstract boolean getTraceFileAppend()

 throws java.sql.SQLException

Returns true if the global trace records are appended to the trace file.

Otherwise, getTraceFileAppend returns false.

DB2TraceManagerMXBean interface

The com.ibm.db2.jcc.mx.DB2TraceManagerMXBean interface is the means by which

an application makes DB2TraceManager available as an MXBean for the remote

trace controller.

DB2TraceManagerMXBean methods

setTraceFile

Format:

public void setTraceFile(String traceFile,

 boolean fileAppend, int traceLevel)

 throws java.sql.SQLException

Specifies the name of the file into which the remote trace manager writes trace

information, and the type of information that is to be traced.

Parameter descriptions:

traceFileName

Specifies the file into which global trace information is written. This setting

overrides the settings of the traceFile and logWriter properties for a

DataSource or DriverManager connection.

 When the form of setLogWriter with the traceFileName parameter is used,

only one log file is written.

traceFileName can include a directory path.

fileAppend

Specifies whether to append to or overwrite the file that is specified by the

traceFile parameter. true means that the existing file is not overwritten.

traceLevel

Specifies what to trace.

 You can specify one or more of the following traces with the traceLevel

parameter:

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_NONE (X’00’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTION_CALLS (X’01’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_STATEMENT_CALLS (X’02’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_CALLS (X’04’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRIVER_CONFIGURATION

(X’10’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS (X’20’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS (X’40’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_META_DATA

(X’80’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_PARAMETER_META_DATA

(X’100’)

Chapter 12. JDBC and SQLJ reference information 431

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DIAGNOSTICS (X’200’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SQLJ (X’400’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_XA_CALLS (IBM Data

Server Driver for JDBC and SQLJ type 2 connectivity for DB2

Database for Linux, UNIX, and Windows only) (X’800’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_META_CALLS (X’2000’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DATASOURCE_CALLS (X’4000’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_LARGE_OBJECT_CALLS

(X’8000’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SYSTEM_MONITOR (X’20000’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_TRACEPOINTS () (X’40000’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL (X’FFFFFFFF’)

To specify more than one trace, use one of these techniques:

v Use bitwise OR (|) operators with two or more trace values. For

example, to trace DRDA flows and connection calls, specify this value

for traceLevel:

TRACE_DRDA_FLOWS|TRACE_CONNECTION_CALLS

v Use a bitwise complement (tilde (~)) operator with a trace value to

specify all except a certain trace. For example, to trace everything except

DRDA flows, specify this value for traceLevel:

 ~TRACE_DRDA_FLOWS

getTraceFile

Format:

public void getTraceFile()

 throws java.sql.SQLException

Returns the name of the destination file for the remote trace controller, if it is

set. Otherwise, getTraceFile returns null.

setTraceDirectory

Format:

public void setTraceDirectory(String traceDirectory,

 String baseTraceFileName,

 int traceLevel) throws java.sql.SQLException

Specifies the name of the directory into which the remote trace controller

writes trace information, and the type of information that is to be traced.

Parameter descriptions:

traceDirectory

Specifies a directory into which trace information is written. This setting

overrides the settings of the traceDirectory and logWriter properties for a

DataSource or DriverManager connection.

 Each JDBC driver connection is traced to a different file in the specified

directory. The naming convention for the files in that directory depends on

whether a non-null value is specified for baseTraceFileName:

v If a null value is specified for baseTraceFileName, a connection is traced

to a file named traceFile_global_n.

n is the nth JDBC driver connection.

v If a non-null value is specified for baseTraceFileName, a connection is

traced to a file named baseTraceFileName_global_n.

baseTraceFileName is the value of the baseTraceFileName parameter.

n is the nth JDBC driver connection.

432 Developing Java Applications

baseTraceFileName

Specifies the stem for the names of the files into which global trace

information is written. The combination of baseTraceFileName and

traceDirectory determines the full path name for the global trace log files.

traceLevel

Specifies what to trace.

 You can specify one or more of the following traces with the traceLevel

parameter:

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_NONE (X’00’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTION_CALLS (X’01’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_STATEMENT_CALLS (X’02’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_CALLS (X’04’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRIVER_CONFIGURATION

(X’10’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_CONNECTS (X’20’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DRDA_FLOWS (X’40’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_RESULT_SET_META_DATA

(X’80’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_PARAMETER_META_DATA

(X’100’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DIAGNOSTICS (X’200’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SQLJ (X’400’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_XA_CALLS (IBM Data

Server Driver for JDBC and SQLJ type 2 connectivity for DB2

Database for Linux, UNIX, and Windows only) (X’800’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_META_CALLS (X’2000’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_DATASOURCE_CALLS (X’4000’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_LARGE_OBJECT_CALLS

(X’8000’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_SYSTEM_MONITOR (X’20000’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_TRACEPOINTS () (X’40000’)

v com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL (X’FFFFFFFF’)

To specify more than one trace, use one of these techniques:

v Use bitwise OR (|) operators with two or more trace values. For

example, to trace DRDA flows and connection calls, specify this value

for traceLevel:

TRACE_DRDA_FLOWS|TRACE_CONNECTION_CALLS

v Use a bitwise complement (tilde (~)) operator with a trace value to

specify all except a certain trace. For example, to trace everything except

DRDA flows, specify this value for traceLevel:

 ~TRACE_DRDA_FLOWS

getTraceFileAppend

Format:

public abstract boolean getTraceFileAppend()

 throws java.sql.SQLException

Returns true if trace records that are generated by the trace controller are

appended to the trace file. Otherwise, getTraceFileAppend returns false.

getTraceDirectory

Format:

public void getTraceDirectory()

 throws java.sql.SQLException

Chapter 12. JDBC and SQLJ reference information 433

Returns the name of the destination directory for trace records that are

generated by the trace controller, if it is set. Otherwise, getTraceDirectory

returns null.

getTraceLevel

Format:

public void getTraceLevel()

 throws java.sql.SQLException

Returns the trace level for the trace records that are generated by the trace

controller, if it is set. Otherwise, getTraceLevel returns -1 (TRACE_ALL).

unsetLogWriter

Format:

public abstract void unsetLogWriter()

 throws java.sql.SQLException

Disables the global log writer override for future connections.

suspendTrace

Format:

public void suspendTrace()

 throws java.sql.SQLException

Suspends all global, Connection-level, or DataSource-level traces for current

and future connections. suspendTrace can be called when the global log writer

is enabled or disabled.

resumeTrace

Format:

public void resumeTrace()

 throws java.sql.SQLException

Resumes all global, Connection-level, or DataSource-level traces for current and

future connections. resumeTrace can be called when the global log writer is

enabled or disabled. If the global log writer is disabled, resumeTrace resumes

Connection-level or DataSource-level traces. If the global log writer is enabled,

resumeTrace resumes the global trace.

DB2Types class

The com.ibm.db2.jcc.DB2Types class provides fields that define IBM Data Server

Driver for JDBC and SQLJ-only data types.

DB2Types fields

The following constants define types codes only for the IBM Data Server Driver for

JDBC and SQLJ.

v public final static int BLOB_FILE = -100002

v public final static int CLOB_FILE = -100003

v public final static int CURSOR = -100008

v public final static int DECFLOAT = -100001

v public final static int XML_AS_BLOB_FILE = -100004

v public final static int XML_AS_CLOB_FILE = -100005

434 Developing Java Applications

DB2XADataSource class

DB2XADataSource is a factory for XADataSource objects. An object that

implements this interface is registered with a naming service that is based on the

Java Naming and Directory Interface (JNDI).

The com.ibm.db2.jcc.DB2XADataSource class extends the

com.ibm.db2.jcc.DB2BaseDataSource class, and implements the

javax.sql.XADataSource, java.io.Serializable, and javax.naming.Referenceable

interfaces.

DB2XADataSource methods

getDB2TrustedXAConnection

Formats:

public Object[] getDB2TrustedXAConnection(String user,

 String password,

 java.util.Properties properties)

 throws java.sql.SQLException

public Object[] getDB2TrustedXAConnection(

 java.util.Properties properties)

 throws java.sql.SQLException

public Object[] getDB2TrustedXAConnection(

 org.ietf.jgss.GSSCredential gssCredential,

 java.util.Properties properties)

 throws java.sql.SQLException

An application server using a system authorization ID uses this method to

establish a trusted connection.

Trusted connections are supported for:

v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2

Database for Linux, UNIX, and Windows Version 9.5 or later, and DB2 for

z/OS Version 9.1 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for

z/OS Version 9.1 or later

The following elements are returned in Object[]:

v The first element is a DB2TrustedXAConnection instance.

v The second element is a unique cookie for the generated XA connection

instance.

The first form getDB2TrustedXAConnection provides a user ID and password.

The second form of getDB2TrustedXAConnection uses the user ID and

password of the DB2XADataSource object. The third form of

getDB2TrustedXAConnection is for connections that use Kerberos security.

Parameter descriptions:

user

The authorization ID that is used to establish the trusted connection.

password

The password for the authorization ID that is used to establish the trusted

connection.

gssCredential

If the data source uses Kerberos security, specifies a delegated credential

that is passed from another principal.

Chapter 12. JDBC and SQLJ reference information 435

properties

Properties for the connection.

getDB2TrustedPooledConnection

Format:

public Object[] getDB2TrustedPooledConnection(java.util.Properties properties)

 throws java.sql.SQLException

An application server using a system authorization ID uses this method to

establish a trusted connection, using the user ID and password for the

DB2XADataSource object.

Trusted connections are supported for:

v IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2

Database for Linux, UNIX, and Windows Version 9.5 or later, and DB2 for

z/OS Version 9.1 or later

v IBM Data Server Driver for JDBC and SQLJ type 2 connectivity to DB2 for

z/OS Version 9.1 or later

The following elements are returned in Object[]:

v The first element is a trusted DB2TrustedPooledConnection instance.

v The second element is a unique cookie for the generated pooled connection

instance.

Parameter descriptions:

properties

Properties for the connection.

getDB2XAConnection

Formats:

public DB2XAConnection getDB2XAConnection(String user,

 String password,

 java.util.Properties properties)

 throws java.sql.SQLException

public DB2XAConnection getDB2XAConnection(

 org.ietf.jgss.GSSCredential gssCredential,

 java.util.Properties properties)

 throws java.sql.SQLException

Establishes the initial untrusted connection in a heterogeneous pooling

environment.

The first form getDB2PooledConnection provides a user ID and password. The

second form of getDB2XAConnection is for connections that use Kerberos

security.

Parameter descriptions:

user

The authorization ID that is used to establish the connection.

password

The password for the authorization ID that is used to establish the

connection.

gssCredential

If the data source uses Kerberos security, specifies a delegated credential

that is passed from another principal.

properties

Properties for the connection.

436 Developing Java Applications

DB2Xml interface

The com.ibm.db2.jcc.DB2Xml interface is used for declaring Java objects for use

with the DB2 XML data type.

DB2Xml methods

The following method is defined only for the IBM Data Server Driver for JDBC

and SQLJ.

closeDB2Xml

Format:

public void closeDB2Xml()

 throws SQLException

Releases the resources that are associated with a com.ibm.jcc.DB2Xml object.

getDB2AsciiStream

Format:

public java.io.InputStream getDB2AsciiStream()

 throws SQLExceptionn

Retrieves data from a DB2Xml object, and converts the data to US-ASCII

encoding.

getDB2BinaryStream

Format:

public java.io.InputStream getDB2BinaryStream()

 throws SQLException

Retrieves data from a DB2Xml object as a binary stream. The character

encoding of the bytes in the binary stream is defined in the XML 1.0

specification.

getDB2Bytes

Format:

public byte[] getDB2Bytes()

 throws SQLExceptionn

Retrieves data from a DB2Xml object as a byte array. The character encoding of

the bytes is defined in the XML 1.0 specification.

getDB2CharacterStream

Format:

public java.io.Reader getDB2CharacterStream()

 throws SQLExceptionn

Retrieves data from a DB2Xml object as a java.io.Reader object.

getDB2String

Format:

public String getDB2String()

 throws SQLExceptionn

Retrieves data from a DB2Xml object as a String value.

getDB2XmlAsciiStream

Format:

public InputStream getDB2XmlAsciiStream()

 throws SQLExceptionn

Chapter 12. JDBC and SQLJ reference information 437

Retrieves data from a DB2Xml object, converts the data to US-ASCII encoding,

and imbeds an XML declaration with an encoding specification for US-ASCII

in the returned data.

getDB2XmlBinaryStream

Format:

public java.io.InputStream getDB2XmlBinaryStream(String targetEncoding)

 throws SQLExceptionn

Retrieves data from a DB2Xml object as a binary stream, converts the data to

targetEncoding, and imbeds an XML declaration with an encoding specification

for targetEncoding in the returned data.

Parameter:

targetEncoding

A valid encoding name that is listed in the IANA Charset Registry. The

encoding names that are supported by the DB2 server are listed in

″Mappings of CCSIDs to encoding names for serialized XML output data″.

getDB2XmlBytes

Format:

public byte[] getDB2XmlBytes(String targetEncoding)

 throws SQLExceptionn

Retrieves data from a DB2Xml object as a byte array, converts the data to

targetEncoding, and imbeds an XML declaration with an encoding specification

for targetEncoding in the returned data.

Parameter:

targetEncoding

A valid encoding name that is listed in the IANA Charset Registry. The

encoding names that are supported by the DB2 server are listed in

″Mappings of CCSIDs to encoding names for serialized XML output data″.

getDB2XmlCharacterStream

Format:

public java.io.Reader getDB2XmlCharacterStream()

 throws SQLExceptionn

Retrieves data from a DB2Xml object as a java.io.Reader object, converts the

data to ISO-10646-UCS-2 encoding, and imbeds an XML declaration with an

encoding specification for ISO-10646-UCS-2 in the returned data.

getDB2XmlString

Format:

public String getDB2XmlString()

 throws SQLExceptionn

Retrieves data from a DB2Xml object as a String object, converts the data to

ISO-10646-UCS-2 encoding, and imbeds an XML declaration with an encoding

specification for ISO-10646-UCS-2 in the returned data.

isDB2XmlClosed

Format:

public boolean isDB2XmlClosed()

 throws SQLException

Indicates whether a com.ibm.jcc.DB2Xml object has been closed.

438 Developing Java Applications

JDBC differences between the current IBM Data Server Driver for

JDBC and SQLJ and earlier DB2 JDBC drivers

Before you can upgrade your JDBC applications from older drivers to the IBM

Data Server Driver for JDBC and SQLJ, you need to understand the differences

between those drivers.

Important: The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2

JDBC Type 2 Driver) is deprecated. This information is provided to assist you in

moving your applications to the IBM Data Server Driver for JDBC and SQLJ.

Supported methods

For a comparison of method support by the JDBC drivers, see ″Driver support for

JDBC APIs″.

Use of progressive streaming by the JDBC drivers

For IBM Data Server Driver for JDBC and SQLJ, Version 3.50 and later, use of

progressive streaming is the default for LOB retrieval, for connections to DB2

Database for Linux, UNIX, and Windows Version 9.5 and later.

Progressive streaming is supported in the IBM Data Server Driver for JDBC and

SQLJ Version 3.1 and later, but for IBM Data Server Driver for JDBC and SQLJ

version 3.2 and later, use of progressive streaming is the default for LOB and XML

retrieval, for connections to DB2 for z/OS Version 9.1 and later.

Previous versions of the IBM Data Server Driver for JDBC and SQLJ and the DB2

JDBC Type 2 Driver did not support progressive streaming.

Important: With progressive streaming, when you retrieve a LOB or XML value

from a ResultSet into an application variable, you can manipulate the contents of

that application variable until you move the cursor or close the cursor on the

ResultSet. After that, the contents of the application variable are no longer

available to you. If you perform any actions on the LOB in the application variable,

you receive an SQLException. For example, suppose that progressive streaming is

enabled, and you execute statements like this:

...

ResultSet rs = stmt.executeQuery("SELECT CLOBCOL FROM MY_TABLE");

rs.next(); // Retrieve the first row of the ResultSet

Clob clobFromRow1 = rs.getClob(1);

 // Put the CLOB from the first column of

 // the first row in an application variable

String substr1Clob = clobFromRow1.getSubString(1,50);

 // Retrieve the first 50 bytes of the CLOB

rs.next(); // Move the cursor to the next row.

 // clobFromRow1 is no longer available.

// String substr2Clob = clobFromRow1.getSubString(51,100);

 // This statement would yield an SQLException

Clob clobFromRow2 = rs.getClob(1);

 // Put the CLOB from the first column of

 // the second row in an application variable

rs.close(); // Close the ResultSet.

 // clobFromRow2 is also no longer available.

After you execute rs.next() to position the cursor at the second row of the

ResultSet, the CLOB value in clobFromRow1 is no longer available to you.

Chapter 12. JDBC and SQLJ reference information 439

Similarly, after you execute rs.close() to close the ResultSet, the values in

clobFromRow1 and clobFromRow2 are no longer available.

To avoid errors that are due to this changed behavior, you need to take one of the

following actions:

v Modify your applications.

Applications that retrieve LOB data into application variables can manipulate

the data in those application variables only until the cursors that were used to

retrieve the data are moved or closed.

v Disable progressive streaming by setting the progressiveStreaming property to

DB2BaseDataSource.NO (2).

ResultSetMetaData values for IBM Data Server Driver for JDBC

and SQLJ version 4.0 and later

For the IBM Data Server Driver for JDBC and SQLJ version 4.0 and later, the

default behavior of ResultSetMetaData.getColumnName and

ResultSetMetaData.getColumnLabel differs from the default behavior for earlier

JDBC drivers.

If you need to use IBM Data Server Driver for JDBC and SQLJ version 4.0 or later,

but your applications need to return the ResultSetMetaData.getColumnName and

ResultSetMetaData.getColumnLabel values that were returned with older JDBC

drivers, you can set the useJDBC4ColumnNameAndLabelSemantics Connection

and DataSource property to DB2BaseDataSource.NO (2).

Batch updates with automatically generated keys have different

results in different driver versions

With the IBM Data Server Driver for JDBC and SQLJ version 3.52 or later,

preparing an SQL statement for retrieval of automatically generated keys is

supported.

With the IBM Data Server Driver for JDBC and SQLJ version 3.50 or version 3.51,

preparing an SQL statement for retrieval of automatically generated keys and

using the PreparedStatement object for batch updates causes an SQLException.

Versions of the IBM Data Server Driver for JDBC and SQLJ before Version 3.50 do

not throw an SQLException when an application calls the addBatch or

executeBatch method on a PreparedStatement object that is prepared to return

automatically generated keys. However, the PreparedStatement object does not

return automatically generated keys.

Initial value of the CURRENT CLIENT_ACCTNG special register

For a JDBC or SQLJ application that runs under the IBM Data Server Driver for

JDBC and SQLJ version 2.6 or later, using type 4 connectivity, the initial value for

the DB2 for z/OS CURRENT CLIENT_ACCTNG special register is the

concatenation of the DB2 for z/OS version and the value of the clientWorkStation

property. For any other JDBC driver, version, and connectivity, the initial value is

not set.

440 Developing Java Applications

Support for scrollable and updatable ResultSets

The IBM Data Server Driver for JDBC and SQLJ supports scrollable and updatable

ResultSets.

The DB2 JDBC Type 2 Driver supports scrollable ResultSets but not updatable

ResultSets.

Difference in URL syntax

The syntax of the url parameter in the DriverManager.getConnection method is

different for each driver. See the following topics for more information:

v ″Connect to a data source using the DriverManager interface with the IBM Data

Server Driver for JDBC and SQLJ″

v ″Connect to a data source using the DriverManager interface with the DB2 JDBC

Type 2 Driver″

Difference in error codes and SQLSTATEs returned for driver

errors

The IBM Data Server Driver for JDBC and SQLJ does not use existing SQLCODEs

or SQLSTATEs for internal errors, as the other drivers do. See ″Error codes issued

by the IBM Data Server Driver for JDBC and SQLJ″ and ″SQLSTATEs issued by the

IBM Data Server Driver for JDBC and SQLJ″.

The JDBC/SQLJ driver for z/OS return ODBC SQLSTATEs when internal errors

occur.

How much error message text is returned

With the IBM Data Server Driver for JDBC and SQLJ, when you execute

SQLException.getMessage(), formatted message text is not returned unless you set

the retrieveMessagesFromServerOnGetMessage property to true.

With the DB2 JDBC Type 2 Driver, when you execute SQLException.getMessage(),

formatted message text is returned.

Security mechanisms

The JDBC drivers have different security mechanisms.

For information on IBM Data Server Driver for JDBC and SQLJ security

mechanisms, see ″Security under the IBM Data Server Driver for JDBC and SQLJ″.

For information on security mechanisms for the DB2 JDBC Type 2 Driver, see

″Security under the DB2 JDBC Type 2 Driver″.

Support for read-only connections

With the IBM Data Server Driver for JDBC and SQLJ, you can make a connection

read-only through the readOnly property for a Connection or DataSource object.

The DB2 JDBC Type 2 Driver uses the Connection.setReadOnly value when it

determines whether to make a connection read-only. However, setting

Connection.setReadOnly(true) does not guarantee that the connection is read-only.

Chapter 12. JDBC and SQLJ reference information 441

Results returned from ResultSet.getString for a BIT DATA column

The IBM Data Server Driver for JDBC and SQLJ returns data from a

ResultSet.getString call for a CHAR FOR BIT DATA or VARCHAR FOR BIT DATA

column as a lowercase hexadecimal string.

The DB2 JDBC Type 2 Driver returns the data as an uppercase hexadecimal string.

Results returned from ResultSet.getString for a TIMESTAMP

column

By default, the IBM Data Server Driver for JDBC and SQLJ truncates trailing zeroes

when it returns data for a ResultSet.getString call for a TIMESTAMP column value.

You can change this behavior with the timestampPrecisionReporting property.

The DB2 JDBC Type 2 Driver does not truncate trailing zeroes when it returns data

for a ResultSet.getString call for a TIMESTAMP column value.

Result of an executeUpdate call that affects no rows

The IBM Data Server Driver for JDBC and SQLJ generates an SQLWarning when

an executeUpdate call affects no rows.

The DB2 JDBC Type 2 Driver does not generate an SQLWarning.

Result of a getDate or getTime call for a TIMESTAMP column

The IBM Data Server Driver for JDBC and SQLJ does not generate an SQLWarning

when a getDate or getTime call is made against a TIMESTAMP column.

The DB2 JDBC Type 2 Driver generates an SQLWarning when a getDate or getTime

call is made against a TIMESTAMP column.

Date and time adjustment for input and output values that to do

not correspond to real dates and times

During update or retrieval of data in SQL DATE, TIME, or TIMESTAMP columns,

the IBM Data Server Driver for JDBC and SQLJ adjusts date and time values that

do not correspond to real dates and times. For example, if you update a

TIMESTAMP column with the value 2007-12-31 24:00:00.0, the IBM Data Server

Driver for JDBC and SQLJ adjusts the value to 2008-01-01 00:00:00.0. If you update

a TIMESTAMP column with the value 9999-12-31 24:00:00.0, the IBM Data Server

Driver for JDBC and SQLJ throws an exception because the adjusted value,

10000-01-01 00:00:00.0, is invalid.

The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows does no adjustment

of date or time values that do not correspond to real dates or times. That driver

passes the values to and from the database as they are. For example, if you update

a TIMESTAMP column with the value 9999-12-31 24:00:00.0 under the DB2 JDBC

Type 2 Driver for Linux, UNIX and Windows, no exception is thrown. See the

information on date, time, and timestamp values that can cause problems in JDBC

and SQLJ applications for more information.

442 Developing Java Applications

When an exception is thrown for

PreparedStatement.setXXXStream with a length mismatch

When you use the PreparedStatement.setBinaryStream ,

PreparedStatement.setCharacterStream, or PreparedStatement.setUnicodeStream

method, the length parameter value must match the number of bytes in the input

stream.

If the numbers of bytes do not match, the IBM Data Server Driver for JDBC and

SQLJ does not throw an exception until the subsequent

PreparedStatement.executeUpdate method executes. Therefore, for the IBM Data

Server Driver for JDBC and SQLJ, some data might be sent to the server when the

lengths to not match. That data is truncated or padded by the server. The calling

application needs to issue a rollback request to undo the database updates that

include the truncated or padded data.

The DB2 JDBC Type 2 Driver throws an exception after the

PreparedStatement.setBinaryStream, PreparedStatement.setCharacterStream, or

PreparedStatement.setUnicodeStream method executes.

Default mappings for PreparedStatement.setXXXStream

With the IBM Data Server Driver for JDBC and SQLJ, when you use the

PreparedStatement.setBinaryStream , PreparedStatement.setCharacterStream, or

PreparedStatement.setUnicodeStream method, and no information about the data

type of the target column is available, the input data is mapped to a BLOB or

CLOB data type.

For the DB2 JDBC Type 2 Driver, the input data is mapped to a VARCHAR FOR

BIT DATA or VARCHAR data type.

How character conversion is done

When character data is transferred between a client and a server, the data must be

converted to a form that the receiver can process.

For the IBM Data Server Driver for JDBC and SQLJ, character data that is sent

from the data source to the client is converted using Java’s built-in character

converters. The conversions that the IBM Data Server Driver for JDBC and SQLJ

supports are limited to those that are supported by the underlying JRE

implementation.

A IBM Data Server Driver for JDBC and SQLJ client using type 4 connectivity

sends data to the data source as Unicode UTF-8.

For the DB2 JDBC Type 2 Driver, character conversions can be performed if the

conversions are supported by the DB2 server.

Those drivers use CCSID information from the data source if it is available. The

drivers convert input parameter data to the CCSID of the data source before

sending the data. If target CCSID information is not available, the drivers send the

data as Unicode UTF-8.

Chapter 12. JDBC and SQLJ reference information 443

Implicit or explicit data type conversion for input parameters

If you execute a PreparedStatement.setXXX method, and the resulting data type

from the setXXX method does not match the data type of the table column to

which the parameter value is assigned, the driver returns an error unless data type

conversion occurs.

With the IBM Data Server Driver for JDBC and SQLJ, conversion to the correct

SQL data type occurs implicitly if the target data type is known and if the

deferPrepares and sendDataAsIs connection properties are set to false. In this

case, the implicit values override any explicit values in the setXXX call. If the

deferPrepares connection property or the sendDataAsIs connection property is set

to true, you must use the PreparedStatement.setObject method to convert the

parameter to the correct SQL data type.

For the DB2 JDBC Type 2 Driver, if the data type of a parameter does not match its

default SQL data type, you must use the PreparedStatement.setObject method to

convert the parameter to the correct SQL data type.

Support for String to BINARY conversions for input parameters

The IBM Data Server Driver for JDBC and SQLJ does not support

PreparedStatement.setObject calls of the following form when x is an object of type

String:

setObject(parameterIndex, x, java.sqlTypes.BINARY)

The DB2 JDBC Type 2 Driver supports calls of this type. The driver interprets the

value of x as a hexadecimal string.

Result of PreparedStatement.setObject with a decimal scale

mismatch

With the IBM Data Server Driver for JDBC and SQLJ, if you call

PreparedStatement.setObject with a decimal input parameter, and the scale of the

input parameter is greater than the scale of the target column, the driver truncates

the trailing digits of the input value before assigning the value to the column.

The DB2 JDBC Type 2 Driver rounds the trailing digits of the input value before

assigning the value to the column.

Valid range for ResultSet.getBigDecimal scale parameter

The deprecated form of ResultSet.getBigDecimal has a scale parameter as the

second parameter. The IBM Data Server Driver for JDBC and SQLJ allows a range

of 0 to 32 for the scale parameter.

The DB2 JDBC Type 2 Driver allows a range of -1 to 32.

Support for conversions from the java.lang.Character data type

for input parameters

For the following form of PreparedStatement.setObject, the IBM Data Server Driver

for JDBC and SQLJ supports the standard data type mappings of Java objects to

JDBC data types when it converts x to a JDBC data type:

setObject(parameterIndex, x)

444 Developing Java Applications

The DB2 JDBC Type 2 Driver supports the non-standard mapping of x from

java.lang.Character to CHAR.

Support for ResultSet.getBinaryStream against a character

column

The IBM Data Server Driver for JDBC and SQLJ supports

ResultSet.getBinaryStream with an argument that represents a character column

only if the column has the FOR BIT DATA attribute.

For the DB2 JDBC Type 2 Driver, if the ResultSet.getBinaryStream argument is a

character column, that column does not need to have the FOR BIT DATA attribute.

Data returned from ResultSet.getBinaryStream against a binary

column

With the IBM Data Server Driver for JDBC and SQLJ, when you execute

ResultSet.getBinaryStream against a binary column, the returned data is in the

form of lowercase, hexadecimal digit pairs.

With the DB2 JDBC Type 2 Driver, when you execute ResultSet.getBinaryStream

against a binary column, the returned data is in the form of uppercase,

hexadecimal digit pairs.

Result of using setObject with a Boolean input type and a CHAR

target type

With the IBM Data Server Driver for JDBC and SQLJ, when you execute

PreparedStatement.setObject(parameterIndex,x,CHAR), and x is Boolean, the value

″0″ or ″1″ is inserted into the table column.

With the DB2 JDBC Type 2 Driver, the string ″false″ or ″true″ is inserted into the

table column. The table column length must be at least 5.

Result of using getBoolean to retrieve a value from a CHAR

column

With the IBM Data Server Driver for JDBC and SQLJ, when you execute

ResultSet.getBoolean or CallableStatement.getBoolean to retrieve a Boolean value

from a CHAR column, and the column contains the value ″false″ or ″0″, the value

false is returned. If the column contains any other value, true is returned.

With the DB2 JDBC Type 2 Driver, when you execute ResultSet.getBoolean or

CallableStatement.getBoolean to retrieve a Boolean value from a CHAR column,

and the column contains the value ″true″ or ″1″, the value true is returned. If the

column contains any other value, false is returned.

Result of executing ResultSet.next() on a closed cursor

With the IBM Data Server Driver for JDBC and SQLJ, when you execute

ResultSet.next() on a closed cursor, an SQLException is thrown. This conforms with

the JDBC standard.

With the DB2 JDBC Type 2 Driver, when you execute ResultSet.next() on a closed

cursor, a value of false is returned, and no exception is thrown.

Chapter 12. JDBC and SQLJ reference information 445

Result of specifying null arguments in DatabaseMetaData calls

With the IBM Data Server Driver for JDBC and SQLJ, you can specify null for an

argument in a DatabaseMetaData method call only where the JDBC specification

states that null is allowed. Otherwise, an exception is thrown.

With the DB2 JDBC Type 2 Driver, null means that the argument is not used to

narrow the search.

Folding of method arguments to uppercase

The IBM Data Server Driver for JDBC and SQLJ does not fold any arguments in

method calls to uppercase.

The DB2 JDBC Type 2 Driver folds the argument of a Statement.setCursorName

call to uppercase. To prevent the cursor name from being folded to uppercase,

precede and follow the cursor name with the characters \″. For example:

Statement.setCursorName("\"mycursor\"");

Support for timestamp escape clauses

The IBM Data Server Driver for JDBC and SQLJ supports the standard form of an

escape clause for TIME:

{t ’hh:mm:ss’}

In addition to the standard form, the DB2 JDBC Type 2 Driver supports the

following form of a TIME escape clause:

{ts ’hh:mm:ss’}

Including a CALL statement in a statement batch

The IBM Data Server Driver for JDBC and SQLJ supports CALL statements in a

statement batch.

The DB2 JDBC Type 2 Driver does not support CALL statements in a statement

batch.

Removal of extra characters from SQL statement text

The IBM Data Server Driver for JDBC and SQLJ does not remove white-space

characters, such as spaces, tabs, and new-line characters, from SQL statement text

before it passes that text to the data source.

The DB2 JDBC Type 2 Driver removes white-space characters from SQLstatement

text before it passes that text to the data source.

Result of executing PreparedStatement.executeBatch

When a PreparedStatement.executeBatch statement is executed under the IBM Data

Server Driver for JDBC and SQLJ, the driver returns an int array of update counts.

Each element of the array contains the number of rows that were updated by a

statement in the batch.

446 Developing Java Applications

When a PreparedStatement.executeBatch statement is executed under the DB2

JDBC Type 2 Driver, the driver cannot determine the update counts, so it returns -3

for each update count.

Support for compound SQL

The IBM Data Server Driver for JDBC and SQLJ driver does not support

compound SQL blocks.

Compound SQL allows multiple SQL statements to be grouped into a single

executable block. For example:

EXEC SQL BEGIN COMPOUND ATOMIC STATIC

 UPDATE ACCOUNTS SET ABALANCE = ABALANCE + :delta

 WHERE AID = :aid;

 UPDATE TELLERS SET TBALANCE = TBALANCE + :delta

 WHERE TID = :tid;

 INSERT INTO TELLERS (TID, BID, TBALANCE) VALUES (:i, :branch_id, 0);

 COMMIT;

END COMPOUND;

The DB2 JDBC Type 2 Driver supports execution of compound SQL blocks with

PreparedStatement.executeUpdate or Statement.executeUpdate.

Result of not setting a parameter in a batched update

The IBM Data Server Driver for JDBC and SQLJ driver throws an exception after a

PreparedStatement.addBatch call if a parameter is not set.

The DB2 JDBC Type 2 Driver throws an exception after the

PreparedStatement.executeBatch call if a parameter is not set for any of the

statements in the batch.

Ability to call uncatalogued stored procedures

The IBM Data Server Driver for JDBC and SQLJ driver does not let you call stored

procedures that are not defined in the DB2 catalog.

The DB2 JDBC Type 2 Driver lets you call stored procedures that are not defined in

the DB2 catalog.

Specification of data types for stored procedure parameters

With the IBM Data Server Driver for JDBC and SQLJ driver, if the data source does

not support dynamic execution of the CALL statement, you must specify CALL

statement parameters exactly as they are specified in the stored procedure

definition.

For example, DB2 for z/OS data sources do not support dynamic execution of

CALL statements. Suppose that the first parameter of a stored procedure on a DB2

for z/OS server is defined like this in the CREATE PROCEDURE statement:

OUT PARM1 DECIMAL(3,0)

In the calling application, a statement like cs.registerOutParameter(1,

Types.DECIMAL) is not correct. You need to use the form of the

registerOutParameter method that specifies the scale as well as the data type:

cs.registerOutParameter (1, Types.DECIMAL, 0).

Chapter 12. JDBC and SQLJ reference information 447

The DB2 JDBC Type 2 Driver does not require that the parameter data types in a

calling application match the data types in the CREATE PROCEDURE statement.

JDBC differences between versions of the IBM Data Server Driver for

JDBC and SQLJ

Before you can upgrade your JDBC applications from older to newer versions of

the IBM Data Server Driver for JDBC and SQLJ, you need to understand the

differences between those drivers.

Supported methods

For a list of methods that the IBM Data Server Driver for JDBC and SQLJ supports,

see ″Driver support for JDBC APIs″.

Use of progressive streaming by the JDBC drivers

For IBM Data Server Driver for JDBC and SQLJ, Version 3.50 and later, progressive

streaming, which is also known as dynamic data format, behavior is the default for

LOB retrieval, for connections to DB2 Database for Linux, UNIX, and Windows

Version 9.5 and later.

Progressive streaming is supported in the IBM Data Server Driver for JDBC and

SQLJ Version 3.1 and later, but for IBM Data Server Driver for JDBC and SQLJ

version 3.2 and later, progressive streaming behavior is the default for LOB and

XML retrieval, for connections to DB2 for z/OS Version 9.1 and later.

Previous versions of the IBM Data Server Driver for JDBC and SQLJ did not

support progressive streaming.

Important: With progressive streaming, when you retrieve a LOB or XML value

from a ResultSet into an application variable, you can manipulate the contents of

that application variable until you move the cursor or close the cursor on the

ResultSet. After that, the contents of the application variable are no longer

available to you. If you perform any actions on the LOB in the application variable,

you receive an SQLException. For example, suppose that progressive streaming is

enabled, and you execute statements like this:

...

ResultSet rs = stmt.executeQuery("SELECT CLOBCOL FROM MY_TABLE");

rs.next(); // Retrieve the first row of the ResultSet

Clob clobFromRow1 = rs.getClob(1);

 // Put the CLOB from the first column of

 // the first row in an application variable

String substr1Clob = clobFromRow1.getSubString(1,50);

 // Retrieve the first 50 bytes of the CLOB

rs.next(); // Move the cursor to the next row.

 // clobFromRow1 is no longer available.

// String substr2Clob = clobFromRow1.getSubString(51,100);

 // This statement would yield an SQLException

Clob clobFromRow2 = rs.getClob(1);

 // Put the CLOB from the first column of

 // the second row in an application variable

rs.close(); // Close the ResultSet.

 // clobFromRow2 is also no longer available.

After you execute rs.next() to position the cursor at the second row of the

ResultSet, the CLOB value in clobFromRow1 is no longer available to you.

448 Developing Java Applications

Similarly, after you execute rs.close() to close the ResultSet, the values in

clobFromRow1 and clobFromRow2 are no longer available.

To avoid errors that are due to this changed behavior, you need to take one of the

following actions:

v Modify your applications.

Applications that retrieve LOB data into application variables can manipulate

the data in those application variables only until the cursors that were used to

retrieve the data are moved or closed.

v Disable progressive streaming by setting the progressiveStreaming property to

DB2BaseDataSource.NO (2).

ResultSetMetaData values for IBM Data Server Driver for JDBC

and SQLJ version 4.0 and later

For the IBM Data Server Driver for JDBC and SQLJ version 4.0 and later, the

default behavior of ResultSetMetaData.getColumnName and

ResultSetMetaData.getColumnLabel differs from the default behavior for earlier

JDBC drivers.

If you need to use IBM Data Server Driver for JDBC and SQLJ version 4.0 or later,

but your applications need to return the ResultSetMetaData.getColumnName and

ResultSetMetaData.getColumnLabel values that were returned with older JDBC

drivers, you can set the useJDBC4ColumnNameAndLabelSemantics Connection

and DataSource property to DB2BaseDataSource.NO (2).

Batch updates with automatically generated keys have different

results in different driver versions

With the IBM Data Server Driver for JDBC and SQLJ version 3.52 or later,

preparing an SQL statement for retrieval of automatically generated keys is

supported.

With the IBM Data Server Driver for JDBC and SQLJ version 3.50 or version 3.51,

preparing an SQL statement for retrieval of automatically generated keys and

using the PreparedStatement object for batch updates causes an SQLException.

Versions of the IBM Data Server Driver for JDBC and SQLJ before Version 3.50 do

not throw an SQLException when an application calls the addBatch or

executeBatch method on a PreparedStatement object that is prepared to return

automatically generated keys. However, the PreparedStatement object does not

return automatically generated keys.

Initial value of the CURRENT CLIENT_ACCTNG special register

For a JDBC or SQLJ application that runs under the IBM Data Server Driver for

JDBC and SQLJ version 2.6 or later, using type 4 connectivity, the initial value for

the DB2 for z/OS CURRENT CLIENT_ACCTNG special register is the

concatenation of the DB2 for z/OS version and the value of the clientWorkStation

property. For any other JDBC driver, version, and connectivity, the initial value is

not set.

Chapter 12. JDBC and SQLJ reference information 449

Properties that control the use of multi-row FETCH

Before version 3.7 and version 3.51 of the IBM Data Server Driver for JDBC and

SQLJ, multi-row FETCH support was enabled and disabled through the

useRowsetCursor property, and was available only for scrollable cursors, and for

IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2 for z/OS.

Starting with version 3.7 and 3.51:

v For IBM Data Server Driver for JDBC and SQLJ type 2 connectivity on DB2 for

z/OS, the IBM Data Server Driver for JDBC and SQLJ uses only the

enableRowsetSupport property to determine whether to use multi-row FETCH

for scrollable or forward-only cursors.

v For IBM Data Server Driver for JDBC and SQLJ type 4 connectivity to DB2 for

z/OS or DB2 Database for Linux, UNIX, and Windows, or IBM Data Server

Driver for JDBC and SQLJ type 2 connectivity on DB2 Database for Linux,

UNIX, and Windows, the IBM Data Server Driver for JDBC and SQLJ uses the

enableRowsetSupport property to determine whether to use multi-row FETCH

for scrollable cursors, if enableRowsetSupport is set. If enableRowsetSupport is

not set, the driver uses the useRowsetCursor property to determine whether to

use multi-row FETCH.

JDBC 1 positioned updates and deletes and multi-row FETCH

Before version 3.7 and version 3.51 of the IBM Data Server Driver for JDBC and

SQLJ, multi-row FETCH from DB2 for z/OS tables was controlled by the

useRowsetCursor property. If an application contained JDBC 1 positioned update

or delete operations, and multi-row FETCH support was enabled, the IBM Data

Server Driver for JDBC and SQLJ permitted the update or delete operations, but

unexpected updates or deletes might occur.

Starting with version 3.7 and 3.51 of the IBM Data Server Driver for JDBC and

SQLJ, the enableRowsetSupport property enables or disables multi-row FETCH

from DB2 for z/OS tables or DB2 Database for Linux, UNIX, and Windows tables.

The enableRowsetSupport property overrides the useRowsetCursor property. If

multi-row FETCH is enabled through the enableRowsetSupport property, and an

application contains a JDBC 1 positioned update or delete operation, the IBM Data

Server Driver for JDBC and SQLJ throws an SQLException.

Examples of ResultSetMetaData.getColumnName and

ResultSetMetaData.getColumnLabel values

For the IBM Data Server Driver for JDBC and SQLJ version 4.0 and later, the

default behavior of ResultSetMetaData.getColumnName and

ResultSetMetaData.getColumnLabel differs from the default behavior for earlier

JDBC drivers. You can use the useJDBC4ColumnNameAndLabelSemantics property

to change this behavior.

The following examples show the values that are returned for IBM Data Server

Driver for JDBC and SQLJ Version 4.0, and for previous JDBC drivers, when the

useJDBC4ColumnNameAndLabelSemantics property is not set.

All queries use a table that is defined like this:

CREATE TABLE MYTABLE(INTCOL INT)

Example: The following query contains an AS CLAUSE, which defines a label for a

column in the result set:

450 Developing Java Applications

SELECT MYCOL AS MYLABEL FROM MYTABLE

The following table lists the ResultSetMetaData.getColumnName and

ResultSetMetaData.getColumnName values that are returned for the query:

 Table 101. ResultSetMetaData.getColumnName and ResultSetMetaData.getColumnName before and after IBM Data

Server Driver for JDBC and SQLJ Version 4.0 for a query with an AS CLAUSE

Target data source

Behavior before IBM Data Server Driver for

JDBC and SQLJ Version 4.0

Behavior for IBM Data Server Driver for

JDBC and SQLJ Version 4.0 and later

getColumnName

value

getColumnLabel

value

getColumnName

value

getColumnLabel

value

DB2 Database for

Linux, UNIX, and

Windows

MYLABEL MYLABEL MYCOL MYLABEL

IBM Informix

Dynamic Server

MYLABEL MYLABEL MYCOL MYLABEL

DB2 for z/OS Version

8 or later, and DB2

UDB for iSeries V5R3

and later

MYLABEL MYLABEL MYCOL MYLABEL

DB2 for z/OS Version

7, and DB2 UDB for

iSeries V5R2

MYLABEL MYLABEL MYLABEL MYLABEL

Example: The following query contains no AS clause:

SELECT MYCOL FROM MYTABLE

The ResultSetMetaData.getColumnName and ResultSetMetaData.getColumnLabel

methods on the query return MYCOL, regardless of the target data source.

Example: On a DB2 for z/OS or DB2 for i data source, a LABEL ON statement is

used to define a label for a column:

LABEL ON COLUMN MYTABLE.MYCOL IS ’LABELONCOL’

The following query contains an AS CLAUSE, which defines a label for a column

in the ResultSet:

SELECT MYCOL AS MYLABEL FROM MYTABLE

The following table lists the ResultSetMetaData.getColumnName and

ResultSetMetaData.getColumnName values that are returned for the query.

 Table 102. ResultSetMetaData.getColumnName and ResultSetMetaData.getColumnName before and after IBM Data

Server Driver for JDBC and SQLJ Version 4.0 for a table column with a LABEL ON statement in a query with an AS

CLAUSE

Target data source

Behavior before IBM Data Server Driver for

JDBC and SQLJ Version 4.0

Behavior for IBM Data Server Driver for

JDBC and SQLJ Version 4.0 and later

getColumnName

value

getColumnLabel

value

getColumnName

value

getColumnLabel

value

DB2 for z/OS Version

8 or later, and DB2

UDB for iSeries V5R3

and later

MYLABEL LABELONCOL MYCOL MYLABEL

Chapter 12. JDBC and SQLJ reference information 451

Table 102. ResultSetMetaData.getColumnName and ResultSetMetaData.getColumnName before and after IBM Data

Server Driver for JDBC and SQLJ Version 4.0 for a table column with a LABEL ON statement in a query with an AS

CLAUSE (continued)

Target data source

Behavior before IBM Data Server Driver for

JDBC and SQLJ Version 4.0

Behavior for IBM Data Server Driver for

JDBC and SQLJ Version 4.0 and later

getColumnName

value

getColumnLabel

value

getColumnName

value

getColumnLabel

value

DB2 for z/OS Version

7, and DB2 UDB for

iSeries V5R2

MYLABEL LABELONCOL MYCOL LABELONCOL

Example: On a DB2 for z/OS or DB2 for i data source, a LABEL ON statement is

used to define a label for a column:

LABEL ON COLUMN MYTABLE.MYCOL IS ’LABELONCOL’

The following query contains no AS CLAUSE:

SELECT MYCOL FROM MYTABLE

The following table lists the ResultSetMetaData.getColumnName and

ResultSetMetaData.getColumnName values that are returned for the query.

 Table 103. ResultSetMetaData.getColumnName and ResultSetMetaData.getColumnName before and after IBM Data

Server Driver for JDBC and SQLJ Version 4.0 for a table column with a LABEL ON statement in a query with no AS

CLAUSE

Target data source

Behavior before IBM Data Server Driver for

JDBC and SQLJ Version 4.0

Behavior for IBM Data Server Driver for

JDBC and SQLJ Version 4.0

getColumnName

value

getColumnLabel

value

getColumnName

value

getColumnLabel

value

DB2 for z/OS Version

8 or later, and DB2

UDB for i5/OS V5R3

and later

MYCOL LABELONCOL MYCOL MYCOL

DB2 for z/OS Version

7, and DB2 UDB for

i5/OS V5R2

MYCOL LABELONCOL MYLABEL LABELONCOL

SQLJ differences between the IBM Data Server Driver for JDBC and

SQLJ and other DB2 JDBC drivers

There are a number of differences between the IBM Data Server Driver for JDBC

and SQLJ and the older JDBC drivers. When you move to the IBM Data Server

Driver for JDBC and SQLJ, you need to modify your SQLJ programs to account for

those differences.

Important: The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2

JDBC Type 2 Driver) is deprecated. This information is provided to assist you in

moving your applications to the IBM Data Server Driver for JDBC and SQLJ.

SQLJ support in the IBM Data Server Driver for JDBC and SQLJ differs from SQLJ

support in the other DB2 JDBC drivers in the following areas:

452 Developing Java Applications

db2sqljcustomize errors and the -collection parameter

The db2sqljcustomize utility that is part of the IBM Data Server Driver for JDBC

and SQLJ has a -collection parameter. The db2profc utility that is part of the DB2

JDBC Type 2 Driver does not have a -collection parameter. If the db2sqljcustomize

utility performs a bind operation on a DB2 for z/OS server, and the -collection

parameter contains any lowercase characters, db2sqljcustomize returns a -4499

error because collection IDs cannot contain lowercase characters in DB2 for z/OS.

This situation cannot occur with db2profc.

Differences in serialized profiles

The DB2 JDBC Type 2 Driver and the IBM Data Server Driver for JDBC and SQLJ

produce different binary code when you execute their SQLJ translator and the

SQLJ customizer utilities. Therefore, SQLJ applications that you translated and

customized using the DB2 JDBC Type 2 Driver sqlj and db2profc utilities do not

run under the IBM Data Server Driver for JDBC and SQLJ. Before you can run

those SQLJ applications under the IBM Data Server Driver for JDBC and SQLJ,

you must retranslate and recustomize the applications using the IBM Data Server

Driver for JDBC and SQLJ sqlj and db2sqljcustomize utilities. You must do so

even if you have not modified the applications.

SQL VALUES support

The DB2 JDBC Type 2 Driver supports the SQL VALUES statement in an SQLJ

statement clause, but the IBM Data Server Driver for JDBC and SQLJ does not.

Therefore, you need to modify your SQLJ applications that include VALUES

statements.

Example: Suppose that an SQLJ program contains the following statement:

#sql [ctxt] hv = {VALUES (MY_ROUTINE(1))};

For the IBM Data Server Driver for JDBC and SQLJ, you need to change that

statement to something like this:

#sql [ctxt] {SELECT MY_ROUTINE(1) INTO :hv FROM SYSIBM.SYSDUMMY1};

Difference in connection techniques

The connection techniques that are available, and the driver names and URLs that

are used for those connection techniques, vary from driver to driver. See ″Connect

to a data source using SQLJ″ for more information.

Support for scrollable and updatable iterators

SQLJ with the IBM Data Server Driver for JDBC and SQLJ supports scrollable and

updatable iterators.

The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2 JDBC Type 2

Driver) supports scrollable cursors but not updatable iterators.

Dynamic execution of SQL statements under WebSphere

Application Server

For WebSphere Application Server Version 5.0.1 and above, if you customize your

SQLJ program, SQL statements are executed statically.

Chapter 12. JDBC and SQLJ reference information 453

Alternative names for db2sqljcustomize and db2sqljprint are not

supported

The DB2 JDBC Type 2 Driver originally used the name db2profc for the SQLJ

profile customizer command, and the name db2profp for the SQLJ profile printer

command. For the IBM Data Server Driver for JDBC and SQLJ, the SQLJ profile

customizer command is named db2sqljcustomize, and the SQLJ profile printer

command is named db2sqljprint. In previous releases of DB2 Database for Linux,

UNIX, and Windows, db2profc was accepted as an alternative name for

db2sqljcustomize, and db2profp was accepted as an alternative name for

db2sqljprint. These alternative names are no longer accepted.

SDK for Java differences that affect the IBM Data Server Driver for

JDBC and SQLJ

Differences in the behavior among versions of the SDK for Java can cause

variations in the results that you receive when you run programs under the IBM

Data Server Driver for JDBC and SQLJ.

Retrieved values for DBCS substitution characters

When you retrieve a DBCS substitution character, such as X’FCFC’ in code page

Cp943, from a database table, the retrieved value differs, depending on whether

you are using an IBM SDK for Java or a Sun SDK for Java.

For a Sun SDK for Java, the substitution character is retrieved as U+0000. For an

IBM SDK for Java, the substitution character is retrieved as X’FFFD’.

Supported code pages

IBM SDKs for Java support more DBCS code pages than Sun SDKs for Java.

Therefore, if you get errors because of unsupported code pages with a Sun SDK for

Java, try using an IBM SDK for Java.

IBM SDK for Java requirement for encryption

The IBM SDKs for Java support 256-bit encryption, but the Sun SDKs for Java do

not have this support. Therefore, if you use any of the IBM Data Server Driver for

JDBC and SQLJ security mechanisms that include encryption, you need to use an

IBM SDK for Java.

Support for system monitoring

Support for system monitoring in the IBM Data Server Driver for JDBC and SQLJ

includes collection of core driver time and network I/O time. Retrieval of this

information requires capabilities that are in any SDK for Java Version 5 or later.

However, the IBM SDK for Java Version 1.4.2 also has support that enables

collection of core driver time and network I/O time. If you use the IBM SDK for

Java Version 1.4.2, the core driver time and network I/O time are rounded to the

nearest microsecond. If you use an SDK for Java Version 5 or later, the core driver

time and network I/O time are rounded to the nearest nanosecond.

454 Developing Java Applications

Error codes issued by the IBM Data Server Driver for JDBC and SQLJ

Error codes in the ranges +4200 to +4299, +4450 to +4499, -4200 to -4299, and -4450

to -4499 are reserved for the IBM Data Server Driver for JDBC and SQLJ.

When you call the SQLException.getMessage method after a IBM Data Server

Driver for JDBC and SQLJ error occurs, a string is returned that includes:

v Whether the connection is a type 2 or type 4 connection

v Diagnostic information for IBM Software Support

v The level of the driver

v An explanatory message

v The error code

v The SQLSTATE

For example:

[jcc][t4][20128][12071][3.50.54] Invalid queryBlockSize specified: 1,048,576,012.

Using default query block size of 32,767. ERRORCODE=0, SQLSTATE=

Currently, the IBM Data Server Driver for JDBC and SQLJ issues the following

error codes:

 Table 104. Error codes issued by the IBM Data Server Driver for JDBC and SQLJ

Error

Code Message text and explanation SQLSTATE

+4204 Errors were encountered and tolerated as specified by the

RETURN DATA UNTIL clause.

Explanation: Tolerated errors include federated connection,

authentication, and authorization errors. This warning applies

only to connections to DB2 Database for Linux, UNIX, and

Windows servers. It is issued only when a cursor operation,

such as a ResultSet.next or ResultSet.previous call, returns

false.

02506

+4222 text-from-getMessage

Explanation: A warning condition occurred during

connection to the data source.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

+4223 text-from-getMessage

Explanation: A warning condition occurred during

initialization.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

+4225 text-from-getMessage

Explanation: A warning condition occurred when data was

sent to a server or received from a server.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

Chapter 12. JDBC and SQLJ reference information 455

Table 104. Error codes issued by the IBM Data Server Driver for JDBC and

SQLJ (continued)

Error

Code Message text and explanation SQLSTATE

+4226 text-from-getMessage

Explanation: A warning condition occurred during

customization or bind.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

+4228 text-from-getMessage

Explanation: An warning condition occurred that does not fit

in another category.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

+4450 Feature not supported: feature-name

+4460 text-from-getMessage

Explanation: The specified value is not a valid option.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

+4461 text-from-getMessage

Explanation: The specified value is invalid or out of range.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

+4462 text-from-getMessage

Explanation: A required value is missing.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

+4470 text-from-getMessage

Explanation: The requested operation cannot be performed

because the target resource is closed.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

+4471 text-from-getMessage

Explanation: The requested operation cannot be performed

because the target resource is in use.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

+4472 text-from-getMessage

Explanation: The requested operation cannot be performed

because the target resource is because the target resource is

unavailable.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

456 Developing Java Applications

Table 104. Error codes issued by the IBM Data Server Driver for JDBC and

SQLJ (continued)

Error

Code Message text and explanation SQLSTATE

+4474 text-from-getMessage

Explanation: The requested operation cannot be performed

because the target resource cannot be changed.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

-4200 Invalid operation: An invalid COMMIT or ROLLBACK has

been called in an XA environment during a Global

Transaction.

Explanation: An application that was in a global transaction

in an XA environment issued a commit or rollback. A commit

or rollback operation in a global transaction is invalid.

2D521

-4201 Invalid operation: setAutoCommit(true) is not allowed during

Global Transaction.

Explanation: An application that was in a global transaction

in an XA environment executed the setAutoCommit(true)

statement. Issuing setAutoCommit(true) in a global

transaction is invalid.

2D521

-4203 Error executing function. Server returned rc.

: An error occurred on an XA connection during execution of

an SQL statement.

For network optimization, the IBM Data Server Driver for

JDBC and SQLJ delays some XA flows until the next SQL

statement is executed. If an error occurs in a delayed XA

flow, that error is reported as part of the SQLException that

is thrown by the current SQL statement.

-4210 Timeout getting a transport object from pool. 57033

-4211 Timeout getting an object from pool. 57033

-4212 Sysplex member unavailable.

-4213 Timeout. 57033

-4214 text-from-getMessage

Explanation: Authorization failed.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

28000

-4220 text-from-getMessage

Explanation: An error occurred during character conversion.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

Chapter 12. JDBC and SQLJ reference information 457

Table 104. Error codes issued by the IBM Data Server Driver for JDBC and

SQLJ (continued)

Error

Code Message text and explanation SQLSTATE

-4221 text-from-getMessage

Explanation: An error occurred during encryption or

decryption.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

-4222 text-from-getMessage

Explanation: An error occurred during connection to the data

source.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

-4223 text-from-getMessage

Explanation: An error occurred during initialization.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

-4224 text-from-getMessage

Explanation: An error occurred during resource cleanup.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

-4225 text-from-getMessage

Explanation: An error occurred when data was sent to a

server or received from a server.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

-4226 text-from-getMessage

Explanation: An error occurred during customization or

bind.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

-4227 text-from-getMessage

Explanation: An error occurred during reset.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

-4228 text-from-getMessage

Explanation: An error occurred that does not fit in another

category.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

-4450 Feature not supported: feature-name 0A504

458 Developing Java Applications

Table 104. Error codes issued by the IBM Data Server Driver for JDBC and

SQLJ (continued)

Error

Code Message text and explanation SQLSTATE

-4460 text-from-getMessage

Explanation: The specified value is not a valid option.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

-4461 text-from-getMessage

Explanation: The specified value is invalid or out of range.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

42815

-4462 text-from-getMessage

Explanation: A required value is missing.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

-4463 text-from-getMessage

Explanation: The specified value has a syntax error.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

42601

-4470 text-from-getMessage

Explanation: The requested operation cannot be performed

because the target resource is closed.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

-4471 text-from-getMessage

Explanation: The requested operation cannot be performed

because the target resource is in use.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

-4472 text-from-getMessage

Explanation: The requested operation cannot be performed

because the target resource is unavailable.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

-4473 text-from-getMessage

Explanation: The requested operation cannot be performed

because the target resource is no longer available.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

Chapter 12. JDBC and SQLJ reference information 459

Table 104. Error codes issued by the IBM Data Server Driver for JDBC and

SQLJ (continued)

Error

Code Message text and explanation SQLSTATE

-4474 text-from-getMessage

Explanation: The requested operation cannot be performed

because the target resource cannot be changed.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

-4475 text-from-getMessage

Explanation: The requested operation cannot be performed

because access to the target resource is restricted.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

-4476 text-from-getMessage

Explanation: The requested operation cannot be performed

because the operation is not allowed on the target resource.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

-4496 An SQL OPEN for a held cursor was issued on an XA

connection. The JDBC driver does not allow a held cursor to

be opened on the database server for an XA connection.

-4497 The application must issue a rollback. The unit of work has

already been rolled back in the DB2 server, but other resource

managers involved in the unit of work might not have rolled

back their changes. To ensure integrity of the application, all

SQL requests are rejected until the application issues a

rollback.

-4498 A connection failed but has been reestablished. Host name or

IP address: host-name, service name or port number: port,

special register modification indicator: rc.

Explanation: host-name and port indicate the data source at

which the connection is reestablished. rc indicates whether

SQL statements that set special register values were executed

again:

1 SQL statements that set special register values were

executed again.

2 SQL statements that set special register values might

not have been executed again.

For client reroute against DB2 for z/OS servers, special

register values that were set after the last commit point are

not re-established.

The application is rolled back to the previous commit point.

The connection state and global resources such as global

temporary tables and open held cursors might not be

maintained.

460 Developing Java Applications

Table 104. Error codes issued by the IBM Data Server Driver for JDBC and

SQLJ (continued)

Error

Code Message text and explanation SQLSTATE

-4499 text-from-getMessage

Explanation: A fatal error occurred that resulted in a

disconnect from the data source. The existing connection has

become unusable.

User response: Call SQLException.getMessage to retrieve

specific information about the problem.

08001 or 58009

-30108 Client reroute exception for the Sysplex. 08506

-99999 The IBM Data Server Driver for JDBC and SQLJ issued an

error that does not yet have an error code.

SQLSTATEs issued by the IBM Data Server Driver for JDBC and SQLJ

SQLSTATEs in the range 46600 to 466ZZ are reserved for the IBM Data Server

Driver for JDBC and SQLJ.

The following table lists the SQLSTATEs that are generated or used by the IBM

Data Server Driver for JDBC and SQLJ.

 Table 105. SQLSTATEs returned by the IBM Data Server Driver for JDBC and SQLJ

SQLSTATE

class SQLSTATE Description

01xxx Warning

02xxx No data

02501 The cursor position is not valid for a FETCH of the current

row.

02506 Tolerable error

08xxx Connection exception

08003 A connection does not exist

08004 The application server rejected establishment of the

connection

08506 Client reroute exception

0Axxx Feature not supported

0A502 The action or operation is not enabled for this database

instance

0A504 The feature is not supported by the driver

22xxx Data exception

22007 The string representation of a datetime value is invalid

22021 A character is not in the coded character set

23xxx Constraint violation

23502 A value that is inserted into a column or updates a column is

null, but the column cannot contain null values.

24xxx Invalid cursor state

24501 The identified cursor is not open

Chapter 12. JDBC and SQLJ reference information 461

Table 105. SQLSTATEs returned by the IBM Data Server Driver for JDBC and

SQLJ (continued)

SQLSTATE

class SQLSTATE Description

28xxx Authorization exception

28000 Authorization name is invalid.

2Dxxx Invalid transaction termination

2D521 SQL COMMIT or ROLLBACK are invalid in the current

operating environment.

34xxx Invalid cursor name

34000 Cursor name is invalid.

3Bxxx Invalid savepoint

3B503 A SAVEPOINT, RELEASE SAVEPOINT, or ROLLBACK TO

SAVEPOINT statement is not allowed in a trigger or global

transaction.

40xxx Transaction rollback

42xxx Syntax error or access rule violation

42601 A character, token, or clause is invalid or missing

42734 A duplicate parameter name, SQL variable name, cursor

name, condition name, or label was detected.

42807 The INSERT, UPDATE, or DELETE is not permitted on this

object

42808 A column identified in the insert or update operation is not

updateable

42815 The data type, length, scale, value, or CCSID is invalid

42820 A numeric constant is too long, or it has a value that is not

within the range of its data type

42968 The connection failed because there is no current software

license.

57xxx Resource not available or operator intervention

57033 A deadlock or timeout occurred without automatic rollback

58xxx System error

58008 Execution failed due to a distribution protocol error that will

not affect the successful execution of subsequent DDM

commands or SQL statements

58009 Execution failed due to a distribution protocol error that

caused deallocation of the conversation

58012 The bind process with the specified package name and

consistency token is not active

58014 The DDM command is not supported

58015 The DDM object is not supported

58016 The DDM parameter is not supported

58017 The DDM parameter value is not supported

462 Developing Java Applications

How to find IBM Data Server Driver for JDBC and SQLJ version and

environment information

To determine the version of the IBM Data Server Driver for JDBC and SQLJ, as

well as information about the environment in which the driver is running, run the

DB2Jcc utility on the command line.

DB2Jcc syntax

�� java com.ibm.db2.jcc.DB2Jcc

-version

-configuration

-help
 ��

DB2Jcc option descriptions

-version

Specifies that the IBM Data Server Driver for JDBC and SQLJ displays its name

and version.

-configuration

Specifies that the IBM Data Server Driver for JDBC and SQLJ displays its name

and version, and information about its environment, such as information about

the Java runtime environment, operating system, path information, and license

restrictions.

-help

Specifies that the DB2Jcc utility describes each of the options that it supports. If

any other options are specified with -help, they are ignored.

DB2Jcc sample output

The following output is the result of invoking DB2Jcc with the -configuration

parameter.

(myid@mymachine) /home/myusrid $ java com.ibm.db2.jcc.DB2Jcc -version

[jcc] Driver: IBM DB2 JDBC Universal Driver Architecture 3.50.137

(myid@mymachine) /home/myusrid $ java com.ibm.db2.jcc.DB2Jcc -configuration

[jcc] BEGIN TRACE_DRIVER_CONFIGURATION

[jcc] Driver: IBM DB2 JDBC Universal Driver Architecture 3.50.137

[jcc] Compatible JRE versions: { 1.4, 1.5 }

[jcc] Target server licensing restrictions: { z/OS: enabled; SQLDS: enabled; iSe

ries: enabled; DB2 for Unix/Windows: enabled; Cloudscape: enabled; Informix: ena

bled }

[jcc] Range checking enabled: true

[jcc] Bug check level: 0xff

[jcc] Default fetch size: 64

[jcc] Default isolation: 2

[jcc] Collect performance statistics: false

[jcc] No security manager detected.

[jcc] Detected local client host: lead.svl.ibm.com/9.30.10.102

[jcc] Access to package sun.io is permitted by security manager.

[jcc] JDBC 1 system property jdbc.drivers = null

[jcc] Java Runtime Environment version 1.4.2

[jcc] Java Runtime Environment vendor = IBM Corporation

[jcc] Java vendor URL = http://www.ibm.com/

[jcc] Java installation directory = /wsdb/v91/bldsupp/AIX5L64/jdk1.4.2_sr1/sh/..

/jre

[jcc] Java Virtual Machine specification version = 1.0

Figure 57. Sample DB2Jcc output

Chapter 12. JDBC and SQLJ reference information 463

[jcc] Java Virtual Machine specification vendor = Sun Microsystems Inc.

[jcc] Java Virtual Machine specification name = Java Virtual Machine Specificati

on

[jcc] Java Virtual Machine implementation version = 1.4.2

[jcc] Java Virtual Machine implementation vendor = IBM Corporation

[jcc] Java Virtual Machine implementation name = Classic VM

[jcc] Java Runtime Environment specification version = 1.4

[jcc] Java Runtime Environment specification vendor = Sun Microsystems Inc.

[jcc] Java Runtime Environment specification name = Java Platform API Specificat

ion

[jcc] Java class format version number = 48.0

[jcc] Java class path = :.:/home2/myusrid/sqllib/java/db2java.zip:/lib/classes.z

ip:/home2/myusrid/sqllib/java/sqlj.zip:./test:/home2/myusrid/sqllib/java/db2jcc.

jar:/home2/myusrid/sqllib/java/db2jcc_license_cisuz.jar:...

[jcc] Java native library path = /wsdb/v91/bldsupp/AIX5L64/jdk1.4.2_sr1/sh/../jr

e/bin:/wsdb/v91/bldsupp/AIX5L64/jdk1.4.2_sr1/jre/bin/classic:/wsdb/v91/bldsupp/A

IX5L64/jdk1.4.2_sr1/jre/bin:/home2/myusrid/sqllib/lib:/local/cobol:/home2/myusri

d/sqllib/samples/c:/usr/lib

[jcc] Path of extension directory or directories = /wsdb/v91/bldsupp/AIX5L64/jdk

1.4.2_sr1/sh/../jre/lib/ext

[jcc] Operating system name = AIX

[jcc] Operating system architecture = ppc64

[jcc] Operating system version = 5.3

[jcc] File separator ("/" on UNIX) = /

[jcc] Path separator (":" on UNIX) = :

[jcc] User’s account name = myusrid

[jcc] User’s home directory = /home2/myusrid

[jcc] User’s current working directory = /home2/myusrid

[jcc] Dumping all system properties: { java.assistive=ON, java.runtime.name=Java

(TM) 2 Runtime Environment, Standard Edition, sun.boot.library.path=/wsdb/v91/bl

dsupp/AIX5L64/jdk1.4.2_sr1/sh/../jre/bin, java.vm.version=1.4.2, java.vm.vendor=

IBM Corporation, java.vendor.url=http://www.ibm.com/, path.separator=:, java.vm.

name=Classic VM, file.encoding.pkg=sun.io, user.country=US, sun.os.patch.level=u

nknown, ... }

[jcc] Dumping all file properties: { }

[jcc] END TRACE_DRIVER_CONFIGURATION

Commands for SQLJ program preparation

To prepare SQLJ programs for execution, you use commands to translate SQLJ

source code into Java source code, compile the Java source code, create and

customize SQLJ serialized profiles, and bind DB2 packages.

sqlj - SQLJ translator

The sqlj command translates an SQLJ source file into a Java source file and zero or

more SQLJ serialized profiles. By default, the sqlj command also compiles the Java

source file.

Authorization

None

Command syntax

�� sqlj

-help

-dir=directory

-d=directory

-props=properties-file
 �

464 Developing Java Applications

�
 -compile=true

-compile=false

 -linemap=NO

-linemap=YES

 -smap=NO

-smap=YES

-encoding=encoding

-db2optimize

�

�
-ser2class

-status

-version

-C-help

�

-Ccompiler-option

 �

�

�

-JJVM-option

�

SQLJ-source-file-name

 ��

Command parameters

-help

Specifies that the SQLJ translator describes each of the options that the

translator supports. If any other options are specified with -help, they are

ignored.

-dir=directory

Specifies the name of the directory into which SQLJ puts .java files that are

generated by the translator and .class files that are generated by the compiler.

The default is the directory that contains the SQLJ source files.

 The translator uses the directory structure of the SQLJ source files when it puts

the generated files in directories. For example, suppose that you want the

translator to process two files:

v file1.sqlj, which is not in a Java package

v file2.sqlj, which is in Java package sqlj.test

Also suppose that you specify the parameter -dir=/src when you invoke the

translator. The translator puts the Java source file for file1.sqlj in directory /src

and puts the Java source file for file2.sqlj in directory /src/sqlj/test.

-d=directory

Specifies the name of the directory into which SQLJ puts the binary files that

are generated by the translator and compiler. These files include the .ser files,

the name_SJProfileKeys.class files, and the .class files that are generated by the

compiler.

 The default is the directory that contains the SQLJ source files.

The translator uses the directory structure of the SQLJ source files when it puts

the generated files in directories. For example, suppose that you want the

translator to process two files:

v file1.sqlj, which is not in a Java package

v file2.sqlj, which is in Java package sqlj.test

Also suppose that you specify the parameter -d=/src when you invoke the

translator. The translator puts the serialized profiles for file1.sqlj in directory

/src and puts the serialized profiles for file2.sqlj in directory /src/sqlj/test.

-compile=true|false

Specifies whether the SQLJ translator compiles the generated Java source into

bytecodes.

Chapter 12. JDBC and SQLJ reference information 465

true

The translator compiles the generated Java source code. This is the default.

false

The translator does not compile the generated Java source code.

-linemap=no|yes

Specifies whether line numbers in Java exceptions match line numbers in the

SQLJ source file (the .sqlj file), or line numbers in the Java source file that is

generated by the SQLJ translator (the .java file).

no Line numbers in Java exceptions match line numbers in the Java source

file. This is the default.

yes

Line numbers in Java exceptions match line numbers in the SQLJ source

file.

-smap=no|yes

Specifies whether the SQLJ translator generates a source map (SMAP) file for

each SQLJ source file. An SMAP file is used by some Java language debug

tools. This file maps lines in the SQLJ source file to lines in the Java source file

that is generated by the SQLJ translator. The file is in the Unicode UTF-8

encoding scheme. Its format is described by Original Java Specification Request

(JSR) 45, which is available from this web site:

http://www.jcp.org

no Do not generated SMAP files. This is the default.

yes

Generate SMAP files. An SMAP file name is SQLJ-source-file-
name.java.smap. The SQLJ translator places the SMAP file in the same

directory as the generated Java source file.

-encoding=encoding-name

Specifies the encoding of the source file. Examples are JIS or EUC. If this

option is not specified, the default converter for the operating system is used.

-db2optimize

Specifies that the SQLJ translator generates code for a connection context class

that is optimized for DB2. -db2optimize optimizes the code for the

user-defined context but not the default context.

 When you run the SQLJ translator with the -db2optimize option, if your

applications use JDBC 3.0 or earlier functions, the IBM Data Server Driver for

JDBC and SQLJ file db2jcc.jar must be in the CLASSPATH for compiling the

generated Java application. If your applications use JDBC 4.0 or earlier

functions, the IBM Data Server Driver for JDBC and SQLJ file db2jcc4.jar must

be in the CLASSPATH for compiling the generated Java application.

-ser2class

Specifies that the SQLJ translator converts .ser files to .class files.

-status

Specifies that the SQLJ translator displays status messages as it runs.

-version

Specifies that the SQLJ translator displays the version of the IBM Data Server

Driver for JDBC and SQLJ. The information is in this form:

IBM SQLJ xxxx.xxxx.xx

466 Developing Java Applications

-C-help

Specifies that the SQLJ translator displays help information for the Java

compiler.

-Ccompiler-option

Specifies a valid Java compiler option that begins with a dash (-). Do not

include spaces between -C and the compiler option. If you need to specify

multiple compiler options, precede each compiler option with -C. For example:

-C-g -C-verbose

All options are passed to the Java compiler and are not used by the SQLJ

translator, except for the following options:

-classpath

Specifies the user class path that is to be used by the SQLJ translator

and the Java compiler. This value overrides the CLASSPATH

environment variable.

-sourcepath

Specifies the source code path that the SQLJ translator and the Java

compiler search for class or interface definitions. The SQLJ translator

searches for .sqlj and .java files only in directories, not in JAR or zip

files.

-JJVM-option

Specifies an option that is to be passed to the Java virtual machine (JVM) in

which the sqlj command runs. The option must be a valid JVM option that

begins with a dash (-). Do not include spaces between -J and the JVM option.

If you need to specify multiple JVM options, precede each compiler option

with -J. For example:

-J-Xmx128m -J-Xmine2M

SQLJ-source-file-name

Specifies a list of SQLJ source files to be translated. This is a required

parameter. All SQLJ source file names must have the extension .sqlj.

Output

For each source file, program-name.sqlj, the SQLJ translator produces the following

files:

v The generated source program

The generated source file is named program-name.java.

v A serialized profile file for each connection context class that is used in an SQLJ

executable clause

A serialized profile name is of the following form:

program-name_SJProfileIDNumber.ser

v If the SQLJ translator invokes the Java compiler, the class files that the compiler

generates.

Examples

 sqlj -encoding=UTF8 -C-O MyApp.sqlj

db2sqljcustomize - SQLJ profile customizer

db2sqljcustomize processes an SQLJ profile, which contains embedded SQL

statements.

Chapter 12. JDBC and SQLJ reference information 467

By default, db2sqljcustomize produces four DB2 packages: one for each isolation

level. db2sqljcustomize augments the profile with DB2-specific information for use

at run time.

Authorization

The privilege set of the process must include one of the following authorities:

v DBADM authority

v If the package does not exist, the BINDADD privilege, and one of the following

privileges:

– CREATEIN privilege

– IMPLICIT_SCHEMA authority on the database if the schema name of the

package does not exist
v If the package exists:

– ALTERIN privilege on the schema

– BIND privilege on the package

The user also needs all privileges that are required to compile any static SQL

statements in the application. Privileges that are granted to groups are not used for

authorization checking of static statements.

Command syntax

�� db2sqljcustomize

-help
 �

�

�

-url

jdbc:db2://server

/database

:

port

:

property=value;

-datasource

JNDI-name

-user

user-ID
 �

�

-password

password

 -automaticbind YES

-automaticbind

NO

-pkgversion

AUTO

-pkgversion

version-id

�

�
-bindoptions

″

options-string

″

-storebindoptions

-collection

collection-name
 �

�
 -onlinecheck YES

-onlinecheck

NO

-qualifier

qualifier-name

-rootpkgname

package-name-stem

-singlepkgname

package-name

�

468 Developing Java Applications

�

-longpkgname

 -staticpositioned NO

-staticpositioned

YES

�

�

�

-tracelevel

TRACE_SQLJ

-tracefile

file-name

,

-tracelevel

TRACE_NONE

TRACE_CONNECTION_CALLS

TRACE_STATEMENT_CALLS

TRACE_RESULT_SET_CALLS

TRACE_DRIVER_CONFIGURATION

TRACE_CONNECTS

TRACE_DRDA_FLOWS

TRACE_RESULT_SET_META_DATA

TRACE_PARAMETER_META_DATA

TRACE_DIAGNOSTICS

TRACE_SQLJ

TRACE_XA_CALLS

TRACE_TRACEPOINTS

TRACE_ALL

 �

�
-zosDescProcParms

-zosProcedurePath

procedure-path

-genDBRM
 �

�

-DBRMDir

directory-name

�

serialized-profile-name

file-name.grp

��

options-string:

�� DB2-for-z/OS-options

DB2-Database-for-Linux-UNIX-and-Windows-options
 ��

DB2 for z/OS options:

��

 ACTION(REPLACE)

(1)

REPLVER(version-id)

ACTION(ADD)

DBPROTOCOL(DRDA)

DBPROTOCOL(PRIVATE)

DEGREE(1)

DEGREE(ANY)

�

�
 EXPLAIN(NO)

EXPLAIN(YES)

 IMMEDWRITE(NO)

IMMEDWRITE(PH1)

IMMEDWRITE(YES)

 ISOLATION(RR)

ISOLATION(RS)

ISOLATION(CS)

ISOLATION(UR)

 NOREOPT(VARS)

REOPT(VARS)

OPTHINT(hint-ID)

�

Chapter 12. JDBC and SQLJ reference information 469

�
OWNER(authorization-ID)

�

,

PATH(

schema-name

)

USER

QUALIFIER(qualifier-name)
 �

�
 RELEASE(COMMIT)

RELEASE(DEALLOCATE)

 SQLERROR(NOPACKAGE)

SQLERROR(CONTINUE)

 VALIDATE(RUN)

VALIDATE(BIND)

��

Notes:

1 These options can be specified in any order.

DB2 Database for Linux, UNIX, and Windows options

��
 (1) BLOCKING UNAMBIG

BLOCKING ALL

BLOCKING NO

CONCURRENTACCESSRESOLUTION WAIT FOR OUTCOME

CONCURRENTACCESSRESOLUTION USE CURRENTLY COMMITTED

DEC 15

DEC 31

�

�
 DEGREE 1

DEGREE ANY

 EXPLAIN NO

EXPLAIN YES

 EXPLSNAP NO

EXPLSNAP ALL

EXPLSNAP YES

 FEDERATED NO

FEDERATED YES

FUNCPATH schema-name

�

�
 INSERT DEF

INSERT BUF

 ISOLATION CS

ISOLATION RR

ISOLATION RS

ISOLATION UR

OWNER authorization-ID

QUALIFIER qualifier-name

�

�

QUERYOPT optimization-level

 SQLERROR NOPACKAGE

SQLERROR CONTINUE

 SQLWARN YES

SQLWARN NO

 STATICREADONLY NO

STATICREADONLY YES

�

�
 VALIDATE RUN

VALIDATE BIND

��

Notes:

1 These options can be specified in any order.

Command parameters

-help

Specifies that the SQLJ customizer describes each of the options that the

customizer supports. If any other options are specified with -help, they are

ignored.

-url

Specifies the URL for the data source for which the profile is to be customized.

A connection is established to the data source that this URL represents if the

-automaticbind or -onlinecheck option is specified as YES or defaults to YES.

The variable parts of the -url value are:

470 Developing Java Applications

server

The domain name or IP address of the z/OS system on which the DB2

subsystem resides.

port

The TCP/IP server port number that is assigned to the DB2 subsystem.

The default is 446.

-url

Specifies the URL for the data source for which the profile is to be

customized. A connection is established to the data source that this URL

represents if the -automaticbind or -onlinecheck option is specified as YES

or defaults to YES. The variable parts of the -url value are:

server

The domain name or IP address of the operating system on which the

database server resides.

port

The TCP/IP server port number that is assigned to the database server.

The default is 446.

database

A name for the database server for which the profile is to be

customized.

 If the connection is to a DB2 for z/OS server, database is the DB2

location name that is defined during installation. All characters in this

value must be uppercase characters. You can determine the location

name by executing the following SQL statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

If the connection is to a DB2 Database for Linux, UNIX, and Windows

server, database is the database name that is defined during installation.

If the connection is to an IBM Cloudscape server, the database is the

fully-qualified name of the file that contains the database. This name

must be enclosed in double quotation marks (″). For example:

"c:/databases/testdb"

property=value;

A property for the JDBC connection.

property=value;

A property for the JDBC connection.

-datasource JNDI-name

Specifies the logical name of a DataSource object that was registered with

JNDI. The DataSource object represents the data source for which the profile is

to be customized. A connection is established to the data source if the

-automaticbind or -onlinecheck option is specified as YES or defaults to YES.

Specifying -datasource is an alternative to specifying -url. The DataSource

object must represent a connection that uses IBM Data Server Driver for JDBC

and SQLJ type 4 connectivity.

-user user-ID

Specifies the user ID to be used to connect to the data source for online

checking or binding a package. You must specify -user if you specify -url. You

must specify -user if you specify -datasource, and the DataSource object that

JNDI-name represents does not contain a user ID.

Chapter 12. JDBC and SQLJ reference information 471

-password password

Specifies the password to be used to connect to the data source for online

checking or binding a package. You must specify -password if you specify -url.

You must specify -password if you specify -datasource, and the DataSource

object that JNDI-name represents does not contain a password.

-automaticbind YES|NO

Specifies whether the customizer binds DB2 packages at the data source that is

specified by the -url parameter.

 The default is YES.

The number of packages and the isolation levels of those packages are

controlled by the -rootpkgname and -singlepkgname options.

Before the bind operation can work, the following conditions need to be met:

v TCP/IP and DRDA must be installed at the target data source.

v Valid -url, -username, and -password values must be specified.

v The -username value must have authorization to bind a package at the

target data source.

-pkgversion AUTO|version-id

Specifies the package version that is to be used when packages are bound at

the server for the serialized profile that is being customized. db2sqljcustomize

stores the version ID in the serialized profile and in the DB2 package.

Run-time version verification is based on the consistency token, not the version

name. To automatically generate a version name that is based on the

consistency token, specify -pkgversion AUTO.

 The default is that there is no version.

-bindoptions options-string

Specifies a list of options, separated by spaces. These options have the same

function as DB2 precompile and bind options with the same names. If you are

preparing your program to run on a DB2 for z/OS system, specify DB2 for

z/OS options. If you are preparing your program to run on a DB2 Database for

Linux, UNIX, and Windows system, specify DB2 Database for Linux, UNIX,

and Windows options.

 Notes on bind options:

v Specify ISOLATION only if you also specify the -singlepkgname option.

v The value for STATICREADONLY is YES for servers that support

STATICREADONLY, and NO for other servers. When you specify

STATICREADONLY YES, DB2 processes ambiguous cursors as if they were

read-only cursors. For troubleshooting iterator declaration errors, you need

to explicitly specify STATICREADONLY NO, or declare iterators so that they

are unambiguous. For example, if you want an iterator to be unambiguously

updatable, declare the iterator to implement sqlj.runtime.ForUpdate. If you

want an iterator to be read-only, include the FOR READ ONLY clause in

SELECT statements that use the iterator.

Important: Specify only those program preparation options that are

appropriate for the data source at which you are binding a package. Some

values and defaults for the IBM Data Server Driver for JDBC and SQLJ are

different from the values and defaults for DB2.

-storebindoptions

Specifies that values for the -bindoptions and -staticpositioned parameters are

stored in the serialized profile. If db2sqljbind is invoked without the

-bindoptions or -staticpositioned parameter, the values that are stored in the

472 Developing Java Applications

serialized profile are used during the bind operation. When multiple serialized

profiles are specified for one invocation of db2sqljcustomize, the parameter

values are stored in each serialized profile. The stored values are displayed in

the output from the db2sqljprint utility.

-collection collection-name

The qualifier for the packages that db2sqljcustomize binds. db2sqljcustomize

stores this value in the customized serialied profile, and it is used when the

associated packages are bound. If you do not specify this parameter,

db2sqljcustomize uses a collection ID of NULLID.

-onlinecheck YES|NO

Specifies whether online checking of data types in the SQLJ program is to be

performed. The -url or -datasource option determines the data source that is to

be used for online checking. The default is YES if the -url or -datasource

parameter is specified. Otherwise, the default is NO.

-qualifier qualifier-name

Specifies the qualifier that is to be used for unqualified objects in the SQLJ

program during online checking. This value is not used as the qualifier when

the packages are bound.

-rootpkgname|-singlepkgname

Specifies the names for the packages that are associated with the program. If

-automaticbind is NO, these package names are used when db2sqljbind runs.

The meanings of the parameters are:

-rootpkgname package-name-stem

Specifies that the customizer creates four packages, one for each of the four

DB2 isolation levels. The names for the four packages are:

package-name-stem1

For isolation level UR

package-name-stem2

For isolation level CS

package-name-stem3

For isolation level RS

package-name-stem4

For isolation level RR

If -longpkgname is not specified, package-name-stem must be an

alphanumeric string of seven or fewer bytes.

If -longpkgname is specified, package-name-stem must be an alphanumeric

string of 127 or fewer bytes.

-singlepkgname package-name

Specifies that the customizer creates one package, with the name

package-name. If you specify this option, your program can run at only one

isolation level. You specify the isolation level for the package by specifying

the ISOLATION option in the -bindoptions options string.

 If -longpkgname is not specified, package-name must be an alphanumeric

string of eight or fewer bytes.

If -longpkgname is specified, package-name must be an alphanumeric string

of 128 or fewer bytes.

Using the -singlepkgname option is not recommended.

Chapter 12. JDBC and SQLJ reference information 473

Recommendation: If the target data source is DB2 for z/OS, use uppercase

characters for the package-name-stem or package-name value. DB2 for z/OS

systems that are defined with certain CCSID values cannot tolerate lowercase

characters in package names or collection names.

If you do not specify -rootpkgname or -singlepkgname, db2sqljcustomize

generates four package names that are based on the serialized profile name. A

serialized profile name is of the following form:

program-name_SJProfileIDNumber.ser

The four generated package names are of the following form:

Bytes-from-program-nameIDNumberPkgIsolation

Table 106 shows the parts of a generated package name and the number of

bytes for each part.

The maximum length of a package name is maxlen. maxlen is 8 if -longpkgname

is not specified. maxlen is 128 if -longpkgname is specified.

 Table 106. Parts of a package name that is generated by db2sqljcustomize

Package name part Number of bytes Value

Bytes-from-program-name m=min(Length(program-name),

maxlen–1–Length(IDNumber))

First m bytes of program-name, in

uppercase

IDNumber Length(IDNumber) IDNumber

PkgIsolation 1 1, 2, 3, or 4. This value represents the

transaction isolation level for the

package. See Table 107.

Table 107 shows the values of the PkgIsolation portion of a package name that is

generated by db2sqljcustomize.

 Table 107. PkgIsolation values and associated isolation levels

PkgNumber value Isolation level for package

1 Uncommitted read (UR)

2 Cursor stability (CS)

3 Read stability (RS)

4 Repeatable read (RR)

Example: Suppose that a profile name is ThisIsMyProg_SJProfile111.ser. The

db2sqljcustomize option -longpkgname is not specified. Therefore,

Bytes-from-program-name is the first four bytes of ThisIsMyProg, translated to

uppercase, or THIS. IDNumber is 111. The four package names are:

THIS1111

THIS1112

THIS1113

THIS1114

Example: Suppose that a profile name is ThisIsMyProg_SJProfile111.ser. The

db2sqljcustomize option -longpkgname is specified. Therefore,

Bytes-from-program-name is ThisIsMyProg, translated to uppercase, or

THISISMYPROG. IDNumber is 111. The four package names are:

THISISMYPROG1111

THISISMYPROG1112

THISISMYPROG1113

THISISMYPROG1114

474 Developing Java Applications

Example: Suppose that a profile name is A_SJProfile0.ser. Bytes-from-program-
name is A. IDNumber is 0. Therefore, the four package names are:

A01

A02

A03

A04

Letting db2sqljcustomize generate package names is not recommended. If any

generated package names are the same as the names of existing packages,

db2sqljcustomize overwrites the existing packages. To ensure uniqueness of

package names, specify -rootpkgname.

-longpkgname

Specifies that the names of the DB2 packages that db2sqljcustomize generates

can be up to 128 bytes. Use this option only if you are binding packages at a

server that supports long package names. If you specify -singlepkgname or

-rootpkgname, you must also specify -longpkgname under the following

conditions:

v The argument of -singlepkgname is longer than eight bytes.

v The argument of -rootpkgname is longer than seven bytes.

-staticpositioned NO|YES

For iterators that are declared in the same source file as positioned UPDATE

statements that use the iterators, specifies whether the positioned UPDATEs

are executed as statically bound statements. The default is NO. NO means that

the positioned UPDATEs are executed as dynamically prepared statements.

-zosDescProcParms

Specifies that DB2 for z/OS performs a DESCRIBE operation on stored

procedure parameters.

 -zosDescProcParms applies to programs that are to be run on DB2 for z/OS

database servers only.

If DESCRIBE information is available, SQLJ has information about the length

and precision of INOUT and OUT parameters, so it allocates only the amount

of memory that is needed for those parameters. Availability of DESCRIBE

information can have the biggest impact on storage usage for character INOUT

parameters, LOB OUT parameters, and decimal OUT parameters.

When -zosDescProcParms is specified, the DB2 database server uses the

specified or default value of -zosProcedurePath to resolve unqualified names of

stored procedures for which DESCRIBE information is requested.

-zosProcedurePath procedure-path

Specifies a list of schema names that DB2 for z/OS uses to resolve unqualified

stored procedure names during online checking of an SQLJ program.

 -zosProcedurePath applies to programs that are to be run on DB2 for z/OS

database servers only.

The list is a String value that is a comma-separated list of schema names that

is enclosed in double quotation marks. The DB2 database server inserts that list

into the SQL path for resolution of unqualified stored procedure names. The

SQL path is:

SYSIBM, SYSFUN, SYSPROC, procedure-path, qualifier-name, user-ID

qualifier-name is the value of the -qualifier parameter, and user-ID is the value

of the -user parameter.

The DB2 database server tries the schema names in the SQL path from left to

right until it finds a match with the name of a stored procedure that exists on

Chapter 12. JDBC and SQLJ reference information 475

that database server. If the DB2 database server finds a match, it obtains the

information about the parameters for that stored procedure from the DB2

catalog. If the DB2 database server does not find a match, SQLJ sets the

parameter data without any DB2 catalog information.

If -zosProcedurePath is not specified, the DB2 database server uses this SQL

path:

SYSIBM, SYSFUN, SYSPROC, qualifier-name, user-ID

If the -qualifier parameter is not specified, the SQL path does not include

qualifier-name.

-genDBRM

Specifies that db2sqljcustomize generates database request modules (DBRMs).

Those DBRMs can be used to create DB2 for z/OS plans and packages.

 -genDBRM applies to programs that are to be run on DB2 for z/OS database

servers only.

If -genDBRM and -automaticbind NO are specified, db2sqljcustomize creates

the DBRMs but does not bind them into DB2 packages. If -genDBRM and

-automaticbind YES are specified, db2sqljcustomize creates the DBRMs and

binds them into DB2 packages.

One DBRM is created for each DB2 isolation level. The naming convention for

the generated DBRM files is the same as the naming convention for packages.

For example, if -rootpkgname SQLJSA0 is specified, and -genDBRM is also

specified, the names of the four DBRM files are:

v SQLJSA01

v SQLJSA02

v SQLJSA03

v SQLJSA04

-DBRMDir directory-name

When -genDBRM is specified, -DBRMDir specifies the local directory into

which db2sqljcustomize puts the generated DBRM files. The default is the

current directory.

 -DBRMdir applies to programs that are to be run on DB2 for z/OS database

servers only.

-tracefile file-name

Enables tracing and identifies the output file for trace information. This option

should be specified only under the direction of IBM Software Support.

-tracelevel

If -tracefile is specified, indicates what to trace while db2sqljcustomize runs.

The default is TRACE_SQLJ. This option should be specified only under the

direction of IBM Software Support.

serialized-profile-name|file-name.grp

Specifies the names of one or more serialized profiles that are to be

customized. The specified serialized profile must be in a directory that is

named in the CLASSPATH environment variable.

 A serialized profile name is of the following form:

program-name_SJProfileIDNumber.ser

You can specify the serialized profile name with or without the .ser extension.

476 Developing Java Applications

program-name is the name of the SQLJ source program, without the extension

.sqlj. n is an integer between 0 and m-1, where m is the number of serialized

profiles that the SQLJ translator generated from the SQLJ source program.

You can specify serialized profile names in one of the following ways:

v List the names in the db2sqljcustomize command. Multiple serialized profile

names must be separated by spaces.

v Specify the serialized profile names, one on each line, in a file with the name

file-name.grp, and specify file-name.grp in the db2sqljcustomize command.

If you specify more than one serialized profile name, and if you specify or use

the default value of -automaticbind YES, db2sqljcustomize binds a single DB2

package from the profiles. When you use db2sqljcustomize to create a single

DB2 package from multiple serialized profiles, you must also specify the

-rootpkgname or -singlepkgname option.

If you specify more than one serialized profile name, and you specify

-automaticbind NO, if you want to bind the serialized profiles into a single

DB2 package when you run db2sqljbind, you need to specify the same list of

serialized profile names, in the same order, in db2sqljcustomize and

db2sqljbind.

Output

When db2sqljcustomize runs, it creates a customized serialized profile. It also

creates DB2 packages, if the automaticbind value is YES.

Examples

 db2sqljcustomize -user richler -password mordecai

 -url jdbc:db2:/server:50000/sample -collection duddy

 -bindoptions "EXPLAIN YES" pgmname_SJProfile0.ser

Usage notes

Online checking is always recommended: It is highly recommended that you use

online checking when you customize your serialized profiles. Online checking

determines information about the data types and lengths of DB2 host variables,

and is especially important for the following items:

v Predicates with java.lang.String host variables and CHAR columns

Unlike character variables in other host languages, Java String host variables are

not declared with a length attribute. To optimize a query properly that contains

character host variables, DB2 needs the length of the host variables. For

example, suppose that a query has a predicate in which a String host variable is

compared to a CHAR column, and an index is defined on the CHAR column. If

DB2 cannot determine the length of the host variable, it might do a table space

scan instead of an index scan. Online checking avoids this problem by providing

the lengths of the corresponding character columns.

v Predicates with java.lang.String host variables and GRAPHIC columns

Without online checking, DB2 might issue a bind error (SQLCODE -134) when it

encounters a predicate in which a String host variable is compared to a

GRAPHIC column.

v Column names in the result table of an SQLJ SELECT statement at a remote

server:

Without online checking, the driver cannot determine the column names for the

result table of a remote SELECT.

Chapter 12. JDBC and SQLJ reference information 477

Customizing multiple serialized profiles together: Multiple serialized profiles can

be customized together to create a single DB2 package. If you do this, and if you

specify -staticpostioned YES, any positioned UPDATE or DELETE statement that

references a cursor that is declared earlier in the package executes statically, even if

the UPDATE or DELETE statement is in a different source file from the cursor

declaration. If you want -staticpositioned YES behavior when your program

consists of multiple source files, you need to order the profiles in the

db2sqljcustomize command to cause cursor declarations to be ahead of positioned

UPDATE or DELETE statements in the package. To do that, list profiles that

contain SELECT statements that assign result tables to iterators before profiles that

contain the positioned UPDATE or DELETE statements that reference those

iterators.

Using a customized serialized profile at one data source that was customized at

another data source: You can run db2sqljcustomize to produce a customized

serialized profile for an SQLJ program at one data source, and then use that profile

at another data source. You do this by running db2sqljbind multiple times on

customized serialized profiles that you created by running db2sqljcustomize once.

When you run the programs at these data sources, the DB2 objects that the

programs access must be identical at every data source. For example, tables at all

data sources must have the same encoding schemes and the same columns with

the same data types.

Using the -collection parameter: db2sqljcustomize stores the DB2 collection name

in each customized serialized profile that it produces. When an SQLJ program is

executed, the driver uses the collection name that is stored in the customized

serialized profile to search for packages to execute. The name that is stored in the

customized serialized profile is determined by the value of the -collection

parameter. Only one collection ID can be stored in the serialized profile. However,

you can bind the same serialized profile into multiple package collections by

specifying the COLLECTION option in the -bindoptions parameter. To execute a

package that is in a collection other than the collection that is specified in the

serialized profile, include a SET CURRENT PACKAGESET statement in the

program.

Using the VERSION parameter: Use the VERSION parameter to bind two or more

versions of a package for the same SQLJ program into the same collection. You

might do this if you have changed an SQLJ source program, and you want to run

the old and new versions of the program.

To maintain two versions of a package, follow these steps:

1. Change the code in your source program.

2. Translate the source program to create a new serialized profile. Ensure that you

do not overwrite your original serialized profile.

3. Run db2sqljcustomize to customize the serialized profile and create DB2

packages with the same package names and in the same collection as the

original packages. Do this by using the same values for -rootpkgname and

-collection when you bind the new packages that you used when you created

the original packages. Specify the VERSION option in the -bindoptions

parameter to put a version ID in the new customized serialized profile and in

the new packages.

It is essential that you specify the VERSION option when you perfom this step.

If you do not, you overwrite your original packages.

478 Developing Java Applications

When you run the old version of the program, DB2 loads the old versions of the

packages. When you run the new version of the program, DB2 loads the new

versions of the packages.

Binding packages and plans on DB2 for z/OS: You can use the db2sqljcustomize

-genDBRM parameter to create DBRMs on your local system. You can then transfer

those DBRMs to a DB2 for z/OS system, and bind them into packages or plans

there. If you plan to use this technique, you need to transfer the DBRM files to the

z/OS system as binary files, to a partitioned data set with record format FB and

record length 80. When you bind the packages or plans, you need to specify the

following bind option values:

ENCODING(EBCDIC)

The IBM Data Server Driver for JDBC and SQLJ on DB2 for z/OS requires

EBCDIC encoding for your packages and plans.

DYNAMICRULES(BIND)

This option ensures consistent authorization rules when SQLJ uses

dynamic SQL. SQLJ uses dynamic SQL for positioned UPDATE or DELETE

operations that involve multiple SQLJ programs.

DBPROTOCOL(DRDA)

Private protocol is deprecated, so you should use DBPROTOCOL(DRDA)

for all applications. However, for SQLJ applications that use remote

three-part table names, you must use DBPROTOCOL(DRDA). Otherwise,

those applications might fail.

db2sqljbind - SQLJ profile binder

db2sqljbind binds DB2 packages for a serialized profile that was previously

customized with the db2sqljcustomize command.

Applications that run with the IBM Data Server Driver for JDBC and SQLJ require

packages but no plans. If the db2sqljcustomize -automaticbind option is specified

as YES or defaults to YES, db2sqljcustomize binds packages for you at the data

source that you specify in the -url parameter. However, if -automaticbind is NO, if

a bind fails when db2sqljcustomize runs, or if you want to create identical

packages at multiple locations for the same serialized profile, you can use the

db2sqljbind command to bind packages.

Authorization

The privilege set of the process must include one of the following authorities:

v DBADM authority

v If the package does not exist, the BINDADD privilege, and one of the following

privileges:

– CREATEIN privilege

– IMPLICIT_SCHEMA authority on the database if the schema name of the

package does not exist
v If the package exists:

– ALTERIN privilege on the schema

– BIND privilege on the package

The user also needs all privileges that are required to compile any static SQL

statements in the application. Privileges that are granted to groups are not used for

authorization checking of static statements.

Chapter 12. JDBC and SQLJ reference information 479

Command syntax

�� db2sqljbind

-help

�

 -url jdbc:db2://server /database

:

port

:

property=value;

 �

� -user user-ID -password password

-bindoptions

″

options-string

″
 �

�
 -staticpositioned NO

-staticpositioned

YES

-genDBRM

-DBRMDir

directory-name

�

�

�

-tracelevel

TRACE_SQLJ

-tracefile

file-name

,

-tracelevel

TRACE_NONE

TRACE_CONNECTION_CALLS

TRACE_STATEMENT_CALLS

TRACE_RESULT_SET_CALLS

TRACE_DRIVER_CONFIGURATION

TRACE_CONNECTS

TRACE_DRDA_FLOWS

TRACE_RESULT_SET_META_DATA

TRACE_PARAMETER_META_DATA

TRACE_DIAGNOSTICS

TRACE_SQLJ

TRACE_XA_CALLS

TRACE_TRACEPOINTS

TRACE_ALL

 �

�

�

serialized-profile-name

��

options-string:

�� DB2-for-z/OS-options

DB2-Database-for-Linux-UNIX-and-Windows-options
 ��

DB2 for z/OS options:

��

 ACTION(REPLACE)

(1)

REPLVER(version-id)

ACTION(ADD)

DBPROTOCOL(DRDA)

DBPROTOCOL(PRIVATE)

DEGREE(1)

DEGREE(ANY)

�

480 Developing Java Applications

�
 EXPLAIN(NO)

EXPLAIN(YES)

 IMMEDWRITE(NO)

IMMEDWRITE(PH1)

IMMEDWRITE(YES)

 ISOLATION(RR)

ISOLATION(RS)

ISOLATION(CS)

ISOLATION(UR)

 NOREOPT(VARS)

REOPT(VARS)

OPTHINT(hint-ID)

�

�
OWNER(authorization-ID)

�

,

PATH(

schema-name

)

USER

QUALIFIER(qualifier-name)
 �

�
 RELEASE(COMMIT)

RELEASE(DEALLOCATE)

 SQLERROR(NOPACKAGE)

SQLERROR(CONTINUE)

 VALIDATE(RUN)

VALIDATE(BIND)

��

Notes:

1 These options can be specified in any order.

DB2 Database for Linux, UNIX, and Windows options

��
 (1) BLOCKING UNAMBIG

BLOCKING ALL

BLOCKING NO

CONCURRENTACCESSRESOLUTION WAIT FOR OUTCOME

CONCURRENTACCESSRESOLUTION USE CURRENTLY COMMITTED

DEC 15

DEC 31

�

�
 DEGREE 1

DEGREE ANY

 EXPLAIN NO

EXPLAIN YES

 EXPLSNAP NO

EXPLSNAP ALL

EXPLSNAP YES

 FEDERATED NO

FEDERATED YES

FUNCPATH schema-name

�

�
 INSERT DEF

INSERT BUF

 ISOLATION CS

ISOLATION RR

ISOLATION RS

ISOLATION UR

OWNER authorization-ID

QUALIFIER qualifier-name

�

�

QUERYOPT optimization-level

 SQLERROR NOPACKAGE

SQLERROR CONTINUE

 SQLWARN YES

SQLWARN NO

 STATICREADONLY NO

STATICREADONLY YES

�

�
 VALIDATE RUN

VALIDATE BIND

��

Notes:

1 These options can be specified in any order.

Command parameters

-help

Specifies that db2sqljbind describes each of the options that it supports. If any

other options are specified with -help, they are ignored.

Chapter 12. JDBC and SQLJ reference information 481

-url

Specifies the URL for the data source for which the profile is to be customized.

A connection is established to the data source that this URL represents if the

-automaticbind or -onlinecheck option is specified as YES or defaults to YES.

The variable parts of the -url value are:

server

The domain name or IP address of the operating system on which the

database server resides.

port

The TCP/IP server port number that is assigned to the database server.

The default is 446.

database

A name for the database server for which the profile is to be customized.

 If the connection is to a DB2 for z/OS server, database is the DB2 location

name that is defined during installation. All characters in this value must

be uppercase characters. You can determine the location name by executing

the following SQL statement on the server:

SELECT CURRENT SERVER FROM SYSIBM.SYSDUMMY1;

If the connection is to a DB2 Database for Linux, UNIX, and Windows

server, database is the database name that is defined during installation.

If the connection is to an IBM Cloudscape server, the database is the

fully-qualified name of the file that contains the database. This name must

be enclosed in double quotation marks (″). For example:

"c:/databases/testdb"

property=value;

A property for the JDBC connection.

-user user-ID

Specifies the user ID to be used to connect to the data source for binding the

package.

-password password

Specifies the password to be used to connect to the data source for binding the

package.

-bindoptions options-string

Specifies a list of options, separated by spaces. These options have the same

function as DB2 precompile and bind options with the same names. If you are

preparing your program to run on a DB2 for z/OS system, specify DB2 for

z/OS options. If you are preparing your program to run on a DB2 Database for

Linux, UNIX, and Windows system, specify DB2 Database for Linux, UNIX,

and Windows options.

 Notes on bind options:

v Specify VERSION only if the following conditions are true:

– If you are binding a package at a DB2 Database for Linux, UNIX, and

Windows system, the system is at Version 8 or later.

– You rerun the translator on a program before you bind the associated

package with a new VERSION value.
v The value for STATICREADONLY is YES for servers that support

STATICREADONLY, and NO for other servers. When you specify

STATICREADONLY YES, DB2 processes ambiguous cursors as if they were

read-only cursors. For troubleshooting iterator declaration errors, you need

482 Developing Java Applications

to explicitly specify STATICREADONLY NO, or declare iterators so that they

are unambiguous. For example, if you want an iterator to be unambiguously

updatable, declare the iterator to implement sqlj.runtime.ForUpdate. If you

want an iterator to be read-only, include the FOR READ ONLY clause in

SELECT statements that use the iterator.

Important: Specify only those program preparation options that are

appropriate for the data source at which you are binding a package. Some

values and defaults for the IBM Data Server Driver for JDBC and SQLJ are

different from the values and defaults for DB2.

-staticpositioned NO|YES

For iterators that are declared in the same source file as positioned UPDATE

statements that use the iterators, specifies whether the positioned UPDATEs

are executed as statically bound statements. The default is NO. NO means that

the positioned UPDATEs are executed as dynamically prepared statements.

This value must be the same as the -staticpositioned value for the previous

db2sqljcustomize invocation for the serialized profile.

-genDBRM

Specifies that db2sqljbind generates database request modules (DBRMs) from

the serialized profile, and that db2sqljbind does not perform remote bind

operations.

 -genDBRM applies to programs that are to be run on DB2 for z/OS database

servers only.

-DBRMDir directory-name

When -genDBRM is specified, -DBRMDir specifies the local directory into

which db2sqljbind puts the generated DBRM files. The default is the current

directory.

 -DBRMdir applies to programs that are to be run on DB2 for z/OS database

servers only.

-tracefile file-name

Enables tracing and identifies the output file for trace information. This option

should be specified only under the direction of IBM Software Support.

-tracelevel

If -tracefile is specified, indicates what to trace while db2sqljcustomize runs.

The default is TRACE_SQLJ. This option should be specified only under the

direction of IBM Software Support.

serialized-profile-name

Specifies the name of one or more serialized profiles from which the package is

bound. A serialized profile name is of the following form:

program-name_SJProfileIDNumber.ser

program-name is the name of the SQLJ source program, without the extension

.sqlj. n is an integer between 0 and m-1, where m is the number of serialized

profiles that the SQLJ translator generated from the SQLJ source program.

 If you specify more than one serialized profile name to bind a single DB2

package from several serialized profiles, you must have specified the same

serialized profile names, in the same order, when you ran db2sqljcustomize.

Chapter 12. JDBC and SQLJ reference information 483

Examples

 db2sqljbind -user richler -password mordecai

 -url jdbc:db2://server:50000/sample -bindoptions "EXPLAIN YES"

 pgmname_SJProfile0.ser

Usage notes

Package names produced by db2sqljbind: The names of the packages that are

created by db2sqljbind are the names that you specified using the-rootpkgname or

-singlepkgname parameter when you ran db2sqljcustomize. If you did not specify

-rootpkgname or -singlepkgname, the package names are the first seven bytes of

the profile name, appended with the isolation level character.

DYNAMICRULES value for db2sqljbind: The DYNAMICRULES bind option

determines a number of run-time attributes for the DB2 package. Two of those

attributes are the authorization ID that is used to check authorization, and the

qualifier that is used for unqualified objects. To ensure the correct authorization for

dynamically executed positioned UPDATE and DELETE statements in SQLJ

programs, db2sqljbind always binds the DB2 packages with the

DYNAMICRULES(BIND) option. You cannot modify this option. The

DYNAMICRULES(BIND) option causes the SET CURRENT SQLID statement and

the SET CURRENT SCHEMA statement to have no impact on an SQLJ program,

because those statements affect only dynamic statements that are bound with

DYNAMICRULES values other than BIND.

With DYNAMICRULES(BIND), unqualified table, view, index, and alias names in

dynamic SQL statements are implicitly qualified with value of the bind option

QUALIFIER. If you do not specify QUALIFIER, DB2 uses the authorization ID of

the package owner as the implicit qualifier. If this behavior is not suitable for your

program, you can use one of the following techniques to set the correct qualifier:

v Force positioned UDPATE and DELETE statements to execute statically. You can

use the -staticpositioned YES option of db2sqljcustomize or db2sqljbind to do

this if the cursor (iterator) for a positioned UPDATE or DELETE statement is in

the same package as the positioned UPDATE or DELETE statement.

v Fully qualify DB2 table names in positioned UPDATE and positioned DELETE

statements.

db2sqljprint - SQLJ profile printer

db2sqljprint prints the contents of the customized version of a profile as plain text.

Authorization

None

Command syntax

�� db2sqljprint profilename ��

Command parameters

profilename

Specifies the relative or absolute name of an SQLJ profile file. When an

SQLJ file is translated into a Java source file, information about the SQL

operations it contains is stored in SQLJ-generated resource files called

profiles. Profiles are identified by the suffix _SJProfileN (where N is an

484 Developing Java Applications

integer) following the name of the original input file. They have a .ser

extension. Profile names can be specified with or without the .ser

extension.

Examples

 db2sqljprint pgmname_SJProfile0.ser

Chapter 12. JDBC and SQLJ reference information 485

486 Developing Java Applications

Appendix A. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics (Task, concept and reference topics)

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF DVD)

– printed books
v Command line help

– Command help

– Message help

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hardcopy books. To get the most current information, install the

documentation updates as they become available, or refer to the DB2 Information

Center at ibm.com.

You can access additional DB2 technical information such as technotes, white

papers, and IBM Redbooks® publications online at ibm.com. Access the DB2

Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how to improve the DB2 documentation, send an e-mail to db2docs@ca.ibm.com.

The DB2 documentation team reads all of your feedback, but cannot respond to

you directly. Provide specific examples wherever possible so that we can better

understand your concerns. If you are providing feedback on a specific topic or

help file, include the topic title and URL.

Do not use this e-mail address to contact DB2 Customer Support. If you have a

DB2 technical issue that the documentation does not resolve, contact your local

IBM service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. English and translated DB2

Version 9.7 manuals in PDF format can be downloaded from www.ibm.com/
support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be

available in your country or region.

© Copyright IBM Corp. 2006, 2009 487

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

The form number increases each time a manual is updated. Ensure that you are

reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF

or the hard-copy books.

 Table 108. DB2 technical information

Name Form Number Available in print Last updated

Administrative API

Reference

SC27-2435-00 Yes August, 2009

Administrative Routines

and Views

SC27-2436-00 No August, 2009

Call Level Interface

Guide and Reference,

Volume 1

SC27-2437-00 Yes August, 2009

Call Level Interface

Guide and Reference,

Volume 2

SC27-2438-00 Yes August, 2009

Command Reference SC27-2439-00 Yes August, 2009

Data Movement Utilities

Guide and Reference

SC27-2440-00 Yes August, 2009

Data Recovery and High

Availability Guide and

Reference

SC27-2441-00 Yes August, 2009

Database Administration

Concepts and

Configuration Reference

SC27-2442-00 Yes August, 2009

Database Monitoring

Guide and Reference

SC27-2458-00 Yes August, 2009

Database Security Guide SC27-2443-00 Yes August, 2009

DB2 Text Search Guide SC27-2459-00 Yes August, 2009

Developing ADO.NET

and OLE DB

Applications

SC27-2444-00 Yes August, 2009

Developing Embedded

SQL Applications

SC27-2445-00 Yes August, 2009

Developing Java

Applications

SC27-2446-00 Yes August, 2009

Developing Perl, PHP,

Python, and Ruby on

Rails Applications

SC27-2447-00 No August, 2009

Developing User-defined

Routines (SQL and

External)

SC27-2448-00 Yes August, 2009

Getting Started with

Database Application

Development

GI11-9410-00 Yes August, 2009

Getting Started with

DB2 Installation and

Administration on Linux

and Windows

GI11-9411-00 Yes August, 2009

488 Developing Java Applications

Table 108. DB2 technical information (continued)

Name Form Number Available in print Last updated

Globalization Guide SC27-2449-00 Yes August, 2009

Installing DB2 Servers GC27-2455-00 Yes August, 2009

Installing IBM Data

Server Clients

GC27-2454-00 No August, 2009

Message Reference

Volume 1

SC27-2450-00 No August, 2009

Message Reference

Volume 2

SC27-2451-00 No August, 2009

Net Search Extender

Administration and

User’s Guide

SC27-2469-00 No August, 2009

Partitioning and

Clustering Guide

SC27-2453-00 Yes August, 2009

pureXML Guide SC27-2465-00 Yes August, 2009

Query Patroller

Administration and

User’s Guide

SC27-2467-00 No August, 2009

Spatial Extender and

Geodetic Data

Management Feature

User’s Guide and

Reference

SC27-2468-00 No August, 2009

SQL Procedural

Languages: Application

Enablement and Support

SC27-2470-00 Yes August, 2009

SQL Reference, Volume 1 SC27-2456-00 Yes August, 2009

SQL Reference, Volume 2 SC27-2457-00 Yes August, 2009

Troubleshooting and

Tuning Database

Performance

SC27-2461-00 Yes August, 2009

Upgrading to DB2

Version 9.7

SC27-2452-00 Yes August, 2009

Visual Explain Tutorial SC27-2462-00 No August, 2009

What’s New for DB2

Version 9.7

SC27-2463-00 Yes August, 2009

Workload Manager

Guide and Reference

SC27-2464-00 Yes August, 2009

XQuery Reference SC27-2466-00 No August, 2009

 Table 109. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

Installing and

Configuring DB2

Connect Personal Edition

SC27-2432-00 Yes August, 2009

Installing and

Configuring DB2

Connect Servers

SC27-2433-00 Yes August, 2009

Appendix A. Overview of the DB2 technical information 489

Table 109. DB2 Connect-specific technical information (continued)

Name Form Number Available in print Last updated

DB2 Connect User’s

Guide

SC27-2434-00 Yes August, 2009

 Table 110. Information Integration technical information

Name Form Number Available in print Last updated

Information Integration:

Administration Guide for

Federated Systems

SC19-1020-02 Yes August, 2009

Information Integration:

ASNCLP Program

Reference for Replication

and Event Publishing

SC19-1018-04 Yes August, 2009

Information Integration:

Configuration Guide for

Federated Data Sources

SC19-1034-02 No August, 2009

Information Integration:

SQL Replication Guide

and Reference

SC19-1030-02 Yes August, 2009

Information Integration:

Introduction to

Replication and Event

Publishing

GC19-1028-02 Yes August, 2009

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation DVD are unavailable in print. For example, neither volume of the

DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation DVD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r7.

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

490 Developing Java Applications

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

1. Locate the contact information for your local representative from one of the

following Web sites:

– The IBM directory of world wide contacts at www.ibm.com/planetwide

– The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
2. When you call, specify that you want to order a DB2 publication.

3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical

library in hardcopy or PDF format” on page 487.

Displaying SQL state help from the command line processor

DB2 products return an SQLSTATE value for conditions that can be the result of an

SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state

class codes.

To start SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

Accessing different versions of the DB2 Information Center

For DB2 Version 9.7 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/

For DB2 Version 9.5 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Displaying topics in your preferred language in the DB2 Information

Center

The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button.

Appendix A. Overview of the DB2 technical information 491

http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Note: Adding a language does not guarantee that the computer has the

fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.
v To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences

window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you must also change the

regional settings of your operating system to the locale and language of your

choice.

Updating the DB2 Information Center installed on your computer or

intranet server

A locally installed DB2 Information Center must be updated periodically.

Before you begin

A DB2 Version 9.7 Information Center must already be installed. For details, see

the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in

Installing DB2 Servers. All prerequisites and restrictions that applied to installing

the Information Center also apply to updating the Information Center.

About this task

An existing DB2 Information Center can be updated automatically or manually:

v Automatic updates - updates existing Information Center features and

languages. An additional benefit of automatic updates is that the Information

Center is unavailable for a minimal period of time during the update. In

addition, automatic updates can be set to run as part of other batch jobs that run

periodically.

v Manual updates - should be used when you want to add features or languages

during the update process. For example, a local Information Center was

originally installed with both English and French languages, and now you want

to also install the German language; a manual update will install German, as

well as, update the existing Information Center features and languages.

However, a manual update requires you to manually stop, update, and restart

the Information Center. The Information Center is unavailable during the entire

update process.

Procedure

492 Developing Java Applications

This topic details the process for automatic updates. For manual update

instructions, see the “Manually updating the DB2 Information Center installed on

your computer or intranet server” topic.

To automatically update the DB2 Information Center installed on your computer or

intranet server:

1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7

directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the ic-update script:

ic-update

2. On Windows operating systems,

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2

Information Center\Version 9.7 directory, where <Program Files> represents

the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the ic-update.bat file:

ic-update.bat

Results

The DB2 Information Center restarts automatically. If updates were available, the

Information Center displays the new and updated topics. If Information Center

updates were not available, a message is added to the log. The log file is located in

doc\eclipse\configuration directory. The log file name is a randomly generated

number. For example, 1239053440785.log.

Manually updating the DB2 Information Center installed on your

computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install

documentation updates from IBM.

Updating your locally-installed DB2 Information Center manually requires that

you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to apply updates. The Workstation version of the DB2

Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates

that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center

updates on a machine that is not connected to the internet, mirror the update

site to a local file system using a machine that is connected to the internet and

has the DB2 Information Center installed. If many users on your network will

be installing the documentation updates, you can reduce the time required for

Appendix A. Overview of the DB2 technical information 493

individuals to perform the updates by also mirroring the update site locally

and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.

However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later

in this section must be run as an administrator. To open a command prompt or

graphical tool with full administrator privileges, right-click the shortcut and then

select Run as administrator.

To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv97 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the <Program

Files>\IBM\DB2 Information Center\Version 9.7 directory, where

<Program Files> represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the help_start.bat file:

help_start.bat

v On Linux:

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

/opt/ibm/db2ic/V9.7 directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information

Center.

3. Click the Update button (

). (JavaScript™ must be enabled in your browser.)

On the right panel of the Information Center, click Find Updates. A list of

updates for existing documentation displays.

4. To initiate the installation process, check the selections you want to install, then

click Install Updates.

5. After the installation process has completed, click Finish.

6. Stop the stand-alone Information Center:

v On Windows, navigate to the installation directory’s doc\bin directory, and

run the help_end.bat file:

help_end.bat

494 Developing Java Applications

Note: The help_end batch file contains the commands required to safely stop

the processes that were started with the help_start batch file. Do not use

Ctrl-C or any other method to stop help_start.bat.

v On Linux, navigate to the installation directory’s doc/bin directory, and run

the help_end script:

help_end

Note: The help_end script contains the commands required to safely stop the

processes that were started with the help_start script. Do not use any other

method to stop the help_start script.
7. Restart the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv97 start

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials

The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML®” in pureXML Guide

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

“Visual Explain” in Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 database products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting Guide

or the Database fundamentals section of the DB2 Information Center. There

you will find information about how to isolate and identify problems using

DB2 diagnostic tools and utilities, solutions to some of the most common

problems, and other advice on how to solve problems you might encounter

with your DB2 database products.

Appendix A. Overview of the DB2 technical information 495

http://publib.boulder.ibm.com/infocenter/db2luw/v9

DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/support/db2_9/

Terms and Conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

496 Developing Java Applications

http://www.ibm.com/software/data/db2/support/db2_9/
http://www.ibm.com/software/data/db2/support/db2_9/

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

Information about non-IBM products is based on information available at the time

of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,

contact the IBM Intellectual Property Department in your country or send

inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 2006, 2009 497

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

 Office of the Lab Director

 8200 Warden Avenue

 Markham, Ontario

 L6G 1C7

 CANADA

Such information may be available, subject to appropriate terms and conditions,

including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs, in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

498 Developing Java Applications

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of

International Business Machines Corp., registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web at “Copyright and

trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

v Java and all Java-based trademarks and logos are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.

v UNIX is a registered trademark of The Open Group in the United States and

other countries.

v Intel®, Intel logo, Intel Inside®, Intel Inside logo, Intel® Centrino®, Intel Centrino

logo, Celeron®, Intel® Xeon®, Intel SpeedStep®, Itanium®, and Pentium® are

trademarks or registered trademarks of Intel Corporation or its subsidiaries in

the United States and other countries.

v Microsoft®, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix B. Notices 499

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

500 Developing Java Applications

Index

Special characters
-only methods

DB2Administrator class 372

DB2CataloguedDatabase class 379

-only properties
DB2Administrator class 372

DB2CataloguedDatabase class 379

Numerics
24 as hour value

JDBC and SQLJ applications 249

A
accessing packages

JDBC 37

SQLJ 137

alternative security mechanism 194

applets
building JDBC 207

building SQLJ 209

points for using 210

application programming
JDBC 23

SQLJ 129

applications
supported by Java 2 Platform, Enterprise Edition 231

ARRAY parameters
invoking stored procedures from JDBC programs 74

invoking stored procedures from SQLJ programs 170

assignment clause
SQLJ 345

auto-generated key
retrieving in JDBC application 76

autocommit
default

JDBC 98

automatically generated keys
retrieving in JDBC application 76

avoiding data loss, timestamp
JDBC and SQLJ applications 252

B
batch queries

JDBC 48

batch updates
JDBC 43

SQLJ 145

BatchUpdateException, retrieving information 105

books
printed

ordering 490

building Java application 207

C
CallableStatement

calling stored procedures 58

calling stored procedures
CallableStatement 58

client affinities for seamless failover
IBM Data Server Driver for JDBC and SQLJ 124

client info properties 83

IBM Data Server Driver for JDBC and SQLJ 82

client reroute support
IBM Data Server Driver for JDBC and SQLJ 108

client reroute support with JNDI 113

client reroute support, client operation 114

closing connection
importance of 128, 181

collecting trace data
SQLJ 215

commands
db2sqljbind 479

db2sqljprint 484

sqlj 464

SQLJ Profile Binder 479

SQLJ Translator 464

commands, SQLJ program preparation 464

comment
SQLJ 139

commit
SQLJ transaction 180

transaction, JDBC 97

commiting or rolling back 180

comparison of driver support
JDBC APIs 307

configuration properties 293

corresponding Connection or DataSource properties 16

parameters 16

configuring
JDBC 16

SQLJ 16

connecting to a data source
DataSource interface 32

SQLJ 131

connection concentrator, IDS
IBM Data Server Driver for JDBC and SQLJ 126

connection context
class 131

closing 181

default 131

object 131

connection declaration clause
SQLJ 339

connection pooling
overview 241

connection, using existing
SQLJ 137

containers
Java 2 Platform, Enterprise Edition 232

context clause
SQLJ 341, 342

creating
DB2 tables, SQLJ 140

© Copyright IBM Corp. 2006, 2009 501

creating and deploying
DataSource objects 35

creating objects
JDBC 40

cursor OUT parameter
CALL statement, JDBC 62

CALL statement, SQLJ 160

customizing Java environment 16

D
data

retrieval
JDBC 46

data source
connecting to using JDBC 25

connecting using DriverManager 28

connecting using JDBC DataSource 32

data type mappings
Java, JDBC, and database 243

DatabaseMetaData
retrieving data source information, JDBC 37

databases
compatibility

IBM Data Server Driver for JDBC and SQLJ 3

DataSource interface
SQLJ

connection technique 3 134

connection technique 4 136

DataSource objects
creating and deploying 35

date value adjustment
JDBC and SQLJ applications 249

DB2 for z/OS
binding plans and packages 468

direct connections, operation 123

Sysplex support 119, 124

Sysplex support configuration 121

DB2 for z/OS servers
accessing from Java programs 16

DB2 Information Center
languages 491

updating 492, 493

versions 491

viewing in different languages 491

DB2 JDBC Type 2 Drive 107

DB2 JDBC Type 2 Driver 107

DriverManager interface 27

security 205

DB2Administrator class 372

DB2BaseDataSource class 372

DB2Binder utility 8

DB2CallableStatement interface 378

DB2CataloguedDatabase class 379

DB2ClientRerouteServerList class 380

DB2Connection interface 381

DB2ConnectionPoolDataSource class 399

DB2DatabaseMetaData interface 401

DB2Diagnosable class
retrieving the SQLCA 180

DB2Diagnosable interface 402

DB2ExceptionFormatter class 403

DB2JCCPlugin interface 403

DB2LobTableCreator utility 15

DB2PooledConnection interface 404

DB2PoolMonitor class 407

DB2PreparedStatement interface 409

DB2ResultSet interface 418

DB2ResultSetMetaData interface 419

DB2RowID interface 420

DB2SimpleDataSource
definition 35

DB2SimpleDataSource class
description 420

DB2Sqlca class 421

db2sqljbind command 479

db2sqljcustomize command 468

db2sqljprint
formation JCC customized profile 216

db2sqljprint command
description 484

DB2Statement interface 422

DB2SystemMonitor interface 424

DB2T4XAIndoubtUtil
distributed transactions with DB2 UDB for OS/390 and

z/OS V7 18

DB2TraceManager class 427

DB2TraceManagerMXBean interface 431

DB2Types class 434

DB2XADataSource class 435

DB2Xml interface 437

DBBatchUpdateException interface 371

declaring
variables in a JDBC application 39

default connection context 131, 137

deregisterDB2XMLObject method 95

diagnosing JDBC problems 215

diagnosing SQLJ problems 215

distinct type
using in JDBC application 73

using in SQLJ application 170

Distributed transaction example
JDBC 234

documentation
overview 487

PDF 487

printed 487

terms and conditions of use 496

driver version
IBM Data Server Driver for JDBC and SQLJ 463

DriverManager interface
DB2 JDBC Type 2 Driver 27

SQLJ
SQLJ connection technique 1 131

SQLJ connection technique 2 133

dynamic data format 163

E
encrypted security-sensitive data

IBM Data Server Driver for JDBC and SQLJ 187

encrypted user ID or encrypted password security
IBM Data Server Driver for JDBC and SQLJ 187

Enterprise Java Beans
overview 239

environment variables
JDBC 16

SQLJ 16

error handling
SQLJ 180

SQLJ applications 180

examples
deregisterDB2XMLObject 95

registerDB2XMLSchema 95

502 Developing Java Applications

exceptions
IBM Data Server Driver for JDBC and SQLJ 98

executable clause
SQLJ 341

executeUpdate methods
DB2 for z/OS servers 42

executing SQL
JDBC 39

SQLJ 140

execution context 168

execution control
SQLJ 168

extended client information
IBM Data Server Driver for JDBC and SQLJ 81

G
getCause method 98

getDatabaseProductName
identify data source type 38

getDatabaseProductVersion
identify data source version 38

global properties 293

H
handling SQLException 107

handling SQLWarning 107

help
configuring language 491

SQL statements 491

host expression
SQLJ 138, 336

HP-UX
Java environment setup 20

I
IBM Data Server Driver for JDBC and SQLJ

client info properties 82

client reroute support 108

compatibility with databases 3

connecting to a data source
DriverManager interface 28

DB2T4XAIndoubtUtil 18

determining version 463

enabling workload balancing 126

encrypted user ID or encrypted password security 187

example of enabling Sysplex support 122

example, trace program 217

example, tracing with configuration parameters 217

exceptions 98

extended client information 81

handling SQLException 101

installing 5

JDBC extensions 370

Kerberos security 189

LOB support, JDBC 66, 68

LOB support, SQLJ 163

properties 253

return codes, internal errors 455

security 183

security plugin support 192

setup for accessing DB2 for z/OS servers 16

SQLSTATEs, internal errors 461

techniques for monitoring connection concentrator 221

IBM Data Server Driver for JDBC and SQLJ (continued)
trusted context support 196

user ID and password security 185

user ID-only security 186

warnings 98

XML support, SQLJ 172

IBM Data Server Driver for JDBC and SQLJ type 2

connectivity
when to use 34

IBM Data Server Driver for JDBC and SQLJ type 4

connectivity
when to use 34

IBM Data Server Driver for JDBC and SQLJ-only fields
DB2Types class 434

IBM Data Server Driver for JDBC and SQLJ-only methods
DB2BaseDataSource class 372

DB2CallableStatement interface 378

DB2ClientRerouteServerList class 380

DB2Connection interface 381

DB2ConnectionPoolDataSource class 399

DB2DatabaseMetaData interface 401

DB2Diagnosable interface 402

DB2ExceptionFormatter class 403

DB2JCCPlugin interface 403

DB2PooledConnection interface 404

DB2PoolMonitor class 407

DB2PreparedStatement interface 409

DB2ResultSet interface 418

DB2ResultSetMetaData interface 419

DB2RowID interface 420

DB2SimpleDataSource class 420

DB2sqlca class 421

DB2Statement interface 422

DB2SystemMonitor interface 424

DB2TraceManager class 427

DB2TraceManagerMXBean interface 431

DB2XADataSource class 435

DB2Xml interface 437

DBBatchUpdateException interface 371

IBM Data Server Driver for JDBC and SQLJ-only properties
DB2BaseDataSource class 372

DB2ClientRerouteServerList class 380

DB2ConnectionPoolDataSource class 399

DB2SimpleDataSource class 420

implements clause
SQLJ 337

installing
IBM Data Server Driver for JDBC and SQLJ 5

invalid Gregorian date
JDBC and SQLJ applications 249

isolation level
JDBC 97

SQLJ 179

iterator
for positioned DELETE 140

for positioned UPDATE 140

obtaining JDBC result sets from 165

iterator conversion clause
SQLJ 345

iterator declaration clause
SQLJ 339

J
Java

applets
building (JDBC) 207

Index 503

Java (continued)
applets (continued)

building (SQLJ) 209

using 210

application development
accessing z/OS servers 16

overview 1

applications
building (JDBC) 207

building (overview) 207

building (SQLJ) 209

distributed transactions 238

Enterprise Java Beans 239

environment setup (HP-UX) 20

routines
building (JDBC) 208

building (SQLJ) 212

Java 2 Platform, Enterprise Edition
application support 231

containers 232

database requirements 233

Enterprise Java Beans 239

overview 231

requirements 233

server 232

transaction management 233

Java application
customizing environment 16

Java Database Connectivity (JDBC)
4.0

getColumnLabel change 450

getColumnName change 450

applets
building 207

using 210

applications
building 207

data retrieval 46

programming overview 23

transaction control 97

DB2 for z/OS servers 16

executeUpdate methods
running against DB2 for z/OS server 42

IBM Data Server Driver for JDBC and SQLJ installation 5

isolation levels
overview 97

optimistic locking 85

ResultSets
delete holes 56

inserting row 57, 58

routines
building (procedure) 208

transactions
autocommit modes 98

Java Naming and Directory Interface (JNDI)
description 233

Java Transaction API (JTA)
description 233

Java Transaction Service (JTS)
description 233

JDBC
accessing packages for 37

batch queries 48

batch updates 43

configuring 16

connection concentrator function, IDS 126

creating objects 40

JDBC (continued)
cursor OUT parameter 62

data type mappings 243

environment variables 16

executing SQL 39

handling SQLWarning 104

modifying objects 40

named parameter markers 79, 80

named parameters 60

problem diagnosis 215

ResultSet holdability 51, 52

scrollable ResultSet 51, 52

updatable ResultSet 51, 52

workload balancing, IDS 126

JDBC and SQLJ
supported drivers 2

JDBC APIs
comparison of driver support 307

JDBC application
declaring variables 39

example 23

JDBC batch error
BatchUpdateException 105

JDBC connection
using 35

JDBC drivers
IBM Data Server Driver for JDBC and SQLJ

differences 448

JDBC differences 439

SQLJ differences 452

JDBC extensions
IBM Data Server Driver for JDBC and SQLJ 370

JDBC transaction
committing 97

rolling back 97

JNDI (Java Naming and Directory Interface)
description 233

JTA (Java Transaction API)
description 233

JTS (Java Transaction Service)
description 233

K
Kerberos security

IBM Data Server Driver for JDBC and SQLJ 189

L
literal parameters

DB2 for z/OS stored procedure calls, JDBC 58

LOB column
choosing compatible Java data types, JDBC 70

choosing compatible Java data types, SQLJ 163

LOB locator
IBM Data Server Driver for JDBC and SQLJ 163

LOB locators
IBM Data Server Driver for JDBC and SQLJ 67

LOB operations
IBM Data Server Driver for JDBC and SQLJ 68

LOB support
IBM Data Server Driver for JDBC and SQLJ 66

IBM Data Server Driver for JDBC and SQLJ, SQLJ 163

LOB locator 68

504 Developing Java Applications

M
management services

accessing 228

modifying
DB2 tables, SQLJ 140

modifying objects
JDBC 40

multi-row operations 55

multiple result sets
keeping open, JDBC 65

retrieving a known number, JDBC 64

retrieving an unknown number, JDBC 64

retrieving from a stored procedure 161

retrieving, JDBC 63

N
named iterator

passed as variable 144

result set iterator 149

named parameter markers
CallableStatement objects 80

JDBC 79

PreparedStatement objects 79

named parameters
CALL statement, JDBC 60

CALL statement, SQLJ 159

notices 497

O
online checking

for better optimization 468

needed during customization 468

restriction 468

optimistic locking
JDBC application 85

ordering DB2 books 490

P
ParameterMetaData

retrieving parameter information, JDBC 45

positioned delete
SQLJ 140

positioned iterator
passed as variable 144

result set iterator 151

positioned update
SQLJ 140

PreparedStatement methods
SQL statements with no parameter markers 41

SQL statements with parameter markers 40, 47

problem determination
information available 495

tutorials 495

problem diagnosis
JDBC 215

SQLJ 215

program preparation
Java 207

progressive streaming
IBM Data Server Driver for JDBC and SQLJ 66, 68

JDBC 163

properties
configuration

parameters 16

for 281, 284

for all data sources 254

for and 270

for IDS 288

for IDS and database servers 278, 280

IBM Data Server Driver for JDBC and SQLJ 253

R
reference information, Java 243

registerDB2XMLSchema 95

releasing resources
closing connection 128, 181

remote trace controller 227

enabling 109, 111, 227

restrictions
SQLJ variable names 139

result set iterator
definition and use in same file 149

description 148

named iterator 149

positioned iterator 151

public declaration in separate file 149, 165

restrictions on declaration 151

retrieving rows in SQLJ 148, 149, 151

ResultSet
inserting a row, JDBC 57

testing for delete hole, JDBC 56

testing for inserted row, JDBC 58

ResultSet holdability
JDBC 51, 52

ResultSetMetaData
retrieving result set information, JDBC 50

ResultSetMetaData.getColumnLabel change in value, JDBC

4.0 450

ResultSetMetaData.getColumnName change in value, JDBC

4.0 450

retrieving
data from DB2 tables, JDBC 46

retrieving data
from DB2 tables, SQLJ 148

using multiple instances of an iterator, SQLJ 154

using multiple iterators on a database table, SQLJ 153

retrieving data from DB2 tables
JDBC 47

retrieving data source information
JDBC 37

retrieving parameter information
JDBC 45

retrieving result set information
JDBC 50

retrieving the SQLCA
DB2Diagnosable class 180

return codes
IBM Data Server Driver for JDBC and SQLJ errors 455

roll back
transaction, JDBC 97

rollback
SQLJ transaction 180

routines
invocation from Java programs

XML parameters 93

ROWID
IBM Data Server Driver for JDBC and SQLJ 71, 168

Index 505

S
savepoint

using in JDBC application 75

using in SQLJ application 171

scrollable iterator
SQLJ 155

scrollable ResultSet
JDBC 51, 52

SDK
Java

differences 454

HP-UX Java environment setup 20

version 1.5 177

seamless failover, client affinitiesIBM Data Server Driver for

JDBC and SQLJ 124

Secure Sockets Layer
IBM Data Server Driver for JDBC and SQLJ 198

security
DB2 JDBC Type 2 Driver 205

IBM Data Server Driver for JDBC and SQLJ 183

plug-ins
JDBC support 192

SQLJ program preparation 202

security, encrypted security-sensitive data
IBM Data Server Driver for JDBC and SQLJ 187

security, encrypted user ID or encrypted password
IBM Data Server Driver for JDBC and SQLJ 187

security, Kerberos
IBM Data Server Driver for JDBC and SQLJ 189

security, user ID and password
IBM Data Server Driver for JDBC and SQLJ 185

security, user ID-only
IBM Data Server Driver for JDBC and SQLJ 186

SET TRANSACTION clause
SQLJ 344

setTransactionTimeout
XAResource 238

SQL statement
handling errors in SQLJ 180

SQL statements
displaying help 491

handling errors in SQLJ 180

SQLException
handling with IBM Data Server Driver for JDBC and

SQLJ 101

SQLJ
accessing packages for 137

applets
building 209

points for using 210

applications
building 209

compile options on UNIX 211

compile options on Windows 211

programming 129

transaction control 179

assignment clause 345

batch updates 145

building routines 212

calling a stored procedure 158

collecting trace data 215

comment 139

connecting to a data source 131

connecting using the default context 137

connection declaration clause 339

context clause 341, 342

creating and modifying DB2 tables 140

SQLJ (continued)
cursor OUT parameter 160

environment variables 16

error handling 180

executable clause 341

executing SQL 140

execution control 168

handling SQLWarning 181

host expression 138, 336

implements clause 337

installing the run-time environment 16

isolation level 179

iterator conversion clause 345

iterator declaration clause 339

multiple instances of an iterator 154

multiple iterators on a table 153

named parameters 159

overview 177

problem diagnosis 215

program preparation
commands 464

result set iterator 148

retrieving the SQLCA 180

routines
compile options on UNIX 212

compile options on Windows 213

running diagnosis utilities 215

scrollable iterator 155

security, program preparation 202

SET TRANSACTION clause 344

statement reference 336

using DataSource interface 134, 136

using DriverManager interface 131, 133

using existing connection 137

with clause 337

SQLJ application
example 129

SQLJ clause 336

sqlj command 464

SQLJ execution context 168

SQLJ Profile Binder command 479

SQLJ Profile Printer command 484

SQLJ transaction 180

SQLJ Translator command 464

SQLJ variable names
restrictions 139

sqlj.runtime
interfaces and classes 346

sqlj.runtime.AsciiStream 358, 368

sqlj.runtime.BinaryStream 358

sqlj.runtime.CharacterStream 359

sqlj.runtime.ConnectionContext
methods called in applications 347

sqlj.runtime.ExecutionContext
methods called in applications 360

sqlj.runtime.ForUpdate
positioned UPDATE and DELETE 351

sqlj.runtime.NamedIterator
methods called in applications 352

sqlj.runtime.PositionedIterator
methods called in applications 352

sqlj.runtime.ResultSetIterator
methods called in applications 353

sqlj.runtime.Scrollable
methods called in applications 355

sqlj.runtime.SQLNullException 368

sqlj.runtime.UnicodeStream 369

506 Developing Java Applications

SQLSTATEs
IBM Data Server Driver for JDBC and SQLJ errors 461

SQLWarning
handling in JDBC 104

handling in SQLJ 181

SSID
how the determines 293

SSL
IBM Data Server Driver for JDBC and SQLJ 198

IBM Data Server Driver for JDBC and SQLJ sslConnection

property 198

SSL support
configuring Java Runtime Environment 199

sslConnection property
IBM Data Server Driver for JDBC and SQLJ 198

statement reference, SQLJ 336

Statement.executeQuery
retrieving data from DB2 tables 46

stored procedure
calling, SQLJ 158

invocation from JDBC programs
ARRAY parameters 74

invocation from SQLJ programs
ARRAY parameters 170

keeping result sets open, JDBC 65

retrieving a known number of result sets, JDBC 64

retrieving an unknown number of result sets, JDBC 64

retrieving multiple result sets, JDBC 63

retrieving result sets 161

Sysplex support
DB2 for z/OS 119, 124

Sysplex support configuration
DB2 for z/OS 121

Sysplex support, example of enabling
IBM Data Server Driver for JDBC and SQLJ 122

Sysplex support, operation
direct connections to DB2 for z/OS 123

system monitor
IBM Data Server Driver for JDBC and SQLJ 225

T
terms and conditions

use of publications 496

time value adjustment
JDBC and SQLJ applications 249

timestamp data loss avoidance
JDBC and SQLJ applications 252

trace
remote controller 227

trace program
IBM Data Server Driver for JDBC and SQLJ, example 217

tracing with configuration parameters
IBM Data Server Driver for JDBC and SQLJ, example 217

transaction control, JDBC 97

transaction control, SQLJ 179

troubleshooting
online information 495

tutorials 495

trusted context
JDBC support 196

tutorials
problem determination 495

troubleshooting 495

Visual Explain 495

U
UNIX

SQLJ applications
compile options 211

SQLJ routines
compile options 212

updatable ResultSet
inserting a row 57

JDBC 51, 52

testing for delete hole 56

testing for inserted row 58

updates
DB2 Information Center 492, 493

updating data in DB2 tables
JDBC 40

URL format
DB2BaseDataSource class 29, 31

user ID and password security
IBM Data Server Driver for JDBC and SQLJ 185

user ID-only security
IBM Data Server Driver for JDBC and SQLJ 186

V
Visual Explain

tutorial 495

W
warnings

IBM Data Server Driver for JDBC and SQLJ 98

Windows operating systems
SQLJ applications 211

SQLJ routines 213

with clause
SQLJ 337

with positioned iterators 151

workload balancing, IDS
IBM Data Server Driver for JDBC and SQLJ 126

X
XML

parameters
invoking routines from Java programs 93

XML data
Java applications 87

retrieving data in Java applications 175

retrieving from tables in Java applications 90

updating tables in Java applications 88, 173

XML schema registration
Java API 95

XML schema removal
Java API 95

XML support
IBM Data Server Driver for JDBC and SQLJ 172

XMLCAST
to XML type, SQLJ applications 176

Index 507

508 Developing Java Applications

����

Printed in USA

SC27-2446-00

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

DB

2
9.

7
fo

r L
in

ux
, U

NI
X,

an

d
W

in
do

w
s

De
ve

lo
pi

ng

Ja

va

Ap

pl
ic

at
io

ns

�
�

�

	Contents
	About this book
	Who should use this book

	Chapter 1. Java application development for IBM data servers
	Supported drivers for JDBC and SQLJ
	JDBC driver and database version compatibility

	Chapter 2. Installing the IBM Data Server Driver for JDBC and SQLJ
	DB2Binder utility
	DB2LobTableCreator utility
	Customization of IBM Data Server Driver for JDBC and SQLJ configuration properties
	Special setup for accessing DB2 for z/OS servers from Java programs
	DB2T4XAIndoubtUtil for distributed transactions with DB2 UDB for OS/390 and z/OS Version 7 servers
	Special setup for running Java routines in the HP-UX environment

	Chapter 3. JDBC application programming
	Example of a simple JDBC application
	How JDBC applications connect to a data source
	How DB2 applications connect to a data source using the DriverManager interface with the DB2 JDBC Type 2 Driver
	Connecting to a data source using the DriverManager interface with the IBM Data Server Driver for JDBC and SQLJ
	URL format for IBM Data Server Driver for JDBC and SQLJ type 4 connectivity
	URL format for IBM Data Server Driver for JDBC and SQLJ type 2 connectivity

	Connecting to a data source using the DataSource interface
	How to determine which type of IBM Data Server Driver for JDBC and SQLJ connectivity to use
	JDBC connection objects
	Creating and deploying DataSource objects

	Java packages for JDBC support
	Learning about a data source using DatabaseMetaData methods
	DatabaseMetaData methods for identifying the type of data source

	Variables in JDBC applications
	JDBC interfaces for executing SQL
	Creating and modifying database objects using the Statement.executeUpdate method
	Updating data in tables using the PreparedStatement.executeUpdate method
	JDBC executeUpdate methods against a DB2 for z/OS server
	Making batch updates in JDBC applications
	Learning about parameters in a PreparedStatement using ParameterMetaData methods
	Data retrieval in JDBC applications
	Retrieving data from tables using the Statement.executeQuery method
	Retrieving data from tables using the PreparedStatement.executeQuery method
	Making batch queries in JDBC applications
	Learning about a ResultSet using ResultSetMetaData methods
	Characteristics of a JDBC ResultSet under the IBM Data Server Driver for JDBC and SQLJ

	Calling stored procedures in JDBC applications
	Using named parameters in CALL statements in JDBC applications
	Retrieving data from cursor output parameters in JDBC applications
	Retrieving multiple result sets from a stored procedure in a JDBC application

	LOBs in JDBC applications with the IBM Data Server Driver for JDBC and SQLJ
	Progressive streaming with the IBM Data Server Driver for JDBC and SQLJ
	LOB locators with the IBM Data Server Driver for JDBC and SQLJ
	LOB operations with the IBM Data Server Driver for JDBC and SQLJ
	Java data types for retrieving or updating LOB column data in JDBC applications

	ROWIDs in JDBC with the IBM Data Server Driver for JDBC and SQLJ
	Distinct types in JDBC applications
	Invocation of stored procedures with ARRAY parameters in JDBC applications
	Savepoints in JDBC applications
	Retrieving automatically generated keys in JDBC applications
	Using named parameter markers in JDBC applications
	Using named parameter markers with PreparedStatement objects
	Using named parameter markers with CallableStatement objects

	Providing extended client information to the data source with IBM Data Server Driver for JDBC and SQLJ-only methods
	Providing extended client information to the data source with client info properties
	Client info properties support by the IBM Data Server Driver for JDBC and SQLJ

	Optimistic locking in JDBC applications
	XML data in JDBC applications
	XML column updates in JDBC applications
	XML data retrieval in JDBC applications
	Invocation of routines with XML parameters in Java applications
	Java support for XML schema registration and removal

	Transaction control in JDBC applications
	IBM Data Server Driver for JDBC and SQLJ isolation levels
	Committing or rolling back JDBC transactions
	Default JDBC autocommit modes

	Exceptions and warnings under the IBM Data Server Driver for JDBC and SQLJ
	Handling an SQLException under the IBM Data Server Driver for JDBC and SQLJ
	Handling an SQLWarning under the IBM Data Server Driver for JDBC and SQLJ
	Retrieving information from a BatchUpdateException

	Handling an SQLException under the DB2 JDBC Type 2 Driver (deprecated)
	Handling an SQLWarning under the DB2 JDBC Type 2 Driver

	JDBC and SQLJ client reroute support for DB2 Database for Linux, UNIX, and Windows and IDS
	Enabling IBM Data Server Driver for JDBC and SQLJ client reroute for connections to DB2 Database for Linux, UNIX, and Windows servers
	Enabling IBM Data Server Driver for JDBC and SQLJ client reroute for connections to IDS servers
	JDBC and SQLJ client reroute support with JNDI for DB2 Database for Linux, UNIX, and Windows and IDS
	JDBC and SQLJ client reroute operation for DB2 Database for Linux, UNIX, and Windows and IDS

	Sysplex support for high availability for connections from IBM Data Server Driver for JDBC and SQLJ clients to DB2 for z/OS servers
	Configuration of Sysplex support for high availability at the client
	Example of enabling DB2 for z/OS Sysplex support in JDBC or SQLJ applications
	Operation of Sysplex support for direct connections from IBM Data Server Driver for JDBC and SQLJ clients to DB2 for z/OS
	Application programming for Sysplex support for direct connections to DB2 for z/OS

	IBM Data Server Driver for JDBC and SQLJ support for client affinities for seamless failover
	JDBC connection concentrator and workload balancing for IDS servers
	Example of enabling IBM Data Server Driver for JDBC and SQLJ workload balancing for IDS servers

	Disconnecting from data sources in JDBC applications

	Chapter 4. SQLJ application programming
	Example of a simple SQLJ application
	Connecting to a data source using SQLJ
	SQLJ connection technique 1: JDBC DriverManager interface
	SQLJ connection technique 2: JDBC DriverManager interface
	SQLJ connection technique 3: JDBC DataSource interface
	SQLJ connection technique 4: JDBC DataSource interface
	SQLJ connection technique 5: Use a previously created connection context
	SQLJ connection technique 6: Use the default connection

	Java packages for SQLJ support
	Variables in SQLJ applications
	Comments in an SQLJ application
	SQL statement execution in SQLJ applications
	Creating and modifying DB2 objects in an SQLJ application
	Performing positioned UPDATE and DELETE operations in an SQLJ application
	Iterators as passed variables for positioned UPDATE or DELETE operations in an SQLJ application
	Making batch updates in SQLJ applications

	Data retrieval in SQLJ applications
	Using a named iterator in an SQLJ application
	Using a positioned iterator in an SQLJ application
	Multiple open iterators for the same SQL statement in an SQLJ application
	Multiple open instances of an iterator in an SQLJ application
	Using scrollable iterators in an SQLJ application

	Calling stored procedures in SQLJ applications
	Using named parameters in CALL statements in SQLJ applications
	Retrieving data from cursor output parameters in SQLJ applications
	Retrieving multiple result sets from a stored procedure in an SQLJ application

	LOBs in SQLJ applications with the IBM Data Server Driver for JDBC and SQLJ
	Java data types for retrieving or updating LOB column data in SQLJ applications

	SQLJ and JDBC in the same application
	Controlling the execution of SQL statements in SQLJ
	ROWIDs in SQLJ with the IBM Data Server Driver for JDBC and SQLJ
	Distinct types in SQLJ applications
	Invocation of stored procedures with ARRAY parameters in SQLJ applications
	Savepoints in SQLJ applications

	XML data in SQLJ applications
	XML column updates in SQLJ applications
	XML data retrieval in SQLJ applications
	XMLCAST in SQLJ applications

	SQLJ utilization of SDK for Java Version 5 function
	Transaction control in SQLJ applications
	Setting the isolation level for an SQLJ transaction
	Committing or rolling back SQLJ transactions

	Handling SQL errors and warnings in SQLJ applications
	Handling SQL errors in an SQLJ application
	Handling SQL warnings in an SQLJ application

	Closing the connection to a data source in an SQLJ application

	Chapter 5. Security under the IBM Data Server Driver for JDBC and SQLJ
	User ID and password security under the IBM Data Server Driver for JDBC and SQLJ
	User ID-only security under the IBM Data Server Driver for JDBC and SQLJ
	Encrypted password, user ID, or user ID and password security under the IBM Data Server Driver for JDBC and SQLJ
	Kerberos security under the IBM Data Server Driver for JDBC and SQLJ
	IBM Data Server Driver for JDBC and SQLJ security plugin support
	Use of alternative security mechanisms with the IBM Data Server Driver for JDBC and SQLJ
	IBM Data Server Driver for JDBC and SQLJ trusted context support
	IBM Data Server Driver for JDBC and SQLJ support for SSL
	Configuring connections under the IBM Data Server Driver for JDBC and SQLJ to use SSL
	Configuring the Java Runtime Environment to use SSL

	Security for preparing SQLJ applications with the IBM Data Server Driver for JDBC and SQLJ

	Chapter 6. Security under the DB2 JDBC Type 2 Driver
	Chapter 7. Building Java database applications
	Building JDBC applets
	Building JDBC applications
	Building JDBC routines
	Building SQLJ applets
	Building SQLJ applications
	Java applet considerations
	SQLJ application and applet options for UNIX
	SQLJ application and applet options for Windows
	Building SQL routines
	SQLJ routine options for UNIX
	SQLJ routine options for Windows

	Chapter 8. Problem diagnosis with the IBM Data Server Driver for JDBC and SQLJ
	Example of using configuration properties to start a JDBC trace
	Example of a trace program under the IBM Data Server Driver for JDBC and SQLJ
	Techniques for monitoring IBM Data Server Driver for JDBC and SQLJ Sysplex support

	Chapter 9. System monitoring for the IBM Data Server Driver for JDBC and SQLJ
	IBM Data Server Driver for JDBC and SQLJ remote trace controller
	Enabling the remote trace controller
	Accessing the remote trace controller

	Chapter 10. Java 2 Platform, Enterprise Edition
	Application components of Java 2 Platform, Enterprise Edition support
	Java 2 Platform, Enterprise Edition containers
	Java 2 Platform, Enterprise Edition Server
	Java 2 Platform, Enterprise Edition database requirements
	Java Naming and Directory Interface (JNDI)
	Java transaction management
	Example of a distributed transaction that uses JTA methods
	Setting the transaction timeout value for an XAResource instance

	Enterprise Java Beans

	Chapter 11. JDBC and SQLJ connection pooling support
	Chapter 12. JDBC and SQLJ reference information
	Data types that map to database data types in Java applications
	Date, time, and timestamp values that can cause problems in JDBC and SQLJ applications
	Data loss for timestamp data in JDBC and SQLJ applications

	Properties for the IBM Data Server Driver for JDBC and SQLJ
	Common IBM Data Server Driver for JDBC and SQLJ properties for all supported database products
	Common IBM Data Server Driver for JDBC and SQLJ properties for DB2 servers
	Common IBM Data Server Driver for JDBC and SQLJ properties for DB2 for z/OS and IDS
	Common IBM Data Server Driver for JDBC and SQLJ properties for IDS and DB2 Database for Linux, UNIX, and Windows
	IBM Data Server Driver for JDBC and SQLJ properties for DB2 Database for Linux, UNIX, and Windows
	IBM Data Server Driver for JDBC and SQLJ properties for DB2 for z/OS
	IBM Data Server Driver for JDBC and SQLJ properties for IDS

	IBM Data Server Driver for JDBC and SQLJ configuration properties
	Driver support for JDBC APIs
	SQLJ statement reference information
	SQLJ clause
	SQLJ host-expression
	SQLJ implements-clause
	SQLJ with-clause
	SQLJ connection-declaration-clause
	SQLJ iterator-declaration-clause
	SQLJ executable-clause
	SQLJ context-clause
	SQLJ statement-clause
	SQLJ SET-TRANSACTION-clause
	SQLJ assignment-clause
	SQLJ iterator-conversion-clause

	Interfaces and classes in the sqlj.runtime package
	sqlj.runtime.ConnectionContext interface
	sqlj.runtime.ForUpdate interface
	sqlj.runtime.NamedIterator interface
	sqlj.runtime.PositionedIterator interface
	sqlj.runtime.ResultSetIterator interface
	sqlj.runtime.Scrollable interface
	sqlj.runtime.AsciiStream class
	sqlj.runtime.BinaryStream class
	sqlj.runtime.CharacterStream class
	sqlj.runtime.ExecutionContext class
	sqlj.runtime.SQLNullException class
	sqlj.runtime.StreamWrapper class
	sqlj.runtime.UnicodeStream class

	IBM Data Server Driver for JDBC and SQLJ extensions to JDBC
	DBBatchUpdateException interface
	DB2Administrator class
	DB2BaseDataSource class
	DB2CallableStatement interface
	DB2CataloguedDatabase class
	DB2ClientRerouteServerList class
	DB2Connection interface
	DB2ConnectionPoolDataSource class
	DB2DatabaseMetaData interface
	DB2Diagnosable interface
	DB2ExceptionFormatter class
	DB2JCCPlugin class
	DB2PooledConnection class
	DB2PoolMonitor class
	DB2PreparedStatement interface
	DB2ResultSet interface
	DB2ResultSetMetaData interface
	DB2RowID interface
	DB2SimpleDataSource class
	DB2Sqlca class
	DB2Statement interface
	DB2SystemMonitor interface
	DB2TraceManager class
	DB2TraceManagerMXBean interface
	DB2Types class
	DB2XADataSource class
	DB2Xml interface

	JDBC differences between the current IBM Data Server Driver for JDBC and SQLJ and earlier DB2 JDBC drivers
	JDBC differences between versions of the IBM Data Server Driver for JDBC and SQLJ
	Examples of ResultSetMetaData.getColumnName and ResultSetMetaData.getColumnLabel values
	SQLJ differences between the IBM Data Server Driver for JDBC and SQLJ and other DB2 JDBC drivers
	SDK for Java differences that affect the IBM Data Server Driver for JDBC and SQLJ
	Error codes issued by the IBM Data Server Driver for JDBC and SQLJ
	SQLSTATEs issued by the IBM Data Server Driver for JDBC and SQLJ
	How to find IBM Data Server Driver for JDBC and SQLJ version and environment information
	Commands for SQLJ program preparation
	sqlj - SQLJ translator
	db2sqljcustomize - SQLJ profile customizer
	db2sqljbind - SQLJ profile binder
	db2sqljprint - SQLJ profile printer

	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Index

