
IBM DB2 9.7

for Linux, UNIX, and Windows

Troubleshooting and Tuning Database Performance

SC27-2461-00

���

IBM DB2 9.7

for Linux, UNIX, and Windows

Troubleshooting and Tuning Database Performance

SC27-2461-00

���

Note

Before using this information and the product it supports, read the general information under Appendix B, “Notices,” on

page 543.

Edition Notice

This document contains proprietary information of IBM. It is provided under a license agreement and is protected

by copyright law. The information contained in this publication does not include any product warranties, and any

statements provided in this manual should not be interpreted as such.

You can order IBM publications online or through your local IBM representative.

v To order publications online, go to the IBM Publications Center at www.ibm.com/shop/publications/order

v To find your local IBM representative, go to the IBM Directory of Worldwide Contacts at www.ibm.com/
planetwide

To order DB2 publications from DB2 Marketing and Sales in the United States or Canada, call 1-800-IBM-4YOU

(426-4968).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any

way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 2006, 2009.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

About this book vii

How this book is structured vii

Part 1. Performance overview 1

Chapter 1. Performance tuning tools and

methodology 5

Benchmark testing 5

Benchmark preparation 6

Benchmark test creation 7

Benchmark test execution 8

Benchmark test analysis example 9

Chapter 2. Performance monitoring

tools and methodology 11

Operational monitoring of system performance . . 11

Basic set of system performance monitor

elements 12

Abnormal values in monitoring data 15

The governor utility 16

Starting and stopping the governor 16

The governor daemon 17

The governor configuration file 18

Governor rule clauses 21

Governor log files 25

Chapter 3. Factors affecting

performance 29

System architecture 29

DB2 architecture and process overview 29

The DB2 process model 30

Database agents 35

Configuring for good performance 44

Instance configuration 51

Table space design 52

Disk-storage performance factors 52

Table space impact on query optimization . . . 52

Database design 54

Tables 54

Indexes 59

Partitioning and clustering 70

Federated databases 78

Resource utilization 78

Memory allocation 78

Self-tuning memory overview 85

Buffer pool management 92

Database deactivation behavior in first-user

connection scenarios 106

Tuning sort performance 106

Data organization 108

Table reorganization 108

Index reorganization 118

Determining when to reorganize tables and

indexes 119

Costs of table and index reorganization 122

Reducing the need to reorganize tables and

indexes 123

Automatic reorganization 124

Application design 125

Application processes, concurrency, and

recovery 125

Concurrency issues 127

Writing and tuning queries for optimal

performance 139

Improving insert performance 150

Efficient SELECT statements 151

Guidelines for restricting SELECT statements 152

Specifying row blocking to reduce overhead . . 155

Data sampling in queries 156

Parallel processing for applications 157

Lock management 158

Locks and concurrency control 158

Lock granularity 159

Lock attributes 160

Factors that affect locking 161

Lock type compatibility 163

Next-key locking 163

Lock modes and access plans for standard

tables 164

Lock modes for MDC table and RID index scans 168

Lock modes for MDC block index scans . . . 172

Locking behavior on partitioned tables 176

Lock conversion 177

Lock waits and timeouts 178

Deadlocks 179

Query optimization 181

The SQL and XQuery compiler process 181

Data-access methods 203

Joins 211

Effects of sorting and grouping on query

optimization 226

Optimization strategies 228

Improving query optimization with materialized

query tables 237

Explain facility 239

Optimizing query access plans 271

Statistical views 334

Catalog statistics 341

Minimizing runstats impact 382

Data compression and performance 383

Reducing logging overhead to improve DML

performance 383

Inline LOBs improve performance 384

Chapter 4. Establishing a performance

tuning strategy 387

The Design Advisor 387

Using the Design Advisor 390

Defining a workload for the Design Advisor . . 390

© Copyright IBM Corp. 2006, 2009 iii

Using the Design Advisor to convert from a

single-partition to a multi-partition database . . 392

Design Advisor limitations and restrictions . . 392

Part 2. Troubleshooting a problem 395

Chapter 5. Tools for troubleshooting 399

Overview of the db2dart tool 400

Comparison of INSPECT and db2dart 400

Analyzing db2diag log files using db2diag tool . . 402

Displaying and altering the Global Registry (UNIX)

using db2greg 404

Identifying the version and service level of your

product 405

Mimicking databases using db2look 405

Listing DB2 database products installed on your

system (Linux and UNIX) 409

Monitoring and troubleshooting using db2pd

command 410

Collecting environment information using

db2support command 421

Basic trace diagnostics 424

DB2 traces 426

DRDA trace files 428

Control Center traces 436

JDBC trace files 436

CLI trace files 438

Platform-specific tools 443

Diagnostic tools (Windows) 443

Diagnostic tools (Linux and UNIX) 444

Chapter 6. Troubleshooting DB2

database 447

Collecting data for DB2 447

Collecting data for data movement problems 448

Collecting data for DAS and instance

management problems 448

Analyzing data for DB2 449

Diagnosing and resolving locking problems . . . 449

Diagnosing a lock wait problem 451

Diagnosing a deadlock problem 454

Diagnosing a lock timeout problem 457

Diagnosing a lock escalation problem 460

Recovering from sustained traps 463

Troubleshooting administrative task scheduler . . 464

Troubleshooting compression 465

Data compression dictionary is not

automatically created 465

Row compression not reducing disk storage

space for temporary tables 466

Data replication process cannot decompress a

compressed row image 466

Troubleshooting global variable problems 469

Troubleshooting high availability 471

Tivoli System Automation for Multiplatforms

(SA MP) Base Component is not installed by

DB2 Version 9.5 GA on AIX 6.1 471

Troubleshooting inconsistencies 472

Troubleshooting data inconsistencies 472

Troubleshooting index to data inconsistencies 472

Troubleshooting installation of DB2 database

systems 473

Collecting data for installation problems . . . 473

Analyzing data for installation problems . . . 474

Known problems and solutions 474

Troubleshooting license issues 476

Analyzing DB2 license compliance reports . . . 476

Troubleshooting optimization guidelines and

profiles 478

Troubleshooting partitioned database environments 480

FCM problems related to 127.0.0.2 (Linux and

UNIX) 480

Creating a database partition on an encrypted

file system (AIX) 480

Troubleshooting scripts 481

Troubleshooting storage key support 481

Chapter 7. Troubleshooting DB2

Connect 483

Diagnostic tools 483

Gathering relevant information 483

Initial connection is not successful 484

Problems encountered after an initial connection 485

Unsupported DDM commands 486

Common DB2 Connect problems 487

Chapter 8. Searching knowledge

bases 491

How to search effectively for known problems . . 491

Troubleshooting resources 491

Chapter 9. Getting DB2 product fixes 493

Getting fixes 493

Fix packs, interim fix packs and test fixes . . . 493

Applying test fixes 495

Chapter 10. Learning more about

troubleshooting 497

Learning more 497

Administration notification log 498

DB2 diagnostic (db2diag) log files 501

Combining DB2 database and OS diagnostics 506

db2cos (callout script) output files 509

Dump files 511

First occurrence data capture information . . . 511

Internal return codes 520

Introduction to messages 521

Platform-specific error log information 524

Trap files 527

Chapter 11. Contacting IBM Software

Support 529

Contacting IBM Software Support 529

Submitting data to IBM Software Support . . . 529

Part 3. Appendixes 531

iv Troubleshooting and Tuning Database Performance

Appendix A. Overview of the DB2

technical information 533

DB2 technical library in hardcopy or PDF format 533

Ordering printed DB2 books 536

Displaying SQL state help from the command line

processor 537

Accessing different versions of the DB2

Information Center 537

Displaying topics in your preferred language in the

DB2 Information Center 537

Updating the DB2 Information Center installed on

your computer or intranet server 538

Manually updating the DB2 Information Center

installed on your computer or intranet server . . 539

DB2 tutorials 541

DB2 troubleshooting information 541

Terms and Conditions 542

Appendix B. Notices 543

Index 547

Contents v

vi Troubleshooting and Tuning Database Performance

About this book

This guide provides information about tuning database performance and solving

problems with DB2® database clients and servers.

It helps you to:

v Develop a performance monitoring and tuning strategy

v Develop a troubleshooting strategy for day-to-day operations

v Adjust the configuration of the database server

v Make changes to the applications that use the database server

v Identify problems and errors in a concise manner

v Solve problems based on their symptoms

v Learn about available diagnostic tools

Who should use this book?

This guide is intended for customers, users, system administrators, database

administrators (DBAs), communication specialists, application developers, and

technical support representatives who are interested in tuning database

performance and troubleshooting problems with DB2 database clients and servers.

To use it, you should be familiar with:

v Communications, relational database, and local area network (LAN) concepts

v Hardware and software requirements and options

v The overall configuration of your network

v Application programs and other facilities that run on your network

v Basic DB2 database administrative tasks

v The information on installation and early tasks described in the Quick Beginnings

guides for the products you have installed.

How this book is structured

To assist you in performance monitoring and tuning of the database system, the

information provided here contains the necessary background material to

understand the factors affecting database performance and instructions to help you

tune the performance of your system. To help you understand, isolate, and resolve

problems with your DB2 software, the troubleshooting and support information

contains instructions for using the problem determination resources that are

provided with your DB2 products.

Part 1. Tuning database performance

As a database administrator, you might encounter a situation in which users

anecdotally report that their database applications are running slow. The

information provided here describes how to develop a performance monitoring

strategy to obtain objective assessments of database system performance in

comparison with historical results, how to adjust the configuration of the database

server, and how to make changes to the applications that use the database server;

all with the goal of improving the database system performance without increasing

processing costs and without degrading service to users.

© Copyright IBM Corp. 2006, 2009 vii

v Chapter 1, “Performance tuning tools and methodology,” describes how to

design and implement a benchmark testing program to help you improve

performance.

v Chapter 2, “Performance monitoring tools and methodology,” provides

information about the importance of an operational monitoring strategy that

collects key system performance data on a periodic basis.

v Chapter 3, “Factors affecting performance,” contains information about the

various factors that can affect database system performance. Some of these

factors can be tuned or reconfigured.

v Chapter 4, “Establishing a performance tuning strategy,” describes the DB2

Design Advisor tool that can help you significantly improve your workload

performance.

Part 2. Troubleshooting a problem

To assist you to resolve a problem on your own, the information contained in this

section describes how to identify the source of a problem, how to gather diagnostic

information, where to get fixes, and which knowledge bases to search for

additional information. If you must contact IBM Software Support, there is

information here that describes how to contact support and what diagnostic

information the service technicians require to help you address a problem.

v Chapter 5, “Tools for troubleshooting,” describes the troubleshooting tools that

can be used to help in the systematic approach to solving a problem. The goal is

to determine why something does not work as expected and how to resolve the

problem.

v Chapter 6, “Troubleshooting DB2 database,” provides information about various

known problems that can arise and how to troubleshoot them.

v Chapter 7, “Troubleshooting DB2® Connect™,” provides information about

various known problems that can arise and how to troubleshoot them.

v Chapter 8, “Searching knowledge bases,” provides information about how to

find solutions to problems by searching IBM knowledge bases. This chapter

describes how to optimize your results by using available resources, support

tools, and search methods.

v Chapter 9, “Getting DB2 product fixes,” presents information about obtaining a

product fix that might already be available to resolve your problem. You can get

fixes by following the steps outlined here.

v Chapter 10, “Learning more about troubleshooting,” describes how the following

topics can help you acquire the conceptual information that you require to

effectively troubleshoot problems with DB2 database server.

v Chapter 11, “Contacting IBM Software Support,” provides information about

how to contact IBM Software Support and what information they will require

from you to assist you in resolving product defects and database problems.

Part 3. Appendixes

v Appendix A, “Overview of the DB2 technical information”

v Appendix B, “Notices”

viii Troubleshooting and Tuning Database Performance

Part 1. Performance overview

Performance refers to the way that a computer system behaves in response to a

particular workload. Performance is measured in terms of system response time,

throughput, and resource utilization.

Performance is also affected by:

v The resources that are available on the system

v How well those resources are used and shared

In general, you will want to tune your system to improve its cost-benefit ratio.

Specific goals could include:

v Processing larger, or more demanding, workloads without increasing processing

costs

v Obtaining faster system response times, or higher throughput, without

increasing processing costs

v Reducing processing costs without degrading service to users

Some benefits of performance tuning, such as a more efficient use of resources and

the ability to add more users to the system, are tangible. Other benefits, such as

greater user satisfaction because of quicker response times, are intangible.

Performance tuning guidelines

Keep the following guidelines in mind when developing an overall approach to

performance tuning.

v Remember the law of diminishing returns: The greatest performance benefits

usually come from your initial efforts.

v Do not tune just for the sake of tuning: Tune to relieve identified constraints.

Tuning resources that are not the primary cause of performance problems can

actually make subsequent tuning work more difficult.

v Consider the whole system: You cannot tune one parameter or resource in

isolation. Before you make an adjustment, consider how the change will affect

the system as a whole. Performance tuning requires trade-offs among various

system resources. For example, you might increase buffer pool sizes to achieve

improved I/O performance, but larger buffer pools require more memory, and

that might degrade other aspects of performance.

v Change one parameter at a time: Do not change more than one factor at a time.

Even if you are sure that all the changes will be beneficial, you will have no way

of assessing the contribution of each change.

v Measure and configure by levels: Tune one level of your system at a time.

System levels include:

– Hardware

– Operating system

– Application server and requester

– Database manager

– SQL and XQuery statements

– Application programs

© Copyright IBM Corp. 2006, 2009 1

v Check for hardware as well as software problems: Some performance problems

can be corrected by applying service to your hardware, your software, or both.

Do not spend excessive time monitoring and tuning your system before

applying service to the hardware or software.

v Understand the problem before you upgrade your hardware: Even if it seems

that additional storage or processor power could immediately improve

performance, take the time to understand where your bottlenecks are. You might

spend money on additional disk storage, only to find that you do not have the

processing power or the channels to exploit it.

v Put fallback procedures in place before you start tuning: If tuning efforts result

in unexpected performance degradation, the changes made should be reversed

before you attempt an alternative approach. Save your original settings so that

you can easily undo changes that you do not want to keep.

Developing a performance improvement process

The performance improvement process is an iterative approach to monitoring and

tuning aspects of performance. Depending on the results of this performance

monitoring, you will adjust the configuration of the database server and make

changes to the applications that use the database server.

Base your performance monitoring and tuning decisions on your knowledge of the

kinds of applications that use the data and on your understanding of patterns of

data access. Different kinds of applications have different performance

requirements.

Any performance improvement process includes the following fundamental steps:

1. Define the performance objectives.

2. Establish performance indicators for the major constraints in the system.

3. Develop and execute a performance monitoring plan.

4. Continually analyze monitoring results to determine which resources require

tuning.

5. Make one adjustment at a time.

If, at some point, you can no longer improve performance by tuning the database

server or applications, it might be time to upgrade the hardware.

Performance information that users can provide

The first sign that your system requires tuning might be complaints from users. If

you do not have enough time to set performance objectives and to monitor and

tune in a comprehensive manner, you can address performance issues by listening

to your users. Start by asking a few simple questions, such as the following:

v What do you mean by “slow response”? Is it 10% slower than you expect it to

be, or tens of times slower?

v When did you notice the problem? Is it recent, or has it always been there?

v Do other users have the same problem? Are these users one or two individuals

or a whole group?

v If a group of users is experiencing the same problem, are these users connected

to the same local area network?

v Does the problem seem to be related to a specific type of transaction or

application program?

2 Troubleshooting and Tuning Database Performance

v Do you notice any pattern of occurrence? For example, does the problem occur

at a specific time of day, or is it continuous?

Performance tuning limits

The benefits of performance tuning are limited. When considering how much time

and money should be spent on improving system performance, be sure to assess

the degree to which the investment of additional time and money will help the

users of the system.

Tuning can often improve performance if the system is encountering response time

or throughput problems. However, there is a point beyond which additional tuning

cannot help. At this point, consider revising your goals and expectations. For more

significant performance improvements, you might need to add more disk storage,

faster CPUs, additional CPUs, more main memory, faster communication links, or

a combination of these.

Part 1.Performance tuning 3

4 Troubleshooting and Tuning Database Performance

Chapter 1. Performance tuning tools and methodology

Benchmark testing

Benchmark testing is a normal part of the application development life cycle. It is a

team effort that involves both application developers and database administrators

(DBAs).

Benchmark testing is performed against a system to determine current performance

and can be used to improve application performance. If the application code has

been written as efficiently as possible, additional performance gains might be

realized by tuning database and database manager configuration parameters.

Different types of benchmark tests are used to discover specific kinds of

information. For example:

v An infrastructure benchmark determines the throughput capabilities of the

database manager under certain limited laboratory conditions.

v An application benchmark determines the throughput capabilities of the database

manager under conditions that more closely reflect a production environment.

Benchmark testing to tune configuration parameters is based upon controlled

conditions. Such testing involves repeatedly running SQL from your application

and changing the system configuration (and perhaps the SQL) until the application

runs as efficiently as possible.

The same approach can be used to tune other factors that affect performance, such

as indexes, table space configuration, and hardware configuration, to name a few.

Benchmark testing helps you to understand how the database manager responds to

different conditions. You can create scenarios that test deadlock handling, utility

performance, different methods of loading data, transaction rate characteristics as

more users are added, and even the effect on the application of using a new

release of the database product.

Benchmark tests are based on a repeatable environment so that the same test run

under the same conditions will yield results that you can legitimately compare.

You might begin by running the test application in a normal environment. As you

narrow down a performance problem, you can develop specialized test cases that

limit the scope of the function that you are testing. The specialized test cases need

not emulate an entire application to obtain valuable information. Start with simple

measurements, and increase the complexity only if necessary.

Characteristics of good benchmarks include:

v The tests are repeatable

v Each iteration of a test starts in the same system state

v No other functions or applications are unintentionally active in the system

v The hardware and software used for benchmark testing match your production

environment

Note that started applications use memory even when they are idle. This increases

the probability that paging will skew the results of the benchmark and violates the

repeatability criterion.

© Copyright IBM Corp. 2006, 2009 5

Benchmark preparation

There are certain prerequisites that must be satisfied before performance

benchmark testing can be initiated.

Before you start performance benchmark testing:

v Complete both the logical and physical design of the database against which

your application will run

v Create tables, views, and indexes

v Normalize tables, bind application packages, and populate tables with realistic

data; ensure that appropriate statistics are available

v Plan to run against a production-size database, so that the application can test

representative memory requirements; if this is not possible, try to ensure that the

proportions of available system resources to data in the test and production

systems are the same (for example, if the test system has 10% of the data, use

10% of the processor time and 10% of the memory that is available to the

production system)

v Place database objects in their final disk locations, size log files, determine the

location of work files and backup images, and test backup procedures

v Check packages to ensure that performance options, such as row blocking, are

enabled when possible

Although the practical limits of an application might be revealed during

benchmark testing, the purpose of the benchmark is to measure performance, not

to detect defects.

Your benchmark testing program should run in an accurate representation of the

final production environment. Ideally, it should run on the same server model with

the same memory and disk configurations. This is especially important if the

application will ultimately serve large numbers of users and process large amounts

of data. The operating system and any communications or storage facilities used

directly by the benchmark testing program should also have been tuned

previously.

SQL statements to be benchmark tested should be either representative SQL or

worst-case SQL, as described below.

Representative SQL

Representative SQL includes those statements that are executed during

typical operations of the application that is being benchmark tested. Which

statements are selected depends on the nature of the application. For

example, a data-entry application might test an INSERT statement, whereas

a banking transaction might test a FETCH, an UPDATE, and several

INSERT statements.

Worst-case SQL

Statements falling under this category include:

v Statements that are executed frequently

v Statements that are processing high volumes of data

v Statements that are time-critical. For example, statements in an

application that runs to retrieve and update customer information while

the customer is waiting on the telephone.

v Statements with a large number of joins, or the most complex statements

in the application. For example, statements in a banking application that

produces summaries of monthly activity for all of a customer’s accounts.

6 Troubleshooting and Tuning Database Performance

A common table might list the customer’s address and account numbers;

however, several other tables must be joined to process and integrate all

of the necessary account transaction information.

v Statements that have a poor access path, such as one that is not

supported by an available index

v Statements that have a long execution time

v Statements that are executed only at application initialization time, but

that have disproportionately large resource requirements. For example,

statements in an application that generates a list of account work that

must be processed during the day. When the application starts, the first

major SQL statement causes a seven-way join, which creates a very large

list of all the accounts for which this application user is responsible. This

statement might only run a few times each day, but it takes several

minutes to run if it has not been tuned properly.

Benchmark test creation

You will need to consider a variety of factors when designing and implementing a

benchmark testing program.

Because the main purpose of the testing program is to simulate a user application,

the overall structure of the program will vary. You might use the entire application

as the benchmark and simply introduce a means for timing the SQL statements

that are to be analyzed. For large or complex applications, it might be more

practical to include only blocks that contain the important statements. To test the

performance of specific SQL statements, you can include only those statements in

the benchmark testing program, along with the necessary CONNECT, PREPARE,

OPEN, and other statements, as well as a timing mechanism.

Another factor to consider is the type of benchmark to use. One option is to run a

set of SQL statements repeatedly over a certain time interval. The number of

statements executed over this time interval is a measure of the throughput for the

application. Another option is to simply determine the time required to execute

individual SQL statements.

For all benchmark testing, you need a reliable and appropriate way to measure

elapsed time. To simulate an application in which individual SQL statements

execute in isolation, measuring the time to PREPARE, EXECUTE, or OPEN,

FETCH, or CLOSE for each statement might be best. For other applications,

measuring the transaction time from the first SQL statement to the COMMIT

statement might be more appropriate.

Although the elapsed time for each query is an important factor in performance

analysis, it might not necessarily reveal bottlenecks. For example, information on

CPU usage, locking, and buffer pool I/O might show that the application is I/O

bound and not using the CPU at full capacity. A benchmark testing program

should enable you to obtain this kind of data for a more detailed analysis, if

needed.

Not all applications send the entire set of rows retrieved from a query to some

output device. For example, the result set might be input for another application.

Formatting data for screen output usually has a high CPU cost and might not

reflect user needs. To provide an accurate simulation, a benchmark testing program

should reflect the specific row handling activities of the application. If rows are

sent to an output device, inefficient formatting could consume the majority of CPU

time and misrepresent the actual performance of the SQL statement itself.

Chapter 1. Performance tuning tools and methodology 7

Although it is very easy to use, the DB2 command line processor (CLP) is not

suited to benchmarking because of the processing overhead that it adds. A

benchmark tool (db2batch) is provided in the bin subdirectory of your instance

sqllib directory. This tool can read SQL statements from either a flat file or from

standard input, dynamically prepare and execute the statements, and return a

result set. It also enables you to control the number of rows that are returned to

db2batch and the number of rows that are displayed. You can specify the level of

performance-related information that is returned, including elapsed time, processor

time, buffer pool usage, locking, and other statistics collected from the database

monitor. If you are timing a set of SQL statements, db2batch also summarizes the

performance results and provides both arithmetic and geometric means.

By wrapping db2batch invocations in a Perl or Korn shell script, you can easily

simulate a multiuser environment. Ensure that connection attributes, such as the

isolation level, are the same by selecting the appropriate db2batch options.

Note that in partitioned database environments, db2batch is suitable only for

measuring elapsed time; other information that is returned pertains only to activity

on the coordinator database partition.

You can write a driver program to help you with your benchmark testing. On

Linux® or UNIX® systems, a driver program can be written using shell programs.

A driver program can execute the benchmark program, pass the appropriate

parameters, drive the test through multiple iterations, restore the environment to a

consistent state, set up the next test with new parameter values, and collect and

consolidate the test results. Driver programs can be flexible enough to run an

entire set of benchmark tests, analyze the results, and provide a report of the best

parameter values for a given test.

Benchmark test execution

In the most common type of benchmark testing, you choose a configuration

parameter and run the test with different values for that parameter until the

maximum benefit is achieved.

A single test should include repeated execution of the application (for example,

five or ten iterations) with the same parameter value. This enables you to obtain a

more reliable average performance value against which to compare the results

from other parameter values.

The first run, called a warmup run, should be considered separately from

subsequent runs, which are called normal runs. The warmup run includes some

startup activities, such as initializing the buffer pool, and consequently, takes

somewhat longer to complete than normal runs. The information from a warmup

run is not statistically valid. When calculating averages for a specific set of

parameter values, use only the results from normal runs. It is often a good idea to

drop the high and low values before calculating averages.

For the greatest consistency between runs, ensure that the buffer pool returns to a

known state before each new run. Testing can cause the buffer pool to become

loaded with data, which can make subsequent runs faster because less disk I/O is

required. The buffer pool contents can be forced out by reading other irrelevant

data into the buffer pool, or by de-allocating the buffer pool when all database

connections are temporarily removed.

8 Troubleshooting and Tuning Database Performance

After you complete testing with a single set of parameter values, you can change

the value of one parameter. Between each iteration, perform the following tasks to

restore the benchmark environment to its original state:

v If the catalog statistics were updated for the test, ensure that the same values for

the statistics are used for every iteration.

v The test data must be consistent if it is being updated during testing. This can

be done by:

– Using the restore utility to restore the entire database. The backup copy of the

database contains its previous state, ready for the next test.

– Using the import or load utility to restore an exported copy of the data. This

method enables you to restore only the data that has been affected. The reorg

and runstats utilities should be run against the tables and indexes that contain

this data.

In summary, follow these steps to benchmark test a database application:

Step 1 Leave the DB2 registry, database and database manager configuration

parameters, and buffer pools at their standard recommended values, which

can include:

v Values that are known to be required for proper and error-free

application execution

v Values that provided performance improvements during prior tuning

v Values that were suggested by the AUTOCONFIGURE command

v Default values; however, these might not be appropriate:

– For parameters that are significant to the workload and to the

objectives of the test

– For log sizes, which should be determined during unit and system

testing of your application

– For any parameters that must be changed to enable your application

to run

Run your set of iterations for this initial case and calculate the average

elapsed time, throughput, or processor time. The results should be as

consistent as possible, ideally differing by no more than a few percentage

points from run to run. Performance measurements that vary significantly

from run to run can make tuning very difficult.

Step 2 Select one and only one method or tuning parameter to be tested, and

change its value.

Step 3 Run another set of iterations and calculate the average elapsed time or

processor time.

Step 4 Depending on the results of the benchmark test, do one of the following:

v If performance improves, change the value of the same parameter and

return to Step 3. Keep changing this parameter until the maximum

benefit is shown.

v If performance degrades or remains unchanged, return the parameter to

its previous value, return to Step 2, and select a new parameter. Repeat

this procedure until all parameters have been tested.

Benchmark test analysis example

Output from a benchmark testing program should include an identifier for each

test, iteration numbers, statement numbers, and the elapsed times for each

execution.

Chapter 1. Performance tuning tools and methodology 9

Note that the data in these sample reports is shown for illustrative purposes only.

It does not represent actual measured results.

A summary of benchmark testing results might look like the following:

 Analysis shows that the CONNECT (statement 01) took 1.34 seconds to complete,

the OPEN CURSOR (statement 10) took 2 minutes and 8.15 seconds, the FETCH

(statement 15) returned seven rows, with the longest delay being 0.28 seconds, the

CLOSE CURSOR (statement 20) took 0.84 seconds, and the CONNECT RESET

(statement 99) took 0.03 seconds to complete.

If your program can output data in a delimited ASCII format, the data could later

be imported into a database table or a spreadsheet for further statistical analysis.

A summary benchmark report might look like the following:

 Test Iter. Stmt Timing SQL Statement

 Numbr Numbr Numbr (hh:mm:ss.ss)

 002 05 01 00:00:01.34 CONNECT TO SAMPLE

 002 05 10 00:02:08.15 OPEN cursor_01

 002 05 15 00:00:00.24 FETCH cursor_01

 002 05 15 00:00:00.23 FETCH cursor_01

 002 05 15 00:00:00.28 FETCH cursor_01

 002 05 15 00:00:00.21 FETCH cursor_01

 002 05 15 00:00:00.20 FETCH cursor_01

 002 05 15 00:00:00.22 FETCH cursor_01

 002 05 15 00:00:00.22 FETCH cursor_01

 002 05 20 00:00:00.84 CLOSE cursor_01

 002 05 99 00:00:00.03 CONNECT RESET

Figure 1. Sample Benchmark Testing Results

 PARAMETER VALUES FOR EACH BENCHMARK TEST

 TEST NUMBER 001 002 003 004 005

 locklist 63 63 63 63 63

 maxappls 8 8 8 8 8

 applheapsz 48 48 48 48 48

 dbheap 128 128 128 128 128

 sortheap 256 256 256 256 256

 maxlocks 22 22 22 22 22

 stmtheap 1024 1024 1024 1024 1024

 SQL STMT AVERAGE TIMINGS (seconds)

 01 01.34 01.34 01.35 01.35 01.36

 10 02.15 02.00 01.55 01.24 01.00

 15 00.22 00.22 00.22 00.22 00.22

 20 00.84 00.84 00.84 00.84 00.84

 99 00.03 00.03 00.03 00.03 00.03

Figure 2. Sample Benchmark Timings Report

10 Troubleshooting and Tuning Database Performance

Chapter 2. Performance monitoring tools and methodology

Operational monitoring of system performance

Operational monitoring refers to collecting key system performance metrics at

periodic intervals over time. This information gives you critical data to refine that

initial configuration to be more tailored to your requirements, and also prepares

you to address new problems that might appear on their own or following

software upgrades, increases in data or user volumes, or new application

deployments.

Operational monitoring considerations

An operational monitoring strategy needs to address several considerations.

Operational monitoring needs to be very light weight (not consuming much of the

system it is measuring) and generic (keeping a broad “eye” out for potential

problems that could appear anywhere in the system).

Because you plan regular collection of operational metrics throughout the life of

the system, it is important to have a way to manage all that data. For many of the

possible uses you have for your data, such as long-term trending of performance,

you want to be able to do comparisons between arbitrary collections of data that

are potentially many months apart. The DB2 product itself facilitates this kind of

data management very well. Analysis and comparison of monitoring data becomes

very straightforward, and you already have a robust infrastructure in place for

long-term data storage and organization.

A DB2 database (“DB2”) system provides some excellent sources of monitoring

data. The primary ones are snapshot monitors and, in DB2 Version 9.5 and later,

workload management (WLM) table functions for data aggregation. Both of these

focus on summary data, where tools like counters, timers, and histograms maintain

running totals of activity in the system. By sampling these monitor elements over

time, you can derive the average activity that has taken place between the start

and end times, which can be very informative.

There is no reason to limit yourself to just metrics that the DB2 product provides.

In fact, non-DB2 data is more than just a nice-to-have. Contextual information is

key for performance problem determination. The users, the application, the

operating system, the storage subsystem, and the network – all of these can

provide valuable information about system performance. Including metrics from

outside of the DB2 database software is an important part of producing a complete

overall picture of system performance.

The trend in recent releases of the DB2 database product has been to make more

and more monitoring data available through SQL interfaces. This makes

management of monitoring data with DB2 very straightforward, because you can

easily redirect the data from the administration views, for example, right back into

DB2 tables. For deeper dives, event and activity monitor data can also be written

to DB2 tables, providing similar benefits. With the vast majority of our monitoring

data so easy to store in DB2, a small investment to store system metrics (such as

CPU utilization from vmstat) in DB2 is manageable as well.

© Copyright IBM Corp. 2006, 2009 11

Types of data to collect for operational monitoring

Several types of data are useful to collect for ongoing operational monitoring.

v A basic set of DB2 system performance monitoring metrics.

v DB2 configuration information

Taking regular copies of database and database manager configuration, DB2

registry variables, and the schema definition helps provide a history of any

changes that have been made, and can help to explain changes that arise in

monitoring data.

v Overall system load

If CPU or I/O utilization is allowed to approach saturation, this can create a

system bottleneck that might be difficult to detect using just DB2 snapshots. As a

result, the best practice is to regularly monitor system load with vmstat and

iostat (and possibly netstat for network issues) on UNIX-based systems, and

perfmon on Windows®. You can also use the administrative views, such as

ENV_SYS_RESOURCES, to retrieve operating system, CPU, memory, and other

information related to the system. Typically you look for changes in what is

normal for your system, rather than for specific one-size-fits-all values.

v Throughput and response time measured at the business logic level

An application view of performance, measured above DB2, at the business logic

level, has the advantage of being most relevant to the end user, plus it typically

includes everything that could create a bottleneck, such as presentation logic,

application servers, web servers, multiple network layers, and so on. This data

can be vital to the process of setting or verifying a service level agreement

(SLA).

The DB2 system performance monitoring elements and system load data are

compact enough that even if they are collected every five to fifteen minutes, the

total data volume over time is irrelevant in most systems. Likewise, the overhead

of collecting this data is typically in the one to three percent range of additional

CPU consumption, which is a small price to pay for a continuous history of

important system metrics. Configuration information typically changes relatively

rarely, so collecting this once a day is usually frequent enough to be useful without

creating an excessive amount of data.

Basic set of system performance monitor elements

About 10 metrics of system performance provide a good basic set to use in an

on-going operational monitoring effort.

There are hundreds of metrics to choose from, but collecting all of them can be

counter-productive due to the sheer volume of data produced. You want metrics

that are:

v Easy to collect – You don’t want to have to use complex or expensive tools for

everyday monitoring, and you don’t want the act of monitoring to significantly

burden the system.

v Easy to understand – You don’t want to have to look up the meaning of the

metric each time you see it.

v Relevant to your system – Not all metrics provide meaningful information in all

environments.

v Sensitive, but not too sensitive – A change in the metric should indicate a real

change in the system; the metric should not fluctuate on its own.

This starter set includes about 10 metrics:

12 Troubleshooting and Tuning Database Performance

v The number of transactions executed:

TOTAL_COMMITS

This provides an excellent base level measurement of system activity.

v Buffer pool hit ratios, measured separately for data, index, and temporary data:

100 * (POOL_DATA_L_READS – POOL_DATA_P_READS) / POOL_DATA_L_READS

100 * (POOL_INDEX_L_READS – POOL_INDEX_P_READS) / POOL_INDEX_L_READS

100 * (POOL_TEMP_DATA_L_READS - POOL_TEMP_DATA_P_READS) / POOL_TEMP_DATA_L_READS

100 * (POOL_TEMP_INDEX_L_READS - POOL_TEMP_INDEX_P_READS)

 / POOL_TEMP_INDEX_L_READS

Buffer pool hit ratios are one of the most fundamental metrics, and give an

important overall measure of how effectively the system is exploiting memory to

avoid disk I/O. Hit ratios of 80-85% or better for data and 90-95% or better for

indexes are generally considered good for an OLTP environment, and of course

these ratios can be calculated for individual buffer pools using data from the

buffer pool snapshot.

Although these metrics are generally useful, for systems such as data

warehouses that frequently perform large table scans, data hit ratios are often

irretrievably low, because data is read into the buffer pool and then not used

again before being evicted to make room for other data.

v Buffer pool physical reads and writes per transaction:

(POOL_DATA_P_READS + POOL_INDEX_P_READS +

 POOL_TEMP_DATA_P_READS + POOL_TEMP_INDEX_P_READS)

 / TOTAL_COMMITS

(POOL_DATA_WRITES + POOL_INDEX_WRITES)

 / TOTAL_COMMITS

These metrics are closely related to buffer pool hit ratios, but have a slightly

different purpose. Although you can consider target values for hit ratios, there

are no possible targets for reads and writes per transaction. Why bother with

these calculations? Because disk I/O is such a major factor in database

performance, it is useful to have multiple ways of looking at it. As well, these

calculations include writes, whereas hit ratios only deal with reads. Lastly, in

isolation, it is difficult to know, for example, whether a 94% index hit ratio is

worth trying to improve. If there are only 100 logical index reads per hour, and

94 of them are in the buffer pool, working to keep those last 6 from turning into

physical reads is not a good use of time. However, if a 94% index hit ratio were

accompanied by a statistic that each transaction did twenty physical reads

(which could be further broken down by data and index, regular and

temporary), the buffer pool hit ratios might well deserve some investigation.

The metrics are not just physical reads and writes, but are normalized per

transaction. This trend is followed through many of the metrics. The purpose is

to decouple metrics from the length of time data was collected, and from

whether the system was very busy or less busy at that time. In general, this

helps ensure that similar values for metrics are obtained, regardless of how and

when monitoring data is collected. Some amount of consistency in the timing

and duration of data collection is a good thing; however, normalization reduces

it from being critical to being a good idea.

v The ratio of database rows read to rows selected:

ROWS_READ / ROWS_RETURNED

This calculation gives an indication of the average number of rows that are read

from database tables in order to find the rows that qualify. Low numbers are an

indication of efficiency in locating data, and generally show that indexes are

Chapter 2. Performance monitoring tools and methodology 13

being used effectively. For example, this number can be very high in the case

where the system does many table scans, and millions of rows need to be

inspected to determine if they qualify for the result set. On the other hand, this

statistic can be very low in the case of access to a table through a fully-qualified

unique index. Index-only access plans (where no rows need to be read from the

table) do not cause ROWS_READ to increase.

In an OLTP environment, this metric is generally no higher than 2 or 3,

indicating that most access is through indexes instead of table scans. This metric

is a simple way to monitor plan stability over time – an unexpected increase is

often an indication that an index is no longer being used and should be

investigated.

v The amount of time spent sorting per transaction:

TOTAL_SORT_TIME / TOTAL_COMMITS

This is an efficient way to handle sort statistics, because any extra overhead due

to spilled sorts automatically gets included here. That said, you might also want

to collect TOTAL_SORTS and SORT_OVERFLOWS for ease of analysis,

especially if your system has a history of sorting issues.

v The amount of lock wait time accumulated per thousand transactions:

1000 * LOCK_WAIT_TIME / TOTAL_COMMITS

Excessive lock wait time often translates into poor response time, so it is

important to monitor. The value is normalized to one thousand transactions

because lock wait time on a single transaction is typically quite low. Scaling up

to one thousand transactions simply provides measurements that are easier to

handle.

v The number of deadlocks and lock timeouts per thousand transactions:

1000 * (DEADLOCKS + LOCK_TIMEOUTS) / TOTAL_COMMITS

Although deadlocks are comparatively rare in most production systems, lock

timeouts can be more common. The application usually has to handle them in a

similar way: re-executing the transaction from the beginning. Monitoring the rate

at which this happens helps avoid the case where many deadlocks or lock

timeouts drive significant extra load on the system without the DBA being

aware.

v The number of dirty steal triggers per thousand transactions:

1000 * POOL_DRTY_PG_STEAL_CLNS / TOTAL_COMMITS

A “dirty steal” is the least preferred way to trigger buffer pool cleaning.

Essentially, the processing of an SQL statement that is in need of a new buffer

pool page is interrupted while updates on the victim page are written to disk. If

dirty steals are allowed to happen frequently, they can have a significant impact

on throughput and response time.

v The number of package cache inserts per thousand transactions:

1000 * PKG_CACHE_INSERTS / TOTAL_COMMITS

Package cache insertions are part of normal execution of the system; however, in

large numbers, they can represent a significant consumer of CPU time. In many

well-designed systems, after the system is running at steady-state, very few

package cache inserts occur, because the system is using or reusing static SQL or

previously prepared dynamic SQL statements. In systems with a high traffic of

ad hoc dynamic SQL statements, SQL compilation and package cache inserts are

unavoidable. However, this metric is intended to watch for a third type of

14 Troubleshooting and Tuning Database Performance

situation, one in which applications unintentionally cause package cache churn

by not reusing prepared statements, or by not using parameter markers in their

frequently executed SQL.

v The time an agent waits for log records to be flushed to disk:

LOG_WRITE_TIME

 / TOTAL_COMMITS

The transaction log has significant potential to be a system bottleneck, whether

due to high levels of activity, or to improper configuration, or other causes. By

monitoring log activity, you can detect problems both from the DB2 side

(meaning an increase in number of log requests driven by the application) and

from the system side (often due to a decrease in log subsystem performance

caused by hardware or configuration problems).

v In partitioned database environments, the number of fast communication

manager (FCM) buffers sent and received between partitions:

FCM_SENDS_TOTAL, FCM_RECVS_TOTAL

These give the rate of flow of data between different partitions in the cluster,

and in particular, whether the flow is balanced. Significant differences in the

numbers of buffers received from different partitions might indicate a skew in

the amount of data that has been hashed to each partition.

Cross-partition monitoring in partitioned database environments

Almost all of the individual monitoring element values mentioned above are

reported on a per-partition basis.

In general, you expect most monitoring statistics to be fairly uniform across all

partitions in the same DB2 partition group. Significant differences might indicate

data skew. Sample cross-partition comparisons to track include:

v Logical and physical buffer pool reads for data, indexes, and temporary tables

v Rows read, at the partition level and for large tables

v Sort time and sort overflows

v FCM buffer sends and receives

v CPU and I/O utilization

Abnormal values in monitoring data

Being able to identify abnormal values is key to interpreting system performance

monitoring data when troubleshooting performance problems.

A monitor element provides a clue to the nature of a performance problem when

its value is worse than normal, that is, the value is abnormal. Generally, a worse

value is one that is higher than expected, for example higher lock wait time.

However, an abnormal value can also be lower than expected, such as lower buffer

pool hit ratio. Depending on the situation, you can use one or more methods to

determine if a value is worse than normal.

One approach is to rely on industry rules of thumb or best practices. For example,

a rule of thumb is that buffer pool hit ratios of 80-85% or better for data are

generally considered good for an OLTP environment. Note that this rule of thumb

applies to OLTP environments and would not serve as a useful guide for data

warehouses where data hit ratios are often much lower due to the nature of the

system.

Chapter 2. Performance monitoring tools and methodology 15

Another approach is to compare current values to baseline values collected

previously. This approach is often most definitive and relies on having an adequate

operational monitoring strategy to collect and store key performance metrics

during normal conditions. For example, you might notice that your current buffer

pool hit ratio is 85%. This would be considered normal according to industry

norms but abnormal when compared to the 99% value recorded before the

performance problem was reported.

A final approach is to compare current values with current values on a comparable

system. For example, a current buffer pool hit ratio of 85% would be considered

abnormal if comparable systems have a buffer pool ratio of 99%.

The governor utility

The governor monitors the behavior of applications that run against a database

and can change that behavior, depending on the rules that you specify in the

governor configuration file.

Important: With the new strategic DB2 workload manager features introduced in

DB2 Version 9.5, the DB2 governor utility has been deprecated in Version 9.7 and

might be removed in a future release. For more information about the deprecation

of the governor utility, see “DB2 Governor and Query Patroller have been

deprecated”. To learn more about DB2 workload manager and how it replaces the

governor utility, see “Introduction to DB2 workload manager concepts” and

“Frequently asked questions about DB2 workload manager”.

A governor instance consists of a frontend utility and one or more daemons. Each

instance of the governor is specific to an instance of the database manager. By

default, when you start the governor, a governor daemon starts on each database

partition of a partitioned database. However, you can specify that a daemon be

started on a single database partition that you want to monitor.

The governor manages application transactions according to rules in the governor

configuration file. For example, applying a rule might reveal that an application is

using too much of a particular resource. The rule would also specify the action to

take, such as changing the priority of the application, or forcing it to disconnect

from the database.

If the action associated with a rule changes the priority of the application, the

governor changes the priority of agents on the database partition where the

resource violation occurred. In a partitioned database, if the application is forced to

disconnect from the database, the action occurs even if the daemon that detected

the violation is running on the coordinator node of the application.

The governor logs any actions that it takes.

Note: When the governor is active, its snapshot requests might affect database

manager performance. To improve performance, increase the governor wake-up

interval to reduce its CPU usage.

Starting and stopping the governor

The governor utility monitors applications that are connected to a database, and

changes the behavior of those applications according to rules that you specify in a

governor configuration file for that database.

16 Troubleshooting and Tuning Database Performance

Important: With the new workload management features introduced in DB2

Version 9.5, the DB2 governor utility has been deprecated in Version 9.7 and might

be removed in a future release. For more information, see the “DB2 Governor and

Query Patroller have been deprecated” topic in the What’s New for DB2 Version 9.7

book.

Before you start the governor, you must create a governor configuration file.

To start or stop the governor, you must have sysadm or sysctrl authorization.

1. To start the governor, use the db2gov command, specifying the following

required parameters:

START database-name

The database name that you specify must match the name of the database

in the governor configuration file.

config-file

The name of the governor configuration file for this database. If the file is

not in the default location, which is the sqllib directory, you must include

the file path as well as the file name.

log-file

The base name of the log file for this governor. For a partitioned database,

the database partition number is added for each database partition on

which a daemon is running for this instance of the governor.
To start the governor on a single database partition of a partitioned database,

specify the dbpartitionnum option.

For example, to start the governor on database partition 3 of a database named

SALES, using a configuration file named salescfg and a log file called saleslog,

enter the following command:

db2gov start sales dbpartitionnum 3 salescfg saleslog

To start the governor on all database partitions, enter the following command:

db2gov start sales salescfg saleslog

2. To stop the governor, use the db2gov command, specifying the STOP option.

For example, to stop the governor on all database partitions of the SALES

database, enter the following command:

db2gov stop sales

To stop the governor on database partition 3 only, enter the following

command:

db2gov stop sales dbpartitionnum 3

The governor daemon

The governor daemon collects information about applications that run against a

database.

The governor daemon runs the following task loop whenever it starts.

1. The daemon checks whether its governor configuration file has changed or has

not yet been read. If either condition is true, the daemon reads the rules in the

file. This allows you to change the behavior of the governor daemon while it is

running.

2. The daemon requests snapshot information about resource use statistics for

each application and agent that is working on the database.

3. The daemon checks the statistics for each application against the rules in the

governor configuration file. If a rule applies, the governor performs the

Chapter 2. Performance monitoring tools and methodology 17

specified action. The governor compares accumulated information with values

that are defined in the configuration file. This means that if the configuration

file is updated with new values that an application might have already

breached, the rules concerning that breach are applied to the application during

the next governor interval.

4. The daemon writes a record in the governor log file for any action that it takes.

When the governor finishes its tasks, it sleeps for an interval that is specified in the

configuration file. When that interval elapses, the governor wakes up and begins

the task loop again.

If the governor encounters an error or stop signal, it performs cleanup processing

before stopping. Using a list of applications whose priorities have been set, cleanup

processing resets all application agent priorities. It then resets the priorities of any

agents that are no longer working on an application. This ensures that agents do

not remain running with non-default priorities after the governor ends. If an error

occurs, the governor writes a message to the administration notification log,

indicating that it ended abnormally.

The governor cannot be used to adjust agent priorities if the value of the agentpri

database manager configuration parameter is not the system default.

Although the governor daemon is not a database application, and therefore does

not maintain a connection to the database, it does have an instance attachment.

Because it can issue snapshot requests, the governor daemon can detect when the

database manager ends.

The governor configuration file

The governor configuration file contains rules governing applications that run

against a database.

The governor evaluates each rule and takes specified actions when a rule evaluates

to true.

The governor configuration file contains general clauses that identify the database

to be monitored (required), the interval at which account records containing CPU

usage statistics are written, and the sleep interval for governor daemons. The

configuration file might also contain one or more optional application monitoring

rule statements. The following guidelines apply to both general clauses and rule

statements:

v Delimit general comments with braces ({ }).

v In most cases, specify values using uppercase, lowercase, or mixed case

characters. The exception is application name (specified following the applname

clause), which is case sensitive.

v Terminate each general clause or rule statement with a semicolon (;).

If a rule needs to be updated, edit the configuration file without stopping the

governor. Each governor daemon detects that the file has changed, and rereads it.

In a partitioned database environment, the governor configuration file must be

created in a directory that is mounted across all database partitions so that the

governor daemon on each database partition can read the same configuration file.

18 Troubleshooting and Tuning Database Performance

General clauses

The following clauses cannot be specified more than once in a governor

configuration file.

dbname

The name or alias of the database to be monitored. This clause is required.

account n

The interval, in minutes, after which account records containing CPU

usage statistics for each connection are written. This option is not available

on Windows operating systems. On some platforms, CPU statistics are not

available from the snapshot monitor. If this is the case, the account clause

is ignored.

 If a short session occurs entirely within the account interval, no log record

is written. When log records are written, they contain CPU statistics that

reflect CPU usage since the previous log record for the connection. If the

governor is stopped and then restarted, CPU usage might be reflected in

two log records; these can be identified through the application IDs in the

log records.

interval n

The interval, in seconds, after which the daemon wakes up. If you do not

specify this clause, the default value of 120 seconds is used.

Rule clauses

Rule statements specify how applications are to be governed, and are assembled

from smaller components called rule clauses. If used, rule clauses must appear in a

specific order in the rule statement, as follows:

1. desc: A comment about the rule, enclosed by single or double quotation marks

2. time: The time at which the rule is evaluated

3. authid: One or more authorization IDs under which the application executes

statements

4. applname: The name of the executable or object file that connects to the

database. This name is case sensitive. If the application name contains spaces,

the name must be enclosed by double quotation marks.

5. setlimit: Limits that the governor checks; for example, CPU time, number of

rows returned, or idle time. On some platforms, CPU statistics are not available

from the snapshot monitor. If this is the case, the setlimit clause is ignored.

6. action: The action that is to be taken when a limit is reached. If no action is

specified, the governor reduces the priority of agents working for the

application by 10 when a limit is reached. Actions that can be taken against an

application include reducing its agent priority, forcing it to disconnect from the

database, or setting scheduling options for its operations.

Combine the rule clauses to form a rule statement, using a specific clause no more

than once in each rule statement.

desc "Allow no UOW to run for more than an hour"

setlimit uowtime 3600 action force;

If more than one rule applies to an application, all are applied. Usually, the action

that is associated with the first limit encountered is the action that is applied first.

An exception occurs if you specify a value of -1 for a rule clause: A subsequently

Chapter 2. Performance monitoring tools and methodology 19

specified value for the same clause can only override the previously specified

value; other clauses in the previous rule statement are still operative.

For example, one rule statement uses the rowssel 100000 and uowtime 3600 clauses

to specify that the priority of an application is decreased if its elapsed time is

greater than 1 hour or if it selects more than 100 000 rows. A subsequent rule uses

the uowtime -1 clause to specify that the same application can have unlimited

elapsed time. In this case, if the application runs for more than 1 hour, its priority

is not changed. That is, uowtime -1 overrides uowtime 3600. However, if it selects

more than 100 000 rows, its priority is lowered because rowssel 100000 still

applies.

Order of rule application

The governor processes rules from the top of the configuration file to the bottom.

However, if the setlimit clause in a particular rule statement is more relaxed than

the same clause in a preceding rule statement, the more restrictive rule applies. In

the following example, ADMIN continues to be limited to 5000 rows, because the

first rule is more restrictive.

desc "Force anyone who selects 5000 or more rows."

setlimit rowssel 5000 action force;

desc "Allow user admin to select more rows."

authid admin setlimit rowssel 10000 action force;

To ensure that a less restrictive rule overrides a more restrictive previous rule,

specify -1 to clear the previous rule before applying the new one. For example, in

the following configuration file, the initial rule limits all users to 5000 rows. The

second rule clears this limit for ADMIN, and the third rule resets the limit for

ADMIN to 10000 rows.

desc "Force anyone who selects 5000 or more rows."

setlimit rowssel 5000 action force;

desc "Clear the rowssel limit for admin."

authid admin setlimit rowssel -1;

desc "Now set the higher rowssel limit for admin"

authid admin setlimit rowssel 10000 action force;

Example of a governor configuration file

{ The database name is SAMPLE; do accounting every 30 minutes;

 wake up once a second. }

dbname sample; account 30; interval 1;

desc "CPU restrictions apply to everyone 24 hours a day."

setlimit cpu 600 rowssel 1000000 rowsread 5000000;

desc "Allow no UOW to run for more than an hour."

setlimit uowtime 3600 action force;

desc ’Slow down a subset of applications.’

applname jointA, jointB, jointC, quryA

setlimit cpu 3 locks 1000 rowssel 500 rowsread 5000;

desc "Have the governor prioritize these 6 long apps in 1 class."

applname longq1, longq2, longq3, longq4, longq5, longq6

setlimit cpu -1

action schedule class;

desc "Schedule all applications run by the planning department."

authid planid1, planid2, planid3, planid4, planid5

20 Troubleshooting and Tuning Database Performance

setlimit cpu -1

action schedule;

desc "Schedule all CPU hogs in one class, which will control consumption."

setlimit cpu 3600

action schedule class;

desc "Slow down the use of the DB2 CLP by the novice user."

authid novice

applname db2bp.exe

setlimit cpu 5 locks 100 rowssel 250;

desc "During the day, do not let anyone run for more than 10 seconds."

time 8:30 17:00 setlimit cpu 10 action force;

desc "Allow users doing performance tuning to run some of

 their applications during the lunch hour."

time 12:00 13:00 authid ming, geoffrey, john, bill

applname tpcc1, tpcc2, tpcA, tpvG

setlimit cpu 600 rowssel 120000 action force;

desc "Increase the priority of an important application so it always

 completes quickly."

applname V1app setlimit cpu 1 locks 1 rowssel 1 action priority -20;

desc "Some people, such as the database administrator (and others),

 should not be limited. Because this is the last specification

 in the file, it will override what came before."

authid gene, hershel, janet setlimit cpu -1 locks -1 rowssel -1 uowtime -1;

Governor rule clauses

Each rule in the governor configuration file is made up of clauses that specify the

conditions for applying the rule and the action that results if the rule evaluates to

true.

The rule clauses must be specified in the order shown.

Optional beginning clauses

desc Specifies a description for the rule. The description must be enclosed by

either single or double quotation marks.

time Specifies the time period during which the rule is to be evaluated. The

time period must be specified in the following format: time hh:mm hh:mm;

for example, time 8:00 18:00. If this clause is not specified, the rule is

evaluated 24 hours a day.

authid Specifies one or more authorization IDs under which the application is

executing. Multiple authorization IDs must be separated by a comma (,);

for example: authid gene, michael, james. If this clause is not specified,

the rule applies to all authorization IDs.

applname

Specifies the name of the executable or object file that is connected to the

database. Multiple application names must be separated by a comma (,);

for example: applname db2bp, batch, geneprog. If this clause is not

specified, the rule applies to all application names.

Note:

1. Application names are case sensitive.

2. The database manager truncates all application names to 20 characters.

You should ensure that the application that you want to govern is

Chapter 2. Performance monitoring tools and methodology 21

uniquely identified by the first 20 characters of its application name.

Application names specified in the governor configuration file are

truncated to 20 characters to match their internal representation.

Limit clauses

setlimit

Specifies one or more limits for the governor to check. The limits must be

-1 or greater than 0 (for example, cpu -1 locks 1000 rowssel 10000). At

least one limit must be specified, and any limit that is not specified in a

rule statement is not limited by that rule. The governor can check the

following limits:

cpu n Specifies the number of CPU seconds that can be consumed by an

application. If you specify -1, the application’s CPU usage is not

limited.

idle n Specifies the number of idle seconds that are allowed for a

connection. If you specify -1, the connection’s idle time is not

limited.

Note: Some database utilities, such as backup and restore, establish

a connection to the database and then perform work through

engine dispatchable units (EDUs) that are not visible to the

governor. These database connections appear to be idle and might

exceed the idle time limit. To prevent the governor from taking

action against these utilities, specify -1 for them through the

authorization ID that invoked them. For example, to prevent the

governor from taking action against utilities that are running under

authorization ID DB2SYS, specify authid DB2SYS setlimit idle

-1.

locks n

Specifies the number of locks that an application can hold. If you

specify -1, the number of locks held by the application is not

limited.

rowsread n

Specifies the number of rows that an application can select. If you

specify -1, the number of rows the application can select is not

limited. The maximum value that can be specified is

4 294 967 298.

Note: This limit is not the same as rowssel. The difference is that

rowsread is the number of rows that must be read to return the

result set. This number includes engine reads of the catalog tables

and can be reduced when indexes are used.

rowssel n

Specifies the number of rows that can be returned to an

application. This value is non-zero only at the coordinator database

partition. If you specify -1, the number of rows that can be

returned is not limited. The maximum value that can be specified

is 4 294 967 298.

uowtime n

Specifies the number of seconds that can elapse from the time that

a unit of work (UOW) first becomes active. If you specify -1, the

elapsed time is not limited.

22 Troubleshooting and Tuning Database Performance

Note: If you used the sqlmon API to deactivate the unit of work

monitor switch or the timestamp monitor switch, this will affect

the ability of the governor to govern applications based on the unit

of work elapsed time. The governor uses the monitor to collect

information about the system. If you turn off the switches in the

database manager configuration file, they are turned off for the

entire instance, and the governor no longer receives this

information.

Action clauses

action Specifies the action that is to be taken if one or more specified limits is

exceeded. If a limit is exceeded and the action clause is not specified, the

governor reduces the priority of agents working for the application by 10.

force Specifies that the agent servicing the application is to be forced.

(The FORCE APPLICATION command terminates the coordinator

agent.)

Note: In partitioned database environments, the force action is

only carried out when the governor daemon is running on the

application’s coordinator database partition. Therefore, if a

governor daemon is running on database partition A and a limit is

exceeded for some application whose coordinator database

partition is database partition B, the force action is skipped.

nice n Specifies a change to the relative priority of agents working for the

application. Valid values range from -20 to +20 on UNIX-based

systems, and from -1 to 6 on Windows platforms.

v On UNIX-based systems, the agentpri database manager

configuration parameter must be set to the default value;

otherwise, it overrides the nice value.

v On Windows platforms, the agentpri database manager

configuration parameter and the nice value can be used

together.

You can use the governor to control the priority of applications

that run in the default user service superclass,

SYSDEFAULTUSERCLASS. If you use the governor to lower the

priority of an application that runs in this service superclass, the

agent disassociates itself from its outbound correlator (if it is

associated with one) and sets its relative priority according to the

agent priority specified by the governor. You cannot use the

governor to alter the priority of agents in user-defined service

superclasses and subclasses. Instead, you must use the agent

priority setting for the service superclass or subclass to control

applications that run in these service classes. You can, however, use

the governor to force connections in any service class.

Note: On AIX® 5.3, the instance owner must have the

CAP_NUMA_ATTACH capability to raise the relative priority of

agents working for the application. To grant this capability, logon

as root and run the following command:

 chuser capabilities=CAP_NUMA_ATTACH,CAP_PROPAGATE

schedule [class]

Scheduling improves the priorities of agents working on

Chapter 2. Performance monitoring tools and methodology 23

applications. The goal is to minimize the average response time

while maintaining fairness across all applications.

 The governor chooses the top applications for scheduling on the

basis of the following criteria:

v The application holding the greatest number of locks (an attempt

to reduce the number of lock waits)

v The oldest application

v The application with the shortest estimated remaining run time

(an attempt to allow as many short-lived statements as possible

to complete during the interval)

The top three applications in each criterion are given higher

priorities than all other applications. That is, the top application in

each criterion group is given the highest priority, the next highest

application is given the second highest priority, and the

third-highest application is given the third highest priority. If a

single application is ranked in the top three for more than one

criterion, it is given the appropriate priority for the criterion in

which it ranked highest, and the next highest application is given

the next highest priority for the other criteria. For example, if

application A holds the most locks but has the third shortest

estimated remaining run time, it is given the highest priority for

the first criterion. The fourth ranked application with the shortest

estimated remaining run time is given the third highest priority for

that criterion.

The applications that are selected by this governor rule are divided

up into three classes. For each class, the governor chooses nine

applications, which are the top three applications from each class,

based on the criteria described above. If you specify the class

option, all applications that are selected by this rule are considered

to be a single class, and nine applications are chosen and given

higher priorities as described above.

If an application is selected in more than one governor rule, it is

governed by the last rule in which is it selected.

Note: If you used the sqlmon API to deactivate the statement

switch, this will affect the ability of the governor to govern

applications based on the statement elapsed time. The governor

uses the monitor to collect information about the system. If you

turn off the switches in the database manager configuration file,

they are turned off for the entire instance, and the governor no

longer receives this information.
The schedule action can:

v Ensure that applications in different groups get time, without all

applications splitting time evenly. For example, if 14 applications

(three short, five medium, and six long) are running at the same

time, they might all have poor response times because they are

splitting the CPU. The database administrator can set up two

groups, medium-length applications and long-length

applications. Using priorities, the governor permits all the short

applications to run, and ensures that at most three medium and

three long applications run simultaneously. To achieve this, the

governor configuration file contains one rule for medium-length

applications, and another rule for long applications.

24 Troubleshooting and Tuning Database Performance

The following example shows a portion of a governor

configuration file that illustrates this point:

desc "Group together medium applications in 1 schedule class."

applname medq1, medq2, medq3, medq4, medq5

setlimit cpu -1

action schedule class;

desc "Group together long applications in 1 schedule class."

applname longq1, longq2, longq3, longq4, longq5, longq6

setlimit cpu -1

action schedule class;

v Ensure that each of several user groups (for example,

organizational departments) gets equal prioritization. If one

group is running a large number of applications, the

administrator can ensure that other groups are still able to obtain

reasonable response times for their applications. For example, in

a case involving three departments (Finance, Inventory, and

Planning), all the Finance users could be put into one group, all

the Inventory users could be put into a second group, and all

the Planning users could be put into a third group. The

processing power would be split more or less evenly among the

three departments.

The following example shows a portion of a governor

configuration file that illustrates this point:

desc "Group together Finance department users."

authid tom, dick, harry, mo, larry, curly

setlimit cpu -1

action schedule class;

desc "Group together Inventory department users."

authid pat, chris, jack, jill

setlimit cpu -1

action schedule class;

desc "Group together Planning department users."

authid tara, dianne, henrietta, maureen, linda, candy

setlimit cpu -1

action schedule class;

v Let the governor schedule all applications.

If the class option is not specified, the governor creates its own

classes based on how many active applications fall under the

schedule action, and puts applications into different classes

based on the query compiler’s cost estimate for the query the

application is running. The administrator can choose to have all

applications scheduled by not qualifying which applications are

chosen; that is, by not specifying applname, authid, or setlimit

clauses.

Governor log files

Whenever a governor daemon performs an action, it writes a record to its log file.

Actions include the following:

v Starting or stopping the governor

v Reading the governor configuration file

v Changing an application’s priority

v Forcing an application

Chapter 2. Performance monitoring tools and methodology 25

v Encountering an error or warning

Each governor daemon has a separate log file, which prevents file-locking

bottlenecks that might result when many governor daemons try to write to the

same file simultaneously. To query the governor log files, use the db2govlg

command.

The log files are stored in the log subdirectory of the sqllib directory, except on

Windows operating systems, where the log subdirectory is located under the

Common Application Data directory that Windows operating systems use to host

application log files. You provide the base name for the log file when you start the

governor with the db2gov command. Ensure that the log file name contains the

database name to distinguish log files on each database partition that is governed.

To ensure that the file name is unique for each governor in a partitioned database

environment, the number of the database partition on which the governor daemon

runs is automatically appended to the log file name.

Log file record format

Each record in the log file has the following format:

 Date Time DBPartitionNum RecType Message

The format of the Date and Time fields is yyyy-mm-dd-hh.mm.ss. You can merge the

log files for each database partition by sorting on this field. The DBPartitionNum

field contains the number of the database partition on which the governor is

running.

The RecType field contains different values, depending on the type of record being

written to the log. The values that can be recorded are:

v ACCOUNT: the application accounting statistics

v ERROR: an error occurred

v FORCE: an application was forced

v NICE: the priority of an application was changed

v READCFG: the governor read the configuration file

v SCHEDGRP: a change in agent priorities occurred

v START: the governor was started

v STOP: the governor was stopped

v WARNING: a warning occurred

Some of these values are described in more detail below.

ACCOUNT

An ACCOUNT record is written in the following situations:

v The value of the agent_usr_cpu_time or agent_sys_cpu_time monitor

element for an application has changed since the last ACCOUNT record

was written for this application.

v An application is no longer active.

The ACCOUNT record has the following format:

<auth_id> <appl_id> <applname> <connect_time> <agent_usr_cpu_delta>

 <agent_sys_cpu_delta>

ERROR

An ERROR record is written when the governor daemon needs to shut

down.

26 Troubleshooting and Tuning Database Performance

FORCE

A FORCE record is written when the governor forces an application, based

on rules in the governor configuration file. The FORCE record has the

following format:

<appl_name> <auth_id> <appl_id> <coord_partition> <cfg_line>

 <restriction_exceeded>

where:

coord_partition

Specifies the number of the application’s coordinator database

partition.

cfg_line

Specifies the line number in the governor configuration file where

the rule causing the application to be forced is located.

restriction_exceeded

Provides details about how the rule was violated. Valid values are:

v CPU: the total application USR CPU plus SYS CPU time, in

seconds

v Locks: the total number of locks held by the application

v Rowssel: the total number of rows selected by the application

v Rowsread: the total number of rows read by the application

v Idle: the amount of time during which the application was idle

v ET: the elapsed time since the application’s current unit of work

started (the uowtime setlimit was exceeded)

NICE A NICE record is written when the governor changes the priority of an

application, based on rules in the governor configuration file. The NICE

record has the following format:

<appl_name> <auth_id> <appl_id> <nice_value> <cfg_line>

 <restriction_exceeded>

where:

nice_value

Specifies the increment or decrement that will be made to the

priority value for the application’s agent process.

cfg_line

Specifies the line number in the governor configuration file where

the rule causing the application’s priority to be changed is located.

restriction_exceeded

Provides details about how the rule was violated. Valid values are:

v CPU: the total application USR CPU plus SYS CPU time, in

seconds

v Locks: the total number of locks held by the application

v Rowssel: the total number of rows selected by the application

v Rowsread: the total number of rows read by the application

v Idle: the amount of time during which the application was idle

v ET: the elapsed time since the application’s current unit of work

started (the uowtime setlimit was exceeded)

SCHEDGRP

A SCHEDGRP record is written when an application is added to a

Chapter 2. Performance monitoring tools and methodology 27

scheduling group or an application is moved from one scheduling group to

another. The SCHEDGRP record has the following format:

<appl_name> <auth_id> <appl_id> <cfg_line> <restriction_exceeded>

where:

cfg_line

Specifies the line number in the governor configuration file where

the rule causing the application to be scheduled is located.

restriction_exceeded

Provides details about how the rule was violated. Valid values are:

v CPU: the total application USR CPU plus SYS CPU time, in

seconds

v Locks: the total number of locks held by the application

v Rowssel: the total number of rows selected by the application

v Rowsread: the total number of rows read by the application

v Idle: the amount of time during which the application was idle

v ET: the elapsed time since the application’s current unit of work

started (the uowtime setlimit was exceeded)

START

A START record is written when the governor starts. The START record

has the following format:

Database = <database_name>

STOP A STOP record is written when the governor stops. It has the following

format:

Database = <database_name>

WARNING

A WARNING record is written in the following situations:

v The sqlefrce API was called to force an application, but it returned a

positive SQLCODE.

v A snapshot call returned a positive SQLCODE that was not 1611

(SQL1611W).

v A snapshot call returned a negative SQLCODE that was not -1224

(SQL1224N) or -1032 (SQL1032N). These return codes occur when a

previously active instance has been stopped.

v In a UNIX-based environment, an attempt to install a signal handler has

failed.

Because standard values are written, you can query the log files for different types

of actions. The Message field provides other nonstandard information that depends

on the type of record. For example, a FORCE or NICE record includes application

information in the Message field, whereas an ERROR record includes an error

message.

A governor log file might look like the following example:

2007-12-11-14.54.52 0 START Database = TQTEST

2007-12-11-14.54.52 0 READCFG Config = /u/db2instance/sqllib/tqtest.cfg

2007-12-11-14.54.53 0 ERROR SQLMON Error: SQLCode = -1032

2007-12-11-14.54.54 0 ERROR SQLMONSZ Error: SQLCode = -1032

28 Troubleshooting and Tuning Database Performance

Chapter 3. Factors affecting performance

System architecture

DB2 architecture and process overview

On the client side, local or remote applications are linked with the DB2 client

library. Local clients communicate using shared memory and semaphores; remote

clients use a protocol, such as named pipes (NPIPE) or TCP/IP. On the server side,

activity is controlled by engine dispatchable units (EDUs).

Figure 3 shows a general overview of the DB2 architecture and processes.

 EDUs are shown as circles or groups of circles.

Figure 3. Client connections and database server components

© Copyright IBM Corp. 2006, 2009 29

EDUs are implemented as threads on all platforms. DB2 agents are the most

common type of EDU. These agents perform most of the SQL and XQuery

processing on behalf of applications. Prefetchers and page cleaners are other

common EDUs.

A set of subagents might be assigned to process client application requests.

Multiple subagents can be assigned if the machine on which the server resides has

multiple processors or is part of a partitioned database environment. For example,

in a symmetric multiprocessing (SMP) environment, multiple SMP subagents can

exploit multiple processors.

All agents and subagents are managed by a pooling algorithm that minimizes the

creation and destruction of EDUs.

Buffer pools are areas of database server memory where pages of user data, index

data, and catalog data are temporarily moved and can be modified. Buffer pools

are a key determinant of database performance, because data can be accessed

much faster from memory than from disk.

The configuration of buffer pools, as well as prefetcher and page cleaner EDUs,

controls how quickly data can be accessed by applications.

v Prefetchers retrieve data from disk and move it into a buffer pool before

applications need the data. For example, applications that need to scan through

large volumes of data would have to wait for data to be moved from disk into a

buffer pool if there were no data prefetchers. Agents of the application send

asynchronous read-ahead requests to a common prefetch queue. As prefetchers

become available, they implement those requests by using big-block or

scatter-read input operations to bring the requested pages from disk into the

buffer pool. If you have multiple disks for data storage, the data can be striped

across those disks. Striping enables the prefetchers to use multiple disks to

retrieve data simultaneously.

v Page cleaners move data from a buffer pool back to disk. Page cleaners are

background EDUs that are independent of the application agents. They look for

pages that have been modified, and write those changed pages out to disk. Page

cleaners ensure that there is room in the buffer pool for pages that are being

retrieved by prefetchers.

Without the independent prefetchers and page cleaner EDUs, the application

agents would have to do all of the reading and writing of data between a buffer

pool and disk storage.

The DB2 process model

Knowledge of the DB2 process model will help you to understand how the

database manager and its associated components interact, and this can help you to

troubleshoot problems that might arise.

The process model that is used by all DB2 database servers facilitates

communication between database servers and clients. It also ensures that database

applications are isolated from resources, such as database control blocks and

critical database files.

The DB2 database server must perform many different tasks, such as processing

database application requests or ensuring that log records are written out to disk.

Each task is typically performed by a separate engine dispatchable unit (EDU).

30 Troubleshooting and Tuning Database Performance

There are many advantages to using a multithreaded architecture for the DB2

database server. A new thread requires less memory and fewer operating system

resources than a process, because some operating system resources can be shared

among all threads within the same process. Moreover, on some platforms, the

context switch time for threads is less than that for processes, which can improve

performance. Using a threaded model on all platforms makes the DB2 database

server easier to configure, because it is simpler to allocate more EDUs when

needed, and it is possible to dynamically allocate memory that must be shared by

multiple EDUs.

For each database being accessed, separate EDUs are started to deal with various

database tasks such as prefetching, communication, and logging. Database agents

are a special class of EDU that are created to handle application requests for a

database.

In general, you can rely on the DB2 database server to manage the set of EDUs.

However, there are DB2 tools that look at the EDUs. For example, you can use the

db2pd command with the -edus option to list all EDU threads that are active.

Each client application connection has a single coordinator agent that operates on a

database. A coordinator agent works on behalf of an application, and communicates

to other agents using private memory, interprocess communication (IPC), or remote

communication protocols, as needed.

The DB2 architecture provides a firewall so that applications run in a different

address space than the DB2 database server (Figure 4 on page 32). The firewall

protects the database and the database manager from applications, stored

procedures, and user-defined functions (UDFs). The firewall maintains the integrity

of the data in the databases, because it prevents application programming errors

from overwriting internal buffers or database manager files. The firewall also

improves reliability, because application errors cannot crash the database manager.

Chapter 3. Factors affecting performance 31

Client programs

Client programs can be remote or local, running on the same machine as the

database server. Client programs make first contact with a database through a

communication listener.

Listeners

Communication listeners start when the DB2 database server starts. There is a

listener for each configured communications protocol, and an interprocess

communications (IPC) listener (db2ipccm) for local client programs. Listeners

include:

v db2ipccm, for local client connections

v db2tcpcm, for TCP/IP connections

v db2tcpdm, for TCP/IP discovery tool requests

Agents

All connection requests from local or remote client programs (applications) are

allocated a corresponding coordinator agent (db2agent). When the coordinator

agent is created, it performs all database requests on behalf of the application.

In partitioned database environments, or systems on which intraquery parallelism

has been enabled, the coordinator agent distributes database requests to subagents

(db2agntp and db2agnts, respectively). Subagents that are associated with an

application but that are currently idle are named db2agnta.

db2pfchr

db2pclnr

db2loggr

db2loggw

db2logts

db2dlock

db2fmp

db2vend

db2ipccm

db2sysc

Remote client
program

Local client
program

Per databasePer connectionPer instance

db2agent

db2agent

db2agntp

db2agntp

db2agntp

db2agntp

and p
Other threads

rocesses

Agent pool

Firewall

db2tcpcm

Figure 4. Process model for DB2 database systems

32 Troubleshooting and Tuning Database Performance

A coordinator agent might be:

v Connected to the database with an alias; for example, db2agent (DATA1) is

connected to the database alias DATA1.

v Attached to an instance; for example, db2agent (user1) is attached to the instance

user1.

The DB2 database server will instantiate other types of agents, such as

independent coordinator agents or subcoordinator agents, to execute specific

operations. For example, the independent coordinator agent db2agnti is used to

run event monitors, and the subcoordinator agent db2agnsc is used to parallelize

database restart operations following an abnormal shutdown.

Idle agents reside in an agent pool. These agents are available for requests from

coordinator agents operating on behalf of client programs, or from subagents

operating on behalf of existing coordinator agents. Having an appropriately-sized

idle agent pool can improve performance when there are significant application

workloads. In this case, idle agents can be used as soon as they are required, and

there is no need to allocate a completely new agent for each application

connection, which involves creating a thread and allocating and initializing

memory and other resources. The DB2 database server automatically manages the

size of the idle agent pool.

db2fmp

The fenced mode process is responsible for executing fenced stored procedures and

user-defined functions outside of the firewall. The db2fmp process is always a

separate process, but might be multithreaded, depending on the types of routines

that it executes.

db2vend

This is a process to execute vendor code on behalf of an EDU; for example, to

execute a user exit program for log archiving (UNIX only).

Database EDUs

The following list includes some of the important EDUs that are used by each

database:

v db2pfchr, for buffer pool prefetchers

v db2pclnr, for buffer pool page cleaners

v db2loggr, for manipulating log files to handle transaction processing and

recovery

v db2loggw, for writing log records to the log files

v db2logts, for tracking which table spaces have log records in which log files.

This information is recorded in the DB2TSCHG.HIS file in the database

directory.

v db2dlock, for deadlock detection. In a partitioned database environment, an

additional thread (db2glock) is used to coordinate the information that is

collected by the db2dlock EDU on each partition; db2glock runs only on the

catalog partition.

v db2stmm, for the self-tuning memory management feature

v db2taskd, for the distribution of background database tasks. These tasks are

executed by threads called db2taskp.

Chapter 3. Factors affecting performance 33

v db2hadrp, the high availability disaster recovery (HADR) primary server thread

v db2hadrs, the HADR standby server thread

v db2lfr, for log file readers that process individual log files

v db2shred, for processing individual log records within log pages

v db2redom, for the redo master. During recovery, it processes redo log records

and assigns log records to redo workers for processing.

v db2redow, for the redo workers. During recovery, it processes redo log records at

the request of the redo master.

v db2logmgr, for the log manager. Manages log files for a recoverable database.

v db2wlmd, for automatic collection of workload management statistics

v Event monitor threads are identified as follows:

– db2evm%1%2 (%3)

where %1 can be:

- g - global file event monitor

- gp - global piped event monitor

- l - local file event monitor

- lp - local piped event monitor

- t - table event monitor

and %2 can be:

- i - coordinator

- p - not coordinator

and %3 is the event monitor name
v Backup and restore threads are identified as follows:

– db2bm.%1.%2 (backup and restore buffer manipulator) and db2med.%1.%2

(backup and restore media controller), where:

- %1 is the EDU ID of the agent that controls the backup or restore session

- %2 is a sequential value that is used to distinguish among (possibly many)

threads belonging to a particular backup or restore session

For example: db2bm.13579.2 identifies the second db2bm thread that is

controlled by the db2agent thread with EDU ID 13579.

Database server threads and processes

The system controller (db2sysc on UNIX and db2syscs.exe on Windows operating

systems) must exist if the database server is to function. The following threads and

processes carry out a variety of tasks:

v db2resync, the resync agent that scans the global resync list

v db2wdog, the watchdog on UNIX and Linux operating systems that handles

abnormal terminations

v db2fcms, the fast communications manager sender daemon

v db2fcmr, the fast communications manager receiver daemon

v db2pdbc, the parallel system controller, which handles parallel requests from

remote database partitions (used only in a partitioned database environment)

v db2cart, for archiving log files (when the userexit database configuration

parameter is enabled)

34 Troubleshooting and Tuning Database Performance

v db2fmtlg, for formatting log files (when the logretain database configuration

parameter is enabled and the userexit database configuration parameter is

disabled)

v db2panic, the panic agent, which handles urgent requests after agent limits have

been reached at a particular database partition (used only in a partitioned

database environment)

v db2srvlst, manages lists of addresses for systems such as DB2 for z/OS®

v db2fmd, the fault monitor daemon

v db2disp, the client connection concentrator dispatcher

v db2acd, an autonomic computing daemon that hosts the health monitor,

automatic maintenance utilities, and the administrative task scheduler. This

process was formerly known as db2hmon.

v db2licc, manages installed DB2 licenses

v db2thcln, recycles resources when an EDU terminates (UNIX only)

v db2aiothr, manages asynchronous I/O requests for a database partition (UNIX

only)

v db2alarm, notifies EDUs when their requested timer has expired (UNIX only)

v db2sysc, the main system controller EDU; it handles critical DB2 server events

Database agents

When an application accesses a database, several processes or threads begin to

perform the various application tasks. These tasks include logging, communication,

and prefetching. Database agents are threads within the database manager that are

used to service application requests. In Version 9.5, agents are run as threads on all

platforms.

The maximum number of application connections is controlled by the

max_connections database manager configuration parameter. The work of each

application connection is coordinated by a single worker agent. A worker agent

carries out application requests but has no permanent attachment to any particular

application. Coordinator agents exhibit the longest association with an application,

because they remain attached to it until the application disconnects. The only

exception to this rule occurs when the engine concentrator is enabled, in which

case a coordinator agent can terminate that association at transaction boundaries

(COMMIT or ROLLBACK).

There are three types of worker agents:

v Idle agents

This is the simplest form of worker agent. It does not have an outbound

connection, and it does not have a local database connection or an instance

attachment.

v Active coordinator agents

Each database connection from a client application has a single active agent that

coordinates its work on the database. After the coordinator agent is created, it

performs all database requests on behalf of its application, and communicates to

other agents using interprocess communication (IPC) or remote communication

protocols. Each agent operates with its own private memory and shares database

manager and database global resources, such as the buffer pool, with other

agents. When a transaction completes, the active coordinator agent might

become an inactive agent. When a client disconnects from a database or detaches

from an instance, its coordinator agent will be:

– An active coordinator agent if other connections are waiting

Chapter 3. Factors affecting performance 35

– Freed and marked as idle if no connections are waiting, and the maximum

number of pool agents is being automatically managed or has not been

reached

– Terminated and its storage freed if no connections are waiting, and the

maximum number of pool agents has been reached
v Subagents

The coordinator agent distributes database requests to subagents, and these

subagents perform the requests for the application. After the coordinator agent is

created, it handles all database requests on behalf of its application by

coordinating the subagents that perform requests against the database. In DB2

Version 9.5, subagents can also exist in nonpartitioned environments and in

environments where intraquery parallelism is not enabled.

Agents that are not performing work for any application and that are waiting to be

assigned are considered to be idle agents and reside in an agent pool. These agents

are available for requests from coordinator agents operating on behalf of client

programs, or for subagents operating on behalf of existing coordinator agents. The

number of available agents depends on the value of the num_poolagents database

manager configuration parameter.

If no idle agents exist when an agent is required, a new agent is created

dynamically. Because creating a new agent requires a certain amount of overhead,

CONNECT and ATTACH performance is better if an idle agent can be activated

for a client.

When a subagent is performing work for an application, it is associated with that

application. After it completes the assigned work, it can be placed in the agent

pool, but it remains associated with the original application. When the application

requests additional work, the database manager first checks the idle pool for

associated agents before it creates a new agent.

Database agent management

Most applications establish a one-to-one relationship between the number of

connected applications and the number of application requests that can be

processed by the database server. Your environment, however, might require a

many-to-one relationship between the number of connected applications and the

number of application requests that can be processed.

Two database manager configuration parameters control these factors separately:

v The max_connections parameter specifies the maximum number of connected

applications

v The max_coordagents parameter specifies the maximum number of application

requests that can be processed concurrently

The connection concentrator is enabled when the value of max_connections is

greater than the value of max_coordagents. Because each active coordinating agent

requires global database resource overhead, the greater the number of these agents,

the greater the chance that the upper limits of available global resources will be

reached. To prevent this from occurring, set the value of max_connections to be

higher than the value of max_coordagents, or set both parameters to

AUTOMATIC.

There are two specific scenarios in which setting these parameters to AUTOMATIC

is a good idea:

36 Troubleshooting and Tuning Database Performance

v If you are confident that your system can handle all of the connections that

might be needed, but you want to limit the amount of global resources that are

used (by limiting the number of coordinating agents), set max_connections to

AUTOMATIC. When max_connections is greater than max_coordagents, the

connection concentrator is enabled.

v If you do not want to limit the maximum number of connections or coordinating

agents, but you know that your system requires or would benefit from a

many-to-one relationship between the number of connected applications and the

number of application requests that are processed, set both parameters to

AUTOMATIC. When both parameters are set to AUTOMATIC, the database

manager uses the values that you specify as an ideal ratio of connections to

coordinating agents. Note that both of these parameters can be configured with

a starting value and an AUTOMATIC setting. For example, the following

command associates both a value of 200 and AUTOMATIC with the

max_coordagents parameter:update dbm config using max_coordagents 200

automatic.

Example

Consider the following scenario:

v The max_connections parameter is set to AUTOMATIC and has a current value

of 300

v The max_coordagents parameter is set to AUTOMATIC and has a current value

of 100

The ratio of max_connections to max_coordagents is 300:100. The database

manager creates new coordinating agents as connections come in, and connection

concentration is applied only when needed. These settings result in the following

actions:

v Connections 1 to 100 create new coordinating agents

v Connections 101 to 300 do not create new coordinating agents; they share the

100 agents that have been created already

v Connections 301 to 400 create new coordinating agents

v Connections 401 to 600 do not create new coordinating agents; they share the

200 agents that have been created already

v and so on...

In this example, it is assumed that the connected applications are driving enough

work to warrant creation of new coordinating agents at each step. After some

period of time, if the connected applications are no longer driving sufficient

amounts of work, coordinating agents will become inactive and might be

terminated.

If the number of connections is reduced, but the amount of work being driven by

the remaining connections is high, the number of coordinating agents might not be

reduced right away. The max_connections and max_coordagents parameters do

not directly affect agent pooling or agent termination. Normal agent termination

rules still apply, meaning that the connections to coordinating agents ratio might

not correspond exactly to the values that you specified. Agents might return to the

agent pool to be reused before they are terminated.

If finer granularity of control is needed, specify a simpler ratio. For example, the

ratio of 300:100 from the previous example can be expressed as 3:1. If

max_connections is set to 3 (AUTOMATIC) and max_coordagents is set to 1

Chapter 3. Factors affecting performance 37

(AUTOMATIC), one coordinating agent can be created for every three connections.

Client-server processing model

Both local and remote application processes can work with the same database. A

remote application is one that initiates a database action from a machine that is

remote from the machine on which the database server resides. Local applications

are directly attached to the database at the server machine.

How client connections are managed depends on whether the connection

concentrator is on or off. The connection concentrator is on whenever the value of

the max_connections database manager configuration parameter is larger than the

value of the max_coordagents configuration parameter.

v If the connection concentrator is off, each client application is assigned a unique

engine dispatchable unit (EDU) called a coordinator agent that coordinates the

processing for that application and communicates with it.

v If the connection concentrator is on, each coordinator agent can manage many

client connections, one at a time, and might coordinate the other worker agents

to do this work. For internet applications with many relatively transient

connections, or applications with many relatively small transactions, the

connection concentrator improves performance by allowing many more client

applications to be connected concurrently. It also reduces system resource use for

each connection.

In Figure 5 on page 39, each circle in the DB2 server represents an EDU that is

implemented using operating system threads.

38 Troubleshooting and Tuning Database Performance

v At A1, a local client establishes communications through db2ipccm.

v At A2, db2ipccm works with a db2agent EDU, which becomes the coordinator

agent for application requests from the local client.

v At A3, the coordinator agent contacts the client application to establish shared

memory communications between the client application and the coordinator.

v At A4, the application at the local client connects to the database.

v At B1, a remote client establishes communications through db2tcpcm. If another

communications protocol was chosen, the appropriate communications manager

is used.

v At B2, db2tcpcm works with a db2agent EDU, which becomes the coordinator

agent for the application and passes the connection to this agent.

v At B4, the coordinator agent contacts the remote client application.

v At B5, the remote client application connects to the database.

Note also that:

A1

Application A

Local client

Application A

EDUs per connectionEDUs per instance

db2agntp

db2agntp

Coordinator
agent

Application B

Active subagents

db2agntp

Idle subagents

db2agntp

Coordinator
agent

db2agent

logical
agents

db2tcpcm

A2

shared memory
and semaphores

Application B

Remote client

B1
B2

db2ipccm

A3

A4

B3

B4

B5

Unassociated
idle agents

db2agent

Server machine

db2agent

Figure 5. Client-server processing model overview

Chapter 3. Factors affecting performance 39

v Worker agents carry out application requests. There are four types of worker

agents: active coordinator agents, active subagents, associated subagents, and

idle agents.

v Each client connection is linked to an active coordinator agent.

v In a partitioned database environment, or an environment in which

intra-partition parallelism is enabled, the coordinator agents distribute database

requests to subagents (db2agntp).

v There is an agent pool (db2agent) where idle agents wait for new work.

v Other EDUs manage client connections, logs, two-phase commit operations,

backup and restore operations, and other tasks.

Figure 6 shows additional EDUs that are part of the server machine environment.

Each active database has its own shared pool of prefetchers (db2pfchr) and page

cleaners (db2pclnr), and its own logger (db2loggr) and deadlock detector

(db2dlock).

Fenced user-defined functions (UDFs) and stored procedures, which are not shown

in the figure, are managed to minimize costs that are associated with their creation

and destruction. The default value of the keepfenced database manager

configuration parameter is YES, which keeps the stored procedure process

available for reuse at the next procedure call.

Figure 6. EDUs in the database server

40 Troubleshooting and Tuning Database Performance

Note: Unfenced UDFs and stored procedures run directly in an agent’s address

space for better performance. However, because they have unrestricted access to

the agent’s address space, they must be rigorously tested before being used.

Figure 7 shows the similarities and differences between the single database

partition processing model and the multiple database partition processing model.

In a multiple database partition environment, the database partition on which the

CREATE DATABASE command was issued is called the catalog database partition. It

is on this database partition that the system catalog tables are stored. The system

catalog is a repository of all of the information about objects in the database.

As shown in Figure 7, because Application A creates the PROD database on

Node0000, the catalog for the PROD database is also created on this database

partition. Similarly, because Application B creates the TEST database on Node0001,

the catalog for the TEST database is created on this database partition. It is a good

idea to create your databases on different database partitions to balance the extra

activity that is associated with the catalog for each database across the database

partitions in your environment.

DB2 create database TEST
DB2 connect to TEST
DB2 load . . .
DB2 select . . .

App BDB2 create database PROD
2 connect to PROD
2 load . . .
2 select . . .

DB
DB
DB

db2pdbc db2pdbc

db2glock db2glock

db2fcmd db2fcmd

App A App A

PROD database PROD databaseTEST database TEST database

App B App B

Node0000 Node0001

App A

Catalog database partition for PROD Catalog database partition for TEST

Figure 7. Process model for multiple database partitions

Chapter 3. Factors affecting performance 41

There are additional EDUs (db2pdbc and db2fcmd) that are associated with the

instance, and these are found on each database partition in a multiple database

partition environment. These EDUs are needed to coordinate requests across

database partitions and to enable the fast communication manager (FCM).

There is an additional EDU (db2glock) that is associated with the catalog database

partition. This EDU controls global deadlocks across the database partitions on

which the active database is located.

Each connect request from an application is represented by a connection that is

associated with a coordinator agent. The coordinator agent is the agent that

communicates with the application, receiving requests and sending replies. It can

satisfy a request itself or coordinate multiple subagents to work on the request.

The database partition on which the coordinator agent resides is called the

coordinator database partition of that application.

Parts of the database requests from an application are sent by the coordinator

database partition to subagents at the other database partitions. All of the results

are consolidated at the coordinator database partition before being sent back to the

application.

Any number of database partitions can be configured to run on the same machine.

This is known as a multiple logical partition configuration. Such a configuration is

very useful on large symmetric multiprocessor (SMP) machines with very large

main memory. In this environment, communications between database partitions

can be optimized to use shared memory and semaphores.

Connection-concentrator improvements for client connections

The connection concentrator improves the performance of applications that have

frequent but relatively transient connections by enabling many concurrent client

connections to be processed efficiently. It also reduces memory use during each

connection and decreases the number of context switches.

The connection concentrator is enabled when the value of the max_connections

database manager configuration parameter is greater than the value of the

max_coordagents configuration parameter.

In an environment that requires many simultaneous user connections, you can

enable the connection concentrator for more efficient use of system resources. This

feature incorporates advantages that were formerly found only in DB2 Connect

connection pooling. After the first connection, the connection concentrator reduces

the time that is required to connect to a host. When disconnection from a host is

requested, the inbound connection is dropped, but the outbound connection to the

host is kept within a pool. When a new connection request is received, the

database manager attempts to reuse an existing outbound connection from the

pool.

For best performance of applications that use connection pooling or the connection

concentrator, tune the parameters that control the size of the block of data that is

cached. For more information, see the DB2 Connect product documentation.

Examples

v Consider a single-partition database to which, on average, 1000 users are

connected simultaneously. At times, the number of connected users might be

higher. The number of concurrent transactions can be as high as 200, but it is

never higher than 250. Transactions are short.

42 Troubleshooting and Tuning Database Performance

For this workload, you could set the following database manager configuration

parameters:

– Set max_coordagents to 250 to support the maximum number of concurrent

transactions.

– Set max_connections to AUTOMATIC with a value of 1000 to ensure support

for any number of connections; in this example, any value greater than 250

will ensure that the connection concentrator is enabled.

– Leave num_poolagents at the default value, which should ensure that

database agents are available to service incoming client requests, and that

little overhead will result from the creation of new agents.
v Consider a single-partition database to which, on average, 1000 users are

connected simultaneously. At times, the number of connected users might reach

2000. An average of 500 users are expected to be executing work at any given

time. The number of concurrent transactions is approximately 250. Five hundred

coordinating agents would generally be too many; for 1000 connected users, 250

coordinating agents should suffice.

For this workload, you could update the database manager configuration as

follows:

 update dbm cfg using max_connections 1000 automatic

 update dbm cfg using max_coordagents 250 automatic

This means that as the number of connections beyond 1000 increases, additional

coordinating agents will be created as needed, with a maximum to be

determined by the total number of connections. As the workload increases, the

database manager attempts to maintain a relatively stable ratio of connections to

coordinating agents.

v Suppose that you do not want to enable the connection concentrator, but you do

want to limit the number of connected users. To limit the number of

simultaneously connected users to 250, for example, you could set the following

database manager configuration parameters:

– Set max_coordagents to 250.

– Set max_connections to 250.
v Suppose that you do not want to enable the connection concentrator, and you do

not want to limit the number of connected users. You could update the database

manager configuration as follows:

 update dbm cfg using max_connections automatic

 update dbm cfg using max_coordagents automatic

Agents in a partitioned database

In a partitioned database environment, or an environment in which intra-partition

parallelism has been enabled, each database partition has its own pool of agents

from which subagents are drawn.

Because of this pool, subagents do not have to be created and destroyed each time

one is needed or has finished its work. The subagents can remain as associated

agents in the pool and can be used by the database manager for new requests from

the application with which they are associated or from new applications.

The impact on both performance and memory consumption within the system is

strongly related to how your agent pool is tuned. The database manager

configuration parameter for agent pool size (num_poolagents) affects the total

number of agents and subagents that can be kept associated with applications on a

database partition. If the pool size is too small and the pool is full, a subagent

Chapter 3. Factors affecting performance 43

disassociates itself from the application it is working on and terminates. Because

subagents must be constantly created and reassociated with applications,

performance suffers.

By default, num_poolagents is set to AUTOMATIC with a value of 100, and the

database manager automatically manages the number of idle agents to pool.

If the value of num_poolagents is manually set too low, one application could fill

the pool with associated subagents. Then, when another application requires a new

subagent and has no subagents in its agent pool, it will recycle inactive subagents

from the agent pools of other applications. This behavior ensures that resources are

fully utilized.

If the value of num_poolagents is manually set too high, associated subagents

might sit unused in the pool for long periods of time, using database manager

resources that are not available for other tasks.

When the connection concentrator is enabled, the value of num_poolagents does

not necessarily reflect the exact number of agents that might be idle in the pool at

any one time. Agents might be needed temporarily to handle higher workload

activity.

In addition to database agents, other asynchronous database manager activities run

as their own process or thread, including:

v Database I/O servers or I/O prefetchers

v Database asynchronous page cleaners

v Database loggers

v Database deadlock detectors

v Communication and IPC listeners

v Table space container rebalancers

Configuring for good performance

Some types of DB2 deployment, such as the InfoSphere™ Balanced Warehouse™

(BW), or those within SAP systems, have configurations that are highly specified.

In the BW case, hardware factors, such as the number of CPUs, the ratio of

memory to CPU, the number and configuration of disks, and versions are

pre-specified, based on thorough testing to determine the optimal configuration. In

the SAP case, hardware configuration is not as precisely specified; however, there

are a great many sample configurations available. In addition, SAP best practice

provides recommended DB2 configuration settings. If you are using a DB2

deployment for a system that provides well-tested configuration guidelines, you

should generally take advantage of the guidelines in place of more general

rules-of-thumb.

Consider a proposed system for which you do not already have a detailed

hardware configuration. Your goal is to identify a few key configuration decisions

that get the system well on its way to good performance. This step typically occurs

before the system is up and running, so you might have limited knowledge of how

it will actually behave. In a way, you have to make a “best guess,” based on your

knowledge of what the system will be doing.

44 Troubleshooting and Tuning Database Performance

Hardware configuration

CPU capacity is one of the main independent variables in configuring a system for

performance. Because all other hardware configuration typically flows from it, it is

not easy to predict how much CPU capacity is required for a given workload. In

business intelligence (BI) environments, 200-300 GB of active raw data per

processor core is a reasonable estimate. For other environments, a sound approach

is to gauge the amount of CPU required, based on one or more existing DB2

systems. For example, if the new system needs to handle 50% more users, each

running SQL that is at least as complex as that on an existing system, it would be

reasonable to assume that 50% more CPU capacity is required. Likewise, other

factors that predict a change in CPU usage, such as different throughput

requirements or changes in the use of triggers or referential integrity, should be

taken into account as well.

After you have the best idea of CPU requirements (derived from available

information), other aspects of hardware configuration start to fall into place.

Although you must consider the required system disk capacity in gigabytes or

terabytes, the most important factors regarding performance are the capacity in

I/Os per second (IOPS), or in megabytes per second of data transfer. In practical

terms, this is determined by the number of individual disks involved.

Why is that the case? The evolution of CPUs over the past decade has seen

incredible increases in speed, whereas the evolution of disks has been more in

terms of their capacity and cost. There have been improvements in disk seek time

and transfer rate, but they haven’t kept pace with CPU speeds. So to achieve the

aggregate performance needed with modern systems, using multiple disks is more

important than ever, especially for systems that will drive a significant amount of

random disk I/O. Often, the temptation is to use close to the minimum number of

disks that can contain the total amount of data in the system, but this generally

leads to very poor performance.

In the case of RAID storage, or for individually addressable drives, a rule-of-thumb

is to configure at least ten to twenty disks per processor core. For storage servers, a

similar number is recommended; however, in this case, a bit of extra caution is

warranted. Allocation of space on storage servers is often done more with an eye

to capacity rather than throughput. It is a very good idea to understand the

physical layout of database storage, to ensure that the inadvertent overlap of

logically separate storage does not occur. For example, a reasonable allocation for a

4-way system might be eight arrays of eight drives each. However, if all eight

arrays share the same eight underlying physical drives, the throughput of the

configuration would be drastically reduced, compared to eight arrays spread over

64 physical drives.

It is good practice to set aside some dedicated (unshared) disk for the DB2

transaction logs. This is because the I/O characteristics of the logs are very

different from DB2 containers, for example, and the competition between log I/O

and other types of I/O can result in a logging bottleneck, especially in systems

with a high degree of write activity.

In general, a RAID-1 pair of disks can provide enough logging throughput for up

to 400 reasonably write-intensive DB2 transactions per second. Greater throughput

rates, or high-volume logging (for example, during bulk inserts), requires greater

log throughput, which can be provided by additional disks in a RAID-10

configuration, connected to the system through a write-caching disk controller.

Chapter 3. Factors affecting performance 45

Because CPUs and disks effectively operate on different time scales – nanoseconds

versus microseconds – you need to decouple them to enable reasonable processing

performance. This is where memory comes into play. In a database system, the

main purpose of memory is to avoid I/O, and so up to a point, the more memory

a system has, the better it can perform. Fortunately, memory costs have dropped

significantly over the last several years, and systems with tens to hundreds of

gigabytes (GB) of RAM are not uncommon. In general, four to eight gigabytes per

processor core should be adequate for most applications.

AIX configuration

There are relatively few AIX parameters that need to be changed to achieve good

performance. For the purpose of these recommendations, assume an AIX level of

5.3 or later. Again, if there are specific settings already in place for your system (for

example, a BW or SAP configuration), those should take precedence over the

following general guidelines.

v The VMO parameter LRU_FILE_REPAGE should be set to 0. This parameter

controls whether AIX victimizes computational pages or file system cache pages.

In addition, minperm should be set to 3. These are both default values in AIX

6.1.

v The AIO parameter maxservers can be initially left at the default value of ten

per CPU. After the system is active, maxservers is tuned as follows:

1. Collect the output of the ps –elfk | grep aio command and determine if all

asynchronous I/O (AIO) kernel processes (aioservers) are consuming the

same amount of CPU time.

2. If they are, maxservers might be set too low. Increase maxservers by 10%,

and repeat step 1.

3. If some aioservers are using less CPU time than others, the system has at

least as many of them as it needs. If more than 10% of aioservers are using

less CPU, reduce maxservers by 10% and repeat step 1.
v The AIO parameter maxreqs should be set to MAX(NUM_IOCLEANERS x 256, 4096

). This parameter controls the maximum number of outstanding AIO requests.

v The hdisk parameter queue_depth should be based on the number of physical

disks in the array. For example, for IBM® disks, the default value for

queue_depth is 3, and the recommended value would be 3 x number-of-devices.

This parameter controls the number of queuable disk requests.

v The disk adapter parameter num_cmd_elems should be set to the sum of

queue_depth for all devices connected to the adapter. This parameter controls

the number of requests that can be queued to the adapter.

Solaris and HP-UX configuration

For DB2 running on Solaris or HP-UX, the db2osconf utility is available to check

and recommend kernel parameters based on the system size. The db2osconf utility

allows you to specify the kernel parameters based on memory and CPU, or with a

general scaling factor that compares the current system configuration to an

expected future configuration. A good approach is to use a scaling factor of 2 or

higher if running large systems, such as SAP applications. In general, db2osconf

gives you a good initial starting point to configure Solaris and HP-UX, but it does

not deliver the optimal value, because it cannot consider current and future

workloads.

46 Troubleshooting and Tuning Database Performance

Linux configuration

When a Linux system is used as a DB2 server, some of the Linux kernel

parameters might have to be changed. Because Linux distributions change, and

because this environment is highly flexible, only some of the most important

settings that need to be validated on the basis of the Linux implementation are

considered.

SHMMAX (maximum size of a shared memory segment) on a 64-bit system must

be set to a minimum of 1 GB – 1 073 741 824 bytes – whereas the parameter

SHMALL should be set to 90% of the available memory on the database server.

SHMALL is 8 GB by default. Other important Linux kernel configuration

parameters and their recommended values for DB2 are:

v kernel.sem (specifying four kernel semaphore settings – SEMMSL, SEMMNS,

SEMOPM, and SEMMNI): 250 256000 32 1024

v kernel.msgmni (number of message queue identifiers): 1024

v kernel.msgmax (maximum size of a message, in bytes): 65536

v kernel.msgmnb (default size of a message queue, in bytes): 65536

DB2 Database Partitioning Feature

The decision to use the DB2 Database Partitioning Feature (DPF) is not generally

made based purely on data volume, but more on the basis of the workload. As a

general guideline, most DPF deployments are in the area of data warehousing and

business intelligence. The DPF is highly recommended for large complex query

environments, because its shared-nothing architecture allows for outstanding

scalability. For smaller data marts (up to about 300 GB), which are unlikely to

grow rapidly, a DB2 Enterprise Server Edition (ESE) configuration is often a good

choice. However, large or fast-growing BI environments benefit greatly from the

DPF.

A typical partitioned database system usually has one processor core per data

partition. For example, a system with n processor cores would likely have the

catalog on partition 0, and have n additional data partitions. If the catalog partition

will be heavily used (for example, to hold single partition dimension tables), it

might be allocated a processor core as well. If the system will support very many

concurrent active users, two cores per partition might be required.

In terms of a general guide, you should plan on about 250 GB of active raw data

per partition.

The InfoSphere Balanced Warehouse documentation contains in-depth information

regarding partitioned database configuration best practices. This documentation

contains useful information for non-Balanced Warehouse deployments as well.

Choice of code page and collation

As well as affecting database behavior, choice of code page or code set and

collating sequence can have a strong impact on performance. The use of Unicode

has become very widespread because it allows you to represent a greater variety of

character strings in your database than has been the case with traditional

single-byte code pages. Unicode is the default for new databases in DB2 Version

9.5. However, because Unicode code sets use multiple bytes to represent some

individual characters, there can be increased disk and memory requirements. For

example, the UTF-8 code set, which is one of the most common Unicode code sets,

Chapter 3. Factors affecting performance 47

uses from one to four bytes per character. An average string expansion factor due

to migration from a single-byte code set to UTF-8 is very difficult to estimate

because it depends on how frequently multibyte characters are used. For typical

North American content, there is usually no expansion. For most western

European languages, the use of accented characters typically introduces an

expansion of around 10%.

On top of this, the use of Unicode can cause extra CPU consumption relative to

single-byte code pages. First, if expansion occurs, the longer strings require more

work to manipulate. Second, and more significantly, the algorithms used by the

more sophisticated Unicode collating sequences, such as UCA500R1_NO, can be

much more expensive than the typical SYSTEM collation used with single-byte

code pages. This increased expense is due to the complexity of sorting Unicode

strings in a culturally-correct way. Operations that are impacted include sorting,

string comparisons, LIKE processing, and index creation.

If Unicode is required to properly represent your data, choose the collating

sequence with care.

v If the database will contain data in multiple languages, and correct sort order of

that data is of paramount importance, use one of the culturally correct collations

(for example, UCA500R1_*). Depending on the data and the application, this

could have a performance overhead of 1.5 to 3 times more, relative to the

IDENTITY sequence.

v There are both normalized and non-normalized varieties of culturally-correct

collation. Normalized collations (for example, UCA500R1_NO) have additional

checks to handle malformed characters, whereas non-normalized collations (for

example, UCA500r1_NX) do not. Unless the handling of malformed characters is

an issue, use the non-normalized version, because there is a performance benefit

in avoiding the normalization code. That said, even non-normalized culturally

correct collations are very expensive.

v If a database is being moved from a single-byte environment to a Unicode

environment, but does not have rigorous requirements about hosting a variety of

languages (most deployments will be in this category), language aware collation

might be appropriate. Language aware collations (for example, SYSTEM_819_BE)

take advantage of the fact that many Unicode databases contain data in only one

language. They use the same lookup table-based collation algorithm as

single-byte collations such as SYSTEM_819, and so are very efficient. As a

general rule, if the collation behavior in the original single-byte database was

acceptable, then as long as the language content does not change significantly

following the move to Unicode, culturally aware collation should be considered.

This can provide very large performance benefits relative to culturally correct

collation.

Physical database design

v In general, file-based database managed storage (DMS) regular table spaces give

better performance than system managed storage (SMS) regular table spaces.

SMS is often used for temporary table spaces, especially when the temporary

tables are very small; however, the performance advantage of SMS in this case is

shrinking over time.

v In the past, DMS raw device table spaces had a fairly substantial performance

advantage over DMS file table spaces; however, with the introduction of direct

I/O (now defaulted through the NO FILE SYSTEM CACHING clause in the

CREATE TABLESPACE and the ALTER TABLESPACE statements), DMS file

table spaces provide virtually the same performance as DMS raw device table

spaces.

48 Troubleshooting and Tuning Database Performance

Initial DB2 configuration settings

The DB2 configuration advisor, also known as the AUTOCONFIGURE command,

takes basic system guidelines that you provide, and determines a good starting set

of DB2 configuration values. The AUTOCONFIGURE command can provide real

improvements over the default configuration settings, and is recommended as a

way to obtain initial configuration values. Some additional fine-tuning of the

recommendations generated by the AUTOCONFIGURE command is often

required, based on the characteristics of the system.

Here are some suggestions for using the AUTOCONFIGURE command:

v Even though, starting in DB2 Version 9.1, the AUTOCONFIGURE command is

run automatically at database creation time, it is still a good idea to run the

AUTOCONFIGURE command explicitly. This is because you then have the

ability to specify keyword/value pairs that help customize the results for your

system.

v Run (or rerun) the AUTOCONFIGURE command after the database is populated

with an appropriate amount of active data. This provides the tool with more

information about the nature of the database. The amount of data that you use

to populate the database is important, because it can affect such things as buffer

pool size calculations, for example. Too much or too little data makes these

calculations less accurate.

v Try different values for important AUTOCONFIGURE command keywords, such

as mem_percent, tpm, and num_stmts to get an idea of which, and to what

degree, configuration values are affected by these changes.

v If you are experimenting with different keywords and values, use the APPLY

NONE option. This gives you a chance to compare the recommendations with

the current settings.

v Specify values for all keywords, because the defaults might not suit your system.

For example, mem_percent defaults to 25%, which is too low for a dedicated

DB2 server; 85% is the recommended value in this case.

DB2 autonomics and automatic parameters

Recent releases of DB2 database products have significantly increased the number

of parameters that are either automatically set at instance or database startup time,

or that are dynamically tuned during operation. For most systems, automatic

settings provide better performance than all but the very carefully hand-tuned

systems. This is particularly due to the DB2 self-tuning memory manager (STMM),

which dynamically tunes total database memory allocation as well as four of the

main memory consumers in a DB2 system: the buffer pools, the lock list, the

package cache, and the sort heap.

Because these parameters apply on a partition-by-partition basis, using the STMM

in a partitioned database environment should be done with some caution. On

partitioned database systems, the STMM continuously measures memory

requirements on a single partition (automatically chosen by the DB2 system, but

that choice can be overridden), and ‘pushes out’ heap size updates to all partitions

on which the STMM is enabled. Because the same values are used on all partitions,

the STMM works best in partitioned database environments where the amounts of

data, the memory requirements, and the general levels of activity are very uniform

across partitions. If a small number of partitions have skewed data volumes or

different memory requirements, the STMM should be disabled on those partitions,

and allowed to tune the more uniform ones. For example, the STMM should

generally be disabled on the catalog partition.

Chapter 3. Factors affecting performance 49

For partitioned database environments with skewed data distribution, where

continuous cross-cluster memory tuning is not advised, the STMM can be used

selectively and temporarily during a ‘tuning phase’ to help determine good

manual heap settings:

v Enable the STMM on one ‘typical’ partition. Other partitions continue to have

the STMM disabled.

v After memory settings have stabilized, disable the STMM and manually ‘harden’

the affected parameters at their tuned values.

v Deploy the tuned values on other database partitions with similar data volumes

and memory requirements (for example, partitions in the same partition group).

v Repeat the process if there are multiple disjointed sets of database partitions

containing similar volumes and types of data and performing similar roles in the

system.

The configuration advisor generally chooses to enable autonomic settings where

applicable. This includes automatic statistics updates from the RUNSTATS

command (very useful), but excludes automatic reorganization and automatic

backup. These can be very useful as well, but need to be configured according to

your environment and schedule for best results. Automatic statistics profiling

should remain disabled by default. It has quite high overhead and is intended to

be used temporarily under controlled conditions and with complex statements.

Explicit configuration settings

Some parameters do not have automatic settings, and are not set by the

configuration advisor. These need to be dealt with explicitly. Only parameters that

have performance implications are considered here.

v logpath or newlogpath determines the location of the transaction log. Even the

configuration advisor cannot decide for you where the logs should go. As

mentioned above, the most important point is that they should not share disk

devices with other DB2 objects, such as table spaces, or be allowed to remain in

the default location, which is under the database path. Ideally, transaction logs

should be placed on dedicated storage with sufficient throughput capacity to

ensure that a bottleneck will not be created.

v logbufsz determines the size of the transaction logger internal buffer, in 4-KB

pages. The default value of only eight pages is far too small for good

performance in a production environment. The configuration advisor always

increases it, but possibly not enough, depending on the input parameters. A

value of 256-1000 pages is a good general range, and represents only a very

small total amount of memory in the overall scheme of a database server.

v mincommit controls group commit, which causes a DB2 system to try to batch

together n committing transactions. With the current transaction logger design,

this is rarely the desired behavior. Leave mincommit at the default value of 1.

v buffpage determines the number of pages allocated to each buffer pool that is

defined with a size of -1. The best practice is to ignore buffpage, and either

explicitly set the size of buffer pools that have an entry in

SYSCAT.BUFFERPOOLS, or let the STMM tune buffer pool sizes automatically.

v diagpath determines the location of various useful DB2 diagnostic files. It

generally has little impact on performance, except possibly in a partitioned

database environment. The default location of diagpath on all partitions is

typically on a shared, NFS-mounted path. The best practice is to override

diagpath to a local, non-NFS directory for each partition. This prevents all

partitions from trying to update the same file with diagnostic messages. Instead,

these are kept local to each partition, and contention is greatly reduced.

50 Troubleshooting and Tuning Database Performance

v DB2_PARALLEL_IO is not a configuration parameter, but a DB2 registry

variable. It is very common for DB2 systems to use storage consisting of arrays

of disks, which are presented to the operating system as a single device, or to

use file systems that span multiple devices. The consequence is that by default, a

DB2 database system makes only one prefetch request at a time to a table space

container. This is done with the understanding that multiple requests to a single

device are serialized anyway. But if a container resides on an array of disks,

there is an opportunity to dispatch multiple prefetch requests to it

simultaneously, without serialization. This is where DB2_PARALLEL_IO comes

in. It tells the DB2 system that prefetch requests can be issued to a single

container in parallel. The simplest setting is DB2_PARALLEL_IO=* (meaning that all

containers reside on multiple – assumed in this case to be seven – disks), but

other settings also control the degree of parallelism and which table spaces are

affected. For example, if you know that your containers reside on a RAID-5

array of four disks, you might set DB2_PARALLEL_IO to *:3. Whether or not

particular values benefit performance also depends on the extent size, the RAID

segment size, and how many containers use the same set of disks.

Considerations for SAP and other ISV environments

If you are running a DB2 database server for an ISV application such as SAP, some

best practice guidelines that take into account the specific application might be

available. The most straightforward mechanism is the DB2 registry variable

DB2_WORKLOAD, which can be set to the value SAP to enable aggregated

registry variables that are optimized for SAP workloads.

Other recommendations and best practices might apply, such as the choice of a

code page or code set and collating sequence, because they must be set to a

predetermined value. Refer to the application vendor’s documentation for details.

For many ISV applications, such as SAP Business One, the AUTOCONFIGURE

command can be successfully used to define the initial configuration. However, it

should not be used in SAP NetWeaver installations, because an initial set of DB2

configuration parameters is applied during SAP installation. In addition, SAP has a

powerful alternative best practices approach (SAP Notes) that describes the

preferred DB2 parameter settings; for example, SAP Note 1086130 - DB6: DB2 9.5

Standard Parameter Settings.

Pay special attention to SAP applications when using the DB2 DPF feature. SAP

uses DPF mainly in its SAP NetWeaver Business Intelligence (Business Warehouse)

product. The recommended layout has the DB2 system catalog, the dimension and

master tables, plus the SAP base tables on Partition 0. This leads to a different

workload on this partition compared to other DB2 DPF installations. Because the

SAP application server runs on this partition, up to eight processors might be

assigned to just this partition. As the SAP BW workload becomes more highly

parallelized, with many short queries running concurrently, the number of

partitions for SAP BI is typically smaller than for other applications. In other

words, more than one CPU per data partition is required.

Instance configuration

When you start a new DB2 instance, there are a number of steps that you can

follow to establish a basic configuration.

v You can use the Configuration Advisor to obtain recommendations for the initial

values of the buffer pool size, database configuration parameters, and database

manager configuration parameters. To use the Configuration Advisor, specify the

Chapter 3. Factors affecting performance 51

AUTOCONFIGURE command for an existing database, or specify

AUTOCONFIGURE as an option on the CREATE DATABASE command. You

can display the recommended values or apply them by using the APPLY option

on the CREATE DATABASE command. The recommendations are based on

input that you provide and system information that the advisor gathers.

v You can use the Configuration Assistant to configure and maintain your

database objects, add new objects, bind applications, set database manager

configuration parameters, and import and export configuration information. To

open the Configuration Assistant, invoke the db2ca command. For instance

configuration, the Configuration Assistant helps you to set database manager

configuration parameters, set DB2 registry variables, configure another instance,

or reset the configuration.

v Consult the summary tables (see “Configuration parameters summary”) that list

and briefly describe each configuration parameter that is available to the

database manager or a database. These summary tables contain a column that

indicates whether tuning a particular parameter is likely to produce a high,

medium, low, or no performance change. Use these tables to find the parameters

that might help you to realize the largest performance improvements in your

environment.

v Use the ACTIVATE DATABASE command to activate a database and starts up

all necessary database services, so that the database is available for connection

and use by any application. In a partitioned database environment, this

command activates the database on all database partitions and avoids the

startup time that is required to initialize the database when the first application

connects.

Table space design

Disk-storage performance factors

Hardware characteristics, such as disk-storage configuration, can strongly influence

the performance of your system.

Performance can be affected by one or more of the following aspects of

disk-storage configuration:

v Division of storage

How well you divide a limited amount of storage between indexes and data and

among table spaces determines to a large degree how the system will perform in

different situations.

v Distribution of disk I/O

How well you balance the demand for disk I/O across several devices and

controllers can affect the speed with which the database manager is able to

retrieve data from disk.

v Disk subsystem core performance metrics

The number of disk operations per second, or the capacity in megabytes

transferred per second, has a very strong impact on the performance of the

overall system.

Table space impact on query optimization

Certain characteristics of your table spaces can affect the access plans that are

chosen by the query compiler.

These characteristics include:

52 Troubleshooting and Tuning Database Performance

v Container characteristics

Container characteristics can have a significant impact on the I/O cost that is

associated with query execution. When it selects an access plan, the query

optimizer considers these I/O costs, including any cost differences when

accessing data from different table spaces. Two columns in the

SYSCAT.TABLESPACES catalog view are used by the optimizer to help estimate

the I/O costs of accessing data from a table space:

– OVERHEAD provides an estimate of the time (in milliseconds) that is

required by the container before any data is read into memory. This overhead

activity includes the container’s I/O controller overhead as well as the disk

latency time, which includes the disk seek time.

You can use the following formula to estimate the overhead cost:

 OVERHEAD = average seek time in milliseconds

 + (0.5 * rotational latency)

where:

- 0.5 represents the average overhead of one half rotation

- Rotational latency (in milliseconds) is calculated for each full rotation, as

follows:

 (1 / RPM) * 60 * 1000

where:

v You divide by rotations per minute to get minutes per rotation

v You multiply by 60 seconds per minute

v You multiply by 1000 milliseconds per second

For example, assume that a disk performs 7200 rotations per minute. Using

the rotational-latency formula:

 (1 / 7200) * 60 * 1000 = 8.328 milliseconds

This value can be used to estimate the overhead as follows, assuming an

average seek time of 11 milliseconds:

 OVERHEAD = 11 + (0.5 * 8.328)

 = 15.164

– TRANSFERRATE provides an estimate of the time (in milliseconds) that is

required to read one page of data into memory.

If each table space container is a single physical disk, you can use the

following formula to estimate the transfer cost in milliseconds per page:

 TRANSFERRATE = (1 / spec_rate) * 1000 / 1024000 * page_size

where:

- You divide by spec_rate, which represents the disk specification for the

transfer rate (in megabytes per second), to get seconds per megabyte

- You multiply by 1000 milliseconds per second

- You divide by 1 024 000 bytes per megabyte

- You multiply by the page size (in bytes); for example, 4096 bytes for a 4-KB

page

For example, suppose that the specification rate for a disk is 3 megabytes per

second. Then:

 TRANSFERRATE = (1 / 3) * 1000 / 1024000 * 4096

 = 1.333248

Chapter 3. Factors affecting performance 53

or about 1.3 milliseconds per page.

If the table space containers are not single physical disks, but are arrays of

disks (such as RAID), you must take additional considerations into account

when estimating the TRANSFERRATE.

If the array is relatively small, you can multiply the spec_rate by the number

of disks, assuming that the bottleneck is at the disk level. However, if the

array is large, the bottleneck might not be at the disk level, but at one of the

other I/O subsystem components, such as disk controllers, I/O busses, or the

system bus. In this case, you cannot assume that the I/O throughput capacity

is the product of the spec_rate and the number of disks. Instead, you must

measure the actual I/O rate (in megabytes) during a sequential scan. For

example, a sequential scan resulting from select count(*) from big_table

could be several megabytes in size. In this case, divide the result by the

number of containers that make up the table space in which BIG_TABLE

resides. Use this result as a substitute for spec_rate in the formula given above.

For example, a measured sequential I/O rate of 100 megabytes while

scanning a table in a four-container table space would imply 25 megabytes

per container, or a TRANSFERRATE of (1 / 25) * 1000 / 1 024 000 * 4096 =

0.16 milliseconds per page.

Containers that are assigned to a table space might reside on different physical

disks. For best results, all physical disks that are used for a given table space

should have the same OVERHEAD and TRANSFERRATE characteristics. If these

characteristics are not the same, you should use average values when setting

OVERHEAD and TRANSFERRATE.

You can obtain media-specific values for these columns from hardware

specifications or through experimentation. These values can be specified on the

CREATE TABLESPACE and ALTER TABLESPACE statements.

v Prefetching

When considering the I/O cost of accessing data in a table space, the optimizer

also considers the potential impact that prefetching data and index pages from

disk can have on query performance. Prefetching can reduce the overhead that is

associated with reading data into the buffer pool.

The optimizer uses information from the PREFETCHSIZE and EXTENTSIZE

columns of the SYSCAT.TABLESPACES catalog view to estimate the amount of

prefetching that will occur.

– EXTENTSIZE can only be set when creating a table space. An extent size of 4

or 8 pages is usually sufficient.

– PREFETCHSIZE can be set when you create or alter a table space. The default

prefetch size is determined by the value of the dft_prefetch_sz database

configuration parameter. Review the recommendations for sizing this

parameter and make changes as needed, or set it to AUTOMATIC.

After making changes to your table spaces, consider executing the runstats utility

to collect the latest statistics about indexes and to ensure that the query optimizer

chooses the best possible data-access plans before rebinding your applications.

Database design

Tables

Table and index management for standard tables

In standard tables, data is logically organized as a list of data pages. These data

pages are logically grouped together based on the extent size of the table space.

54 Troubleshooting and Tuning Database Performance

For example, if the extent size is four, pages zero to three are part of the first

extent, pages four to seven are part of the second extent, and so on.

The number of records contained within each data page can vary, based on the size

of the data page and the size of the records. Most pages contain only user records.

However, a small number of pages include special internal records that are used

by the data server to manage the table. For example, in a standard table, there is a

free space control record (FSCR) on every 500th data page (Figure 8). These records

map the free space that is available for new records on each of the following 500

data pages (until the next FSCR).

Logically, index pages are organized as a B-tree that can efficiently locate table

records that have a specific key value. The number of entities on an index page is

not fixed, but depends on the size of the key. For tables in database managed space

(DMS) table spaces, record identifiers (RIDs) in the index pages use table

space-relative page numbers, not object-relative page numbers. This enables an

index scan to directly access the data pages without requiring an extent map page

(EMP) for mapping.

Each data page has the same format. A page begins with a page header; this is

followed by a slot directory. Each entry in the slot directory corresponds to a

different record on the page. An entry in the slot directory represents the

byte-offset on the data page where a record begins. Entries of -1 correspond to

deleted records.

Logical indexview ofLogical
table view

Physical
table view

. . .

. . .

. . .

. . .

0 4020

4021

4022

4023

252

1

2

3

4

876500

... ...

Data page format
Page Header

3800 -1 3400

Record 2

Record 1

Legend

user records

reserved for system records

FSCR

A
C

K S

K

RID

K
RID

4023,2

C
RID

RID RID

RID

...

RID (record ID) = Page 4023, Slot 2

Figure 8. Logical table, record, and index structure for standard tables

Chapter 3. Factors affecting performance 55

Record identifiers and pages

Record identifiers consist of a page number followed by a slot number (Figure 9).

Index records contain an additional field called the ridFlag. The ridFlag stores

information about the status of keys in the index, such as whether they have been

marked deleted. After the index is used to identify a RID, the RID is used to

identify the correct data page and slot number on that page. After a record is

assigned a RID, the RID does not change until the table is reorganized.

When a table page is reorganized, embedded free space that is left on the page

after a record is physically deleted is converted to usable free space.

The DB2 data server supports different page sizes. Use larger page sizes for

workloads that tend to access rows sequentially. For example, sequential access is

commonly used for decision support applications, or when temporary tables are

being used extensively. Use smaller page sizes for workloads that tend to access

rows randomly. For example, random access is often used in online transaction

processing (OLTP) environments.

Index management in standard tables

DB2 indexes use an optimized B-tree implementation that is based on an efficient

and high concurrency index management method using write-ahead logging. A

B-tree index is arranged as a balanced hierarchy of pages that minimizes access

time by realigning data keys as items are inserted or deleted.

The optimized B-tree implementation has bidirectional pointers on the leaf pages

that allow a single index to support scans in either forward or reverse direction.

Index pages are usually split in half, except at the high-key page where a 90/10

split is used, meaning that the highest ten percent of index keys are placed on a

new page. This type of index page split is useful for workloads in which insert

operations are often completed with new high-key values.

Deleted index keys are removed from an index page only if there is an X lock on

the table. If keys cannot be removed immediately, they are marked deleted and

physically removed later.

Figure 9. Data page and record ID (RID) format

56 Troubleshooting and Tuning Database Performance

If you enabled online index defragmentation by specifying a positive value for

MINPCTUSED when the index was created, index leaf pages can be merged

online. MINPCTUSED represents the minimum percentage of used space on an

index leaf page. If the amount of used space on an index page falls below this

value after a key is removed, the database manager attempts to merge the

remaining keys with those of a neighboring page. If there is sufficient room, the

merge is performed and an index leaf page is deleted. Because online

defragmentation occurs only when keys are removed from an index page, this does

not occur if keys are merely marked deleted, but have not been physically

removed from the page. Online index defragmentation can improve space reuse,

but if the MINPCTUSED value is too high, the time that is needed for a merge

increases, and a successful merge becomes less likely. The recommended value for

MINPCTUSED is fifty percent or less.

The INCLUDE clause of the CREATE INDEX statement lets you specify one or

more columns (beyond the key columns) for the index leaf pages. These include

columns, which are not involved in ordering operations against the index B-tree,

can increase the number of queries that are eligible for index-only access. However,

they can also increase index space requirements and, possibly, index maintenance

costs if the included columns are updated frequently. The maintenance cost of

updating include columns is less than the cost of updating key columns, but more

than the cost of updating columns that are not part of an index.

Table and index management for MDC tables

Table and index organization for multidimensional clustering (MDC) tables is

based on the same logical structures as standard table organization.

Like standard tables, MDC tables are organized into pages that contain rows of

data divided into columns. The rows on each page are identified by record IDs

(RIDs). However, the pages for MDC tables are grouped into extent-sized blocks.

For example, Figure 10 on page 58, shows a table with an extent size of four. The

first four pages, numbered 0 through 3, represent the first block in the table. The

next four pages, numbered 4 through 7, represent the second block in the table.

Chapter 3. Factors affecting performance 57

The first block contains special internal records, including the free space control

record (FSCR), that are used by the DB2 server to manage the table. In subsequent

blocks, the first page contains the FSCR. An FSCR maps the free space for new

records that exists on each page of the block. This available free space is used

when inserting records into the table.

As the name implies, MDC tables cluster data on more than one dimension. Each

dimension is determined by a column or set of columns that you specify in the

ORGANIZE BY DIMENSIONS clause of the CREATE TABLE statement. When you

create an MDC table, the following two indexes are created automatically:

v A dimension-block index, which contains pointers to each occupied block for a

single dimension

Legend

user records

reservedX

U

F

in use

free

Logical view of block map
for first 3 blocks

Logical
index

view of
dimension block

reserved for system records

FSCR

A
C

K S

K

X

0

U

1

F

2 ...

BID

K
BID

252,0

C
BID

BID BID

BID

Logical
table view

Physical
table view

...

0 4020

4021

4022

4023

1

2

3

4 252

253

254

255

5

6

7

1488

1489

1490

1491

8

9

10

11

block 0

block 2

block 1

BID (block Id) = Page 252, slot 0
(first physical page of block, slot always 0)

Figure 10. Logical table, record, and index structure for MDC tables

58 Troubleshooting and Tuning Database Performance

v A composite-block index, which contains all dimension key columns, and which

is used to maintain clustering during insert and update activity

The optimizer considers access plans that use dimension-block indexes when it

determines the most efficient access plan for a particular query. When queries have

predicates on dimension values, the optimizer can use the dimension-block index

to identify—and fetch from—the extents that contain these values. Because extents

are physically contiguous pages on disk, this minimizes I/O and leads to better

performance.

You can also create specific RID indexes if analysis of data access plans indicates

that such indexes would improve query performance.

Indexes

Index structure

The database manager uses a B+ tree structure for index storage.

A B+ tree has several levels, as shown in Figure 11; “rid” refers to a record ID

(RID).

 The top level is known as the root node. The bottom level consists of leaf nodes that

store index key values with pointers to the table rows that contain the

corresponding data. Levels between the root and leaf node levels are known as

intermediate nodes.

'E'

'F'

'N'

'L'

'Z'

'N'

('G',rid)
('I',rid)
('K',rid)

('F',rid) ('M',rid)
('N',rid).

INTERMEDIATE
NODES

ROOT NODE

LEAF
NODES

Figure 11. Structure of a B+ Tree Index

Chapter 3. Factors affecting performance 59

When it looks for a particular index key value, the index manager searches the

index tree, starting at the root node. The root node contains one key for each

(intermediate) node in the next level. The value of each of these keys is the largest

existing key value for the corresponding node at the next level. For example,

suppose that an index has three levels, as shown in the figure. To find a particular

index key value, the index manager searches the root node for the first key value

that is greater than or equal to the search key value. The root node key points to a

specific intermediate node. The index manager follows this procedure through each

intermediate node until it finds the leaf node that contains the index key that it

needs.

Suppose that the key being looked for in Figure 11 on page 59 is “I”. The first key

in the root node that is greater than or equal to “I” is “N”, which points to the

middle node at the next level. The first key in that intermediate node that is

greater than or equal to “I” is “L”, which, in turn, points to a specific leaf node on

which the index key for “I” and its corresponding RID can be found. The RID

identifies the corresponding row in the base table.

The leaf node level can also contain pointers to previous leaf nodes. These pointers

enable the index manager to scan across leaf nodes in either direction to retrieve a

range of values after it finds one value in the range. The ability to scan in either

direction is possible only if the index was created with the ALLOW REVERSE

SCANS option.

In the case of a multidimensional clustering (MDC) table, a block index is created

automatically for each clustering dimension that you specify for the table. A

composite block index is also created; this index contains a key part for each

column that is involved in any dimension of the table. Such indexes contain

pointers to block IDs (BIDs) instead of RIDs, and provide data-access

improvements.

A one-byte ridFlag, stored for each RID on the leaf page of an index, is used to

mark the RID as logically deleted, so that it can be physically removed later. For

each variable-length column in the index, one additional byte stores the actual

length of the column value. After an update or delete operation commits, the keys

that are marked as deleted can be removed.

Index cleanup and maintenance

After you create an index, performance might degrade with time unless you keep

the index compact and well organized.

The following recommendations will help you to keep indexes as small and

efficient as possible:

v Enable online index defragmentation

Create indexes with the MINPCTUSED clause. Drop and recreate existing

indexes, if necessary.

v Perform frequent commits, or acquire table-level X locks, either explicitly or

through lock escalation, if frequent commits are not possible.

Index keys that are marked deleted can be physically removed from the table

after a commit. X locks on tables enable the deleted keys to be physically

removed when they are marked deleted, as explained below.

v Use the REORGCHK command to help determine when to reorganize indexes or

tables, and when to use the REORG INDEXES command with the CLEANUP

ONLY option.

60 Troubleshooting and Tuning Database Performance

To allow read and write access to the index during reorganization, use the

REORG INDEXES command with the ALLOW WRITE ACCESS option. For a

partitioned table, the ALLOW WRITE ACCESS clause on the REORG

INDEXES...ALL command can only be specified if the CLEANUP ONLY clause

is also specified.

Index keys that are marked deleted are cleaned up:

v During subsequent insert, update, or delete activity

During key insertion, keys that are marked deleted and that are known to have

been committed are cleaned up if that might avoid the need to perform a page

split and prevent the index from increasing in size.

During key deletion, when all keys on a page have been marked deleted, an

attempt is made to find another index page where all the keys are marked

deleted and all those deletions have committed. If such a page is found, it is

deleted from the index tree. If there is an X lock on the table when a key is

deleted, the key is physically deleted instead of just being marked deleted.

During physical deletion, any deleted keys on the same page are also removed if

they are marked deleted and known to be committed.

v When you execute the REORG INDEXES command with CLEANUP options

The CLEANUP ONLY PAGES option searches for and frees index pages on

which all keys are marked deleted and known to be committed.

The CLEANUP ONLY ALL option frees not only index pages on which all keys

are marked deleted and known to be committed, but it also removes record

identifiers (RIDs) that are marked deleted and known to be committed from

pages that contain some non-deleted RIDs. This option also tries to merge

adjacent leaf pages if doing so results in a merged leaf page that has at least

PCTFREE free space. The PCTFREE value is defined when an index is created.

The default PCTFREE value is ten percent. If two pages can be merged, one of

the pages is freed.

For partitioned tables, it is recommended that you invoke the runstats utility

after an asynchronous index cleanup has completed. To determine whether there

are detached data partitions in the table, query the STATUS field in the

SYSCAT.DATAPARTITIONS catalog view and look for the value D (detached) or

I (index cleanup)

v When an index is rebuilt (or, in the case of partitioned indexes, when an index

partition is rebuilt)

Utilities that rebuild indexes include the following:

– REORG INDEXES without any of the CLEANUP options

– REORG TABLE without the INPLACE option

– IMPORT with the REPLACE option

– LOAD with the INDEXING MODE REBUILD option

Asynchronous index cleanup

Asynchronous index cleanup (AIC) is the deferred cleanup of indexes following

operations that invalidate index entries. Depending on the type of index, the

entries can be record identifiers (RIDs) or block identifiers (BIDs). Invalid index

entries are removed by index cleaners, which operate asynchronously in the

background.

AIC accelerates the detachment of a data partition from a partitioned table, and is

initiated if the partitioned table contains one or more nonpartitioned indexes. In

this case, AIC removes all nonpartitioned index entries that refer to the detached

Chapter 3. Factors affecting performance 61

data partition, and any pseudo-deleted entries. After all of the indexes have been

cleaned, the identifier that is associated with the detached data partition is

removed from the system catalog.

If the partitioned table has dependent materialized query tables (MQTs), AIC is not

initiated until after a SET INTEGRITY statement is executed.

Normal table access is maintained while AIC is in progress. Queries accessing the

indexes ignore any invalid entries that have not yet been cleaned.

In most cases, one cleaner is started for each nonpartitioned index that is

associated with the partitioned table. An internal task distribution daemon is

responsible for distributing the AIC tasks to the appropriate table partitions and

assigning database agents. The distribution daemon and cleaner agents are internal

system applications that appear in LIST APPLICATIONS command output with

the application names db2taskd and db2aic, respectively. To prevent accidental

disruption, system applications cannot be forced. The distribution daemon remains

online as long as the database is active. The cleaners remain active until cleaning

has been completed. If the database is deactivated while cleaning is in progress,

AIC resumes when you reactivate the database.

AIC impact on performance

AIC incurs minimal performance impact.

An instantaneous row lock test is required to determine whether a pseudo-deleted

entry has been committed. However, because the lock is never acquired,

concurrency is unaffected.

Each cleaner acquires a minimal table space lock (IX) and a table lock (IS). These

locks are released if a cleaner determines that other applications are waiting for

locks. If this occurs, the cleaner suspends processing for 5 minutes.

Cleaners are integrated with the utility throttling facility. By default, each cleaner

has a utility impact priority of 50. You can change the priority by using the SET

UTIL_IMPACT_PRIORITY command or the db2UtilityControl API.

Monitoring AIC

You can monitor AIC with the LIST UTILITIES command. Each index cleaner

appears as a separate utility in the output. The following is an example of output

from the LIST UTILITIES SHOW DETAIL command:

ID = 2

Type = ASYNCHRONOUS INDEX CLEANUP

Database Name = WSDB

Partition Number = 0

Description = Table: USER1.SALES, Index: USER1.I2

Start Time = 12/15/2005 11:15:01.967939

State = Executing

Invocation Type = Automatic

Throttling:

 Priority = 50

Progress Monitoring:

 Total Work = 5 pages

 Completed Work = 0 pages

 Start Time = 12/15/2005 11:15:01.979033

ID = 1

62 Troubleshooting and Tuning Database Performance

Type = ASYNCHRONOUS INDEX CLEANUP

Database Name = WSDB

Partition Number = 0

Description = Table: USER1.SALES, Index: USER1.I1

Start Time = 12/15/2005 11:15:01.978554

State = Executing

Invocation Type = Automatic

Throttling:

 Priority = 50

Progress Monitoring:

 Total Work = 5 pages

 Completed Work = 0 pages

 Start Time = 12/15/2005 11:15:01.980524

In this case, there are two cleaners operating on the USERS1.SALES table. One

cleaner is processing index I1, and the other is processing index I2. The progress

monitoring section shows the estimated total number of index pages that need

cleaning and the current number of clean index pages.

The State field indicates the current state of a cleaner. The normal state is

Executing, but the cleaner might be in Waiting state if it is waiting to be assigned

to an available database agent or if the cleaner is temporarily suspended because

of lock contention.

Note that different tasks on different database partitions can have the same utility

ID, because each database partition assigns IDs to tasks that are running on that

database partition only.

Asynchronous index cleanup for MDC tables

You can enhance the performance of a rollout deletion—an efficient method for

deleting qualifying blocks of data from multidimensional clustering (MDC)

tables—by using asynchronous index cleanup (AIC). AIC is the deferred cleanup of

indexes following operations that invalidate index entries.

Indexes are cleaned up synchronously during a standard rollout deletion. When a

table contains many record ID (RID) indexes, a significant amount of time is spent

removing the index keys that reference the table rows that are being deleted. You

can speed up the rollout by specifying that these indexes are to be cleaned up after

the deletion operation commits.

To take advantage of AIC for MDC tables, you must explicitly enable the deferred

index cleanup rollout mechanism. There are two methods of specifying a deferred

rollout: setting the DB2_MDC_ROLLOUT registry variable to DEFER or issuing

the SET CURRENT MDC ROLLOUT MODE statement. During a deferred index

cleanup rollout operation, blocks are marked as rolled out without an update to

the RID indexes until after the transaction commits. Block identifier (BID) indexes

are cleaned up during the delete operation because they do not require row-level

processing.

AIC rollout is invoked when a rollout deletion commits or, if the database was

shut down, when the table is first accessed following database restart. While AIC is

in progress, queries against the indexes are successful, including those that access

the index that is being cleaned up.

There is one coordinating cleaner per MDC table. Index cleanup for multiple

rollouts is consolidated within the cleaner, which spawns a cleanup agent for each

RID index. Cleanup agents update the RID indexes in parallel. Cleaners are also

integrated with the utility throttling facility. By default, each cleaner has a utility

Chapter 3. Factors affecting performance 63

impact priority of 50 (acceptable values are between 1 and 100, with 0 indicating

no throttling). You can change this priority by using the SET

UTIL_IMPACT_PRIORITY command or the db2UtilityControl API.

Monitoring the progress of deferred index cleanup rollout operation

Because the rolled-out blocks on an MDC table are not reusable until after the

cleanup is complete, it is useful to monitor the progress of a deferred index

cleanup rollout operation. Use the LIST UTILITIES command to display a utility

monitor entry for each index being cleaned up. You can also retrieve the total

number of MDC table blocks in the database that are pending asynchronous

cleanup following a rollout deletion (BLOCKS_PENDING_CLEANUP) by using the

SYSPROC.ADMIN_GET_TAB_INFO_V95 table function or the GET SNAPSHOT

command.

In the following sample output for the LIST UTILITIES SHOW DETAILS

command, progress is indicated by the number of pages in each index that have

been cleaned up. Each phase represents one RID index.

ID = 2

Type = MDC ROLLOUT INDEX CLEANUP

Database Name = WSDB

Partition Number = 0

Description = TABLE.<schema_name>.<table_name>

Start Time = 06/12/2006 08:56:33.390158

State = Executing

Invocation Type = Automatic

Throttling:

 Priority = 50

Progress Monitoring:

 Estimated Percentage Complete = 83

 Phase Number = 1

 Description = <schema_name>.<index_name>

 Total Work = 13 pages

 Completed Work = 13 pages

 Start Time = 06/12/2006 08:56:33.391566

 Phase Number = 2

 Description = <schema_name>.<index_name>

 Total Work = 13 pages

 Completed Work = 13 pages

 Start Time = 06/12/2006 08:56:33.391577

 Phase Number = 3

 Description = <schema_name>.<index_name>

 Total Work = 9 pages

 Completed Work = 3 pages

 Start Time = 06/12/2006 08:56:33.391587

Online index defragmentation

Online index defragmentation is enabled by the user-definable threshold for the

minimum amount of used space on an index leaf page.

When an index key is deleted from a leaf page and this threshold is exceeded, the

neighboring index leaf pages are checked to determine whether two leaf pages can

be merged. If there is sufficient space on a page, and the merging of two

neighboring pages is possible, the merge occurs immediately in the background,

and the resulting empty index leaf page is deleted.

If existing indexes require the ability to be merged online, they must be dropped

and then recreated with the MINPCTUSED clause specified on the CREATE

INDEX statement. The recommended value for MINPCTUSED is less than 50,

64 Troubleshooting and Tuning Database Performance

because the goal is to merge two neighboring index leaf pages. A value of zero,

which is the default, disables online defragmentation.

Index nonleaf pages are not merged during online index defragmentation.

However, empty nonleaf pages are deleted and made available for reuse by other

indexes on the same table. To free these nonleaf pages for other objects in a

database managed space (DMS) storage model, or to free disk space in a system

managed space (SMS) storage model, perform a full reorganization of the table and

indexes, which will make the indexes as small as possible. The number of levels in

an index is not reduced during online index defragmentation.

When there is an X lock on a table, keys are physically removed from a page

during key deletion; in this case, online index defragmentation is effective.

However, if there is no X lock on the table during key deletion, keys are marked

deleted but are not physically removed from the index page, and index

defragmentation is not attempted.

To defragment indexes regardless of the value of MINPCTUSED, invoke the

REORG INDEXES command with the CLEANUP ONLY ALL option. Two

neighboring leaf pages are merged if at least PCTFREE free space will be left on

the merged page. PCTFREE can be specified at index creation time; its default

value is 10 (percent).

Using relational indexes to improve performance

Indexes can be used to improve performance when accessing table data. Relational

indexes are used when accessing relational data, and indexes over XML data are

used when accessing XML data.

Although the query optimizer decides whether to use a relational index to access

relational table data, it is up to you to decide which indexes might improve

performance and to create those indexes. The only exceptions to this are the

dimension block indexes and the composite block index that are created

automatically for each dimension when you create a multidimensional clustering

(MDC) table.

Execute the runstats utility to collect new index statistics after you create a

relational index or after you change the prefetch size. You should execute the

runstats utility at regular intervals to keep the statistics current; without up-to-date

statistics about indexes, the optimizer cannot determine the best data-access plan

for queries.

To determine whether a relational index is used in a specific package, use the

explain facility. To get advice about relational indexes that could be exploited by

one or more SQL statements, use the db2advis command to launch the Design

Advisor.

Advantages of a relational index over no index

If no index on a table exists, a table scan must be performed for each table that is

referenced in an SQL query. The larger the table, the longer such a scan will take,

because a table scan requires that each row be accessed sequentially. Although a

table scan might be more efficient for a complex query that requires most of the

rows in a table, an index scan can access table rows more efficiently for a query

that returns only some table rows.

Chapter 3. Factors affecting performance 65

The optimizer chooses an index scan if the relational index columns are referenced

in the SELECT statement and if the optimizer estimates that an index scan will be

faster than a table scan. Index files are generally smaller and require less time to

read than an entire table, especially when the table is large. Moreover, it might not

be necessary to scan an entire index. Any predicates that are applied to the index

will reduce the number of rows that must be read from data pages.

If an ordering requirement on the output can be matched with an index column,

scanning the index in column order will enable the rows to be retrieved in the

correct order without the need for a sort operation. Note that the existence of a

relational index on the table being queried does not guarantee an ordered result

set. Only an ORDER BY clause ensures the order of a result set.

A relational index can also contain include columns, which are non-indexed

columns in an indexed row. Such columns can make it possible for the optimizer

to retrieve required information from the index alone, without having to access the

table itself.

Disadvantages of a relational index over no index

Although indexes can reduce access time significantly, they can also have adverse

effects on performance. Before you create indexes, consider the effects of multiple

indexes on disk space and processing time. Choose indexes carefully to address the

needs of your application programs.

v Each index requires storage space. The exact amount depends on the size of the

table and the size and number of columns in the relational index.

v Each insert or delete operation against a table requires additional updating of

each index on that table. This is also true for each update operation that changes

the value of an index key.

v Each relational index represents another potential access plan for the optimizer

to consider, which increases query compilation time.

Relational index planning tips

A well-designed index can make it easier for queries to access relational data.

Use the Design Advisor (db2advis command) to find the best indexes for a specific

query or for the set of queries that defines a workload. This tool can make

performance-enhancing recommendations, such as include columns or indexes that

are enabled for reverse scans.

The following guidelines can also help you to create useful relational indexes.

v Retrieving data efficiently

– To improve data retrieval, add include columns to unique indexes. Good

candidates are columns that:

- Are accessed frequently and would benefit from index-only access

- Are not required to limit the range of index scans

- Do not affect the ordering or uniqueness of the index key

For example:

 create unique index idx on employee (workdept) include (lastname)

Specifying LASTNAME as an include column rather than part of the index

key means that LASTNAME is stored only on the leaf pages of the index.

66 Troubleshooting and Tuning Database Performance

– Create relational indexes on columns that are used in the WHERE clauses of

frequently run queries.

In the following example, the WHERE clause will likely benefit from an index

on WORKDEPT, unless the WORKDEPT column contains many duplicate

values.

 where workdept=’A01’ or workdept=’E21’

– Create relational indexes with a compound key that names each column

referenced in a query. When an index is specified in this way, relational data

can be retrieved from the index only, which is more efficient than accessing

the table.

For example, consider the following query:

 select lastname

 from employee

 where workdept in (’A00’,’D11’,’D21’)

If a relational index is defined on the WORKDEPT and LASTNAME columns

of the EMPLOYEE table, the query might be processed more efficiently by

scanning the index rather than the entire table. Because the predicate

references WORKDEPT, this column should be the first key column of the

relational index.
v Searching tables efficiently

Decide between ascending and descending key order, depending on the order

that will be used most often. Although values can be searched in reverse

direction if you specify the ALLOW REVERSE SCANS option on the CREATE

INDEX statement, scans in the specified index order perform slightly better than

reverse scans.

v Accessing larger tables efficiently

Use relational indexes to optimize frequent queries against tables with more

than a few data pages, as recorded in the NPAGES column of the

SYSCAT.TABLES catalog view. You should:

– Create an index on any column that you will use to join tables.

– Create an index on any column that you will be searching for specific values

on a regular basis.
v Improving the performance of update or delete operations

– To improve the performance of such operations against a parent table, create

relational indexes on foreign keys.

– To improve the performance of such operations against REFRESH

IMMEDIATE and INCREMENTAL materialized query tables (MQTs), create

unique relational indexes on the implied unique key of the MQT, which is

composed of the columns in the GROUP BY clause of the MQT definition.
v Improving join performance

If you have more than one choice for the first key column in a multiple-column

relational index, use the column that is most often specified with an equijoin

predicate (expression1 = expression2) or the column with the greatest number

of distinct values as the first key column.

v Sorting

– For fast sort operations, create relational indexes on columns that are

frequently used to sort the relational data.

– To avoid some sorts, use the CREATE INDEX statement to define primary

keys and unique keys whenever possible.

Chapter 3. Factors affecting performance 67

– Create a relational index to order the rows in whatever sequence is required

by a frequently run query. Ordering is required by the DISTINCT, GROUP BY,

and ORDER BY clauses.

The following example uses the DISTINCT clause:

 select distinct workdept

 from employee

The database manager can use an index that is defined on the WORKDEPT

column to eliminate duplicate values. The same index could also be used to

group values, as in the following example that uses a GROUP BY clause:

 select workdept, average(salary)

 from employee

 group by workdept

v Keeping newly inserted rows clustered and avoiding page splits

Define a clustering index, which should significantly reduce the need to

reorganize the table. Use the PCTFREE option on the CREATE TABLE statement

to specify how much free space should be left on each page so that rows can be

inserted appropriately. You can also specify the pagefreespace file type modifier

on the LOAD command.

v Saving index maintenance costs and storage space

– Avoid creating indexes that are partial keys of other existing indexes. For

example, if there is an index on columns A, B, and C, another index on

columns A and B is generally not useful.

– Do not create arbitrary indexes on many columns. Unnecessary indexes not

only waste space, but also cause lengthy prepare times.

- For online transaction processing (OLTP) environments, create one or two

indexes per table.

- For read-only query environments, you might create more than five indexes

per table.

- For mixed query and OLTP environments, between two and five indexes

per table is likely appropriate.
v Enabling online index defragmentation

Use the MINPCTUSED option when you create relational indexes.

MINPCTUSED enables online index defragmentation; it specifies the minimum

amount of space that must be in use on an index leaf page.

Relational index performance tips

There are a number of actions that you can take to ensure that your relational

indexes perform well.

v Specify a large utility heap

If you expect a lot of update activity against the table on which a relational

index is being created or reorganized, consider configuring a large utility heap

(util_heap_sz database configuration parameter), which will help to speed up

these operations.

v To avoid sort overflows in a symmetric multiprocessor (SMP) environment,

increase the value of the sheapthres database manager configuration parameter

v Create separate table spaces for relational indexes

You can create index table spaces on faster physical devices, or assign index

table spaces to a different buffer pool, which might keep the index pages in the

buffer longer because they do not compete with data pages.

If you use a different table space for indexes, you can optimize the configuration

of that table space for indexes. Because indexes are usually smaller than tables

68 Troubleshooting and Tuning Database Performance

and are spread over fewer containers, indexes often have smaller extent sizes.

The query optimizer considers the speed of the device that contains a table

space when it chooses an access plan.

v Ensure a high degree of clustering

If your SQL statement requires ordering of the result (for example, if it contains

an ORDER BY, GROUP BY, or DISTINCT clause), the optimizer might not

choose an available index if:

– Index clustering is poor. For information about the degree of clustering in a

specific index, query the CLUSTERRATIO and CLUSTERFACTOR columns of

the SYSCAT.INDEXES catalog view.

– The table is so small that it is cheaper to scan the table and to sort the result

set in memory.

– There are competing indexes for accessing the table.

A clustering index attempts to maintain a particular order of the data, improving

the CLUSTERRATIO or CLUSTERFACTOR statistics that are collected by the

runstats utility. After you create a clustering index, perform an offline table reorg

operation. In general, a table can only be clustered on one index. Build

additional indexes after you build the clustering index.

A table’s PCTFREE value determines the amount of space on a page that is to

remain empty for future data insertions, so that this inserted data can be

clustered appropriately. If you do not specify a PCTFREE value for a table,

reorganization eliminates all extra space.

Except in the case of range-clustered tables, data clustering is not maintained

during update operations. That is, if you update a record so that its key value in

the clustering index changes, the record is not necessarily moved to a new page

to maintain the clustering order. To maintain clustering, delete the record and

then insert an updated version of the record, instead of using an update

operation.

v Keep table and index statistics up-to-date

After you create a new relational index, execute the runstats utility to collect

index statistics. These statistics help the optimizer to determine whether using

the index can improve data-access performance.

v Enable online index defragmentation

Online index defragmentation is enabled if MINPCTUSED for the relational

index is set to a value that is greater than zero. Online index defragmentation

enables indexes to be compacted through the merging of index leaf pages when

the amount of free space on a page falls below the specified MINPCTUSED

value.

v Reorganize relational indexes as necessary

To get the best performance from your indexes, consider reorganizing them

periodically, because updates to tables can cause index page prefetching to

become less effective.

To reorganize an index, either drop it and recreate it, or use the reorg utility.

To reduce the need for frequent reorganization, specify an appropriate PCTFREE

value on the CREATE INDEX statement to leave sufficient free space on each

index leaf page as it is being created. During future activity, records can be

inserted into the index with less likelihood of index page splitting, which

decreases page contiguity and, therefore, the efficiency of index page

prefetching. The PCTFREE value that is specified when you create a relational

index is preserved when the index is reorganized.

v Analyze explain information about relational index use

Chapter 3. Factors affecting performance 69

Periodically issue EXPLAIN statements against your most frequently used

queries and verify that each of your relational indexes is being used at least

once. If an index is not being used by any query, consider dropping that index.

Explain information also lets you determine whether a large table being scanned

is processed as the inner table of a nested-loop join. If it is, an index on the

join-predicate column is either missing or considered to be ineffective for

applying the join predicate.

v Declare tables that vary widely in size as “volatile”

A volatile table is a table whose cardinality at run time can vary greatly. For this

kind of table, the optimizer might generate an access plan that favors a table

scan instead of an index scan.

Use the ALTER TABLE statement with the VOLATILE clause to declare such a

table as volatile. The optimizer will use an index scan instead of a table scan

against such tables, regardless of statistics, if:

– All referenced columns are part of the index

– The index can apply a predicate during the index scan

In the case of typed tables, the ALTER TABLE...VOLATILE statement is

supported only for the root table of a typed table hierarchy.

Partitioning and clustering

Index behavior on partitioned tables

Indexes on partitioned tables operate similarly to indexes on nonpartitioned tables,

however they are stored using a different storage model, depending on whether

they are partitioned or nonpartitioned indexes.

Whereas the indexes for a regular nonpartitioned table all reside in a shared index

object, a nonpartitioned index on a partitioned table is created in its own index

object in a single table space, even if the data partitions span multiple table spaces.

Both database managed space (DMS) and system managed space (SMS) table

spaces support the use of indexes in a different location than the table data. Each

nonpartitioned index can be placed in its own table space, including large table

spaces. Each index table space must use the same storage mechanism as the data

partitions, either DMS or SMS. Indexes in large table spaces can contain up to 229

pages. All of the table spaces must be in the same database partition group.

A partitioned index uses an index organization scheme in which index data is

divided across multiple index partitions, according to the partitioning scheme of the

table. Each index partition only refers to table rows in the corresponding data

partition. All index partitions for a given data partition reside in the same index

object.

User-created indexes over XML data can only be nonpartitioned. System-generated

XML regions indexes are always partitioned, but system-generated column path

indexes are always nonpartitioned.

Benefits of a nonpartitioned index include:

v The ability to define different table space characteristics for each index (for

example, different page sizes might help to ensure better space utilization)

v The fact that indexes can be reorganized independently of one another

v Improved performance of drop index operations

v Reduced I/O contention, which helps to provide more efficient concurrent access

to the index data

70 Troubleshooting and Tuning Database Performance

v The fact that when individual indexes are dropped, space becomes immediately

available to the system without the need for index reorganization

Benefits of a partitioned index include:

v Improved data roll-in and roll-out performance

v Less contention on index pages, because the index is partitioned

v An index B-tree structure for each index partition, which can result in:

– Improved insert, update, delete, and scan performance, because the B-tree for

an index partition normally contains fewer levels than an index that

references all data in the table

– Improved scan performance and concurrency when partition elimination is in

effect; although partition elimination can by used for both partitioned and

nonpartitioned index scans, it is more effective for partitioned index scans,

because each index partition contains keys for only the corresponding data

partition. This can result in having to scan fewer keys and fewer index pages

than a similar query over a nonpartitioned index.

Although a nonpartitioned index always preserves order on the index columns, a

partitioned index might lose some order across partitions in certain scenarios; for

example, if the partitioning columns do not match the index columns, and more

than one partition is to be accessed.

During online index creation, concurrent read and write access to the table is

permitted. After such an index has been built, changes that were made to the table

during index creation are applied to the new index. Write access to the table is

blocked until index creation completes and the transaction commits. In the case of

partitioned indexes, each data partition is quiesced to read-only access only while

changes that were made to that data partition (during the creation of the index

partition) are applied.

Partitioned index support becomes particularly beneficial when you are rolling

data in using the ALTER TABLE...ATTACH PARTITION statement. If

nonpartitioned indexes exist (not including the XML columns path index, if the

table has XML data), issue a SET INTEGRITY statement after partition attachment.

This is necessary for nonpartitioned index maintenance, range validation,

constraints checking, and materialized query table (MQT) maintenance.

Nonpartitioned index maintenance can be time-consuming and require large

amounts of log space. Use partitioned indexes to avoid this maintenance cost.

Figure 12 on page 72 shows two nonpartitioned indexes on a partitioned table,

with each index residing in a separate table space.

Chapter 3. Factors affecting performance 71

Figure 13 on page 73 shows a partitioned index on a partitioned table spanning

two database partitions and residing in a single table space.

Figure 12. Nonpartitioned indexes on a partitioned table

72 Troubleshooting and Tuning Database Performance

Figure 14 on page 74 shows a mix of partitioned and nonpartitioned indexes on a

partitioned table.

Figure 13. Nonpartitioned index on a table that is both distributed and partitioned

Chapter 3. Factors affecting performance 73

The nonpartitioned index X1 refers to rows in all of the data partitions. By

contrast, the partitioned indexes X2 and X3 only refer to rows in the data partition

with which they are associated. Table space TS3 also shows the index partitions

sharing the table space of the data partitions with which they are associated. This

is the default for partitioned indexes.

You can override the default location for nonpartitioned and partitioned indexes,

although the way that you do this is different for each. With nonpartitioned

indexes, you can specify a table space when you create the index; for partitioned

indexes, you need to determine which table spaces index partitions will be stored

in when you create the table.

Nonpartitioned indexes

 To override the index location for nonpartitioned indexes, use the IN

clause on the CREATE INDEX statement, which enables you to specify an

alternative table space location for the index. You can place different

Part0

Table space (ts3)

Table space (ts4)

Table space (ts5)

Part1 Index (x3)

Index (x2)

Part2 Index (x3)

Index (x2)

Part3 Index (x3)

Index (x2)

Part4 Index (x3)

Index (x2)

Table space (ts2)

Index (x1)

Index (x3)

Index (x2)

t1

Table space (ts1)

Figure 14. Partitioned and nonpartitioned indexes on a partitioned table

74 Troubleshooting and Tuning Database Performance

indexes in different table spaces, as required. If you create a partitioned

table without specifying where to place its nonpartitioned indexes, and

you then create an index using a CREATE INDEX statement that does not

specify a table space, the index is created in the table space of the first

attached or visible data partition. Each of the following three possible cases

is evaluated in order, starting with case 1, to determine where the index is

to be created. This evaluation to determine table space placement for the

index stops when a matching case is found.

Case 1:

When an index table space is specified in the CREATE INDEX...IN

tbspace statement, use the specified table space for this index.

Case 2:

When an index table space is specified in the CREATE TABLE...

INDEX IN tbspace statement, use the specified

table space for this index.

Case 3:

When no table space is specified, choose the table space that is used

by the first attached or visible data partition.

Partitioned indexes

By default, index partitions are placed in the same table space as the data

partitions that they reference. To override this default behavior, you must

use the INDEX IN clause for each data partition that you define using the

CREATE TABLE statement. In other words, if you plan to use partitioned

indexes for a partitioned table, you must anticipate where you want the

index partitions to be stored when you create the table. If you try to use

the INDEX IN clause when creating a partitioned index, you will receive

an error message.

Example 1: Given partitioned table SALES (a int, b int, c int), create a unique index

A_IDX.

 create unique index a_idx on sales (a)

Because the table SALES is partitioned, index a_idx will also be created as a

partitioned index.

Example 2: Create index B_IDX.

 create index b_idx on sales (b)

Example 3: To override the default location for the index partitions in a partitioned

index, use the INDEX IN clause for each partition that you define when creating

the partitioned table. In the example that follows, indexes for the table Z are

created in table space TS3.

create table z (a int, b int)

 partition by range (a) (starting from (1)

 ending at (100) index in ts3)

 create index c_idx on z (a) partitioned

Clustering of nonpartitioned indexes on partitioned tables

Clustering indexes offer the same benefits for partitioned tables as they do for

regular tables. However, care must be taken with the table partitioning key

definitions when choosing a clustering index.

Chapter 3. Factors affecting performance 75

You can create a clustering index on a partitioned table using any clustering key.

The database server attempts to use the clustering index to cluster data locally

within each data partition. During a clustered insert operation, an index lookup is

performed to find a suitable record identifier (RID). This RID is used as a starting

point in the table when looking for space in which to insert the record. To achieve

optimal clustering with good performance, there should be a correlation between

the index columns and the table partitioning key columns. One way to ensure such

correlation is to prefix the index columns with the table partitioning key columns,

as shown in the following example:

 partition by range (month, region)

 create index...(month, region, department) cluster

Although the database server does not enforce this correlation, there is an

expectation that all keys in the index will be grouped together by partition IDs to

achieve good clustering. For example, suppose that a table is partitioned on

QUARTER and a clustering index is defined on DATE. There is a relationship

between QUARTER and DATE, and optimal clustering of the data with good

performance can be achieved because all keys of any data partition are grouped

together within the index. Figure 15 on page 77 shows that optimal scan

performance is achieved only when clustering correlates with the table partitioning

key.

76 Troubleshooting and Tuning Database Performance

Benefits of clustering include:

v Rows are in key order within each data partition.

v Clustering indexes improve the performance of scans that traverse the table in

key order, because the scanner fetches the first row of the first page, then each

row in that same page before moving on to the next page. This means that only

one page of the table needs to be in the buffer pool at any given time. In

Figure 15. The possible effects of a clustered index on a partitioned table.

Chapter 3. Factors affecting performance 77

contrast, if the table is not clustered, rows are likely fetched from different

pages. Unless the buffer pool can hold the entire table, most pages will likely be

fetched more than once, greatly slowing down the scan.

If the clustering key is not correlated with the table partitioning key, but the data is

locally clustered, you can still achieve the full benefit of the clustered index if there

is enough space in the buffer pool to hold one page of each data partition. This is

because each fetched row from a particular data partition is near the row that was

previously fetched from that same partition (see the second example in Figure 15

on page 77).

Federated databases

Server options that affect federated databases

A federated database system is composed of a DB2 data server (the federated

database) and one or more data sources. You identify the data sources to the

federated database when you issue CREATE SERVER statements. You can also

specify server options that refine and control various aspects of federated system

operation.

You must install the distributed join installation option and set the federated

database manager configuration parameter to YES before you can create servers

and specify server options. To change server options later, use the ALTER SERVER

statement.

The server option values that you specify on the CREATE SERVER statement affect

query pushdown analysis, global optimization, and other aspects of federated

database operations. For example, you can specify performance statistics as server

option values. The cpu_ratio option specifies the relative speeds of the processors at

the data source and the federated server, and the io_ratio option specifies the

relative rates of the data I/O divides at the data source and the federated server.

Server option values are written to the system catalog (SYSCAT.SERVEROPTIONS),

and the optimizer uses this information when it develops access plans for the data

source. If a statistic changes (for example, when a data source processor is

upgraded), use the ALTER SERVER statement to update the catalog with the new

value.

Resource utilization

Memory allocation

Memory allocation and deallocation occurs at various times. Memory might be

allocated to a particular memory area when a specific event occurs (for example,

when an application connects), or it might be reallocated in response to a

configuration change.

Figure 16 on page 79 shows the different memory areas that the database manager

allocates for various uses and the configuration parameters that enable you to

control the size of these memory areas. Note that in a partitioned database

environment, each database partition has its own database manager shared

memory set.

78 Troubleshooting and Tuning Database Performance

Memory is allocated by the database manager whenever one of the following

events occurs:

When the database manager starts (db2start)

Database manager shared memory (also known as instance shared memory)

remains allocated until the database manager stops (db2stop). This area

contains information that the database manager uses to manage activity

across all database connections. DB2 automatically controls the size of the

database manager shared memory.

When a database is activated or connected to for the first time

Database global memory is used across all applications that connect to the

database. The size of the database global memory is specified by the

database_memory database configuration parameter. By default, this

parameter is set to automatic, allowing DB2 to calculate the initial amount

of memory allocated for the database and to automatically configure the

database memory size during run time based on the needs of the database.

 The following memory areas can be dynamically adjusted:

v Buffer pools (using the ALTER BUFFERPOOL statement)

v Database heap (including log buffers)

v Utility heap

v Package cache

v Catalog cache

v Lock list; this memory area can only be increased dynamically (it cannot

be decreased)

Database Manager
Shared Memory

(1)

Application Global Memory

Application
Heap

Application
Heap

(1) (numdb)

(max_connections)

Database Global Memory

Application
Global Memory

Database
Global Memory

Figure 16. Types of memory allocated by the database manager

Chapter 3. Factors affecting performance 79

The sortheap, sheapthres_shr, and sheapthres configuration parameters

are also dynamically updatable. The only restriction is that sheapthres

cannot be dynamically changed from 0 to a value that is greater than zero,

or vice versa.

Shared sort operations are performed by default, and the amount of

database shared memory that can be used by sort memory consumers at

any one time is determined by the value of the sheapthres_shr database

configuration parameter. Private sort operations are performed only if

intra-partition parallelism, database partitioning, and the connection

concentrator are all disabled, and the sheapthres database manager

configuration parameter is set to a non-zero value.

When an application connects to a database

Each application has its own application heap, part of the application global

memory. You can limit the amount of memory that any one application can

allocate by using the applheapsz database configuration parameter, or limit

overall application memory consumption by using the appl_memory

database configuration parameter.

When an agent is created

Agent private memory is allocated for an agent when that agent is assigned

as the result of a connect request or a new SQL request in a partitioned

database environment. Agent private memory contains memory that is

used only by this specific agent. If private sort operations have been

enabled, the private sort heap is allocated from agent private memory.

The following configuration parameters limit the amount of memory that is

allocated for each type of memory area. Note that in a partitioned database

environment, this memory is allocated on each database partition.

numdb

This database manager configuration parameter specifies the maximum

number of concurrent active databases that different applications can use.

Because each database has its own global memory area, the amount of

memory that can be allocated increases if you increase the value of this

parameter.

maxappls

This database configuration parameter specifies the maximum number of

applications that can simultaneously connect to a specific database. The

value of this parameter affects the amount of memory that can be allocated

for both agent private memory and application global memory for that

database.

max_connections

This database manager configuration parameter limits the number of

database connections or instance attachments that can access the data

server at any one time.

max_coordagents

This database manager configuration parameter limits the number of

database manager coordinating agents that can exist simultaneously across

all active databases in an instance (and per database partition in a

partitioned database environment). Together with maxappls and

max_connections, this parameter limits the amount of memory that is

allocated for agent private memory and application global memory.

80 Troubleshooting and Tuning Database Performance

The memory tracker, invoked by the db2mtrk command, enables you to view the

current allocation of memory within the instance. You can also use the

ADMIN_GET_DBP_MEM_USAGE table function to determine the total memory

consumption for the entire instance or for just a single database partition. The GET

SNAPSHOT command enables you to examine current memory usage at the

instance, database, or application level.

Database manager shared memory

Database manager shared memory is organized into several different memory

areas. Configuration parameters enable you to control the sizes of these areas.

Figure 17 on page 82 shows how database manager shared memory is allocated.

Chapter 3. Factors affecting performance 81

Monitor heap

This memory area is used for database system monitor data. The size of

this area is determined by the mon_heap_sz database manager

configuration parameter.

Database manager shared memory (including FCM)

Monitor heap ()mon_heap_sz

Database global memory (database_memory)

Lock list ()locklist

Application global memory (appl_memory)

Agent stack
()agent_stack_sz

Client I/O block
()rqrioblk (remote)

Java heap
()java_heap_sz

Agent/Application shared memory

Note: Box size does not indicate relative size of memory.

Agent private memory

Application support
layer heap (aslheapsz)

Client I/O block
()rqrioblk (local)

Utility heap
()util_heap_sz

Backup buffer

Package cache
()pckcachesz

Database heap
()dbheap

Log buffer ()logbufsz

Sort heap threshold
for private sort
memory consumers
(sheapthres)

Sort heap ()sortheap

Catalog cache
()catalogcache_sz

Audit buffer size ()audit_buf_sz

Sort heap threshold
for shared sort
memory consumers
(sheapthres_shr)

Sort heap ()sortheap

Buffer pools

Shared application memory Application-specific memory

Application heap (applheapsz)

Statistics heap (stat_heap_sz)

Statement heap (stmtheap)

Figure 17. How memory is used by the database manager

82 Troubleshooting and Tuning Database Performance

Audit buffer

This memory area is used for database auditing activities. The size of this

buffer is determined by the audit_buf_sz database manager configuration

parameter.

Fast communication manager (FCM) buffer pool

 For partitioned database systems, the fast communication manager (FCM)

requires substantial memory space, especially if the value of

fcm_num_buffers is large. The FCM memory requirements are allocated

from the FCM buffer pool.

Database global memory

Database global memory is affected by the size of the buffer pools and by

the following database configuration parameters:

v catalogcache_sz

v database_memory

v dbheap

v locklist

v pckcachesz

v sheapthres_shr

v util_heap_sz

Application global memory

Application global memory can be controlled by the appl_memory

configuration parameter. The following database configuration parameters

can be used to limit the amount of memory that any one application can

consume:

v applheapsz

v stat_heap_sz

v stmtheap

Agent private memory

Each agent requires its own private memory region. The data server creates

as many agents as it needs and in accordance with configured memory

resources. You can control the maximum number of coordinator agents

using the max_coordagents database manager configuration parameter.

The maximum size of each agent’s private memory region is determined

by the values of the following configuration parameters:

v agent_stack_sz

v sheapthres and sortheap

Agent/Application shared memory

The total number of agent/application shared memory segments for local

clients is limited by the lesser of the following two values:

v The total value of the maxappls database configuration parameter for all

active databases

v The value of the max_coordagents database configuration parameter

Note: In configurations where engine concentration is enabled

(max_connections > max_coordagents), application memory consumption

is limited by max_connections.

Agent/Application shared memory is also affected by the following

database configuration parameters:

v aslheapsz

Chapter 3. Factors affecting performance 83

v rqrioblk

The FCM buffer pool and memory requirements

In a partitioned database system, the fast communication manager (FCM) buffer

shared memory is allocated from the database manager shared memory.

This is shown in Figure 18.

 The number of FCM buffers for each database partition is controlled by the

fcm_num_buffers database manager configuration parameter. By default, this

parameter is set to automatic. To tune this parameter manually, use data from the

buff_free and buff_free_bottom system monitor elements.

The number of FCM channels for each database partition is controlled by the

fcm_num_channels database manager configuration parameter. By default, this

parameter is set to automatic. To tune this parameter manually, use data from the

ch_free and ch_free_bottom system monitor elements.

The DB2 database manager can automatically manage FCM memory resources by

allocating more FCM buffers and channels as needed. This leads to improved

performance and prevents “out of FCM resource” runtime errors. On the Linux

operating system, the database manager can preallocate a larger amount of system

memory for FCM buffers and channels, up to a maximum default amount of 2 GB.

Memory space is impacted only when additional FCM buffers or channels are

required. To enable this behavior, set the FCM_MAXIMIZE_SET_SIZE option of the

DB2_FCM_SETTINGS registry variable to YES (or TRUE). YES is the default

value.

Guidelines for tuning parameters that affect memory usage

When tuning memory manually (that is, when not using the self-tuning memory

manager), benchmark tests provide the best information about setting appropriate

values for memory parameters.

Database Manager Shared Memory**

FCM Buffer
Shared Memory*

FCM Buffers ()*fcm_num_buffers

FCM Channels**

Legend

* one shared by all logical partitions
** one for each logical partition

Figure 18. The FCM buffer pool when multiple logical partitions are used

84 Troubleshooting and Tuning Database Performance

In benchmark testing, representative and worst-case SQL statements are run

against the server, and the values of memory parameters are changed until a point

of diminishing returns for performance is found. This is the point at which

additional memory allocation provides no further performance value to the

application.

The upper memory allocation limits for several parameters might be beyond the

scope of existing hardware and operating systems. These limits allow for future

growth. It is good practice to not set memory parameters at their highest values

unless those values can be justified. This applies even to systems that have plenty

of available memory. The idea is to prevent the database manager from quickly

taking up all of the available memory on a system. Moreover, managing large

amounts of memory incurs additional overhead.

For most configuration parameters, memory is committed as it is required, and the

parameter settings determine the maximum size of a particular memory heap. For

buffer pools and the following configuration parameters, however, all of the

specified memory is allocated:

v aslheapsz

v fcm_num_buffers

v fcm_num_channels

v locklist

Some operating systems allocate swap space whenever a process allocates memory,

not when that memory needs to be paged out to swap space. For these systems, it

is typically recommended to provide at least twice as much paging space as total

memory on the system.

For valid parameter ranges, refer to the detailed information about each parameter.

Self-tuning memory overview

Self-tuning memory simplifies the task of memory configuration by automatically

setting values for memory configuration parameters and sizing buffer pools. When

enabled, the memory tuner dynamically distributes available memory resources

among the following memory consumers: buffer pools, locking memory, package

cache, and sort memory.

Self-tuning memory is enabled through the self_tuning_mem database

configuration parameter.

The following memory-related database configuration parameters can be

automatically tuned:

v database_memory - Database shared memory size

v locklist - Maximum storage for lock list

v maxlocks - Maximum percent of lock list before escalation

v pckcachesz - Package cache size

v sheapthres_shr - Sort heap threshold for shared sorts

v sortheap - Sort heap size

Self-tuning memory

Starting in DB2 Version 9, a memory-tuning feature simplifies the task of memory

configuration by automatically setting values for several memory configuration

parameters. When enabled, the memory tuner dynamically distributes available

Chapter 3. Factors affecting performance 85

memory resources among the following memory consumers: buffer pools, locking

memory, package cache, and sort memory.

The tuner works within the memory limits that are defined by the

database_memory configuration parameter. The value of this parameter can be

automatically tuned as well. When self-tuning is enabled (when the value of

database_memory has been set to AUTOMATIC), the tuner determines the overall

memory requirements for the database and increases or decreases the amount of

memory allocated for database shared memory, depending on current database

requirements. For example, if current database requirements are high and there is

sufficient free memory on the system, more memory is allocated for database

shared memory. If the database memory requirements decrease, or if the amount of

free memory on the system becomes too low, some database shared memory is

released.

If the database_memory configuration parameter is not set to AUTOMATIC, the

database uses the amount of memory that has been specified for this parameter,

distributing it across the memory consumers as required. You can specify the

amount of memory in one of two ways: by setting database_memory to some

numeric value or by setting it to COMPUTED. In the latter case, the total amount

of memory is based on the sum of the initial values of the database memory heaps

at database startup time.

You can also enable the memory consumers for self tuning as follows:

v For buffer pools, use the ALTER BUFFERPOOL or the CREATE BUFFERPOOL

statement (specifying the AUTOMATIC keyword)

v For locking memory, use the locklist or the maxlocks database configuration

parameter (specifying a value of AUTOMATIC)

v For the package cache, use the pckcachesz database configuration parameter

(specifying a value of AUTOMATIC)

v For sort memory, use the sheapthres_shr or the sortheap database configuration

parameter (specifying a value of AUTOMATIC)

Changes resulting from self-tuning operations are recorded in memory tuning log

files that are located in the stmmlog subdirectory. These log files contain

summaries of the resource demands from each memory consumer during specific

tuning intervals, which are determined by timestamps in the log entries.

If little memory is available, the performance benefits of self tuning will be limited.

Because tuning decisions are based on database workload, workloads with rapidly

changing memory requirements limit the effectiveness of the self-tuning memory

manager (STMM). If the memory characteristics of your workload are constantly

changing, the STMM will tune less frequently and under shifting target conditions.

In this scenario, the STMM will not achieve absolute convergence, but will try

instead to maintain a memory configuration that is tuned to the current workload.

Enabling self-tuning memory

Self-tuning memory simplifies the task of memory configuration by automatically

setting values for memory configuration parameters and sizing buffer pools.

About this task

When enabled, the memory tuner dynamically distributes available memory

resources between several memory consumers, including buffer pools, locking

memory, package cache, and sort memory.

86 Troubleshooting and Tuning Database Performance

Procedure

1. Enable self-tuning memory for the database by setting the self_tuning_mem

database configuration parameter to ON using the UPDATE DATABASE

CONFIGURATION command or the db2CfgSet API.

2. To enable the self tuning of memory areas that are controlled by memory

configuration parameters, set the relevant configuration parameters to

AUTOMATIC using the UPDATE DATABASE CONFIGURATION command or

the db2CfgSet API.

3. To enable the self tuning of a buffer pool, set the buffer pool size to

AUTOMATIC using the CREATE BUFFERPOOL statement or the ALTER

BUFFERPOOL statement. In a partitioned database environment, that buffer

pool should not have any entries in SYSCAT.BUFFERPOOLDBPARTITIONS.

Results

Note:

1. Because self-tuned memory is distributed between different memory

consumers, at least two memory areas must be concurrently enabled for self

tuning at any given time; for example, locking memory and database shared

memory. The memory tuner actively tunes memory on the system (the value of

the self_tuning_mem database configuration parameter is ON) when one of the

following conditions is true:

v One configuration parameter or buffer pool size is set to AUTOMATIC, and

the database_memory database configuration parameter is set to either a

numeric value or to AUTOMATIC

v Any two of locklist, sheapthres_shr, pckcachesz, or buffer pool size is set to

AUTOMATIC

v The sortheap database configuration parameter is set to AUTOMATIC
2. The value of the locklist database configuration parameter is tuned together

with the maxlocks database configuration parameter. Disabling self tuning of

the locklist parameter automatically disables self tuning of the maxlocks

parameter, and enabling self tuning of the locklist parameter automatically

enables self tuning of the maxlocks parameter.

3. Automatic tuning of sortheap or the sheapthres_shr database configuration

parameter is allowed only when the database manager configuration parameter

sheapthres is set to 0.

4. The value of sortheap is tuned together with sheapthres_shr. Disabling self

tuning of the sortheap parameter automatically disables self tuning of the

sheapthres_shr parameter, and enabling self tuning of the sheapthres_shr

parameter automatically enables self tuning of the sortheap parameter.

5. Self-tuning memory runs only on the high availability disaster recovery

(HADR) primary server. When self-tuning memory is activated on an HADR

system, it will never run on the secondary server, and it runs on the primary

server only if the configuration is set properly. If the HADR database roles are

switched, self-tuning memory operations will also switch so that they run on

the new primary server. After the primary database starts, or the standby

database converts to a primary database through takeover, the self-tuning

memory manager (STMM) engine dispatchable unit (EDU) might not start until

the first client connects.

Disabling self-tuning memory

Self-tuning memory can be disabled for the entire database or for one or more

configuration parameters or buffer pools.

Chapter 3. Factors affecting performance 87

If self-tuning memory is disabled for the entire database, the memory

configuration parameters and buffer pools that are set to AUTOMATIC remain

enabled for automatic tuning; however, the memory areas remain at their current

size.

1. Disable self-tuning memory for the database by setting the self_tuning_mem

database configuration parameter to OFF using the UPDATE DATABASE

CONFIGURATION command or the db2CfgSet API.

2. To disable the self tuning of memory areas that are controlled by memory

configuration parameters, set the relevant configuration parameters to

MANUAL or specify numeric parameter values using the UPDATE DATABASE

CONFIGURATION command or the db2CfgSet API.

3. To disable the self tuning of a buffer pool, set the buffer pool size to a specific

value using the ALTER BUFFERPOOL statement.

Note:

v In some cases, a memory configuration parameter can be enabled for self tuning

only if another related memory configuration parameter is also enabled. This

means that, for example, disabling self-tuning memory for the locklist or the

sortheap database configuration parameter disables self-tuning memory for the

maxlocks or the sheapthres_shr database configuration parameter, respectively.

Determining which memory consumers are enabled for self

tuning

You can view the self-tuning memory settings that are controlled by configuration

parameters or that apply to buffer pools.

v To view the settings for configuration parameters from the command line, use

the GET DATABASE CONFIGURATION command, specifying the SHOW

DETAIL option. The memory consumers that can be enabled for self tuning are

grouped together in the output as follows:

 Description Parameter Current Value Delayed Value

 --

 Self tuning memory (SELF_TUNING_MEM) = ON (Active) ON

 Size of database shared memory (4KB) (DATABASE_MEMORY) = AUTOMATIC(37200) AUTOMATIC(37200)

 Max storage for lock list (4KB) (LOCKLIST) = AUTOMATIC(7456) AUTOMATIC(7456)

 Percent. of lock lists per application (MAXLOCKS) = AUTOMATIC(98) AUTOMATIC(98)

 Package cache size (4KB) (PCKCACHESZ) = AUTOMATIC(5600) AUTOMATIC(5600)

 Sort heap thres for shared sorts (4KB) (SHEAPTHRES_SHR) = AUTOMATIC(5000) AUTOMATIC(5000)

 Sort list heap (4KB) (SORTHEAP) = AUTOMATIC(256) AUTOMATIC(256)

v You can also use the db2CfgGet API to determine whether or not tuning is

enabled. The following values are returned:

SQLF_OFF 0

SQLF_ON_ACTIVE 2

SQLF_ON_INACTIVE 3

SQLF_ON_ACTIVE indicates that self tuning is both enabled and active, whereas

SQLF_ON_INACTIVE indicates that self tuning is enabled but currently inactive.

To view the self-tuning settings for buffer pools, use one of the following methods.

v To retrieve a list of the buffer pools that are enabled for self tuning from the

command line, use the following query:

SELECT BPNAME, NPAGES FROM SYSCAT.BUFFERPOOLS

When self tuning is enabled for a buffer pool, the NPAGES field in the

SYSCAT.BUFFERPOOLS view for that particular buffer pool is set to -2. When

self tuning is disabled, the NPAGES field is set to the current size of the buffer

pool.

88 Troubleshooting and Tuning Database Performance

v To determine the current size of buffer pools that are enabled for self tuning, use

the GET SNAPSHOT command and examine the current size of the buffer pools

(the value of the bp_cur_buffsz monitor element):

GET SNAPSHOT FOR BUFFERPOOLS ON database-alias

An ALTER BUFFERPOOL statement that specifies the size of a buffer pool on a

particular database partition will create an exception entry (or update an existing

entry) for that buffer pool in the SYSCAT.BUFFERPOOLDBPARTITIONS catalog

view. If an exception entry for a buffer pool exists, that buffer pool will not

participate in self-tuning operations when the default buffer pool size is set to

AUTOMATIC.

It is important to note that responsiveness of the memory tuner is limited by the

time required to resize a memory consumer. For example, reducing the size of a

buffer pool can be a lengthy process, and the performance benefits of trading

buffer pool memory for sort memory might not be immediately realized.

Self-tuning memory in partitioned database environments

When using the self-tuning memory feature in partitioned database environments,

there are a few factors that determine whether the feature will tune the system

appropriately.

When self-tuning memory is enabled for partitioned databases, a single database

partition is designated as the tuning partition, and all memory tuning decisions are

based on the memory and workload characteristics of that database partition. After

tuning decisions on that partition are made, the memory adjustments are

distributed to the other database partitions to ensure that all database partitions

maintain similar configurations.

The single tuning partition model assumes that the feature will be used only when

all of the database partitions have similar memory requirements. Use the following

guidelines when determining whether to enable self-tuning memory on your

partitioned database.

Cases where self-tuning memory for partitioned databases is

recommended

When all database partitions have similar memory requirements and are running

on similar hardware, self-tuning memory can be enabled without any

modifications. These types of environments share the following characteristics:

v All database partitions are on identical hardware, and there is an even

distribution of multiple logical database partitions to multiple physical database

partitions

v There is a perfect or near-perfect distribution of data

v Workloads are distributed evenly across database partitions, meaning that no

database partition has higher memory requirements for one or more heaps than

any of the others

In such an environment, if all database partitions are configured equally,

self-tuning memory will properly configure the system.

Cases where self-tuning memory for partitioned databases is

recommended with qualification

In cases where most of the database partitions in an environment have similar

memory requirements and are running on similar hardware, it is possible to use

Chapter 3. Factors affecting performance 89

self-tuning memory as long as some care is taken with the initial configuration.

These systems might have one set of database partitions for data, and a much

smaller set of coordinator partitions and catalog partitions. In such environments,

it can be beneficial to configure the coordinator partitions and catalog partitions

differently than the database partitions that contain data.

Self-tuning memory should be enabled on all of the database partitions that

contain data, and one of these database partitions should be designated as the

tuning partition. And because the coordinator and catalog partitions might be

configured differently, self-tuning memory should be disabled on those partitions.

To disable self-tuning memory on the coordinator and catalog partitions, set the

self_tuning_mem database configuration parameter on these partitions to OFF.

Cases where self-tuning memory for partitioned databases is not

recommended

If the memory requirements of each database partition are different, or if different

database partitions are running on significantly different hardware, it is good

practice to disable the self-tuning memory feature. You can disable the feature by

setting the self_tuning_mem database configuration parameter to OFF on all

partitions.

Comparing the memory requirements of different database partitions

The best way to determine whether the memory requirements of different database

partitions are sufficiently similar is to consult the snapshot monitor. If the

following snapshot elements are similar on all database partitions (differing by no

more than 20%), the memory requirements of the database partitions can be

considered sufficiently similar.

Collect the following data by issuing the command: get snapshot for database on

<dbname>

Locks held currently = 0

Lock waits = 0

Time database waited on locks (ms) = 0

Lock list memory in use (Bytes) = 4968

Lock escalations = 0

Exclusive lock escalations = 0

Total Shared Sort heap allocated = 0

Shared Sort heap high water mark = 0

Post threshold sorts (shared memory) = 0

Sort overflows = 0

Package cache lookups = 13

Package cache inserts = 1

Package cache overflows = 0

Package cache high water mark (Bytes) = 655360

Number of hash joins = 0

Number of hash loops = 0

Number of hash join overflows = 0

Number of small hash join overflows = 0

Post threshold hash joins (shared memory) = 0

Number of OLAP functions = 0

Number of OLAP function overflows = 0

Active OLAP functions = 0

90 Troubleshooting and Tuning Database Performance

Collect the following data by issuing the command: get snapshot for bufferpools

on <dbname>

Buffer pool data logical reads = 0

Buffer pool data physical reads = 0

Buffer pool index logical reads = 0

Buffer pool index physical reads = 0

Total buffer pool read time (milliseconds) = 0

Total buffer pool write time (milliseconds)= 0

Using self-tuning memory in partitioned database environments

When self-tuning memory is enabled in partitioned database environments, there is

a single database partition (known as the tuning partition) that monitors the

memory configuration and propagates any configuration changes to all other

database partitions to maintain a consistent configuration across all the

participating database partitions.

The tuning partition is selected on the basis of several characteristics, such as the

number of database partitions in the partition group and the number of buffer

pools.

v To determine which database partition is currently specified as the tuning

partition, call the ADMIN_CMD procedure as follows:

CALL SYSPROC.ADMIN_CMD(’get stmm tuning dbpartitionnum’)

v To change the tuning partition, call the ADMIN_CMD procedure as follows:

CALL SYSPROC.ADMIN_CMD(’update stmm tuning dbpartitionnum <partitionnum>’)

The tuning partition is updated asynchronously or at the next database startup.

To have the memory tuner automatically select the tuning partition, enter -1 for

the partitionnum value.

Starting the memory tuner in partitioned database environments

In a partitioned database environment, the memory tuner will start only if the

database is activated by an explicit ACTIVATE DATABASE command, because

self-tuning memory requires that all partitions be active.

Disabling self-tuning memory for a specific database partition

v To disable self-tuning memory for a subset of database partitions, set the

self_tuning_mem database configuration parameter to OFF for those database

partitions.

v To disable self-tuning memory for a subset of the memory consumers that are

controlled by configuration parameters on a specific database partition, set the

value of the relevant configuration parameter or the buffer pool size to

MANUAL or to some specific value on that database partition. It is

recommended that self-tuning memory configuration parameter values be

consistent across all running partitions.

v To disable self-tuning memory for a particular buffer pool on a specific database

partition, issue the ALTER BUFFERPOOL statement, specifying a size value and

the partition on which self-tuning memory is to be disabled.

An ALTER BUFFERPOOL statement that specifies the size of a buffer pool on a

particular database partition will create an exception entry (or update an existing

entry) for that buffer pool in the SYSCAT.BUFFERPOOLDBPARTITIONS catalog

view. If an exception entry for a buffer pool exists, that buffer pool will not

participate in self-tuning operations when the default buffer pool size is set to

AUTOMATIC. To remove an exception entry so that a buffer pool can be

enabled for self tuning:

Chapter 3. Factors affecting performance 91

1. Disable self tuning for this buffer pool by issuing an ALTER BUFFERPOOL

statement, setting the buffer pool size to a specific value.

2. Issue another ALTER BUFFERPOOL statement to set the size of the buffer

pool on this database partition to the default.

3. Enable self tuning for this buffer pool by issuing another ALTER

BUFFERPOOL statement, setting the buffer pool size to AUTOMATIC.

Enabling self-tuning memory in nonuniform environments

Ideally, data should be distributed evenly across all database partitions, and the

workload that is run on each partition should have similar memory requirements.

If the data distribution is skewed, so that one or more of your database partitions

contain significantly more or less data than other database partitions, these

anomalous database partitions should not be enabled for self tuning. The same is

true if the memory requirements are skewed across the database partitions, which

can happen, for example, if resource-intensive sorts are only performed on one

partition, or if some database partitions are associated with different hardware and

more available memory than others. Self tuning memory can still be enabled on

some database partitions in this type of environment. To take advantage of

self-tuning memory in environments with skew, identify a set of database

partitions that have similar data and memory requirements and enable them for

self tuning. Memory in the remaining partitions should be configured manually.

Buffer pool management

A buffer pool provides working memory and cache for database pages.

Buffer pools improve database system performance by allowing data to be

accessed from memory instead of from disk. Because most page data manipulation

takes place in buffer pools, configuring buffer pools is the single most important

tuning area.

When an application accesses a table row, the database manager looks for the page

containing that row in the buffer pool. If the page cannot be found there, the

database manager reads the page from disk and places it in the buffer pool. The

data can then be used to process the query.

Memory is allocated for buffer pools when a database is activated. The first

application to connect might cause an implicit database activation. Buffer pools can

be created, re-sized, or dropped while the database manager is running. The

ALTER BUFFERPOOL statement can be used to increase the size of a buffer pool.

By default, and if sufficient memory is available, the buffer pool is re-sized as soon

as the statement executes. If sufficient memory is unavailable when the statement

executes, memory is allocated when the database reactivates. If you decrease the

size of the buffer pool, memory is deallocated when the transaction commits.

Buffer pool memory is freed when the database deactivates.

To ensure that an appropriate buffer pool is available in all circumstances, DB2

creates small system buffer pools, one with each of the following page sizes: 4 KB,

8 KB, 16 KB, and 32 KB. The size of each buffer pool is 16 pages. These buffer

pools are hidden; they are not in the system catalog or in the buffer pool system

files. You cannot use or alter them directly, but DB2 uses these buffer pools in the

following circumstances:

v When a specified buffer pool is not started because it was created using the

DEFERRED keyword, or when a buffer pool of the required page size is inactive

because insufficient memory is available to create it

92 Troubleshooting and Tuning Database Performance

A message is written to the administration notification log. If necessary, table

spaces are remapped to a system buffer pool. Performance might be drastically

reduced.

v When buffer pools cannot be brought up during a database connection attempt

This problem is likely to have a serious cause, such as an out-of-memory

condition. Although DB2 will continue to be fully functional because of the

system buffer pools, performance will degrade drastically. You should address

this problem immediately. You will receive a warning when this occurs, and a

message is written to the administration notification log.

When you create a buffer pool, the page size will be the one specified when the

database was created, unless you explicitly specify a different page size. Because

pages can be read into a buffer pool only if the table space page size is the same as

the buffer pool page size, the page size of your table spaces should determine the

page size that you specify for buffer pools. You cannot alter the page size of a

buffer pool after you create it.

The memory tracker, which you can invoke by issuing the db2mtrk command,

enables you to view the amount of database memory that has been allocated to

buffer pools. You can also use the GET SNAPSHOT command and examine the

current size of the buffer pools (the value of the bp_cur_buffsz monitor element).

The buffer pool priority for activities can be controlled as part of the larger set of

workload management functionality provided by the DB2 workload manager. For

more information, see “Introduction to DB2 workload manager concepts” and

“Buffer pool priority of service classes”.

Buffer pool management of data pages

Buffer pool pages can be either in-use or not, and dirty or clean.

v In-use pages are pages that are currently being read or updated. If a page is being

updated, it can only be accessed by the updater. However, if the page is not

being updated, there can be numerous concurrent readers.

v Dirty pages contain data that has been changed but not yet written to disk.

Pages remain in the buffer pool until the database shuts down, the space occupied

by a page is required for another page, or the page is explicitly purged from the

buffer pool, for example, as part of dropping an object. The following criteria

determine which page is removed when another page requires its space:

v How recently was the page referenced?

v What is the probability that the page will be referenced again?

v What type of data does the page contain?

v Was the page changed in memory but not written out to disk?

Changed pages are always written out to disk before being overwritten. Changed

pages that are written out to disk are not automatically removed from the buffer

pool unless the space is needed.

Page-cleaner agents

In a well-tuned system, it is usually the page-cleaner agents that write changed or

dirty pages to disk. Page-cleaner agents perform I/O as background processes and

allow applications to run faster because their agents can perform actual transaction

Chapter 3. Factors affecting performance 93

work. Page-cleaner agents are sometimes referred to as asynchronous page cleaners or

asynchronous buffer writers, because they are not coordinated with the work of other

agents and work only when required.

To improve performance for update-intensive workloads, you might want to

enable proactive page cleaning, whereby page cleaners behave more proactively in

choosing which dirty pages get written out at any given point in time. This is

particularly true if snapshots reveal that there are a significant number of

synchronous data-page or index-page writes in relation to the number of

asynchronous data-page or index-page writes.

Figure 19 illustrates how the work of managing the buffer pool can be shared

between page-cleaner agents and database agents.

Page cleaning and fast recovery

Database recovery after a system crash is faster if more pages have been written to

disk, because the database manager can rebuild more of the buffer pool from disk

than by replaying transactions from the database log files.

The size of the log that must be read during recovery is the difference between the

location of the following records in the log:

v The most recently written log record

2

1

2

33

1

2

33

Buffer pool

Without Page Cleaners

Removes
dirty page

No room for
new page

Database
agent

Adds new
page

Asynchronous
page cleaner

Removes
dirty pages

Buffer pool

With Page Cleaners

Database
agent

Writes pages
to hard disk

Adds new
page

Hard drive
disk

Figure 19. Asynchronous page cleaning. Dirty pages are written out to disk.

94 Troubleshooting and Tuning Database Performance

v The log record that describes the oldest change to data in the buffer pool

Page cleaners write dirty pages to disk in such a manner that the size of the log

that would need to be replayed during recovery never exceeds the following:

 logfilsiz * softmax / 100 (in 4-KB pages)

where:

v logfilsiz represents the size of the log files

v softmax represents the percentage of log files that are to be recovered following

a database crash; for example, if the value of softmax is 250, then 2.5 log files

will contain the changes that need to be recovered if a crash occurs

To minimize log read time during recovery, use the database system monitor to

track the number of times that page cleaning is performed. The pool_lsn_gap_clns

(buffer pool log space cleaners triggered) monitor element provides this

information if you have not enabled proactive page cleaning for your database. If

you have enabled proactive page cleaning, this condition should not occur, and the

value of pool_lsn_gap_clns is 0.

The log_held_by_dirty_pages monitor element can be used to determine whether

the page cleaners are not cleaning enough pages to meet the recovery criteria set

by the user. If log_held_by_dirty_pages is consistently and significantly greater

than logfilsiz * softmax, then either more page cleaners are required, or softmax

needs to be adjusted.

Management of multiple database buffer pools

Although each database requires at least one buffer pool, you can create several

buffer pools, each of a different size or with a different page size, for a single

database that has table spaces of more than one page size.

You can use the ALTER BUFFERPOOL statement to resize a buffer pool.

A new database has a default buffer pool called IBMDEFAULTBP, with a default

page size that is based on the page size that was specified at database creation

time. The default page size is stored as an informational database configuration

parameter called pagesize. When you create a table space with the default page

size, and if you do not assign it to a specific buffer pool, the table space is assigned

to the default buffer pool. You can resize the default buffer pool and change its

attributes, but you cannot drop it.

Page sizes for buffer pools

After you create or upgrade a database, you can create additional buffer pools. If

you create a database with an 8-KB page size as the default, the default buffer pool

is created with the default page size (in this case, 8 KB). Alternatively, you can

create a buffer pool with an 8-KB page size, as well as one or more table spaces

with the same page size. This method does not require that you change the 4-KB

default page size when you create the database. You cannot assign a table space to

a buffer pool that uses a different page size.

Note: If you create a table space with a page size greater than 4 KB (such as 8 KB,

16 KB, or 32 KB), you need to assign it to a buffer pool that uses the same page

size. If this buffer pool is currently not active, DB2 attempts to assign the table

space temporarily to another active buffer pool that uses the same page size, if one

exists, or to one of the default system buffer pools that DB2 creates when the first

Chapter 3. Factors affecting performance 95

client connects to the database. When the database is activated again, and the

originally specified buffer pool is active, DB2 assigns the table space to that buffer

pool.

If, when you create a buffer pool with the CREATE BUFFERPOOL statement, you

do not specify a size, the buffer pool size is set to AUTOMATIC and is managed

by DB2. To change the bufferpool size later, use the ALTER BUFFERPOOL

statement.

In a partitioned database environment, each buffer pool for a database has the

same default definition on all database partitions, unless it was specified otherwise

in the CREATE BUFFERPOOL statement, or the bufferpool size for a particular

database partition was changed by the ALTER BUFFERPOOL statement.

Advantages of large buffer pools

Large buffer pools provide the following advantages:

v They enable frequently requested data pages to be kept in the buffer pool, which

allows quicker access. Fewer I/O operations can reduce I/O contention, thereby

providing better response time and reducing the processor resource needed for

I/O operations.

v They provide the opportunity to achieve higher transaction rates with the same

response time.

v They prevent I/O contention for frequently used disk storage devices, such as

those that store the catalog tables and frequently referenced user tables and

indexes. Sorts required by queries also benefit from reduced I/O contention on

the disk storage devices that contain temporary table spaces.

Advantages of many buffer pools

Use only a single buffer pool if any of the following conditions apply to your

system:

v The total buffer pool space is less than 10 000 4-KB pages

v Persons with the application knowledge to perform specialized tuning are not

available

v You are working on a test system

In all other circumstances, and for the following reasons, consider using more than

one buffer pool:

v Temporary table spaces can be assigned to a separate buffer pool to provide

better performance for queries (especially sort-intensive queries) that require

temporary storage.

v If data must be accessed repeatedly and quickly by many short

update-transaction applications, consider assigning the table space that contains

the data to a separate buffer pool. If this buffer pool is sized appropriately, its

pages have a better chance of being found, contributing to a lower response time

and a lower transaction cost.

v You can isolate data into separate buffer pools to favor certain applications, data,

and indexes. For example, you might want to put tables and indexes that are

updated frequently into a buffer pool that is separate from those tables and

indexes that are frequently queried but infrequently updated.

v You can use smaller buffer pools for data that is accessed by seldom-used

applications, especially applications that require very random access into a very

96 Troubleshooting and Tuning Database Performance

large table. In such cases, data need not be kept in the buffer pool for longer

than a single query. It is better to keep a small buffer pool for this type of data,

and to free the extra memory for other buffer pools.

After separating your data into different buffer pools, good and relatively

inexpensive performance diagnosis data can be produced from statistics and

accounting traces.

The self-tuning memory manager (STMM) is ideal for tuning systems that have

multiple buffer pools.

Buffer pool memory allocation at startup

When you create a buffer pool or alter a buffer pool, the total memory that is

required by all buffer pools must be available to the database manager so that all

of the buffer pools can be allocated when the database starts. If you create or alter

buffer pools while the database manager is online, additional memory should be

available in database global memory. If you specify the DEFERRED keyword when

you create a new buffer pool or increase the size of an existing buffer pool, and the

required memory is unavailable, the database manager executes the changes the

next time the database is activated.

If this memory is not available when the database starts, the database manager

uses only the system buffer pools (one for each page size) with a minimal size of

16 pages, and a warning is returned. The database continues in this state until its

configuration is changed and the database can be fully restarted. Although

performance might be suboptimal, you can connect to the database, re-configure

the buffer pool sizes, or perform other critical tasks. When these tasks are

complete, restart the database. Do not operate the database for an extended time in

this state.

To avoid starting the database with system buffer pools only, use the

DB2_OVERRIDE_BPF registry variable to optimize use of the available memory.

Proactive page cleaning

Starting in DB2 Version 8.1.4, there is an alternate method of configuring page

cleaning in your system. With this approach, page cleaners behave more

proactively in choosing which dirty pages get written out at any given point in

time.

This proactive page cleaning method differs from the default page cleaning method

in two major ways:

v Page cleaners no longer respond to the value of the chngpgs_thresh database

configuration parameter.

When the number of good victim pages drops below an acceptable value, page

cleaners search the entire buffer pool, writing out potential victim pages and

informing the agents of the location of these pages.

v Page cleaners no longer respond to log sequence number (LSN) gap triggers

issued by the logger.

When the amount of log space between the log record that updated the oldest

page in the buffer pool and the current log position exceeds that allowed by the

softmax database configuration parameter, the database is said to be

experiencing an LSN gap.

Under the default page cleaning method, a logger that detects an LSN gap

triggers the page cleaners to write out all the pages that are contributing to the

Chapter 3. Factors affecting performance 97

LSN gap; that is, the page cleaners write out those pages that are older than

what is allowed by the value of softmax. Page cleaners alternate between

idleness and bursts of activity writing large numbers of pages. This can result in

saturation of the I/O subsystem, which then affects other agents that are reading

or writing pages. Moreover, by the time that an LSN gap is detected, the page

cleaners might not be able to clean fast enough, and DB2 might run out of log

space.

The proactive page cleaning method modulates this behavior by distributing the

same number of writes over a longer period of time. The page cleaners do this

by cleaning not only the pages that are contributing to an LSN gap, but also

pages that are likely to contribute to an impending LSN gap, based on the

current level of activity.

To use the new page cleaning method, set the

DB2_USE_ALTERNATE_PAGE_CLEANING registry variable to on.

Improving update performance

When an agent updates a page, the database manager uses a protocol to minimize

the I/O that is required by the transaction and to ensure recoverability.

This protocol includes the following steps:

1. The page that is to be updated is pinned and latched with an exclusive lock. A

log record is written to the log buffer, describing how to undo and redo the

change. As part of this action, a log sequence number (LSN) is obtained and

stored in the header of the page that is being updated.

2. The update is applied to the page.

3. The page is unlatched. The page is considered to be “dirty”, because changes to

the page have not yet been written to disk.

4. The log buffer is updated. Both data in the log buffer and the dirty data page

are written to disk.

For better performance, these I/O operations are delayed until there is a lull in

system load, or until they are necessary to ensure recoverability or to limit

recovery time. More specifically, a dirty page is written to disk when:

v Another agent chooses it as a victim

v A page cleaner works on the page. This can occur when:

– Another agent chooses the page as a victim

– The chngpgs_thresh database configuration parameter value is exceeded,

causing asynchronous page cleaners to wake up and write changed pages to

disk. If proactive page cleaning is enabled for the database, this value is

irrelevant and does not trigger page cleaning.

– The softmax database configuration parameter value is exceeded, causing

asynchronous page cleaners to wake up and write changed pages to disk. If

proactive page cleaning is enabled for the database, and the number of page

cleaners has been properly configured for the database, this value should

never be exceeded.

– The number of clean pages drops too low. Page cleaners only react to this

condition under proactive page cleaning.

– A dirty page currently contributes to, or is expected to contribute to an LSN

gap condition. Page cleaners only react to this condition under proactive page

cleaning.

98 Troubleshooting and Tuning Database Performance

v The page is part of a table that was defined with the NOT LOGGED INITIALLY

clause, and the update is followed by a COMMIT statement. When the COMMIT

statement executes, all changed pages are flushed to disk to ensure

recoverability.

Prefetching data into the buffer pool

Prefetching pages means that one or more pages are retrieved from disk in the

expectation that they will be required by an application.

Prefetching index and data pages into the buffer pool can help to improve

performance by reducing I/O wait times. In addition, parallel I/O enhances

prefetching efficiency.

There are two categories of prefetching:

v Sequential prefetching reads consecutive pages into the buffer pool before the

pages are required by the application.

v List prefetching (sometimes called list sequential prefetching) prefetches a set of

nonconsecutive data pages efficiently.

Prefetching data pages is different than a database manager agent read, which is

used when one or a few consecutive pages are retrieved, but only one page of data

is transferred to an application.

Prefetching and intra-partition parallelism

Prefetching has an important influence on the performance of intra-partition

parallelism, which uses multiple subagents when scanning an index or a table.

Such parallel scans result in larger data consumption rates which, in turn, require

higher prefetch rates.

The cost of inadequate prefetching is higher for parallel scans than for serial scans.

If prefetching does not occur during a serial scan, the query runs more slowly

because the agent waits for I/O. If prefetching does not occur during a parallel

scan, all subagents might need to wait while one subagent waits for I/O.

Because of its importance in this context, prefetching under intra-partition

parallelism is performed more aggressively; the sequential detection mechanism

tolerates larger gaps between adjacent pages, so that the pages can be considered

sequential. The width of these gaps increases with the number of subagents

involved in the scan.

Sequential prefetching:

Reading several consecutive pages into the buffer pool using a single I/O

operation can greatly reduce your application overhead.

 Prefetching starts when the database manager determines that sequential I/O is

appropriate and that prefetching might improve performance. In cases such as

table scans and table sorts, the database manager automatically chooses sequential

prefetching. The following example, which probably requires a table scan, would

be a good candidate for sequential prefetching:

 SELECT NAME FROM EMPLOYEE

Chapter 3. Factors affecting performance 99

Sequential detection

Sometimes, it is not immediately apparent that sequential prefetching will improve

performance. In such cases, the database manager can monitor I/O and activate

prefetching if sequential page reading is occurring. This type of sequential

prefetching, known as sequential detection, applies to both index and data pages.

Use the seqdetect database configuration parameter to control whether the

database manager performs sequential detection.

For example, if sequential detection is enabled, the following SQL statement might

benefit from sequential prefetching:

 SELECT NAME FROM EMPLOYEE

 WHERE EMPNO BETWEEN 100 AND 3000

In this example, the optimizer might have started to scan the table using an index

on the EMPNO column. If the table is highly clustered with respect to this index,

the data page reads will be almost sequential, and prefetching might improve

performance. Similarly, if many index pages must be examined, and the database

manager detects that sequential page reading of the index pages is occurring, index

page prefetching is likely.

Implications of the PREFETCHSIZE option for table spaces

The PREFETCHSIZE clause on either the CREATE TABLESPACE or the ALTER

TABLESPACE statement lets you specify the number of prefetched pages that will

be read from the table space when data prefetching is being performed. The value

that you specify (or ’AUTOMATIC’) is stored in the PREFETCHSIZE column of the

SYSCAT.TABLESPACES catalog view.

It is good practice to explicitly set the PREFETCHSIZE value as a multiple of the

number of table space containers, the number of physical disks under each

container (if a RAID device is used), and the EXTENTSIZE value (the number of

pages that the database manager writes to a container before it uses a different

container) for your table space. For example, if the extent size is 16 pages and the

table space has two containers, you might set the prefetch size to 32 pages. If there

are five physical disks per container, you might set the prefetch size to 160 pages.

The database manager monitors buffer pool usage to ensure that prefetching does

not remove pages from the buffer pool if another unit of work needs them. To

avoid problems, the database manager can limit the number of prefetched pages to

be fewer than what was specified for the table space.

The prefetch size can have significant performance implications, particularly for

large table scans. Use the database system monitor and other system monitor tools

to help tune the prefetch size for your table spaces. You can gather information

about whether:

v There are I/O waits for your query, using monitoring tools that are available for

your operating system

v Prefetching is occurring, by looking at the pool_async_data_reads (buffer pool

asynchronous data reads) data element provided by the database system

monitor

If there are I/O waits while a query is prefetching data, you can increase the value

of PREFETCHSIZE. If the prefetcher is not the cause of these I/O waits, increasing

the PREFETCHSIZE value will not improve the performance of your query.

100 Troubleshooting and Tuning Database Performance

In all types of prefetching, multiple I/O operations might be performed in parallel

if the prefetch size is a multiple of the extent size for the table space, and the

extents are in separate containers. For better performance, configure the containers

to use separate physical devices.

Block-based buffer pools for improved sequential prefetching:

Prefetching pages from disk is expensive because of I/O overhead. Throughput

can be significantly improved if processing overlaps with I/O.

 Most platforms provide high performance primitives that read contiguous pages

from disk into noncontiguous portions of memory. These primitives are usually

called scattered read or vectored I/O. On some platforms, performance of these

primitives cannot compete with doing I/O in large block sizes.

By default, buffer pools are page-based, which means that contiguous pages on

disk are prefetched into noncontiguous pages in memory. Sequential prefetching

can be enhanced if contiguous pages can be read from disk into contiguous pages

within a buffer pool.

You can create block-based buffer pools for this purpose. A block-based buffer pool

consists of both a page area and a block area. The page area is required for

nonsequential prefetching workloads. The block area consist of blocks; each block

contains a specified number of contiguous pages, which is referred to as the block

size.

The optimal use of a block-based buffer pool depends on the specified block size.

The block size is the granularity at which I/O servers doing sequential prefetching

consider doing block-based I/O. The extent is the granularity at which table spaces

are striped across containers. Because multiple table spaces with different extent

sizes can be bound to a buffer pool defined with the same block size, consider how

the extent size and the block size will interact for efficient use of buffer pool

memory. Buffer pool memory can be wasted if:

v The extent size, which determines the prefetch request size, is smaller than the

block size specified for the buffer pool

v Some pages in the prefetch request are already present in the page area of the

buffer pool

The I/O server allows some wasted pages in each buffer pool block, but if too

many pages would be wasted, the I/O server does non-block-based prefetching

into the page area of the buffer pool, resulting in suboptimal performance.

For optimal performance, bind table spaces of the same extent size to a buffer pool

whose block size equals the table space extent size. Good performance can be

achieved if the extent size is larger than the block size, but not if the extent size is

smaller than the block size.

To create block-based buffer pools, use the CREATE BUFFERPOOL or ALTER

BUFFERPOOL statement.

Note: Block-based buffer pools are intended for sequential prefetching. If your

applications do not use sequential prefetching, the block area of the buffer pool is

wasted.

List prefetching:

Chapter 3. Factors affecting performance 101

List prefetching (or list sequential prefetching) is a way to access data pages efficiently,

even when those pages are not contiguous.

 List prefetching can be used in conjunction with either single or multiple index

access.

If the optimizer uses an index to access rows, it can defer reading the data pages

until all of the row identifiers (RIDs) have been obtained from the index. For

example, the optimizer could perform an index scan to determine the rows and

data pages to retrieve.

 INDEX IX1: NAME ASC,

 DEPT ASC,

 MGR DESC,

 SALARY DESC,

 YEARS ASC

And then use the following search criteria:

 WHERE NAME BETWEEN ’A’ and ’I’

If the data is not clustered according to this index, list prefetching includes a step

that sorts the list of RIDs that were obtained from the index scan.

I/O server configuration for prefetching and parallelism:

To enable prefetching, the database manager starts separate threads of control,

known as I/O servers, to read data pages.

 As a result, query processing is divided into two parallel activities: data processing

(CPU) and data page I/O. The I/O servers wait for prefetch requests from the

CPU activity. These prefetch requests contain a description of the I/O that is

needed to satisfy the query.

Configuring enough I/O servers (with the num_ioservers database configuration

parameter) can greatly enhance the performance of queries that can benefit from

prefetching. To maximize the opportunity for parallel I/O, set num_ioservers to at

least the number of physical disks in the database.

It is better to overestimate than to underestimate the number of I/O servers. If you

specify extra I/O servers, these servers are not used, and their memory pages are

paged out with no impact on performance. Each I/O server process is numbered.

The database manager always uses the lowest numbered process, and as a result,

some of the higher numbered processes might never be used.

To estimate the number of I/O servers that you might need, consider the

following:

v The number of database agents that could be writing prefetch requests to the

I/O server queue concurrently

v The highest degree to which the I/O servers can work in parallel

Consider setting the value of num_ioservers to AUTOMATIC so that the database

manager can choose intelligent values based on the system configuration.

Configuration for asynchronous I/O

On some platforms, the database manager uses asynchronous I/O (AIO) to

improve the performance of activities such as page cleaning and prefetching. AIO

102 Troubleshooting and Tuning Database Performance

is most effective if data is distributed across multiple disks. Performance also

benefits from tuning the underlying operating system AIO infrastructure.

For example, on AIX, you might tune AIO on the operating system. When AIO

works on either SMS or DMS file containers, operating system processes called

AIO servers manage the I/O. A small number of such servers might limit the

benefit of AIO by restricting the number of AIO requests. To configure the number

of AIO servers on AIX, use the smit AIO minservers, and AIO maxservers

parameters.

Illustration of prefetching with parallel I/O:

I/O servers are used to prefetch data into a buffer pool.

 This process is shown in Figure 20.

�1� The user application passes the request to the database agent that has been

assigned to the user application by the database manager.

�2�, �3�

The database agent determines that prefetching should be used to obtain

the data that is required to satisfy the request, and writes a prefetch

request to the I/O server queue.

1

2

33

4

5

6

Database

Table space

Database

Table space

Database
Agent

Database
Agent

Database
Agent

User
Application

I/O server
queue

I/O ServerI/O Server

Buffer Pool

Big Block
Read

Create
4K pages

Logical Buffer
Read

Asynchronous
Prefetch Request

SQL request SQL request SQL request

User
Application

User
Application

Figure 20. Prefetching data using I/O servers

Chapter 3. Factors affecting performance 103

�4�, �5�

The first available I/O server reads the prefetch request from the queue

and then reads the data from the table space into the buffer pool. The

number of I/O servers that can simultaneously fetch data from a table

space depends on the number of prefetch requests in the queue and the

number of I/O servers specified by the num_ioservers database

configuration parameter.

�6� The database agent performs the necessary operations on the data pages in

the buffer pool and returns the result to the user application.

Parallel I/O management:

If multiple containers exist for a table space, the database manager can initiate

parallel I/O, whereby the database manager uses multiple I/O servers to process

the I/O requirements of a single query.

 Each I/O server processes the I/O workload for a separate container, so that

several containers can be read in parallel. Parallel I/O can result in significant

improvements in I/O throughput.

Although a separate I/O server can handle the workload for each container, the

actual number of I/O servers that can perform parallel I/O is limited to the

number of physical devices over which the requested data is spread. For this

reason, you need as many I/O servers as physical devices.

Parallel I/O is initiated differently in the following cases:

v For sequential prefetching, parallel I/O is initiated when the prefetch size is a

multiple of the extent size for a table space. Each prefetch request is divided into

smaller requests along extent boundaries. These small requests are then assigned

to different I/O servers.

v For list prefetching, each list of pages is divided into smaller lists according to the

container in which the data pages are stored. These small lists are then assigned

to different I/O servers.

v For database or table space backup and restore, the number of parallel I/O requests

is equal to the backup buffer size divided by the extent size, up to a maximum

value that is equal to the number of containers.

v For database or table space restore, the parallel I/O requests are initiated and

divided the same way as what is done for sequential prefetching. The data is not

restored into a buffer pool; it moves directly from the restore buffer to disk.

v When you load data, you can specify the level of I/O parallelism with the

DISK_PARALLELISM command option. If you do not specify this option, the

database manager uses a default value that is based on the cumulative number

of table space containers for all table spaces that are associated with the table.

For optimal parallel I/O performance, ensure that:

v There are enough I/O servers. Specify slightly more I/O servers than the

number of containers that are used for all table spaces within the database.

v The extent size and the prefetch size are appropriate for the table space. To

prevent overuse of the buffer pool, the prefetch size should not be too large. An

ideal size is a multiple of the extent size, the number of physical disks under

each container (if a RAID device is used), and the number of table space

containers. The extent size should be fairly small, with a good value being in the

range of 8 to 32 pages.

v The containers reside on separate physical drives.

104 Troubleshooting and Tuning Database Performance

v All containers are the same size to ensure a consistent degree of parallelism.

If one or more containers are smaller than the others, they reduce the potential

for optimized parallel prefetching. Consider the following examples:

– After a smaller container is filled, additional data is stored in the remaining

containers, causing the containers to become unbalanced. Unbalanced

containers reduce the performance of parallel prefetching, because the number

of containers from which data can be prefetched might be less than the total

number of containers.

– If a smaller container is added at a later date and the data is rebalanced, the

smaller container will contain less data than the other containers. Its small

amount of data relative to the other containers will not optimize parallel

prefetching.

– If one container is larger and all of the other containers fill up, the larger

container is the only container to store additional data. The database manager

cannot use parallel prefetching to access this additional data.
v There is adequate I/O capacity when using intra-partition parallelism. On SMP

machines, intra-partition parallelism can reduce the elapsed time for a query by

running the query on multiple processors. Sufficient I/O capacity is required to

keep each processor busy. Additional physical drives are usually required to

provide that I/O capacity.

The prefetch size must be larger for prefetching to occur at higher rates, and to

use I/O capacity effectively.

The number of physical drives required depends on the speed and capacity of

the drives and the I/O bus, and on the speed of the processors.

Configuring IOCP on AIX:

AIX 5.3 TL9 SP2 and AIX 6.1 TL2 have the I/O completion ports (IOCP) file set

included as part of the base installation. However, if the minimum operating

system requirements were applied using an operating system upgrade rather than

using a new operating system installation, you must configure I/O completion

ports (IOCP) separately.

 1. Enter the lslpp command to check whether the IOCP module is installed on

your system.

$ lslpp -l bos.iocp.rte

The resulting output should be similar to the following example:

Fileset Level State Description

--

Path: /usr/lib/objrepos

 bos.iocp.rte 5.3.9.0 APPLIED I/O Completion Ports API

Path: /etc/objrepos

 bos.iocp.rte 5.3.0.50 COMMITTED I/O Completion Ports API

2. Enter the lsdev command to check whether the status of the IOCP port is

Available.

$ lsdev -Cc iocp

The resulting output should match the following example:

 iocp0 Available I/O Completion Ports

If the IOCP port status is Defined, change the status to Available.

a. Log in to the server as root and issue the following command:

smitty iocp

Chapter 3. Factors affecting performance 105

b. Select Change / Show Characteristics of I/O Completion Ports.

c. Change the configured state at system restart from Defined to Available.

d. Enter the lsdev command again to confirm that the status of the IOCP port

has changed to Available.

Database deactivation behavior in first-user connection

scenarios

A database is activated when a user first connects to it. In a single-partition

environment, the database is loaded into memory and remains in this state until

the last user disconnects. The same behavior applies to multi-partition

environments, where any first-user connection activates the database on both local

and catalog partitions for that database.

When the last user disconnects, the database shuts down on both local and any

remote partitions where this user is the last active user connection for the database.

This activation and deactivation of the database based on first connection and last

disconnection is known as implicit activation. Activation is initiated by the first user

connection, and the activation remains in effect until the user executes a

CONNECT RESET (or until the user terminates or drops the connection), which

results in the database being implicitly deactivated.

The process of loading a database into memory is very involved. It encompasses

initialization of all database components, including buffer pools, and is the type of

processing that should be minimized, particularly in performance-sensitive

environments. This behavior is of particular importance in multi-partition

environments, where queries that are issued from one database partition reach

other partitions that contain part of the target data set. Those database partitions

are activated or deactivated, depending on the connect and disconnect behavior of

the user applications. When a user issues a query that reaches a database partition

for the first time, the query assumes the cost of first activating that partition. When

that user disconnects, the database is deactivated unless other connections were

previously established against that remote partition. If the next incoming query

needs to access that remote partition, the database on that partition will first have

to be activated. This cost is accrued for each activation and deactivation of the

database (or database partition, where applicable).

The only exception to this behavior occurs if the user chooses to explicitly activate

the database by issuing the ACTIVATE DATABASE command. After this command

completes successfully, the database remains in memory, even if the last user

disconnects. This applies to both single- and multi-partition environments. To

deactivate such a database, issue the DEACTIVATE DATABASE command. Both

commands are global in scope, meaning that they will activate or deactivate the

database on all database partitions, if applicable. Given the processing-intensive

nature of loading a database into memory, consider explicitly activating databases

by using the ACTIVATE DATABASE command, rather than relying on implicit

activation through database connections.

Tuning sort performance

Because queries often require sorted or grouped results, proper configuration of the

sort heap is crucial to good query performance.

Sorting is required when:

v No index that satisfies a requested order exists (for example, a SELECT

statement that uses the ORDER BY clause)

106 Troubleshooting and Tuning Database Performance

v An index exists, but sorting would be more efficient than using the index

v An index is created

v An index is dropped, which causes index page numbers to be sorted

Elements that affect sorting

The following factors affect sort performance:

v Settings for the following configuration parameters:

– Sort heap size, (sortheap), which specifies the amount of memory to be used

for each sort

– Sort heap threshold (sheapthres) and the sort heap threshold for shared sorts

(sheapthres_shr), which control the total amount of memory that is available

for sorting across the instance
v The number of statements in a workload that require a large amount of sorting

v The presence or absence of indexes that could help avoid unnecessary sorting

v The use of application logic that does not minimize the need for sorting

v Parallel sorting, which improves sort performance, but which can only occur if

the statement uses intra-partition parallelism

v Whether or not the sort is overflowed. If the sorted data cannot fit into the sort

heap, which is a block of memory that is allocated each time a sort is performed,

the data overflows into a temporary table that is owned by the database.

v Whether or not the results of the sort are piped. If sorted data can return directly

without requiring a temporary table to store the sorted list, it is a piped sort.

In a piped sort, the sort heap is not freed until the application closes the cursor

that is associated with the sort. A piped sort can continue to use up memory

until the cursor is closed.

Although a sort can be performed entirely in sort memory, this might cause

excessive page swapping. In this case, you lose the advantage of a large sort heap.

For this reason, you should use an operating system monitor to track changes in

system paging whenever you adjust the sorting configuration parameters.

Techniques for managing sort performance

Identify particular applications and statements where sorting is a significant

performance problem:

1. Set up event monitors at the application and statement level to help you

identify applications with the longest total sort time.

2. Within each of these applications, find the statements with the longest total sort

time.

You can also search through the explain tables to identify queries that have sort

operations.

3. Use these statements as input to the Design Advisor, which will identify and

can create indexes to reduce the need for sorting.

You can use the self-tuning memory manager (STMM) to automatically and

dynamically allocate and deallocate memory resources required for sorting. To use

this feature:

v Enable self-tuning memory for the database by setting the self_tuning_mem

configuration parameter to ON.

v Set the sortheap and sheapthres_shr configuration parameters to AUTOMATIC.

Chapter 3. Factors affecting performance 107

v Set the sheapthres configuration parameter to 0.

You can also use the database system monitor and benchmarking techniques to

help set the sortheap, sheapthres_shr, and sheapthres configuration parameters.

For each database manager and for each database:

1. Set up and run a representative workload.

2. For each applicable database, collect average values for the following

performance variables over the benchmark workload period:

v Total sort heap in use (the value of the sort_heap_allocated monitor element)

v Active sorts and active hash joins (the values of the active_sorts and

active_hash_joins monitor elements)
3. Set sortheap to the average total sort heap in use for each database.

Note: If long keys are used for sorts, you might need to increase the value of

the sortheap configuration parameter.

4. Set the sheapthres. To estimate an appropriate size:

a. Determine which database in the instance has the largest sortheap value.

b. Determine the average size of the sort heap for this database.

If this is too difficult to determine, use 80% of the maximum sort heap.

c. Set sheapthres to the average number of active sorts, times the average size

of the sort heap computed above. This is a recommended initial setting. You

can then use benchmark techniques to refine this value.

Data organization

Over time, data in your tables can become fragmented, increasing the size of tables

and indexes as records become distributed over more and more data pages. This

can increase the number of pages that need to be read during query execution.

Reorganization of tables and indexes compacts your data, reclaiming wasted space

and improving data access.

The steps to perform a table or index reorganization are as follows:

1. Determine whether you need to reorganize any tables or indexes.

2. Choose a reorganization method.

3. Perform the reorganization of identified objects.

4. Optional: Monitor the progress of reorganization.

5. Determine whether or not the reorganization was successful. For offline table

reorganization and any index reorganization, the operation is synchronous, and

the outcome is apparent upon completion of the operation. For online table

reorganization, the operation is asynchronous, and details are available from

the history file.

6. Collect statistics on reorganized objects.

7. Rebind applications that access reorganized objects.

Table reorganization

After many changes to table data, logically sequential data might reside on

nonsequential data pages, so that the database manager must perform additional

read operations to access data.

108 Troubleshooting and Tuning Database Performance

Additional read operations are also required if many rows have been deleted. In

this case, you might consider reorganizing the table to match the index and to

reclaim space. You can also reorganize the system catalog tables.

Because reorganizing a table usually takes more time than updating statistics, you

could execute the RUNSTATS command to refresh the current statistics for your

data, and then rebind your applications. If refreshed statistics do not improve

performance, reorganization might help.

The following factors can indicate a need for table reorganization:

v There has been a high volume of insert, update, and delete activity against

tables that are accessed by queries.

v There have been significant changes in the performance of queries that use an

index with a high cluster ratio.

v Executing the RUNSTATS command to refresh table statistics does not improve

performance.

v Output from the REORGCHK command indicates a need for table

reorganization.

Choosing a table reorganization method

There are two approaches to table reorganization: classic reorganization (offline) and

inplace reorganization (online).

Offline reorganization is the default behavior. To specify an online reorganization

operation, use the INPLACE option on the REORG TABLE command.

An alternative approach to inplace reorganization, using online table move stored

procedures, is also available. See “Moving tables online by using the

ADMIN_MOVE_TABLE procedure”.

Each approach has its advantages and drawbacks, which are summarized below.

When choosing a reorganization method, consider which approach offers

advantages that align with your priorities. For example, if recoverability in case of

failure is more important than performance, online reorganization might be

preferable.

Advantages of offline reorganization

This approach offers:

v The fastest table reorganization operations, especially if large object (LOB) or

long field data is not included

v Perfectly clustered tables and indexes upon completion

v Indexes that are automatically rebuilt after a table has been reorganized; there is

no separate step for rebuilding indexes

v The use of a temporary table space for building a shadow copy; this reduces the

space requirements for the table space that contains the target table or index

v The use of an index other than the clustering index to re-cluster the data

Disadvantages of offline reorganization

This approach is characterized by:

v Limited table access; read access only during the sort and build phase of a reorg

operation

Chapter 3. Factors affecting performance 109

v A large space requirement for the shadow copy of the table that is being

reorganized

v Less control over the reorg process; an offline reorg operation cannot be paused

and restarted

Advantages of online reorganization

This approach offers:

v Full table access, except during the truncation phase of a reorg operation

v More control over the reorg process, which runs asynchronously in the

background, and which can be paused, resumed, or stopped; for example, you

can pause an in-progress reorg operation if a large number of update or delete

operations are running against the table

v A recoverable process in the event of a failure

v A reduced requirement for working storage, because a table is processed

incrementally

v Immediate benefits of reorganization, even before a reorg operation completes

Disadvantages of online reorganization

This approach is characterized by:

v Imperfect data or index clustering, depending on the type of transactions that

access the table during a reorg operation

v Poorer performance than an offline reorg operation

v Potentially high logging requirements, depending on the number of rows being

moved, the number of indexes that are defined on the table, and the size of

those indexes

v A potential need for subsequent index reorganization, because indexes are

maintained, not rebuilt

 Table 1. Comparison of online and offline reorganization

Characteristic Offline reorganization Online reorganization

Performance Fast Slow

Clustering factor of data at

completion

Good Not perfectly clustered

Concurrency (access to the

table)

Ranges from no access to

read-only

Ranges from read-only to full

access

Data storage space

requirement

Significant Not significant

Logging storage space

requirement

Not significant Could be significant

User control (ability to

pause, restart process)

Less control More control

Recoverability Not recoverable Recoverable

Index rebuilding Done Not done

Supported for all types of

tables

Yes No

Ability to specify an index

other than the clustering

index

Yes No

110 Troubleshooting and Tuning Database Performance

Table 1. Comparison of online and offline reorganization (continued)

Characteristic Offline reorganization Online reorganization

Use of a temporary table

space

Yes No

 Table 2. Table types that are supported for online and offline reorganization

Table type

Offline reorganization

supported

Online reorganization

supported

Multidimensional clustering

tables (MDC)

Yes1 No

Range-clustered tables (RCT) No2 No

Append mode tables No No3

Tables with long field or large

object (LOB) data

Yes4 No

System catalog tables:

SYSIBM.SYSDBAUTH,

SYSIBM.SYSROUTINEAUTH,

SYSIBM.SYSSEQUENCES,

SYSIBM.SYSTABLES

Yes No

Notes:

1. Because clustering is automatically maintained through MDC block indexes,

reorganization of an MDC table involves space reclamation only. No indexes can be

specified.

2. The range area of an RCT always remains clustered.

3. Online reorganization can be performed after append mode is disabled.

4. Reorganizing long field or large object (LOB) data can take a significant amount of

time, and does not improve query performance; it should only be done for space

reclamation.

Monitoring the progress of table reorganization

Information about the progress of a current table reorg operation is written to the

history file. The history file contains a record for each reorganization event. To

view this file, execute the LIST HISTORY command against the database that

contains the table being reorganized.

You can also use table snapshots to monitor the progress of table reorg operations.

Table reorganization monitoring data is recorded, regardless of the setting for the

database system monitor table switch.

If an error occurs, an SQLCA message is written to the history file. In the case of

an inplace table reorg operation, the status is recorded as PAUSED.

Classic (offline) table reorganization

Classic table reorganization uses a shadow copy approach, building a full copy of

the table that is being reorganized.

There are four phases in a classic or offline table reorganization operation:

1. SORT - During this phase, if an index was specified on the REORG TABLE

command, or a clustering index was defined on the table, the rows of the table

are first sorted according to that index. If the INDEXSCAN option is specified,

Chapter 3. Factors affecting performance 111

an index scan is used to sort the table; otherwise, a table scan sort is used. This

phase applies only to a clustering table reorg operation. Space reclaiming reorg

operations begin at the build phase.

2. BUILD - During this phase, a reorganized copy of the entire table is built,

either in its table space or in a temporary table space that was specified on the

REORG TABLE command.

3. REPLACE - During this phase, the original table object is replaced by a copy

from the temporary table space, or a pointer is created to the newly built object

within the table space of the table that is being reorganized.

4. RECREATE ALL INDEXES - During this phase, all indexes that were defined

on the table are recreated.

You can monitor the progress of the table reorg operation and identify the current

phase using the snapshot monitor or snapshot administrative views.

The locking conditions are more restrictive in offline mode than in online mode.

Read access to the table is available while the copy is being built. However,

exclusive access to the table is required when the original table is being replaced

by the reorganized copy, or when indexes are being rebuilt.

An IX table space lock is required during the entire table reorg process. During the

build phase, a U lock is acquired and held on the table. A U lock allows the lock

owner to update the data in the table. Although no other application can update

the data, read access is permitted. The U lock is upgraded to a Z lock after the

replace phase starts. During this phase, no other applications can access the data.

This lock is held until the table reorg operation completes.

A number of files are created by the offline reorganization process. These files are

stored in your database directory. Their names are prefixed with the table space

and object IDs; for example, 0030002.ROR is the state file for a table reorg

operation whose table space ID is 3 and table ID is 2.

The following list shows the temporary files that are created in a system managed

space (SMS) table space during an offline table reorg operation:

v .DTR - Data shadow copy file

v .LFR - Long field file

v .LAR - Long field allocation file

v .RLB - LOB data file

v .RBA - LOB allocation file

v .BMR - Block object file for multidimensional clustering (MDC) tables

The following temporary file is created during an index reorg operation:

v .IN1 - Shadow copy file

The following list shows the temporary files that are created in the system

temporary table space during the sort phase:

v .TDA - Data file

v .TIX - Index file

v .TLF - Long field file

v .TLA - Long field allocation file

v .TLB - LOB file

v .TBA - LOB allocation file

112 Troubleshooting and Tuning Database Performance

v .TBM - Block object file

The files that are associated with the reorganization process should not be

manually removed from your system.

Reorganizing tables offline:

Reorganizing tables offline is the fastest way to defragment your tables.

Reorganization reduces the amount of space that is required for a table and

improves data access and query performance.

 You must have SYSADM, SYSCTRL, SYSMAINT, DBADM, or SQLADM authority,

or CONTROL privilege on the table that is to be reorganized. You must also have a

database connection to reorganize a table.

After you have identified the tables that require reorganization, you can run the

reorg utility against those tables and, optionally, against any indexes that are

defined on those tables.

1. To reorganize a table using the REORG TABLE command, simply specify the

name of the table. For example:

 reorg table employee

You can reorganize a table using a specific temporary table space. For example:

 reorg table employee use mytemp

You can reorganize a table and have the rows reordered according to a specific

index. For example:

 reorg table employee index myindex

2. To reorganize a table using an SQL CALL statement, specify the REORG

TABLE command with the ADMIN_CMD procedure. For example:

 call sysproc.admin_cmd (’reorg table employee’)

3. To reorganize a table using the administrative application programming

interface, call the db2Reorg API.

After reorganizing a table, collect statistics on that table so that the optimizer has

the most accurate data for evaluating query access plans.

Recovery of an offline table reorganization:

An offline table reorganization is an all-or-nothing process until the beginning of

the replace phase. If your system crashes during the sort or build phase, the reorg

operation is rolled back and will not be redone during crash recovery.

 If your system crashes after the beginning of the replace phase, the reorg operation

must complete, because all of the reorganization work has been done and the

original table might no longer be available. During crash recovery, the temporary

file for the reorganized table object is required, but not the temporary table space

that is used for the sort. Recovery will restart the replace phase from the

beginning, and all of the data in the copy object is required for recovery. There is a

difference between system managed space (SMS) and database managed space

(DMS) table spaces in this case: the reorganized table object in SMS must be copied

from one object to the other, but the reorganized table object in DMS is simply

pointed to, and the original table is dropped, if the reorganization was done in the

same table space. Indexes are not rebuilt, but are marked invalid during crash

Chapter 3. Factors affecting performance 113

recovery, and the database will follow the usual rules to determine when they are

rebuilt, either at database restart or upon first index access.

If a crash occurs during the index rebuild phase, nothing is redone because the

new table object already exists. Indexes are handled as described previously.

During rollforward recovery, the reorg operation is redone if the old version of the

table is on disk. The rollforward utility uses the record IDs (RIDs) that are logged

during the build phase to reapply the operations that created the reorganized table,

repeating the build and replace phases. Indexes are handled as described

previously. A temporary table space is required for a copy of the reorganized object

only if a temporary table space was used originally. During rollforward recovery,

multiple reorg operations can be redone concurrently (parallel recovery).

Improving the performance of offline table reorganization:

The performance of an offline table reorganization is largely determined by the

characteristics of the database environment.

 There is almost no difference in performance between a reorg operation that is

running in ALLOW NO ACCESS mode and one that is running in ALLOW READ

ACCESS mode. The difference is that during a reorg operation in ALLOW READ

ACCESS mode, the utility might have to wait for other applications to complete

their scans and release their locks before replacing the table. The table is

unavailable during the index rebuild phase of a reorg operation that is running in

either mode.

Tips for improving performance

v If there is enough space to do so, use the same table space for both the original

table and the reorganized copy of the table, instead of using a temporary table

space. This saves the time that is needed to copy the reorganized table from the

temporary table space.

v Consider dropping unnecessary indexes before reorganizing a table so that fewer

indexes need to be maintained during the reorg operation.

v Ensure that the prefetch size of the table spaces on which the reorganized table

resides is set properly.

v Tune the sortheap and sheapthres database configuration parameters to control

the space that is available for sorts. Because each processor will perform a

private sort, the value of sheapthres should be at least sortheap x

number-of-processors.

v Adjust the number of page cleaners to ensure that dirty index pages in the

buffer pool are cleaned as soon as possible.

Inplace (online) table reorganization

Inplace table reorganization enables you to reorganize a table while you have full

access to its data. The cost of this uninterrupted access to the data is a slower table

reorg operation.

During an inplace or online table reorg operation, portions of a table are

reorganized sequentially. Data is not copied to a temporary table space; instead,

rows are moved within the existing table object to reestablish clustering, reclaim

free space, and eliminate overflow rows.

There are four main phases in an online table reorg operation:

1. SELECT n pages

114 Troubleshooting and Tuning Database Performance

During this phase, the database manager selects a range of n pages, where n is

the size of an extent with a minimum of 32 sequential pages for reorg

processing.

2. Vacate the range

The reorg utility moves all rows within this range to free pages in the table.

Each row that is moved leaves behind a reorg table pointer (RP) record that

contains the record ID (RID) of the row’s new location. The row is placed on a

free page in the table as a reorg table overflow (RO) record that contains the

data. After the utility has finished moving a set of rows, it waits until all

applications that are accessing data in the table are finished. These “old

scanners” use old RIDs when accessing the table data. Any table access that

starts during this waiting period (a “new scanner”) uses new RIDs to access the

data. After all of the old scanners have completed, the reorg utility cleans up

the moved rows, deleting RP records and converting RO records into regular

records.

3. Fill the range

After all rows in a specific range have been vacated, they are written back in a

reorganized format, sorted according to any indexes that were used, and

obeying any PCTFREE restrictions that were defined. When all of the pages in

the range have been rewritten, the next n sequential pages in the table are

selected, and the process is repeated.

4. Truncate the table

By default, when all pages in the table have been reorganized, the table is

truncated to reclaim space. If the NOTRUNCATE option has been specified, the

reorganized table is not truncated.

Files created during an online table reorg operation

During an online table reorg operation, an .OLR state file is created for each

database partition. This binary file has a name whose format is xxxxyyyy.OLR,

where xxxx is the table space ID and yyyy is the object ID in hexadecimal format.

This file contains the following information that is required to resume an online

reorg operation from the paused state:

v The type of reorg operation

v The life log sequence number (LSN) of the table being reorganized

v The next range to be vacated

v Whether the reorg operation is clustering the data or just reclaiming space

v The ID of the index that is being used to cluster the data

A checksum is performed on the .OLR file. If the file becomes corrupted, causing

checksum errors, or if the table LSN does not match the life LSN, a new reorg

operation is initiated, and a new state file is created.

If the .OLR state file is deleted, the reorg process cannot resume, SQL2219N is

returned, and a new reorg operation must be initiated.

The files that are associated with the reorganization process should not be

manually removed from your system.

Reorganizing tables online:

An online or inplace table reorganization allows users to access a table while it is

being reorganized.

Chapter 3. Factors affecting performance 115

You must have SYSADM, SYSCTRL, SYSMAINT, DBADM, or SQLADM authority,

or CONTROL privilege on the table that is to be reorganized. You must also have a

database connection to reorganize a table.

After you have identified the tables that require reorganization, you can run the

reorg utility against those tables and, optionally, against any indexes that are

defined on those tables.

1. To reorganize a table online using the REORG TABLE command, simply specify

the name of the table and the INPLACE option. For example:

 reorg table employee inplace

2. To reorganize a table online using an SQL CALL statement, specify the REORG

TABLE command with the ADMIN_CMD procedure. For example:

 call sysproc.admin_cmd (’reorg table employee inplace’)

3. To reorganize a table online using the administrative application programming

interface, call the db2Reorg API.

After reorganizing a table, collect statistics on that table so that the optimizer has

the most accurate data for evaluating query access plans.

Recovery of an online table reorganization:

The failure of an online table reorganization is often due to processing errors, such

as disk full or logging errors. If an online table reorganization fails, an SQLCA

message is written to the history file.

 If a failure occurs during run time, the online table reorg operation is paused and

then rolled back during crash recovery. You can subsequently resume the reorg

operation by specifying the RESUME option on the REORG TABLE command.

Because the process is fully logged, online table reorganization is guaranteed to be

recoverable.

Under some circumstances, an online table reorg operation might exceed the limit

that is set by the value of the num_log_span database configuration parameter. In

this case, the database manager will force the reorg utility and put it into PAUSE

state. In snapshot monitor output, the state of the reorg utility will appear as

PAUSED.

The online table reorg pause is interrupt-driven, which means that it can be

triggered either by a user (using the PAUSE option on the REORG TABLE

command, or the FORCE APPLICATION command) or by the database manager in

certain circumstances; for example, in the event of a system crash.

If one or more database partitions in a partitioned database environment

encounters an error, the SQLCODE that is returned will be the one from the first

database partition that reports an error.

Pausing and restarting an online table reorganization:

An online table reorganization that is in progress can be paused and restarted by

the user.

 You must have SYSADM, SYSCTRL, SYSMAINT, DBADM, or SQLADM authority,

or CONTROL privilege on the table whose online reorganization is to be paused or

restarted. You must also have a database connection to pause or restart an online

table reorganization.

116 Troubleshooting and Tuning Database Performance

1. To pause an online table reorganization using the REORG TABLE command,

specify the name of the table, the INPLACE option, and the PAUSE option. For

example:

 reorg table employee inplace pause

2. To restart a paused online table reorganization, specify the RESUME option. For

example:

 reorg table employee inplace resume

When an online table reorg operation is paused, you cannot begin a new

reorganization of that table. You must either resume or stop the paused

operation before beginning a new reorganization process.

Following a RESUME request, the reorganization process respects whatever

truncation option is specified on the current RESUME request. For example, if

the NOTRUNCATE option is not specified on the current RESUME request, a

NOTRUNCATE option specified on the original REORG TABLE command—or

with any previous RESUME requests—is ignored.

A table reorg operation cannot resume after a restore and rollforward operation.

Locking and concurrency considerations for online table reorganization:

One of the most important aspects of online table reorganization—because it is so

crucial to application concurrency—is how locking is controlled.

 An online table reorg operation can hold the following locks:

v To ensure write access to table spaces, an IX lock is acquired on the table spaces

that are affected by the reorg operation.

v A table lock is acquired and held during the entire reorg operation. The level of

locking is dependent on the access mode that is in effect during reorganization:

– If ALLOW WRITE ACCESS was specified, an IS table lock is acquired.

– If ALLOW READ ACCESS was specified, an S table lock is acquired.
v An S lock on the table is requested during the truncation phase. Until the S lock

is acquired, rows can be inserted by concurrent transactions. These inserted rows

might not be seen by the reorg utility, and could prevent the table from being

truncated. After the S table lock is acquired, rows that prevent the table from

being truncated are moved to compact the table. After the table is compacted, it

is truncated, but only after all transactions that are accessing the table at the

time the truncation point is determined have completed.

v A row lock might be acquired, depending on the type of table lock:

– If an S lock is held on the table, there is no need for individual row-level S

locks, and further locking is unnecessary.

– If an IS lock is held on the table, an NS row lock is acquired before the row is

moved, and then released after the move is complete.
v Certain internal locks might also be acquired during an online table reorg

operation.

Locking has an impact on the performance of both online table reorg operations

and concurrent user applications. You can use lock snapshot data to help you to

understand the locking activity that occurs during online table reorganizations.

Monitoring a table reorganization

You can use the GET SNAPSHOT command, the SNAPTAB_REORG

administrative view, or the SNAP_GET_TAB_REORG table function to obtain

information about the status of your table reorganization operations.

Chapter 3. Factors affecting performance 117

v To access information about reorganization operations using SQL, use the

SNAPTAB_REORG administrative view. For example, the following query

returns details about table reorganization operations on all database partitions

for the currently connected database. If no tables have been reorganized, no

rows are returned.

 select

 substr(tabname, 1, 15) as tab_name,

 substr(tabschema, 1, 15) as tab_schema,

 reorg_phase,

 substr(reorg_type, 1, 20) as reorg_type,

 reorg_status,

 reorg_completion,

 dbpartitionnum

 from sysibmadm.snaptab_reorg

 order by dbpartitionnum

v To access information about reorganization operations using the snapshot

monitor, use the GET SNAPSHOT FOR TABLES command and examine the

values of the table reorganization monitor elements.

Because offline table reorg operations are synchronous, errors are returned to the

caller of the utility (an application or the command line processor). And because

online table reorg operations are asynchronous, error messages in this case are not

returned to the CLP. To view SQL error messages that are returned during an

online table reorg operation, use the LIST HISTORY REORG command.

An online table reorg operation runs in the background as the db2Reorg process.

This process continues running even if the calling application terminates its

database connection.

Index reorganization

As tables are updated, index performance can degrade.

The degradation can occur in the following ways:

v Leaf pages become fragmented. When leaf pages are fragmented, I/O costs

increase because more leaf pages must be read to fetch table pages.

v The physical index page order no longer matches the sequence of keys on those

pages, resulting in a badly clustered index. When leaf pages are badly clustered,

sequential prefetching is inefficient and the number of I/O waits increases.

v The index develops too many levels. In this case, the index should be

reorganized.

Index reorganization requires:

v SYSADM, SYSMAINT, SYSCTRL, DBADM, or SQLADM authority, or

CONTROL privilege on the table and its indexes

v An amount of free space in the table space where the indexes are stored that is

equal to the current size of the indexes. Consider placing indexes in a large table

space when you issue the CREATE TABLE statement.

v Additional log space. The index reorg utility logs its activities.

If you specify the MINPCTUSED option on the CREATE INDEX statement, the

database server automatically merges index leaf pages if a key is deleted and the

free space becomes less than the specified value. This process is called online index

defragmentation.

118 Troubleshooting and Tuning Database Performance

To restore index clustering, free up space, and reduce leaf levels, you can use one

of the following methods:

v Drop and recreate the index.

v Use the REORG TABLE command with options that allow you to reorganize

both the table and its indexes offline.

v Use the REORG INDEXES command to reorganize indexes online. You might

choose this method in a production environment, because it allows users to read

from and write to the table while its indexes are being rebuilt.

Online index reorganization

When you use the REORG INDEXES command with the ALLOW WRITE ACCESS

option, all indexes on the specified table are rebuilt while read and write access to

the table continues. During reorganization, any changes to the underlying table

that would affect the indexes are logged. The reorg operation processes these

logged changes while rebuilding the indexes.

Changes to the underlying table that would affect the indexes are also written to

an internal memory buffer, if such space is available for use. The internal buffer is

a designated memory area that is allocated on demand from the utility heap. The

use of a memory buffer space enables the index reorg utility to process the changes

by reading directly from memory first, and then reading through the logs, if

necessary, but at a much later time. The allocated memory is freed after the reorg

operation completes.

Online index reorganization in ALLOW WRITE ACCESS mode (without the

CLEANUP option) is not supported for spatial indexes, partitioned indexes on

partitioned tables, or multidimensional clustering (MDC) tables.

Determining when to reorganize tables and indexes

After many changes to table data, logically sequential data might be located on

nonsequential physical data pages, especially if many update operations have

created overflow records. When the data is organized in this way, the database

manager must perform additional read operations to access required data.

Additional read operations are also required if many rows have been deleted.

Table reorganization defragments the data, eliminating wasted space. It also

reorders the rows to incorporate overflow records, improving data access and,

ultimately, query performance. You can specify that the data should be reordered

according to a particular index, so that queries can access the data with a minimal

number of read operations.

Many changes to table data can cause index performance to degrade. Index leaf

pages can become fragmented or badly clustered, and the index could develop

more levels than necessary for optimal performance. All of these issues cause more

I/Os and can degrade performance.

Any one of the following factors might indicate that you should reorganize a table

or index:

v A high volume of insert, update, and delete activity against a table since the

table was last reorganized

v Significant changes in the performance of queries that use an index with a high

cluster ratio

Chapter 3. Factors affecting performance 119

v Executing the RUNSTATS command to refresh statistical information does not

improve performance

v Output from the REORGCHK command suggests that performance can be

improved by reorganizing a table or its indexes

In some cases, the reorgchk utility will always recommend table reorganization,

even after a table reorg operation has been performed. For example, using a

32-KB page size with an average record length of 15 bytes and a maximum of

253 records per page means that each page has 32 700 - (15 x 253) = 28 905

unusable bytes. This means that approximately 88% of the page is free space.

You should analyze reorgchk utility recommendations and assess the potential

benefits against the costs of performing a reorganization.

The REORGCHK command returns statistical information about data organization

and can advise you about whether particular tables or indexes need to be

reorganized. However, running specific queries against the SYSSTAT views at

regular intervals or at specific times can build a history that will help you to

identify trends that have potentially significant performance implications.

To determine whether there is a need to reorganize your tables or indexes, query

the SYSSTAT views and monitor the following statistics:

v Overflow of rows

Query the OVERFLOW column in the SYSSTAT.TABLES view to monitor the

overflow value. The value represents the number of rows that do not fit on their

original pages. Row data can overflow when variable length columns cause the

record length to expand to the point that a row no longer fits into its assigned

location on the data page. Length changes can also occur if a column is added to

the table. In this case, a pointer is kept at the original location in the row and

the actual value is stored in another location that is indicated by the pointer.

This can impact performance because the database manager must follow the

pointer to find the contents of the column. This two-step process increases the

processing time and might also increase the number of I/Os that are required.

Reorganizing the table data will eliminate any row overflows.

v Fetch statistics

Query the following columns in the SYSSTAT.INDEXES catalog view to

determine the effectiveness of the prefetchers when the table is accessed in index

order. These statistics characterize the average performance of the prefetchers

against the underlying table.

– The AVERAGE_SEQUENCE_FETCH_PAGES column stores the average

number of pages that can be accessed in sequence. Pages that can be accessed

in sequence are eligible for prefetching. A small number indicates that the

prefetchers are not as effective as they could be, because they cannot read in

the full number of pages that is specified by the PREFETCHSIZE value for

the table space. A large number indicates that the prefetchers are performing

effectively. For a clustered index and table, this number should approach the

value of NPAGES, the number of pages that contain rows.

– The AVERAGE_RANDOM_FETCH_PAGES column stores the average

number of random table pages that are fetched between sequential page

accesses when fetching table rows using an index. The prefetchers ignore

small numbers of random pages when most pages are in sequence, and

continue to prefetch to the configured prefetch size. As the table becomes

more disorganized, the number of random fetch pages increases.

Disorganization is usually caused by insertions that occur out of sequence,

either at the end of the table or in overflow pages, and query performance is

impacted when an index is used to access a range of values.

120 Troubleshooting and Tuning Database Performance

– The AVERAGE_SEQUENCE_FETCH_GAP column stores the average gap

between table page sequences when fetching table rows using an index.

Detected through a scan of index leaf pages, each gap represents the average

number of table pages that must be randomly fetched between sequences of

table pages. This occurs when many pages are accessed randomly, which

interrupts the prefetchers. A large number indicates that the table is

disorganized or poorly clustered to the index.
v Number of index leaf pages containing record identifiers (RIDs) that are marked

deleted but that have not yet been removed

RIDs are not usually physically deleted when they are marked deleted. This

means that useful space might be occupied by these logically deleted RIDs. To

retrieve the number of leaf pages on which every RID is marked deleted, query

the NUM_EMPTY_LEAFS column of the SYSSTAT.INDEXES view. For leaf pages

on which not all RIDs are marked deleted, the total number of logically deleted

RIDs is stored in the NUMRIDS_DELETED column.

Use this information to estimate how much space might be reclaimed by

invoking the REORG INDEXES command with the CLEANUP ALL option. To

reclaim only the space in pages on which all RIDs are marked deleted, invoke

the REORG INDEXES command with the CLEANUP ONLY PAGES option.

v Cluster-ratio and cluster-factor statistics for indexes

In general, only one of the indexes for a table can have a high degree of

clustering. A cluster-ratio statistic is stored in the CLUSTERRATIO column of the

SYSCAT.INDEXES catalog view. This value, between 0 and 100, represents the

degree of data clustering in the index. If you collect detailed index statistics, a

finer cluster-factor statistic between 0 and 1 is stored in the CLUSTERFACTOR

column instead, and the value of CLUSTERRATIO is -1. Only one of these two

clustering statistics can be recorded in the SYSCAT.INDEXES catalog view. To

compare CLUSTERFACTOR values with CLUSTERRATIO values, multiply the

CLUSTERFACTOR value by 100 to obtain a percentage value.

Index scans that are not index-only access might perform better with higher

cluster ratios. A low cluster ratio leads to more I/O for this type of scan, because

a data page is less likely to remain in the buffer pool until it is accessed again.

Increasing the buffer size might improve the performance of a less clustered

index.

If table data was initially clustered on a certain index, and the clustering

statistics indicate that the data is now poorly clustered on that same index, you

might want to reorganize the table to re-cluster the data.

v Number of leaf pages

Query the NLEAF column in the SYSCAT.INDEXES view to determine the

number of leaf pages that are occupied by an index. This number tells you how

many index page I/Os are needed for a complete scan of the index.

Ideally, an index should occupy as little space as possible to reduce the number

of I/Os that are required for an index scan. Random update activity can cause

page splits that increase the size of an index. During a table reorg operation,

each index can be rebuilt with the least amount of space.

By default, ten percent of free space is left on each index page when an index is

built. To increase the free space amount, specify the PCTFREE option when you

create the index. The specified PCTFREE value is used whenever you reorganize

the index. A free space value that is greater than ten percent might reduce the

frequency of index reorganization, because the extra space can accommodate

additional index insertions.

v Number of empty data pages

Chapter 3. Factors affecting performance 121

To calculate the number of empty pages in a table, query the FPAGES and

NPAGES columns in the SYSCAT.TABLES view and then subtract the NPAGES

value (the number of pages that contain rows) from the FPAGES value (the total

number of pages in use). Empty pages can occur when entire ranges of rows are

deleted.

As the number of empty pages increases, so does the need for table

reorganization. Reorganizing a table reclaims empty pages and reduces the

amount of space that a table uses. In addition, because empty pages are read

into the buffer pool during a table scan, reclaiming unused pages can improve

scan performance.

If the total number of in-use pages (FPAGES) in a table is less than or equal to

(NPARTITIONS * 1 extent size), table reorganization is not recommended.

NPARTITIONS represents the number of data partitions if the table is a

partitioned table; otherwise, its value is 1. In a partitioned database

environment, table reorganization is not recommended if FPAGES <= (the

number of database partitions in a database partition group of the table) *

(NPARTITIONS * 1 extent size).

Before reorganizing tables or indexes, consider the trade-off between the cost of

increasingly degraded query performance and the cost of table or index

reorganization, which includes processing time, elapsed time, and reduced

concurrency.

Costs of table and index reorganization

Performing a table or index reorganization incurs a certain amount of overhead

that must be considered when deciding whether to reorganize an object.

The costs of reorganizing tables and indexes include:

v Processing time of the executing utility

v Reduced concurrency (because of locking) while running the reorg utility.

v Extra storage requirements.

– Offline table reorganization requires more storage space to hold a shadow

copy of the table.

– Online or inplace table reorganization requires more log space.

– Offline index reorganization requires less log space and does not involve a

shadow copy.

– Online index reorganization requires more log space and more storage space

to hold a shadow copy of the index.

In some cases, a reorganized table might be larger than the original table. A table

might grow after reorganization in the following situations:

v In a clustering reorg table operation in which an index is used to determine the

order of the rows, more space might be required if the table records are of a

variable length, because some pages in the reorganized table might contain

fewer rows than in the original table.

v The amount of free space left on each page (represented by the PCTFREE value)

might have increased since the last reorganization.

122 Troubleshooting and Tuning Database Performance

Space requirements for an offline table reorganization

Because offline reorganization uses a shadow copy approach, you need enough

additional storage to accommodate another copy of the table. The shadow copy is

built either in the table space in which the original table resides or in a

user-specified temporary table space.

Additional temporary table space storage might be required for sort processing if a

table scan sort is used. The additional space required could be as large as the size

of the table being reorganized. If the clustering index is of system managed space

(SMS) type or unique database managed space (DMS) type, the recreation of this

index does not require a sort. Instead, this index is rebuilt by scanning the newly

reorganized data. Any other indexes that are recreated will require a sort,

potentially involving temporary space up to the size of the table being reorganized.

Offline table reorg operations generate few control log records, and therefore

consume a relatively small amount of log space. If the reorg utility does not use an

index, only table data log records are created. If an index is specified, or if there is

a clustering index on the table, record IDs (RIDs) are logged in the order in which

they are placed into the new version of the table. Each RID log record holds a

maximum of 8000 RIDs, with each RID consuming 4 bytes. This can contribute to

log space problems during an offline table reorg operation. Note that RIDs are only

logged if the database is recoverable.

Log space requirements for an online table reorganization

The log space that is required for an online table reorg operation is typically larger

than what is required for an offline table reorg. The amount of space that is

required is determined by the number of rows being reorganized, the number of

indexes, the size of the index keys, and how poorly organized the table is at the

outset. It is a good idea to establish a typical benchmark for log space consumption

associated with your tables.

Every row in a table will likely be moved twice during an online table reorg

operation. For each index, each table row must update the index key to reflect the

new location, and after all accesses to the old location have completed, the index

key is updated again to remove references to the old RID. When the row is moved

back, updates to the index key are performed again. All of this activity is logged to

make online table reorganization fully recoverable. There is a minimum of two

data log records (each including the row data) and four index log records (each

including the key data) for each row (assuming one index). Clustering indexes, in

particular, are prone to filling up the index pages, causing index splits and merges

which must also be logged.

Because the online table reorg utility issues frequent internal COMMIT statements,

it usually does not hold a large number of active logs. An exception can occur

during the truncation phase, when the utility requests an S table lock. If the utility

cannot acquire the lock, it waits, and other transactions might quickly fill up the

logs in the meantime.

Reducing the need to reorganize tables and indexes

You can use different strategies to reduce the need for (and the costs associated

with) table and index reorganization.

Chapter 3. Factors affecting performance 123

Reducing the need to reorganize tables

To reduce the need for table reorganization:

v Use multi-partition tables.

v Create multidimensional clustering (MDC) tables. For MDC tables, clustering is

maintained on the columns that you specify with the ORGANIZE BY

DIMENSIONS clause of the CREATE TABLE statement. However, the reorgchk

utility might still recommend reorganization of an MDC table if it determines

that there are too many unused blocks or that blocks should be compacted.

v Enable the APPEND mode on your tables. If the index key values for new rows

are always new high key values, for example, the clustering attribute of the table

will attempt to place them at the end of the table. In this case, enabling the

APPEND mode might be a better choice than using a clustering index.

To further reduce the need for table reorganization, perform these tasks after you

create a table:

v Alter the table to specify the percentage of each page that is to be left as free

space during a load or a table reorganization operation (PCTFREE)

v Create a clustering index, specifying the PCTFREE option

v Sort the data before loading it into the table

After you have performed these tasks, the clustering index and the PCTFREE

setting on the table help to preserve the original sorted order. If there is enough

space on the table pages, new data can be inserted on the correct pages to maintain

the clustering characteristics of the index. However, as more data is inserted and

the table pages become full, records are appended to the end of the table, which

gradually becomes unclustered.

If you perform a table reorg operation or a sort and load operation after you create

a clustering index, the index attempts to maintain the order of the data, which

improves the CLUSTERRATIO or CLUSTERFACTOR statistics that are collected by

the runstats utility.

Reducing the need to reorganize indexes

To reduce the need for index reorganization:

v Create clustering indexes, specifying the PCTFREE or the LEVEL2 PCTFREE

option.

v Create indexes with the MINPCTUSED option. Alternatively, consider using the

CLEANUP ONLY ALL option of the REORG INDEXES command to merge leaf

pages.

Automatic reorganization

After many changes to table data, the table and its indexes can become

fragmented. Logically sequential data might reside on nonsequential pages, forcing

the database manager to perform additional read operations to access data.

The statistical information that is collected by the runstats utility shows the

distribution of data within a table. Analysis of these statistics can indicate when

and what kind of reorganization is necessary.

The automatic reorganization process determines the need for table or index

reorganization by using formulas that are part of the reorgchk utility. It

124 Troubleshooting and Tuning Database Performance

periodically evaluates tables and indexes that have had their statistics updated to

see if reorganization is required, and schedules such operations whenever they are

necessary.

The automatic reorganization feature can be enabled or disabled through the

auto_reorg, auto_tbl_maint, and auto_maint database configuration parameters.

In a partitioned database environment, the initiation of automatic reorganization is

done on the catalog database partition, and these configuration parameters need

only be enabled on that partition. The reorg operation, however, runs on all of the

database partitions on which the target tables reside.

If you are unsure about when and how to reorganize your tables and indexes, you

can incorporate automatic reorganization as part of your overall database

maintenance plan.

You can also reorganize multidimensional clustering (MDC) tables to reclaim space.

The freeing of extents from an MDC table is only supported for MDC tables in

DMS table spaces. Freeing extents from your MDC tables can be part of the

automatic maintenance activities for your database.

Enabling automatic table and index reorganization

Use automatic table and index reorganization so that you don’t have to worry

about when and how to reorganize your data.

Having well-organized table and index data is critical to efficient data access and

optimal workload performance. After many insert, update, and delete operations,

logically sequential table data might reside on nonsequential data pages, so that

the database manager must perform additional read operations to access data.

Additional read operations are also required when accessing data in a table from

which a significant number of rows have been deleted. You can enable the DB2

server to reorganize the system catalog tables as well as user tables.

To enable your database for automatic reorganization, set each of the following

configuration parameters to ON:

v auto_maint

v auto_tbl_maint

v auto_reorg

Application design

Database application design is one of the factors that affect application

performance. Review this section for details about application design

considerations that can help you to maximize the performance of database

applications.

Application processes, concurrency, and recovery

All SQL programs execute as part of an application process or agent. An application

process involves the execution of one or more programs, and is the unit to which

the database manager allocates resources and locks. Different application processes

might involve the execution of different programs, or different executions of the

same program.

Chapter 3. Factors affecting performance 125

More than one application process can request access to the same data at the same

time. Locking is the mechanism that is used to maintain data integrity under such

conditions, preventing, for example, two application processes from updating the

same row of data simultaneously.

The database manager acquires locks to prevent uncommitted changes made by

one application process from being accidentally perceived by any other process.

The database manager releases all locks it has acquired and retained on behalf of

an application process when that process ends. However, an application process

can explicitly request that locks be released sooner. This is done using a commit

operation, which releases locks that were acquired during a unit of work and also

commits database changes that were made during the unit of work.

A unit of work (UOW) is a recoverable sequence of operations within an application

process. A unit of work is initiated when an application process starts, or when the

previous UOW ends because of something other than the termination of the

application process. A unit of work ends with a commit operation, a rollback

operation, or the end of an application process. A commit or rollback operation

affects only the database changes that were made within the UOW that is ending.

The database manager provides a means of backing out of uncommitted changes

that were made by an application process. This might be necessary in the event of

a failure on the part of an application process, or in the case of a deadlock or lock

timeout situation. An application process can explicitly request that its database

changes be cancelled. This is done using a rollback operation.

As long as these changes remain uncommitted, other application processes are

unable to see them, and the changes can be rolled back. This is not true, however,

if the prevailing isolation level is uncommitted read (UR). After they are

committed, these database changes are accessible to other application processes

and can no longer be rolled back.

Both DB2 call level interface (CLI) and embedded SQL allow for a connection

mode called concurrent transactions, which supports multiple connections, each of

which is an independent transaction. An application can have multiple concurrent

connections to the same database.

Locks that are acquired by the database manager on behalf of an application

process are held until the end of a UOW, except when the isolation level is cursor

stability (CS, in which the lock is released as the cursor moves from row to row) or

uncommitted read (UR).

An application process is never prevented from performing operations because of

its own locks. However, if an application uses concurrent transactions, the locks

from one transaction might affect the operation of a concurrent transaction.

The initiation and the termination of a UOW define points of consistency within an

application process. For example, a banking transaction might involve the transfer

of funds from one account to another. Such a transaction would require that these

funds be subtracted from the first account, and then added to the second account.

Following the subtraction step, the data is inconsistent. Only after the funds have

been added to the second account is consistency reestablished. When both steps

are complete, the commit operation can be used to end the UOW, thereby making

the changes available to other application processes. If a failure occurs before the

UOW ends, the database manager will roll back any uncommitted changes to

126 Troubleshooting and Tuning Database Performance

restore data consistency.

Concurrency issues

Because many users access and change data in a relational database, the database

manager must allow users to make these changes while ensuring that data

integrity is preserved.

Concurrency refers to the sharing of resources by multiple interactive users or

application programs at the same time. The database manager controls this access

to prevent undesirable effects, such as:

v Lost updates. Two applications, A and B, might both read the same row and

calculate new values for one of the columns based on the data that these

applications read. If A updates the row and then B also updates the row, A’s

update lost.

v Access to uncommitted data. Application A might update a value, and B might

read that value before it is committed. Then, if A backs out of that update, the

calculations performed by B might be based on invalid data.

v Non-repeatable reads. Application A might read a row before processing other

requests. In the meantime, B modifies or deletes the row and commits the

change. Later, if A attempts to read the original row again, it sees the modified

row or discovers that the original row has been deleted.

Point of
consistency

New point of
consistency

Begin unit
of work

Commit
End unit of work

one unit of work

database updatesTIME LINE

Figure 21. Unit of work with a COMMIT statement

Point of
consistency

New point of
consistency

Begin unit
of work

Failure;
Begin rollback

Data is returned to
its initial state;

End unit of work

one unit of work

database
updates

back out
updatesTIME LINE

Figure 22. Unit of work with a ROLLBACK statement

Chapter 3. Factors affecting performance 127

v Phantom reads. Application A might execute a query that reads a set of rows

based on some search criterion. Application B inserts new data or updates

existing data that would satisfy application A’s query. Application A executes its

query again, within the same unit of work, and some additional (“phantom”)

values are returned.

Concurrency is not an issue for global temporary tables, because they are available

only to the application that declares or creates them.

Concurrency control in federated database systems

A federated database system supports applications and users submitting SQL

statements that reference two or more database management systems (DBMSs) in a

single statement. To reference such data sources (each consisting of a DBMS and

data), the DB2 server uses nicknames. Nicknames are aliases for objects in other

DBMSs. In a federated system, the DB2 server relies on the concurrency control

protocols of the database manager that hosts the requested data.

A DB2 federated system provides location transparency for database objects. For

example, if information about tables and views is moved, references to that

information (through nicknames) can be updated without changing the

applications that request this information. When an application accesses data

through nicknames, the DB2 server relies on concurrency control protocols at the

data source to ensure that isolation levels are enforced. Although the DB2 server

tries to match the isolation level that is requested at the data source with a logical

equivalent, results can vary, depending on data source capabilities.

Isolation levels

The isolation level that is associated with an application process determines the

degree to which the data that is being accessed by that process is locked or

isolated from other concurrently executing processes. The isolation level is in effect

for the duration of a unit of work.

The isolation level of an application process therefore specifies:

v The degree to which rows that are read or updated by the application are

available to other concurrently executing application processes

v The degree to which the update activity of other concurrently executing

application processes can affect the application

The isolation level for static SQL statements is specified as an attribute of a

package and applies to the application processes that use that package. The

isolation level is specified during the program preparation process by setting the

ISOLATION bind or precompile option. For dynamic SQL statements, the default

isolation level is the isolation level that was specified for the package preparing the

statement. Use the SET CURRENT ISOLATION statement to specify a different

isolation level for dynamic SQL statements that are issued within a session. For

more information, see “CURRENT ISOLATION special register”. For both static

SQL statements and dynamic SQL statements, the isolation-clause in a

select-statement overrides both the special register (if set) and the bind option value.

For more information, see “Select-statement”.

Isolation levels are enforced by locks, and the type of lock that is used limits or

prevents access to the data by concurrent application processes. Declared

temporary tables and their rows cannot be locked because they are only accessible

to the application that declared them.

128 Troubleshooting and Tuning Database Performance

The database manager supports three general categories of locks:

Share (S)

Under an S lock, concurrent application processes are limited to read-only

operations on the data.

Update (U)

Under a U lock, concurrent application processes are limited to read-only

operations on the data, if these processes have not declared that they might

update a row. The database manager assumes that the process currently

looking at a row might update it.

Exclusive (X)

Under an X lock, concurrent application processes are prevented from

accessing the data in any way. This does not apply to application processes

with an isolation level of uncommitted read (UR), which can read but not

modify the data.

Regardless of the isolation level, the database manager places exclusive locks on

every row that is inserted, updated, or deleted. Thus, all isolation levels ensure

that any row that is changed by an application process during a unit of work is

not changed by any other application process until the unit of work is complete.

The database manager supports four isolation levels.

v “Repeatable read (RR)”

v “Read stability (RS)” on page 130

v “Cursor stability (CS)” on page 130

v “Uncommitted read (UR)” on page 131

Note: Some host database servers support the no commit (NC) isolation level. On

other database servers, this isolation level behaves like the uncommitted read

isolation level.

A detailed description of each isolation level follows, in decreasing order of

performance impact, but in increasing order of the care that is required when

accessing or updating data.

Repeatable read (RR)

The repeatable read isolation level locks all the rows that an application references

during a unit of work (UOW). If an application issues a SELECT statement twice

within the same unit of work, the same result is returned each time. Under RR,

lost updates, access to uncommitted data, non-repeatable reads, and phantom

reads are not possible.

Under RR, an application can retrieve and operate on the rows as many times as

necessary until the UOW completes. However, no other application can update,

delete, or insert a row that would affect the result set until the UOW completes.

Applications running under the RR isolation level cannot see the uncommitted

changes of other applications. This isolation level ensures that all returned data

remains unchanged until the time the application sees the data, even when

temporary tables or row blocking is used.

Every referenced row is locked, not just the rows that are retrieved. For example, if

you scan 10 000 rows and apply predicates to them, locks are held on all 10 000

rows, even if, say, only 10 rows qualify. Another application cannot insert or

Chapter 3. Factors affecting performance 129

update a row that would be added to the list of rows referenced by a query if that

query were to be executed again. This prevents phantom reads.

Because RR can acquire a considerable number of locks, this number might exceed

limits specified by the locklist and maxlocks database configuration parameters.

To avoid lock escalation, the optimizer might elect to acquire a single table-level

lock for an index scan, if it appears that lock escalation is likely. If you do not want

table-level locking, use the read stability isolation level.

While evaluating referential constraints, the DB2 server might occasionally upgrade

the isolation level used on scans of the child table to RR, regardless of the isolation

level that was previously set by the user. This results in additional locks being held

until commit time, which increases the likelihood of a deadlock or a lock timeout.

To avoid these problems, create an index that contains only the foreign key

columns, and which the referential integrity scan can use instead.

Read stability (RS)

The read stability isolation level locks only those rows that an application retrieves

during a unit of work. RS ensures that any qualifying row read during a UOW

cannot be changed by other application processes until the UOW completes, and

that any row changed by another application process cannot be read until the

change is committed by that process. Under RS, access to uncommitted data and

non-repeatable reads are not possible. However, phantom reads are possible.

This isolation level ensures that all returned data remains unchanged until the time

the application sees the data, even when temporary tables or row blocking is used.

The RS isolation level provides both a high degree of concurrency and a stable

view of the data. To that end, the optimizer ensures that table-level locks are not

obtained until lock escalation occurs.

The RS isolation level is suitable for an application that:

v Operates in a concurrent environment

v Requires qualifying rows to remain stable for the duration of a unit of work

v Does not issue the same query more than once during a unit of work, or does

not require the same result set when a query is issued more than once during a

unit of work

Cursor stability (CS)

The cursor stability isolation level locks any row being accessed during a

transaction while the cursor is positioned on that row. This lock remains in effect

until the next row is fetched or the transaction terminates. However, if any data in

the row was changed, the lock is held until the change is committed.

Under this isolation level, no other application can update or delete a row while an

updatable cursor is positioned on that row. Under CS, access to the uncommitted

data of other applications is not possible. However, non-repeatable reads and

phantom reads are possible.

CS is the default isolation level. It is suitable when you want maximum

concurrency and need to see only committed data.

130 Troubleshooting and Tuning Database Performance

Note: Under the currently committed semantics introduced in Version 9.7, only

committed data is returned, as was the case previously, but now readers do not

wait for updaters to release row locks. Instead, readers return data that is based on

the currently committed version; that is, data prior to the start of the write

operation.

Uncommitted read (UR)

The uncommitted read isolation level allows an application to access the

uncommitted changes of other transactions. Moreover, UR does not prevent

another application from accessing a row that is being read, unless that application

is attempting to alter or drop the table.

Under UR, access to uncommitted data, non-repeatable reads, and phantom reads

are possible. This isolation level is suitable if you run queries against read-only

tables, or if you issue SELECT statements only, and seeing data that has not been

committed by other applications is not a problem.

UR works differently for read-only and updatable cursors.

v Read-only cursors can access most of the uncommitted changes of other

transactions.

v Tables, views, and indexes that are being created or dropped by other

transactions are not available while the transaction is processing. Any other

changes by other transactions can be read before they are committed or rolled

back. Updatable cursors operating under UR behave as though the isolation

level were CS.

If an uncommitted read application uses ambiguous cursors, it might use the CS

isolation level when it runs. The ambiguous cursors can be escalated to CS if the

value of the BLOCKING option on the PREP or BIND command is UNAMBIG (the

default). To prevent this escalation:

v Modify the cursors in the application program to be unambiguous. Change the

SELECT statements to include the FOR READ ONLY clause.

v Let the cursors in the application program remain ambiguous, but precompile

the program or bind it with the BLOCKING ALL and STATICREADONLY YES

options to enable the ambiguous cursors to be treated as read-only when the

program runs.

Comparison of isolation levels

Table 3 summarizes the supported isolation levels.

 Table 3. Comparison of isolation levels

 UR CS RS RR

Can an application see uncommitted changes

made by other application processes?

Yes No No No

Can an application update uncommitted

changes made by other application processes?

No No No No

Can the re-execution of a statement be affected

by other application processes?

1

Yes Yes Yes No

2

Can updated rows be updated by other

application processes?

3

No No No No

Chapter 3. Factors affecting performance 131

Table 3. Comparison of isolation levels (continued)

 UR CS RS RR

Can updated rows be read by other application

processes that are running at an isolation level

other than UR?

No No No No

Can updated rows be read by other application

processes that are running at the UR isolation

level?

Yes Yes Yes Yes

Can accessed rows be updated by other

application processes?

4

Yes Yes No No

Can accessed rows be read by other application

processes?

Yes Yes Yes Yes

Can the current row be updated or deleted by

other application processes?

5

Yes/No

6 Yes/No

6 No No

Note:

1. An example of the phantom read phenomenon is as follows: Unit of work UW1 reads the

set of n rows that satisfies some search condition. Unit of work UW2 inserts one or more

rows that satisfy the same search condition and then commits. If UW1 subsequently

repeats its read with the same search condition, it sees a different result set: the rows

that were read originally plus the rows that were inserted by UW2.

2. If your label-based access control (LBAC) credentials change between reads, results for

the second read might be different because you have access to different rows.

3. The isolation level offers no protection to the application if the application is both

reading from and writing to a table. For example, an application opens a cursor on a

table and then performs an insert, update, or delete operation on the same table. The

application might see inconsistent data when more rows are fetched from the open

cursor.

4. An example of the non-repeatable read phenomenon is as follows: Unit of work UW1 reads

a row. Unit of work UW2 modifies that row and commits. If UW1 subsequently reads

that row again, it might see a different value.

5. An example of the dirty read phenomenon is as follows: Unit of work UW1 modifies a row.

Unit of work UW2 reads that row before UW1 commits. If UW1 subsequently rolls the

changes back, UW2 has read nonexisting data.

6. Under UR or CS, if the cursor is not updatable, the current row can be updated or

deleted by other application processes in some cases. For example, buffering might cause

the current row at the client to be different from the current row at the server. Moreover,

when using currently committed semantics under CS, a row that is being read might

have uncommitted updates pending. In this case, the currently committed version of the

row is always returned to the application.

Summary of isolation levels

Table 4 lists the concurrency issues that are associated with different isolation

levels.

 Table 4. Summary of isolation levels

Isolation level

Access to

uncommitted data

Non-repeatable

reads Phantom reads

Repeatable read (RR) Not possible Not possible Not possible

Read stability (RS) Not possible Not possible Possible

Cursor stability (CS) Not possible Possible Possible

Uncommitted read (UR) Possible Possible Possible

132 Troubleshooting and Tuning Database Performance

The isolation level affects not only the degree of isolation among applications but

also the performance characteristics of an individual application, because the

processing and memory resources that are required to obtain and free locks vary

with the isolation level. The potential for deadlocks also varies with the isolation

level. Table 5 provides a simple heuristic to help you choose an initial isolation

level for your application.

 Table 5. Guidelines for choosing an isolation level

Application type High data stability required

High data stability not

required

Read-write transactions RS CS

Read-only transactions RR or RS UR

Specifying the isolation level

Because the isolation level determines how data is isolated from other processes

while the data is being accessed, you should select an isolation level that balances

the requirements of concurrency and data integrity.

The isolation level that you specify is in effect for the duration of the unit of work

(UOW). The following heuristics are used to determine which isolation level will

be used when compiling an SQL or XQuery statement:

v For static SQL:

– If an isolation-clause is specified in the statement, the value of that clause is

used.

– If an isolation-clause is not specified in the statement, the isolation level that

was specified for the package when the package was bound to the database is

used.
v For dynamic SQL:

– If an isolation-clause is specified in the statement, the value of that clause is

used.

– If an isolation-clause is not specified in the statement, and a SET CURRENT

ISOLATION statement has been issued within the current session, the value

of the CURRENT ISOLATION special register is used.

– If an isolation-clause is not specified in the statement, and a SET CURRENT

ISOLATION statement has not been issued within the current session, the

isolation level that was specified for the package when the package was

bound to the database is used.
v For static or dynamic XQuery statements, the isolation level of the environment

determines the isolation level that is used when the XQuery expression is

evaluated.

Note: Many commercially-written applications provide a method for choosing the

isolation level. Refer to the application documentation for information.

The isolation level can be specified in several different ways.

v At the statement level:

Note: Isolation levels for XQuery statements cannot be specified at the statement

level.

Use the WITH clause. The WITH clause cannot be used on subqueries. The

WITH UR option applies to read-only operations only. In other cases, the

statement is automatically changed from UR to CS.

Chapter 3. Factors affecting performance 133

This isolation level overrides the isolation level that is specified for the package

in which the statement appears. You can specify an isolation level for the

following SQL statements:

– DECLARE CURSOR

– Searched DELETE

– INSERT

– SELECT

– SELECT INTO

– Searched UPDATE
v For dynamic SQL within the current session:

Use the SET CURRENT ISOLATION statement to set the isolation level for

dynamic SQL issued within a session. Issuing this statement sets the CURRENT

ISOLATION special register to a value that specifies the isolation level for any

dynamic SQL statements that are issued within the current session. Once set, the

CURRENT ISOLATION special register provides the isolation level for any

subsequent dynamic SQL statement that is compiled within the session,

regardless of which package issued the statement. This isolation level is in effect

until the session ends or until the SET CURRENT ISOLATION...RESET

statement is issued.

v At precompile or bind time:

For an application written in a supported compiled language, use the

ISOLATION option of the PREP or BIND commands. You can also use the

sqlaprep or sqlabndx API to specify the isolation level.

– If you create a bind file at precompile time, the isolation level is stored in the

bind file. If you do not specify an isolation level at bind time, the default is

the isolation level that was used during precompilation.

– If you do not specify an isolation level, the default level of cursor stability

(CS) is used.

To determine the isolation level of a package, execute the following query:

select isolation from syscat.packages

 where pkgname = ’pkgname’

 and pkgschema = ’pkgschema’

where pkgname is the unqualified name of the package and pkgschema is the

schema name of the package. Both of these names must be specified in

uppercase characters.

v When working with JDBC or SQLJ at run time:

Note: JDBC and SQLJ are implemented with CLI on DB2 servers, which means

that the db2cli.ini settings might affect what is written and run using JDBC and

SQLJ.

To create a package (and specify its isolation level) in SQLJ, use the SQLJ profile

customizer (db2sqljcustomize command).

v From CLI or ODBC at run time:

Use the CHANGE ISOLATION LEVEL command. With DB2 Call-level Interface

(CLI), you can change the isolation level as part of the CLI configuration. At run

time, use the SQLSetConnectAttr function with the

SQL_ATTR_TXN_ISOLATION attribute to set the transaction isolation level for

the current connection referenced by the ConnectionHandle argument. You can

also use the TXNISOLATION keyword in the db2cli.ini file.

v On database servers that support REXX™:

134 Troubleshooting and Tuning Database Performance

When a database is created, multiple bind files that support the different

isolation levels for SQL in REXX are bound to the database. Other command line

processor (CLP) packages are also bound to the database when a database is

created.

REXX and the CLP connect to a database using the default CS isolation level.

Changing this isolation level does not change the connection state.

To determine the isolation level that is being used by a REXX application, check

the value of the SQLISL predefined REXX variable. The value is updated each

time that the CHANGE ISOLATION LEVEL command executes.

Currently committed semantics improve concurrency

Lock timeouts and deadlocks can occur under the CS isolation level with row-level

locking, especially with applications that are not designed to prevent such

problems. Some high throughput database applications cannot tolerate waiting on

locks that are issued during transaction processing, and some applications cannot

tolerate processing uncommitted data, but still require non-blocking behavior for

read transactions.

Under the new currently committed semantics, only committed data is returned, as

was the case previously, but now readers do not wait for writers to release row

locks. Instead, readers return data that is based on the currently committed

version; that is, data prior to the start of the write operation.

Currently committed semantics are turned on by default for new databases. This

allows any application to take advantage of the new behavior, and no changes to

the application itself are required. The new database configuration parameter

cur_commit can be used to override this behavior. This might be useful, for

example, in the case of applications that require blocking on writers to synchronize

internal logic.

Similarly, upgraded databases have cur_commit disabled by default in case

applications require blocking writers to synchronize their internal logic, and this

parameter can be turned on later, if so desired.

Currently committed semantics apply only to read-only scans that do not involve

catalog tables or the internal scans that are used to evaluate or enforce constraints.

Note that, because currently committed is decided at the scan level, a writer’s

access plan might include currently committed scans. For example, the scan for a

read-only subquery can involve currently committed semantics. Because currently

committed semantics obey isolation level semantics, applications running under

currently committed semantics continue to respect isolation levels.

Currently committed semantics require increased log space for writers. Additional

space is required for logging the first update of a data row during a transaction.

This data is required for retrieving the currently committed image of the row.

Depending on the workload, this can have an insignificant or measurable impact

on the total log space used. The requirement for additional log space does not

apply when cur_commit is disabled.

Example

Consider the following scenario, in which deadlocks are avoided under the

currently committed semantics. In this scenario, two applications update two

separate tables, but do not yet commit. Each application then attempts to read

(with a read-only cursor) from the table that the other application has updated.

Chapter 3. Factors affecting performance 135

Step Application A Application B

1 update T1 set col1 = ? where

col2 = ?

update T2 set col1 = ? where

col2 = ?

2 select col1, col3, col4 from T2

where col2 >= ?

select col1, col5, from T1

where col5 = ? and col2 = ?

3 commit commit

Without currently committed semantics, these applications running under the

cursor stability isolation level might create a deadlock, causing one of the

applications to fail. This happens when each application needs to read data that is

being updated by the other application.

Under currently committed semantics, if the query in step 2 (for either application)

happens to require the data currently being updated by the other application, that

application does not wait for the lock to be released, making a deadlock

impossible. The previously committed version of the data is located and used

instead.

Option to disregard uncommitted insertions

The DB2_SKIPINSERTED registry variable controls whether or not uncommitted

data insertions can be ignored for statements that use the cursor stability (CS) or

the read stability (RS) isolation level.

Uncommitted insertions are handled in one of two ways, depending on the value

of the DB2_SKIPINSERTED registry variable.

v When the value is ON, the DB2 server ignores uncommitted insertions, which in

many cases can improve concurrency and is the preferred behavior for most

applications. Uncommitted insertions are treated as though they had not yet

occurred.

v When the value is OFF (the default), the DB2 server waits until the insert

operation completes (commits or rolls back) and then processes the data

accordingly. This is appropriate in certain cases. For example:

– Suppose that two applications use a table to pass data between themselves,

with the first application inserting data into the table and the second one

reading it. The data must be processed by the second application in the order

presented, such that if the next row to be read is being inserted by the first

application, the second application must wait until the insert operation

commits.

– An application avoids UPDATE statements by deleting data and then

inserting a new image of the data.

Evaluate uncommitted data through lock deferral

To improve concurrency, the database manager in some situations permits the

deferral of row locks for CS or RS isolation scans until a row is known to satisfy

the predicates of a query.

By default, when row-level locking is performed during a table or index scan, the

database manager locks each scanned row whose commitment status is unknown

before determining whether the row satisfies the predicates of the query.

To improve the concurrency of such scans, enable the

DB2_EVALUNCOMMITTED registry variable so that predicate evaluation can

occur on uncommitted data. A row that contains an uncommitted update might

136 Troubleshooting and Tuning Database Performance

not satisfy the query, but if predicate evaluation is deferred until after the

transaction completes, the row might indeed satisfy the query.

Uncommitted deleted rows are skipped during table scans, and the database

manager skips deleted keys during index scans if the DB2_SKIPDELETED registry

variable is enabled.

The DB2_EVALUNCOMMITTED registry variable setting applies at compile time

for dynamic SQL or XQuery statements, and at bind time for static SQL or XQuery

statements. This means that even if the registry variable is enabled at run time, the

lock avoidance strategy is not deployed unless DB2_EVALUNCOMMITTED was

enabled at bind time. If the registry variable is enabled at bind time but not

enabled at run time, the lock avoidance strategy is still in effect. For static SQL or

XQuery statements, if a package is rebound, the registry variable setting that is in

effect at bind time is the setting that applies. An implicit rebind of static SQL or

XQuery statements will use the current setting of the DB2_EVALUNCOMMITTED

registry variable.

Applicability of evaluate uncommitted for different access plans

 Table 6. RID Index Only Access

Predicates Evaluate Uncommitted

None No

SARGable Yes

 Table 7. Data Only Access (relational or deferred RID list)

Predicates Evaluate Uncommitted

None No

SARGable Yes

 Table 8. RID Index + Data Access

Predicates Evaluate Uncommitted

Index Data Index access Data access

None None No No

None SARGable No No

SARGable None Yes No

SARGable SARGable Yes No

 Table 9. Block Index + Data Access

Predicates Evaluate Uncommitted

Index Data Index access Data access

None None No No

None SARGable No Yes

SARGable None Yes No

SARGable SARGable Yes Yes

Chapter 3. Factors affecting performance 137

Example

The following example provides a comparison between the default locking

behavior and the evaluate uncommitted behavior. The table is the ORG table from

the SAMPLE database.

DEPTNUMB DEPTNAME MANAGER DIVISION LOCATION

-------- -------------- ------- ---------- -------------

 10 Head Office 160 Corporate New York

 15 New England 50 Eastern Boston

 20 Mid Atlantic 10 Eastern Washington

 38 South Atlantic 30 Eastern Atlanta

 42 Great Lakes 100 Midwest Chicago

 51 Plains 140 Midwest Dallas

 66 Pacific 270 Western San Francisco

 84 Mountain 290 Western Denver

The following transactions occur under the default cursor stability (CS) isolation

level.

 Table 10. Transactions against the ORG table under the CS isolation level

SESSION 1 SESSION 2

connect to sample connect to sample

+c update org set deptnumb=5 where

manager=160

select * from org where deptnumb >= 10

The uncommitted UPDATE statement in Session 1 holds an exclusive lock on the

first row in the table, preventing the query in Session 2 from returning a result set,

even though the row being updated in Session 1 does not currently satisfy the

query in Session 2. The CS isolation level specifies that any row that is accessed by

a query must be locked while the cursor is positioned on that row. Session 2

cannot obtain a lock on the first row until Session 1 releases its lock.

Waiting for a lock in Session 2 can be avoided by using the evaluate uncommitted

feature, which first evaluates the predicate and then locks the row. As such, the

query in Session 2 would not attempt to lock the first row in the table, thereby

increasing application concurrency. Note that this also means that predicate

evaluation in Session 2 would occur with respect to the uncommitted value of

deptnumb=5 in Session 1. The query in Session 2 would omit the first row in its

result set, despite the fact that a rollback of the update in Session 1 would satisfy

the query in Session 2.

If the order of operations were reversed, concurrency could still be improved with

the evaluate uncommitted feature. Under default locking behavior, Session 2 would

first acquire a row lock prohibiting the searched UPDATE in Session 1 from

executing, even though the Session 1 UPDATE statement would not change the

row that is locked by the Session 2 query. If the searched UPDATE in Session 1

first attempted to examine rows and then locked them only if they qualified, the

Session 1 query would be non-blocking.

Restrictions

v The DB2_EVALUNCOMMITTED registry variable must be enabled.

v The isolation level must be CS or RS.

v Row-level locking is in effect.

v SARGable evaluation predicates exist.

138 Troubleshooting and Tuning Database Performance

v Evaluate uncommitted is not applicable to scans on the system catalog tables.

v For multidimensional clustering (MDC) tables, block-level locking can be

deferred for an index scan; however, block-level locking cannot be deferred for

table scans.

v Lock deferral will not occur on a table that is executing an inplace table

reorganization.

v For Iscan-Fetch plans, row-level locking is not deferred to the data access; rather,

the row is locked during index access before moving to the row in the table.

v Deleted rows are unconditionally skipped during table scans, but deleted index

keys are skipped only if the DB2_SKIPDELETED registry variable is enabled.

Writing and tuning queries for optimal performance

There are several ways in which you can minimize the impact of SQL statements

on DB2 database performance.

You can minimize this impact by:

v Writing SQL statements that the DB2 optimizer can more easily optimize. The

DB2 optimizer might not be able to efficiently run SQL statements that contain

non-equality join predicates, data type mismatches on join columns, unnecessary

outer joins, and other complex search conditions.

v Correctly configuring the DB2 database to take advantage of DB2 optimization

functionality. The DB2 optimizer can select the optimal query access plan if you

have accurate catalog statistics and choose the best optimization class for your

workload.

v Using the DB2 explain functionality to review potential query access plans and

determine how to tune queries for best performance.

Best practices apply to general workloads, warehouse workloads, and SAP

workloads.

Although there are a number of ways to deal with specific query performance

issues after an application is written, good fundamental writing and tuning

practices can be widely applied early on to help improve DB2 database

performance.

Query performance is not a one-time consideration. You should consider it

throughout the design, development, and production phases of the application

development life cycle.

SQL is a very flexible language, which means that there are many ways to get the

same correct result. This flexibility also means that some queries are better than

others in taking advantage of the DB2 optimizer’s strengths.

During query execution, the DB2 optimizer chooses a query access plan for each

SQL statement. The optimizer models the execution cost of many alternative access

plans and chooses the one with the minimum estimated cost. If a query contains

many complex search conditions, the DB2 optimizer can rewrite the predicate in

some cases, but there are some cases where it cannot.

The time to prepare or compile an SQL statement can be long for complex queries,

such as those used in business intelligence (BI) applications. You can help

minimize statement compilation time by correctly designing and configuring your

database. This includes choosing the correct optimization class and setting other

registry variables correctly.

Chapter 3. Factors affecting performance 139

The optimizer also requires accurate inputs to make accurate access plan decisions.

This means that you need to gather accurate statistics, and potentially use

advanced statistical features, such as statistical views and column group statistics.

You can use the DB2 tools, especially the DB2 explain facility, to tune queries. The

DB2 compiler can capture information about the access plans and environments of

static or dynamic queries. Use this captured information to understand how

individual statements are run so that you can tune them and your database

manager configuration to improve performance.

Writing SQL statements

SQL is a powerful language that enables you to specify relational expressions in

syntactically different but semantically equivalent ways. However, some

semantically equivalent variations are easier to optimize than others. Although the

DB2 optimizer has a powerful query rewrite capability, it might not always be able

to rewrite an SQL statement into the most optimal form.

Certain SQL constructs can limit the access plans that are considered by the query

optimizer, and these constructs should be avoided or replaced whenever possible.

Avoiding complex expressions in search conditions:

Avoid using complex expressions in search conditions where the expressions

prevent the optimizer from using the catalog statistics to estimate an accurate

selectivity.

 The expressions might also limit the choices of access plans that can be used to

apply the predicate. During the query rewrite phase of optimization, the optimizer

can rewrite a number of expressions to allow the optimizer to estimate an accurate

selectivity; it cannot handle all possibilities.

Avoiding join predicates on expressions:

Using join predicates on expressions limits the join method to nested loops.

 Additionally, the cardinality estimate might be inaccurate. Some examples of joins

with expressions are as follows:

WHERE SALES.PRICE * SALES.DISCOUNT = TRANS.FINAL_PRICE

WHERE UPPER(CUST.LASTNAME) = TRANS.NAME

Avoiding expressions over columns in local predicates:

Instead of applying an expression over columns in a local predicate, use the

inverse of the expression.

 Consider the following examples:

XPRESSN(C) = ’constant’

INTEGER(TRANS_DATE)/100 = 200802

You can rewrite these statements as follows:

C = INVERSEXPRESSN(’constant’)

TRANS_DATE BETWEEN 20080201 AND 20080229

Applying expressions over columns prevents the use of index start and stop keys,

leads to inaccurate selectivity estimates, and requires extra processing at query

execution time.

140 Troubleshooting and Tuning Database Performance

These expressions also prevent query rewrite optimizations such as recognizing

when columns are equivalent, replacing columns with constants, and recognizing

when at most one row will be returned. Further optimizations are possible after it

can be proven that at most one row will be returned, so the lost optimization

opportunities are further compounded. Consider the following query:

SELECT LASTNAME, CUST_ID, CUST_CODE FROM CUST

WHERE (CUST_ID * 100) + INT(CUST_CODE) = 123456 ORDER BY 1,2,3

You can rewrite it as follows:

SELECT LASTNAME, CUST_ID, CUST_CODE FROM CUST

WHERE CUST_ID = 1234 AND CUST_CODE = ’56’ ORDER BY 1,2,3

If there is a unique index defined on CUST_ID, the rewritten version of the query

enables the query optimizer to recognize that at most one row will be returned.

This avoids introducing an unnecessary SORT operation. It also enables the

CUST_ID and CUST_CODE columns to be replaced by 1234 and ‘56’, avoiding

copying values from the data or index pages. Finally, it enables the predicate on

CUST_ID to be applied as an index start or stop key.

It might not always be apparent when an expression is present in a predicate. This

can often occur with queries that reference views when the view columns are

defined by expressions. For example, consider the following view definition and

query:

CREATE VIEW CUST_V AS

 (SELECT LASTNAME, (CUST_ID * 100) + INT(CUST_CODE) AS CUST_KEY

 FROM CUST)

SELECT LASTNAME FROM CUST_V WHERE CUST_KEY = 123456

The query optimizer merges the query with the view definition, resulting in the

following query:

SELECT LASTNAME FROM CUST

WHERE (CUST_ID * 100) + INT(CUST_CODE) = 123456

This is the same problematic predicate described in a previous example. You can

observe the result of view merging by using the explain facility to display the

optimized SQL.

If the inverse function is difficult to express, consider using a generated column.

For example, if you want to find a last name that fits the criteria expressed by

LASTNAME IN (’Woo’, ’woo’, ’WOO’, ’WOo’,...), you can create a generated

column UCASE(LASTNAME) = ’WOO’ as follows:

CREATE TABLE CUSTOMER (

 LASTNAME VARCHAR(100),

 U_LASTNAME VARCHAR(100) GENERATED ALWAYS AS (UCASE(LASTNAME))

)

CREATE INDEX CUST_U_LASTNAME ON CUSTOMER(U_LASTNAME)

Support for case-insensitive search in DB2 Database for Linux, UNIX, and

Windows Version 9.5 Fix Pack 1 is designed to resolve the situation in this

particular example. You can use _Sx attribute on the UCA500R1 collation name to

control the strength of the collations. For example, UCA500R1_LFR_S1 is a French

collation that ignores case and accent.

Avoiding data type mismatches on join columns:

Chapter 3. Factors affecting performance 141

In some cases, data type mismatches prevent the use of hash joins.

 Hash join has some extra restrictions on the join predicates beyond other join

methods. In particular, the data types of the join columns must be exactly the

same. For example, if one join column is FLOAT and the other is REAL, hash join

is not supported. Additionally, if the join column data type is CHAR, GRAPHIC,

DECIMAL, or DECFLOAT the lengths must be the same.

Avoiding no-op expressions in predicates to change the optimizer estimate:

A ″no-op″ coalesce() predicate of the form COALESCE(X, X) = X introduces an

estimation error into the planning of any query that uses it. Currently the DB2

query compiler does not have the capability of dissecting that predicate and

determining that all rows actually satisfy it.

 As a result, the predicate artificially reduces the estimated number of rows coming

from some part of a query plan. This smaller row estimate usually reduces the row

and cost estimates for the rest of query planning, and sometimes results in a

different plan being chosen, because relative estimates between different candidate

plans have changed.

Why can this do-nothing predicate sometimes improve query performance? The

addition of the “no-op” coalesce() predicate introduces an error that masks

something else that is preventing optimal performance.

What some performance enhancement tools do is a brute-force test: the tool

repeatedly introduces the predicate into different places in a query, operating on

different columns, to try to find a case where, by introducing an error, it stumbles

onto a better-performing plan. This is also true of a query developer hand-coding

the ″no-op″ predicate into a query. Typically, the developer will have some insight

on the data to guide the placement of the predicate.

Using this method to improve query performance is a short-term solution that

does not address root cause and might have the following implications:

v Potential areas for performance improvements are hidden.

v There are no guarantees that this workaround will provide permanent

performance improvements, because the DB2 query compiler might eventually

handle the predicate better, or other random factors might affect it.

v There might be other queries that are affected by the same root cause and the

performance of your system in general might suffer as a result.

If you have followed best practices recommendations, but you believe that you are

still getting less than optimal performance, you can provide explicit optimization

guidelines to the DB2 optimizer, rather than introducing a “no-op” predicate. See

“Optimization profiles and guidelines”.

Avoiding non-equality join predicates:

Join predicates that use comparison operators other than equality should be

avoided because the join method is limited to nested loop.

 Additionally, the optimizer might not be able to compute an accurate selectivity

estimate for the join predicate. However, non-equality join predicates cannot

142 Troubleshooting and Tuning Database Performance

always be avoided. When they are necessary, ensure that an appropriate index

exists on either table, because the join predicates will be applied to the inner table

of the nested-loop join.

One common example of non-equality join predicates is the case in which

dimension data in a star schema must be versioned to accurately reflect the state of

a dimension at different points in time. This is often referred to as a slowly changing

dimension. One type of slowly changing dimension involves including effective

start and end dates for each dimension row. A join between the fact table and the

dimension table requires checking that a date associated with the fact falls within

the dimension’s start and end date, in addition to joining on the dimension

primary key. This is often referred to as a type 6 slowly changing dimension. The

range join back to the fact table to further qualify the dimension version by some

fact transaction date can be expensive. For example:

SELECT...

 FROM PRODUCT P, SALES F

 WHERE

 P.PROD_KEY = F.PROD_KEY AND

 F.SALE_DATE BETWEEN P.START_DATE AND

 P.END_DATE

In this situation, ensure that there is an index on (F.PROD_KEY, F.SALE_DATE).

Consider creating a statistical view to help the optimizer compute a better

selectivity estimate for this scenario. For example:

CREATE STATISTICAL VIEW V_PROD_FACT AS

 SELECT P.*

 FROM PRODUCT P, SALES F

 WHERE

 P.PROD_KEY = F.PROD_KEY AND

 F.SALE_DATE BETWEEN P.START_DATE AND

 P.END_DATE

ALTER VIEW V_PROD_FACT ENABLE QUERY OPTIMIZATION

RUNSTATS ON TABLE DB2USER.V_PROD_FACT WITH DISTRIBUTION

Specialized star schema joins, such as star join with index ANDing and hub joins,

are not considered if there are any non-equality join predicates in the query block.

(See “Ensuring that queries fit the required criteria for the star schema join”.)

Avoiding multiple aggregations with the DISTINCT keyword:

Avoid using queries that perform multiple DISTINCT aggregations in the same

subselect, which are expensive to run.

 Consider the following example:

SELECT SUM(DISTINCT REBATE), AVG(DISTINCT DISCOUNT)

 FROM DAILY_SALES

 GROUP BY PROD_KEY

To determine the set of distinct REBATE values and distinct DISCOUNT values,

the input stream from the PROD_KEY table might need to be sorted twice. The

query access plan for this query might look like this:

Chapter 3. Factors affecting performance 143

The optimizer rewrites the original query into separate aggregations, specifying the

DISTINCT keyword for each, and then combines the multiple aggregations using a

UNION keyword. The internally rewritten statement is:

SELECT Q8.MAXC0, (Q8.MAXC1 / Q8.MAXC2)

FROM

 (SELECT MAX(Q7.C0) AS MAXC0, MAX(Q7.C1) AS MAXC1, MAX(Q7.C2) AS MAXC2

 FROM

 (SELECT SUM(DISTINCT Q2.REBATE) AS C0, CAST(NULL AS INTEGER) AS C1,

 0 AS C2, Q2.PROD_KEY

 FROM

 (SELECT Q1.PROD_KEY, Q1.REBATE

 FROM DB2USER.DAILY_SALES AS Q1) AS Q2

 GROUP BY Q2.PROD_KEY

 UNION ALL

 SELECT CAST(NULL AS INTEGER) AS C0, SUM(DISTINCT Q5.DISCOUNT) AS C1,

 COUNT(DISTINCT Q5.DISCOUNT) AS C2, Q5.PROD_KEY

 FROM

 (SELECT Q4.PROD_KEY, Q4.DISCOUNT

 FROM DB2USER.DAILY_SALES AS Q4) AS Q5

 GROUP BY Q5.PROD_KEY) AS Q7

 GROUP BY Q7.PROD_KEY) AS Q8

If you cannot avoid multiple DISTINCT aggregations, consider using the

DB2_EXTENDED_OPTIMIZATION registry variable with the

ENHANCED_MULTIPLE_DISTINCT option. This option will result in the input

stream to the multiple distinct aggregates being read once and then reused for each

arm of the UNION. This option might improve the performance of these types of

queries, where the ratio of processors to the number of database partitions is low

(for example, the ratio is less than or equal to 1). This setting should be used in

partitioned database environments without symmetric multiprocessors (SMPs).

This optimization extension might not improve query performance in all

environments. Testing should be done to determine individual query performance

improvements.

Avoiding unnecessary outer joins:

DAILY_SALESDAILY_SALES

SCANSCAN

SORTSORT

GRPBYGRPBY

UNION

GRPBY

144 Troubleshooting and Tuning Database Performance

The semantics of certain queries require outer joins (either left, right, or full).

However, if the query semantics do not require an outer join, and the query is

being used to deal with inconsistent data, it is best to deal with the inconsistent

data problems at their root cause.

 For example, in a data mart with a star schema, the fact table might contain rows

for transactions but no matching parent dimension rows for some dimensions, due

to data consistency problems. This could occur because the extract, transform, and

load (ETL) process could not reconcile some business keys for some reason. In this

scenario, the fact table rows are left outer joined with the dimensions to ensure

that they are returned, even when they do not have a parent. For example:

SELECT...

 FROM DAILY_SALES F

 LEFT OUTER JOIN CUSTOMER C ON F.CUST_KEY = C.CUST_KEY

 LEFT OUTER JOIN STORE S ON F.STORE_KEY = S.STORE_KEY

 WHERE

 C.CUST_NAME = ’SMITH’

The left outer join can prevent a number of optimizations, including the use of

specialized star-schema join access methods. However, in some cases the left outer

join can be automatically rewritten to an inner join by the query optimizer. In this

example, the left outer join between CUSTOMER and DAILY_SALES can be

converted to an inner join because the predicate C.CUST_NAME = ’SMITH’ will

remove any rows with null values in this column, making a left outer join

semantically unnecessary. So the loss of some optimizations due to the presence of

outer joins might not adversely affect all queries. However, it is important to be

aware of these limitations and to avoid outer joins unless they are absolutely

required.

Using the OPTIMIZE FOR N ROWS clause with the FETCH FIRST N ROWS

ONLY clause:

The OPTIMIZE FOR n ROWS clause indicates to the optimizer that the application

intends to retrieve only n rows, but the query will return the complete result set.

The FETCH FIRST n ROWS ONLY clause indicates that the query should return

only n rows.

 The DB2 data server does not automatically assume OPTIMIZE FOR n ROWS

when FETCH FIRST n ROWS ONLY is specified for the outer subselect. Try

specifying OPTIMIZE FOR n ROWS along with FETCH FIRST n ROWS ONLY, to

encourage query access plans that return rows directly from the referenced tables,

without first performing a buffering operation such as inserting into a temporary

table, sorting, or inserting into a hash join hash table.

Applications that specify OPTIMIZE FOR n ROWS to encourage query access plans

that avoid buffering operations, yet retrieve the entire result set, might experience

poor performance. This is because the query access plan that returns the first n

rows fastest might not be the best query access plan if the entire result set is being

retrieved.

Ensuring that queries fit the required criteria for the star schema join:

The optimizer considers two specialized join methods for star schemas, called a

star join or a hub join, which can help to significantly improve performance.

 However, the query must meet the following criteria.

v For each query block

Chapter 3. Factors affecting performance 145

– At least three different tables must be joined

– All join predicates must be equality predicates

– No subqueries can exist

– No correlations or dependencies can exist between tables or outside of the

query block

– For index ANDing, there must be no non-deterministic functions, because fact

table predicates must be applied by indexes to facilitate semi-joins

– A fact table

- Is the largest table in the query block

- Has at least 10 000 rows

- Is considered to be only one table

- Must be joined to at least two dimension tables or to groups called

snowflakes
– A dimension table

- Is not the fact table

- Can be joined individually to the fact table or in snowflakes
– A dimension table or a snowflake

- Must filter the fact table (Filtering is based on the optimizer’s estimates.)

- Must have a join predicate to the fact table that uses a leading column in a

fact table index. This criterion must be met in order for either star join or

hub join to be considered, although a hub join will only need to use a

single fact table index.

A query block representing a left or right outer join can reference only two tables,

so a star-schema join does not qualify.

Explicitly declaring referential integrity is not required for the optimizer to

recognize a star-schema join.

Avoiding redundant predicates:

Avoid redundant predicates, especially when they occur across different tables. In

some cases, the optimizer cannot detect that the predicates are redundant. This

might result in cardinality underestimation.

 For example, within SAP business intelligence (BI) applications, the snowflake

schema with fact and dimension tables is used as a query optimized data structure.

In some cases, there is a redundant time characteristic column

(“SID_0CALMONTH” for month or “SID_0FISCPER″ for year) defined on the fact

and dimension tables.

The SAP BI online analytical processing (OLAP) processor generates redundant

predicates on the time characteristics column of the dimension and fact tables.

These redundant predicates might result in longer query run time.

The following section provides an example with two redundant predicates that are

defined in the WHERE condition of a SAP BI query. Identical predicates are

defined on the time dimension (DT) and fact (F) table:

 AND ("DT"."SID_0CALMONTH" = 199605

 AND "F". "SID_0CALMONTH" = 199605

 OR "DT"."SID_0CALMONTH" = 199705

146 Troubleshooting and Tuning Database Performance

AND "F". "SID_0CALMONTH" = 199705)

 AND NOT ("DT"."SID_0CALMONTH" = 199803

 AND "F". "SID_0CALMONTH" = 199803)

The DB2 optimizer does not recognize the predicates as identical, and treats them

as independent. This leads to underestimation of cardinalities, suboptimal query

access plans, and longer query run times.

For that reason, the redundant predicates are removed by the DB2 database

platform-specific software layer.

The above predicates are transferred to the ones shown below. Only the predicates

on the fact table column “SID_0CALMONTH” remain:

 AND ("F". "SID_0CALMONTH" = 199605

 OR "F". "SID_0CALMONTH" = 199705)

AND NOT ("F". "SID_0CALMONTH" = 199803)

Apply the instructions in SAP notes 957070 and 1144883 to remove the redundant

predicates.

Using constraints to improve query optimization

Consider defining unique, check, and referential integrity constraints. These

constraints provide semantic information that allows the DB2 optimizer to rewrite

queries to eliminate joins, push aggregation down through joins, push FETCH

FIRST n ROWS down through joins, remove unnecessary DISTINCT operations,

and perform a number of other optimizations.

Informational constraints can also be used for both check constraints and

referential integrity constraints when the application itself can guarantee the

relationships. The same optimizations are possible. Constraints that are enforced by

the database manager when rows are inserted, updated, or deleted can lead to

high system overhead, especially when updating a large number of rows that have

referential integrity constraints. If an application has already verified information

before updating a row, it might be more efficient to use informational constraints,

rather than regular constraints.

For example, consider two tables, DAILY_SALES and CUSTOMER. Each row in the

CUSTOMER table has a unique customer key (CUST_KEY). DAILY_SALES

contains a CUST_KEY column and each row references a customer key in the

CUSTOMER table. A referential integrity constraint could be created to represent

this 1:N relationship between CUSTOMER and DAILY_SALES. If the application

were to enforce the relationship, the constraint could be defined as informational.

The following query could then avoid performing the join between CUSTOMER

and DAILY_SALES, because no columns are retrieved from CUSTOMER, and

every row from DAILY_SALES will find a match in CUSTOMER. The query

optimizer will automatically remove the join.

SELECT AMT_SOLD, SALE PRICE, PROD_DESC

 FROM DAILY_SALES, PRODUCT, CUSTOMER

 WHERE

 DAILY_SALES.PROD_KEY = PRODUCT.PRODKEY AND

 DAILY_SALES.CUST_KEY = CUSTOMER.CUST_KEY

The application must enforce informational constraints, otherwise queries might

return incorrect results. In this example, if any rows in DAILY_SALES do not have

a corresponding customer key in the CUSTOMER table, the query would

incorrectly return those rows.

Chapter 3. Factors affecting performance 147

Using the REOPT bind option with input variables in complex

queries

Input variables are essential for good statement preparation times in an online

transaction processing (OLTP) environment, where statements tend to be simpler

and query access plan selection is more straightforward.

Multiple executions of the same query with different input variable values can

reuse the compiled access section in the dynamic statement cache, avoiding

expensive SQL statement compilations whenever the input values change.

However, input variables can cause problems for complex query workloads, where

query access plan selection is more complex and the optimizer needs more

information to make good decisions. Moreover, statement compilation time is

usually a small component of total execution time, and business intelligence (BI)

queries, which do not tend to be repeated, do not benefit from the dynamic

statement cache.

If input variables need to be used in a complex query workload, consider using the

REOPT(ALWAYS) bind option. The REOPT bind option defers statement

compilation from PREPARE to OPEN or EXECUTE time, when the input variable

values are known. The values are passed to the SQL compiler so that the optimizer

can use the values to compute a more accurate selectivity estimate.

REOPT(ALWAYS) specifies that the statement should be recompiled for every

execution. REOPT(ALWAYS) can also be used for complex queries that reference

special registers, such as WHERE TRANS_DATE = CURRENT DATE - 30 DAYS, for

example. If input variables lead to poor access plan selection for OLTP workloads,

and REOPT(ALWAYS) results in excessive overhead due to statement compilation,

consider using REOPT(ONCE) for selected queries. REOPT(ONCE) defers

statement compilation until the first input variable value is bound. The SQL

statement is compiled and optimized using this first input variable value.

Subsequent executions of the statement with different values reuse the access

section that was compiled on the basis of the first input value. This can be a good

approach if the first input variable value is representative of subsequent values,

and it provides a better query access plan than one that is based on default values

when the input variable values are unknown.

There a number of ways that REOPT can be specified:

v For embedded SQL in C/C++ applications, use the REOPT bind option. This

bind option affects re-optimization behavior for both static and dynamic SQL.

v For CLP packages, rebind the CLP package with the REOPT bind option. For

example, to rebind the CLP package used for isolation level CS with REOPT

ALWAYS, specify the following command:

rebind nullid.SQLC2G13 reopt always

v For CLI applications or JDBC applications using the legacy JDBC driver, use the

REOPT keyword setting in the db2cli.ini configuration file. The values and

corresponding options are:

– 2 - NONE

– 3 - ONCE

– 4 - ALWAYS
v For JDBC applications using the JCC Universal Driver, use one of the following

approaches:

– Use the SQL_ATTR_REOPT connection or statement attribute.

148 Troubleshooting and Tuning Database Performance

– Use the SQL_ATTR_CURRENT_PACKAGE_SET connection or statement

attribute to specify either the NULLID, NULLIDR1, or NULLIDRA package

sets. NULLIDR1 and NULLIDRA are reserved package set names. When

used, REOPT ONCE or REOPT ALWAYS are implied, respectively. These

package sets have to be explicitly created with the following commands:

db2 bind db2clipk.bnd collection NULLIDR1

db2 bind db2clipk.bnd collection NULLIDRA

v For SQL PL procedures, use one of the following approaches:

– Use the SET_ROUTINE_OPTS stored procedure to set the bind options that

are to be used for the creation of SQL PL procedures within the current

session. For example, call:

sysproc.set_routine_opts(’reopt always’)

– Use the DB2_SQLROUTINE_PREPOPTS registry variable to set the SQL PL

procedure options at the instance level. Values set using the

SET_ROUTINE_OPTS stored procedure will override those specified with

DB2_SQLROUTINE_PREPOPTS.

You can also use optimization profiles to set REOPT for static and dynamic

statements, as shown in the following example:

<STMTPROFILE ID="REOPT example ">

 <STMTKEY>

 <![CDATA[select acct_no from customer where name = ?]]>

 </STMTKEY>

 <OPTGUIDELINES>

 <REOPT VALUE=’ALWAYS’/>

 </OPTGUIDELINES>

</STMTPROFILE>

Using parameter markers to reduce compilation time for dynamic

queries

The DB2 data server can avoid recompiling a dynamic SQL statement that has

been run previously by storing the access section and statement text in the

dynamic statement cache.

A subsequent prepare request for this statement will attempt to find the access

section in the dynamic statement cache, avoiding compilation. However, statements

that differ only in the literals that are used in predicates will not match. For

example, the following two statements are considered different in the dynamic

statement cache:

SELECT AGE FROM EMPLOYEE WHERE EMP_ID = 26790

SELECT AGE FROM EMPLOYEE WHERE EMP_ID = 77543

Even relatively simple SQL statements can result in excessive system CPU usage

due to statement compilation, if they are run very frequently. If your system

experiences this type of performance problem, consider changing the application to

use parameter markers to pass predicate values to the DB2 compiler, rather than

explicitly including them in the SQL statement. However, the access plan might not

be optimal for complex queries that use parameter markers in predicates. For more

information, see “Using the REOPT bind option with input variables in complex

queries”.

Setting the DB2_REDUCED_OPTIMIZATION registry variable

If setting the optimization class does not reduce the compilation time sufficiently

for your application, try setting the DB2_REDUCED_OPTIMIZATION registry

variable.

Chapter 3. Factors affecting performance 149

This registry variable provides more control over the optimizer’s search space than

setting the optimization class. This registry variable lets you request either reduced

optimization features or rigid use of optimization features at the specified

optimization class. If you reduce the number of optimization techniques used, you

also reduce time and resource use during optimization.

Although optimization time and resource use might be reduced, there is increased

risk of producing a less than optimal query access plan.

First, try setting the registry variable to YES. If the optimization class is 5 (the

default) or lower, the optimizer disables some optimization techniques that might

consume significant prepare time and resources but that do not usually produce a

better query access plan. If the optimization class is exactly 5, the optimizer

reduces or disables some additional techniques, which might further reduce

optimization time and resource use, but also further increase the risk of a less than

optimal query access plan. For optimization classes lower than 5, some of these

techniques might not be in effect in any case. If they are, however, they remain in

effect.

If the YES setting does not provide a sufficient reduction in compilation time, try

setting the registry variable to an integer value. The effect is the same as YES, with

the following additional behavior for dynamically prepared queries optimized at

class 5. If the total number of joins in any query block exceeds the setting, the

optimizer switches to greedy join enumeration instead of disabling additional

optimization techniques. The result is that the query will be optimized at a level

that is similar to optimization class 2.

Improving insert performance

Before data is inserted into a table, an insert search algorithm examines the free

space control records (FSCRs) to find a page with enough space for the new data.

However, even when an FSCR indicates that a page has enough free space, that

space might not be usable if it has been reserved by an uncommitted delete

operation from another transaction.

The DB2MAXFSCRSEARCH registry variable specifies the number of FSCRs to

search when adding a record to a table. The default is to search five FSCRs.

Modifying this value enables you to balance insert speed with space reuse. Use

large values to optimize for space reuse. Use small values to optimize for insert

speed. Setting the value to -1 forces the database manager to search all FSCRs. If

sufficient space is not found while searching FSCRs, the data is appended to the

end of the table.

The APPEND ON option on the ALTER TABLE statement specifies that table data

will be appended and that information about free space on pages will not be kept.

Such tables must not have a clustering index. This option can improve

performance for tables that only grow.

If a clustering index is defined on the table, the database manager attempts to

insert records on the same page as other records with similar index key values. If

there is no space on that page, surrounding pages are considered. If those pages

are unsuitable, the FSCRs are searched, as described above. In this case, however, a

“worst-fit” approach is used instead of a “first-fit” approach. The worst-fit

approach tends to choose pages with more free space. This method establishes a

new clustering area for rows with similar key values.

150 Troubleshooting and Tuning Database Performance

If you have defined a clustering index on a table, use the PCTFREE clause on the

ALTER TABLE statement before loading or reorganizing the table. The PCTFREE

clause specifies the percentage of free space that should remain on a data page

after a load or reorg operation. This increases the probability that the cluster index

operation will find free space on the appropriate page.

Efficient SELECT statements

Because SQL is a flexible high-level language, you can write several different

SELECT statements to retrieve the same data. However, performance might vary

for different forms of the statement, as well as for different optimization classes.

Consider the following guidelines for creating efficient SELECT statements:

v Specify only columns that you need. Specifying all columns with an asterisk (*)

results in unnecessary processing.

v Use predicates that restrict the answer set to only those rows that you need.

v When you need significantly fewer than the total number of rows that might be

returned, specify the OPTIMIZE FOR clause. This clause affects both the choice

of access plan and the number of rows that are blocked in the communication

buffer.

v To take advantage of row blocking and improve performance, specify the FOR

READ ONLY or FOR FETCH ONLY clause. Concurrency improves as well,

because exclusive locks are never held on the rows that are retrieved. Additional

query rewrites can also occur. Specifying these clauses, as well as the

BLOCKING ALL bind option, can similarly improve the performance of queries

running against nicknames in a federated database system.

v For cursors that will be used with positioned updates, specify the FOR UPDATE

OF clause to enable the database manager to choose more appropriate locking

levels initially and to avoid potential deadlocks. Note that FOR UPDATE cursors

cannot take advantage of row blocking.

v For cursors that will be used with searched updates, specify the FOR READ

ONLY and the USE AND KEEP UPDATE LOCKS clauses to avoid deadlocks

and still allow row blocking by forcing U locks on affected rows.

v Avoid numeric data type conversions whenever possible. When comparing

values, try to use items that have the same data type. If conversions are

necessary, inaccuracies due to limited precision, and performance costs due to

runtime conversions might result.

If possible, use the following data types:

– Character instead of varying character for short columns

– Integer instead of float, decimal, or DECFLOAT

– DECFLOAT instead of decimal

– Datetime instead of character

– Numeric instead of character
v To decrease the probability that a sort operation will occur, omit clauses such as

DISTINCT or ORDER BY if such operations are not required.

v To check for the existence of rows in a table, select a single row. Either open a

cursor and fetch one row, or perform a single-row SELECT INTO operation.

Remember to check for the SQLCODE -811 error if more than one row is found.

Unless you know that the table is very small, do not use the following statement

to check for a non-zero value:

 select count(*) from <table-name>

Chapter 3. Factors affecting performance 151

For large tables, counting all the rows impacts performance.

v If update activity is low and tables are large, define indexes on columns that are

frequently used in predicates.

v Consider using an IN list if the same column appears in multiple predicates. For

large IN lists that are used with host variables, looping a subset of the host

variables might improve performance.

The following suggestions apply specifically to SELECT statements that access

several tables.

v Use join predicates to join tables. A join predicate is a comparison between two

columns from different tables in a join.

v Define indexes on the columns in a join predicate to enable the join to be

processed more efficiently. Indexes also benefit UPDATE and DELETE

statements containing SELECT statements that access several tables.

v If possible, avoid using OR clauses or expressions with join predicates.

v In a partitioned database environment, it is recommended that tables being

joined are partitioned on the join column.

Guidelines for restricting SELECT statements

The optimizer assumes that an application must retrieve all of the rows that are

identified by a SELECT statement. This assumption is most appropriate in online

transaction processing (OLTP) and batch environments.

However, in “browse” applications, queries often define a large potential answer

set, but they retrieve only the first few rows, usually the number of rows that are

required for a particular display format.

To improve performance for such applications, you can modify the SELECT

statement in the following ways:

v Use the FOR UPDATE clause to specify the columns that could be updated by a

subsequent positioned UPDATE statement.

v Use the FOR READ or FETCH ONLY clause to make the returned columns

read-only.

v Use the OPTIMIZE FOR n ROWS clause to give priority to retrieving the first n

rows from the full result set.

v Use the FETCH FIRST n ROWS ONLY clause to retrieve only a specified number

of rows.

v Use the DECLARE CURSOR WITH HOLD statement to retrieve rows one at a

time.

The following sections describe the performance advantages of each method.

FOR UPDATE clause

The FOR UPDATE clause limits the result set by including only those columns that

can be updated by a subsequent positioned UPDATE statement. If you specify the

FOR UPDATE clause without column names, all columns that can be updated in

the table or view are included. If you specify column names, each name must be

unqualified and must identify a column of the table or view.

You cannot use the FOR UPDATE clause if:

v The cursor that is associated with the SELECT statement cannot be deleted

152 Troubleshooting and Tuning Database Performance

v At least one of the selected columns is a column that cannot be updated in a

catalog table and that has not been excluded in the FOR UPDATE clause.

In DB2 CLI applications, you can use the CLI connection attribute

SQL_ATTR_ACCESS_MODE for the same purpose.

FOR READ or FETCH ONLY clause

The FOR READ ONLY clause or the FOR FETCH ONLY clause ensures that

read-only results are returned. For result tables where updates and deletions are

allowed, specifying the FOR READ ONLY clause can improve the performance of

fetch operations if the database manager can retrieve blocks of data instead of

using exclusive locks. Do not specify the FOR READ ONLY clause in queries that

are used in positioned UPDATE or DELETE statements.

In DB2 CLI applications, you can use the CLI connection attribute

SQL_ATTR_ACCESS_MODE for the same purpose.

OPTIMIZE FOR n ROWS clause

The OPTIMIZE FOR clause declares the intent to retrieve only a subset of the

result or to give priority to retrieving only the first few rows. The optimizer can

then choose access plans that minimize the response time for retrieving the first

few rows. In addition, the number of rows that are sent to the client as a single

block are limited by the value of n. Thus the OPTIMIZE FOR clause affects how

the server retrieves qualifying rows from the database, and how it returns those

rows to the client.

For example, suppose you regularly query the EMPLOYEE table to determine

which employees have the highest salary:

 select lastname, firstnme, empno, salary

 from employee

 order by salary desc

Although you have previously defined a descending index on the SALARY

column, this index is likely to be poorly clustered, because employees are ordered

by employee number. To avoid many random synchronous I/Os, the optimizer

would probably choose the list prefetch access method, which requires sorting the

row identifiers of all rows that qualify. This sort causes a delay before the first

qualifying rows can be returned to the application. To prevent this delay, add the

OPTIMIZE FOR clause to the statement as follows:

 select lastname, firstnme, empno, salary

 from employee

 order by salary desc

 optimize for 20 rows

In this case, the optimizer will likely choose to use the SALARY index directly,

because only the 20 employees with the highest salaries are retrieved. Regardless

of how many rows might be blocked, a block of rows is returned to the client

every twenty rows.

With the OPTIMIZE FOR clause, the optimizer favors access plans that avoid bulk

operations or flow interruptions, such as those that are caused by sort operations.

You are most likely to influence an access path by using the OPTIMIZE FOR 1

ROW clause. Using this clause might have the following effects:

Chapter 3. Factors affecting performance 153

v Join sequences with composite inner tables are less likely, because they require a

temporary table.

v The join method might change. A nested loop join is the most likely choice,

because it has low overhead cost and is usually more efficient when retrieving a

few rows.

v An index that matches the ORDER BY clause is more likely, because no sort is

required for the ORDER BY.

v List prefetching is less likely, because this access method requires a sort.

v Sequential prefetching is less likely, because only a small number of rows is

required.

v In a join query, the table with columns in the ORDER BY clause is likely to be

chosen as the outer table if an index on the outer table provides the ordering

that is needed for the ORDER BY clause.

Although the OPTIMIZE FOR clause applies to all optimization levels, it works

best for optimization class 3 and higher, because classes below 3 use the greedy join

enumeration search strategy. This method sometimes results in access plans for

multi-table joins that do not lend themselves to quick retrieval of the first few

rows.

If a packaged application uses the call-level interface (DB2 CLI or ODBC), you can

use the OPTIMIZEFORNROWS keyword in the db2cli.ini configuration file to

have DB2 CLI automatically append an OPTIMIZE FOR clause to the end of each

query statement.

When data is selected from nicknames, results can vary depending on data source

support. If the data source that is referenced by a nickname supports the

OPTIMIZE FOR clause, and the DB2 optimizer pushes the entire query down to

the data source, then the clause is generated in the remote SQL that is sent to the

data source. If the data source does not support this clause, or if the optimizer

decides that the least costly plan is local execution, the OPTIMIZE FOR clause is

applied locally. In this case, the DB2 optimizer prefers access plans that minimize

the response time for retrieving the first few rows of a query, but the options that

are available to the optimizer for generating plans are slightly limited, and

performance gains from the OPTIMIZE FOR clause might be negligible.

If the OPTIMIZE FOR clause and the FETCH FIRST clause are both specified, the

lower of the two n values affects the communications buffer size. The two values

are considered independent of each other for optimization purposes.

FETCH FIRST n ROWS ONLY clause

The FETCH FIRST n ROWS ONLY clause sets the maximum number of rows that

can be retrieved. Limiting the result table to the first several rows can improve

performance. Only n rows are retrieved, regardless of the number of rows that the

result set might otherwise contain.

If the FETCH FIRST clause and the OPTIMIZE FOR clause are both specified, the

lower of the two n values affects the communications buffer size. The two values

are considered independent of each other for optimization purposes.

DECLARE CURSOR WITH HOLD statement

When you declare a cursor using a DECLARE CURSOR statement that includes

the WITH HOLD clause, open cursors remain open when the transaction commits,

154 Troubleshooting and Tuning Database Performance

and all locks are released, except those locks that protect the current cursor

position. If the transaction is rolled back, all open cursors are closed, all locks are

released, and any LOB locators are freed.

In DB2 CLI applications, you can use the CLI connection attribute

SQL_ATTR_CURSOR_HOLD for the same purpose. If a packaged application uses

the call level interface (DB2 CLI or ODBC), use the CURSORHOLD keyword in

the db2cli.ini configuration file to have DB2 CLI automatically assume the WITH

HOLD clause for every declared cursor.

Specifying row blocking to reduce overhead

Row blocking, which is supported for all statements and data types (including

LOB data types), reduces database manager overhead for cursors by retrieving a

block of rows in a single operation.

This block of rows represents a number of pages in memory. It is not a

multidimensional (MDC) table block, which is physically mapped to an extent on

disk.

Row blocking is specified by the following options on the BIND or PREP

command:

BLOCKING ALL

Cursors that are declared with the FOR READ ONLY clause or that are not

specified as FOR UPDATE will be blocked.

BLOCKING NO

Cursors will not be blocked.

BLOCKING UNAMBIG

Cursors that are declared with the FOR READ ONLY clause will be

blocked. Cursors that are not declared with the FOR READ ONLY clause

or the FOR UPDATE clause, that are not ambiguous, or that are read-only,

will be blocked. Ambiguous cursors will not be blocked.

The following database manager configuration parameters are used during

block-size calculations.

v The aslheapsz parameter specifies the size of the application support layer heap

for local applications. It is used to determine the I/O block size when a blocking

cursor is opened.

v The rqrioblk parameter specifies the size of the communication buffer between

remote applications and their database agents on the database server. It is also

used to determine the I/O block size at the data server runtime client when a

blocking cursor is opened.

Before enabling the blocking of row data for LOB data types, it is important to

understand the impact on system resources. More shared memory will be

consumed on the server to store the references to LOB values in each block of data

when LOB columns are returned. The number of such references will vary

according to the value of the rqrioblk configuration parameter.

To increase the amount of memory allocated to the heap, modify the

database_memory database configuration parameter by:

v Setting its value to AUTOMATIC

v Increasing its value by 256 pages if the parameter is currently set to a

user-defined numeric value

Chapter 3. Factors affecting performance 155

To increase the performance of an existing embedded SQL application that

references LOB values, rebind the application using the BIND command and

specifying either the BLOCKING ALL clause or the BLOCKING UNAMBIG clause

to request blocking. Embedded applications will retrieve the LOB values, one row

at a time, after a block of rows has been retrieved from the server. User-defined

functions (UDFs) returning LOB results might cause the DB2 server to revert to

single-row retrieval of LOB data when large amounts of memory are being

consumed on the server.

To specify row blocking:

1. Use the values of the aslheapsz and rqrioblk configuration parameters to

estimate how many rows are returned for each block. In both formulas, orl is

the output row length, in bytes.

v Use the following formula for local applications:

 Rows per block = aslheapsz * 4096 / orl

The number of bytes per page is 4096.

v Use the following formula for remote applications:

 Rows per block = rqrioblk / orl

2. To enable row blocking, specify an appropriate value for the BLOCKING

option on the BIND or PREP command.

If you do not specify the BLOCKING option, the default row blocking type is

UNAMBIG. For the command line processor (CLP) and the call-level interface

(CLI), the default row blocking type is ALL.

Data sampling in queries

It is often impractical and sometimes unnecessary to access all of the data that is

relevant to a query. In some cases, finding overall trends or patterns in a subset of

the data will suffice. One way to do this is to run a query against a random

sample from the database.

The DB2 product enables you to efficiently sample data for SQL and XQuery

queries, potentially improving the performance of large queries by orders of

magnitude, while maintaining a high degree of accuracy.

Sampling is commonly used for aggregate queries, such as AVG, COUNT, and

SUM, where reasonably accurate values for the aggregates can be obtained from a

sample of the data. Sampling can also be used to obtain a random subset of the

rows in a table for auditing purposes or to speed up data mining and analysis.

Two methods of sampling are available: row-level sampling and page-level

sampling.

Row-level Bernoulli sampling

Row-level Bernoulli sampling obtains a sample of P percent of the table rows by

means of a SARGable predicate that includes each row in the sample with a

probability of P/100 and excludes it with a probability of 1-P/100.

Row-level Bernoulli sampling always produces a valid, random sample regardless

of the degree of data clustering. However, the performance of this type of

sampling is very poor if no index is available, because every row must be retrieved

and the sampling predicate must be applied to it. If there is no index, there are no

I/O savings over executing the query without sampling. If an index is available,

156 Troubleshooting and Tuning Database Performance

performance is improved, because the sampling predicate is applied to the RIDS

inside of the index leaf pages. In the usual case, this requires one I/O per selected

RID, and one I/O per index leaf page.

System page-level sampling

System page-level sampling is similar to row-level sampling, except that pages (not

rows) are sampled. The probability of a page being included in the sample is

P/100. If a page is included, all of the rows on that page are included.

The performance of system page-level sampling is excellent, because only one I/O

is required for each page that is included in the sample. Compared with no

sampling, page-level sampling improves performance by orders of magnitude.

However, the accuracy of aggregate estimates tends to be worse under page-level

sampling than row-level sampling. This difference is most pronounced when there

are many rows per page, or when the columns that are referenced in the query

exhibit a high degree of clustering within pages.

Specifying the sampling method

Use the TABLESAMPLE clause to execute a query against a random sample of

data from a table. TABLESAMPLE BERNOULLI specifies that row-level Bernoulli

sampling is to be performed. TABLESAMPLE SYSTEM specifies that system

page-level sampling is to be performed, unless the optimizer determines that it is

more efficient to perform row-level Bernoulli sampling instead.

Parallel processing for applications

The DB2 product supports parallel environments, specifically on symmetric

multiprocessor (SMP) machines.

In SMP machines, more than one processor can access the database, allowing the

execution of complex SQL requests to be divided among the processors. This

intra-partition parallelism is the subdivision of a single database operation (for

example, index creation) into multiple parts, which are then executed in parallel

within a single database partition.

To specify the degree of parallelism when you compile an application, use the

CURRENT DEGREE special register, or the DEGREE bind option. Degree refers to

the number of query parts that can execute concurrently. There is no strict

relationship between the number of processors and the value that you select for

the degree of parallelism. You can specify a value that is more or less than the

number of processors on the machine. Even for uniprocessor machines, you can set

the degree to be higher than one to improve performance. Note, however, that

each degree of parallelism adds to the system memory and processor overhead.

Some configuration parameters must be modified to optimize performance when

you use parallel execution of queries. In an environment with a high degree of

parallelism, you should review and modify configuration parameters that control

the amount of shared memory and prefetching.

The following configuration parameters control and manage parallel processing.

v The intra_parallel database manager configuration parameter enables or disables

parallelism.

Chapter 3. Factors affecting performance 157

v The max_querydegree database manager configuration parameter sets an upper

limit on the degree of parallelism for any query in the database. This value

overrides the CURRENT DEGREE special register and the DEGREE bind option.

v The dft_degree database configuration parameter sets the default value for the

CURRENT DEGREE special register and the DEGREE bind option.

If a query is compiled with DEGREE = ANY, the database manager chooses the

degree of intra-partition parallelism on the basis of a number of factors, including

the number of processors and the characteristics of the query. The actual degree

used at run time might be lower than the number of processors, depending on

these factors and the amount of activity on the system. The degree of parallelism

might be reduced before query execution if the system is busy.

Use the DB2 explain facility to display information about the degree of parallelism

chosen by the optimizer. Use the database system monitor to display information

about the degree of parallelism actually being used at run time.

Parallelism in non-SMP environments

You can specify a degree of parallelism without having an SMP machine. For

example, I/O-bound queries on a uniprocessor machine might benefit from

declaring a degree of 2 or more. In this case, the processor might not have to wait

for I/O tasks to complete before starting to process a new query. Utilities such as

load can control I/O parallelism independently.

Lock management

Lock management is one of the factors that affect application performance. Review

this section for details about lock management considerations that can help you to

maximize the performance of database applications.

Locks and concurrency control

To provide concurrency control and prevent uncontrolled data access, the database

manager places locks on buffer pools, tables, data partitions, table blocks, or table

rows.

A lock associates a database manager resource with an application, called the lock

owner, to control how other applications access the same resource.

The database manager uses row-level locking or table-level locking, as appropriate,

based on:

v The isolation level specified at precompile time or when an application is bound

to the database. The isolation level can be one of the following:

– Uncommitted read (UR)

– Cursor stability (CS)

– Read stability (RS)

– Repeatable read (RR)

The different isolation levels are used to control access to uncommitted data,

prevent lost updates, allow non-repeatable reads of data, and prevent phantom

reads. To minimize performance impact, use the minimum isolation level that

satisfies your application needs.

v The access plan selected by the optimizer. Table scans, index scans, and other

methods of data access each require different types of access to the data.

158 Troubleshooting and Tuning Database Performance

v The LOCKSIZE attribute for the table. The LOCKSIZE clause on the ALTER

TABLE statement indicates the granularity of the locks that are used when the

table is accessed. The choices are: ROW for row locks, TABLE for table locks, or

BLOCKINSERT for block locks on multidimensional clustering (MDC) tables

only. When the BLOCKINSERT clause is used on an MDC table, row-level

locking is performed, except during an insert operation, when block-level

locking is done instead. Use the ALTER TABLE...LOCKSIZE BLOCKINSERT

statement for MDC tables when transactions will be performing large inserts

into disjointed cells. Use the ALTER TABLE...LOCKSIZE TABLE statement for

read-only tables. This reduces the number of locks that are required for database

activity. For partitioned tables, table locks are first acquired and then data

partition locks are acquired, as dictated by the data that will be accessed.

v The amount of memory devoted to locking, which is controlled by the locklist

database configuration parameter. If the lock list fills up, performance can

degrade because of lock escalations and reduced concurrency among shared

objects in the database. If lock escalations occur frequently, increase the value of

locklist, maxlocks, or both. To reduce the number of locks that are held at one

time, ensure that transactions commit frequently.

A buffer pool lock (exclusive) is set whenever a buffer pool is created, altered, or

dropped. You might encounter this type of lock when collecting system monitoring

data. The name of the lock is the identifier (ID) for the buffer pool itself.

In general, row-level locking is used unless one of the following is true:

v The isolation level is uncommitted read

v The isolation level is repeatable read and the access plan requires a scan with no

index range predicates

v The table LOCKSIZE attribute is TABLE

v The lock list fills up, causing lock escalation

v An explicit table lock has been acquired through the LOCK TABLE statement,

which prevents concurrent application processes from changing or using a table

In the case of an MDC table, block-level locking is used instead of row-level

locking when:

v The table LOCKSIZE attribute is BLOCKINSERT

v The isolation level is repeatable read and the access plan involves predicates

v A searched update or delete operation involves predicates on dimension

columns only

The duration of row locking varies with the isolation level being used:

v UR scans: No row locks are held unless row data is changing.

v CS scans: Row locks are generally held only while the cursor is positioned on

the row. Note that in some cases, locks might not be held at all during a CS

scan.

v RS scans: Qualifying row locks are held only for the duration of the transaction.

v RR scans: All row locks are held for the duration of the transaction.

Lock granularity

If one application holds a lock on a database object, another application might not

be able to access that object. For this reason, row-level locks, which minimize the

amount of data that is locked and therefore inaccessible, are better for maximum

concurrency than block-level, data partition-level, or table-level locks.

Chapter 3. Factors affecting performance 159

However, locks require storage and processing time, so a single table lock

minimizes lock overhead.

The LOCKSIZE clause of the ALTER TABLE statement specifies the granularity of

locks at the row, data partition, block, or table level. Row locks are used by default.

Use of this option in the table definition does not prevent normal lock escalation

from occurring.

The ALTER TABLE statement specifies locks globally, affecting all applications and

users that access that table. Individual applications might use the LOCK TABLE

statement to specify table locks at an application level instead.

A permanent table lock defined by the ALTER TABLE statement might be

preferable to a single-transaction table lock using the LOCK TABLE statement if:

v The table is read-only, and will always need only S locks. Other users can also

obtain S locks on the table.

v The table is usually accessed by read-only applications, but is sometimes

accessed by a single user for brief maintenance, and that user requires an X lock.

While the maintenance program is running, read-only applications are locked

out, but in other circumstances, read-only applications can access the table

concurrently with a minimum of locking overhead.

For a multidimensional clustering (MDC) table, you can specify BLOCKINSERT

with the LOCKSIZE clause in order to use block-level locking during insert

operations only. When BLOCKINSERT is specified, row-level locking is performed

for all other operations, but only minimally for insert operations. That is,

block-level locking is used during the insertion of rows, but row-level locking is

used to lock the next key if repeatable read (RR) scans are encountered in the

record ID (RID) indexes as they are being updated. BLOCKINSERT locking might

be beneficial when:

v There are multiple transactions doing mass insertions into separate cells

v Concurrent insertions into the same cell by multiple transactions is not

occurring, or it is occurring with enough data inserted per cell by each of the

transactions that the user is not concerned that each transaction will insert into

separate blocks

Lock attributes

Database manager locks have several basic attributes.

These attributes include the following:

Mode The type of access allowed for the lock owner, as well as the type of access

allowed for concurrent users of the locked object. It is sometimes referred

to as the state of the lock.

Object

The resource being locked. The only type of object that you can lock

explicitly is a table. The database manager also sets locks on other types of

resources, such as rows and table spaces. Block locks can also be set for

multidimensional clustering (MDC) tables, and data partition locks can be

set for partitioned tables. The object being locked determines the

granularity of the lock.

Lock count

The length of time during which a lock is held. The isolation level under

which a query runs affects the lock count.

160 Troubleshooting and Tuning Database Performance

Table 11 lists the lock modes and describes their effects, in order of increasing

control over resources.

 Table 11. Lock Mode Summary

Lock Mode

Applicable Object

Type Description

IN (Intent None) Table spaces, blocks,

tables, data partitions

The lock owner can read any data in the object, including

uncommitted data, but cannot update any of it. Other concurrent

applications can read or update the table.

IS (Intent Share) Table spaces, blocks,

tables, data partitions

The lock owner can read data in the locked table, but cannot update

this data. Other applications can read or update the table.

IX (Intent Exclusive) Table spaces, blocks,

tables, data partitions

The lock owner and concurrent applications can read and update

data. Other concurrent applications can both read and update the

table.

NS (Scan Share) Rows The lock owner and all concurrent applications can read, but not

update, the locked row. This lock is acquired on rows of a table,

instead of an S lock, where the isolation level of the application is

either RS or CS.

NW (Next Key Weak

Exclusive)

Rows When a row is inserted into an index, an NW lock is acquired on

the next row. This occurs only if the next row is currently locked by

an RR scan. The lock owner can read but not update the locked row.

This lock mode is similar to an X lock, except that it is also

compatible with NS locks.

S (Share) Rows, blocks, tables,

data partitions

The lock owner and all concurrent applications can read, but not

update, the locked data.

SIX (Share with

Intent Exclusive)

Tables, blocks, data

partitions

The lock owner can read and update data. Other concurrent

applications can read the table.

U (Update) Rows, blocks, tables,

data partitions

The lock owner can update data. Other units of work can read the

data in the locked object, but cannot update it.

X (Exclusive) Rows, blocks, tables,

buffer pools, data

partitions

The lock owner can both read and update data in the locked object.

Only uncommitted read (UR) applications can access the locked

object.

Z (Super Exclusive) Table spaces, tables,

data partitions

This lock is acquired on a table under certain conditions, such as

when the table is altered or dropped, an index on the table is

created or dropped, or for some types of table reorganization. No

other concurrent application can read or update the table.

Factors that affect locking

Several factors affect the mode and granularity of database manager locks.

These factors include:

v The type of processing that the application performs

v The data access method

v The values of various configuration parameters

Locks and types of application processing

For the purpose of determining lock attributes, application processing can be

classified as one of the following types: read-only, intent to change, change, and

cursor controlled.

v Read-only

This processing type includes all SELECT statements that are intrinsically

read-only, have an explicit FOR READ ONLY clause, or are ambiguous, but the

Chapter 3. Factors affecting performance 161

query compiler assumes that they are read-only because of the BLOCKING

option value that the PREP or BIND command specifies. This type requires only

share locks (IS, NS, or S).

v Intent to change

This processing type includes all SELECT statements that have a FOR UPDATE

clause, a USE AND KEEP UPDATE LOCKS clause, a USE AND KEEP

EXCLUSIVE LOCKS clause, or are ambiguous, but the query compiler assumes

that change is intended. This type uses share and update locks (S, U, or X for

rows; IX, S, U, or X for blocks; and IX, U, or X for tables).

v Change

This processing type includes UPDATE, INSERT, and DELETE statements, but

not UPDATE WHERE CURRENT OF or DELETE WHERE CURRENT OF. This

type requires exclusive locks (IX or X).

v Cursor controlled

This processing type includes UPDATE WHERE CURRENT OF and DELETE

WHERE CURRENT OF. This type requires exclusive locks (IX or X).

A statement that inserts, updates, or deletes data in a target table, based on the

result from a subselect statement, does two types of processing. The rules for

read-only processing determine the locks for the tables that return data in the

subselect statement. The rules for change processing determine the locks for the

target table.

Locks and data-access methods

An access plan is the method that the optimizer selects to retrieve data from a

specific table. The access plan can have a significant effect on lock modes.

If an index scan is used to locate a specific row, the optimizer will usually choose

row-level locking (IS) for the table. For example, if the EMPLOYEE table has an

index on employee number (EMPNO), access through that index might be used to

select information for a single employee:

 select * from employee

 where empno = ’000310’

If an index is not used, the entire table must be scanned in sequence to find the

required rows, and the optimizer will likely choose a single table-level lock (S). For

example, if there is no index on the column SEX, a table scan might be used to

select all male employees, as follows:

 select * from employee

 where sex = ’M’

Note: Cursor-controlled processing uses the lock mode of the underlying cursor

until the application finds a row to update or delete. For this type of processing,

no matter what the lock mode of the cursor might be, an exclusive lock is always

obtained to perform the update or delete operation.

Locking in range-clustered tables works slightly differently from standard key

locking. When accessing a range of rows in a range-clustered table, all rows in the

range are locked, even when some of those rows are empty. In standard key

locking, only rows with existing data are locked.

Deferred access to data pages implies that access to a row occurs in two steps,

which results in more complex locking scenarios. The timing of lock acquisition

and the persistence of locks depend on the isolation level. Because the repeatable

read (RR) isolation level retains all locks until the end of a transaction, the locks

162 Troubleshooting and Tuning Database Performance

acquired in the first step are held, and there is no need to acquire further locks

during the second step. For the read stability (RS) and cursor stability (CS)

isolation levels, locks must be acquired during the second step. To maximize

concurrency, locks are not acquired during the first step, and the reapplication of

all predicates ensures that only qualifying rows are returned.

Lock type compatibility

Lock compatibility becomes an issue when one application holds a lock on an

object and another application requests a lock on the same object. When the two

lock modes are compatible, the request for a second lock on the object can be

granted.

If the lock mode of the requested lock is not compatible with the lock that is

already held, the lock request cannot be granted. Instead, the request must wait

until the first application releases its lock, and all other existing incompatible locks

are released.

Table 12 shows which lock types are compatible (indicated by a yes) and which

types are not (indicated by a no). Note that a timeout can occur when a requestor

is waiting for a lock.

 Table 12. Lock Type Compatibility

State of Held Resource

State Being

Requested None IN IS NS S IX SIX U X Z NW

None yes yes yes yes yes yes yes yes yes yes yes

IN (Intent None) yes yes yes yes yes yes yes yes yes no yes

IS (Intent Share) yes yes yes yes yes yes yes yes no no no

NS (Scan Share) yes yes yes yes yes no no yes no no yes

S (Share) yes yes yes yes yes no no yes no no no

IX (Intent Exclusive) yes yes yes no no yes no no no no no

SIX (Share with

Intent Exclusive)

yes yes yes no no no no no no no no

U (Update) yes yes yes yes yes no no no no no no

X (Exclusive) yes yes no no no no no no no no no

Z (Super Exclusive) yes no no no no no no no no no no

NW (Next Key Weak

Exclusive)

yes yes no yes no no no no no no no

Next-key locking

During insertion of a key into an index, the row that corresponds to the key that

will follow the new key in the index is locked only if that row is currently locked

by a repeatable read (RR) index scan.

The lock mode that is used for the next-key lock is NW (next key weak exclusive).

This next-key lock is released before key insertion occurs; that is, before a row is

inserted into the table.

Key insertion also occurs when updates to a row result in a change to the value of

the index key for that row, because the original key value is marked deleted and

Chapter 3. Factors affecting performance 163

the new key value is inserted into the index. For updates that affect only the

include columns of an index, the key can be updated in place, and no next-key

locking occurs.

During RR scans, the row that corresponds to the key that follows the end of the

scan range is locked in S mode. If no keys follow the end of the scan range, an

end-of-table lock is acquired to lock the end of the index. In the case of partitioned

indexes for partitioned tables, locks are acquired to lock the end of each index

partition, instead of just one lock for the end of the index. If the key that follows

the end of the scan range is marked deleted, one of the following actions occurs:

v The scan continues to lock the corresponding rows until it finds a key that is not

marked deleted

v The scan locks the corresponding row for that key

v The scan locks the end of the index

Lock modes and access plans for standard tables

The type of lock that a standard table obtains depends on the isolation level that is

in effect and on the data access plan that is being used.

The following tables show the types of locks that are obtained for standard tables

under each isolation level for different access plans. Each entry has two parts: the

table lock and the row lock. A hyphen indicates that a particular lock granularity is

not available.

Tables 7-12 show the types of locks that are obtained when the reading of data

pages is deferred to allow the list of rows to be further qualified using multiple

indexes, or sorted for efficient prefetching.

v Table 1. Lock Modes for Table Scans with No Predicates

v Table 2. Lock Modes for Table Scans with Predicates

v Table 3. Lock Modes for RID Index Scans with No Predicates

v Table 4. Lock Modes for RID Index Scans with a Single Qualifying Row

v Table 5. Lock Modes for RID Index Scans with Start and Stop Predicates Only

v Table 6. Lock Modes for RID Index Scans with Index and Other Predicates

(sargs, resids) Only

v Table 7. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with No Predicates

v Table 8. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with No Predicates

v Table 9. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with Predicates (sargs, resids)

v Table 10. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with Predicates (sargs, resids)

v Table 11. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with Start and Stop Predicates Only

v Table 12. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with Start and Stop Predicates Only

Note:

1. Block-level locks are also available for multidimensional clustering (MDC)

tables.

164 Troubleshooting and Tuning Database Performance

2. Lock modes can be changed explicitly with the lock-request-clause of a SELECT

statement.

 Table 13. Lock Modes for Table Scans with No Predicates

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR S/- U/- SIX/X X/- X/-

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

 Table 14. Lock Modes for Table Scans with Predicates

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR S/- U/- SIX/X U/- SIX/X

RS IS/NS IX/U IX/X IX/U IX/X

CS IS/NS IX/U IX/X IX/U IX/X

UR IN/- IX/U IX/X IX/U IX/X

Note: Under the UR isolation level, if there are predicates on include columns in the index,

the isolation level is upgraded to CS and the locks are upgraded to an IS table lock or NS

row locks.

 Table 15. Lock Modes for RID Index Scans with No Predicates

Isolation

level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR S/- IX/S IX/X X/- X/-

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

 Table 16. Lock Modes for RID Index Scans with a Single Qualifying Row

Isolation

level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/S IX/U IX/X IX/X IX/X

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

Chapter 3. Factors affecting performance 165

Table 17. Lock Modes for RID Index Scans with Start and Stop Predicates Only

Isolation

level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/S IX/S IX/X IX/X IX/X

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

 Table 18. Lock Modes for RID Index Scans with Index and Other Predicates (sargs, resids)

Only

Isolation

level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/S IX/S IX/X IX/S IX/X

RS IS/NS IX/U IX/X IX/U IX/X

CS IS/NS IX/U IX/X IX/U IX/X

UR IN/- IX/U IX/X IX/U IX/X

 Table 19. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan

with No Predicates

Isolation

level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/S IX/S X/-

RS IN/- IN/- IN/-

CS IN/- IN/- IN/-

UR IN/- IN/- IN/-

 Table 20. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID

Index Scan with No Predicates

Isolation

level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IN/- IX/S IX/X X/- X/-

RS IS/NS IX/U IX/X IX/X IX/X

CS IS/NS IX/U IX/X IX/X IX/X

UR IN/- IX/U IX/X IX/X IX/X

166 Troubleshooting and Tuning Database Performance

Table 21. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan

with Predicates (sargs, resids)

Isolation

level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/S IX/S IX/S

RS IN/- IN/- IN/-

CS IN/- IN/- IN/-

UR IN/- IN/- IN/-

 Table 22. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID

Index Scan with Predicates (sargs, resids)

Isolation

level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IN/- IX/S IX/X IX/S IX/X

RS IS/NS IX/U IX/X IX/U IX/X

CS IS/NS IX/U IX/X IX/U IX/X

UR IN/- IX/U IX/X IX/U IX/X

 Table 23. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan

with Start and Stop Predicates Only

Isolation

level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/S IX/S IX/X

RS IN/- IN/- IN/-

CS IN/- IN/- IN/-

UR IN/- IN/- IN/-

 Table 24. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID

Index Scan with Start and Stop Predicates Only

Isolation

level

Read-only and

ambiguous scans

Cursored operations Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IN/- IX/S IX/X IX/X IX/X

RS IS/NS IX/U IX/X IX/U IX/X

CS IS/NS IX/U IX/X IX/U IX/X

UR IS/- IX/U IX/X IX/U IX/X

Chapter 3. Factors affecting performance 167

Lock modes for MDC table and RID index scans

The type of lock that a multidimensional clustering (MDC) table obtains during a

table or RID index scan depends on the isolation level that is in effect and on the

data access plan that is being used.

The following tables show the types of locks that are obtained for MDC tables

under each isolation level for different access plans. Each entry has three parts: the

table lock, the block lock, and the row lock. A hyphen indicates that a particular

lock granularity is not available.

Tables 9-14 show the types of locks that are obtained for RID index scans when the

reading of data pages is deferred. Under the UR isolation level, if there are

predicates on include columns in the index, the isolation level is upgraded to CS

and the locks are upgraded to an IS table lock, an IS block lock, or NS row locks.

v Table 1. Lock Modes for Table Scans with No Predicates

v Table 2. Lock Modes for Table Scans with Predicates on Dimension Columns

Only

v Table 3. Lock Modes for Table Scans with Other Predicates (sargs, resids)

v Table 4. Lock Modes for RID Index Scans with No Predicates

v Table 5. Lock Modes for RID Index Scans with a Single Qualifying Row

v Table 6. Lock Modes for RID Index Scans with Start and Stop Predicates Only

v Table 7. Lock Modes for RID Index Scans with Index Predicates Only

v Table 8. Lock Modes for RID Index Scans with Other Predicates (sargs, resids)

v Table 9. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with No Predicates

v Table 10. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with No Predicates

v Table 11. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with Predicates (sargs, resids)

v Table 12. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with Predicates (sargs, resids)

v Table 13. Lock Modes for Index Scans Used for Deferred Data Page Access: RID

Index Scan with Start and Stop Predicates Only

v Table 14. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a RID Index Scan with Start and Stop Predicates Only

Note: Lock modes can be changed explicitly with the lock-request-clause of a

SELECT statement.

 Table 25. Lock Modes for Table Scans with No Predicates

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or delete

Scan Where current

of

Scan Update or

delete

RR S/-/- U/-/- SIX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/U IX/X/- IX/I/-

CS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-

UR IN/IN/- IX/IX/U IX/IX/X IX/X/- IX/X/-

168 Troubleshooting and Tuning Database Performance

Table 26. Lock Modes for Table Scans with Predicates on Dimension Columns Only

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or delete

Scan Where current

of

Scan Update or

delete

RR S/-/- U/-/- SIX/IX/X U/-/- SIX/X/-

RS IS/IS/NS IX/IX/U IX/IX/X IX/U/- X/X/-

CS IS/IS/NS IX/IX/U IX/IX/X IX/U/- X/X/-

UR IN/IN/- IX/IX/U IX/IX/X IX/U/- X/X/-

 Table 27. Lock Modes for Table Scans with Other Predicates (sargs, resids)

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or delete

Scan Where current

of

Scan Update or

delete

RR S/-/- U/-/- SIX/IX/X U/-/- SIX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

 Table 28. Lock Modes for RID Index Scans with No Predicates

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR S/-/- IX/IX/S IX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

CS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

UR IN/IN/- IX/IX/U IX/IX/X X/X/X X/X/X

 Table 29. Lock Modes for RID Index Scans with a Single Qualifying Row

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/IS/S IX/IX/U IX/IX/X X/X/X X/X/X

RS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

CS IS/IS/NS IX/IX/U IX/IX/X X/X/X X/X/X

UR IN/IN/- IX/IX/U IX/IX/X X/X/X X/X/X

 Table 30. Lock Modes for RID Index Scans with Start and Stop Predicates Only

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/IS/S IX/IX/S IX/IX/X IX/IX/X IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

Chapter 3. Factors affecting performance 169

Table 30. Lock Modes for RID Index Scans with Start and Stop Predicates Only (continued)

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/X IX/IX/X

 Table 31. Lock Modes for RID Index Scans with Index Predicates Only

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/S/S IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

 Table 32. Lock Modes for RID Index Scans with Other Predicates (sargs, resids)

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/S/S IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

 Table 33. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan

with No Predicates

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/S/S IX/IX/S X/-/-

RS IN/IN/- IN/IN/- IN/IN/-

CS IN/IN/- IN/IN/- IN/IN/-

UR IN/IN/- IN/IN/- IN/IN/-

 Table 34. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID

Index Scan with No Predicates

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IN/IN/- IX/IX/S IX/IX/X X/-/- X/-/-

170 Troubleshooting and Tuning Database Performance

Table 34. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID

Index Scan with No Predicates (continued)

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/X IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/X IX/IX/X

 Table 35. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan

with Predicates (sargs, resids)

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/S/- IX/IX/S IX/IX/S

RS IN/IN/- IN/IN/- IN/IN/-

CS IN/IN/- IN/IN/- IN/IN/-

UR IN/IN/- IN/IN/- IN/IN/-

 Table 36. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID

Index Scan with Predicates (sargs, resids)

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IN/IN/- IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

 Table 37. Lock Modes for Index Scans Used for Deferred Data Page Access: RID Index Scan

with Start and Stop Predicates Only

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/IS/S IX/IX/S IX/IX/X

RS IN/IN/- IN/IN/- IN/IN/-

CS IN/IN/- IN/IN/- IN/IN/-

UR IN/IN/- IN/IN/- IN/IN/-

Chapter 3. Factors affecting performance 171

Table 38. Lock Modes for Index Scans Used for Deferred Data Page Access: After a RID

Index Scan with Start and Stop Predicates Only

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IN/IN/- IX/IX/S IX/IX/X IX/IX/X IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IS/-/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Lock modes for MDC block index scans

The type of lock that a multidimensional clustering (MDC) table obtains during a

block index scan depends on the isolation level that is in effect and on the data

access plan that is being used.

The following tables show the types of locks that are obtained for MDC tables

under each isolation level for different access plans. Each entry has three parts: the

table lock, the block lock, and the row lock. A hyphen indicates that a particular

lock granularity is not available.

Tables 5-12 show the types of locks that are obtained for block index scans when

the reading of data pages is deferred.

v Table 1. Lock Modes for Index Scans with No Predicates

v Table 2. Lock Modes for Index Scans with Predicates on Dimension Columns

Only

v Table 3. Lock Modes for Index Scans with Start and Stop Predicates Only

v Table 4. Lock Modes for Index Scans with Predicates

v Table 5. Lock Modes for Index Scans Used for Deferred Data Page Access: Block

Index Scan with No Predicates

v Table 6. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a Block Index Scan with No Predicates

v Table 7. Lock Modes for Index Scans Used for Deferred Data Page Access: Block

Index Scan with Predicates on Dimension Columns Only

v Table 8. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a Block Index Scan with Predicates on Dimension Columns Only

v Table 9. Lock Modes for Index Scans Used for Deferred Data Page Access: Block

Index Scan with Start and Stop Predicates Only

v Table 10. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a Block Index Scan with Start and Stop Predicates Only

v Table 11. Lock Modes for Index Scans Used for Deferred Data Page Access: Block

Index Scan with Other Predicates (sargs, resids)

v Table 12. Lock Modes for Index Scans Used for Deferred Data Page Access: After

a Block Index Scan with Other Predicates (sargs, resids)

Note: Lock modes can be changed explicitly with the lock-request-clause of a

SELECT statement.

172 Troubleshooting and Tuning Database Performance

Table 39. Lock Modes for Index Scans with No Predicates

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR S/--/-- IX/IX/S IX/IX/X X/--/-- X/--/--

RS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

CS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

UR IN/IN/- IX/IX/U IX/IX/X X/X/-- X/X/--

 Table 40. Lock Modes for Index Scans with Predicates on Dimension Columns Only

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/-/- IX/IX/S IX/IX/X X/-/- X/-/-

RS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-

CS IS/IS/NS IX/IX/U IX/IX/X IX/X/- IX/X/-

UR IN/IN/- IX/IX/U IX/IX/X IX/X/- IX/X/-

 Table 41. Lock Modes for Index Scans with Start and Stop Predicates Only

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/S/- IX/IX/S IX/IX/S IX/IX/S IX/IX/S

RS IX/IX/S IX/IX/U IX/IX/X IX/IX/- IX/IX/-

CS IX/IX/S IX/IX/U IX/IX/X IX/IX/- IX/IX/-

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/- IX/IX/-

 Table 42. Lock Modes for Index Scans with Predicates

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/S/- IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Chapter 3. Factors affecting performance 173

Table 43. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index

Scan with No Predicates

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/S/-- IX/IX/S X/--/--

RS IN/IN/-- IN/IN/-- IN/IN/--

CS IN/IN/-- IN/IN/-- IN/IN/--

UR IN/IN/-- IN/IN/-- IN/IN/--

 Table 44. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block

Index Scan with No Predicates

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IN/IN/-- IX/IX/S IX/IX/X X/--/-- X/--/--

RS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

CS IS/IS/NS IX/IX/U IX/IX/X X/X/-- X/X/--

UR IN/IN/-- IX/IX/U IX/IX/X X/X/-- X/X/--

 Table 45. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index

Scan with Predicates on Dimension Columns Only

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/S/-- IX/IX/-- IX/S/--

RS IS/IS/NS IX/--/-- IX/--/--

CS IS/IS/NS IX/--/-- IX/--/--

UR IN/IN/-- IX/--/-- IX/--/--

 Table 46. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block

Index Scan with Predicates on Dimension Columns Only

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IN/IN/-- IX/IX/S IX/IX/X IX/S/-- IX/X/--

RS IS/IS/NS IX/IX/U IX/IX/X IX/U/-- IX/X/--

CS IS/IS/NS IX/IX/U IX/IX/X IX/U/-- IX/X/--

UR IN/IN/-- IX/IX/U IX/IX/X IX/U/-- IX/X/--

174 Troubleshooting and Tuning Database Performance

Table 47. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index

Scan with Start and Stop Predicates Only

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/S/-- IX/IX/-- IX/X/--

RS IN/IN/-- IN/IN/-- IN/IN/--

CS IN/IN/-- IN/IN/-- IN/IN/--

UR IN/IN/-- IN/IN/-- IN/IN/--

 Table 48. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block

Index Scan with Start and Stop Predicates Only

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IN/IN/-- IX/IX/X IX/X/--

RS IS/IS/NS IN/IN/-- IN/IN/--

CS IS/IS/NS IN/IN/-- IN/IN/--

UR IS/--/-- IN/IN/-- IN/IN/--

 Table 49. Lock Modes for Index Scans Used for Deferred Data Page Access: Block Index

Scan with Other Predicates (sargs, resids)

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IS/S/-- IX/IX/-- IX/IX/--

RS IN/IN/-- IN/IN/-- IN/IN/--

CS IN/IN/-- IN/IN/-- IN/IN/--

UR IN/IN/-- IN/IN/-- IN/IN/--

 Table 50. Lock Modes for Index Scans Used for Deferred Data Page Access: After a Block

Index Scan with Other Predicates (sargs, resids)

Isolation

level

Read-only and

ambiguous scans

Cursored operation Searched update or

delete

Scan Where current

of

Scan Update or

delete

RR IN/IN/-- IX/IX/S IX/IX/X IX/IX/S IX/IX/X

RS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

CS IS/IS/NS IX/IX/U IX/IX/X IX/IX/U IX/IX/X

UR IN/IN/-- IX/IX/U IX/IX/X IX/IX/U IX/IX/X

Chapter 3. Factors affecting performance 175

Locking behavior on partitioned tables

In addition to an overall table lock, there is a lock for each data partition of a

partitioned table.

This allows for finer granularity and increased concurrency compared to a

nonpartitioned table. The data partition lock is identified in output from the db2pd

command, event monitors, administrative views, and table functions.

When a table is accessed, a table lock is obtained first, and then data partition

locks are obtained as required. Access methods and isolation levels might require

the locking of data partitions that are not represented in the result set. After these

data partition locks are acquired, they might be held as long as the table lock. For

example, a cursor stability (CS) scan over an index might keep the locks on

previously accessed data partitions to reduce the cost of reacquiring data partition

locks later.

Data partition locks also carry the cost of ensuring access to table spaces. For

nonpartitioned tables, table space access is handled by table locks. Data partition

locking occurs even if there is an exclusive or share lock at the table level.

Finer granularity allows one transaction to have exclusive access to a specific data

partition and to avoid row locking while other transactions are accessing other

data partitions. This can be the result of the plan that is chosen for a mass update,

or because of the escalation of locks to the data partition level. The table lock for

many access methods is normally an intent lock, even if the data partitions are

locked in share or exclusive mode. This allows for increased concurrency. However,

if non-intent locks are required at the data partition level, and the plan indicates

that all data partitions might be accessed, then a non-intent lock might be chosen

at the table level to prevent data partition deadlocks between concurrent

transactions.

LOCK TABLE statements

For partitioned tables, the only lock acquired by the LOCK TABLE statement is a

table-level lock. This prevents row locking by subsequent data manipulation

language (DML) statements, and avoids deadlocks at the row, block, or data

partition level. The IN EXCLUSIVE MODE option can be used to guarantee

exclusive access when updating indexes, which is useful in limiting the growth of

indexes during a large update.

Effect of the LOCKSIZE TABLE option on the ALTER TABLE

statement

The LOCKSIZE TABLE option ensures that a table is locked in share or exclusive

mode with no intent locks. For a partitioned table, this locking strategy is applied

to both the table lock and to data partition locks.

Row- and block-level lock escalation

Row- and block-level locks in partitioned tables can be escalated to the data

partition level. When this occurs, a table is more accessible to other transactions,

even if a data partition is escalated to share, exclusive, or super exclusive mode,

because other data partitions remain unaffected. The notification log entry for an

escalation includes the impacted data partition and the name of the table.

176 Troubleshooting and Tuning Database Performance

Exclusive access to a nonpartitioned index cannot be ensured by lock escalation.

For exclusive access, one of the following conditions must be true:

v The statement must use an exclusive table-level lock

v An explicit LOCK TABLE IN EXCLUSIVE MODE statement must be issued

v The table must have the LOCKSIZE TABLE attribute

In the case of partitioned indexes, exclusive access to an index partition is ensured

by lock escalation of the data partition to an exclusive or super exclusive access

mode.

Interpreting lock information

The SNAPLOCK administrative view can help you to interpret lock information

that is returned for a partitioned table. The following SNAPLOCK administrative

view was captured during an offline index reorganization.

SELECT SUBSTR(TABNAME, 1, 15) TABNAME, TAB_FILE_ID, SUBSTR(TBSP_NAME, 1, 15) TBSP_NAME, DATA_PARTITION_ID, LOCK_OBJECT_TYPE,

LOCK_MODE, LOCK_ESCALATION FROM SYSIBMADM.SNAPLOCK where TABNAME like ’TP1’ and LOCK_OBJECT_TYPE like ’TABLE_%’

ORDER BY TABNAME, DATA_PARTITION_ID, LOCK_OBJECT_TYPE, TAB_FILE_ID, LOCK_MODE

TABNAME TAB_FILE_ID TBSP_NAME DATA_PARTITION_ID LOCK_OBJECT_TYPE LOCK_MODE LOCK_ESCALATION

--------------- -------------------- --------------- ----------------- ------------------ ---------- ---------------

TP1 32768 - -1 TABLE_LOCK Z 0

TP1 4 USERSPACE1 0 TABLE_PART_LOCK Z 0

TP1 5 USERSPACE1 1 TABLE_PART_LOCK Z 0

TP1 6 USERSPACE1 2 TABLE_PART_LOCK Z 0

TP1 7 USERSPACE1 3 TABLE_PART_LOCK Z 0

TP1 8 USERSPACE1 4 TABLE_PART_LOCK Z 0

TP1 9 USERSPACE1 5 TABLE_PART_LOCK Z 0

TP1 10 USERSPACE1 6 TABLE_PART_LOCK Z 0

TP1 11 USERSPACE1 7 TABLE_PART_LOCK Z 0

TP1 12 USERSPACE1 8 TABLE_PART_LOCK Z 0

TP1 13 USERSPACE1 9 TABLE_PART_LOCK Z 0

TP1 14 USERSPACE1 10 TABLE_PART_LOCK Z 0

TP1 15 USERSPACE1 11 TABLE_PART_LOCK Z 0

TP1 4 USERSPACE1 - TABLE_LOCK Z 0

TP1 5 USERSPACE1 - TABLE_LOCK Z 0

TP1 6 USERSPACE1 - TABLE_LOCK Z 0

TP1 7 USERSPACE1 - TABLE_LOCK Z 0

TP1 8 USERSPACE1 - TABLE_LOCK Z 0

TP1 9 USERSPACE1 - TABLE_LOCK Z 0

TP1 10 USERSPACE1 - TABLE_LOCK Z 0

TP1 11 USERSPACE1 - TABLE_LOCK Z 0

TP1 12 USERSPACE1 - TABLE_LOCK Z 0

TP1 13 USERSPACE1 - TABLE_LOCK Z 0

TP1 14 USERSPACE1 - TABLE_LOCK Z 0

TP1 15 USERSPACE1 - TABLE_LOCK Z 0

TP1 16 USERSPACE1 - TABLE_LOCK Z 0

 26 record(s) selected.

In this example, a lock object of type TABLE_LOCK and a DATA_PARTITION_ID

of -1 are used to control access to and concurrency on the partitioned table TP1.

The lock objects of type TABLE_PART_LOCK are used to control most access to

and concurrency on each data partition.

There are additional lock objects of type TABLE_LOCK captured in this output

(TAB_FILE_ID 4 through 16) that do not have a value for DATA_PARTITION_ID.

A lock of this type, where an object with a TAB_FILE_ID and a TBSP_NAME

correspond to a data partition or index on the partitioned table, might be used to

control concurrency with the online backup utility.

Lock conversion

Changing the mode of a lock that is already held is called lock conversion.

Chapter 3. Factors affecting performance 177

Lock conversion occurs when a process accesses a data object on which it already

holds a lock, and the access mode requires a more restrictive lock than the one

already held. A process can hold only one lock on a data object at any given time,

although it can request a lock on the same data object many times indirectly

through a query.

Some lock modes apply only to tables, others only to rows, blocks, or data

partitions. For rows or blocks, conversion usually occurs if an X lock is needed and

an S or U lock is held.

IX and S locks are special cases with regard to lock conversion. Neither is

considered to be more restrictive than the other, so if one of these locks is held and

the other is required, the conversion results in a SIX (Share with Intent Exclusive)

lock. All other conversions result in the requested lock mode becoming the held

lock mode if the requested mode is more restrictive.

A dual conversion might also occur when a query updates a row. If the row is read

through index access and locked as S, the table that contains the row has a

covering intention lock. But if the lock type is IS instead of IX, and the row is

subsequently changed, the table lock is converted to an IX and the row lock is

converted to an X.

Lock conversion usually takes place implicitly as a query executes. The system

monitor elements lock_current_mode and lock_mode can provide information

about lock conversions occurring in your database.

Lock waits and timeouts

Lock timeout detection is a database manager feature that prevents applications

from waiting indefinitely for a lock to be released.

For example, a transaction might be waiting for a lock that is held by another

user’s application, but the other user has left the workstation without allowing the

application to commit the transaction, which would release the lock. To avoid

stalling an application in such a case, set the locktimeout database configuration

parameter to the maximum time that any application should have to wait to obtain

a lock.

Setting this parameter helps to avoid global deadlocks, especially in distributed

unit of work (DUOW) applications. If the time during which a lock request is

pending is greater than the locktimeout value, an error is returned to the

requesting application and its transaction is rolled back. For example, if APPL1

tries to acquire a lock that is already held by APPL2, APPL1 receives SQLCODE

-911 (SQLSTATE 40001) with reason code 68 if the timeout period expires. The

default value for locktimeout is -1, which means that lock timeout detection is

disabled.

For table, row, data partition, and multidimensional clustering (MDC) block locks,

an application can override the locktimeout value by changing the value of the

CURRENT LOCK TIMEOUT special register.

To generate a report file about lock timeouts, set the

DB2_CAPTURE_LOCKTIMEOUT registry variable to ON. The lock timeout

report includes information about the key applications that were involved in lock

contentions that resulted in lock timeouts, as well as details about the locks, such

as lock name, lock type, row ID, table space ID, and table ID. Note that this

178 Troubleshooting and Tuning Database Performance

variable is deprecated and might be removed in a future release because there are

new methods to collect lock timeout events using the CREATE EVENT MONITOR

FOR LOCKING statement.

To log more information about lock-request timeouts in the db2diag log files, set

the value of the diaglevel database manager configuration parameter to 4. The

logged information includes the name of the locked object, the lock mode, and the

application that is holding the lock. The current dynamic SQL or XQuery statement

or static package name might also be logged. A dynamic SQL or XQuery statement

is logged only at diaglevel 4.

You can get additional information about lock waits and lock timeouts from the

lock wait information system monitor elements, or from the

db.apps_waiting_locks health indicator.

Specifying a lock wait mode strategy

An session can specify a lock wait mode strategy, which is used when the session

requires a lock that it cannot obtain immediately.

The strategy indicates whether the session will:

v Return an SQLCODE and SQLSTATE when it cannot obtain a lock

v Wait indefinitely for a lock

v Wait a specified amount of time for a lock

v Use the value of the locktimeout database configuration parameter when

waiting for a lock

The lock wait mode strategy is specified through the SET CURRENT LOCK

TIMEOUT statement, which changes the value of the CURRENT LOCK TIMEOUT

special register. This special register specifies the number of seconds to wait for a

lock before returning an error indicating that a lock cannot be obtained.

Traditional locking approaches can result in applications blocking each other. This

happens when one application must wait for another application to release its lock.

Strategies to deal with the impact of such blocking usually provide a mechanism to

specify the maximum acceptable duration of the block. That is the amount of time

that an application will wait prior to returning without a lock. Previously, this was

only possible at the database level by changing the value of the locktimeout

database configuration parameter.

The value of locktimeout applies to all locks, but the lock types that are impacted

by the lock wait mode strategy include row, table, index key, and multidimensional

clustering (MDC) block locks.

Deadlocks

A deadlock is created when two applications lock data that is needed by the other,

resulting in a situation in which neither application can continue executing.

For example, in Figure 23 on page 180, there are two applications running

concurrently: Application A and Application B. The first transaction for Application

A is to update the first row in Table 1, and the second transaction is to update the

second row in Table 2. Application B updates the second row in Table 2 first, and

then the first row in Table 1. At time T1, Application A locks the first row in Table

1. At the same time, Application B locks the second row in Table 2. At time T2,

Application A requests a lock on the second row in Table 2. However, at the same

time, Application B tries to lock the first row in Table 1. Because Application A will

Chapter 3. Factors affecting performance 179

not release its lock on the first row in Table 1 until it can complete an update to

the second row in Table 2, and Application B will not release its lock on the second

row in Table 2 until it can complete an update to the first row in Table 1, a

deadlock occurs. The applications wait until one of them releases its lock on the

data.

 Because applications do not voluntarily release locks on data that they need, a

deadlock detector process is required to break deadlocks. The deadlock detector

monitors information about agents that are waiting on locks, and awakens at

intervals that are specified by the dlchktime database configuration parameter.

If it finds a deadlock, the deadlock detector arbitrarily selects one deadlocked

process as the victim process to roll back. The victim process is awakened, and

returns SQLCODE -911 (SQLSTATE 40001), with reason code 2, to the calling

application. The database manager rolls back uncommitted transactions from the

selected process automatically. When the rollback operation is complete, locks that

belonged to the victim process are released, and the other processes involved in

the deadlock can continue.

To ensure good performance, select an appropriate value for dlchktime. An

interval that is too short causes unnecessary overhead, and an interval that is too

long allows deadlocks to linger.

In a partitioned database environment, the value of dlchktime is applied only at

the catalog database partition. If a large number of deadlocks are occurring,

increase the value of dlchktime to account for lock waits and communication

waits.

To avoid deadlocks when applications read data that they intend to subsequently

update:

v Use the FOR UPDATE clause when performing a select operation. This clause

ensures that a U lock is set when a process attempts to read data, and it does

not allow row blocking.

v Use the WITH RR or WITH RS and USE AND KEEP UPDATE LOCKS clauses

in queries. These clauses ensure that a U lock is set when a process attempts to

read data, and they allow row blocking.

x

x

Deadlock concept
Table 1

Table 2

Row 1

Row 1

Row 2

Row 2

T : update row 1 of table 11
T : update row 2 of table 2
T : deadlock

2

3

Application A
T : update row 2 of table 21
T : update row 1 of table 1
T : deadlock

2

3

Application B

...

...

...

...

...

...

Figure 23. Deadlock between applications

180 Troubleshooting and Tuning Database Performance

In a federated system, the data that is requested by an application might not be

available because of a deadlock at the data source. When this happens, the DB2

server relies on the deadlock handling facilities at the data source. If deadlocks

occur across more than one data source, the DB2 server relies on data source

timeout mechanisms to break the deadlocks.

To log more information about deadlocks, set the value of the diaglevel database

manager configuration parameter to 4. The logged information includes the name

of the locked object, the lock mode, and the application that is holding the lock.

The current dynamic SQL and XQuery statement or static package name might

also be logged.

Query optimization

Query optimization is one of the factors that affect application performance.

Review this section for details about query optimization considerations that can

help you to maximize the performance of database applications.

The SQL and XQuery compiler process

The SQL and XQuery compiler performs several steps to produce an access plan

that can be executed.

The query graph model is an internal, in-memory database that represents the query

as it is processed through these steps, which are shown in Figure 24 on page 182

and described below. Note that some steps occur only for queries that will run

against a federated database.

Chapter 3. Factors affecting performance 181

1. Parse query

The SQL and XQuery compiler analyzes the query to validate the syntax. If any

syntax errors are detected, the query compiler stops processing and returns an

appropriate error to the application that submitted the query. When parsing is

complete, an internal representation of the query is created and stored in the

query graph model.

2. Check semantics

The compiler ensures that there are no inconsistencies among parts of the

statement. For example, the compiler verifies that a column specified for the

YEAR scalar function has been defined with a datetime data type.

Figure 24. Steps performed by the SQL and XQuery compiler

182 Troubleshooting and Tuning Database Performance

The compiler also adds behavioral semantics to the query graph model,

including the effects of referential constraints, table check constraints, triggers,

and views. The query graph model contains all of the semantics for the query,

including query blocks, subqueries, correlations, derived tables, expressions,

data types, data type conversions, code page conversions, and distribution

keys.

3. Rewrite query

The compiler uses the global semantics that are stored in the query graph

model to transform the query into a form that can be optimized more easily. It

then stores the result in the query graph model.

For example, the compiler might move a predicate, altering the level at which it

is applied, thereby potentially improving query performance. This type of

operation movement is called general predicate pushdown. In a partitioned

database environment, the following query operations are more

computationally intensive:

v Aggregation

v Redistribution of rows

v Correlated subqueries, which are subqueries that contain a reference to a

column in a table that is outside of the subquery

For some queries in a partitioned database environment, decorrelation might

occur as part of rewriting the query.

4. Pushdown analysis (federated databases only)

The major task in this step is to recommend to the optimizer whether an

operation can be remotely evaluated or pushed down at a data source. This type

of pushdown activity is specific to data source queries and represents an

extension to general predicate pushdown operations.

5. Optimize access plan

Using the query graph model as input, the optimizer portion of the compiler

generates many alternative execution plans for satisfying the query. To estimate

the execution cost of each of these plans, the optimizer uses statistics for tables,

indexes, columns and functions. It then chooses the plan with the smallest

estimated execution cost. The optimizer uses the query graph model to analyze

the query semantics and to obtain information about a wide variety of factors,

including indexes, base tables, derived tables, subqueries, correlations, and

recursion.

The optimizer can also consider another type of pushdown operation,

aggregation and sort, which can improve performance by pushing the evaluation

of these operations to the Data Management Services (DMS) component.

The optimizer also considers whether there are buffer pools of different sizes

when determining page size selection. It considers whether the database is

partitioned, or whether intraquery parallelism in a symmetric multiprocessor

(SMP) environment is an option. This information is used by the optimizer to

help select the best access plan for the query.

The output of this step is an access plan, and details about this access plan are

captured in the explain tables. The information that is used to generate an

access plan can be captured by an explain snapshot.

6. Remote SQL generation (federated databases only)

The final plan that is selected by the optimizer might consist of a set of steps

that operate on a remote data source. The remote SQL generation step creates

an efficient SQL statement for operations that are performed by each data

source, based on the SQL dialect at that data source.

7. Generate executable code

Chapter 3. Factors affecting performance 183

In the final step, the compiler uses the access plan and the query graph model

to create an executable access plan, or section, for the query. This code

generation step uses information from the query graph model to avoid

repetitive execution of expressions that need to be computed only once. This

type of optimization is possible for code page conversions and when host

variables are used.

To enable query optimization or reoptimization of static or dynamic SQL or

XQuery statements that have host variables, special registers, or parameter

markers, bind the package with the REOPT bind option. The access path for a

statement belonging to such a package, and containing host variables, special

registers, or parameter markers, will be optimized using the values of these

variables rather than default estimates that are chosen by the compiler. This

optimization takes place at query execution time when the values are available.

Information about access plans for static SQL and XQuery statements is stored

in the system catalog tables. When a package is executed, the database manager

uses the information that is stored in the system catalog to determine how to

access the data and provide results for the query. This information is used by

the db2expln tool.

Note: Execute the RUNSTATS command at appropriate intervals against tables

that change often. The optimizer needs up-to-date statistical information about

tables and their data to create the most efficient access plans. Rebind your

application to take advantage of updated statistics. If RUNSTATS is not executed,

or the optimizer assumes that this command was executed against empty or nearly

empty tables, it might use default values or attempt to derive certain statistics

based on the number of file pages that are used to store the table on disk. See also

“Automatic statistics collection”.

Query rewriting methods and examples

During the query rewrite stage, the query compiler transforms SQL and XQuery

statements into forms that can be optimized more easily; this can improve the

possible access plans. Rewriting queries is particularly important for very complex

queries, including those queries that have many subqueries or many joins. Query

generator tools often create these types of very complex queries.

To influence the number of query rewrite rules that are applied to an SQL or

XQuery statement, change the optimization class. To see some of the results of the

query rewrite process, use the explain facility or Visual Explain.

Queries might be rewritten in any one of the following ways:

v Operation merging

To construct a query so that it has the fewest number of operations, especially

SELECT operations, the SQL and XQuery compiler rewrites queries to merge

query operations. The following examples illustrate some of the operations that

can be merged:

– Example - View merges

A SELECT statement that uses views can restrict the join order of the table

and can also introduce redundant joining of tables. If the views are merged

during query rewrite, these restrictions can be lifted.

– Example - Subquery to join transforms

If a SELECT statement contains a subquery, selection of order processing of

the tables might be restricted.

– Example - Redundant join elimination

184 Troubleshooting and Tuning Database Performance

During query rewrite, redundant joins can be removed to simplify the

SELECT statement.

– Example - Shared aggregation

When a query uses different functions, rewriting can reduce the number of

calculations that need to be done.
v Operation movement

To construct a query with the minimum number of operations and predicates,

the compiler rewrites the query to move query operations. The following

examples illustrate some of the operations that can be moved:

– Example - DISTINCT elimination

During query rewrite, the optimizer can move the point at which the

DISTINCT operation is performed, to reduce the cost of this operation. In

some cases, the DISTINCT operation can be removed completely.

– Example - General predicate pushdown

During query rewrite, the optimizer can change the order in which predicates

are applied, so that more selective predicates are applied to the query as early

as possible.

– Example - Decorrelation

In a partitioned database environment, the movement of result sets among

database partitions is costly. Reducing the size of what must be broadcast to

other database partitions, or reducing the number of broadcasts, or both, is an

objective of the query rewriting process.
v Predicate translation

The SQL and XQuery compiler rewrites queries to translate existing predicates

into more optimal forms. The following examples illustrate some of the

predicates that might be translated:

– Example - Addition of implied predicates

During query rewrite, predicates can be added to a query to enable the

optimizer to consider additional table joins when selecting the best access

plan for the query.

– Example - OR to IN transformations

During query rewrite, an OR predicate can be translated into an IN predicate

for a more efficient access plan. The SQL and XQuery compiler can also

translate an IN predicate into an OR predicate if this transformation would

create a more efficient access plan.

Compiler rewrite example: View merges:

A SELECT statement that uses views can restrict the join order of the table and can

also introduce redundant joining of tables. If the views are merged during query

rewrite, these restrictions can be lifted.

 Suppose you have access to the following two views that are based on the

EMPLOYEE table: one showing employees that have a high level of education and

the other showing employees that earn more than $35,000 per year:

 create view emp_education (empno, firstnme, lastname, edlevel) as

 select empno, firstnme, lastname, edlevel

 from employee

 where edlevel > 17

Chapter 3. Factors affecting performance 185

create view emp_salaries (empno, firstname, lastname, salary) as

 select empno, firstnme, lastname, salary

 from employee

 where salary > 35000

The following user-written query lists those employees who have a high level of

education and who earn more than $35,000 per year:

 select e1.empno, e1.firstnme, e1.lastname, e1.edlevel, e2.salary

 from emp_education e1, emp_salaries e2

 where e1.empno = e2.empno

During query rewrite, these two views could be merged to create the following

query:

 select e1.empno, e1.firstnme, e1.lastname, e1.edlevel, e2.salary

 from employee e1, employee e2

 where

 e1.empno = e2.empno and

 e1.edlevel > 17 and

 e2.salary > 35000

By merging the SELECT statements from the two views with the user-written

SELECT statement, the optimizer can consider more choices when selecting an

access plan. In addition, if the two views that have been merged use the same base

table, additional rewriting might be performed.

Example - Subquery to join transformations

The SQL and XQuery compiler will take a query containing a subquery, such as:

 select empno, firstnme, lastname, phoneno

 from employee

 where workdept in

 (select deptno

 from department

 where deptname = ’OPERATIONS’)

and convert it to a join query of the form:

 select distinct empno, firstnme, lastname, phoneno

 from employee emp, department dept

 where

 emp.workdept = dept.deptno and

 dept.deptname = ’OPERATIONS’

A join is generally much more efficient to execute than a subquery.

Example - Redundant join elimination

Queries sometimes have unnecessary joins.

 select e1.empno, e1.firstnme, e1.lastname, e1.edlevel, e2.salary

 from employee e1,

 employee e2

 where e1.empno = e2.empno

 and e1.edlevel > 17

 and e2.salary > 35000

The SQL and XQuery compiler can eliminate the join and simplify the query to:

 select empno, firstnme, lastname, edlevel, salary

 from employee

 where

 edlevel > 17 and

 salary > 35000

186 Troubleshooting and Tuning Database Performance

The following example assumes that a referential constraint exists between the

EMPLOYEE and DEPARTMENT tables on the department number. First, a view is

created.

 create view peplview as

 select firstnme, lastname, salary, deptno, deptname, mgrno

 from employee e department d

 where e.workdept = d.deptno

Then a query such as the following:

 select lastname, salary

 from peplview

becomes:

 select lastname, salary

 from employee

 where workdept not null

Note that in this situation, even if you know that the query can be rewritten, you

might not be able to do so because you do not have access to the underlying

tables. You might only have access to the view (shown above). Therefore, this type

of optimization has to be performed by the database manager.

Redundancy in referential integrity joins likely occurs when:

v Views are defined with joins

v Queries are automatically generated

Example - Shared aggregation

Using multiple functions within a query can generate several calculations that take

time. Reducing the number of required calculations improves the plan. The

compiler takes a query that uses multiple functions, such as the following:

 select sum(salary+bonus+comm) as osum,

 avg(salary+bonus+comm) as oavg,

 count(*) as ocount

 from employee

and transforms it:

 select osum, osum/ocount ocount

 from (

 select sum(salary+bonus+comm) as osum,

 count(*) as ocount

 from employee

) as shared_agg

This rewrite halves the required number of sums and counts.

Compiler rewrite example: DISTINCT elimination:

During query rewrite, the optimizer can move the point at which the DISTINCT

operation is performed, to reduce the cost of this operation. In some cases, the

DISTINCT operation can be removed completely.

 For example, if the EMPNO column of the EMPLOYEE table were defined as the

primary key, the following query:

 select distinct empno, firstnme, lastname

 from employee

Chapter 3. Factors affecting performance 187

could be rewritten by removing the DISTINCT clause:

 select empno, firstnme, lastname

 from employee

In this example, because the primary key is being selected, the compiler knows

that each returned row is unique. In this case, the DISTINCT keyword is

redundant. If the query is not rewritten, the optimizer must build a plan with

necessary processing (such as a sort) to ensure that the column values are unique.

Example - General predicate pushdown

Altering the level at which a predicate is normally applied can result in improved

performance. For example, the following view provides a list of all employees in

department D11:

 create view d11_employee

 (empno, firstnme, lastname, phoneno, salary, bonus, comm) as

 select empno, firstnme, lastname, phoneno, salary, bonus, comm

 from employee

 where workdept = ’D11’

The following query against this view is not as efficient as it could be:

 select firstnme, phoneno

 from d11_employee

 where lastname = ’BROWN’

During query rewrite, the compiler pushes the lastname = ’BROWN’ predicate down

into the D11_EMPLOYEE view. This allows the predicate to be applied sooner and

potentially more efficiently. The actual query that could be executed in this

example is as follows:

 select firstnme, phoneno

 from employee

 where

 lastname = ’BROWN’ and

 workdept = ’D11’

Predicate pushdown is not limited to views. Other situations in which predicates

can be pushed down include UNION, GROUP BY, and derived tables (nested table

expressions or common table expressions).

Example - Decorrelation

In a partitioned database environment, the compiler can rewrite the following

query, which is designed to find all of the employees who are working on

programming projects and who are underpaid.

 select p.projno, e.empno, e.lastname, e.firstname,

 e.salary+e.bonus+e.comm as compensation

 from employee e, project p

 where

 p.empno = e.empno and

 p.projname like ’%PROGRAMMING%’ and

 e.salary+e.bonus+e.comm <

 (select avg(e1.salary+e1.bonus+e1.comm)

 from employee e1, project p1

 where

 p1.projname like ’%PROGRAMMING%’ and

 p1.projno = a.projno and

 e1.empno = p1.empno)

188 Troubleshooting and Tuning Database Performance

Because this query is correlated, and because both PROJECT and EMPLOYEE are

unlikely to be partitioned on PROJNO, the broadcasting of each project to each

database partition is possible. In addition, the subquery would have to be

evaluated many times.

The compiler can rewrite the query as follows:

v Determine the distinct list of employees working on programming projects and

call it DIST_PROJS. It must be distinct to ensure that aggregation is done only

once for each project:

 with dist_projs(projno, empno) as

 (select distinct projno, empno

 from project p1

 where p1.projname like ’%PROGRAMMING%’)

v Join DIST_PROJS with the EMPLOYEE table to get the average compensation

per project, AVG_PER_PROJ:

 avg_per_proj(projno, avg_comp) as

 (select p2.projno, avg(e1.salary+e1.bonus+e1.comm)

 from employee e1, dist_projs p2

 where e1.empno = p2.empno

 group by p2.projno)

v The rewritten query is:

 select p.projno, e.empno, e.lastname, e.firstname,

 e.salary+e.bonus+e.comm as compensation

 from project p, employee e, avg_per_prog a

 where

 p.empno = e.empno and

 p.projname like ’%PROGRAMMING%’ and

 p.projno = a.projno and

 e.salary+e.bonus+e.comm < a.avg_comp

This query computes the avg_comp per project (avg_per_proj). The result can then

be broadcast to all database partitions that contain the EMPLOYEE table.

Compiler rewrite example: Predicate pushdown for combined SQL/XQuery

statements:

One fundamental technique for the optimization of relational SQL queries is to

move predicates in the WHERE clause of an enclosing query block into an

enclosed lower query block (for example, a view), thereby enabling early data

filtering and potentially better index usage.

 This is even more important in partitioned database environments, because early

filtering potentially reduces the amount of data that must be shipped between

database partitions.

Similar techniques can be used to move predicates or XPath filters inside of an

XQuery. The basic strategy is always to move filtering expressions as close to the

data source as possible. This optimization technique is called predicate pushdown in

SQL and extraction pushdown (for filters and XPath extractions) in XQuery.

Because the data models employed by SQL and XQuery are different, you must

move predicates, filters, or extractions across the boundary between the two

languages. Data mapping and casting rules have to be considered when

transforming an SQL predicate into a semantically equivalent filter and pushing it

down into the XPath extraction. The following examples address the pushdown of

relation predicates into XQuery query blocks.

Chapter 3. Factors affecting performance 189

Consider the following two XML documents containing customer information:

Document 1 Document 2

<customer> <customer>

 <name>John</name> <name>Michael</name>

 <lastname>Doe</lastname> <lastname>Miller </lastname>

 <date_of_birth> <date_of_birth>

 1976-10-10 1975-01-01

 </date_of_birth> </date_of_birth>

 <address> <address>

 <zip>95141.0</zip> <zip>95142.0</zip>

 </address> </address>

<volume>80000.0</volume> <volume>100000.00</volume>

</customer> </customer>

<customer> <customer>

 <name>Jane</name> <name>Michaela</name>

 <lastname>Doe</lastname> <lastname>Miller</lastname>

 <date_of_birth> <date_of_birth>

 1975-01-01 1980-12-23

 </date_of_birth> </date_of_birth>

 <address> <address>

 <zip>95141.4</zip> <zip>95140.5</zip>

 </address> </address>

<volume>50000.00</volume> <volume>100000</volume>

</customer> </customer>

Example - Pushing integer predicates

Consider the following query:

 select temp.name, temp.zip

 from xmltable(’db2-fn:xmlcolumn("T.XMLDOC")’

 columns name varchar(20) path ’customer/name’,

 zip integer path ’customer/zip’

) as temp

 where zip = 95141

To use possible indexes on T.XMLDOC and to filter unwanted persons early on,

the zip = 95141 predicate will be internally converted into the following

equivalent XPATH filtering expression:

T.XMLCOL/customer/zip[. >= 95141.0 and . < 95142.0]

Because schema information for XML fragments is not used by the compiler, it

cannot be assumed that ZIP contains integers only. It is possible that there are

other numeric values with a fractional part and a corresponding double XML index

on this specific XPath extraction. The XML2SQL cast would handle this

transformation by truncating the fractional part before casting the value to

INTEGER. This behavior must be reflected in the pushdown procedure, and the

predicate must be changed to remain semantically correct.

Example - Pushing VARCHAR(n) predicates

Consider the following query:

 select temp.name, temp.lastname

 from xmltable(’db2-fn:xmlcolumn("T.XMLDOC")’

 columns name varchar(20) path ’customer/name’,

 lastname varchar(20) path ’customer/lastname’

) as temp

 where lastname = ’Miller’

190 Troubleshooting and Tuning Database Performance

To use possible indexes on T.XMLDOC and to filter unwanted persons early on,

the lastname = ’Miller’ predicate will be internally converted into the equivalent

XPATH filtering expression:

T.XMLCOL/customer/lastname[. > rtrim("Miller") and . < blank_padd("Miller",

 max(20,length("Miller"))]

Trailing blanks are treated differently in SQL than in XPath or XQuery. The original

SQL predicate will not distinguish between the two customers whose last name is

“Miller”, even if one of them (Michael) has a trailing blank. Consequently, both

customers are returned, which would not be the case if an unchanged predicate

were pushed down.

The solution is to transform the predicate into a range filter.

v The first boundary is created by truncating all trailing blanks from the

comparison value, using the RTRIM() function.

v The second boundary must be greater than or equal to all possible “Miller”

strings that contain trailing blanks. The original string is padded with blanks to

the maximum column length, or to the length of the comparison string, if that is

longer.

Example - Pushing DECIMAL(x,y) predicates

Consider the following query:

 select temp.name, temp.volume

 from xmltable(’db2-fn:xmlcolumn("T.XMLDOC")’

 columns name varchar(20) path ’customer/name’,

 volume decimal(10,2) path ’customer/volume’

) as temp

 where volume = 100000.00

To use possible double indexes on T.XMLDOC and to filter unwanted persons

early on, the volume = 100000.00 predicate will be internally converted into the

following equivalent XPATH filtering expression:

T.XMLCOL/customer/volume[.=100000.00]

The predicate does not have to be transformed into a range filter, because casting

restrictions force XML values to have the same precision and length of the

fractional part as the target SQL type. Any violation of this constraint returns an

error. Precision is not reduced when DOUBLE values are cast to DECIMAL(x,y).

Rounding or truncation of the comparative values is not necessary.

Compiler rewrite example: Implied predicates:

During query rewrite, predicates can be added to a query to enable the optimizer

to consider additional table joins when selecting the best access plan for the query.

 The following query returns a list of the managers whose departments report to

department E01, and the projects for which those managers are responsible:

 select dept.deptname dept.mgrno, emp.lastname, proj.projname

 from department dept, employee emp, project proj

 where

 dept.admrdept = ’E01’ and

 dept.mgrno = emp.empno and

 emp.empno = proj.respemp

This query can be rewritten with the following implied predicate, known as a

predicate for transitive closure:

Chapter 3. Factors affecting performance 191

dept.mgrno = proj.respemp

The optimizer can now consider additional joins when it tries to select the best

access plan for the query.

During the query rewrite stage, additional local predicates are derived on the basis

of the transitivity that is implied by equality predicates. For example, the following

query returns the names of the departments whose department number is greater

than E00, and the employees who work in those departments.

 select empno, lastname, firstname, deptno, deptname

 from employee emp, department dept

 where

 emp.workdept = dept.deptno and

 dept.deptno > ’E00’

This query can be rewritten with the following implied predicate:

 emp.workdept > ’E00’

This rewrite reduces the number of rows that need to be joined.

Example - OR to IN transformations

Suppose that an OR clause connects two or more simple equality predicates on the

same column, as in the following example:

 select *

 from employee

 where

 deptno = ’D11’ or

 deptno = ’D21’ or

 deptno = ’E21’

If there is no index on the DEPTNO column, using an IN predicate in place of OR

causes the query to be processed more efficiently:

 select *

 from employee

 where deptno in (’D11’, ’D21’, ’E21’)

In some cases, the database manager might convert an IN predicate into a set of

OR clauses so that index ORing can be performed.

Predicate typology and access plans

A predicate is an element of a search condition that expresses or implies a

comparison operation. Predicates, which usually appear in the WHERE clause of a

query, are used to reduce the scope of the result set that is returned by the query.

Predicates can be grouped into four categories, depending on how and when they

are used in the evaluation process. These categories are listed below, in order of

best to worst performance:

1. Range-delimiting predicates

2. Index SARGable predicates

3. Data SARGable predicates

4. Residual predicates

A SARGable term is a term that can be used as a search argument.

192 Troubleshooting and Tuning Database Performance

Table 51 summarizes the characteristics of these predicate categories.

 Table 51. Summary of Predicate Type Characteristics

Characteristic Predicate Type

Range-
delimiting

Index-
SARGable

Data-SARGable Residual

Reduce index

I/O

Yes No No No

Reduce data

page I/O

Yes Yes No No

Reduce the

number of rows

that are passed

internally

Yes Yes Yes No

Reduce the

number of

qualifying rows

Yes Yes Yes Yes

Range-delimiting and index-SARGable predicates

Range-delimiting predicates limit the scope of an index scan. They provide start

and stop key values for the index search. Index-SARGable predicates cannot limit

the scope of a search, but can be evaluated from the index, because the columns

that are referenced in the predicate are part of the index key. For example, consider

the following index:

 INDEX IX1: NAME ASC,

 DEPT ASC,

 MGR DESC,

 SALARY DESC,

 YEARS ASC

Consider also a query that contains the following WHERE clause:

 where

 name = :hv1 and

 dept = :hv2 and

 years > :hv5

The first two predicates (name = :hv1 and dept = :hv2) are range-delimiting

predicates, and years > :hv5 is an index-SARGable predicate.

The optimizer uses index data instead of reading the base table when it evaluates

these predicates. Index-SARGable predicates reduce the number of rows that need

to be read from the table, but they do not affect the number of index pages that are

accessed.

Data SARGable predicates

Predicates that cannot be evaluated by the index manager, but that can be

evaluated by Data Management Services (DMS), are called data-SARGable

predicates. These predicates usually require access to individual rows in a table. If

required, DMS retrieves the columns that are needed to evaluate a predicate, as

well as any other columns that are needed for the SELECT list, but that could not

be obtained from the index.

For example, consider the following index that is defined on the PROJECT table:

Chapter 3. Factors affecting performance 193

INDEX IX0: PROJNO ASC

In the following query, deptno = ’D11’ is considered to be a data-SARGable

predicate.

 select projno, projname, respemp

 from project

 where deptno = ’D11’

 order by projno

Residual predicates

Residual predicates are more expensive, in terms of I/O cost, than accessing a

table. Such predicates might:

v Use correlated subqueries

v Use quantified subqueries, which contain ANY, ALL, SOME, or IN clauses

v Read LONG VARCHAR or LOB data, which is stored in a file that is separate

from the table

Such predicates are evaluated by Relational Data Services (RDS).

Some predicates that are applied only to an index must be reapplied when the data

page is accessed. For example, access plans that use index ORing or index ANDing

always reapply the predicates as residual predicates when the data page is

accessed.

Federated database query-compiler phases

Federated database pushdown analysis:

For queries that are to run against federated databases, the optimizer performs

pushdown analysis to determine whether a particular operation can be performed

at a remote data source.

 An operation might be a function, such as a relational operator, or a system or user

function; or it might be an SQL operator, such as, for example, ORDER BY or

GROUP BY.

Be sure to update local catalog information regularly, so that the DB2 query

compiler has access to accurate information about SQL support at remote data

sources. Use DB2 data definition language (DDL) statements (such as CREATE

FUNCTION MAPPING or ALTER SERVER, for example) to update the catalog.

If functions cannot be pushed down to the remote data source, they can

significantly impact query performance. Consider the effect of forcing a selective

predicate to be evaluated locally instead of at the data source. Such evaluation

could require the DB2 server to retrieve the entire table from the remote data

source and then filter it locally against the predicate. Network constraints and a

large table could cause performance to suffer.

Operators that are not pushed down can also significantly affect query

performance. For example, having a GROUP BY operator aggregate remote data

locally could also require the DB2 server to retrieve an entire table from the remote

data source.

For example, consider nickname N1, which references the data source table

EMPLOYEE in a DB2 for z/OS data source. The table has 10 000 rows, one of the

194 Troubleshooting and Tuning Database Performance

columns contains the last names of employees, and one of the columns contains

salaries. The optimizer has several options when processing the following

statement, depending on whether the local and remote collating sequences are the

same:

 select lastname, count(*) from n1

 where

 lastname > ’B’ and

 salary > 50000

 group by lastname

v If the collating sequences are the same, the query predicates can probably be

pushed down to DB2 for z/OS. Filtering and grouping results at the data source

is usually more efficient than copying the entire table and performing the

operations locally. For this query, the predicates and the GROUP BY operation

can take place at the data source.

v If the collating sequences are not the same, both predicates cannot be evaluated

at the data source. However, the optimizer might decide to push down the

salary > 50000 predicate. The range comparison must still be done locally.

v If the collating sequences are the same, and the optimizer knows that the local

DB2 server is very fast, the optimizer might decide that performing the GROUP

BY operation locally is the least expensive approach. The predicate is evaluated

at the data source. This is an example of pushdown analysis combined with

global optimization.

In general, the goal is to ensure that the optimizer evaluates functions and

operators at remote data sources. Many factors affect whether a function or an SQL

operator can be evaluated at a remote data source, including the following:

v Server characteristics

v Nickname characteristics

v Query characteristics

Server characteristics that affect pushdown opportunities

Certain data source-specific factors can affect pushdown opportunities. In general,

these factors exist because of the rich SQL dialect that is supported by the DB2

product. The DB2 data server can compensate for the lack of function that is

available at another data server, but doing so might require that the operation take

place at the DB2 server.

v SQL capabilities

Each data source supports a variation of the SQL dialect and different levels of

functionality. For example, most data sources support the GROUP BY operator,

but some limit the number of items on the GROUP BY list, or have restrictions

on whether an expression is allowed on the GROUP BY list. If there is a

restriction at the remote data source, the DB2 server might have to perform a

GROUP BY operation locally.

v SQL restrictions

Each data source might have different SQL restrictions. For example, some data

sources require parameter markers to bind values to remote SQL statements.

Therefore, parameter marker restrictions must be checked to ensure that each

data source can support such a bind mechanism. If the DB2 server cannot

determine a good method to bind a value for a function, this function must be

evaluated locally.

v SQL limits

Chapter 3. Factors affecting performance 195

Although the DB2 server might allow the use of larger integers than those that

are permitted on remote data sources, values that exceed remote limits cannot be

embedded in statements that are sent to data sources, and any impacted

functions or operators must be evaluated locally.

v Server specifics

Several factors fall into this category. For example, if null values at a data source

are sorted differently from how the DB2 server would sort them, ORDER BY

operations on a nullable expression cannot be remotely evaluated.

v Collating sequence

Retrieving data for local sorts and comparisons usually decreases performance.

If you configure a federated database to use the same collating sequence that a

data source uses and then set the COLLATING_SEQUENCE server option to Y,

the optimizer can consider pushing down many query operations. The following

operations might be pushed down if collating sequences are the same:

– Comparisons of character or numeric data

– Character range comparison predicates

– Sorts

You might get unusual results, however, if the weighting of null characters is

different between the federated database and the data source. Comparisons

might return unexpected results if you submit statements to a case-insensitive

data source. The weights that are assigned to the characters “I” and “i” in a

case-insensitive data source are the same. The DB2 server, by default, is case

sensitive and assigns different weights to these characters.

To improve performance, the federated server allows sorts and comparisons to

take place at data sources. For example, in DB2 for z/OS, sorts that are defined

by ORDER BY clauses are implemented by a collating sequence that is based on

an EBCDIC code page. To use the federated server to retrieve DB2 for z/OS data

that is sorted in accordance with ORDER BY clauses, configure the federated

database so that it uses a predefined collating sequence based on the EBCDIC

code page.

If the collating sequences of the federated database and the data source differ,

the DB2 server retrieves the data to the federated database. Because users expect

to see query results ordered by the collating sequence that is defined for the

federated server, ordering the data locally ensures that this expectation is

fulfilled. Submit your query in passthrough mode, or define the query in a data

source view if you need to see the data ordered in the collating sequence of the

data source.

v Server options

Several server options can affect pushdown opportunities, including

COLLATING_SEQUENCE, VARCHAR_NO_TRAILING_BLANKS, and

PUSHDOWN.

v DB2 type mapping and function mapping factors

The default local data type mappings on the DB2 server are designed to provide

sufficient buffer space for each data source data type, which avoids loss of data.

You can customize the type mapping for a specific data source to suit specific

applications. For example, if you are accessing an Oracle data source column

with a DATE data type, which by default is mapped to the DB2 TIMESTAMP

data type, you might change the local data type to the DB2 DATE data type.

In the following three cases, the DB2 server can compensate for functions that a

data source does not support:

v The function does not exist at the remote data source.

196 Troubleshooting and Tuning Database Performance

v The function exists, but the characteristics of the operand violate function

restrictions. The IS NULL relational operator is an example of this situation.

Most data sources support it, but some might have restrictions, such as allowing

a column name to appear only on the left hand side of the IS NULL operator.

v The function might return a different result if it is evaluated remotely. An

example of this situation is the greater than (’>’) operator. For data sources with

different collating sequences, the greater than operator might return different

results if it is evaluated locally by the DB2 server.

Nickname characteristics that affect pushdown opportunities

The following nickname-specific factors can affect pushdown opportunities.

v Local data type of a nickname column

Ensure that the local data type of a column does not prevent a predicate from

being evaluated at the data source. Use the default data type mappings to avoid

possible overflow. However, a joining predicate between two columns of

different lengths might not be considered at a data source whose joining column

is shorter, depending on how DB2 binds the longer column. This situation can

affect the number of possibilities that the DB2 optimizer can evaluate in a

joining sequence. For example, Oracle data source columns that were created

using the INTEGER or INT data type are given the type NUMBER(38). A

nickname column for this Oracle data type is given the local data type FLOAT,

because the range of a DB2 integer is from 2**31 to (-2**31)-1, which is roughly

equivalent to NUMBER(9). In this case, joins between a DB2 integer column and

an Oracle integer column cannot take place at the DB2 data source (because of

the shorter joining column); however, if the domain of this Oracle integer

column can be accommodated by the DB2 INTEGER data type, change its local

data type with the ALTER NICKNAME statement so that the join can take place

at the DB2 data source.

v Column options

Use the ALTER NICKNAME statement to add or change column options for

nicknames.

Use the VARCHAR_NO_TRAILING_BLANKS option to identify a column that

contains no trailing blanks. The compiler pushdown analysis step will then take

this information into account when checking all operations that are performed

on such columns. The DB2 server might generate a different but equivalent form

of a predicate to be used in the SQL statement that is sent to a data source. You

might see a different predicate being evaluated against the data source, but the

net result should be equivalent.

Use the NUMERIC_STRING option to indicate whether the values in that

column are always numbers without trailing blanks.

Chapter 3. Factors affecting performance 197

Table 52 describes these options.

 Table 52. Column Options and Their Settings

Option Valid Settings Default

Setting

NUMERIC_STRING

Y: Specifies that this column contains only strings of

numeric data. It does not contain blank characters that

could interfere with sorting of the column data. This

option is useful when the collating sequence of a data

source is different from that of the DB2 server. Columns

that are marked with this option are not excluded from

local (data source) evaluation because of a different

collating sequence. If the column contains only numeric

strings that are followed by trailing blank characters, do

not specify Y.

N: Specifies that this column is not limited to strings of

numeric data.

N

VARCHAR_NO_

TRAILING_BLANKS

Y: Specifies that this data source uses non-blank-padded

VARCHAR comparison semantics, similar to the DB2

data server. For variable-length character strings that

contain no trailing blank characters, non-blank-padded

comparison semantics of some data servers return the

same results as DB2 comparison semantics. Specify this

value if you are certain that all VARCHAR table or

view columns at a data source contain no trailing blank

characters

N: Specifies that this data source does not use

non-blank-padded VARCHAR comparison semantics,

similar to the DB2 data server.

N

Query characteristics that affect pushdown opportunities

A query can reference an SQL operator that might involve nicknames from

multiple data sources. The operation must take place on the DB2 server to combine

the results from two referenced data sources that use one operator, such as a set

operator (for example, UNION). The operator cannot be evaluated at a remote data

source directly.

Guidelines for determining where a federated query is evaluated:

The DB2 explain utility, which you can start by invoking the db2expln command,

shows where queries are evaluated. The execution location for each operator is

included in the command output.

v If a query is pushed down, you should see a RETURN operator, which is a

standard DB2 operator. If a SELECT statement retrieves data from a nickname,

you also see a SHIP operator, which is unique to federated database operations:

it changes the server property of the data flow and separates local operators

from remote operators. The SELECT statement is generated using the SQL

dialect that is supported by the data source.

v If an INSERT, UPDATE, or DELETE statement can be entirely pushed down to

the remote data source, you might not see a SHIP operator in the access plan.

All remotely executed INSERT, UPDATE, or DELETE statements are shown for

198 Troubleshooting and Tuning Database Performance

the RETURN operator. However, if a query cannot be pushed down in its

entirety, the SHIP operator shows which operations were performed remotely.

Understanding why a query is evaluated at a data source instead of by the DB2

server

Consider the following key questions when you investigate ways to increase

pushdown opportunities:

v Why isn’t this predicate being evaluated remotely?

This question arises when a very selective predicate could be used to filter rows

and reduce network traffic. Remote predicate evaluation also affects whether a

join between two tables of the same data source can be evaluated remotely.

Areas to examine include:

– Subquery predicates. Does this predicate contain a subquery that pertains to

another data source? Does this predicate contain a subquery that involves an

SQL operator that is not supported by this data source? Not all data sources

support set operators in a subquery predicate.

– Predicate functions. Does this predicate contain a function that cannot be

evaluated by this remote data source? Relational operators are classified as

functions.

– Predicate bind requirements. If it is remotely evaluated, does this predicate

require bind-in of some value? Would that violate SQL restrictions at this data

source?

– Global optimization. The optimizer might have decided that local processing

is more cost effective.
v Why isn’t the GROUP BY operator evaluated remotely?

Areas to examine include:

– Is the input to the GROUP BY operator evaluated remotely? If the answer is

no, examine the input.

– Does the data source have any restrictions on this operator? Examples

include:

- A limited number of GROUP BY items

- Limited byte counts for combined GROUP BY items

- Column specifications only on the GROUP BY list
– Does the data source support this SQL operator?

– Global optimization. The optimizer might have decided that local processing

is more cost effective.

– Does the GROUP BY clause contain a character expression? If it does, verify

that the remote data source and the DB2 server have the same case sensitivity.
v Why isn’t the set operator evaluated remotely?

Areas to examine include:

– Are both of its operands evaluated in their entirety at the same remote data

source? If the answer is no, and it should be yes, examine each operand.

– Does the data source have any restrictions on this set operator? For example,

are large objects (LOBs) or LONG field data valid input for this specific set

operator?
v Why isn’t the ORDER BY operation evaluated remotely?

Areas to examine include:

– Is the input to the ORDER BY operation evaluated remotely? If the answer is

no, examine the input.

Chapter 3. Factors affecting performance 199

– Does the ORDER BY clause contain a character expression? If yes, do the

remote data source and the DB2 server have different collating sequences or

case sensitivities?

– Does the remote data source have any restrictions on this operator? For

example, is there a limit to the number of ORDER BY items? Does the remote

data source restrict column specification to the ORDER BY list?

Remote SQL generation and global optimization in federated databases:

For a federated database query that uses relational nicknames, the access strategy

might involve breaking down the original query into a set of remote query units

and then combining the results. Such remote SQL generation helps to produce a

globally optimized access strategy for a query.

 The optimizer uses the output of pushdown analysis to decide whether each

operation is to be evaluated locally at the DB2 server or remotely at a data source.

It bases its decision on the output of its cost model, which includes not only the

cost of evaluating the operation, but also the cost of shipping the data and

messages between the DB2 server and the remote data source.

Although the goal is to produce an optimized query, the following factors

significantly affect global optimization, and thereby query performance.

v Server characteristics

v Nickname characteristics

Server options that affect global optimization

The following data source server options can affect global optimization:

v Relative ratio of processing speed

Use the CPU_RATIO server option to specify how fast or slow the processing

speed at the data source should be relative to the processing speed at the DB2

server. A low ratio indicates that the processing speed at the data source is faster

than the processing speed at the DB2 server; in this case, the DB2 optimizer is

more likely to consider pushing processor-intensive operations down to the data

source.

v Relative ratio of I/O speed

Use the IO_RATIO server option to specify how fast or slow the system I/O

speed at the data source should be relative to the system I/O speed at the DB2

server. A low ratio indicates that the I/O speed at the data source is faster than

the I/O speed at the DB2 server; in this case, the DB2 optimizer is more likely to

consider pushing I/O-intensive operations down to the data source.

v Communication rate between the DB2 server and the data source

Use the COMM_RATE server option to specify network capacity. Low rates,

which indicate slow network communication between the DB2 server and a data

source, encourage the DB2 optimizer to reduce the number of messages that are

sent to or from this data source. If the rate is set to 0, the optimizer creates an

access plan that requires minimal network traffic.

v Data source collating sequence

Use the COLLATING_SEQUENCE server option to specify whether a data

source collating sequence matches the local DB2 database collating sequence. If

this option is not set to Y, the DB2 optimizer considers any data that is retrieved

from this data source as being unordered.

v Remote plan hints

200 Troubleshooting and Tuning Database Performance

Use the PLAN_HINTS server option to specify that plan hints should be

generated or used at a data source. By default, the DB2 server does not send any

plan hints to the data source.

Plan hints are statement fragments that provide extra information to the

optimizer at a data source. For some queries, this information can improve

performance. The plan hints can help the optimizer at a data source to decide

whether to use an index, which index to use, or which table join sequence to

use.

If plan hints are enabled, the query that is sent to the data source contains

additional information. For example, a statement with plan hints that is sent to

an Oracle optimizer might look like this:

 select /*+ INDEX (table1, t1index)*/

 col1

 from table1

The plan hint is the string: /*+ INDEX (table1, t1index)*/

v Information in the DB2 optimizer knowledge base

The DB2 server has an optimizer knowledge base that contains data about native

data sources. The DB2 optimizer does not generate remote access plans that

cannot be generated by specific database management systems (DBMSs). In

other words, the DB2 server avoids generating plans that optimizers at remote

data sources cannot understand or accept.

Nickname characteristics that affect global optimization

The following nickname-specific factors can affect global optimization.

v Index considerations

To optimize queries, the DB2 server can use information about indexes at data

sources. For this reason, it is important that the available index information be

current. Index information for a nickname is initially acquired when the

nickname is created. Index information is not collected for view nicknames.

v Creating index specifications on nicknames

You can create an index specification for a nickname. Index specifications build

an index definition (not an actual index) in the catalog for the DB2 optimizer to

use. Use the CREATE INDEX SPECIFICATION ONLY statement to create index

specifications. The syntax for creating an index specification on a nickname is

similar to the syntax for creating an index on a local table. Consider creating

index specifications in the following circumstances:

– When the DB2 server cannot retrieve any index information from a data

source during nickname creation

– When you want an index for a view nickname

– When you want to encourage the DB2 optimizer to use a specific nickname as

the inner table of a nested-loop join. You can create an index on the joining

column, if none exists.

Before you issue CREATE INDEX statements against a nickname for a view,

consider whether you need one. If the view is a simple SELECT on a table with

an index, creating local indexes on the nickname to match the indexes on the

table at the data source can significantly improve query performance. However,

if indexes are created locally over a view that is not a simple SELECT statement,

such as a view that is created by joining two tables, query performance might

suffer. For example, if you create an index over a view that is a join between

two tables, the optimizer might choose that view as the inner element in a

nested-loop join. The query will perform poorly, because the join is evaluated

Chapter 3. Factors affecting performance 201

several times. An alternate approach is to create nicknames for each of the tables

that are referenced in the data source view, and then to create a local view at the

DB2 server that references both nicknames.

v Catalog statistics considerations

System catalog statistics describe the overall size of nicknames and the range of

values in associated columns. The optimizer uses these statistics when it

calculates the least-cost path for processing queries that contain nicknames.

Nickname statistics are stored in the same catalog views as table statistics.

Although the DB2 server can retrieve the statistical data that is stored at a data

source, it cannot automatically detect updates to that data. Furthermore, the DB2

server cannot automatically detect changes to the definition of objects at a data

source. If the statistical data for—or the definition of—an object has changed,

you can:

– Run the equivalent of a RUNSTATS command at the data source, drop the

current nickname, and then recreate it. Use this approach if an object’s

definition has changed.

– Manually update the statistics in the SYSSTAT.TABLES catalog view. This

approach requires fewer steps, but it does not work if an object’s definition

has changed.

Global analysis of federated database queries:

The DB2 explain utility, which you can start by invoking the db2expln command,

shows the access plan that is generated by the remote optimizer for those data

sources that are supported by the remote explain function. The execution location

for each operator is included in the command output.

 You can also find the remote SQL statement that was generated for each data

source in the SHIP or RETURN operator, depending on the type of query. By

examining the details for each operator, you can see the number of rows that were

estimated by the DB2 optimizer as input to and output from each operator.

Understanding DB2 optimization decisions

Consider the following key questions when you investigate ways to increase

performance:

v Why isn’t a join between two nicknames of the same data source being

evaluated remotely?

Areas to examine include:

– Join operations. Can the remote data source support them?

– Join predicates. Can the join predicate be evaluated at the remote data source?

If the answer is no, examine the join predicate.
v Why isn’t the GROUP BY operator being evaluated remotely?

Examine the operator syntax, and verify that the operator can be evaluated at

the remote data source.

v Why is the statement not being completely evaluated by the remote data source?

The DB2 optimizer performs cost-based optimization. Even if pushdown analysis

indicates that every operator can be evaluated at the remote data source, the

optimizer relies on its cost estimate to generate a global optimization plan. There

are a great many factors that can contribute to that plan. For example, even

though the remote data source can process every operation in the original query,

its processing speed might be much slower than the processing speed of the DB2

server, and it might turn out to be more beneficial to perform the operations at

202 Troubleshooting and Tuning Database Performance

the DB2 server instead. If results are not satisfactory, verify your server statistics

in the SYSCAT.SERVEROPTIONS catalog view.

v Why does a plan that is generated by the optimizer, and that is completely

evaluated at a remote data source, perform much more poorly than the original

query executed directly at the remote data source?

Areas to examine include:

– The remote SQL statement that is generated by the DB2 optimizer. Ensure

that this statement is identical to the original query. Check for changes in

predicate order. A good query optimizer should not be sensitive to the order

of predicates in a query. The optimizer at the remote data source might

generate a different plan, based on the order of input predicates. Consider

either modifying the order of predicates in the input to the DB2 server, or

contacting the service organization of the remote data source for assistance.

You can also check for predicate replacements. A good query optimizer

should not be sensitive to equivalent predicate replacements. The optimizer at

the remote data source might generate a different plan, based on the input

predicates. For example, some optimizers cannot generate transitive closure

statements for predicates.

– Additional functions. Does the remote SQL statement contain functions that

are not present in the original query? Some of these functions might be used

to convert data types; be sure to verify that they are necessary.

Data-access methods

When it compiles an SQL or XQuery statement, the query optimizer estimates the

execution cost of different ways of satisfying the query.

Based on these estimates, the optimizer selects an optimal access plan. An access

plan specifies the order of operations that are required to resolve an SQL or

XQuery statement. When an application program is bound, a package is created.

This package contains access plans for all of the static SQL and XQuery statements

in that application program. Access plans for dynamic SQL and XQuery statements

are created at run time.

There are three ways to access data in a table:

v By scanning the entire table sequentially

v By accessing an index on the table to locate specific rows

v By scan sharing

Rows might be filtered according to conditions that are defined in predicates,

which are usually stated in a WHERE clause. The selected rows in accessed tables

are joined to produce the result set, and this data might be further processed by

grouping or sorting of the output.

Starting with DB2 9.7, scan sharing, which is the ability of a scan to use the buffer

pool pages of another scan, is default behavior. Scan sharing increases workload

concurrency and performance. With scan sharing, the system can support a larger

number of concurrent applications, queries can perform better, and system

throughput can increase, benefiting even queries that do not participate in scan

sharing. Scan sharing is particularly effective in environments with applications

that perform scans such as table scans or multidimensional clustering (MDC) block

index scans of large tables. The compiler determines whether a scan is eligible to

participate in scan sharing based on the type of scan, its purpose, the isolation

level, how much work is done per record, and so on.

Chapter 3. Factors affecting performance 203

Data access through index scans

An index scan occurs when the database manager accesses an index to narrow the

set of qualifying rows (by scanning the rows in a specified range of the index)

before accessing the base table; to order the output; or to retrieve the requested

column data directly (index-only access).

When scanning the rows in a specified range of the index, the index scan range (the

start and stop points of the scan) is determined by the values in the query against

which index columns are being compared. In the case of index-only access, because

all of the requested data is in the index, the indexed table does not need to be

accessed.

If indexes are created with the ALLOW REVERSE SCANS option, scans can also be

performed in a direction that is opposite to that with which they were defined.

The optimizer chooses a table scan if no appropriate index has been created, or if

an index scan would be more costly. An index scan might be more costly if the

table is small, the index-clustering ratio is low, the query requires most of the table

rows, or additional sorts are required when a partitioned index (which cannot

preserve the order in certain cases) is used. To determine whether the access plan

uses a table scan or an index scan, use the DB2 explain facility.

Index scans to limit a range

To determine whether an index can be used for a particular query, the optimizer

evaluates each column of the index, starting with the first column, to see if it can

be used to satisfy equality and other predicates in the WHERE clause. A predicate is

an element of a search condition in a WHERE clause that expresses or implies a

comparison operation. Predicates can be used to limit the scope of an index scan in

the following cases:

v Tests for IS NULL or IS NOT NULL

v Tests for strict and inclusive inequality

v Tests for equality against a constant, a host variable, an expression that evaluates

to a constant, or a keyword

v Tests for equality against a basic subquery, which is a subquery that does not

contain ANY, ALL, or SOME; this subquery must not have a correlated column

reference to its immediate parent query block (that is, the select for which this

subquery is a subselect).

The following examples show how an index could be used to limit the range of a

scan.

v Consider an index with the following definition:

 INDEX IX1: NAME ASC,

 DEPT ASC,

 MGR DESC,

 SALARY DESC,

 YEARS ASC

The following predicates could be used to limit the range of a scan that uses

index IX1:

 where

 name = :hv1 and

 dept = :hv2

or

204 Troubleshooting and Tuning Database Performance

where

 mgr = :hv1 and

 name = :hv2 and

 dept = :hv3

The second WHERE clause demonstrates that the predicates do not have to be

specified in the order in which the key columns appear in the index. Although

the examples use host variables, other variables, such as parameter markers,

expressions, or constants, could be used instead.

In the following WHERE clause, only the predicates that reference NAME and

DEPT would be used for limiting the range of the index scan:

 where

 name = :hv1 and

 dept = :hv2 and

 salary = :hv4 and

 years = :hv5

Because there is a key column (MGR) separating these columns from the last

two index key columns, the ordering would be off. However, after the range is

determined by the name = :hv1 and dept = :hv2 predicates, the other predicates

can be evaluated against the remaining index key columns.

v Consider an index that was created using the ALLOW REVERSE SCANS option:

 create index iname on tname (cname desc) allow reverse scans

In this case, the index (INAME) is based on descending values in the CNAME

column. Although the index is defined for scans running in descending order, a

scan can be done in ascending order. Use of the index is controlled by the

optimizer when creating and considering access plans.

Index scans to test inequality

Certain inequality predicates can limit the range of an index scan. There are two

types of inequality predicates:

v Strict inequality predicates

The strict inequality operators that are used for range-limiting predicates are

greater than (>) and less than (<).

Only one column with strict inequality predicates is considered for limiting the

range of an index scan. In the following example, predicates on the NAME and

DEPT columns can be used to limit the range, but the predicate on the MGR

column cannot be used for that purpose.

 where

 name = :hv1 and

 dept > :hv2 and

 dept < :hv3 and

 mgr < :hv4

v Inclusive inequality predicates

The inclusive inequality operators that are used for range-limiting predicates are:

– >= and <=

– BETWEEN

– LIKE

Multiple columns with inclusive inequality predicates can be considered for

limiting the range of an index scan. In the following example, all of the

predicates can be used to limit the range.

Chapter 3. Factors affecting performance 205

where

 name = :hv1 and

 dept >= :hv2 and

 dept <= :hv3 and

 mgr <= :hv4

Suppose that :hv2 = 404, :hv3 = 406, and :hv4 = 12345. The database manager

will scan the index for departments 404 and 405, but it will stop scanning

department 406 when it reaches the first manager whose employee number

(MGR column) is greater than 12345.

Index scans to order data

If a query requires sorted output, an index can be used to order the data if the

ordering columns appear consecutively in the index, starting from the first index

key column. Ordering or sorting can result from operations such as ORDER BY,

DISTINCT, GROUP BY, an “= ANY” subquery, a “> ALL” subquery, a “< ALL”

subquery, INTERSECT or EXCEPT, and UNION. Exceptions to this are as follows:

v If the index is partitioned, it can be used to order the data only if the index key

columns are prefixed by the table-partitioning key columns, or if partition

elimination eliminations all but one partition.

v Ordering columns can be different from the first index key columns when index

key columns are tested for equality against “constant values” or any expression

that evaluates to a constant.

Consider the following query:

 where

 name = ’JONES’ and

 dept = ’D93’

 order by mgr

For this query, the index might be used to order the rows, because NAME and

DEPT will always be the same values and will therefore be ordered. That is, the

preceding WHERE and ORDER BY clauses are equivalent to:

 where

 name = ’JONES’ and

 dept = ’D93’

 order by name, dept, mgr

A unique index can also be used to truncate a sort-order requirement. Consider the

following index definition and ORDER BY clause:

 UNIQUE INDEX IX0: PROJNO ASC

 select projno, projname, deptno

 from project

 order by projno, projname

Additional ordering on the PROJNAME column is not required, because the IX0

index ensures that PROJNO is unique: There is only one PROJNAME value for

each PROJNO value.

Types of index access

In some cases, the optimizer might find that all of the data that a query requires

can be retrieved from an index on the table. In other cases, the optimizer might use

more than one index to access tables. In the case of range-clustered tables, data can

be accessed through a “virtual” index, which computes the location of data

records.

206 Troubleshooting and Tuning Database Performance

Index-only access

In some cases, all of the required data can be retrieved from an index without

accessing the table. This is known as index-only access. For example, consider the

following index definition:

 INDEX IX1: NAME ASC,

 DEPT ASC,

 MGR DESC,

 SALARY DESC,

 YEARS ASC

The following query can be satisfied by accessing only the index, without reading

the base table:

 select name, dept, mgr, salary

 from employee

 where name = ’SMITH’

Often, however, required columns do not appear in an index. To retrieve the data

from these columns, table rows must be read. To enable the optimizer to choose

index-only access, create a unique index with include columns. For example,

consider the following index definition:

 create unique index ix1 on employee

 (name asc)

 include (dept, mgr, salary, years)

This index enforces the uniqueness of the NAME column and also stores and

maintains data for the DEPT, MGR, SALARY, and YEARS columns. In this way, the

following query can be satisfied by accessing only the index:

 select name, dept, mgr, salary

 from employee

 where name = ’SMITH’

Be sure to consider whether the additional storage space and maintenance costs of

include columns are justified. If queries that exploit include columns are rarely

executed, the costs might not be justified.

Multiple-index access

The optimizer can choose to scan multiple indexes on the same table to satisfy the

predicates of a WHERE clause. For example, consider the following two index

definitions:

 INDEX IX2: DEPT ASC

 INDEX IX3: JOB ASC,

 YEARS ASC

The following predicates can be satisfied by using these two indexes:

 where

 dept = :hv1 or

 (job = :hv2 and

 years >= :hv3)

Scanning index IX2 produces a list of record IDs (RIDs) that satisfy the dept =

:hv1 predicate. Scanning index IX3 produces a list of RIDs that satisfy the job =

:hv2 and years >= :hv3 predicate. These two lists of RIDs are combined, and

duplicates are removed before the table is accessed. This is known as index ORing.

Chapter 3. Factors affecting performance 207

Index ORing can also be used for predicates that are specified by an IN clause, as

in the following example:

 where

 dept in (:hv1, :hv2, :hv3)

Although the purpose of index ORing is to eliminate duplicate RIDs, the objective

of index ANDing is to find common RIDs. Index ANDing might occur when

applications that create multiple indexes on corresponding columns in the same

table run a query with multiple AND predicates against that table. Multiple index

scans against each indexed column produce values that are hashed to create

bitmaps. The second bitmap is used to probe the first bitmap to generate the

qualifying rows for the final result set. For example, the following indexes:

 INDEX IX4: SALARY ASC

 INDEX IX5: COMM ASC

can be used to resolve the following predicates:

 where

 salary between 20000 and 30000 and

 comm between 1000 and 3000

In this example, scanning index IX4 produces a bitmap that satisfies the salary

between 20000 and 30000 predicate. Scanning IX5 and probing the bitmap for IX4

produces a list of qualifying RIDs that satisfy both predicates. This is known as

dynamic bitmap ANDing. It occurs only if the table has sufficient cardinality, its

columns have sufficient values within the qualifying range, or there is sufficient

duplication if equality predicates are used.

To realize the performance benefits of dynamic bitmaps when scanning multiple

indexes, it might be necessary to change the value of the sortheap database

configuration parameter and the sheapthres database manager configuration

parameter. Additional sort heap space is required when dynamic bitmaps are used

in access plans. When sheapthres is set to be relatively close to sortheap (that is,

less than a factor of two or three times per concurrent query), dynamic bitmaps

with multiple index access must work with much less memory than the optimizer

anticipated. The solution is to increase the value of sheapthres relative to sortheap.

The optimizer does not combine index ANDing and index ORing when accessing a

single table.

Index access in range-clustered tables

Unlike standard tables, a range-clustered table does not require a physical index

(like a traditional B-tree index) that maps a key value to a row. Instead, it leverages

the sequential nature of the column domain and uses a functional mapping to

generate the location of a specific row in a table. In the simplest example of this

type of mapping, the first key value in the range is the first row in the table, the

second value in the range is the second row in the table, and so on.

The optimizer uses the range-clustered property of the table to generate access

plans that are based on a perfectly clustered index whose only cost is computing

the range clustering function. The clustering of rows within the table is guaranteed,

because range-clustered tables retain their original key value order.

Index access and cluster ratios

When it chooses an access plan, the optimizer estimates the number of I/Os that

are required to fetch pages from disk to the buffer pool. This estimate includes a

208 Troubleshooting and Tuning Database Performance

prediction of buffer pool usage, because additional I/Os are not required to read

rows from a page that is already in the buffer pool.

For index scans, information from the system catalog helps the optimizer to

estimate the I/O cost of reading data pages into a buffer pool. It uses information

from the following columns in the SYSCAT.INDEXES view:

v CLUSTERRATIO information indicates the degree to which the table data is

clustered in relation to this index. The higher the number, the better the rows are

ordered in index key sequence. If table rows are in close to index-key sequence,

rows can be read from a data page while the page is in the buffer. If the value of

this column is -1, the optimizer uses PAGE_FETCH_PAIRS and

CLUSTERFACTOR information, if it is available.

v The PAGE_FETCH_PAIRS column contains pairs of numbers that model the

number of I/Os required to read the data pages into buffer pools of various

sizes, together with CLUSTERFACTOR information. Data is collected for these

columns only if you invoke the RUNSTATS command against the index,

specifying the DETAILED clause.

If index clustering statistics are not available, the optimizer uses default values,

which assume poor clustering of the data with respect to the index. The degree to

which the data is clustered can have a significant impact on performance, and you

should try to keep one of the indexes that are defined on the table close to 100

percent clustered. In general, only one index can be one hundred percent clustered,

except when the keys for an index represent a superset of the keys for the

clustering index, or when there is an actual correlation between the key columns of

the two indexes.

When you reorganize a table, you can specify an index that will be used to cluster

the rows and keep them clustered during insert processing. Because update and

insert operations can make a table less clustered in relation to the index, you might

need to periodically reorganize the table. To reduce the number of reorganizations

for a table that experiences frequent insert, update, or delete operations, specify the

PCTFREE clause on the ALTER TABLE statement.

Scan sharing

Scan sharing refers to the ability of one scan to exploit the work done by another

scan. Examples of shared work include disk page reads, disk seeks, buffer pool

content reuse, decompression, and so on.

Heavy scans, such as table scans or multidimensional clustering (MDC) block

index scans of large tables, are sometimes eligible for sharing page reads with

other scans. Such shared scans can start at an arbitrary point in the table, to take

advantage of pages that are already in the buffer pool. When a sharing scan

reaches the end of the table, it continues at the beginning and finishes when it

reaches the point at which it started. This is called a wrapping scan. Figure 25 on

page 210 shows the difference between regular scans and wrapping scans for both

tables and indexes.

Chapter 3. Factors affecting performance 209

The scan sharing feature is enabled by default, and eligibility for scan sharing and

for wrapping are determined automatically by the SQL compiler. At run time, an

eligible scan might or might not participate in sharing or wrapping, based on

factors that were not known at compile time.

Shared scanners are managed in share groups. These groups keep their members

together as long as possible, so that the benefits of sharing are maximized. If one

scan is faster than another scan, the benefits of page sharing can be lost. In this

situation, buffer pool pages that are accessed by the first scan might be cleared

from the buffer pool before another scan in the share group can access them. The

data server measures the distance between two scans in the same share group by

the number of buffer pool pages that lies between them. The data server also

monitors the speed of the scans. If the distance between two scans in the same

share group grows too large, they might not be able to share buffer pool pages. To

reduce this effect, faster scans can be throttled to allow slower scans to access the

data pages before they are cleared. Figure 26 on page 211 shows two sharing sets,

one for a table and one for a block index. A sharing set is a collection of share

groups that are accessing the same object (for example, a table) through the same

access mechanism (for example, a table scan or a block index scan). For table scans,

the page read order increases by page ID; for block index scans, the page read

Scan
direction

Scan
direction

Smallest keySmallest key
Largest

key
Largest

key

Scanner
starts here

Start keyScanner
starts here
(start key) Post-wrap

phase

End keyScanner
ends here
(end key)

Pre-wrap
phase

Wrapping index scanRegular index scan

Scan
direction

Scan
direction

First pageFirst page
Last

page

Scanner
starts here

Scanner
starts here

Post-wrap
phase

Pre-wrap
phase

Wrapping table scanRegular table scan

Last
page

Figure 25. Conceptual view of regular and wrapping scans

210 Troubleshooting and Tuning Database Performance

order increases by key value.

 The figure also shows how buffer pool content is reused within groups. Consider

scan C, which is the leading scan of group 1. The following scans (A and B) are

grouped with C, because they are close and can likely reuse the pages that C has

brought into the buffer pool.

A high-priority scanner is never throttled by a lower priority one, and might move

to another share group instead. A high priority scanner might be placed in a group

where it can benefit from the work being done by the lower priority scanners in

the group. It will stay in that group for as long as that benefit is available. By

either throttling the fast scanner, or moving it to a faster share group (if the

scanner encounters one), the data server adjusts the share groups to ensure that

sharing remains optimized.

You can use the db2pd command to view information about scan sharing. For

example, for an individual shared scan, the db2pd output will show data such as

the scan speed and the amount of time that the scan was throttled. For a sharing

group, the command output shows the number of scans in the group and the

number of pages shared by the group.

The EXPLAIN_ARGUMENT table has new rows to contain scan-sharing

information about table scans and index scans (you can use the db2exfmt

command to format and view the contents of this table).

You can use optimizer profiles to override decisions that the compiler makes about

scan sharing (see “Access types”). Such overrides are for use only when a special

need arises; for example, the wrapping hint can be useful when a repeatable order

of records in a result set is needed, but an ORDER BY clause (which might trigger

a sort) is to be avoided. Otherwise, it is recommended that you not use these

optimization profiles unless requested to do so by DB2 Service.

Joins

A join is the process of combining data from two or more tables based on some

common domain of information. Rows from one table are paired with rows from

another table when information in the corresponding rows match on the basis of

the joining criterion (the join predicate).

Scan
direction

Scan
direction

First page (lowest key value)
based on index I

First page of table T
Scan

group 3

Scan
group 1

Scan A

Scan
group 2

Sharing set for Block Index ISharing set for Table T

Scan B

Scan C

Scan
group 2 Scan group 1

Figure 26. Sharing sets for table and block index scan sharing

Chapter 3. Factors affecting performance 211

For example, consider the following two tables:

 TABLE1 TABLE2

PROJ PROJ_ID PROJ_ID NAME

A 1 1 Sam

B 2 3 Joe

C 3 4 Mary

D 4 1 Sue

2 Mike

To join TABLE1 and TABLE2, such that the PROJ_ID columns have the same

values, use the following SQL statement:

 select proj, x.proj_id, name

 from table1 x, table2 y

 where x.proj_id = y.proj_id

In this case, the appropriate join predicate is: where x.proj_id = y.proj_id.

The query yields the following result set:

 PROJ PROJ_ID NAME

A 1 Sam

A 1 Sue

B 2 Mike

C 3 Joe

D 4 Mary

Depending on the nature of any join predicates, as well as any costs determined on

the basis of table and index statistics, the optimizer chooses one of the following

join methods:

v Nested-loop join

v Merge join

v Hash join

When two tables are joined, one table is selected as the outer table and the other

table is regarded as the inner table of the join. The outer table is accessed first and

is scanned only once. Whether the inner table is scanned multiple times depends

on the type of join and the indexes that are available. Even if a query joins more

than two tables, the optimizer joins only two tables at a time. If necessary,

temporary tables are created to hold intermediate results.

You can provide explicit join operators, such as INNER or LEFT OUTER JOIN, to

determine how tables are used in the join. Before you alter a query in this way,

however, you should allow the optimizer to determine how to join the tables, and

then analyze query performance to decide whether to add join operators.

Join methods

The optimizer can choose one of three basic join strategies when queries require

tables to be joined: nested-loop join, merge join, or hash join.

Nested-loop join

A nested-loop join is performed in one of the following two ways:

v Scanning the inner table for each accessed row of the outer table

212 Troubleshooting and Tuning Database Performance

For example, column A in table T1 and column A in table T2 have the following

values:

 Outer table T1: Column A Inner table T2: Column A

2 3

3 2

3 2

3

1

To complete a nested-loop join between tables T1 and T2, the database manager

performs the following steps:

1. Read the first row in T1. The value for A is 2.

2. Scan T2 until a match (2) is found, and then join the two rows.

3. Repeat Step 2 until the end of the table is reached.

4. Go back to T1 and read the next row (3).

5. Scan T2 (starting at the first row) until a match (3) is found, and then join the

two rows.

6. Repeat Step 5 until the end of the table is reached.

7. Go back to T1 and read the next row (3).

8. Scan T2 as before, joining all rows that match (3).
v Performing an index lookup on the inner table for each accessed row of the

outer table

This method can be used if there is a predicate of the form:

 expr(outer_table.column) relop inner_table.column

where relop is a relative operator (for example =, >, >=, <, or <=) and expr is a

valid expression on the outer table. For example:

 outer.c1 + outer.c2 <= inner.c1

 outer.c4 < inner.c3

This method might significantly reduce the number of rows that are accessed in

the inner table for each access of the outer table; the degree of benefit depends

on a number of factors, including the selectivity of the join predicate.

When it evaluates a nested-loop join, the optimizer also decides whether to sort the

outer table before performing the join. If it sorts the outer table, based on the join

columns, the number of read operations against the inner table to access pages on

disk might be reduced, because they are more likely to be in the buffer pool

already. If the join uses a highly clustered index to access the inner table, and the

outer table has been sorted, the number of accessed index pages might be

minimized.

If the optimizer expects that the join will make a later sort more expensive, it

might also choose to perform the sort before the join. A later sort might be

required to support a GROUP BY, DISTINCT, ORDER BY, or merge join operation.

Merge join

A merge join, sometimes known as a merge scan join or a sort merge join, requires a

predicate of the form table1.column = table2.column. This is called an equality join

predicate. A merge join requires ordered input on the joining columns, either

through index access or by sorting. A merge join cannot be used if the join column

is a LONG field column or a large object (LOB) column.

Chapter 3. Factors affecting performance 213

In a merge join, the joined tables are scanned at the same time. The outer table of

the merge join is scanned only once. The inner table is also scanned once, unless

repeated values occur in the outer table. If repeated values occur, a group of rows

in the inner table might be scanned again.

For example, column A in table T1 and column A in table T2 have the following

values:

 Outer table T1: Column A Inner table T2: Column A

2 1

3 2

3 2

3

3

To complete a merge join between tables T1 and T2, the database manager

performs the following steps:

1. Read the first row in T1. The value for A is 2.

2. Scan T2 until a match (2) is found, and then join the two rows.

3. Keep scanning T2 while the columns match, joining rows.

4. When the 3 in T2 is read, go back to T1 and read the next row.

5. The next value in T1 is 3, which matches T2, so join the rows.

6. Keep scanning T2 while the columns match, joining rows.

7. When the end of T2 is reached, go back to T1 to get the next row. Note that the

next value in T1 is the same as the previous value from T1, so T2 is scanned

again, starting at the first 3 in T2. The database manager remembers this

position.

Hash join

A hash join requires one or more predicates of the form table1.columnX =

table2.columnY, for which the column types are the same. For columns of type

CHAR, the length must be the same. For columns of type DECIMAL, the precision

and scale must be the same. For columns of type DECFLOAT, the precision must

be the same. The column cannot be a LONG field column or a LOB column.

First, the designated inner table is scanned and rows are copied into memory

buffers that are drawn from the sort heap specified by the sortheap database

configuration parameter. The memory buffers are divided into sections, based on a

hash value that is computed on the columns of the join predicates. If the size of the

inner table exceeds the available sort heap space, buffers from selected sections are

written to temporary tables.

When the inner table has been processed, the second (or outer) table is scanned

and its rows are matched with rows from the inner table by first comparing the

hash value that was computed for the columns of the join predicates. If the hash

value for the outer row column matches the hash value for the inner row column,

the actual join predicate column values are compared.

Outer table rows that correspond to portions of the table that are not written to a

temporary table are matched immediately with inner table rows in memory. If the

corresponding portion of the inner table was written to a temporary table, the

outer row is also written to a temporary table. Finally, matching pairs of table

214 Troubleshooting and Tuning Database Performance

portions from temporary tables are read, the hash values of their rows are

matched, and the join predicates are checked.

For the full performance benefit of hash joins, you might need to change the value

of the sortheap database configuration parameter and the sheapthres database

manager configuration parameter.

Hash join performance is best if you can avoid hash loops and overflow to disk. To

tune hash join performance, estimate the maximum amount of memory that is

available for sheapthres, and then tune the sortheap parameter. Increase its setting

until you avoid as many hash loops and disk overflows as possible, but do not

reach the limit that is specified by the sheapthres parameter.

Increasing the sortheap value should also improve the performance of queries that

have multiple sorts.

Strategies for selecting optimal joins

The optimizer uses various methods to select an optimal join strategy for a query.

Among these methods, which are determined by the optimization class of the

query, are several search strategies, star-schema joins, early out joins, and

composite tables.

The join-enumeration algorithm is an important determinant of the number of plan

combinations that the optimizer explores.

v Greedy join enumeration

– Is efficient with respect to space and time requirements

– Uses single direction enumeration; that is, once a join method is selected for

two tables, it is not changed during further optimization

– Might miss the best access plan when joining many tables. If your query joins

only two or three tables, the access plan that is chosen by greedy join

enumeration is the same as the access plan that is chosen by dynamic

programming join enumeration. This is particularly true if the query has

many join predicates on the same column that are either explicitly specified,

or implicitly generated through predicate transitive closure.
v Dynamic programming join enumeration

– Is not efficient with respect to space and time requirements, which increase

exponentially as the number of joined tables increases

– Is efficient and exhaustive when searching for the best access plan

– Is similar to the strategy that is used by DB2 for z/OS

Star-schema joins

The tables that are referenced in a query are almost always related by join

predicates. If two tables are joined without a join predicate, the Cartesian product

of the two tables is formed. In a Cartesian product, every qualifying row of the

first table is joined with every qualifying row of the second table. This creates a

result table that is usually very large, because its size is the cross product of the

size of the two source tables. Because such a plan is unlikely to perform well, the

optimizer avoids even determining the cost of this type of access plan.

The only exceptions occur when the optimization class is set to 9, or in the special

case of star schemas. A star schema contains a central table called the fact table, and

other tables called dimension tables. The dimension tables have only a single join

that attaches them to the fact table, regardless of the query. Each dimension table

Chapter 3. Factors affecting performance 215

contains additional values that expand information about a particular column in

the fact table. A typical query consists of multiple local predicates that reference

values in the dimension tables and contains join predicates connecting the

dimension tables to the fact table. For these queries, it might be beneficial to

compute the Cartesian product of multiple small dimension tables before accessing

the large fact table. This technique is useful when multiple join predicates match a

multicolumn index.

The DB2 data server can recognize queries against databases that were designed

with star schemas having at least two dimension tables, and can increase the

search space to include possible plans that compute the Cartesian product of

dimension tables. If the plan that computes the Cartesian product has the lowest

estimated cost, it is selected by the optimizer.

This star schema join strategy assumes that primary key indexes are used in the

join. Another scenario involves foreign key indexes. If the foreign key columns in

the fact table are single-column indexes, and there is relatively high selectivity

across all dimension tables, the following star-schema join technique can be used:

1. Process each dimension table by:

v Performing a semi-join between the dimension table and the foreign key

index on the fact table

v Hashing the record ID (RID) values to dynamically create a bitmap
2. For each bitmap, use AND predicates against the previous bitmap.

3. Determine the surviving RIDs after processing the last bitmap.

4. Optionally sort these RIDs.

5. Fetch a base table row.

6. Rejoin the fact table with each of its dimension tables, accessing the columns in

dimension tables that are needed for the SELECT clause.

7. Reapply the residual predicates.

This technique does not require multicolumn indexes. Explicit referential integrity

constraints between the fact table and the dimension tables are not required, but

are recommended.

The dynamic bitmaps that are created and used by star-schema join techniques

require sort heap memory, the size of which is specified by the sortheap database

configuration parameter.

Early out joins

The optimizer might select an early out join when it detects that each row from

one of the tables only needs to be joined with at most one row from the other

table.

An early out join is possible when there is a join predicate on the key column or

columns of one of the tables. For example, consider the following query that

returns the names of employees and their immediate managers.

 select employee.name as employee_name,

 manager.name as manager_name

 from employee as employee, employee as manager

 where employee.manager_id = manager.id

216 Troubleshooting and Tuning Database Performance

Assuming that the ID column is a key in the EMPLOYEE table and that every

employee has at most one manager, this join avoids having to search for a

subsequent matching row in the MANAGER table.

An early out join is also possible when there is a DISTINCT clause in the query.

For example, consider the following query that returns the names of car makers

with models that sell for more than $30000.

 select distinct make.name

 from make, model

 where

 make.make_id = model.make_id and

 model.price > 30000

For each car maker, we only need to determine whether any one of its

manufactured models sells for more than $30000. Joining a car maker with all of its

manufactured models selling for more than $30000 is unnecessary, because it does

not contribute towards the accuracy of the query result.

An early out join is also possible when the join feeds a GROUP BY clause with a

MIN or MAX aggregate function. For example, consider the following query that

returns stock symbols with the most recent date before the year 2000, for which a

particular stock’s closing price is at least 10% higher than its opening price:

 select dailystockdata.symbol, max(dailystockdata.date) as date

 from sp500, dailystockdata

 where

 sp500.symbol = dailystockdata.symbol and

 dailystockdata.date < ’01/01/2000’ and

 dailystockdata.close / dailystockdata.open >= 1.1

 group by dailystockdata.symbol

The qualifying set is the set of rows from the DAILYSTOCKDATA table that satisfies

the date and price requirements and joins with a particular stock symbol from the

SP500 table. If the qualifying set from the DAILYSTOCKDATA table (for each stock

symbol row from the SP500 table) is ordered as descending on DATE, it is only

necessary to return the first row from the qualifying set for each symbol, because

that first row represents the most recent date for a particular symbol. The other

rows in the qualifying set are not required.

Composite tables

When the result of joining a pair of tables is a new table (known as a composite

table), this table usually becomes the outer table of a join with another inner table.

This is known as a composite outer join. In some cases, particularly when using the

greedy join enumeration technique, it is useful to make the result of joining two

tables the inner table of a later join. When the inner table of a join consists of the

result of joining two or more tables, this plan is known as a composite inner join.

For example, consider the following query:

 select count(*)

 from t1, t2, t3, t4

 where

 t1.a = t2.a and

 t3.a = t4.a and

 t2.z = t3.z

It might be beneficial to join table T1 and T2 (T1xT2), then join T3 and T4 (T3xT4),

and finally, to select the first join result as the outer table and the second join result

as the inner table. In the final plan ((T1xT2) x (T3xT4)), the join result (T3xT4) is

known as a composite inner join. Depending on the query optimization class, the

Chapter 3. Factors affecting performance 217

optimizer places different constraints on the maximum number of tables that can

be the inner table of a join. Composite inner joins are allowed with optimization

classes 5, 7, and 9.

Replicated materialized query tables in partitioned database

environments

Replicated materialized query tables (MQTs) improve the performance of

frequently executed joins in a partitioned database environment by allowing the

database to manage precomputed values of the table data.

Note that a replicated MQT in this context pertains to intra-database replication.

Inter-database replication is concerned with subscriptions, control tables, and data

that is located in different databases and on different operating systems.

In the following example:

v The SALES table is in a multi-partition table space named

REGIONTABLESPACE, and is split on the REGION column.

v The EMPLOYEE and DEPARTMENT tables are in a single-partition database

partition group.

Create a replicated MQT based on information in the EMPLOYEE table.

 create table r_employee as (

 select empno, firstnme, midinit, lastname, workdept

 from employee

)

 data initially deferred refresh immediate

 in regiontablespace

 replicated

Update the content of the replicated MQT:

 refresh table r_employee

After using the REFRESH statement, you should invoke the runstats utility against

the replicated table, as you would against any other table.

The following query calculates sales by employee, the total for the department, and

the grand total:

 select d.mgrno, e.empno, sum(s.sales)

 from department as d, employee as e, sales as s

 where

 s.sales_person = e.lastname and

 e.workdept = d.deptno

 group by rollup(d.mgrno, e.empno)

 order by d.mgrno, e.empno

Instead of using the EMPLOYEE table, which resides on only one database

partition, the database manager uses R_EMPLOYEE, the MQT that is replicated on

each of the database partitions on which the SALES table is stored. The

performance enhancement occurs because the employee information does not have

to be moved across the network to each database partition when performing the

join.

Replicated materialized query tables in collocated joins

Replicated MQTs can also assist in the collocation of joins. For example, if a star

schema contains a large fact table that is spread across twenty database partitions,

the joins between the fact table and the dimension tables are most efficient if these

218 Troubleshooting and Tuning Database Performance

tables are collocated. If all of the tables are in the same database partition group, at

most one dimension table is partitioned correctly for a collocated join. The other

dimension tables cannot be used in a collocated join, because the join columns in

the fact table do not correspond to the distribution key for the fact table.

Consider a table named FACT (C1, C2, C3, ...), split on C1; a table named DIM1

(C1, dim1a, dim1b, ...), split on C1; a table named DIM2 (C2, dim2a, dim2b, ...),

split on C2; and so on. In this case, the join between FACT and DIM1 is perfect,

because the predicate dim1.c1 = fact.c1 is collocated. Both of these tables are split

on column C1.

However, the join involving DIM2 and the predicate dim2.c2 = fact.c2 cannot be

collocated, because FACT is split on column C1, not on column C2. In this case,

you could replicate DIM2 in the database partition group of the fact table so that

the join occurs locally on each database partition.

When you create a replicated MQT, the source table can be a single-partition table

or a multi-partition table in a database partition group. In most cases, the

replicated table is small and can be placed in a single-partition database partition

group. You can limit the data that is to be replicated by specifying only a subset of

the columns from the table, or by restricting the number of qualifying rows

through predicates.

A replicated MQT can also be created in a multi-partition database partition group,

so that copies of the source table are created on all of the database partitions. Joins

between a large fact table and the dimension tables are more likely to occur locally

in this environment, than if you broadcast the source table to all database

partitions.

Indexes on replicated tables are not created automatically. You can create indexes

that are different from those on the source table. However, to prevent constraints

violations that are not present in the source table, you cannot create unique

indexes or define constraints on replicated tables, even if the same constraints

occur on the source table.

Replicated tables can be referenced directly in a query, but you cannot use the

DBPARTITIONNUM scalar function with a replicated table to see the table data on

a particular database partition.

Use the DB2 explain facility to determine whether a replicated MQT was used by

the access plan for a query. Whether or not the access plan that is chosen by the

optimizer uses a replicated MQT depends on the data that is to be joined. A

replicated MQT might not be used if the optimizer determines that it would be

cheaper to broadcast the original source table to the other database partitions in

the database partition group.

Join strategies for partitioned databases

Join strategies for a partitioned database environment can be different than

strategies for a nonpartitioned database environment. Additional techniques can be

applied to standard join methods to improve performance.

Table collocation should be considered for tables that are frequently joined. In a

partitioned database environment, table collocation refers to a state that occurs when

two tables that have the same number of compatible partitioning keys are stored in

the same database partition group. When this happens, join processing can be

Chapter 3. Factors affecting performance 219

performed at the database partition where the data is stored, and only the result

set needs to be moved to the coordinator database partition.

Table queues

Descriptions of join techniques in a partitioned database environment use the

following terminology:

v Table queue (sometimes referred to as TQ) is a mechanism for transferring rows

between database partitions, or between processors in a single-partition

database.

v Directed table queue (sometimes referred to as DTQ) is a table queue in which

rows are hashed to one of the receiving database partitions.

v Broadcast table queue (sometimes referred to as BTQ) is a table queue in which

rows are sent to all of the receiving database partitions, but are not hashed.

A table queue is used to pass table data:

v From one database partition to another when using inter-partition parallelism

v Within a database partition when using intra-partition parallelism

v Within a database partition when using a single-partition database

Each table queue passes the data in a single direction. The compiler decides where

table queues are required, and includes them in the plan. When the plan is

executed, connections between the database partitions initiate the table queues. The

table queues close as processes end.

There are several types of table queues:

v Asynchronous table queues

These table queues are known as asynchronous, because they read rows in

advance of any fetch requests from an application. When a FETCH statement is

issued, the row is retrieved from the table queue.

Asynchronous table queues are used when you specify the FOR FETCH ONLY

clause on the SELECT statement. If you are only fetching rows, the

asynchronous table queue is faster.

v Synchronous table queues

These table queues are known as synchronous, because they read one row for

each FETCH statement that is issued by an application. At each database

partition, the cursor is positioned on the next row to be read from that database

partition.

Synchronous table queues are used when you do not specify the FOR FETCH

ONLY clause on the SELECT statement. In a partitioned database environment,

if you are updating rows, the database manager will use synchronous table

queues.

v Merging table queues

These table queues preserve order.

v Non-merging table queues

These table queues, also known as regular table queues, do not preserve order.

v Listener table queues (sometimes referred to as LTQ)

These table queues are used with correlated subqueries. Correlation values are

passed down to the subquery, and the results are passed back up to the parent

query block using this type of table queue.

220 Troubleshooting and Tuning Database Performance

Join methods for partitioned databases

Several join methods are available for partitioned database environments,

including: collocated joins, broadcast outer-table joins, directed outer-table joins,

directed inner-table and outer-table joins, broadcast inner-table joins, and directed

inner-table joins.

In the following diagrams, q1, q2, and q3 refer to table queues. The referenced

tables are divided across two database partitions, and the arrows indicate the

direction in which the table queues are sent. The coordinator database partition is

database partition 0.

Collocated joins

A collocated join occurs locally on the database partition on which the data resides.

The database partition sends the data to the other database partitions after the join

is complete. For the optimizer to consider a collocated join, the joined tables must

be collocated, and all pairs of the corresponding distribution keys must participate

in the equality join predicates. Figure 27 provides an example.

 The LINEITEM and ORDERS tables are both partitioned on the ORDERKEY

column. The join is performed locally at each database partition. In this example,

the join predicate is assumed to be: orders.orderkey = lineitem.orderkey.

Replicated materialized query tables (MQTs) enhance the likelihood of collocated

joins.

Broadcast outer-table joins

Broadcast outer-table joins represent a parallel join strategy that can be used if

there are no equality join predicates between the joined tables. It can also be used

in other situations in which it proves to be the most cost-effective join method. For

-

-

Scan
ORDERS
Apply
predicates

-

-

-
-

Scan
LINEITEM
Apply
predicates
Join
Insert into q1

-

-

-

-

-
-

Scan
ORDERS
Apply
predicates
Scan
LINEITEM
Apply
predicates
Join
Insert into q1

-
-
-

Read q1
Process
Return
RESULTS

Select...

Partition 1
Partition 0
(Coordinator Database Partition)

End Users

q1

q1

Figure 27. Collocated Join Example

Chapter 3. Factors affecting performance 221

example, a broadcast outer-table join might occur when there is one very large

table and one very small table, neither of which is split on the join predicate

columns. Instead of splitting both tables, it might be cheaper to broadcast the

smaller table to the larger table. Figure 28 provides an example.

 The ORDERS table is sent to all database partitions that have the LINEITEM table.

Table queue q2 is broadcast to all database partitions of the inner table.

Directed outer-table joins

In the directed outer-table join strategy, each row of the outer table is sent to one

portion of the inner table, based on the splitting attributes of the inner table. The

join occurs on this database partition. Figure 29 on page 223 provides an example.

-

-

-

-

Scan
LINEITEM
Apply
predicates
Read q2

Insert q1
- Join

-

-

-

Scan
ORDERS
Apply
predicates
Write q2

-

-

-

Scan
LINEITEM
Apply
predicates
Read q2
Join
Insert q1

-
-

-

-

-

Scan
ORDERS
Apply
predicates
Write q2

-
-
-

Read q1
Process
Return
COUNT

Select...

Partition 1
Partition 0
(Coordinator Database Partition)

End Users

q2 q2
q2

q1

q1

q2

Figure 28. Broadcast Outer-Table Join Example

222 Troubleshooting and Tuning Database Performance

Directed inner-table and outer-table joins

In the directed inner-table and outer-table join strategy, rows of both the outer and

inner tables are directed to a set of database partitions, based on the values of the

joining columns. The join occurs on these database partitions. Figure 30 on page

224 provides an example.

-

-

-

-

Scan

Apply
predicates
Read q2

Insert into q1

LINEITEM

Join-

-

-

-

-

Scan
ORDERS
Apply
predicates
Hash

Write q2
ORDERKEY

-

-

-

Scan
LINEITEM
Apply
predicates
Read q2
Join
Insert into q1

-
-

-

-

-

-

Scan
ORDERS
Apply
predicates
Hash
ORDERKEY
Write q2

-
-
-

Read q1
Process
Return
COUNT

Select...

Partition 1
Partition 0
(Coordinator Database Partition)

End Users

q2 q2 q2

q1

q1

q2

The LINEITEM table is partitioned on the ORDERKEY column. The ORDERS table is

partitioned on a different column. The ORDERS table is hashed and sent to the correct

database partition of the LINEITEM table. In this example, the join predicate is assumed to

be: orders.orderkey = lineitem.orderkey.
Figure 29. Directed Outer-Table Join Example

Chapter 3. Factors affecting performance 223

Neither table is partitioned on the ORDERKEY column. Both tables are hashed and

sent to new database partitions, where they are joined. Both table queue q2 and q3

are directed. In this example, the join predicate is assumed to be: orders.orderkey

= lineitem.orderkey.

Broadcast inner-table joins

In the broadcast inner-table join strategy, the inner table is broadcast to all the

database partitions of the outer table. Figure 31 on page 225 provides an example.

-
-
-
-

Read q2
Read q3
Join
Insert q1

-

-

-

-

Scan

Apply
predicates
Hash

Write q3

LINEITEM

ORDERKEY

-

-

-

-

Scan

Apply
predicates
Hash

Write q2

ORDERS

ORDERKEY

-
-
-
-

Read q2
Read q3
Join
Insert q1

-

-

-

-

Scan
LINEITEM
Apply
predicates
Hash

Write q3
ORDERKEY

-

-

-

-

Scan
ORDERS
Apply
predicates
Hash

KEY
Write q2
ORDER

-
-
-

Read q1
Process
Return
COUNT

Select...

Partition 1
Partition 0
(Coordinator Database Partition)

End Users

q2

q3

q2

q3

q2

q3

q1

q1

q2

q3

Figure 30. Directed Inner-Table and Outer-Table Join Example

224 Troubleshooting and Tuning Database Performance

Directed inner-table joins

In the directed inner-table join strategy, each row of the inner table is sent to one

database partition of the outer table, based on the splitting attributes of the outer

table. The join occurs on this database partition. Figure 32 on page 226 provides an

example.

-
-
-
-

Read q2
Read q3
Join
Insert q1

-

-

-

Scan
LINEITEM
Apply
predicates
Write q3

-

-

-

Scan
ORDERS
Apply
predicates
Write q2

-
-
-
-

Read q2
Read q3
Join
Insert q1

-

-

-

Scan
LINEITEM
Apply
predicates
Write q3

-

-

-

Scan
ORDERS
Apply
predicates
Write q2

-
-
-

Read q1
Process
Return
COUNT

Select...

Partition 1
Partition 0
(Coordinator Database Partition)

End Users

q3 q3

q2

q3

q1

q1

q2

q3

The LINEITEM table is sent to all database partitions that have the ORDERS table. Table

queue q3 is broadcast to all database partitions of the outer table.
Figure 31. Broadcast Inner-Table Join Example

Chapter 3. Factors affecting performance 225

Effects of sorting and grouping on query optimization

When the optimizer chooses an access plan, it considers the performance impact of

sorting data. Sorting occurs when no index satisfies the requested ordering of

fetched rows. Sorting might also occur when the optimizer determines that a sort

is less expensive than an index scan.

The optimizer handles sorted data in one of the following ways:

v It pipes the results of the sort when the query executes

v It lets the database manager handle the sort internally

Piped and non-piped sorts

If the final sorted list of data can be read in a single sequential pass, the results can

be piped. Piping is quicker than non-piped ways of communicating the results of a

sort. The optimizer chooses to pipe the results of a sort whenever possible.

Whether or not a sort is piped, the sort time depends on a number of factors,

including the number of rows to be sorted, the key size and the row width. If the

-
-
-
-

Read q2
Read q3
Join
Insert q1

-

-

-

-

Scan

Apply
predicates
Hash

Write q3

LINEITEM

ORDERKEY

-

-

-

Scan

Apply
predicates
Write q2

ORDERS

-
-
-
-

Read q2
Read q3
Join
Insert q1

-

-

-

-

Scan
LINEITEM
Apply
predicates
Hash
ORDERKEY
Write q3

-

-

-

Scan
ORDERS
Apply
predicates
Write q2

-
-
-

Read q1
Process
Return
COUNT

Select...

Partition 1
Partition 0
(Coordinator Database Partition)

End Users

q3 q3

q2

q3

q1

q1

q2

q3

The ORDERS table is partitioned on the ORDERKEY column. The LINEITEM table is

partitioned on a different column. The LINEITEM table is hashed and sent to the correct

database partition of the ORDERS table. In this example, the join predicate is assumed to be:

orders.orderkey = lineitem.orderkey.
Figure 32. Directed Inner-Table Join Example

226 Troubleshooting and Tuning Database Performance

rows to be sorted occupy more than the space that is available in the sort heap,

several sort passes are performed. A subset of the entire set of rows is sorted

during each pass. Each pass is stored in a temporary table in the buffer pool. If

there is not enough space in the buffer pool, pages from this temporary table

might be written to disk. When all of the sort passes are complete, these sorted

subsets are merged into a single sorted set of rows. If the sort is piped, the rows

are passed directly to Relational Data Services (RDS) as they are merged. (RDS is

the DB2 component that processes requests to access or manipulate the contents of

a database.)

Group and sort pushdown operators

In some cases, the optimizer can choose to push down a sort or aggregation

operation to Data Management Services (DMS) from RDS. (DMS is the DB2

component that controls creating, removing, maintaining, and accessing the tables

and table data in a database.) Pushing down these operations improves

performance by allowing DMS to pass data directly to a sort or aggregation

routine. Without this pushdown, DMS first passes this data to RDS, which then

interfaces with the sort or aggregation routines. For example, the following query

benefits from this type of optimization:

 select workdept, avg(salary) as avg_dept_salary

 from employee

 group by workdept

Group operations in sorts

When sorting produces the order that is required for a GROUP BY operation, the

optimizer can perform some or all of the GROUP BY aggregations while doing the

sort. This is advantageous if the number of rows in each group is large. It is even

more advantageous if doing some of the grouping during the sort reduces or

eliminates the need for the sort to spill to disk.

Aggregation during sorting requires one or more of the following three stages of

aggregation to ensure that proper results are returned.

v The first stage of aggregation, partial aggregation, calculates the aggregate values

until the sort heap is filled. During partial aggregation, non-aggregated data is

taken in and partial aggregates are produced. If the sort heap is filled, the rest of

the data spills to disk, including all of the partial aggregations that have been

calculated in the current sort heap. After the sort heap is reset, new aggregations

are started.

v The second stage of aggregation, intermediate aggregation, takes all of the spilled

sort runs and aggregates further on the grouping keys. The aggregation cannot

be completed, because the grouping key columns are a subset of the distribution

key columns. Intermediate aggregation uses existing partial aggregates to

produce new partial aggregates. This stage does not always occur. It is used for

both intra-partition and inter-partition parallelism. In intra-partition parallelism,

the grouping is finished when a global grouping key is available. In

inter-partition parallelism, this occurs when the grouping key is a subset of the

distribution key dividing groups across database partitions, and thus requires

redistribution to complete the aggregation. A similar case exists in intra-partition

parallelism, when each agent finishes merging its spilled sort runs before

reducing to a single agent to complete the aggregation.

v The last stage of aggregation, final aggregation, uses all of the partial aggregates

and produces final aggregates. This step always takes place in a GROUP BY

operator. Sorting cannot perform complete aggregation, because it cannot be

Chapter 3. Factors affecting performance 227

guaranteed that the sort will not split. Complete aggregation takes in

non-aggregated data and produces final aggregates. This method of aggregation

is usually used to group data that is already in the correct order.

Optimization strategies

Optimization strategies for intra-partition parallelism

The optimizer can choose an access plan to execute a query in parallel within a

single database partition if a degree of parallelism is specified when the SQL

statement is compiled.

At run time, multiple database agents called subagents are created to execute the

query. The number of subagents is less than or equal to the degree of parallelism

that was specified when the SQL statement was compiled.

To parallelize an access plan, the optimizer divides it into a portion that is run by

each subagent and a portion that is run by the coordinating agent. The subagents

pass data through table queues to the coordinating agent or to other subagents. In

a partitioned database environment, subagents can send or receive data through

table queues from subagents in other database partitions.

Intra-partition parallel scan strategies

Relational scans and index scans can be performed in parallel on the same table or

index. For parallel relational scans, the table is divided into ranges of pages or

rows, which are assigned to subagents. A subagent scans its assigned range and is

assigned another range when it has completed work on the current range.

For parallel index scans, the index is divided into ranges of records based on index

key values and the number of index entries for a key value. The parallel index

scan proceeds like a parallel table scan, with subagents being assigned a range of

records. A subagent is assigned a new range when it has completed work on the

current range.

The optimizer determines the scan unit (either a page or a row) and the scan

granularity.

Parallel scans provide an even distribution of work among the subagents. The goal

of a parallel scan is to balance the load among the subagents and to keep them

equally busy. If the number of busy subagents equals the number of available

processors, and the disks are not overworked with I/O requests, the machine

resources are being used effectively.

Other access plan strategies might cause data imbalance as the query executes. The

optimizer chooses parallel strategies that maintain data balance among subagents.

Intra-partition parallel sort strategies

The optimizer can choose one of the following parallel sort strategies:

v Round-robin sort

This is also known as a redistribution sort. This method uses shared memory to

efficiently redistribute the data as evenly as possible to all subagents. It uses a

round-robin algorithm to provide the even distribution. It first creates an

228 Troubleshooting and Tuning Database Performance

individual sort for each subagent. During the insert phase, subagents insert into

each of the individual sorts in a round-robin fashion to achieve a more even

distribution of data.

v Partitioned sort

This is similar to the round-robin sort in that a sort is created for each subagent.

The subagents apply a hash function to the sort columns to determine into

which sort a row should be inserted. For example, if the inner and outer tables

of a merge join are a partitioned sort, a subagent can use merge join to join the

corresponding table portions and execute in parallel.

v Replicated sort

This sort is used if each subagent requires all of the sort output. One sort is

created and subagents are synchronized as rows are inserted into the sort. When

the sort is complete, each subagent reads the entire sort. If the number of rows is

small, this sort can be used to rebalance the data stream.

v Shared sort

This sort is the same as a replicated sort, except that subagents open a parallel

scan on the sorted result to distribute the data among the subagents in a way

that is similar to a round-robin sort.

Intra-partition parallel temporary tables

Subagents can cooperate to produce a temporary table by inserting rows into the

same table. This is called a shared temporary table. The subagents can open private

scans or parallel scans on the shared temporary table, depending on whether the

data stream is to be replicated or split.

Intra-partition parallel aggregation strategies

Aggregation operations can be performed by subagents in parallel. An aggregation

operation requires the data to be ordered on the grouping columns. If a subagent

can be guaranteed to receive all the rows for a set of grouping column values, it

can perform a complete aggregation. This can happen if the stream is already split

on the grouping columns because of a previous partitioned sort.

Otherwise, the subagent can perform a partial aggregation and use another

strategy to complete the aggregation. Some of these strategies are:

v Send the partially aggregated data to the coordinator agent through a merging

table queue. The coordinator agent completes the aggregation.

v Insert the partially aggregated data into a partitioned sort. The sort is split on

the grouping columns and guarantees that all rows for a set of grouping

columns are contained in one sort partition.

v If the stream needs to be replicated to balance processing, the partially

aggregated data can be inserted into a replicated sort. Each subagent completes

the aggregation using the replicated sort, and receives an identical copy of the

aggregation result.

Intra-partition parallel join strategies

Join operations can be performed by subagents in parallel. Parallel join strategies

are determined by the characteristics of the data stream.

A join can be parallelized by partitioning or by replicating the data stream on the

inner and outer tables of the join, or both. For example, a nested-loop join can be

parallelized if its outer stream is partitioned for a parallel scan and the inner

Chapter 3. Factors affecting performance 229

stream is again evaluated independently by each subagent. A merged join can be

parallelized if its inner and outer streams are value-partitioned for partitioned

sorts.

Optimization strategies for MDC tables

If you create multidimensional clustering (MDC) tables, the performance of many

queries might improve, because the optimizer can apply additional optimization

strategies. These strategies are primarily based on the improved efficiency of block

indexes, but the advantage of clustering on more than one dimension also permits

faster data retrieval.

MDC table optimization strategies can also exploit the performance advantages of

intra-partition parallelism and inter-partition parallelism. Consider the following

specific advantages of MDC tables:

v Dimension block index lookups can identify the required portions of the table

and quickly scan only the required blocks.

v Because block indexes are smaller than record identifier (RID) indexes, lookups

are faster.

v Index ANDing and ORing can be performed at the block level and combined

with RIDs.

v Data is guaranteed to be clustered on extents, which makes retrieval faster.

v Rows can be deleted faster when rollout can be used.

Consider the following simple example for an MDC table named SALES with

dimensions defined on the REGION and MONTH columns:

 select * from sales

 where month = ’March’ and region = ’SE’

For this query, the optimizer can perform a dimension block index lookup to find

blocks in which the month of March and the SE region occur. Then it can scan only

those blocks to quickly fetch the result set.

Rollout deletion

When conditions permit delete using rollout, this more efficient way to delete rows

from MDC tables is used. The required conditions are:

v The DELETE statement is a searched DELETE, not a positioned DELETE (the

statement does not use the WHERE CURRENT OF clause).

v There is no WHERE clause (all rows are to be deleted), or the only conditions in

the WHERE clause apply to dimensions.

v The table is not defined with the DATA CAPTURE CHANGES clause.

v The table is not the parent in a referential integrity relationship.

v The table does not have ON DELETE triggers defined.

v The table is not used in any MQTs that are refreshed immediately.

v A cascaded delete operation might qualify for rollout if its foreign key is a

subset of the table’s dimension columns.

v The DELETE statement cannot appear in a SELECT statement executing against

the temporary table that identifies the set of affected rows prior to a triggering

SQL operation (specified by the OLD TABLE AS clause on the CREATE

TRIGGER statement).

230 Troubleshooting and Tuning Database Performance

During a rollout deletion, the deleted records are not logged. Instead, the pages

that contain the records are made to look empty by reformatting parts of the

pages. The changes to the reformatted parts are logged, but the records themselves

are not logged.

The default behavior, immediate cleanup rollout, is to clean up RID indexes at delete

time. This mode can also be specified by setting the DB2_MDC_ROLLOUT

registry variable to IMMEDIATE, or by specifying IMMEDIATE on the SET

CURRENT MDC ROLLOUT MODE statement. There is no change in the logging

of index updates, compared to a standard delete operation, so the performance

improvement depends on how many RID indexes there are. The fewer RID

indexes, the better the improvement, as a percentage of the total time and log

space.

An estimate of the amount of log space that is saved can be made with the

following formula:

 S + 38*N - 50*P

where N is the number of records deleted, S is total size of the records deleted,

including overhead such as null indicators and VARCHAR lengths, and P is the

number of pages in the blocks that contain the deleted records. This figure is the

reduction in actual log data. The savings on active log space required is double

that value, due to the saving of space that was reserved for rollback.

Alternatively, you can have the RID indexes updated after the transaction commits,

using deferred cleanup rollout. This mode can also be specified by setting the

DB2_MDC_ROLLOUT registry variable to DEFER, or by specifying DEFERRED

on the SET CURRENT MDC ROLLOUT MODE statement. In a deferred rollout,

RID indexes are cleaned up asynchronously in the background after the delete

commits. This method of rollout can result in significantly faster deletion times for

very large deletes, or when a number of RID indexes exist on the table. The speed

of the overall cleanup operation is increased, because during a deferred index

cleanup, the indexes are cleaned up in parallel, whereas in an immediate index

cleanup, each row in the index is cleaned up one by one. Moreover, the

transactional log space requirement for the DELETE statement is significantly

reduced, because the asynchronous index cleanup logs the index updates by index

page instead of by index key.

Note: Deferred cleanup rollout requires additional memory resources, which are

taken from the database heap. If the database manager is unable to allocate the

memory structures it requires, the deferred cleanup rollout fails, and a message is

written to the administration notification log.

When to use a deferred cleanup rollout

If delete performance is the most important factor, and there are RID indexes

defined on the table, use deferred cleanup rollout. Note that prior to index

cleanup, index-based scans of the rolled-out blocks suffer a small performance

penalty, depending on the amount of rolled-out data. The following issues should

also be considered when deciding between immediate index cleanup and deferred

index cleanup:

v Size of the delete operation

Choose deferred cleanup rollout for very large deletions. In cases where

dimensional DELETE statements are frequently issued on many small MDC

Chapter 3. Factors affecting performance 231

tables, the overhead to asynchronously clean index objects might outweigh the

benefit of time saved during the delete operation.

v Number and type of indexes

If the table contains a number of RID indexes, which require row-level

processing, use deferred cleanup rollout.

v Block availability

If you want the block space freed by the delete operation to be available

immediately after the DELETE statement commits, use immediate cleanup

rollout.

v Log space

If log space is limited, use deferred cleanup rollout for large deletions.

v Memory constraints

Deferred cleanup rollout consumes additional database heap space on all tables

that have deferred cleanup pending.

To disable rollout behavior during deletions, set the DB2_MDC_ROLLOUT

registry variable to OFF or specify NONE on the SET CURRENT MDC ROLLOUT

MODE statement.

Optimization strategies for partitioned tables

Data partition elimination refers to the database server’s ability to determine, based

on query predicates, that only a subset of the data partitions in a table need to be

accessed to answer a query. Data partition elimination is particularly useful when

running decision support queries against a partitioned table.

A partitioned table uses a data organization scheme in which table data is divided

across multiple storage objects, called data partitions or ranges, according to values

in one or more table partitioning key columns of the table. Data from a table is

partitioned into multiple storage objects based on specifications provided in the

PARTITION BY clause of the CREATE TABLE statement. These storage objects can

be in different table spaces, in the same table space, or a combination of both.

The following example demonstrates the performance benefits of data partition

elimination.

 create table custlist(

 subsdate date, province char(2), accountid int)

 partition by range(subsdate) (

 starting from ’1/1/1990’ in ts1,

 starting from ’1/1/1991’ in ts1,

 starting from ’1/1/1992’ in ts1,

 starting from ’1/1/1993’ in ts2,

 starting from ’1/1/1994’ in ts2,

 starting from ’1/1/1995’ in ts2,

 starting from ’1/1/1996’ in ts3,

 starting from ’1/1/1997’ in ts3,

 starting from ’1/1/1998’ in ts3,

 starting from ’1/1/1999’ in ts4,

 starting from ’1/1/2000’ in ts4,

 starting from ’1/1/2001’

 ending ’12/31/2001’ in ts4)

Assume that you are only interested in customer information for the year 2000.

 select * from custlist

 where subsdate between ’1/1/2000’ and ’12/31/2000’

232 Troubleshooting and Tuning Database Performance

As Figure 33 shows, the database server determines that only one data partition in

table space TS4 must be accessed to resolve this query.

Another example of data partition elimination is based on the following scheme:

 create table multi (

 sale_date date, region char(2))

 partition by (sale_date) (

 starting ’01/01/2005’

 ending ’12/31/2005’

 every 1 month)

 create index sx on multi(sale_date)

 create index rx on multi(region)

Assume that you issue the following query:

 select * from multi

 where sale_date between ’6/1/2005’

 and ’7/31/2005’ and region = ’NW’

Without table partitioning, one likely plan is index ANDing. Index ANDing

performs the following tasks:

v Reads all relevant index entries from each index

v Saves both sets of row identifiers (RIDs)

v Matches RIDs to determine which occur in both indexes

v Uses the RIDs to fetch the rows

As Figure 34 on page 234 demonstrates, with table partitioning, the index is read to

find matches for both REGION and SALE_DATE, resulting in the fast retrieval of

matching rows.

Figure 33. The performance benefits of data partition elimination

Chapter 3. Factors affecting performance 233

DB2 Explain

You can also use the explain facility to determine the data partition elimination

plan that was chosen by the query optimizer. The “DP Elim Predicates”

information shows which data partitions are scanned to resolve the following

query:

 select * from custlist

 where subsdate between ’12/31/1999’ and ’1/1/2001’

Arguments:

DPESTFLG: (Number of data partitions accessed are Estimated)

 FALSE

DPLSTPRT: (List of data partitions accessed)

 9-11

DPNUMPRT: (Number of data partitions accessed)

 3

DP Elim Predicates:

Range 1)

 Stop Predicate: (Q1.A <= ’01/01/2001’)

 Start Predicate: (’12/31/1999’ <= Q1.A)

Objects Used in Access Plan:

 Schema: MRSRINI

 Name: CUSTLIST

 Type: Data Partitioned Table

 Time of creation: 2005-11-30-14.21.33.857039

 Last statistics update: 2005-11-30-14.21.34.339392

 Number of columns: 3

 Number of rows: 100000

 Width of rows: 19

 Number of buffer pool pages: 1200

 Number of data partitions: 12

 Distinct row values: No

 Tablespace name: <VARIOUS>

Figure 34. Optimizer decision path for both table partitioning and index ANDing

234 Troubleshooting and Tuning Database Performance

Multi-column support

Data partition elimination works in cases where multiple columns are used as the

table partitioning key. For example:

 create table sales (

 year int, month int)

 partition by range(year, month) (

 starting from (2001,1)

 ending at (2001,3) in ts1,

 ending at (2001,6) in ts2,

 ending at (2001,9) in ts3,

 ending at (2001,12) in ts4,

 ending at (2002,3) in ts5,

 ending at (2002,6) in ts6,

 ending at (2002,9) in ts7,

 ending at (2002,12) in ts8)

 select * from sales where year = 2001 and month < 8

The query optimizer deduces that only data partitions in TS1, TS2, and TS3 must

be accessed to resolve this query.

Note: In the case where multiple columns make up the table partitioning key, data

partition elimination is only possible when you have predicates on the leading

columns of the composite key, because the non-leading columns that are used for

the table partitioning key are not independent.

Multi-range support

It is possible to obtain data partition elimination with data partitions that have

multiple ranges (that is, those that are ORed together). Using the SALES table that

was created in the previous example, execute the following query:

 select * from sales

 where (year = 2001 and month <= 3)

 or (year = 2002 and month >= 10)

The database server only accesses data for the first quarter of 2001 and the last

quarter of 2002.

Generated columns

You can use generated columns as table partitioning keys. For example:

 create table sales (

 a int, b int generated always as (a / 5))

 in ts1,ts2,ts3,ts4,ts5,ts6,ts7,ts8,ts9,ts10

 partition by range(b) (

 starting from (0)

 ending at (1000) every (50))

In this case, predicates on the generated column are used for data partition

elimination. In addition, when the expression that is used to generate the columns

is monotonic, the database server translates predicates on the source columns into

predicates on the generated columns, which enables data partition elimination on

the generated columns. For example:

 select * from sales where a > 35

The database server generates an extra predicate on b (b > 7) from a (a > 35), thus

allowing data partition elimination.

Chapter 3. Factors affecting performance 235

Join predicates

Join predicates can also be used in data partition elimination, if the join predicate

is pushed down to the table access level. The join predicate is only pushed down

to the table access level on the inner join of a nested loop join (NLJN).

Consider the following tables:

 create table t1 (a int, b int)

 partition by range(a,b) (

 starting from (1,1)

 ending (1,10) in ts1,

 ending (1,20) in ts2,

 ending (2,10) in ts3,

 ending (2,20) in ts4,

 ending (3,10) in ts5,

 ending (3,20) in ts6,

 ending (4,10) in ts7,

 ending (4,20) in ts8)

 create table t2 (a int, b int)

The following two predicates will be used:

 P1: T1.A = T2.A

 P2: T1.B > 15

In this example, the exact data partitions that will be accessed at compile time

cannot be determined, due to unknown outer values of the join. In this case, as

well as cases where host variables or parameter markers are used, data partition

elimination occurs at run time when the necessary values are bound.

During run time, when T1 is the inner of an NLJN, data partition elimination

occurs dynamically, based on the predicates, for every outer value of T2.A. During

run time, the predicates T1.A = 3 and T1.B > 15 are applied for the outer value

T2.A = 3, which qualifies the data partitions in table space TS6 to be accessed.

Suppose that column A in tables T1 and T2 have the following values:

 Outer table T2:

column A

Inner table T1:

column A

Inner table T1:

column B

Inner table T1: data

partition location

2 3 20 TS6

3 2 10 TS3

3 2 18 TS4

3 15 TS6

1 40 TS3

To perform a nested loop join (assuming a table scan for the inner table), the

database manager performs the following steps:

1. Reads the first row from T2. The value for A is 2.

2. Binds the T2.A value (which is 2) to the column T2.A in the join predicate T1.A

= T2.A. The predicate becomes T1.A = 2.

3. Applies data partition elimination using the predicates T1.A = 2 and T1.B > 15.

This qualifies data partitions in table space TS4.

4. After applying T1.A = 2 and T1.B > 15, scans the data partitions in table space

TS4 of table T1 until a row is found. The first qualifying row found is row 3 of

T1.

5. Joins the matching row.

236 Troubleshooting and Tuning Database Performance

6. Scans the data partitions in table space TS4 of table T1 until the next match

(T1.A = 2 and T1.B > 15) is found. No more rows are found.

7. Repeats steps 1 through 6 for the next row of T2 (replacing the value of A with

3) until all the rows of T2 have been processed.

Indexes over XML data

Nonpartitioned XML indexes are maintained by the database manager during table

insert, update, and delete operations in the same way as any other relational

indexes on a partitioned table are maintained. Nonpartitioned indexes over XML

data on a partitioned table are used in the same way as indexes over XML data on

a nonpartitioned table to speed up query processing. Using the query predicate, it

is possible to determine that only a subset of the data partitions in the partitioned

table need to be accessed to answer the query.

Data partition elimination and indexes over XML columns can work together to

enhance query performance. Consider the following partitioned table:

 create table employee (a int, b xml, c xml)

 index in tbspx

 partition by (a) (

 starting 0 ending 10,

 ending 20,

 ending 30,

 ending 40)

Now consider the following query:

 select * from employee

 where a > 21

 and xmlexist(’$doc/Person/Name/First[.="Eric"]’

 passing "EMPLOYEE"."B" as "doc")

The optimizer can immediately eliminate the first two partitions based on the

predicate a > 21. If the nonpartitioned index over XML data on column B is

chosen by the optimizer in the query plan, an index scan using the index over

XML data will be able to take advantage of the data partition elimination result

from the optimizer and only return results belonging to partitions that were not

eliminated by the relational data partition elimination predicates.

Improving query optimization with materialized query tables

Materialized query tables (MQTs) are a powerful way to improve response time for

complex queries.

This is especially true for queries that might require one or more of the following

operations:

v Aggregate data over one or more dimensions

v Joins and aggregate data over a group of tables

v Data from a commonly accessed subset of data; that is, from a “hot” horizontal

or vertical database partition

v Re-partitioned data from a table, or part of a table, in a partitioned database

environment

Knowledge of MQTs is integrated into the SQL and XQuery compiler. In the

compiler, the query rewrite phase and the optimizer match queries with MQTs and

determine whether to substitute an MQT in a query that accesses the base tables. If

Chapter 3. Factors affecting performance 237

an MQT is used, the explain facility can provide information about which MQT

was selected. In this case, users need access privileges against the base tables, not

rerouted MQTs.

Because MQTs behave like regular tables in many ways, the same guidelines for

optimizing data access using table space definitions and indexes, and by invoking

the runstats utility, apply to MQTs.

To help you to understand the power of MQTs, the following example shows how

a multidimensional analysis query can take advantage of MQTs. Consider a

database warehouse that contains a set of customers and a set of credit card

accounts. The warehouse records the set of transactions that are made with the

credit cards. Each transaction contains a set of items that are purchased together.

This schema is classified as a multi-star schema, because it has two large tables,

one containing transaction items, and the other identifying the purchase

transactions.

Three hierarchical dimensions describe a transaction: product, location, and time.

The product hierarchy is stored in two normalized tables representing the product

group and the product line. The location hierarchy contains city, state, and country,

region, or territory information, and is stored in a single denormalized table. The

time hierarchy contains day, month, and year information, and is encoded in a

single date field. The date dimensions are extracted from the date field of the

transaction using built-in functions. Other tables in this schema represent account

information for customers, and customer information.

An MQT is created for sales at each level of the following hierarchies:

v Product

v Location

v Time, composed of year, month, and day

Many queries can be satisfied by this stored aggregate data. The following example

shows how to create an MQT that computes the sum and count of sales data along

the product group and line dimensions; along the city, state, and country, region,

or territory dimensions; and along the time dimension. It also includes several

other columns in its GROUP BY clause.

 create table dba.pg_salessum

 as (

 select l.id as prodline, pg.id as pgroup,

 loc.country, loc.state, loc.city,

 l.name as linename, pg.name as pgname,

 year(pdate) as year, month(pdate) as month,

 t.status,

 sum(ti.amount) as amount,

 count(*) as count

 from cube.transitem as ti, cube.trans as t,

 cube.loc as loc, cube.pgroup as pg, cube.prodline as l

 where

 ti.transid = t.id and

 ti.pgid = pg.id and

 pg.lineid = l.id and

 t.locid = loc.id and

 year(pdate) > 1990

 group by l.id, pg.id, loc.country, loc.state, loc.city,

 year(pdate), month(pdate), t.status, l.name, pg.name

)

 data initially deferred refresh deferred;

 refresh table dba.pg_salessum;

238 Troubleshooting and Tuning Database Performance

Queries that can take advantage of such precomputed sums include the following:

v Sales by month and product group

v Total sales for the years after 1990

v Sales for 1995 or 1996

v The sum of sales for a specific product group or product line

v The sum of sales for a specific product group or product line in 1995 and 1996

v The sum of sales for a specific country, region, or territory

Although the precise answer for any of these queries is not included in the MQT,

the cost of computing the answer by MQT could be significantly less than the cost

of using a large base table, because a portion of the answer is already computed.

MQTs can reduce the need for expensive joins, sorts, and aggregation of base data.

The following sample queries obtain significant performance improvements

because they can use the already computed results in the example MQT.

The first query returns the total sales for 1995 and 1996:

 set current refresh age=any

 select year(pdate) as year, sum(ti.amount) as amount

 from cube.transitem as ti, cube.trans as t,

 cube.loc as loc, cube.pgroup as pg, cube.prodline as l

 where

 ti.transid = t.id and

 ti.pgid = pg.id and

 pg.lineid = l.id and

 t.locid = loc.id and

 year(pdate) in (1995, 1996)

 group by year(pdate);

The second query returns the total sales by product group for 1995 and 1996:

 set current refresh age=any

 select pg.id as "PRODUCT GROUP", sum(ti.amount) as amount

 from cube.transitem as ti, cube.trans as t,

 cube.loc as loc, cube.pgroup as pg, cube.prodline as l

 where

 ti.transid = t.id and

 ti.pgid = pg.id and

 pg.lineid = l.id and

 t.locid = loc.id and

 year(pdate) in (1995, 1996)

 group by pg.id;

The larger the base tables, the more significant are the potential improvements in

response time when using MQTs. MQTs can effectively eliminate overlapping work

among queries. Computations are performed only once when MQTs are built, and

once each time that they are refreshed, and their content can be reused during the

execution of many queries.

Explain facility

The DB2 explain facility provides detailed information about the access plan that

the optimizer chooses for an SQL or XQuery statement.

The information describes the decision criteria that are used to choose the access

plan, and can help you to tune the statement or your instance configuration to

improve performance. More specifically, explain information can help you:

Chapter 3. Factors affecting performance 239

v To understand how the database manager accesses tables and indexes to satisfy

your query

v To evaluate your performance-tuning actions. After altering a statement or

making a configuration change, examine the new explain information to

determine how your action has affected performance.

The captured information includes:

v The sequence of operations that were used to process the query

v Cost information

v Predicates and selectivity estimates for each predicate

v Statistics for all objects that were referenced in the SQL or XQuery statement at

the time that the explain information was captured

v Values for host variables, parameter markers, or special registers that were used

to re-optimize the SQL or XQuery statement

The explain facility is invoked by issuing the EXPLAIN statement, which captures

information about the access plan chosen for a specific explainable statement and

writes this information to explain tables. You must create the explain tables prior to

issuing the EXPLAIN statement. You can also set CURRENT EXPLAIN MODE or

CURRENT EXPLAIN SNAPSHOT, special registers that control the behavior of the

explain facility.

For privileges and authorities that are required to use the explain utility, see the

description of the EXPLAIN statement. The EXPLAIN authority can be granted to

an individual who requires access to explain information but not to the data that is

stored in the database. This authority is a subset of the database administrator

authority and has no inherent privilege to access data stored in tables.

To display explain information, you can use either a command-line tool or Visual

Explain. The tool that you use determines how you set the special registers that

control the behavior of the explain facility. For example, if you expect to use Visual

Explain only, you need only capture snapshot information. If you expect to

perform detailed analysis with one of the command-line utilities or with custom

SQL or XQuery statements against the explain tables, you should capture all

explain information.

Tuning SQL statements using the explain facility

The explain facility is used to display the query access plan that was chosen by the

query optimizer to run an SQL statement.

It contains extensive details about the relational operations used to run the SQL

statement, such as the plan operators, their arguments, order of execution, and

costs. Because the query access plan is one of the most critical factors in query

performance, it is important to understand explain facility output when diagnosing

query performance problems.

Explain information is typically used to:

v Understand why application performance has changed

v Evaluate performance tuning efforts

Analyzing performance changes

To help you understand the reasons for changes in query performance, perform the

following steps to obtain “before and after” explain information:

240 Troubleshooting and Tuning Database Performance

1. Capture explain information for the query before you make any changes, and

save the resulting explain tables. Alternatively, you can save output from the

db2exfmt utility. However, having explain information in the explain tables

makes it easy to query them with SQL, and facilitates more sophisticated

analysis. As well, it provides all of the obvious maintenance benefits of having

data in a relational DBMS. The db2exfmt tool can be run at any time.

2. Save or print the current catalog statistics if you cannot access Visual Explain to

view this information. You can also use the db2look command to help perform

this task. In DB2 Version 9.7, you can collect an explain snapshot when the

explain tables are populated. The explain snapshot contains all of the relevant

statistics at the time that the statement is explained. The db2exfmt utility will

automatically format the statistics that are contained in the snapshot. This is

especially important when using automatic or real-time statistics collection,

because the statistics used for query optimization might not yet be in the

system catalog tables, or they might have changed between the time that the

statement was explained and when the statistics were retrieved from the system

catalog.

3. Save or print the data definition language (DDL) statements, including those

for CREATE TABLE, CREATE VIEW, CREATE INDEX, and CREATE

TABLESPACE. The db2look command will also perform this task.

The information that you collect in this way provides a reference point for future

analysis. For dynamic SQL statements, you can collect this information when you

run your application for the first time. For static SQL statements, you can also

collect this information at bind time. It is especially important to collect this

information before a major system change, such as the installation of a new service

level or DB2 release, or before a significant configuration change, such as adding

or dropping database partitions and redistributing data. This is because these types

of system changes might result in an adverse change to access plans. Although

access plan regression should be a rare occurrence, having this information

available will help you to resolve performance regressions faster. To analyze a

performance change, compare the information that you collected previously with

information about the query and environment that you collect when you start your

analysis.

As a simple example, your analysis might show that an index is no longer being

used as part of an access plan. Using the catalog statistics information displayed by

Visual Explain or db2exfmt, you might notice that the number of index levels

(NLEVELS column) is now substantially higher than when the query was first

bound to the database. You might then choose to perform one of the following

actions:

v Reorganize the index

v Collect new statistics for your table and indexes

v Collect explain information when rebinding your query

After you perform one of these actions, examine the access plan again. If the index

is being used once again, query performance might no longer be a problem. If the

index is still not being used, or if performance is still a problem, try a second

action and examine the results. Repeat these steps until the problem is resolved.

Evaluating performance tuning efforts

You can take a number of actions to help improve query performance, such as

adjusting configuration parameters, adding containers, or collecting fresh catalog

statistics.

Chapter 3. Factors affecting performance 241

After you make a change in any of these areas, you can use the explain facility to

determine the impact, if any, that the change has had on the chosen access plan.

For example, if you add an index or materialized query table (MQT) based on

index guidelines, the explain data can help you to determine whether the index or

materialized query table is actually being used as expected.

Although the explain output provides information that allows you to determine

the access plan that was chosen and its relative cost, the only way to accurately

measure the performance improvement for a query is to use benchmark testing

techniques.

Guidelines for capturing explain information

Explain data can be captured by request when an SQL or XQuery statement is

compiled.

If incremental bind SQL or XQuery statements are compiled at run time, data is

placed in the explain tables at run time, not at bind time. For these statements, the

inserted explain table qualifier and authorization ID are that of the package owner,

not of the user running the package.

Explain information is captured only when an SQL or XQuery statement is

compiled. After initial compilation, dynamic query statements are recompiled

when a change to the environment requires it, or when the explain facility is

active. If you issue the same PREPARE statement for the same query statement, the

query is compiled and explain data is captured every time that this statement is

prepared or executed.

If a package is bound using the REOPT ONCE or ALWAYS bind option, SQL or

XQuery statements containing host variables, parameter markers, global variables,

or special registers are compiled, and the access path is created using real values

for these variables if they are known, or default estimates if the values are not

known at compilation time.

If the REOPT ONCE option is used, an attempt is made to match the specified

SQL or XQuery statement with the same statement in the package cache. Values for

this already re-optimized and cached query statement will be used to re-optimize

the specified query statement. If the user has the required access privileges, the

explain tables will contain the newly re-optimized access plan and the values that

were used for re-optimization.

In a multi-partition database system, the statement should be explained on the

same database partition on which it was originally compiled and re-optimized

using REOPT ONCE; otherwise, an error is returned.

Capturing information in the explain tables

v Static or incremental bind SQL and XQuery statements

Specify either EXPLAIN ALL or EXPLAIN YES options on the BIND or the

PREP command, or include a static EXPLAIN statement in the source program.

v Dynamic SQL and XQuery statements

Explain table information is captured in any of the following cases.

– If the CURRENT EXPLAIN MODE special register is set to:

- YES: The SQL and XQuery compiler captures explain data and executes the

query statement.

242 Troubleshooting and Tuning Database Performance

- EXPLAIN: The SQL and XQuery compiler captures explain data, but does

not execute the query statement.

- RECOMMEND INDEXES: The SQL and XQuery compiler captures explain

data, and recommended indexes are placed in the ADVISE_INDEX table,

but the query statement is not executed.

- EVALUATE INDEXES: The SQL and XQuery compiler uses indexes that

were placed by the user in the ADVISE_INDEX table for evaluation. In this

mode, all dynamic statements are explained as though these virtual indexes

were available. The query compiler then chooses to use the virtual indexes

if they improve the performance of the statements. Otherwise, the indexes

are ignored. To find out if proposed indexes are useful, review the

EXPLAIN results.

- REOPT: The query compiler captures explain data for static or dynamic

SQL or XQuery statements during statement re-optimization at execution

time, when actual values for host variables, parameter markers, global

variables, or special registers are available.
v If the EXPLAIN ALL option has been specified on the BIND or PREP command,

the query compiler captures explain data for dynamic SQL and XQuery

statements at run time, even if the CURRENT EXPLAIN MODE special register

is set to NO.

Capturing explain snapshot information

When an explain snapshot is requested, explain information is stored in the

SNAPSHOT column of the EXPLAIN_STATEMENT table in a format that is

required by Visual Explain. This format is not usable by other applications.

Additional information about the explain snapshot, including information about

data objects and data operators, is available from Visual Explain itself.

Explain snapshot data is captured when an SQL or XQuery statement is compiled

and explain data has been requested, as follows:

v Static or incremental bind SQL and XQuery statements

An explain snapshot is captured when either the EXPLSNAP ALL or the

EXPLSNAP YES clause is specified on the BIND or the PREP command, or when

the source program includes a static EXPLAIN statement that uses a FOR

SNAPSHOT or a WITH SNAPSHOT clause.

v Dynamic SQL and XQuery statements

An explain snapshot is captured in any of the following cases.

– You issue an EXPLAIN statement with a FOR SNAPSHOT or a WITH

SNAPSHOT clause. With the former, only explain snapshot information is

captured; with the latter, all explain information is captured.

– If the CURRENT EXPLAIN SNAPSHOT special register is set to:

- YES: The SQL and XQuery compiler captures explain snapshot data and

executes the query statement.

- EXPLAIN: The SQL and XQuery compiler captures explain snapshot data,

but does not execute the query statement.
– You specify the EXPLSNAP ALL option on the BIND or PREP command. The

query compiler captures explain snapshot data at run time, even if the

CURRENT EXPLAIN SNAPSHOT special register is set to NO.

Guidelines for using explain information

You can use explain information to understand why application performance has

changed or to evaluate performance tuning efforts.

Chapter 3. Factors affecting performance 243

Analysis of performance changes

To help you understand the reasons for changes in query performance, you need

“before and after” explain information, which you can obtain by performing the

following steps:

1. Capture explain information for the query before you make any changes and

save the resulting explain tables. Alternatively, save output from the db2exfmt

explain tool.

2. Save or print the current catalog statistics if you cannot access Visual Explain to

view this information. You could use the db2look productivity tool to help you

perform this task.

3. Save or print the data definition language (DDL) statements, including

CREATE TABLE, CREATE VIEW, CREATE INDEX, or CREATE TABLESPACE.

The information that you collect in this way provides a reference point for future

analysis. For dynamic SQL or XQuery statements, you can collect this information

when you run your application for the first time. For static SQL and XQuery

statements, you can collect this information at bind time. To analyze a performance

change, compare the information that you collect with this reference information

that was collected previously.

For example, your analysis might show that an index is no longer being used

when determining an access path. Using the catalog statistics information in Visual

Explain, you might notice that the number of index levels (the NLEVELS column)

is now substantially higher than when the query was first bound to the database.

You might then choose to perform one of the following actions:

v Reorganize the index

v Collect new statistics for your table and indexes

v Collect explain information when rebinding your query

After you perform one of these actions, examine the access plan again. If the index

is being used, query performance might no longer be a problem. If the index is still

not being used, or if performance is still a problem, choose another action from

this list and examine the results. Repeat these steps until the problem is resolved.

Evaluation of performance tuning efforts

You can take a number of actions to help improve query performance, such as

updating configuration parameters, adding containers, collecting fresh catalog

statistics, and so on.

After you make a change in any of these areas, use the explain facility to

determine what impact, if any, the change has had on the chosen access plan. For

example, if you add an index or materialized query table (MQT) based on the

index guidelines, the explain data can help you to determine whether or not the

index or MQT is actually being used as expected.

Although the explain output enables you to determine the access plan that was

chosen and its relative cost, the only way to accurately measure the performance

improvement for a specific query is to use benchmark testing techniques.

Guidelines for analyzing explain information

The primary use for explain information is the analysis of access paths for query

statements. There are a number of ways in which analyzing the explain data can

help you to tune your queries and environment.

244 Troubleshooting and Tuning Database Performance

Consider the following kinds of analysis:

v Index use

The proper indexes can significantly benefit performance. Using explain output,

you can determine whether the indexes that you have created to help a specific

set of queries are being used. Look for index usage in the following areas:

– Join predicates

– Local predicates

– GROUP BY clause

– ORDER BY clause

– WHERE XMLEXISTS clause

– The select list

You can also use the explain facility to evaluate whether a different index or no

index at all might be better. After you create a new index, use the RUNSTATS

command to collect statistics for that index, and then recompile your query.

Over time, you might notice (through explain data) that a table scan is being

used instead of an index scan. This can result from a change in the clustering of

the table data. If the index that was previously being used now has a low cluster

ratio, you might want to:

– Reorganize the table to cluster its data according to that index

– Use the RUNSTATS command to collect statistics for both index and table

– Recompile the query

To determine whether reorganizing the table has improved the access plan,

examine explain output for the recompiled query.

v Access type

Analyze the explain output, and look for data access types that are not usually

optimal for the type of application that you are running. For example:

– Online transaction processing (OLTP) queries

OLTP applications are prime candidates for index scans with range-delimiting

predicates, because they tend to return only a few rows that are qualified by

an equality predicate against a key column. If your OLTP queries are using a

table scan, you might want to analyze the explain data to determine why an

index scan is not being used.

– Browse-only queries

The search criteria for a “browse” type query can be very vague, resulting in

a large number of qualifying rows. If users usually look at only a few screens

of output data, you might specify that the entire answer set need not be

computed before some results are returned. In this case, the goals of the user

are different than the basic operating principle of the optimizer, which

attempts to minimize resource consumption for the entire query, not just the

first few screens of data.

For example, if the explain output shows that both merge scan join and sort

operators were used in the access plan, the entire answer set will be

materialized in a temporary table before any rows are returned to the

application. In this case, you can attempt to change the access plan by using

the OPTIMIZE FOR clause on the SELECT statement. If you specify this

option, the optimizer can attempt to choose an access plan that does not

produce the entire answer set in a temporary table before returning the first

rows to the application.
v Join methods

Chapter 3. Factors affecting performance 245

If a query joins two tables, check the type of join being used. Joins that involve

more rows, such as those in decision-support queries, usually run faster with a

hash join or a merge join. Joins that involve only a few rows, such as those in

OLTP queries, typically run faster with nested-loop joins. However, there might

be extenuating circumstances in either case—such as the use of local predicates

or indexes—that could change how these typical joins work.

Using access plans to self-diagnose performance problems with

REFRESH TABLE and SET INTEGRITY statements

Invoking the explain utility against REFRESH TABLE or SET INTEGRITY

statements enables you to generate access plans that can be used to self-diagnose

performance problems with these statements. This can help you to better maintain

your materialized query tables (MQTs).

To get the access plan for a REFRESH TABLE or a SET INTEGRITY statement, use

either of the following methods:

v Use the EXPLAIN PLAN FOR REFRESH TABLE or EXPLAIN PLAN FOR SET

INTEGRITY option on the EXPLAIN statement.

v Set the CURRENT EXPLAIN MODE special register to EXPLAIN before issuing

the REFRESH TABLE or SET INTEGRITY statement, and then set the CURRENT

EXPLAIN MODE special register to NO afterwards.

Restrictions

v The REFRESH TABLE and SET INTEGRITY statements do not qualify for

re-optimization; therefore, the REOPT explain mode (or explain snapshot) is not

applicable to these two statements.

v The WITH REOPT ONCE clause of the EXPLAIN statement, which indicates

that the specified explainable statement is to be re-optimized, is not applicable to

the REFRESH TABLE and SET INTEGRITY statements.

Scenario

This scenario shows how you can generate and use access plans from EXPLAIN

and REFRESH TABLE statements to self-diagnose the cause of your performance

problems.

1. Create and populate your tables. For example:

 create table t (

 i1 int not null,

 i2 int not null,

 primary key (i1)

);

 insert into t values (1,1), (2,1), (3,2), (4,2);

 create table mqt as (

 select i2, count(*) as cnt from t group by i2

)

 data initially deferred

 refresh deferred;

2. Issue the EXPLAIN and REFRESH TABLE statements, as follows:

 explain plan for refresh table mqt;

This step can be replaced by setting the EXPLAIN mode on the SET CURRENT

EXPLAIN MODE special register, as follows:

246 Troubleshooting and Tuning Database Performance

set current explain mode explain;

 refresh table mqt;

 set current explain mode no;

3. Use the db2exfmt command to format the contents of the explain tables and

obtain the access plan. This tool is located in the misc subdirectory of the

instance sqllib directory.

 db2exfmt –d dbname -o refresh.exp -1

4. Analyze the access plan to determine the cause of the performance problem. In

the previous example, if T is a large table, a table scan would be very

expensive. Creating an index might improve the performance of the query.

Tools for collecting and analyzing explain information

The DB2 database server has a comprehensive explain facility that provides

detailed information about the access plan that the optimizer chooses for an SQL

or XQuery statement.

The tables that store explain data are accessible on all supported platforms and

contain information for both static and dynamic SQL and XQuery statements.

Several tools are available to give you the flexibility that you need to capture,

display, and analyze explain information.

Detailed query optimizer information that enables the in-depth analysis of an

access plan is stored in explain tables that are separate from the actual access plan

itself. Use one or more of the following methods to get information from the

explain tables:

v Use the db2exfmt tool to display explain information in formatted output.

v Write your own queries against the explain tables. Writing your own queries

enables the easy manipulation of output, comparisons among different queries,

or comparisons among executions of the same query over time.

Use the db2expln tool to see the access plan information that is available for one or

more packages of static SQL or XQuery statements. This utility shows the actual

implementation of the chosen access plan; it does not show optimizer information.

By examining the generated access plan, the db2expln tool provides a relatively

compact, verbal overview of the operations that will occur at run time.

The command line explain tools can be found in the misc subdirectory of the sqllib

directory.

The following table summarizes the different tools that are available with the DB2

explain facility. Use this table to select the tool that is most suitable for your

environment and needs.

 Table 53. Explain Facility Tools

Desired characteristics Explain tables db2expln db2exfmt

Text output Yes Yes

“Quick and dirty” static SQL and XQuery

analysis

 Yes

Static SQL and XQuery support Yes Yes Yes

Dynamic SQL and XQuery support Yes Yes Yes

CLI application support Yes Yes

Available to DRDA® Application

Requesters

Yes

Chapter 3. Factors affecting performance 247

Table 53. Explain Facility Tools (continued)

Desired characteristics Explain tables db2expln db2exfmt

Detailed optimizer information Yes Yes

Suited for analysis of multiple statements Yes Yes Yes

Information is accessible from within an

application

Yes

Displaying catalog statistics that are in effect at explain time

The explain facility captures the statistics that are in effect when a statement is

explained. These statistics might be different than those that are stored in the

system catalog, especially if real-time statistics gathering is enabled. If the explain

tables are populated, but an explain snapshot was not created, only some statistics

are recorded in the EXPLAIN_OBJECT table.

To capture all catalog statistics that are relevant to the statement being explained,

create an explain snapshot at the same time that explain tables are being

populated, then use the SYSPROC.EXPLAIN_FORMAT_STATS scalar function to

format the catalog statistics in the snapshot.

If the db2exfmt tool is used to format the explain information, and an explain

snapshot was collected, the tool automatically uses the

SYSPROC.EXPLAIN_FORMAT_STATS function to display the catalog statistics.

The explain tables and organization of explain information

All explain information is organized around the concept of an explain instance. An

explain instance represents one invocation of the explain facility for one or more

SQL or XQuery statements. The explain information captured in one explain

instance includes the compilation environment as well as the access plan chosen to

satisfy the SQL or XQuery statement being compiled.

For example, an explain instance might consist of any one of the following:

v All eligible SQL or XQuery statements in one package, for static query

statements. For SQL statements (including those that query XML data), you can

capture explain information for CALL, Compound SQL (Dynamic), DELETE,

INSERT, MERGE, REFRESH TABLE, SELECT, SET INTEGRITY, SELECT INTO,

UPDATE, VALUES, and VALUES INTO statements. In the case of XQuery

statements, you can obtain explain information for XQUERY db2-fn:xmlcolumn

and XQUERY db2-fn:sqlquery statements.

Note: REFRESH TABLE and SET INTEGRITY statements are only compiled

dynamically.

v One particular SQL statement, for incremental bind SQL statements

v One particular SQL statement, for dynamic SQL statements

v Each EXPLAIN statement (dynamic or static)

The explain facility is invoked by issuing the EXPLAIN statement, which captures

information about the access plan chosen for a specific explainable statement and

writes this information to explain tables. You must create the explain tables prior to

issuing the EXPLAIN statement. To create them, run the EXPLAIN.DDL script that

you can find in the misc subdirectory of the sqllib subdirectory.

248 Troubleshooting and Tuning Database Performance

You can also create, drop, and validate explain tables using the

SYSPROC.SYSINSTALLOBJECTS procedure. The tables can be created under a

specific schema and table space. You can find an example in the EXPLAIN.DDL

file.

Explain tables can be common to more than one user. The tables can be defined for

one user, and then aliases pointing to the defined tables can be created for each

additional user. Alternatively, the explain tables can be defined under the

SYSTOOLS schema. The explain facility defaults to the SYSTOOLS schema if no

other explain tables or aliases are found under the user’s session ID for dynamic

SQL or XQuery statements, or under the statement authorization ID for static SQL

or XQuery statements. Each user sharing the common explain tables must hold the

INSERT privilege on those tables.

 Table 54. Summary of the explain tables

Table Name Description

ADVISE_INDEX Stores information about recommended indexes.

The table can be populated by the query compiler,

the db2advis command, or a user. This table is

used:

v To get recommended indexes

v To evaluate indexes based on input about

proposed indexes

ADVISE_INSTANCE Contains information about db2advis execution,

including start time. Contains one row for each

execution of db2advis.

ADVISE_MQT Contains the query that defines each recommended

materialized query table (MQT), the column

statistics for each MQT, such as COLSTATS (in XML

form), NUMROWS, and so on, as well as the

sampling query to obtain detailed statistics for each

MQT.

ADVISE_PARTITION Stores virtual database partitions that are generated

and evaluated by db2advis.

ADVISE_TABLE Stores the data definition language (DDL) for table

creation, using the final Design Advisor

recommendations for MQTs, multidimensional

clustering tables (MDCs), and database partitioning.

ADVISE_WORKLOAD Each row in the table represents an SQL or XQuery

statement in a workload. The db2advis command

uses this table to collect and store workload

information.

EXPLAIN_ARGUMENT Contains information about the unique

characteristics of each individual operator, if any.

EXPLAIN_DIAGNOSTIC Contains an entry for each diagnostic message that

is produced for a particular instance of an explained

statement in the EXPLAIN_STATEMENT table.

EXPLAIN_DIAGNOSTIC_DATA Contains message tokens for specific diagnostic

messages that are recorded in the

EXPLAIN_DIAGNOSTIC table. The message tokens

provide additional information that is specific to the

execution of the SQL statement that generated the

message.

Chapter 3. Factors affecting performance 249

Table 54. Summary of the explain tables (continued)

Table Name Description

EXPLAIN_INSTANCE The main control table for all explain information.

Each row in the explain tables is explicitly linked to

one unique row in this table. Basic information

about the source of the SQL or XQuery statements

being explained, as well as environmental

information, are kept in this table.

EXPLAIN_OBJECT Identifies the data objects that are required by the

access plan generated to satisfy an SQL or XQuery

statement.

EXPLAIN_OPERATOR Contains all of the operators that the query

compiler needs to satisfy an SQL or XQuery

statement.

EXPLAIN_PREDICATE Identifies the predicates that are applied by a

specific operator.

EXPLAIN_STATEMENT Contains the text of the SQL or XQuery statement

as it exists for the different levels of explain

information. The original SQL or XQuery statement,

as entered by the user, is stored in this table with

the version that is used by the optimizer to choose

an access plan.

When an explain snapshot is requested, additional

explain information is recorded to describe the

access plan that was selected by the query

optimizer. This information is stored in the

SNAPSHOT column of the EXPLAIN_STATEMENT

table in the format that is required by Visual

Explain. This format is not usable by other

applications.

EXPLAIN_STREAM Represents the input and output data streams

between individual operators and data objects. The

data objects themselves are represented in the

EXPLAIN_OBJECT table. The operators involved in

a data stream are represented in the

EXPLAIN_OPERATOR table.

Explain information for data objects:

A single access plan might use one or more data objects to satisfy an SQL or

XQuery statement.

 Object statistics

The explain facility records information about each object, such as the following:

v The creation time

v The last time that statistics were collected for the object

v Whether or not the data in the object is sorted (only table or index objects)

v The number of columns in the object (only table or index objects)

v The estimated number of rows in the object (only table or index objects)

v The number of pages that the object occupies in the buffer pool

v The total estimated overhead, in milliseconds, for a single random I/O to the

specified table space where the object is stored

250 Troubleshooting and Tuning Database Performance

v The estimated transfer rate, in milliseconds, to read a 4-KB page from the

specified table space

v Prefetch and extent sizes, in 4-KB pages

v The degree of data clustering within the index

v The number of leaf pages that are used by the index for this object, and the

number of levels in the tree

v The number of distinct full key values in the index for this object

v The total number of overflow records in the table

Explain information for data operators:

A single access plan can perform several operations on the data to satisfy the SQL

or XQuery statement and provide results back to you. The query compiler

determines the operations that are required, such as a table scan, an index scan, a

nested loop join, or a group-by operator.

 In addition to showing information about each operator that is used in an access

plan, explain output also shows the cumulative effects of the access plan.

Estimated cost information

The following cumulative cost estimates for operators are recorded. These costs are

for the chosen access plan, up to and including the operator for which the

information is captured.

v The total cost (in timerons)

v The number of page I/Os

v The number of processing instructions

v The cost (in timerons) of fetching the first row, including any required initial

overhead

v The communication cost (in frames)

A timeron is an invented relative unit of measurement. Timeron values are

determined by the optimizer, based on internal values such as statistics that change

as the database is used. As a result, the timeron values for an SQL or XQuery

statement are not guaranteed to be the same every time an estimated cost in

timerons is determined.

Operator properties

The following information that describes the properties of each operator is

recorded by the explain facility:

v The set of tables that have been accessed

v The set of columns that have been accessed

v The columns on which the data is ordered, if the optimizer has determined that

this ordering can be used by subsequent operators

v The set of predicates that have been applied

v The estimated number of rows that will be returned (cardinality)

Explain information for instances:

Chapter 3. Factors affecting performance 251

Explain instance information is stored in the EXPLAIN_INSTANCE table.

Additional specific information about each query statement in an instance is stored

in the EXPLAIN_STATEMENT table.

 Explain instance identification

The following information helps you to identify a specific explain instance and to

associate the information about certain statements with a specific invocation of the

explain facility:

v The user who requested the explain information

v When the explain request began

v The name of the package that contains the explained statement

v The SQL schema of the package that contains the explained statement

v The version of the package that contains the statement

v Whether snapshot information was collected

Environmental settings

Information about the database manager environment in which the query compiler

optimized your queries is captured. The environmental information includes the

following:

v The version and release number of the DB2 product

v The degree of parallelism under which the query was compiled

The CURRENT DEGREE special register, the DEGREE bind option, the SET

RUNTIME DEGREE command, and the dft_degree database configuration

parameter determine the degree of parallelism under which a particular query is

compiled.

v Whether the statement is dynamic or static

v The query optimization class used to compile the query

v The type of row blocking for cursors that occurs when compiling the query

v The isolation level under which the query runs

v The values of various configuration parameters when the query was compiled.

Values for the following parameters are recorded when an explain snapshot is

taken:

– Sort heap size (sortheap)

– Average number of active applications (avg_appls)

– Database heap (dbheap)

– Maximum storage for lock list (locklist)

– Maximum percent of lock list before escalation (maxlocks)

– CPU speed (cpuspeed)

– Communications bandwidth (comm_bandwidth)

Statement identification

More than one statement might have been explained for each explain instance. In

addition to information that uniquely identifies the explain instance, the following

information helps to identify individual query statements:

v The type of statement: SELECT, DELETE, INSERT, UPDATE, positioned

DELETE, positioned UPDATE, or SET INTEGRITY

252 Troubleshooting and Tuning Database Performance

v The statement and section number of the package issuing the statement, as

recorded in the SYSCAT.STATEMENTS catalog view

The QUERYTAG and QUERYNO fields in the EXPLAIN_STATEMENT table

contain identifiers that are set as part of the explain process. When EXPLAIN

MODE or EXPLAIN SNAPSHOT is active, and dynamic explain statements are

submitted during a command line processor (CLP) or call-level interface (CLI)

session, the QUERYTAG value is set to “CLP” or “CLI”, respectively. In this case,

the QUERYNO value defaults to a number that is incremented by one or more for

each statement. For all other dynamic explain statements that are not from the CLP

or CLI, or that do not use the EXPLAIN statement, the QUERYTAG value is set to

blanks and QUERYNO is always 1.

Cost estimation

For each explained statement, the optimizer records an estimate of the relative cost

of executing the chosen access plan. This cost is stated in an invented relative unit

of measure called a timeron. No estimate of elapsed times is provided, for the

following reasons:

v The query optimizer does not estimate elapsed time but only resource

consumption.

v The optimizer does not model all factors that can affect elapsed time. It ignores

factors that do not affect the efficiency of the access plan. A number of runtime

factors affect the elapsed time, including the system workload, the amount of

resource contention, the amount of parallel processing and I/O, the cost of

returning rows to the user, and the communication time between the client and

server.

Statement text

Two versions of the statement text are recorded for each explained statement. One

version is the code that the query compiler receives from the application. The other

version is reverse-translated from the internal (compiler) representation of the

query. Although this translation looks similar to other query statements, it does not

necessarily follow correct query language syntax, nor does it necessarily reflect the

actual content of the internal representation as a whole. This translation is

provided only to enable you to understand the context in which the optimizer

chose the access plan. To understand how the compiler has rewritten your query

for better optimization, compare the user-written statement text to the internal

representation of the query statement. The rewritten statement also shows you

other factors that affect your statement, such as triggers or constraints. Some

keywords that are used in this “optimized” text include the following:

$Cn The name of a derived column, where n represents an integer value.

$CONSTRAINT$

This tag identifies a constraint that was added to the original statement

during compilation, and is seen in conjunction with the

$WITH_CONTEXT$ prefix.

$DERIVED.Tn

The name of a derived table, where n represents an integer value.

$INTERNAL_FUNC$

This tag indicates the presence of a function that is used by the compiler

for the explained query but that is not available for general use.

Chapter 3. Factors affecting performance 253

$INTERNAL_PRED$

This tag indicates the presence of a predicate that was added during

compilation of the explained query but that is not available for general use.

An internal predicate is used by the compiler to satisfy additional context

that is added to the original statement because of triggers or constraints.

$INTERNAL_XPATH$

This tag indicates the presence of an internal table function that takes a

single annotated XPath pattern as an input parameter and returns a table

with one or more columns that match that pattern.

RID This tag identifies the row identifier (RID) column for a particular row.

$TRIGGER$

This tag identifies a trigger that was added to the original statement

during compilation, and is seen in conjunction with the

$WITH_CONTEXT$ prefix.

$WITH_CONTEXT$(...)

This prefix appears at the beginning of the text when additional triggers or

constraints have been added to the original query statement. A list of the

names of any triggers or constraints that affect the compilation and

resolution of the statement appears after this prefix.

SQL and XQuery explain tool

The db2expln command describes the access plan selected for SQL or XQuery

statements.

You can use this tool to obtain a quick explanation of the chosen access plan when

explain data was not captured. For static SQL and XQuery statements, db2expln

examines the packages that are stored in the system catalog. For dynamic SQL and

XQuery statements, db2expln examines the sections in the query cache.

The explain tool is located in the bin subdirectory of your instance sqllib directory.

If db2expln is not in your current directory, it must be in a directory that appears

in your PATH environment variable.

The db2expln command uses the db2expln.bnd, db2exsrv.bnd, and db2exdyn.bnd

files to bind itself to a database the first time the database is accessed.

Description of db2expln output:

Explain output from the db2expln command includes both package information

and section information for each package.

v Package information includes the date of the bind operation and relevant bind

options

v Section information includes the section number and the SQL or XQuery

statement being explained

Explain output pertaining to the chosen access plan for the SQL or XQuery

statement appears below the section information.

The steps of an access plan, or section, are presented in the order that the database

manager executes them. Each major step is shown as a left-justified heading with

information about that step indented below it. Indentation bars appear in the left

margin of the explain output for an access plan. These bars also mark the scope of

each operation. Operations at a lower level of indentation, farther to the right, are

processed before those that appear in the previous level of indentation.

254 Troubleshooting and Tuning Database Performance

The chosen access plan is based on an augmented version of the original SQL

statement, the effective SQL statement if statement concentrator is enabled, or the

XQuery statement that is shown in the output. Because the query rewrite

component of the compiler might convert the SQL or XQuery statement into an

equivalent but more efficient format, the access plan shown in explain output

might differ substantially from what you expect. The explain facility, which

includes the explain tables, the SET CURRENT EXPLAIN MODE statement, and

Visual Explain, shows the actual SQL or XQuery statement that was used for

optimization in the form of an SQL- or XQuery-like statement that is created by

reverse-translating the internal representation of the query.

When you compare output from db2expln to output from the explain facility, the

operator ID option (-opids) can be very useful. Each time that db2expln begins

processing a new operator from the explain facility, the operator ID number is

printed to the left of the explained plan. The operator IDs can be used to compare

steps in the different representations of the access plan. Note that there is not

always a one-to-one correspondence between the operators in explain facility

output and the operations shown by db2expln.

Table access information:

A statement in db2expln output provides the name and type of table being

accessed.

 Information about regular tables includes one of the following table access

statements:

 Access Table Name = schema.name ID = ts,n

 Access Hierarchy Table Name = schema.name ID = ts,n

 Access Materialized Query Table Name = schema.name ID = ts,n

where:

v schema.name is the fully-qualified name of the table being accessed

v ID is the corresponding TABLESPACEID and TABLEID from the

SYSCAT.TABLES catalog view entry for the table

Information about temporary tables includes one of the following table access

statements:

 Access Temp Table ID = tn

 Access Global Temp Table ID = ts,tn

where ID is the corresponding TABLESPACEID from the SYSCAT.TABLES catalog

view entry for the table (ts) or the corresponding identifier assigned by db2expln

(tn).

After the table access statement, the following additional statements are provided

to further describe the access.

v Number of columns

v Block access

v Parallel scan

v Scan direction

v Row access

v Lock intent

v Predicate

v Miscellaneous

Chapter 3. Factors affecting performance 255

Number of columns statement

The following statement indicates the number of columns that are being used from

each row of the table:

 #Columns = n

Block access statement

The following statement indicates that the table has one or more dimension block

indexes defined on it:

 Clustered by Dimension for Block Index Access

If this statement does not appear, the table was created without the ORGANIZE

BY DIMENSIONS clause.

Parallel scan statement

The following statement indicates that the database manager will use several

subagents to read the table in parallel:

 Parallel Scan

If this statement does not appear, the table will be read by only one agent (or

subagent).

Scan direction statement

The following statement indicates that the database manager will read rows in

reverse order:

 Scan Direction = Reverse

If this statement does not appear, the scan direction is forward, which is the

default.

Row access statements

One of the following statements will indicate how qualifying rows in the table are

being accessed.

v The Relation Scan statement indicates that the table is being sequentially

scanned for qualifying rows.

– The following statement indicates that no prefetching of data will be done:

 Relation Scan

 | Prefetch: None

– The following statement indicates that the optimizer has determined the

number of pages that will be prefetched:

 Relation Scan

 | Prefetch: n Pages

– The following statement indicates that data should be prefetched:

 Relation Scan

 | Prefetch: Eligible

v The following statement indicates that qualifying rows are being identified and

accessed through an index:

 Index Scan: Name = schema.name ID = xx

 | Index type

 | Index Columns:

256 Troubleshooting and Tuning Database Performance

where:

– schema.name is the fully-qualified name of the index that is being scanned

– ID is the corresponding IID column in the SYSCAT.INDEXES catalog view

– Index type is one of:

 Regular index (not clustered)

 Regular index (clustered)

 Dimension block index

 Composite dimension block index

 Index over XML data

This is followed by one line of output for each column in the index. Valid

formats for this information are as follows:

 n: column_name (Ascending)

 n: column_name (Descending)

 n: column_name (Include Column)

The following statements are provided to clarify the type of index scan.

– The range-delimiting predicates for the index are shown by the following

statements:

 #Key Columns = n

 | Start Key: xxxxx

 | Stop Key: xxxxx

where xxxxx is one of:

- Start of Index

- End of Index

- Inclusive Value: or Exclusive Value:

An inclusive key value will be included in the index scan. An exclusive key

value will not be included in the scan. The value of the key is determined

by one of the following items for each part of the key:

 n: ’string’

 n: nnn

 n: yyyy-mm-dd

 n: hh:mm:ss

 n: yyyy-mm-dd hh:mm:ss.uuuuuu

 n: NULL

 n: ?

Only the first 20 characters of a literal string are displayed. If the string is

longer than 20 characters, this is indicated by an ellipsis (...) at the end of

the string. Some keys cannot be determined until the section is executed.

This is indicated by a question mark (?) as the value.
– Index-Only Access

If all of the needed columns can be obtained from the index key, this

statement displays and no table data will be accessed.

– The following statement indicates that no prefetching of index pages will be

done:

 Index Prefetch: None

– The following statement indicates that index pages should be prefetched:

 Index Prefetch: Eligible

– The following statement indicates that no prefetching of data pages will be

done:

 Data Prefetch: None

– The following statement indicates that data pages should be prefetched:

 Data Prefetch: Eligible

Chapter 3. Factors affecting performance 257

– If there are predicates that can be passed to the index manager to help qualify

index entries, the following statement is used to show the number of these

predicates:

 Sargable Index Predicate(s)

 | #Predicates = n

v If the qualifying rows are being accessed through row IDs (RIDs) that were

prepared earlier in the access plan, this will be indicated by the following

statement:

 Fetch Direct Using Row IDs

If the table has one or more block indexes defined on it, rows can be accessed by

either block or row IDs. This is indicated by the following statement:

 Fetch Direct Using Block or Row IOs

Lock intent statements

For each table access, the type of lock that will be acquired at the table and row

levels is shown with the following statement:

 Lock Intents

 | Table: xxxx

 | Row : xxxx

Possible values for a table lock are:

v Exclusive

v Intent Exclusive

v Intent None

v Intent Share

v Share

v Share Intent Exclusive

v Super Exclusive

v Update

Possible values for a row lock are:

v Exclusive

v Next Key Weak Exclusive

v None

v Share

v Update

Predicate statements

There are three types of statement that provide information about the predicates

that are used in an access plan.

v The following statement indicates the number of predicates that will be

evaluated for each block of data that is retrieved from a blocked index:

 Block Predicates(s)

 | #Predicates = n

v The following statement indicates the number of predicates that will be

evaluated while the data is being accessed. This number does not include

pushdown operations, such as aggregation or sort:

 Sargable Predicate(s)

 | #Predicates = n

258 Troubleshooting and Tuning Database Performance

v The following statement indicates the number of predicates that will be

evaluated after the data has been returned:

 Residual Predicate(s)

 | #Predicates = n

The number of predicates shown in these statements might not reflect the number

of predicates that are provided in the query statement, because predicates can be:

v Applied more than once within the same query

v Transformed and extended with the addition of implicit predicates during the

query optimization process

v Transformed and condensed into fewer predicates during the query optimization

process

Miscellaneous table statements

v The following statement indicates that only one row will be accessed:

 Single Record

v The following statement appears when the isolation level that is used for table

access is different than the isolation level for the statement:

 Isolation Level: xxxx

There are a number of possible reasons for this. For example:

– A package that was bound with the repeatable read (RR) isolation level is

impacting certain referential integrity constraints; access to the parent table

for the purpose of checking these constraints is downgraded to the cursor

stability (CS) isolation level to avoid holding unnecessary locks on this table.

– A package that was bound with the uncommitted read (UR) isolation level

includes a DELETE statement; access to the table for the delete operation is

upgraded to CS.
v The following statement indicates that some or all of the rows that are read from

a temporary table will be cached outside of the buffer pool if sufficient sortheap

memory is available:

 Keep Rows In Private Memory

v The following statement indicates that the table has the volatile cardinality

attribute set:

 Volatile Cardinality

Temporary table information:

A temporary table is used as a work table during access plan execution. Generally,

temporary tables are used when subqueries need to be evaluated early in the

access plan, or when intermediate results will not fit into the available memory.

 If a temporary table is needed, one of the following statements will appear in

db2expln command output.

 Insert Into Temp Table ID = tn --> ordinary temporary table

 Insert Into Shared Temp Table ID = tn --> ordinary temporary table will be created

 by multiple subagents in parallel

 Insert Into Sorted Temp Table ID = tn --> sorted temporary table

 Insert Into Sorted Shared Temp Table ID = tn --> sorted temporary table will be created

 by multiple subagents in parallel

 Insert Into Global Temp Table ID = ts,tn --> declared global temporary table

 Insert Into Shared Global Temp Table ID = ts,tn --> declared global temporary table

 will be created by multiple subagents

 in parallel

 Insert Into Sorted Global Temp Table ID = ts,tn --> sorted declared global temporary table

Chapter 3. Factors affecting performance 259

Insert Into Sorted Shared Global Temp Table ID = ts,tn --> sorted declared global temporary

 table will be created by

 multiple subagents in parallel

The ID is an identifier that is assigned by db2expln for convenience when referring

to the temporary table. This ID is prefixed with the letter ’t’ to indicate that the

table is a temporary table.

Each of these statements is followed by:

 #Columns = n

which indicates how many columns there are in each row that is being inserted

into the temporary table.

Sorted temporary tables

Sorted temporary tables can result from such operations as:

v ORDER BY

v DISTINCT

v GROUP BY

v Merge join

v ’= ANY’ subquery

v ’<> ALL’ subquery

v INTERSECT or EXCEPT

v UNION (without the ALL keyword)

A number of statements that are associated with a sorted temporary table can

appear in db2expln command output.

v The following statement indicates the number of key columns that are used in

the sort:

 #Sort Key Columns = n

One of the following lines is displayed for each column in the sort key:

 Key n: column_name (Ascending)

 Key n: column_name (Descending)

 Key n: (Ascending)

 Key n: (Descending)

v The following statements provide estimates of the number of rows and the row

size so that the optimal sort heap can be allocated at run time:

 Sortheap Allocation Parameters:

 | #Rows = n

 | Row Width = n

v The following statement is displayed if only the first rows of the sorted result

are needed:

 Sort Limited To Estimated Row Count

v For sorts that are performed in a symmetric multiprocessor (SMP) environment,

the type of sort that is to be performed is indicated by one of the following

statements:

 Use Partitioned Sort

 Use Shared Sort

 Use Replicated Sort

 Use Round-Robin Sort

v The following statements indicate whether or not the sorted result will be left in

the sort heap:

260 Troubleshooting and Tuning Database Performance

Piped

 Not Piped

If a piped sort is indicated, the database manager will keep the sorted output in

memory, rather than placing it in another temporary table.

v The following statement indicates that duplicate values will be removed during

the sort operation:

 Duplicate Elimination

v If aggregation is being performed during the sort operation, one of the following

statements is displayed:

 Partial Aggregation

 Intermediate Aggregation

 Buffered Partial Aggregation

 Buffered Intermediate Aggregation

Temporary table completion

A completion statement is displayed whenever a temporary table is created within

the scope of a table access. This statement can be one of the following:

 Temp Table Completion ID = tn

 Shared Temp Table Completion ID = tn

 Sorted Temp Table Completion ID = tn

 Sorted Shared Temp Table Completion ID = tn

Table functions

Table functions are user-defined functions (UDFs) that return data to the statement

in the form of a table. A table function is indicated by the following statements,

which detail the attributes of the function. The specific name uniquely identifies

the table function that is invoked.

 Access User Defined Table Function

 | Name = schema.funcname

 | Specific Name = specificname

 | SQL Access Level = accesslevel

 | Language = lang

 | Parameter Style = parmstyle

 | Fenced Not Deterministic

 | Called on NULL Input Disallow Parallel

 | Not Federated Not Threadsafe

Join information:

Output from the db2expln command can contain information about joins in an

explained statement.

 Whenever a join is performed, one of the following statements is displayed:

 Hash Join

 Merge Join

 Nested Loop Join

A left outer join is indicated by one of the following statements:

 Left Outer Hash Join

 Left Outer Merge Join

 Left Outer Nested Loop Join

In the case of a merge or nested loop join, the outer table of the join is the table

that was referenced in the previous access statement (shown in the output). The

inner table of the join is the table that was referenced in the access statement that

Chapter 3. Factors affecting performance 261

is contained within the scope of the join statement. In the case of a hash join, the

access statements are reversed: the outer table is contained within the scope of the

join, and the inner table appears before the join.

In the case of a hash or merge join, the following additional statements might

appear:

v Early Out: Single Match Per Outer Row

In some circumstances, a join simply needs to determine whether any row in the

inner table matches the current row in the outer table.

v Residual Predicate(s)

 | #Predicates = n

It is possible to apply predicates after a join has completed. This statement

displays the number of predicates being applied.

In the case of a hash join, the following additional statements might appear:

v Process Hash Table For Join

The hash table is built from the inner table. This statement displays if the

building of the hash table was pushed down into a predicate during access to

the inner table.

v Process Probe Table For Hash Join

While accessing the outer table, a probe table can be built to improve the

performance of the join. This statement displays if a probe table was built

during access to the outer table.

v Estimated Build Size: n

This statement displays the estimated number of bytes that are needed to build

the hash table.

v Estimated Probe Size: n

This statement displays the estimated number of bytes that are needed to build

the probe table.

In the case of a nested loop join, the following statement might appear

immediately after the join statement:

 Piped Inner

This statement indicates that the inner table of the join is the result of another

series of operations. This is also referred to as a composite inner.

If a join involves more than two tables, the explain steps should be read from top

to bottom. For example, suppose the explain output has the following flow:

 Access W

 Join

 | Access X

 Join

 | Access Y

 Join

 | Access Z

The steps of execution would be:

1. Take a qualifying row from table W.

262 Troubleshooting and Tuning Database Performance

2. Join a row from W with the next row from table X and call the result P1 (for

partial join result number 1).

3. Join P1 with the next row from table Y to create P2.

4. Join P2 with the next row from table Z to create one complete result row.

5. If there are more rows in Z, go to step 4.

6. If there are more rows in Y, go to step 3.

7. If there are more rows in X, go to step 2.

8. If there are more rows in W, go to step 1.

Data stream information:

Within an access plan, there is often a need to control the creation and flow of data

from one series of operations to another. The data stream concept enables a group

of operations within an access plan to be controlled as a unit.

 The start of a data stream is indicated by the following statement in db2expln

output:

 Data Stream n

where n is a unique identifier assigned by db2expln for ease of reference.

The end of a data stream is indicated by:

 End of Data Stream n

All operations between these statements are considered to be part of the same data

stream.

A data stream has a number of characteristics, and one or more statements can

follow the initial data stream statement to describe these characteristics:

v If the operation of the data stream depends on a value that is generated earlier

in the access plan, the data stream is marked with:

 Correlated

v Similar to a sorted temporary table, the following statements indicate whether or

not the results of the data stream will be kept in memory:

 Piped

 Not Piped

A piped data stream might be written to disk if there is insufficient memory at

execution time. The access plan provides for both possibilities.

v The following statement indicates that only a single record is required from this

data stream:

 Single Record

When a data stream is accessed, the following statement will appear in the output:

 Access Data Stream n

Insert, update, and delete information:

The explain text for the INSERT, UPDATE, or DELETE statement is

self-explanatory.

 Statement text for these SQL operations in db2expln output can be:

Chapter 3. Factors affecting performance 263

Insert: Table Name = schema.name ID = ts,n

 Update: Table Name = schema.name ID = ts,n

 Delete: Table Name = schema.name ID = ts,n

 Insert: Hierarchy Table Name = schema.name ID = ts,n

 Update: Hierarchy Table Name = schema.name ID = ts,n

 Delete: Hierarchy Table Name = schema.name ID = ts,n

 Insert: Materialized Query Table = schema.name ID = ts,n

 Update: Materialized Query Table = schema.name ID = ts,n

 Delete: Materialized Query Table = schema.name ID = ts,n

 Insert: Global Temporary Table ID = ts, tn

 Update: Global Temporary Table ID = ts, tn

 Delete: Global Temporary Table ID = ts, tn

Block and row identifier preparation information:

For some access plans, it is more efficient if the qualifying row and block

identifiers are sorted and duplicates are removed (in the case of index ORing), or if

a technique is used to determine which identifiers appear in all of the indexes

being accessed (in the case of index ANDing) before the table is accessed.

 There are three main uses of the identifier preparation information that is shown in

explain output:

v Either of the following statements indicates that Index ORing was used to

prepare the list of qualifying identifiers:

 Index ORing Preparation

 Block Index ORing Preparation

Index ORing refers to the technique of accessing more than one index and

combining the results to include the distinct identifiers that appear in any of the

indexes. The optimizer considers index ORing when predicates are connected by

OR keywords or there is an IN predicate.

v Either of the following statements indicates that input data was prepared for use

during list prefetching:

 List Prefetch Preparation

 Block List Prefetch RID Preparation

v Index ANDing refers to the technique of accessing more than one index and

combining the results to include the identifiers that appear in all of the accessed

indexes. Index ANDing begins with either of the following statements:

 Index ANDing

 Block Index ANDing

If the optimizer has estimated the size of the result set, the estimate is shown

with the following statement:

 Optimizer Estimate of Set Size: n

Index ANDing filter operations process identifiers and use bit filter techniques to

determine the identifiers that appear in every accessed index. The following

statements indicate that identifiers were processed for index ANDing:

 Index ANDing Bitmap Build Using Row IDs

 Index ANDing Bitmap Probe Using Row IDs

 Index ANDing Bitmap Build and Probe Using Row IDs

 Block Index ANDing Bitmap Build Using Block IDs

 Block Index ANDing Bitmap Build and Probe Using Block IDs

 Block Index ANDing Bitmap Build and Probe Using Row IDs

 Block Index ANDing Bitmap Probe Using Block IDs and Build Using Row IDs

 Block Index ANDing Bitmap Probe Using Block IDs

 Block Index ANDing Bitmap Probe Using Row IDs

264 Troubleshooting and Tuning Database Performance

If the optimizer has estimated the size of the result set for a bitmap, the estimate

is shown with the following statement:

 Optimizer Estimate of Set Size: n

If list prefetching can be performed for any type of identifier preparation, it will be

so indicated with the following statement:

 Prefetch: Enabled

Aggregation information:

Aggregation is performed on rows satisfying criteria that are represented by

predicates in an SQL statement.

 If an aggregate function executes, one of the following statements appears in

db2expln output:

 Aggregation

 Predicate Aggregation

 Partial Aggregation

 Partial Predicate Aggregation

 Intermediate Aggregation

 Intermediate Predicate Aggregation

 Final Aggregation

 Final Predicate Aggregation

Predicate aggregation means that the aggregation operation was processed as a

predicate when the data was accessed.

The aggregation statement is followed by another statement that identifies the type

of aggregate function that was performed:

 Group By

 Column Function(s)

 Single Record

The specific column function can be derived from the original SQL statement. A

single record is fetched from an index to satisfy a MIN or MAX operation.

If predicate aggregation has been performed, there is an aggregation completion

operation and corresponding output:

 Aggregation Completion

 Partial Aggregation Completion

 Intermediate Aggregation Completion

 Final Aggregation Completion

Parallel processing information:

Executing an SQL statement in parallel (using either intra-partition or

inter-partition parallelism) requires some special access plan operations.

v When running an intra-partition parallel plan, portions of the plan are executed

simultaneously using several subagents. The creation of these subagents is

indicated by the statement in output from the db2expln command:

 Process Using n Subagents

v When running an inter-partition parallel plan, the section is broken into several

subsections. Each subsection is sent to one or more database partitions to be run.

An important subsection is the coordinator subsection. The coordinator subsection

is the first subsection in every plan. It acquires control first, and is responsible

for distributing the other subsections and returning results to the calling

application.

Chapter 3. Factors affecting performance 265

– The distribution of subsections is indicated by the following statement:

 Distribute Subsection #n

– The following statement indicates that the subsection will be sent to a

database partition within the database partition group, based on the value of

the columns.

 Directed by Hash

 | #Columns = n

 | Partition Map ID = n, Nodegroup = ngname, #Nodes = n

– The following statement indicates that the subsection will be sent to a

predetermined database partition. (This is common when the statement uses

the DBPARTITIONNUM() scalar function.)

 Directed by Node Number

– The following statement indicates that the subsection will be sent to the

database partition that corresponds to a predetermined database partition

number in the database partition group. (This is common when the statement

uses the HASHEDVALUE scalar function.)

 Directed by Partition Number

 | Partition Map ID = n, Nodegroup = ngname, #Nodes = n

– The following statement indicates that the subsection will be sent to the

database partition that provided the current row for the application’s cursor.

 Directed by Position

– The following statement indicates that only one database partition,

determined when the statement was compiled, will receive the subsection.

 Directed to Single Node

 | Node Number = n

– Either of the following statements indicates that the subsection will be

executed on the coordinator database partition.

 Directed to Application Coordinator Node

 Directed to Local Coordinator Node

– The following statement indicates that the subsection will be sent to all of the

listed database partitions.

 Broadcast to Node List

 | Nodes = n1, n2, n3, ...

– The following statement indicates that only one database partition,

determined as the statement is executing, will receive the subsection.

 Directed to Any Node

v Table queues are used to move data between subsections in a partitioned

database environment or between subagents in a symmetric multiprocessor

(SMP) environment.

– The following statements indicate that data is being inserted into a table

queue:

 Insert Into Synchronous Table Queue ID = qn

 Insert Into Asynchronous Table Queue ID = qn

 Insert Into Synchronous Local Table Queue ID = qn

 Insert Into Asynchronous Local Table Queue ID = qn

– For database partition table queues, the destination for rows that are inserted

into the table queue is described by one of the following statements:

Each row is sent to the coordinator database partition:

 Broadcast to Coordinator Node

Each row is sent to every database partition on which the given subsection is

running:

266 Troubleshooting and Tuning Database Performance

Broadcast to All Nodes of Subsection n

Each row is sent to a database partition that is based on the values in the

row:

 Hash to Specific Node

Each row is sent to a database partition that is determined while the

statement is executing:

 Send to Specific Node

Each row is sent to a randomly determined database partition:

 Send to Random Node

– In some situations, a database partition table queue will have to overflow

some rows to a temporary table. This possibility is identified by the following

statement:

 Rows Can Overflow to Temporary Table

– After a table access that includes a pushdown operation to insert rows into a

table queue, there is a ″completion″ statement that handles rows that could

not be sent immediately. In this case, one of the following lines is displayed:

 Insert Into Synchronous Table Queue Completion ID = qn

 Insert Into Asynchronous Table Queue Completion ID = qn

 Insert Into Synchronous Local Table Queue Completion ID = qn

 Insert Into Asynchronous Local Table Queue Completion ID = qn

– The following statements indicate that data is being retrieved from a table

queue:

 Access Table Queue ID = qn

 Access Local Table Queue ID = qn

These statements are always followed by the number of columns being

retrieved.

 #Columns = n

– If the table queue sorts the rows at the receiving end, one of the following

statements appears:

 Output Sorted

 Output Sorted and Unique

These statements are followed by the number of keys being used for the sort

operation.

 #Key Columns = n

For each column in the sort key, one of the following statements is displayed:

 Key n: (Ascending)

 Key n: (Descending)

– If predicates will be applied to rows at the receiving end of the table queue,

the following statement appears:

 Residual Predicate(s)

 | #Predicates = n

v Some subsections in a partitioned database environment explicitly loop back to

the start of the subsection, and the following statement is displayed:

 Jump Back to Start of Subsection

Federated query information:

Chapter 3. Factors affecting performance 267

Executing an SQL statement in a federated database requires the ability to perform

portions of the statement on other data sources.

 The following output from the db2expln command indicates that a data source will

be read:

 Ship Distributed Subquery #n

 | #Columns = n

If predicates are applied to data that is returned from a distributed subquery, the

number of predicates being applied is indicated by the following statements:

 Residual Predicate(s)

 | #Predicates = n

An insert, update, or delete operation that occurs at a data source is indicated by

one of the following statements:

 Ship Distributed Insert #n

 Ship Distributed Update #n

 Ship Distributed Delete #n

If a table is explicitly locked at a data source, the following statement appears:

 Ship Distributed Lock Table #n

Data definition language (DDL) statements against a data source are split into two

parts. The part that is invoked at the data source is indicated by the following

statement:

 Ship Distributed DDL Statement #n

If the federated server is a partitioned database, part of the DDL statement must be

run at the catalog database partition. This is indicated by the following statement:

 Distributed DDL Statement #n Completion

The details for each distributed sub-statement are displayed separately.

v The data source for the subquery is indicated by one of the following

statements:

 Server: server_name (type, version)

 Server: server_name (type)

 Server: server_name

v If the data source is relational, the SQL for the sub-statement is displayed as

follows:

 SQL Statement:

 statement

Non-relational data sources are indicated with:

 Non-Relational Data Source

v Nicknames that are referenced in the sub-statement are listed as follows:

 Nicknames Referenced:

 schema.nickname ID = n

If the data source is relational, the base table for the nickname is displayed as

follows:

 Base = baseschema.basetable

If the data source is non-relational, the source file for the nickname is displayed

as follows:

 Source File = filename

268 Troubleshooting and Tuning Database Performance

v If values are passed from the federated server to the data source before

executing the sub-statement, the number of values is indicated by the following

statement:

 #Input Columns: n

v If values are passed from the data source to the federated server after executing

the sub-statement, the number of values is indicated by the following statement:

 #Output Columns: n

Miscellaneous explain information:

Output from the db2expln command contains additional useful information that

cannot be readily classified.

v Sections for data definition language (DDL) statements are indicated in the

output with the following statement:

 DDL Statement

No additional explain output is provided for DDL statements.

v Sections for SET statements pertaining to updatable special registers, such as

CURRENT EXPLAIN SNAPSHOT, are indicated in the output with the

following statement:

 SET Statement

No additional explain output is provided for SET statements.

v If the SQL statement contains a DISTINCT clause, the following statement might

appear in the output:

 Distinct Filter #Columns = n

where n is the number of columns involved in obtaining distinct rows. To

retrieve distinct row values, the rows must first be sorted to eliminate

duplicates. This statement will not appear if the database manager does not

have to explicitly eliminate duplicates, as in the following cases:

– A unique index exists and all of the columns in the index key are part of the

DISTINCT operation

– Duplicates can be eliminated during sorting
v The following statement appears if the next operation is dependent on a specific

record identifier:

 Positioned Operation

If the positioned operation is against a federated data source, the statement

becomes:

 Distributed Positioned Operation

This statement appears for any SQL statement that uses the WHERE CURRENT

OF syntax.

v The following statement appears if there are predicates that must be applied to

the result but that could not be applied as part of another operation:

 Residual Predicate Application

 | #Predicates = n

v The following statement appears if the SQL statement contains a UNION

operator:

 UNION

Chapter 3. Factors affecting performance 269

v The following statement appears if there is an operation in the access plan

whose sole purpose is to produce row values for use by subsequent operations:

 Table Constructor

 | n-Row(s)

Table constructors can be used for transforming values in a set into a series of

rows that are then passed to subsequent operations. When a table constructor is

prompted for the next row, the following statement appears:

 Access Table Constructor

v The following statement appears if there is an operation that is only processed

under certain conditions:

 Conditional Evaluation

 | Condition #n:

 | #Predicates = n

 | Action #n:

Conditional evaluation is used to implement such activities as the CASE

statement, or internal mechanisms such as referential integrity constraints or

triggers. If no action is shown, then only data manipulation operations are

processed when the condition is true.

v One of the following statements appears if an ALL, ANY, or EXISTS subquery is

being processed in the access plan:

 ANY/ALL Subquery

 EXISTS Subquery

 EXISTS SINGLE Subquery

v Prior to certain update or delete operations, it is necessary to establish the

position of a specific row within the table. This is indicated by the following

statement:

 Establish Row Position

v One of the following statements appears for delete operations on

multidimensional clustering tables that qualify for rollout optimization:

 CELL DELETE with deferred cleanup

 CELL DELETE with immediate cleanup

v The following statement appears if rows are being returned to the application:

 Return Data to Application

 | #Columns = n

If the operation was pushed down into a table access, a completion phase

statement appears in the output:

 Return Data Completion

v The following statements appear if a stored procedure is being invoked:

 Call Stored Procedure

 | Name = schema.funcname

 | Specific Name = specificname

 | SQL Access Level = accesslevel

 | Language = lang

 | Parameter Style = parmstyle

 | Expected Result Sets = n

 | Fenced Not Deterministic

 | Called on NULL Input Disallow Parallel

 | Not Federated Not Threadsafe

v The following statement appears if one or more large object (LOB) locators are

being freed:

 Free LOB Locators

270 Troubleshooting and Tuning Database Performance

Optimizing query access plans

Statement concentrator reduces compilation overhead

The statement concentrator modifies dynamic SQL statements at the database

server so that similar, but not identical, SQL statements can share the same access

plan.

In online transaction processing (OLTP), simple statements might repeatedly be

generated with different literal values. In such workloads, the cost of recompiling

the statements can add significant overhead. The statement concentrator avoids

this overhead by allowing compiled statements to be reused, regardless of the

values of the literals.

The statement concentrator is disabled by default. It can be enabled for all

dynamic statements in a database by setting the stmt_conc database configuration

parameter to LITERALS. Only the first 100 000 literals are replaced; the remaining

literals are left as literals.

The statement concentrator improves performance by modifying incoming

dynamic SQL statements. In a workload that is suitable for the statement

concentrator, the overhead that is associated with modifying the incoming SQL

statements is minor compared to the savings that are realized by reusing

statements that are already in the package cache.

If a dynamic statement is modified as a result of statement concentration, both the

original statement and the modified statement are displayed in the explain output.

The event monitor logical monitor elements, as well as output from the

MON_GET_ACTIVITY_DETAILS table function show the original statement if the

statement concentrator has modified the original statement text. Other monitor

interfaces show only the modified statement text.

Consider the following example, in which the stmt_conc database configuration

parameter is set to LITERALS and the following two statements are executed:

 select firstnme, lastname from employee where empno=’000020’

 select firstnme, lastname from employee where empno=’000070’

These statements share the same entry in the package cache, and that entry uses

the following statement:

 select firstnme, lastname from employee where empno=:L0000000000

The data server provides a value for :L0000000000 (either ’000020’ or ’000070’),

based on the literal that was used in the original statements.

Because statement concentration alters the statement text, it has an impact on

access plan selection. The statement concentrator should be used when similar

statements in the package cache have similar access plans. If different literal values

in a statement result in significantly different access plans, the statement

concentrator should not be enabled for that statement.

Access plan reuse

You can request that the access plans that are chosen for static SQL statements in a

package stay the same as, or be very similar to, existing access plans across several

bind or rebind operations.

Access plan reuse can prevent significant plan changes from occurring without

your explicit approval. Although this can mean that your queries do not benefit

Chapter 3. Factors affecting performance 271

from potential access plan improvements, the control that access plan reuse

provides will give you the ability to test and implement those improvements when

you are ready to do so. Until then, you can continue to use existing access plans

for stable and predictable performance.

Enable access plan reuse through the ALTER PACKAGE statement, or by using the

APREUSE option on the BIND, REBIND, or PRECOMPILE command. Packages

that are subject to access plan reuse have the value Y in the APREUSE column of

the SYSCAT.PACKAGES catalog view.

The ALTER_ROUTINE_PACKAGE procedure is a convenient way to enable access

plan reuse for compiled SQL objects, such as SQL procedures. However, access

plans cannot be reused during compiled object revalidation, because the object is

dropped before being rebound. In this case, APREUSE will only take effect the next

time that the package is bound or rebound.

Access plan reuse is most effective when changes to the schema and compilation

environment are kept to a minimum. If significant changes are made, it might not

be possible to recreate the previous access plan. Examples of such significant

changes include dropping an index that is being used in an access plan, or

recompiling an SQL statement at a different optimization level. Significant changes

to the query compiler’s analysis of the statement can also result in the previous

access plan no longer being reusable.

You can combine access plan reuse with optimization guidelines. A statement-level

guideline takes precedence over access plan reuse for the static SQL statement to

which it applies. Access plans for static statements that do not have statement-level

guidelines can be reused if they do not conflict with any general optimization

guidelines that have been specified. A statement profile with an empty guideline

can be used to disable access plan reuse for a specific statement, while leaving plan

reuse available for the other static statements in the package.

Note: Access plans from packages that were produced by releases prior to Version

9.7 cannot be reused.

If an access plan cannot be reused, compilation continues, but a warning

(SQL20516W) is returned with a reason code that indicates why the attempt to

reuse the access plan was not successful. Additional information is sometimes

provided in the diagnostic messages that are available through the explain facility.

Optimization classes

When you compile an SQL or XQuery statement, you can specify an optimization

class that determines how the optimizer chooses the most efficient access plan for

that statement.

The optimization classes differ in the number and type of optimization strategies

that are considered during the compilation of a query. Although you can specify

optimization techniques individually to improve runtime performance for the

query, the more optimization techniques that you specify, the more time and

system resources query compilation will require.

You can specify one of the following optimization classes when you compile an

SQL or XQuery statement.

0 This class directs the optimizer to use minimal optimization when

generating an access plan, and has the following characteristics:

272 Troubleshooting and Tuning Database Performance

v Frequent-value statistics are not considered by the optimizer.

v Only basic query rewrite rules are applied.

v Greedy join enumeration is used.

v Only nested loop join and index scan access methods are enabled.

v List prefetch is not used in generated access methods.

v The star-join strategy is not considered.

This class should only be used in circumstances that require the lowest

possible query compilation overhead. Query optimization class 0 is

appropriate for an application that consists entirely of very simple dynamic

SQL or XQuery statements that access well-indexed tables.

1 This optimization class has the following characteristics:

v Frequent-value statistics are not considered by the optimizer.

v Only a subset of query rewrite rules are applied.

v Greedy join enumeration is used.

v List prefetch is not used in generated access methods.

Optimization class 1 is similar to class 0, except that merge scan joins and

table scans are also available.

2 This class directs the optimizer to use a degree of optimization that is

significantly higher than class 1, while keeping compilation costs for

complex queries significantly lower than class 3 or higher. This

optimization class has the following characteristics:

v All available statistics, including frequent-value and quantile statistics,

are used.

v All query rewrite rules (including materialized query table routing) are

applied, except computationally intensive rules that are applicable only

in very rare cases.

v Greedy join enumeration is used.

v A wide range of access methods is considered, including list prefetch

and materialized query table routing.

v The star-join strategy is considered, if applicable.

Optimization class 2 is similar to class 5, except that it uses greedy join

enumeration instead of dynamic programming join enumeration. This class

has the most optimization of all classes that use the greedy join

enumeration algorithm, which considers fewer alternatives for complex

queries, and therefore consumes less compilation time than class 3 or

higher. Class 2 is recommended for very complex queries in a decision

support or online analytic processing (OLAP) environment. In such

environments, a specific query is not likely to be repeated in exactly the

same way, so that an access plan is unlikely to remain in the cache until

the next occurrence of the query.

3 This class represents a moderate amount of optimization, and comes

closest to matching the query optimization characteristics of DB2 for z/OS.

This optimization class has the following characteristics:

v Frequent-value statistics are used, if available.

v Most query rewrite rules are applied, including subquery-to-join

transformations.

v Dynamic programming join enumeration is used, with:

– Limited use of composite inner tables

Chapter 3. Factors affecting performance 273

– Limited use of Cartesian products for star schemas involving lookup

tables
v A wide range of access methods is considered, including list prefetch,

index ANDing, and star joins.

This class is suitable for a broad range of applications, and improves access

plans for queries with four or more joins.

5 This class directs the optimizer to use a significant amount of optimization

to generate an access plan, and has the following characteristics:

v All available statistics, including frequent-value and quantile statistics,

are used.

v All query rewrite rules (including materialized query table routing) are

applied, except computationally intensive rules that are applicable only

in very rare cases.

v Dynamic programming join enumeration is used, with:

– Limited use of composite inner tables

– Limited use of Cartesian products for star schemas involving lookup

tables
v A wide range of access methods is considered, including list prefetch,

index ANDing, and materialized query table routing.

Optimization class 5 (the default) is an excellent choice for a mixed

environment with both transaction processing and complex queries. This

optimization class is designed to apply the most valuable query

transformations and other query optimization techniques in an efficient

manner.

If the optimizer detects that additional resources and processing time for

complex dynamic SQL or XQuery statements are not warranted,

optimization is reduced. The extent of the reduction depends on the

machine size and the number of predicates. When the optimizer reduces

the amount of query optimization, it continues to apply all of the query

rewrite rules that would normally be applied. However, it uses greedy join

enumeration and it reduces the number of access plan combinations that

are considered.

7 This class directs the optimizer to use a significant amount of optimization

to generate an access plan. It is similar to optimization class 5, except that

in this case, the optimizer never considers reducing the amount of query

optimization for complex dynamic SQL or XQuery statements.

9 This class directs the optimizer to use all available optimization techniques.

These include:

v All available statistics

v All query rewrite rules

v All possibilities for join enumeration, including Cartesian products and

unlimited composite inners

v All access methods

This class increases the number of possible access plans that are considered

by the optimizer. You might use this class to determine whether more

comprehensive optimization would generate a better access plan for very

complex or very long-running queries that use large tables. Use explain

and performance measurements to verify that a better plan has actually

been found.

274 Troubleshooting and Tuning Database Performance

Choosing an optimization class:

Setting the optimization class can provide some of the advantages of explicitly

specifying optimization techniques.

 This is true, particularly when:

v Managing very small databases or very simple dynamic queries

v Accommodating memory limitations on your database server at compile time

v Reducing query compilation time; for example, during statement preparation

Most statements can be adequately optimized with a reasonable amount of

resource by using the default optimization class 5. Query compilation time and

resource consumption are primarily influenced by the complexity of a query; in

particular, by the number of joins and subqueries. However, compilation time and

resource consumption are also affected by the amount of optimization that is

performed.

Query optimization classes 1, 2, 3, 5, and 7 are all suitable for general use.

Consider class 0 only if you require further reductions in query compilation time,

and the SQL and XQuery statements are very simple.

Tip: To analyze a long-running query, run the query with db2batch to determine

how much time is spent compiling and executing the query. If compilation time is

excessive, reduce the optimization class. If execution time is a problem, consider a

higher optimization class.

When you select an optimization class, consider the following general guidelines:

v Start by using the default query optimization class 5.

v When choosing a class other than the default, try class 1, 2, or 3 first. Classes 0,

1, and 2 use the greedy join enumeration algorithm.

v Use optimization class 1 or 2 if you have many tables with many join predicates

on the same column, and if compilation time is a concern.

v Use a low optimization class (0 or 1) for queries that have very short run times

of less than one second. Such queries tend to:

– Access a single table or only a few tables

– Fetch a single row or only a few rows

– Use fully qualified and unique indexes

– Be involved in online transaction processing (OLTP)
v Use a higher optimization class (3, 5, or 7) for queries that have longer run times

of more than 30 seconds.

v Class 3 or higher uses the dynamic programming join enumeration algorithm,

which considers many more alternative plans, and might incur significantly

more compilation time than classes 0, 1, or 2, especially as the number of tables

increases.

v Use optimization class 9 only if you have extraordinary optimization

requirements for a query.

Complex queries might require different amounts of optimization to select the best

access plan. Consider using higher optimization classes for queries that have:

v Access to large tables

v A large number of views

v A large number of predicates

Chapter 3. Factors affecting performance 275

v Many subqueries

v Many joins

v Many set operators, such as UNION or INTERSECT

v Many qualifying rows

v GROUP BY and HAVING operations

v Nested table expressions

Decision support queries or month-end reporting queries against fully normalized

databases are good examples of complex queries for which at least the default

query optimization class should be used.

Use higher query optimization classes for SQL and XQuery statements that were

produced by a query generator. Many query generators create inefficient queries.

Poorly written queries require additional optimization to select a good access plan.

Using query optimization class 2 or higher can improve such queries.

For SAP applications, always use optimization class 5. This optimization class

enables many DB2 features optimized for SAP, such as setting the

DB2_REDUCED_OPTIMIZATION registry variable.

In a federated database, the optimization class does not apply to the remote

optimizer.

Setting the optimization class:

When you specify an optimization level, consider whether a query uses static or

dynamic SQL and XQuery statements, and whether the same dynamic query is

repeatedly executed.

 For static SQL and XQuery statements, the query compilation time and resources

are expended only once, and the resulting plan can be used many times. In

general, static SQL and XQuery statements should always use the default query

optimization class (5). Because dynamic statements are bound and executed at run

time, consider whether the overhead of additional optimization for dynamic

statements improves overall performance. However, if the same dynamic SQL or

XQuery statement is executed repeatedly, the selected access plan is cached. Such

statements can use the same optimization levels as static SQL and XQuery

statements.

If you are not sure whether a query might benefit from additional optimization, or

you are concerned about compilation time and resource consumption, consider

benchmark testing.

To specify a query optimization class, follow these steps:

1. Analyze performance factors.

v For a dynamic query statement, tests should compare the average run time

for the statement. Use the following formula to estimate the average run

time:

 compilation time + sum of execution times for all iterations

 --

 number of iterations

The number of iterations represents the number of times that you expect the

statement might be executed each time that it is compiled.

276 Troubleshooting and Tuning Database Performance

Note: After initial compilation, dynamic SQL and XQuery statements are

recompiled whenever a change to the environment requires it. If the

environment does not change after a statement is cached, subsequent

PREPARE statements reuse the cached statement.

v For static SQL and XQuery statements, compare the statement run times.

Although you might also be interested in the compilation time of static SQL

and XQuery statements, the total compilation and execution time for a static

statement is difficult to assess in any meaningful context. Comparing the

total times does not recognize the fact that a static statement can be executed

many times whenever it is bound, and that such a statement is generally not

bound during run time.
2. Specify the optimization class.

v Dynamic SQL and XQuery statements use the optimization class that is

specified by the CURRENT QUERY OPTIMIZATION special register. For

example, the following statement sets the optimization class to 1:

 SET CURRENT QUERY OPTIMIZATION = 1

To ensure that a dynamic SQL or XQuery statement always uses the same

optimization class, include a SET statement in the application program.

If the CURRENT QUERY OPTIMIZATION special register has not been set,

dynamic statements are bound using the default query optimization class.

The default value for both dynamic and static queries is determined by the

value of the dft_queryopt database configuration parameter, whose default

value is 5. The default values for the bind option and the special register are

also read from the dft_queryopt database configuration parameter.

v Static SQL and XQuery statements use the optimization class that is specified

on the PREP and BIND commands. The QUERYOPT column in the

SYSCAT.PACKAGES catalog view records the optimization class that is used

to bind a package. If the package is rebound, either implicitly or by using the

REBIND PACKAGE command, this same optimization class is used for static

statements. To change the optimization class for such static SQL and XQuery

statements, use the BIND command. If you do not specify the optimization

class, the data server uses the default optimization class, as specified by the

dft_queryopt database configuration parameter.

Using optimization profiles if other tuning options do not

produce acceptable results

If you have followed best practices recommendations, but you believe that you are

still getting less than optimal performance, you can provide explicit optimization

guidelines to the DB2 optimizer.

These optimization guidelines are contained in an XML document called the

optimization profile. The profile defines SQL statements and their associated

optimization guidelines.

If you use optimization profiles extensively, they require a lot of effort to maintain.

More importantly, you can only use optimization profiles to improve performance

for existing SQL statements. Following best practices consistently can help you to

achieve query performance stability for all queries, including future ones.

Optimization profiles and guidelines

An optimization profile is an XML document that can contain optimization

guidelines for one or more SQL statements. The correspondence between each SQL

Chapter 3. Factors affecting performance 277

statement and its associated optimization guidelines is established using the SQL

text and other information that is needed to unambiguously identify an SQL

statement.

The DB2 optimizer is one of the most sophisticated cost-based optimizers in the

industry. However, in rare cases the optimizer might select a less than optimal

execution plan. As a DBA familiar with the database, you can use utilities such as

db2advis, runstats, and db2expln, as well as the optimization class setting to help

you tune the optimizer for better database performance. If you do not receive

expected results after all tuning options have been exhausted, you can provide

explicit optimization guidelines to the DB2 optimizer.

For example, suppose that even after you had updated the database statistics and

performed all other tuning steps, the optimizer still did not choose the I_SUPPKEY

index to access the SUPPLIERS table in the following subquery:

 SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE, S.S_COMMENT

 FROM PARTS P, SUPPLIERS S, PARTSUPP PS

 WHERE P_PARTKEY = PS.PS_PARTKEY

 AND S.S_SUPPKEY = PS.PS_SUPPKEY

 AND P.P_SIZE = 39

 AND P.P_TYPE = ’BRASS’

 AND S.S_NATION = ’MOROCCO’

 AND S.S_NATION IN (’MOROCCO’, ’SPAIN’)

 AND PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST)

 FROM PARTSUPP PS1, SUPPLIERS S1

 WHERE P.P_PARTKEY = PS1.PS_PARTKEY

 AND S1.S_SUPPKEY = PS1.PS_SUPPKEY

 AND S1.S_NATION = S.S_NATION))

In this case, an explicit optimization guideline can be used to influence the

optimizer. For example:

<OPTGUIDELINES><IXSCAN TABLE="S" INDEX="I_SUPPKEY"/></OPTGUIDELINES>

Optimization guidelines are specified using a simple XML specification. Each

element within the OPTGUIDELINES element is interpreted as an optimization

guideline by the DB2 optimizer. There is one optimization guideline element in this

example. The IXSCAN element requests that the optimizer use index access. The

TABLE attribute of the IXSCAN element indicates the target table reference (using

the exposed name of the table reference) and the INDEX attribute specifies the

index.

The following example is based on the previous query, and shows how an

optimization guideline can be passed to the DB2 optimizer using an optimization

profile.

<?xml version="1.0" encoding="UTF-8">

<OPTPROFILE VERSION="9.1.0.0">

<STMTPROFILE ID="Guidelines for TPCD Q9">

 <STMTKEY SCHEMA="TPCD">

 SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE, S.S_COMMENT

 FROM PARTS P, SUPPLIERS S, PARTSUPP PS

 WHERE P_PARTKEY = PS.PS_PARTKEY

 AND S.S_SUPPKEY = PS.PS_SUPPKEY

 AND P.P_SIZE = 39

 AND P.P_TYPE = ’BRASS’

 AND S.S_NATION = ’MOROCCO’

 AND S.S_NATION IN (’MOROCCO’, ’SPAIN’)

 AND PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST)

 FROM PARTSUPP PS1, SUPPLIERS S1

 WHERE P.P_PARTKEY = PS1.PS_PARTKEY

 AND S1.S_SUPPKEY = PS1.PS_SUPPKEY

 AND S1.S_NATION = S.S_NATION))

 </STMTKEY>

 <OPTGUIDELINES><IXSCAN TABLE="S" INDEX="I_SUPPKEY"/></OPTGUIDELINES>

</STMTPROFILE>

</OPTPROFILE>

Each STMTPROFILE element provides a set of optimization guidelines for one

application statement. The targeted statement is identified by the STMTKEY

278 Troubleshooting and Tuning Database Performance

subelement. The optimization profile is then given a schema-qualified name and

inserted into the database. The optimization profile is put into effect for the

statement by specifying this name on the BIND or PRECOMPILE command.

Optimization profiles allow optimization guidelines to be provided to the

optimizer without application or database configuration changes. You simply

compose the simple XML document, insert it into the database, and specify the

name of the optimization profile on the BIND or PRECOMPILE command. The

optimizer automatically matches optimization guidelines to the appropriate

statement.

Optimization guidelines do not need to be comprehensive, but should be targeted

to a desired execution plan. The DB2 optimizer still considers other possible access

plans using the existing cost-based methods. Optimization guidelines targeting

specific table references cannot override general optimization settings. For example,

an optimization guideline specifying the merge join between tables A and B is not

valid at optimization class 0.

The optimizer ignores invalid or inapplicable optimization guidelines. If any

optimization guidelines are ignored, an execution plan is created and SQL0437W

with reason code 13 is returned. You can then use the EXPLAIN statement to get

detailed diagnostic information regarding optimization guidelines processing.

Optimization profiles:

Anatomy of an optimization profile:

An optimization profile can contain global guidelines, which apply to all data

manipulation language (DML) statements that are executed while the profile is in

effect, and it can contain specific guidelines that apply to individual DML

statements in a package.

 For example:

v You could write a global optimization guideline requesting that the optimizer

refer to the materialized query tables (MQTs) Test.SumSales and Test.AvgSales

whenever a statement is processed while the current optimization profile is

active.

v You could write a statement-level optimization guideline requesting that the

I_SUPPKEY index be used to access the SUPPLIERS table whenever the

optimizer encounters the specified statement.

An optimization profile contains two major sections where you can specify these

two types of guidelines: a global optimization guidelines section can contain one

OPTGUIDELINES element, and a statement profile section can contain any number

of STMTPROFILE elements. An optimization profile must also contain an

OPTPROFILE element, which includes metadata and processing directives.

The following code is an example of a valid optimization profile for DB2 Version

9.1, containing a global optimization guidelines section and a statement profile

section with one STMTPROFILE element.

<?xml version="1.0" encoding="UTF-8"?>

<OPTPROFILE VERSION="9.1.0.0">

 <!--

 Global optimization guidelines section.

 Optional but at most one.

Chapter 3. Factors affecting performance 279

-->

 <OPTGUIDELINES>

 <MQT NAME="Test.AvgSales"/>

 <MQT NAME="Test.SumSales"/>

 </OPTGUIDELINES>

 <!--

 Statement profile section.

 Zero or more.

 -->

 <STMTPROFILE ID="Guidelines for TPCD Q9">

 <STMTKEY SCHEMA="TPCD">

 <![CDATA[SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE,

S.S_COMMENT FROM PARTS P, SUPPLIERS S, PARTSUPP PS

WHERE P_PARTKEY = PS.PS_PARTKEY AND S.S_SUPPKEY = PS.PS_SUPPKEY

AND P.P_SIZE = 39 AND P.P_TYPE = ’BRASS’

AND S.S_NATION = ’MOROCCO’ AND S.S_NATION IN (’MOROCCO’, ’SPAIN’)

AND PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST)

FROM PARTSUPP PS1, SUPPLIERS S1

WHERE P.P_PARTKEY = PS1.PS_PARTKEY AND S1.S_SUPPKEY = PS1.PS_SUPPKEY

AND S1.S_NATION = S.S_NATION)]]>

 </STMTKEY>

 <OPTGUIDELINES>

 <IXSCAN TABID="Q1" INDEX="I_SUPPKEY"/>

 </OPTGUIDELINES>

 </STMTPROFILE>

</OPTPROFILE>

The OPTPROFILE element

An optimization profile begins with the OPTPROFILE element. In the preceding

example, this element consists of a VERSION attribute specifying that the

optimization profile version is 9.1.

The global optimization guidelines section

Global optimization guidelines apply to all statements for which the optimization

profile is in effect. The global optimization guidelines section is represented by the

global OPTGUIDELINES element. In the preceding example, this section contains a

single global optimization guideline specifying that the MQTs Test.AvgSales and

Test.SumSales should be considered when processing any statements for which the

optimization profile is in effect.

The statement profile section

A statement profile defines optimization guidelines that apply to a specific

statement. There can be zero or more statement profiles in an optimization profile.

The statement profile section is represented by the STMTPROFILE element. In the

preceding example, this section contains guidelines for a specific statement for

which the optimization profile is in effect.

Each statement profile contains a statement key and statement-level optimization

guidelines, represented by the STMTKEY and OPTGUIDELINES elements,

respectively.

v The statement key identifies the statement to which the statement-level

optimization guidelines apply. In this example, the STMTKEY element contains

the original statement text and other information that is needed to

unambiguously identify the statement. Using the statement key, the optimizer

280 Troubleshooting and Tuning Database Performance

matches a statement profile with the appropriate statement. This relationship

enables you to provide optimization guidelines for a statement without having

to modify the application.

v The statement-level optimization guidelines section of the statement profile is

represented by the OPTGUIDELINES element. This section is made up of one or

more access or join requests, which specify methods for accessing or joining

tables in the statement. After a successful match with the statement key in a

statement profile, the optimizer refers to the associated statement-level

optimization guidelines when optimizing the statement. The example contains

one access request, which specifies that the SUPPLIERS table referenced in the

nested subselect use an index named I_SUPPKEY.

Creating an optimization profile:

An optimization profile is an XML document that contains optimization guidelines

for one or more data manipulation language (DML) statements.

 Because an optimization profile can contain many combinations of guidelines, the

following information specifies only those steps that are common to creating any

optimization profile.

To create an optimization profile:

1. Launch an XML editor. If possible, use one that has schema validation

capability. The optimizer does not perform XML validation. An optimization

profile must be valid according to the current optimization profile schema.

2. Create a new XML document using a name that makes sense to you. You might

want to give it a name that describes the scope of statements to which it will

apply. For example: inventory_db.xml

3. Add the XML declaration to the document. If you do not specify an encoding

format, UTF-8 is assumed. Save the document with UTF-16 encoding, if

possible. The data server is more efficient when processing this encoding.

 <?xml version="1.0" encoding="UTF-16"?>

4. Add an optimization profile section to the document.

 <OPTPROFILE VERSION="9.1.0.0">

 </OPTPROFILE>

5. Within the OPTPROFILE element, create global or statement-level optimization

guidelines, as appropriate, and save the file.

Configuring the data server to use an optimization profile:

After an optimization profile has been created and its contents validated against

the current optimization profile schema (COPS), the contents must be associated

with a unique schema-qualified name and stored in the SYSTOOLS.OPT_PROFILE

table.

 To configure the data server to use an optimization profile:

1. Create the optimization profile table. Each row of the table can contain one

optimization profile: the SCHEMA and NAME columns identify the

optimization profile, and the PROFILE column contains the text of the

optimization profile.

2. Optional: You can grant any authority or privilege on the table that satisfies

your database security requirements. This has no effect on the optimizer’s

ability to read the table.

3. Insert any optimization profiles that you want to use into the table.

Chapter 3. Factors affecting performance 281

Specifying which optimization profile the optimizer is to use:

Use the OPTPROFILE bind option to specify that an optimization profile is to be

used at the package level, or use the CURRENT OPTIMIZATION PROFILE special

register to specify that an optimization profile is to be used at the statement level.

 This special register contains the qualified name of the optimization profile used

by statements that are dynamically prepared for optimization. For CLI

applications, you can use the CURRENTOPTIMIZATIONPROFILE client

configuration option to set this special register for each connection.

The OPTPROFILE bind option setting also specifies the default optimization profile

for the CURRENT OPTIMIZATION PROFILE special register. The order of

precedence for defaults is as follows:

v The OPTPROFILE bind option applies to all static statements, regardless of any

other settings.

v For dynamic statements, the value of the CURRENT OPTIMIZATION PROFILE

special register is determined by the following, in order of lowest to highest

precedence:

– The OPTPROFILE bind option

– The CURRENTOPTIMIZATIONPROFILE client configuration option

– The most recent SET CURRENT OPTIMIZATION PROFILE statement in the

application

Setting an optimization profile within an application:

You can control the setting of the current optimization profile for dynamic

statements in an application by using the SET CURRENT OPTIMIZATION

PROFILE statement.

 The optimization profile name that you provide in the statement must be a

schema-qualified name. If you do not provide a schema name, the value of the

CURRENT SCHEMA special register is used as the implicit schema qualifier.

The optimization profile that you specify applies to all subsequent dynamic

statements until another SET CURRENT OPTIMIZATION PROFILE statement is

encountered. Static statements are not affected, because they are preprocessed and

packaged before this setting is evaluated.

To set an optimization profile within an application:

v Use the SET CURRENT OPTIMIZATION PROFILE statement anywhere within

your application. For example, the last statement in the following sequence is

optimized according to the JON.SALES optimization profile.

 EXEC SQL SET CURRENT OPTIMIZATION PROFILE = ’NEWTON.INVENTDB’;

 /* The following statements are both optimized with ’NEWTON.INVENTDB’ */

 EXEC SQL PREPARE stmt FROM SELECT ... ;

 EXEC SQL EXECUTE stmt;

 EXEC SQL EXECUTE IMMEDIATE SELECT ... ;

 EXEC SQL SET CURRENT OPTIMIZATION PROFILE = ’JON.SALES’;

 /* This statement is optimized with ’JON.SALES’ */

 EXEC SQL EXECUTE IMMEDIATE SELECT ... ;

v If you want the optimizer to use the default optimization profile that was in

effect when the application started running, specify the null value. For example:

 EXEC SQL SET CURRENT OPTIMIZATION PROFILE = NULL;

282 Troubleshooting and Tuning Database Performance

v If you don’t want the optimizer to use optimization profiles, specify the empty

string. For example:

 EXEC SQL SET CURRENT OPTIMIZATION PROFILE = ’’;

v If you are using a call level interface (CLI) application, you can add the

CURRENTOPTIMIZATIONPROFILE parameter to the db2cli.ini file, using the

configuration assistant or the UPDATE CLI CONFIGURATION command. For

example:

 update cli cfg for section sanfran using currentoptimizationprofile jon.sales

This results in the following entry in the db2cli.ini file:

 [SANFRAN]

 CURRENTOPTIMIZATIONPROFILE=JON.SALES

Note: Any SET CURRENT OPTIMIZATION PROFILE statements in the

application override this setting.

Binding an optimization profile to a package:

When you prepare a package by using the BIND or PRECOMPILE command, you

can use the OPTPROFILE option to specify the optimization profile for the

package.

 This method is the only way to apply an optimization profile to static statements,

and the specified profile applies to all static statements in the package. An

optimization profile that is specified in this manner is also the default optimization

profile that is used for dynamic statements within the package.

You can bind an optimization profile in SQLJ or embedded SQL using APIs (for

example, sqlaprep) or the command line processor (CLP).

For example, the following code shows how to bind an inventory database

optimization profile to an inventory application from the CLP:

 db2 prep inventapp.sqc bindfile optprofile newton.inventdb

 db2 bind inventapp.bnd

 db2 connect reset

 db2 terminate

 xlc -I$HOME/sqllib/include -c inventapp.c -o inventapp.o

 xlc -o inventapp inventapp.o -ldb2 -L$HOME/sqllib/lib

If you do not specify a schema name for the optimization profile, the QUALIFIER

option is used as the implicit qualifier.

Modifying an optimization profile:

You can modify an optimization profile by editing the document, validating it

against the current optimization profile schema (COPS), and replacing the original

document in the SYSTOOLS.OPT_PROFILE table with the new version.

 When an optimization profile is referenced, it is compiled and cached in memory;

therefore, these references must also be removed. Use the FLUSH OPTIMIZATION

PROFILE CACHE statement to remove the old profile from the optimization

profile cache and to invalidate any statement in the dynamic plan cache that was

prepared using the old profile (logical invalidation). To modify an optimization

profile:

1. Edit the optimization profile, applying the necessary changes, and validate the

XML.

2. Update the SYSTOOLS.OPT_PROFILE table with the new profile.

Chapter 3. Factors affecting performance 283

3. If you did not create triggers to flush the optimization profile cache, issue the

FLUSH OPTIMIZATION PROFILE CACHE statement to remove any versions

of the optimization profile that might be contained in the optimization profile

cache.

Note: When you flush the optimization profile cache, any dynamic statements

that were prepared with the old optimization profile are also invalidated in the

dynamic plan cache.

Any subsequent reference to the optimization profile causes the optimizer to read

the new profile and to reload it into the optimization profile cache. Also, because

of the logical invalidation of statements that were prepared under the old

optimization profile, any calls made to those statements will be prepared under the

new optimization profile and re-cached in the dynamic plan cache.

Deleting an optimization profile:

You can remove an optimization profile that is no longer needed by deleting it

from the SYSTOOLS.OPT_PROFILE table. When an optimization profile is

referenced, it is compiled and cached in memory; therefore, if the original profile

has already been used, you must also flush the deleted optimization profile from

the optimization profile cache.

 To delete an optimization profile:

1. Delete the optimization profile from the SYSTOOLS.OPT_PROFILE table. For

example:

 delete from systools.opt_profile

 where schema = ’NEWTON’ and name = ’INVENTDB’

2. If you did not create triggers to flush the optimization profile cache, issue the

FLUSH OPTIMIZATION PROFILE CACHE statement to remove any versions

of the optimization profile that might be contained in the optimization profile

cache.

Note: When you flush the optimization profile cache, any dynamic statements

that were prepared with the old optimization profile are also invalidated in the

dynamic plan cache.

Any subsequent reference to the optimization profile causes the optimizer to return

SQL0437W with reason code 13.

Optimization guidelines:

Types of optimization guidelines:

The DB2 optimizer processes a statement in two phases: the query rewrite

optimization phase and the plan optimization phase.

 The optimized statement is determined by the query rewrite optimization phase,

which transforms the original statement into a semantically equivalent statement

that can be more easily optimized in the plan optimization phase. The plan

optimization phase determines the optimal access methods, join methods, and join

orders for the optimized statement by enumerating a number of alternatives and

choosing the alternative that minimizes an execution cost estimate.

The query transformations, access methods, join methods, join orders, and other

optimization alternatives that are considered during the two optimization phases

284 Troubleshooting and Tuning Database Performance

are governed by various DB2 parameters, such as the CURRENT QUERY

OPTIMIZATION special register, the REOPT bind option, and the

DB2_REDUCED_OPTIMIZATION registry variable. The set of optimization

alternatives is known as the search space.

The following types of statement optimization guidelines are supported:

v General optimization guidelines, which can be used to affect the setting of general

optimization parameters, are applied first, because they can affect the search

space.

v Query rewrite guidelines, which can be used to affect the transformations that are

considered during the query rewrite optimization phase, are applied next,

because they can affect the statement that is optimized during the plan

optimization phase.

v Plan optimization guidelines, which can be used to affect the access methods, join

methods, and join orders that are considered during the plan optimization

phase, are applied last.

General optimization guidelines:

General optimization guidelines can be used to set general optimization

parameters.

 Each of these guidelines has statement-level scope.

Query rewrite optimization guidelines:

Query rewrite guidelines can be used to affect the transformations that are

considered during the query rewrite optimization phase, which transforms the

original statement into a semantically equivalent optimized statement.

 The optimal execution plan for the optimized statement is determined during the

plan optimization phase. Consequently, query rewrite optimization guidelines can

affect the applicability of plan optimization guidelines.

Each query rewrite optimization guideline corresponds to one of the optimizer’s

query transformation rules. The following query transformation rules can be

affected by query rewrite optimization guidelines:

v IN-LIST-to-join

v Subquery-to-join

v NOT-EXISTS-subquery-to-antijoin

v NOT-IN-subquery-to-antijoin

Query rewrite optimization guidelines are not always applicable. Query rewrite

rules are enforced one at a time. Consequently, query rewrite rules that are

enforced before a subsequent rule can affect the query rewrite optimization

guideline that is associated with that rule. The environment configuration can

affect the behavior of some rewrite rules which, in turn, affects the applicability of

a query rewrite optimization guideline to a specific rule.

To get the same results each time, query rewrite rules have certain conditions that

are applied before the rules are enforced. If the conditions that are associated with

a rule are not satisfied when the query rewrite component attempts to apply the

rule to the query, the query rewrite optimization guideline for the rule is ignored.

If the query rewrite optimization guideline is not applicable, and the guideline is

Chapter 3. Factors affecting performance 285

an enabling guideline, SQL0437W with reason code 13 is returned. If the query

rewrite optimization guideline is not applicable, and the guideline is a disabling

guideline, no message is returned. The query rewrite rule is not applied in this

case, because the rule is treated as if it were disabled.

Query rewrite optimization guidelines can be divided into two categories:

statement-level guidelines and predicate-level guidelines. All of the query rewrite

optimization guidelines support the statement-level category. Only INLIST2JOIN

supports the predicate-level category. The statement-level query rewrite

optimization guidelines apply to the entire query. The predicate-level query rewrite

optimization guideline applies to the specific predicate only. If both statement-level

and predicate-level query rewrite optimization guidelines are specified, the

predicate-level guideline overrides the statement-level guideline for the specific

predicate.

Each query rewrite optimization guideline is represented by a corresponding

rewrite request element in the optimization guideline schema.

The following example illustrates an IN-LIST-to-join query rewrite optimization

guideline, as represented by the INLIST2JOIN rewrite request element.

SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE, S.S_COMMENT

FROM "Tpcd".PARTS P, "Tpcd".SUPPLIERS S, "Tpcd".PARTSUPP PS

WHERE P_PARTKEY = PS.PS_PARTKEY

 AND S.S_SUPPKEY = PS.PS_SUPPKEY

 AND P_SIZE IN (35, 36, 39, 40)

 AND S.S_NATION IN (’INDIA’, ’SPAIN’)

 AND PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST)

 FROM "Tpcd".PARTSUPP PS1, "Tpcd".SUPPLIERS S1

 WHERE P.P_PARTKEY = PS1.PS_PARTKEY

 AND S1.S_SUPPKEY = PS1.PS_SUPPKEY

 AND S1.S_NATION = S.S_NATION)

ORDER BY S.S_NAME

<OPTGUIDELINES><INLIST2JOIN TABLE=’P’/></OPTGUIDELINES>;

This particular query rewrite optimization guideline specifies that the list of

constants in the predicate P_SIZE IN (35, 36, 39, 40) should be transformed into

a table expression. This table expression would then be eligible to drive an indexed

nested-loop join access to the PARTS table in the main subselect. The TABLE

attribute is used to identify the target IN-LIST predicate by indicating the table

reference to which this predicate applies. If there are multiple IN-LIST predicates

for the identified table reference, the INLIST2JOIN rewrite request element is

considered ambiguous and is ignored.

In such cases, a COLUMN attribute can be added to further qualify the target

IN-LIST predicate. For example:

SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE, S.S_COMMENT

FROM "Tpcd".PARTS P, "Tpcd".SUPPLIERS S, "Tpcd".PARTSUPP PS

WHERE P_PARTKEY = PS.PS_PARTKEY

 AND S.S_SUPPKEY = PS.PS_SUPPKEY

 AND P_SIZE IN (35, 36, 39, 40)

 AND P_TYPE IN (’BRASS’, ’COPPER’)

 AND S.S_NATION IN (’INDIA’, ’SPAIN’)

 AND PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST)

 FROM "Tpcd".PARTSUPP PS1, "Tpcd".SUPPLIERS S1

 WHERE P.P_PARTKEY = PS1.PS_PARTKEY

 AND S1.S_SUPPKEY = PS1.PS_SUPPKEY

 AND S1.S_NATION = S.S_NATION)

ORDER BY S.S_NAME

<OPTGUIDELINES><INLIST2JOIN TABLE=’P’ COLUMN=’P_SIZE’/></OPTGUIDELINES>;

286 Troubleshooting and Tuning Database Performance

The TABLE attribute of the INLIST2JOIN element identifies the PARTS table

reference in the main subselect. The COLUMN attribute is used to identify the

IN-LIST predicate on the P_SIZE column as the target. In general, the value of the

COLUMN attribute can contain the unqualified name of the column referenced in

the target IN-LIST predicate. If the COLUMN attribute is provided without the

TABLE attribute, the query rewrite optimization guideline is considered invalid

and is ignored.

The OPTION attribute can be used to enable or disable a particular query rewrite

optimization guideline. Because the OPTION attribute is set to DISABLE in the

following example, the list of constants in the predicate P_SIZE IN (35, 36, 39,

40) will not be transformed into a table expression. The default value of the

OPTION attribute is ENABLE. ENABLE and DISABLE must be specified in

uppercase characters.

<OPTGUIDELINES>

 <INLIST2JOIN TABLE=’P’ COLUMN=’P_SIZE’ OPTION=’DISABLE’/>

</OPTGUIDELINES>

In the following example, the INLIST2JOIN rewrite request element does not have

a TABLE attribute. The optimizer interprets this as a request to disable the

IN-LIST-to-join query transformation for all IN-LIST predicates in the statement.

<OPTGUIDELINES><INLIST2JOIN OPTION=’DISABLE’/></OPTGUIDELINES>

The following example illustrates a subquery-to-join query rewrite optimization

guideline, as represented by the SUBQ2JOIN rewrite request element. A

subquery-to-join transformation converts a subquery into an equivalent table

expression. The transformation applies to subquery predicates that are quantified

by EXISTS, IN, =SOME, =ANY, <>SOME, or <>ANY. The subquery-to-join query

rewrite optimization guideline does not ensure that a subquery will be merged. A

particular subquery cannot be targeted by this query rewrite optimization

guideline. The transformation can only be enabled or disabled at the statement

level.

SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE, S.S_COMMENT

FROM "Tpcd".PARTS P, "Tpcd".SUPPLIERS S, "Tpcd".PARTSUPP PS

WHERE P_PARTKEY = PS.PS_PARTKEY

 AND S.S_SUPPKEY = PS.PS_SUPPKEY

 AND P_SIZE IN (35, 36, 39, 40)

 AND P_TYPE = ’BRASS’

 AND S.S_NATION IN (’INDIA’, ’SPAIN’)

 AND PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST)

 FROM "Tpcd".PARTSUPP PS1, "Tpcd".SUPPLIERS S1

 WHERE P.P_PARTKEY = PS1.PS_PARTKEY

 AND S1.S_SUPPKEY = PS1.PS_SUPPKEY

 AND S1.S_NATION = S.S_NATION)

ORDER BY S.S_NAME

<OPTGUIDELINES><SUBQ2JOIN OPTION=’DISABLE’/></OPTGUIDELINES>;

The following example illustrates a NOT-EXISTS-to-anti-join query rewrite

optimization guideline, as represented by the NOTEX2AJ rewrite request element.

A NOT-EXISTS-to-anti-join transformation converts a subquery into a table

expression that is joined to other tables using anti-join semantics (only

nonmatching rows are returned). The NOT-EXISTS-to-anti-join query rewrite

optimization guideline applies to subquery predicates that are quantified by NOT

EXISTS. The NOT-EXISTS-to-anti-join query rewrite optimization guideline does

not ensure that a subquery will be merged. A particular subquery cannot be

targeted by this query rewrite optimization guideline. The transformation can only

be enabled or disabled at the statement level.

Chapter 3. Factors affecting performance 287

SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE, S.S_COMMENT

FROM "Tpcd".PARTS P, "Tpcd".SUPPLIERS S, "Tpcd".PARTSUPP PS

WHERE P_PARTKEY = PS.PS_PARTKEY

 AND S.S_SUPPKEY = PS.PS_SUPPKEY

 AND P_SIZE IN (35, 36, 39, 40)

 AND P_TYPE = ’BRASS’

 AND S.S_NATION IN (’INDIA’, ’SPAIN’)

 AND NOT EXISTS (SELECT 1

 FROM "Tpcd".SUPPLIERS S1

 WHERE S1.S_SUPPKEY = PS.PS_SUPPKEY)

ORDER BY S.S_NAME

<OPTGUIDELINES><NOTEX2AJ OPTION=’ENABLE’/></OPTGUIDELINES>;

Note: The enablement of a query transformation rule at the statement level does

not ensure that the rule will be applied to a particular part of the statement. The

usual criteria are used to determine whether query transformation will take place.

For example, if there are multiple NOT EXISTS predicates in the query block, the

optimizer will not consider converting any of them into anti-joins. Explicitly

enabling query transformation at the statement level does not change this behavior.

The following example illustrates a NOT-IN-to-anti-join query rewrite optimization

guideline, as represented by the NOTIN2AJ rewrite request element. A

NOT-IN-to-anti-join transformation converts a subquery into a table expression that

is joined to other tables using anti-join semantics (only nonmatching rows are

returned). The NOT-IN-to-anti-join query rewrite optimization guideline applies to

subquery predicates that are quantified by NOT IN. The NOT-IN-to-anti-join query

rewrite optimization guideline does not ensure that a subquery will be merged. A

particular subquery cannot be targeted by this query rewrite optimization

guideline. The transformation can only be enabled or disabled at the statement

level.

SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE, S.S_COMMENT

FROM "Tpcd".PARTS P, "Tpcd".SUPPLIERS S, "Tpcd".PARTSUPP PS

WHERE P_PARTKEY = PS.PS_PARTKEY

 AND S.S_SUPPKEY = PS.PS_SUPPKEY

 AND P_SIZE IN (35, 36, 39, 40)

 AND P_TYPE = ’BRASS’

 AND S.S_NATION IN (’INDIA’, ’SPAIN’)

 AND PS.PS_SUPPKEY NOT IN (SELECT S1.S_SUPPKEY

 FROM "Tpcd".SUPPLIERS S1

 WHERE S1.S_NATION = ’CANADA’)

ORDER BY S.S_NAME

<OPTGUIDELINES><NOTIN2AJ OPTION=’ENABLE’/></OPTGUIDELINES>

A particular query rewrite optimization guideline might not be applicable when

considered within the context of other query rewrite transformations being applied

to the statement. That is, if a guideline request to enable a transform cannot be

applied, a warning is returned. For example, an INLIST2JOIN rewrite enable

request element targeting a predicate that is eliminated from the query by another

query transformation would not be applicable. Moreover, the successful application

of a query rewrite optimization guideline might change the applicability of other

query rewrite transformation rules. For example, a request to transform an IN-LIST

to a table expression might prevent a different IN-LIST from being transformed to

a table expression, because the optimizer will only apply a single IN-LIST-to-join

transformation per query block.

Plan optimization guidelines:

Plan optimization guidelines are applied during the cost-based phase of

optimization, where access methods, join methods, join order, and other details of

the execution plan for the statement are determined.

288 Troubleshooting and Tuning Database Performance

Plan optimization guidelines need not specify all aspects of an execution plan.

Unspecified aspects of the execution plan are determined by the optimizer in a

cost-based fashion.

There are two categories of plan optimization guidelines:

v accessRequest – An access request specifies an access method for satisfying a

table reference in a statement.

v joinRequest – A join request specifies a method and sequence for performing a

join operation. Join requests are composed of access or other join requests.

Access request optimization guidelines correspond to the optimizer’s data access

methods, such as table scan, index scan, and list prefetch. Join request guidelines

correspond to the optimizer’s join methods, such as nested-loop join, hash join,

and merge join. Each access request and join request is represented by a

corresponding access request element and join request element in the statement

optimization guideline schema.

The following example illustrates an index scan access request, as represented by

the IXSCAN access request element. This particular request specifies that the

optimizer is to use the I_SUPPKEY index to access the SUPPLIERS table in the

main subselect of the statement. The optional INDEX attribute identifies the

desired index. The TABLE attribute identifies the table reference to which the

access request is applied. A TABLE attribute must identify the target table reference

using its exposed name, which in this example is the correlation name S.

SQL statement:

 select s.s_name, s.s_address, s.s_phone, s.s_comment

 from "Tpcd".parts, "Tpcd".suppliers s, "Tpcd".partsupp ps

 where p_partkey = ps.ps_partkey and

 s.s_suppkey = ps.ps_suppkey and

 p_size = 39 and

 p_type = ’BRASS’ and

 s.s_nation in (’MOROCCO’, ’SPAIN’) and

 ps.ps_supplycost = (select min(ps1.ps_supplycost)

 from "Tpcd".partsupp ps1, "Tpcd".suppliers s1

 where "Tpcd".parts.p_partkey = ps1.ps_partkey and

 s1.s_suppkey = ps1.ps_suppkey and

 s1.s_nation = s.s_nation)

 order by s.s_name

Optimization guideline:

 <OPTGUIDELINES>

 <IXSCAN TABLE=’S’ INDEX=’I_SUPPKEY’/>

 </OPTGUIDELINES>

The following index scan access request element specifies that the optimizer is to

use index access to the PARTS table in the main subselect of the statement. The

optimizer will choose the index in a cost-based fashion, because there is no INDEX

attribute. The TABLE attribute uses the qualified table name to refer to the target

table reference, because there is no associated correlation name.

 <OPTGUIDELINES>

 <IXSCAN TABLE=’"Tpcd".PARTS’/>

 </OPTGUIDELINES>

The following list prefetch access request is represented by the LPREFETCH access

request element. This particular request specifies that the optimizer is to use the

I_SNATION index to access the SUPPLIERS table in the nested subselect of the

Chapter 3. Factors affecting performance 289

statement. The TABLE attribute uses the correlation name S1, because that is the

exposed name identifying the SUPPLIERS table reference in the nested subselect.

 <OPTGUIDELINES>

 <LPREFETCH TABLE=’S1’ INDEX=’I_SNATION’/>

 </OPTGUIDELINES>

The following index scan access request element specifies that the optimizer is to

use the I_SNAME index to access the SUPPLIERS table in the main subselect. The

FIRST attribute specifies that this table is to be the first table that is accessed in the

join sequence chosen for the corresponding FROM clause. The FIRST attribute can

be added to any access or join request; however, there can be at most one access or

join request with the FIRST attribute referring to tables in the same FROM clause.

SQL statement:

 select s.s_name, s.s_address, s.s_phone, s.s_comment

 from "Tpcd".parts, "Tpcd".suppliers s, "Tpcd".partsupp ps

 where p_partkey = ps.ps_partkey

 s.s_suppkey = ps.ps_suppkey and

 p_size = 39 and

 p_type = ’BRASS’ and

 s.s_nation in (’MOROCCO’, ’SPAIN’) and

 ps.ps_supplycost = (select min(ps1.ps_supplycost)

 from "Tpcd".partsupp ps1, "Tpcd".suppliers s1

 where "Tpcd".parts.p_partkey = ps1.ps_partkey and

 s1.s_suppkey = ps1.ps_suppkey and

 s1.s_nation = s.s_nation)

 order by s.s_name

 optimize for 1 row

Optimization guidelines:

 <OPTGUIDELINES>

 <IXSCAN TABLE=’S’ INDEX=’I_SNAME’ FIRST=’TRUE’/>

 </OPTGUIDELINES>

The following example illustrates how multiple access requests are passed in a

single statement optimization guideline. The TBSCAN access request element

represents a table scan access request. This particular request specifies that the

SUPPLIERS table in the nested subselect is to be accessed using a full table scan.

The LPREFETCH access request element specifies that the optimizer is to use the

I_SUPPKEY index during list prefetch index access to the SUPPLIERS table in the

main subselect.

 <OPTGUIDELINES>

 <TBSCAN TABLE=’S1’/>

 <LPREFETCH TABLE=’S’ INDEX=’I_SUPPKEY’/>

 </OPTGUIDELINES>

The following example illustrates a nested-loop join request, as represented by the

NLJOIN join request element. In general, a join request element contains two child

elements. The first child element represents the desired outer input to the join

operation, and the second child element represents the desired inner input to the

join operation. The child elements can be access requests, other join requests, or

combinations of access and join requests. In this example, the first IXSCAN access

request element specifies that the PARTS table in the main subselect is to be the

outer table of the join operation. It also specifies that PARTS table access be

performed using an index scan. The second IXSCAN access request element

specifies that the PARTSUPP table in the main subselect is to be the inner table of

the join operation. It, too, specifies that the table is to be accessed using an index

scan.

290 Troubleshooting and Tuning Database Performance

<OPTGUIDELINES>

 <NLJOIN>

 <IXSCAN TABLE=’"Tpcd".Parts’/>

 <IXSCAN TABLE="PS"/>

 </NLJOIN>

 </OPTGUIDELINES>

The following example illustrates a hash join request, as represented by the

HSJOIN join request element. The ACCESS access request element specifies that

the SUPPLIERS table in the nested subselect is to be the outer table of the join

operation. This access request element is useful in cases where specifying the join

order is the primary objective. The IXSCAN access request element specifies that

the PARTSUPP table in the nested subselect is to be the inner table of the join

operation, and that the optimizer is to choose an index scan to access that table.

 <OPTGUIDELINES>

 <HSJOIN>

 <ACCESS TABLE=’S1’/>

 <IXSCAN TABLE=’PS1’/>

 </HSJOIN>

 </OPTGUIDELINES>

The following example illustrates how larger join requests can be constructed by

nesting join requests. The example includes a merge join request, as represented by

the MSJOIN join request element. The outer input of the join operation is the result

of joining the PARTS and PARTSUPP tables of the main subselect, as represented

by the NLJOIN join request element. The inner input of the join request element is

the SUPPLIERS table in the main subselect, as represented by the IXSCAN access

request element.

 <OPTGUIDELINES>

 <MSJOIN>

 <NLJOIN>

 <IXSCAN TABLE=’"Tpcd".Parts’/>

 <IXSCAN TABLE="PS"/>

 </NLJOIN>

 <IXSCAN TABLE=’S’/>

 </MSJOIN>

 </OPTGUIDELINES>

If a join request is to be valid, all access request elements that are nested either

directly or indirectly inside of it must reference tables in the same FROM clause of

the optimized statement.

Creating statement-level optimization guidelines:

The statement-level optimization guidelines section of the statement profile is

made up of one or more access or join requests, which specify methods for

accessing or joining tables in the statement.

 Exhaust all other tuning options. For example:

1. Ensure that the data distribution statistics have been recently updated by the

runstats utility.

2. Ensure that the data server is running with the proper optimization class

setting for the workload.

3. Ensure that the optimizer has the appropriate indexes to access tables that are

referenced in the query.

To create statement-level optimization guidelines:

Chapter 3. Factors affecting performance 291

1. Create the optimization profile in which you want to insert the statement-level

guidelines.

2. Run the explain facility against the statement to determine whether

optimization guidelines would be helpful. Proceed if that appears to be the

case.

3. Obtain the original statement by running a query that is similar to the

following:

 select statement_text

 from explain_statement

 where explain_level = ’0’ and

 explain_requester = ’SIMMEN’ and

 explain_time = ’2003-09-08-16.01.04.108161’ and

 source_name = ’SQLC2E03’ and

 source_version = ’’ and

 queryno = 1

4. Edit the optimization profile and create a statement profile, inserting the

statement text into the statement key. For example:

 <STMTPROFILE ID="Guidelines for TPCD Q9">

 <STMTKEY SCHEMA="TPCD"><![CDATA[SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE,

 S.S_COMMENT

 FROM PARTS P, SUPPLIERS S, PARTSUPP PS

 WHERE P_PARTKEY = PS.PS_PARTKEY AND S.S_SUPPKEY = PS.PS_SUPPKEY

 AND P.P_SIZE = 39 AND P.P_TYPE = ’BRASS’ AND S.S_NATION

 = ’MOROCCO’ AND

 PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST)

 FROM PARTSUPP PS1, SUPPLIERS S1

 WHERE P.P_PARTKEY = PS1.PS_PARTKEY AND S1.S_SUPPKEY = PS1.PS_SUPPKEY

 AND S1.S_NATION = S.S_NATION)]]>

 </STMTKEY>

 </STMTPROFILE>

5. Insert statement-level optimization guidelines after the statement key. Use

exposed names to identify the objects that are referenced in access and join

requests. The following is an example of a join request:

 <OPTGUIDELINES>

 <HSJOIN>

 <TBSCAN TABLE=’PS1’/>

 <IXSCAN TABLE=’S1’

 INDEX=’I1’/>

 </HSJOIN>

 </OPTGUIDELINES>

6. Validate the file and save it.

If expected results are not achieved, make changes to the guidelines or create

additional guidelines, and update the optimization profile, as appropriate.

Forming table references in optimization guidelines:

The term table reference is used to mean any table, view, table expression, or alias in

an SQL statement or view definition. An optimization guideline can identify a

table reference using either its exposed name in the original statement or the

unique correlation name that is associated with the table reference in the optimized

statement.

 Extended names, which are sequences of exposed names, help to uniquely identify

table references that are embedded in views. Optimization guidelines that identify

exposed or extended names that are not unique within the context of the entire

statement are considered ambiguous and are not applied. Moreover, if more than

one optimization guideline identifies the same table reference, all optimization

292 Troubleshooting and Tuning Database Performance

guidelines identifying that table reference are considered conflicting and are not

applied. The potential for query transformations makes it impossible to guarantee

that an exposed or extended name will still exist during optimization; therefore,

any guideline that identifies such table references is ignored.

Using exposed names in the original statement to identify table references

A table reference is identified by using the exposed name of the table. The exposed

name is specified in the same way that a table would be qualified in an SQL

statement.

The rules for specifying SQL identifiers also apply to the TABLE attribute value of

an optimization guideline. The TABLE attribute value is compared to each exposed

name in the statement. Only a single match is permitted in this DB2 release. If the

TABLE attribute value is schema-qualified, it matches any equivalent exposed

qualified table name. If the TABLE attribute value is unqualified, it matches any

equivalent correlation name or exposed table name. The TABLE attribute value is

therefore considered to be implicitly qualified by the default schema that is in

effect for the statement. These concepts are illustrated by the following example.

Assume that the statement is optimized using the default schema Tpcd.

 select s_name, s_address, s_phone, s_comment

 from parts, suppliers, partsupp ps

 where p_partkey = ps.ps_partkey and

 s.s_suppkey = ps.ps_suppkey and

 p_size = 39 and

 p_type = ’BRASS’

TABLE attribute values that identify a table reference in the statement include

’″Tpcd″.PARTS’, ’PARTS’, ’Parts’ (because the identifier is not delimited, it is

converted to uppercase characters). TABLE attribute values that fail to identify a

table reference in the statement include ’″Tpcd2″.SUPPLIERS’, ’PARTSUPP’ (not an

exposed name), and ’Tpcd.PARTS’ (the identifier Tpcd must be delimited;

otherwise, it is converted to uppercase characters).

The exposed name can be used to target any table reference in the original

statement, view, SQL function, or trigger.

Using exposed names in the original statement to identify table references in

views

Optimization guidelines can use extended syntax to identify table references that

are embedded in views, as shown in the following example:

 create view "Rick".v1 as

 (select * from employee a where salary > 50000)

 create view "Gustavo".v2 as

 (select * from "Rick".v1

 where deptno in (’52’, ’53’, ’54’)

 select * from "Gustavo".v2 a

 where v2.hire_date > ’01/01/2004’

 <OPTGUIDELINES>

 <IXSCAN TABLE=’A/"Rick".V1/A’/>

 </OPTGUIDELINES>

The IXSCAN access request element specifies that an index scan is to be used for

the EMPLOYEE table reference that is embedded in the views ″Gustavo″.V2 and

Chapter 3. Factors affecting performance 293

″Rick″.V1. The extended syntax for identifying table references in views is a series

of exposed names separated by a slash character. The value of the TABLE attribute

A/″Rick″.V1/A illustrates the extended syntax. The last exposed name in the

sequence (A) identifies the table reference that is a target of the optimization

guideline. The first exposed name in the sequence (A) identifies the view that is

directly referenced in the original statement. The exposed name or names in the

middle (″Rick″.V1) pertain to the view references along the path from the direct

view reference to the target table reference. The rules for referring to exposed

names from optimization guidelines, described in the previous section, apply to

each step of the extended syntax.

Had the exposed name of the EMPLOYEE table reference in the view been unique

with respect to all tables that are referenced either directly or indirectly by the

statement, the extended name syntax would not be necessary.

Extended syntax can be used to target any table reference in the original statement,

SQL function, or trigger.

Identifying table references using correlation names in the optimized statement

An optimization guideline can also identify a table reference using the unique

correlation names that are associated with the table reference in the optimized

statement. The optimized statement is a semantically equivalent version of the

original statement, as determined during the query rewrite phase of optimization.

The optimized statement can be retrieved from the explain tables. The TABID

attribute of an optimization guideline is used to identify table references in the

optimized statement. For example:

Original statement:

 select s.s_name, s.s_address, s.s_phone, s.s_comment

 from sm_tpcd.parts p, sm_tpcd.suppliers s, sm_tpcd.partsupp ps

 where p_partkey = ps.ps_partkey and

 s.s_suppkey = ps.ps_suppkey and

 p.p_size = 39 and

 p.p_type = ’BRASS’ and

 s.s_nation in (’MOROCCO’, ’SPAIN’) and

 ps.ps_supplycost = (select min(ps1.ps_supplycost)

 from sm_tpcd.partsupp ps1, sm_tpcd.suppliers s1

 where p.p_partkey = ps1.ps_partkey and

 s1.s_suppkey = ps1.ps_suppkey and

 s1.s_nation = s.s_nation)

 <OPTGUIDELINES>

 <HSJOIN>

 <TBSCAN TABLE=’S1’/>

 <IXSCAN TABID=’Q2’/>

 </HSJOIN>

 </OPTGUIDELINES>

Optimized statement:

 select q6.s_name as "S_NAME", q6.s_address as "S_ADDRESS",

 q6.s_phone as "S_PHONE", q6.s_comment as "S_COMMENT"

 from (select min(q4.$c0)

 from (select q2.ps_supplycost

 from sm_tpcd.suppliers as q1, sm_tpcd.partsupp as q2

 where q1.s_nation = ’MOROCCO’ and

 q1.s_suppkey = q2.ps_suppkey and

 q7.p_partkey = q2.ps_partkey

) as q3

) as q4, sm_tpcd.partsupp as q5, sm_tpcd.suppliers as q6,

294 Troubleshooting and Tuning Database Performance

sm_tpcd.parts as q7

 where p_size = 39 and

 q5.ps_supplycost = q4.$c0 and

 q6.s_nation in (’MOROCCO’, ’SPAIN’) and

 q7.p_type = ’BRASS’ and

 q6.s_suppkey = q5.ps_suppkey and

 q7.p_partkey = q5.ps_partkey

This optimization guideline shows a hash join request, where the SUPPLIERS table

in the nested subselect is the outer table, as specified by the TBSCAN access

request element, and where the PARTSUPP table in the nested subselect is the

inner table, as specified by the IXSCAN access request element. The TBSCAN

access request element uses the TABLE attribute to identify the SUPPLIERS table

reference using the corresponding exposed name in the original statement. The

IXSCAN access request element, on the other hand, uses the TABID attribute to

identify the PARTSUPP table reference using the unique correlation name that is

associated with that table reference in the optimized statement.

If a single optimization guideline specifies both the TABLE and TABID attributes,

they must identify the same table reference, or the optimization guideline is

ignored.

Note: There is currently no guarantee that correlation names in the optimized

statement will be stable when upgrading to a new release of the DB2 product.

Ambiguous table references

An optimization guideline is considered invalid and is not applied if it matches

multiple exposed or extended names. For example:

 create view v1 as

 (select * from employee

 where salary > (select avg(salary) from employee)

 select * from v1

 where deptno in (’M62’, ’M63’)

 <OPTGUIDE>

 <IXSCAN TABLE=’V1/EMPLOYEE’/>

 </OPTGUIDE>

The optimizer considers the IXSCAN access request ambiguous, because the

exposed name EMPLOYEE is not unique within the definition of view V1.

To eliminate the ambiguity, the view can be rewritten to use unique correlation

names, or the TABID attribute can be used. Table references that are identified by

the TABID attribute are never ambiguous, because all correlation names in the

optimized statement are unique.

Conflicting optimization guidelines

Multiple optimization guidelines cannot identify the same table reference. For

example:

 <OPTGUIDELINES>

 <IXSCAN TABLE=’"Tpcd".PARTS’ INDEX=’I_PTYPE’/>

 <IXSCAN TABLE=’"Tpcd".PARTS’ INDEX=’I_SIZE’/>

 </OPTGUIDELINES>

Each of the IXSCAN elements references the ″Tpcd″.PARTS table in the main

subselect.

Chapter 3. Factors affecting performance 295

When two or more guidelines refer to the same table, only the first is applied; all

other guidelines are ignored, and an error is returned.

Only one INLIST2JOIN query rewrite request element at the predicate level per

query can be enabled. The following example illustrates an unsupported query

rewrite optimization guideline, where two IN-LIST predicates are enabled at the

predicate level. Both guidelines are ignored, and a warning is returned.

 <OPTGUIDELINES>

 <INLIST2JOIN TABLE=’P’ COLUMN=’P_SIZE’/>

 <INLIST2JOIN TABLE=’P’ COLUMN=’P_TYPE’/>

 </OPTGUIDELINES>

Verifying that optimization guidelines have been used:

The optimizer makes every attempt to adhere to the optimization guidelines that

are specified in an optimization profile; however, the optimizer can reject invalid or

inapplicable guidelines.

 Explain tables must exist before you can use the explain facility. The data

definition language (DDL) for creating the explain tables is contained in

EXPLAIN.DDL, which can be found in the misc subdirectory of the sqllib directory.

To verify that a valid optimization guideline has been used:

1. Issue the EXPLAIN statement against the statement to which the guidelines

apply. If an optimization guideline was in effect for the statement using an

optimization profile, the optimization profile name appears as a RETURN

operator argument in the EXPLAIN_ARGUMENT table. And if the

optimization guideline contained an SQL embedded optimization guideline or

statement profile that matched the current statement, the name of the statement

profile appears as a RETURN operator argument. The types of these two new

argument values are OPT_PROF and STMTPROF.

2. Examine the results of the explained statement. The following query against the

explain tables can be modified to return the optimization profile name and the

statement profile name for your particular combination of

EXPLAIN_REQUESTER, EXPLAIN_TIME, SOURCE_NAME,

SOURCE_VERSION, and QUERYNO:

 SELECT VARCHAR(B.ARGUMENT_TYPE, 9) as TYPE,

 VARCHAR(B.ARGUMENT_VALUE, 24) as VALUE

 FROM EXPLAIN_STATEMENT A, EXPLAIN_ARGUMENT B

 WHERE A.EXPLAIN_REQUESTER = ’SIMMEN’

 AND A.EXPLAIN_TIME = ’2003-09-08-16.01.04.108161’

 AND A.SOURCE_NAME = ’SQLC2E03’

 AND A.SOURCE_VERSION = ’’

 AND A.QUERYNO = 1

 AND A.EXPLAIN_REQUESTER = B.EXPLAIN_REQUESTER

 AND A.EXPLAIN_TIME = B.EXPLAIN_TIME

 AND A.SOURCE_NAME = B.SOURCE_NAME

 AND A.SOURCE_SCHEMA = B.SOURCE_SCHEMA

 AND A.SOURCE_VERSION = B.SOURCE_VERSION

 AND A.EXPLAIN_LEVEL = B.EXPLAIN_LEVEL

 AND A.STMTNO = B.STMTNO

 AND A.SECTNO = B.SECTNO

 AND A.EXPLAIN_LEVEL = ’P’

 AND (B.ARGUMENT_TYPE = ’OPT_PROF’ OR ARGUMENT_TYPE = ’STMTPROF’)

 AND B.OPERATOR_ID = 1

296 Troubleshooting and Tuning Database Performance

If the optimization guideline is active and the explained statement matches the

statement that is contained in the STMTKEY element of the optimization

guideline, a query that is similar to the previous example produces output that

is similar to the following output. The value of the STMTPROF argument is the

same as the ID attribute in the STMTPROFILE element.

 TYPE VALUE

 --------- --------------------------

 OPT_PROF NEWTON.PROFILE1

 STMTPROF Guidelines for TPCD Q9

XML schema for optimization profiles and guidelines:

Current optimization profile schema:

The valid optimization profile contents for a given DB2 release is described by an

XML schema that is known as the current optimization profile schema (COPS). An

optimization profile applies only to DB2 Database for Linux, UNIX, and Windows

servers.

 The following listing represents the COPS for the current release of the DB2

product.

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" version="1.0">

<!--***-->

<!-- IBM Confidential -->

<!-- Licensed Materials - Property of IBM -->

<!-- (C) Copyright International Business Machines Corporation 2009. All rights reserved. -->

<!-- U.S. Government Users Restricted Rights; Use, duplication or disclosure restricted by -->

<!-- GSA ADP Schedule Contract with IBM Corp. -->

<!--***-->

<!--***-->

<!-- Definition of the current optimization profile schema for V9.7.0.0 -->

<!-- -->

<!-- An optimization profile is composed of the following sections: -->

<!-- -->

<!-- + A global optimization guidelines section (at most one) which defines optimization -->

<!-- guidelines affecting any statement for which the optimization profile is in effect. -->

<!-- -->

<!-- + Zero or more statement profile sections, each of which defines optimization -->

<!-- guidelines for a particular statement for which the optimization profile -->

<!-- is in effect. -->

<!-- -->

<!-- The VERSION attribute indicates the version of this optimization profile -->

<!-- schema. -->

<!--***-->

<xs:element name="OPTPROFILE">

 <xs:complexType>

 <xs:sequence>

 <!-- Global optimization guidelines section. At most one can be specified. -->

 <xs:element name="OPTGUIDELINES" type="globalOptimizationGuidelinesType" minOccurs="0"/>

 <!-- Statement profile section. Zero or more can be specified -->

 <xs:element name="STMTPROFILE" type="statementProfileType" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <!-- Version attribute is currently optional -->

 <xs:attribute name="VERSION" use="optional">

 <xs:simpleType>

 <xs:restriction base="xs:NMTOKEN">

 <xs:enumeration value="9.7.0.0"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

</xs:element>

<!--***-->

<!-- Global optimization guidelines supported in this version: -->

<!-- + MQTOptimizationChoices elements influence the MQTs considered by the optimizer. -->

<!-- + computationalPartitionGroupOptimizationsChoices elements can affect repartitioning -->

<!-- optimizations involving nicknames. -->

<!-- + General requests affect the search space which defines the alternative query -->

Chapter 3. Factors affecting performance 297

<!-- transformations, access methods, join methods, join orders, and other optimizations, -->

<!-- considered by the compiler and optimizer. -->

<!-- + MQT enforcement requests specify semantically matchable MQTs whose usage in access -->

<!-- plans should be enforced regardless of cost estimates. -->

<!-- **-->

<xs:complexType name="globalOptimizationGuidelinesType">

 <xs:sequence>

 <xs:group ref="MQTOptimizationChoices" />

 <xs:group ref="computationalPartitionGroupOptimizationChoices" />

 <xs:group ref="generalRequest"/>

 <xs:group ref="mqtEnforcementRequest" />

 </xs:sequence>

</xs:complexType>

<!-- **-->

<!-- Elements for affecting materialized query table (MQT) optimization. -->

<!-- -->

<!-- + MQTOPT - can be used to disable materialized query table (MQT) optimization. -->

<!-- If disabled, the optimizer will not consider MQTs to optimize the statement. -->

<!-- -->

<!-- + MQT - multiple of these can be specified. Each specifies an MQT that should be -->

<!-- considered for optimizing the statement. Only specified MQTs will be considered. -->

<!-- -->

<!--***-->

<xs:group name="MQTOptimizationChoices">

 <xs:choice>

 <xs:element name="MQTOPT" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:attribute name="OPTION" type="optionType" use="optional"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="MQT" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:attribute name="NAME" type="xs:string" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:choice>

</xs:group>

<!-- ***-->

<!-- Elements for affecting computational partition group (CPG) optimization. -->

<!-- -->

<!-- + PARTOPT - can be used disable the computational partition group (CPG) optimization -->

<!-- which is used to dynamically redistributes inputs to join, aggregation, -->

<!-- and union operations when those inputs are results of remote queries. -->

<!-- -->

<!-- + PART - Define the partition groups to be used in CPG optimizations. -->

<!-- -->

<!-- ***-->

<xs:group name="computationalPartitionGroupOptimizationChoices">

 <xs:choice>

 <xs:element name="PARTOPT" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:attribute name="OPTION" type="optionType" use="optional"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="PART" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:attribute name="NAME" type="xs:string" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:choice>

</xs:group>

<!-- **-->

<!-- Definition of a statement profile. -->

<!-- Comprised of a statement key and optimization guidelines. -->

<!-- The statement key specifies semantic information used to identify the statement to -->

<!-- which optimization guidelines apply. The optional ID attribute provides the statement -->

<!-- profile with a name for use in EXPLAIN output. -->

<!-- **-->

<xs:complexType name="statementProfileType">

 <xs:sequence>

 <!-- Statement key element -->

 <xs:element name="STMTKEY" type="statementKeyType"/>

 <xs:element name="OPTGUIDELINES" type="optGuidelinesType"/>

 </xs:sequence>

 <!-- ID attribute.Used in explain output to indicate the statement profile was used. -->

 <xs:attribute name="ID" type="xs:string" use="optional"/>

</xs:complexType>

<!--**-->

<!-- Definition of the statement key. The statement key provides semantic information used -->

298 Troubleshooting and Tuning Database Performance

<!-- to identify the statement to which the optimization guidelines apply. -->

<!-- The statement key is comprised of: -->

<!-- + statement text (as written in the application) -->

<!-- + default schema (for resolving unqualified table names in the statement) -->

<!-- + function path (for resolving unqualified types and functions in the statement) -->

<!-- The statement text is provided as element data whereas the default schema and function -->

<!-- path are provided via the SCHEMA and FUNCPATH elements, respectively. -->

<!--**-->

<xs:complexType name="statementKeyType" mixed="true">

 <xs:attribute name="SCHEMA" type="xs:string" use="optional"/>

 <xs:attribute name="FUNCPATH" type="xs:string" use="optional"/>

</xs:complexType>

<!--**-->

<!-- -->

<!-- Optimization guideline elements can be chosen from general requests, rewrite -->

<!-- requests access requests, or join requests. -->

<!-- -->

<!-- General requests affect the search space which defines the alternative query -->

<!-- transformations, access methods, join methods, join orders, and other optimizations, -->

<!-- considered by the optimizer. -->

<!-- -->

<!-- Rewrite requests affect the query transformations used in determining the optimized -->

<!-- statement. -->

<!-- -->

<!-- Access requests affect the access methods considered by the cost-based optimizer, -->

<!-- and join requests affect the join methods and join order used in the execution plan. -->

<!-- -->

<!-- MQT enforcement requests specify semantically matchable MQTs whose usage in access -->

<!-- plans should be enforced regardless of cost estimates. -->

<!-- -->

<!--**-->

<xs:element name="OPTGUIDELINES" type="optGuidelinesType"/>

<xs:complexType name="optGuidelinesType">

 <xs:sequence>

 <xs:group ref="generalRequest" minOccurs="0" maxOccurs="1"/>

 <xs:choice maxOccurs="unbounded">

 <xs:group ref="rewriteRequest" />

 <xs:group ref="accessRequest"/>

 <xs:group ref="joinRequest"/>

 <xs:group ref="mqtEnforcementRequest"/>

 </xs:choice>

 </xs:sequence>

</xs:complexType>

<!--*** -->

<!-- Choices of general request elements. -->

<!-- REOPT can be used to override the setting of the REOPT bind option. -->

<!-- DPFXMLMOVEMENT can be used to affect the optimizer’s plan when moving XML documents -->

<!-- between database partitions. The value can be NONE, REFERENCE or COMBINATION. The -->

<!-- default value is NONE. -->

<!--*** -->

<xs:group name="generalRequest">

 <xs:sequence>

 <xs:element name="REOPT" type="reoptType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="DEGREE" type="degreeType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="QRYOPT" type="qryoptType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="RTS" type="rtsType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="DPFXMLMOVEMENT" type="dpfXMLMovementType" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

</xs:group>

<!--***-->

<!-- Choices of rewrite request elements. -->

<!--***-->

<xs:group name="rewriteRequest">

 <xs:sequence>

 <xs:element name="INLIST2JOIN" type="inListToJoinType" minOccurs="0"/>

 <xs:element name="SUBQ2JOIN" type="subqueryToJoinType" minOccurs="0"/>

 <xs:element name="NOTEX2AJ" type="notExistsToAntiJoinType" minOccurs="0"/>

 <xs:element name="NOTIN2AJ" type="notInToAntiJoinType" minOccurs="0"/>

 </xs:sequence>

</xs:group>

<!--*** -->

<!-- Choices for access request elements. -->

<!-- TBSCAN - table scan access request element -->

<!-- IXSCAN - index scan access request element -->

<!-- LPREFETCH - list prefetch access request element -->

<!-- IXAND - index ANDing access request element -->

<!-- IXOR - index ORing access request element -->

<!-- XISCAN - xml index access request element -->

Chapter 3. Factors affecting performance 299

<!-- XANDOR - XANDOR access request element -->

<!-- ACCESS - indicates the optimizer should choose the access method for the table -->

<!--*** -->

<xs:group name="accessRequest">

 <xs:choice>

 <xs:element name="TBSCAN" type="tableScanType"/>

 <xs:element name="IXSCAN" type="indexScanType"/>

 <xs:element name="LPREFETCH" type="listPrefetchType"/>

 <xs:element name="IXAND" type="indexAndingType"/>

 <xs:element name="IXOR" type="indexOringType"/>

 <xs:element name="XISCAN" type="indexScanType"/>

 <xs:element name="XANDOR" type="XANDORType"/>

 <xs:element name="ACCESS" type="anyAccessType"/>

 </xs:choice>

</xs:group>

<!--*** -->

<!-- Choices for join request elements. -->

<!-- NLJOIN - nested-loops join request element -->

<!-- MSJOIN - sort-merge join request element -->

<!-- HSJOIN - hash join request element -->

<!-- JOIN - indicates that the optimizer is to choose the join method. -->

<!--*** -->

<xs:group name="joinRequest">

 <xs:choice>

 <xs:element name="NLJOIN" type="nestedLoopJoinType"/>

 <xs:element name="HSJOIN" type="hashJoinType"/>

 <xs:element name="MSJOIN" type="mergeJoinType"/>

 <xs:element name="JOIN" type="anyJoinType"/>

 </xs:choice>

</xs:group>

<!--***-->

<!-- MQT enforcement request element. -->

<!-- MQTENFORCE - This element can be used to specify semantically matchable MQTs whose -->

<!-- usage in access plans should be enforced regardless of Optimizer cost estimates. -->

<!-- MQTs can be specified either directly with the NAME attribute or generally using -->

<!-- the TYPE attribute. -->

<!-- Only the first valid attribute found is used and all subsequent ones are ignored. -->

<!-- Since this element can be specified multiple times, more than one MQT can be -->

<!-- enforced at a time. -->

<!-- Note however, that if there is a conflict when matching two enforced MQTs to the -->

<!-- same data source (base-table or derived) an MQT will be picked based on existing -->

<!-- tie-breaking rules, i.e., either heuristic or cost-based. -->

<!-- Finally, this request overrides any other MQT optimization options specified in -->

<!-- a profile, i.e., enforcement will take place even if MQTOPT is set to DISABLE or -->

<!-- if the specified MQT or MQTs do not exist in the eligibility list specified by -->

<!-- any MQT elements. -->

<!--***-->

<xs:group name="mqtEnforcementRequest">

 <xs:sequence>

 <xs:element name="MQTENFORCE" type="mqtEnforcementType" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

</xs:group>

<!--*** -->

<!-- REOPT general request element. Can override REOPT setting at the package, db, -->

<!-- dbm level. -->

<!--*** -->

<xs:complexType name="reoptType">

 <xs:attribute name="VALUE" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="ONCE"/>

 <xs:enumeration value="ALWAYS"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

</xs:complexType>

<!--***-->

<!-- RTS general request element to enable, disable or provide a time budget for -->

<!-- real-time statistics collection. -->

<!-- OPTION attribute allows enabling or disabling real-time statistics. -->

<!-- TIME attribute provides a time budget in milliseconds for real-time statistics collection.-->

<!--***-->

<xs:complexType name="rtsType">

 <xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

 <xs:attribute name="TIME" type="xs:nonNegativeInteger" use="optional"/>

</xs:complexType>

<!--**-->

<!-- Definition of an "IN list to join" rewrite request -->

<!-- OPTION attribute allows enabling or disabling the alternative. -->

300 Troubleshooting and Tuning Database Performance

<!-- TABLE attribute allows request to target IN list predicates applied to a -->

<!-- specific table reference. COLUMN attribute allows request to target a specific IN list -->

<!-- predicate. -->

<!--**-->

<xs:complexType name="inListToJoinType">

 <xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

 <xs:attribute name="TABLE" type="xs:string" use="optional"/>

 <xs:attribute name="COLUMN" type="xs:string" use="optional"/>

</xs:complexType>

<!--**-->

<!-- Definition of a "subquery to join" rewrite request -->

<!-- The OPTION attribute allows enabling or disabling the alternative. -->

<!--**-->

<xs:complexType name="subqueryToJoinType">

 <xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

</xs:complexType>

<!--**-->

<!-- Definition of a "not exists to anti-join" rewrite request -->

<!-- The OPTION attribute allows enabling or disabling the alternative. -->

<!--**-->

<xs:complexType name="notExistsToAntiJoinType">

 <xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

</xs:complexType>

<!--**-->

<!-- Definition of a "not IN to anti-join" rewrite request -->

<!-- The OPTION attribute allows enabling or disabling the alternative. -->

<!--**-->

<xs:complexType name="notInToAntiJoinType">

 <xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

</xs:complexType>

<!--**-->

<!-- Effectively the superclass from which all access request elements inherit. -->

<!-- This type currently defines TABLE and TABID attributes, which can be used to tie an -->

<!-- access request to a table reference in the query. -->

<!-- The TABLE attribute value is used to identify a table reference using identifiers -->

<!-- in the original SQL statement. The TABID attribute value is used to identify a table -->

<!-- referece using the unique correlation name provided via the -->

<!-- optimized statement. If both the TABLE and TABID attributes are specified, the TABID -->

<!-- field is ignored. The FIRST attribute indicates that the access should be the first -->

<!-- access in the join sequence for the FROM clause. -->

<!-- The SHARING attribute indicates that the access should be visible to other concurrent -->

<!-- similar accesses that may therefore share bufferpool pages. The WRAPPING attribute -->

<!-- indicates that the access should be allowed to perform wrapping, thereby allowing it to -->

<!-- start in the middle for better sharing with other concurrent accesses. The THROTTLE -->

<!-- attribute indicates that the access should be allowed to be throttled if this may -->

<!-- benefit other concurrent accesses. The SHARESPEED attribute is used to indicate whether -->

<!-- the access should be considered fast or slow for better grouping of concurrent accesses. -->

<!--*** -->

<xs:complexType name="accessType" abstract="true">

 <xs:attribute name="TABLE" type="xs:string" use="optional"/>

 <xs:attribute name="TABID" type="xs:string" use="optional"/>

 <xs:attribute name="FIRST" type="xs:string" use="optional" fixed="TRUE"/>

 <xs:attribute name="SHARING" type="optionType" use="optional" default="ENABLE"/>

 <xs:attribute name="WRAPPING" type="optionType" use="optional" default="ENABLE"/>

 <xs:attribute name="THROTTLE" type="optionType" use="optional" default="ENABLE"/>

 <xs:attribute name="SHARESPEED" type="shareSpeed" use="optional"/>

</xs:complexType>

<!--**-->

<!-- Definition of an table scan access request method. -->

<!--**-->

<xs:complexType name="tableScanType">

 <xs:complexContent>

 <xs:extension base="accessType"/>

 </xs:complexContent>

</xs:complexType>

<!-- ***-->

<!-- Definition of an index scan access request element. The index name is optional. -->

<!--*** -->

<xs:complexType name="indexScanType">

 <xs:complexContent>

 <xs:extension base="accessType">

 <xs:attribute name="INDEX" type="xs:string" use="optional"/>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

<!--**-->

<!-- Definition of a list prefetch access request element. The index name is optional. -->

<!--*** -->

<xs:complexType name="listPrefetchType">

Chapter 3. Factors affecting performance 301

<xs:complexContent>

 <xs:extension base="accessType">

 <xs:attribute name="INDEX" type="xs:string" use="optional"/>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

<!--**-->

<!-- Definition of an extended access element which will be used by IXAND and ACCESS -->

<!-- requests. -->

<!-- A single index scan be specified via the INDEX attribute. Multiple indexes -->

<!-- can be specified via INDEX elements. The index element specification supersedes the -->

<!-- attribute specification. If a single index is specified, the optimizer will use the -->

<!-- index as the first index of the index ANDing access method and will choose addi- -->

<!-- tional indexes using cost. If multiple indexes are specified the optimizer will -->

<!-- use exactly those indexes in the specified order. If no indexes are specified -->

<!-- via either the INDEX attribute or INDEX elements, then the optimizer will choose -->

<!-- all indexes based upon cost. -->

<!-- Extension for XML support: -->

<!-- TYPE: Optional attribute. The allowed value is XMLINDEX. When the type is not -->

<!-- specified, the optimizer makes a cost based decision. -->

<!-- ALLINDEXES: Optional attribute. The allowed value is TRUE. The default -->

<!-- value is FALSE. -->

<!--*** -->

<xs:complexType name="extendedAccessType">

 <xs:complexContent>

 <xs:extension base="accessType">

 <xs:sequence minOccurs="0">

 <xs:element name="INDEX" type="indexType" minOccurs="2" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="INDEX" type="xs:string" use="optional"/>

 <xs:attribute name="TYPE" type="xs:string" use="optional" fixed="XMLINDEX"/>

 <xs:attribute name="ALLINDEXES" type="boolType" use="optional" fixed="TRUE"/>

 </xs:extension>

 </xs:complexContent>

</xs:complexType>

<!--**-->

<!-- Definition of an index ANDing access request element. -->

<!-- Extension for XML support: -->

<!-- All attributes and elements in extendedAccessType are included. -->

<!-- Note that ALLINDEXES is a valid option only if TYPE is XMLINDEX. -->

<!--*** -->

<xs:complexType name="indexAndingType">

 <xs:complexContent>

 <xs:extension base="extendedAccessType"/>

 </xs:complexContent>

</xs:complexType>

<!--**-->

<!-- Definition of an INDEX element method. Index set is optional. If specified, -->

<!-- at least 2 are required. -->

<!--*** -->

<xs:complexType name="indexType">

 <xs:attribute name="IXNAME" type="xs:string" use="optional"/>

</xs:complexType>

<!--**-->

<!-- Definition of an XANDOR access request method. -->

<!--**-->

<xs:complexType name="XANDORType">

 <xs:complexContent>

 <xs:extension base="accessType"/>

 </xs:complexContent>

</xs:complexType>

<!--**-->

<!-- Use for derived table access or other cases where the access method is not of -->

<!-- consequence. -->

<!-- Extension for XML support: -->

<!-- All attributes and elements in extendedAccessType are included. -->

<!-- Note that INDEX attribute/elements and ALLINDEXES are valid options only if TYPE -->

<!-- is XMLINDEX. -->

<!--**-->

<xs:complexType name="anyAccessType">

 <xs:complexContent>

 <xs:extension base="extendedAccessType"/>

 </xs:complexContent>

</xs:complexType>

<!--**-->

<!-- Definition of an index ORing access -->

<!-- Cannot specify more details (e.g indexes). Optimizer will choose the details based -->

<!-- upon cost. -->

<!--*** -->

302 Troubleshooting and Tuning Database Performance

<xs:complexType name="indexOringType">

 <xs:complexContent>

 <xs:extension base="accessType"/>

 </xs:complexContent>

</xs:complexType>

<!--**-->

<!-- Effectively the super class from which join request elements inherit. -->

<!-- This type currently defines join element inputs and also the FIRST attribute. -->

<!-- A join request must have exactly two nested sub-elements. The sub-elements can be -->

<!-- either an access request or another join request. The first sub-element represents -->

<!-- outer table of the join operation while the second element represents the inner -->

<!-- table. The FIRST attribute indicates that the join result should be the first join -->

<!-- relative to other tables in the same FROM clause. -->

<!--*** -->

<xs:complexType name="joinType" abstract="true">

 <xs:choice minOccurs="2" maxOccurs="2">

 <xs:group ref="accessRequest"/>

 <xs:group ref="joinRequest"/>

 </xs:choice>

 <xs:attribute name="FIRST" type="xs:string" use="optional" fixed="TRUE"/>

</xs:complexType>

<!--*** -->

<!-- Definition of nested loop join access request. Subclass of joinType. -->

<!-- Does not add any elements or attributes. -->

<!--*** -->

<xs:complexType name="nestedLoopJoinType">

 <xs:complexContent>

 <xs:extension base="joinType"/>

 </xs:complexContent>

</xs:complexType>

<!--**-->

<!-- Definition of merge join access request. Subclass of joinType. -->

<!-- Does not add any elements or attributes. -->

<!--*** -->

<xs:complexType name="mergeJoinType">

 <xs:complexContent>

 <xs:extension base="joinType"/>

 </xs:complexContent>

</xs:complexType>

<!--*** -->

<!-- Definition of hash join access request. Subclass of joinType. -->

<!-- Does not add any elements or attributes. -->

<!--*** -->

<xs:complexType name="hashJoinType">

 <xs:complexContent>

 <xs:extension base="joinType"/>

 </xs:complexContent>

</xs:complexType>

<!--*** -->

<!-- Any join is a subclass of binary join. Does not extend it in any way. -->

<!-- Does not add any elements or attributes. -->

<!--*** -->

<xs:complexType name="anyJoinType">

 <xs:complexContent>

 <xs:extension base="joinType"/>

 </xs:complexContent>

</xs:complexType>

<!--**-->

<!-- The MQTENFORCE element can be specified with one of two attributes: -->

<!-- NAME: Specify the MQT name directly as a value to this attribute. -->

<!-- TYPE: Specify the type of the MQTs that should be enforced with this attribute. -->

<!-- Note that only the value of the first valid attribute found will be used. All -->

<!-- subsequent attributes will be ignored. -->

<!--**-->

<xs:complexType name="mqtEnforcementType">

 <xs:attribute name="NAME" type="xs:string"/>

 <xs:attribute name="TYPE" type="mqtEnforcementTypeType"/>

</xs:complexType>

<!--**-->

<!-- Allowable values for the TYPE attribute of an MQTENFORCE element: -->

<!-- NORMAL: Enforce usage of all semantically matchable MQTs, except replicated MQTs. -->

<!-- REPLICATED: Enforce usage of all semantically matchable replicated MQTs only. -->

<!-- ALL: Enforce usage of all semantically matchable MQTs. -->

<!--*** -->

<xs:simpleType name="mqtEnforcementTypeType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="NORMAL"/>

 <xs:enumeration value="REPLICATED"/>

 <xs:enumeration value="ALL"/>

Chapter 3. Factors affecting performance 303

</xs:restriction>

</xs:simpleType>

<!--**-->

<!-- Allowable values for a boolean attribute. -->

<!--*** -->

<xs:simpleType name="boolType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="TRUE"/>

 <xs:enumeration value="FALSE"/>

 </xs:restriction>

</xs:simpleType>

<!--**-->

<!-- Allowable values for an OPTION attribute. -->

<!--*** -->

<xs:simpleType name="optionType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="ENABLE"/>

 <xs:enumeration value="DISABLE"/>

 </xs:restriction>

</xs:simpleType>

<!--**-->

<!-- Allowable values for a SHARESPEED attribute. -->

<!--*** -->

<xs:simpleType name="shareSpeed">

 <xs:restriction base="xs:string">

 <xs:enumeration value="FAST"/>

 <xs:enumeration value="SLOW"/>

 </xs:restriction>

</xs:simpleType>

<!--***-->

<!-- Definition of the qryopt type: the only values allowed are 0, 1, 2, 3, 5, 7 and 9 -->

<!--***-->

<xs:complexType name="qryoptType">

 <xs:attribute name="VALUE" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="0"/>

 <xs:enumeration value="1"/>

 <xs:enumeration value="2"/>

 <xs:enumeration value="3"/>

 <xs:enumeration value="5"/>

 <xs:enumeration value="7"/>

 <xs:enumeration value="9"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

</xs:complexType>

<!--***-->

<!-- Definition of the degree type: any number between 1 and 32767 or the strings ANY or -1 -->

<!--** -->

<xs:simpleType name="intStringType">

 <xs:union>

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="1"></xs:minInclusive>

 <xs:maxInclusive value="32767"></xs:maxInclusive>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="ANY"/>

 <xs:enumeration value="-1"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:union>

</xs:simpleType>

<xs:complexType name="degreeType">

 <xs:attribute name="VALUE" type="intStringType"></xs:attribute>

</xs:complexType>

<!--***-->

<!-- Definition of DPF XML movement types -->

<!--** -->

<xs:complexType name="dpfXMLMovementType">

 <xs:attribute name="VALUE" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="REFERENCE"/>

 <xs:enumeration value="COMBINATION"/>

304 Troubleshooting and Tuning Database Performance

</xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

</xs:schema>

XML schema for the OPTPROFILE element:

The OPTPROFILE element is the root of an optimization profile.

 This element is defined as follows:

XML Schema

 <xs:element name="OPTPROFILE">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="OPTGUIDELINES" type="globalOptimizationGuidelinesType"

 minOccurs="0"/>

 <xs:element name="STMTPROFILE" type="statementProfileType" minOccurs="0"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="VERSION" use="optional">

 <xs:simpleType>

 <xs:restriction base="xs:NMTOKEN">

 <xs:enumeration value="9.7.0.0"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

 </xs:element>

Description

The optional OPTGUIDELINES sub-element defines the global optimization

guidelines for the optimization profile. Each STMTPROFILE sub-element defines a

statement profile. The VERSION attribute identifies the current optimization profile

schema against which a specific optimization profile was created and validated.

XML schema for the global OPTGUIDELINES element:

The OPTGUIDELINES element defines the global optimization guidelines for the

optimization profile.

 It is defined by the complex type globalOptimizationGuidelinesType.

XML Schema

 <xs:complexType name="globalOptimizationGuidelinesType">

 <xs:sequence>

 <xs:group ref="MQTOptimizationChoices"/>

 <xs:group ref="computationalPartitionGroupOptimizationChoices"/>

 <xs:group ref="generalRequest"/>

 <xs:group ref="mqtEnforcementRequest"/>

 </xs:sequence>

 </xs:complexType>

Description

Global optimization guidelines can be defined with elements from the

MQTOptimizationChoices group, the

computationalPartitionGroupOptimizationChoices group, or with the REOPT

general request element.

Chapter 3. Factors affecting performance 305

v MQTOptimizationChoices group elements can be used to influence MQT

substitution.

v computationalPartitionGroupOptimizationChoices group elements can be used

to influence computational partition group optimization, which involves the

dynamic redistribution of data read from remote data sources. It applies only to

partitioned federated database configurations.

v The REOPT general request element can be used to influence the time at which

optimization occurs for statements that reference variables.

v MQT enforcement requests specify semantically matchable materialized query

tables (MQTs) whose use in access plans should be enforced regardless of cost

estimates.

MQT optimization choices:

The MQTOptimizationChoices group defines a set of elements that can be used to

influence materialized query table (MQT) optimization. In particular, these

elements can be used to enable or disable consideration of MQT substitution, or to

specify the complete set of MQTs that are to be considered by the optimizer.

XML Schema

 <xs:group name="MQTOptimizationChoices">

 <xs:choice>

 <xs:element name="MQTOPT" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:attribute name="OPTION" type="optionType" use="optional"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="MQT" minOccurs="0" maxOccurs="unbounded">

 <xs:complexType>

 <xs:attribute name="NAME" type="xs:string" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:group>

Description

The MQTOPT element is used to enable or disable consideration of MQT

optimization. The OPTION attribute can take the value ENABLE (default) or

DISABLE.

The NAME attribute of an MQT element identifies an MQT that is to be

considered by the optimizer. The rules for forming a reference to an MQT in the

NAME attribute are the same as those for forming references to exposed table

names. If one or more MQT elements are specified, only those MQTs are

considered by the optimizer. The decision to perform MQT substitution using one

or more of the specified MQTs remains a cost-based decision.

Examples

The following example shows how to disable MQT optimization.

 <OPTGUIDELINES>

 <MQTOPT OPTION=’DISABLE’/>

 </OPTGUIDELINES>

The following example shows how to limit MQT optimization to the

Tpcd.PARTSMQT table and the COLLEGE.STUDENTS table.

306 Troubleshooting and Tuning Database Performance

<OPTGUIDELINES>

 <MQT NAME=’Tpcd.PARTSMQT’/>

 <MQT NAME=’COLLEGE.STUDENTS’/>

 <OPTGUIDELINES>

Computational partition group optimization choices:

The computationalPartitionGroupOptimizationChoices group defines a set of

elements that can be used to influence computational partition group optimization.

In particular, these elements can be used to enable or disable computational group

optimization, or to specify the partition group that is to be used for computational

partition group optimization.

XML Schema

 <xs:group name="computationalPartitionGroupOptimizationChoices">

 <xs:choice>

 <xs:element name="PARTOPT" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:attribute name="OPTION" type="optionType" use="optional"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="PART" minOccurs="0" maxOccurs="1">

 <xs:complexType>

 <xs:attribute name="NAME" type="xs:string" use="required"/>

 </xs:complexType>

 </xs:element>

 </xs:choice>

 </xs:group>

Description

The PARTOPT element is used to enable or disable consideration of computational

partition group optimization. The OPTION attribute can take the value ENABLE

(default) or DISABLE.

The PART element can be used to specify the partition group that is to be used for

computational partition group optimization. The NAME attribute must identify an

existing partition group. The decision to perform dynamic redistribution using the

specified partition group remains a cost-based decision.

Examples

The following example shows how to disable computational partition group

optimization.

 <OPTGUIDELINES>

 <PARTOPT OPTION=’DISABLE’/>

 </OPTGUIDELINES>

The following example shows how to specify that the WORKPART partition group

is to be used for computational partition group optimization.

 <OPTGUIDELINES>

 <MQT NAME=’Tpcd.PARTSMQT’/>

 <PART NAME=’WORKPART’/>

 <OPTGUIDELINES>

REOPT global optimization guideline:

The REOPT global optimization guideline controls when optimization occurs for

data manipulation language (DML) statements that contain variables (host

variables, parameter markers, global variables, or special registers).

Chapter 3. Factors affecting performance 307

The description and syntax of the REOPT element is the same for both global

optimization guidelines and statement-level optimization guidelines. For more

information, see “REOPT requests”.

XML schema for the STMTPROFILE element:

The STMTPROFILE element defines a statement profile within an optimization

profile.

 It is defined by the complex type statementProfileType.

XML Schema

 <xs:complexType name="statementProfileType">

 <xs:sequence>

 <xs:element name="STMTKEY" type="statementKeyType"/>

 <xs:element name="OPTGUIDELINES" type="optGuidelinesType"/>

 </xs:sequence>

 <xs:attribute name="ID" type="xs:string" use="optional"/>

 </xs:complexType>

Description

A statement profile specifies optimization guidelines for a particular statement, and

includes the following parts.

v Statement key

An optimization profile can be in effect for more than one statement in an

application. Using the statement key, the optimizer automatically matches each

statement profile to a corresponding statement in the application. This enables

you to provide optimization guidelines for a statement without editing the

application. The statement key includes the text of the statement (as written in

the application), as well as other information that is needed to unambiguously

identify the correct statement. The STMTKEY sub-element represents the

statement key.

v Statement-level optimization guidelines

This part of the statement profile specifies the optimization guidelines in effect

for the statement that is identified by the statement key. For information, see

“XML schema for the statement-level OPTGUIDELINES element”.

v Statement profile name

A user-specified name that appears in diagnostic output to identify a particular

statement profile.

XML schema for the STMTKEY element:

The STMTKEY element enables the optimizer to match a statement profile to a

corresponding statement in an application.

 It is defined by the complex type statementKeyType.

XML Schema

 <xs:complexType name="statementKeyType" mixed="true">

 <xs:attribute name="SCHEMA" type="xs:string" use="optional"/>

 <xs:attribute name="FUNCPATH" type="xs:string" use="optional"/>

 </xs:complexType>

 </xs:schema>

308 Troubleshooting and Tuning Database Performance

Description

The optional SCHEMA attribute can be used to specify the default schema part of

the statement key.

The optional FUNCPATH attribute can be used to specify the function path part of

the statement key. Multiple paths must be separated by commas, and the specified

function paths must match exactly the function paths that are specified in the

compilation key.

Example

The following example shows a statement key definition that associates a

particular statement with a default schema of ’COLLEGE’ and a function path of

’SYSIBM,SYSFUN,SYSPROC,DAVE’.

 <STMTKEY SCHEMA=’COLLEGE’ FUNCPATH=’SYSIBM,SYSFUN,SYSPROC,DAVE’>

 <![CDATA[select * from orders" where foo(orderkey) > 20]]>

 </STMTKEY>

CDATA tagging (starting with <![CDATA[and ending with]]>) is necessary

because the statement text contains the special XML character ’>’.

Statement key and compilation key matching:

The statement key is used to identify the application statement to which

statement-level optimization guidelines apply.

 When an SQL statement is compiled, various factors influence how the statement is

interpreted semantically by the compiler. The SQL statement and the settings of

SQL compiler parameters together form the compilation key. Each part of a

statement key corresponds to some part of a compilation key.

A statement key is comprised of the following parts:

v Statement text, which is the text of the statement as written in the application

v Default schema, which is the schema name that is used as the implicit qualifier

for unqualified table names; this part is optional, but should be provided if there

are unqualified table names in the statement

v Function path, which is the function path that is used when resolving

unqualified function and data type references; this part is optional, but should

be provided if there are unqualified user-defined functions or user-defined types

in the statement

When the data server compiles an SQL statement and finds an active optimization

profile, it attempts to match each statement key in the optimization profile with the

current compilation key. A statement key and compilation key are said to match if

each specified part of the statement key matches the corresponding part of the

compilation key. If a part of the statement key is not specified, the omitted part is

considered matched by default. Each unspecified part of the statement key is

treated as a wild card that matches the corresponding part of any compilation key.

After the data server finds a statement key that matches the current compilation

key, it stops searching. If there are multiple statement profiles whose statement

keys match the current compilation key, only the first such statement profile (based

on document order) is used.

XML schema for the statement-level OPTGUIDELINES element:

Chapter 3. Factors affecting performance 309

The OPTGUIDELINES element of a statement profile defines the optimization

guidelines in effect for the statement that is identified by the associated statement

key. It is defined by the type optGuidelinesType.

XML Schema

 <xs:element name="OPTGUIDELINES" type="optGuidelinesType"/>

 <xs:complexType name="optGuidelinesType">

 <xs:sequence>

 <xs:group ref="general request" minOccurs="0" maxOccurs="1"/>

 <xs:choice maxOccurs="unbounded">

 <xs:group ref="rewriteRequest"/>

 <xs:group ref="accessRequest"/>

 <xs:group ref="joinRequest"/>

 <xs:group ref="mqtEnforcementRequest"/>

 </xs:choice>

 </xs:sequence>

 </xs:complexType>

Description

The optGuidelinesType group defines the set of valid sub-elements of the

OPTGUIDELINES element. Each sub-element is interpreted as an optimization

guideline by the DB2 optimizer. Sub-elements can be categorized as either general

request elements, rewrite request elements, access request elements, or join request

elements.

v General request elements are used to specify general optimization guidelines,

which can be used to change the optimizer’s search space.

v Rewrite request elements are used to specify query rewrite optimization guidelines,

which can be used to affect the query transformations that are applied when the

optimized statement is being determined.

v Access request elements and join request elements are plan optimization guidelines,

which can be used to affect access methods, join methods, and join orders that

are used in the execution plan for the optimized statement.

v MQT enforcement request elements specify semantically matchable materialized

query tables (MQTs) whose use in access plans should be enforced regardless of

cost estimates.

Note: Optimization guidelines that are specified in a statement profile take

precedence over those that are specified in the global section of an optimization

profile.

XML schema for general optimization guidelines:

The generalRequest group defines guidelines that are not specific to a particular

phase of the optimization process, and can be used to change the optimizer’s

search space.

<!--*** --> \

<!-- Choices of general request elements. --> \

<!-- REOPT can be used to override the setting of the REOPT bind option. --> \

<!-- DPFXMLMOVEMENT can be used to affect the optimizer’s plan when moving XML documents --> \

<!-- between database partitions. The allowed value can be REFERENCE or COMBINATION. The --> \

<!-- default value is NONE. --> \

<!--*** --> \

<xs:group name="generalRequest">

 <xs:sequence>

 <xs:element name="REOPT" type="reoptType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="DEGREE" type="degreeType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="QRYOPT" type="qryoptType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="RTS" type="rtsType" minOccurs="0" maxOccurs="1"/>

 <xs:element name="DPFXMLMOVEMENT" type="dpfXMLMovementType" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

</xs:group>

310 Troubleshooting and Tuning Database Performance

Description

General request elements can be used to define general optimization guidelines,

which affect the optimization search space and hence, can affect the applicability of

rewrite and cost-based optimization guidelines.

DEGREE requests:

The DEGREE general request element can be used to override the setting of the

DEGREE bind option, the value of the dft_degree database configuration

parameter, or the result of a previous SET CURRENT DEGREE statement.

 The DEGREE general request element is only considered if the instance is

configured for intra-partition parallelism; otherwise, a warning is returned. It is

defined by the complex type degreeType.

XML Schema

 <xs:simpleType name="intStringType">

 <xs:union>

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="1"></xs:minInclusive>

 <xs:maxInclusive value="32767"></xs:maxInclusive>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="ANY"/>

 <xs:enumeration value="-1"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:union>

 </xs:simpleType>

 <xs:complexType name="degreeType">

 <xs:attribute name="VALUE"

 type="intStringType"></xs:attribute>

 </xs:complexType>

Description

The DEGREE general request element has a required VALUE attribute that

specifies the setting of the DEGREE option. The attribute can take an integer value

from 1 to 32 767 or the string value -1 or ANY. The value -1 (or ANY) specifies that

the degree of parallelism is to be determined by the data server. A value of 1

specifies that the query should not use intra-partition parallelism.

DPFXMLMOVEMENT requests:

The DPFXMLMOVEMENT general request element can be used in partitioned

database environments to override the optimizer’s decision to choose a plan in

which either a column of type XML is moved or only a reference to that column is

moved between database partitions. It is defined by the complex type

dpfXMLMovementType.

<xs:complexType name="dpfXMLMovementType">

 <xs:attribute name="VALUE" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string"

 <xs:enumeration value="REFERENCE"/>

 <xs:enumeration value="COMBINATION"/>

Chapter 3. Factors affecting performance 311

</xs:restriction>

 </xs:simpleType>

 </xs:attribute>

</xs:complexType>

Description

In partitioned database environments, data must sometimes be moved between

database partitions during statement execution. In the case of XML columns, the

optimizer can choose to move the actual documents that are contained in those

columns or merely a reference to the source documents on the original database

partitions.

The DPFXMLMOVEMENT general request element has a required VALUE

attribute with the following possible values: REFERENCE or COMBINATION. If a

row that contains an XML column needs to be moved from one database partition

to another:

v REFERENCE specifies that references to the XML documents are to be moved

through the table queue (TQ) operator. The documents themselves remain on the

source database partition.

v COMBINATION specifies that some XML documents are moved, and that only

references to the remaining XML documents are moved through the TQ

operator.

The decision of whether the documents or merely references to those documents

are moved depends on the conditions that prevail when the query runs. If the

DPFXMLMOVEMENT general request element has not been specified, the

optimizer makes cost-based decisions that are intended to maximize performance.

QRYOPT requests:

The QRYOPT general request element can be used to override the setting of the

QUERYOPT bind option, the value of the dft_queryopt database configuration

parameter, or the result of a previous SET CURRENT QUERY OPTIMIZATION

statement. It is defined by the complex type qryoptType.

XML Schema

 <xs:complexType name="qryoptType">

 <xs:attribute name="VALUE" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="0"/>

 <xs:enumeration value="1"/>

 <xs:enumeration value="2"/>

 <xs:enumeration value="3"/>

 <xs:enumeration value="5"/>

 <xs:enumeration value="7"/>

 <xs:enumeration value="9"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

Description

The QRYOPT general request element has a required VALUE attribute that

specifies the setting of the QUERYOPT option. The attribute can take any of the

following values: 0, 1, 2, 3, 5, 7, or 9. For detailed information about what these

values represent, see “Optimization classes”.

312 Troubleshooting and Tuning Database Performance

REOPT requests:

The REOPT general request element can be used to override the setting of the

REOPT bind option, which affects the optimization of statements that contain

parameter markers or host variables. It is defined by the complex type reoptType.

XML Schema

 <xs:complexType name="reoptType">

 <xs:attribute name="VALUE" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="ONCE"/>

 <xs:enumeration value="ALWAYS"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

Description

The REOPT general request element has a required VALUE attribute that specifies

the setting of the REOPT option. The attribute can take the value ONCE or

ALWAYS. ONCE specifies that the statement should be optimized for the first set

of host variable or parameter marker values. ALWAYS specifies that the statement

should be optimized for each set of host variable or parameter marker values.

RTS requests:

The RTS general request element can be used to enable or disable real-time

statistics collection. It can also be used to limit the amount of time taken by

real-time statistics collection.

 For certain queries or workloads, it might be good practice to limit real-time

statistics collection so that extra overhead at statement compilation time can be

avoided. The RTS general request element is defined by the complex type rtsType.

<!--**--> \

<!-- RTS general request element to enable, disable or provide a time budget for --> \

<!-- real-time statistics collection. --> \

<!-- OPTION attribute allows enabling or disabling real-time statistics. --> \

<!-- TIME attribute provides a time budget in milliseconds for real-time statistics collection.--> \

<!--*** --> \

<xs:complexType name="rtsType">

 <xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

 <xs:attribute name="TIME" type="xs:nonNegativeInteger" use="optional"/>

</xs:complexType>

Description

The RTS general request element has two optional attributes.

v The OPTION attribute is used to enable or disable real-time statistics collection.

It can take the value ENABLE (default) or DISABLE.

v The TIME attribute specifies the maximum amount of time (in milliseconds) that

can be spent (per statement) on real-time statistics collection at statement

compilation time.

If ENABLE is specified for the OPTION attribute, automatic statistics collection

and real-time statistics must be enabled through their corresponding configuration

parameters. Otherwise, the optimization guideline will not be applied, and

SQL0437W with reason code 13 is returned.

XML schema for query rewrite optimization guidelines:

Chapter 3. Factors affecting performance 313

The rewriteRequest group defines guidelines that impact the query rewrite phase

of the optimization process.

XML Schema

 <xs:group name="rewriteRequest">

 <xs:sequence>

 <xs:element name="INLIST2JOIN" type="inListToJoinType" minOccurs="0"/>

 <xs:element name="SUBQ2JOIN" type="subqueryToJoinType" minOccurs="0"/>

 <xs:element name="NOTEX2AJ" type="notExistsToAntiJoinType" minOccurs="0"/>

 <xs:element name="NOTIN2AJ" type="notInToAntiJoinType" minOccurs="0"/>

 </xs:sequence>

 </xs:group>

Description

If the INLIST2JOIN element is used to specify both statement-level and

predicate-level optimization guidelines, the predicate-level guidelines override the

statement-level guidelines.

IN-LIST-to-join query rewrite requests:

A INLIST2JOIN query rewrite request element can be used to enable or disable the

IN-LIST predicate-to-join rewrite transformation. It can be specified as a

statement-level optimization guideline or a predicate-level optimization guideline.

In the latter case, only one guideline per query can be enabled. The INLIST2JOIN

request element is defined by the complex type inListToJoinType.

XML Schema

 <xs:complexType name="inListToJoinType">

 <xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

 <xs:attribute name="TABLE" type="xs:string" use="optional"/>

 <xs:attribute name="COLUMN" type="xs:string" use="optional"/>

 </xs:complexType>

Description

The INLIST2JOIN query rewrite request element has three optional attributes and

no sub-elements. The OPTION attribute can take the value ENABLE (default) or

DISABLE. The TABLE and COLUMN attributes are used to specify an IN-LIST

predicate. If these attributes are not specified, or are specified with an empty string

(“”) value, the guideline is handled as a statement-level guideline. If one or both of

these attributes are specified, it is handled as a predicate-level guideline. If the

TABLE attribute is not specified, or is specified with an empty string value, but the

COLUMN attribute is specified, the optimization guideline is ignored and

SQL0437W with reason code 13 is returned.

NOT-EXISTS-to-anti-join query rewrite requests:

The NOTEX2AJ query rewrite request element can be used to enable or disable the

NOT-EXISTS predicate-to-anti-join rewrite transformation. It can be specified as a

statement-level optimization guideline only. The NOTEX2AJ request element is

defined by the complex type notExistsToAntiJoinType.

XML Schema

 <xs:complexType name="notExistsToAntiJoinType">

 <xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

 </xs:complexType>

314 Troubleshooting and Tuning Database Performance

Description

The NOTEX2AJ query rewrite request element has one optional attribute and no

sub-elements. The OPTION attribute can take the value ENABLE (default) or

DISABLE.

NOT-IN-to-anti-join query rewrite requests:

The NOTIN2AJ query rewrite request element can be used to enable or disable the

NOT-IN predicate-to-anti-join rewrite transformation. It can be specified as a

statement-level optimization guideline only. The NOTIN2AJ request element is

defined by the complex type notInToAntiJoinType.

XML Schema

 <xs:complexType name="notInToAntiJoinType">

 <xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

 </xs:complexType>

Description

The NOTIN2AJ query rewrite request element has one optional attribute and no

sub-elements. The OPTION attribute can take the value ENABLE (default) or

DISABLE.

Subquery-to-join query rewrite requests:

The SUBQ2JOIN query rewrite request element can be used to enable or disable

the subquery-to-join rewrite transformation. It can be specified as a statement-level

optimization guideline only. The SUBQ2JOIN request element is defined by the

complex type subqueryToJoinType.

XML Schema

 <xs:complexType name="subqueryToJoinType">

 <xs:attribute name="OPTION" type="optionType" use="optional" default="ENABLE"/>

 </xs:complexType>

Description

The SUBQ2JOIN query rewrite request element has one optional attribute and no

sub-elements. The OPTION attribute can take the value ENABLE (default) or

DISABLE.

XML schema for plan optimization guidelines:

Plan optimization guidelines can consist of access requests or join requests.

v An access request specifies an access method for a table reference.

v A join request specifies a method and sequence for performing a join operation.

Join requests are composed of other access or join requests.

Most of the available access requests correspond to the optimizer’s data access

methods, such as table scan, index scan, and list prefetch, for example. Most of the

available join requests correspond to the optimizer’s join methods, such as

nested-loop join, hash join, and merge join. Each access request or join request

element can be used to influence plan optimization.

Access requests:

Chapter 3. Factors affecting performance 315

The accessRequest group defines the set of valid access request elements. An access

request specifies an access method for a table reference.

XML Schema

 <xs:group name="accessRequest">

 <xs:choice>

 <xs:element name="TBSCAN" type="tableScanType"/>

 <xs:element name="IXSCAN" type="indexScanType"/>

 <xs:element name="LPREFETCH" type="listPrefetchType"/>

 <xs:element name="IXAND" type="indexAndingType"/>

 <xs:element name="IXOR" type="indexOringType"/>

 <xs:element name="XISCAN" type="indexScanType"/>

 <xs:element name="XANDOR" type="XANDORType"/>

 <xs:element name="ACCESS" type="anyAccessType"/>

 </xs:choice>

 </xs:group>

Description

v TBSCAN, IXSCAN, LPREFETCH, IXAND, IXOR, XISCAN, and XANDOR

These elements correspond to DB2 data access methods, and can only be applied

to local tables that are referenced in a statement. They cannot refer to nicknames

(remote tables) or derived tables (the result of a subselect).

v ACCESS

This element, which causes the optimizer to choose the access method, can be

used when the join order (not the access method) is of primary concern. The

ACCESS element must be used when the target table reference is a derived

table. For XML queries, this element can also be used with attribute TYPE =

XMLINDEX to specify that the optimizer is to choose XML index access plans.

Access types:

Common aspects of the TBSCAN, IXSCAN, LPREFETCH, IXAND, IXOR, XISCAN,

XANDOR, and ACCESS elements are defined by the abstract type accessType.

XML Schema

 <xs:complexType name="accessType" abstract="true">

 <xs:attribute name="TABLE" type="xs:string" use="optional"/>

 <xs:attribute name="TABID" type="xs:string" use="optional"/>

 <xs:attribute name="FIRST" type="xs:string" use="optional" fixed="TRUE"/>

 <xs:attribute name="SHARING" type="optionType" use="optional"

 default="ENABLE"/>

 <xs:attribute name="WRAPPING" type="optionType" use="optional"

 default="ENABLE"/>

 <xs:attribute name="THROTTLE" type="optionType" use="optional"/>

 <xs:attribute name="SHARESPEED" type="shareSpeed" use="optional"/>

 </xs:complexType>

 <xs:complexType name="extendedAccessType">

 <xs:complexContent>

 <xs:extension base="accessType">

 <xs:sequence minOccurs="0">

 <xs:element name="INDEX" type="indexType" minOccurs="2"

 maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="INDEX" type="xs:string" use="optional"/>

 <xs:attribute name="TYPE" type="xs:string" use="optional"

 fixed="XMLINDEX"/>

 <xs:attribute name="ALLINDEXES" type="boolType" use="optional"

 fixed="TRUE"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

316 Troubleshooting and Tuning Database Performance

Description

All access request elements extend the complex type accessType. Each such

element must specify the target table reference using either the TABLE or TABID

attribute. For information on how to form proper table references from an access

request element, see “Forming table references in optimization guidelines”.

Access request elements can also specify an optional FIRST attribute. If the FIRST

attribute is specified, it must have the value TRUE. Adding the FIRST attribute to

an access request element indicates that the execution plan should include the

specified table as the first table in the join sequence of the corresponding FROM

clause. Only one access or join request per FROM clause can specify the FIRST

attribute. If multiple access or join requests targeting tables of the same FROM

clause specify the FIRST attribute, all but the first such request is ignored and a

warning (SQL0437W with reason code 13) is returned.

New optimizer guidelines enable you to influence the compiler’s scan sharing

decisions. In cases where the compiler would have allowed sharing scans,

wrapping scans, or throttling, specifying the appropriate guideline will prevent

sharing scans, wrapping scans, or throttling. A sharing scan can be seen by other

scans that are participating in scan sharing, and those scans can base certain

decisions on that information. A wrapping scan is able to start at an arbitrary point

in the table to take advantage of pages that are already in the buffer pool. A

throttled scan has been delayed to increase the overall level of sharing.

Valid optionType values (for the SHARING, WRAPPING, and THROTTLE

attributes) are DISABLE and ENABLE (the default). SHARING and WRAPPING

cannot be enabled when the compiler chooses to disable them. Using ENABLE will

have no effect in those cases. THROTTLE can be either enabled or disabled. Valid

SHARESPEED values (to override the compiler’s estimate of scan speed) are FAST

and SLOW. The default is to allow the compiler to determine values, based on its

estimate.

The only supported value for the TYPE attribute is XMLINDEX, which indicates to

the optimizer that the table must be accessed using one of the XML index access

methods, such as IXAND, IXOR, XANDOR, or XISCAN. If this attribute is not

specified, the optimizer makes a cost-based decision when selecting an access plan

for the specified table.

The optional INDEX attribute can be used to specify an index name.

The optional INDEX element can be used to specify two or more names of indexes

as index elements. If the INDEX attribute and the INDEX element are both

specified, the INDEX attribute is ignored.

The optional ALLINDEXES attribute, whose only supported value is TRUE, can

only be specified if the TYPE attribute has a value of XMLINDEX. If the

ALLINDEXES attribute is specified, the optimizer must use all applicable relational

indexes and indexes over XML data to access the specified table, regardless of cost.

Any access requests:

The ACCESS access request element can be used to specify that the optimizer is to

choose an appropriate method for accessing a table, based on cost, and must be

Chapter 3. Factors affecting performance 317

used when referencing a derived table. A derived table is the result of another

subselect. This access request element is defined by the complex type

anyAccessType.

XML Schema

 <xs:complexType name="anyAccessType">

 <xs:complexContent>

 <xs:extension base="extendedAccessType"/>

 </xs:complexContent>

 </xs:complexType>

Description

The complex type anyAccessType is a simple extension of the abstract type

extendedAccessType. No new elements or attributes are added.

The TYPE attribute, whose only supported value is XMLINDEX, indicates to the

optimizer that the table must be accessed using one of the XML index access

methods, such as IXAND, IXOR, XANDOR, or XISCAN. If this attribute is not

specified, the optimizer makes a cost-based decision when selecting an access plan

for the specified table.

The optional INDEX attribute can be used to specify an index name only if the

TYPE attribute has a value of XMLINDEX. If this attribute is specified, the

optimizer might choose one of the following plans:

v An XISCAN plan using the specified index over XML data

v An XANDOR plan, such that the specified index over XML data is one of the

indexes under XANDOR; the optimizer will use all applicable indexes over XML

data in the XANDOR plan

v An IXAND plan, such that the specified index is the leading index of IXAND;

the optimizer will add more indexes to the IXAND plan in a cost-based fashion

v A cost-based IXOR plan

The optional INDEX element can be used to specify two or more names of indexes

as index elements only if the TYPE attribute has a value of XMLINDEX. If this

element is specified, the optimizer might choose one of the following plans:

v An XANDOR plan, such that the specified indexes over XML data appear under

XANDOR; the optimizer will use all applicable indexes over XML data in the

XANDOR plan

v An IXAND plan, such that the specified indexes are the indexes of IXAND, in

the specified order

v A cost-based IXOR plan

If the INDEX attribute and the INDEX element are both specified, the INDEX

attribute is ignored.

The optional ALLINDEXES attribute, whose only supported value is TRUE, can

only be specified if the TYPE attribute has a value of XMLINDEX. If this attribute

is specified, the optimizer must use all applicable relational indexes and indexes

over XML data to access the specified table, regardless of cost. The optimizer

chooses one of the following plans:

v An XANDOR plan with all applicable indexes over XML data appearing under

the XANDOR operator

v An IXAND plan with all applicable relational indexes and indexes over XML

data appearing under the IXAND operator

318 Troubleshooting and Tuning Database Performance

v An IXOR plan

v An XISCAN plan if only a single index is defined on the table and that index is

of type XML

Examples

The following guideline is an example of an any access request:

 <OPTGUIDELINES>

 <HSJOIN>

 <ACCESS TABLE=’S1’/>

 <IXSCAN TABLE=’PS1’/>

 </HSJOIN>

 </OPTGUIDELINES>

The following example shows an ACCESS guideline specifying that some XML

index access to the SECURITY table should be used. The optimizer might pick any

XML index plan, such as an XISCAN, IXAND, XANDOR, or IXOR plan.

SELECT * FROM security

 WHERE XMLEXISTS(’$SDOC/Security/SecurityInformation/

 StockInformation[Industry= "OfficeSupplies"]’)

<OPTGUIDELINES>

 <ACCESS TABLE=’SECURITY’ TYPE=’XMLINDEX’/>

</OPTGUIDELINES>

The following example shows an ACCESS guideline specifying that all possible

index access to the SECURITY table should be used. The choice of method is left to

the optimizer. Assume that two XML indexes, SEC_INDUSTRY and SEC_SYMBOL,

match the two XML predicates. The optimizer chooses either the XANDOR or the

IXAND access method using a cost-based decision.

SELECT * FROM security

 WHERE XMLEXISTS(’$SDOC/Security/SecurityInformation/

 StockInformation[Industry= "Software"]’) AND

 XMLEXISTS(’$SDOC/Security/Symbol[.="IBM"]’)

<OPTGUIDELINES>

 <ACCESS TABLE=’SECURITY’ TYPE=’XMLINDEX’ ALLINDEXES=’TRUE’/>

</OPTGUIDELINES>

The following example shows an ACCESS guideline specifying that the SECURITY

table should be accessed using at least the SEC_INDUSTRY XML index. The

optimizer chooses one of the following access plans in a cost-based fashion:

v An XISCAN plan using the SEC_INDUSTRY XML index

v An IXAND plan with the SEC_INDUSTRY index as the first leg of the IXAND.

The optimizer is free to use more relational or XML indexes in the IXAND plan

following cost-based analysis. If a relational index were available on the

TRANS_DATE column, for example, that index might appear as an additional

leg of the IXAND if that were deemed to be beneficial by the optimizer.

v A XANDOR plan using the SEC_INDUSTRY index and other applicable XML

indexes
SELECT * FROM security

 WHERE trans_date = CURRENT DATE AND

 XMLEXISTS(’$SDOC/Security/SecurityInformation/

 StockInformation[Industry= "Software"]’) AND

 XMLEXISTS(’$SDOC/Security/Symbol[.="IBM"]’)

<OPTGUIDELINES>

 <ACCESS TABLE=’SECURITY’ TYPE=’XMLINDEX’ INDEX=’SEC_INDUSTRY’/>

</OPTGUIDELINES>

Chapter 3. Factors affecting performance 319

Index ANDing access requests:

The IXAND access request element can be used to specify that the optimizer is to

use the index ANDing data access method to access a local table. It is defined by

the complex type indexAndingType.

XML Schema

 <xs:complexType name="indexAndingType">

 <xs:complexContent>

 <xs:extension base="extendedAccessType">

 </xs:complexContent>

 </xs:complexType>

Description

The complex type indexAndingType is a simple extension of extendedAccessType.

The extendedAccessType type extends the abstract type accessType by adding an

optional INDEX attribute, optional INDEX sub-elements, an optional TYPE

attribute, and an optional ALLINDEXES attribute. The INDEX attribute can be

used to specify the first index that is to be used in the index ANDing operation. If

the INDEX attribute is used, the optimizer chooses additional indexes and the

access sequence in a cost-based fashion. The INDEX sub-elements can be used to

specify the exact set of indexes and access sequence. The order in which the

INDEX sub-elements appear indicates the order in which the individual index

scans should be performed. The specification of INDEX sub-elements supersedes

the specification of the INDEX attribute.

v If no indexes are specified, the optimizer chooses both the indexes and the

access sequence in a cost-based fashion.

v If indexes are specified using either the attribute or sub-elements, these indexes

must be defined on the table that is identified by the TABLE or TABID attribute.

v If there are no indexes defined on the table, the access request is ignored and

SQL0437W with reason code 13 is returned.

The TYPE attribute, whose only supported value is XMLINDEX, indicates to the

optimizer that the table must be accessed using one or more indexes over XML

data.

The optional INDEX attribute can be used to specify an XML index name only if

the TYPE attribute has a value of XMLINDEX. A relational index can be specified

in the optional INDEX attribute regardless of the TYPE attribute specification. The

specified index is used by the optimizer as the leading index of an IXAND plan.

The optimizer will add more indexes to the IXAND plan in a cost-based fashion.

The optional INDEX element can be used to specify two or more names of indexes

over XML data as index elements only if the TYPE attribute has a value of

XMLINDEX. Relational indexes can be specified in the optional INDEX elements

regardless of the TYPE attribute specification. The specified indexes are used by

the optimizer as the indexes of an IXAND plan in the specified order.

If the TYPE attribute is not present, INDEX attributes and INDEX elements are still

valid for relational indexes.

If the INDEX attribute and the INDEX element are both specified, the INDEX

attribute is ignored.

The optional ALLINDEXES attribute, whose only supported value is TRUE, can

only be specified if the TYPE attribute has a value of XMLINDEX. If this attribute

320 Troubleshooting and Tuning Database Performance

is specified, the optimizer must use all applicable relational indexes and indexes

over XML data in an IXAND plan to access the specified table, regardless of cost.

If the TYPE attribute is specified, but neither INDEX attribute, INDEX element, nor

ALLINDEXES attribute is specified, the optimizer will choose an IXAND plan with

at least one index over XML data. Other indexes in the plan can be either relational

indexes or indexes over XML data. The order and choice of indexes is determined

by the optimizer in a cost-based fashion.

Block indexes must appear before record indexes in an index ANDing access

request. If this requirement is not met, SQL0437W with reason code 13 is returned.

The index ANDing access method requires that at least one predicate is able to be

indexed for each index. If index ANDing is not eligible because the required

predicate does not exist, the access request is ignored and SQL0437W with reason

code 13 is returned. If the index ANDing data access method is not in the search

space that is in effect for the statement, the access request is ignored and

SQL0437W with reason code 13 is returned.

The following example illustrates an index ANDing access request:

SQL statement:

 select s.s_name, s.s_address, s.s_phone, s.s_comment

 from "Tpcd".parts, "Tpcd".suppliers s, "Tpcd".partsupp ps

 where p_partkey = ps.ps_partkey and

 s.s_suppkey = ps.ps_suppkey and

 p_size = 39 and

 p_type = ’BRASS’ and

 s.s_nation in (’MOROCCO’, ’SPAIN’) and

 ps.ps_supplycost = (select min(ps1.ps_supplycost)

 from "Tpcd".partsupp ps1, "Tpcd".suppliers s1

 where "Tpcd".parts.p_partkey = ps1.ps_partkey and

 s1.s_suppkey = ps1.ps_suppkey and

 s1.s_nation = s.s_nation)

 order by s.s_name

 optimize for 1 row

Optimization guideline:

 <OPTGUIDELINES>

 <IXAND TABLE=’"Tpcd".PARTS’ FIRST=’TRUE’>

 <INDEX IXNAME=’ISIZE’/>

 <INDEX IXNAME=’ITYPE’/>

 </IXAND>

 </OPTGUIDELINES>

The index ANDing request specifies that the PARTS table in the main subselect is

to be satisfied using an index ANDing data access method. The first index scan

will use the ISIZE index, and the second index scan will use the ITYPE index. The

indexes are specified by the IXNAME attribute of the INDEX element. The FIRST

attribute setting specifies that the PARTS table is to be the first table in the join

sequence with the SUPPLIERS, PARTSUPP, and derived tables in the same FROM

clause.

Index ORing access requests:

The IXOR access request element can be used to specify that the optimizer is to

use the index ORing data access method to access a local table. It is defined by the

complex type indexOringType.

Chapter 3. Factors affecting performance 321

XML Schema

 <xs:complexType name="indexOringType">

 <xs:complexContent>

 <xs:extension base="accessType"/>

 </xs:complexContent>

 </xs:complexType>

Description

The complex type indexOringType is a simple extension of the abstract type

accessType. No new elements or attributes are added. If the index ORing access

method is not in the search space that is in effect for the statement, the access

request is ignored and SQL0437W with reason code 13 is returned. The optimizer

chooses the predicates and indexes that are used in the index ORing operation in a

cost-based fashion. The index ORing access method requires that at least one IN

predicate is able to be indexed or that a predicate with terms is able to be indexed

and connected by a logical OR operation. If index ORing is not eligible because the

required predicate or indexes do not exist, the request is ignored and SQL0437W

with reason code 13 is returned.

The following example illustrates an index ORing access request:

SQL statement:

 select s.s_name, s.s_address, s.s_phone, s.s_comment

 from "Tpcd".parts, "Tpcd".suppliers s, "Tpcd".partsupp ps

 where p_partkey = ps.ps_partkey and

 s.s_suppkey = ps.ps_suppkey and

 p_size = 39 and

 p_type = ’BRASS’ and

 s.s_nation in (’MOROCCO’, ’SPAIN’) and

 ps.ps_supplycost = (select min(ps1.ps_supplycost)

 from "Tpcd".partsupp ps1, "Tpcd".suppliers s1

 where "Tpcd".parts.p_partkey = ps1.ps_partkey and

 s1.s_suppkey = ps1.ps_suppkey and

 s1.s_nation = s.s_nation)

 order by s.s_name

 optimize for 1 row

Optimization guideline:

 <OPTGUIDELINES>

 <IXOR TABLE=’S’/>

 </OPTGUIDELINES>

This index ORing access request specifies that an index ORing data access method

is to be used to access the SUPPLIERS table that is referenced in the main

subselect. The optimizer will choose the appropriate predicates and indexes for the

index ORing operation in a cost-based fashion.

Index scan access requests:

The IXSCAN access request element can be used to specify that the optimizer is to

use an index scan to access a local table. It is defined by the complex type

indexScanType.

XML Schema

 <xs:complexType name="indexScanType">

 <xs:complexContent>

 <xs:extension base="accessType">

322 Troubleshooting and Tuning Database Performance

<xs:attribute name="INDEX" type="xs:string" use="optional"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

Description

The complex type indexScanType extends the abstract accessType by adding an

optional INDEX attribute. The INDEX attribute specifies the name of the index that

is to be used to access the table.

v If the index scan access method is not in the search space that is in effect for the

statement, the access request is ignored and SQL0437W with reason code 13 is

returned.

v If the INDEX attribute is specified, it must identify an index defined on the table

that is identified by the TABLE or TABID attribute. If the index does not exist,

the access request is ignored and SQL0437W with reason code 13 is returned.

v If the INDEX attribute is not specified, the optimizer chooses an index in a

cost-based fashion. If no indexes are defined on the target table, the access

request is ignored and SQL0437W with reason code 13 is returned.

The following guideline is an example of an index scan access request:

 <OPTGUIDELINES>

 <IXSCAN TABLE=’S’ INDEX=’I_SUPPKEY’/>

 </OPTGUIDELINES>

List prefetch access requests:

The LPREFETCH access request element can be used to specify that the optimizer

is to use a list prefetch index scan to access a local table. It is defined by the

complex type listPrefetchType.

XML Schema

 <xs:complexType name="listPrefetchType">

 <xs:complexContent>

 <xs:extension base="accessType">

 <xs:attribute name="INDEX" type="xs:string" use="optional"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

Description

The complex type listPrefetchType extends the abstract type accessType by adding

an optional INDEX attribute. The INDEX attribute specifies the name of the index

that is to be used to access the table.

v If the list prefetch access method is not in the search space that is in effect for

the statement, the access request is ignored and SQL0437W with reason code 13

is returned.

v The list prefetch access method requires that at least one predicate is able to be

indexed. If the list prefetch access method is not eligible because the required

predicate does not exist, the access request is ignored and SQL0437W with

reason code 13 is returned.

v If the INDEX attribute is specified, it must identify an index defined on the table

that is specified by the TABLE or TABID attribute. If the index does not exist,

the access request is ignored and SQL0437W with reason code 13 is returned.

Chapter 3. Factors affecting performance 323

v If the INDEX attribute is not specified, the optimizer chooses an index in a

cost-based fashion. If no indexes are defined on the target table, the access

request is ignored and SQL0437W with reason code 13 is returned.

The following guideline is an example of a list prefetch access request:

 <OPTGUIDELINES>

 <LPREFETCH TABLE=’S1’ INDEX=’I_SNATION’/>

 </OPTGUIDELINES>

Table scan access requests:

The TBSCAN access request element can be used to specify that the optimizer is to

use a sequential table scan to access a local table. It is defined by the complex type

tableScanType.

XML Schema

 <xs:complexType name="tableScanType">

 <xs:complexContent>

 <xs:extension base="accessType"/>

 </xs:complexContent>

 </xs:complexType>

Description

The complex type tableScanType is a simple extension of the abstract type

accessType. No new elements or attributes are added. If the table scan access

method is not in the search space that is in effect for the statement, the access

request is ignored and SQL0437W with reason code 13 is returned.

The following guideline is an example of a table scan access request:

 <OPTGUIDELINES>

 <TBSCAN TABLE=’S1’/>

 <LPREFETCH TABLE=’S’ INDEX=’I_SUPPKEY’/>

 </OPTGUIDELINES>

XML index ANDing and ORing access requests:

The XANDOR access request element can be used to specify that the optimizer is

to use multiple XANDORed index over XML data scans to access a local table. It is

defined by the complex type XANDORType.

XML Schema

 <xs:complexType name="XANDORType">

 <xs:complexContent>

 <xs:extension base="accessType"/>

 </xs:complexContent>

 </xs:complexType>

Description

The complex type XANDORType is a simple extension of the abstract type

accessType. No new elements or attributes are added.

Example

Given the following query:

324 Troubleshooting and Tuning Database Performance

SELECT * FROM security

 WHERE trans_date = CURRENT DATE AND

 XMLEXISTS(’$SDOC/Security/SecurityInformation/

 StockInformation[Industry = "Software"]’) AND

 XMLEXISTS(’$SDOC/Security/Symbol[.="IBM"]’)

The following XANDOR guideline specifies that the SECURITY table should be

accessed using a XANDOR operation against all applicable XML indexes. Any

relational indexes on the SECURITY table will not be considered, because a

relational index cannot be used with a XANDOR operator.

<OPTGUIDELINES>

 <XANDOR TABLE=’SECURITY’/>

</OPTGUIDELINES>

XML index scan access requests:

The XISCAN access request element can be used to specify that the optimizer is to

use an index over XML data scan to access a local table. It is defined by the

complex type indexScanType.

XML Schema

 <xs:complexType name="indexScanType">

 <xs:complexContent>

 <xs:extension base="accessType"/>

 <xs:attribute name="INDEX" type="xs:string" use="optional"/>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

Description

The complex type indexScanType extends the abstract accessType by adding an

optional INDEX attribute. The INDEX attribute specifies the name of the index

over XML data that is to be used to access the table.

v If the index over XML data scan access method is not in the search space that is

in effect for the statement, the access request is ignored and SQL0437W with

reason code 13 is returned.

v If the INDEX attribute is specified, it must identify an index over XML data

defined on the table that is identified by the TABLE or TABID attribute. If the

index does not exist, the access request is ignored and SQL0437W with reason

code 13 is returned.

v If the INDEX attribute is not specified, the optimizer chooses an index over XML

data in a cost-based fashion. If no indexes over XML data are defined on the

target table, the access request is ignored and SQL0437W with reason code 13 is

returned.

Example

Given the following query:

SELECT * FROM security

 WHERE XMLEXISTS(’$SDOC/Security/SecurityInformation/

 StockInformation[Industry = "OfficeSupplies"]’)

The following XISCAN guideline specifies that the SECURITY table should be

accessed using an XML index named SEC_INDUSTRY.

<OPTGUIDELINES>

 <XISCAN TABLE=’SECURITY’ INDEX=’SEC_INDUSTRY’/>

</OPTGUIDELINES>

Chapter 3. Factors affecting performance 325

Join requests:

The joinRequest group defines the set of valid join request elements. A join request

specifies a method for joining two tables.

XML Schema

 <xs:group name="joinRequest">

 <xs:choice>

 <xs:element name="NLJOIN" type="nestedLoopJoinType"/>

 <xs:element name="HSJOIN" type="hashJoinType"/>

 <xs:element name="MSJOIN" type="mergeJoinType"/>

 <xs:element name="JOIN" type="anyJoinType"/>

 </xs:choice>

 </xs:group>

Description

v NLJOIN, MSJOIN, and HSJOIN

These elements correspond to the nested-loop, merge, and hash join methods,

respectively.

v JOIN

This element, which causes the optimizer to choose the join method, can be used

when the join order is not of primary concern.

All join request elements contain two sub-elements that represent the input tables

of the join operation. Join requests can also specify an optional FIRST attribute.

The following guideline is an example of a join request:

 <OPTGUIDELINES>

 <HSJOIN>

 <ACCESS TABLE=’S1’/>

 <IXSCAN TABLE=’PS1’/>

 </HSJOIN>

 </OPTGUIDELINES>

The nesting order ultimately determines the join order. The following example

illustrates how larger join requests can be constructed from smaller join requests:

 <OPTGUIDELINES>

 <MSJOIN>

 <NLJOIN>

 <IXSCAN TABLE=’"Tpcd".Parts’/>

 <IXSCAN TABLE="PS"/>

 </NLJOIN>

 <IXSCAN TABLE=’S’/>

 </MSJOIN>

 </OPTGUIDELINES>

Join types:

Common aspects of all join request elements are defined by the abstract type

joinType.

XML Schema

 <xs:complexType name="joinType" abstract="true">

 <xs:choice minOccurs="2" maxOccurs="2">

 <xs:group ref="accessRequest"/>

 <xs:group ref="joinRequest"/>

 </xs:choice>

 <xs:attribute name="FIRST" type="xs:string" use="optional" fixed="TRUE"/>

 </xs:complexType>

326 Troubleshooting and Tuning Database Performance

Description

Join request elements that extend the complex type joinType must have exactly two

sub-elements. Either sub-element can be an access request element chosen from the

accessRequest group, or another join request element chosen from the joinRequest

group. The first sub-element appearing in the join request specifies the outer table

of the join operation, and the second element specifies the inner table.

If the FIRST attribute is specified, it must have the value TRUE. Adding the FIRST

attribute to a join request element indicates that you want an execution plan in

which the tables that are targeted by the join request are the outermost tables in

the join sequence for the corresponding FROM clause. Only one access or join

request per FROM clause can specify the FIRST attribute. If multiple access or join

requests that target tables of the same FROM clause specify the FIRST attribute, all

but the initial request are ignored and SQL0437W with reason code 13 is returned.

Any join requests:

The JOIN join request element can be used to specify that the optimizer is to

choose an appropriate method for joining two tables in a particular order.

 Either table can be local or derived, as specified by an access request sub-element,

or it can be the result of a join operation, as specified by a join request

sub-element. A derived table is the result of another subselect. This join request

element is defined by the complex type anyJoinType.

XML Schema

 <xs:complexType name="anyJoinType">

 <xs:complexContent>

 <xs:extension base="joinType"/>

 </xs:complexContent>

 </xs:complexType>

Description

The complex type anyJoinType is a simple extension of the abstract type joinType.

No new elements or attributes are added.

The following example illustrates the use of the JOIN join request element to force

a particular join order for a set of tables:

SQL statement:

 select s.s_name, s.s_address, s.s_phone, s.s_comment

 from "Tpcd".parts, "Tpcd".suppliers s, "Tpcd".partsupp ps

 where p_partkey = ps.ps_partkey and

 s.s_suppkey = ps.ps_suppkey and

 p_size = 39 and

 p_type = ’BRASS’ and

 s.s_nation in (’MOROCCO’, ’SPAIN’) and

 ps.ps_supplycost = (select min(ps1.ps_supplycost)

 from "Tpcd".partsupp ps1, "Tpcd".suppliers s1

 where "Tpcd".parts.p_partkey = ps1.ps_partkey and

 s1.s_suppkey = ps1.ps_suppkey and

 s1.s_nation = s.s_nation)

 order by s.s_name

Optimization guideline:

 <OPTGUIDELINES>

 <JOIN>

Chapter 3. Factors affecting performance 327

<JOIN>

 <ACCESS TABLE=’Tpcd".PARTS’/>

 <ACCESS TABLE=’S’/>

 </JOIN>

 <ACCESS TABLE=’PS’>

 </JOIN>

 </OPTGUIDELINES>

The JOIN join request elements specify that the PARTS table in the main subselect

is to be joined with the SUPPLIERS table, and that this result is to be joined to the

PARTSUPP table. The optimizer will choose the join methods for this particular

sequence of joins in a cost-based fashion.

Hash join requests:

The HSJOIN join request element can be used to specify that the optimizer is to

join two tables using a hash join method.

 Either table can be local or derived, as specified by an access request sub-element,

or it can be the result of a join operation, as specified by a join request

sub-element. A derived table is the result of another subselect. This join request

element is defined by the complex type hashJoinType.

XML Schema

 <xs:complexType name="hashJoinType">

 <xs:complexContent>

 <xs:extension base="joinType"/>

 </xs:complexContent>

 </xs:complexType>

Description

The complex type hashJoinType is a simple extension of the abstract type joinType.

No new elements or attributes are added. If the hash join method is not in the

search space that is in effect for the statement, the join request is ignored and

SQL0437W with reason code 13 is returned.

The following guideline is an example of a hash join request:

 <OPTGUIDELINES>

 <HSJOIN>

 <ACCESS TABLE=’S1’/>

 <IXSCAN TABLE=’PS1’/>

 </HSJOIN>

 </OPTGUIDELINES>

Merge join requests:

The MSJOIN join request element can be used to specify that the optimizer is to

join two tables using a merge join method.

 Either table can be local or derived, as specified by an access request sub-element,

or it can be the result of a join operation, as specified by a join request

sub-element. A derived table is the result of another subselect. This join request

element is defined by the complex type mergeJoinType.

XML Schema

 <xs:complexType name="mergeJoinType">

328 Troubleshooting and Tuning Database Performance

<xs:complexContent>

 <xs:extension base="joinType"/>

 </xs:complexContent>

 </xs:complexType>

Description

The complex type mergeJoinType is a simple extension of the abstract type

joinType. No new elements or attributes are added. If the merge join method is not

in the search space that is in effect for the statement, the join request is ignored

and SQL0437W with reason code 13 is returned.

The following guideline is an example of a merge join request:

 <OPTGUIDELINES>

 <MSJOIN>

 <NLJOIN>

 <IXSCAN TABLE=’"Tpcd".Parts’/>

 <IXSCAN TABLE="PS"/>

 </NLJOIN>

 <IXSCAN TABLE=’S’/>

 </MSJOIN>

 </OPTGUIDELINES>

Nested-loop join requests:

The NLJOIN join request element can be used to specify that the optimizer is to

join two tables using a nested-loop join method.

 Either table can be local or derived, as specified by an access request sub-element,

or it can be the result of a join operation, as specified by a join request

sub-element. A derived table is the result of another subselect. This join request

element is defined by the complex type nestedLoopJoinType.

XML Schema

 <xs:complexType name="nestedLoopJoinType">

 <xs:complexContent>

 <xs:extension base="joinType"/>

 </xs:complexContent>

 </xs:complexType>

Description

The complex type nestedLoopJoinType is a simple extension of the abstract type

joinType. No new elements or attributes are added. If the nested-loop join method

is not in the search space that is in effect for the statement, the join request is

ignored and SQL0437W with reason code 13 is returned.

The following guideline is an example of a nested-loop join request:

 <OPTGUIDELINES>

 <NLJOIN>

 <IXSCAN TABLE=’"Tpcd".Parts’/>

 <IXSCAN TABLE="PS"/>

 </NLJOIN>

 </OPTGUIDELINES>

SYSTOOLS.OPT_PROFILE table:

The SYSTOOLS.OPT_PROFILE table contains all of the optimization profiles.

Chapter 3. Factors affecting performance 329

There are two methods to create this table:

v Call the SYSINSTALLOBJECTS procedure:

 db2 "call sysinstallobjects(’opt_profiles’, ’c’, ’’, ’’)"

v Issue the CREATE TABLE statement:

 create table systools.opt_profile (

 schema varchar(128) not null,

 name varchar(128) not null,

 profile blob (2m) not null,

 primary key (schema, name)

)

The columns in the SYSTOOLS.OPT_PROFILE table are defined as follows:

SCHEMA

Specifies the schema name for an optimization profile. The name can

include up to 30 alphanumeric or underscore characters, but define it as

VARCHAR(128), as shown.

NAME

Specifies the base name for an optimization profile. The name can include

up to 128 alphanumeric or underscore characters.

PROFILE

Specifies an XML document that defines the optimization profile.

Triggers to flush the optimization profile cache:

The optimization profile cache is automatically flushed whenever an entry in the

SYSTOOLS.OPT_PROFILE table is updated or deleted.

 The following SQL procedure and triggers must be created before automatic

flushing of the profile cache can occur.

 CREATE PROCEDURE SYSTOOLS.OPT_FLUSH_CACHE(IN SCHEMA VARCHAR(128),

 IN NAME VARCHAR(128))

 LANGUAGE SQL

 MODIFIES SQL DATA

 BEGIN ATOMIC

 -- FLUSH stmt (33) + quoted schema (130) + dot (1) + quoted name (130) = 294

 DECLARE FSTMT VARCHAR(294) DEFAULT ’FLUSH OPTIMIZATION PROFILE CACHE ’; --

 IF NAME IS NOT NULL THEN

 IF SCHEMA IS NOT NULL THEN

 SET FSTMT = FSTMT || ’"’ || SCHEMA || ’".’; --

 END IF; --

 SET FSTMT = FSTMT || ’"’ || NAME || ’"’; --

 EXECUTE IMMEDIATE FSTMT; --

 END IF; --

 END;

 CREATE TRIGGER SYSTOOLS.OPT_PROFILE_UTRIG AFTER UPDATE ON SYSTOOLS.OPT_PROFILE

 REFERENCING OLD AS O

 FOR EACH ROW

 CALL SYSTOOLS.OPT_FLUSH_CACHE(O.SCHEMA, O.NAME);

 CREATE TRIGGER SYSTOOLS.OPT_PROFILE_DTRIG AFTER DELETE ON SYSTOOLS.OPT_PROFILE

 REFERENCING OLD AS O

 FOR EACH ROW

 CALL SYSTOOLS.OPT_FLUSH_CACHE(O.SCHEMA, O.NAME);

Managing the SYSTOOLS.OPT_PROFILE table:

330 Troubleshooting and Tuning Database Performance

Optimization profiles must be associated with a unique schema-qualified name and

stored in the SYSTOOLS.OPT_PROFILE table. You can use the LOAD, IMPORT,

and EXPORT commands to manage the files in that table.

 For example, the IMPORT command can be used from any DB2 client to insert or

update data in the SYSTOOLS.OPT_PROFILE table. The EXPORT command can be

used to copy a profile from the SYSTOOLS.OPT_PROFILE table into a file.

The following example shows how to insert three new profiles into the

SYSTOOLS.OPT_PROFILE table. Assume that the files are in the current directory.

1. Create an input file (for example, profiledata) with the schema, name, and file

name for each profile on a separate line:

 "ROBERT","PROF1","ROBERT.PROF1.xml"

 "ROBERT","PROF2","ROBERT.PROF2.xml"

 "DAVID", "PROF1","DAVID.PROF1.xml"

2. Execute the IMPORT command:

 import from profiledata of del

 modified by lobsinfile

 insert into systools.opt_profile

To update existing rows, use the INSERT_UPDATE option on the IMPORT

command:

 import from profiledata of del

 modified by lobsinfile

 insert_update into systools.opt_profile

To copy the ROBERT.PROF1 profile into ROBERT.PROF1.xml, assuming that the

profile is less than 32 700 bytes long, use the EXPORT command:

 export to robert.prof1.xml of del

 select profile from systools.opt_profile

 where schema=’ROBERT’ and name=’PROF1’

For more information, including how to export more than 32 700 bytes of data, see

“EXPORT command”.

Database partition group impact on query optimization

In partitioned database environments, the optimizer recognizes and uses the

collocation of tables when it determines the best access plan for a query.

If tables are frequently involved in join queries, they should be divided among

database partitions in such a way that the rows from each table being joined are

located on the same database partition. During the join operation, the collocation

of data from both joined tables prevents the movement of data from one database

partition to another. Place both tables in the same database partition group to

ensure that the data is collocated.

Depending on the size of the table, spreading data over more database partitions

reduces the estimated time to execute a query. The number of tables, the size of the

tables, the location of the data in those tables, and the type of query (such as

whether a join is required) all affect the cost of the query.

Collecting accurate catalog statistics, including advanced

statistics features

Accurate database statistics are critical for query optimization. Perform runstats

operations regularly on any tables that are critical to query performance.

Chapter 3. Factors affecting performance 331

You might also want to collect statistics on system catalog tables, if an application

queries these tables directly and if there is significant catalog update activity, such

as that resulting from the execution of data definition language (DDL) statements.

Automatic statistics collection can be enabled to allow the DB2 data server to

automatically perform a runstats operation. Real time statistics collection can be

enabled to allow the DB2 data server to provide even more timely statistics by

collecting them immediately before queries are optimized.

If you are collecting statistics manually using the RUNSTATS command, you

should use the following options at a minimum:

RUNSTATS ON TABLE DB2USER.DAILY_SALES

 WITH DISTRIBUTION AND SAMPLED DETAILED INDEXES ALL

Distribution statistics make the optimizer aware of data skew. Detailed index

statistics provide more details about the I/O required to fetch data pages when the

table is accessed using a particular index. Collecting detailed index statistics

consumes considerable processing time and memory for large tables. The

SAMPLED option provides detailed index statistics with nearly the same accuracy

but requires a fraction of the CPU and memory. These defaults are also used by

automatic statistics collection when a statistical profile has not been provided for a

table.

To improve query performance, consider collecting more advanced statistics, such

as column group statistics or LIKE statistics, or creating statistical views.

Column group statistics

If your query has more than one join predicate joining two tables, the DB2

optimizer calculates how selective each of the predicates is before choosing a plan

for executing the query.

For example, consider a manufacturer who makes products from raw material of

various colors, elasticities, and qualities. The finished product has the same color

and elasticity as the raw material from which it is made. The manufacturer issues

the query:

SELECT PRODUCT.NAME, RAWMATERIAL.QUALITY

 FROM PRODUCT, RAWMATERIAL

 WHERE

 PRODUCT.COLOR = RAWMATERIAL.COLOR AND

 PRODUCT.ELASTICITY = RAWMATERIAL.ELASTICITY

This query returns the names and raw material quality of all products. There are

two join predicates:

PRODUCT.COLOR = RAWMATERIAL.COLOR

PRODUCT.ELASTICITY = RAWMATERIAL.ELASTICITY

The optimizer assumes that the two predicates are independent, which means that

all variations of elasticity occur for each color. It then estimates the overall

selectivity of the pair of predicates by using catalog statistics information for each

table based on the number of levels of elasticity and the number of different colors.

Based on this estimate, it might choose, for example, a nested loop join in

preference to a merge join, or the reverse.

However, these two predicates might not be independent. For example, highly

elastic materials might be available in only a few colors, and the very inelastic

materials might be available in a few other colors that are different from the elastic

332 Troubleshooting and Tuning Database Performance

ones. In that case, the combined selectivity of the predicates eliminates fewer rows

and the query returns more rows. Without this information, the optimizer might no

longer choose the best plan.

To collect the column group statistics on PRODUCT.COLOR and

PRODUCT.ELASTICITY, issue the following RUNSTATS command:

RUNSTATS ON TABLE PRODUCT ON COLUMNS ((COLOR, ELASTICITY))

The optimizer uses these statistics to detect cases of correlation and to dynamically

adjust the combined selectivities of correlated predicates, thus obtaining a more

accurate estimate of the join size and cost.

When a query groups data by using keywords such as GROUP BY or DISTINCT,

column group statistics also enable the optimizer to compute the number of

distinct groupings.

Consider the following query:

SELECT DEPTNO, YEARS, AVG(SALARY)

 FROM EMPLOYEE

 GROUP BY DEPTNO, MGR, YEAR_HIRED

Without any index or column group statistics, the optimizer estimates the number

of groupings (and, in this case, the number of rows returned) as the product of the

number of distinct values in DEPTNO, MGR, and YEAR_HIRED. This estimate

assumes that the grouping key columns are independent. However, this

assumption could be incorrect if each manager manages exactly one department.

Moreover, it is unlikely that each department hires employees every year. Thus, the

product of distinct values of DEPTNO, MGR, and YEAR_HIRED could be an

overestimate of the actual number of distinct groups.

Column group statistics collected on DEPTNO, MGR, and YEAR_HIRED provide

the optimizer with the exact number of distinct groupings for the previous query:

RUNSTATS ON TABLE EMPLOYEE ON COLUMNS ((DEPTNO, MGR, YEAR_HIRED))

In addition to JOIN predicate correlation, the optimizer manages correlation with

simple equality predicates, such as:

DEPTNO = ’Sales’ AND MGR = ’John’

In this example, predicates on the DEPTNO column in the EMPLOYEE table are

likely to be independent of predicates on the YEAR column. However, the

predicates on DEPTNO and MGR are certainly not independent, because each

department would usually be managed by one manager at a time. The optimizer

uses statistical information about columns to determine the combined number of

distinct values and then adjusts the cardinality estimate to account for correlation

between columns.

Correlation of simple equality predicates

In addition to join predicate correlation, the optimizer manages correlation with

simple equality predicates of the type COL =.

For example, consider a table of different types of cars, each having a MAKE (that

is, a manufacturer), MODEL, YEAR, COLOR, and STYLE, such as sedan, station

wagon, or sports-utility vehicle. Because almost every manufacturer makes the

same standard colors available for each of their models and styles, year after year,

predicates on COLOR are likely to be independent of those on MAKE, MODEL,

STYLE, or YEAR. However, predicates based on MAKE and MODEL are not

Chapter 3. Factors affecting performance 333

independent, because only a single car maker would make a model with a

particular name. Identical model names used by two or more car makers is very

unlikely.

If an index on the two columns MAKE and MODEL exists, or column group

statistics are collected, the optimizer uses statistical information about the index or

columns to determine the combined number of distinct values and to adjust the

selectivity or cardinality estimates for the correlation between these two columns.

If the predicates are local equality predicates, the optimizer does not need a unique

index to make an adjustment.

Statistical views

The DB2 cost-based optimizer uses an estimate of the number of rows – or

cardinality – processed by an access plan operator to accurately cost that operator.

This cardinality estimate is the single most important input to the optimizer’s cost

model, and its accuracy largely depends upon the statistics that the runstats utility

collects from the database.

More sophisticated statistics are required to represent more complex relationships,

such as comparisons involving expressions (for example, price > MSRP +

Dealer_markup), relationships spanning multiple tables (for example, product.name

= ’Alloy wheels’ and product.key = sales.product_key), or anything other than

predicates involving independent attributes and simple comparison operations.

Statistical views are able to represent these types of complex relationships, because

statistics are collected on the result set returned by the view, rather than the base

tables referenced by the view.

When a query is compiled, the optimizer matches the query to the available

statistical views. When the optimizer computes cardinality estimates for

intermediate result sets, it uses the statistics from the view to compute a better

estimate.

Queries do not need to reference the statistical view directly in order for the

optimizer to use the statistical view. The optimizer uses the same matching

mechanism that is used for materialized query tables (MQTs) to match queries to

statistical views. In this respect, statistical views are very similar to MQTs, except

that they are not stored permanently, do not consume disk space, and do not have

to be maintained.

A statistical view is created by first creating a view and then enabling it for

optimization using the ALTER VIEW statement. The RUNSTATS command is then

run against the statistical view, populating the system catalog tables with statistics

for the view. For example, to create a statistical view that represents the join

between the TIME dimension table and the fact table in a star schema, do the

following:

CREATE VIEW SV_TIME_FACT AS (

 SELECT T.* FROM TIME T, SALES S

 WHERE T.TIME_KEY = S.TIME_KEY)

ALTER VIEW SV_TIME_FACT ENABLE QUERY OPTIMIZATION

RUNSTATS ON TABLE DB2DBA.SV_TIME_FACT WITH DISTRIBUTION

This statistical view can be used to improve the cardinality estimate and,

consequently, the access plan and query performance for queries such as:

334 Troubleshooting and Tuning Database Performance

SELECT SUM(S.PRICE)

 FROM SALES S, TIME T, PRODUCT P

 WHERE

 T.TIME_KEY = S.TIME_KEY AND

 T.YEAR_MON = 200712 AND

 P.PROD_KEY = S.PROD_KEY AND

 P.PROD_DESC = ‘Power drill’

Without a statistical view, the optimizer assumes that all fact table TIME_KEY

values corresponding to a particular TIME dimension YEAR_MON value occur

uniformly within the fact table. However, sales might have been particularly strong

in December, resulting in many more sales transactions than during other months.

Automatic statistics collection is not currently available for statistical views. Collect

statistics on such views whenever base tables that are referenced by statistical

views have been updated significantly.

Using statistical views

A view must be enabled for optimization before its statistics can be used to

optimize a query. A view that is enabled for optimization is known as a statistical

view.

A view that is not a statistical view is said to be disabled for optimization and is

known as a regular view. A view is disabled for optimization when it is first

created. Use the ALTER VIEW statement to enable a view for optimization. For

privileges and authorities that are required to perform this task, see the description

of the ALTER VIEW statement. For privileges and authorities that are required to

use the runstats utility against a view, see the description of the RUNSTATS

command.

A view cannot be enabled for optimization if any one of the following conditions is

true:

v The view directly or indirectly references a materialized query table (MQT). (An

MQT or statistical view can reference a statistical view.)

v The view is inoperative.

v The view is a typed view.

v There is another view alteration request in the same ALTER VIEW statement.

If the definition of a view that is being altered to enable optimization contains any

of the following items, a warning is returned, and the optimizer will not exploit

the view’s statistics:

v Aggregation or distinct operations

v Union, except, or intersect operations

v Scalar aggregate (OLAP) functions
1. Enable the view for optimization.

A view can be enabled for optimization using the ENABLE OPTIMIZATION

clause on the ALTER VIEW statement. A view that has been enabled for

optimization can subsequently be disabled for optimization using the DISABLE

OPTIMIZATION clause. For example, to enable MYVIEW for optimization,

enter the following:

 alter view myview enable query optimization

2. Invoke the RUNSTATS command. For example, to collect statistics on MYVIEW,

enter the following:

 runstats on table db2dba.myview

Chapter 3. Factors affecting performance 335

To use row-level sampling of 10 percent of the rows while collecting view

statistics, including distribution statistics, enter the following:

 runstats on table db2dba.myview with distribution tablesample bernoulli (10)

To use page-level sampling of 10 percent of the pages while collecting view

statistics, including distribution statistics, enter the following:

 runstats on table db2dba.myview with distribution tablesample system (10)

3. Optional: If queries that are impacted by the view definition are part of static

SQL packages, rebind those packages to take advantage of changes to access

plans resulting from the new statistics.

View statistics that are relevant to optimization

Only statistics that characterize the data distribution of the query that defines a

statistical view, such as CARD and COLCARD, are considered during query

optimization.

The following statistics that are associated with view records can be collected for

use by the optimizer.

v Table statistics (SYSCAT.TABLES, SYSSTAT.TABLES)

– CARD - Number of rows in the view result
v Column statistics (SYSCAT.COLUMNS, SYSSTAT.COLUMNS)

– COLCARD - Number of distinct values of a column in the view result

– AVGCOLLEN - Average length of a column in the view result

– HIGH2KEY - Second highest value of a column in the view result

– LOW2KEY - Second lowest value of a column in the view result

– NUMNULLS - Number of null values in a column in the view result

– SUB_COUNT - Average number of sub-elements in a column in the view

result

– SUB_DELIM_LENGTH - Average length of each delimiter separating

sub-elements
v Column distribution statistics (SYSCAT.COLDIST, SYSSTAT.COLDIST)

– DISTCOUNT - Number of distinct quantile values that are less than or equal

to COLVALUE statistics

– SEQNO - Frequency ranking of a sequence number to help uniquely identify

a row in the table

– COLVALUE - Data value for which frequency or quantile statistics are

collected

– VALCOUNT - Frequency with which a data value occurs in a view column;

or for quantiles, the number of values that are less than or equal to the data

value (COLVALUE)

Statistics that do not describe data distribution (such as NPAGES and FPAGES) can

be collected, but are ignored by the optimizer.

Scenario: Improving cardinality estimates using statistical views

In a data warehouse, fact table information often changes quite dynamically,

whereas dimension table data is static. This means that dimension attribute data

might be positively or negatively correlated with fact table attribute data.

Traditional base table statistics currently available to the optimizer do not allow it

to discern relationships across tables. Column and table distribution statistics on

336 Troubleshooting and Tuning Database Performance

statistical views (and MQTs) can be used to give the optimizer the necessary

information to correct these types of cardinality estimation errors.

Consider the following query that computes annual sales revenue for golf clubs

sold during July of each year:

 select sum(f.sales_price), d2.year

 from product d1, period d2, daily_sales f

 where d1.prodkey = f.prodkey

 and d2.perkey = f.perkey

 and d1.item_desc = ’golf club’

 and d2.month = ’JUL’

 group by d2.year

A star join query execution plan can be an excellent choice for this query, provided

that the optimizer can determine whether the semi-join involving PRODUCT and

DAILY_SALES, or the semi-join involving PERIOD and DAILY_SALES, is the most

selective. To generate an efficient star join plan, the optimizer must be able to

choose the most selective semi-join for the outer leg of the index ANDing

operation.

Data warehouses often contain records for products that are no longer on store

shelves. This can cause the distribution of PRODUCT columns after the join to

appear dramatically different than their distribution before the join. Because the

optimizer, for lack of better information, will determine the selectivity of local

predicates based solely on base table statistics, the optimizer might become overly

optimistic regarding the selectivity of the predicate item_desc = ’golf club’

For example, if golf clubs historically represent 1% of the products manufactured,

but now account for 20% of sales, the optimizer would likely overestimate the

selectivity of item_desc = ’golf club’, because there are no statistics describing

the distribution of item_desc after the join. And if sales in all twelve months are

equally likely, the selectivity of the predicate month = ’JUL’ would be around 8%,

and thus the error in estimating the selectivity of the predicate item_desc = ’golf

club’ would mistakenly cause the optimizer to perform the seemingly more

selective semi-join between PRODUCT and DAILY_SALES as the outer leg of the

star join plan’s index ANDing operation.

The following example provides a step-by-step illustration of how to set up

statistical views to solve this type of problem.

Consider a database from a typical data warehouse, where STORE, CUSTOMER,

PRODUCT, PROMOTION, and PERIOD are the dimension tables, and

DAILY_SALES is the fact table. The following tables provide the definitions for

these tables.

 Table 55. STORE (63 rows)

Column storekey store_number city state district ...

Attribute integer

not null

primary key

char(2) char(20) char(5) char(14) ...

Chapter 3. Factors affecting performance 337

Table 56. CUSTOMER (1 000 000 rows)

Column custkey name address age gender ...

Attribute integer

not null

primary key

char(30) char(40) smallint char(1) ...

 Table 57. PRODUCT (19 450 rows)

Column prodkey category item_desc price cost ...

Attribute integer

not null

primary key

integer char(30) decimal(11) decimal(11) ...

 Table 58. PROMOTION (35 rows)

Column promokey promotype promodesc promovalue ...

Attribute integer

not null

primary key

integer char(30) decimal(5) ...

 Table 59. PERIOD (2922 rows)

Column perkey calendar_date month period year ...

Attribute integer

not null

primary key

date char(3) smallint smallint ...

 Table 60. DAILY_SALES (754 069 426 rows)

Column storekey custkey prodkey promokey perkey sales_price ...

Attribute integer integer integer integer integer decimal(11) ...

Suppose the company managers want to determine whether or not consumers will

buy a product again if they are offered a discount on a return visit. Moreover,

suppose this study is done only for store ’01’, which has 18 locations nationwide.

Table 61 shows information about the different categories of promotion that are

available.

 Table 61. PROMOTION (35 rows)

promotype promodesc COUNT (promotype) percentage of total

1 Return customers 1 2.86%

2 Coupon 15 42.86%

3 Advertisement 5 14.29%

4 Manager’s special 3 8.57%

5 Overstocked items 4 11.43%

6 End aisle display 7 20.00%

The table indicates that discounts for return customers represents only 2.86% of the

35 kinds of promotions that were offered.

The following query returns a count of 12 889 514:

338 Troubleshooting and Tuning Database Performance

select count(*)

 from store d1, promotion d2, daily_sales f

 where d1.storekey = f.storekey

 and d2.promokey = f.promokey

 and d1.store_number = ’01’

 and d2.promotype = 1

This query executes according to the following plan that is generated by the

optimizer. In each node of this diagram, the first row is the cardinality estimate,

the second row is the operator type, and the third row (the number in parentheses)

is the operator ID.

 6.15567e+06

 IXAND

 (8)

 /------------------+------------------\

 2.15448e+07 2.15448e+08

 NLJOIN NLJOIN

 (9) (13)

 /---------+--------\ /---------+--------\

 1 2.15448e+07 18 1.19694e+07

 FETCH IXSCAN FETCH IXSCAN

 (10) (12) (14) (16)

 /---+---\ | /---+---\ |

 35 35 7.54069e+08 18 63 7.54069e+08

 IXSCAN TABLE: DB2DBA INDEX: DB2DBA IXSCAN TABLE: DB2DBA INDEX: DB2DBA

 (11) PROMOTION PROMO_FK_IDX (15) STORE STORE_FK_IDX

 | |

 35 63

 INDEX: DB2DBA INDEX: DB2DBA

 PROMOTION_PK_IDX STOREX1

At the nested loop join (number 9), the optimizer estimates that around 2.86% of

the product sold resulted from customers coming back to buy the same products at

a discounted price (2.15448e+07 ÷ 7.54069e+08 ≈ 0.0286). Note that this is the same

value before and after joining the PROMOTION table with the DAILY_SALES

table. Table 62 summarizes the cardinality estimates and their percentage (the

filtering effect) before and after the join.

 Table 62. Cardinality estimates before and after joining with DAILY_SALES.

Before Join After Join

Predicate count

percentage of

rows qualified count

percentage of

rows qualified

store_number =

’01’

18 28.57% 2.15448e+08 28.57%

promotype = 1 1 2.86% 2.15448e+07 2.86%

Because the probability of promotype = 1 is less than that of store_number = ’01’,

the optimizer chooses the semi-join between PROMOTION and DAILY_SALES as

the outer leg of the star join plan’s index ANDing operation. This leads to an

estimated count of approximately 6 155 670 products sold using promotion type 1

— an incorrect cardinality estimate that is off by a factor of 2.09 (12 889 514 ÷ 6 155

670 ≈ 2.09).

What causes the optimizer to only estimate half of the actual number of records

satisfying the two predicates? Store ’01’ represents about 28.57% of all the stores.

What if other stores had more sales than store ’01’ (less than 28.57%)? Or what if

store ’01’ actually sold most of the product (more than 28.57%)? Likewise, the

Chapter 3. Factors affecting performance 339

2.86% of products sold using promotion type 1 shown in Table 62 on page 339 can

be misleading. The actual percentage in DAILY_SALES could very well be a

different figure than the projected one.

We can use statistical views to help the optimizer correct its estimates. First, we

need to create two statistical views representing each semi-join in the previous

query. The first statistical view provides the distribution of stores for all daily sales.

The second statistical view represents the distribution of promotion types for all

daily sales. Note that each statistical view can provide the distribution information

for any particular store number or promotion type. In this example, we use a 10%

sample rate to retrieve the records in DAILY_SALES for the respective views and

save them in global temporary tables. We then query those tables to collect the

necessary statistics to update the two statistical views.

1. Create a view representing the join of STORE with DAILY_SALES.

 create view sv_store_dailysales as

 (select s.*

 from store s, daily_sales ds

 where s.storekey = ds.storekey)

2. Create a view representing the join of PROMOTION with DAILY_SALES.

 create view sv_promotion_dailysales as

 (select p.*

 from promotion.p, daily_sales ds

 where p.promokey = ds.promokey)

3. Make the views statistical views by enabling them for query optimization:

 alter view sv_store_dailysales enable query optimization

 alter view sv_promotion_dailysales enable query optimization

4. Execute the RUNSTATS command to collect statistics on the views:

 runstats on table db2dba.sv_store_dailysales with distribution

 runstats on table db2dba.sv_promotion_dailysales with distribution

5. Run the query again so that it can be re-optimized. Upon reoptimization, the

optimizer will match SV_STORE_DAILYSALES and

SV_PROMOTION_DAILYSALES with the query, and will use the view statistics

to adjust the cardinality estimate of the semi-joins between the fact and

dimension tables, causing a reversal of the original order of the semi-joins

chosen without these statistics. The new plan is as follows:

 1.04627e+07

 IXAND

 (8)

 /------------------+------------------\

 6.99152e+07 1.12845e+08

 NLJOIN NLJOIN

 (9) (13)

 /---------+--------\ /---------+--------\

 18 3.88418e+06 1 1.12845e+08

 FETCH IXSCAN FETCH IXSCAN

 (10) (12) (14) (16)

 /---+---\ | /---+---\ |

 18 63 7.54069e+08 35 35 7.54069e+08

 IXSCAN TABLE:DB2DBA INDEX: DB2DBA IXSCAN TABLE: DB2DBA INDEX: DB2DBA DB2DBA

 (11) STORE STORE_FK_IDX (15) PROMOTION PROMO_FK_IDX

 | |

 63 35

 INDEX: DB2DBA INDEX: DB2DBA

 STOREX1 PROMOTION_PK_IDX

Table 63 on page 341 summarizes the cardinality estimates and their percentage

(the filtering effect) before and after the join for each semi-join.

340 Troubleshooting and Tuning Database Performance

Table 63. Cardinality estimates before and after joining with DAILY_SALES.

Before Join After Join (no statistical views)

After Join (with statistical

views)

Predicate count

percentage

of rows

qualified count

percentage of

rows qualified count

percentage of

rows qualified

store_number

= ’01’

18 28.57% 2.15448e+08 28.57% 6.99152e+07 9.27%

promotype = 1 1 2.86% 2.15448e+07 2.86% 1.12845e+08 14.96%

Note that this time, the semi-join between STORE and DAILY_SALES is performed

on the outer leg of the index ANDing plan. This is because the two statistical

views essentially tell the optimizer that the predicate store_number = ’01’ will

filter more rows than promotype = 1. This time, the optimizer estimates that there

are approximately 10 462 700 products sold. This estimate is off by a factor of 1.23

(12 889 514 ÷ 10 462 700 ≈ 1.23), which is a significant improvement over the

estimate without statistical views (in Table 62 on page 339).

Catalog statistics

When the query compiler optimizes query plans, its decisions are heavily

influenced by statistical information about the size of the database tables, indexes,

and statistical views. This information is stored in system catalog tables.

The optimizer also uses information about the distribution of data in specific

columns of tables, indexes, and statistical views if these columns are used to select

rows or to join tables. The optimizer uses this information to estimate the costs of

alternative access plans for each query.

Statistical information about the cluster ratio of indexes, the number of leaf pages

in indexes, the number of table rows that overflow their original pages, and the

number of filled and empty pages in a table can also be collected. You can use this

information to decide when to reorganize tables or indexes.

Table statistics in a partitioned database environment are collected only for that

portion of the table that resides on the database partition on which the utility is

running, or for the first database partition in the database partition group that

contains the table. Information about statistical views is collected for all database

partitions.

Statistics that are updated by the runstats utility

Catalog statistics are updated by the runstats utility, which can be started by

issuing the RUNSTATS command, calling the ADMIN_CMD procedure, or calling

the db2Runstats API. Updates can be initiated either manually or automatically.

Statistics about declared temporary tables are not stored in the system catalog, but

are stored in memory structures that represent the catalog information for declared

temporary tables. It is possible (and in some cases, it might be useful) to perform

runstats on a declared temporary table.

The runstats utility collects the following information about tables and indexes:

v The number of pages that contain rows

v The number of pages that are in use

v The number of rows in the table (the cardinality)

Chapter 3. Factors affecting performance 341

v The number of rows that overflow

v For multidimensional clustering (MDC) tables, the number of blocks that contain

data

v For partitioned tables, the degree of data clustering within a single data partition

v Data distribution statistics, which are used by the optimizer to estimate efficient

access plans for tables and statistical views whose data is not evenly distributed

and whose columns have a significant number of duplicate values

v Detailed index statistics, which are used by the optimizer to determine how

efficient it is to access table data through an index

v Subelement statistics for LIKE predicates, especially those that search for

patterns within strings (for example, LIKE %disk%), are also used by the

optimizer

The runstats utility collects the following statistics for each data partition in a table.

These statistics are only used for determining whether a partition needs to be

reorganized:

v The number of pages that contain rows

v The number of pages that are in use

v The number of rows in the table (the cardinality)

v The number of rows that overflow

v For MDC tables, the number of blocks that contain data

Distribution statistics are not collected:

v When the num_freqvalues and num_quantiles database configuration

parameters are set to 0

v When the distribution of data is known, such as when each data value is unique

v When the column contains a LONG, LOB, or structured data type

v For row types in sub-tables (the table-level statistics NPAGES, FPAGES, and

OVERFLOW are not collected)

v If quantile distributions are requested, but there is only one non-null value in

the column

v For extended indexes or declared temporary tables

The runstats utility collects the following information about each column in a table

or statistical view, and the first column in an index key:

v The cardinality of the column

v The average length of the column (the average space, in bytes, that is required

when the column is stored in database memory or in a temporary table)

v The second highest value in the column

v The second lowest value in the column

v The number of null values in the column

For columns that contain large object (LOB) or LONG data types, the runstats

utility collects only the average length of the column and the number of null

values in the column. The average length of the column represents the length of

the data descriptor, except when LOB data is located inline on the data page. The

average amount of space that is required to store the column on disk might be

different than the value of this statistic.

The runstats utility collects the following information about each XML column:

v The number of NULL XML documents

342 Troubleshooting and Tuning Database Performance

v The number of non-NULL XML documents

v The number of distinct paths

v The sum of the node count for each distinct path

v The sum of the document count for each distinct path

v The k pairs of (path, node count) with the largest node count

v The k pairs of (path, document count) with the largest document count

v The k triples of (path, value, node count) with the largest node count

v The k triples of (path, value, document count) with the largest document count

v For each distinct path that leads to a text or attribute value:

– The number of distinct values that this path can take

– The highest value

– The lowest value

– The number of text or attribute nodes

– The number of documents that contain the text or attribute nodes

Each row in an XML column stores an XML document. The node count for a path

or path-value pair refers to the number of nodes that are reachable by that path or

path-value pair. The document count for a path or path-value pair refers to the

number of documents that contain that path or path-value pair.

The runstats utility collects the following information about column groups:

v A timestamp-based name for the column group

v The cardinality of the column group

The runstats utility collects the following information about indexes:

v The number of index entries (the index cardinality)

v The number of leaf pages

v The number of index levels

v The degree of clustering of the table data to the index

v The degree of clustering of the index keys with regard to data partitions

v The ratio of leaf pages located on disk in index key order to the number of

pages in the range of pages occupied by the index

v The number of distinct values in the first column of the index

v The number of distinct values in the first two, three, and four columns of the

index

v The number of distinct values in all columns of the index

v The number of leaf pages located on disk in index key order, with few or no

large gaps between them

v The average leaf key size, without include columns

v The average leaf key size, with include columns

v The number of pages on which all record identifiers (RIDs) are marked deleted

v The number of RIDs that are marked deleted on pages where not all RIDs are

marked deleted

If you request detailed index statistics, additional information about the degree of

clustering of the table data to the index, and the page fetch estimates for different

buffer sizes, is collected.

For a partitioned index, these statistics are representative of a single index

partition, with the exception of the distinct values in the first column of the index;

Chapter 3. Factors affecting performance 343

the first two, three, and four columns of the index; and in all columns of the index.

Per-index partition statistics are also collected for the purpose of determining

whether an index partition needs to be reorganized.

Catalog statistics tables

Statistical information about the size of database tables, indexes, and statistical

views is stored in system catalog tables.

The following tables provide a brief description of this statistical information and

show where it is stored.

v The “Table” column indicates whether or not a particular statistic is collected if

the FOR INDEXES or AND INDEXES option on the RUNSTATS command has

not been specified.

v The “Indexes” column indicates whether or not a particular statistic is collected

if the FOR INDEXES or AND INDEXES option has been specified.

Some statistics can only be provided by the table, some can only be provided by

the indexes, and some can be provided by both.

v Table 1. Table Statistics (SYSCAT.TABLES and SYSSTAT.TABLES)

v Table 2. Column Statistics (SYSCAT.COLUMNS and SYSSTAT.COLUMNS)

v Table 3. Multi-column Statistics (SYSCAT.COLGROUPS and

SYSSTAT.COLGROUPS)

v Table 4. Multi-column Distribution Statistics (SYSCAT.COLGROUPDIST and

SYSSTAT.COLGROUPDIST)

v Table 5. Multi-column Distribution Statistics (SYSCAT.COLGROUPDISTCOUNTS

and SYSSTAT.COLGROUPDISTCOUNTS)

v Table 6. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES)

v Table 7. Column Distribution Statistics (SYSCAT.COLDIST and

SYSSTAT.COLDIST)

The multi-column distribution statistics listed in Table 4. Multi-column Distribution

Statistics (SYSCAT.COLGROUPDIST and SYSSTAT.COLGROUPDIST) and Table 5.

Multi-column Distribution Statistics (SYSCAT.COLGROUPDISTCOUNTS and

SYSSTAT.COLGROUPDISTCOUNTS) are not collected by the runstats utility. You

cannot update them manually.

 Table 64. Table Statistics (SYSCAT.TABLES and SYSSTAT.TABLES)

Statistic Description RUNSTATS Option

Table Indexes

FPAGES Number of pages

being used by a table

Yes Yes

NPAGES Number of pages

containing rows

Yes Yes

OVERFLOW Number of rows that

overflow

Yes No

CARD Number of rows in a

table (cardinality)

Yes Yes (Note 1)

ACTIVE_BLOCKS For MDC tables, the

total number of

occupied blocks

Yes No

Note:

1. If the table has no indexes defined and you request statistics for indexes, no CARD

statistics are updated. The previous CARD statistics are retained.

344 Troubleshooting and Tuning Database Performance

Table 65. Column Statistics (SYSCAT.COLUMNS and SYSSTAT.COLUMNS)

Statistic Description RUNSTATS Option

Table Indexes

COLCARD Column cardinality Yes Yes (Note 1)

AVGCOLLEN Average length of a

column

Yes Yes (Note 1)

HIGH2KEY Second highest value in

a column

Yes Yes (Note 1)

LOW2KEY Second lowest value in

a column

Yes Yes (Note 1)

NUMNULLS The number of null

values in a column

Yes Yes (Note 1)

SUB_COUNT The average number of

sub-elements

Yes No (Note 2)

SUB_DELIM_LENGTH The average length of

each delimiter

separating

sub-elements

Yes No (Note 2)

Note:

1. Column statistics are collected for the first column in the index key.

2. These statistics provide information about data in columns that contain a series of

sub-fields or sub-elements that are delimited by blanks. The SUB_COUNT and

SUB_DELIM_LENGTH statistics are collected only for columns of type CHAR and

VARCHAR with a code page attribute of single-byte character set (SBCS), FOR BIT

DATA, or UTF-8.

 Table 66. Multi-column Statistics (SYSCAT.COLGROUPS and SYSSTAT.COLGROUPS)

Statistic Description RUNSTATS Option

Table Indexes

COLGROUPCARD Cardinality of the

column group

Yes No

 Table 67. Multi-column Distribution Statistics (SYSCAT.COLGROUPDIST and

SYSSTAT.COLGROUPDIST)

Statistic Description RUNSTATS Option

Table Indexes

TYPE F = Frequency value

Q = Quantile value

Yes No

ORDINAL Ordinal number of

the column in the

group

Yes No

SEQNO Sequence number n

that represents the

nth TYPE value

Yes No

COLVALUE The data value as a

character literal or a

null value

Yes No

Chapter 3. Factors affecting performance 345

Table 68. Multi-column Distribution Statistics (SYSCAT.COLGROUPDISTCOUNTS and

SYSSTAT.COLGROUPDISTCOUNTS)

Statistic Description RUNSTATS Option

Table Indexes

TYPE F = Frequency value

Q = Quantile value

Yes No

SEQNO Sequence number n

that represents the

nth TYPE value

Yes No

VALCOUNT If TYPE = F,

VALCOUNT is the

number of

occurrences of

COLVALUE for the

column group with

this SEQNO. If TYPE

= Q, VALCOUNT is

the number of rows

whose value is less

than or equal to

COLVALUE for the

column group with

this SEQNO.

Yes No

DISTCOUNT If TYPE = Q, this

column contains the

number of distinct

values that are less

than or equal to

COLVALUE for the

column group with

this SEQNO. Null if

unavailable.

Yes No

 Table 69. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES)

Statistic Description RUNSTATS Option

Table Indexes

NLEAF Number of index leaf

pages

No Yes

NLEVELS Number of index

levels

No Yes

CLUSTERRATIO Degree of clustering

of table data

No Yes (Note

2)

CLUSTERFACTOR Finer degree of

clustering

No Detailed

(Notes

1,2)

DENSITY Ratio (percentage) of

SEQUENTIAL_PAGES

to number of pages in

the range of pages

that is occupied by

the index (Note 3)

No Yes

346 Troubleshooting and Tuning Database Performance

Table 69. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES) (continued)

Statistic Description RUNSTATS Option

Table Indexes

FIRSTKEYCARD Number of distinct

values in the first

column of the index

No Yes

FIRST2KEYCARD Number of distinct

values in the first two

columns of the index

No Yes

FIRST3KEYCARD Number of distinct

values in the first

three columns of the

index

No Yes

FIRST4KEYCARD Number of distinct

values in the first four

columns of the index

No Yes

FULLKEYCARD Number of distinct

values in all columns

of the index,

excluding any key

value in an index for

which all record

identifiers (RIDs) are

marked deleted

No Yes

PAGE_FETCH_PAIRS Page fetch estimates

for different buffer

sizes

No Detailed

(Notes

1,2)

AVGPARTITION_CLUSTERRATIO Degree of data

clustering within a

single data partition

No Yes (Note

2)

AVGPARTITION_CLUSTERFACTOR Finer measurement of

degree of clustering

within a single data

partition

No Detailed

(Notes

1,2)

AVGPARTITION_PAGE_FETCH_PAIRS Page fetch estimates

for different buffer

sizes, generated on

the basis of a single

data partition

No Detailed

(Notes

1,2)

DATAPARTITION_CLUSTERFACTOR Number of data

partition references

during an index scan

No (Note 6) Yes (Note

6)

SEQUENTIAL_PAGES Number of leaf pages

located on disk in

index key order, with

few or no large gaps

between them

No Yes

AVERAGE_SEQUENCE_PAGES Average number of

index pages that are

accessible in sequence;

this is the number of

index pages that the

prefetchers can detect

as being in sequence

No Yes

Chapter 3. Factors affecting performance 347

Table 69. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES) (continued)

Statistic Description RUNSTATS Option

Table Indexes

AVERAGE_RANDOM_PAGES Average number of

random index pages

between sequential

page accesses

No Yes

AVERAGE_SEQUENCE_GAP Gap between

sequences

No Yes

AVERAGE_SEQUENCE_FETCH_PAGES Average number of

table pages that are

accessible in sequence;

this is the number of

table pages that the

prefetchers can detect

as being in sequence

when they fetch table

rows using the index

No Yes (Note

4)

AVERAGE_RANDOM_FETCH_PAGES Average number of

random table pages

between sequential

page accesses when

fetching table rows

using the index

No Yes (Note

4)

AVERAGE_SEQUENCE_FETCH_GAP Gap between

sequences when

fetching table rows

using the index

No Yes (Note

4)

NUMRIDS The number of RIDs

in the index,

including deleted

RIDs

No Yes

NUMRIDS_DELETED The total number of

RIDs in the index that

are marked deleted,

except RIDs on those

leaf pages where all

RIDs are marked

deleted

No Yes

NUM_EMPTY_LEAFS The total number of

leaf pages on which

all RIDs are marked

deleted

No Yes

INDCARD Number of index

entries (index

cardinality)

No Yes

348 Troubleshooting and Tuning Database Performance

Table 69. Index Statistics (SYSCAT.INDEXES and SYSSTAT.INDEXES) (continued)

Statistic Description RUNSTATS Option

Table Indexes

Note:

1. Detailed index statistics are collected by specifying the DETAILED clause on the

RUNSTATS command.

2. CLUSTERFACTOR and PAGE_FETCH_PAIRS are not collected with the DETAILED

clause unless the table is of sufficient size (greater than about 25 pages). In this case,

CLUSTERRATIO is -1 (not collected). If the table is relatively small, only

CLUSTERRATIO is collected by the runstats utility; CLUSTERFACTOR and

PAGE_FETCH_PAIRS are not collected. If the DETAILED clause is not specified, only

CLUSTERRATIO is collected.

3. This statistic measures the percentage of pages in the file containing the index that

belongs to that table. For a table with only one index defined on it, DENSITY should be

100. DENSITY is used by the optimizer to estimate how many irrelevant pages from

other indexes might be read, on average, if the index pages were prefetched.

4. This statistic cannot be computed when the table is in a DMS table space.

5. Prefetch statistics are not collected during a load or create index operation, even if

statistics collection is specified when the command is invoked. Prefetch statistics are

also not collected if the seqdetect database configuration parameter is set to NO.

6. When runstats options for table is “No”, statistics are not collected when table statistics

are collected; when runstats options for indexes is “Yes”, statistics are collected when

the RUNSTATS command is used with the INDEXES options.

 Table 70. Column Distribution Statistics (SYSCAT.COLDIST and SYSSTAT.COLDIST)

Statistic Description RUNSTATS Option

Table Indexes

DISTCOUNT If TYPE = Q,

DISTCOUNT is the

number of distinct

values that are less

than or equal to

COLVALUE statistics

Distribution (Note 2) No

TYPE Indicator of whether

the row provides

frequent-value or

quantile statistics

Distribution No

SEQNO Frequency ranking of

a sequence number

to help uniquely

identify the row in

the table

Distribution No

COLVALUE Data value for which

a frequency or

quantile statistic is

collected

Distribution No

VALCOUNT Frequency with

which the data value

occurs in a column;

for quantiles, the

number of values

that are less than or

equal to the data

value (COLVALUE)

Distribution No

Chapter 3. Factors affecting performance 349

Table 70. Column Distribution Statistics (SYSCAT.COLDIST and

SYSSTAT.COLDIST) (continued)

Statistic Description RUNSTATS Option

Table Indexes

Note:

1. Column distribution statistics are collected by specifying the WITH DISTRIBUTION

clause on the RUNSTATS command. Distribution statistics cannot be collected unless

there is a sufficient lack of uniformity in the column values.

2. DISTCOUNT is collected only for columns that are the first key column in an index.

Automatic statistics collection

The DB2 optimizer uses catalog statistics to determine the most efficient access

plan for a query. Out-of-date or incomplete table or index statistics might lead the

optimizer to select a suboptimal plan, thereby slowing down query execution.

However, deciding which statistics to collect for a given workload is complex, and

keeping these statistics up-to-date is time-consuming.

With automatic statistics collection, part of the DB2 automated table maintenance

feature, you can let the database manager determine whether statistics need to be

updated. Automatic statistics collection can occur synchronously at statement

compilation time using the real-time statistics (RTS) feature, or the runstats utility

can be enabled to simply run in the background for asynchronous collection.

Although background statistics collection can be enabled while real-time statistics

collection is disabled, background statistics collection must be enabled for real-time

statistics collection to occur. Automatic background statistics collection is enabled

by default when you create a new database. Automatic real-time statistics

collection is enabled by setting the value of the auto_stmt_stats database

configuration parameter to ON. This parameter is a child of the auto_runstats

configuration parameter.

Understanding asynchronous and real-time statistics collection

When real-time statistics collection is enabled, statistics can be fabricated using

certain meta-data. Fabrication means deriving or creating statistics, rather than

collecting them as part of normal runstats activity. For example, the number of

rows in a table can be derived from knowing the number of pages in the table, the

page size, and the average row width. In some cases, statistics are not actually

derived, but are maintained by the index and data manager and can be stored

directly in the catalog. For example, the index manager maintains a count of the

number of leaf pages and levels in each index.

The query optimizer determines how statistics should be collected, based on the

needs of the query and the amount of table update activity (the number of update,

insert, or delete operations).

Real-time statistics collection provides more timely and more accurate statistics.

Accurate statistics can result in better query execution plans and improved

performance. When real-time statistics collection is not enabled, asynchronous

statistics collection occurs at two-hour intervals. This might not be frequent enough

to provide accurate statistics for some applications.

When real-time statistics collection is enabled, asynchronous statistics collection

checking still occurs at two-hour intervals. Real-time statistics collection also

initiates asynchronous collection requests when:

350 Troubleshooting and Tuning Database Performance

v Table activity is not high enough to require synchronous collection, but is high

enough to require asynchronous collection

v Synchronous statistics collection used sampling because the table was large

v Synchronous statistics were fabricated

v Synchronous statistics collection failed because the collection time was exceeded

At most, two asynchronous requests can be processed at the same time, but only

for different tables. One request must have been initiated by real-time statistics

collection, and the other must have been initiated by asynchronous statistics

collection checking.

The performance impact of automatic statistics collection is minimized in several

ways:

v Asynchronous statistics collection is performed using a throttled runstats utility.

Throttling controls the amount of resource that is consumed by the runstats

utility, based on current database activity: as database activity increases, the

utility runs more slowly, reducing its resource demands.

v Synchronous statistics collection is limited to five seconds per query. This value

can be controlled by the RTS optimization guideline. If synchronous collection

exceeds the time limit, an asynchronous collection request is submitted.

v Synchronous statistics collection does not store the statistics in the system

catalog. Instead, the statistics are stored in a statistics cache and are later stored

in the system catalog by an asynchronous operation. This avoids the overhead

and possible lock contention involved when updating the system catalog.

Statistics in the statistics cache are available for subsequent SQL compilation

requests.

v Only one synchronous statistics collection operation will occur per table. Other

agents requiring synchronous statistics collection will fabricate statistics, if

possible, and continue with statement compilation. This behavior is also

enforced in a partitioned database environment, where agents on different

database partitions might require synchronous statistics.

v You can customize the type of statistics that are collected by enabling statistics

profiling, which uses information about previous database activity to determine

which statistics are required by the database workload, or by creating your own

statistics profile for a particular table.

v Only tables with missing statistics or high levels of activity (as measured by the

number of update, insert, or delete operations) are considered for statistics

collection. Even if a table meets the statistics collection criteria, synchronous

statistics are not collected unless query optimization requires them. In some

cases, the query optimizer can choose an access plan without statistics.

v For asynchronous statistics collection checking, large tables (those with more

than 4000 pages) are sampled to determine whether high table activity has

changed the statistics. Statistics for such large tables are collected only if

warranted.

v For asynchronous statistics collection, the runstats utility is automatically

scheduled to run during the optimal maintenance window that is specified in

your maintenance policy. This policy also specifies the set of tables that are

within the scope of automatic statistics collection, further minimizing

unnecessary resource consumption.

v Synchronous statistics collection and fabrication do not follow the optimal

maintenance window that is specified in your maintenance policy, because

synchronous requests must occur immediately and have limited collection time.

Chapter 3. Factors affecting performance 351

Synchronous statistics collection and fabrication follow the policy that specifies

the set of tables that are within the scope of automatic statistics collection.

v While automatic statistics collection is being performed, the affected tables are

still available for regular database activity (update, insert, or delete operations).

v Real-time statistics (synchronous or fabricated) are not collected for nicknames.

To refresh nickname statistics in the system catalog automatically (for

asynchronous statistics collection), call the SYSPROC.NNSTAT procedure.

Real-time synchronous statistics collection is performed for regular tables,

materialized query tables (MQTs), and global temporary tables. Asynchronous

statistics are not collected for global temporary tables.

Automatic statistics collection (synchronous or asynchronous) does not occur for:

v Statistical views

v Tables that are marked VOLATILE (tables that have the VOLATILE field set in

the SYSCAT.TABLES catalog view)

v Tables that have had their statistics manually updated, by issuing UPDATE

statements directly against SYSSTAT catalog views

When you modify table statistics manually, the database manager assumes that

you are now responsible for maintaining their statistics. To induce the database

manager to maintain statistics for a table that has had its statistics manually

updated, collect statistics using the RUNSTATS command or specify statistics

collection when using the LOAD command. Tables created prior to Version 9.5

that had their statistics updated manually prior to upgrading are not affected,

and their statistics are automatically maintained by the database manager until

they are manually updated.

Statistics fabrication does not occur for:

v Statistical views

v Tables that have had their statistics manually updated, by issuing UPDATE

statements directly against SYSSTAT catalog views. Note that if real-time

statistics collection is not enabled, some statistics fabrication will still occur for

tables that have had their statistics manually updated.

In a partitioned database environment, statistics are collected on a single database

partition and then extrapolated. The database manager always collects statistics

(both synchronous and asynchronous) on the first database partition of the

database partition group.

No real-time statistics collection activity will occur until at least five minutes after

database activation.

When real-time statistics are enabled, you should schedule a defined maintenance

window; the maintenance window is undefined by default. If there is no defined

maintenance window, only synchronous statistics collection will occur. In this case,

the collected statistics are only in-memory, and are typically collected using

sampling (except in the case of small tables).

Real-time statistics processing occurs for both static and dynamic SQL.

A table that has been truncated using the IMPORT command is automatically

recognized as having stale statistics.

352 Troubleshooting and Tuning Database Performance

Automatic statistics collection, both synchronous and asynchronous, invalidates

cached dynamic statements that reference tables for which statistics have been

collected. This is done so that cached dynamic statements can be re-optimized with

the latest statistics.

Real-time statistics and explain processing

There is no real-time processing for a query that is only explained (not executed)

using the explain facility. The following table summarizes the behavior under

different values of the CURRENT EXPLAIN MODE special register.

 Table 71. Real-time statistics collection as a function of the value of the CURRENT

EXPLAIN MODE special register

CURRENT EXPLAIN MODE value Real-time statistics collection considered

YES Yes

EXPLAIN No

NO Yes

REOPT Yes

RECOMMEND INDEXES No

EVALUATE INDEXES No

Automatic statistics collection and the statistics cache

A statistics cache was introduced in DB2 Version 9.5 to make synchronously-
collected statistics available to all queries. This cache is part of the catalog cache. In

a partitioned database environment, this cache resides only on the catalog database

partition. The catalog cache can store multiple entries for the same SYSTABLES

object, which increases the size of the catalog cache on all database partitions.

Consider increasing the value of the catalogcache_sz database configuration

parameter when real-time statistics collection is enabled.

Starting with DB2 Version 9, you can use the Configuration Advisor to determine

the initial configuration for new databases. The Configuration Advisor

recommends that the auto_stmt_stats database configuration parameter be set to

ON.

Automatic statistics collection and statistical profiles

Synchronous and asynchronous statistics are collected according to a statistical

profile that is in effect for a table, with the following exceptions:

v To minimize the overhead of synchronous statistics collection, the database

manager might collect statistics using sampling. In this case, the sampling rate

and method might be different than those that are specified in the statistical

profile.

v Synchronous statistics collection might choose to fabricate statistics, but it might

not be possible to fabricate all statistics that are specified in the statistical profile.

For example, column statistics such as COLCARD, HIGH2KEY, and LOW2KEY

cannot be fabricated unless the column is leading in some index.

If synchronous statistics collection cannot collect all statistics that are specified in

the statistical profile, an asynchronous collection request is submitted.

Chapter 3. Factors affecting performance 353

Although real-time statistics collection is designed to minimize statistics collection

overhead, try it in a test environment first to ensure that there is no negative

performance impact. This might be the case in some online transaction processing

(OLTP) scenarios, especially if there is an upper boundary for how long a query

can run.

Enabling automatic statistics collection:

Having accurate and complete database statistics is critical to efficient data access

and optimal workload performance. Use the automatic statistics collection feature

of the automated table maintenance functionality to update and maintain relevant

database statistics.

 You can enhance this functionality in environments where a single database

partition operates on a single processor by collecting query data and generating

statistics profiles that help the DB2 server to automatically collect the exact set of

statistics that is required by your workload. This option is not available in

partitioned database environments, certain federated database environments, or

environments in which intra-partition parallelism is enabled.

To enable automatic statistics collection:

1. Configure your database instance by setting the auto_maint, auto_tbl_maint,

and auto_runstats database configuration parameters to ON. The auto_maint

parameter is the parent of auto_tbl_maint and auto_runstats.

2. Optional: To enable automatic statistics profile generation, set the

auto_stats_prof and auto_prof_upd database configuration parameters to ON.

The auto_maint parameter is the parent of auto_stats_prof and auto_prof_upd.

3. Optional: To enable real-time statistics gathering, set the auto_stmt_stats

configuration parameter to ON. Table statistics are automatically gathered at

statement compilation time, whenever they are needed to optimize a query. The

auto_maint parameter is the parent of auto_stmt_stats.

Collecting statistics using a statistics profile:

The runstats utility provides the option to register and use a statistics profile,

which specifies the type of statistics that are to be collected for a particular table;

for example, table statistics, index statistics, or distribution statistics. This feature

simplifies statistics collection by enabling you to store runstats options for

convenient future use.

 To register a profile and collect statistics at the same time, issue the RUNSTATS

command with the SET PROFILE option. To register a profile only, issue the

RUNSTATS command with the SET PROFILE ONLY option. To collect statistics

using a profile that has already been registered, issue the RUNSTATS command

with the USE PROFILE option.

To see what options are currently specified in the statistics profile for a particular

table, query the SYSCAT.TABLES catalog view. For example:

 select statistics_profile from syscat.tables where tabname = ’EMPLOYEE’

Automatic statistics profiling

Statistics profiles can also be generated automatically with the DB2 automatic

statistics profiling feature. When this feature is enabled, information about

database activity is collected and stored in the query feedback warehouse. A

354 Troubleshooting and Tuning Database Performance

statistics profile is then generated on the basis of this data. Enabling this feature

can alleviate the uncertainty about which statistics are relevant to a particular

workload.

Automatic statistics profiling can be used with automatic statistics collection, which

schedules statistics maintenance operations based on information contained in the

automatically generated statistics profile.

To enable automatic statistics profiling, ensure that automatic table maintenance

has already been enabled by setting the appropriate database configuration

parameters. For more information, see “auto_maint - Automatic maintenance

configuration parameter”. The auto_stats_prof configuration parameter activates

the collection of query feedback data, and the auto_prof_upd configuration

parameter activates the generation of a statistics profile for use by automatic

statistics collection.

Automatic statistics profile generation is not supported in partitioned database

environments, in certain federated database environments, and when

intra-partition parallelism is enabled.

Automatic statistics profiling is best suited to systems running large complex

queries that have many predicates, use large joins, or specify extensive grouping. It

is less suited to systems with primarily transactional workloads.

In a development environment, where the performance overhead of runtime

monitoring can easily be tolerated, set the auto_stats_prof and

auto_prof_updconfiguration parameters to ON. When a test system uses realistic

data and queries, appropriate statistics profiles can be transferred to the production

system, where queries can benefit without incurring additional monitoring

overhead.

In a production environment, if performance problems with a particular set of

queries (problems that can be attributed to faulty statistics) are detected, you can

set theauto_stats_prof configuration parameter to ON and execute the target

workload for a period of time. Automatic statistics profiling will analyze the query

feedback and create recommendations in the

SYSTOOLS.OPT_FEEDBACK_RANKING tables. You can inspect these

recommendations and refine the statistics profiles manually, as appropriate. To

have the DB2 server automatically update the statistics profiles based on these

recommendations, enable auto_prof_upd when you enable auto_stats_prof.

Creating the query feedback warehouse

The query feedback warehouse, which is required for automatic statistics profiling,

consists of five tables in the SYSTOOLS schema. These tables store information

about the predicates that are encountered during query execution, as well as

recommendations for statistics collection. The five tables are:

v OPT_FEEDBACK_PREDICATE

v OPT_FEEDBACK_PREDICATE_COLUMN

v OPT_FEEDBACK_QUERY

v OPT_FEEDBACK_RANKING

v OPT_FEEDBACK_RANKING_COLUMN

Use the SYSINSTALLOBJECTS procedure to create the query feedback warehouse.

For more information about this procedure, which is used to create or drop objects

Chapter 3. Factors affecting performance 355

in the SYSTOOLS schema, see “SYSINSTALLOBJECTS”.

Storage used by automatic statistics collection and profiling:

The automatic statistics collection and reorganization features store working data

in tables that are part of your database. These tables are created in the

SYSTOOLSPACE table space.

 SYSTOOLSPACE is created automatically with default options when the database

is activated. Storage requirements for these tables are proportional to the number

of tables in the database and can be estimated at approximately 1 KB per table. If

this is a significant size for your database, you might want to drop and then

recreate the table space yourself, allocating storage appropriately. Although the

automatic maintenance and health monitoring tables in the table space are

automatically recreated, any history that was captured in those tables is lost when

you drop the table space.

Automatic statistics collection activity logging:

The statistics log is a record of all of the statistics collection activities (both manual

and automatic) that have occurred against a specific database.

 The default name of the statistics log is db2optstats.number.log. It resides in the

$DIAGPATH/events directory. The statistics log is a rotating log. Log behavior is

controlled by the DB2_OPTSTATS_LOG registry variable.

The statistics log can be viewed directly or it can be queried using the

SYSPROC.PD_GET_DIAG_HIST table function. This table function returns a

number of columns containing standard information about any logged event, such

as the timestamp, DB2 instance name, database name, process ID, process name,

and thread ID. The log also contains generic columns for use by different logging

facilities. The following table describes how these generic columns are used by the

statistics log.

356 Troubleshooting and Tuning Database Performance

Table 72. Generic columns in the statistics log file

Column name Data type Description

OBJTYPE VARCHAR(64) The type of object to which the event applies.

For statistics logging, this is the type of

statistics to be collected. OBJTYPE can refer to

a statistics collection background process

when the process starts or stops. It can also

refer to activities that are performed by

automatic statistics collection, such as a

sampling test, initial sampling, and table

evaluation.

Possible values for statistics collection

activities are:

TABLE STATS

Table statistics are to be collected.

INDEX STATS

Index statistics are to be collected.

TABLE AND INDEX STATS

Both table and index statistics are to

be collected.

Possible values for automatic statistics

collection are:

EVALUATION

The automatic statistics background

collection process has begun an

evaluation phase. During this phase,

tables will be checked to determine

if they need updated statistics, and

statistics will be collected, if

necessary.

INITIAL SAMPLING

Statistics are being collected for a

table using sampling. The sampled

statistics are stored in the system

catalog. This allows automatic

statistics collection to proceed

quickly for a table with no statistics.

Subsequent operations will collect

statistics without sampling. Initial

sampling is performed during the

evaluation phase of automatic

statistics collection.

SAMPLING TEST

Statistics are being collected for a

table using sampling. The sampled

statistics are not stored in the

system catalog. The sampled

statistics will be compared to the

current catalog statistics to

determine if and when full statistics

should be collected for this table.

The sampling is performed during

the evaluation phase of automatic

statistics collection.

STATS DAEMON

The statistics daemon is a

background process used to handle

requests that are submitted by

real-time statistics processing. This

object type is logged when the

background process starts or stops.

Chapter 3. Factors affecting performance 357

Table 72. Generic columns in the statistics log file (continued)

Column name Data type Description

OBJNAME VARCHAR(255) The name of the object to which the event

applies, if available. For statistics logging, this

is the table or index name. If OBJTYPE is

STATS DAEMON or EVALUATION,

OBJNAME is the database name and

OBJNAME_QUALIFIER is NULL.

OBJNAME_QUALIFIER VARCHAR(255) For statistics logging, this is the schema of the

table or index.

EVENTTYPE VARCHAR(24) The event type is the action that is associated

with this event. Possible values for statistics

logging are:

COLLECT

This action is logged for a statistics

collection operation.

START This action is logged when the

real-time statistics background

process (OBJTYPE = STATS

DAEMON) or an automatic statistics

collection evaluation phase

(OBJTYPE = EVALUATION) starts.

STOP This action is logged when the

real-time statistics background

process (OBJTYPE = STATS

DAEMON) or an automatic statistics

collection evaluation phase

(OBJTYPE = EVALUATION stops.

ACCESS

This action is logged when an

attempt has been made to access a

table for statistics collection

purposes. This event type is used to

log an unsuccessful access attempt

when the object is unavailable.

FIRST_EVENTQUALIFIERTYPE VARCHAR(64) The type of the first event qualifier. Event

qualifiers are used to describe what was

affected by the event. For statistics logging,

the first event qualifier is the timestamp for

when the event occurred. For the first event

qualifier type, the value is AT.

FIRST_EVENTQUALIFIER CLOB(16k) The first qualifier for the event. For statistics

logging, the first event qualifier is the

timestamp for when the statistics event

occurred. The timestamp of the statistics event

might be different than the timestamp of the

log record, as represented by the TIMESTAMP

column.

SECOND_EVENTQUALIFIERTYPE VARCHAR(64) The type of the second event qualifier. For

statistics logging, the value can be BY or

NULL. This field is not used for other event

types.

358 Troubleshooting and Tuning Database Performance

Table 72. Generic columns in the statistics log file (continued)

Column name Data type Description

SECOND_EVENTQUALIFIER CLOB(16k) The second qualifier for the event. For

statistics logging, this represents how statistics

were collected for COLLECT event types.

Possible values are:

User Statistics collection was performed

by a DB2 user invoking the LOAD,

REDISTRIBUTE, or RUNSTATS

command, or issuing the CREATE

INDEX statement.

Synchronous

Statistics collection was performed

at SQL statement compilation time

by the DB2 server. The statistics are

stored in the statistics cache but not

the system catalog.

Synchronous sampled

Statistics collection was performed

using sampling at SQL statement

compilation time by the DB2 server.

The statistics are stored in the

statistics cache but not the system

catalog.

Fabricate

Statistics were fabricated at SQL

statement compilation time using

information that is maintained by

the data and index manager. The

statistics are stored in the statistics

cache but not the system catalog.

Fabricate partial

Only some statistics were fabricated

at SQL statement compilation time

using information that is maintained

by the data and index manager. In

particular, only the HIGH2KEY and

LOW2KEY values for certain

columns were fabricated. The

statistics are stored in the statistics

cache but not the system catalog.

Asynchronous

Statistics were collected by a DB2

background process and are stored

in the system catalog.
This field is not used for other event types.

THIRD_EVENTQUALIFIERTYPE VARCHAR(64) The type of the third event qualifier. For

statistics logging, the value can be DUE TO or

NULL.

Chapter 3. Factors affecting performance 359

Table 72. Generic columns in the statistics log file (continued)

Column name Data type Description

THIRD_EVENTQUALIFIER CLOB(16k) The third qualifier for the event. For statistics

logging, this represents the reason why a

statistics activity could not be completed.

Possible values are:

Timeout Synchronous statistics collection

exceeded the time budget.

Error The statistics activity failed due to

an error.

RUNSTATS error

Synchronous statistics collection

failed due to a RUNSTATS error. For

some errors, SQL statement

compilation might have completed

successfully, even though statistics

could not be collected. For example,

if there was insufficient memory to

collect statistics, SQL statement

compilation will continue.

Object unavailable

Statistics could not be collected for

the database object because it could

not be accessed. Some possible

reasons include:

v The object is locked in super

exclusive (Z) mode

v The table space in which the

object resides is unavailable

v The table indexes need to be

recreated

Conflict Synchronous statistics collection was

not performed because another

application was already collecting

synchronous statistics.
Check the FULLREC column or the db2diag

log files for the error details.

EVENTSTATE VARCHAR(255) State of the object or action as a result of the

event. For statistics logging, this indicates the

state of the statistics operation. Possible values

are:

v Start

v Success

v Failure

Example

In this example, the query returns statistics log records for events up to one year

prior to the current timestamp by invoking PD_GET_DIAG_HIST.

 select pid, tid,

 substr(eventtype, 1, 10),

 substr(objtype, 1, 30) as objtype,

 substr(objname_qualifier, 1, 20) as objschema,

 substr(objname, 1, 10) as objname,

 substr(first_eventqualifier, 1, 26) as event1,

 substr(second_eventqualifiertype, 1, 2) as event2_type,

 substr(second_eventqualifier, 1, 20) as event2,

 substr(third_eventqualifiertype, 1, 6) as event3_type,

 substr(third_eventqualifier, 1, 15) as event3,

360 Troubleshooting and Tuning Database Performance

substr(eventstate, 1, 20) as eventstate

 from table(sysproc.pd_get_diag_hist

 (’optstats’, ’EX’, ’NONE’,

 current_timestamp - 1 year, cast(null as timestamp))) as sl

 order by timestamp(varchar(substr(first_eventqualifier, 1, 26), 26));

The results are ordered by the timestamp stored in the FIRST_EVENTQUALIFIER

column, which represents the time of the statistics event.

PID TID EVENTTYPE OBJTYPE OBJSCHEMA OBJNAME EVENT1 EVENT2_ EVENT2 EVENT3_ EVENT3 EVENTSTATE

 TYPE TYPE

----- ------------- --------- --------------------- --------- ---------- -------------------------- ------- -------------------- ------- -------- ----------

28399 1082145120 START STATS DAEMON - PROD_DB 2007-07-09-18.37.40.398905 - - - - success

28389 183182027104 COLLECT TABLE AND INDEX STATS DB2USER DISTRICT 2007-07-09-18.37.43.261222 BY Synchronous - - start

28389 183182027104 COLLECT TABLE AND INDEX STATS DB2USER DISTRICT 2007-07-09-18.37.43.407447 BY Synchronous - - success

28399 1082145120 COLLECT TABLE AND INDEX STATS DB2USER CUSTOMER 2007-07-09-18.37.43.471614 BY Asynchronous - - start

28399 1082145120 COLLECT TABLE AND INDEX STATS DB2USER CUSTOMER 2007-07-09-18.37.43.524496 BY Asynchronous - - success

28399 1082145120 STOP STATS DAEMON - PROD_DB 2007-07-09-18.37.43.526212 - - - - success

28389 183278496096 COLLECT TABLE STATS DB2USER ORDER_LINE 2007-07-09-18.37.48.676524 BY Synchronous sampled - - start

28389 183278496096 COLLECT TABLE STATS DB2USER ORDER_LINE 2007-07-09-18.37.53.677546 BY Synchronous sampled DUE TO Timeout failure

28389 1772561034 START EVALUATION - PROD_DB 2007-07-10-12.36.11.092739 - - - - success

28389 8231991291 COLLECT TABLE AND INDEX STATS DB2USER DISTRICT 2007-07-10-12.36.30.737603 BY Asynchronous - - start

28389 8231991291 COLLECT TABLE AND INDEX STATS DB2USER DISTRICT 2007-07-10-12.36.34.029756 BY Asynchronous - - success

28389 1772561034 STOP EVALUATION - PROD_DB 2007-07-10-12.36.39.685188 - - - - success

Improving query performance for large statistics logs:

If the statistics log files are large, you can improve query performance by copying

the log records into a table, creating indexes, and then gathering statistics.

 Procedure

1. Create a table with appropriate columns for the log records.

 create table db2user.stats_log (

 pid bigint,

 tid bigint,

 timestamp timestamp,

 dbname varchar(128),

 retcode integer,

 eventtype varchar(24),

 objtype varchar(30),

 objschema varchar(20),

 objname varchar(30),

 event1_type varchar(20),

 event1 timestamp,

 event2_type varchar(20),

 event2 varchar(40),

 event3_type varchar(20),

 event3 varchar(40),

 eventstate varchar(20))

2. Declare a cursor for a query against SYSPROC.PD_GET_DIAG_HIST.

 declare c1 cursor for

 select pid, tid, timestamp, dbname, retcode, eventtype,

 substr(objtype, 1, 30) as objtype,

 substr(objname_qualifier, 1, 20) as objschema,

 substr(objname, 1, 30) as objname,

 substr(first_eventqualifiertype, 1, 20),

 substr(first_eventqualifier, 1, 26),

 substr(second_eventqualifiertype, 1, 20),

 substr(second_eventqualifier, 1, 40),

 substr(third_eventqualifiertype, 1, 20),

 substr(third_eventqualifier, 1, 40),

 substr(eventstate, 1, 20)

 from table (sysproc.pd_get_diag_hist

 (’optstats’, ’EX’, ’NONE’,

 current_timestamp - 1 year, cast(null as timestamp))) as sl

3. Load the statistics log records into the table.

 load from c1 of cursor replace into db2user.stats_log

4. Create indexes and then gather statistics on the table.

Chapter 3. Factors affecting performance 361

create index sl_ix1 on db2user.stats_log(eventtype, event1);

 create index sl_ix2 on db2user.stats_log(objtype, event1);

 create index sl_ix3 on db2user.stats_log(objname);

 runstats on table db2user.stats_log

 with distribution and sampled detailed indexes all;

Guidelines for collecting and updating statistics

The runstats utility collects statistics on tables, indexes, and statistical views to

provide the optimizer with accurate information for access plan selection.

Use the runstats utility to collect statistics in the following situations:

v After data has been loaded into a table and appropriate indexes have been

created

v After creating a new index on a table

v After a table has been reorganized with the reorg utility

v After a table and its indexes have been significantly modified through update,

insert, or delete operations

v Before binding application programs whose performance is critical

v When you want to compare current and previous statistics

v When the prefetch value has been changed

v After executing the REDISTRIBUTE DATABASE PARTITION GROUP command

v When you have XML columns. When runstats is used to collect statistics for

XML columns only, existing statistics for non-XML columns that were collected

during a load operation or a previous runstats operation are retained. If statistics

on some XML columns were collected previously, those statistics are either

replaced or dropped if the current runstats operation does not include those

columns.

To improve runstats performance and save disk space used to store statistics,

consider specifying only those columns for which data distribution statistics should

be collected.

You should rebind application programs after executing runstats. The query

optimizer might choose different access plans if new statistics are available.

If a full set of statistics cannot be collected at one time, use the runstats utility on

subsets of the objects. If inconsistencies occur as a result of ongoing activity against

those objects, a warning message (SQL0437W, reason code 6) is returned during

query optimization. If this occurs, use runstats again to update the distribution

statistics.

To ensure that index statistics are synchronized with the corresponding table,

collect both table and index statistics at the same time. If a table has been modified

extensively since the last time that statistics were gathered, updating only the

index statistics for that table will leave the two sets of statistics out of

synchronization with each other.

Using the runstats utility on a production system might negatively impact

workload performance. The utility now supports a throttling option that can be

used to limit the performance impact of runstats execution during high levels of

database activity.

When you collect statistics for a table in a partitioned database environment,

runstats only operates on the database partition from which the utility is executed.

362 Troubleshooting and Tuning Database Performance

The results from this database partition are extrapolated to the other database

partitions. If this database partition does not contain a required portion of the

table, the request is sent to the first database partition in the database partition

group that contains the required data.

Statistics for a statistical view are collected on all database partitions containing

base tables that are referenced by the view.

Consider the following tips to improve the efficiency of runstats and the usefulness

of the statistics:

v Collect statistics only for columns that are used to join tables or for columns that

are referenced in the WHERE, GROUP BY, or similar clauses of queries. If the

columns are indexed, you can specify these columns with the ONLY ON KEY

COLUMNS clause on the RUNSTATS command.

v Customize the values of the num_freqvalues and num_quantiles database

configuration parameters for specific tables and columns.

v Collect detailed index statistics with the SAMPLE DETAILED clause to reduce

the amount of background calculation that is performed for detailed index

statistics. The SAMPLE DETAILED clause reduces the time that is required to

collect statistics, and produces adequate precision in most cases.

v When you create an index for a populated table, use the COLLECT STATISTICS

clause to create statistics as the index is created.

v When significant numbers of table rows are added or removed, or if data in

columns for which you collect statistics is updated, use runstats again to update

the statistics.

v Because runstats collects statistics on only a single database partition, the

statistics will be less accurate if the data is not distributed consistently across all

database partitions. If you suspect that there is skewed data distribution,

consider redistributing the data across database partitions by using the

REDISTRIBUTE DATABASE PARTITION GROUP command before using the

runstats utility.

Collecting catalog statistics:

Use the runstats utility to collect catalog statistics on tables, indexes, and statistical

views. The query optimizer uses this information to choose the best access plans

for queries.

 For privileges and authorities that are required to use this utility, see the

description of the RUNSTATS command. To collect catalog statistics:

1. Connect to the database that contains the tables, indexes, or statistical views for

which you want to collect statistical information.

2. From the DB2 command line, execute the RUNSTATS command with

appropriate options. These options enable you to tailor the statistics that are

collected for queries that run against the tables, indexes, or statistical views.

3. When the runstats operation completes, issue a COMMIT statement to release

locks.

4. Rebind any packages that access the tables, indexes, or statistical views for

which you have updated statistical information.

Note:

1. The runstats utility does not support the use of nicknames. If queries access a

federated database, use the runstats utility to update statistics for tables in all

Chapter 3. Factors affecting performance 363

databases, then drop and recreate the nicknames that access remote tables to

make the new statistics available to the optimizer.

2. When you collect statistics for a table in a partitioned database environment,

runstats only operates on the database partition from which the utility is

executed. The results from this database partition are extrapolated to the other

database partitions. If this database partition does not contain a required

portion of the table, the request is sent to the first database partition in the

database partition group that contains the required data.

Statistics for a statistical view are collected on all database partitions containing

base tables that are referenced by the view.

Collecting statistics on a sample of the table data:

Table statistics are used by the query optimizer to select the best access plan for a

query, so it is important that statistics remain current. With the ever-increasing size

of databases, efficient statistics collection becomes more challenging.

 An effective approach is to collect statistics on a random sample of table data. For

I/O-bound or processor-bound systems, the performance benefits can be

enormous.

The DB2 product enables you to efficiently sample data for statistics collection,

potentially improving the performance of the runstats utility by orders of

magnitude, while maintaining a high degree of accuracy.

Two methods of sampling are available: row-level sampling and page-level

sampling. For a description of these sampling methods, see “Data sampling in

queries”.

Performance of page-level sampling is excellent, because only one I/O operation is

required for each selected page. With row-level sampling, I/O costs are not

reduced, because every table page is retrieved in a full table scan. However,

row-level sampling provides significant performance improvements, even if the

amount of I/O is not reduced, because collecting statistics is processor-intensive.

Row-level sampling provides a better sample than page-level sampling in

situations where the data values are highly clustered. Compared to page-level

sampling, the row-level sample set will likely be a better reflection of the data,

because it will include P percent of the rows from each data page. With page-level

sampling, all the rows of P percent of the pages will be in the sample set. If the

rows are distributed randomly over the table, the accuracy of row-sampled

statistics will be similar to the accuracy of page-sampled statistics.

Each sample is randomly generated across repeated invocations of the RUNSTATS

command, unless the REPEATABLE option is used, in which case the previous

sample is regenerated. This option can be useful in cases where consistent statistics

are required for tables whose data remains constant.

Sub-element statistics:

If you specify LIKE predicates using the % wildcard character in any position other

than at the end of the pattern, you should collect basic information about the

sub-element structure.

364 Troubleshooting and Tuning Database Performance

As well as the wildcard LIKE predicate (for example, SELECT...FROM DOCUMENTS

WHERE KEYWORDS LIKE ’%simulation%’), the columns and the query must fit certain

criteria to benefit from sub-element statistics.

Table columns should contain sub-fields or sub-elements separated by blanks. For

example, a four-row table DOCUMENTS contains a KEYWORDS column with lists

of relevant keywords for text retrieval purposes. The values in KEYWORDS are:

’database simulation analytical business intelligence’

’simulation model fruit fly reproduction temperature’

’forestry spruce soil erosion rainfall’

’forest temperature soil precipitation fire’

In this example, each column value consists of five sub-elements, each of which is

a word (the keyword), separated from the others by one blank.

The query should reference these columns in WHERE clauses.

The optimizer always estimates how many rows match each predicate. For these

wildcard LIKE predicates, the optimizer assumes that the column being matched

contains a series of elements concatenated together, and it estimates the length of

each element based on the length of the string, excluding leading and trailing %

characters. If you collect sub-element statistics, the optimizer will have information

about the length of each sub-element and the delimiter. It can use this additional

information to more accurately estimate how many rows will match the predicate.

To collect sub-element statistics, execute the RUNSTATS command with the LIKE

STATISTICS option.

Runstats statistics about sub-elements:

The runstats utility collects statistics for columns of type CHAR and VARCHAR

with a code page attribute of single-byte character set (SBCS), FOR BIT DATA, or

UTF-8 when you specify the LIKE STATISTICS clause.

SUB_COUNT

The average number of sub-elements.

SUB_DELIM_LENGTH

The average length of each delimiter separating the sub-elements. A

delimiter, in this context, is one or more consecutive blank characters.

 The DB2_LIKE_VARCHAR registry variable affects the way in which the

optimizer deals with a predicate of the form: <column > like ’%<character-
string>%’. For more information about this registry variable, see “Query compiler

variables”.

To examine the values of the sub-element statistics, query the SYSCAT.COLUMNS

catalog view. For example:

 select substr(colname, 1, 16), sub_count, sub_delim_length

 from syscat.columns where tabname = ’DOCUMENTS’

The runstats utility might take longer to complete if you use the LIKE STATISTICS

clause. If you are considering this option, assess the improvements in query

performance against this additional overhead.

General rules for updating catalog statistics manually:

Chapter 3. Factors affecting performance 365

When you update catalog statistics, the most important general rule is to ensure

that valid values, ranges, and formats of the various statistics are stored in the

views for those statistics.

 It is also important to preserve the consistency of relationships among various

statistics. For example, COLCARD in SYSSTAT.COLUMNS must be less than

CARD in SYSSTAT.TABLES (the number of distinct values in a column cannot be

greater than the number of rows in a table). Suppose that you want to reduce

COLCARD from 100 to 25, and CARD from 200 to 50. If you update

SYSSTAT.TABLES first, an error is returned, because CARD would be less than

COLCARD.

In some cases, however, a conflict is difficult to detect, and an error might not be

returned, especially if the impacted statistics are stored in different catalog tables.

Before updating catalog statistics, ensure (at a minimum) that:

v Numeric statistics are either -1 or greater than or equal to zero.

v Numeric statistics representing percentages (for example, CLUSTERRATIO in

SYSSTAT.INDEXES) are between 0 and 100.

When a table is created, catalog statistics are set to -1 to indicate that the table has

no statistics. Until statistics are collected, the DB2 server uses default values for

SQL or XQuery statement compilation and optimization. Updating the table or

index statistics might fail if the new values are inconsistent with the default values.

Therefore, it is recommended that you use the runstats utility after creating a table,

and before attempting to update statistics for the table or its indexes.

Note:

1. For row types, the table-level statistics NPAGES, FPAGES, and OVERFLOW are

not updatable for a subtable.

2. Partition-level table and index statistics are not updatable.

Rules for updating column statistics manually:

There are certain guidelines that you should follow when updating statistics in the

SYSSTAT.COLUMNS catalog view.

v When manually updating HIGH2KEY or LOW2KEY values, ensure that:

– The values are valid for the data type of the corresponding user column.

– The length of the values must be the smaller of 33 or the maximum length of

the target column data type, not including additional quotation marks, which

can increase the length of the string to 68. This means that only the first 33

characters of the value in the corresponding user column will be considered

in determining the HIGH2KEY or LOW2KEY values.

– The values are stored in such a way that they can be used with the SET

clause of an UPDATE statement, as well as for cost calculations. For character

strings, this means that single quotation marks are added to the beginning

and at the end of the string, and an extra quotation mark is added for every

quotation mark that is already in the string. Examples of user column values

and their corresponding values in HIGH2KEY or LOW2KEY are provided in

Table 73 on page 367.

366 Troubleshooting and Tuning Database Performance

Table 73. HIGH2KEY and LOW2KEY values by data type

Data type in user column User data

Corresponding HIGH2KEY

or LOW2KEY value

INTEGER -12 -12

CHAR abc ’abc’

CHAR ab’c ’ab’’c’

– HIGH2KEY is greater than LOW2KEY whenever there are more than three

distinct values in the corresponding column.
v The cardinality of a column (COLCARD in SYSSTAT.COLUMNS) cannot be

greater than the cardinality of its corresponding table or statistical view (CARD

in SYSSTAT.TABLES).

v The number of null values in a column (NUMNULLS in SYSSTAT.COLUMNS)

cannot be greater than the cardinality of its corresponding table or statistical

view (CARD in SYSSTAT.TABLES).

v Statistics are not supported for columns that are defined with LONG or large

object (LOB) data types.

Rules for updating table and nickname statistics manually:

There are certain guidelines that you should follow when updating statistics in the

SYSSTAT.TABLES catalog view.

v The only statistical values that you can update in SYSSTAT.TABLES are CARD,

FPAGES, NPAGES, and OVERFLOW; and for multidimensional clustering

(MDC) tables, ACTIVE_BLOCKS.

v CARD must be greater than or equal to all COLCARD values for the

corresponding table in SYSSTAT.COLUMNS.

v CARD must be greater than NPAGES.

v FPAGES must be greater than NPAGES.

v NPAGES must be less than or equal to any “fetch” value in the

PAGE_FETCH_PAIRS column of any index (assuming that this statistic is

relevant to the index).

v CARD must not be less than or equal to any “fetch” value in the

PAGE_FETCH_PAIRS column of any index (assuming that this statistic is

relevant to the index).

In a federated database system, use caution when manually updating statistics for

a nickname over a remote view. Statistical information, such as the number of rows

that a nickname will return, might not reflect the real cost of evaluating this

remote view, and therefore might mislead the DB2 optimizer. In certain cases,

however, remote views can benefit from statistics updates; these include remote

views that are defined on a single base table with no column functions applied to

the SELECT list. Complex views might require a complex tuning process in which

each query is tuned. Consider creating local views over nicknames, so that the DB2

optimizer knows how to derive the cost of those views more accurately.

Detailed index statistics

A runstats operation for indexes with the DETAILED option collects statistical

information that allows the optimizer to estimate how many data page fetches will

be required, depending on the buffer pool size. This additional information helps

the optimizer to better estimate the cost of accessing a table through an index.

Chapter 3. Factors affecting performance 367

Detailed statistics provide concise information about the number of physical I/Os

that are required to access the data pages of a table if a complete index scan is

performed under different buffer pool sizes. As the runstats utility scans the pages

of an index, it models the different buffer sizes, and estimates how often a page

fault occurs. For example, if only one buffer page is available, each new page that

is referenced by the index results in a page fault. In the worst case, each row might

reference a different page, resulting in at most the same number of I/Os as the

number of rows in the indexed table. At the other extreme, when the buffer is big

enough to hold the entire table (subject to the maximum buffer size), all table

pages are read at once. As a result, the number of physical I/Os is a monotonic,

nonincreasing function of the buffer size.

The statistical information also provides finer estimates of the degree of clustering

of the table rows to the index order. The less clustering, the more I/Os are required

to access table rows through the index. The optimizer considers both the buffer

size and the degree of clustering when it estimates the cost of accessing a table

through an index.

Collect detailed index statistics when:

v Queries reference columns that are not included in the index

v The table has multiple non-clustered indexes with varying degrees of clustering

v The degree of clustering among the key values is nonuniform

v Index values are updated in a nonuniform manner

It is difficult to identify these conditions without previous knowledge or without

forcing an index scan under varying buffer sizes and then monitoring the resulting

physical I/Os. Perhaps the least expensive way to determine whether any of these

conditions exist is to collect and examine the detailed statistics for an index, and to

retain them if the resulting PAGE_FETCH_PAIRS are nonlinear.

When you collect detailed index statistics, the runstats operation takes longer to

complete and requires more memory and processing time. The SAMPLED

DETAILED option, for example, requires 2 MB of the statistics heap. Allocate an

additional 488 4-KB pages to the stat_heap_sz database configuration parameter

setting for this memory requirement. If the heap is too small, the runstats utility

returns an error before it attempts to collect statistics.

CLUSTERFACTOR and PAGE_FETCH_PAIRS are not collected unless the table is

of sufficient size (greater than about 25 pages). In this case, CLUSTERFACTOR will

be a value between 0 and 1, and CLUSTERRATIO is -1 (not collected). If the table

is relatively small, only CLUSTERRATIO, with a value between 0 and 100, is

collected by the runstats utility; CLUSTERFACTOR and PAGE_FETCH_PAIRS are

not collected. If the DETAILED clause is not specified, only CLUSTERRATIO is

collected.

Collecting index statistics:

Collect index statistics to help the optimizer decide whether a specific index should

be used to resolve a query.

 The following example is based on a database named SALES that contains a

CUSTOMERS table with indexes CUSTIDX1 and CUSTIDX2.

For privileges and authorities that are required to use the runstats utility, see the

description of the RUNSTATS command.

368 Troubleshooting and Tuning Database Performance

To collect detailed statistics for an index:

1. Connect to the SALES database.

2. Execute one of the following commands from the DB2 command line,

depending on your requirements:

v To collect detailed statistics on both CUSTIDX1 and CUSTIDX2:

 runstats on table sales.customers and detailed indexes all

v To collect detailed statistics on both indexes, but with sampling instead of

detailed calculations on each index entry:

 runstats on table sales.customers and sampled detailed indexes all

The SAMPLED DETAILED option requires 2 MB of the statistics heap.

Allocate an additional 488 4-KB pages to the stat_heap_sz database

configuration parameter setting for this memory requirement. If the heap is

too small, the runstats utility returns an error before it attempts to collect

statistics.

v To collect detailed statistics on sampled indexes, as well as distribution

statistics for the table so that index and table statistics are consistent:

 runstats on table sales.customers

 with distribution on key columns

 and sampled detailed indexes all

Rules for updating index statistics manually:

There are certain guidelines that you should follow when updating statistics in the

SYSSTAT.INDEXES catalog view.

v The following rules apply to PAGE_FETCH_PAIRS:

– Individual values in the PAGE_FETCH_PAIRS statistic must not be longer

than 10 digits and must be less than the maximum integer value (2 147 483

647).

– Individual values in the PAGE_FETCH_PAIRS statistic must be separated by

a blank character delimiter.

– There must always be a valid PAGE_FETCH_PAIRS statistic if

CLUSTERFACTOR is greater than zero.

– There must be exactly 11 pairs in a single PAGE_FETCH_PAIRS statistic.

– Buffer size values in a PAGE_FETCH_PAIRS statistic (the first value in each

pair) must appear in ascending order.

– Any buffer size value in a PAGE_FETCH_PAIRS statistic cannot be greater

than MIN(NPAGES, 524 287) for a 32-bit operating system, or MIN(NPAGES,

2 147 483 647) for a 64-bit operating system, where NPAGES (stored in

SYSSTAT.TABLES) is the number of pages in the corresponding table.

– Page fetch values in a PAGE_FETCH_PAIRS statistic (the second value in

each pair) must appear in descending order, with no individual value being

less than NPAGES or greater than CARD for the corresponding table.

– If the buffer size value in two consecutive pairs is identical, the page fetch

value in both of the pairs must also be identical.

An example of a valid PAGE_FETCH_PAIRS statistic is:

 PAGE_FETCH_PAIRS =

 ’100 380 120 360 140 340 160 330 180 320 200 310 220 305 240 300

 260 300 280 300 300 300’

where

Chapter 3. Factors affecting performance 369

NPAGES = 300

 CARD = 10000

 CLUSTERRATIO = -1

 CLUSTERFACTOR = 0.9

v The following rules apply to CLUSTERRATIO and CLUSTERFACTOR:

– Valid values for CLUSTERRATIO are -1 or between 0 and 100.

– Valid values for CLUSTERFACTOR are -1 or between 0 and 1.

– At least one of the CLUSTERRATIO and CLUSTERFACTOR values must be -1

at all times.

– If CLUSTERFACTOR is a positive value, it must be accompanied by a valid

PAGE_FETCH_PAIRS value.
v For relational indexes, the following rules apply to FIRSTKEYCARD,

FIRST2KEYCARD, FIRST3KEYCARD, FIRST4KEYCARD, FULLKEYCARD, and

INDCARD:

– For a single-column index, FIRSTKEYCARD must be equal to

FULLKEYCARD.

– FIRSTKEYCARD must be equal to SYSSTAT.COLUMNS.COLCARD for the

corresponding column.

– If any of these index statistics are not relevant, set them to -1. For example, if

you have an index with only three columns, set FIRST4KEYCARD to -1.

– For multiple column indexes, if all of the statistics are relevant, the

relationship among them must be as follows:

 FIRSTKEYCARD <= FIRST2KEYCARD <= FIRST3KEYCARD <= FIRST4KEYCARD

 <= FULLKEYCARD <= INDCARD == CARD

v For indexes over XML data, the relationship among FIRSTKEYCARD,

FIRST2KEYCARD, FIRST3KEYCARD, FIRST4KEYCARD, FULLKEYCARD, and

INDCARD must be as follows:

 FIRSTKEYCARD <= FIRST2KEYCARD <= FIRST3KEYCARD <= FIRST4KEYCARD

 <= FULLKEYCARD <= INDCARD

v The following rules apply to SEQUENTIAL_PAGES and DENSITY:

– Valid values for SEQUENTIAL_PAGES are -1 or between 0 and NLEAF.

– Valid values for DENSITY are -1 or between 0 and 100.

Distribution statistics

You can collect two kinds of data distribution statistics: frequent-value statistics

and quantile statistics.

v Frequent-value statistics provide information about a column and the data value

with the highest number of duplicates, the value with the second highest

number of duplicates, and so on, to the level that is specified by the value of the

num_freqvalues database configuration parameter. To disable the collection of

frequent-value statistics, set num_freqvalues to 0. You can also use the

NUM_FREQVALUES clause on the RUNSTATS command for a specific table,

statistical view, or column.

v Quantile statistics provide information about how data values are distributed in

relation to other values. Called K-quantiles, these statistics represent the value V

at or below which at least K values lie. You can compute a K-quantile by sorting

the values in ascending order. The K-quantile value is the value in the Kth

position from the low end of the range.

To specify the number of “sections” (quantiles) into which the column data

values should be grouped, set the num_quantiles database configuration

parameter to a value between 2 and 32 767. The default value is 20, which

ensures a maximum optimizer estimation error of plus or minus 2.5% for any

370 Troubleshooting and Tuning Database Performance

equality, less-than, or greater-than predicate, and a maximum error of plus or

minus 5% for any BETWEEN predicate. To disable the collection of quantile

statistics, set num_quantiles to 0 or 1.

You can set num_quantiles for a specific table, statistical view, or column.

Note: The runstats utility consumes more processing resources and memory

(specified by the stat_heap_sz database configuration parameter) if larger

num_freqvalues and num_quantiles values are used.

When to collect distribution statistics

To decide whether distribution statistics for a table or statistical view would be

helpful, first determine:

v Whether the queries in an application use host variables.

Distribution statistics are most useful for dynamic and static queries that do not

use host variables. The optimizer makes limited use of distribution statistics

when assessing queries that contain host variables.

v Whether the data in columns is uniformly distributed.

Create distribution statistics if at least one column in the table has a highly

“nonuniform” distribution of data, and the column appears frequently in

equality or range predicates; that is, in clauses such as the following:

 where c1 = key;

 where c1 in (key1, key2, key3);

 where (c1 = key1) or (c1 = key2) or (c1 = key3);

 where c1 <= key;

 where c1 between key1 and key2;

Two types of nonuniform data distribution can occur, and possibly together.

v Data might be highly clustered instead of being evenly spread out between the

highest and lowest data value. Consider the following column, in which the data

is clustered in the range (5,10):

 0.0

 5.1

 6.3

 7.1

 8.2

 8.4

 8.5

 9.1

 93.6

100.0

Quantile statistics help the optimizer to deal with this kind of data distribution.

Queries can help you to determine whether column data is not uniformly

distributed. For example:

 select c1, count(*) as occurrences

 from t1

 group by c1

 order by occurrences desc

v Duplicate data values might often occur. Consider a column in which the data is

distributed with the following frequencies:

 Table 74. Frequency of data values in a column

Data Value Frequency

20 5

Chapter 3. Factors affecting performance 371

Table 74. Frequency of data values in a column (continued)

Data Value Frequency

30 10

40 10

50 25

60 25

70 20

80 5

Both frequent-value and quantile statistics help the optimizer to deal with

numerous duplicate values.

When to collect index statistics only

You might consider collecting statistics that are based only on index data in the

following situations:

v A new index has been created since the runstats utility was run, and you do not

want to collect statistics again on the table data.

v There have been many changes to the data that affect the first column of an

index.

What level of statistical precision to specify

Use the num_quantiles and num_freqvalues database configuration parameters to

specify the precision with which distribution statistics are stored. You can also

specify the precision with corresponding RUNSTATS command options when you

collect statistics for a table or for columns. The higher you set these values, the

greater the precision that the runstats utility uses when it creates and updates

distribution statistics. However, greater precision requires more resources, both

during the runstats operation itself, and for storing more data in the catalog tables.

For most databases, specify between 10 and 100 as the value of the

num_freqvalues database configuration parameter. Ideally, frequent-value statistics

should be created in such a way that the frequencies of the remaining values are

either approximately equal to one another or negligible when compared to the

frequencies of the most frequent values. The database manager might collect fewer

than this number, because these statistics will only be collected for data values that

occur more than once. If you need to collect only quantile statistics, set the value of

num_freqvalues to zero.

To specify the number of quantiles, set the num_quantiles database configuration

parameter to a value between 20 and 50.

v First determine the maximum acceptable error when estimating the number of

rows for any range query, as a percentage P.

v The number of quantiles should be approximately 100/P for BETWEEN

predicates, and 50/P for any other type of range predicate (<, <=, >, or >=).

For example, 25 quantiles should result in a maximum estimate error of 4% for

BETWEEN predicates and 2% for “>” predicates. In general, specify at least 10

quantiles. More than 50 quantiles should be necessary only for extremely

nonuniform data. If you need only frequent-value statistics, set num_quantiles to

0. If you set this parameter to 1, because the entire range of values fits within one

quantile, no quantile statistics are collected.

372 Troubleshooting and Tuning Database Performance

Optimizer use of distribution statistics:

The optimizer uses distribution statistics for better estimates of the cost of different

query access plans.

 Unless it has additional information about the distribution of values between the

low and high values, the optimizer assumes that data values are evenly

distributed. If data values differ widely from each other, are clustered in some

parts of the range, or contain many duplicate values, the optimizer will choose a

less than optimal access plan.

Consider the following example: To select the least expensive access plan, the

optimizer needs to estimate the number of rows with a column value that satisfies

an equality or range predicate. The more accurate the estimate, the greater the

likelihood that the optimizer will choose the optimal access plan. For the following

query:

 select c1, c2

 from table1

 where c1 = ’NEW YORK’

 and c2 <= 10

Assume that there is an index on both columns C1 and C2. One possible access

plan is to use the index on C1 to retrieve all rows with C1 = ’NEW YORK’, and then

to check whether C2 <= 10 for each retrieved row. An alternate plan is to use the

index on C2 to retrieve all rows with C2 <= 10, and then to check whether C1 =

’NEW YORK’ for each retrieved row. Because the primary cost of executing a query is

usually the cost of retrieving the rows, the best plan is the one that requires the

fewest retrievals. Choosing this plan means estimating the number of rows that

satisfy each predicate.

When distribution statistics are not available, but the runstats utility has been used

on a table or a statistical view, the only information that is available to the

optimizer is the second-highest data value (HIGH2KEY), the second-lowest data

value (LOW2KEY), the number of distinct values (COLCARD), and the number of

rows (CARD) in a column. The number of rows that satisfy an equality or range

predicate is estimated under the assumption that the data values in the column

have equal frequencies and that the data values are evenly distributed between

LOW2KEY and HIGH2KEY. Specifically, the number of rows that satisfy an

equality predicate (C1 = KEY) is estimated as CARD/COLCARD, and the number

of rows that satisfy a range predicate (C1 BETWEEN KEY1 AND KEY2) is estimated as:

 KEY2 - KEY1

 ------------------ x CARD

 HIGH2KEY - LOW2KEY

These estimates are accurate only when the true distribution of data values within

a column is reasonably uniform. When distribution statistics are unavailable, and

either the frequency of data values varies widely, or the data values are very

unevenly distributed, the estimates can be off by orders of magnitude, and the

optimizer might choose a suboptimal access plan.

When distribution statistics are available, the probability of such errors can be

greatly reduced by using frequent-value statistics to estimate the number of rows

that satisfy an equality predicate, and by using both frequent-value statistics and

quantile statistics to estimate the number of rows that satisfy a range predicate.

Collecting distribution statistics for specific columns:

Chapter 3. Factors affecting performance 373

For efficient runstats operations and subsequent query-plan analysis, collect

distribution statistics on only those columns that queries reference in WHERE,

GROUP BY, and similar clauses. You can also collect cardinality statistics on

combined groups of columns. The optimizer uses such information to detect

column correlation when it estimates selectivity for queries that reference the

columns in a group.

 The following example is based on a database named SALES that contains a

CUSTOMERS table with indexes CUSTIDX1 and CUSTIDX2.

For privileges and authorities that are required to use the runstats utility, see the

description of the RUNSTATS command.

When you collect statistics for a table in a partitioned database environment,

runstats only operates on the database partition from which the utility is executed.

The results from this database partition are extrapolated to the other database

partitions. If this database partition does not contain a required portion of the

table, the request is sent to the first database partition in the database partition

group that contains the required data.

To collect statistics on specific columns:

1. Connect to the SALES database.

2. Execute one of the following commands from the DB2 command line,

depending on your requirements:

v To collect distribution statistics on columns ZIP and YTDTOTAL:

 runstats on table sales.customers

 with distribution on columns (zip, ytdtotal)

v To collect distribution statistics on the same columns, but with different

distribution options:

 runstats on table sales.customers

 with distribution on columns (

 zip, ytdtotal num_freqvalues 50 num_quantiles 75)

v To collect distribution statistics on the columns that are indexed in

CUSTIDX1 and CUSTIDX2:

 runstats on table sales.customer

 on key columns

v To collect statistics for columns ZIP and YTDTOTAL and a column group

that includes REGION and TERRITORY:

 runstats on table sales.customers

 on columns (zip, (region, territory), ytdtotal)

v Suppose that statistics for non-XML columns have been collected previously

using the LOAD command with the STATISTICS option. To collect statistics

for the XML column MISCINFO:

 runstats on table sales.customers

 on columns (miscinfo)

v To collect statistics for the non-XML columns only:

 runstats on table sales.customers

 excluding xml columns

The EXCLUDING XML COLUMNS clause takes precedence over all other

clauses that specify XML columns.

Extended examples of the use of distribution statistics:

374 Troubleshooting and Tuning Database Performance

Distribution statistics provide information about the frequency and distribution of

table data that helps the optimizer build query access plans when the data is not

evenly distributed and there are many duplicates.

 The following examples will help you to understand how the optimizer might use

distribution statistics.

Example with frequent-value statistics

Consider a query that contains an equality predicate of the form C1 = KEY. If

frequent-value statistics are available, the optimizer can use those statistics to

choose an appropriate access plan, as follows:

v If KEY is one of the N most frequent values, the optimizer uses the frequency of

KEY that is stored in the catalog.

v If KEY is not one of the N most frequent values, the optimizer estimates the

number of rows that satisfy the predicate under the assumption that the

(COLCARD - N) non-frequent values have a uniform distribution. That is, the

number of rows is estimated by the following formula (1):

 CARD - NUM_FREQ_ROWS

 COLCARD - N

where CARD is the number of rows in the table, COLCARD is the cardinality of

the column, and NUM_FREQ_ROWS is the total number of rows with a value

equal to one of the N most frequent values.

For example, consider a column C1 whose data values exhibit the following

frequencies:

 Data Value Frequency

1 2

2 3

3 40

4 4

5 1

The number of rows in the table is 50 and the column cardinality is 5. Exactly 40

rows satisfy the predicate C1 = 3. If it is assumed that the data is evenly

distributed, the optimizer estimates the number of rows that satisfy the predicate

as 50/5 = 10, with an error of -75%. But if frequent-value statistics based on only

the most frequent value (that is, N = 1) are available, the number of rows is

estimated as 40, with no error.

Consider another example in which two rows satisfy the predicate C1 = 1. Without

frequent-value statistics, the number of rows that satisfy the predicate is estimated

as 10, an error of 400%:

 estimated rows - actual rows

 ---------------------------- X 100

 actual rows

 10 - 2

 ------ X 100 = 400%

 2

Chapter 3. Factors affecting performance 375

Using frequent-value statistics (N = 1), the optimizer estimates the number of rows

containing this value using the formula (1) given above as:

 (50 - 40)

 --------- = 3

 (5 - 1)

and the error is reduced by an order of magnitude:

 3 - 2

 ----- = 50%

 2

Example with quantile statistics

The following discussion of quantile statistics uses the term “K-quantile”. The

K-quantile for a column is the smallest data value, V, such that at least K rows have

data values that are less than or equal to V. To compute a K-quantile, sort the

column values in ascending order; the K-quantile is the data value in the Kth row

of the sorted column.

If quantile statistics are available, the optimizer can better estimate the number of

rows that satisfy a range predicate, as illustrated by the following examples.

Consider a column C1 that contains the following values:

 0.0

 5.1

 6.3

 7.1

 8.2

 8.4

 8.5

 9.1

 93.6

100.0

Suppose that K-quantiles are available for K = 1, 4, 7, and 10, as follows:

 K K-quantile

1 0.0

4 7.1

7 8.5

10 100.0

v Exactly seven rows satisfy the predicate C <= 8.5. Assuming a uniform data

distribution, the following formula (2):

 KEY2 - KEY1

 ------------------ X CARD

 HIGH2KEY - LOW2KEY

with LOW2KEY in place of KEY1, estimates the number of rows that satisfy the

predicate as:

 8.5 - 5.1

 ---------- X 10 ≈ 0

 93.6 - 5.1

where ≈ means “approximately equal to”. The error in this estimate is

approximately -100%.

376 Troubleshooting and Tuning Database Performance

If quantile statistics are available, the optimizer estimates the number of rows

that satisfy this predicate by the value of K that corresponds to 8.5 (the highest

value in one of the quantiles), which is 7. In this case, the error is reduced to 0.

v Exactly eight rows satisfy the predicate C <= 10. If the optimizer assumes a

uniform data distribution and uses formula (2), the number of rows that satisfy

the predicate is estimated as 1, an error of -87.5%.

Unlike the previous example, the value 10 is not one of the stored K-quantiles.

However, the optimizer can use quantiles to estimate the number of rows that

satisfy the predicate as r_1 + r_2, where r_1 is the number of rows satisfying

the predicate C <= 8.5 and r_2 is the number of rows satisfying the predicate C

> 8.5 AND C <= 10. As in the above example, r_1 = 7. To estimate r_2, the

optimizer uses linear interpolation:

 10 - 8.5

 r_2 ≈ ---------- X (number of rows with value > 8.5 and <= 100.0)

 100 - 8.5

 10 - 8.5

 r_2 ≈ ---------- X (10 - 7)

 100 - 8.5

 1.5

 r_2 ≈ ----- X (3)

 91.5

 r_2 ≈ 0

The final estimate is r_1 + r_2 ≈ 7, and the error is only -12.5%.

Quantiles improve the accuracy of the estimates in these examples because the real

data values are “clustered” in a range from 5 to 10, but the standard estimation

formulas assume that the data values are distributed evenly between 0 and 100.

The use of quantiles also improves accuracy when there are significant differences

in the frequencies of different data values. Consider a column having data values

with the following frequencies:

 Data Value Frequency

20 5

30 5

40 15

50 50

60 15

70 5

80 5

Suppose that K-quantiles are available for K = 5, 25, 75, 95, and 100:

 K K-quantile

5 20

25 40

75 50

95 70

100 80

Chapter 3. Factors affecting performance 377

Suppose also that frequent-value statistics are available, based on the three most

frequent values.

Exactly 10 rows satisfy the predicate C BETWEEN 20 AND 30. Assuming a uniform

data distribution and using formula (2), the number of rows that satisfy the

predicate is estimated as:

 30 - 20

 ------- X 100 = 25

 70 - 30

an error of 150%.

Using frequent-value statistics and quantile statistics, the number of rows that

satisfy the predicate is estimated as r_1 + r_2, where r_1 is the number of rows

that satisfy the predicate (C = 20) and r_2 is the number of rows that satisfy the

predicate C > 20 AND C <= 30. Using formula (1), r_1 is estimated as:

 100 - 80

 -------- = 5

 7 - 3

Using linear interpolation, r_2 is estimated as:

 30 - 20

 ------- X (number of rows with a value > 20 and <= 40)

 40 - 20

 30 - 20

 = ------- X (25 - 5)

 40 - 20

 = 10

This yields a final estimate of 15 and reduces the error by a factor of three.

Rules for updating distribution statistics manually:

There are certain guidelines that you should follow when updating statistics in the

SYSSTAT.COLDIST catalog view.

v Frequent-value statistics:

– VALCOUNT values must be unchanging or decreasing with increasing values

of SEQNO.

– The number of COLVALUE values must be less than or equal to the number

of distinct values in the column, which is stored in

SYSSTAT.COLUMNS.COLCARD.

– The sum of the values in VALCOUNT must be less than or equal to the

number of rows in the column, which is stored in SYSSTAT.TABLES.CARD.

– In most cases, COLVALUE values should lie between the second-highest and

the second-lowest data values for the column, which are stored in HIGH2KEY

and LOW2KEY in SYSSTAT.COLUMNS, respectively. There can be one

frequent value that is greater than HIGH2KEY and one frequent value that is

less than LOW2KEY.
v Quantile statistics:

– COLVALUE values must be unchanging or decreasing with increasing values

of SEQNO.

– VALCOUNT values must be increasing with increasing values of SEQNO.

378 Troubleshooting and Tuning Database Performance

– The largest COLVALUE value must have a corresponding entry in

VALCOUNT that is equal to the number of rows in the column.

– In most cases, COLVALUE values should lie between the second-highest and

the second-lowest data values for the column, which are stored in HIGH2KEY

and LOW2KEY in SYSSTAT.COLUMNS, respectively.

Suppose that distribution statistics are available for column C1 with R rows, and

that you want to modify the statistics to correspond with a column that has the

same relative proportions of data values, but with (F x R) rows. To scale up the

frequent-value or quantile statistics by a factor of F, multiply each VALCOUNT

entry by F.

Statistics for user-defined functions

To create statistical information for user-defined functions (UDFs), edit the

SYSSTAT.ROUTINES catalog view.

The runstats utility does not collect statistics for UDFs. If UDF statistics are

available, the optimizer can use them when it estimates costs for various access

plans. If statistics are not available, the optimizer uses default values that assume a

simple UDF.

Table 75 lists the catalog view columns for which you can provide estimates to

improve performance. Note that only column values in SYSSTAT.ROUTINES (not

SYSCAT.ROUTINES) can be modified by users.

 Table 75. Function Statistics (SYSCAT.ROUTINES and SYSSTAT.ROUTINES)

Statistic Description

IOS_PER_INVOC Estimated number of read or write requests

executed each time a function is called

INSTS_PER_INVOC Estimated number of machine instructions

executed each time a function is called

IOS_PER_ARGBYTE Estimated number of read or write requests

executed per input argument byte

INSTS_PER_ARGBYTE Estimated number of machine instructions

executed per input argument byte

PERCENT_ARGBYTES Estimated average percent of input

argument bytes that a function will actually

process

INITIAL_IOS Estimated number of read or write requests

executed the first or last time a function is

invoked

INITIAL_INSTS Estimated number of machine instructions

executed the first or last time a function is

invoked

CARDINALITY Estimated number of rows generated by a

table function

For example, consider EU_SHOE, a UDF that converts an American shoe size to

the equivalent European shoe size. For this UDF, you might set the values of

statistic columns in SYSSTAT.ROUTINES as follows:

v INSTS_PER_INVOC. Set to the estimated number of machine instructions

required to:

– Call EU_SHOE

Chapter 3. Factors affecting performance 379

– Initialize the output string

– Return the result
v INSTS_PER_ARGBYTE. Set to the estimated number of machine instructions

required to convert the input string into a European shoe size

v PERCENT_ARGBYTES. Set to 100, indicating that the entire input string is to be

converted

v INITIAL_INSTS, IOS_PER_INVOC, IOS_PER_ARGBYTE, and INITIAL_IOS.

Each set to 0, because this UDF only performs computations

PERCENT_ARGBYTES would be used by a function that does not always process

the entire input string. For example, consider LOCATE, a UDF that accepts two

arguments as input and returns the starting position of the first occurrence of the

first argument within the second argument. Assume that the length of the first

argument is small enough to be insignificant relative to the second argument and

that, on average, 75% of the second argument is searched. Based on this

information and the following assumptions, PERCENT_ARGBYTES should be set

to 75:

v Half the time the first argument is not found, which results in searching the

entire second argument

v The first argument is equally likely to appear anywhere within the second

argument, which results in searching half of the second argument (on average)

when the first argument is found

You can use INITIAL_INSTS or INITIAL_IOS to record the estimated number of

machine instructions or read or write requests that are performed the first or last

time that a function is invoked; this might represent the cost, for example, of

setting up a scratchpad area.

To obtain information about I/Os and the instructions that are used by a UDF, use

output provided by your programming language compiler or by monitoring tools

that are available for your operating system.

Catalog statistics for modeling and what-if planning

You can observe the effect on database performance of changes to certain statistical

information in the system catalog for planning purposes.

The ability to update selected system catalog statistics enables you to:

v Model query performance on a development system using production system

statistics

v Perform “what-if” query performance analysis

Do not manually update statistics on a production system. Otherwise, the

optimizer might not choose the best access plan for production queries that contain

dynamic SQL or XQuery statements.

To modify statistics for tables and indexes and their components, you must have

explicit DBADM authority for the database. Users holding DATAACCESS authority

can execute UPDATE statements against views that are defined in the SYSSTAT

schema to change values in these statistical columns.

Users without DATAACCESS authority can see only rows that contain statistics for

objects on which they have CONTROL privilege. If you do not have

DATAACCESS authority, you can change statistics for individual database objects

if you hold the following privileges on each object:

380 Troubleshooting and Tuning Database Performance

v Explicit CONTROL privilege on tables. You can also update statistics for

columns and indexes on these tables.

v Explicit CONTROL privilege on nicknames in a federated database system. You

can also update statistics for columns and indexes on these nicknames. Note that

these updates only affect local metadata (datasource table statistics are not

changed), and only affect the global access strategy that is generated by the DB2

optimizer.

v Ownership of user-defined functions (UDFs)

The following code is an example of updating statistics for the EMPLOYEE table:

 update sysstat.tables

 set

 card = 10000,

 npages = 1000,

 fpages = 1000,

 overflow = 2

 where tabschema = ’MELNYK’

 and tabname = ’EMPLOYEE’

Care must be taken when manually updating catalog statistics. Arbitrary changes

can seriously alter the performance of subsequent queries. You can use any of the

following methods to return the statistics on your development system to a

consistent state:

v Roll back the unit of work in which your manual changes were made (assuming

that the unit of work has not yet been committed).

v Use the runstats utility to refresh the catalog statistics.

v Update the catalog statistics to specify that statistics have not been collected; for

example, setting the NPAGES column value to -1 indicates that this statistic has

not been collected.

v Undo the changes that you made. This method is possible only if you used the

db2look command to capture the statistics before you made any changes.

If it determines that some value or combination of values is not valid, the

optimizer will use default values and return a warning. This is quite rare, however,

because most validation is performed when the statistics are updated.

Statistics for modeling production databases:

Sometimes you might want your development system to contain a subset of the

data in your production system. However, access plans that are selected on

development systems are not necessarily the same as those that would be selected

on the production system.

 In some cases, it is necessary that the catalog statistics and the configuration of the

development system be updated to match those of the production system.

The db2look command in mimic mode (specifying the -m option) can be used to

generate the data manipulation language (DML) statements that are required to

make the catalog statistics of the development and production databases match.

After running the UPDATE statements that are produced by db2look against the

development system, that system can be used to validate the access plans that are

being generated on the production system. Because the optimizer uses the

configuration of table spaces to estimate I/O costs, table spaces on the

development system must be of the same type (SMS or DMS) and have the same

number of containers as do those on the production system.

Chapter 3. Factors affecting performance 381

Avoiding manual updates to the catalog statistics

The DB2 data server supports manually updating catalog statistics by issuing

UPDATE statements against views in the SYSSTAT schema.

This feature can be useful when mimicking a production database on a test system

in order to examine query access plans. The db2look utility is very helpful for

capturing the DDL and UPDATE statements against views in the SYSSTAT schema

for playback on another system.

Avoid influencing the query optimizer by manually providing incorrect statistics to

force a particular query access plan. Although this practice might result in

improved performance for some queries, it can result in performance degradation

for others. Consider other tuning options (such as using optimization guidelines

and profiles) before resorting to this approach. If this approach does become

necessary, be sure to record the original statistics in case they need to be restored.

Minimizing runstats impact

There are several approaches available to improve runstats performance.

To minimize the performance impact of this utility:

v Limit the columns for which statistics should be collected by using the

COLUMNS clause. Many columns are never referenced by predicates in the

query workload, so they do not require statistics.

v Limit the columns for which distribution statistics are collected if the data tends

to be uniformly distributed. Collecting distribution statistics requires more CPU

and memory than collecting basic column statistics. However, determining

whether or not a column’s values are uniformly distributed requires either

having existing statistics or querying the data. This approach also assumes that

the data will remain uniformly distributed as the table is modified.

v Limit the number of pages and rows processed by using page- or row-level

sampling (by specifying the TABLESAMPLE SYSTEM or BERNOULLI clause).

Start with a 10% page-level sample, by specifying TABLESAMPLE SYSTEM(10).

Check the accuracy of the statistics and whether system performance has

degraded due to changes in access plan. If it has degraded, try a 10% row-level

sample instead, by specifying TABLESAMPLE BERNOULLI(10). If the accuracy of the

statistics is insufficient, increase the sampling amount. When using RUNSTATS

page- or row-level sampling, use the same sampling rate for tables that are

joined. This is important to ensure that the join column statistics have the same

level of accuracy.

v Collect index statistics during index creation by specifying the COLLECT

STATISTICS option on the CREATE INDEX statement. This approach is faster

than performing a separate runstats operation after the index has been created. It

also ensures that the new index has statistics generated immediately after

creation, to allow the optimizer to accurately estimate the cost of using the

index.

v Collect statistics when executing the LOAD command with the REPLACE

option. This approach is faster than performing a separate runstats operation

after the load operation has completed. It also ensures that the table has the

most current statistics immediately after the data has been loaded, to allow the

optimizer to accurately estimate the cost of using the table.

In a partitioned database environment, the runstats utility collects statistics from a

single database partition. If the RUNSTATS command is issued on a database

partition on which the table resides, statistics will be collected there. If not,

statistics will be collected on the first database partition in the database partition

382 Troubleshooting and Tuning Database Performance

group for the table. For consistent statistics, ensure that statistics for joined tables

are collected from the same database partition.

Data compression and performance

Data compression can be used to reduce the amount of data that must be read

from or written to disk, thereby reducing I/O cost.

Two forms of data compression are currently available to you:

v Value compression involves removing duplicate entries for a value, storing only

one copy, and keeping track of the location of any references to the stored value.

v Row compression involves replacing repeating patterns that span multiple column

values within a row with shorter symbol strings. The row compression logic

scans a table that is to be compressed for repetitive and duplicate data. A

compression dictionary contains short, numeric keys to that data, and in a

compressed row, these keys replace the actual data.

Prior to DB2 Version 9.1, you had to manually create a compression dictionary by

performing an offline table reorganization. In Version 9.5 and later, a data

compression dictionary is created automatically for tables that are enabled for data

compression.

With this release, the autonomic row compression that was introduced for

permanent tables in Version 9.5 has been extended to include all temporary tables.

Data compression for temporary tables:

v Reduces the amount of temporary disk space that is required for large and

complex queries

v Increases query performance

Data compression for temporary tables is enabled automatically under the DB2

Storage Optimization Feature.

Each temporary table that is eligible for row compression requires an additional

2-3 MB of memory for the creation of its compression dictionary; this memory

remains allocated until the compression dictionary has been created.

Index objects and indexes on compressed temporary tables can also be compressed

to reduce storage costs. This is especially useful for large online transaction

processing (OLTP) and data warehouse environments, where it is common to have

many very large indexes. In both of these cases, index compression can cause

significant performance improvements in I/O-bound environments, and little or no

performance decrements in CPU-bound environments.

If compression is enabled on a table with an XML column, the XML data that is

stored in the XDA object is also compressed. A separate compression dictionary for

the XML data is stored in the XDA object. This also applies to tables whose XML

columns were added in the current version of the DB2 product. XDA compression

is not supported for tables whose XML columns were created prior to this version;

for such tables, only the data object is compressed.

Reducing logging overhead to improve DML performance

The database manager maintains log files that record all database changes. There

are two logging strategies: circular logging and archive logging.

Chapter 3. Factors affecting performance 383

v With circular logging, log files are reused (starting with the initial log file) when

the available files have filled up. The overwritten log records are not

recoverable.

v With archive logging, log files are archived when they fill up with log records.

Log retention enables rollforward recovery, in which changes to the database

(completed units of work or transactions) that are recorded in the log files can

be reapplied during disaster recovery.

All changes to regular data and index pages are written to the log buffer before

being written to disk by the logger process. SQL statement processing must wait

for log data to be written to disk:

v On COMMIT

v Until the corresponding data pages are written to disk, because the DB2 server

uses write-ahead logging, in which not all of the changed data and index pages

need to be written to disk when a transaction completes with a COMMIT

statement

v Until changes (mostly resulting from the execution of data definition language

statements) are made to the metadata

v When the log buffer is full

The database manager writes log data to disk in this way to minimize processing

delays. If many short transactions are processing concurrently, most of the delay is

caused by COMMIT statements that must wait for log data to be written to disk.

As a result, the logger process frequently writes small amounts of log data to disk.

Additional delays are caused by log I/O. To balance application response time

with logging delays, set the mincommit database configuration parameter to a

value that is greater than 1. This setting might cause longer COMMIT delays for

some applications, but more log data might be written in one operation.

Changes to large objects (LOBs) and LONG VARCHARs are tracked through

shadow paging. LOB column changes are not logged unless you specify log retain

and the LOB column has been defined without the NOT LOGGED clause on the

CREATE TABLE statement. Changes to allocation pages for LONG or LOB data

types are logged like regular data pages. Inline LOB values participate fully in

update, insert, or delete logging, as though they were VARCHAR values.

Inline LOBs improve performance

Some applications make extensive use of large objects (LOBs). In many cases, these

LOBs are not very large—at most, a few kilobytes in size. The performance of LOB

data access can now be improved by placing such LOB data within the formatted

rows on data pages instead of in the LOB storage object.

Such LOBs are known as inline LOBs. Previously, the processing of such LOBs

could create bottlenecks for applications. Inline LOBs improve the performance of

queries that access LOB data, because no additional I/O is required to fetch, insert,

or update this data. Moreover, inline LOB data is eligible for row compression.

This feature is enabled through the INLINE LENGTH option on the CREATE

TABLE statement or the ALTER TABLE statement. The INLINE LENGTH option

applies to structured types, the XML type, or LOB columns. In the case of a LOB

column, the inline length indicates the maximum byte size of a LOB value

(including four bytes for overhead) that can be stored in a base table row.

384 Troubleshooting and Tuning Database Performance

This feature is also implicitly enabled for all LOB columns in new or existing tables

(when LOB columns are added), and for all existing LOB columns on database

upgrade. Every LOB column has reserved row space that is based on its defined

maximum size. An implicit INLINE LENGTH value for each LOB column is

defined automatically and stored as if it had been explicitly specified.

LOB values that cannot be stored inline are stored separately in the LOB storage

object.

Note that when a table has columns with inline LOBs, fewer rows fit on a page,

and the performance of queries that return only non-LOB data can be adversely

affected. LOB inlining is helpful for workloads in which most of the statements

include one or more LOB columns.

Although LOB data is not necessarily logged, inline LOBs are always logged and

can therefore increase logging overhead.

Chapter 3. Factors affecting performance 385

386 Troubleshooting and Tuning Database Performance

Chapter 4. Establishing a performance tuning strategy

The Design Advisor

The DB2 Design Advisor is a tool that can help you significantly improve your

workload performance. The task of selecting which indexes, materialized query

tables (MQTs), clustering dimensions, or database partitions to create for a complex

workload can be quite daunting. The Design Advisor identifies all of the objects

that are needed to improve the performance of your workload.

Given a set of SQL statements in a workload, the Design Advisor will generate

recommendations for:

v New indexes

v New clustering indexes

v New MQTs

v Conversion to multidimensional clustering (MDC) tables

v The redistribution of tables

The Design Advisor can implement some or all of these recommendations

immediately, or you can schedule them to run at a later time.

Use the db2advis command to launch the Design Advisor utility.

The Design Advisor can help simplify the following tasks:

Planning for and setting up a new database

While designing your database, use the Design Advisor to generate design

alternatives in a test environment for indexing, MQTs, MDC tables, or

database partitioning.

 In partitioned database environments, you can use the Design Advisor to:

v Determine an appropriate database partitioning strategy before loading

data into a database

v Assist in upgrading from a single-partition database to a multi-partition

database

v Assist in migrating from another database product to a multi-partition

DB2 database

Workload performance tuning

After your database is set up, you can use the Design Advisor to:

v Improve the performance of a particular statement or workload

v Improve general database performance, using the performance of a

sample workload as a gauge

v Improve the performance of the most frequently executed queries, as

identified, for example, by the Activity Monitor

v Determine how to optimize the performance of a new query

v Respond to Health Center recommendations regarding shared memory

utility or sort heap problems with a sort-intensive workload

v Find objects that are not used in a workload

© Copyright IBM Corp. 2006, 2009 387

Design Advisor output

Design Advisor output is written to standard output by default, and saved in the

ADVISE_* tables:

v The ADVISE_INSTANCE table is updated with one new row each time that the

Design Advisor runs:

– The START_TIME and END_TIME fields show the start and stop times for

the utility.

– The STATUS field contains a value of COMPLETED if the utility ended

successfully.

– The MODE field indicates whether the -m option on the db2advis command

was used.

– The COMPRESSION field indicates the type of compression that was used.
v The USE_TABLE column in the ADVISE_TABLE table contains a value of Y if

MQT, MDC table, or database partitioning strategy recommendations have been

made.

MQT recommendations can be found in the ADVISE_MQT table; MDC

recommendations can be found in the ADVISE_TABLE table; and database

partitioning strategy recommendations can be found in the ADVISE_PARTITION

table. The RUN_ID column in these tables contains a value that corresponds to

the START_TIME value of a row in the ADVISE_INSTANCE table, linking it to

the same Design Advisor run.

When MQT, MDC, or database partitioning recommendations are provided, the

relevant ALTER TABLE stored procedure call is placed in the

ALTER_COMMAND column of the ADVISE_TABLE table. The ALTER TABLE

stored procedure call might not succeed due to restrictions on the table for the

ALTOBJ stored procedure.

v The USE_INDEX column in the ADVISE_INDEX table contains a value of Y

(index recommended or evaluated) or R (an existing clustering RID index was

recommended to be unclustered) if index recommendations have been made.

v The COLSTATS column in the ADVISE_MQT table contains column statistics for

an MQT. These statistics are contained within an XML structure as follows:

<?xml version=\"1.0\" encoding=\"USASCII\"?>

<colstats>

 <column>

 <name>COLNAME1</name>

 <colcard>1000</colcard>

 <high2key>999</high2key>

 <low2key>2</low2key>

 </column>

 <column>

 <name>COLNAME100</name>

 <colcard>55000</colcard>

 <high2key>49999</high2key>

 <low2key>100</low2key>

 </column>

</colstats>

You can save Design Advisor recommendations to a file using the -o option on the

db2advis command. The saved Design Advisor output consists of the following

elements:

v CREATE statements associated with any new indexes, MQTs, MDC tables, or

database partitioning strategies

388 Troubleshooting and Tuning Database Performance

v REFRESH statements for MQTs

v RUNSTATS commands for new objects

An example of this output is as follows:

--<?xml version="1.0"?>

--<design-advisor>

--<mqt>

--<identifier>

--<name>MQT612152202220000</name>

--<schema>ZILIO2 </schema>

--</identifier>

--<statementlist>3</statementlist>

--<benefit>1013562.481682</benefit>

--<overhead>1468328.200000</overhead>

--<diskspace>0.004906</diskspace>

--</mqt>

.....

--<index>

--<identifier>

--<name>IDX612152221400000</name>

--<schema>ZILIO2 </schema>

--</identifier>

--<table><identifier>

--<name>PART</name>

--<schema>TPCD </schema>

--</identifier></table>

--<statementlist>22</statementlist>

--<benefit>820160.000000</benefit>

--<overhead>0.000000</overhead>

--<diskspace>9.063500</diskspace>

--</index>

.....

--<statement>

--<statementnum>11</statementnum>

--<statementtext>

--

-- select

-- c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice,

-- sum(l_quantity) from tpcd.customer, tpcd.orders,

-- tpcd.lineitem where o_orderkey in(select

-- l_orderkey from tpcd.lineitem group by l_orderkey

-- having sum(l_quantity) > 300) and c_custkey

-- = o_custkey and o_orderkey = l_orderkey group by

-- c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice

-- order by o_totalprice desc, o_orderdate fetch first

-- 100 rows only

--</statementtext>

--<objects>

--<identifier>

--<name>MQT612152202490000</name>

--<schema>ZILIO2 </schema>

--</identifier>

--<identifier>

--<name>ORDERS</name>

--<schema>TPCD </schema>

--</identifier>

--<identifier>

--<name>CUSTOMER</name>

--<schema>TPCD </schema>

--</identifier>

--<identifier>

--<name>IDX612152235020000</name>

--<schema>ZILIO2 </schema>

--</identifier>

--<identifier>

--<name>IDX612152235030000</name>

Chapter 4. Establishing a performance tuning strategy 389

--<schema>ZILIO2 </schema>

--</identifier>

--<identifier>

--<name>IDX612152211360000</name>

--<schema>ZILIO2 </schema>

--</identifier>

--</objects>

--<benefit>2091459.000000</benefit>

--<frequency>1</frequency>

--</statement>

This XML structure can contain more than one column. The column cardinality

(that is, the number of values in each column) is included and, optionally, the

HIGH2KEY and LOW2KEY values.

The base table on which an index is defined is also included. Ranking of indexes

and MQTs can be done using the benefit value. You can also rank indexes using

(benefit - overhead) and MQTs using (benefit - 0.5 * overhead).

Following the list of indexes and MQTs is the list of statements in the workload,

including the SQL text, the statement number for the statement, the estimated

performance improvement (benefit) from the recommendations, as well as the list

of tables, indexes, and MQTs that were used by the statement. The original spacing

in the SQL text is preserved in this output example, but the SQL text is normally

split into 80 character commented lines for increased readability.

Existing indexes or MQTs appear in the output if they are being used to execute a

workload.

MDC and database partitioning recommendations are not explicitly shown in this

XML output example.

After some minor modifications, you can run this output file as a CLP script to

create the recommended objects. The modifications that you might want to

perform include:

v Combining all of the RUNSTATS commands into a single RUNSTATS invocation

against the new or modified objects

v Providing more usable object names in place of system-generated IDs

v Removing or commenting out any data definition language (DDL) for objects

that you do not want to implement immediately

Using the Design Advisor

You can run the Design Advisor by invoking the db2advis command.

1. Define your workload. See “Defining a workload for the Design Advisor”.

2. Run the db2advis command against this workload.

Note: If the statistics on your database are not current, the generated

recommendations will be less reliable.

3. Interpret the output from db2advis and make any necessary modifications.

4. Implement the Design Advisor recommendations, as appropriate.

Defining a workload for the Design Advisor

When the Design Advisor analyzes a specific workload, it considers factors such as

the type of statements that are included in the workload, the frequency with which

390 Troubleshooting and Tuning Database Performance

a particular statement occurs, and characteristics of your database to generate

recommendations that minimize the total cost of running the workload.

A workload is a set of SQL statements that the database manager must process

during a given period of time. The Design Advisor can be run against:

v A single SQL statement that you enter inline with the db2advis command

v A set of dynamic SQL statements that were captured in a DB2 snapshot

v A set of SQL statements that are contained in a workload file

You can create a new workload file or modify a previously existing workload file.

You can import statements into the file from several sources, including:

v A delimited text file

v An event monitor table

v Query Patroller historical data tables, by using the -qp option from the

command line

v Explained statements in the EXPLAIN_STATEMENT table

v Recent SQL statements that have been captured with a DB2 snapshot

v Workload manager activity tables

v Workload manager event monitor tables by using the -wlm option from the

command line

After you import the SQL statements into a workload file, you can add, change,

modify, or remove statements and modify their frequency.

v To run the Design Advisor against dynamic SQL statements:

1. Reset the database monitor with the following command:

 db2 reset monitor for database database-name

2. Wait for an appropriate amount of time to allow for the execution of

dynamic SQL statements against the database.

3. Invoke the db2advis command using the -g option. If you want to save the

dynamic SQL statements in the ADVISE_WORKLOAD table for later

reference, use the -p option as well.
v To run the Design Advisor against a set of SQL statements in a workload file:

1. Create a workload file manually, separating each SQL statement with a

semicolon, or import SQL statements from one or more of the sources listed

above.

2. Set the frequency of the statements in the workload. Every statement in a

workload file is assigned a frequency of 1 by default. The frequency of an

SQL statement represents the number of times that the statement occurs

within a workload relative to the number of times that other statements

occur. For example, a particular SELECT statement might occur 100 times in

a workload, whereas another SELECT statement occurs 10 times. To

represent the relative frequency of these two statements, you could assign the

first SELECT statement a frequency of 10; the second SELECT statement has

a frequency of 1. You can manually change the frequency or weight of a

particular statement in the workload by inserting the following line after the

statement: - - # SET FREQUENCY n, where n is the frequency value that you

want to assign to the statement.

3. Invoke the db2advis command using the -i option followed by the name of

the workload file.
v To run the Design Advisor against a workload that is contained in the

ADVISE_WORKLOAD table, invoke the db2advis command using the -w option

followed by the name of the workload.

Chapter 4. Establishing a performance tuning strategy 391

Using the Design Advisor to convert from a single-partition to

a multi-partition database

You can use the Design Advisor to help you convert a single-partition database

into a multi-partition database.

About this task

In addition to making recommendations about new indexes, materialized query

tables (MQTs), and multidimensional clustering (MDC) tables, the Design Advisor

can provide you with recommendations for distributing data.

Procedure

1. Use the db2licm command to register the Database Partitioning Feature (DPF)

license key.

2. Create at least one table space in a multi-partition database partition group.

Note: The Design Advisor can only recommend data redistribution to existing

table spaces.

3. Run the Design Advisor with the partitioning option specified on the db2advis

command.

4. Modify the db2advis output file slightly before running the DDL statements

that were generated by the Design Advisor. Because database partitioning must

be set up before you can run the DDL script that the Design Advisor generates,

recommendations are commented out of the script that is returned. It is up to

you to transform your tables in accordance with the recommendations.

Design Advisor limitations and restrictions

There are certain limitations and restrictions associated with Design Advisor

recommendations about indexes, materialized query tables (MQTs),

multidimensional clustering (MDC) tables, and database partitioning.

Restrictions on index recommendations

v Indexes that are recommended for MQTs are designed to improve workload

performance, not MQT refresh performance.

v A clustering RID index is recommended only for MDC tables. The Design

Advisor will include clustering RID indexes as an option rather than create an

MDC structure for the table.

v The Version 9.7 Design Advisor does not recommend partitioned indexes on a

partitioned table. All indexes are recommended with an explicit NOT

PARTITIONED clause.

Restrictions on MQT recommendations

v The Design Advisor will not recommend incremental MQTs. If you want to

create incremental MQTs, you can convert REFRESH IMMEDIATE MQTs into

incremental MQTs with your choice of staging tables.

v Indexes that are recommended for MQTs are designed to improve workload

performance, not MQT refresh performance.

v If update, insert, or delete operations are not included in the workload, the

performance impact of updating a recommended REFRESH IMMEDIATE MQT

is not considered.

392 Troubleshooting and Tuning Database Performance

v It is recommended that REFRESH IMMEDIATE MQTs have unique indexes

created on the implied unique key, which is composed of the columns in the

GROUP BY clause of the MQT query definition.

Restrictions on MDC recommendations

v An existing table must be populated with sufficient data before the Design

Advisor considers MDC for the table. A minimum of twenty to thirty megabytes

of data is recommended. Tables that are smaller than 12 extents are excluded

from consideration.

v MDC recommendations for new MQTs will not be considered unless the

sampling option, -r, is used with the db2advis command.

v The Design Advisor does not make MDC recommendations for typed,

temporary, or federated tables.

v Sufficient storage space (approximately 1% of the table data for large tables)

must be available for the sampling data that is used during the execution of the

db2advis command.

v Tables that have not had statistics collected are excluded from consideration.

v The Design Advisor does not make recommendations for multicolumn

dimensions.

Restrictions on database partitioning recommendations

The Design Advisor can recommend database partitioning only for DB2 Enterprise

Server Edition.

Additional restrictions

Temporary simulation catalog tables are created when the Design Advisor runs. An

incomplete run can result in some of these tables not being dropped. In this

situation, you can use the Design Advisor to drop these tables by restarting the

utility. To remove the simulation catalog tables, specify both the -f option and the

-n option (for -n, specifying the same user name that was used for the incomplete

execution). If you do not specify the -f option, the Design Advisor will only

generate the DROP statements that are required to remove the tables; it will not

actually remove them.

Note: As of Version 9.5, the -f option is the default. This means that if you run

db2advis with the MQT selection, the database manager automatically drops all

local simulation catalog tables using the same user ID as the schema name.

You should create a separate table space on the catalog database partition for

storing these simulated catalog tables, and set the DROPPED TABLE RECOVERY

option on the CREATE or ALTER TABLESPACE statement to OFF. This enables

easier cleanup and faster Design Advisor execution.

Chapter 4. Establishing a performance tuning strategy 393

394 Troubleshooting and Tuning Database Performance

Part 2. Troubleshooting a problem

The first step in good problem analysis is to describe the problem completely.

Without a problem description, you will not know where to start investigating the

cause of the problem.

This step includes asking yourself such basic questions as:

v What are the symptoms?

v Where is the problem happening?

v When does the problem happen?

v Under which conditions does the problem happen?

v Is the problem reproducible?

Answering these and other questions will lead to a good description to most

problems, and is the best way to start down the path of problem resolution.

What are the symptoms?

When starting to describe a problem, the most obvious question is ″What is the

problem?″ This might seem like a straightforward question; however, it can be

broken down into several other questions to create a more descriptive picture of

the problem. These questions can include:

v Who or what is reporting the problem?

v What are the error codes and error messages?

v How does it fail? For example: loop, hang, stop, performance degradation,

incorrect result.

v What is the affect on business?

Where is the problem happening?

Determining where the problem originates is not always easy, but it is one of the

most important steps in resolving a problem. Many layers of technology can exist

between the reporting and failing components. Networks, disks, and drivers are

only a few components to be considered when you are investigating problems.

v Is the problem platform specific, or common to multiple platforms?

v Is the current environment and configuration supported?

v Is the application running locally on the database server or on a remote server?

v Is there a gateway involved?

v Is the database stored on individual disks, or on a RAID disk array?

These types of questions will help you isolate the problem layer, and are necessary

to determine the problem source. Remember that just because one layer is

reporting a problem, it does not always mean the root cause exists there.

Part of identifying where a problem is occurring is understanding the environment

in which it exists. You should always take some time to completely describe the

problem environment, including the operating system, its version, all

corresponding software and versions, and hardware information. Confirm you are

running within an environment that is a supported configuration, as many

© Copyright IBM Corp. 2006, 2009 395

problems can be explained by discovering software levels that are not meant to run

together, or have not been fully tested together.

When does the problem happen?

Developing a detailed time line of events leading up to a failure is another

necessary step in problem analysis, especially for those cases that are one-time

occurrences. You can most easily do this by working backwards --start at the time

an error was reported (as exact as possible, even down to milliseconds), and work

backwards through available logs and information. Usually you only have to look

as far as the first suspicious event that you find in any diagnostic log, however,

this is not always easy to do and will only come with practice. Knowing when to

stop is especially difficult when there are multiple layers of technology each with

its own diagnostic information.

v Does the problem only happen at a certain time of day or night?

v How often does it happen?

v What sequence of events leads up to the time the problem is reported?

v Does the problem happen after an environment change such as upgrading

existing or installing new software or hardware?

Responding to questions like this will help you create a detailed time line of

events, and will provide you with a frame of reference in which to investigate.

Under which conditions does the problem happen?

Knowing what else is running at the time of a problem is important for any

complete problem description. If a problem occurs in a certain environment or

under certain conditions, that can be a key indicator of the problem cause.

v Does the problem always occur when performing the same task?

v Does a certain sequence of events need to occur for the problem to surface?

v Do other applications fail at the same time?

Answering these types of questions will help you explain the environment in

which the problem occurs, and correlate any dependencies. Remember that just

because multiple problems might have occurred around the same time, it does not

necessarily mean that they are always related.

Is the problem reproducible?

From a problem description and investigation standpoint, the ″ideal″ problem is

one that is reproducible. With reproducible problems you almost always have a

larger set of tools or procedures available to use to help your investigation.

Consequently, reproducible problems are usually easier to debug and solve.

However, reproducible problems can have a disadvantage: if the problem is of

significant business impact, you don’t want it recurring. If possible, recreating the

problem in a test or development environment is often preferable in this case.

v Can the problem be recreated on a test machine?

v Are multiple users or applications encountering the same type of problem?

v Can the problem be recreated by running a single command, a set of commands,

or a particular application, or a standalone application?

v Can the problem be recreated by entering the equivalent command/query from

a DB2 command line?

396 Troubleshooting and Tuning Database Performance

Recreating a single incident problem in a test or development environment is often

preferable, as there is usually much more flexibility and control when

investigating.

Part 2. Troubleshooting a problem 397

398 Troubleshooting and Tuning Database Performance

Chapter 5. Tools for troubleshooting

The following tools are available to help collect, format or analyze diagnostic data.

v db2dart

The db2dart command can be used to verify the architectural correctness of

databases and the objects within them. It can also be used to display the

contents of database control files in order to extract data from tables that might

otherwise be inaccessible.

v db2diag

The db2diag tool serves to filter and format the volume of information available

in the db2diag log files. Filtering records in db2diag log files can reduce the time

required to locate the records needed when troubleshooting problems.

v db2greg

You can view and edit the Global Registry with the db2greg tool.

v db2level

The db2level command will help you determine the version and service level

(build level and fix pack number) of your DB2 instance.

v db2look

There are many times when it is advantageous to be able to create a database

that is similar in structure to another database. For example, rather than testing

out new applications or recovery plans on a production system, it makes more

sense to create a test system that is similar in structure and data, and to then do

the tests against the test system without adversely affecting the production

system. You can use the db2look tool to extract the required DDL statements

needed to reproduce the database objects of one database in another database.

The tool can also generate the required SQL statements needed to replicate the

statistics from the one database to the other, and the statements needed to

replicate the database configuration, database manager configuration, and

registry variables.

v db2ls

With the ability to install multiple copies of DB2 products on your system and

the flexibility to install DB2 products and features in the path of your choice,

you need a tool to help you keep track of what is installed and where it is

installed. On supported Linux and UNIX operating systems, the db2ls command

lists the DB2 products and features installed on your system, including the DB2

Version 9 HTML documentation.

v db2pd

The db2pd tool is used for troubleshooting because it can return quick and

immediate information from the DB2 memory sets.

v db2support

When it comes to collecting information for a DB2 problem, the most important

DB2 utility you must run is db2support. The db2support utility automatically

collects all DB2 and system diagnostic information available. It also has an

optional interactive ″Question and Answer″ session, which poses questions

about the circumstances of your problem.

v Traces

If you experience a recurring and reproducible problem with DB2, tracing

sometimes allows you to capture additional information about it. Under normal

© Copyright IBM Corp. 2006, 2009 399

circumstances, you should only use a trace if asked to by IBM Software Support.

The process of taking a trace entails setting up the trace facility, reproducing the

error and collecting the data.

v Platform-specific tools (Windows) (Linux and UNIX)

Useful diagnostic tools provided with the Windows, Linux, and UNIX operating

systems can be used to gather and process data that can help identify the cause

of a problem you are having with your system.

Overview of the db2dart tool

The db2dart command can be used to verify the architectural correctness of

databases and the objects within them. It can also be used to display the contents

of database control files in order to extract data from tables that might otherwise

be inaccessible.

To display all of the possible options, issue the db2dart command without any

parameters. Some options that require parameters, such as the table space ID, are

prompted for if they are not explicitly specified on the command line.

By default, the db2dart utility will create a report file with the name

databaseName.RPT. For single-partition database partition environments, the file is

created in the current directory. For multiple-partition database partition

environments, the file is created under a subdirectory in the diagnostic directory.

The subdirectory is called DART####, where #### is the database partition number.

The db2dart utility accesses the data and metadata in a database by reading them

directly from disk. Because of that, you should never run the tool against a

database that still has active connections. If there are connections, the tool will not

know about pages in the buffer pool or control structures in memory, for example,

and might report false errors as a result. Similarly, if you run db2dart against a

database that requires crash recovery or that has not completed rollforward

recovery, similar inconsistencies might result due to the inconsistent nature of the

data on disk.

Comparison of INSPECT and db2dart

The INSPECT command inspects a database for architectural integrity, checking the

pages of the database for page consistency. The INSPECT command checks that the

structures of table objects and structures of table spaces are valid. Cross object

validation conducts an online index to data consistency check. The db2dart

command examines databases for architectural correctness and reports any

encountered errors.

The INSPECT command is similar to the db2dart command in that it allows you to

check databases, table spaces, and tables. A significant difference between the two

commands is that the database needs to be deactivated before you run db2dart,

whereas INSPECT requires a database connection and can be run while there are

simultaneous active connections to the database.

If you do not deactivate the database, db2dart will yield unreliable results.

The following tables list the differences between the tests that are performed by the

db2dart and INSPECT commands.

400 Troubleshooting and Tuning Database Performance

Table 76. Feature comparison of db2dart and INSPECT for table spaces

Tests performed db2dart INSPECT

SMS table spaces

Check table space files YES NO

Validate contents of internal

page header fields

YES YES

DMS table spaces

Check for extent maps

pointed at by more than one

object

YES NO

Check every extent map

page for consistency bit

errors

NO YES

Check every space map page

for consistency bit errors

NO YES

Validate contents of internal

page header fields

YES YES

Verify that extent maps agree

with table space maps

YES NO

 Table 77. Feature comparison of db2dart and INSPECT for data objects

Tests performed db2dart INSPECT

Check data objects for

consistency bit errors

YES YES

Check the contents of special

control rows

YES NO

Check the length and

position of variable length

columns

YES NO

Check the LONG

VARCHAR, LONG

VARGRAPHIC, and large

object (LOB) descriptors in

table rows

YES NO

Check the summary total

pages, used pages and free

space percentage

NO YES

Validate contents of internal

page header fields

YES YES

Verify each row record type

and its length

YES YES

Verify that rows are not

overlapping

YES YES

 Table 78. Feature comparison of db2dart and INSPECT for index objects

Tests performed db2dart INSPECT

Check for consistency bit

errors

YES YES

Chapter 5. Tools for troubleshooting 401

Table 78. Feature comparison of db2dart and INSPECT for index objects (continued)

Tests performed db2dart INSPECT

Check the location and

length of the index key and

whether there is overlapping

YES YES

Check the ordering of keys

in the index

YES NO

Determine the summary total

pages and used pages

NO YES

Validate contents of internal

page header fields

YES YES

Verify the uniqueness of

unique keys

YES NO

Check for the existence of

the data row for a given

index entry

NO YES

Verify each key to a data

value

NO YES

 Table 79. Feature comparison of db2dart and INSPECT for block map objects

Tests performed db2dart INSPECT

Check for consistency bit

errors

YES YES

Determine the summary total

pages and used pages

NO YES

Validate contents of internal

page header fields

YES YES

 Table 80. Feature comparison of db2dart and INSPECT for long field and LOB objects

Tests performed db2dart INSPECT

Check the allocation

structures

YES YES

Determine the summary total

pages and used pages (for

LOB objects only)

NO YES

In addition, the following actions can be performed using the db2dart command:

v Format and dump data pages

v Format and dump index pages

v Format data rows to delimited ASCII

v Mark an index invalid

The INSPECT command cannot be used to perform those actions.

Analyzing db2diag log files using db2diag tool

The primary log file intended for use by database and system administrators is the

administration notification log. The db2diag log files are intended for use by DB2

Support for troubleshooting purposes.

402 Troubleshooting and Tuning Database Performance

Administration notification log messages are also logged to the db2diag log files

using a standardized message format.

The db2diag tool serves to filter and format the volume of information available in

the db2diag log files. Filtering db2diag log file records can reduce the time

required to locate the records needed when troubleshooting problems.

Example 1: Filtering the db2diag log files by database name:

If there are several databases in the instance, and you want to only see those

messages which pertain to the database ″SAMPLE″, you can filter the db2diag log

files as follows:

db2diag -g db=SAMPLE

Thus you would only see db2diag log file records that contained ″DB: SAMPLE″,

such as:

2006-02-15-19.31.36.114000-300 E21432H406 LEVEL: Error

PID : 940 TID : 660 PROC : db2syscs.exe

INSTANCE: DB2 NODE : 000 DB : SAMPLE

APPHDL : 0-1056 APPID: *LOCAL.DB2.060216003103

FUNCTION: DB2 UDB, base sys utilities, sqleDatabaseQuiesce, probe:2

MESSAGE : ADM7507W Database quiesce request has completed successfully.

Example 2: Filtering the db2diag log files by process id:

The following command can be used to display all severe error messages produced

by processes running on partitions 0,1,2, or 3 with the process ID (PID) 2200:

 db2diag -g level=Severe,pid=2200 -n 0,1,2,3

Note that this command could have been written a couple of different ways,

including db2diag -l severe -pid 2200 -n 0,1,2,3. It should also be noted that the -g

option specifies case-sensitive search, so here ″Severe″ will work but will fail if

″severe″ is used. These commands would successfully retrieve db2diag log file

records which meet these requirements, such as:

2006-02-13-14.34.36.027000-300 I18366H421 LEVEL: Severe

PID : 2200 TID : 660 PROC : db2syscs.exe

INSTANCE: DB2 NODE : 000 DB : SAMPLE

APPHDL : 0-1433 APPID: *LOCAL.DB2.060213193043

FUNCTION: DB2 UDB, data management, sqldPoolCreate, probe:273

RETCODE : ZRC=0x8002003C=-2147352516=SQLB_BAD_CONTAINER_PATH

 "Bad container path"

Example 3: Formatting the db2diag tool output.

The following command filters all records occurring after January 1, 2006

containing non-severe and severe errors logged on partitions 0,1 or 2. It outputs

the matched records such that the time stamp, partition number and level appear

on the first line, pid, tid and instance name on the second line, and the error

message follows thereafter:

db2diag -time 2006-01-01 -node "0,1,2" -level "Severe, Error" | db2diag -fmt

"Time: %{ts}

Partition: %node Message Level: %{level} \nPid: %{pid} Tid: %{tid}

Instance: %{instance}\nMessage: @{msg}\n"

An example of the output produced is as follows:

Time: 2006-02-15-19.31.36.099000 Partition: 000 Message Level: Error

Pid: 940 Tid:940 Instance: DB2

Message: ADM7506W Database quiesce has been requested.

Chapter 5. Tools for troubleshooting 403

For more information, issue the following commands:

v db2diag -help provides a short description of all available options

v db2diag -h brief provides descriptions for all options without examples

v db2diag -h notes provides usage notes and restrictions

v db2diag -h examples provides a small set of examples to get started

v db2diag -h tutorial provides examples for all available options

v db2diag -h all provides the most complete list of options

Example 4: Filtering messages from different facilities.

The following examples show how to only see messages from a specific facility (or

from all of them) from within the database manager. The supported facilities are:

v ALL which returns records from all facilities

v MAIN which returns records from DB2 general diagnostic logs such as the

db2diag log files and the administration notification log

v OPSTATS which returns records related to optimizer statistics

To read messages from the MAIN facility:

db2diag -facility MAIN

To display messages from the OPSTATS facility and filter out records having a

level of Severe:

db2diag -fac OPSTATS -level Severe

To display messages from all facilities available and filter out records having

instance=harmistr and level=Error:

db2diag -fac all -g instance=harmistr,level=Error

To display all messages from the OPSTATS facility having a level of Error and then

outputting the Timestamp and PID field in a specific format:

db2diag -fac opstats -level Error -fmt “ Time :%{ts} Pid :%{ts}”

Displaying and altering the Global Registry (UNIX) using db2greg

You can view the Global Registry using the db2greg command on UNIX and Linux

platforms.

In DB2 Version 9.7 and higher, the DB2 global profile registries are not recorded in

the text file <DB2DIR>/default.env. The global registry file global.reg is now used

to register the DB2 global profile settings related to the current DB2 installation.

The Global Registry exists only on UNIX and Linux platforms:

v For root installations, the Global Registry file is located at /var/db2/global.reg

(/var/opt/db2/global.reg on HP-UX).

v For non-root installations, the Global Registry file is located at

$HOME/sqllib/global.reg, where $HOME is the non-root user’s home directory.

The Global Registry consists of three different record types:

v ″Service″: Service records contain information at the product level - for example,

version, and install path.

v ″Instance″: Instance records contain information at the instance level - for

example, Instance name, instance path, version, and the ″start-at-boot″ flag.

404 Troubleshooting and Tuning Database Performance

v ″Variable″: Variable records contain information at the variable level - for

example, Variable name, Variable value.

v Comment.

You can view the Global Registry with the db2greg tool. This tool is located in

sqllib/bin, and in the install directory under bin as well (for use when logged in as

root).

You can edit the Global Registry with the db2greg tool. Editing the Global Registry

in root installations requires root authority.

You must only use the db2greg tool if requested to do so by IBM Software

Support.

Identifying the version and service level of your product

The db2level command will help you determine the version and service level

(build level and fix pack number) of your DB2 instance.

To determine if your DB2 instance is at the latest service level, compare your

db2level output to information in the fix pack download pages at the DB2 Support

web site: www.ibm.com/support/docview.wss?rs=71&uid=swg27007053.

A typical result of running the db2level command on a Windows system would be:

DB21085I Instance "DB2" uses "32" bits and DB2 code release "SQL09010" with

level identifier "01010107".

Informational tokens are "DB2 v9.1.0.189", "n060119", "", and Fix Pack "0".

Product is installed at "c:\SQLLIB" with DB2 Copy Name "db2build".

The combination of the four informational tokens uniquely identify the precise

service level of your DB2 instance. This information is essential when contacting

IBM Software Support for assistance.

For JDBC or SQLJ applications, if you are using the IBM DB2 Driver for SQLJ and

JDBC, you can determine the level of the driver by running the db2jcc utility:

db2jcc -version

IBM DB2 JDBC Driver Architecture 2.3.63

Mimicking databases using db2look

There are many times when it is advantageous to be able to create a database that

is similar in structure to another database. For example, rather than testing out

new applications or recovery plans on a production system, it makes more sense to

create a test system that is similar in structure and data, and to then do the tests

against it instead.

This way, the production system will not be affected by the adverse performance

impact of the tests or by the accidental destruction of data by an errant application.

Also, when you are investigating a problem (such as invalid results, performance

issues, and so on), it might be easier to debug the problem on a test system that is

identical to the production system.

You can use the db2look tool to extract the required DDL statements needed to

reproduce the database objects of one database in another database. The tool can

also generate the required SQL statements needed to replicate the statistics from

Chapter 5. Tools for troubleshooting 405

http://www.ibm.com/support/docview.wss?rs=71&uid=swg27007053

the one database to the other, as well as the statements needed to replicate the

database configuration, database manager configuration, and registry variables.

This is important because the new database might not contain the exact same set of

data as the original database but you might still want the same access plans chosen

for the two systems.

The db2look tool is described in detail in the DB2 Command Reference but you can

view the list of options by executing the tool without any parameters. A more

detailed usage can be displayed using the -h option.

Using db2look to mimic the tables in a database

To extract the DDL for the tables in the database, use the -e option. For example,

create a copy of the SAMPLE database called SAMPLE2 such that all of the objects

in the first database are created in the new database:

C:\>db2 create database sample2

DB20000I The CREATE DATABASE command completed successfully.

C:\>db2look -d sample -e > sample.ddl

-- USER is:

-- Creating DDL for table(s)

-- Binding package automatically ...

-- Bind is successful

-- Binding package automatically ...

-- Bind is successful

Note: If you want the DDL for the user-defined spaces, database partition groups

and buffer pools to be produced as well, add the-l flag after -e in the command

above. The default database partition groups, buffer pools, and table spaces will

not be extracted. This is because they already exist in every database by default. If

you want to mimic these, you must alter them yourself manually.

Bring up the file sample.ddl in a text editor. Since you want to run the DDL in this

file against the new database, you must change the CONNECT TO SAMPLE

statement to CONNECT TO SAMPLE2. If you used the -l option, you might need

to alter the path associated with the table space commands, such that they point to

appropriate paths as well. While you are at it, take a look at the rest of the

contents of the file. You should see CREATE TABLE, ALTER TABLE, and CREATE

INDEX statements for all of the user tables in the sample database:

...

--

-- DDL Statements for table "DB2"."ORG"

--

 CREATE TABLE "DB2"."ORG" (

 "DEPTNUMB" SMALLINT NOT NULL ,

 "DEPTNAME" VARCHAR(14) ,

 "MANAGER" SMALLINT ,

 "DIVISION" VARCHAR(10) ,

 "LOCATION" VARCHAR(13))

 IN "USERSPACE1" ;

...

Once you have changed the connect statement, run the statements, as follows:

C:\>db2 -tvf sample.ddl > sample2.out

Take a look at the sample2.out output file -- everything should have been executed

successfully. If errors have occurred, the error messages should state what the

problem is. Fix those problems and run the statements again.

406 Troubleshooting and Tuning Database Performance

As you can see in the output, DDL for all of the user tables are exported. This is

the default behavior but there are other options available to be more specific about

the tables included. For example, to only include the STAFF and ORG tables, use

the -t option:

C:\>db2look -d sample -e -t staff org > staff_org.ddl

To only include tables with the schema DB2, use the -z option:

C:\>db2look -d sample -e -z db2 > db2.ddl

Mimicking statistics for tables

If the intent of the test database is to do performance testing or to debug a

performance problem, it is essential that access plans generated for both databases

are identical. The optimizer generates access plans based on statistics, configuration

parameters, registry variables, and environment variables. If these things are

identical between the two systems then it is very likely that the access plans will

be the same.

If both databases have the exact same data loaded into them and the same options

of RUNSTATS is performed on both, the statistics should be identical. However, if

the databases contain different data or if only a subset of data is being used in the

test database then the statistics will likely be very different. In such a case, you can

use db2look to gather the statistics from the production database and place them

into the test database. This is done by creating UPDATE statements against the

SYSSTAT set of updatable catalog tables as well as RUNSTATS commands against

all of the tables.

The option for creating the statistic statements is -m. Going back to the

SAMPLE/SAMPLE2 example, gather the statistics from SAMPLE and add them

into SAMPLE2:

C:\>db2look -d sample -m > stats.dml

-- USER is:

-- Running db2look in mimic mode

As before, the output file must be edited such that the CONNECT TO SAMPLE

statement is changed to CONNECT TO SAMPLE2. Again, take a look at the rest of

the file to see what some of the RUNSTATS and UPDATE statements contain:

...

-- Mimic table ORG

RUNSTATS ON TABLE "DB2"."ORG" ;

UPDATE SYSSTAT.INDEXES

SET NLEAF=-1,

 NLEVELS=-1,

 FIRSTKEYCARD=-1,

 FIRST2KEYCARD=-1,

 FIRST3KEYCARD=-1,

 FIRST4KEYCARD=-1,

 FULLKEYCARD=-1,

 CLUSTERFACTOR=-1,

 CLUSTERRATIO=-1,

 SEQUENTIAL_PAGES=-1,

 PAGE_FETCH_PAIRS=’’,

 DENSITY=-1,

 AVERAGE_SEQUENCE_GAP=-1,

 AVERAGE_SEQUENCE_FETCH_GAP=-1,

 AVERAGE_SEQUENCE_PAGES=-1,

 AVERAGE_SEQUENCE_FETCH_PAGES=-1,

 AVERAGE_RANDOM_PAGES=-1,

Chapter 5. Tools for troubleshooting 407

AVERAGE_RANDOM_FETCH_PAGES=-1,

 NUMRIDS=-1,

 NUMRIDS_DELETED=-1,

 NUM_EMPTY_LEAFS=-1

WHERE TABNAME = ’ORG’ AND TABSCHEMA = ’DB2 ’;

...

As with the -e option that extracts the DDL, the -t and -z options can be used to

specify a set of tables.

Extracting configuration parameters and environment variables

The optimizer chooses plans based on statistics, configuration parameters, registry

variables, and environment variables. As with the statistics, db2look can be used to

generate the necessary configuration update and set statements. This is done using

the -f option. For example:

c:\>db2look -d sample -f>config.txt

-- USER is: DB2INST1

-- Binding package automatically ...

-- Bind is successful

-- Binding package automatically ...

-- Bind is successful

The config.txt contains output similar to the following:

-- This CLP file was created using DB2LOOK Version 9.1

-- Timestamp: 2/16/2006 7:15:17 PM

-- Database Name: SAMPLE

-- Database Manager Version: DB2/NT Version 9.1.0

-- Database Codepage: 1252

-- Database Collating Sequence is: UNIQUE

CONNECT TO SAMPLE;

--

-- Database and Database Manager configuration parameters

--

UPDATE DBM CFG USING cpuspeed 2.991513e-007;

UPDATE DBM CFG USING intra_parallel NO;

UPDATE DBM CFG USING comm_bandwidth 100.000000;

UPDATE DBM CFG USING federated NO;

...

-- Environment Variables settings

COMMIT WORK;

CONNECT RESET;

Note: Only those parameters and variables that affect DB2 compiler will be

included. If a registry variable that affects the compiler is set to its default value, it

will not show up under ″Environment Variables settings″.

408 Troubleshooting and Tuning Database Performance

Listing DB2 database products installed on your system (Linux and

UNIX)

On supported Linux and UNIX operating systems, the db2ls command lists the

DB2 database products and features installed on your system, including the DB2

Version 9.7 HTML documentation.

Before you begin

At least one DB2 Version 9 (or later) database product must already be installed by

a root user for a symbolic link to the db2ls command to be available in the

/usr/local/bin directory.

About this task

With the ability to install multiple copies of DB2 database products on your system

and the flexibility to install DB2 database products and features in the path of your

choice, you need a tool to help you keep track of what is installed and where it is

installed. On supported Linux and UNIX operating systems, the db2ls command

lists the DB2 products and features installed on your system, including the DB2

HTML documentation.

The db2ls command can be found both in the installation media and in a DB2

install copy on the system. The db2ls command can be run from either location.

The db2ls command can be run from the installation media for all products except

IBM Data Server Driver Package.

The db2ls command can be used to list:

v Where DB2 database products are installed on your system and list the DB2

database product level

v All or specific DB2 database products and features in a particular installation

path

Restrictions

The output that the db2ls command lists is different depending on the ID used:

v When the db2ls command is run with root authority, only root DB2 installations

are queried.

v When the db2ls command is run with a non-root ID, root DB2 installations and

the non-root installation owned by matching non-root ID are queried. DB2

installations owned by other non-root IDs are not queried.

The db2ls command is the only method to query a DB2 database product. You

cannot query DB2 database products using Linux or UNIX operating system native

utilities, such as pkginfo, rpm, SMIT, or swlist. Any existing scripts containing a

native installation utility that you use to query and interface with DB2 installations

must change.

You cannot use the db2ls command on Windows operating systems.

Procedure

v To list the path where DB2 database products are installed on your system and

list the DB2 database product level, enter:

db2ls

Chapter 5. Tools for troubleshooting 409

The command lists the following information for each DB2 database product

installed on your system:

– Installation path

– Level

– Fix pack

– Special Install Number. This column is used by IBM DB2 Support.

– Installation date. This column shows when the DB2 database product was last

modified.

– Installer UID. This column shows the UID with which the DB2 database

product was installed.
v To list information about DB2 database products or features in a particular

installation path the q parameter must be specified:

db2ls -q -p -b baseInstallDirectory

where:

– q specifies that you are querying a product or feature. This parameter is

mandatory. If a DB2 Version 8 product is queried, a blank value is returned.

– p specifies that the listing displays products rather than listing the features.

– b specifies the installation directory of the product or feature. This parameter

is mandatory if you are not running the command from the installation

directory.

Results

Depending on the parameters provided, the command lists the following

information:

v Installation path. This is specified only once, not for each feature.

v The following information is displayed:

– Response file ID for the installed feature, or if the p option is specified, the

response file ID for the installed product. For example,

ENTERPRISE_SERVER_EDITION.

– Feature name, or if the p option is specified, product name.

– Product version, release, modification level, fix pack level (VRMF). For

example, 9.5.0.0

– Fix pack, if applicable. For example, if Fix Pack 1 is installed, the value

displayed is 1. This includes interim fix packs, such as Fix Pack 1a.
v If any of the product’s VRMF information do not match, a warning message

displays at the end of the output listing. The message suggests the fix pack to

apply.

Monitoring and troubleshooting using db2pd command

The db2pd command is used for troubleshooting because it can return quick and

immediate information from the DB2 memory sets.

Overview

The tool collects information without acquiring any latches or using any engine

resources. It is therefore possible (and expected) to retrieve information that is

changing while db2pd is collecting information; hence the data might not be

completely accurate. If changing memory pointers are encountered, a signal

handler is used to prevent db2pd from ending abnormally. This can result in

410 Troubleshooting and Tuning Database Performance

messages such as ″Changing data structure forced command termination″ to

appear in the output. Nonetheless, the tool can be helpful for troubleshooting. Two

benefits to collecting information without latching include faster retrieval and no

competition for engine resources.

If you want to capture information about the database management system when a

specific SQLCODE, ZRC code or ECF code occurs, this can be accomplished using

the db2pdcfg -catch command. When the errors are caught, the db2cos (callout

script) is launched. The db2cos script can be dynamically altered to run any db2pd

command, operating system command, or any other command needed to resolve

the problems. The template db2cos script file is located in sqllib/bin on UNIX and

Linux. On the Windows operating system, db2cos is located in the $DB2PATH\bin

directory.

When adding a new node, you can monitor the progress of the operation on the

database partition server, that is adding the node, using the db2pd -addnode

command with the optional oldviewapps and detail parameters for more detailed

information.

If you require a list of event monitors that are currently active or have been, for

some reason, deactivated, run the db2pd -gfw command. This command also

returns statistics and information about the targets, into which event monitors

write data, for each fast writer EDU.

Examples

The following is a collection of examples in which the db2pd command can be

used to expedite troubleshooting:

v Example 1: Diagnosing a lockwait

v Example 2: Using the -wlocks parameter to capture all the locks being waited on

v Example 3: Using the -apinfo parameter to capture detailed runtime information

about the lock owner and the lock waiter

v Example 4: Using the callout scripts when considering a locking problem

v Example 5: Mapping an application to a dynamic SQL statement

v Example 6: Monitoring memory usage

v Example 7: Determine which application is using up your table space

v Example 8: Monitoring recovery

v Example 9: Determining the amount of resources a transaction is using

v Example 10: Monitoring log usage

v Example 11: Viewing the sysplex list

v Example 12: Generating stack traces

v Example 13: Viewing memory statistics for a database partition

Example 1: Diagnosing a lockwait

If you run db2pd -db databasename -locks -transactions -applications -dynamic, the

results are similar to the following ones:

Locks:

Address TranHdl Lockname Type Mode Sts Owner Dur HldCnt Att ReleaseFlg

0x07800000202E5238 3 00020002000000040000000052 Row ..X G 3 1 0 0x0000 0x40000000

0x07800000202E4668 2 00020002000000040000000052 Row ..X W* 2 1 0 0x0000 0x40000000

Chapter 5. Tools for troubleshooting 411

For the database that you specified using the -db database name option, the first

results show the locks for that database. The results show that TranHdl 2 is

waiting on a lock held by TranHdl 3.

Transactions:

Address AppHandl [nod-index] TranHdl Locks State Tflag Tflag2 Firstlsn Lastlsn LogSpace SpaceReserved TID AxRegCnt GXID

0x0780000020251B80 11 [000-00011] 2 4 READ 0x00000000 0x00000000 0x000000000000 0x000000000000 0 0 0x0000000000B7 1 0

0x0780000020252900 12 [000-00012] 3 4 WRITE 0x00000000 0x00000000 0x000000FA000C 0x000000FA000C 113 154 0x0000000000B8 1 0

We can see that TranHdl 2 is associated with AppHandl 11 and TranHdl 3 is

associated with AppHandl 12.

Applications:

Address AppHandl [nod-index] NumAgents CoorPid Status C-AnchID C-StmtUID L-AnchID L-StmtUID Appid

0x07800000006879E0 12 [000-00012] 1 1073336 UOW-Waiting 0 0 17 1 *LOCAL.burford.060303225602

0x0780000000685E80 11 [000-00011] 1 1040570 UOW-Executing 17 1 94 1 *LOCAL.burford.060303225601

We can see that AppHandl 12 last ran dynamic statement 17, 1. ApplHandl 11 is

currently running dynamic statement 17, 1 and last ran statement 94, 1.

Dynamic SQL Statements:

Address AnchID StmtUID NumEnv NumVar NumRef NumExe Text

0x07800000209FD800 17 1 1 1 2 2 update pdtest set c1 = 5

0x07800000209FCCC0 94 1 1 1 2 2 set lock mode to wait 1

We can see that the text column shows the SQL statements that are associated with

the lock timeout.

Example 2: Using the -wlocks parameter to capture all the locks being waited on

If you run db2pd -wlocks -db pdtest, results similar to the following ones are

generated. They show that the first application (AppHandl 47) is performing an

insert on a table and that the second application (AppHandl 46) is performing a

select on that table:

venus@boson:/home/venus =>db2pd -wlocks -db pdtest

Database Partition 0 -- Database PDTEST -- Active -- Up 0 days 00:01:22

Locks being waited on :

AppHandl [nod-index] TranHdl Lockname Type Mode Conv Sts CoorEDU AppName AuthID AppID

47 [000-00047] 8 00020004000000000840000652 Row ..X G 5160 db2bp VENUS *LOCAL.venus.071207213730

46 [000-00046] 2 00020004000000000840000652 Row .NS W 5913 db2bp VENUS *LOCAL.venus.071207213658

Example 3: Using the -apinfo parameter to capture detailed runtime information

about the lock owner and the lock waiter

The following sample output was generated under the same conditions as those

for Example 2:

venus@boson:/home/venus =>db2pd -apinfo 47 -db pdtest

Database Partition 0 -- Database PDTEST -- Active -- Up 0 days 00:01:30

Application :

 Address : 0x0780000001676480

 AppHandl [nod-index] : 47 [000-00047]

 Application PID : 876558

 Application Node Name : boson

 IP Address: n/a

 Connection Start Time : (1197063450)Fri Dec 7 16:37:30 2007

 Client User ID : venus

 System Auth ID : VENUS

 Coordinator EDU ID : 5160

 Coordinator Partition : 0

 Number of Agents : 1

 Locks timeout value : 4294967294 seconds

 Locks Escalation : No

 Workload ID : 1

 Workload Occurrence ID : 2

412 Troubleshooting and Tuning Database Performance

Trusted Context : n/a

 Connection Trust Type : non trusted

 Role Inherited : n/a

 Application Status : UOW-Waiting

 Application Name : db2bp

 Application ID : *LOCAL.venus.071207213730

 ClientUserID : n/a

 ClientWrkstnName : n/a

 ClientApplName : n/a

 ClientAccntng : n/a

 List of inactive statements of current UOW :

 UOW-ID : 2

 Activity ID : 1

 Package Schema : NULLID

 Package Name : SQLC2G13

 Package Version :

 Section Number : 203

 SQL Type : Dynamic

 Isolation : CS

 Statement Type : DML, Insert/Update/Delete

 Statement : insert into pdtest values 99

venus@boson:/home/venus =>db2pd -apinfo 46 -db pdtest

Database Partition 0 -- Database PDTEST -- Active -- Up 0 days 00:01:39

Application :

 Address : 0x0780000000D77A60

 AppHandl [nod-index] : 46 [000-00046]

 Application PID : 881102

 Application Node Name : boson

 IP Address: n/a

 Connection Start Time : (1197063418)Fri Dec 7 16:36:58 2007

 Client User ID : venus

 System Auth ID : VENUS

 Coordinator EDU ID : 5913

 Coordinator Partition : 0

 Number of Agents : 1

 Locks timeout value : 4294967294 seconds

 Locks Escalation : No

 Workload ID : 1

 Workload Occurrence ID : 1

 Trusted Context : n/a

 Connection Trust Type : non trusted

 Role Inherited : n/a

 Application Status : Lock-wait

 Application Name : db2bp

 Application ID : *LOCAL.venus.071207213658

 ClientUserID : n/a

 ClientWrkstnName : n/a

 ClientApplName : n/a

 ClientAccntng : n/a

 List of active statements :

 *UOW-ID : 3

 Activity ID : 1

 Package Schema : NULLID

 Package Name : SQLC2G13

 Package Version :

 Section Number : 201

 SQL Type : Dynamic

Chapter 5. Tools for troubleshooting 413

Isolation : CS

 Statement Type : DML, Select (blockable)

 Statement : select * from pdtest

Example 4: Using the callout scripts when considering a locking problem

To use the callout scripts, find the db2cos output files. The location of the files is

controlled by the database manager configuration parameter diagpath. The

contents of the output files will differ depending on what commands you enter in

the db2cos script file. An example of the output provided when the db2cos script

file contains a db2pd -db sample -locks command is as follows:

Lock Timeout Caught

Thu Feb 17 01:40:04 EST 2006

Instance DB2

Datbase: SAMPLE

Partition Number: 0

PID: 940

TID: 2136

Function: sqlplnfd

Component: lock manager

Probe: 999

Timestamp: 2006-02-17-01.40.04.106000

AppID: *LOCAL.DB2...

AppHdl:

...

Database Partition 0 -- Database SAMPLE -- Active -- Up 0 days 00:06:53

Locks:

Address TranHdl Lockname Type Mode Sts Owner Dur HldCnt Att Rlse

0x402C6B30 3 00020003000000040000000052 Row ..X W* 3 1 0 0 0x40

In the output, W* indicates the lock that experienced the timeout. In this case, a

lockwait has occurred. A lock timeout can also occur when a lock is being

converted to a higher mode. This is indicated by C* in the output.

You can map the results to a transaction, an application, an agent, or even an SQL

statement with the output provided by other db2pd commands in the db2cos file.

You can narrow down the output or use other commands to collect the information

that you need. For example, you can use the db2pd -locks wait parameters to print

only locks with a wait status. You can also use the -app and -agent parameters.

Example 5: Mapping an application to a dynamic SQL statement

The command db2pd -applications -dynamic reports the current and last anchor ID

and statement unique ID for dynamic SQL statements. This allows direct mapping

from an application to a dynamic SQL statement.

Applications:

Address AppHandl [nod-index] NumAgents CoorPid Status

0x00000002006D2120 780 [000-00780] 1 10615 UOW-Executing

C-AnchID C-StmtUID L-AnchID L-StmtUID Appid

163 1 110 1 *LOCAL.burford.050202200412

Dynamic SQL Statements:

Address AnchID StmtUID NumEnv NumVar NumRef NumExe Text

0x0000000220A02760 163 1 2 2 2 1 CREATE VIEW MYVIEW

0x0000000220A0B460 110 1 2 2 2 1 CREATE VIEW YOURVIEW

Example 6: Monitoring memory usage

The db2pd -memblock command can be useful when you are trying to understand

memory usage, as shown in the following sample output:

414 Troubleshooting and Tuning Database Performance

All memory blocks in DBMS set.

Address PoolID PoolName BlockAge Size(Bytes) I LOC File

0x0780000000740068 62 resynch 2 112 1 1746 1583816485

0x0780000000725688 62 resynch 1 108864 1 127 1599127346

0x07800000001F4348 57 ostrack 6 5160048 1 3047 698130716

0x07800000001B5608 57 ostrack 5 240048 1 3034 698130716

0x07800000001A0068 57 ostrack 1 80 1 2970 698130716

0x07800000001A00E8 57 ostrack 2 240 1 2983 698130716

0x07800000001A0208 57 ostrack 3 80 1 2999 698130716

0x07800000001A0288 57 ostrack 4 80 1 3009 698130716

0x0780000000700068 70 apmh 1 360 1 1024 3878879032

0x07800000007001E8 70 apmh 2 48 1 914 1937674139

0x0780000000700248 70 apmh 3 32 1 1000 1937674139

...

This is followed by the sorted ’per-pool’ output:

Memory blocks sorted by size for ostrack pool:

PoolID PoolName TotalSize(Bytes) TotalCount LOC File

57 ostrack 5160048 1 3047 698130716

57 ostrack 240048 1 3034 698130716

57 ostrack 240 1 2983 698130716

57 ostrack 80 1 2999 698130716

57 ostrack 80 1 2970 698130716

57 ostrack 80 1 3009 698130716

Total size for ostrack pool: 5400576 bytes

Memory blocks sorted by size for apmh pool:

PoolID PoolName TotalSize(Bytes) TotalCount LOC File

70 apmh 40200 2 121 2986298236

70 apmh 10016 1 308 1586829889

70 apmh 6096 2 4014 1312473490

70 apmh 2516 1 294 1586829889

70 apmh 496 1 2192 1953793439

70 apmh 360 1 1024 3878879032

70 apmh 176 1 1608 1953793439

70 apmh 152 1 2623 1583816485

70 apmh 48 1 914 1937674139

70 apmh 32 1 1000 1937674139

Total size for apmh pool: 60092 bytes

...

The final section of output sorts the consumers of memory for the entire memory

set:

All memory consumers in DBMS memory set:

PoolID PoolName TotalSize(Bytes) %Bytes TotalCount %Count LOC File

57 ostrack 5160048 71.90 1 0.07 3047 698130716

50 sqlch 778496 10.85 1 0.07 202 2576467555

50 sqlch 271784 3.79 1 0.07 260 2576467555

57 ostrack 240048 3.34 1 0.07 3034 698130716

50 sqlch 144464 2.01 1 0.07 217 2576467555

62 resynch 108864 1.52 1 0.07 127 1599127346

72 eduah 108048 1.51 1 0.07 174 4210081592

69 krcbh 73640 1.03 5 0.36 547 4210081592

50 sqlch 43752 0.61 1 0.07 274 2576467555

70 apmh 40200 0.56 2 0.14 121 2986298236

69 krcbh 32992 0.46 1 0.07 838 698130716

50 sqlch 31000 0.43 31 2.20 633 3966224537

50 sqlch 25456 0.35 31 2.20 930 3966224537

52 kerh 15376 0.21 1 0.07 157 1193352763

50 sqlch 14697 0.20 1 0.07 345 2576467555

...

You can also report memory blocks for private memory on UNIX and Linux

operating systems. For example, if you run db2pd -memb pid=159770, results

similar to the following ones are generated:

All memory blocks in Private set.

Address PoolID PoolName BlockAge Size(Bytes) I LOC File

0x0000000110469068 88 private 1 2488 1 172 4283993058

Chapter 5. Tools for troubleshooting 415

0x0000000110469A48 88 private 2 1608 1 172 4283993058

0x000000011046A0A8 88 private 3 4928 1 172 4283993058

0x000000011046B408 88 private 4 7336 1 172 4283993058

0x000000011046D0C8 88 private 5 32 1 172 4283993058

0x000000011046D108 88 private 6 6728 1 172 4283993058

0x000000011046EB68 88 private 7 168 1 172 4283993058

0x000000011046EC28 88 private 8 24 1 172 4283993058

0x000000011046EC68 88 private 9 408 1 172 4283993058

0x000000011046EE28 88 private 10 1072 1 172 4283993058

0x000000011046F288 88 private 11 3464 1 172 4283993058

0x0000000110470028 88 private 12 80 1 172 4283993058

0x00000001104700A8 88 private 13 480 1 1534 862348285

0x00000001104702A8 88 private 14 480 1 1939 862348285

0x0000000110499FA8 88 private 80 65551 1 1779 4231792244

Total set size: 94847 bytes

Memory blocks sorted by size:

PoolID PoolName TotalSize(Bytes) TotalCount LOC File

88 private 65551 1 1779 4231792244

88 private 28336 12 172 4283993058

88 private 480 1 1939 862348285

88 private 480 1 1534 862348285

Total set size: 94847 bytes

Example 7: Determine which application is using up your table space

Using db2pd -tcbstats, you can identify the number of inserts for a table. The

following is sample information for a user-defined global temporary table called

TEMP1:

TCB Table Information:

Address TbspaceID TableID PartID MasterTbs MasterTab TableName SchemaNm ObjClass DataSize LfSize LobSize XMLSize

0x0780000020B62AB0 3 2 n/a 3 2 TEMP1 SESSION Temp 966 0 0 0

TCB Table Stats:

Address TableName Scans UDI PgReorgs NoChgUpdts Reads FscrUpdates Inserts Updates Deletes OvFlReads OvFlCrtes

0x0780000020B62AB0 TEMP1 0 0 0 0 0 0 43968 0 0 0 0

You can then obtain the information for table space 3 by using the db2pd

-tablespaces command. Sample output is as follows:

Tablespace 3 Configuration:

Address Type Content PageSz ExtentSz Auto Prefetch BufID BufIDDisk FSC NumCntrs MaxStripe LastConsecPg Name

0x0780000020B1B5A0 DMS UsrTmp 4096 32 Yes 32 1 1 On 1 0 31 TEMPSPACE2

Tablespace 3 Statistics:

Address TotalPgs UsablePgs UsedPgs PndFreePgs FreePgs HWM State MinRecTime NQuiescers

0x0780000020B1B5A0 5000 4960 1088 0 3872 1088 0x00000000 0 0

Tablespace 3 Autoresize Statistics:

Address AS AR InitSize IncSize IIP MaxSize LastResize LRF

0x0780000020B1B5A0 No No 0 0 No 0 None No

Containers:

Address ContainNum Type TotalPgs UseablePgs StripeSet Container

0x0780000020B1DCC0 0 File 5000 4960 0 /home/db2inst1/tempspace2a

The FreePgs column shows that space is filling up. As the free pages value

decreases, there is less space available. Notice also that the value for FreePgs plus

the value for UsedPgs equals the value of UsablePgs.

Once this is known, you can identify the dynamic SQL statement that is using the

table TEMP1 by running the db2pd -db sample -dyn:

Database Partition 0 -- Database SAMPLE -- Active -- Up 0 days 00:13:06

Dynamic Cache:

Current Memory Used 1022197

Total Heap Size 1271398

Cache Overflow Flag 0

Number of References 237

Number of Statement Inserts 32

Number of Statement Deletes 13

Number of Variation Inserts 21

Number of Statements 19

Dynamic SQL Statements:

Address AnchID StmtUID NumEnv NumVar NumRef NumExe Text

0x0000000220A08C40 78 1 2 2 3 2 declare global temporary table temp1 (c1 char(6)) not logged

0x0000000220A8D960 253 1 1 1 24 24 insert into session.temp1 values(’TEST’)

Finally, you can map the information from the preceding output to the applications

output to identify the application by running db2pd -db sample -app.

416 Troubleshooting and Tuning Database Performance

Applications:

Address AppHandl [nod-index] NumAgents CoorPid Status

0x0000000200661840 501 [000-00501] 1 11246 UOW-Waiting

C-AnchID C-StmtUID L-AnchID L-StmtUID Appid

0 0 253 1 *LOCAL.db2inst1.050202160426

You can use the anchor ID (AnchID) value that identified the dynamic SQL

statement to identify the associated application. The results show that the last

anchor ID (L-AnchID) value is the same as the anchor ID (AnchID) value. You use

the results from one run of db2pd in the next run of db2pd.

The output from db2pd -agent shows the number of rows read (in the Rowsread

column) and rows written (in the Rowswrtn column) by the application. These

values give you an idea of what the application has completed and what the

application still has to complete, as shown in the following sample output:.

Address AppHandl [nod-index] AgentPid Priority Type DBName

0x0000000200698080 501 [000-00501] 11246 0 Coord SAMPLE

State ClientPid Userid ClientNm Rowsread Rowswrtn LkTmOt

Inst-Active 26377 db2inst1 db2bp 22 9588 NotSet

You can map the values for AppHandl and AgentPid resulting from running the

db2pd -agent command to the corresponding values for AppHandl and CoorPiid

resulting from running the db2pd -app command.

The steps are slightly different if you suspect that an internal temporary table is

filling up the table space. You still use db2pd -tcbstats to identify tables with large

numbers of inserts, however. Following is sample information for an implicit

temporary table:

TCB Table Information:

Address TbspaceID TableID PartID MasterTbs MasterTab TableName SchemaNm ObjClass DataSize ...

0x0780000020CC0D30 1 2 n/a 1 2 TEMP (00001,00002) <30> <JMC Temp 2470 ...

0x0780000020CC14B0 1 3 n/a 1 3 TEMP (00001,00003) <31> <JMC Temp 2367 ...

0x0780000020CC21B0 1 4 n/a 1 4 TEMP (00001,00004) <30> <JMC Temp 1872 ...

TCB Table Stats:

Address TableName Scans UDI PgReorgs NoChgUpdts Reads FscrUpdates Inserts ...

0x0780000020CC0D30 TEMP (00001,00002) 0 0 0 0 0 0 43219 ...

0x0780000020CC14B0 TEMP (00001,00003) 0 0 0 0 0 0 42485 ...

0x0780000020CC21B0 TEMP (00001,00004) 0 0 0 0 0 0 0 ...

In this example, there are a large number of inserts for tables with the naming

convention TEMP (TbspaceID, TableID). These are implicit temporary tables. The

values in the SchemaNm column have a naming convention of the value for AppHandl

concatenated with the value for SchemaNm, which makes it possible to identify the

application doing the work.

You can then map that information to the output from db2pd -tablespaces to see

the used space for table space 1. Take note of the relationship between the UsedPgs

and UsablePgs values in the table space statistics in the following output:

Tablespace Configuration:

Address Id Type Content PageSz ExtentSz Auto Prefetch BufID BufIDDisk FSC NumCntrs MaxStripe LastConsecPg Name

0x07800000203FB5A0 1 SMS SysTmp 4096 32 Yes 320 1 1 On 10 0 31 TEMPSPACE1

Tablespace Statistics:

Address Id TotalPgs UsablePgs UsedPgs PndFreePgs FreePgs HWM State MinRecTime NQuiescers

0x07800000203FB5A0 1 6516 6516 6516 0 0 0 0x00000000 0 0

Tablespace Autoresize Statistics:

Address Id AS AR InitSize IncSize IIP MaxSize LastResize LRF

0x07800000203FB5A0 1 No No 0 0 No 0 None No

Containers:

...

Chapter 5. Tools for troubleshooting 417

You can then identify application handles 30 and 31 (because you saw them in the

-tcbstats output) by using the command db2pd -app:

Applications:

Address AppHandl [nod-index] NumAgents CoorPid Status C-AnchID C-StmtUID L-AnchID L-StmtUID Appid

0x07800000006FB880 31 [000-00031] 1 4784182 UOW-Waiting 0 0 107 1 *LOCAL.db2inst1.051215214142

0x07800000006F9CE0 30 [000-00030] 1 8966270 UOW-Executing 107 1 107 1 *LOCAL.db2inst1.051215214013

Finally, map the information from the preceding output to the Dynamic SQL

output obtained by running the db2pd -dyn command:

Dynamic SQL Statements:

Address AnchID StmtUID NumEnv NumVar NumRef NumExe Text

0x0780000020B296C0 107 1 1 1 43 43 select c1, c2 from test group by c1,c2

Example 8: Monitoring recovery

If you run the command db2pd -recovery, the output shows several counters that

you can use to verify that recovery is progressing, as shown in the following

sample output. The Current Log and Current LSN values provide the log position.

The CompletedWork value is the number of bytes completed thus far.

Recovery:

Recovery Status 0x00000401

Current Log S0000005.LOG

Current LSN 000002551BEA

Job Type ROLLFORWARD RECOVERY

Job ID 7

Job Start Time (1107380474) Wed Feb 2 16:41:14 2005

Job Description Database Rollforward Recovery

Invoker Type User

Total Phases 2

Current Phase 1

Progress:

Address PhaseNum Description StartTime CompletedWork TotalWork

0x0000000200667160 1 Forward Wed Feb 2 16:41:14 2005 2268098 bytes Unknown

0x0000000200667258 2 Backward NotStarted 0 bytes Unknown

Example 9: Determining the amount of resources a transaction is using

If you run the command db2pd -transactions, the output shows the number of

locks, the first log sequence number (LSN), the last LSN, the log space used, and

the space reserved, as shown in the following sample output. This can be useful

for understanding the behavior of a transaction.

Transactions:

Address AppHandl [nod-index] TranHdl Locks State Tflag

0x000000022026D980 797 [000-00797] 2 108 WRITE 0x00000000

0x000000022026E600 806 [000-00806] 3 157 WRITE 0x00000000

0x000000022026F280 807 [000-00807] 4 90 WRITE 0x00000000

Tflag2 Firstlsn Lastlsn LogSpace SpaceReserved

0x00000000 0x000001072262 0x0000010B2C8C 4518 95450

0x00000000 0x000001057574 0x0000010B3340 6576 139670

0x00000000 0x00000107CF0C 0x0000010B2FDE 3762 79266

TID AxRegCnt GXID

0x000000000451 1 0

0x0000000003E0 1 0

0x000000000472 1 0

Example 10: Monitoring log usage

The command db2pd -logs is useful for monitoring log usage for a database. By

using thePages Written value, as shown in the following sample output, you can

determine whether the log usage is increasing:

418 Troubleshooting and Tuning Database Performance

Logs:

Current Log Number 2

Pages Written 846

Method 1 Archive Status Success

Method 1 Next Log to Archive 2

Method 1 First Failure n/a

Method 2 Archive Status Success

Method 2 Next Log to Archive 2

Method 2 First Failure n/a

Address StartLSN State Size Pages Filename

0x000000023001BF58 0x000001B58000 0x00000000 1000 1000 S0000002.LOG

0x000000023001BE98 0x000001F40000 0x00000000 1000 1000 S0000003.LOG

0x0000000230008F58 0x000002328000 0x00000000 1000 1000 S0000004.LOG

You can identify two types of problems by using this output:

v If the most recent log archive fails, Archive Status is set to a value of Failure. If

there is an ongoing archive failure, preventing logs from being archived at all,

Archive Status is set to a value of First Failure.

v If log archiving is proceeding very slowly, the Next Log to Archive value is

lower than the Current Log Number value. If archiving is very slow, space for

active logs might run out, which in turn might prevent any data changes from

occurring in the database.

Example 11: Viewing the sysplex list

Without the db2pd -sysplex command showing the following sample output, the

only other way to report the sysplex list is by using a DB2 trace.

Sysplex List:

Alias: HOST

Location Name: HOST1

Count: 1

IP Address Port Priority Connections Status PRDID

 1.2.34.56 400 1 0 0

Example 12: Generating stack traces

You can use the db2pd -stack all command for Windows operating systems or the

-stack command for UNIX operating systems to produce stack traces for all

processes in the current database partition. You might want to use this command

iteratively when you suspect that a process or thread is looping or hanging.

You can obtain the current call stack for a particular engine dispatchable unit

(EDU) by issuing the command db2pd -stack eduid, as shown in the following

example:

 Attempting to dump stack trace for eduid 137.

 See current DIAGPATH for trapfile.

If the call stacks for all of the DB2 processes are desired, use the command db2pd

-stack all, for example (on Windows operating systems):

 Attempting to dump all stack traces for instance.

 See current DIAGPATH for trapfiles.

If you are using a partitioned database environment with multiple physical nodes,

you can obtain the information from all of the partitions by using the command

db2_all ″; db2pd -stack all″. If the partitions are all logical partitions on the same

machine, however, a faster method is to use db2pd -alldbp -stacks.

Chapter 5. Tools for troubleshooting 419

Example 13: Viewing memory statistics for a database partition

The db2pd -dbptnmem command shows how much memory the DB2 server is

currently consuming and, at a high level, which areas of the server are using that

memory.

Following is an example of the output from running db2pd -dbptnmem on an AIX

machine:

Database Partition Memory Controller Statistics

Controller Automatic: Y

Memory Limit: 122931408 KB

Current usage: 651008 KB

HWM usage: 651008 KB

Cached memory: 231296 KB

The descriptions of these data fields and columns are as follows:

Controller Automatic

Indicates the memory controller setting. It shows the value ″Y″ if the

instance_memory configuration parameter is set to AUTOMATIC. This

means that database manager automatically determines the upper

boundary of memory consumption.

Memory Limit

The upper bound of DB2 server memory that can be consumed. It is the

value of the instance_memory configuration parameter.

Current usage

The amount of memory the server is currently consuming.

HWM usage

The high water mark (HWM) or peak memory usage that has been

consumed since the activation of the database partition (when the db2start

command was run).

Cached memory

The amount of the current usage that is not currently being used but is

cached for performance reasons for future memory requests.

Following is the continuation of the sample output from running db2pd

-dbptnmem on an AIX operating system:

Individual Memory Consumers:

Name Mem Used (KB) HWM Used (KB) Cached (KB)

===

APPL-DBONE 160000 160000 159616

DBMS-name 38528 38528 3776

FMP_RESOURCES 22528 22528 0

PRIVATE 13120 13120 740

FCM_RESOURCES 10048 10048 0

LCL-p606416 128 128 0

DB-DBONE 406656 406656 67200

All registered “consumers” of memory within the DB2 server are listed with the

amount of the total memory they are consuming. The column descriptions are as

follows:

Name A short, distinguishing name of a consumer of memory, such as the

following:

APPL-dbname

Application memory consumed for database dbname

420 Troubleshooting and Tuning Database Performance

DBMS-name

Global database manager memory requirements

FMP_RESOURCES

Memory required to communicate with db2fmps

PRIVATE

Miscellaneous private memory requirements

FCM_RESOURCES

Fast Communication Manager resources

LCL-pid

The memory segment used to communicate with local applications

DB-dbname

Database memory consumed for database dbname

Mem Used (KB)

The amount of memory that is currently allotted to the consumer

HWM Used (KB)

The high-water mark (HWM) of the memory, or the peak memory, that the

consumer has used

Cached (KB)

Of the Mem Used (KB), the amount of memory that is not currently being

used but is immediately available for future memory allocations

Collecting environment information using db2support command

When it comes to collecting information for a DB2 problem, the most important

DB2 utility you need to run is db2support. The db2support utility automatically

collects all DB2 and system diagnostic information available. It also has an optional

interactive ″Question and Answer″ session, which poses questions about the

circumstances of your problem.

Using the db2support utility avoids possible user errors, as you do not need to

manually type commands such as GET DATABASE CONFIGURATION FOR

database-name or LIST TABLESPACES SHOW DETAIL. Also, you do not require

instructions on which commands to run or files to collect, therefore it takes less

time to collect the data.

v Execute the command db2support -h to display the complete list of command

options.

v Collect data using the appropriate db2support command.

The db2support utility should be run by a user with SYSADM authority, such as

an instance owner, so that the utility can collect all of the necessary information

without an error. If a user without SYSADM authority runs db2support, SQL

errors (for example, SQL1092N) might result when the utility runs commands

such as QUERY CLIENT or LIST ACTIVE DATABASES.

If you’re using the db2support utility to help convey information to IBM

Software Support, run the db2support command while the system is

experiencing the problem. That way the tool will collect timely information, such

as operating system performance details. If you are unable to run the utility at

the time of the problem, you can still issue the db2support command after the

problem has stopped since some first occurrence data capture (FODC) diagnostic

files are produced automatically.

Chapter 5. Tools for troubleshooting 421

The following basic invocation is usually sufficient for collecting most of the

information required to debug a problem (note, that if the -c option is used, the

utility will establish a connection to the database):

db2support <output path> -d <database name> -c

The output is conveniently collected and stored in a compressed ZIP archive,

db2support.zip, so that it can be transferred and extracted easily on any system.

The type of information that db2support captures depends on the way the

command is invoked, whether or not the database manager has been started, and

whether it is possible to connect to the database.

The db2support utility collects the following information under all conditions:

v db2diag log files

v All trap files

v Locklist files

v Dump files

v Various system related files

v Output from various system commands

v db2cli.ini

Depending on the circumstances, the db2support utility might also collect:

v Active log files

v Buffer pool and table space (SQLSPCS.1 and SQLSPCS.2) control files (with -d

option)

v Contents of the db2dump directory

v Extended system information (with -s option)

v Database configuration settings (with -d option)

v Database manager configuration settings files

v Log File Header file (with -d option)

v Recovery History File (with -d option)

The HTML report db2support.html will always include the following information:

v Problem record (PMR) number (if -n was specified)

v Operating system and level (for example, AIX 5.1)

v DB2 release information

v An indication of whether it is a 32- or 64-bit environment

v DB2 install path information

v Contents of db2nodes.cfg

v Number of CPUs and disks and how much memory

v List of databases in the instance

v Registry information and environment, including PATH and LIBPATH

v Disk freespace for current filesystem and inodes for UNIX

v Java™ SDK level

v Database Manager Configuration

v Listing of the database recovery history file

v ls -lR output (or Windows equivalent) of the sqllib directory

v The result of the LIST NODE DIRECTORY command

v The result of the LIST ADMIN NODE DIRECTORY command

422 Troubleshooting and Tuning Database Performance

v The result of the LIST DCS DIRECTORY command

v The result of the LIST DCS APPLICATIONS EXTENDED command

v List of all installed software

The following information appears in the db2support.html file when the -s option

is specified:

v Detailed disk information (partition layout, type, LVM information, and so on)

v Detailed network information

v Kernel statistics

v Firmware versions

v Other operating system-specific commands

The db2support.html file contains the following additional information if DB2 has

been started:

v Client connection state

v Database and Database Manager Configuration (Database Configuration requires

the -d option)

v CLI configuration

v Memory pool info (size and consumed). Complete data is collected if the -d

option is used

v The result of the LIST ACTIVE DATABASES command

v The result of the LIST DCS APPLICATIONS command

The db2support.html file contains the following information if the -c option has

been specified and a connection to the database was successfully established:

v Number of user tables

v Approximate size of database data

v Database snapshot

v Application snapshot

v Buffer pool information

v The result of the LIST APPLICATIONS command

v The result of the LIST COMMAND OPTIONS command

v The result of the LIST DATABASE DIRECTORY command

v The result of the LIST INDOUBT TRANSACTIONS command

v The result of the LIST DATABASE PARTITION GROUPS command

v The result of the LIST DBPARTITIONNUMS command

v The result of the LIST ODBC DATA SOURCES command

v The result of the LIST PACKAGES/TABLES command

v The result of the LIST TABLESPACE CONTAINERS command

v The result of the LIST TABLESPACES command

v The result of the LIST DRDA IN DOUBT TRANSACTIONS command

v DB2 workload manager information

Example contents of db2support.zip file

For an example of the contents of a db2support.zip file, the following command

was executed:

db2support . -d sample -c -f -st "select * from staff"

Chapter 5. Tools for troubleshooting 423

Extracting the db2support.zip file, the following files and directories were

collected:

v DB2CONFIG/ - Configuration information (for example, database, database

manager, BP, CLI, and Java developer kit, among others)

v DB2DUMP/ - Contents of the ~/sqllib/db2dump directory

v DB2MISC/ - List of the sqllib directory

v DB2SNAP/ - Output of DB2 commands (for example,db2set, LIST TABLES, LIST

INDOUBT TRANSACTIONS, and LIST APPLICATIONS, among others)

v EVENTS/ - DB2 events logged in db2optstats.#.log files

v STMM/ - Contents of ~/sqllib/db2dump/stmmlog directory: STMM log files

v db2supp_opt.zip - Diagnostic information for optimizer problems

v db2supp_system.zip - Operating system information

v db2support.html - Diagnostic information formatted into HTML sections

Information about Optimizer can be found in the db2supp_opt.zip file. Extraction

of this file finds the following directories:

v OPTIMIZER/ - Diagnostic information for optimizer problems

v OPTIMIZER/optimizer.log - File contains a log of all activities

v OPTIMIZER/CATALOGS - All the catalogs with LOBs in the following

subdirectories:

– FUNCTIONS

– ROUTINES

– SEQUENCES

– TABLES

– VIEWS
v OPTIMIZER/DB2DUMP - db2serv output (serv.* and serv2.* output files)

System information can be found in the db2supp_system.zip file. Extraction of this

file finds the following file and directories:

v DB2CONFIG/ - db2cli.ini (files from ~/sqllib/cfg)

v DB2DUMP/ - Trap and diagnostic log files, and FODC directories

v DB2MISC/ - DB2SYSTM file (binary), among others

v OSCONFIG/ - Different operating system information files (for example, netstat,

services, vfs, ulimit, and hosts, among others)

v OSSNAP/ - Operating system snapshots (for example, iostat, netstat, uptime,

vmstat, and ps_elf, among others)

v SQLDBDIR/ - Important buffer pool meta files (~/sqllib/sqldbdir)

v SQLGWDIR/ - DCS directory (files from ~/sqllib/sqlgwdir)

v SQLNODIR/ - Node directory (files from ~/sqllib/sqlnodir)

v SPMLOG/ - Files from ~/sqllib/spmlog

v report.log - Log of all collection activities

Basic trace diagnostics

If you experience a recurring and reproducible problem with DB2, tracing

sometimes allows you to capture additional information about it. Under normal

circumstances, you should only use a trace if asked to by IBM Software Support.

The process of taking a trace entails setting up the trace facility, reproducing the

error and collecting the data.

424 Troubleshooting and Tuning Database Performance

The amount of information gathered by a trace grows rapidly. When you take the

trace, capture only the error situation and avoid any other activities whenever

possible. When taking a trace, use the smallest scenario possible to reproduce a

problem.

Collecting a trace often has a detrimental effect on the performance of a DB2

instance. The degree of performance degradation is dependent on the type of

problem and on how many resources are being used to gather the trace

information.

IBM Software Support should provide the following information when traces are

requested:

v Simple, step by step procedures

v An explanation of where each trace is to be taken

v An explanation of what should be traced

v An explanation of why the trace is requested

v Backout procedures (for example, how to disable all traces)

Though you should be counseled by IBM Software Support as to which traces to

obtain, here are some general guidelines as to when you’d be asked to obtain

particular traces:

v If the problem occurs during installation, and the default installation logs are not

sufficient to determine the cause of the problem, installation traces are

appropriate.

v If the problem occurs in one of the GUI (Graphical User Interface) tools, and the

same actions succeed when performed via explicit commands in the DB2

command window, then a Control Center trace is appropriate. Note that this will

only capture problems with tools that can be launched from the Control Center.

v If the problem manifests in a CLI application, and the problem cannot be

recreated outside of the application, then a CLI trace is appropriate.

v If the problem manifests in a JDBC application, and the problem cannot be

recreated outside of the application, then a JDBC trace is appropriate.

v If the problem is directly related to information that is being communicated at

the DRDA layer, a DRDA trace is appropriate.

v For all other situations where a trace is feasible, a DB2 trace is most likely to be

appropriate.

Trace information is not always helpful in diagnosing an error. For example, it

might not capture the error condition in the following situations:

v The trace buffer size you specified was not large enough to hold a complete set

of trace events, and useful information was lost when the trace stopped writing

to the file or wrapped.

v The traced scenario did not recreate the error situation.

v The error situation was recreated, but the assumption as to where the problem

occurred was incorrect. For example, the trace was collected at a client

workstation while the actual error occurred on a server.

Chapter 5. Tools for troubleshooting 425

DB2 traces

Obtaining a DB2 trace using db2trc

The db2trc command controls the trace facility provided with DB2. The trace

facility records information about operations and formats this information into a

readable form.

Keep in mind that there is added overhead when a trace is running so enabling the

trace facility might impact your system’s performance.

In general, IBM Software Support and development teams use DB2 traces for

troubleshooting. You might run a trace to gain information about a problem that

you are investigating, but its use is rather limited without knowledge of the DB2

source code.

Nonetheless, it is important to know how to correctly turn on tracing and how to

dump trace files, just in case you are asked to obtain them.

Note: You will need one of SYSADM, SYSCTRL or SYSMAINT authority to use

db2trc

To get a general idea of the options available, execute the db2trc command without

any parameters:

C:\>db2trc

Usage: db2trc (chg|clr|dmp|flw|fmt|inf|off|on) options

For more information about a specific db2trc command parameter, use the -u

option. For example, to see more information about turning the trace on, execute

the following command:

db2trc on -u

This will provide information about all of the additional options (labeled as

″facilities″) that can be specified when turning on a DB2 trace.

When turning trace on, the most important option is -L. This specifies the size of

the memory buffer that will be used to store the information being traced. The

buffer size can be specified in either bytes or megabytes. (To specify megabytes

append either ″M″ or ″m″ after the value). The trace buffer size must be a power of

two megabytes. If you specify a size that does not meet this requirement, the

buffer size will automatically be rounded down to the nearest power of two.

If the buffer is too small, information might be lost. By default only the most

recent trace information is kept if the buffer becomes full. If the buffer is too large,

it might be difficult to send the file to the IBM Software Support team.

If tracing an operation that is relatively short (such as a database connection), a

size of approximately 8 MB is usually sufficient:

C:\> db2trc on -l 8M

Trace is turned on

However, if you are tracing a larger operation or if a lot of work is going on at the

same time, a larger trace buffer might be required.

On most platforms, tracing can be turned on at any time and works as described

above. However, there are certain situations to be aware of:

426 Troubleshooting and Tuning Database Performance

1. On multiple database partition systems, you must run a trace for each physical

(as opposed to logical) database partition.

2. On HP-UX, Linux and Solaris platforms, if the trace is turned off after the

instance has been started, a very small buffer will be used the next time the

trace is started regardless of the size specified. For example, yesterday you

turned trace on by using db2trc on -l 8m, then collected a trace, and then

turned the trace off (db2trc off). Today you wish to run a trace with the

memory buffer set for 32 megabytes (db2trc on -l 32m) without bringing the

instance down and restarting. You will find that in this case trace will only get

a small buffer. To effectively run a trace on these platforms, turn the trace on

before starting the instance with the size buffer you need and “clear” the buffer

as necessary afterwards.

Dumping a DB2 trace file

After the trace facility has been enabled using the ON option, all subsequent work

done by the instance will be traced.

While the trace is running, you can use the clr option to clear out the trace buffer.

All existing information in the trace buffer will be removed.

C:\>db2trc clr

Trace has been cleared

Once the operation being traced has finished, use the dmp option followed by a

trace file name to dump the memory buffer to disk. For example:

C:\>db2trc dmp trace.dmp

Trace has been dumped to file

The trace facility will continue to run after dumping the trace buffer to disk. To

turn tracing off, use the OFF option:

C:\>db2trc off

Trace is turned off

Formatting a DB2 trace file

The dump file created by the command db2trc dmp is in binary format and is not

readable. To verify that a trace file can be read, format the binary trace file to show

the flow control and send the formatted output to a null device.

The following example shows the command to perform this task:

db2trc flw example.trc nul

where example.trc is a binary file that was produced using the dmp option.

The output for this command will explicitly tell you if there is a problem reading

the file, and whether or not the trace was wrapped.

At this point, the dump file can be sent to IBM Software Support. They would then

format it based on your DB2 service level. However, you might sometimes be

asked to format the dump file into ASCII format before sending it. This is

accomplished via the flw and fmt options. You must provide the name of the

binary dump file along with the name of the ASCII file that you want to create:

C:\>db2trc flw trace.dmp trace.flw

C:\Temp>db2trc flw trace.dmp trace.flw

Total number of trace records : 18854

Trace truncated : NO

Trace wrapped : NO

Number of trace records formatted : 1513 (pid: 2196 tid 2148 node: -1)

Number of trace records formatted : 100 (pid: 1568 tid 1304 node: 0)

Chapter 5. Tools for troubleshooting 427

...

C:\>db2trc fmt trace.dmp trace.fmt

C:\Temp>db2trc fmt trace.dmp trace.fmt

Trace truncated : NO

Trace wrapped : NO

Total number of trace records : 18854

Number of trace records formatted : 18854

If this output indicates ″Trace wrapped″ is ″YES″, then this means that the trace

buffer was not large enough to contain all of the information collected during the

trace period. A wrapped trace might be okay depending on the situation. If you

are interested in the most recent information (this is the default information that is

maintained, unless the -i option is specified), then what is in the trace file might be

sufficient. However, if you are interested in what happened at the beginning of the

trace period or if you are interested in everything that occurred, you might want to

redo the operation with a larger trace buffer.

There are options available when formatting a binary file into a readable text file.

For example, you can use db2trc fmt -xml trace.dmp trace.fmt to convert the

binary data and output the result into an XML parsable format. Additional options

are shown in the detailed description of the trace command (db2trc).

Another thing to be aware of is that on Linux and UNIX operating systems, DB2

will automatically dump the trace buffer to disk when it shuts the instance down

due to a severe error. Thus if tracing is enabled when an instance ends abnormally,

a file will be created in the diagnostic directory and its name will be db2trdmp.###,

where ### is the database partition number. This does not occur on Windows

platforms. You have to dump the trace manually in those situations.

To summarize, the following is an example of the common sequence of db2trc

commands:

 db2trc on -l 8M

 db2trc clr

 <Execute problem recreation commands>

 db2trc dump db2trc.dmp

 db2trc off

 db2trc flw db2trc.dmp <filename>.flw

 db2trc fmt db2trc.dmp <filename>.fmt

 db2trc fmt -c db2trc.dmp <filename>.fmtc

DRDA trace files

Before analyzing DRDA traces, you must understand that DRDA is an open

standard for the definition of data and communication structures. For example,

DRDA comprises a set of rules about how data should be organized for

transmission and how communication of that information should occur.

These rules are defined in the following reference manuals:

v DRDA V3 Vol. 1: Distributed Relational Database Architecture™

v DRDA V3 Vol. 2: Formatted Data Object Content Architecture

v DRDA V3 Vol. 3: Distributed Data Management Architecture

PDF versions of these manuals are available on www.opengroup.org.

The db2drdat utility records the data interchanged between a DRDA Application

Requestor (AR) and a DB2 DRDA Application Server (AS) (for example between

DB2 Connect and a host or Power Systems® Servers database server).

428 Troubleshooting and Tuning Database Performance

http://www.opengroup.org

Trace utility

The db2drdat utility records the data interchanged between the DB2 Connect

server (on behalf of the IBM data server client) and the IBM mainframe database

server.

As a database administrator (or application developer), you might find it useful to

understand how this flow of data works, because this knowledge can help you

determine the origin of a particular problem. Suppose you found yourself in the

following situation: you issue a CONNECT TO database statement for a IBM

mainframe database server but the command fails and you receive an unsuccessful

return code. If you understand exactly what information was conveyed to the IBM

mainframe database server management system, you might be able to determine

the cause of the failure even if the return code information is general. Many

failures are caused by simple user errors.

Output from db2drdat lists the data streams exchanged between the DB2 Connect

workstation and the IBM mainframe database server management system. Data

sent to the IBM mainframe database server is labeled SEND BUFFER and data

received from the IBM mainframe database server is labeled RECEIVE BUFFER.

If a receive buffer contains SQLCA information, it will be followed by a formatted

interpretation of this data and labeled SQLCA. The SQLCODE field of an SQLCA

is the unmapped value as returned by the IBM mainframe database server. The send

and receive buffers are arranged from the oldest to the most recent within the file.

Each buffer has:

v The process ID

v A SEND BUFFER, RECEIVE BUFFER, or SQLCA label. The first DDM command

or object in a buffer is labeled DSS TYPE.

The remaining data in send and receive buffers is divided into five columns,

consisting of:

v A byte count.

v Columns 2 and 3 represent the DRDA data stream exchanged between the two

systems, in ASCII or EBCDIC.

v An ASCII representation of columns 2 and 3.

v An EBCDIC representation of columns 2 and 3.

Trace output

The db2drdat utility writes the following information to tracefile:

v -r

– Type of DRDA reply/object

– Receive buffer
v -s

– Type of DRDA request

– Send buffer
v -c

– SQLCA
v TCP/IP error information

– Receive function return code

– Severity

– Protocol used

Chapter 5. Tools for troubleshooting 429

– API used

– Function

– Error number.

Note:

1. A value of zero for the exit code indicates that the command completed

successfully, and a non-zero value indicates that it did not.

2. The fields returned vary based on the API used.

3. The fields returned vary based on the platform on which DB2 Connect is

running, even for the same API.

4. If the db2drdat command sends the output to a file that already exists, the old

file will be erased unless the permissions on the file do not allow it to be

erased.

Trace output file analysis

The following information is captured in a db2drdat trace :

v The process ID (PID) of the client application

v The RDB_NAME cataloged in the database connection services (DCS) directory

v The DB2 Connect CCSID(s)

v The IBM mainframe database server CCSID(s)

v The IBM mainframe database server management system with which the DB2

Connect system is communicating.

The first buffer contains the Exchange Server Attributes (EXCSAT) and Access RDB

(ACCRDB) commands sent to the IBM mainframe database server management

system. It sends these commands as a result of a CONNECT TO database command.

The next buffer contains the reply that DB2 Connect received from the IBM

mainframe database server management system. It contains an Exchange Server

Attributes Reply Data (EXCSATRD) and an Access RDB Reply Message

(ACCRDBRM).

EXCSAT

The EXCSAT command contains the workstation name of the client

specified by the Server Name (SRVNAM) object, which is code point

X’116D’, according to DDM specification. The EXCSAT command is found

in the first buffer. Within the EXCSAT command, the values X’9481A292’

(coded in CCSID 500) are translated to mask once the X’116D’ is removed.

 The EXCSAT command also contains the EXTNAM (External Name) object,

which is often placed in diagnostic information on the IBM mainframe

database management system. It consists of a 20-byte application ID

followed by an 8-byte process ID (or 4-byte process ID and 4-byte thread

ID). It is represented by code point X’115E’, and in this example its value is

db2bp padded with blanks followed by 000C50CC. On a Linux or UNIX IBM

data server client, this value can be correlated with the ps command,

which returns process status information about active processes to

standard output.

ACCRDB

The ACCRDB command contains the RDB_NAME in the RDBNAM object,

which is code point X’2110’. The ACCRDB command follows the EXCSAT

command in the first buffer. Within the ACCRDB command, the values

X’E2E3D3C5C3F1’ are translated to STLEC1 once the X’2110’ is removed.

This corresponds to the target database name field in the DCS directory.

430 Troubleshooting and Tuning Database Performance

The accounting string has code point X’2104’.

The code set configured for the DB2 Connect workstation is shown by

locating the CCSID object CCSIDSBC (CCSID for single-byte characters)

with code point X’119C’ in the ACCRDB command. In this example, the

CCSIDSBC is X’0333’, which is 819.

The additional objects CCSIDDBC (CCSID for double-byte characters) and

CCSIDMBC (CCSID for mixed-byte characters), with code points X’119D’

and X’119E’ respectively, are also present in the ACCRDB command. In this

example, the CCSIDDBC is X’04B0’, which is 1200, and the CCSIDMBC is

X’0333’, which is 819, respectively.

EXCSATRD and ACCRDBRM

CCSID values are also returned from the IBM mainframe database server

in the Access RDB Reply Message (ACCRDBRM) within the second buffer.

This buffer contains the EXCSATRD followed by the ACCRDBRM. The

example output file contains two CCSID values for the IBM mainframe

database server system. The values are 1208 (for both single-byte and

mixed byte characters) and 1200 (for double-byte characters).

 If DB2 Connect does not recognize the code page coming back from the

IBM mainframe database server, SQLCODE -332 will be returned to the

user with the source and target code pages. If the IBM mainframe database

server doesn’t recognize the code set sent from DB2 Connect, it will return

VALNSPRM (Parameter Value Not Supported, with DDM code point

X’1252’), which gets translated into SQLCODE -332 for the user.

The ACCRDBRM also contains the parameter PRDID (Product-specific

Identifier, with code point X’112E’). The value is X’C4E2D5F0F8F0F1F5’

which is DSN08015 in EBCDIC. According to standards, DSN is DB2 for

z/OS. The version number is also indicated. ARI is DB2 Server for VSE &

VM, SQL is DB2 database or DB2 Connect, and QSQ is DB2 for IBM i.

Trace output file samples

The following figures show sample output illustrating some DRDA data streams

exchanged between DB2 Connect workstations and a host or System i database

server. From the user’s viewpoint, a CONNECT TO database command has been

issued using the command line processor (CLP).

Figure 35 on page 432 uses DB2 Connect Enterprise Edition Version 9.1 and DB2

for z/OS Version 8 over a TCP/IP connection.

Chapter 5. Tools for troubleshooting 431

1 data DB2 UDB DRDA Communication Manager sqljcSend fnc (3.3.54.5.0.100)

 pid 807116 tid 1 cpid -1 node 0 sec 0 nsec 0 probe 100

 bytes 16

 Data1 (PD_TYPE_UINT,8) unsigned integer:

 233

2 data DB2 UDB DRDA Communication Manager sqljcSend fnc (3.3.54.5.0.1177)

 pid 807116 tid 1 cpid -1 node 0 sec 0 nsec 19532 probe 1177

 bytes 250

 SEND BUFFER(AR):

 EXCSAT RQSDSS (ASCII) (EBCDIC)

 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

 0000 00C3D041000100BD 1041007F115E8482 ...A.....A...^.. .C}........".;db

 0010 F282974040404040 4040404040404040 ...@@@@@@@@@@@@@ 2bp

 0020 4040F0F0F0C3F5F0 C3C3F0F0F0000000 @@.............. 000C50CC000...

 0030 0000000000000000 0000000000000000

 0040 0000000000000000 000000000060F0F0 `.. -00

 0050 F0F1A2A495404040 4040404040404040 @@@@@@@@@@@ 01sun

 0060 4040404040404040 4040404040404040 @@@@@@@@@@@@@@@@

 0070 C4C5C3E5F8404040 F0A2A49540404040 @@@....@@@@ DECV8 0sun

 0080 4040404040404040 4000181404140300 @@@@@@@@@.......

 0090 0724070008147400 05240F0008144000 .$....t..$....@.

 00A0 08000E1147D8C4C2 F261C1C9E7F6F400 G....a...... QDB2/AIX64.

 00B0 08116D9481A29200 0C115AE2D8D3F0F9 ..m.......Z..... .._mask...]SQL09

 00C0 F0F0F0 ... 000

 ACCSEC RQSDSS (ASCII) (EBCDIC)

 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

 0000 0026D00100020020 106D000611A20003 .&..... .m...... ..}......_...s..

 0010 00162110E2E3D3C5 C3F1404040404040 ..!.......@@@@@@ STLEC1

 0020 404040404040 @@@@@@

3 data DB2 UDB DRDA Communication Manager sqljcReceive fnc (3.3.54.3.0.100)

 pid 807116 tid 1 cpid -1 node 0 sec 0 nsec 110546200 probe 100

 bytes 12

 Data1 (PD_TYPE_UINT,4) unsigned integer:

 105

4 data DB2 UDB DRDA Communication Manager sqljcReceive fnc (3.3.54.3.0.1178)

 pid 807116 tid 1 cpid -1 node 0 sec 0 nsec 110549755 probe 1178

 bytes 122

 RECEIVE BUFFER(AR):

 EXCSATRD OBJDSS (ASCII) (EBCDIC)

 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

 0000 0059D04300010053 1443000F115EE5F8 .Y.C...S.C...^.. ..}..........;V8

 0010 F1C14BE2E3D3C5C3 F100181404140300 ..K............. 1A.STLEC1.......

 0020 0724070007147400 05240F0007144000 .$....t..$....@.

 0030 0700081147D8C4C2 F20014116DE2E3D3 G.......m... QDB2..._STL

 0040 C5C3F14040404040 4040404040000C11 ...@@@@@@@@@@... EC1 ...

 0050 5AC4E2D5F0F8F0F1 F5 Z........]DSN08015

 ACCSECRD OBJDSS (ASCII) (EBCDIC)

 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

 0000 0010D0030002000A 14AC000611A20003 }..........s..

5 data DB2 UDB DRDA Communication Manager sqljcSend fnc (3.3.54.5.0.100)

 pid 807116 tid 1 cpid -1 node 0 sec 0 nsec 110656806 probe 100

 bytes 16

 Data1 (PD_TYPE_UINT,8) unsigned integer:

 233

Figure 35. Example of Trace Output (TCP/IP connection)

432 Troubleshooting and Tuning Database Performance

6 data DB2 UDB DRDA Communication Manager sqljcSend fnc (3.3.54.5.0.1177)

 pid 807116 tid 1 cpid -1 node 0 sec 0 nsec 110659711 probe 1177

 bytes 250

 SEND BUFFER(AR):

 SECCHK RQSDSS (ASCII) (EBCDIC)

 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

 0000 003CD04100010036 106E000611A20003 .<.A...6.n...... ..}......>...s..

 0010 00162110E2E3D3C5 C3F1404040404040 ..!.......@@@@@@ STLEC1

 0020 404040404040000C 11A1D9858799F485 @@@@@@.......... Regr4e

 0030 A599000A11A09585 A6A39695 vr....newton

 ACCRDB RQSDSS (ASCII) (EBCDIC)

 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

 0000 00ADD001000200A7 20010006210F2407 !.$. ..}....x........

 0010 00172135C7F9F1C1 F0C4F3C14BD7C1F8 ..!5........K... G91A0D3A.PA8

 0020 F806030221064600 162110E2E3D3C5C3 !.F..!...... 8..........STLEC

 0030 F140404040404040 4040404040000C11 .@@@@@@@@@@@@... 1 ...

 0040 2EE2D8D3F0F9F0F0 F0000D002FD8E3C4 /... .SQL09000....QTD

 0050 E2D8D3C1E2C30016 00350006119C0333 5.....3 SQLASC..........

 0060 0006119D04B00006 119E0333003C2104 3.

7 data DB2 UDB DRDA Communication Manager sqljcReceive fnc (3.3.54.3.0.100)

 pid 807116 tid 1 cpid -1 node 0 sec 0 nsec 259908001 probe 100

 bytes 12

 Data1 (PD_TYPE_UINT,4) unsigned integer:

 176

8 data DB2 UDB DRDA Communication Manager sqljcReceive fnc (3.3.54.3.0.1178)

 pid 807116 tid 1 cpid -1 node 0 sec 0 nsec 259911584 probe 1178

 bytes 193

 RECEIVE BUFFER(AR):

 SECCHKRM RPYDSS (ASCII) (EBCDIC)

 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

 0000 0015D0420001000F 1219000611490000 ...B.........I.. ..}.............

 0010 000511A400 u.

 ACCRDBRM RPYDSS (ASCII) (EBCDIC)

 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

 0000 009BD00200020095 2201000611490000 "....I.. ..}....n........

 0010 000D002FD8E3C4E2 D8D3F3F7F0000C11 .../............ QTDSQL370...

 0020 2EC4E2D5F0F8F0F1 F500160035000611 5... .DSN08015.......

 0030 9C04B80006119E04 B80006119D04B000

 0040 0C11A0D5C5E6E3D6 D540400006212524 @@..!%$...NEWTON

 0050 34001E244E000624 4C00010014244D00 4..$N..$L....$M. +...<.....(.

 0060 06244FFFFF000A11 E8091E768301BE00 .$O........v.... ..!.....Y...c...

 0070 2221030000000005 68B3B8C7F9F1C1F0 "!......h....... G91A0

 0080 C4F3C1D7C1F8F840 4040400603022106 @@@@...!. D3APA88

 0090 46000A11E8091E76 831389 F......v... Y...c.i

9 data DB2 UDB DRDA Communication Manager sqljcSend fnc (3.3.54.5.0.100)

 pid 807116 tid 1 cpid -1 node 0 sec 2 nsec 364420503 probe 100

 bytes 16

 Data1 (PD_TYPE_UINT,8) unsigned integer:

 10

Figure 36. Example of Trace Output (TCP/IP connection) continued

Chapter 5. Tools for troubleshooting 433

10 data DB2 UDB DRDA Communication Manager sqljcSend fnc (3.3.54.5.0.1177)

 pid 807116 tid 1 cpid -1 node 0 sec 2 nsec 364440751 probe 1177

 bytes 27

 SEND BUFFER(AR):

 RDBCMM RQSDSS (ASCII) (EBCDIC)

 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

 0000 000AD00100010004 200E }.......

11 data DB2 UDB DRDA Communication Manager sqljcReceive fnc (3.3.54.3.0.100)

 pid 807116 tid 1 cpid -1 node 0 sec 2 nsec 475009631 probe 100

 bytes 12

 Data1 (PD_TYPE_UINT,4) unsigned integer:

 54

12 data DB2 UDB DRDA Communication Manager sqljcReceive fnc (3.3.54.3.0.1178)

 pid 807116 tid 1 cpid -1 node 0 sec 2 nsec 475014579 probe 1178

 bytes 71

 RECEIVE BUFFER(AR):

 ENDUOWRM RPYDSS (ASCII) (EBCDIC)

 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

 0000 002BD05200010025 220C000611490004 .+.R...%"....I.. ..}.............

 0010 00162110E2E3D3C5 C3F1404040404040 ..!.......@@@@@@ STLEC1

 0020 4040404040400005 211501 @@@@@@..!..

 SQLCARD OBJDSS (ASCII) (EBCDIC)

 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

 0000 000BD00300010005 2408FF $.. ..}........

13 data DB2 UDB DRDA Communication Manager sqljcSend fnc (3.3.54.5.0.100)

 pid 807116 tid 1 cpid -1 node 0 sec 5 nsec 721710319 probe 100

 bytes 16

 Data1 (PD_TYPE_UINT,8) unsigned integer:

 126

14 data DB2 UDB DRDA Communication Manager sqljcSend fnc (3.3.54.5.0.1177)

 pid 807116 tid 1 cpid -1 node 0 sec 5 nsec 721727276 probe 1177

 bytes 143

 SEND BUFFER(AR):

 EXCSQLIMM RQSDSS (ASCII) (EBCDIC)

 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

 0000 0053D0510001004D 200A00442113E2E3 .S.Q...M ..D!... ..}....(......ST

 0010 D3C5C3F140404040 4040404040404040 @@@@@@@@@@@@ LEC1

 0020 D5E4D3D3C9C44040 4040404040404040 @@@@@@@@@@ NULLID

 0030 4040E2D8D3C3F2C6 F0C1404040404040 @@........@@@@@@ SQLC2F0A

 0040 4040404041414141 41484C5600CB0005 @@@@AAAAAHLV.... <.....

 0050 2105F1 !.. ..1

 SQLSTT OBJDSS (ASCII) (EBCDIC)

 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

 0000 002BD00300010025 2414000000001B64 .+.....%$......d ..}.............

 0010 656C657465206672 6F6D206464637375 elete from ddcsu .%......?_......

 0020 73312E6D79746162 6C65FF s1.mytable. ..._`./.%..

15 data DB2 UDB DRDA Communication Manager sqljcReceive fnc (3.3.54.3.0.100)

 pid 807116 tid 1 cpid -1 node 0 sec 5 nsec 832901261 probe 100

 bytes 12

 Data1 (PD_TYPE_UINT,4) unsigned integer:

 102

Figure 37. Example of Trace Output (TCP/IP connection) continued

434 Troubleshooting and Tuning Database Performance

Subsequent buffer information for DRDA traces

You can analyze subsequent send and receive buffers for additional information.

The next request contains a commit. The commit command instructs the IBM

mainframe database server management system to commit the current unit of

work. The fourth buffer is received from the IBM mainframe database server

database management system as a result of a commit or rollback. It contains the

End Unit of Work Reply Message (ENDUOWRM), which indicates that the current

unit of work has ended.

16 data DB2 UDB DRDA Communication Manager sqljcReceive fnc (3.3.54.3.0.1178)

 pid 807116 tid 1 cpid -1 node 0 sec 5 nsec 832906528 probe 1178

 bytes 119

 RECEIVE BUFFER(AR):

 SQLCARD OBJDSS (ASCII) (EBCDIC)

 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

 0000 0066D00300010060 240800FFFFFF3434 .f.....`$.....44 ..}....-........

 0010 3237303444534E58 4F544C2000FFFFFE 2704DSNXOTL +.!.<.....

 0020 0C00000000000000 00FFFFFFFF000000

 0030 0000000000572020 2057202020202020 W W

 0040 001053544C454331 2020202020202020 ..STLEC1 <...........

 0050 2020000F44444353 5553312E4D595441 ..DDCSUS1.MYTA (...

 0060 424C450000FF BLE... .<....

17 data DB2 UDB DRDA Communication Manager sqljcSend fnc (3.3.54.5.0.100)

 pid 807116 tid 1 cpid -1 node 0 sec 5 nsec 833156953 probe 100

 bytes 16

 Data1 (PD_TYPE_UINT,8) unsigned integer:

 10

18 data DB2 UDB DRDA Communication Manager sqljcSend fnc (3.3.54.5.0.1177)

 pid 807116 tid 1 cpid -1 node 0 sec 5 nsec 833159843 probe 1177

 bytes 27

 SEND BUFFER(AR):

 RDBRLLBCK RQSDSS (ASCII) (EBCDIC)

 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

 0000 000AD00100010004 200F }.......

19 data DB2 UDB DRDA Communication Manager sqljcReceive fnc (3.3.54.3.0.100)

 pid 807116 tid 1 cpid -1 node 0 sec 5 nsec 943302832 probe 100

 bytes 12

 Data1 (PD_TYPE_UINT,4) unsigned integer:

 54

20 data DB2 UDB DRDA Communication Manager sqljcReceive fnc (3.3.54.3.0.1178)

 pid 807116 tid 1 cpid -1 node 0 sec 5 nsec 943306288 probe 1178

 bytes 71

 RECEIVE BUFFER(AR):

 ENDUOWRM RPYDSS (ASCII) (EBCDIC)

 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

 0000 002BD05200010025 220C000611490004 .+.R...%"....I.. ..}.............

 0010 00162110E2E3D3C5 C3F1404040404040 ..!.......@@@@@@ STLEC1

 0020 4040404040400005 211502 @@@@@@..!..

 SQLCARD OBJDSS (ASCII) (EBCDIC)

 0 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF 0123456789ABCDEF

 0000 000BD00300010005 2408FF $.. ..}........

Figure 38. Example of Trace Output (TCP/IP connection) continued

Chapter 5. Tools for troubleshooting 435

In this example, trace entry 12 contains a null SQLCA, indicated by DDM code

point X’2408’ followed by X’FF’. A null SQLCA (X’2408FF’) indicates success

(SQLCODE 0).

Figure 35 on page 432 shows an example of a receive buffer containing an error

SQLCA at trace entry 16.

Control Center traces

Before attempting to trace a problem in the Control Center, it is advisable to first

ensure that the same problem does not occur when the equivalent actions are

performed via explicit commands from the DB2 command prompt.

Often when you are performing a task within the Control Center (or one of the

other GUI tools which can be started from the Control Center), you will see a

″Show Command″ button, which provides the exact syntax for the command

which the tool will use. If that exact command succeeds from the DB2 command

prompt, but fails when executed within the GUI tool, then it is appropriate to

obtain a Control Center trace.

In order to obtain a trace of a problem which is only reproducible within the

Control Center, start the Control Center as follows:

db2cc -tf filename

This turns on the Control Center Trace and saves the output of the trace to the

specified file. The output file is saved to <DB2 install path>\sqllib\tools on

Windows and to /home/<userid>/sqllib/tools on UNIX and Linux.

Note: When the Control Center has been started with tracing enabled, recreate the

problem using as few steps as possible. Try to avoid clicking on unnecessary or

unrelated items in the tool. Once you have recreated the problem, close the Control

Center (and any other GUI tools which you opened to recreate the problem).

The resulting trace file must be sent to IBM Software Support for analysis.

JDBC trace files

Obtaining traces of applications that use the DB2 JDBC Type 2

Driver for Linux, UNIX and Windows

This task describes how to obtain a trace of an application using the DB2 JDBC

Type 2 Driver for Linux, UNIX, and Windows systems.

This type of trace is applicable for situations where a problem is encountered in:

v a JDBC application which uses the DB2 JDBC Type 2 Driver for Linux, UNIX

and Windows (DB2 JDBC Type 2 Driver)

v DB2 JDBC stored procedures.

Note: There are lots of keywords that can be added to the db2cli.ini file that can

affect application behavior. These keywords can resolve or be the cause of

application problems. There are also some keywords that are not covered in the

CLI documentation. Those are only available from DB2 Support. If you have

keywords in your db2cli.ini file that are not documented, it is likely that they were

recommended by DB2 Support. Internally, the DB2 JDBC Type 2 Driver makes use

of the DB2 CLI driver for database access. For example, the Java getConnection()

method is internally mapped by the DB2 JDBC Type 2 Driver to the DB2 CLI

436 Troubleshooting and Tuning Database Performance

SQLConnect() function. As a result, Java developers might find a DB2 CLI trace to

be a useful complement to the DB2 JDBC trace.

1. Create a path for the trace files. It is important to create a path that every user

can write to.

For example, on Windows:

 mkdir c:\temp\trace

On Linux and UNIX:

 mkdir /tmp/trace

 chmod 777 /tmp/trace

2. Update the CLI configuration keywords. There are two methods to accomplish

this:

v Manually edit the db2cli.ini file. The location of the db2cli.ini file might

change based on whether the Microsoft® ODBC Driver Manager is used, the

type of data source names (DSN) used, the type of client or driver being

installed, and whether the registry variable DB2CLIINIPATH is set. For more

information, see the “db2cli.ini initialization file” topic in the Call Level

Interface Guide and Reference, Volume 1.

a. Open up the db2cli.ini file in a plain text editor.

b. Add the following section to the file (if the COMMON section already

exists, just append the variables):

 [COMMON]

 JDBCTrace=1

 JDBCTracePathName=<path>

 JDBCTraceFlush=1

where <path> is, for example, C:\temp\trace on Windows, or /tmp/trace

on Linux or UNIX operating systems.

c. Save the file with at least one blank line at the end of the file. (This

prevents some parsing errors.)
v Use UPDATE CLI CFG commands to update the db2cli.ini file. Issue the

following commands:

 db2 UPDATE CLI CFG FOR SECTION COMMON USING JDBCTrace 1

 db2 UPDATE CLI CFG FOR SECTION COMMON USING JDBCTracePathName <path>

where <path> is, for example, C:\temp\trace on Windows, or /tmp/trace on

Linux or UNIX operating systems.

 db2 UPDATE CLI CFG FOR SECTION COMMON USING JDBCTraceFlush 1

When you use the trace facility to diagnose application issues, keep in mind

that it does have an affect on application performance and that it affects all

applications, not only your test application. This is why it is important to

remember to turn it off after the problem has been identified.

3. Issue the following command to verify that the correct keywords are set and

being picked up:

 db2 GET CLI CFG FOR SECTION COMMON

4. Restart the application.

The db2cli.ini file is only read when the application starts, therefore, for any

changes to take effect, the application must be restarted.

If tracing a JDBC stored procedure, this means restarting the DB2 instance.

5. Capture the error. Run the application until the error is generated, then

terminate the application. If it is possible, reduce the situation, such that the

only JDBC applications that are running at the time of trace are those related to

the problem recreation. This makes for much clearer trace files.

Chapter 5. Tools for troubleshooting 437

6. Disable the JDBC trace.

Set the JDBCTrace=0 keyword in the [COMMON] section of the db2cli.ini

manually, or issue:

 db2 UPDATE CLI CFG FOR SECTION COMMON USING Trace 0

 db2 UPDATE CLI CFG FOR SECTION COMMON USING JDBCTrace 0

7. Restart any applications that are running and tracing.

8. Collect the trace files.

The JDBC trace files will be written to the path specified in the

JDBCTracePathName keyword. The filenames generated will all end with a .trc

extension. All files generated in the trace path at the time of the problem

recreation are required.

Obtaining traces of applications that use the DB2 Universal

JDBC Driver

This task will describe how to obtain a trace of an application that uses the DB2

Universal JDBC Driver.

If you have an SQLJ or JDBC application that is using the DB2 Universal JDBC

Driver, a JDBC trace can be enabled in several different ways:

v If you use the DataSource interface to connect to a data source, then use the

DataSource.setTraceLevel() and DataSource.setTraceFile() method to enable

tracing.

v If you use the DriverManager interface to connect to a data source, the easiest

way to enable tracing will be to set the logWriter on DriverManager before

obtaining a connection.

For example:

DriverManager.setLogWriter(new PrintWriter(new FileOutputStream("trace.txt")));

v If you are using the DriverManager interface, you can alternatively specify the

traceFile and traceLevel properties as part of the URL when you load the driver.

For example:

String databaseURL =

"jdbc:db2://hal:50000/sample:traceFile=c:/temp/foobar.txt;" ;

CLI trace files

The CLI trace captures information about applications that access the DB2 CLI

driver. The CLI trace offers very little information about the internal workings of

the DB2 CLI driver.

This type of trace is applicable for situations where a problem is encountered in:

v a CLI application

v an ODBC application (since ODBC applications use the DB2 CLI interface to

access DB2)

v DB2 CLI stored procedures

v JDBC applications and stored procedures

When diagnosing ODBC applications it is often easiest to determine the problem

by using an ODBC trace or DB2 CLI trace. If you are using an ODBC driver

manager, it will likely provide the capability to take an ODBC trace. Consult your

driver manager documentation to determine how to enable ODBC tracing. DB2

CLI traces are DB2-specific and will often contain more information than a generic

438 Troubleshooting and Tuning Database Performance

ODBC trace. Both traces are usually quite similar, listing entry and exit points for

all CLI calls from an application; including any parameters and return codes to

those calls.

The DB2 JDBC Type 2 Driver for Linux, UNIX and Windows (DB2 JDBC Type 2

Driver) depends on the DB2 CLI driver to access the database. Consequently, Java

developers might also want to enable DB2 CLI tracing for additional information

on how their applications interact with the database through the various software

layers. DB2 JDBC and DB2 CLI trace options (though both set in the db2cli.ini file)

are independent of each other.

Obtaining CLI traces

To turn on a CLI trace you must enable a set of CLI configuration keywords.

Before you begin

Note: There are lots of keywords that can be added to the db2cli.ini file that can

affect application behavior. These keywords can resolve or be the cause of

application problems. There are also some keywords that are not covered in the

CLI documentation. Those are only available from IBM Software Support. If you

have keywords in your db2cli.ini file that are not documented, it is likely that they

were recommended by the IBM Software Support team.

About this task

When you use the trace facility to diagnose application issues, keep in mind that it

does have an impact on application performance and that it affects all applications,

not only your test application. This is why it is important to remember to turn it

off after the problem has been identified.

Procedure

To obtain a CLI trace:

1. Create a path for the trace files.

It is important to create a path that every user can write to. For example, on

Windows operating systems:

 mkdir c:\temp\trace

On Linux and UNIX operating systems:

 mkdir /tmp/trace

 chmod 777 /tmp/trace

2. Update the CLI configuration keywords.

This can be done by either manually editing the db2cli.ini file or using the

UPDATE CLI CFG command.

v To manually edit the db2cli.ini file:

a. Open up the db2cli.ini file in a plain text editor. The location of the

db2cli.ini file might change based on whether the Microsoft ODBC Driver

Manager is used, the type of data source names (DSN) used, the type of

client or driver being installed, and whether the registry variable

DB2CLIINIPATH is set. For more information, see the “db2cli.ini

initialization file” topic in the Call Level Interface Guide and Reference,

Volume 1.

b. Add the following section to the file (or if the COMMON section already

exists, just append the variables):

Chapter 5. Tools for troubleshooting 439

[COMMON]

Trace=1

TracePathName=path

TraceComm=1

TraceFlush=1

TraceTimeStamp=1

where path is, for example, C:\temp\trace on Windows, or /tmp/trace on

Linux and UNIX.

c. Save the file with at least one blank line at the end of the file. (This

prevents some parsing errors.)
v To use the UPDATE CLI CFG command to update the CLI configuration

keywords, issue the following commands:

db2 UPDATE CLI CFG FOR SECTION COMMON USING Trace 1

db2 UPDATE CLI CFG FOR SECTION COMMON USING TracePathName path

db2 UPDATE CLI CFG FOR SECTION COMMON USING TraceComm 1

db2 UPDATE CLI CFG FOR SECTION COMMON USING TraceFlush 1

db2 UPDATE CLI CFG FOR SECTION COMMON USING TraceTimeStamp 3

where path is, for example, C:\temp\trace on Windows, or /tmp/trace on

Linux and UNIX.
3. Confirm the db2cli.ini configuration.

Issue the following command to verify that the correct keywords are set and

being picked up:

db2 GET CLI CFG FOR SECTION COMMON

4. Restart the application.

The db2cli.ini file is only read on application start, therefore, for any changes to

take effect, the application must be restarted.

If tracing a CLI stored procedure, this means restarting the DB2 instance.

5. Capture the error.

Run the application until the error is generated, then terminate the application.

If it is possible to reduce the situation, such that only applications related to the

problem recreation are running at the time of the trace, this makes for much

clearer trace analysis.

6. Disable the CLI trace.

Set the Trace keyword to a value of zero in the [COMMON] section of the

db2cli.ini manually, or issue:

db2 UPDATE CLI CFG FOR SECTION COMMON USING Trace 0

7. (Optional) Restart any applications that might be running and tracing.

Results

The CLI trace files will be written to the path specified in the TracePathName

keyword. The filenames have a format of ppidttid.cli where pid is the operating

system assigned process ID, and tid is a numeric counter (starting at 0) for each

thread generated by the application process. For example, p1234t1.cli. If you are

working with IBM Software Support to diagnose a problem, they will want to see

all of the files that were generated in the trace path.

Interpreting input and output parameters in CLI trace files

As is the case with any regular function, DB2 CLI functions have input and output

parameters. In a DB2 CLI trace, these input and output parameters can be seen,

providing details about how each application is invoking a particular CLI API. The

440 Troubleshooting and Tuning Database Performance

input and output parameters for any CLI function, as shown in the CLI trace, can

be compared to the definition of that CLI function in the CLI Reference sections of

the documentation.

Here is a snippet from a CLI trace file:

SQLConnect(hDbc=0:1, szDSN="sample", cbDSN=-3, szUID="",

 cbUID=-3, szAuthStr="", cbAuthStr=-3)

 ---> Time elapsed - +6.960000E-004 seconds

SQLRETURN SQLConnect (

 SQLHDBC ConnectionHandle, /* hdbc */

 SQLCHAR *FAR ServerName, /* szDSN */

 SQLSMALLINT NameLength1, /* cbDSN */

 SQLCHAR *FAR UserName, /* szUID */

 SQLSMALLINT NameLength2, /* cbUID */

 SQLCHAR *FAR Authentication, /* szAuthStr */

 SQLSMALLINT NameLength3); /* cbAuthStr */

The initial call to the CLI function shows the input parameters and the values

being assigned to them (as appropriate).

When CLI functions return, they show the resultant output parameters, for

example:

SQLAllocStmt(phStmt=1:1)

 <--- SQL_SUCCESS Time elapsed - +4.444000E-003 seconds

In this case, the CLI function SQLAllocStmt() is returning an output parameter

phStmt with a value of ″1:1″ (connection handle 1, statement handle 1).

Analyzing Dynamic SQL in CLI traces

DB2 CLI Traces also show how dynamic SQL is performed by the declaration and

use of parameter markers in SQLPrepare() and SQLBindParameter(). This gives

you the ability to determine at runtime what SQL statements will be performed.

The following trace entry shows the preparation of the SQL statement (a question

mark (?) or a colon followed by a name (:name) denotes a parameter marker):

 SQLPrepare(hStmt=1:1, pszSqlStr=

 "select * from employee where empno = ?",

 cbSqlStr=-3)

 ---> Time elapsed - +1.648000E-003 seconds

(StmtOut="select * from employee where empno = ?")

SQLPrepare()

 <--- SQL_SUCCESS Time elapsed - +5.929000E-003 seconds

The following trace entry shows the binding of the parameter marker as a CHAR

with a maximum length of 7:

SQLBindParameter(hStmt=1:1, iPar=1, fParamType=SQL_PARAM_INPUT,

fCType=SQL_C_CHAR, fSQLType=SQL_CHAR, cbColDef=7, ibScale=0,

 rgbValue=&00854f28, cbValueMax=7, pcbValue=&00858534)

 ---> Time elapsed - +1.348000E-003 seconds

SQLBindParameter()

 <--- SQL_SUCCESS Time elapsed - +7.607000E-003 seconds

The dynamic SQL statement is now executed. The rbgValue=″000010″ shows the

value that was substituted for the parameter marker by the application at run time:

SQLExecute(hStmt=1:1)

 ---> Time elapsed - +1.317000E-003 seconds

(iPar=1, fCType=SQL_C_CHAR, rgbValue="000010" - X"303030303130",

 pcbValue=6, piIndicatorPtr=6)

 sqlccsend(ulBytes - 384)

Chapter 5. Tools for troubleshooting 441

sqlccsend(Handle - 14437216)

 sqlccsend() - rc - 0, time elapsed - +1.915000E-003

 sqlccrecv()

 sqlccrecv(ulBytes - 1053) - rc - 0, time elapsed - +8.808000E-003

SQLExecute()

 <--- SQL_SUCCESS Time elapsed - +2.213300E-002 seconds

Interpreting timing information in CLI traces

There are a few ways to gather timing information from a DB2 CLI trace. By

default, a CLI trace captures the time spent in the application since the last CLI

API call was made on a particular thread.

As well as the time spent in DB2, it includes the network time between the client

and server. For example:

SQLAllocStmt(hDbc=0:1, phStmt=&0012ee48)

 ---> Time elapsed - +3.964187E+000 seconds

(This time value indicates the time spent in the application since last CLI API was

called)

SQLAllocStmt(phStmt=1:1)

 <--- SQL_SUCCESS Time elapsed - +4.444000E-003 seconds

(Since the function has completed, this time value indicates the time spent in DB2,

including the network time)

The other way to capture timing information is using the CLI keyword:

TraceTimeStamp. This keyword will generate a timestamp for every invocation and

result of a DB2 CLI API call. The keyword has 4 display options: no timestamp

information, processor ticks and ISO timestamp, processor ticks, or ISO timestamp.

This can be very useful when working with timing related problems such as

CLI0125E - function sequence errors. It can also be helpful when attempting to

determine which event happened first when working with multithreaded

applications.

Interpreting unknown values in CLI traces

It is possible that a DB2 CLI function might return ″Unknown value″ as a value for

an input parameter in a CLI trace.

This can occur if the DB2 CLI driver is looking for something specific for that

input parameter, yet the application provides a different value. For example, this

can occur if you’re following outdated definitions of CLI functions or are using

CLI functions which have been deprecated.

It is also possible that you could see a CLI function call return an ″Option value

changed″ or a ″Keyset Parser Return Code″. This is a result of the keyset cursor

displaying a message, such as when the cursor is being downgraded to a static

cursor for some specific reason.

SQLExecDirect(hStmt=1:1, pszSqlStr="select * from org", cbSqlStr=-3)

 ---> Time elapsed - +5.000000E-002 seconds

(StmtOut="select * from org")

(COMMIT=0)

(StmtOut=" SELECT A.TABSCHEMA, )

(StmtOut=" SELECT A.TABSCHEMA, )

(Keyset Parser Return Code=1100)

SQLExecDirect()

 <--- SQL_SUCCESS_WITH_INFO Time elapsed - +1.06E+001 seconds

442 Troubleshooting and Tuning Database Performance

In the above CLI trace, the keyset parser has indicated a return code of 1100, which

indicates that there is not a unique index or primary key for the table, and

therefore a keyset cursor cannot be created. These return codes are not externalized

and thus at this point you must contact IBM Software Support if you want further

information about the meaning of the return code.

Calling SQLError or SQLDiagRec will indicate that the cursor type was changed.

The application should then query the cursor type and concurrency to determine

which attribute was changed.

Interpreting multi-threaded CLI trace output

CLI traces can trace multi-threaded applications. The best way to trace a

multithreaded application is by using the CLI keyword: TracePathName. This will

produce trace files named p<pid>t<tid>.cli where <tid> is the actual thread id of

the application.

If you must know what the actual thread id is, this information can be seen in the

CLI Trace Header:

[Process: 3500, Thread: 728]

[Date & Time: 02/17/2006 04:28:02.238015]

[Product: QDB2/NT DB2 v9.1.0.190]

...

You can also trace a multithreaded application to one file, using the CLI keyword:

TraceFileName. This method will generate one file of your choice, but can be

cumbersome to read, as certain API’s in one thread can be executed at the same

time as another API in another thread, which could potentially cause some

confusion when reviewing the trace.

It is usually recommended to turn TraceTimeStamp on so that you can determine

the true sequence of events by looking at the time that a certain API was executed.

This can be very useful for investigating problems where one thread caused a

problem in another thread (for example, CLI0125E - Function sequence error).

Platform-specific tools

Diagnostic tools (Windows)

Three useful diagnostic tools on Windows systems are described.

The following diagnostic tools are available for Windows operating systems:

Event viewer, performance monitor, and other administrative tools

The Administrative Tools folder provides a variety of diagnostic

information, including access to the event log and access to performance

information.

Task Manager

The Task Manager shows all of the processes running on the Windows

server, along with details about memory usage. Use this tool to find out

which DB2 processes are running, and to diagnose performance problems.

Using this tool, you can determine memory usage, memory limits, swapper

space used, and memory leakage for a process.

 To open the Task Manager, press Ctrl + Alt + Delete, and click Task

Manager from the available options.

Chapter 5. Tools for troubleshooting 443

Dr. Watson

The Dr. Watson utility is invoked in the event of a General Protection Fault

(GPF). It logs data that might help in diagnosing a problem, and saves this

information to a file. You must start this utility by typing drwatson on the

command line.

Diagnostic tools (Linux and UNIX)

This section describes some essential commands for troubleshooting and

performance monitoring on Linux and UNIX platforms.

For details on any one of these commands, precede it with ″man″ on the command

line. Use these commands to gather and process data that can help identify the

cause of a problem you are having with your system. Once the data is collected, it

can be examined by someone who is familiar with the problem, or provided to

IBM Software Support if requested.

Troubleshooting commands (AIX)

The following AIX system commands are useful for DB2 troubleshooting:

errpt The errpt command reports system errors such as hardware errors and

network failures.

v For an overview that shows one line per error, use errpt

v For a more detailed view that shows one page for each error, use errpt

-a

v For errors with an error number of ″1581762B″, use errpt -a -j 1581762B

v To find out if you ran out of paging space in the past, use errpt | grep

SYSVMM

v To find out if there are token ring card or disk problems, check the errpt

output for the phrases ″disk″ and ″tr0″

lsps The lsps -a command monitors and displays how paging space is being

used.

lsattr This command displays various operating system parameters. For example,

use the following command to find out the amount of real memory on the

database partition:

lsattr -l sys0 -E

xmperf

For AIX systems using Motif, this command starts a graphical monitor that

collects and displays system-related performance data. The monitor

displays three-dimensional diagrams for each database partition in a single

window, and is good for high-level monitoring. However, if activity is low,

the output from this monitor is of limited value.

spmon

If you are using system partitioning as part of the Parallel System Support

Program (PSSP), you might need to check if the SP Switch is running on all

workstations. To view the status of all database partitions, use one of the

following commands from the control workstation:

v spmon -d for ASCII output

v spmon -g for a graphical user interface

Alternatively, use the command netstat -i from a database partition

workstation to see if the switch is down. If the switch is down, there is an

asterisk (*) beside the database partition name. For example:

444 Troubleshooting and Tuning Database Performance

css0* 65520 <Link>0.0.0.0.0.0

The asterisk does not display if the switch is up.

Troubleshooting commands (Linux and UNIX)

The following system commands are for all Linux and UNIX systems, including

AIX, unless otherwise noted.

df The df command lets you see if file systems are full.

v To see how much free space is in all file systems (including mounted

ones), use df

v To see how much free space is in all file systems with names containing

″dev″, use df | grep dev

v To see how much free space is in your home file system, use df /home

v To see how much free space is in the file system ″tmp″, use df /tmp

v To see if there is enough free space on the machine, check the output

from the following commands: df /usr , df /var , df /tmp , and df

/home

truss This command is useful for tracing system calls in one or more processes.

pstack Available for Solaris 2.5.1 or later, the /usr/proc/bin/pstack command

displays stack traceback information. The /usr/proc/bin directory contains

other tools for debugging processes that seem to be suspended.

Performance Monitoring Tools

The following tools are available for monitoring the performance of your system.

vmstat

This command is useful for determining if something is suspended or just

taking a long time. You can monitor the paging rate, found under the page

in (pi) and page out (po) columns. Other important columns are the

amount of allocated virtual storage (avm) and free virtual storage (fre).

iostat This command is useful for monitoring I/O activities. You can use the read

and write rate to estimate the amount of time required for certain SQL

operations (if they are the only activity on the system).

netstat

This command lets you know the network traffic on each database

partition, and the number of error packets encountered. It is useful for

isolating network problems.

system file

Available for Solaris operating system, the /etc/system file contains

definitions for kernel configuration limits such as the maximum number of

users allowed on the system at a time, the maximum number of processes

per user, and the interprocess communication (IPC) limits on size and

number of resources. These limits are important because they affect DB2

performance on a Solaris operating system machine.

Chapter 5. Tools for troubleshooting 445

446 Troubleshooting and Tuning Database Performance

Chapter 6. Troubleshooting DB2 database

In general, the troubleshooting process requires that you isolate and identify a

problem, then seek a resolution. This section will provide troubleshooting

information related to specific features of DB2 products.

As common problems are identified, the findings will be added to this section in

the form of checklists. If the checklist does not lead you to a resolution, you can

collect additional diagnostic data and analyze it yourself, or submit the data to

IBM Software Support for analysis.

The following questions direct you to appropriate troubleshooting tasks:

1. Have you applied all known fix packs? If not, consider “Applying fix packs” in

Installing DB2 Servers.

2. Does the problem occur when you are:

v Installing DB2 database servers or clients? If so, see the topic “Collect data

for installation problems” elsewhere in this book.

v Creating, dropping, updating or upgrading an instance or the DB2

Administration Server (DAS)? If so, see the topic “Collect data for DAS and

instance management problems” elsewhere in this book.

v Moving data using EXPORT, IMPORT, LOAD or db2move commands? If so,

see the topic “Collect data for data movement problems” elsewhere in this

book.

If your problem does not fall into one of these categories, basic diagnostic data

might still be required if you are contacting IBM Software Support. You must .

Collecting data for DB2

Sometimes you cannot solve a problem simply by troubleshooting the symptoms.

In such cases, you nust collect diagnostic data. The diagnostic data that you must

collect and the sources from which you collect that data are dependent on the type

of problem that you are investigating. These steps represent how to collect the base

set of information that you typically must provide when you submit a problem to

IBM Software Support.

To obtain the most complete output, the db2support utility should be invoked by

the instance owner.

To collect the base set of diagnostic information in a compressed file archive, enter

the db2support command:

db2support <output_directory> -s -d <database_name> -c

Using -s will give system details about the hardware used and the operating

system. Using -d will give details about the specified database. Using -c allows for

an attempt to connect to the specified database.
The output is conveniently collected and stored in a compressed ZIP archive,

db2support.zip, so that it can be transferred and extracted easily on any system.

For specific symptoms, or for problems in a specific part of the product, you might

have to collect additional data. Refer to the problem-specific ″Collecting data″

documents.

© Copyright IBM Corp. 2006, 2009 447

You can do any of the following tasks next:

v Analyze the data

v Submit the data to IBM Software Support

Collecting data for data movement problems

If you are experiencing problems while performing data movement commands and

you cannot determine the cause of the problem, collect diagnostic data that either

you or IBM Software Support can use to diagnose and resolve the problem.

Follow the data collection instructions, appropriate for the circumstance you are

experiencing, from the following list:

v To collect data for problems related to the db2move command, go to the

directory where you issued the command. Locate the following file(s),

depending on the action you specified in the command:

– For the COPY action, look for files called COPY.timestamp.ERR and

COPYSCHEMA.timestamp.MSG. If you also specified either LOAD_ONLY or

DDL_AND_LOAD mode, look for a file called LOADTABLE.timestamp.MSG

as well.

– For the EXPORT action, look for a file called EXPORT.out.

– For the IMPORT action, look for a file called IMPORT.out.

– For the LOAD action, look for a file called LOAD.out.
v To collect data for problems related to EXPORT, IMPORT, or LOAD commands,

determine whether your command included the MESSAGES parameter. If it did,

collect the output file. These utilities use the current directory and the default

drive as the destination if you do not specify otherwise.

v To collect data for problems related to a REDISTRIBUTE command, look for a

file called ″databasename.database_partition_groupname. timestamp″ on Linux and

UNIX and “databasename. database_partition_groupname.date.time″ on Windows. It

is located in $HOME/sqllib/db2dump directory or $DB2PATH\sqllib\redist

respectively, where $HOME is the home directory of the instance owner.

Collecting data for DAS and instance management problems

If you are experiencing problems while performing DB2 Administration Server

(DAS) or instance management and you cannot determine the cause of the

problem, collect diagnostic data that either you or IBM Software Support can use

to diagnose and resolve the problem.

These steps are only for situations where you can recreate the problem and you are

using DB2 on Linux or UNIX.

To collect diagnostic data for DAS or instance management problems:

1. Repeat the failing command with tracing or debug mode enabled. Example

commands:

db2setup -t trace.out

dascrt -u DASUSER -d

dasdrop -d

dasmigr -d

dasupdt -d

db2icrt -d INSTNAME

db2idrop INSTNAME -d

db2iupgrade -d INSTNAME

db2iupdt -d INSTNAME

448 Troubleshooting and Tuning Database Performance

2. Locate the diagnostic files. More than one file might be present, so compare the

timestamps to ensure that you are obtaining all of the appropriate files.

The output will be found in the /tmp directory by default.

Example file names are: dascrt.log, dasdrop.log , dasupdt.log , db2icrt.log.PID,

db2idrop.log.PID, db2iupgrade.log.PID, and db2iupdt.log.PID, where PID is the

process ID.

3. Provide the diagnostic file(s) to IBM Software Support.

If the problem is that the db2start or START DATABASE MANAGER command is

failing, look for a file named db2start.timestamp.log in the insthome/sqllib/log

directory, where insthome is the home directory for the instance owner. Likewise if

the problem is that the db2stop or STOP DATABASE MANAGER command is

failing, look for a file named db2stop.timestamp.log. These files will only be found

if the database manager did not respond to the command within the amount of

time specified in the start_stop_time database manager configuration parameter.

Analyzing data for DB2

After you collect data, you must determine how that data can help you to resolve

your particular problem. The type of analysis depends on the type of problem that

you are investigating and the data that you have collected. These steps represent

how to start your investigation of any basic DB2 diagnostic data.

To analyze diagnostic data, take the following actions:

v Have a clear understanding of how the various pieces of data relate to each

other. For example, if the data spans more than one system, keep your data well

organized so that you know which pieces of data come from which sources.

v Confirm that each piece of diagnostic data is relevant to the timing of the

problem by checking timestamps. Note that data from different sources can have

different timestamp formats; be sure to understand the sequence of the different

elements in each timestamp format so that you can tell when the different events

occurred.

v Determine which data sources are most likely to contain information about the

problem, and start your analysis there. For example, if the problem is related to

installation, start your analysis with the installation log files (if any), rather than

starting with the general product or operating system log files.

v The specific method of analysis is unique to each data source, but one tip that is

applicable to most traces and log files is to start by identifying the point in the

data where the problem occurs. After you identify that point, you can work

backward in time through the data to unravel the root cause of the problem.

v If you are investigating a problem for which you have comparative data from an

environment that is working and one that is not, start by comparing the

operating system and product configuration details for each environment.

Diagnosing and resolving locking problems

To resolve a locking problem, you need to start by diagnosing the type of lock

event causing the SQL query performance slowdown, or query completion failure,

and the SQL statement or statements involved. The steps to help in diagnosing the

type of locking problem and the steps that can then be taken to help resolve the

locking issue are provided here.

Chapter 6. Troubleshooting DB2 database 449

Introduction

A locking problem is the proper diagnosis if you are experiencing a failure of

applications to complete their tasks or a slow down in the performance of SQL

queries due to locks. Therefore, the ideal objective is not to have any lock timeouts

or deadlocks on a database system, both of which result in applications failing to

complete their tasks.

Lock waits are normal expected events, but if the time spent waiting for a lock

becomes large, then lock waits can slow down both SQL query performance and

completion of an application. Excessive lock wait durations have a risk of

becoming lock timeouts which result in the application not completing its tasks.

Lock escalations are a consideration as a locking problem when they contribute to

causing lock timeouts. Ideally, the objective is not to have any lock escalations, but

a small number can be acceptable if adverse effects are not occurring.

It is suggested that you monitor lock wait, lock timeout, and deadlock locking

events at all times; typically at the workload level for lock waits, and at the

database level for lock timeouts and deadlocks.

The diagnosis of the type of locking problem that is occurring and its resolution

begins with the collection of information and looking for diagnostic indicators. The

following sections help to guide you through this process.

Collect information

In general, to be able to objectively assess that your system is demonstrating

abnormal behavior which can include processing delays and poor performance,

you must have information that describes the typical behavior (baseline) of your

system. A comparison can then be made between your observations of suspected

abnormal behavior and the baseline. Collecting baseline data, by scheduling

periodic operational monitoring tasks, is a key component of the troubleshooting

process. For more detailed information about establishing the baseline operation of

your system, see: “Operational monitoring of system performance” on page 11.

To confirm what type of locking problem is the reason for your SQL query

performance slowdown or query completion failure, it is necessary to collect

information that would help to identify what type of lock event is involved, which

application is requesting or holding this lock, what was the application doing

during this event, and the SQL statement or statements that are involved in being

noticeably slow.

The creation of a locking event monitor, use of a table function, or use of the

db2pd command can collect this type of information. The information gathered by

the locking event monitor can be categorized into three main categories:

v Information about the lock in question

v Information about the application requesting this lock and its current activities.

In the case of a deadlock, this is information about the statement referred to as

the victim.

v Information about the application owning the lock and its current activities. In

the case of a deadlock, this is information about the statement referred to as the

participant.

450 Troubleshooting and Tuning Database Performance

For instructions about how to monitor lock wait, lock timeout, and deadlock

locking events, see: “Monitoring locking events” in the Database Monitoring Guide

and Reference.

Look for diagnostic indicators

The locking event monitor, a table function, or running the db2pd command can

collect information that can help isolate the nature of a locking problem.

Specifically, the following topics contain diagnostically indicative information to

help you to diagnose and confirm the particular type of locking problem you are

experiencing.

v If you are experiencing long wait times and no lock timeouts, then you likely

have a lock wait problem. To confirm: Diagnosing a lock wait problem

v If you are experiencing an increased number of deadlocks than the baseline

number, then you likely have a deadlock problem. To confirm: Diagnosing a

deadlock problem

v If you are experiencing an increased number of lock timeouts and the

locktimeout database configuration parameter is set to a nonzero time value,

then you likely have a lock timeout problem. To confirm (also consider lock wait

problem): Diagnosing a lock timeout problem

v If you are experiencing a higher than typical number of lock waits and the

locking event monitor indicates that lock escalations are occurring (Yes), then

you likely have a lock escalation problem. To confirm: Diagnosing a lock

escalation problem

Diagnosing a lock wait problem

A lock wait occurs when a transaction tries to obtain a lock on a resource that is

already held by another transaction. When the duration of the lock wait time is

extended, this results in a slow down of SQL query execution. You likely have a

lock wait problem if you are experiencing long or unexpected lock wait times and

no lock timeouts.

Before you begin

In general, to be able to objectively assess that your system is demonstrating

abnormal behavior which can include processing delays and poor performance,

you must have information that describes the typical behavior (baseline) of your

system. A comparison can then be made between your observations of suspected

abnormal behavior and the baseline. Collecting baseline data, by scheduling

periodic operational monitoring tasks, is a key component of the troubleshooting

process. For more detailed information about establishing the baseline operation of

your system, see: “Operational monitoring of system performance” on page 11.

For instructions about how to monitor lock wait locking events, see: “Monitoring

locking events” in Database Monitoring Guide and Reference.

Procedure

Diagnosis

A lock wait occurs when one transaction (composed of one or more SQL

statements) tries to acquire a lock whose mode conflicts with a lock held

by another transaction. Excessive lock wait time often translates into poor

response time, so it is important to monitor. The amount of lock wait time

Chapter 6. Troubleshooting DB2 database 451

is best normalized to one thousand transactions because lock wait time on

a single transaction is typically quite low and a normalized measurement is

easier to handle.

 There are different qualities of lock wait that must be taken into

consideration when attempting to confirm diagnosis of each of them. The

following is a list of the three different qualities of lock wait and how best

to diagnose them:

v Long individual lock wait

– Check for peak lock wait time from service class and workload. Set

up the locking event monitor on workload to obtain that value.
v Long lock wait time but short individual lock waits

– Typically a result of a lock convoy. Use the db2pd -locks wait

command to detect wait chains.
v Types of lock being waited on

– Checking this might help determine the problem. Find the agent that

is waiting on the lock to get information about the lock type. Use the

lock type information to determine if something obvious is occurring.

For example, a package lock might indicate a BIND/REBIND

command or DDL colliding with a user of that package; an internal c

(catalog cache) lock might indicate a DDL colliding with a statement

compilation.

Indicative signs

Look for the following indicative signs of lock waits:

v The number of lock waits is increasing (increasing lock_waits

monitor element value)

v A high percentage of active agents waiting on locks (for

example, 20%, or more, of the total active agents). For

information about how to obtain this information, see the next

section, “What to monitor”.

v An increasing value of lock wait time (lock_wait_time monitor

element) captured at database or workload level

What to monitor

Unlike many other types of DB2 monitor data, locking information

is very transient. Apart from lock_wait_time, which is a running

total, most other lock information goes away when the locks

themselves are released. Thus, lock and lock wait event data are

most valuable if collected periodically over a period of time, so

that the evolving picture can be better understood.

 To collect information about active agents waiting on locks, use the

WLM_GET_SERVICE_CLASS_AGENTS_V97 table function. Agents

waiting for locks are indicated by agents with the following

attribute-value pairs:

v EVENT_OBJECT = LOCK

v EVENT_TYPE = ACQUIRE

You can also use application snapshot, the lock administrative

views, or the lock wait option of the db2pd -wlocks command to

obtain information about active agents waiting on locks.

These are the key indicator monitoring elements:

v lock_waits value is increasing

v long lock_wait_time value

452 Troubleshooting and Tuning Database Performance

If you have observed one or more of the indicative signs listed here, then

you are likely experiencing a problem with lock waits. Follow the link in

the “What to do next” section to resolve this issue.

What to do next

After having diagnosed that lock waits are likely causing the problem you are

experiencing, take steps to resolve the issue: “Resolving lock wait problems”

Resolving lock wait problems

After diagnosing a lock wait problem, the next step is to attempt to resolve the

issue resulting from an application having to wait too long for a lock. Guidelines

are provided here to help you resolve lock wait problems and assist you in

preventing such incidents from occurring in future.

Before you begin

Confirm that you are experiencing a lock wait problem by taking the necessary

diagnostic steps for locking problems outlined in “Diagnosing and resolving

locking problems” on page 449.

About this task

The guidelines provided here can help you to resolve the lock wait problem you

are experiencing and help you to prevent such future incidents.

Procedure

Use the following steps to diagnose the cause of the unacceptable lock wait

problem and to apply a remedy.

1. Obtain information from the administration notification log about all tables

where agents are spending long periods of time waiting for locks.

2. Use the information in the administration notification log to decide how to

resolve the lock wait problem. There are a number of guidelines that help to

reduce lock contention and lock wait time. Consider the following options:

v If possible, avoid very long transactions and WITH HOLD cursors. The

longer locks are held, the more chance that they cause contention with other

applications. This is only an issue if you are using a high isolation level.

v It is best practice to commit the following actions as soon as possible:

– Write actions such as delete, insert, and update

– Data definition language (DDL) statements, for example ALTER, CREATE,

and DROP statements

– BIND and REBIND commands
v After issuing ALTER or DROP DDL statements, run the

SYSPROC.ADMIN_REVALIDATE_DB_OBJECTS procedure to revalidate any

data objects and the db2rbind command to rebind any packages.

v Avoid fetching result sets that are larger than necessary, especially under the

repeatable read (RR) isolation level. The more that rows are touched, the

more that locks are held, and the greater the opportunity to run into a lock

that is held by someone else. In practical terms, this often means pushing

down row selection criteria into a WHERE clause of the SELECT statement,

rather than bringing back more rows and filtering them at the application.

For example:

Chapter 6. Troubleshooting DB2 database 453

exec sql declare curs for

 select c1,c2 from t

 where c1 not null;

exec sql open curs;

do {

 exec sql fetch curs

 into :c1, :c2;

} while(P(c1) != someVar);

==>

exec sql declare curs for

 select c1,c2 from t

 where c1 not null

 and myUdfP(c1) = :someVar;

exec sql open curs;

exec sql fetch curs

 into :c1, :c2;

v Avoid using higher isolation levels than necessary. Repeatable read might be

necessary to preserve result set integrity in your application; however, it does

incur extra cost in terms of locks held and potential lock conflicts.

v If appropriate for the business logic in the application, consider modifying

locking behavior through the DB2_EVALUNCOMMITTED,

DB2_SKIPDELETED, and DB2_SKIPINSERTED registry variables. These

registry variables enable DB2 database manager to delay or avoid taking

locks in some circumstances, thereby reducing contention and potentially

improving throughput.

v Eliminate lock escalations wherever possible.

What to do next

Rerun the application or applications to ensure that the locking problem has been

eliminated by checking the administration notification log for lock-related entries

or checking the lock wait and lock wait time metrics for the appropriate workload,

connection, service subclass, unit of work, and activity levels.

Diagnosing a deadlock problem

A deadlock is created when two applications lock data that is needed by the other,

resulting in a situation in which neither application can continue executing without

the intervention of the deadlock detector. The deadlock slows down the participant

transaction while it waits for deadlock detection, wastes system resources by

rolling back the victim transaction, and causes extra system work and transaction

log access during the whole process. You likely have a deadlock problem if you are

experiencing an increased number of deadlocks than the baseline number and

transactions are being re-executed.

Before you begin

In general, any observed deadlock is considered abnormal. To be able to objectively

assess that your system is demonstrating abnormal behavior which can include

processing delays and poor performance, you must have information that describes

the typical behavior (baseline) of your system. A comparison can then be made

between your observations of suspected abnormal behavior and the baseline.

Collecting baseline data, by scheduling periodic operational monitoring tasks, is a

key component of the troubleshooting process. For more detailed information

about establishing the baseline operation of your system, see: “Operational

monitoring of system performance” on page 11.

454 Troubleshooting and Tuning Database Performance

For instructions about how to monitor deadlock locking events, see: “Monitoring

locking events” in Database Monitoring Guide and Reference.

Procedure

Diagnosis

A deadlock is created when two applications lock data that is needed by

the other, resulting in a situation in which neither application can continue

executing without the intervention of the deadlock detector. The victim

application has to re-execute the transaction from the beginning after the

system automatically rolls back the previous deadlocked transaction.

Monitoring the rate at which this happens helps avoid the case where

many deadlocks drive significant extra load on the system without the

DBA being aware.

Indicative signs

Look for the following indicative signs of deadlocks:

v One or more applications are occasionally re-executing

transactions

v Deadlock message entries in the administration notification log

v Increased number of deadlocks displayed for the deadlocks

monitor element

v Increased number of roll backs displayed for the

int_deadlock_rollbacks monitor element

v Increased amount of time an agent spends waiting for log

records to be flushed to disk which is displayed for the

log_disk_wait_time monitor element

What to monitor

The cost of a deadlock varies, and is directly proportional to the

length of the rolled-back transaction. All the same, any deadlock

generally indicates a problem.

 There are essentially three approaches to detecting deadlock events:

1. Set a locking event monitor and set the mon_deadlock database

configuration parameter to capture details on all deadlock

events that occur database-wide

2. Monitor the administration notification log for deadlock

messages and basic information that accompanies them

3. Monitor the indicator monitoring elements by way of a table

function

Most users adopt the first approach. By monitoring the key

indicator monitor elements to detect when a deadlock occurs, users

can then obtain detailed information by checking the information

collected by the event monitor.

These are the key indicator monitoring elements:

v deadlocks value is non-zero

v int_deadlock_rollbacks shows increase in number of roll backs

due to deadlock events

v log_disk_wait_time shows increase in amount of time agents

spend waiting for logs to be flushed to disk

If you have observed one or more of the indicative signs listed here, then

you are likely experiencing a problem with deadlocks. Follow the link in

the “What to do next” section to resolve this issue.

Chapter 6. Troubleshooting DB2 database 455

What to do next

After having diagnosed that deadlocks are likely causing the problem you are

experiencing, take steps to resolve the issue: “Resolving deadlock problems”

Resolving deadlock problems

After diagnosing a deadlock problem, the next step is to attempt to resolve the

deadlock issue resulting between two concurrently running applications each of

which have locked a resource the other application needs. The guidelines provided

here can help you to resolve the deadlock problem you are experiencing and help

you to prevent such future incidents.

Before you begin

Confirm that you are experiencing a deadlock problem by taking the necessary

diagnostic steps for locking problems outlined in “Diagnosing and resolving

locking problems” on page 449.

About this task

The guidelines provided here can help you to resolve the deadlock problem you

are experiencing and help you to prevent such future incidents.

Procedure

Use the following steps to diagnose the cause of the unacceptable deadlock

problem and to apply a remedy.

1. Obtain information from the lock event monitor or administration notification

log about all tables where agents are experiencing deadlocks.

2. Use the information in the administration notification log to decide how to

resolve the deadlock problem. There are a number of guidelines that help to

reduce lock contention and lock wait time. Consider the following options:

v Each application connection should process its own set of rows to avoid lock

waits.

v Deadlock frequency can sometimes be reduced by ensuring that all

applications access their common data in the same order – meaning, for

example, that they access (and therefore lock) rows in Table A, followed by

Table B, followed by Table C, and so on. If two applications take

incompatible locks on the same objects in different order, they run a much

larger risk of deadlocking.

v A lock timeout is not much better than a deadlock, because both cause a

transaction to be rolled back, but if you must minimize the number of

deadlocks, you can do it by ensuring that a lock timeout will usually occur

before a potential related deadlock can be detected. To do this, set the value

of the locktimeout database configuration parameter (units of seconds) to be

much lower than the value of the dlchktime database configuration

parameter (units of milliseconds). Otherwise, if locktimeout is longer than

the dlchktime interval, the deadlock detector could wake up just after the

deadlock situation began, and detect the deadlock before the lock timeout

occurs.

v Avoid concurrent DDL operations if possible. For example, DROP TABLE

statements can result in a large number of catalog updates as rows might

have to be deleted for the table indexes, primary keys, check constraints, and

456 Troubleshooting and Tuning Database Performance

so on, in addition to the table itself. If other DDL operations are dropping or

creating objects, there can be lock conflicts and even occasional deadlocks.

v It is best practice to commit the following actions as soon as possible:

– Write actions such as delete, insert, and update

– Data definition language (DDL) statements, such as ALTER, CREATE, and

DROP

– BIND and REBIND commands
3. The deadlock detector is unable to know about and resolve the following

situation, so your application design must guard against this. An application,

particularly a multithreaded one, can have a deadlock involving a DB2 lock

wait and a wait for a non-DB2 resource such as a semaphore. For example,

connection A can be waiting for a lock held by connection B, and B can be

waiting for a semaphore held by A.

What to do next

Rerun the application or applications to ensure that the locking problem has been

eliminated by checking the administration notification log for lock-related entries.

Diagnosing a lock timeout problem

A lock timeout occurs when a transaction, waiting for a resource lock, waits long

enough to have surpassed the wait time value specified by the locktimeout

database configuration parameter. This consumes time which causes a slow down

in SQL query performance. You likely have a lock timeout problem if you are

experiencing an increased number of lock timeouts and the locktimeout database

configuration parameter is set to a nonzero time value.

Before you begin

In general, to be able to objectively assess that your system is demonstrating

abnormal behavior which can include processing delays and poor performance,

you must have information that describes the typical behavior (baseline) of your

system. A comparison can then be made between your observations of suspected

abnormal behavior and the baseline. Collecting baseline data, by scheduling

periodic operational monitoring tasks, is a key component of the troubleshooting

process. For more detailed information about establishing the baseline operation of

your system, see: “Operational monitoring of system performance” on page 11.

For instructions about how to monitor lock timeout locking events, see:

“Monitoring locking events” in Database Monitoring Guide and Reference.

Procedure

Diagnosis

Sometimes, lock wait situations lead to lock timeouts that cause

transactions to be rolled back. The period of time until a lock wait leads to

a lock timeout is specified by the database configuration parameter

locktimeout. Lock timeouts, in excessive numbers, can be as disruptive to

a system as deadlocks. Although deadlocks are comparatively rare in most

production systems, lock timeouts can be more common. The application

usually has to handle them in a similar way: re-executing the transaction

from the beginning. Monitoring the rate at which this happens helps avoid

the case where many lock timeouts drive significant extra load on the

system without the DBA being aware.

Chapter 6. Troubleshooting DB2 database 457

Indicative signs

Look for the following indicative signs of lock timeouts:

v An application is frequently re-executing transactions

v lock_timeouts monitor element value is climbing

v Lock timeout message entries in the administration notification

log

What to monitor

Due to the relatively transient nature of locking events, lock event

data is most valuable if collected periodically over a period of

time, so that the evolving picture can be better understood.

 You can monitor the administration notification log for lock

timeout messages.

Create an event monitor to capture lock timeout data for a

workload or database.

These are the key indicator monitoring elements:

v lock_timeouts value is climbing

v int_rollbacks value is climbing

If you have observed one or more of the indicative signs listed here, then

you are likely experiencing a problem with lock timeouts. Follow the link

in the “What to do next” section to resolve this issue.

What to do next

After having diagnosed that lock timeouts are likely causing the problem you are

experiencing, take steps to resolve the issue: “Resolving lock timeout problems”

Resolving lock timeout problems

After diagnosing a lock timeout problem, the next step is to attempt to resolve the

issue resulting from an application or applications waiting for locks until the lock

timeout period has elapsed. The guidelines provided here can help you to resolve

the lock timeout problem you are experiencing and help you to prevent such

future incidents.

Before you begin

Confirm that you are experiencing a lock timeout problem by taking the necessary

diagnostic steps for locking problems outlined in “Diagnosing and resolving

locking problems” on page 449.

About this task

The guidelines provided here can help you to resolve the lock timeout problem

you are experiencing and help you to prevent such future incidents.

Procedure

Use the following steps to diagnose the cause of the unacceptable lock timeout

problem and to apply a remedy.

1. Obtain information from the lock event monitor or administration notification

log about all tables where agents are experiencing lock timeouts.

2. Use the information in the administration notification log to decide how to

resolve the lock timeout problem. There are a number of guidelines that help to

458 Troubleshooting and Tuning Database Performance

reduce lock contention and lock wait time that can result in a reduced number

of lock timeouts. Consider the following options:

v Tune the locktimeout database configuration parameter to a number of

seconds appropriate for your database environment.

v If possible, avoid very long transactions and WITH HOLD cursors. The

longer locks are held, the more chance that they cause contention with other

applications.

v It is best practice to commit the following actions as soon as possible:

– Write actions such as delete, insert, and update

– Data definition language (DDL) statements, such as ALTER, CREATE, and

DROP

– BIND and REBIND commands
v Avoid fetching result sets that are larger than necessary, especially under the

repeatable read (RR) isolation level. The more that rows are touched, the

more that locks are held, and the greater the opportunity to run into a lock

that is held by someone else. In practical terms, this often means pushing

down row selection criteria into a WHERE clause of the SELECT statement,

rather than bringing back more rows and filtering them at the application.

For example:

exec sql declare curs for

 select c1,c2 from t

 where c1 not null;

exec sql open curs;

do {

 exec sql fetch curs

 into :c1, :c2;

} while(P(c1) != someVar);

==>

exec sql declare curs for

 select c1,c2 from t

 where c1 not null

 and myUdfP(c1) = :someVar;

exec sql open curs;

exec sql fetch curs

 into :c1, :c2;

v Avoid using higher isolation levels than necessary. Repeatable read might be

necessary to preserve result set integrity in your application; however, it does

incur extra cost in terms of locks held and potential lock conflicts.

v If appropriate for the business logic in the application, consider modifying

locking behavior through the DB2_EVALUNCOMMITTED,

DB2_SKIPDELETED, and DB2_SKIPINSERTED registry variables. These

registry variables enable DB2 database manager to delay or avoid taking

locks in some circumstances, thereby reducing contention and potentially

improving throughput.

What to do next

Rerun the application or applications to ensure that the locking problem has been

eliminated by checking the administration notification log for lock-related entries

or checking the lock wait and lock wait time metrics for the appropriate workload,

connection, service subclass, unit of work, and activity levels.

Chapter 6. Troubleshooting DB2 database 459

Diagnosing a lock escalation problem

A lock escalation occurs when, in the interest of reducing memory that is allocated

to locks (lock space), numerous row-level locks are escalated into a single,

memory-saving table lock. This situation, although automated and saves memory

space devoted to locks, can reduce concurrency to an unacceptable level. You likely

have a lock escalation problem if you are experiencing a higher than typical

number of lock waits and the administration notification log entries indicate that

lock escalations are occurring.

Before you begin

In general, to be able to objectively assess that your system is demonstrating

abnormal behavior which can include processing delays and poor performance,

you must have information that describes the typical behavior (baseline) of your

system. A comparison can then be made between your observations of suspected

abnormal behavior and the baseline. Collecting baseline data, by scheduling

periodic operational monitoring tasks, is a key component of the troubleshooting

process. For more detailed information about establishing the baseline operation of

your system, see: “Operational monitoring of system performance” on page 11.

Procedure

Diagnosis

Lock escalation from multiple row-level locks to a single table-level lock

can occur for the following reasons:

v The total amount of memory consumed by many row-level locks held

against a table exceeds the percentage of total memory allocated for

storing locks

v The lock list runs out of space. The application that caused the lock list

to be exhausted will have its locks forced through the lock escalation

process, even though the application is not the holder of the most locks.

The threshold percentage of total memory allocated for storing locks, that

has to be exceeded by an application for a lock escalation to occur, is

defined by the maxlocks database configuration parameter and the

allocated memory for locks is defined by the locklist database

configuration parameter. In a well-configured database, lock escalation is

rare. If lock escalation reduces concurrency to an unacceptable level, you

can analyze the problem and decide on the best course of action.

 Lock escalation is less of an issue, from the memory space perspective, if

self tuning memory manager (STMM) is managing the memory for locks

that is otherwise only allocated by the locklist database configuration

parameter. STMM will automatically adjust the memory space for locks if

it ever runs out of free memory space.

Indicative signs

Look for the following indicative signs of lock escalations:

v Lock escalation message entries in the administration notification

log

What to monitor

Due to the relatively transient nature of locking events, lock event

data is most valuable if collected periodically over a period of

time, so that the evolving picture can be better understood.

460 Troubleshooting and Tuning Database Performance

Check this monitoring element for indications that lock escalations

might be a contributing factor in the SQL query performance slow

down:

v lock_escals

If you have observed one or more of the indicative signs listed here, then

you are likely experiencing a problem with lock escalations. Follow the

link in the “What to do next” section to resolve this issue.

What to do next

After having diagnosed that lock escalations are likely causing the problem you are

experiencing, take steps to resolve the issue: “Resolving lock escalation problems”

Resolving lock escalation problems

After diagnosing a lock escalation problem, the next step is to attempt to resolve

the issue resulting from the database manager automatically escalating locks from

row level to table level. The guidelines provided here can help you to resolve the

lock escalation problem you are experiencing and help you to prevent such future

incidents.

Before you begin

Confirm that you are experiencing a lock escalation problem by taking the

necessary diagnostic steps for locking problems outlined in “Diagnosing and

resolving locking problems” on page 449.

About this task

The guidelines provided here can help you to resolve the lock escalation problem

you are experiencing and help you to prevent such future incidents.

Procedure

The objective is to minimize lock escalations, or eliminate them, if possible. A

combination of good application design and database configuration for lock

handling can minimize or eliminate lock escalations. Lock escalations can lead to

reduced concurrency and potential lock timeouts, so addressing lock escalations is

an important task. The lock_escals monitor element and messages written to the

administration notification log can be used to identify and correct lock escalations.

First, ensure that lock escalation information is being recorded. Set the value of the

notifylevel database manager configuration parameter to 3, which is the default, or

to 4. At notifylevel 2, only error SQLCODEs are recorded. When lock escalation

fails at notifylevel 3 or 4, information about the table for which lock escalation

failed is recorded as well. At notifylevel 4, the query is also logged if it is a

currently executing dynamic SQL statement.

Use the following steps to diagnose the cause of the unacceptable lock escalation

problem and to apply a remedy.

1. Gather information from the administration notification log about all tables

whose locks have been escalated and the applications involved. This log file

includes the following information:

v The number of locks currently held

Chapter 6. Troubleshooting DB2 database 461

v The number of locks needed before lock escalation is completed

v The table identifier and table name of each table being escalated

v The number of non-table locks currently held

v The new table-level lock to be acquired as part of the escalation. Usually, an

S or X lock is acquired.

v The internal return code that is associated with the acquisition of the new

table-level lock
2. Use the administration notification log information about the applications

involved in the lock escalations to decide how to resolve the escalation

problems. Consider the following options:

v Check and possibly adjust either the maxlocks or locklist database

configuration parameters, or both. In a partitioned database system, make

this change on all database partitions. The value of the locklist configuration

parameter may be too small for your current workload. If multiple

applications are experiencing lock escalation, this could be an indication that

the lock list size needs to be increased. Growth in workloads or the addition

of new applications could cause the lock list to be too small. If only one

application is experiencing lock escalations, then adjusting the maxlocks

configuration parameter could resolve this. However, you may want to

consider increasing locklist at the same time you increase maxlocks — if one

application is allowed to use more of the lock list, all the other applications

could now exhaust the remaining locks available in the lock list and

experience escalations.

v You might want to consider the isolation level at which the application and

the SQL statements are being run, for example RR, RS, CS, or UR. RR and RS

isolation levels tend to cause more escalations because locks are held until a

COMMIT is issued. CS and UR isolation levels do not hold locks until a

COMMIT is issued, and therefore lock escalations are less likely. Use the

lowest possible isolation level that can be tolerated by the application.

v Increase the frequency of commits in the application, if business needs and

the design of the application allow this. Increasing the frequency of commits

reduces the number of locks that are held at any given time. This helps to

prevent the application from reaching the maxlocks value, which triggers a

lock escalation, and helps to prevent all the applications from exhausting the

lock list.

v You can modify the application to acquire table locks using the LOCK

TABLE statement. This is a good strategy for tables where concurrent access

by many applications and users is not critical; for example, when the

application uses a permanent work table (for example, not a DGTT) that is

uniquely named for this instance of the application. Acquiring table locks

would be a good strategy in this case as it will reduce the number of locks

being held by the application and increase the performance because row

locks no longer need to be acquired and released on the rows that are

accessed in the work table.

If the application does not have work tables and you cannot increase the

values for locklist or maxlocks configuration parameters, then you can have

the application acquire a table lock. However, care must be taken in choosing

the table or tables to lock. Avoid tables that are accessed by many

applications and users because locking these tables will lead to concurrency

problems which can affect response time, and, in the worst case, can lead to

applications experiencing lock timeouts.

What to do next

462 Troubleshooting and Tuning Database Performance

Rerun the application or applications to ensure that the locking problem has been

eliminated by checking the administration notification log for lock-related entries.

Recovering from sustained traps

The DB2 instance prepares the first occurrence data capture (FODC) package for

the trap that you have encountered. By default, the DB2 instance has been

configured for trap resiliency. The DB2 instance has also determined whether or

not the trap is sustainable. The term “sustainable” means that the trapped DB2

engine thread has been suspended and the DB2 instance continues to run.

By default, the DB2 instance has been configured for trap resiliency based on the

default setting of the DB2RESILIENCE registry variable.

Procedure

Recognizing a sustained trap

Traps are sustained to minimize the effect on the database system when

traps (DB2 programming errors) occur. A sustained trap results in the

following diagnostics:

1. An FODC directory is created under the fully qualified path specified

with the diagpath database manager configuration parameter.

2. Error message ADM14013C is logged to the administration notification

and db2diag log files.

Note: ADM14011C is logged if the trap could not be sustained,

resulting in the instance being shut down.

3. Error sqlcode -1224 is returned to the application.

4. The EDU thread is suspended, which can be observed in the output of

db2pd -edus.

Recovery

While it is expected that a sustained trap does not hamper the regular

operation of the instance, a suspended EDU thread does hold on to some

resources, and it is recommended to stop and restart the instance at your

earliest convenience by following these steps:

1. To terminate all active applications which issue a COMMIT or

ROLLBACK within the timeout period, which minimizes the recovery

window for crash recovery when the db2start command is run, issue

the following command:

db2 quiesce instance instance_name user user_name

 defer with timeout minutes

2. [Optional] To terminate any applications that did not COMMIT or

ROLLBACK during the timeout period in Step 1 and any new

applications which accessed the database after the timeout period

completed, issue the following command:

db2 quiesce instance instance_name user user_name immediate

3. Forcefully shut down the instance and suspended EDUs by executing

the following command:

db2_kill

Note: Issuing the db2stop command will not complete when an

instance has sustained a trap.

4. Restart the DB2 instance using either one of the following commands:

Chapter 6. Troubleshooting DB2 database 463

db2start

or

START DATABASE MANAGER

Diagnosis

Locate the FODC directory that is specified under the diagpath database

manager configuration parameter. The location of the FODC directory can

also be confirmed by viewing the administration notification or db2diag

log files. Forward the FODC information to IBM Software Support.

Troubleshooting administrative task scheduler

This checklist can help you troubleshoot problems that occur while running tasks

in the administrative task scheduler.

Procedure

1. If your task does not execute as expected, the first thing you should do is look

for a execution status record in the ADMIN_TASK_STATUS administrative

view.

v If there is a record, examine the various values. In particular, pay attention to

the STATUS, INVOCATION, SQLCODE, SQLSTATE, SQLERRMC and RC

columns. The values often identify the root cause of the problem.

v If there is no execution status record in the view, the task did not execute.

There are a number of possible explanations for this:

– The administrative task scheduler is disabled. Tasks will not execute if the

administrative task scheduler is disabled. To enable the scheduler, set the

DB2_ATS_ENABLE registry variable.

– The task was removed. Someone may have removed the task. Confirm the

task exists by querying the ADMIN_TASK_LIST administrative view.

– The scheduler is unaware of the task. The administrative task scheduler

looks for new and updated tasks by connecting to each active database

every five minutes. Until this period has elapsed, the scheduler is unaware

of your task. Wait at least five minutes.

– The database is inactive. The administrative task scheduler cannot retrieve

or execute tasks unless the database is active. Activate the database.

– The transaction is uncommitted. The administrative task scheduler ignores

uncommitted tasks. Be sure to commit after adding, updating, or

removing a task.

– The schedule is invalid. The task’s schedule might prevent the task from

running. For example, the task may have already reached the maximum

number of invocations. Review the task’s schedule in the

ADMIN_TASK_LIST view and update the schedule if necessary.
2. If you cannot determine the cause of the problem by referring to the

ADMIN_TASK_STATUS administrative view, refer to the DB2 diagnostic log.

All critical errors are logged to the db2diag log file. Informational event

messages are also logged by the administrative task scheduler daemon during

task execution. These errors and messages are by identified by the

″Administrative Task Scheduler″ component.

What to do next

If you follow the steps above and are still unable to determine the cause of the

problem, consider opening a problem management record (PMR) with IBM

464 Troubleshooting and Tuning Database Performance

Software Support. Inform them that you have followed these instructions and send

them the diagnostic data that you collected.

Troubleshooting compression

Data compression dictionary is not automatically created

You have a large table or a large XML storage object for the table, but the data

compression dictionary was not created. You would like to understand why the

creation of the data compression dictionary did not occur as you were expecting.

This information applies to both the compression dictionary for the table object

and the compression dictionary for the XML storage object.

You may find yourself in the following situation:

v You have a table where the COMPRESS attribute has been set to YES.

v The table has existed for some time and data has been added and removed.

v The size of the table appears to be close to the threshold size. You are expecting

the data compression dictionary to be automatically created.

v You run a table data population operation (such as INSERT, LOAD INSERT, or

REDISTRIBUTE) which you expect will increase the size of the table beyond the

threshold size.

v Automatic creation of the data compression dictionary does not occur. The data

compression dictionary is not created and placed into the table. You expect

compression to occur on data added to the table after that point, but the data

remains decompressed.

v For XML data, the data is in the DB2 Version 9.7 storage format.

Compression of data in the XML storage object of a table is not supported if the

table contains XML columns that were created using DB2 Version 9.5 or earlier.

If you enable such a table for data row compression, only the table row data in

the table object is compressed. If the XML storage object cannot be compressed

during an insert, load, or reorg operation, a message is written to a db2diag log

file only if the XML columns were created with DB2 V9 or DB2 V9.5.

Why is the data compression not occurring?

Although the data is larger than the threshold size to enable automatic creation of

the compression dictionary, there is another condition that is checked. The

condition is that there must be sufficient data present in the object to be able to

create the dictionary, and message ADM5591W will inform you of this

requirement. Past activity against the data may also have included the deletion or

removal of data. There may be large sections within the object where there is no

data. This is how you can have a large object which meets or exceeds the object

size threshold, but there may not be enough data in the object to enable the

creation of the dictionary.

If you experience a lot of activity against the object, you need to reorganize the

object on a regular basis. For XML data, you need to reorganize the table with the

longlobdata option. If you do not, the object size may be large, but it may be

sparsely populated with data. Reorganizing the object will eliminate fragmented

data and compact the data in the object. Following the reorganization, the object

will be smaller and be more densely populated. The reorganized object will more

accurately represent the amount of data in the object and may be smaller than the

threshold size to enable automatic creation of the data compression dictionary.

Chapter 6. Troubleshooting DB2 database 465

If the object is sparsely populated, a reorganization of the table can be performed

using the REORG TABLE command (use the LONGLOBDATA option for XDA) to

create the dictionary. By default, KEEPDICTIONARY is specified.

RESETDICTIONARY may be specified to force dictionary creation.

Use the REORGCHK command to determine if a table needs to be reorganized.

Automatic Dictionary Creation (ADC) will not occur for a table when the table is

not enabled for data row compression. Message ADM5594I is returned when ADC

processing is disabled for the database and describes the reason for it.

If the table contains XML columns that were created using DB2 Version 9.5 or

earlier, use the ADMIN_MOVE_TABLE stored procedure to upgrade the table and

then enable data row compression.

Row compression not reducing disk storage space for

temporary tables

There are known situations that might occur which result in a lack of expected

savings in disk storage space for temporary tables even though the Storage

Optimization feature is licensed.

Symptoms

Potential disk space savings by enabling row compression on temporary tables are

not being realized as expected.

Causes

v This situation occurs mostly as a result of a large number of applications

running at the same time and creating temporary tables, each of which

consumes a portion of the database manager memory. This results in not enough

memory being available to create the compression dictionary. Notification is not

given when this situation occurs.

v Rows are compressed using a dictionary-based approach according to an

algorithm. If a row of a temporary table is large enough to yield appreciable

savings in disk space, the row will be compressed. Small rows in temporary

tables will not be compressed and this will account for the lack of expected

savings in disk storage space. Notification is not given when this situation

occurs.

Risk

There is no risk to the system aside from row compression not being used on

temporary tables with below-threshold row sizes. There could be other adverse

effects to the database manager if available memory remains highly constricted.

Data replication process cannot decompress a compressed

row image

There are known situations that may occur which result in a data replication

solution being unable to successfully decompress a log record with a compressed

row image. For transient (temporary) errors, the SQL code returned will

correspond to the cause of the error, while a permanent error is typically signalled

by a SQL0204N notification. Only transient error situations might result in a

466 Troubleshooting and Tuning Database Performance

subsequent successful decompression of a row image in a log record. The

db2ReadLog API will continue processing other log records even if it cannot

decompress a log record.

Symptoms

It is possible that the log reader may encounter transient and permanent errors

while reading log records that contain compressed user data. Here are

non-exhaustive example lists of the two classes of errors that may be encountered

while reading log records with compressed data (row images).

Transient errors:

v Table space access not allowed

v Unable to access the table (lock timeout)

v Out of memory (to load and store the required dictionary)

Permanent errors:

v Table space in which the table resides does not exist

v Table or table partition to which the log record belongs does not exist

v A dictionary does not exist for the table or table partition

v The log record contains row images compressed with a dictionary older

than the dictionaries in the table

Causes

It is possible that a replication solution, or any other log reader, may fall behind

database activities and receive an error reading a log record which contains

compressed user data (see Scenario 1). Such a case could arise if the log record

being read contains compressed user data that was compressed by an older

compression dictionary than what is available in the table (at the time of the log

read).

Similarly, if a table is dropped, the dictionaries associated with the table will also

be removed. Compressed row images for the table cannot be decompressed in this

case (see Scenario 2). Note that this restriction does not apply to row images that

are not in a compressed state, as these row images can still be read and replicated

even if the table is dropped.

For any one table, there can be only one active data compression dictionary and

one historical dictionary.

Scenario 1:

Table t6 has compression enabled. The DATA CAPTURE CHANGES attribute, for

replication purposes, is enabled for the table. The table is being replicated by a

data replication application and the log reader is reading log records that contain

compressed data (row images). A client log reader, using the db2ReadLog API, is

reading the first log record for the first INSERT statement as a LOAD operation is

performed on table t6, after a REORG TABLE command has been issued (causing

the table’s dictionary to be rebuilt).

The following statements are executed against table t6, which already contains a

compression dictionary and has the DATA CAPTURE CHANGES attribute is

enabled:

Chapter 6. Troubleshooting DB2 database 467

-> db2 alter table t6 data capture changes

-> db2 insert into t6 values (...)

-> db2 insert into t6 values (...)

Since a data compression dictionary already exists for table t6, the two INSERTs

after the ALTER will be compressed (using Table t6’s compression dictionary). At

this point, the log reader has not yet reached the first INSERT statement.

The following REORG TABLE command causes a new compression dictionary to

be built for table t6, and the current compression dictionary is kept as the historical

dictionary, thus making the log reader one dictionary behind the current

compression dictionary (however, the historical dictionary is not loaded into

memory after the REORG):

-> db2 reorg table t6 resetdictionary

As the log reader is reading the INSERT log for the INSERT statements, which

now requires the historical dictionary to be read in memory, the table t6 is

undergoing a LOAD operation:

-> db2 load from data.del of del insert into table t6 allow no access

When the LOAD is executed on the source table, table t6 will be Z-locked due to

the specified ALLOW NO ACCESS option. The log reader must load the historical

dictionary into memory to decompress row images found in the INSERT log

records, however, fetching the dictionary requires an IN table lock. In this case, the

log reader will fail to acquire the lock. This results in the sqlcode member of the

db2ReadLogFilterData structure to return SQL code SQL2048N. This corresponds

to a transient error (that is, the log record might be decompressed if the API is

called again). The log reader will return the compressed row image in the log

record and continue on reading the next log record.

Scenario 2:

Table t7 has the DATA CAPTURE CHANGES attribute enabled. Compression is

enabled for the table in order to reduce storage costs. The table is being replicated

by a data replication application, however, the log reader has fallen behind on the

source table activity and the data compression dictionary has already been rebuilt

twice before the log reader reads from the log records again.

The following statements are executed against Table t7, with the DATA CAPTURE

CHANGES attribute already enabled, table compression is enabled, and a new

dictionary is built:

-> db2 alter table t7 compress yes

-> db2 reorg table t7 resetdictionary

-> db2 insert into t7 values (...)

A client log reader, using the db2ReadLog API, is about to read the next log

corresponding to the first INSERT statement below:

-> db2 insert into t7 values (...)

...

-> db2 reorg table t7 resetdictionary

-> db2 insert into t7 values (...)

...

-> db2 reorg table t7 resetdictionary

The db2ReadLog API will not be able to decompress the contents of the log record

in this case, because the log reader has fallen behind two or more REORG

RESETDICTIONARY operations. The dictionary required to decompress the row

468 Troubleshooting and Tuning Database Performance

image in the log record would not be found in the table; only the compression

dictionary of the second REORG and the compression dictionary of the last

REORG is stored with the table. However, the db2ReadLog API would not fail

with an error. Instead, the uncompressed row image will be returned in the user

buffer, and, in the db2ReadLogFilterData structure preceding the log record, the

sqlcode member will return SQL code SQL0204N. This code corresponds to a

permanent error (that is, the log record cannot ever be decompressed).

Environment

This failure to successfully decompress a compressed log record, due to a missing

old compression dictionary, can occur on any platform on which a data replication

solution uses the db2ReadLog API and the DATA CAPTURE CHANGES attribute

is set for the table.

Resolving the problem

User response:

For transient errors, it may be possible to reissue the read request and successfully

read the log. For example, if the log record belongs to a table residing in a table

space and access to the table is not allowed, the dictionary may not be accessible to

decompress the log record (see Scenario 1). The table space may become available

at a later time, and reissuing the log read request at that time may successfully

decompress the log record.

v If a transient error is returned (see Scenario 1), read the error information in

order to take appropriate action. This may include waiting for the table

operation to complete, which could allow a re-read of the log record and

decompression to be successful.

v If a permanent error occurs (see Scenario 2), the row image in the log record

cannot be decompressed since the compression dictionary, which was used to

compress the row image, is no longer available. For this case, replication

solutions may need to re-initialize the affected (target) table.

Troubleshooting global variable problems

In general, troubleshooting applications with regard to global variables is not a

problem if the user experiencing the problem has permission to READ the global

variables. Having READ permission is all that is needed to know what the value of

the global variable is by issuing a VALUES(Global Variable Name) statement.

There will be cases where the user running the application will not have access to

READ the global variable.

The first scenario illustrates a possible problem when referencing global variables

that has a simple solution. The second scenario presents a more likely situation

where the permission to READ the global variables needs to be granted to the

appropriate users.

Scenario 1

References to global variables must be properly qualified. It is possible that there

exists a variable with the same name and a different schema where the incorrect

schema is encountered earlier in the PATH register value. One solution is to ensure

that the references to the global variable are fully qualified.

Chapter 6. Troubleshooting DB2 database 469

Scenario 2

An application developer (developerUser) creates a highly complex series of

procedures, views, triggers, and so on based upon the value of some global

variables to which only he has read access. An end user of the application

(finalUser) logs in and starts issuing SQL using the environment created by

developerUser. finalUser complains to developerUser that he cannot see data that

he must be allowed to see. As part of troubleshooting this problem, developerUser

changes his authorization ID to that of finalUser, logs in as finalUser, and tries the

same SQL as finalUser. developerUser finds that finalUser is right, and there is a

problem.

developerUser has to determine whether finalUser sees the same global variable

values as he does. developerUser runs SET SESSION USER to see the global

variable values that the finalUser sees. Here is a proposed method to determine

this problem and solve it.

developerUser asks the security administrator (secadmUser) to grant him

permission to use SET SESSION USER as finalUser. Then developerUser logs in as

himself and uses the SET SESSION AUTHORIZATION statement to set the

SESSION_USER special register to that of finalUser. After running the SQL that is

the problem, he then switches back to developerUser using another SET SESSION

AUTHORIZATION statement. developerUser can now issue a VALUES statement

and see the actual value of the global variable.

What follows is sample SQL showing the actions taken in the database by

developerUser.

developerUser connects to database and creates needed objects

db2 "connect to sample user developerUser using xxxxxxxx"

db2 "create table security.users \

(userid varchar(10) not null primary key, \

firstname varchar(10), \

lastname varchar(10), \

authlevel int)"

db2 "insert into security.users values (’ZUBIRI’, ’Adriana’, ’Zubiri’, 1)"

db2 "insert into security.users values (’SMITH’, ’Mary’, ’Smith’, 2)"

db2 "insert into security.users values (’NEWTON’, ’John’, ’Newton’, 3)"

db2 "create variable security.gv_user varchar(10) default (SESSION_USER)"

db2 "create variable security.authorization int default 0"

Create a procedure that depends on a global variable

db2 "CREATE PROCEDURE SECURITY.GET_AUTHORIZATION() \

SPECIFIC GET_AUTHORIZATION \

RESULT SETS 1 \

LANGUAGE SQL \

 SELECT authlevel INTO security.authorization \

 FROM security.users \

 WHERE userid = security.gv_user"

db2 "grant all on variable security.authorization to public"

db2 "grant execute on procedure security.get_authorization to public"

db2 "terminate"

secadmUser grants setsessionuser

470 Troubleshooting and Tuning Database Performance

db2 "connect to sample user secadmUser using xxxxxxxx"

db2 "grant setsessionuser on user finalUser to user developerUser"

db2 "terminate"

developerUser will debug the problem now

echo "--"

echo " Connect as developerUser "

echo "--"

db2 "connect to sample user developerUser using xxxxxxxx"

echo "--"

echo " SET SESSION AUTHORIZATION = finalUser "

echo "--"

db2 "set session authorization = finalUser"

echo "--- TRY to get the value of gv_user as finalUser (we must not be able to)"

db2 "values(security.gv_user)"

echo "--- Now call the procedure---"

db2 "call security.get_authorization()"

echo "--- if it works it must return 3 ---"

db2 "values(security.authorization)"

echo "--"

echo " SET SESSION AUTHORIZATION = developerUser "

echo "--"

db2 "set session authorization = developerUser"

echo "--- See what the variable looks like ----"

db2 "values(security.gv_user)"

db2 "terminate"

Troubleshooting high availability

Tivoli System Automation for Multiplatforms (SA MP) Base

Component is not installed by DB2 Version 9.5 GA on AIX 6.1

The IBM Tivoli® SA MP Base Component that is included in the DB2 Version 9.5

GA High Availability Feature does not support the AIX 6.1 operating system. To

obtain the appropriate version of the SA MP Base Component for AIX 6.1, install

DB2 Version 9.5 Fix Pack 1 or later fix packs.

Symptoms

If you install a DB2 Version 9.5 GA database product on AIX 6.1, the installer will

detect that you are using AIX 6.1 and will not install the SA MP Base Component.

Causes

The SA MP Base Component that is bundled with DB2 Version 9.5 GA does not

support AIX 6.1.

Chapter 6. Troubleshooting DB2 database 471

Resolving the problem

When you install DB2 Version 9.5 Fix Pack 1 or later fix packs on AIX 6.1, the SA

MP Base Component will be installed successfully.

Troubleshooting inconsistencies

Troubleshooting data inconsistencies

Diagnosing where data inconsistencies exist within the database is very important.

One way to determine data inconsistencies is to use the output from the INSPECT

command to identify where a problem exists. When inconsistencies are found, you

will have to decide how to deal with the problem.

Once you have determined that there is a data consistency problem, you have two

options:

v Contact IBM Software Support and ask for their assistance in recovering from

the data inconsistency

v Drop and rebuild the database object that has the data consistency problem.

You will use the INSPECT CHECK variation from the INSPECT command to check

the database, table space, or table that has evidence of a data inconsistency. Once

the results of the INSPECT CHECK command are produced, you should format

the inspection results using the db2inspf command.

If the INSPECT command does not finish, then contact IBM Software Support.

Troubleshooting index to data inconsistencies

Indexes must be accurate to allow quick access to the right data in tables otherwise

your database is corrupt.

You can use the INSPECT command to carry out an online check for index to data

inconsistency by using the INDEXDATA option in the cross object checking clause.

Index data checking is not performed by default when using the INSPECT

command; it must be explicitly requested.

When there is an error discovered due to an index data inconsistency while

INSPECT performs an INDEXDATA inspection, the error message SQL1141N is

returned. At the same time this error message is returned, data diagnostic

information is collected and dumped to the db2diag log file. An urgent message is

also logged in the administration notification log. Use the db2diag log file analysis

tool (db2diag) to filter and format the contents of the db2diag log file.

Locking implications

While checking for index to data inconsistencies by using the INSPECT command

with the INDEXDATA option, the inspected tables are only locked in IS mode.

When the INDEXDATA option is specified, by default only the values of explicitly

specified level clause options are used. For any level clause options which are not

explicitly specified, the default levels (INDEX NORMAL and DATA NORMAL) are

overwritten from NORMAL to NONE.

472 Troubleshooting and Tuning Database Performance

Troubleshooting installation of DB2 database systems

If problems occur while you are installing DB2 database products, confirm that

your system meets the installation requirements and review the list of common

installation issues.

Procedure

To troubleshoot installation problems for DB2 database systems:

v Ensure that your system meets all of the installation requirements.

v If you are encountering licensing errors, ensure that you have applied the

appropriate licenses.

Review the list of frequently asked questions in the “Knowledge Collection: DB2

license issues” technote: http://www.ibm.com/support/docview.wss?rs=71
&uid=swg21322757

v Review the list of installation issues in the documentation and on the DB2

Technical Support Web site: www.ibm.com/software/data/db2/support/db2_9/
troubleshoot.html

What to do next

If you complete these steps but cannot yet identify the source of the problem,

begin collecting diagnostic data to obtain more information.

Collecting data for installation problems

If you are experiencing installation problems and cannot determine the cause of

the problem, collect diagnostic data that either you or IBM Software Support can

use to diagnose and resolve the problem.

To collect diagnostic data for installation problems:

1. Optional: Repeat the installation attempt with tracing enabled. For example:

On Linux and UNIX operating systems

db2setup -t /filepath/trace.out

On Windows operating systems

setup -t \filepath\trace.out

2. Locate the installation log files.

v On Windows, the default file name is ″DB2-ProductAbbreviation-DateTime.log″.

For example: DB2-ESE-Wed Jun 21 11_59_37 2006.log. The default location for

the installation log is the ″My Documents″\DB2LOG\ directory.

v On Linux and UNIX, the default file names are db2setup.log, db2setup.his,

and db2setup.err.

If you recreated the problem with tracing (or debug mode) enabled,

additional files might be created, such as: dascrt.log, dasdrop.log,

dasupdt.log, db2icrt.log.PID, db2idrop.log.PID, db2iupgrade.log.PID, and

db2iupdt.log.PID, where PID is the process ID.

The default location for all of these files is the /tmp directory. For the trace

file (trace.out), there is no default directory if not given, so you must specify

the file path to the folder in which the trace output file was created.
3. Optional: If you intend to submit the data to IBM Software Support, collect

data for DB2 as well. See ″Collecting data for DB2″ for additional information.

Chapter 6. Troubleshooting DB2 database 473

http://www.ibm.com/support/docview.wss?rs=71&uid=swg21322757
http://www.ibm.com/support/docview.wss?rs=71&uid=swg21322757
http://www.ibm.com/software/data/db2/support/db2_9/troubleshoot.html
http://www.ibm.com/software/data/db2/support/db2_9/troubleshoot.html

Analyzing data for installation problems

After you collect diagnostic data about installation problems, you can analyze the

data to determine the cause of the problem. These steps are optional. If the cause

of the problem is not easily determined, submit the data to IBM Software Support.

These steps assume that you have obtained the files described in Collecting data

for installation problems.

1. Ensure that you are looking at the appropriate installation log file. Check the

file’s creation date, or the timestamp included in the file name (on Windows

operating systems).

2. Determine whether the installation completed successfully.

v On Windows operating systems, success is indicated by a message similar to

the following at the bottom of the installation log file:

Property(C): INSTALL_RESULT = Setup Complete Successfully

=== Logging stopped: 6/21/2006 16:03:09 ===

MSI (c) (34:38) [16:03:09:109]:

Product: DB2 Enterprise Server Edition - DB2COPY1 -- Installation operation

completed successfully.

v On Linux and UNIX operating systems, success is indicated by a message at

the bottom of the installation log file (the one named db2setup.log by

default).
3. OPTIONAL: Determine whether any errors occurred. If the installation

completed successfully, but you received an error message during the

installation process, locate these errors in the installation log file.

v On Windows operating systems, most errors will be prefaced with ″ERROR:″

or ″WARNING:″. For example:

1: ERROR:An error occurred while running the command

"D:\IBM\SQLLIB\bin\db2.exe

CREATE TOOLS CATALOG SYSTOOLS USE EXISTING DATABASE TOOLSDB FORCE" to

initialize and/or migrate the DB2 tools catalog database.

The return value is "4".

1: WARNING:A minor error occurred while installing "DB2 Enterprise Server

Edition - DB2COPY1" on this computer. Some features may not function

correctly.

v On Linux and UNIX operating systems, a file with a default name of

db2setup.err will be present if any errors were returned by Java (for example,

exceptions and trap information).

If you had enabled an installation trace, there will be more entries in the

installation log files and the entries will be more detailed.

If analyzing this data does not help you to resolve your problem, and if you have

a maintenance contract with IBM Software Support, you can open a problem

report. IBM Software Support will ask you to submit any data that you have

collected, and they might also ask you about any analysis that you performed.

If your investigation has not solved the problem, submit the data to IBM Software

Support.

Known problems and solutions

Errors when installing a DB2 database product as a non-root

user to the default path on a system WPAR (AIX)

Various errors can occur if you install DB2 database products as a non-root user in

the default installation path (/opt/IBM/db2/V9.7) on a system workload partition

474 Troubleshooting and Tuning Database Performance

r0022584.html
r0022584.html

(WPAR) on AIX 6.1. To avoid these problems, install DB2 database products on a

file system that is accessible only to the WPAR.

Symptoms

If you install DB2 database products in the /usr or /opt directories on a system

WPAR, various errors can occur depending on how you configured the directories.

System WPARs can be configured to either share the /usr and /opt directories

with the global environment (in which case the /usr and /opt directories will be

readable but not write accessible from the WPAR) or to have a local copy of the

/usr and /opt directories.

In the first scenario, if a DB2 database product is installed to the default path on

the global environment, that installation will be visible in the system WPAR. This

will give the appearance that DB2 is installed on the WPAR, however attempts to

create a DB2 instance will result in this error: DBI1288E The execution of the

program db2icrt failed. This program failed because you do not have write

permission on the directory or file /opt/IBM/db2/V9.7/profiles.reg,/opt/
IBM/db2/V9.7/default.env.

In the second scenario, if a DB2 database product is installed to the default path on

the global environment then when the WPAR creates the local copy of the /usr

and /opt directories the DB2 database product installation will also be copied. This

can cause unexpected problems if a system administrator attempts to use the

database system. Since the DB2 database product was intended for another system,

inaccurate information might be copied over. For example, any DB2 instances

originally created on the global environment will appear to be present in the

WPAR. This can cause confusion for the system administrator with respect to

which instances are actually installed on the system.

Causes

These problems are caused by installing DB2 database products in /usr or /opt

directories on a system WPAR.

Resolving the problem

Do not install DB2 database products in the default path on the global

environment.

Mount a file system that is accessible only to the WPAR and install the DB2

database product on that file system.

Beta and non-beta versions of DB2 database products cannot

coexist

A DB2 copy can contain one or more different DB2 database products, but it

cannot contain both beta and non-beta products. Do not install beta and non-beta

versions of DB2 database products in the same location.

This restriction applies to both client and server components of DB2 database

products.

Resolving the problem

Uninstall the beta version of DB2 Version 9.7 before installing the non-beta version

or else choose a different installation path.

Chapter 6. Troubleshooting DB2 database 475

Resolving service name errors when you install DB2 database

products

If you choose a non-default service name or port number for the DB2 database

product or DB2 Information Center to use, ensure that you do not specify values

that are already in use.

Symptoms

When you attempt to install a DB2 database product or the DB2 Information Center,

the DB2 Setup wizard reports an error that states ″The service name specified is in

use″.

Causes

The DB2 Setup wizard will prompt you to choose port numbers and service names

when you install:

v The DB2 Information Center

v A DB2 database product that will accept TCP/IP communications from clients

v A DB2 database product that will act as a database partition server

This error can occur if you choose a service name and port number rather than

accepting the default values. If you choose a service name that already exists in the

services file on the system and you only change the port number, this error will

occur.

Resolving the problem

Take one of the following actions:

v Use the default values.

v Use a service name and port number that are both already in the services file.

v Add an unused service name and an unused port number to the services file.

Specify these values in the DB2 Setup wizard.

Troubleshooting license issues

Analyzing DB2 license compliance reports

To verify the license compliance of your DB2 features, analyze a DB2 license

compliance report. If there are any licensing violations, they can be addressed by

obtaining the appropriate license keys or by removing the problematic DB2

database products or features.

Before you begin

The following steps assume that you have used the License Center or the db2licm

command to generate a DB2 license compliance report.

Procedure

1. Open the file that contains the DB2 license compliance report.

2. Examine the status of each DB2 feature in the compliance report. The report

displays one of the following values for each feature:

476 Troubleshooting and Tuning Database Performance

In compliance

Indicates that no violations were detected. The feature has been used

and is properly licensed.

Not used

Indicates that you have not performed any activities that require this

particular feature.

Violation

Indicates that the feature is not licensed and has been used.
3. If there are any violations, use the License Center or the db2licm -l command to

view your license information.

If the DB2 feature is listed with a status of ″Not licensed″, you must obtain a

license for that feature. The license key and instructions for registering it are

available on the Activation CD that you receive when you purchase a DB2

feature.

Some DB2 features have a soft-stop policy; that is, the feature will continue to

work even in violation, giving you time to obtain and apply the license key.

Other features have hard-stop policies where the feature will cease to function

in violation.

Note: On DB2 Workgroup Server Edition and DB2 Express Edition, the

SAMPLE database includes materialized query tables (MQT), and

multidimensional cluster tables (MDC) that causes a license violation. This

violation can only be removed by upgrading to DB2 Enterprise Server Edition.

4. If you choose to drop or delete the problematic objects instead of purchasing a

license, use the following commands to determine which objects or settings in

your DB2 database product are causing the license violations:

v For the DB2 Advanced Access Control feature:

Check for tables that use label based access control (LBAC). Run the

following command against every database in every instance in the DB2

copy:

SELECT TABSCHEMA, TABNAME

FROM SYSCAT.TABLES

WHERE SECPOLICYID>0

v For the DB2 Performance Optimization Feature:

– Check whether there are any materialized query tables. Run the following

command against every database in every instance in the DB2 copy:

SELECT CREATOR, NAME

FROM SYSIBM.SYSTABLES WHERE TYPE=’S’

– Check whether there are any multidimensional cluster tables. Run the

following command against every database in every instance in the DB2

copy:

SELECT A.TABSCHEMA, A.TABNAME, A.INDNAME, A.INDSCHEMA

FROM SYSCAT.INDEXES A, SYSCAT.TABLES B

WHERE (A.TABNAME=B.TABNAME AND A.TABSCHEMA=B.TABSCHEMA)

AND A.INDEXTYPE=’BLOK’

– Check whether any of your instances use query parallelism (also known

as interquery parallelism). Run the following command once in each

instance in the DB2 copy:

SELECT NAME, VALUE

FROM SYSIBMADM.DBMCFG

WHERE NAME IN (’intra_parallel’)

v For the DB2 Storage Optimization feature:

Chapter 6. Troubleshooting DB2 database 477

Check if any tables have row level compression enabled. Run the following

command against every database in every instance in the DB2 copy:

SELECT TABSCHEMA, TABNAME

FROM SYSCAT.TABLES

WHERE COMPRESSION IN (’R’, ’B’)

What to do next

Once you have addressed the violations (either by obtaining a license for the

feature or by removing the sources of the violation), you can reset the license

compliance report from the License Center or by issuing the following command:

db2licm -x

Troubleshooting optimization guidelines and profiles

Diagnostics support for optimization guidelines (passed by optimization profiles) is

provided by EXPLAIN tables.

You will receive an SQL0437W warning with reason code 13 if the optimizer does

not apply an optimization guideline. Diagnostic information detailing why an

optimization guideline was not applied is added to the EXPLAIN tables. There are

two EXPLAIN tables for receiving optimizer diagnostic output:

v EXPLAIN_DIAGNOSTIC - Each entry in this table represents a diagnostic

message pertaining to the optimization of a particular statement. Each diagnostic

message is represented using a numeric code.

v EXPLAIN_DIAGNOSTIC_DATA - Each entry in this table is diagnostic data

relating to a particular diagnostic message in the EXPLAIN_DIAGNOSTIC table.

The DDLs used to create the diagnostic explain tables is shown below in Figure 39

on page 479.

The following steps can help you troubleshoot problems that occur when you are

using optimization guidelines:

1. “Verify that optimization guidelines have been used” in Troubleshooting and

Tuning Database Performance.

2. Examine the full error message using the built-in “EXPLAIN_GET_MSGS table

function” in Administrative Routines and Views.

If you finish these steps but cannot yet identify the source of the problem, begin

collecting diagnostic data and consider contacting IBM Software Support.

478 Troubleshooting and Tuning Database Performance

This DDL is included in the EXPLAIN.DDL file located in the misc subdirectory of

the sqllib directory.

CREATE TABLE EXPLAIN_DIAGNOSTIC

 (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

 EXPLAIN_TIME TIMESTAMP NOT NULL,

 SOURCE_NAME VARCHAR(128) NOT NULL,

 SOURCE_SCHEMA VARCHAR(128) NOT NULL,

 SOURCE_VERSION VARCHAR(64) NOT NULL,

 EXPLAIN_LEVEL CHAR(1) NOT NULL,

 STMTNO INTEGER NOT NULL,

 SECTNO INTEGER NOT NULL,

 DIAGNOSTIC_ID INTEGER NOT NULL,

 CODE INTEGER NOT NULL,

 PRIMARY KEY (EXPLAIN_REQUESTER,

 EXPLAIN_TIME,

 SOURCE_NAME,

 SOURCE_SCHEMA,

 SOURCE_VERSION,

 EXPLAIN_LEVEL,

 STMTNO,

 SECTNO,

 DIAGNOSTIC_ID),

 FOREIGN KEY (EXPLAIN_REQUESTER,

 EXPLAIN_TIME,

 SOURCE_NAME,

 SOURCE_SCHEMA,

 SOURCE_VERSION,

 EXPLAIN_LEVEL,

 STMTNO,

 SECTNO)

 REFERENCES EXPLAIN_STATEMENT ON DELETE CASCADE);

 CREATE TABLE EXPLAIN_DIAGNOSTIC_DATA

 (EXPLAIN_REQUESTER VARCHAR(128) NOT NULL,

 EXPLAIN_TIME TIMESTAMP NOT NULL,

 SOURCE_NAME VARCHAR(128) NOT NULL,

 SOURCE_SCHEMA VARCHAR(128) NOT NULL,

 SOURCE_VERSION VARCHAR(64) NOT NULL,

 EXPLAIN_LEVEL CHAR(1) NOT NULL,

 STMTNO INTEGER NOT NULL,

 SECTNO INTEGER NOT NULL,

 DIAGNOSTIC_ID INTEGER NOT NULL,

 ORDINAL INTEGER NOT NULL,

 TOKEN VARCHAR(1000),

 TOKEN_LONG BLOB(3M) NOT LOGGED,

 FOREIGN KEY (EXPLAIN_REQUESTER,

 EXPLAIN_TIME,

 SOURCE_NAME,

 SOURCE_SCHEMA,

 SOURCE_VERSION,

 EXPLAIN_LEVEL,

 STMTNO,

 SECTNO,

 DIAGNOSTIC_ID)

 REFERENCES EXPLAIN_DIAGNOSTIC ON DELETE CASCADE);

Note: The EXPLAIN_REQUESTOR, EXPLAIN_TIME, SOURCE_NAME, SOURCE_SCHEMA, SOURCE_VERSION,

EXPLAIN_LEVEL, STMTNO, and SECTNO columns are part of both tables in order to form the foreign key to the

EXPLAIN_STATEMENT table and the parent-child relationship between EXPLAIN_DIAGNOSTIC and

EXPLAIN_DIAGNOSTIC_DATA.

Figure 39. DDLs used to create the diagnostic explain tables

Chapter 6. Troubleshooting DB2 database 479

Troubleshooting partitioned database environments

FCM problems related to 127.0.0.2 (Linux and UNIX)

In a partitioned database environment, the fast communications manager (FCM)

might encounter problems if there is an entry for 127.0.0.2 in the /etc/hosts file.

Symptoms

Various error messages might occur, depending on the circumstances. For example,

the following error can occur when you create a database: SQL1229N The current

transaction has been rolled back because of a system error. SQLSTATE=40504

Causes

The problem is caused by the presence of an entry for the IP address 127.0.0.2 in

the /etc/hosts file, where 127.0.0.2 maps to the fully qualified hostname of the

machine. For example:

127.0.0.2 ServerA.ibm.com ServerA

where ″ServerA.ibm.com″ is the fully qualified hostname.

Environment

The problem is limited to DB2 Enterprise Server Edition with the DB2 Database

Partitioning feature.

Resolving the problem

Remove the entry from the /etc/hosts file, or convert it into a comment. For

example:

127.0.0.2 ServerA.ibm.com ServerA

Creating a database partition on an encrypted file system

(AIX)

AIX 6.1 supports the ability to encrypt a JFS2 file system or set of files. This feature

is not supported with partitioned database environments in DB2 database

products. An SQL10004C error will occur if you attempt to create a partitioned

database environment using EFS (encrypted file systems) on AIX.

Symptoms

If you attempt to create a database on an encrypted file system in a multiple

partition database environment, you will receive the following error: SQL10004C

An I/O error occurred while accessing the database directory. SQLSTATE=58031

Causes

At this time it is not possible to create a partitioned database environment using

EFS (encrypted file systems) on AIX. Since partitioned database partitions use rsh

or ssh, the keystore in EFS is lost and database partitions are unable to access the

database files that are stored on the encrypted file system.

480 Troubleshooting and Tuning Database Performance

Diagnosing the problem

The DB2 diagnostic (db2diag) log files will contain the error message and the

following text: OSERR : ENOATTR (112) "No attribute found".

Resolving the problem

To create a database successfully in a partitioned database environment, you must

have a file system that is available to all of the machines and it must not be an

encrypted file system.

Troubleshooting scripts

You may have internal tools or scripts that are based on the processes running in

the database engine. These tools or scripts may no longer work because all agents,

prefetchers, and page cleaners are now considered threads in a single,

multi-threaded process.

Your internal tools and scripts will have to be modified to account for a threaded

process. For example, you may have scripts that start the ps command to list the

process names; and then perform tasks against certain agent processes. Your scripts

must be rewritten.

The problem determination database command db2pd will have a new option -edu

(short for “engine dispatchable unit”) to list all agent names along with their

thread IDs. The db2pd -stack command continues to work with the threaded

engine to dump individual EDU stacks or to dump all EDU stacks for the current

node.

Troubleshooting storage key support

Storage protection keys (hardware keys at a thread level) are used to help the DB2

engine have greater resilience by protecting memory from access attempts that are

not valid. To resolve any error that you have encountered while enabling this

feature, follow the instructions in the next section.

Diagnosing registry variable errors

When setting the registry variable “DB2_MEMORY_PROTECT” in Database

Administration Concepts and Configuration Reference , an Invalid value (DBI1301E)

error was returned. This error occurs for one of the following reasons:

v The value given for the registry variable is not valid. Refer to the registry

variable usage for DB2_MEMORY_PROTECT for information about valid

values.

v The hardware and operating system may not support storage protection keys

and the feature cannot be enabled. Storage protection keys are available in

POWER6™ processors and are supported as of the AIX 5L™ Version 5.3, with the

5300-06 Technology Level, operating system.

Chapter 6. Troubleshooting DB2 database 481

482 Troubleshooting and Tuning Database Performance

Chapter 7. Troubleshooting DB2 Connect

The DB2 Connect environment involves multiple software, hardware and

communications products. Troubleshooting is best approached by a process of

elimination and refinement of the available data to arrive at a conclusion (the

location of the error).

After gathering the relevant information and based on your selection of the

applicable topic, proceed to the referenced section.

Diagnostic tools

When you encounter a problem, you can use the following:

v All diagnostic data including dump files, trap files, error logs, notification files,

and alert logs are found in the path specified by the diagnostic data directory

path (diagpath) database manager configuration parameter:

If the value for this configuration parameter is null, the diagnostic data is

written to one of the following directories or folders:

– For Linux and UNIX environments: INSTHOME/sqllib/db2dump, where

INSTHOME is the home directory of the instance.

– For supported Windows environments:

- If the DB2INSTPROF environment variable is not set then

x:\SQLLIB\DB2INSTANCE is used where x:\SQLLIB is the drive reference

and the directory specified in the DB2PATH registry variable, and the

value of DB2INSTANCE has the name of the instance.

Note: The directory does not have to be named SQLLIB.

- If the DB2INSTPROF environment variable is set then

x:\DB2INSTPROF\DB2INSTANCE is used where DB2INSTPROF is the

name of the instance profile directory and DB2INSTANCE is the name of

the instance (by default, the value of DB2INSTDEF on Windows 32-bit

operating systems).
v For Windows operating systems, you can use the Event Viewer to view the

administration notification log.

v The available diagnostic tools that can be used include db2trc, db2pd,

db2support and db2diag

v For Linux and UNIX operating systems, the ps command, which returns process

status information about active processes to standard output.

v For UNIX operating systems, the core file that is created in the current directory

when severe errors occur. It contains a memory image of the terminated process,

and can be used to determine what function caused the error.

Gathering relevant information

Troubleshooting includes narrowing the scope of the problem and investigating the

possible causes. The proper starting point is to gather the relevant information and

determine what you know, what data has not been gathered, and what paths you

can eliminate. At a minimum answer the following questions.

v Has the initial connection been successful?

v Is the hardware functioning properly?

© Copyright IBM Corp. 2006, 2009 483

v Are the communication paths operational?

v Have there been any communication network changes that would make

previous directory entries invalid?

v Has the database been started?

v Is the communication breakdown between one or more clients and the DB2

Connect Server (gateway); between the DB2 Connect gateway and the IBM

mainframe database server; or between the DB2 Connect Personal Edition and

the IBM mainframe database server?

v What can you determine by the content of the message and the tokens returned

in the message?

v Will using diagnostic tools such as db2trc, db2pd, or db2support provide any

assistance at this time?

v Are other machines performing similar tasks working correctly?

v If this is a remote task, is it successful if performed locally?

Initial connection is not successful

Review the following questions and ensure that the installation steps were

followed:

1. Did the installation processing complete successfully?

v Were all the prerequisite software products available?

v Were the memory and disk space adequate?

v Was remote client support installed?

v Was the installation of the communications software completed without any

error conditions?
2. For UNIX operating systems, was an instance of the product created?

v As root did you create a user and a group to become the instance owner and

sysadm group?
3. If applicable, was the license information processed successfully?

v For UNIX operating systems, did you edit the nodelock file and enter the

password that IBM supplied?
4. Were the IBM mainframe database server and workstation communications configured

properly?

v There are three configurations that must be considered:

a. The IBM mainframe database server configuration identifies the

application requester to the server. The IBM mainframe server database

management system will have system catalog entries that will define the

requestor in terms of location, network protocol and security.

b. The DB2 Connect workstation configuration defines the client population

to the server and the IBM mainframe server to the client.

c. The client workstation configuration must have the name of the

workstation and the communications protocol defined.
v Problem analysis for not making an initial connection includes verifying that

PU (physical unit) names are complete and correct, or verifying for TCP/IP

connections that the correct port number and hostname have been specified.

v Both the IBM mainframe server database administrator and the Network

administrators have utilities available to diagnose problems.
5. Do you have the level of authority required by the IBM mainframe server database

management system to use the IBM mainframe server database?

484 Troubleshooting and Tuning Database Performance

v Consider the access authority of the user, rules for table qualifiers, the

anticipated results.
6. If you attempt to use the Command Line Processor (CLP) to issue SQL statements

against a IBM mainframe database server, are you unsuccessful?

v Did you follow the procedure to bind the CLP to the IBM mainframe

database server?

Problems encountered after an initial connection

The following questions are offered as a starting point to assist in narrowing the

scope of the problem.

1. Are there any special or unusual operating circumstances?

v Is this a new application?

v Are new procedures being used?

v Are there recent changes that might be affecting the system? For example,

have any of the software products or applications been changed since the

application or scenario last ran successfully?

v For application programs, what application programming interface (API) was

used to create the program?

v Have other applications that use the software or communication APIs been

run on the user’s system?

v Has a fix pack recently been installed? If the problem occurred when a user

tried to use a feature that had not been used (or loaded) on their operating

system since it was installed, determine IBM’s most recent fix pack and load

it after installing the feature.
2. Has this error occurred before?

v Are there any documented resolutions to previous error conditions?

v Who were the participants and can they provide insight into a possible

course of action?
3. Have you explored using communications software commands that return information

about the network?

v TCP/IP might have valuable information retrieved from using TCP/IP

commands and daemons.
4. Is there information returned in the SQLCA (SQL communication area) that can be

helpful?

v Problem handling procedures should include steps to examine the contents

of the SQLCODE and SQLSTATE fields.

v SQLSTATEs allow application programmers to test for classes of errors that

are common to the DB2 family of database products. In a distributed

relational database network this field might provide a common base.
5. Was START DBM executed at the Server? Additionally, ensure that the

DB2COMM environment variable is set correctly for clients accessing the server

remotely.

6. Are other machines performing the same task able to connect to the server successfully?

The maximum number of clients attempting to connect to the server might

have been reached. If another client disconnects from the server, is the client

who was previously unable to connect, now able to connect?

7. Does the machine have the proper addressing? Verify that the machine is unique in

the network.

Chapter 7. Troubleshooting DB2 Connect 485

8. When connecting remotely, has the proper authority been granted to the client?

Connection to the instance might be successful, but the authorization might not

have been granted at the database or table level.

9. Is this the first machine to connect to a remote database? In distributed

environments routers or bridges between networks might block communication

between the client and the server. For example, when using TCP/IP, ensure that

you can PING the remote host.

Unsupported DDM commands

The DDM commands BNDCPY, BNDDPLY, DRPPKG and DSCRDBTBL are not

supported by DB2 Version 9.5 for Linux, UNIX, and Windows when it is acting as

a DRDA application server (DRDA AS).

Symptoms

If a DRDA application requester (DRDA AR) connects to DB2 Version 9.5 for

Linux, UNIX, and Windows and issues any of the following commands, the

command will fail:

 Table 81. Unsupported DDM commands

DDM command DDM code point Description

BNDCPY X’2011’ Copy an existing relational

database (RDB) package

BNDDPLY X’2016’ Deploy an existing RDB

package

DRPPKG X’2007’ Drop a package

DSCRDBTBL X’2012’ Describe an RDB table

In addition, the following code points, used in the SQLDTA descriptor for

parameter-wise (or column-wise) array input, are also not supported:

 Table 82. Unsupported FD:OCA data objects

FD:OCA data objects DDM code point Description

FDOEXT X’147B’ Formatted Data Object

Content Architecture

(FD:OCA) Data Extents

FDOOFF X’147D’ FD:OCA Data Offsets

The most common error message in this situation is SQL30020N (″Execution failed

because of a Distributed Protocol Error that will affect the successful execution of

subsequent commands and SQL statements″).

Causes

Distributed Data Management Architecture (DDM) is part of the DRDA protocol.

The DDM commands BNDCPY, BNDDPLY, DRPPKG and DSCRDBTBL exist in all

of the DRDA levels that are supported by DB2 Version 9.5 for Linux, UNIX, and

Windows but the DRDA application server does not support these DDM

commands.

Likewise, a DB2 Version 9.5 for Linux, UNIX, and Windows DRDA application

server does not support the FDOEXT and FDOOFF code points. These code points

486 Troubleshooting and Tuning Database Performance

are used in the SQLDTA descriptor that is sent to server when you submit a

column-wise array input request.

Diagnosing the problem

If you obtain a DB2 trace on the DRDA application server, you will see a message

similar to the following in response to these commands:ERROR MSG = Parser:

Command Not Supported.

Resolving the problem

There are currently no supported alternatives for the BNDCPY and BNDDPLY

DDM commands.

To drop a package, use the SQL statement DROP PACKAGE. For example, connect

to the DB2 Version 9.5 for Linux, UNIX, and Windows DRDA application server

and send a DROP PACKAGE statement in an EXECUTE IMMEDIATE request. DB2

Version 9.5 for Linux, UNIX, and Windows will process that request successfully.

To describe an RDB table, use one of the following DDM commands: DSCSQLSTT

(Describe SQL Statement) or PRPSQLSTT (Prepare SQL Statement). For example, if

you want a description of the table TAB1, describe or prepare the following

statement: SELECT * FROM TAB1.

Note: When the DRDA AR issues the PRPSQLSTT command, it is necessary to

also specify the instance variable RTNSQLDA with a value of TRUE, otherwise

the SQLDA Reply Data (SQLDARD) descriptor will not be returned by the server.

To avoid problems with the FDOEXT and FDOOFF code points, use row-wise

array input requests instead of parameter-wise (or column-wise) array input

requests.

Common DB2 Connect problems

This topic lists the most common symptoms of connection problems encountered

when using DB2 Connect. In each case, you are provided with:

v A combination of a message number and a return code (or protocol specific

return code) associated with that message. Each message and return code

combination has a separate heading, and the headings are ordered by message

number, and then by return code.

v A symptom, usually in the form of a sample message listing.

v A suggested solution, indicating the probable cause of the error. In some cases,

more than one suggested solution might be provided.

SQL0965 or SQL0969

Symptom

Messages SQL0965 and SQL0969 can be issued with a number of different

return codes from DB2 for IBM i, DB2 for z/OS, and DB2 Server for VM

and VSE.

 When you encounter either message, you should look up the original SQL

code in the documentation for the database server product issuing the

message.

Chapter 7. Troubleshooting DB2 Connect 487

Solution

The SQL code received from the IBM mainframe database cannot be

translated. Correct the problem, based on the error code, then resubmit the

failing command.

SQL5043N

Symptom

Support for one or more communications protocols failed to start

successfully. However, core database manager functionality started

successfully.

 Perhaps the TCP/IP protocol is not started on the DB2 Connect server.

There might have been a successful client connection previously.

If diaglevel = 4, then the db2diag log files might contain a similar entry,

for example:

 2001-05-30-14.09.55.321092 Instance:svtdbm5 Node:000

 PID:10296(db2tcpcm) Appid:none

 common_communication sqlcctcpconnmgr_child Probe:46

 DIA3205E Socket address "30090" configured in the TCP/IP

 services file and

 required by the TCP/IP server support is being used by another

 process.

Solution

This warning is a symptom which signals that DB2 Connect, acting as a

server for remote clients, is having trouble handling one or more client

communication protocols. These protocols can be TCP/IP and others, and

usually the message indicates that one of the communications protocols

defined to DB2 Connect is not configured properly.

 Often the cause might be that the DB2COMM profile variable is not

defined, or is defined incorrectly. Generally, the problem is the result of a

mismatch between the DB2COMM variable and names defined in the

database manager configuration (for example, svcename or nname).

One possible scenario is having a previously successful connection, then

getting the SQL5043 error message, while none of the configuration has

changed. This could occur using the TCP/IP protocol, when the remote

system abnormally terminates the connection for some reason. When this

happens, a connection might still appear to exist on the client, and it might

become possible to restore the connection without further intervention by

issuing the commands shown below.

Most likely, one of the clients connecting to the DB2 Connect server still

has a handle on the TCP/IP port. On each client machine that is connected

to the DB2 Connect server, enter the following commands:

 db2 terminate

 db2stop

SQL30020

Symptom

SQL30020N Execution failed because of a Distributed Protocol Error that

will affect the successful execution of subsequent commands and SQL

statements.

Solutions

Service should be contacted with this error. Run the db2support command

before contacting service.

488 Troubleshooting and Tuning Database Performance

SQL30060

Symptom

SQL30060N ″<authorization-ID>″ does not have the privilege to perform

operation ″<operation>″.

Solution

When connecting to DB2 for z/OS, the Communications Database (CDB)

tables have not been updated properly.

SQL30061

Symptom

Connecting to the wrong IBM mainframe database server location - no

target database can be found.

Solution

The wrong server database name might be specified in the DCS directory

entry. When this occurs, SQLCODE -30061 is returned to the application.

 Check the DB2 node, database, and DCS directory entries. The target

database name field in the DCS directory entry must correspond to the

name of the database based on the platform. For example, for a DB2 for

z/OS database, the name to be used should be the same as that used in the

Boot Strap Data Set (BSDS) ″LOCATION=locname″ field, which is also

provided in the DSNL004I message (LOCATION=location) when the

Distributed Data Facility (DDF) is started.

The correct commands for a TCP/IP node are:

 db2 catalog tcpip node <node_name> remote <host_name_or_address>

 server <port_no_or_service_name>

 db2 catalog dcs database <local_name> as <real_db_name>

 db2 catalog database <local_name> as <alias> at <node node_name>

 authentication server

To connect to the database you then issue:

 db2 connect to <alias> user <user_name> using <password>

SQL30081N with Return Code 79

Symptom

 SQL30081N A communication error has been detected.

 Communication protocol

 being used: "TCP/IP". Communication API being used: "SOCKETS".

 Location

 where the error was detected: "". Communication function

 detecting the error:

 "connect". Protocol specific error code(s): "79", "*", "*".

 SQLSTATE=08001

Solution(s)

This error can occur in the case of a remote client failing to connect to a

DB2 Connect server. It can also occur when connecting from the DB2

Connect server to a IBM mainframe database server.

1. The DB2COMM profile variable might be set incorrectly on the DB2

Connect server. Check this. For example, the command db2set

db2comm=tcpip should appear in sqllib/db2profile when running DB2

Enterprise Server Edition on AIX.

Chapter 7. Troubleshooting DB2 Connect 489

2. There might be a mismatch between the TCP/IP service name and port

number specifications at the IBM data server client and the DB2

Connect server. Verify the entries in the TCP/IP services files on both

machines.

3. Check that DB2 is started on the DB2 Connect server. Set the Database

Manager Configuration diaglevel to 4, using the command:

 db2 update dbm cfg using diaglevel 4

After stopping and restarting DB2, look in the db2diag log files to

check that DB2 TCP/IP communications have been started. You should

see output similar to the following:

 2001-02-03-12.41.04.861119 Instance:svtdbm2 Node:00

 PID:86496(db2sysc) Appid:none

 common_communication sqlcctcp_start_listen Probe:80

 DIA3000I "TCPIP" protocol support was successfully started.

SQL30081N with Protocol Specific Error Code 10032

Symptom

 SQL30081N A communication error has been detected.

 Communication protocol

 being used: "TCP/IP". Communication API being used: "SOCKETS".

 Location

 where the error was detected: "9.21.85.159". Communication

 function detecting

 the error: "send". Protocol specific error code(s): "10032",

 "*", "*".

 SQLSTATE=08001

Solution

This error message might be received when trying to disconnect from a

machine where TCP/IP communications have already failed. Correct the

problem with the TCP/IP subsystem.

 On most machines, simply restarting the TCP/IP protocol for the machine

is the way to correct the problem. Occasionally, recycling the entire

machine might be required.

SQL30082 RC=24 During CONNECT

Symptom

SQLCODE -30082 The username or the password supplied is incorrect.

Solution

Ensure that the correct password is provided on the CONNECT statement

if necessary. Password not available to send to the target server database. A

password has to be sent from the IBM data server client to the target

server database. On certain platforms, for example AIX, the password can

only be obtained if it is provided on the CONNECT statement.

490 Troubleshooting and Tuning Database Performance

Chapter 8. Searching knowledge bases

How to search effectively for known problems

There are many resources available that describe known problems, including DB2

APARs, whitepapers, IBM Redbooks® publications, Technotes, and manuals. It is

important to be able to effectively search these (and other) resources in order to

quickly determine whether a solution already exists for the problem you are

experiencing.

Before searching, you should have a clear understanding of your problem

situation.

Once you have a clear understanding of what the problem situation is, you need to

create a list of search keywords to increase your chances of finding the existing

solutions. Here are some tips:

1. Use multiple words in your search. The more pertinent search terms you use,

the better your search results will be.

2. Start with specific results, and then go to broader results if necessary. For

example, if too few results are returned, then remove some of the less pertinent

search terms and try it again. Alternatively, if you are uncertain which

keywords to use, you can perform a broad search with a few keywords, look at

the type of results that you receive, and be able to make a more informed

choice of additional keywords.

3. Sometimes it is more effective to search for a specific phrase. For example, if

you enter: ″administration notification file″ (with the quotation marks) you will

get only those documents that contain the exact phrase in the exact order in

which you type it. (As opposed to all documents that contain any combination

of those three words).

4. Use wildcards. If you are encountering a specific SQL error, search for

″SQL5005<wildcard>″, where <wildcard> is the appropriate wildcard for the

resource you’re searching. This is likely to return more results than if you had

merely searched for ″SQL5005″ or ″SQL5005c ″.

5. If you are encountering a situation where your instance ends abnormally and

produces trap files, search for known problems using the first two or three

functions in the trap or core file’s stack traceback. If too many results are

returned, try adding keywords ″trap″, ″abend″ or ″crash″.

6. If you are searching for keywords that are operating-system-specific (such as

signal numbers or errno values), try searching on the constant name, not the

value. For example, search for ″EFBIG″ instead of the error number 27.

In general, search terms that are successful often involve:

v Words that describe the command run

v Words that describe the symptoms

v Tokens from the diagnostics

Troubleshooting resources

A wide variety of troubleshooting information is available to assist you in using

DB2 database products.

© Copyright IBM Corp. 2006, 2009 491

DB2 documentation

Troubleshooting information can be found throughout the DB2 Information Center,

as well as throughout the PDF books that make up the DB2 library.

DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing problems and

want help finding possible causes and solutions. The Technical Support site has

links to the latest DB2 publications, TechNotes, Authorized Program Analysis

Reports (APARs), fix packs and other resources. You can search through this

knowledge base to find possible solutions to your problems.

Access the DB2 Technical Support Web site at: www.ibm.com/software/data/db2/
support/db2_9/

492 Troubleshooting and Tuning Database Performance

http://www.ibm.com/software/data/db2/support/db2_9/
http://www.ibm.com/software/data/db2/support/db2_9/

Chapter 9. Getting DB2 product fixes

Fix packs contain code updates and fixes for problems found by IBM during

product testing and by customers as they use the product. How to find the latest

fix pack and how to apply the fixes to your database environment are discussed.

Getting fixes

A product fix might be available to resolve your problem. You can get fixes by

following these steps.

1. You can view fix lists and obtain fix packs from the following Web pages,

respectively:

v DB2 9 for Linux, UNIX, and Windows support

v Fixes by version for DB2 for Linux, UNIX, and Windows
2. Determine which fix pack you need. In general, the installation of the most

recent fix pack is recommended in order to avoid encountering problems

caused by software defects already known and corrected.

3. Download the fix pack and extract the files by double-clicking the

self-extracting executable package. Open the SERVER/doc/your_language/
readme.txt document and follow the provided link to the DB2 Information

Center to obtain installation instructions.

4. Apply the fix. For instructions, see: “Applying fix packs” in Installing DB2

Servers.

Fix packs, interim fix packs and test fixes

An Authorized Program Analysis Report (APAR) is a formal report of a problem

caused by a suspected defect in a current unaltered release of an IBM program.

APARs describe problems found during testing by IBM, as well as problems

reported by customers.

The modified DB2 code that resolves the problem described in the APAR can be

delivered in fix packs, interim fix packs and test fixes.

Fix pack

A fix pack is a cumulative collection of APAR fixes. In particular, fix packs

address the APARs that arise between new releases of DB2. They are

intended to allow you to move up to a specific maintenance level. Fix

packs have the following characteristics:

v They are cumulative. Fix packs for a particular release of DB2 supersede

or contain all of the APAR fixes shipped in previous fix packs and

interim fix packs for that release.

v They are available for all supported operating systems and DB2 database

products.

v They contain many APARs.

v They are published on the DB2 Technical Support Web site and are

generally available to customers who have purchased products under

the Passport Advantage® program.

v They are fully tested by IBM.

v They are accompanied by documentation that describes changes to the

database products, and how to install and remove the fix pack.

© Copyright IBM Corp. 2006, 2009 493

http://www-306.ibm.com/software/data/db2/support/db2_9/download.html
http://www-1.ibm.com/support/docview.wss?rs=71&uid=swg27007053

Note: The status of an APAR is changed from ″Open″ to ″Closed as

program error″ when the APAR fix is provided in a fix pack. You can

determine the status of individual APARs by examining the APAR

descriptions on the DB2 Technical Support Web site.

Interim fix pack

An interim fix pack is a cumulative collection of important APAR fixes that

arise between fix packs. To qualify for inclusion in an interim fix pack, an

APAR must be considered pervasive or otherwise important. Candidate

APARs are evaluated and approved by experts on the DB2 technical

support team. Interim fix packs have the following characteristics:

v They are cumulative. Interim fix packs for a particular release of DB2

supersede or contain all of the APAR fixes shipped in previous fix packs

and interim fix packs for that release.

v They are available for a subset of operating systems and DB2 database

products.

v They usually contain 20 to 30 new APARs.

v They are published on the DB2 Technical Support Web site and are

generally available to customers who have purchased products under

the Passport Advantage program.

v They are fully tested by IBM.

v They are accompanied by documentation that describes how to install

and remove the interim fix pack.

Interim fix packs are supported in production for two years after they are

released. They are available at the approximate midpoint between fix packs

and are intended as the preferred alternative to test fixes, which do not

receive the same level of testing or enjoy the same level of support as

interim fix packs.

Test fix

A test fix is a temporary solution that is supplied to specific customers for

testing in response to a reported problem. Test fixes are sometimes referred

to as ″special builds″ and they have the following characteristics:

v They usually contain a single APAR.

v They are obtained from DB2 Support and are not generally available to

the public.

v They undergo limited IBM testing.

v They include minimal documentation, including a description of how

the test fix should be applied, the APARs it fixes, and instructions for the

removal of the test fix.

Test fixes are supplied in situations where a new problem has been

uncovered, there is no workaround or bypass for the problem and you

cannot wait until the next fix pack or interim fix pack becomes available.

For example, if the problem is causing critical impact on your business, a

test fix might be provided to alleviate the situation until the APAR is

addressed in a fix pack or interim fix pack.

It is recommended that you keep your DB2 environment running at the latest fix

pack level to ensure problem-free operation. To receive notification of the

availability of new fix packs, subscribe to ″My notifications″ e-mail updates on the

DB2 Technical Support Web site at: http://www.ibm.com/software/data/db2/
support/db2_9/

494 Troubleshooting and Tuning Database Performance

http://www.ibm.com/software/data/db2/support/db2_9/
http://www.ibm.com/software/data/db2/support/db2_9/

To learn more about the role and purpose of DB2 fixes and fix packs, see the

support policy statement.

Applying test fixes

A test fix is a temporary fix that is supplied to specific customers for testing in

response to a reported problem. A Readme file accompanies every test fix. The test

fix Readme file provides instructions for installing and uninstalling the test fix, and

a list of the APARs (if any) included in the test fix.

Each test fix has specific prerequisites. Refer to the Readme file that accompanies

the test fix for details.

There are two types of test fixes:

v A test fix for an individual DB2 product. These test fixes can be applied on an

existing installation of the product, or can be used to perform a full product

installation where there is no existing DB2 installation.

v Universal test fixes (Linux and UNIX only). A universal test fix services

installations where more than one DB2 product has been installed.

If national languages have been installed, you might also require a separate

national language test fix. The national language test fix can only be applied if it is

at the same test fix level as the installed DB2 product. If you are applying a

universal test fix, you must apply both the universal test fix and the national

language test fix to update the DB2 products.

Obtain the test fix from IBM Software Support and follow the instructions in the

Readme file with respect to installing, testing and removing (if necessary) the test

fix.

When installing a test fix in a multi-partition database partition environment, the

system must be offline and all computers participating in the instance must be

upgraded to the same test fix level.

Chapter 9. Getting DB2 product fixes 495

http://www-01.ibm.com/support/docview.wss?rs=71&context=SSEPGG&q1=special+builds&uid=swg21180416&loc=en_US&cs=utf-8&lang=en]

496 Troubleshooting and Tuning Database Performance

Chapter 10. Learning more about troubleshooting

At some point when working with DB2 database products, you may encounter a

problem. This problem might be reported by the database manager, by an

application running against the database, or by your users as they give feedback to

you that “something is not quite right” with the database.

The concepts and tools presented here are to introduce you to, and to help you

with, the task of troubleshooting a real or perceived problem in the operations of

your database. The importance of capturing the right data at the right time is

emphasized and so first occurrence data capture is the first tool discussed. Other

logs and files that are used by the database manager to capture data about the

operations of the database are presented including mention of operating system

diagnostic tools.

Learning more

The following topics can help you to acquire the conceptual information that you

need to effectively troubleshoot problems with the DB2 product:

v About troubleshooting

Troubleshooting is a systematic approach to solving a problem. The goal is to

determine why something does not work as expected and how to resolve the

problem.

v About administration notification log files

The DB2 database manager writes the following kinds of information to the

administration notification log: the status of DB2 utilities such as REORG and

BACKUP; client application errors; service class changes, licensing activity; log

file paths and storage problems; monitoring and indexing activities; and table

space problems. A database administrator can use this information to diagnose

problems, tune the database, or monitor the database.

v About DB2 diagnostic (db2diag) log files

With the addition of administration notification log messages being logged to

the db2diag log files using a standardized message format, viewing the db2diag

log files is an excellent first task in understanding what has been happening to

the database.

v About platform-specific error logs

There are many other files and utilities available outside of DB2 to help analyze

problems. Often they are just as important to determining root cause as the

information made available in the DB2 files.

v About messages

Learning more about messages can help you to identify an error or problem and

resolve the problem by using the appropriate recovery action. This information

can also be used to understand where messages are generated and logged.

v About internal return codes

There are two types of internal return codes: ZRC values and ECF values. They

are displayed in DB2 trace output and in the db2diag log files. ZRC and ECF

values are typically negative numbers and are used to represent error conditions.

v About dump files

Dump files are created when an error occurs for which there is additional

information that would be useful in diagnosing a problem (such as internal

© Copyright IBM Corp. 2006, 2009 497

control blocks). Every data item written to the dump files has a timestamp

associated with it to help with problem determination. Dump files are in binary

format and are intended for DB2 customer support representatives.

v About trap files

DB2 generates a trap file if it cannot continue processing because of a trap,

segmentation violation, or exception. All signals or exceptions received by DB2

are recorded in the trap file. The trap file also contains the function sequence

that was running when the error occurred. This sequence is sometimes referred

to as the ″function call stack″ or ″stack trace.″ The trap file also contains

additional information about the state of the process when the signal or

exception was caught.

v About first occurrence data capture (FODC)

First occurrence data capture (FODC) is the process used to capture

scenario-based data about a DB2 instance. FODC can be invoked manually by a

DB2 user based on a particular symptom or invoked automatically when a

predetermined scenario or symptom is detected. This information reduces the

need to reproduce errors to get diagnostic information.

v About callout script (db2cos) output files

A db2cos script is invoked by default when the database manager cannot

continue processing due to a panic, trap, segmentation violation or exception.

v About combining DB2 and OS diagnostics

Diagnosing some problems related to memory, swap files, CPU, disk storage,

and other resources requires a thorough understanding of how a given operating

system manages these resources. At a minimum, defining resource-related

problems requires knowing how much of that resource exists, and what resource

limits might exist per user.

Administration notification log

The administration notification log (instance_name.nfy) is the repository from which

information about numerous database administration and maintenance activities

can be obtained. A database administrator can use this information to diagnose

problems, tune the database, or simply monitor the database.

The DB2 database manager writes the following kinds of information to the

administration notification log on UNIX and Linux operating system platforms (on

Windows operating system platforms, the event log is used to record

administration notification events):

v Status of DB2 utilities such REORG and BACKUP

v Client application errors

v Service class changes

v Licensing activity

v File paths

v Storage problems

v Monitoring activities

v Indexing activities

v Table space problems

Administration notification log messages are also logged to the db2diag log files

using a standardized message format.

498 Troubleshooting and Tuning Database Performance

Notification messages provide additional information to supplement the SQLCODE

that is provided.

The administration notification log file can exist in two different forms:

Single administration notification log file

One active administration notification log file, named instance_name.nfy,

that grows in size indefinitely. This is the default form and it exists

whenever the diagsize database manager configuration parameter has the

value of 0 (the default value for this parameter is 0).

Rotating administration notification log files

A single active log file (named instance_name.N.nfy, where N is the file

name index that is a continuously growing number starting from 0),

although a series of administration notification log files can be found in the

location defined by the diagpath configuration parameter, each growing

until reaching a limited size, at which time the log file is closed and a new

one is created and opened for logging with an incremented file name index

(instance_name.N+1.nfy). It exists whenever the diagsize database manager

configuration parameter has a nonzero value.

Note: Neither single nor rotating administration notification log files are

available on the Windows operating system platform.

You can choose which of these two forms exist on your system by appropriately

setting the diagsize database manager configuration parameter.

Configurations

The administration notification log files can be configured in size, location, and the

types of events and level of detail recorded, by setting the following database

manager configuration parameters:

diagsize

The value of diagsize decides what form of administration notification log

file will be adopted. If the value is 0, a single administration notification

log file will be adopted. If the value is not 0, rotating administration

notification log files will be adopted, and this nonzero value also specifies

the total size of all rotating diagnostic log files and all rotating

administration notification log files. The instance must be restarted for the

new value of the diagsize parameter to take effect. See the ″diagsize -

Diagnostic log file size configuration parameter″ topic for complete details.

diagpath

Diagnostic information can be specified to be written to administration

notification log files in the location defined by the diagpath configuration

parameter. See the ″diagpath - Diagnostic data directory path configuration

parameter″ topic for complete details.

notifylevel

The types of events and the level of detail written to the administration

notification log files can be specified with the notifylevel configuration

parameter. See the ″notifylevel - Notify level configuration parameter″

topic for complete details.

Interpreting administration notification log file entries

You can use a text editor to view the administration notification log file on the

machine where you suspect a problem to have occurred. The most recent events

recorded are the furthest down the file.

Chapter 10. Learning more about troubleshooting 499

Generally, each entry contains the following parts:

v A timestamp

v The location reporting the error. Application identifiers allow you to match up

entries pertaining to an application on the logs of servers and clients.

v A diagnostic message (usually beginning with ″DIA″ or ″ADM″) explaining the

error.

v Any available supporting data, such as SQLCA data structures and pointers to

the location of any extra dump or trap files.

The following example shows the header information for a sample log entry, with

all the parts of the log identified.

Note: Not every log entry will contain all of these parts.
2006-02-15-19.33.37.630000 �1� Instance:DB2 �2� Node:000 �3�

PID:940(db2syscs.exe) TID: 660�4� Appid:*LOCAL.DB2.020205091435 �5�

recovery manager �6� sqlpresr �7� Probe:1 �8� Database:SAMPLE �9�

ADM1530E �10� Crash recovery has been initiated. �11�

Legend:

 1. A timestamp for the message.

 2. The name of the instance generating the message.

 3. For multi-partition systems, the database partition generating the message. (In

a nonpartitioned database, the value is ″000″.)

 4. The process identifier (PID), followed by the name of the process, followed by

the thread identifier (TID) that are responsible for the generation of the

message.

 5.

Identification of the application for which the process is working. In this

example, the process generating the message is working on behalf of an

application with the ID *LOCAL.DB2.020205091435.

This value is the same as the appl_id monitor element data. For detailed

information about how to interpret this value, see the documentation for the

appl_id monitor element.

To identify more about a particular application ID, either:

v Use the LIST APPLICATIONS command on a DB2 server or LIST DCS

APPLICATIONS on a DB2 Connect gateway to view a list of application

IDs. From this list, you can determine information about the client

experiencing the error, such as its node name and its TCP/IP address.

v Use the GET SNAPSHOT FOR APPLICATION command to view a list of

application IDs.
 6. The DB2 component that is writing the message. For messages written by user

applications using the db2AdminMsgWrite API, the component will read

“User Application”.

 7. The name of the function that is providing the message. This function

operates within the DB2 component that is writing the message. For messages

written by user applications using the db2AdminMsgWrite API, the function

will read “User Function”.

 8. Unique internal identifier. This number allows DB2 customer support and

development to locate the point in the DB2 source code that reported the

message.

 9. The database on which the error occurred.

500 Troubleshooting and Tuning Database Performance

10. When available, a message indicating the error type and number as a

hexadecimal code.

11. When available, message text explaining the logged event.

Setting the error capture level for the administration notification

log file

This task describes how to set the error capture level for the administration

notification log file.

The information that DB2 records in the administration notification log is

determined by the NOTIFYLEVEL setting.

v To check the current setting, issue the GET DBM CFG command.

Look for the following variable:

Notify Level (NOTIFYLEVEL) = 3

v To alter the setting, use the UPDATE DBM CFG command. For example:

DB2 UPDATE DBM CFG USING NOTIFYLEVEL X

where X is the notification level you want.

DB2 diagnostic (db2diag) log files

The DB2 diagnostic db2diag log files are primarily intended for use by IBM

Software Support for troubleshooting purposes. The administration notification log

is primarily intended for troubleshooting use by database and system

administrators. Administration notification log messages are also logged to the

db2diag log files using a standardized message format.

Overview

With DB2 diagnostic and administration notification messages both logged within

the db2diag log files, this often makes the db2diag log files the first location to

examine in order to obtain information about the operation of your databases.

Help with the interpretation of the contents of these diagnostic log files is provided

in the topics listed in the ″Related links″ section. If your troubleshooting attempts

are unable to resolve your problem and you feel you require assistance, you can

contact IBM Software Support (for details, see the ″Contacting IBM Software

Support″ topic). In gathering relevant diagnostic information that will be requested

to be sent to IBM Software Support, you can expect to include your db2diag log

files among other sources of information which includes other relevant logs,

storage dumps, and traces.

The db2diag log file can exist in two different forms:

Single diagnostic log file

One active diagnostic log file, named db2diag.log, that grows in size

indefinitely. This is the default form and it exists whenever the diagsize

database manager configuration parameter has the value of 0 (the default

value for this parameter is 0).

Rotating diagnostic log files

A single active log file (named db2diag.N.log, where N is the file name

index that is a continuously growing number starting from 0), although a

series of diagnostic log files can be found in the location defined by the

diagpath configuration parameter, each growing until reaching a limited

size, at which time the log file is closed and a new one is created and

opened for logging with an incremented file name index

Chapter 10. Learning more about troubleshooting 501

(db2diag.N+1.log). It exists whenever the diagsize database manager

configuration parameter has a nonzero value.

You can choose which of these two forms exist on your system by appropriately

setting the diagsize database manager configuration parameter.

Configurations

The db2diag log files can be configured in size, location, and the types of

diagnostic errors recorded by setting the following database manager configuration

parameters:

diagsize

The value of diagsize decides what form of diagnostic log file will be

adopted. If the value is 0, a single diagnostic log file will be adopted. If the

value is not 0, rotating diagnostic log files will be adopted, and this

nonzero value also specifies the total size of all rotating diagnostic log files

and all rotating administration notification log files. The instance must be

restarted for the new value of the diagsize parameter to take effect. See the

″diagsize - Diagnostic log file size configuration parameter″ topic for

complete details.

diagpath

Diagnostic information can be specified to be written to db2diag log files

in the location defined by the diagpath configuration parameter. See the

″diagpath - Diagnostic data directory path configuration parameter″ topic

for complete details.

diaglevel

The types of diagnostic errors written to the db2diag log files can be

specified with the diaglevel configuration parameter. See the ″diaglevel -

Diagnostic error capture level configuration parameter″ topic for complete

details.

Interpretation of diagnostic log file entries

Use the db2diag log files analysis tool (db2diag) to filter and format the db2diag

log files. With the addition of administration notification log messages being

logged to the db2diag log files using a standardized message format, viewing the

db2diag log files first is a recommended choice to understand what has been

happening to the database.

As an alternative to using db2diag, you can use a text editor to view the diagnostic

log file on the machine where you suspect a problem to have occurred. The most

recent events recorded are the furthest down the file.

Note: The administration notification (instance_name.nfy) and diagnostic

(db2diag.log) logs grow continuously as single log files. When the diagsize database

manager configuration parameter is set to a nonzero value, both the administration

notification and the db2diag log files become a series of rotating log files

(instance_name.N.nfy and db2diag.N.log) having a limited total size which is

determined by the value of the diagsize configuration parameter.

The following example shows the header information for a sample log entry, with

all the parts of the log identified.

Note: Not every log entry will contain all of these parts. Only the first several

fields (timestamp to TID) and FUNCTION will be present in all the db2diag log

file records.

502 Troubleshooting and Tuning Database Performance

2007-05-18-14.20.46.973000-240�1� I27204F655�2� LEVEL: Info�3�

PID : 3228�4� TID : 8796�5� PROC : db2syscs.exe�6�

INSTANCE: DB2MPP�7� NODE : 002�8� DB : WIN3DB1�9�

APPHDL : 0-51�10� APPID: 9.26.54.62.45837.070518182042�11�

AUTHID : UDBADM�12�

EDUID : 8796�13� EDUNAME: db2agntp�14� (WIN3DB1) 2

FUNCTION:�15� DB2 UDB, data management, sqldInitDBCB, probe:4820

DATA #1 :�16� String, 26 bytes

Setting ADC Threshold to:

DATA #2 : unsigned integer, 8 bytes

1048576

Legend:

1. A timestamp and timezone for the message.

Note: Timestamps in the db2diag log files contain a time zone. For

example: 2006-02-13-14.34.35.965000-300, where ″-300″ is the difference

between UTC (Coordinated Universal Time, formerly known as GMT) and

local time at the application server in minutes. Thus -300 represents UTC -

5 hours, for example, EST (Eastern Standard Time).

2. The record ID field. The recordID of the db2diag log files specifies the file

offset at which the current message is being logged (for example, “27204”)

and the message length (for example, “655”) for the platform where the

DB2 diagnostic log was created.

3. The diagnostic level associated with an error message. For example, Info,

Warning, Error, Severe, or Event

4. The process ID

5. The thread ID

6. The process name

7. The name of the instance generating the message.

8. For multi-partition systems, the database partition generating the message.

(In a non-partitioned database, the value is ″000″.)

9. The database name

10. The application handle. This value aligns with that used in db2pd output

and lock dump files. It consists of the coordinator partition number

followed by the coordinator index number, separated by a dash.

11. Identification of the application for which the process is working. In this

example, the process generating the message is working on behalf of an

application with the ID 9.26.54.62.45837.070518182042.

 A TCP/IP-generated application ID is composed of three sections

1. IP address: It is represented as a 32-bit number displayed as a

maximum of 8 hexadecimal characters.

2. Port number: It is represented as 4 hexadecimal characters.

3. A unique identifier for the instance of this application.

Note: When the hexadecimal versions of the IP address or port number

begin with 0 through to 9, they are changed to G through to P. For

example, ″0″ is mapped to ″G″, ″1″ is mapped to ″H″, and so on. The IP

address, AC10150C.NA04.006D07064947 is interpreted as follows: The IP

address remains AC10150C, which translates to 172.16.21.12. The port

Chapter 10. Learning more about troubleshooting 503

number is NA04. The first character is ″N″, which maps to ″7″. Therefore,

the hexadecimal form of the port number is 7A04, which translates to

31236 in decimal form.

This value is the same as the appl_id monitor element data. For detailed

information about how to interpret this value, see the documentation for

the appl_id monitor element.

To identify more about a particular application ID, either:

v Use the LIST APPLICATIONS command on a DB2 server or LIST DCS

APPLICATIONS on a DB2 Connect gateway to view a list of application

IDs. From this list, you can determine information about the client

experiencing the error, such as its database partition name and its

TCP/IP address.

v Use the GET SNAPSHOT FOR APPLICATION command to view a list

of application IDs.

v Use the db2pd -applications -db <dbname> command.

12 The authorization identifier.

13 The engine dispatchable unit identifier.

14 The name of the engine dispatchable unit.

15. The product name (″DB2″), component name (“data management”), and

function name (“sqlInitDBCB”) that is writing the message (as well as the

probe point (“4820”) within the function).

16. The information returned by a called function. There may be multiple data

fields returned.

 Now that you have seen a sample db2diag log file entry, here is a list of all of the

possible fields:

<timestamp><timezone> <recordID> LEVEL: <level> (<source>)

PID : <pid> TID : <tid> PROC : <procName>

INSTANCE: <instance> NODE : <node> DB : <database>

APPHDL : <appHandle> APPID: <appID>

AUTHID : <authID>

EDUID : <eduID> EDUNAME: <engine dispatchable unit name>

FUNCTION: <prodName>, <compName>, <funcName>, probe:<probeNum>

MESSAGE : <messageID> <msgText>

CALLED : <prodName>, <compName>, <funcName> OSERR: <errorName> (<errno>)

RETCODE : <type>=<retCode> <errorDesc>

ARG #N : <typeTitle>, <typeName>, <size> bytes

... argument ...

DATA #N : <typeTitle>, <typeName>, <size> bytes

... data ...

The fields which were not already explained in the example, are:

v

<source> Indicates the origin of the logged error. (You can find it at the end of

the first line in the sample.) The possible values are:

– origin - message is logged by the function where error originated (inception

point)

– OS - error has been produced by the operating system

– received - error has been received from another process (client/server)

– sent - error has been sent to another process (client/server)
v

MESSAGE Contains the message being logged. It consists of:

504 Troubleshooting and Tuning Database Performance

– <messageID> - message number, for example, ECF=0x9000004A or DIA8604C

– <msgText> - error description
When the CALLED field is also present, <msgText> is an impact of the error

returned by the CALLED function on the function logging a message (as specified

in the FUNCTION field)

v

CALLED This is the function that returned an error. It consists of:

– <prodName> - The product name: ″OS″, ″DB2″, ″DB2 Tools″ or ″DB2 Common″

– <compName> - The component name (’-’ in case of a system call)

– <funcName> - The called function name
v OSERR This is the operating system error returned by the CALLED system call.

(You can find it at the end of the same line as CALLED.) It consists of:

– <errorName> - the system specific error name

– <errno> - the operating system error number
v ARG This section lists the arguments of a function call that returned an error. It

consists of:

– <N> - The position of an argument in a call to the ″called″ function

– <typeTitle> - The label associated with the Nth argument typename

– <typeName> - The name of the type of argument being logged

– <size> - The size of argument to be logged
v DATA This contains any extra data dumped by the logging function. It consists of:

– <N> - The sequential number of data object being dumped

– <typeTitle> - The label of data being dumped

– <typeName> - The name of the type of data field being logged, for example,

PD_TYPE_UINT32, PD_TYPE_STRING

– <size> - The size of a data object

Interpreting the informational record of the db2diag log files

The first message in the db2diag log files should always be an informational

record.

An example of an informational record is as follows:

2006-02-09-18.07.31.059000-300 I1H917 LEVEL: Event

PID : 3140 TID : 2864 PROC : db2start.exe

INSTANCE: DB2 NODE : 000

FUNCTION: DB2 UDB, RAS/PD component, _pdlogInt, probe:120

START : New Diagnostic Log file

DATA #1 : Build Level, 124 bytes

Instance "DB2" uses "32" bits and DB2 code release "SQL09010"

with level identifier "01010107".

Informational tokens are "DB2 v9.1.0.190", "s060121", "", Fix Pack "0".

DATA #2 : System Info, 1564 bytes

System: WIN32_NT MYSRVR Service Pack 2 5.1 x86 Family 15, model 2, stepping 4

CPU: total:1 online:1 Cores per socket:1 Threading degree per core:1

Physical Memory(MB): total:1024 free:617 available:617

Virtual Memory(MB): total:2462 free:2830

Swap Memory(MB): total:1438 free:2213

Information in this record is only valid at the time when this file was created

(see this record’s time stamp)

The Informational record is output for db2start on every logical partition. This

results in multiple informational records: one per logical partition. Since the

informational record contains memory values which are different on every

partition, this information might be useful.

Chapter 10. Learning more about troubleshooting 505

Setting the error capture level of the diagnostic log files

The DB2 diagnostic (db2diag) log files are files that contain text information logged

by DB2. This information is used for troubleshooting and much of it is primarily

intended for IBM Software Support.

The types of diagnostic errors that are recorded in the db2diag log files are

determined by the diaglevel database manager configuration parameter setting.

v To check the current setting, issue the command GET DBM CFG.

Look for the following variable:

Diagnostic error capture level (DIAGLEVEL) = 3

v To change the value dynamically, use the UPDATE DBM CFG command.

To change a database manager configuration parameter online:

db2 attach to <instance-name>

db2 update dbm cfg using <parameter-name> <value>

db2 detach

For example:

DB2 UPDATE DBM CFG USING DIAGLEVEL X

where X is the desired notification level. If you are diagnosing a problem that

can be reproduced, IBM Software Support personnel might suggest that you use

diaglevel 4 while performing troubleshooting.

Combining DB2 database and OS diagnostics

Diagnosing some problems related to memory, swap files, CPU, disk storage, and

other resources requires a thorough understanding of how a given operating

system manages these resources. At a minimum, defining resource-related

problems requires knowing how much of that resource exists, and what resource

limits might exist per user. (The relevant limits are typically for the user ID of the

DB2 instance owner.)

Here is some of the important configuration information that you must obtain:

v Operating system patch level, installed software, and upgrade history

v Number of CPUs

v Amount of RAM

v Swap and file cache settings

v User data and file resource limits and per user process limit

v IPC resource limits (message queues, shared memory segments, semaphores)

v Type of disk storage

v What else is the machine used for? Does DB2 compete for resources?

v Where does authentication occur?

Most platforms have straightforward commands for retrieving resource

information. However, you will rarely be required to obtain that information

manually, since the db2support utility collects this data and much more. The

detailed_system_info.html file produced by db2support (when the options -s and

-m are specified) contains the syntax for many of the operating system commands

used to collect this information.

The following exercises are intended to help you discover system configuration

and user environment information in various DB2 diagnostic files. The first

exercise familiarizes you with the steps involved in running the db2support utility.

506 Troubleshooting and Tuning Database Performance

Subsequent exercises cover trap files, which provide more DB2-generated data that

can be useful in understanding the user environment and resource limits.

Exercise 1: Running the db2support command

1. Start the DB2 instance with the db2start command.

2. Assuming you already have the SAMPLE database available, create a directory

for storing the output from db2support.

3. Change to that directory and issue:

db2support <directory> -d sample -s -m

4. Review the console output, especially the types of information that are

collected.

You should see output like this (when run on Windows):

...

Collecting "System files"

 "db2cache.prf"

 "db2cos9402136.0"

 "db2cos9402840.0"

 "db2dbamr.prf"

 "db2diag.bak"

 "db2eventlog.000"

 "db2misc.prf"

 "db2nodes.cfg"

 "db2profile.bat"

 "db2systm"

 "db2tools.prf"

 "HealthRulesV82.reg"

 "db2dasdiag.log"

 ...

Collecting "Detailed operating system and hardware information"

Collecting "System resource info (disk, CPU, memory)"

Collecting "Operating system and level"

Collecting "JDK Level"

Collecting "DB2 Release Info"

Collecting "DB2 install path info"

Collecting "Registry info"

...

Creating final output archive

 "db2support.html"

 "db2_sqllib_directory.txt"

 "detailed_system_info.html"

 "db2supp_system.zip"

 "dbm_detailed.supp_cfg"

 "db2diag.log"

db2support is now complete.

 An archive file has been produced: "db2support.zip"

5. Now use a Web browser to view the detailed_system_info.html file. On each of

your systems, identify the following information:

v Number of CPUs

v Operating system level

v User environment

v User resource limits (UNIX ulimit command)

Exercise 2: Locating environment information in a DB2 trap file

1. Ensure a DB2 instance is started, then issue

db2pd -stack all

The call stacks are placed in files in the diagnostic directory (as defined by the

diagpath database manager configuration parameter).

2. Locate the following in one of the trap files:

Chapter 10. Learning more about troubleshooting 507

v DB2 code level

v Data seg top (this is the maximum private address space that has been

required)

v Cur data size (this is the maximum private address space limit)

v Cur core size (this is the maximum core file limit)

v Signal Handlers (this information might not appear in all trap files)

v Environment variables (this information might not appear in all trap files)

v map output (shows loaded libraries)

Example trap file from Windows (truncated):

...

<DB2TrapFile version="1.0">

<Trap>

<Header>

DB2 build information: DB2 v9.1.0.190 s060121 SQL09010

timestamp: 2006-02-17-14.03.43.846000

uname: S:Windows

comment:

process id: 940

thread id: 3592

</Header>

<SystemInformation>

Number of Processors: 1

Processor Type: x86 Family 15 Model 2 Stepping 4

OS Version: Microsoft Windows XP, Service Pack 2 (5.1)

Current Build: 2600

</SystemInformation>

<MemoryInformation>

<Usage>

Physical Memory: 1023 total, 568 free.

Virtual Memory : 2047 total, 1882 free.

Paging File : 2461 total, 2011 free.

Ext. Virtual : 0 free.

</Usage>

</MemoryInformation>

<EnvironmentVariables>

<![CDATA[

[e] DB2PATH=C:\Program Files\IBM\SQLLIB

[g] DB2_EXTSECURITY=YES

[g] DB2SYSTEM=MYSRVR

[g] DB2PATH=C:\Program Files\IBM\SQLLIB

[g] DB2INSTDEF=DB2

[g] DB2ADMINSERVER=DB2DAS00

]]></EnvironmentVariables>

Correlating DB2 and system events or errors

System messages and error logs are too often ignored. You can save hours, days,

and even weeks on the time it takes to solve a problem if you take the time to

perform one simple task at the initial stage of problem definition and investigation.

That task is to compare entries in different logs and take note of any that appear to

be related both in time and in terms of what resource the entries are referring to.

While not always relevant to problem diagnosis, in many cases the best clue is

readily available in the system logs. If you can correlate a reported system problem

with DB2 errors, you will have often identified what is directly causing the DB2

symptom. Obvious examples are disk errors, network errors, and hardware errors.

Not so obvious are problems reported on different machines, for example domain

controllers which can affect connection time or authentication.

508 Troubleshooting and Tuning Database Performance

System logs can be investigated in order to assess stability, especially when

problems are reported on brand new systems. Intermittent traps occurring in

common applications can be a sign that there is an underlying hardware problem.

Here is some other information provided by system logs.

v Significant events such as when the system was rebooted

v Chronology of DB2 traps on the system (and errors, traps, or exceptions from

other software that is failing)

v Kernel panics, out-of-filesystem-space, and out-of-swap-space errors (which can

prevent the system from creating or forking a new process)

System logs can help to rule out crash entries in the db2diag log files as causes for

concern. If you see a crash entry in DB2 administration notification or DB2

diagnostic logs with no preceding errors, the DB2 crash recovery is likely a result

of a system shutdown.

This principle of correlating information extends to logs from any source and to

any identifiable user symptoms. For example, it can be very useful to identify and

document correlating entries from another application’s log even if you can’t fully

interpret them.

The summation of this information is a very complete understanding of your

server and of all of the varied events which are occurring at the time of the

problem.

db2cos (callout script) output files

A db2cos script is invoked by default when the database manager cannot continue

processing due to a panic, trap, segmentation violation or exception. Each default

db2cos script will invoke db2pd commands to collect information in an unlatched

manner.

The names for the db2cos scripts are in the form db2cos_hang, db2cos_trap, and so

on. Each script behaves in a similar way except db2cos_hang which is called from

the db2fodc tool.

The default db2cos scripts are found under the bin directory. On UNIX operating

systems, this directory is read-only. You can copy the db2cos script file to the adm

directory and modify the file at that location if required. If a db2cos script is found

in the adm directory, it is run; otherwise, the script in the bin directory is run.

In a multiple partition configuration, the script will only be invoked for the

trapping agent on the partition encountering the trap. If it is required to collect

information from other partitions, you can update the db2cos script to use the

db2_all command or, if all of the partitions are on the same machine, specify the

-alldbpartitionnums option on the db2pd command.

The types of signals that trigger the invocation of db2cos are also configurable via

the db2pdcfg -cos command. The default configuration is for the db2cos script to

run when either a panic or trap occurs. However, generated signals will not launch

the db2cos script by default.

The order of events when a panic, trap, segmentation violation or exception occurs

is as follows:

1. Trap file is created

Chapter 10. Learning more about troubleshooting 509

2. Signal handler is called

3. db2cos script is called (depending on the db2cos settings enabled)

4. An entry is logged in the administration notification log

5. An entry is logged in the db2diag log file

The default information collected by the db2pd command in the db2cos script

includes details about the operating system, the Version and Service Level of the

installed DB2 product, the database manager and database configuration, as well

as information about the state of the agents, memory pools, memory sets, memory

blocks, applications, utilities, transactions, buffer pools, locks, transaction logs,

table spaces and containers. In addition, it provides information about the state of

the dynamic, static, and catalog caches, table and index statistics, the recovery

status, as well as the reoptimized SQL statements and an active statement list. If

you have to collect further information, update the db2cos script with the

additional commands.

When the default db2cos script is called, it produces output files in the directory

specified by the DIAGPATH database manager configuration parameter. The files

are named XXX.YYY.ZZZ.cos.txt, where XXX is the process ID (PID), YYY is the

thread ID (TID) and ZZZ is the database partition number (or 000 for single

partition databases). If multiple threads trap, there will be a separate invocation of

the db2cos script for each thread. In the event that a PID and TID combination

occurs more than once, the data will be appended to the file. There will be a

timestamp present so you can distinguish the iterations of output.

The db2cos output files will contain different information depending on the

commands specified in the db2cos script. If the default script is not altered, entries

similar to the following will be displayed (followed by detailed db2pd output):

2005-10-14-10.56.21.523659

PID : 782348 TID : 1 PROC : db2cos

INSTANCE: db2inst1 NODE : 0 DB : SAMPLE

APPHDL : APPID: *LOCAL.db2inst1.051014155507

FUNCTION: oper system services, sqloEDUCodeTrapHandler, probe:999

EVENT : Invoking /home/db2inst1/sqllib/bin/db2cos from

oper system services sqloEDUCodeTrapHandler

Trap Caught

Instance db2inst1 uses 64 bits and DB2 code release SQL09010

...

Operating System Information:

OSName: AIX

NodeName: n1

Version: 5

Release: 2

Machine: 000966594C00

...

The db2diag log files will contain entries related to the occurrence as well. For

example:

2005-10-14-10.42.17.149512-300 I19441A349 LEVEL: Event

PID : 782348 TID : 1 PROC : db2sysc

INSTANCE: db2inst1 NODE : 000

FUNCTION: DB2 UDB, trace services, pdInvokeCalloutScript, probe:10

START : Invoking /home/db2inst1/sqllib/bin/db2cos from oper system

services sqloEDUCodeTrapHandler

2005-10-14-10.42.23.173872-300 I19791A310 LEVEL: Event

510 Troubleshooting and Tuning Database Performance

PID : 782348 TID : 1 PROC : db2sysc

INSTANCE: db2inst1 NODE : 000

FUNCTION: DB2 UDB, trace services, pdInvokeCalloutScript, probe:20

STOP : Completed invoking /home/db2inst1/sqllib/bin/db2cos

2005-10-14-10.42.23.519227-300 E20102A509 LEVEL: Severe

PID : 782348 TID : 1 PROC : db2sysc

INSTANCE: db2inst1 NODE : 000

FUNCTION: DB2 UDB, oper system services, sqloEDUCodeTrapHandler, probe:10

MESSAGE : ADM0503C An unexpected internal processing error has occurred. ALL

 DB2 PROCESSES ASSOCIATED WITH THIS INSTANCE HAVE BEEN SHUTDOWN.

 Diagnostic information has been recorded. Contact IBM Support for

 further assistance.

2005-10-14-10.42.23.520111-300 E20612A642 LEVEL: Severe

PID : 782348 TID : 1 PROC : db2sysc

INSTANCE: db2inst1 NODE : 000

FUNCTION: DB2 UDB, oper system services, sqloEDUCodeTrapHandler, probe:20

DATA #1 : Signal Number Recieved, 4 bytes

11

DATA #2 : Siginfo, 64 bytes

0x0FFFFFFFFFFFD5C0 : 0000 000B 0000 0000 0000 0009 0000 0000

0x0FFFFFFFFFFFD5D0 : 0000 0000 0000 0000 0000 0000 0000 0000

0x0FFFFFFFFFFFD5E0 : 0000 0000 0000 0000 0000 0000 0000 0000

0x0FFFFFFFFFFFD5F0 : 0000 0000 0000 0000 0000 0000 0000 0000

Dump files

Dump files are created when an error occurs for which there is additional

information that would be useful in diagnosing a problem (such as internal control

blocks). Every data item written to the dump files has a timestamp associated with

it to help with problem determination. Dump files are in binary format and are

intended for IBM Software Support representatives.

When a dump file is created or appended, an entry is made in the db2diag log file

indicating the time and the type of data written. These db2diag log entries

resemble the following:

2007-05-18-12.28.11.277956-240 I24861950A192 LEVEL: Severe

PID:1056930 TID:225448 NODE:000 Title: dynamic memory buffer

Dump File:/home/svtdbm5/sqllib/db2dump/1056930.225448.000.dump.bin

Note: For partitioned database environments, the file extension identifies the

partition number. For example, the following entry indicates that the dump file

was created by a DB2 process running on partition 10:

Dump File: /home/db2/sqllib/db2dump/6881492.2.010.dump.bin

First occurrence data capture information

First occurrence data capture (FODC) is the process used to capture scenario-based

data about a DB2 instance. FODC can be invoked manually by a DB2 user based

on a particular symptom or invoked automatically when a predetermined scenario

or symptom is detected. This information reduces the need to reproduce errors to

get diagnostic information.

FODC information can be found in the following files:

Administration notification log (instance_name.nfy)

v Operating system: All

v Default location:

Chapter 10. Learning more about troubleshooting 511

– Linux and UNIX: Located in the directory specified by the diagpath

database manager configuration parameter.

– Windows: Use the Event Viewer Tool (Start > Control Panel >

Administrative Tools > Event Viewer)
v Created automatically when the instance is created.

v When significant events occur, DB2 writes information to the

administration notification log. The information is intended for use by

database and system administrators. The type of message recorded in

this file is determined by the notifylevel configuration parameter.

Note: When the diagsize database manager configuration parameter is

set to a nonzero value, the single administration notification log file

behavior (instance_name.nfy) will be changed to a rotating log behavior

(instance_name.N.nfy).

DB2 diagnostic log (db2diag.log)

v Operating system: All

v Default location: Located in the directory identified by the diagpath

database manager configuration parameter.

v Created automatically when the instance is created.

v This text file contains diagnostic information about error and warnings

encountered by the instance. This information is used for

troubleshooting and is intended for technicians at IBM Software Support.

The type of message recorded in this file is determined by the diaglevel

database manager configuration parameter.

Note: When the diagsize database manager configuration parameter is

set to a nonzero value, the single diagnostic log file behavior

(db2diag.log) will be changed to a rotating log behavior (db2diag.N.log).

DB2 administration server (DAS) diagnostic log (db2dasdiag.log)

v Operating system: All

v Default location:

– Linux and UNIX: Located in DASHOME/das/dump, where

DASHOME is the home directory of the DAS owner

– Windows: Located in ″dump″ folder, in the DAS home directory. For

example: C:\Program Files\IBM\SQLLIB\DB2DAS00\dump
v Created automatically when the DAS is created.

v This text file contains diagnostic information about errors and warnings

encountered by the DAS.

DB2 event log (db2eventlog.xxx, where xxx is the database partition number)

v Operating system: All

v Default location: Located in the directory specified by the diagpath

database manager configuration parameter

v Created automatically when the instance is created.

v The DB2 event log file is a circular log of infrastructure-level events

occurring in the database manager. The file is fixed in size, and acts as

circular buffer for the specific events that are logged as the instance

runs. Every time you stop the instance, the previous event log will be

replaced, not appended. If the instance traps, a db2eventlog.XXX.crash

file is also generated. These files are intended for use by IBM Software

Support.

512 Troubleshooting and Tuning Database Performance

DB2 callout script (db2cos) output files

v Operating system: All

v Default location: Located in the directory specified by the diagpath

database manager configuration parameter

v If db2cos scripts are executed as a consequence of an FODC outage,

db2cos output files will be placed under the FODC directory that was

created in the location specified by the diagpath database manager

configuration parameter.

v Created automatically when a panic, trap or segmentation violation

occurs. Can also be created during specific problem scenarios, as

specified using the db2pdcfg command.

v The default db2cos script will invoke db2pd commands to collect

information in an unlatched manner. The contents of the db2cos output

files will vary depending on the commands contained in the db2cos

script, such as operating system commands and other DB2 diagnosing

tools. For more details on the tools that are executed with the db2cos

script, open the script file in a text editor.

v The db2cos script is shipped under the bin/ directory. On UNIX, this

directory is read-only. To create your own modifiable version of this

script, copy the db2cos script to the adm/ directory. You are free to

modify this version of the script. If the script is found in the adm/

directory, it is that version that is run. Otherwise, the default version in

the bin/ directory is run.

Dump files

v Operating system: All

v Default location: Located in the directory specified by the diagpath

database manager configuration parameter

v If these files are dumped during an FODC outage, they will be placed

under the FODC directory.

v Created automatically when particular problem scenarios arise.

v For some error conditions, extra information is logged in binary files

named after the failing process ID. These files are intended for use by

IBM Software Support.

Trap files

v Operating system: All

v Default location: Located in the directory specified by the diagpath

database manager configuration parameter

v If these files are dumped during an FODC outage, they will be placed

under the FODC directory.

v Created automatically when the instance ends abnormally. Can also be

created at will using the db2pd command.

v The database manager generates a trap file if it cannot continue

processing due to a trap, segmentation violation, or exception.

Core files

v Operating system: Linux and UNIX

v Default location: Located in the directory specified by the diagpath

database manager configuration parameter

v If these files are dumped during an FODC outage, they will be placed

under the FODC directory.

Chapter 10. Learning more about troubleshooting 513

v Created by the operating system when the DB2 instance terminates

abnormally.

v Among other things, the core image will include most or all of the

memory allocations of DB2, which may be required for problem

descriptions.

Collecting diagnosis information based on common outage

problems

Diagnostic information can be gathered automatically in a package when an outage

occurs affecting an instance. The information in the package can also be created

manually.

When trouble occurs when working with DB2 instances and databases, you should

collect data at the time the problem happens. First occurrence data collection

(FODC) is the term used to describe the actions taken when trouble occurs in your

DB2 environment. You control what data is collected during outages through the

setting of options in the DB2FODC registry variable using the db2pdcfg tool. Use

db2pdcfg -fodc to change the DB2FODC registry variable options. The options

influence the database system behavior regarding data capture in FODC situations.

Automatic collection of diagnostic information

The database manager invokes the db2fodc command for automatic First

Occurrence Data Capture (FODC).

To correlate the outage with the DB2 diagnostic logs and the other troubleshooting

files, a diagnostic message is written to both the administration notification and the

db2diag log files. The diagnostic message includes the FODC directory name and

the timestamp when the FODC directory was created. The FODC package

description file is placed in the new FODC directory.

 Table 83. Automatic FODC types and packages

Package Description Invocation type Script executed

FODC_Trap_timestamp An instance wide trap has

occurred

Automatic db2cos_trap (.bat)

FODC_Panic_timestamp Engine detected an

incoherence and decided

not to continue

Automatic db2cos_trap (.bat)

FODC_BadPage_

timestamp

A Bad Page has been

detected

Automatic db2cos_datacorruption

(.bat)

FODC_DBMarkedBad_

timestamp

A database has been

marked bad due to an error

Automatic db2cos (.bat)

FODC_IndexError_

timestamp_PID_EDUID_

Node#

A EDU wide index error

occurred. (

db2cos_indexerror_short

(.bat) and/or

db2cos_indexerror_long

(.bat) will be dumped to

the directory.)

Automatic N/A

Manual collection of diagnostic information

The first occurrence data collection command (db2fodc) is used to collect

information about potential hangs, or when there are severe performance issues.

514 Troubleshooting and Tuning Database Performance

When the db2fodc command is run, a new directory FODC_hang_timestamp is

automatically created under the current diagnostic path. The db2cos_hang script is

run. This script controls the data collection that will be gathered and placed in the

FODC subdirectories. The existence of the FODC subdirectories depends on the

way the db2fodc command is run or on the configuration of the DB2 registry

variable.

 Table 84. Manual FODC types and packages

Package Description Invocation type Script executed

FODC_Hang_ timestamp User invoked db2fodc

-hang to collect data for

hang troubleshooting (or

severe performance)

Manual db2cos_hang (.bat)

FODC_Perf_ timestamp User invoked db2fodc -perf

to collect data for

performance

troubleshooting

Manual db2cos_perf (.bat)

Scripts located in

FODC_IndexError_

timestamp_PID_EDUID_

Node#

User could issue db2fodc

-indexerror

FODC_IndexError_directory

[basic | full] (default is

basic) to invoke the db2dart

commands in the script(s).

On DPF, use db2_all

″<<+node#< db2fodc

-indexerror

FODC_IndexError_directory

[basic | full]″. The node# is

the last number in the

FODC_IndexError_directory

directory name. An

absolute path is required

when using db2fodc

-indexerror with the db2_all

command.

Manual db2cos_indexerror_long

(.bat),

db2cos_indexerror_short

(.bat)

Configuring for automatic collection of diagnostic information

Before the database manager can carry out actions automatically, you have to

indicate to the database manager what actions are to be taken.

Flags are set indicating actions to be taken by the database manager when an error

or a warning is encountered during database operations. The actions that are

carried out include:

v Producing a stack trace in the db2diag log files. (Default)

v Running the callout script, db2cos. (Default)

v Stopping the trace (db2trc) command.

Change the first occurrence data capture (FODC) options

Change the first occurrence data capture (FODC) options using the configure DB2

database for problem determination behavior (db2pdcfg) command. The FODC

options are set in the DB2FODC registry variable using the db2pdcfg tool. The

options influence the database system behavior regarding data capture in FODC

situations.

Chapter 10. Learning more about troubleshooting 515

Data collected as part of FODC and its placement

Depending on the type of outage within the instance, first occurrence data capture

(FODC) results in the creation of subdirectories and specific content that is

collected. A series of subdirectories is created along with the collection of files and

logs.

One or more of the following subdirectories is created under the FODC directory:

v DB2CONFIG containing DB2 configuration output and files

v DB2PD containing db2pd output or output files

v DB2SNAPS containing DB2 snapshots

v DB2TRACE containing DB2 traces

v OSCONFIG containing operating system configuration files

v OSSNAPS containing operating system monitor information

v OSTRACE containing operating system traces

These directories might not always exist depending on the configuration of

DB2FODC or the mode in which db2fodc is run.

Depending on the type of outage, the following content is found in the FODC

directory and subdirectories:

v Trap files

v All the different binary and plain text dump files generated during the data

capture as part of the outage and completed by different components

v db2evlog’s event log file

v DB2 trace dump if trace has been on at the time of the outage

v The directory containing the core file

v DB2FODC log files:

– Only one ″log″ file is used for a manual FODC. db2fodc_hang.log (for hangs)

or db2fodc_badpage.log (for bad pages)
v Data corruption related information

– Process information: ps (on UNIX) and db2pd -edus output

– Additional information collected currently by db2support (optional):

- errpt -a output (on AIX)

- System logs on UNIX platforms. For example, /var/adm/messages for

SunOS and /var/adm/syslog.log on HP/UX. This will be done provided

that these files might be collected (on Linux, you must have root access to

copy the syslog file).

Automatic FODC data generation

When an outage occurs and automatic first occurrence data capture (FODC) is

enabled, data is collected based on symptoms. The data collected is specific to

what is needed to diagnose the outage.

One or many messages, including those defined as ″critical″ are used to mark the

origin of an outage.

Trap files contain information such as:

v The amount of free virtual storage

v Values associated with the product’s configuration parameters and registry

variables at the time the trap occurred

v Estimated amount of memory used by the DB2 product at the time of the trap

516 Troubleshooting and Tuning Database Performance

v Information that provides a context for the outage

The raw stack dump might be included in an ASCII trap file.

Dump files that are specific to components within the database manager are stored

in the appropriate FODC package directory.

DB2 Query Patroller and First Occurrence Data Capture (FODC)

If you find you are required to investigate DB2 Query Patroller problems, there are

logs that contain information about the probable cause for the difficulties you may

be experiencing.

qpdiag.log

v Operating system: All

v Default location: Located in the directory identified by the diagpath

database manager configuration parameter.

v Created automatically when the Query Patroller system becomes active.

v Contains informational and diagnostic records for Query Patroller. This

information is used for troubleshooting and is intended for use by IBM

Software Support.

qpmigrate.log

v Operating system: All

v Default location: Located in the directory identified by the diagpath

database manager configuration parameter.

v Created automatically by the qpmigrate utility. The qpmigrate command

can be run implicitly when you install Query Patroller (if you specify an

existing database to run Query Patroller on), or explicitly after the

installation.

v Captures information and error messages when Query Patroller is

migrated from one version to another. It is intended for use by Query

Patroller administrators.

qpsetup.log

v Operating system: All

v Default location: Located in the directory identified by the diagpath

database manager configuration parameter.

v Created automatically by the qpsetup utility. The qpsetup command can

be run implicitly when you install Query Patroller (if you specify an

existing database to run Query Patroller on), or explicitly after the

installation.

v Captures information and error messages that occur while the qpsetup

utility is running. It is intended for use by Query Patroller

administrators.

qpuser.log

v Operating system: All

v Default location: Located in the directory identified by the diagpath

database manager configuration parameter.

v Created automatically when the Query Patroller system becomes active.

v Contains informational messages about Query Patroller; for example,

indicating when Query Patroller stops and starts. It is intended for use

by Query Patroller administrators.

Chapter 10. Learning more about troubleshooting 517

Monitor and audit facilities using First Occurrence Data Capture

(FODC)

If you find you are required to investigate monitor or audit facility problems, there

are logs that contain information about the probable cause for the difficulties you

may be experiencing.

DB2 audit log (″db2audit.log″)

v Operating system: All

v Default location:

– Windows: Located in the $DB2PATH\instance_name\security directory

– Linux and UNIX: Located in the $HOME\sqllib\security directory,

where $HOME is the instance owner’s home directory
v Created when the db2audit facility is started.

v Contains audit records generated by the DB2 audit facility for a series of

predefined database events.

DB2 governor log (″mylog.x″, where x is the number of database partitions on

which the governor is running)

v Operating system: All

v Default location:

– Windows: Located in the $DB2PATH\instance_name\log directory

– Linux and UNIX: Located in the $HOME\sqllib\log directory, where

$HOME is the instance owner’s home directory
v Created when using the governor utility. The base of the log file name is

specified in the db2gov command.

v Records information about actions performed by the governor daemon

(for example, forcing an application, reading the governor configuration

file, starting or ending the utility) as well as errors and warnings.

Event monitor file (for example, ″00000000.evt″)

v Operating system: All

v Default location: When you create a file event monitor, all of the event

records are written to the directory specified in the CREATE EVENT

MONITOR statement.

v Generated by the event monitor when events occur.

v Contains event records that are associated with the event monitor.

Graphical tools using First Occurrence Data Capture (FODC)

If you find you are required to investigate command editor, Data Warehouse

Center, or Information Catalog Center problems, there are logs that contain

information about the probable cause for the difficulties you may be experiencing.

Command Editor log

v Operating system: All

v Default location: The name and location of this log file are specified

using the Command Editor page of the DB2 toolbar. If a path is not

specified, the log is stored in the $DB2PATH\sqllib\tools directory on

Windows and in the $HOME/sqllib/tools directory on Linux and UNIX,

where HOME is the instance owner’s home directory.

v Created when you select Log command history to file in the Command

Editor and then specify the file and location.

v Contains the command and statement execution history from the

Command Editor.

518 Troubleshooting and Tuning Database Performance

Data Warehouse Center IWH2LOGC.log file

v Operating system: All

v Default location: Located in the directory that is specified by the

VWS_LOGGING environment variable. The default path is the

$DB2PATH\sqllib\logging directory on Windows and in the

$HOME/sqllib/logging directory on Linux and UNIX, where HOME is

the instance owner’s home directory

v Created automatically by the Data Warehouse Center if the logger stops.

v Contains messages written by the Data Warehouse Center and OLE

server that could not be sent in the situation where the logger stops.

This log may be viewed using the Log Viewer window in the Data

Warehouse Center.

Data Warehouse Center IWH2LOG.log file

v Operating system: All

v Default location: Located in the directory that is specified by the

VWS_LOGGING environment variable. The default path is the

$DB2PATH\sqllib\logging directory on Windows and in the

$HOME/sqllib/logging directory on Linux and UNIX, where HOME is

the instance owner’s home directory

v Created automatically by the Data Warehouse Center when it cannot

start itself or when a trace is activated.

v Contains diagnostic information for situations when the Data Warehouse

Center logger cannot start itself and cannot write to the Data Warehouse

Center log (IWH2LOGC.log). This log may be viewed using the Log

Viewer window in the Data Warehouse Center.

Data Warehouse Center IWH2SERV.log file

v Operating system: All

v Default location: Located in the directory that is specified by the

VWS_LOGGING environment variable. The default path is the

$DB2PATH\sqllib\logging directory on Windows and in the

$HOME/sqllib/logging directory on Linux and UNIX, where HOME is

the instance owner’s home directory

v Created automatically by the Data Warehouse Center server trace facility.

v Contains Data Warehouse Center start up messages and logs messages

created by the server trace facility. This log may be viewed using the

Log Viewer window in the Data Warehouse Center.

Information Catalog Center tag file EXPORT log

v Operating system: All

v Default location: The exported tag file path and log file name are

specified in the Options tab of the Export tool in the Information

Catalog Center

v Generated by the Export tool in the Information Catalog Center

v Contains tag file export information, such as the times and dates when

the export process started and stopped. It also includes any error

messages that are encountered during the export operation.

Information Catalog Center tag file IMPORT log

v Operating system: All

v Default location: The imported tag file path and log file name are

specified in the Import tool in the Information Catalog Center

Chapter 10. Learning more about troubleshooting 519

v Generated by the Import tool in the Information Catalog Center

v Contains tag file import history information, such as the times and dates

when the import process started and stopped. It also includes any error

messages that are encountered during the import operation.

Internal return codes

There are two types of internal return codes: ZRC values and ECF values. These

are return codes that will generally only be visible in diagnostic tools intended for

use by IBM Software Support.

For example, they are displayed in DB2 trace output and in the db2diag log files.

ZRC and ECF values basically serve the same purpose, but have slightly different

formats. Each ZRC value has the following characteristics:

v Class name

v Component

v Reason code

v Associated SQLCODE

v SQLCA message tokens

v Description

However, ECF values consist of:

v Set name

v Product ID

v Component

v Description

ZRC and ECF values are typically negative numbers and are used to represent

error conditions. ZRC values are grouped according to the type of error that they

represent. These groupings are called ″classes″. For example, ZRC values that have

names starting with “SQLZ_RC_MEMHEP” are generally errors related to

insufficient memory. ECF values are similarly grouped into ″sets″.

An example of a db2diag log file entry containing a ZRC value is as follows:

2006-02-13-14.34.35.965000-300 I17502H435 LEVEL: Error

PID : 940 TID : 660 PROC : db2syscs.exe

INSTANCE: DB2 NODE : 000 DB : SAMPLE

APPHDL : 0-1433 APPID: *LOCAL.DB2.050120082811

FUNCTION: DB2 UDB, data protection, sqlpsize, probe:20

RETCODE : ZRC=0x860F000A=-2045837302=SQLO_FNEX "File not found."

 DIA8411C A file "" could not be found.

Full details about this ZRC value can be obtained using the db2diag command, for

example:

c:\>db2diag -rc 0x860F000A

Input ZRC string ’0x860F000A’ parsed as 0x860F000A (-2045837302).

ZRC value to map: 0x860F000A (-2045837302)

 V7 Equivalent ZRC value: 0xFFFFE60A (-6646)

ZRC class :

 Critical Media Error (Class Index: 6)

Component:

 SQLO ; oper system services (Component Index: 15)

Reason Code:

520 Troubleshooting and Tuning Database Performance

10 (0x000A)

Identifer:

 SQLO_FNEX

 SQLO_MOD_NOT_FOUND

Identifer (without component):

 SQLZ_RC_FNEX

Description:

 File not found.

Associated information:

 Sqlcode -980

SQL0980C A disk error occurred. Subsequent SQL statements cannot be

processed.

 Number of sqlca tokens : 0

 Diaglog message number: 8411

The same information is returned if you issue the commands db2diag -rc

-2045837302 or db2diag -rc SQLO_FNEX.

An example of the output for an ECF return code is as follows:

c:\>db2diag -rc 0x90000076

Input ECF string ’0x90000076’ parsed as 0x90000076 (-1879048074).

ECF value to map: 0x90000076 (-1879048074)

ECF Set :

 setecf (Set index : 1)

Product :

 DB2 Common

Component:

 OSSe

Code:

 118 (0x0076)

Identifier:

 ECF_LIB_CANNOT_LOAD

Description:

 Cannot load the specified library

The most valuable troubleshooting information in the db2diag command output is

the description and the associated information (for ZRC return codes only).

For a full listing of the ZRC or ECF values, use the commands db2diag -rc zrc and

db2diag -rc ecf, respectively.

Introduction to messages

It is assumed that you are familiar with the functions of the operating system

where DB2 is installed. You can use the information contained in the following

chapters to identify an error or problem and resolve the problem by using the

appropriate recovery action. This information can also be used to understand

where messages are generated and logged.

Message Structure

Message help describes the cause of a message and describes any action you

should take in response to the message.

Chapter 10. Learning more about troubleshooting 521

Message identifiers consist of a three character message prefix, followed by a four

or five digit message number, followed by a single letter suffix. For example,

SQL1042C. For a list of message prefixes, see “Invoking message help” and “Other

DB2 Messages” on page 524. The single letter suffix describes the severity of the

error message.

In general, message identifiers ending with a C are for severe messages; those

ending with an E indicate urgent messages; those ending with an N indicate error

messages; those ending with a W indicate warning messages; and those ending

with an I indicate informational message.

For ADM messages, message identifiers ending with a C indicate severe messages;

those ending with an E indicate urgent messages; those ending with a W indicate

important messages; and those ending with an I indicate informational messages.

For SQL messages, message identifiers ending with a C indicate critical system

errors; those ending with an N indicate error messages; those ending with a W

indicate warning or informational messages.

Some messages include tokens, sometimes also called message variables. When a

message containing tokens is generated by DB2, each token is replaced by a value

specific to the error condition that was encountered, to help the user diagnose the

cause of the error message. For example, the DB2 message SQL0107N is as follows:

v from the command line processor:

SQL0107N The name ″<name>″ is too long. The maximum length is ″<length>″.

v from the DB2 information center:

SQL0107N The name name is too long. The maximum length is length.

This message includes the two tokens ″<name>″ and ″<length>″. When this

message is generated at runtime, the message tokens would be replaced by the

actual name of the object that caused the error, and the maximum length allowed

for that type of object, respectively.

In some cases a token is not applicable for a specific instance of an error, and the

value *N is returned instead, for example:

SQL20416N The value provided ("*N") could not be converted to a security

label. Labels for the security policy with a policy ID of "1" should be "8"

characters long. The value is "0" characters long. SQLSTATE=23523

Invoking message help

The following DB2 messages are accessible from the command line processor:

Prefix Description

ADM messages generated by many DB2 components. These messages are written

in the Administration Notification log file and are intended to provide

additional information to System Administrators.

AMI messages generated by MQ Application Messaging Interface

ASN messages generated by DB2 Replication

CCA messages generated by the Configuration Assistant

CLI messages generated by Call Level Interface

DBA messages generated by the Database Administration tools

522 Troubleshooting and Tuning Database Performance

DBI messages generated by installation and configuration

DBT messages generated by the Database tools

DB2 messages generated by the command line processor

DQP messages generated by Query Patroller

EAS messages generated by the Embedded Application Server

EXP messages generated by the Explain utility

GSE messages generated by the DB2 Spatial Extender

LIC messages generated by the DB2 license manager

MQL messages generated by MQ Listener

SAT messages generated in a satellite environment

SPM messages generated by the sync point manager

SQL messages generated by the database manager when a warning or error

condition has been detected

XMR messages generated by the XML Metadata Repository.

To invoke message help, open the command line processor and enter:

? XXXnnnnn

where XXX represents a valid message prefix and nnnnn represents a valid

message number.

The message text associated with a given SQLSTATE value can be retrieved by

issuing:

? nnnnn

 or

? nn

where nnnnn is a five digit SQLSTATE (alphanumeric) and nn is the two digit

SQLSTATE class code (first two digits of the SQLSTATE value).

Note: The message identifier accepted as a parameter of the db2 command is not

case sensitive. Also, the single letter suffix is optional and is ignored.

Therefore, the following commands will produce the same result:

v ? SQL0000N

v ? sql0000

v ? SQL0000w

To invoke message help on the command line of a UNIX based system, enter:

db2 “? XXXnnnnn”

where XXX represents a valid message prefix

and nnnnn represents a valid message number.

If the message text is too long for your screen, use the following command (on

Unix-based systems and others which support ’more’):

db2 “? XXXnnnnn” | more

Chapter 10. Learning more about troubleshooting 523

Other DB2 Messages

Some DB2 components return messages that are not available online or are not

described in this manual. Some of the message prefixes may include:

AUD messages generated by the DB2 Audit facility.

DIA diagnostics messages generated by many DB2 components. These messages

are written in the db2diag log file, and are intended to provide additional

information for users and DB2 service personnel when investigating errors.

GOV messages generated by the DB2 governor utility.

In most cases, these messages provide sufficient information to determine the

cause of the warning or error. For more information on the command or utility that

generated the messages, please refer to the appropriate manual where the

command or utility is documented.

Other Message Sources

When running other programs on the system, you may receive messages with

prefixes other than those mentioned in this reference.

For information on these messages, refer to the information available for that

program product.

Platform-specific error log information

There are many other files and utilities available outside of DB2 to help analyze

problems. Often they are just as important to determining root cause as the

information made available in the DB2 files.

The other files and utilities provide access to information contained in logs and

traces that is concerned with the following areas:

v Operating systems

v Applications and third-party vendors

v Hardware

Based on your operating environment, there might be more places outside of what

has been described here, so be aware of all of the potential areas you might have

to investigate when debugging problems in your system.

Operating systems

Every operating system has its own set of diagnostic files to keep track of activity

and failures. The most common (and usually most useful) is an error report or

event log. Here is a list of how this information can be collected:

v AIX: the /usr/bin/errpt -a command

v Solaris: /var/adm/messages* files or the /usr/bin/dmesg command

v Linux: the /var/log/messages* files or the /bin/dmesg command

v HP-UX: the /var/adm/syslog/syslog.log file or the /usr/bin/dmesg command

v Windows : the system, security, and application event log files and the

windir\drwtsn32.log file (where windir is the Windows install directory)

524 Troubleshooting and Tuning Database Performance

There are always more tracing and debug utilities for each operating system. See

your operating system documentation and support material to determine what

further information is available.

Applications and third-party vendors

Each application should have its own logging and diagnostic files. These files will

complement the DB2 set of information to provide you with a more accurate

picture of potential problem areas.

Hardware

Hardware devices usually log information into operating system error logs.

However, sometimes additional information is required. In those cases, you must

identify what hardware diagnostic files and utilities might be available for piece of

hardware in your environment. An example of such a case is when a bad page, or

a corruption of some type is reported by DB2. Usually this is reported due to a

disk problem, in which case the hardware diagnostics must be investigated. See

your hardware documentation and support material to determine what further

information is available.

Some information, such as information from hardware logs, is time-sensitive. When

an error occurs you should make every effort to gather as much information as

you can from the relevant sources as soon as is possible.

In summary, to completely understand and evaluate a problem, you might have to

collect all information available from DB2, your applications, the operating system

and underlying hardware. The db2support tool automates the collection of most

DB2 and operating system information that you will require, but you should still

be aware of any information outside of this that might help the investigation.

System core files (Linux and UNIX)

If a program terminates abnormally, a core file is created by the system to store a

memory image of the terminated process. Errors such as memory address

violations, illegal instructions, bus errors, and user-generated quit signals cause

core files to be dumped.

The core file is named ″core″, and is placed in the directory specified by the

diagpath database manager configuration parameter, by default, unless otherwise

configured using the values in the DB2FODC registry variable. Note that system

core files are distinct from DB2 trap files.

Accessing system core file information (Linux and UNIX)

The dbx system command helps you determine which function caused a system

core file to be created. This is a simple check that will help you identify whether

the database manager is in error, or whether an operating system or application

error is responsible for the problem.

v You must have the dbx command installed. This command is operating

system-specific: on AIX and Solaris, use dbx; on HP-UX, use xdb, and on Linux

use gdb.

v On AIX, ensure that the full core option has been enabled using the chdev

command or smitty.

The following steps can be used to determine the function that caused the core file

dump to occur.

Chapter 10. Learning more about troubleshooting 525

1. Enter the following command from a UNIX command prompt:

dbx program_name core_filename

program_name is the name of the program that terminated abnormally, and

core_filename is the name of the file containing the core file dump. The

core_filename parameter is optional. If you do not specify it, the default name

″core″ is used.

2. Examine the call stack in the core file. Information about how to do this can be

obtained by issuing man dbx from a UNIX command prompt

3. To end the dbx command, type quit at the dbx prompt.

The following example shows how to use the dbx command to read the core file

for a program called ″main″.

1. At a command prompt, enter:

dbx main

2. Output similar to the following appears on your display:

dbx version 3.1 for AIX.

Type ’help’ for help.

reading symbolic information ...

[using memory image in core]

segmentation.violation in freeSegments at line 136

136 (void) shmdt((void *) pcAdress[i]);

3. The name of the function that caused the core dump is ″freeSegments″. Enter

where at the dbx prompt to display the program path to the point of failure.

(dbx) where

freeSegments(numSegs = 2, iSetId = 0x2ff7f730, pcAddress = 0x2ff7f758, line

136

in "main.c"

main (0x1, 2ff7f7d4), line 96 in "main.c"

In this example, the error occurred at line 136 of freeSegments, which was

called from line 96 in main.c.

4. To end the dbx command, type quit at the dbx prompt.

Accessing event logs (Windows)

This task describes how to access the Windows event logs.

Windows event logs can also provide useful information. While the system event

log tends to be the most useful in the case of DB2 crashes or other mysterious

errors related to system resources, it is worthwhile obtaining all three types of

event logs:

v System

v Application

v Security

View the event logs using the Windows Event Viewer. The method used to open

the viewer will differ, depending on the Windows operating system you are using.

For example, to open the Event Viewer on Windows XP, click Start —> Control

Panel. Select Administrative Tools, and then double-click Event Viewer.

Exporting event logs (Windows)

This task describes how to export Windows event logs.

From the Windows event viewer, you can export event logs in two formats:

526 Troubleshooting and Tuning Database Performance

v log-file format

v text or comma-delimited format.

Export the event logs from the Windows event viewer.

v You can load the log-file format (*.evt) data back into an event viewer (for

example, on another workstation). This format is easy to work with since you

can use the viewer to switch the chronology order, filter for certain events, and

advance forwards or backwards.

v You can open the text (*.txt) or comma-delimited (*.csv) format logs in most text

editors. They also avoid a potential problem with respect to timestamps. When

you export event logs in .evt format, the timestamps are in Coordinated

Universal Time and get converted to the local time of the workstation in the

viewer. If you are not careful, you can overlook key events because of time zone

differences. Text files are also easier to search.

Accessing the Dr. Watson log file (Windows)

This task describes how to access the Dr. Watson log files on Windows systems.

The Dr. Watson log, drwtsn32.log, is a chronology of all the exceptions that have

occurred on the system. The DB2 trap files are more useful than the Dr. Watson

log, though it can be helpful in assessing overall system stability and as a

document of the history of DB2 traps.

Locate the Dr. Watson log file. The default path is <install_drive>:\Documents and

Settings \All Users\Documents\DrWatson

Trap files

DB2 generates a trap file if it cannot continue processing because of a trap,

segmentation violation, or exception.

All signals or exceptions received by DB2 are recorded in the trap file. The trap file

also contains the function sequence that was running when the error occurred. This

sequence is sometimes referred to as the ″function call stack″ or ″stack trace.″ The

trap file also contains additional information about the state of the process when

the signal or exception was caught.

A trap file is also generated when an application is forced while running a fenced

threadsafe routine. The trap occurs as the process is shutting down. This is not a

fatal error and it is nothing to be concerned about.

The files are located in the directory specified by the diagpath database manager

configuration parameter.

On all platforms, the trap file name begins with a process identifier (PID), followed

by a thread identifier (TID), followed by the partition number (000 on single

partition databases), and concluded with “.trap.txt”.

There are also diagnostic traps, generated by the code when certain conditions

occur which don’t warrant crashing the instance, but where it is useful to see the

stack. Those traps are named with the PID in decimal format, followed by the

partition number (0 in a single partition database).

Examples:

v 6881492.2.000.trap.txt is a trap file with a process identifier (PID) of 6881492,

and a thread identifier (TID) of 2.

Chapter 10. Learning more about troubleshooting 527

v 6881492.2.010.trap.txt is a trap file whose process and thread is running on

partition 10.

You can generate trap files on demand using the db2pd command with the -stack

all or -dump option. In general, though, this should only be done as requested by

IBM Software Support.

You can generate stack trace files with db2pd -stacks or db2pd -dumps commands.

These files have the same contents as trap file but are generated for diagnostic

purposes only. Their names will be similar to 6881492.2.000.stack.txt.

Formatting trap files (Windows)

You can format trap files (*.TRP) with a command called db2xprt. It formats the

DB2 database binary trap files into a human readable ASCII file.

The db2xprt tool uses DB2 symbol files in order to format the trap files. A subset

of these .PDB files are included with the DB2 database products.

If a trap file called ″DB30882416.TRP″ had been produced in your directory

specified by the diagpath database manager configuration parameter, you could

format it as follows:

db2xprt DB30882416.TRP DB30882416.FMT

528 Troubleshooting and Tuning Database Performance

Chapter 11. Contacting IBM Software Support

Contacting IBM Software Support

IBM Software Support provides assistance with product defects.

Before contacting IBM Software Support, your company must have an active IBM

software maintenance contract, and you must be authorized to submit problems to

IBM. For information about the types of maintenance contracts available, see

“Premium Support” in the Software Support Handbook at:

techsupport.services.ibm.com/guides/services.html

Complete the following steps to contact IBM Software Support with a problem:

1. Define the problem, gather background information, and determine the severity

of the problem. For help, see the “Contacting IBM” in the Software Support

Handbook: techsupport.services.ibm.com/guides/beforecontacting.html

2. Gather diagnostic information.

3. Submit your problem to IBM Software Support in one of the following ways:

v Online: Click the ESR (Electronic Service Request) link on the IBM Software

Support, Open Service Request site: www.ibm.com/software/support/
probsub.html

v By phone: For the phone number to call in your country/region, go to the

Contacts page of the Software Support Handbook:

techsupport.services.ibm.com/guides/contacts.html

If the problem you submit is for a software defect or for missing or inaccurate

documentation, IBM Software Support creates an Authorized Program Analysis

Report (APAR). The APAR describes the problem in detail. Whenever possible,

IBM Software Support provides a workaround that you can implement until the

APAR is resolved and a fix is delivered. IBM publishes resolved APARs on the

IBM Software Support web site daily, so that other users who experience the same

problem can benefit from the same resolution.

Submitting data to IBM Software Support

You can submit data to IBM Software Support by FTP or by using the Electronic

Service Request (ESR) tool. Instructions are provided here.

The steps assume that you have already opened a problem management record

(PMR) with IBM Software Support.

You can send diagnostic data, such as log files and configuration files, to IBM

Software Support using one of the following methods:

v FTP

v Electronic Service Request (ESR) tool
v To submit files (via FTP) to the Enhanced Centralized Client Data Repository

(EcuRep):

1. Package the data files that you collected into ZIP or TAR format, and name

the package according to your Problem Management Record (PMR)

identifier.

© Copyright IBM Corp. 2006, 2009 529

http://www14.software.ibm.com/webapp/set2/sas/f/handbook/home.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/getsupport.html#1
http://www-306.ibm.com/software/support/probsub.html
http://www-306.ibm.com/software/support/probsub.html
http://www14.software.ibm.com/webapp/set2/sas/f/handbook/contacts.html#worldwide

Your file must use the following naming convention in order to be correctly

associated with the PMR: xxxxx.bbb.ccc.yyy.yyy, where xxxxx is the PMR

number, bbb is the PMR’s branch number, ccc is the PMR’s territory code,

and yyy.yyy is the file name.

2. Using an FTP utility, connect to the server ftp.emea.ibm.com.

3. Log in as the userid ″anonymous″ and enter your e-mail address as your

password.

4. Go to the toibm directory. For example, cd toibm.

5. Go to one of the operating system-specific subdirectories. For example, the

subdirectories include: aix, linux, unix, or windows.

6. Change to binary mode. For example, enter bin at the command prompt.

7. Put your file on the server by using the put command. Use the following file

naming convention to name your file and put it on the server. Your PMR will

be updated to list where the files are stored using the format:

xxxx.bbb.ccc.yyy.yyy. (xxx is the PMR number, bbb is the branch, ccc is the

territory code, and yyy.yyy is the description of the file type such as tar.Z or

xyz.zip.) You can send files to the FTP server, but you cannot update them.

Any time that you must subsequently change the file, you must create a new

file name.

8. Enter the quit command.
v To submit files using the ESR tool:

1. Sign onto ESR.

2. On the Welcome page, enter your PMR number in the Enter a report

number field, and click Go.

3. Scroll down to the Attach Relevant File field.

4. Click Browse to locate the log, trace, or other diagnostic file that you want to

submit to IBM Software Support.

5. Click Submit. Your file is transferred to IBM Software Support through FTP,

and it is associated with your PMR.

For more information about the EcuRep service, see IBM EMEA Centralized

Customer Data Store Service.

For more information about ESR, see Electronic Service Request (ESR) help.

530 Troubleshooting and Tuning Database Performance

Part 3. Appendixes

© Copyright IBM Corp. 2006, 2009 531

532 Troubleshooting and Tuning Database Performance

Appendix A. Overview of the DB2 technical information

DB2 technical information is available through the following tools and methods:

v DB2 Information Center

– Topics (Task, concept and reference topics)

– Help for DB2 tools

– Sample programs

– Tutorials
v DB2 books

– PDF files (downloadable)

– PDF files (from the DB2 PDF DVD)

– printed books
v Command line help

– Command help

– Message help

Note: The DB2 Information Center topics are updated more frequently than either

the PDF or the hardcopy books. To get the most current information, install the

documentation updates as they become available, or refer to the DB2 Information

Center at ibm.com.

You can access additional DB2 technical information such as technotes, white

papers, and IBM Redbooks publications online at ibm.com. Access the DB2

Information Management software library site at http://www.ibm.com/software/
data/sw-library/.

Documentation feedback

We value your feedback on the DB2 documentation. If you have suggestions for

how to improve the DB2 documentation, send an e-mail to db2docs@ca.ibm.com.

The DB2 documentation team reads all of your feedback, but cannot respond to

you directly. Provide specific examples wherever possible so that we can better

understand your concerns. If you are providing feedback on a specific topic or

help file, include the topic title and URL.

Do not use this e-mail address to contact DB2 Customer Support. If you have a

DB2 technical issue that the documentation does not resolve, contact your local

IBM service center for assistance.

DB2 technical library in hardcopy or PDF format

The following tables describe the DB2 library available from the IBM Publications

Center at www.ibm.com/shop/publications/order. English and translated DB2

Version 9.7 manuals in PDF format can be downloaded from www.ibm.com/
support/docview.wss?rs=71&uid=swg2700947.

Although the tables identify books available in print, the books might not be

available in your country or region.

© Copyright IBM Corp. 2006, 2009 533

http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/software/data/sw-library/
http://www.ibm.com/shop/publications/order
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474
http://www.ibm.com/support/docview.wss?rs=71&uid=swg27009474

The form number increases each time a manual is updated. Ensure that you are

reading the most recent version of the manuals, as listed below.

Note: The DB2 Information Center is updated more frequently than either the PDF

or the hard-copy books.

 Table 85. DB2 technical information

Name Form Number Available in print Last updated

Administrative API

Reference

SC27-2435-00 Yes August, 2009

Administrative Routines

and Views

SC27-2436-00 No August, 2009

Call Level Interface

Guide and Reference,

Volume 1

SC27-2437-00 Yes August, 2009

Call Level Interface

Guide and Reference,

Volume 2

SC27-2438-00 Yes August, 2009

Command Reference SC27-2439-00 Yes August, 2009

Data Movement Utilities

Guide and Reference

SC27-2440-00 Yes August, 2009

Data Recovery and High

Availability Guide and

Reference

SC27-2441-00 Yes August, 2009

Database Administration

Concepts and

Configuration Reference

SC27-2442-00 Yes August, 2009

Database Monitoring

Guide and Reference

SC27-2458-00 Yes August, 2009

Database Security Guide SC27-2443-00 Yes August, 2009

DB2 Text Search Guide SC27-2459-00 Yes August, 2009

Developing ADO.NET

and OLE DB

Applications

SC27-2444-00 Yes August, 2009

Developing Embedded

SQL Applications

SC27-2445-00 Yes August, 2009

Developing Java

Applications

SC27-2446-00 Yes August, 2009

Developing Perl, PHP,

Python, and Ruby on

Rails Applications

SC27-2447-00 No August, 2009

Developing User-defined

Routines (SQL and

External)

SC27-2448-00 Yes August, 2009

Getting Started with

Database Application

Development

GI11-9410-00 Yes August, 2009

Getting Started with

DB2 Installation and

Administration on Linux

and Windows

GI11-9411-00 Yes August, 2009

534 Troubleshooting and Tuning Database Performance

Table 85. DB2 technical information (continued)

Name Form Number Available in print Last updated

Globalization Guide SC27-2449-00 Yes August, 2009

Installing DB2 Servers GC27-2455-00 Yes August, 2009

Installing IBM Data

Server Clients

GC27-2454-00 No August, 2009

Message Reference

Volume 1

SC27-2450-00 No August, 2009

Message Reference

Volume 2

SC27-2451-00 No August, 2009

Net Search Extender

Administration and

User’s Guide

SC27-2469-00 No August, 2009

Partitioning and

Clustering Guide

SC27-2453-00 Yes August, 2009

pureXML Guide SC27-2465-00 Yes August, 2009

Query Patroller

Administration and

User’s Guide

SC27-2467-00 No August, 2009

Spatial Extender and

Geodetic Data

Management Feature

User’s Guide and

Reference

SC27-2468-00 No August, 2009

SQL Procedural

Languages: Application

Enablement and Support

SC27-2470-00 Yes August, 2009

SQL Reference, Volume 1 SC27-2456-00 Yes August, 2009

SQL Reference, Volume 2 SC27-2457-00 Yes August, 2009

Troubleshooting and

Tuning Database

Performance

SC27-2461-00 Yes August, 2009

Upgrading to DB2

Version 9.7

SC27-2452-00 Yes August, 2009

Visual Explain Tutorial SC27-2462-00 No August, 2009

What’s New for DB2

Version 9.7

SC27-2463-00 Yes August, 2009

Workload Manager

Guide and Reference

SC27-2464-00 Yes August, 2009

XQuery Reference SC27-2466-00 No August, 2009

 Table 86. DB2 Connect-specific technical information

Name Form Number Available in print Last updated

Installing and

Configuring DB2

Connect Personal Edition

SC27-2432-00 Yes August, 2009

Installing and

Configuring DB2

Connect Servers

SC27-2433-00 Yes August, 2009

Appendix A. Overview of the DB2 technical information 535

Table 86. DB2 Connect-specific technical information (continued)

Name Form Number Available in print Last updated

DB2 Connect User’s

Guide

SC27-2434-00 Yes August, 2009

 Table 87. Information Integration technical information

Name Form Number Available in print Last updated

Information Integration:

Administration Guide for

Federated Systems

SC19-1020-02 Yes August, 2009

Information Integration:

ASNCLP Program

Reference for Replication

and Event Publishing

SC19-1018-04 Yes August, 2009

Information Integration:

Configuration Guide for

Federated Data Sources

SC19-1034-02 No August, 2009

Information Integration:

SQL Replication Guide

and Reference

SC19-1030-02 Yes August, 2009

Information Integration:

Introduction to

Replication and Event

Publishing

GC19-1028-02 Yes August, 2009

Ordering printed DB2 books

If you require printed DB2 books, you can buy them online in many but not all

countries or regions. You can always order printed DB2 books from your local IBM

representative. Keep in mind that some softcopy books on the DB2 PDF

Documentation DVD are unavailable in print. For example, neither volume of the

DB2 Message Reference is available as a printed book.

Printed versions of many of the DB2 books available on the DB2 PDF

Documentation DVD can be ordered for a fee from IBM. Depending on where you

are placing your order from, you may be able to order books online, from the IBM

Publications Center. If online ordering is not available in your country or region,

you can always order printed DB2 books from your local IBM representative. Note

that not all books on the DB2 PDF Documentation DVD are available in print.

Note: The most up-to-date and complete DB2 documentation is maintained in the

DB2 Information Center at http://publib.boulder.ibm.com/infocenter/db2luw/
v9r7.

To order printed DB2 books:

v To find out whether you can order printed DB2 books online in your country or

region, check the IBM Publications Center at http://www.ibm.com/shop/
publications/order. You must select a country, region, or language to access

publication ordering information and then follow the ordering instructions for

your location.

v To order printed DB2 books from your local IBM representative:

536 Troubleshooting and Tuning Database Performance

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order

1. Locate the contact information for your local representative from one of the

following Web sites:

– The IBM directory of world wide contacts at www.ibm.com/planetwide

– The IBM Publications Web site at http://www.ibm.com/shop/
publications/order. You will need to select your country, region, or

language to the access appropriate publications home page for your

location. From this page, follow the ″About this site″ link.
2. When you call, specify that you want to order a DB2 publication.

3. Provide your representative with the titles and form numbers of the books

that you want to order. For titles and form numbers, see “DB2 technical

library in hardcopy or PDF format” on page 533.

Displaying SQL state help from the command line processor

DB2 products return an SQLSTATE value for conditions that can be the result of an

SQL statement. SQLSTATE help explains the meanings of SQL states and SQL state

class codes.

To start SQL state help, open the command line processor and enter:

 ? sqlstate or ? class code

where sqlstate represents a valid five-digit SQL state and class code represents the

first two digits of the SQL state.

For example, ? 08003 displays help for the 08003 SQL state, and ? 08 displays help

for the 08 class code.

Accessing different versions of the DB2 Information Center

For DB2 Version 9.7 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/

For DB2 Version 9.5 topics, the DB2 Information Center URL is

http://publib.boulder.ibm.com/infocenter/db2luw/v9r5/

For DB2 Version 9 topics, the DB2 Information Center URL is http://
publib.boulder.ibm.com/infocenter/db2luw/v9/

For DB2 Version 8 topics, go to the Version 8 Information Center URL at:

http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Displaying topics in your preferred language in the DB2 Information

Center

The DB2 Information Center attempts to display topics in the language specified in

your browser preferences. If a topic has not been translated into your preferred

language, the DB2 Information Center displays the topic in English.

v To display topics in your preferred language in the Internet Explorer browser:

1. In Internet Explorer, click the Tools —> Internet Options —> Languages...

button. The Language Preferences window opens.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button.

Appendix A. Overview of the DB2 technical information 537

http://www.ibm.com/planetwide
http://www.ibm.com/shop/publications/order
http://www.ibm.com/shop/publications/order
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/
http://publib.boulder.ibm.com/infocenter/db2luw/v9r5
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v9/
http://publib.boulder.ibm.com/infocenter/db2luw/v8/

Note: Adding a language does not guarantee that the computer has the

fonts required to display the topics in the preferred language.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.
v To display topics in your preferred language in a Firefox or Mozilla browser:

1. Select the button in the Languages section of the Tools —> Options —>

Advanced dialog. The Languages panel is displayed in the Preferences

window.

2. Ensure your preferred language is specified as the first entry in the list of

languages.

– To add a new language to the list, click the Add... button to select a

language from the Add Languages window.

– To move a language to the top of the list, select the language and click the

Move Up button until the language is first in the list of languages.
3. Clear the browser cache and then refresh the page to display the DB2

Information Center in your preferred language.

On some browser and operating system combinations, you must also change the

regional settings of your operating system to the locale and language of your

choice.

Updating the DB2 Information Center installed on your computer or

intranet server

A locally installed DB2 Information Center must be updated periodically.

Before you begin

A DB2 Version 9.7 Information Center must already be installed. For details, see

the “Installing the DB2 Information Center using the DB2 Setup wizard” topic in

Installing DB2 Servers. All prerequisites and restrictions that applied to installing

the Information Center also apply to updating the Information Center.

About this task

An existing DB2 Information Center can be updated automatically or manually:

v Automatic updates - updates existing Information Center features and

languages. An additional benefit of automatic updates is that the Information

Center is unavailable for a minimal period of time during the update. In

addition, automatic updates can be set to run as part of other batch jobs that run

periodically.

v Manual updates - should be used when you want to add features or languages

during the update process. For example, a local Information Center was

originally installed with both English and French languages, and now you want

to also install the German language; a manual update will install German, as

well as, update the existing Information Center features and languages.

However, a manual update requires you to manually stop, update, and restart

the Information Center. The Information Center is unavailable during the entire

update process.

Procedure

538 Troubleshooting and Tuning Database Performance

This topic details the process for automatic updates. For manual update

instructions, see the “Manually updating the DB2 Information Center installed on

your computer or intranet server” topic.

To automatically update the DB2 Information Center installed on your computer or

intranet server:

1. On Linux operating systems,

a. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the /opt/ibm/db2ic/V9.7

directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the ic-update script:

ic-update

2. On Windows operating systems,

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By default,

the DB2 Information Center is installed in the <Program Files>\IBM\DB2

Information Center\Version 9.7 directory, where <Program Files> represents

the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the ic-update.bat file:

ic-update.bat

Results

The DB2 Information Center restarts automatically. If updates were available, the

Information Center displays the new and updated topics. If Information Center

updates were not available, a message is added to the log. The log file is located in

doc\eclipse\configuration directory. The log file name is a randomly generated

number. For example, 1239053440785.log.

Manually updating the DB2 Information Center installed on your

computer or intranet server

If you have installed the DB2 Information Center locally, you can obtain and install

documentation updates from IBM.

Updating your locally-installed DB2 Information Center manually requires that

you:

1. Stop the DB2 Information Center on your computer, and restart the Information

Center in stand-alone mode. Running the Information Center in stand-alone

mode prevents other users on your network from accessing the Information

Center, and allows you to apply updates. The Workstation version of the DB2

Information Center always runs in stand-alone mode. .

2. Use the Update feature to see what updates are available. If there are updates

that you must install, you can use the Update feature to obtain and install them

Note: If your environment requires installing the DB2 Information Center

updates on a machine that is not connected to the internet, mirror the update

site to a local file system using a machine that is connected to the internet and

has the DB2 Information Center installed. If many users on your network will

be installing the documentation updates, you can reduce the time required for

Appendix A. Overview of the DB2 technical information 539

individuals to perform the updates by also mirroring the update site locally

and creating a proxy for the update site.
If update packages are available, use the Update feature to get the packages.

However, the Update feature is only available in stand-alone mode.

3. Stop the stand-alone Information Center, and restart the DB2 Information

Center on your computer.

Note: On Windows 2008, Windows Vista (and higher), the commands listed later

in this section must be run as an administrator. To open a command prompt or

graphical tool with full administrator privileges, right-click the shortcut and then

select Run as administrator.

To update the DB2 Information Center installed on your computer or intranet

server:

1. Stop the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Stop.

v On Linux, enter the following command:

/etc/init.d/db2icdv97 stop

2. Start the Information Center in stand-alone mode.

v On Windows:

a. Open a command window.

b. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the <Program

Files>\IBM\DB2 Information Center\Version 9.7 directory, where

<Program Files> represents the location of the Program Files directory.

c. Navigate from the installation directory to the doc\bin directory.

d. Run the help_start.bat file:

help_start.bat

v On Linux:

a. Navigate to the path where the Information Center is installed. By

default, the DB2 Information Center is installed in the

/opt/ibm/db2ic/V9.7 directory.

b. Navigate from the installation directory to the doc/bin directory.

c. Run the help_start script:

help_start

The systems default Web browser opens to display the stand-alone Information

Center.

3. Click the Update button (

). (JavaScript™ must be enabled in your browser.)

On the right panel of the Information Center, click Find Updates. A list of

updates for existing documentation displays.

4. To initiate the installation process, check the selections you want to install, then

click Install Updates.

5. After the installation process has completed, click Finish.

6. Stop the stand-alone Information Center:

v On Windows, navigate to the installation directory’s doc\bin directory, and

run the help_end.bat file:

help_end.bat

540 Troubleshooting and Tuning Database Performance

Note: The help_end batch file contains the commands required to safely stop

the processes that were started with the help_start batch file. Do not use

Ctrl-C or any other method to stop help_start.bat.

v On Linux, navigate to the installation directory’s doc/bin directory, and run

the help_end script:

help_end

Note: The help_end script contains the commands required to safely stop the

processes that were started with the help_start script. Do not use any other

method to stop the help_start script.
7. Restart the DB2 Information Center.

v On Windows, click Start → Control Panel → Administrative Tools → Services.

Then right-click DB2 Information Center service and select Start.

v On Linux, enter the following command:

/etc/init.d/db2icdv97 start

The updated DB2 Information Center displays the new and updated topics.

DB2 tutorials

The DB2 tutorials help you learn about various aspects of DB2 products. Lessons

provide step-by-step instructions.

Before you begin

You can view the XHTML version of the tutorial from the Information Center at

http://publib.boulder.ibm.com/infocenter/db2help/.

Some lessons use sample data or code. See the tutorial for a description of any

prerequisites for its specific tasks.

DB2 tutorials

To view the tutorial, click the title.

“pureXML®” in pureXML Guide

Set up a DB2 database to store XML data and to perform basic operations

with the native XML data store.

“Visual Explain” in Visual Explain Tutorial

Analyze, optimize, and tune SQL statements for better performance using

Visual Explain.

DB2 troubleshooting information

A wide variety of troubleshooting and problem determination information is

available to assist you in using DB2 database products.

DB2 documentation

Troubleshooting information can be found in the DB2 Troubleshooting Guide

or the Database fundamentals section of the DB2 Information Center. There

you will find information about how to isolate and identify problems using

DB2 diagnostic tools and utilities, solutions to some of the most common

problems, and other advice on how to solve problems you might encounter

with your DB2 database products.

Appendix A. Overview of the DB2 technical information 541

http://publib.boulder.ibm.com/infocenter/db2luw/v9

DB2 Technical Support Web site

Refer to the DB2 Technical Support Web site if you are experiencing

problems and want help finding possible causes and solutions. The

Technical Support site has links to the latest DB2 publications, TechNotes,

Authorized Program Analysis Reports (APARs or bug fixes), fix packs, and

other resources. You can search through this knowledge base to find

possible solutions to your problems.

 Access the DB2 Technical Support Web site at http://www.ibm.com/
software/data/db2/support/db2_9/

Terms and Conditions

Permissions for the use of these publications is granted subject to the following

terms and conditions.

Personal use: You may reproduce these Publications for your personal, non

commercial use provided that all proprietary notices are preserved. You may not

distribute, display or make derivative work of these Publications, or any portion

thereof, without the express consent of IBM.

Commercial use: You may reproduce, distribute and display these Publications

solely within your enterprise provided that all proprietary notices are preserved.

You may not make derivative works of these Publications, or reproduce, distribute

or display these Publications or any portion thereof outside your enterprise,

without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or

rights are granted, either express or implied, to the Publications or any

information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its

discretion, the use of the Publications is detrimental to its interest or, as

determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full

compliance with all applicable laws and regulations, including all United States

export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE

PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED ″AS-IS″ AND WITHOUT

WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,

NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

542 Troubleshooting and Tuning Database Performance

http://www.ibm.com/software/data/db2/support/db2_9/
http://www.ibm.com/software/data/db2/support/db2_9/

Appendix B. Notices

This information was developed for products and services offered in the U.S.A.

Information about non-IBM products is based on information available at the time

of first publication of this document and is subject to change.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not grant you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,

contact the IBM Intellectual Property Department in your country or send

inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan, Ltd.

3-2-12, Roppongi, Minato-ku, Tokyo 106-8711 Japan

The following paragraph does not apply to the United Kingdom or any other

country/region where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions; therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 2006, 2009 543

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information that has been exchanged, should contact:

IBM Canada Limited

 Office of the Lab Director

 8200 Warden Avenue

 Markham, Ontario

 L6G 1C7

 CANADA

Such information may be available, subject to appropriate terms and conditions,

including, in some cases, payment of a fee.

The licensed program described in this document and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems, and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurements may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements, or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility, or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information may contain examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious, and any similarity to the names and addresses used by an actual

business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

544 Troubleshooting and Tuning Database Performance

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. The sample

programs are provided ″AS IS″, without warranty of any kind. IBM shall not be

liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of

International Business Machines Corp., registered in many jurisdictions worldwide.

Other product and service names might be trademarks of IBM or other companies.

A current list of IBM trademarks is available on the Web at “Copyright and

trademark information” at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies

v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

v Java and all Java-based trademarks and logos are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both.

v UNIX is a registered trademark of The Open Group in the United States and

other countries.

v Intel®, Intel logo, Intel Inside®, Intel Inside logo, Intel® Centrino®, Intel Centrino

logo, Celeron®, Intel® Xeon®, Intel SpeedStep®, Itanium®, and Pentium® are

trademarks or registered trademarks of Intel Corporation or its subsidiaries in

the United States and other countries.

v Microsoft, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of

others.

Appendix B. Notices 545

http://www.ibm.com/legal/copytrade.html
http://www.ibm.com/legal/copytrade.html

546 Troubleshooting and Tuning Database Performance

Index

Special characters
instance_name.nfy log file

administration notification log messages 498

A
about this book vii

access
explain information to analyze type 245

access plan
sharing 271

access plans
capturing information

explain facility 239

column correlation for multiple predicates 332

effect of sorting and grouping 226

effect on lock granularity 158

effect on locks 162

for REFRESH TABLE statements 246

for SET INTEGRITY statements 246

lock modes for standard tables 164

reusing 271

using index scans 204

using indexes
index structure 59

access request elements
ACCESS 318

IXAND 320

IXOR 322

IXSCAN 322

LPREFETCH 323

TBSCAN 324

XANDOR 324

XISCAN 325

ACCRDB command 430

ACCRDBRM command 430

ACCSEC command 430

administration notification log 498, 511

interpreting 500

administrative task scheduler
troubleshooting 464

advisors
Design Advisor 387

agents
client connections 42

in a partitioned database 43

managing 36

worker agent types 35

aggregate functions
db2expln command 265

aggregations
multiple

with DISTINCT 143

AIO (asynchronous I/O) 105

AIX
configuration

best practices 44

analyzing diagnostic data 449, 476

application design
application performance 125

application performance
application design 125

lock management 158

application process
effect on locks 161

application processes
definition 126

architecture
overview 29

asynchronous I/O (AIO) 105

asynchronous index cleanup 61

audit facility
troubleshooting 518

authorized program analysis report (APAR) 493

automatic memory tuning 88

automatic reorganization
description 124

enabling 125

automatic statistics collection 354

storage for 356

automatic statistics profiling
storage for 356

automatic summary tables
description 237

B
benchmark

testing methods 5

testing process 8

benchmarking
db2batch command 7

overview 5

preparation for 6

sample report 10

SQL statements for 6

steps summarized 8

best practices
writing and tuning queries 139

binding
specifying the isolation level 133

block identifiers
preparing before table access 264

block-based buffer pools 101

blocking
row

to reduce overhead 155

books
printed

ordering 536

buffer pools
advantages of large 95

block-based
prefetching performance 101

managing multiple 95

memory allocation at startup 95

overview 92

page cleaning methods 97

tuning page cleaners 93

© Copyright IBM Corp. 2006, 2009 547

C
cardinality estimates

using statistical views 336

catalog statistics 341

avoid manual updates to 382

catalog table descriptions 344

collecting 363

distribution statistics on specific columns 374

index statistics 368

collection guidelines 362

detailed index data 368

distribution statistics 370

examples 375

for sub-elements in columns 365

for user-defined functions 379

index cluster ratio 209

manual adjustments for modeling 380

manual update guidelines 366

manual update rules
column statistics 366

distribution statistics 378

index statistics 369

nickname statistics 367

table statistics 367

modeling production databases with 381

classes
query optimization 272

classic table reorganization 111

cleanup
indexes

asynchronous 61

CLI (call level interface)
applications

trace facility configuration 439

trace
troubleshooting overview 438

trace facility
starting 439

CLI (Call-level Interface)
specifying the isolation level 133

clustering indexes 55

on partitioned tables 76

code page
best practices 44

collation
best practices 44

column group statistics 332

column statistics
manual update rules 366

columns
collecting distribution statistics on specific 374

collecting statistics for sub-elements 365

join
avoiding data type mismatches on 142

command
db2support 506

command editor
troubleshooting 518

commands
ACCRDB 430

ACCRDBRM 430

ACCSEC 430

commit 430

db2dart 400

db2diag 403

db2drdat 429

db2gov 17

commands (continued)
db2inspf 472

db2level 405

db2look 405

db2ls 409

db2pd 509

examples 410

db2pdcfg 514

db2support 421

db2trc 426, 427

EXCSAT 430

EXCSATRD 430

INSPECT 400

SECCHK 430

commit
release of locks 126

commit command
trace output buffers 430

compilation key 309

compilation time
DB2_REDUCED_OPTIMIZATION registry variable 150

dynamic queries
using parameter markers to reduce 149

compilers
capturing information

explain facility 239

rewrites
adding implied predicates 191

correlated subqueries 187

merge view 185

compression
data

effects on database performance 383

index
effects on database performance 383

concentrator
statement 271

concurrency
improving 135

concurrency control
federated databases 127

issues 127

locks 158

Configuration Advisor
performance tuning 51

configuration files
governor utility

rule clauses 21

rule descriptions 18

configuration settings
best practices 44

configuring IOCP on AIX 105

connection
first-user scenarios

database deactivation behavior 106

connection concentrator
client-connection improvements 42

connection concentrators
use of agents in a partitioned database 43

consistency
points of 126

constraints
improving query optimization 147

contacting IBM 529

Control Center
tracing 436

548 Troubleshooting and Tuning Database Performance

coordinating agents
connection-concentrator use 42

coordinator agent
description 30, 38

core files
Linux systems 525

problem determination 483

UNIX systems 525

correlation
simple equality predicates 333

creating
database 480

cross-partition monitoring 11

cur_commit database configuration parameter 135

CURRENT EXPLAIN MODE special register
capturing explain data 242

CURRENT EXPLAIN SNAPSHOT special register
capturing explain data 242

CURRENT LOCK TIMEOUT special register
lock wait mode strategy 179

cursor stability (CS)
isolation level 128

D
daemons

governor utility 17

data
access methods 203

compacting 108

inconsistencies 472

sampling in queries 156

data compression
effects on database performance 383

data objects
explain information 250

data operators
explain information 251

data pages in standard tables 55

data partition elimination 232

data sources
performance 200

data stream information
db2expln command 263

data type
mismatches on join columns 142

Data Warehouse Center
troubleshooting 518

data-access methods
scan sharing 209

database
deactivation

first-user connection scenarios 106

database agents
managing 36

database analysis and reporting tool command
overview 400

database engine processes 481

database manager
shared memory 81

database partition groups
query optimization impact 331

Database Partitioning Feature (DPF)
best practices 44

database_memory database configuration parameter
self-tuning 86

databases
corrupt 472

names
RDBNAM object 430

DB2 database products
list 409

DB2 governor
troubleshooting 518

DB2 Information Center
languages 537

updating 538, 539

versions 537

viewing in different languages 537

DB2 JDBC Type 2 Driver
trace facility configuration 436

DB2 Universal JDBC Driver
trace facility configuration 438

DB2_EVALUNCOMMITTED registry variable
deferral of row locks 136

DB2_REDUCED_OPTIMIZATION registry variable
reducing compilation time 150

DB2_SKIPINSERTED registry variable 136

DB2_USE_ALTERNATE_PAGE_CLEANING registry variable
proactive page cleaning 97

db2batch command
overview 7

db2cli.ini file
trace configuration 439

db2cos script
output files 509

db2dart command
INSPECT command comparison 400

troubleshooting overview 400

db2diag command
examples 403

db2diag log files 501

first occurrence data capture (FODC) information 511

interpreting
informational record 505

overview 502

using db2diag tool 403

db2drdat command
output file 429

db2expln command
information displayed

aggregation 265

block identifier preparation 264

data stream 263

federated query 268

insert, update, and delete 263

join 261

miscellaneous 269

parallel processing 265

row identifier preparation 264

table access 255

temporary table 259

output description 254

DB2FODC registry variable
collecting diagnostic information 514

db2gov command 16

starting governor 17

stopping governor 17

db2inspf command
troubleshooting 472

db2level command
service-level identification 405

version-level identification 405

Index 549

db2licm command
compliance report 476

db2look command
creating databases 405

db2ls command
listing installed products and features 409

db2mtrk command
sample output 92

db2pd command
output collected by default db2cos script 509

troubleshooting examples 410

db2pdcfg command
setting options in DB2FODC registry variable 514

db2support command
description 421

running 506

db2trc command
dumping trace output 427

formatting trace output 427

overview 426

ddcstrc utility 429

DDM (Distributed Data Management)
db2drdat output 429

deactivation
database

first-user connection scenarios 106

deadlocks
avoiding 135

detector 179

overview 179

decision support system (DSS) 429

decorrelation of a query example 187

deferred index cleanup
monitoring 63

defragmentation
index 64

DEGREE general request element
XML schema 311

delete information
db2expln command 263

Design Advisor
converting single-partition to multi-partition

databases 392

defining workloads 391

limitations and restrictions 392

overview 387

running 390

diaglevel configuration parameter
updating 506

diagnostic information
analyzing 449, 476

applications 524

data movement problems 448

DB2 administration server (DAS) problems 448

Dr. Watson logs 527

first occurrence data capture (FODC)
configuring 515

description 514

files 511

hardware 524

installation problems 473

instance management problems 448

Linux
diagnostic tools 444

obtaining information 524

system core file 525

overview 447, 483

diagnostic information (continued)
submitting to IBM Software Support 529

UNIX
diagnostic tools 444

obtaining information 524

system core file 525

Windows
diagnostic tools 443

event logs 526

obtaining information 524

dirty read 128

disks
storage performance factors 52

Distributed Data Management (DDM) 486

db2drdat output 429

distribution statistics
description 370

examples 375

manual update rules 378

query optimization 373

documentation
overview 533

PDF 533

printed 533

terms and conditions of use 542

DPFXMLMOVEMENT general request element
XML schema 311

dump files
error reports 511

dumping a trace to file
overview 427

dynamic queries
setting the optimization class 276

using parameter markers to reduce compilation time 149

dynamic SQL
specifying the isolation level 133

E
ECF return codes

overview 520

end unit of work reply message (ENDUOWRM) 430

engine dispatchable unit (EDU)
agents 35

equality predicates
correlation 333

error messages
DB2 Connect 487

errors
troubleshooting 483

event monitors
troubleshooting 518

exchange server attributes command 430

EXCSAT command 430

EXCSATRD command 430

explain facility
analyzing information 245

capturing information 242

creating snapshots 242

db2exfmt 247

db2expln 247

determining where federated queries are evaluated 198

federated databases 202

guidelines for using information 244

information displayed
data objects 250

data operators 251

550 Troubleshooting and Tuning Database Performance

explain facility (continued)
information displayed (continued)

instances 252

overview 239, 254

tools overview 247

tuning SQL 240

explain tables
organization 248

expressions
in search conditions 140

over columns
in local predicates 140

EXTNAM object 430

F
FCM (fast communication manager)

memory requirements 84

federated databases
concurrency control 127

determining where queries are evaluated 198

global analysis of queries 202

global optimization in 200

pushdown analysis 194

server options 78

federated query information
db2expln command 268

FETCH FIRST N ROWS ONLY clause
with the OPTIMIZE FOR N ROWS clause 145

first failure data capture (FFDC)
trap files 527

first occurrence data capture (FODC)
data generation 516

description 511

dump files 511

platform-specific 524

subdirectories 516

trap files 528

fix packs
acquiring 493

description 493

fragment elimination
see data partition elimination 232

free space control record (FSCR)
in MDC tables 57

in standard tables 55

frequent-value distribution statistics 370

G
global optimization guidelines

REOPT 308

global registry
altering 404

global variables
troubleshooting 469

governor utility 16

configuration file
rule descriptions 18

daemons 17

log files 25

rule clauses 21

starting 17

stopping 17

granularity
lock

overview 160

grouping
effect on access plans 226

H
hardware

configuration
best practices 44

hash joins
description 212

help
configuring language 537

SQL statements 537

how this book is structured vii

HP-UX
configuration

best practices 44

I
I/O

parallelism
managing 104

prefetching 103

I/O completion ports (IOCP)
AIX 105

IBM Data Server
messages 521

IN (Intent None)
lock mode description 160

index compression
effects on database performance 383

index data consistency 472

index statistics
manual update rules 369

indexes
advantages 65

asynchronous cleanup 63

catalog statistics
collecting 368

cleaning up asynchronously 61

cluster ratio 209

clustering 55, 76

data-access methods 207

deferred cleanup 63

defragmentation
online 64

Design Adviser 387

explain information to analyze use 245

for standard tables
managing 55

maintenance 60

managing
for MDC tables 57

on partitioned tables 70

performance tips 68

planning 66

reorganization 108, 118

automatic 125

costs 122

reducing the need for 124

scanning to access data 204

Index 551

indexes (continued)
scans

previous leaf pointers 59

search processes 59

standard tables, lock modes 164

statistics
detailed data collected 368

structure 59

inline LOBs 384

INLIST2JOIN query rewrite request element
XML schema 314

inplace table reorganization
description 114

input variables
complex queries

using the REOPT bind option with 148

insert information
db2expln command 263

inserting data
disregard uncommitted 136

performance 150

INSPECT CHECK 472

INSPECT command 400

installation problems
analyzing 474

troubleshooting 475

installing
DB2 Information Center

known problems 476

DB2 products 473

known problems 475, 476

error logs 473

listing DB2 database products 409

instances
explain 248

explain information 252

interim fix packs
description 493

intra-partition parallelism 157

optimization strategies 228

IOCP (I/O completion ports)
AIX 105

IS (Intent Share)
lock mode description 160

isolation levels
comparison 128

cursor stability (CS) 128

effect on lock granularity 158

effect on performance 128

read stability (RS) 128

repeatable read (RR) 128

specifying 133

uncommitted read (UR) 128

ISV applications
best practices 44

IX (Intent Exclusive)
lock mode description 160

J
Java Database Connectivity (JDBC)

applications
trace facility configuration 436, 438

JDBC (Java Database Connectivity)
specifying the isolation level 133

join columns
avoiding data type mismatches on 142

join information
db2expln command 261

join predicates
non-equality 142

join request elements
HSJOIN 328

JOIN 327

MSJOIN 328

NLJOIN 329

joins
broadcast inner-table 221

broadcast outer table 221

collocated 221

directed inner-table 221

directed outer table 221

explain information for analyzing methods 245

hash 212

merge 212

nested-loop 212

optimizer selection 215

overview 212

partitioned database environments 221

shared aggregation 185

star schema
criteria for queries 145

subquery transformation by optimizer 185

table queue strategy for partitioned databases 219

unnecessary outer 145

K
keys

compilation 309

statement 309

L
large objects (LOBs)

inline for improved performance 384

License Center
compliance report 476

licenses
compliance report 476

Linux
configuration

best practices 44

listing DB2 database products 409

list prefetching 102

LOB (large object) data types
inline for improved performance 384

lock management
application performance 158

lock modes
compatibility 163

description 160

IN (Intent None) 160

IS (Intent Share) 160

IX (Intent Exclusive) 160

MDC (multidimensional clustering) tables
block index scans 172

table and RID index scans 168

NS (Scan Share) 160

NW (Next Key Weak Exclusive) 160

S (Share) 160

SIX (Share with Intent Exclusive) 160

U (Update) 160

552 Troubleshooting and Tuning Database Performance

lock modes (continued)
X (Exclusive) 160

Z (Super Exclusive) 160

lock objects
description 160

lock timeouts
avoiding 135

lock waits
strategies for resolving 179

timeout 178

locklist configuration parameter
lock granularity 158

locks
concurrency control 158

conversion 178

deadlocks 179

deferral 136

definition 126

effect of application type 161

effect of data-access plan 162

granting simultaneously 163

granularity
factors affecting 161

overview 160

isolation levels 128

lock count 160

next-key locking 163

on partitioned tables 176

standard tables
modes and access plans 164

log buffer
improving DML performance 384

log files
administration 498

log sequence number (LSN) gap 97

logging
archive 384

circular 384

statistics 361

statistics collection activities 356

logical partitions
multiple 38

logs
created by governor utility 25

M
materialized query tables (MQTs)

automatic summary tables 237

partitioned databases 218

replicated 218

maxappls configuration parameter
effect on memory use 78

maxcoordagents configuration parameter 78

MDC (multidimensional clustering) tables
block-level locking 158

lock modes
block index scans 172

table and RID index scans 168

management of tables and indexes 57

optimization strategies 230

rollout deletion 230

memory
allocation 78

parameters 85

bufferpool allocation at startup 95

database manager 81

memory (continued)
FCM buffer pool 84

self-tuning 85, 86

memory tracker command
sample output 92

memory tuner
partitioned database environments 91

merge joins
description 212

messages 521

miscellaneous explain information
db2expln command 269

modeling application performance
using catalog statistics 381

using manually adjusted catalog statistics 380

monitoring 15

application behavior
governor utility 16

cross-partition 11

snapshot 11

system performance 11, 12

MQTs (materialized query tables)
automatic summary tables 237

partitioned databases 218

replicated 218

multi-partition databases
converting from single-partition databases 392

multidimensional clustering (MDC) tables
deferred index cleanup 63

N
nested-loop joins

description 212

next-key locks 163

nickname statistics
manual update rules 367

no-op expressions
in predicates

influencing the optimizer 142

non-repeatable read 128

non-repeatable reads
concurrency control 127

NOTEX2AJ query rewrite request element
XML schema 314

notices 543

notify level configuration parameter
updating 501

NOTIN2AJ query rewrite request element
XML schema 315

NS (Scan Share)
lock mode description 160

numdb configuration parameter
effect on memory use 78

NW (Next Key Weak Exclusive)
lock mode description 160

O
ODBC (open database connectivity)

applications
trace facility configuration 439

ODBC (Open Database Connectivity)
specifying the isolation level 133

offline reorganization
failure and recovery 113

Index 553

offline reorganization (continued)
locking conditions 111

phases 111

space requirements 122

temporary files created during 111

offline table reorganization
advantages and disadvantages 109

how to perform 113

improving performance 114

online reorganization
failure and recovery 116

log space requirements 122

online table reorganization
advantages and disadvantages 109

description 114

how to perform 116

locking and concurrency considerations 117

pausing and restarting 116

operations
merged or moved by optimizer 184

OPTGUIDELINES element
global

XML schema 305

statement-level
XML schema 310

optimization
access plans

column correlation 332

effect of sorting and grouping 226

index access methods 207

using indexes 204

classes 272

choosing 275

setting 276

data-access methods 203

guidelines
general 285

plan 289

query rewrite 285

table references 292

troubleshooting 478

types 284

verifying 296

intra-partition parallelism 228

join strategies 215

joins 212

partitioned database environments 221

partitioned tables 232

query
improving through constraints 147

query rewriting methods 184

relevant statistics 336

reorganizing tables and indexes 108

strategies for MDC tables 230

optimization guidelines 278

general
XML schema 310

plan
XML schema 315

query rewrite
XML schema 314

statement-level
creating 291

optimization profile cache
flushing 330

optimization profiles 278, 279

binding to a package 283

optimization profiles (continued)
configuring the data server to use 281

creating 281

deleting 284

managing 331

modifying 283

specifying for an application 282

specifying for the optimizer 282

SYSTOOLS.OPT_PROFILE table 330

troubleshooting 478

using 277

XML schema 297

OPTIMIZE FOR N ROWS clause
with the FETCH FIRST N ROWS ONLY clause 145

optimizer
statistical views

creating 335

overview 334

tuning 278

OPTPROFILE element
XML schema 305

ordering DB2 books 536

outer joins
unnecessary 145

overflow records
in standard tables 55

performance effect 119

overhead
row blocking to reduce 155

P
page cleaners

tuning 93

pages
overview 55

parallel processing information
db2expln command 265

parallelism
I/O

managing 104

I/O server configuration 102

intra-partition 157

optimization strategies 228

non-SMP environments 157

parameter markers
reducing compilation time for dynamic queries 149

parameters
autonomic

best practices 44

memory allocation 85

PRDID 430

partitioned database environments
decorrelation of a query (example) 187

join methods 221

join strategies 219

replicated materialized query tables 218

self-tuning memory 89, 91

partitioned tables
clustering indexes 76

indexes 70

locking 176

optimization 232

performance
affected by isolation levels 128

application design 125

554 Troubleshooting and Tuning Database Performance

performance (continued)
changes

analyzing 240

db2batch command 7

disk-storage factors 52

enhancements
relational indexes 68

lock management 158

overview 1

query
best practices 139

query optimization 181

runstats
improving 382

system
monitoring 11, 12

troubleshooting 1

tuning
evaluating 240

guidelines 1

limits 1

using explain information to evaluate 244

performance tuning
Configuration Advisor 51

phantom read 128

concurrency control 127

physical database design
best practices 44

point of consistency
database 126

PRDID parameter 430

precompiling
specifying the isolation level 133

predicates
avoiding redundant 146

characteristics 192

equality
correlation 333

implied (example) 191

join
non-equality 142

on expressions 140

local
with expressions over columns 140

pushdown for combined SQL/XQuery statements 189

translation by optimizer 184

with no-op expressions
influencing the optimizer 142

prefetching
block-based buffer pools 101

effects on performance 99

I/O server configuration 102

list 102

parallel I/O 103

sequential 99

problem determination
connection 484

diagnostic tools
overview 483

information available 541

installation problems 473

post-connection 485

post-connection problems 486

tutorials 541

process model
overview 30, 38

process status utility 430, 483

processes
overview 29

profile
statistics 354

profiles
optimization 279

using 277

ps command
EXTNAM object 430

overview 483

pushdown
predicate

for combined SQL/XQuery statements 189

pushdown analysis
federated database queries 194

Q
QRYOPT general request element

XML schema 312

quantile distribution statistics 370

queries
criteria for star schema joins 145

dynamic
using parameter markers to reduce compilation

time 149

input variables
using the REOPT bind option with 148

tuning
restricting SELECT statements 152

SELECT statements 151

query optimization
choosing classes 275

classes 272

collecting accurate statistics 332

distribution statistics 373

effect of database partition groups 331

effect of table spaces 52

improving through constraints 147

no-op expressions in predicates 142

performance 181

profiles
using 277

Query Patroller
troubleshooting 517

query rewrite
optimization guidelines 285

R
read stability (RS)

isolation level 128

receive buffer 429

record identifiers (RIDs)
in standard tables 55

relational indexes
advantages 65

REOPT bind option
use with input variables in complex queries 148

REOPT general request element
XML schema 313

REOPT global optimization guideline 308

REORG TABLE
performing offline 113

reorganization
automatic 124

Index 555

reorganization (continued)
choosing a method 109

error handling 118

index 118

indexes 108

automatic 125

monitoring 118

of tables 109

offline 111

failure and recovery 113

space requirements 122

offline compared with online 109

offline table
improving performance 114

online 114

failure and recovery 116

log space requirements 122

online table 116

locking and concurrency considerations 117

pausing and restarting 116

reducing the need for 124

tables 108, 119

automatic 125

repeatable read (RR)
isolation level 128

return codes
internal 520

REXX language
specifying the isolation level 133

rollback
definition 126

rollout deletion
deferred cleanup 63

row blocking
to reduce overhead 155

row identifiers
preparing before table access 264

RTS general request element
XML schema 313

runstats
improving performance of 382

information about sub-elements 365

RUNSTATS command
automatic statistics collection 350

sampling statistics 364

runstats utility
automatic statistics collection 354

statistics collected 341

S
S (Share)

lock mode description 160

sampling data
in queries 156

SARGable predicates
overview 192

scan sharing 209

scenarios
access plans 246

improving cardinality estimates 336

scripts
troubleshooting 481

searching
techniques 491

SECCHK command 430

SELECT statement
eliminating DISTINCT clauses 187

prioritizing output for 152

self-tuning memory 85

disabling 88

enabling 86

monitoring 88

overview 86

partitioned database environments 89, 91

send buffer
tracing data 429

sequential prefetching 99

server options
federated databases 78

SET CURRENT QUERY OPTIMIZATION statement 276

shadow paging
long objects 384

sharing
scan 209

SIX (Share with Intent Exclusive)
lock mode description 160

snapshot monitoring 11

Solaris
configuration

best practices 44

sort performance
tuning 106

sorting
effect on access plans 226

SQL
writing statements

best practices 140

SQL compiler
process description 181

SQL statements
benchmarking 6

displaying help 537

explain tool for 254

rewriting 184

tuning
restricting SELECT statements 152

SELECT statements 151

with the explain facility 240

SQL0965 error code 487

SQL0969 error code 487

SQL1338 error code 487

SQL30020 error code 487

SQL30060 error code 487

SQL30061 error code 487

SQL30073 error code 487

SQL30081N error code 487

SQL30082 error code 487

SQL5043N error code 487

SQLCA (SQL communication area)
buffers of data 429

SQLCODE field 429

SQLCODE
field in SQLCA 429

SQLJ (SQL-Java)
specifying the isolation level 133

SRVNAM object 430

statement concentrator
reduced statement compilation overhead 271

statement key 309

statements
specifying the isolation level 133

556 Troubleshooting and Tuning Database Performance

statements (continued)
writing SQL

best practices 140

states
lock modes 160

static queries
setting the optimization class 276

static SQL
specifying the isolation level 133

statistical views
creating 335

improving cardinality estimates 336

overview 334

relevant statistics for optimization 336

statistics
automatic collection 350, 354

catalog 341

avoid manual updates to 382

collection
based on a sample 364

collection guidelines 362

column group 332

for query optimization 332

updating manually 366

statistics profile
generating 354

STMM (Self-tuning Memory Manager) 85

disabling 88

enabling 86

monitoring 88

STMTKEY element
XML schema 308

STMTPROFILE element
XML schema 308

storage keys
troubleshooting 481

sub-element statistics
runstats utility 365

SUBQ2JOIN query rewrite request element
XML schema 315

subqueries
correlated

how rewritten 187

summary tables
See materialized query tables (MQTs)

system commands
dbx (UNIX) 525

gdb (Linux) 525

xdb (HP-UX) 525

system core files
identification 525

Linux 525

UNIX 525

system performance
monitoring 11

system processes 30

SYSTOOLS.OPT_PROFILE table 330

T
table

offline reorganization
failure and recovery 113

online reorganization
failure and recovery 116

table access information
db2expln command 255

table reorganization
error handling 118

monitoring 118

performing online 116

table spaces
effect on query optimization 52

table statistics
manual update rules 367

tables
for join strategies in partitioned databases 219

lock modes 164

multidimensional clustering 57

offline reorganization 111

improving performance 114

online reorganization 114

pausing and restarting 116

overview 109

partitioned
clustering indexes 76

queues 219

reorganization 108, 109

automatic 125

costs 122

determining need for 119

methods 109

offline 113

reducing the need for 124

standard
managing 55

tasks
troubleshooting 464

TCP/IP
ACCSEC command 430

SECCHK command 430

temporary table information
db2expln command 259

terms and conditions
use of publications 542

test fixes
applying 495

description 493

types 495

threads 481

description 38

in DB2 30

timeouts
lock 178

Tivoli System Automation for Multiplatforms
high availability 471

tools
diagnostic

overview 444

Windows 443

trace facility
CLI applications 439

Control Center traces 436

DB2 traces 426, 427

DRDA traces 431, 435

JDBC applications 438

trace option configuration 436

troubleshooting overview 425

trace utility (db2drdat) 429

traces
buffer information for DRDA traces 435

CLI 438

analyzing 441, 442, 443

data between DB2 connect and the server 429

Index 557

traces (continued)
DRDA

interpreting 428

output file 429

output file samples 431

overview 425

trap files 527

formatting (Windows) 528

troubleshooting 395, 506

administrative task scheduler 464

compression dictionary
not automatically created 465

connect 484, 485

contact IBM Support 529

creating
database 480

DB2 Connect 487

db2diag log files
interpretation 502

description 447

diagnose
deadlock problem 454

lock escalation problem 460

lock timeout problem 457

lock wait problem 451

diagnosing and resolving
locking problem 450

diagnostic data
automatic collection 514

collecting base set 447

configuring collection 515

for DAS or instance management 448

for data movement 448

for installation 473

manual collection 514

diagnostic logs
db2diag log files 501

disk storage space for temporary tables 466

gathering information 405, 410, 421, 447, 483, 529

getting a fix 493

high availability problems 471

installation problems 473, 475, 476

known problems 475, 486

learning more 497

introduction 497

log record decompression 467

online information 541

overview 395

DB2 Connect 483

problem recreation 405

recovering from sustained traps 463

resolving
deadlock problem 456

lock escalation problem 461

lock timeout problem 458

lock wait problem 453

resources 492

return codes
internal 520

searching for solutions to problems 491

storage keys 481

tasks 464

tools 399

trace facilities 425, 426

CLI and ODBC applications 438, 439

Control Center traces 436

DRDA 431, 435

troubleshooting (continued)
trace facilities (continued)

JDBC applications 436, 438

tutorials 541

troubleshooting FCM problems 480

tuning
guidelines 1

limitations 1

sort performance 106

tuning partition
determining 91

tuning queries
best practices 139

tuning SQL
with the explain facility 240

tutorials
problem determination 541

troubleshooting 541

Visual Explain 541

U
U (Update)

lock mode description 160

uncommitted data
concurrency control 127

uncommitted read (UR)
isolation level 128

units of work (UOW)
definition 126

UNIX
listing DB2 database products 409

update information
db2expln command 263

updates
DB2 Information Center 538, 539

lost
concurrency control 127

updating data
performance 98

user-defined functions
entering statistics for 379

utilities
db2drdat 429

process status 430

ps (process status) 430, 483

trace 429

V
views

merging by optimizer 185

predicate pushdown by optimizer 187

Visual Explain
tutorial 541

W
workloads

performance tuning
Design Advisor 387, 391

writing queries
best practices 139

558 Troubleshooting and Tuning Database Performance

X
X (Exclusive)

lock mode description 160

XML data
partitioned indexes 70

XML schemas
ACCESS access request element 318

access request elements 316

accessRequest group 316

computationalPartitionGroupOptimizationChoices

group 307

current optimization profile 297

DEGREE general request element 311

DPFXMLMOVEMENT general request element 311

general optimization guidelines 310

generalRequest group 310

global OPTGUIDELINES element 305

HSJOIN join request element 328

INLIST2JOIN query rewrite request element 314

IXAND access request element 320

IXOR access request element 322

IXSCAN access request element 322

JOIN join request element 327

join request elements 326

joinRequest group 326

LPREFETCH access request element 323

MQTOptimizationChoices group 306

MSJOIN join request element 328

NLJOIN join request element 329

NOTEX2AJ query rewrite request element 314

NOTIN2AJ query rewrite request element 315

OPTGUIDELINES element
statement-level 310

OPTPROFILE element 305

plan optimization guidelines 315

QRYOPT general request element 312

query rewrite optimization guidelines 314

REOPT general request element 313

rewriteRequest group 314

RTS general request element 313

STMTKEY element 308

STMTPROFILE element 308

SUBQ2JOIN query rewrite request element 315

TBSCAN access request element 324

XANDOR access request element 324

XISCAN access request element 325

XQuery compiler
process description 181

XQuery statements
explain tool for 254

rewriting 184

specifying the isolation level 133

Z
Z (Super Exclusive)

lock mode description 160

ZRC return codes
description 520

Index 559

560 Troubleshooting and Tuning Database Performance

����

Printed in USA

SC27-2461-00

Sp
in
e
in
fo
rm
at
io
n:

 IB
M

DB

2
9.

7
fo

r L
in

ux
, U

NI
X,

an

d
W

in
do

w
s

Tr
ou

bl
es

ho
ot

in
g

an
d

Tu
ni

ng

Da

ta
ba

se

Pe

rfo
rm

an
ce

�
�

�

	Contents
	About this book
	How this book is structured

	Part 1. Performance overview
	Chapter 1. Performance tuning tools and methodology
	Benchmark testing
	Benchmark preparation
	Benchmark test creation
	Benchmark test execution
	Benchmark test analysis example

	Chapter 2. Performance monitoring tools and methodology
	Operational monitoring of system performance
	Basic set of system performance monitor elements
	Abnormal values in monitoring data

	The governor utility
	Starting and stopping the governor
	The governor daemon
	The governor configuration file
	Governor rule clauses
	Governor log files

	Chapter 3. Factors affecting performance
	System architecture
	DB2 architecture and process overview
	The DB2 process model
	Database agents
	Database agent management
	Client-server processing model
	Connection-concentrator improvements for client connections
	Agents in a partitioned database

	Configuring for good performance
	Instance configuration
	Table space design
	Disk-storage performance factors
	Table space impact on query optimization

	Database design
	Tables
	Table and index management for standard tables
	Table and index management for MDC tables

	Indexes
	Index structure
	Index cleanup and maintenance
	Asynchronous index cleanup
	Asynchronous index cleanup for MDC tables
	Online index defragmentation
	Using relational indexes to improve performance
	Relational index planning tips
	Relational index performance tips

	Partitioning and clustering
	Index behavior on partitioned tables
	Clustering of nonpartitioned indexes on partitioned tables

	Federated databases
	Server options that affect federated databases

	Resource utilization
	Memory allocation
	Database manager shared memory
	The FCM buffer pool and memory requirements
	Guidelines for tuning parameters that affect memory usage

	Self-tuning memory overview
	Self-tuning memory
	Enabling self-tuning memory
	Disabling self-tuning memory
	Determining which memory consumers are enabled for self tuning
	Self-tuning memory in partitioned database environments
	Using self-tuning memory in partitioned database environments

	Buffer pool management
	Buffer pool management of data pages
	Management of multiple database buffer pools
	Proactive page cleaning
	Improving update performance
	Prefetching data into the buffer pool

	Database deactivation behavior in first-user connection scenarios
	Tuning sort performance

	Data organization
	Table reorganization
	Choosing a table reorganization method
	Classic (offline) table reorganization
	Inplace (online) table reorganization
	Monitoring a table reorganization

	Index reorganization
	Determining when to reorganize tables and indexes
	Costs of table and index reorganization
	Reducing the need to reorganize tables and indexes
	Automatic reorganization
	Enabling automatic table and index reorganization

	Application design
	Application processes, concurrency, and recovery
	Concurrency issues
	Isolation levels
	Specifying the isolation level
	Currently committed semantics improve concurrency
	Option to disregard uncommitted insertions
	Evaluate uncommitted data through lock deferral

	Writing and tuning queries for optimal performance
	Writing SQL statements
	Using constraints to improve query optimization
	Using the REOPT bind option with input variables in complex queries
	Using parameter markers to reduce compilation time for dynamic queries
	Setting the DB2_REDUCED_OPTIMIZATION registry variable

	Improving insert performance
	Efficient SELECT statements
	Guidelines for restricting SELECT statements
	Specifying row blocking to reduce overhead
	Data sampling in queries
	Parallel processing for applications

	Lock management
	Locks and concurrency control
	Lock granularity
	Lock attributes
	Factors that affect locking
	Locks and types of application processing
	Locks and data-access methods

	Lock type compatibility
	Next-key locking
	Lock modes and access plans for standard tables
	Lock modes for MDC table and RID index scans
	Lock modes for MDC block index scans
	Locking behavior on partitioned tables
	Lock conversion
	Lock waits and timeouts
	Specifying a lock wait mode strategy

	Deadlocks

	Query optimization
	The SQL and XQuery compiler process
	Query rewriting methods and examples
	Predicate typology and access plans
	Federated database query-compiler phases

	Data-access methods
	Data access through index scans
	Types of index access
	Index access and cluster ratios
	Scan sharing

	Joins
	Join methods
	Strategies for selecting optimal joins
	Replicated materialized query tables in partitioned database environments
	Join strategies for partitioned databases
	Join methods for partitioned databases

	Effects of sorting and grouping on query optimization
	Optimization strategies
	Optimization strategies for intra-partition parallelism
	Optimization strategies for MDC tables
	Optimization strategies for partitioned tables

	Improving query optimization with materialized query tables
	Explain facility
	Tuning SQL statements using the explain facility
	Guidelines for capturing explain information
	Guidelines for using explain information
	Guidelines for analyzing explain information
	Using access plans to self-diagnose performance problems with REFRESH TABLE and SET INTEGRITY statements
	Tools for collecting and analyzing explain information
	The explain tables and organization of explain information
	SQL and XQuery explain tool

	Optimizing query access plans
	Statement concentrator reduces compilation overhead
	Access plan reuse
	Optimization classes
	Using optimization profiles if other tuning options do not produce acceptable results
	Optimization profiles and guidelines
	Database partition group impact on query optimization
	Collecting accurate catalog statistics, including advanced statistics features
	Column group statistics
	Correlation of simple equality predicates

	Statistical views
	Using statistical views
	View statistics that are relevant to optimization
	Scenario: Improving cardinality estimates using statistical views

	Catalog statistics
	Catalog statistics tables
	Automatic statistics collection
	Guidelines for collecting and updating statistics
	Detailed index statistics
	Distribution statistics
	Statistics for user-defined functions
	Catalog statistics for modeling and what-if planning
	Avoiding manual updates to the catalog statistics

	Minimizing runstats impact

	Data compression and performance
	Reducing logging overhead to improve DML performance
	Inline LOBs improve performance

	Chapter 4. Establishing a performance tuning strategy
	The Design Advisor
	Using the Design Advisor
	Defining a workload for the Design Advisor
	Using the Design Advisor to convert from a single-partition to a multi-partition database
	Design Advisor limitations and restrictions

	Part 2. Troubleshooting a problem
	Chapter 5. Tools for troubleshooting
	Overview of the db2dart tool
	Comparison of INSPECT and db2dart

	Analyzing db2diag log files using db2diag tool
	Displaying and altering the Global Registry (UNIX) using db2greg
	Identifying the version and service level of your product
	Mimicking databases using db2look
	Listing DB2 database products installed on your system (Linux and UNIX)
	Monitoring and troubleshooting using db2pd command
	Collecting environment information using db2support command
	Basic trace diagnostics
	DB2 traces
	Obtaining a DB2 trace using db2trc
	Dumping a DB2 trace file
	Formatting a DB2 trace file

	DRDA trace files
	Trace utility
	Trace output
	Trace output file analysis
	Trace output file samples
	Subsequent buffer information for DRDA traces

	Control Center traces
	JDBC trace files
	Obtaining traces of applications that use the DB2 JDBC Type 2 Driver for Linux, UNIX and Windows
	Obtaining traces of applications that use the DB2 Universal JDBC Driver

	CLI trace files
	Obtaining CLI traces
	Interpreting input and output parameters in CLI trace files
	Analyzing Dynamic SQL in CLI traces
	Interpreting timing information in CLI traces
	Interpreting unknown values in CLI traces
	Interpreting multi-threaded CLI trace output

	Platform-specific tools
	Diagnostic tools (Windows)
	Diagnostic tools (Linux and UNIX)

	Chapter 6. Troubleshooting DB2 database
	Collecting data for DB2
	Collecting data for data movement problems
	Collecting data for DAS and instance management problems

	Analyzing data for DB2
	Diagnosing and resolving locking problems
	Diagnosing a lock wait problem
	Resolving lock wait problems

	Diagnosing a deadlock problem
	Resolving deadlock problems

	Diagnosing a lock timeout problem
	Resolving lock timeout problems

	Diagnosing a lock escalation problem
	Resolving lock escalation problems

	Recovering from sustained traps
	Troubleshooting administrative task scheduler
	Troubleshooting compression
	Data compression dictionary is not automatically created
	Row compression not reducing disk storage space for temporary tables
	Data replication process cannot decompress a compressed row image

	Troubleshooting global variable problems
	Troubleshooting high availability
	Tivoli System Automation for Multiplatforms (SA MP) Base Component is not installed by DB2 Version 9.5 GA on AIX 6.1

	Troubleshooting inconsistencies
	Troubleshooting data inconsistencies
	Troubleshooting index to data inconsistencies

	Troubleshooting installation of DB2 database systems
	Collecting data for installation problems
	Analyzing data for installation problems
	Known problems and solutions
	Errors when installing a DB2 database product as a non-root user to the default path on a system WPAR (AIX)
	Beta and non-beta versions of DB2 database products cannot coexist
	Resolving service name errors when you install DB2 database products

	Troubleshooting license issues
	Analyzing DB2 license compliance reports

	Troubleshooting optimization guidelines and profiles
	Troubleshooting partitioned database environments
	FCM problems related to 127.0.0.2 (Linux and UNIX)
	Creating a database partition on an encrypted file system (AIX)

	Troubleshooting scripts
	Troubleshooting storage key support

	Chapter 7. Troubleshooting DB2 Connect
	Diagnostic tools
	Gathering relevant information
	Initial connection is not successful
	Problems encountered after an initial connection
	Unsupported DDM commands

	Common DB2 Connect problems

	Chapter 8. Searching knowledge bases
	How to search effectively for known problems
	Troubleshooting resources

	Chapter 9. Getting DB2 product fixes
	Getting fixes
	Fix packs, interim fix packs and test fixes
	Applying test fixes

	Chapter 10. Learning more about troubleshooting
	Learning more
	Administration notification log
	Interpreting administration notification log file entries
	Setting the error capture level for the administration notification log file

	DB2 diagnostic (db2diag) log files
	Interpretation of diagnostic log file entries
	Interpreting the informational record of the db2diag log files
	Setting the error capture level of the diagnostic log files

	Combining DB2 database and OS diagnostics
	db2cos (callout script) output files
	Dump files
	First occurrence data capture information
	Collecting diagnosis information based on common outage problems
	Configuring for automatic collection of diagnostic information
	Data collected as part of FODC and its placement
	Automatic FODC data generation
	DB2 Query Patroller and First Occurrence Data Capture (FODC)
	Monitor and audit facilities using First Occurrence Data Capture (FODC)
	Graphical tools using First Occurrence Data Capture (FODC)

	Internal return codes
	Introduction to messages
	Platform-specific error log information
	System core files (Linux and UNIX)
	Accessing system core file information (Linux and UNIX)
	Accessing event logs (Windows)
	Exporting event logs (Windows)
	Accessing the Dr. Watson log file (Windows)

	Trap files
	Formatting trap files (Windows)

	Chapter 11. Contacting IBM Software Support
	Contacting IBM Software Support
	Submitting data to IBM Software Support

	Part 3. Appendixes
	Appendix A. Overview of the DB2 technical information
	DB2 technical library in hardcopy or PDF format
	Ordering printed DB2 books
	Displaying SQL state help from the command line processor
	Accessing different versions of the DB2 Information Center
	Displaying topics in your preferred language in the DB2 Information Center
	Updating the DB2 Information Center installed on your computer or intranet server
	Manually updating the DB2 Information Center installed on your computer or intranet server
	DB2 tutorials
	DB2 troubleshooting information
	Terms and Conditions

	Appendix B. Notices
	Index

